
Ambler
Cloud

US $ 54.99

Shelve in:
Programming Languages/General

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

JavaScript Frameworks
for Modern Web Dev
JavaScript Frameworks for Modern Web Dev is your guide to the wild, vast, and
untamed frontier that is JavaScript development.

The JavaScript tooling landscape has grown and matured drastically in the
past several years. This book will serve as an introduction to both new and well
established libraries, frameworks, and utilities that have gained popular traction
and support from seasoned developers. It covers tools applicable to the entire
development stack, both client- and server-side.

While no single book can possibly cover every JavaScript library of value,
JavaScript Frameworks for Modern Web Dev focuses on incredibly useful libraries
and frameworks that production software uses. You will be treated to detailed
analyses and sample code for tools that manage dependencies, structure code
in a modular fashion, automate repetitive build tasks, create specialized servers,
structure client side applications, facilitate horizontal scaling, and interacting with
disparate data stores.

The libraries and frameworks covered include Bower, Grunt, Yeoman, PM2,
RequireJS, Browserify, Knockout, AngularJS, Kraken, Mach, Mongoose, Knex,
Bookshelf, Faye, Q, Async.js, Underscore, and Lodash.

Written from first-hand experience, you will benefit from the glorious victories
and innumerable failures of two experienced professionals, gain quick insight into
hurdles that aren’t always explicitly mentioned in API documentation or Readmes,
and quickly learn how to use JavaScript frameworks and libraries like a Pro.

Enrich your development skills with JavaScript Frameworks for Modern Web
Dev today.

Includes Bower,

Grunt, Yeoman, PM2,

RequireJS,Browserify,

Knockout, AngularJS, Kraken,

Mach, Mongoose, Knex, Bookshelf,

Faye, Q, Async.js, Underscore, and Lodash

9 781484 206638

55499
ISBN 978-1-4842-0663-8

www.allitebooks.com

http://www.allitebooks.org

JavaScript Frameworks
for Modern Web Dev

Tim Ambler

Nicholas Cloud

www.allitebooks.com

http://www.allitebooks.org

JavaScript Frameworks for Modern Web Dev

Copyright © 2015 by Tim Ambler and Nicholas Cloud

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0663-8

ISBN-13 (electronic): 978-1-4842-0662-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewer: Robin Hawkes
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Bill McManus
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Crest

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/
www.apress.com/source-code/
http://www.allitebooks.org

There was a young lady named Laura,
Who was a beautiful señora.

Her love and assurance
Was a frequent occurrence

Which allowed me to write this book for yah.

—Tim

Dedicated to Brittany who supported me and gave me space
during the long hours that writing demands.

—Nicholas

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Bower ��� 1

 ■Chapter 2: Grunt �� 11

 ■Chapter 3: Yeoman �� 37

 ■Chapter 4: PM2 �� 53

 ■Chapter 5: RequireJS ��� 73

 ■Chapter 6: Browserify �� 101

 ■Chapter 7: Knockout �� 121

 ■Chapter 8: AngularJS �� 155

 ■Chapter 9: Kraken �� 191

 ■Chapter 10: Mach �� 251

 ■Chapter 11: Mongoose ��� 297

 ■Chapter 12: Knex and Bookshelf ��� 345

 ■Chapter 13: Faye �� 381

www.allitebooks.com

http://www.allitebooks.org

vi

■ Contents at a GlanCe

 ■Chapter 14: Q ��� 395

 ■Chapter 15: Async�js�� 425

 ■Chapter 16: Underscore and Lodash ��� 447

Index ��� 477

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

 ■Chapter 1: Bower ��� 1

Getting Started ��� 2

Configuring Bower �� 2

The Manifest �� 2

Creating a New Manifest �� 3

Finding, Adding, and Removing Bower Packages��� 3

Finding Packages ��� 3

Adding Packages �� 4

Removing Packages ��� 5

Semantic Versioning ��� 6

Managing the Dependency Chain ��� 7

Creating Bower Packages �� 8

Choose a Valid Name �� 8

Use Semver Git Tags ��� 8

Publish Your Package to the Registry ��� 9

Summary �� 9

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

 ■Chapter 2: Grunt �� 11

Installing Grunt ��� 12

How Grunt Works �� 12

Gruntfile�js �� 12

Tasks��� 14

Plugins �� 14

Configuration �� 15

Adding Grunt to Your Project �� 15

Maintaining a Sane Grunt Structure ��� 15

Working with Tasks �� 18

Managing Configuration ��� 18

Task Descriptions ��� 18

Asynchronous Tasks ��� 19

Task Dependencies ��� 20

Multi-Tasks ��� 20

Multi-Task Options �� 22

Configuration Templates ��� 23

Command-Line Options �� 24

Providing Feedback �� 24

Handling Errors ��� 25

Interacting with the File System �� 25

Source-Destination Mappings �� 26

Watching for File Changes �� 28

Creating Plugins ��� 32

Getting Started ��� 32

Creating the Task �� 32

Publishing to npm ��� 35

Summary �� 36

Related Resources ��� 36

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

 ■Chapter 3: Yeoman �� 37

Installing Yeoman ��� 38

Creating Your First Project �� 38

Subcommands �� 41

Creating Your First Generator ��� 42

Yeoman Generators are Node Modules �� 42

Sub-Generators �� 43

Defining Secondary Commands ��� 49

Composability ��� 51

Summary �� 52

Related Resources ��� 52

 ■Chapter 4: PM2 �� 53

Installation �� 53

Working with Processes ��� 54

Recovering from Errors��� 56

Responding to File Changes ��� 58

Monitoring Logs ��� 58

Monitoring Resource Usage ��� 60

Monitoring Local Resources ��� 60

Monitoring Remote Resources ��� 61

Advanced Process Management �� 63

JSON Application Declarations ��� 63

Load-Balancing Across Multiple Processors �� 68

Zero-Downtime Deployments ��� 70

Summary �� 72

Related Resources ��� 72

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

 ■Chapter 5: RequireJS ��� 73

Running the Examples �� 74

Working with RequireJS ��� 74

Installation �� 75

Configuration �� 75

Application Modules and Dependencies ��� 78

Paths and Aliases ��� 81

Shims �� 84

Loader Plugins �� 88

Cache Busting ��� 94

RequireJS Optimizer ��� 96

Configuring r�js ��� 96

Running the r�js Command ��� 97

Summary �� 99

 ■Chapter 6: Browserify �� 101

The AMD API vs� CommonJS �� 102

Installing Browserify �� 102

Creating Your First Bundle �� 103

Visualizing the Dependency Tree �� 104

Creating New Bundles As Changes Occur �� 105

Watching for File Changes with Grunt �� 106

Watching for File Changes with Watchify ��� 106

Using Multiple Bundles��� 108

The Node Way ��� 111

Module Resolution and the NODE_PATH Environment Variable �� 111

Dependency Management �� 114

Defining Browser-Specific Modules ��� 115

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Extending Browserify with Transforms ��� 116

brfs ��� 116

folderify �� 117

bulkify ��� 118

Browserify-Shim ��� 119

Summary �� 120

Related Resources ��� 120

 ■Chapter 7: Knockout �� 121

Views, Models, and View Models ��� 122

The Recipe List ��� 124

Recipe Details ��� 127

Binding View Models to the DOM ��� 129

View Models and Forms ��� 131

Switching to “Edit” Mode ��� 131

Changing the Recipe Title ��� 134

Updating Recipe Servings and Cooking Time ��� 135

Adding and Removing Ingredients �� 138

Instructions ��� 142

Citation ��� 144

Custom Components �� 144

The Input List View Model��� 145

The Input List Template �� 146

Registering the Input List Tag ��� 148

Subscribables: Cheap Messaging �� 150

Summary �� 152

Related Resources ��� 153

xii

■ Contents

 ■Chapter 8: AngularJS �� 155

A Declarative Approach to Building Web Applications �� 155

The Imperative Approach �� 155

The Declarative Approach ��� 157

Modules: A Foundation for Building Loosely Coupled Applications ������������������������������ 158

Specifying a Bootstrap Module ��� 159

Directives: An Abstraction Layer for the DOM ��� 160

Taking Control �� 163

Scopes and Prototypal Inheritance ��� 163

Manipulating Scope with Controllers�� 165

Loose Coupling Through Services and Dependency Injection �������������������������������������� 168

Dependency Injection ��� 168

Thin Controllers and Fat Services ��� 169

Creating Routes �� 173

Route Parameters ��� 175

Route Resolutions ��� 176

Creating Complex Forms �� 178

Validation �� 178

Conditional Logic �� 183

Repeatable Sections ��� 185

Summary �� 188

Related Resources ��� 189

 ■Chapter 9: Kraken �� 191

Environment-Aware Configuration ��� 192

Shortstop Handlers ��� 196

Configuration-Based Middleware Registration �� 200

Event Notifications �� 203

xiii

■ Contents

Structured Route Registration �� 203

Index Configuration��� 204

Directory Configuration ��� 205

Routes Configuration �� 207

Dust Templates ��� 208

Context and References ��� 209

Sections �� 212

Iteration �� 212

Conditionality �� 213

Partials�� 214

Blocks ��� 215

Filters �� 216

Context Helpers �� 218

Dust Helpers ��� 225

Let’s Get Kraken ��� 230

Summary �� 250

Related Resources ��� 250

 ■Chapter 10: Mach �� 251

Chapter Examples �� 251

Installation �� 252

Mach, the Web Server �� 252

HTTP Routes ��� 254

Making Connections ��� 260

Common Middleware �� 262

These Are Not the Routes You’re Looking for ��� 280

The Hosts with the Most ��� 282

Custom Middleware �� 287

Mach, the HTTP Client �� 289

Mach, the HTTP Proxy �� 291

Summary �� 295

xiv

■ Contents

 ■Chapter 11: Mongoose ��� 297

Basic MongoDB Concepts �� 297

A Simple Mongoose Example ��� 300

Creating a Mongoose Schema for JSON Data �� 301

Importing Data with Mongoose �� 302

Querying Data with Mongoose ��� 305

Working with Schemas �� 307

Data Types �� 307

Nested Schemas ��� 308

Default Property Values �� 309

Required Properties �� 310

Secondary Indexes ��� 310

Schema Validation �� 311

Schema References �� 314

Schema Middleware ��� 318

Working with Models and Documents �� 321

Document Instance Methods �� 323

Document Virtuals �� 325

Static Model Methods ��� 327

Working with Queries ��� 329

Model�find() �� 329

Finding Documents with Query Operators �� 336

Summary �� 343

 ■Chapter 12: Knex and Bookshelf ��� 345

Knex ��� 346

Installing the Command-Line Utility ��� 346

Adding Knex to Your Project ��� 346

Configuring Knex �� 347

The SQL Query Builder �� 347

Migration Scripts �� 355

Seed Scripts ��� 360

xv

■ Contents

Bookshelf ��� 361

What Is an Object-Relational Mapper? ��� 361

Creating Your First Bookshelf Model ��� 362

Relationships �� 370

Summary �� 379

Related Resources ��� 379

 ■Chapter 13: Faye �� 381

HTTP, Bayeux, and WebSockets �� 381

WebSockets �� 383

The Bayeux Protocol ��� 384

Getting Started with Faye ��� 385

PubSub Messaging ��� 387

Wildcard Channels �� 388

Summary �� 393

Related Resources ��� 394

 ■Chapter 14: Q ��� 395

Timing Is Everything ��� 395

Promises vs� Callbacks �� 399

The Promise of Q �� 401

Deferreds and Promises ��� 401

Values and Errors ��� 406

Reporting Progress ��� 412

Everything Ends �� 415

Flow Control with Q �� 418

Sequential Flow �� 418

Parallel Flow ��� 420

Pipeline Flow �� 421

Summary �� 423

Related Resources ��� 423

xvi

■ Contents

 ■Chapter 15: Async�js�� 425

Sequential Flow �� 426

Parallel Flow ��� 428

Pipeline Flow �� 430

Reusing a Pipeline �� 433

Loop Flow ��� 435

Looping While Some Condition Remains True �� 435

Looping Until Some Condition Becomes False ��� 437

Retry Loops ��� 439

Infinite Loops �� 441

Batch Flow ��� 442

Asynchronous Queue �� 442

Summary �� 446

 ■Chapter 16: Underscore and Lodash ��� 447

Installation and Usage �� 449

Aggregation and Indexing �� 449

countBy() �� 449

groupBy() �� 451

indexBy() �� 452

Being Choosy �� 453

Selecting Data from Collections ��� 453

Selecting Data from Objects ��� 456

Chaining ��� 460

Function Timing �� 463

defer()��� 463

debounce() ��� 465

throttle() ��� 466

xvii

■ Contents

Templates ��� 468

Loops and Other Arbitrary JavaScript in Templates �� 470

Living Without Gator Tags ��� 472

Accessing the Data Object Within a Template �� 473

Default Template Data �� 474

Summary �� 475

Related Resources ��� 476

Index ��� 477

xix

About the Authors

Tim Ambler is a software engineer from Nashville, Tennessee. His passion
for programming follows in the footsteps of his father, who introduced him
to computers at a young age with a Commodore 64. Tim is the author of
several popular open source projects, one of which (whenLive) has been
featured by GitHub’s staff. An occasional conference speaker and frequent
writer, Tim has been referenced multiple times in online publications such
as JavaScript Weekly and Node Weekly. He currently lives in the 12 South
area with his wife, Laura, and two cats. You can follow him on Twitter at
@tkambler.

Nicholas Cloud is a software developer who lives in the very humid city of
St. Louis. For over a decade he has forged his skills into a successful career.
He has developed web applications, web services, and desktop software on
diverse platforms with JavaScript, C#, and PHP. A strong proponent of open
source software, Nicholas contributes to userland projects and has written
several of his own open source libraries libraries. He speaks at a variety of
user groups and conferences and writes books, technical articles, and blog
posts in his spare time. He opines on Twitter at @nicholascloud.

http://@tkambler
http://@nicholascloud

xxi

About the Technical Reviewer

Robin Hawkes lives to learn and thrives on combining design and
code to solve problems. He’s the author of Foundation HTML5 Canvas
(Apress, 2011), which is all about making games with JavaScript. He’s
also the one-man band behind ViziCities, a WebGL-powered 3D city
visualization platform. In a previous life Robin worked in worldwide
developer relations at both Mozilla and Pusher.

xxiii

Acknowledgments

This book would not have been possible without the encouragement and support of a number of people:
Nicholas Cloud, my friend and co-author, without whom this book would be much more limited

in scope and depth. His knowledge, experience, and steadfast dedication to this project have been
immeasurably helpful. Thank you.

Louise Corrigan, Kevin Walter, Christine Ricketts, Melissa Maldonado, and the rest of the staff at Apress
who supported us throughout the course of this project. I am grateful for the invitation that was extended to
embark upon this journey and for the ongoing support that you have provided.

Robin Hawkes, our technical reviewer. The examples and source code included with this book have
greatly benefited from his keen insight and sharp eye.

James Coglan, the creator of Faye. Thank you for taking the time to share your technical expertise
and feedback.

My friends and colleagues Greg Jones, Jeff Crump, Seth Steele, Jon Zumbrun, and Brian Hiatt. I am
grateful for your feedback and encouragement.

—Tim

Acknowledgements are slippery things. I have so many debts, and so little space to repay.
First, the debt to my co-author Tim who reached out and invited me on this journey. We’ve never met

in person but worked remotely as co-workers for about half a year—enough time for each of us to leave an
impression on each other across the miles. For his trust, encouragement, and constant effort I am grateful.

Second, my debt to the staff at Apress who guided us through the publishing process: Kevin, Louise,
Christine, and Melissa. Their patience and careful guidance spared you, the reader, from no small amount of
cringes, and kept me on my toes during the entire writing process. They are all sharp professionals with whom
I hope to work again some day.

Third, I am indebted to Robin for his excellent technical reviews; for reading and executing more code
samples than a developer should ever be tasked with groking.

Finally, I cannot repay the subject-matter expertise I gleaned from Michael Jackson (@mjackson) while
researching Mach, and Ryan Niemeyer (@RPNiemeyer) while researching Knockout—I can only pay it forward
to you, the reader.

—Nicholas

www.allitebooks.com

http://@mjackson
http://@RPNiemeyer
http://www.allitebooks.org

xxv

Introduction

They tell me we’re living in an information age, but none of it seems to be the information
I need or brings me closer to what I want to know. In fact (I’m becoming more and more
convinced) all this electronic wizardry only adds to our confusion, delivering inside scoops
and verdicts about events that have hardly begun: a torrent of chatter moving at the speed
of light, making it nearly impossible for any of the important things to be heard.

—Matthew Flaming, The Kingdom of Ohio

The notion that “technology moves quickly” is a well-worn aphorism, and with good reason: technology
does move quickly. But at this moment, JavaScript in particular is moving very quickly indeed—much like
that “torrent of chatter moving at the speed of light” that Matthew Flaming refers to in The Kingdom of Ohio.
The language is in the midst of what many have called a renaissance, brought about by the rapidly increasing
sophistication of browser-based applications and the rising popularity of JavaScript on the server, thanks to
Node.js.

An almost feverish pace of innovation is occurring within the JavaScript community that, while
endlessly fascinating to follow, also presents some unique challenges of its own. JavaScript’s ecosystem of
libraries, frameworks, and utilities has grown dramatically. Where once a small number of solutions for any
given problem existed, many can now be found… and the options continue to grow by the day. As a result,
developers find themselves faced with the increasingly difficult task of choosing the appropriate tools from
among many seemingly good options.

If you’ve ever found yourself wondering why JavaScript seems to be attracting so much attention lately,
as we have, it’s worth stopping for a moment to consider the fact that JavaScript, a language that was created
by one person in ten days, now serves as the foundation upon which much of the Web as we know it sits.
A language that was originally created to solve relatively simple problems is now being applied in new
and innovative ways that were not originally foreseen. What’s more, JavaScript is a beautifully expressive
language, but it’s not without its share of rough edges and potential pitfalls. While flexible, efficient, and
ubiquitous, JavaScript concepts such as the event loop and prototypal inheritance can prove particularly
challenging for those coming to the language for the first time.

For these and many other reasons, the development community at large is still coming to terms with
how best to apply the unique features that JavaScript brings to the table. We’ve no doubt only scratched
the surface of what the language and the community behind it are capable of. For those with an insatiable
appetite for knowledge and a desire to create, now is the perfect time to be a JavaScript developer.

We have written Pro JavaScript Frameworks for Modern Web Dev to serve as your guide to a wide
range of popular JavaScript tools that solve difficult problems at both ends of the development stack: in
the browser and on the server. The tutorials and downloadable code examples contained within this book
illustrate the usage of tools that manage dependencies, structure code in a modular fashion, automate
repetitive build tasks, create specialized servers, structure client side applications, facilitate horizontal
scaling, perform event logging, and interacting with disparate data stores.

The libraries and frameworks covered include Bower, Grunt, Yeoman, PM2, RequireJS, Browserify,
Knockout, AngularJS, Kraken, Mach, Mongoose, Knex, Bookshelf, Faye, Q, Async.js, Underscore, and Lodash.

xxvi

■ IntroduCtIon

In writing Pro JavaScript Frameworks for Modern Web Dev, our goal was to create a filter for the
“torrent of chatter” that often seems to surround JavaScript, and in so doing, to allow what we believe are
some important things to be heard. We hope the information contained within these pages proves as useful
to you as it has to us.

Who This Book Is For
This book is intended for web developers who are already confident with JavaScript, but also frustrated with
the sheer number of solutions that exist for seemingly every problem. This book helps lift the fog, providing
the reader with an in-depth guide to specific libraries and frameworks that well-known organizations are
using right now with great success. Topics pertaining to both client-side and server-side development
are covered. As a result, readers will gain the most benefit from this book if they already have at least an
intermediate familiarity with both the web browser Document Object Model (DOM), common client-side
libraries like jQuery, and Node.js.

How This Book Is Structured
This book covers a wide selection of JavaScript tools that are applicable throughout the entire development
process, from a project’s first commit to its first release and beyond. To that end, the chapters have been
grouped into the following parts.

Part 1: Development Tools

Bower
Dependency management is hardly a new idea - well-known examples include Node’s npm, Python’s pip,
and PHP’s composer. A practice that has only recently begun to see widespread adoption, however, is the
application of this concept to the management of front-end web assets - the JavaScript libraries, stylesheets,
fonts, icons, and images that serve as the building blocks of modern web applications. In this chapter, we’ll
discover several ways in which Bower - a popular tool within this field - can improve your development
process by providing you with a mechanism for organizing these dependencies within your application.

Grunt
Larry Wall, the creator of Perl, describes the three virtues of a great programmer as: laziness, impatience,
and hubris. In this chapter, we’ll focus on a tool that will help you strengthen the virtue of laziness - Grunt.
This popular task runner provides developers with a framework for creating command-line utilities
that automative repetitive build tasks such as running tests, concatenating files, compiling SASS / LESS
stylesheets, checking for JavaScript errors, and more. After reading this chapter, you’ll know how to use several
popular Grunt plugins, as well as how to go about creating and sharing your own plugins with the community.

xxvii

■ IntroduCtIon

Yeoman
Yeoman provides JavaScript developers with a mechanism for creating reusable templates (“generators”)
that describe the overall structure of a project (initially required dependencies, Grunt tasks, etc…) in a way
that can be easily re-used over and over. Broad community support also allows you to take advantage of a
wide variety of pre-existing templates. In this chapter, we’ll walk through the process of installing Yeoman
and using several popular pre-existing generators. Finally, we’ll take a look at how we can create and share
our own templates with the community.

PM2
In this chapter, we will close out our discussion of development tools by taking a look at PM2, a command-line
utility that simplifies many of the tasks associated with running Node applications, monitoring their status,
and efficiently scaling them to meet increasing demand.

Part 2: Module Loaders

RequireJS and Browserify
JavaScript’s lacks a native method for loading external dependencies in the browser—a frustrating oversight
for developers. Fortunately, the community has stepped in to fill this gap with two very different and
competing standards: the Asynchronous Module Definition (AMD) API and CommonJS. We’ll dive into the
details of both and take a look at widely-used implementations of each: RequireJS and Browserify. Each
have their merits, which we’ll discuss in detail, but both can have a profoundly positive impact on the way in
which you go about structuring your applications.

Part 3: Client-Side Frameworks

Knockout and AngularJS
In recent years, web developers have witnessed a sharp rise in popularity of so-called “single-page apps.”
Such applications exhibit behavior once available only on the desktop, but at the expense of increased code
complexity within the browser. In this section, we’ll dive into two widely-used front-end frameworks that
help minimize that complexity by providing proven patterns for solving frequently-encountered problems:
Knockout and AngularJS. Knockout focuses on the relationship between view and data, but otherwise leaves
the application architecture and plumbing to the developer’s discretion. AngularJS takes a more prescriptive
approach, covering the view, application routing, data transfer, and module design.

Part 4: Server-Side Frameworks

Kraken and Mach
Client-side applications aren’t very useful without a server with which to interact. In this section, we’ll take
a look at two popular frameworks that support developers in the creation of back-end applications: Kraken
and Mach.

Mach is more than just a simple web server: it is HTTP for the web. Mach can both serve and retrieve
content via an intuitive, extensible HTTP stack. The Mach interface remains the same whether servicing
web page requests in a Node.js application, fetching JSON data with a Mach AJAX request in the browser,
or rewriting and proxying requests to another web stack entirely. In many ways Mach is the Swiss army knife
of HTTP.

xxviii

■ IntroduCtIon

Part 5: Managing Database Interaction

Mongoose, Knex, and Bookshelf
At the core of every application lies the most important component of any development stack - the data
that our users seek. In this section, we’ll become familiar with two libraries that help simplify some of the
complexity that’s often experienced when interacting with popular storage platforms such as MongoDB,
MySQL, PostgreSQL, and SQLite. After reading this section, you’ll be comfortable defining schemas,
associations, lifecycle “hooks”, and more.

Part 6: Communication

Faye
In this section, you’ll be introduced to Faye, a Node.js library that provides developers with a robust and
easy-to-use platform for building products that rely on real-time communication between servers and all
major browsers.Much of Faye’s popularity stems from the project’s goal of working everywhere the Web
works. Faye accomplishes this by providing seamless fallback support for a number of communication
protocols.

Part 7: Managing Control Flow

Q and Async�js
The asynchronous nature of JavaScript provides developers with a significant degree of flexibility - as
opposed to forcing developers to execute their code in a linear fashion, JavaScript allows developers to
orchestrate multiple actions simultaneously. Unfortunately, along with this flexibility comes a significant
degree of additional complexity - what many developers refer to as “callback hell” or the “pyramid of
doom.” In this section, we’ll examine two popular libraries that will aid you in taming the complexities of
asynchronous control flow: Q and Async.js.

Part 8: Further Useful Libraries
A number of wonderfully useful libraries exist that this book would be remiss not to cover, but for which
additional parts are not necessarily warranted. This part will cover such libraries.

Underscore and Lo-Dash
Underscore (and its successor, Lo-Dash) is an incredibly useful collection of functions that simplifies many
frequently used patterns that can be tedious to implement otherwise. This brief chapter will bring these
libraries to your attention, along with some of the more popular extensions that can also be included to
enhance their usefulness even further. Examples are included that that highlight some of the most frequently
used portions of these libraries.

xxix

■ IntroduCtIon

Downloading the Code
Each chapter in this book contains many examples, the source code for which may be downloaded from
http://www.apress.com/9781484206638 in zipped form.

Subdirectories within each chapter’s zip file contain source code (often executable) that corresponds
to specific example listings in each chapter. The first line in each chapter listing will be a source code
comment identifying the specific file path where the source code lives. If you were to encounter
Listing 0-1 in Chapter 10 (covering Mach), for example, the actual source code file would be located in
mach/example-000/no-such-file.js, relative to where the mach.zip file was extracted.

Listing 0-1. Not a Real Example

// example-000/no-such-file.js
console.log('this is not a real example');

Most examples are run with the Node.js runtime, which may be obtained from https://nodejs.org.
Chapters with additional prerequisites will explain the necessary procedures for downloading and
installing the examples. (For example, MongoDB is necessary to run examples in Chapter 11, which covers
Mongoose.)

Any additional steps necessary for running code examples (e.g., executing curl requests) or interacting
with a running example (e.g., opening a web browser and navigating to a specific URL) are explained
alongside each listing.

http://www.apress.com/9781484206638
https://nodejs.org

1

Chapter 1

Bower

Great things are done by a series of small things brought together.

—Vincent Van Gogh

The concept of package management, also known as dependency management, is not new. Utilities within
this category provide developers with a mechanism for managing the various third-party libraries that a
project relies on. Widely used examples include

•	 npm: The package manager for Node.js

•	 Composer: A tool for dependency management in PHP

•	 pip: The PyPA recommended tool for installing Python packages

•	 NuGet: The package manager for the Microsoft development platform including .NET

While package management is hardly a new idea, a practice that has only recently begun to see
widespread adoption is the application of this concept to the management of front-end web assets—the
JavaScript libraries, stylesheets, fonts, icons, and images that serve as the building blocks of modern web
applications. The need for such structure has become evident as the foundations on which modern web
applications are built have grown in complexity. Web applications that once relied on a small selection of
broadly defined, “one size fits all” third-party libraries (e.g., jQuery) now find themselves using the work
of many more smaller libraries, each with a tightly defined purpose. Benefits of this approach include
smaller modules that are easier to test, as well as an enhanced degree of flexibility on the part of the
parent application, which can more easily extend third-party libraries or replace them altogether when
necessary.

This chapter is designed to get you up and running quickly with Bower, the front-end package manager
whose roots lie in open source initiatives at Twitter. Topics covered include

•	 Installing and configuring Bower

•	 Adding Bower to a project

•	 Finding, adding, and removing packages

•	 Semantic Versioning

•	 Managing the dependency chain

•	 Creating Bower packages

Chapter 1 ■ Bower

2

Getting Started
All interaction with Bower occurs through a command-line utility that can be installed via npm. If you do not
already have Bower installed, you should install it before you continue, as shown in Listing 1-1.

Listing 1-1. Installing the bower Command-Line Utility via npm

$ npm install -g bower
$ bower --version
1.3.12

 ■ Note Node’s package manager (npm) allows users to install packages in one of two contexts: locally
or globally. In this example, bower is installed within the global context, which is typically reserved for
command-line utilities.

Configuring Bower
Bower is configured on a per-project basis through a single (optional) JSON file that exists in your project’s
root folder, .bowerrc. For the purposes of this introduction, we’ll only look at the most frequently changed
setting within this file (see Listing 1-2).

Listing 1-2. The .bowerrc File from This Chapter’s Sample Project

// example-bootstrap/.bowerrc

{
 "directory": "./public/bower_components"
}

By default, Bower will store your project’s dependencies in the bower_components folder. You will likely
want to change this location, and the directory setting allows you to do so.

The Manifest
Bower provides developers with a single point of entry from which third-party libraries can be found, added,
upgraded, and removed. As these actions occur, Bower updates a JSON file referred to as the “manifest”
with an up-to-date list of the project’s dependencies. The Bower manifest for this chapter’s sample project is
shown in Listing 1-3. In this example, Bower is aware of a single dependency, the Bootstrap CSS framework.

Listing 1-3. Bower Manifest for This Chapter’s Sample Project

// example-bootstrap/bower.json

{
 "name": "example-bootstrap",
 "version": "1.0.0",
 "homepage": "https://github.com/username/project",

https://github.com/username/project

Chapter 1 ■ Bower

3

 "authors": [
 "John Doe <john.doe@gmail.com>"
],
 "dependencies": {
 "bootstrap": "3.2.0"
 }
}

If we were to accidentally delete all of our project’s dependencies by removing the public/bower_
components folder, we could easily restore our project to its previous state by issuing a single command, as
shown next. Doing so would cause Bower to compare its manifest with our project’s current file structure,
determine what dependencies are missing, and restore them.

$ bower install

As a result of this behavior, we have the option of ignoring our project’s /public/bower_components
folder within version control. By committing only Bower’s manifest, and not the dependencies themselves,
our project’s source code can be kept in a cleaner state, containing only files that pertain directly to our
own work.

 ■ Note opinions differ as to whether or not keeping your project’s dependencies out of version control is
a good idea. on the one hand, doing so results in a cleaner repository. on the other hand, this also opens the
door to potential problems should you (or the Bower registry, or Github, etc.) encounter connection issues.
the general consensus seems to be that if you are working on a “deployable” project (i.e., an application,
not a module), committing your dependencies is the preferred approach. otherwise, keeping your project’s
dependencies out of version control is probably a good idea.

Creating a New Manifest
When you begin to use Bower within a project for the first time, it’s typically best to allow Bower to create a
new manifest for you, as shown next. Afterward, you can modify it further if necessary.

$ bower init

Finding, Adding, and Removing Bower Packages
Bower’s command-line utility provides a number of useful commands for locating, installing, and removing
packages. Let’s take a look at how these commands can help simplify the process of managing a project’s
external dependencies.

Finding Packages
One of the primary ways in which Bower can improve your development workflow is by providing you with a
centralized registry from which third-party libraries can be found. To search the Bower registry, simply pass
the search argument to Bower, followed by a keyword to search for, as shown in Listing 1-4. In this example,
only a short excerpt from the returned list of search results is shown.

Chapter 1 ■ Bower

4

Listing 1-4. Searching Bower for jQuery

$ bower search jquery

Search results:

 jquery git://github.com/jquery/jquery.git
 jquery-ui git://github.com/components/jqueryui
 jquery.cookie git://github.com/carhartl/jquery-cookie.git
 jquery-placeholder git://github.com/mathiasbynens/jquery-placeholder.git

Adding Packages
Each search result includes the name under which the package was registered, along with the URL of the
GitHub repository at which it can be accessed directly. Once we have located the desired package, we can
add it to our project as shown in Listing 1-5.

Listing 1-5. Adding jQuery to Our Project

$ bower install jquery --save
bower jquery#* cached git://github.com/jquery/jquery.git#2.1.3
bower jquery#* validate 2.1.3 against git://github.com/jquery/jquery.git#*
bower jquery#>= 1.9.1 cached git://github.com/jquery/jquery.git#2.1.3
bower jquery#>= 1.9.1 validate 2.1.3 against git://github.com/jquery/jquery.git#>= 1.9.1
bower jquery#>= 1.9.1 cached git://github.com/jquery/jquery.git#2.1.3
bower jquery#>= 1.9.1 validate 2.1.3 against git://github.com/jquery/jquery.git#>= 1.9.1
bower jquery#>= 1.9.1 install jquery#2.1.3

jquery#2.1.3 public/bower_components/jquery

 ■ Note Bower does not host any of the files associated with the packages contained within its registry; it
defers to Github for that responsibility. while it is possible to host packages at any UrL, the majority of public
packages are found on Github.

Take note of the fact that in Listing 1-5, we pass the --save option to Bower’s install command. By
default, the install command will add the requested package to a project without updating its manifest.
By passing the --save option, we instruct Bower to permanently store this package within its list of
dependencies.

Listing 1-6 shows the HTML from this chapter’s sample project. After adding jQuery to our project via
Bower, we can load it via a script tag as we would any other library.

Chapter 1 ■ Bower

5

Listing 1-6. HTML from Our Sample Project That References the jQuery Package Just Added

// example-jquery/public/index.html

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Bower Example</title>
 </head>
 <body>
 <div id="container"></div>
 <script src="/bower_components/jquery/dist/jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('#container').html('<p>Hello, world!</p>');
 });
 </script>
 </body>
</html>

Development Dependencies
By default, any packages that Bower installs are considered to be “production” dependencies, but this
behavior can be overridden by passing the --save-dev option. Doing so will flag any installed packages as
“development” dependencies. Such packages are intended for development purposes only, not for the final
users of a project.

Once we are ready to deploy our application to a production environment, we can instruct Bower to
install only the production dependencies, as shown next, resulting in a leaner build that does not contain
extraneous files of no interest to the end user.

$ bower install --production

Removing Packages
The process of removing Bower packages is straightforward. As in previous examples, we pass the --save
argument to update Bower’s manifest to reflect this change:

$ bower uninstall jquery --save

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Bower

6

Semantic Versioning
If you were to install jQuery (as shown in Listing 1-5) and then look at the contents of your project’s Bower
manifest, you would see something that resembles Listing 1-7.

Listing 1-7. Semantic Version (Semver) Number

"dependencies": {
 "jquery": "~2.1.3"
}

The version number 2.1.3 that we see in Listing 1-7 (ignore the ~ character for a moment) is what is
known as a semantic version number (semver for short). Semantic versioning is a standard that describes
a common format that developers can use to assign version numbers to their projects. The format is
illustrated here:

Version X.Y.Z (Major.Minor.Patch)

The semantic versioning format dictates that developers create clearly defined (either by
documentation or by clear, self-documenting code) APIs that provide users with a single point of entry into a
library. New projects that are just getting off the ground typically begin at version 0.0.0 and work their way up
incrementally as new releases are created. A project with a version number below 1.0.0 is considered to be
under heavy development and, as such, is allowed to make sweeping changes to its API without altering its
major version number. A project with a version number at or above 1.0.0, however, is guided by the following
set of rules that determines how version numbers should be changed:

•	 A project’s major version number should change when updates occur that result in
breaking changes with how users have interacted with a project’s API in previous
versions.

•	 A project’s minor version number should change when new features are added to a
project in a way that is backward-compatible (i.e., the existing API is not broken).

•	 A project’s patch version number should change when backward-compatible bug
fixes are introduced.

These rules provide developers with insight into the extent of changes that have occurred between any
two versions. Such insight will prove useful as our Bower manifest grows and we begin adding more and
more dependencies to our project.

 ■ Note the ~ character shown in Listing 1-7 tells Bower that whenever the install command is run, it is
allowed to automatically install future versions of jQuery that are “relatively close to” version 2.1.3. If the use of
the phrases “relatively close to” and “automatically install” within the same sentence makes your skin crawl,
you’re not alone. Best practices suggest that you avoid the “~X.Y.Z” format when referencing dependencies
with Bower. Instead, you are better off specifying the exact version of the dependency that you wish to include
within your project. as future updates are released, you can then manually review them and make your own
decisions regarding if and when to update. Subsequent examples within this chapter will follow this advice.

Chapter 1 ■ Bower

7

Managing the Dependency Chain
One of the primary benefits that developers gain as a result of using Bower is the ease with which updates to
a project’s entire dependency chain can be monitored and integrated. To illustrate this point, let’s take a look
at the list of dependencies contained within this chapter’s sample project (see Listing 1-8).

Listing 1-8. Installing and Listing the Various Bower Packages Required by Our Sample Project

$ bower install
bower bootstrap#3.2.0 cached git://github.com/twbs/bootstrap.git#3.2.0
bower bootstrap#3.2.0 validate 3.2.0 against git://github.com/twbs/bootstrap.git#3.2.0
bower jquery#>= 1.9.0 cached git://github.com/jquery/jquery.git#2.1.3
bower jquery#>= 1.9.0 validate 2.1.3 against git://github.com/jquery/jquery.git#>= 1.9.0
bower bootstrap#3.2.0 install bootstrap#3.2.0
bower jquery#>= 1.9.0 install jquery#2.1.3

bootstrap#3.2.0 public/bower_components/bootstrap
└── jquery#2.1.3

jquery#2.1.3 public/bower_components/jquery

$ bower list
bower check-new Checking for new versions of the project dependencies..
example-bootstrap#1.0.0 /opt/example-bootstrap
└─┬ bootstrap#3.2.0 (latest is 3.3.2)
 └── jquery#2.1.3

Thanks to Bower, we now have a simple graph that describes the external dependencies that our project
relies on, as well as the relationships between them. We can see that we have a Bootstrap dependency,
which in turn has its own dependency on jQuery. Bower also prints the specific version of each component
that is currently installed.

 ■ Note Many third-party libraries are not entirely self-contained—they have dependencies of their own.
Bootstrap (with its reliance on jQuery) is one such example. when adding such a package, Bower is smart
enough to recognize these additional dependencies and will proactively add them to your project if they don’t
already exist. It is important to note, however, that unlike more sophisticated package managers (e.g., npm),
Bower stores all of its packages within a flat folder structure, which means you will occasionally run into version
conflicts, if you’re not careful.

In Listing 1-8, Bower has informed us that a version of Bootstrap (3.3.2) newer than the version currently
relied upon by our project (3.2.0) is available. We can update this dependency by modifying our project’s
manifest to refer to this newer version and rerunning the install command, as shown in Listing 1-9.

Chapter 1 ■ Bower

8

Listing 1-9. Installing Bower Packages After Having Updated the Version of jQuery Our Project Relies On

$ bower install
bower bootstrap#3.3.2 cached git://github.com/twbs/bootstrap.git#3.3.2
bower bootstrap#3.3.2 validate 3.3.2 against git://github.com/twbs/bootstrap.git#3.3.2
bower bootstrap#3.3.2 install bootstrap#3.3.2

bootstrap#3.3.2 public/bower_components/bootstrap
└── jquery#2.1.3

Creating Bower Packages
Until now, our focus has been on integrating Bower into our own projects. We’ve initialized Bower within
our project and discovered how we can go about finding, adding, and removing packages. At a certain point,
however, you’ll hopefully find yourself wanting to share your own packages with others. To do so, you’ll need
to ensure that you follow a few simple guidelines, starting with choosing a valid name.

Choose a Valid Name
You’ll need to settle on a name for your package that is unique throughout Bower’s public registry. Use
Bower’s search command to find out if your desired name is available. Additional requirements include

•	 The name should be in “slug” format; for example, my-unique-project.

•	 The name should be all lowercase.

•	 Only alphanumeric characters, dots, and dashes are allowed.

•	 The name should begin and end with an alphabetic character.

•	 Consecutive dots and dashes are not allowed.

•	 After settling on a name, update the contents of your project’s bower.json file
accordingly.

Use Semver Git Tags
Earlier in the chapter, we took a look at the concept of semantic versioning, a common standard for
assigning meaningful version numbers to projects. You’ll want to ensure that you follow this standard, as this
will allow the consumers of your package to track and integrate your future changes.

If the package you want to share is just getting started, an appropriate version number would be
0.0.0. As you commit future changes and create new releases, you can increment this value as appropriate,
depending on the extent of your updates. When you determine that your project has reached its first “stable”
milestone, update your version number to 1.0.0 to reflect that status.

Every version number of your project should have a corresponding tag on GitHub. It is this relationship
between GitHub tags and the versions of your package that allows consumers to reference specific versions
within their projects.

Assuming you’ve already committed your code to GitHub, see Listing 1-10 for an example of how you
might go about creating your first tag.

Chapter 1 ■ Bower

9

Listing 1-10. Creating Your First Semver Git Tag

$ git tag -a 0.0.1 -m "First release."
$ git push origin 0.0.1

Publish Your Package to the Registry
Now that we’ve chosen an appropriate name for our package and assigned a version number (along with a
corresponding tag on GitHub), it’s time to publish our package to the public Bower registry:

$ bower register my-package-name https://github.com/username/my-package-name.git

 ■ Note Bear in mind that Bower is intended to serve as a centralized registry for libraries and components
that other developers can use within their own projects. It is not intended to serve as a distribution mechanism
for entire applications.

Summary
Bower is a simple command-line utility that eases some of the tedious tasks associated with managing
front-end assets. Unlike well-known package managers from other platforms (e.g., Node’s npm), Bower
was not designed to handle the specific needs of any one platform or language; instead, it favors a rather
generic approach to the concept of package management. The developers who created Bower intentionally
set out to create a very simple tool for managing a wide variety of front-end assets—not just code, but also
stylesheets, fonts, images, and other, unforeseen future dependencies.

Developers working on trivial web applications with few external dependencies may find little value
in the benefits that Bower brings to the table. That said, trivial web applications have a tendency to quickly
evolve into complex web applications, and as that process occurs, developers often come to appreciate
Bower’s benefits.

Regardless of how complex (or simple) you consider your project to be, we would encourage you to
consider integrating Bower into your workflow sooner rather than later. As bitter experience has taught
us—the project itself. Err on the side of too little structure, and you risk creating an ever-increasing burden
of “technical debt” for which you must eventually pay a price. The process of striking a delicate balance
between these undesired alternatives is as much an art as it is a science. It is also a process that is never fully
learned, but must continuously be adapted as the tools of our trade change.

11

Chapter 2

Grunt

I’m lazy. But it’s the lazy people who invented the wheel and the bicycle because they didn’t
like walking or carrying things.

—Lech Walesa, former president of Poland

In his book Programming Perl, Larry Wall (the well-known creator of the language) puts forth the idea that
all successful programmers share three important characteristics: laziness, impatience, and hubris. At first
glance, these traits all sound quite negative, but dig a little deeper, and you’ll find the hidden meaning in his
statement:

Laziness: Lazy programmers hate to repeat themselves. As a result, they tend to
put a lot of effort into creating useful tools that perform repetitive tasks for them.
They also tend to document those tools well, to spare themselves the trouble of
answering questions about them later.

Impatience: Impatient programmers have learned to expect much from their
tools. This expectation teaches them to create software that doesn’t just react to
the needs of its users, but that actually attempts to anticipate those needs.

Hubris: Good programmers take great pride in their work. It is this pride that
compels them to write software that others won’t want to criticize—the type of
work that we should all be striving for.

In this chapter, we’ll focus on the first of these three characteristics, laziness, along with Grunt, a
popular JavaScript “task runner” that supports developers in nurturing this trait by providing them with a
toolkit for automating the repetitive build tasks that often accompany software development, such as:

•	 Script and stylesheet compilation and minification

•	 Testing

•	 Linting

•	 Database migrations

•	 Deployments

Chapter 2 ■ Grunt

12

In other words, Grunt helps developers who strive to work smarter, not harder. If that idea appeals to
you, read on. After you have finished this chapter, you will be well on your way toward mastering Grunt.
You’ll learn how to do the following in this chapter:

•	 Create configurable tasks that automate the repetitive aspects of software
development that accompany nearly every project

•	 Interact with the file system using simple yet powerful abstractions provided
by Grunt

•	 Publish Grunt plugins from which other developers can benefit and to which they
can contribute

•	 Take advantage of Grunt’s preexisting library of community-supported plugins, of
which over 4,400 examples exist at the time of writing

Installing Grunt
Before continuing, you should ensure that you have installed Grunt’s command-line utility. Available as an
npm package, the installation process is shown in Listing 2-1.

Listing 2-1. Installing the grunt Command-Line Utility via npm

$ npm install -g grunt-cli
$ grunt --version
grunt-cli v0.1.13

How Grunt Works
Grunt provides developers with a toolkit for creating command-line utilities that perform repetitive project
tasks. Examples of such tasks include the minification of JavaScript code and the compilation of Sass
stylesheets, but there’s no limit to how Grunt can be put to work. Grunt can be used to create simple tasks
that address the specific needs of a single project—tasks that you don’t intend to share or reuse—but Grunt’s
true power derives from its ability to package tasks as reusable plugins that can then be published, shared,
used, and improved upon by others. At the time of this writing, over 4,400 such plugins exist.

Four core components make Grunt tick, which we will now cover.

Gruntfile.js
At Grunt’s core lies the Gruntfile, a Node module saved as Gruntfile.js (see Listing 2-2) at the root of
your project. It’s within this file that we can load Grunt plugins, create our own custom tasks, and configure
them according to the needs of our project. Each time Grunt is run, its first order of business is to retrieve its
marching orders from this module.

Chapter 2 ■ Grunt

13

Listing 2-2. Sample Gruntfile

// example-starter/Gruntfile.js

module.exports = function(grunt) {

 /**
 * Configure the various tasks and plugins that we'll be using
 */
 grunt.initConfig({
 /* Grunt's 'file' API provides developers with helpful abstractions for
 interacting with the file system. We'll take a look at these in greater
 detail later in the chapter. */
 'pkg': grunt.file.readJSON('package.json'),
 'uglify': {
 'development': {
 'files': {
 'build/app.min.js': ['src/app.js', 'src/lib.js']
 }
 }
 }
 });

 /**
 * Grunt plugins exist as Node packages, published via npm. Here, we load the
 * 'grunt-contrib-uglify' plugin, which provides a task for merging and minifying
 * a project's source code in preparation for deployment.
 */
 grunt.loadNpmTasks('grunt-contrib-uglify');

 /**
 * Here we create a Grunt task named 'default' that does nothing more than call
 * the 'uglify' task. In other words, this task will serve as an alias to
 * 'uglify'. Creating a task named 'default' tells Grunt what to do when it is
 * run from the command line without any arguments. In this example, our 'default'
 * task calls a single, separate task, but we could just as easily have called
 * multiple tasks (to be run in sequence) by adding multiple entries to the array
 * that is passed.
 */
 grunt.registerTask('default', ['uglify']);

 /**
 * Here we create a custom task that prints a message to the console (followed by
 * a line break) using one of Grunt's built-in methods for providing user feedback.
 * We'll look at these in greater detail later in the chapter.
 */
 grunt.registerTask('hello-world', function() {
 grunt.log.writeln('Hello, world.');
 });

};

Chapter 2 ■ Grunt

14

Tasks
Tasks are the basic building blocks of Grunt and are nothing more than functions that are registered with
assigned names via Grunt’s registerTask() method. In Listing 2-2, a simple hello-world task is shown that
prints a message to the console. This task can be called from the command line as shown in Listing 2-3.

Listing 2-3. Running the hello-world Task Shown in Listing 2-2

$ grunt hello-world
Running "hello-world" task
Hello, world.

Done, without errors.

Multiple Grunt tasks can also be run in sequence with a single command, as shown in Listing 2-4.
Each task will be run in the order in which it was passed.

Listing 2-4. Running Multiple Grunt Tasks in Sequence

$ grunt hello-world uglify
Running "hello-world" task
Hello, world.

Running "uglify:development" (uglify) task
>> 1 file created.

Done, without errors.

The hello-world task that we’ve just seen serves as an example of a basic, stand-alone Grunt task. Such
tasks can be used to implement simple actions specific to the needs of a single project that you don’t intend
to re-use or share. Most of the time, however, you will find yourself interacting not with stand-alone tasks,
but instead with tasks that have been packaged as Grunt plugins and published to npm so that others can
reuse them and contribute to them.

Plugins
A Grunt plugin is a collection of configurable tasks (published as an npm package) that can be reused across
multiple projects. Thousands of such plugins exist. In Listing 2-2, Grunt’s loadNpmTasks() method is used to
load the grunt-contrib-uglify Node module, a Grunt plugin that merges a project’s JavaScript code into a
single, minified file that is suitable for deployment.

 ■ Note a list of all available Grunt plugins can be found at http://gruntjs.com/plugins. plugins whose
names are prefixed with contrib- are officially maintained by the developers behind Grunt.

http://gruntjs.com/plugins

Chapter 2 ■ Grunt

15

Configuration
Grunt is known for emphasizing “configuration over code”: the creation of tasks and plugins whose
functionality is tailored by configuration that is specified within each project. It is this separation of code
from configuration that allows developers to create plugins that are easily reusable by others. Later in the
chapter, we’ll take a look at the various ways in which Grunt plugins and tasks can be configured.

Adding Grunt to Your Project
Earlier in the chapter, we installed Grunt’s command-line utility by installing the grunt-cli npm package
as a global module. We should now have access to the grunt utility from the command line, but we still
need to add a local grunt dependency to each project we intend to use it with. The command to be called
from within the root folder of your project is shown next. This example assumes that npm has already been
initialized within the project and that a package.json file already exists.

$ npm install grunt --save-dev

Our project’s package.json file should now contain a grunt entry similar to that shown in Listing 2-5.

Listing 2-5. Our Project’s Updated package.json File

// example-tasks/package.json

{
 "name": "example-tasks",
 "version": "1.0.0",
 "devDependencies": {
 "grunt": "0.4.5"
 }
}

The final step toward integrating Grunt with our project is the creation of a Gruntfile (see Listing 2-6),
which should be saved within the root folder of the project. Within our Gruntfile, a single method is called,
loadTasks(), which is discussed in the upcoming section.

Listing 2-6. Contents of Our Project’s Gruntfile

// example-tasks/Gruntfile.js

module.exports = function(grunt) {
 grunt.loadTasks('tasks');
};

Maintaining a Sane Grunt Structure
We hope that by the time you have finished this chapter, you will have found Grunt to be a worthwhile tool
for automating many of the repetitive, tedious tasks that you encounter during the course of your daily
workflow. That said, we’d be lying if we told you that our initial reaction to Grunt was positive. In fact,
we were quite turned off by the tool at first. To help explain why, let’s take a look at the Gruntfile that is
prominently displayed within Grunt’s official documentation (see Listing 2-7).

Chapter 2 ■ Grunt

16

Listing 2-7. Example Gruntfile Provided by Grunt’s Official Documentation

module.exports = function(grunt) {

 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 concat: {
 options: {
 separator: ';'
 },
 dist: {
 src: ['src/**/*.js'],
 dest: 'dist/<%= pkg.name %>.js'
 }
 },
 uglify: {
 options: {
 banner: '/*! <%= grunt.template.today("dd-mm-yyyy") %> */\n'
 },
 dist: {
 files: {
 'dist/<%= pkg.name %>.min.js': ['<%= concat.dist.dest %>']
 }
 }
 },
 qunit: {
 files: ['test/**/*.html']
 },
 jshint: {
 files: ['Gruntfile.js', 'src/**/*.js', 'test/**/*.js'],
 options: {
 // options here to override JSHint defaults
 globals: {
 jQuery: true,
 console: true,
 module: true,
 document: true
 }
 }
 },
 watch: {
 files: ['<%= jshint.files %>'],
 tasks: ['jshint', 'qunit']
 }
 });

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Grunt

17

 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.loadNpmTasks('grunt-contrib-qunit');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.loadNpmTasks('grunt-contrib-concat');

 grunt.registerTask('test', ['jshint', 'qunit']);

 grunt.registerTask('default', ['jshint', 'qunit', 'concat', 'uglify']);

};

The Gruntfile shown in Listing 2-7 is for a relatively simple project. We already find this example to be
slightly unwieldy, but within larger projects we have seen this file balloon to many times this size. The result
is an unreadable and difficult-to-maintain mess. Experienced developers would never write their code in a
way that combines functionality from across unrelated areas into a single, monolithic file, so why should we
approach our task runner any differently?

The secret to maintaining a sane Grunt structure lies with Grunt’s loadTasks() function, as shown in
Listing 2-6. In this example, the tasks argument refers to a tasks folder relative to our project’s Gruntfile.
Once this method is called, Grunt will load and execute each Node module it finds within this folder,
passing along a reference to the grunt object each time. This behavior provides us with the opportunity to
organize our project’s Grunt configuration as a series of separate modules, each responsible for loading and
configuring a single task or plugin. An example of one of these smaller modules is shown in Listing 2-8. This
task can be executed by running grunt uglify from the command line.

Listing 2-8. Example Module (uglify.js) Within Our New tasks Folder

// example-tasks/tasks/uglify.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-uglify');

 grunt.config('uglify', {
 'options': {
 'banner': '/*! <%= grunt.template.today("dd-mm-yyyy") %> */\n'
 },
 'dist': {
 'files': {
 'dist/app.min.js': ['src/index.js']
 }
 }
 });

};

Chapter 2 ■ Grunt

18

Working with Tasks
As previously mentioned, tasks serve as the foundation on which Grunt is built—everything begins here.
A Grunt plugin, as you’ll soon discover, is nothing more than one or more tasks that have been packaged into
a Node module and published via npm. We’ve already seen a few examples that demonstrate the creation of
basic Grunt tasks, so let’s take a look at some additional features that can help us get the most out of them.

Managing Configuration
Grunt’s config() method serves as both a “getter” and a “setter” for configuration. In Listing 2-9, we see how
a basic Grunt task can access its configuration through the use of this method.

Listing 2-9. Managing Configuration Within a Basic Grunt Task

module.exports = function(grunt) {

 grunt.config('basic-task', {
 'message': 'Hello, world.'
 });

 grunt.registerTask('basic-task', function() {
 grunt.log.writeln(grunt.config('basic-task.message'));
 });

};

 ■ Note In Listing 2-9, “dot notation” is used for accessing nested configuration values. In the same way,
dot notation can be used to set nested configuration values. If at any point Grunt encounters a path within the
configuration object that does not exist, Grunt will create a new, empty object without throwing an error.

Task Descriptions
Over time, projects have a tendency to grow in complexity. With this additional complexity often comes
new Grunt tasks. As new tasks are added, it’s often easy to lose track of what tasks are available, what they
do, and how they are called. Fortunately, Grunt provides us with a way to address this problem by assigning
descriptions to our tasks, as shown in Listing 2-10.

Listing 2-10. Assigning a Description to a Grunt Task

// example-task-description/Gruntfile.js

module.exports = function(grunt) {

 grunt.config('basic-task', {
 'message': 'Hello, world.'
 });

Chapter 2 ■ Grunt

19

 grunt.registerTask('basic-task', 'This is an example task.', function() {
 grunt.log.writeln(grunt.config('basic-task.message'));
 });

 grunt.registerTask('default', 'This is the default task.', ['basic-task']);

};

By passing an additional argument to the registerTask() method, Grunt allows us to provide a
description for the task being created. Grunt helpfully provides this information when help is requested from
the command line, as shown in Listing 2-11, which includes an excerpt of the information Grunt provides.

Listing 2-11. Requesting Help from the Command Line

$ grunt --help
...
Available tasks
 basic-task This is an example task.
 default This is the default task.
...

Asynchronous Tasks
By default, Grunt tasks are expected to run synchronously. As soon as a task’s function returns, it
is considered finished. There will be times, however, when you find yourself interacting with other
asynchronous methods within a task, which must first complete before your task can hand control back over
to Grunt. The solution to this problem is shown in Listing 2-12. Within a task, a call to the async() method
will notify Grunt that it executes asynchronously. The method will return a callback function to be called
when our task has completed. Until this is done, Grunt will hold the execution of any additional tasks.

Listing 2-12. Asynchronous Grunt Task

// example-async/tasks/list-files.js

var glob = require('glob');

module.exports = function(grunt) {

 grunt.registerTask('list-files', function() {

 /**
 * Grunt will wait until we call the `done()` function to indicate that our
 * asynchronous task is complete.
 */
 var done = this.async();

Chapter 2 ■ Grunt

20

 glob('*', function(err, files) {
 if (err) {
 grunt.fail.fatal(err);
 }
 grunt.log.writeln(files);
 done();
 });

 });

};

Task Dependencies
Complicated Grunt workflows are best thought of as a series of steps that work together to produce a final
result. In such situations, it can often be helpful to specify that a task requires one or more separate tasks to
precede it, as shown in Listing 2-13.

Listing 2-13. Declaring a Task Dependency

// example-task-dependency/tasks/step-two.js

module.exports = function(grunt) {
 grunt.registerTask('step-two', function() {
 grunt.task.requires('step-one');
 });
};

In this example, the step-two task requires that the step-one task run first before it can proceed. Any
attempt to call step-two directly will result in an error, as shown in Listing 2-14.

Listing 2-14. Grunt Reporting an Error When a Task Is Called Before Any Tasks on Which
It Depends Have Run

$ grunt step-two
Running "step-two" task
Warning: Required task "step-one" must be run first. Use --force to continue.

Aborted due to warnings.

Multi-Tasks
In addition to basic tasks, Grunt offers support for what it calls “multi-tasks.” Multi-tasks are easily the most
complicated aspect of Grunt, so if you find yourself confused at first, you’re not alone. After reviewing a few
examples, however, their purpose should start to come into focus—at which point you’ll be well on your way
toward mastering Grunt.

Before we go any further, let’s take a look at a brief example (see Listing 2-15) that shows a Grunt
multi-task, along with its configuration.

Chapter 2 ■ Grunt

21

Listing 2-15. Grunt Multi-Task

// example-list-animals/tasks/list-animals.js

module.exports = function(grunt) {

 /**
 * Our multi-task's configuration object. In this example, 'mammals'
 * and 'birds' each represent what Grunt refers to as a 'target.'
 */
 grunt.config('list-animals', {
 'mammals': {
 'animals': ['Cat', 'Zebra', 'Koala', 'Kangaroo']
 },
 'birds': {
 'animals': ['Penguin', 'Sparrow', 'Eagle', 'Parrot']
 }
 });

 grunt.registerMultiTask('list-animals', function() {
 grunt.log.writeln('Target:', this.target);
 grunt.log.writeln('Data:', this.data);
 });

};

Multi-tasks are extremely flexible, in that they are designed to support multiple configurations (referred
to as “targets”) within a single project. The multi-task shown in Listing 2-15 has two targets: mammals and
birds. This task can be run against a specific target as shown in Listing 2-16.

Listing 2-16. Running the Grunt Multi-Task Shown in Listing 2-15 Against a Specific Target

$ grunt list-animals:mammals
Running "list-animals:mammals" (list-animals) task
Target: mammals
Data: { animals: ['Cat', 'Zebra', 'Koala', 'Kangaroo'] }

Done, without errors.

Multi-tasks can also be called without any arguments, in which case they are executed multiple times,
once for each available target. Listing 2-17 shows the result of calling this task without specifying a target.

Listing 2-17. Running the Multi-Task Shown in Listing 2-15 Without Specifying a Target

$ grunt list-animals
Running "list-animals:mammals" (list-animals) task
Target: mammals
Data: { animals: ['Cat', 'Zebra', 'Koala', 'Kangaroo'] }

Running "list-animals:birds" (list-animals) task
Target: birds
Data: { animals: ['Penguin', 'Sparrow', 'Eagle', 'Parrot'] }

Chapter 2 ■ Grunt

22

In this example, our multi-task ran twice, once for each available target (mammals and birds). Notice
in Listing 2-15 that within our multi-task we referenced two properties: this.target and this.data. These
properties allow our multi-task to fetch information about the target that it is currently running against.

Multi-Task Options
Within a multi-task’s configuration object, any values stored under the options key (see Listing 2-18) receive
special treatment.

Listing 2-18. Grunt Multi-Task with Configuration Options

// example-list-animals-options/tasks/list-animals.js

module.exports = function(grunt) {

 grunt.config('list-animals', {
 'options': {
 'format': 'array'
 },
 'mammals': {
 'options': {
 'format': 'json'
 },
 'animals': ['Cat', 'Zebra', 'Koala', 'Kangaroo']
 },
 'birds': {
 'animals': ['Penguin', 'Sparrow', 'Eagle', 'Parrot']
 }
 });

 grunt.registerMultiTask('list-animals', function() {

 var options = this.options();

 switch (options.format) {
 case 'array':
 grunt.log.writeln(this.data.animals);
 break;
 case 'json':
 grunt.log.writeln(JSON.stringify(this.data.animals));
 break;
 default:
 grunt.fail.fatal('Unknown format: ' + options.format);
 break;
 }

 });

};

Chapter 2 ■ Grunt

23

Multi-task options provide developers with a mechanism for defining global options for a task, which
can then be overridden at the target level. In this example, a global format in which to list animals ('array')
is defined at the task level. The mammals target has chosen to override this value ('json'), while the birds
task has not. As a result, mammals will be displayed as JSON, while birds will be shown as an array due to its
inheritance of the global option.

The vast majority of Grunt plugins that you will encounter are configurable as multi-tasks. The flexibility
afforded by this approach allows you to apply the same task differently under different circumstances. A
frequently encountered scenario involves the creation of separate targets for each build environment. For
example, when compiling an application, you may want to modify the behavior of a task based on whether
you are compiling for a local development environment or in preparation for release to production.

Configuration Templates
Grunt configuration objects support the embedding of template strings, which can then be used to reference
other configuration values. The template format favored by Grunt follows that of the Lodash and Underscore
utility libraries, which are covered in further detail in a later chapter. For an example of how this feature can
be put to use, see Listing 2-19 and Listing 2-20.

Listing 2-19. Sample Gruntfile That Stores the Contents of Its Project’s package.json
File Under the pkg Key Within Grunt’s Configuration Object

// example-templates/Gruntfile.js

module.exports = function(grunt) {
 grunt.initConfig({
 'pkg': grunt.file.readJSON('package.json')
 });
 grunt.loadTasks('tasks');
 grunt.registerTask('default', ['test']);
};

Listing 2-20. A Subsequently Loaded Task with Its Own Configuration That Is Able to Reference
Other Configuration Values Through the Use of Templates

// example-templates/tasks/test.js

module.exports = function(grunt) {
 grunt.config('test', {
 'banner': '<%= pkg.name %>-<%= pkg.version %>'
 });
 grunt.registerTask('test', function() {
 grunt.log.writeln(grunt.config('test.banner'));
 });
};

Listing 2-19 shows a sample Gruntfile that loads the contents of the project’s package.json file using
one of several built-in methods for interacting with the file system that are discussed in further detail later
in the chapter. The contents of this file are then stored under the pkg key of Grunt’s configuration object. In
Listing 2-20, we see a task that is able to directly reference this information through the use of configuration
templates.

Chapter 2 ■ Grunt

24

Command-Line Options
Additional options can be passed to Grunt using the following format:

$ grunt count --count=5

The example shown in Listing 2-21 demonstrates how a Grunt task can access this information via the
grunt.option() method. The result of calling this task is shown in Listing 2-22.

Listing 2-21. Simple Grunt Task That Counts to the Specified Number

// example-options/tasks/count.js

module.exports = function(grunt) {

 grunt.registerTask('count', function() {
 var limit = parseInt(grunt.option('limit'), 10);
 if (isNaN(limit)) grunt.fail.fatal('A limit must be provided (e.g. --limit=10)');
 console.log('Counting to: %s', limit);
 for (var i = 1; i <= limit; i++) console.log(i);
 });

};

Listing 2-22. Result of Calling the Task Shown in Listing 2-21

$ grunt count --limit=5
Running "count" task
Counting to: 5
1
2
3
4
5

Done, without errors.

Providing Feedback
Grunt provides a number of built-in methods for providing feedback to users during the execution of tasks,
a few of which you have already seen used throughout this chapter. While we won’t list all of them here,
several useful examples can be found in Table 2-1.

Chapter 2 ■ Grunt

25

Handling Errors
During the course of task execution, errors can occur. When they do, it’s important to know how to
appropriately handle them. When faced with an error, developers should make use of Grunt’s error API,
which is easy to use, as it provides just two methods, shown in Table 2-2.

Table 2-1. Useful Grunt Methods for Displaying Feedback to the User

Method Description

grunt.log.write() Prints a message to the console

grunt.log.writeln() Prints a message to the console, followed by a newline character

grunt.log.oklns() Prints a success message to the console, followed by a newline character

grunt.log.error() Prints an error message to the console, followed by a newline character

grunt.log.subhead() Prints a bold message to the console, following by a newline character

grunt.log.debug() Prints a message to the console only if the --debug flag was passed

Table 2-2. Methods Available via Grunt’s error API

Method Description

grunt.fail.warn() Displays a warning and aborts Grunt immediately. Tasks will continue to run
if the --force option is passed.

grunt.fail.fatal() Displays a warning and aborts Grunt immediately.

Interacting with the File System
As a build tool, it comes as no surprise that the majority of Grunt’s plugins interact with the file system in one
way or another. Given its importance, Grunt provides helpful abstractions that allow developers to interact
with the file system with a minimal amount of boilerplate code.

While we won’t list all of them here, Table 2-3 shows several of the most frequently used methods within
Grunt’s file API.

Table 2-3. Useful Grunt Methods for Interacting with the File System

Method Description

grunt.file.read() Reads and returns file’s contents

grunt.file.readJSON() Reads a file’s contents, parsing the data as JSON, and returns the result

grunt.file.write() Writes the specified contents to a file, creating intermediate directories, if necessary

grunt.file.copy() Copies a source file to a destination path, creating intermediate directories, if
necessary

grunt.file.delete() Deletes the specified file path; deletes files and folders recursively

grunt.file.mkdir() Creates a directory, along with any missing intermediate directories

grunt.file.recurse() Recurses into a directory, executing a callback for every file that is found

Chapter 2 ■ Grunt

26

Source-Destination Mappings
Many Grunt tasks that interact with the file system rely heavily on the concept of source-destination mappings,
a format that describes a set of files to be processed and a corresponding destination for each. Such mappings
can be tedious to construct, but thankfully Grunt provides helpful shortcuts that address this need.

Imagine for a moment that you are working on a project with a public folder located at its root. Within
this folder are the files to be served over the Web once the project is deployed, as shown in Listing 2-23.

Listing 2-23. Contents of an Imaginary Project’s public Folder

// example-iterate1

.
└── public
 └── images
 ├── cat1.jpg
 ├── cat2.jpg
 └── cat3.png

As you can see, our project has an images folder containing three files. Knowing this, let’s take a look at
a few ways in which Grunt can help us iterate through these files.

In Listing 2-24, we find a Grunt multi-task similar to those we’ve recently been introduced to. The key
difference here is the presence of an src key within our task’s configuration. Grunt gives special attention
to multi-task configurations that contain this key, as we’ll soon see. When the src key is present, Grunt
provides a this.files property within our task that provides an array containing paths to every matching
file that is found via the node-glob module. The output from this task is shown in Listing 2-25.

Listing 2-24. Grunt Multi-Task with a Configuration Object Containing an src Key

// example-iterate1/tasks/list-files.js

module.exports = function(grunt) {

 grunt.config('list-files', {
 'images': {
 'src': ['public/**/*.jpg', 'public/**/*.png']
 }
 });

 grunt.registerMultiTask('list-files', function() {
 this.files.forEach(function(files) {
 grunt.log.writeln('Source:', files.src);
 });
 });

};

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Grunt

27

Listing 2-25. Output from the Grunt Task Shown in Listing 2-24

$ grunt list-files
Running "list-files:images" (list-files) task
Source: ['public/images/cat1.jpg',
 'public/images/cat2.jpg',
 'public/images/cat3.png']

Done, without errors.

The combination of the src configuration property and the this.files multi-task property provides
developers with a concise syntax for iterating over multiple files. The contrived example that we’ve just
looked at is fairly simple, but Grunt also provides additional options for tackling more complex scenarios.
Let’s take a look.

As opposed to the src key that was used to configure our task in Listing 2-24, the example in Listing 2-26
demonstrates the use of the files array—a slightly more verbose, but more powerful format for selecting
files. This format accepts additional options that allow us to more finely tune our selection. Of particular
importance is the expand option, as you’ll see in Listing 2-27. Pay close attention to how the output differs
from that of Listing 2-26, due to the use of the expand option.

Listing 2-26. Iterating Through Files Using the “Files Array” Format

// example-iterate2/tasks/list-files.js

module.exports = function(grunt) {

 grunt.config('list-files', {
 'images': {
 'files': [
 {
 'cwd': 'public',
 'src': ['**/*.jpg', '**/*.png'],
 'dest': 'tmp',
 'expand': true
 }
]
 }
 });

 grunt.registerMultiTask('list-files', function() {
 this.files.forEach(function(files) {
 grunt.log.writeln('Source:', files.src);
 grunt.log.writeln('Destination:', files.dest);
 });
 });

};

Chapter 2 ■ Grunt

28

Listing 2-27. Output from the Grunt Task shown in Listing 2-26

$ grunt list-files
Running "list-files:images" (list-files) task
Source: ['public/images/cat1.jpg']
Destination: tmp/images/cat1.jpg
Source: ['public/images/cat2.jpg']
Destination: tmp/images/cat2.jpg

Done, without errors.

The expand option, when paired with the dest option, instructs Grunt to iterate through our task’s
this.files.forEach loop once for every entry it finds, within which we can find a corresponding dest
property. Using this approach, we can easily create source-destination mappings that can be used to copy
(or move) files from one location to another.

Watching for File Changes
One of Grunt’s most popular plugins, grunt-contrib-watch, gives Grunt the ability to run predefined tasks
whenever files that match a specified pattern are created, modified, or deleted. When combined with other
tasks, grunt-contrib-watch enables developers to create powerful workflows that automate actions such as

•	 Checking JavaScript code for errors (i.e., “linting”)

•	 Compiling Sass/L stylesheets

•	 Running unit tests

Let’s take a look at a few examples that demonstrate such workflows put into action.

Automated JavaScript Linting
Listing 2-28 shows a basic Grunt setup similar to those already shown in this chapter. A default task is
registered which serves as an alias to the watch task, allowing us to start watching for changes within our
project by simply running $ grunt from the command line. In this example, Grunt will watch for changes
within the src folder. As they occur, the jshint task is triggered, which will scan our project’s src folder in
search of JavaScript errors.

Listing 2-28. Automatically Checking for JavaScript Errors As Changes Occur

// example-watch-hint/Gruntfile.js

module.exports = function(grunt) {
 grunt.loadTasks('tasks');
 grunt.registerTask('default', ['watch']);
};

// example-watch-hint/tasks/jshint.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-jshint');

Chapter 2 ■ Grunt

29

 grunt.config('jshint', {
 'options': {
 'globalstrict': true,
 'node': true,
 'scripturl': true,
 'browser': true,
 'jquery': true
 },
 'all': [
 'src/**/*.js'
]
 });

};

// example-watch-hint/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {
 'js': {
 'files': [
 'src/**/*'
],
 'tasks': ['jshint'],
 'options': {
 'spawn': true
 }
 }
 });

};

Automated Sass Stylesheet Compilation
Listing 2-29 shows an example in which Grunt is instructed to watch our project for changes. This time, however,
instead of watching our JavaScript, Grunt is configured to watch our project’s Sass stylesheets. As changes occur,
the grunt-contrib-compass plugin is called, which compiles our stylesheets into their final form.

Listing 2-29. Automatically Compiling Sass Stylesheets As Changes Occur

// example-watch-sass/Gruntfile.js

module.exports = function(grunt) {
 grunt.loadTasks('tasks');
 grunt.registerTask('default', ['watch']);
};

Chapter 2 ■ Grunt

30

// example-watch-sass/tasks/compass.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-compass');

 grunt.config('compass', {
 'all': {
 'options': {
 'httpPath': '/',
 'cssDir': 'public/css',
 'sassDir': 'scss',
 'imagesDir': 'public/images',
 'relativeAssets': true,
 'outputStyle': 'compressed'
 }
 }
 });

};

// example-watch-compass/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {
 'scss': {
 'files': [
 'scss/**/*'
],
 'tasks': ['compass'],
 'options': {
 'spawn': true
 }
 }
 });

};

 ■ Note In order for this example to function, you must install Compass, an open source CSS authoring
framework. You can find additional information on how to install Compass at http://compass-style.org/
install.

http://compass-style.org/install
http://compass-style.org/install

Chapter 2 ■ Grunt

31

Automated Unit Testing
Our final example regarding grunt-contrib-watch concerns unit testing. In Listing 2-30, we see a Gruntfile
that watches our project’s JavaScript for changes. As these changes occur, our project’s unit tests are
immediately triggered with the help of Grunt’s grunt-mocha-test plugin.

Listing 2-30. Automatically Running Unit Tests As Changes Occur

// example-watch-test/Gruntfile.js

module.exports = function(grunt) {
 grunt.loadTasks('tasks');
 grunt.registerTask('default', ['watch']);
};

// example-watch-test/tasks/mochaTest.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.config('mochaTest', {
 'test': {
 'options': {
 'reporter': 'spec'
 },
 'src': ['test/**/*.js']
 }
 });

};

// example-watch-test/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {
 'scss': {
 'files': [
 'src/**/*.js'
],
 'tasks': ['mochaTest'],
 'options': {
 'spawn': true
 }
 }
 });

};

Chapter 2 ■ Grunt

32

Creating Plugins
A large library of community-supported plugins is what makes Grunt truly shine—a library that will allow
you to start benefitting from Grunt immediately, without the need to create complex tasks from scratch. If
you need to automate a build process within your project, there’s a good chance that someone has already
done the “grunt” work (zing!) for you.

In this section, you’ll discover how you can contribute back to the community with Grunt plugins of
your own creation.

Getting Started
One of the first things you’ll want to do is create a public GitHub repository in which to store your new plugin.
The example that we will be referencing is included with the source code that accompanies this book.

Once your new repository is ready, clone it to your computer. Next, initialize Grunt within it by
following the same steps that were outlined earlier in this chapter’s “Adding Grunt to Your Project” section.
Afterward, the file structure of your new Grunt plugin should resemble that shown in Listing 2-31.

Listing 2-31. File Structure of Your New Grunt Plugin

.
├── Gruntfile.js
├── README.md
├── package.json
└── tasks

 ■ Note the most important point to note here is that there is no special structure or knowledge required
(apart from what has already been covered in this chapter) for the creation of Grunt plugins. the process
mirrors that of integrating Grunt into an existing project—the creation of a Gruntfile that loads tasks, along with
the tasks themselves. Once published to npm, other Grunt projects will be able to load your plugin in the same
way that other plugins have been referenced throughout this chapter.

Creating the Task
By way of an example, let’s create a Grunt plugin capable of generating a report that details the type, size,
and number of files contained within a project. An example demonstrating the configuration for this plugin
is shown in Listing 2-32.

Listing 2-32. Example Demonstrating the Configuration of Our Plugin

// example-plugin/Gruntfile.js

module.exports = function(grunt) {

 grunt.config('file-report', {
 'options': {
 },
 'public': {
 'src': ['public/**/*']
 },

Chapter 2 ■ Grunt

33

 'images': {
 'src': ['public/**/*.jpg', 'public/**/*.png', 'public/**/*.gif']
 }
 });

 grunt.loadNpmTasks('grunt-file-reporter');
 grunt.registerTask('default', ['file-report']);

};

The source code for our plugin is shown in Listing 2-33. Within our plugin, a Grunt multi-task named
file-report is registered. When called, the task will iterate through the various target files that were
specified in Listing 2-32. As it does so, the plugin will compile a report that details the type, number, and size
of the files it finds.

Listing 2-33. Source Code for Our Plugin

// example-plugin/node_modules/grunt-file-reporter/Gruntfile.js

var fs = require('fs');
var filesize = require('filesize');
var _ = require('lodash');
_.mixin(require('underscore.string'));

module.exports = function(grunt) {

 var mime = require('mime');
 var Table = require('cli-table');

 grunt.registerMultiTask('file-report', 'Generates a report of file types & sizes used

within a project', function() {

 var report = {
 'mimeTypes': {},
 'largest': null,
 'smallest': null
 };

 var table = new Table({
 'head': ['Content Type', 'Files Found', 'Total Size',
 'Average Size', 'Largest', 'Smallest']
 });
 var addFile = function(file) {
 if (grunt.file.isDir(file)) return;
 var mimeType = mime.lookup(file);
 if (!report.mimeTypes[mimeType]) {
 report.mimeTypes[mimeType] = {
 'count': 0,
 'sizes': [],
 'largest': null,
 'smallest': null,

Chapter 2 ■ Grunt

34

 'oldest': null,
 'newest': null
 };
 }
 var details = report.mimeTypes[mimeType];
 details.count++;
 var stats = fs.statSync(file);
 details.sizes.push(stats.size);
 if (!details.largest || stats.size > details.largest.size) {
 details.largest = { 'file': file, 'size': stats.size };
 }
 if (!report.largest || stats.size > report.largest.size) {
 report.largest = { 'file': file, 'size': stats.size };
 }
 if (!details.smallest || stats.size < details.smallest.size) {
 details.smallest = { 'file': file, 'size': stats.size };
 }
 if (!report.smallest || stats.size < report.smallest.size) {
 report.smallest = { 'file': file, 'size': stats.size };
 }
 };

 var sum = function(arr) {
 return arr.reduce(function(a, b) {
 return a + b;
 });
 };

 var displayReport = function() {
 var totalSum = 0;
 var totalFiles = 0;
 var totalSizes = [];
 _.each(report.mimeTypes, function(data, mType) {
 var fileSum = sum(data.sizes);
 totalSum += fileSum;
 totalFiles += data.sizes.length;
 totalSizes = totalSizes.concat(data.sizes);
 table.push([mType, data.count, filesize(fileSum),
 filesize(fileSum / data.sizes.length),
 _.sprintf('%s (%s)', data.largest.file, filesize(data.largest.size)),
 _.sprintf('%s (%s)', data.smallest.file, filesize(data.smallest.size)),
]);
 });
 table.push(['-', totalFiles, filesize(totalSum),
 filesize(totalSum / totalSizes.length),
 _.sprintf('%s (%s)', report.largest.file, filesize(report.largest.size)),
 _.sprintf('%s (%s)', report.smallest.file, filesize(report.smallest.size)),
]);
 console.log(table.toString());
 };

Chapter 2 ■ Grunt

35

 this.files.forEach(function(files) {
 files.src.forEach(addFile);
 });

 displayReport();

 });

};

The output generated by our plugin’s file-report task is shown in Figure 2-1.

Figure 2-1. The output generated by the file-report task

Publishing to npm
Once our plugin is ready and our Git repository is updated with the latest code, the final step toward making
it available to others is publishing it via npm:

$ npm publish

 ■ Note If this is your first time publishing a module to npm, you will be asked to create an account.

Chapter 2 ■ Grunt

36

Summary
In this chapter, we’ve looked at how Grunt provides developers with a powerful toolkit for automating many
of the repetitive, tedious tasks that often accompany software development. You’ve discovered

•	 What makes Grunt tick (tasks, plugins, and configuration objects)

•	 How to configure tasks and plugins

•	 How to use many of the helpful built-in utilities that Grunt makes available for
providing user feedback and interacting with the file system

•	 How to create and share your own Grunt plugins

Related Resources
•	 Grunt: http://gruntjs.com

•	 JSHint: http://jshint.com

•	 grunt-contrib-watch: https://github.com/gruntjs/grunt-contrib-watch

•	 grunt-contrib-jshint: https://github.com/gruntjs/grunt-contrib-jshint

•	 grunt-contrib-uglify: https://github.com/gruntjs/grunt-contrib-uglify

•	 grunt-contrib-compass: https://github.com/gruntjs/grunt-contrib-compass

•	 grunt-mocha-test: https://github.com/pghalliday/grunt-mocha-test

•	 Syntactically Awesome Stylesheets (Sass): http://sass-lang.com

•	 Compass: http://compass-style.org

www.allitebooks.com

http://gruntjs.com/
http://jshint.com/
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-jshint
https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/gruntjs/grunt-contrib-compass
https://github.com/pghalliday/grunt-mocha-test
http://sass-lang.com/
http://compass-style.org/
http://www.allitebooks.org

37

Chapter 3

Yeoman

One only needs two tools in life: WD-40 to make things go, and duct tape to make
them stop.

—G. Weilacher

The development community has witnessed a role-reversal of sorts take place in recent years. Web
applications, once considered by many to be second-class citizens in comparison to their native
counterparts, have largely supplanted traditional desktop applications, thanks in large part to the
widespread adoption of modern web development technologies and the rise of the mobile Web. But as web
applications have grown increasingly sophisticated, so too have the tools on which they rely and the steps
required to bootstrap them into existence.

The topic of this chapter, Yeoman, is a popular project “scaffolding” tool that helps to alleviate this
problem by automating the tedious tasks associated with bootstrapping new applications off the ground.
Yeoman provides a mechanism for creating reusable templates that describe a project’s initial file structure,
HTML, third-party libraries, and task runner configurations. These templates, which can be shared with the
wider development community via npm, allow developers to bootstrap new projects that follow agreed-
upon best practices in a matter of minutes.

In this chapter, you will learn how to:

•	 Install Yeoman

•	 Take advantage of Yeoman generators that have already been published by the
community

•	 Contribute back to the community with your own Yeoman generators

 ■ Note This chapter builds on topics that have already been covered in this book’s first two chapters on
Bower and Grunt. If you are unfamiliar with either of these tools, you may wish to read the respective chapter
for that tool before you continue.

ChapTer 3 ■ Yeoman

38

Installing Yeoman
Yeoman’s command-line utility, yo, is available via npm. If you have not already installed Yeoman, you
should do so before you continue, as shown in Listing 3-1.

Listing 3-1. Installing the yo Command-Line Utility via npm

$ npm install -g yo
$ yo --version
1.4.6

Creating Your First Project
Yeoman allows developers to quickly create the initial structure of an application through the use of reusable
templates, which Yeoman refers to as “generators.” To better understand how this process can improve your
workflow, let’s create a new project with the help of the modernweb generator that was created specifically for
this chapter. Afterward, we will look at how this generator was created, providing you with the knowledge
you need to create and share your own custom Yeoman generators with the wider development community.

The generator we will be using will create the initial foundations of a project that uses the following
tools and libraries:

•	 Grunt

•	 Bower

•	 jQuery

•	 AngularJS

•	 Browserify

•	 Compass

Yeoman generators are installed as global npm modules. That being the case, the command for
installing our generator should look familiar:

$ npm install -g generator-modernweb

 ■ Note This generator’s name is prefixed with generator-, which is an important convention that all Yeoman
generators must follow. at runtime, Yeoman will determine what (if any) generators have been installed by
searching for global modules whose names follow this format.

With our generator now installed, we can move forward with setting up our first project. First, we create
a new folder to contain it. Afterward, we instruct Yeoman to create a new project based on the generator
that we just installed. Listing 3-2 shows these steps in action, along with several questions the generator is
designed to prompt you with.

ChapTer 3 ■ Yeoman

39

Listing 3-2. Creating Our First Project with the modernweb Generator

$ mkdir my-app
$ cd my-app
$ yo modernweb

? Project Title: My Project
? Package Name: my-project
? Project Description: My awesome project
? Project Author: John Doe
? Express Port: 7000

After responding to the generator’s questions (you can safely accept the defaults), Yeoman will move
forward with creating the project. Afterward, we can easily build and launch it using the project’s default
Grunt task, which our generator has conveniently set up for us (see Listing 3-3).

Listing 3-3. Our New Project’s Default Grunt Task Will Trigger Various Build Steps and Open the Project
Within Our Browser

$ grunt
Running "concat:app" (concat) task
File public/dist/libs.js created.

Running "compass:app" (compass) task
unchanged scss/style.scss
Compilation took 0.002s

Running "browserify" task

Running "concurrent:app" (concurrent) task
Running "watch" task
Waiting…
Running "open:app" (open) task
Running "server" task
Server is now listening on port: 7000

Done, without errors.

As you can see, our new project’s default Grunt task executes several additional build steps for us:

•	 JavaScript libraries are compiled into a single, minified script.

•	 Sass stylesheets are compiled.

•	 The source code of the application itself is compiled via Browserify.

•	 An instance of Express is created to serve our project.

•	 Various watch scripts are initialized that will automatically recompile our project as
changes are made.

The final action of our project’s default Grunt task will be to launch our project within a new browser
window, as shown in Figure 3-1.

ChapTer 3 ■ Yeoman

40

Now that our new project is ready for further development, let’s take a few moments to become familiar
with the various templates, scripts, and Grunt tasks that our generator has put in place for us, paying special
attention to the contents of these files:

•	 bower.json

•	 Gruntfile.js

•	 package.json

•	 public/index.html

With the help of Yeoman’s support for user prompts and templates (which we will discuss in more detail
in the next section), the generator has merged our answers to its initial questions with the contents of our
project’s files, where appropriate. For instance, the values for name, description, and author within our
project’s package.json file have been set for us (see Listing 3-4).

Listing 3-4. Contents of Our Project’s package.json File

// package.json

{
 "name": "my-project",
 "description": "My awesome project",
 "author": "John Doe",
 "files": [],
 "keywords": [],
 "dependencies": {},
 "browserify": {
 "transform": [
 "brfs",

Figure 3-1. Our new project’s home page, opened for us by the default Grunt task

ChapTer 3 ■ Yeoman

41

 "bulkify",
 "folderify"
]
 },
 "browser": {}
}

Subcommands
In their simplest form, generators act as configurable project templates that simplify the creation of
new projects, but that’s not their only purpose. In addition to assisting with the initial creation of new
projects, generators can also include other commands that project maintainers will find useful throughout
development.

In Listing 3-2, we used the modernweb generator to create a new single-page application built using the
AngularJS framework. If you are unfamiliar with Angular, don’t worry—the particulars of this framework are
unimportant for now. What is important, however, is the contents of the project’s public/app/routes folder.
Notice that a single folder, dashboard, has been created for us at this location. The contents of this folder is
shown in Listing 3-5.

Listing 3-5. Contents of Our Project’s public/app/routes/dashboard Folder

.
├── index.js
└── template.html

// public/app/routes/dashboard/index.js

module.exports = {
 'route': '/dashboard',
 'controller': function() {
 },
 'templateUrl': '/app/routes/dashboard/template.html',
 'resolve': {}
};

// public/app/routes/dashboard/template.html

<div class="well">
 Welcome to the "/dashboard" route.
</div>

This project has been set up such that each folder within public/app/routes defines a different
“hashbang” route within the application. In this example, the project’s dashboard folder defines a route that
can be accessed at http://localhost:7000/#/dashboard. Knowing this, suppose that we wanted to add a
new users route to our application. To do so, we could manually create the necessary files at the appropriate
location. Alternatively, we could use an additional command provided by our generator that simplifies this
process (see Listing 3-6).

ChapTer 3 ■ Yeoman

42

Listing 3-6. Example of Calling the route Sub-generator to Automate the Process of Creating New Routes
Within Our Angular Application

$ yo modernweb:route users
 create public/app/routes/users/index.js
 create public/app/routes/users/template.html
Route `users` created.

After running this command, refer to the project’s /public/app/routes folder and note the existence
of a new folder named users. Within this folder, our Yeoman generator has taken care of creating the
appropriate files for us. If you happen to still have the server that we created in Listing 3-3 running, you
should also be able to see that the watch scripts that were started for us have detected this change and
automatically recompiled our application (see Listing 3-7).

Listing 3-7. Grunt Automatically Recompiles Application As Changes Are Made

>> File "public/app/routes/users" added.
Running "browserify" task
Done, without errors.

Creating Your First Generator
The remainder of this chapter will focus on the creation of a custom Yeoman generator—the same one used
in the previous section to bootstrap a new project built around AngularJS (among other tools). Afterward,
you will be well prepared to begin creating your own generators that will allow you to quickly get up-and-
running with workflows that meet your specific needs.

Yeoman Generators are Node Modules
A Yeoman generator is nothing more than a simple Node module that follows Yeoman’s prescribed
guidelines. As such, the first step in creating a generator is the creation of a new Node module. Listing 3-8
shows the required commands, along with the resulting package.json file.

Listing 3-8. Creating a New Node Module to Contain the Contents of Our First Yeoman Generator

$ mkdir generator-example
$ cd generator-example
$ npm init

// generator-example/package.json
{
 "name": "generator-example",
 "version": "1.0.0",
 "description": "An example Yeoman generator",
 "files": [],
 "keywords": [
 "yeoman-generator"
],
 "dependencies": {}
}

ChapTer 3 ■ Yeoman

43

 ■ Note although we are following the same steps that were used to create the modernweb generator that
was referenced earlier in this chapter, we are assigning a different name to our new module, so as not to
conflict with the one that has already been installed. also note the inclusion of yeoman-generator within our
module’s list of keywords. Yeoman’s website maintains a list of every generator available within npm, making it
easy for developers to find preexisting generators to suit their needs. If a generator is to be included within this
list, it must include this keyword, along with a description in its package.json file.

Yeoman generators have the option of relying on external dependencies, as is the case with any other
Node module. At a bare minimum, however, every generator must specify the yeoman-generator module as
a local dependency. This module will provide us with the core functionality provided by Yeoman for creating
user interactions, interacting with the file system, and other important tasks. This module is installed as a
local dependency using the following command:

$ npm install yeoman-generator --save

Sub-Generators
Yeoman generators consist of one or more commands, each of which can be called separately from the
command line. These commands, which Yeoman refers to as “sub-generators,” are defined within folders
that exist at the root level of the module. For some additional context, refer back to Listing 3-2, in which we
created a new project based off of the modernweb generator by running $ yo modernweb from the command
line. In that example, we did not specify a command—we simply passed Yeoman the name of a generator. As
a result, Yeoman executed that generator’s default sub-generator, which by convention is always named app.
We could have accomplished the same thing by running this command:

$ yo modernweb:app

To better understand how this works, let’s move forward with creating our generator’s default app
sub-generator. We do so in four steps:

 1. Create a folder named app at the root level of our module.

 2. Create a folder named templates within our new app folder.

 3. Place various files within our templates folder that we want to copy into the
target project (e.g., HTML files, Grunt tasks, a Bower manifest, and so forth).

 4. Create the script shown in Listing 3-9, which is responsible for driving the
functionality for this command.

Listing 3-9. Contents of Our Generator’s Default app Command (“Sub-generator”)

// generator-example/app/index.js

var generators = require('yeoman-generator');

/**
 * We create our generator by exporting a class that extends
 * from Yeoman's `Base` class.
 */

ChapTer 3 ■ Yeoman

44

module.exports = generators.Base.extend({

 'prompting': function() {

 /**
 * Indicates that this function will execute asynchronously. Yeoman
 * will wait until we call the `done()` function before continuing.
 */
 var done = this.async();

 /**
 * Our generator's `prompt` method (inherited from Yeoman's `Base`
 * class) allows us to define a series of questions to prompt the
 * user with.
 */
 this.prompt([
 {
 'type': 'input',
 'name': 'title',
 'message': 'Project Title',
 'default': 'My Project',
 'validate': function(title) {
 return (title.length > 0);
 }
 },
 {
 'type': 'input',
 'name': 'package_name',
 'message': 'Package Name',
 'default': 'my-project',
 'validate': function(name) {
 return (name.length > 0 && /^[a-z0-9\-]+$/i.test(name));
 },
 'filter': function(name) {
 return name.toLowerCase();
 }
 },
 {
 'type': 'input',
 'name': 'description',
 'message': 'Project Description',
 'default': 'My awesome project',
 'validate': function(description) {
 return (description.length > 0);
 }
 },
 {
 'type': 'input',
 'name': 'author',
 'message': 'Project Author',
 'default': 'John Doe',

ChapTer 3 ■ Yeoman

45

 'validate': function(author) {
 return (author.length > 0);
 }
 },
 {
 'type': 'input',
 'name': 'port',
 'message': 'Express Port',
 'default': 7000,
 'validate': function(port) {
 port = parseInt(port, 10);
 return (!isNaN(port) && port > 0);
 }
 }
], function(answers) {
 this._answers = answers;
 done();
 }.bind(this));

 },

 'writing': function() {

 /**
 * Copies files from our sub-generator's `templates` folder to the target
 * project. The contents of each file is processed as a Lodash template
 * before being written to the disk.
 */
 this.fs.copyTpl(
 this.templatePath('**/*'),
 this.destinationPath(),
 this._answers
);

 this.fs.copyTpl(
 this.templatePath('pkg.json'),
 this.destinationPath('package.json'),
 this._answers
);

 this.fs.delete(this.destinationPath('pkg.json'));

 this.fs.copyTpl(
 this.templatePath('.bowerrc'),
 this.destinationPath('.bowerrc'),
 this._answers
);

ChapTer 3 ■ Yeoman

46

 /**
 * Writes a Yeoman configuration file to the target project's folder.
 */
 this.config.save();

 },

 'install': function() {

 /**
 * Installs various npm modules within the project folder and updates
 * `package.json` accordingly.
 */
 this.npmInstall([
 'express', 'lodash', 'underscore.string', 'browserify',
 'grunt', 'grunt-contrib-concat', 'grunt-contrib-watch',
 'grunt-contrib-compass', 'grunt-concurrent', 'bulk-require',
 'brfs', 'bulkify', 'folderify', 'grunt-open'
], {
 'saveDev': false
 });

 /**
 * Installs dependencies defined within `bower.json`.
 */
 this.bowerInstall();

 },

 'end': function() {
 this.log('Your project is ready.');
 }

});

The contents of our generator’s app folder is shown in Figure 3-2.

www.allitebooks.com

http://www.allitebooks.org

ChapTer 3 ■ Yeoman

47

In Listing 3-9, our generator’s default app command is created by exporting a class that extends from
Yeoman’s Base class. Within this class, four instance methods are defined:

•	 prompting()

•	 writing()

•	 install()

•	 end()

These method names play an important role during execution (they were not arbitrarily chosen). When
Yeoman runs a generator, it searches for prototype methods whose names match those listed here:

•	 initializing(): Initialization methods (checking project state, getting configs).

•	 prompting(): Prompting the user for information

•	 configuring(): Saving configuration files.

•	 default(): Prototype methods with names not included within this list will be
executed during this step.

•	 writing(): Write operations specific to this generator occur here.

•	 conflicts(): Conflicts are handled here (used internally by Yeoman).

•	 install(): Installation procedures occur here (npm, bower).

•	 end(): Last function to be called. Cleanup/closing messages.

Figure 3-2. The contents of our generator’s app folder. The contents of the templates folder will be copied into
the target project

ChapTer 3 ■ Yeoman

48

Once Yeoman has compiled a list of the various prototype methods that exist within our generator, it
will execute them in the priority shown in the preceding list.

Lodash Templates
In Listing 3-9, Yeoman’s fs.copyTpl() method was used to copy files from our sub-generator’s templates
folder to the target project. This method differs from Yeoman’s fs.copy() method, in that it also processes
each file it finds as a Lodash template. Listing 3-10 shows the contents of our sub-generator’s templates/
pkg.json file, which will be processed in this way before being saved to the folder of the new project as
package.json.

Listing 3-10. Contents of Our Sub-generator’s templates/pkg.json File

// generator-example/app/templates/pkg.json

{
 "name": "<%= package_name %>",
 "description": "<%= description %>",
 "author": "<%= author %>",
 "files": [],
 "keywords": [],
 "dependencies": {},
 "browserify": {
 "transform": [
 "brfs",
 "bulkify",
 "folderify"
]
 },
 "browser": {}
}

 ■ Note The process by which Yeoman generators can modify their behavior and alter the contents of
templates based on a user’s answers to prompts opens up a lot of exciting possibilities. It allows for the creation
of new projects that are dynamically configured according to a user’s specific needs. It’s this aspect of Yeoman,
more than any other, that makes the tool truly useful.

We’re now ready to create our first project using our new generator. To do so, open a new terminal
window and create a folder to contain it. Next, move into the new folder and run the generator, as shown in
Listing 3-11.

Listing 3-11. Running Our New Generator for the First Time

$ mkdir new-project
$ cd new-project
$ yo example

Error example

ChapTer 3 ■ Yeoman

49

You don't seem to have a generator with the name example installed.
You can see available generators with npm search yeoman-generator and then install the
with npm install [name].

Obviously, this isn’t the result we were hoping for. To understand what caused this error, recall from earlier
in the chapter that when Yeoman is called, it locates generators by searching for modules whose names begin
with generator- that have been installed in the global context. As a result, Yeoman is currently unaware of
the existence of our new generator. Fortunately, npm provides a handy command that will solve this problem
for us. The npm link command creates a symbolic link (symlink) between our new module and Node’s global
modules folder. The command is executed at the root level of our new module (see Listing 3-12).

Listing 3-12. Creating a Symbolic Link with the npm link Command

$ npm link
/Users/tim/.nvm/v0.10.33/lib/node_modules/generator-example -> /opt/generator-example

Npm’s link command creates a symbolic link between the folder in which it is run and the folder in
which globally installed Node modules are stored. By running this command, we place a reference to our
new generator in a location that Yeoman can find. With this link in place, let’s run our generator again
(see Listing 3-13).

Listing 3-13. Successfully Running Our New Generator for the First Time

$ yo example

? Project Title: My Project
? Package Name: my-project
? Project Description: My awesome project
? Project Author: John Doe
? Express Port: 7000

After responding to the generator’s questions, Yeoman will move forward with building our new project,
just as it did with the modernweb generator that we used in the first half of this chapter. Once this process is
finished, run Grunt’s default task—$ grunt—to build and launch the project.

Defining Secondary Commands
In the first half of this chapter, you learned that multiple commands can be included with Yeoman generators—
commands whose usefulness can extend well beyond the initial creation of a new project. The modernweb
generator demonstrated this by including a route command that automated the process of creating new routes
within an Angular application (refer to Listing 3-6 earlier in the chapter). The steps involved in creating this
command closely follow those we took when we created our generator’s default app command:

 1. Create a folder named route at the root level of our module.

 2. Create a folder named templates within our new route folder.

 3. Place various files within our templates folder that we want to copy into the
target project.

 4. Create the script shown in Listing 3-14, which is responsible for driving the
functionality for the route command.

ChapTer 3 ■ Yeoman

50

Listing 3-14. A route Sub-generator That Automates the Creation of New Angular Routes

// generator-example/route/index.js

var generators = require('yeoman-generator');

/*
Our generator's default `app` command was created by extending Yeoman's `Base` class.
In this example, we extend the `NamedBase` class, instead. Doing so alerts Yeoman to
the fact that this command expects one or more arguments. For example: $ yo example:route
my-new-route
*/
module.exports = generators.NamedBase.extend({

 'constructor': function(args) {
 this._opts = {
 'route': args[0]
 };
 generators.NamedBase.apply(this, arguments);
 },

 'writing': function() {

 this.fs.copyTpl(
 this.templatePath('index.js'),
 this.destinationPath('public/app/routes/' + this._opts.route + '/index.js'),
 this._opts
);

 this.fs.copyTpl(
 this.templatePath('template.html'),
 this.destinationPath('public/app/routes/' + this._opts.route +

'/template.html'),
 this._opts
);

 },

 'end': function() {
 this.log('Route `' + this._opts.route + '` created.');
 }

});

The script shown in Listing 3-14 looks very similar to that shown in Listing 3-9, the primary difference
being the use of Yeoman’s NamedBase class. By creating a sub-generator that extends from NamedBase, we
alert Yeoman to the fact that this command expects to receive one or more arguments.

Listing 3-15 demonstrates the use of our generator’s new route command.

ChapTer 3 ■ Yeoman

51

Listing 3-15. Creating a New Angular Route Using Our Generator’s route Command

$ yo example:route users
 create public/app/routes/users/index.js
 create public/app/routes/users/template.html
Route `users` created.

Composability
When creating Yeoman generators, it is not uncommon to encounter situations in which having the ability
to execute one sub-generator from within another would be useful. For example, consider the generator that
we just created. It’s easy to imagine a scenario in which we might want our generator to automatically create
several default routes when run. To accomplish that goal, it would be helpful if we had the ability to call our
generator’s route command from within its app command. Yeoman’s composeWith() method exists for this
very reason (see Listing 3-16).

Listing 3-16. Yeoman’s composeWith() Method Allows One Sub-generator to Call Another

// generator-example/app/index.js (excerpt)

'writing': function() {

 this.fs.copyTpl(
 this.templatePath('**/*'),
 this.destinationPath(),
 this._answers
);

 this.fs.copy(
 this.templatePath('.bowerrc'),
 this.destinationPath('.bowerrc'),
 this._answers
);

 /*
 Yeoman's `composeWith` method allows us to execute external generators.
 Here, we trigger the creation of a new route named "dashboard".
 */
 this.composeWith('example:route', {
 'args': ['dashboard']
 });

 this.config.save();

}

With the help of Yeoman’s composeWith() method, simple sub-generators can be combined
(i.e., “composed”) with one another to create fairly sophisticated workflows. By taking advantage of this
method, developers can create complex, multicommand generators, while avoiding the use of duplicate
code across commands.

ChapTer 3 ■ Yeoman

52

Summary
Yeoman is a simple but powerful tool that automates the tedious tasks associated with bootstrapping
new applications into existence, speeding up the process by which developers can move from concept
to prototype. When used, it allows developers to focus their attention where it matters most—on the
applications themselves.

At last count, more than 1,500 Yeoman generators have been published to npm, making it easy for
developers to experiment with a wide variety of tools, libraries, frameworks, and design patterns (e.g., Bower,
Grunt, AngularJS, Knockout, React) with which they may not have experience.

Related Resources
•	 Yeoman: http://yeoman.io/

http://yeoman.io/

53

Chapter 4

PM2

Do not wait; the time will never be “just right.” Start where you stand, and work with
whatever tools you may have at your command, and better tools will be found as you
go along.

—George Herbert

The previous chapters within this section have covered a variety of useful web development tools, with
our primary focus placed on client-side development. In this chapter, we will round out our coverage of
development tools by shifting our focus to the server. We will be exploring PM2, a command-line utility
that simplifies many of the tasks associated with running Node applications, monitoring their status, and
efficiently scaling them to meet increasing demand. Topics covered include:

•	 Working with processes

•	 Monitoring logs

•	 Monitoring resource usage

•	 Advanced process management

•	 Load-balancing across multiple processors

•	 Zero-downtime deployments

Installation
PM2’s command-line utility, pm2, is available via npm. If you have not already installed PM2, you should do
so before you continue, as shown in Listing 4-1.

Listing 4-1. Installing the pm2 Command-line Utility via npm

$ npm install -g pm2
$ pm2 --version
0.12.15

Chapter 4 ■ pM2

54

 ■ Note Node’s package manager (npm) allows users to install packages in one of two contexts: locally
or globally. In this example, bower is installed within the global context, which is typically reserved for
command-line utilities.

Working with Processes
Listing 4-2 shows the contents of a simple Node application that will form the basis of our first several
interactions with PM2. When accessed, it does nothing more than display the message “Hello, world.” to users.

Listing 4-2. Simple Express Application

// my-app/index.js

var express = require('express');
var morgan = require('morgan');
var app = express();
app.use(morgan('combined'));

app.get('/', function(req, res, next) {
 res.send('Hello, world.\n');
});

app.listen(8000);

Figure 4-1 demonstrates the process by which we can launch this application with the help of the pm2
command-line utility. In this example, we instruct PM2 to start our application by executing its index.js
script. We also provide PM2 with an (optional) name for our application (my-app), making it easier for us to
reference it at a later time. Before doing so, be sure you install the project’s dependencies by running $ npm
install.

Figure 4-1. Launching the application shown in Listing 4-2 with PM2

After calling PM2’s start command, PM2 helpfully displays a table containing information about every
Node application it is currently aware of before returning us to the command prompt. The meaning of the
columns that we see in this example is summarized in Table 4-1.

Chapter 4 ■ pM2

55

As indicated by the output provided by PM2 in Listing 4-3, our application is now online and ready for
use. We can verify this by calling our application’s sole route using the curl command-line utility, as shown
in Figure 4-2.

Table 4-1. Summary of Columns Shown in Figure 4-1

Heading Description

App name The name of the process. Defaults to the name of the script that was executed.

id A unique ID assigned to the process by PM2. Processes can be referenced by name or ID.

mode The method of execution (fork or cluster). Defaults to fork. Explored in more detail later
in the chapter.

pid A unique number assigned by the operating system to the process.

status The current status of the process (e.g., online, stopped, etc.).

restart The number of times the process has been restarted by PM2.

uptime The length of time the process has been running since last being restarted.

memory The amount of memory consumed by the process.

watching Indicates whether PM2 will automatically restart the process when it detects changes within
a project’s file structure. Particularly useful during development. Defaults to disabled.

Figure 4-2. Accessing the sole route defined by our Express application

 ■ Note Figure 4-2 assumes the existence of the curl command-line utility within your environment. If you
happen to be working in an environment where this utility is not available, you could also verify the status of
this application by opening it directly within your web browser.

In addition to the start command, PM2 also provides a number of useful commands for interacting
with processes that PM2 is already aware of, the most common of which are shown in Table 4-2.

Table 4-2. Frequently Used Commands for Interacting with PM2 Processes

Command Description

list Displays an up-to-date version of the table shown in Listing 4-4

stop Stops the process, without removing it from PM2’s list

restart Restarts the process

delete Stops the process and removes it from PM2’s list

show Displays details regarding the specified process

Chapter 4 ■ pM2

56

Simple commands such as stop, start, and delete require no additional commentary. Figure 4-3,
on the other hand, shows the information you can expect to receive when requesting information about a
specific PM2 process via the show command.

Figure 4-3. Viewing details for a specific PM2 process

Recovering from Errors
At this point, you are now familiar with some of the basic steps involved in interacting with PM2. You’ve
learned how to create new processes with the help of PM2’s start command. You’ve also discovered how
you can subsequently manage running processes with the help of commands such as list, stop, restart,
delete, and show. We’ve yet to discuss, however, much of the real value that PM2 brings to the table in
regard to managing Node processes. We’ll begin that discussion by discovering how PM2 can assist Node
applications in automatically recovering from fatal errors.

Listing 4-3 shows a modified version of the application we originally saw in Listing 4-2. In this version,
however, an uncaught exception is thrown at a regular interval.

Listing 4-3. Modified Version of Our Original Application That Throws an Uncaught Exception Every
Four Seconds

// my-bad-app/index.js

var express = require('express');
var morgan = require('morgan');
var app = express();
app.use(morgan('combined'));

Chapter 4 ■ pM2

57

app.get('/', function(req, res, next) {
 res.send('Hello, world.\n');
});

setInterval(function() {
 throw new Error('Uh oh.');
}, 4000);

app.listen(8000);

If we were to start this application without the help of PM2 by passing it directly to the node executable,
we would quickly find ourselves out of luck the moment our first error was thrown. Node would simply print
the error message to the console before dumping us back to the command prompt, as shown in Figure 4-4.

Figure 4-4. Output provided by Node after crashing from the error shown in Listing 4-3

Such behavior won’t get us very far in a real usage scenario. Ideally, an application that has been
released to a production environment should be thoroughly tested and devoid from such uncaught
exceptions. However, in the event of such a crash, an application should at the very least be able to bring
itself back online without requiring manual intervention. PM2 can help us accomplish this goal.

In Figure 4-5, we remove our existing process from PM2’s list via the delete command and create a new
instance of the poorly written application shown in Listing 4-3. Afterward, we wait several seconds before
requesting an up-to-date process list from PM2.

Figure 4-5. PM2 helps Node applications recover from fatal errors

Chapter 4 ■ pM2

58

Notice anything interesting here? Based on the values within the status, restart, and uptime columns,
we can see that our application has crashed three times already. Each time, PM2 has helpfully stepped in
and restarted it for us. The most recent process has been running for a total of two seconds, which means we
can expect another crash (and automatic restart) two seconds from now.

PM2’s ability to assist applications in recovering from fatal errors in a production environment,
while useful, is just one of several useful features the utility provides. PM2 is also equally useful within
development environments, as we’ll soon see.

Responding to File Changes
Imagine a scenario in which you’ve recently begun work on a new Node project. Let’s assume it’s a web API
built with Express. Without the help of additional tools, you must manually restart the related Node process
in order to see the effects of your ongoing work—a frustrating chore that quickly grows old. PM2 can assist
you in this situation by automatically monitoring the file structure of your project. As changes are detected,
PM2 can automatically restart your application for you, if you instruct it to do so.

Figure 4-6 demonstrates this process. In this example, we first remove our currently running instance of
my-bad-app. Next, we create a new instance of the application that was shown in our original example
(see Listing 4-2). This time, however, we pass an additional flag, --watch, which instructs PM2 to monitor
our project for changes and to respond accordingly.

Figure 4-6. Creating a new PM2 process that will automatically restart itself as changes are detected

As changes are saved to this project’s files, subsequent calls to PM2’s list command will indicate how
many times PM2 has restarted the application, as seen in a previous example.

Monitoring Logs
Refer back to Listing 4-2 and note this application’s use of morgan, a module for logging incoming HTTP
requests. In this example, morgan is configured to print such information to the console. We can see the
result by running our application directly via the node executable, as shown in Figure 4-7.

Chapter 4 ■ pM2

59

We recently explored how to allow PM2 to manage the execution of this application for us via the
start command (see Figure 4-1). Doing so provides us with several benefits, but it also causes us to lose
immediate insight into the output being generated by our application to the console. Fortunately, PM2
provides us with a simple mechanism for monitoring such output.

In Figure 4-3, we requested information from PM2 regarding a specific process under its control
via the show command. Contained within the provided information were paths to two log files that PM2
automatically created for this process—one labeled “out log path” and one labeled “error log path”—to
which PM2 will save this process’s standard output and error messages, respectively. We could view these
files directly, but PM2 provides a much more convenient method for interacting with them, as shown in
Figure 4-8.

Figure 4-7. Logging incoming requests to Express with morgan

Figure 4-8. Monitoring the output from processes under PM2’s control

Here we see how the output from processes under PM2’s control can be monitored as needed via the
logs command. In this example, we monitor the output from all processes under PM2’s control. Notice how
PM2 helpfully prefixes each entry with information regarding the process from which each line of output
originated. This information is particularly useful when using PM2 to manage multiple processes, which
we will begin doing in the upcoming section. Alternatively, we can also monitor the output from a specific
process by passing the name (or ID) for that process to the logs command (see Figure 4-9).

Chapter 4 ■ pM2

60

Should you wish to clear out the content of log files generated by PM2 at any point, you can quickly
do so by calling PM2’s flush command. The behavior of the utility’s logs command can also be tweaked
slightly with the use of two optional arguments, which are listed in Table 4-3.

Figure 4-9. Monitoring the output from a specific process under PM2’s control

Table 4-3. Arguments Accepted by PM2’s logs Command

Argument Description

–raw Displays the raw content of log files, stripping prefixed process identifiers in the process

–lines <N> Instructs PM2 to display the last N lines, instead of the default of 20

Monitoring Resource Usage
In the previous section, you learned how PM2 can assist you in monitoring the standard output and errors
being generated by processes under its control. In much the same way, PM2 also provides easy-to-use tools
for monitoring the health of those processes, as well as for monitoring the overall health of the server on
which they are running.

Monitoring Local Resources
Figure 4-10 demonstrates the output that is generated when PM2’s monit command is called. Here we see
a continuously updated view that allows us to track the amount of CPU processing power as well as the
amount of RAM consumed by each process being managed by PM2.

Figure 4-10. Monitoring CPU and memory usage via PM2’s monit command

Chapter 4 ■ pM2

61

Monitoring Remote Resources
The information provided by PM2’s monit command provides us with a quick and easy method for
monitoring the health of its processes. This functionality is particularly helpful during development, when
our primary focus is on the resources being consumed within our own environment. It’s less helpful,
however, as an application moves into a remote, production environment that could easily consist of
multiple servers, each running its own instance of PM2.

PM2 takes this into account by also providing a built-in JSON API that can be accessed over the Web on
port 9615. Disabled by default, the process for enabling it is shown in Figure 4-11.

Figure 4-11. Enabling PM2’s JSON web API

In this example, we enable PM2’s web-accessible JSON API by calling the utility’s web command. PM2
implements this functionality as part of a separate application that runs independently of PM2 itself. As a
result, we can see that a new process, pm2-http-interface, is now under PM2’s control. Should we ever
wish to disable PM2’s JSON API, we can do so by removing this process as we would any other, by passing its
name (or ID) to the delete (or stop) commands.

Listing 4-4 shows an excerpt of the output that is provided when a GET request is made to the server
running PM2 over port 9615. As you can see, PM2 provides us with a number of details regarding each of the
processes currently under its control, as well as the system on which it is running.

Listing 4-4. Excerpt of the Information Provided by PM2’s JSON API

{
 "system_info": {
 "hostname": "iMac.local",
 "uptime": 2186
 },
 "monit": {
 "loadavg": [1.39794921875],
 "total_mem": 8589934592,
 "free_mem": 2832281600,
 "cpu": [{
 "model": "Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz",
 "speed": 3300,
 "times": {
 "user": 121680,
 "nice": 0,
 "sys": 176220,

Chapter 4 ■ pM2

62

 "idle": 1888430,
 "irq": 0
 }
 }],
 "interfaces": {
 "lo0": [{
 "address": "::1",
 "netmask": "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff",
 "family": "IPv6",
 "mac": "00:00:00:00:00:00",
 "scopeid": 0,
 "internal": true
 }],
 "en0": [{
 "address": "10.0.1.49",
 "netmask": "255.255.255.0",
 "family": "IPv4",
 "mac": "ac:87:a3:35:9c:72",
 "internal": false
 }]
 }
 },
 "processes": [{
 "pid": 1163,
 "name": "my-app",
 "pm2_env": {
 "name": "my-app",
 "vizion": true,
 "autorestart": true,
 "exec_mode": "fork_mode",
 "exec_interpreter": "node",
 "pm_exec_path": "/opt/my-app/index.js",
 "env": {
 "_": "/usr/local/opt/nvm/versions/node/v0.12.4/bin/pm2",
 "NVM_IOJS_ORG_MIRROR": "https://iojs.org/dist",
 "NVM_BIN": "/usr/local/opt/nvm/versions/node/v0.12.4/bin",
 "LOGNAME": "user",
 "ITERM_SESSION_ID": "w0t0p0",
 "HOME": "/Users/user",
 "COLORFGBG": "7;0",
 "SHLVL": "1",
 "XPC_SERVICE_NAME": "0",
 "XPC_FLAGS": "0x0",
 "ITERM_PROFILE": "Default",
 "LANG": "en_US.UTF-8",
 "PWD": "/opt/my-app",
 "NVM_NODEJS_ORG_MIRROR": "https://nodejs.org/dist",
 "PATH": "/usr/local/opt/nvm/versions/node/v0.12.4/bin",
 "__CF_USER_TEXT_ENCODING": "0x1F5:0x0:0x0",
 "SSH_AUTH_SOCK": "/private/tmp/com.apple.launchd.kEqu8iouDS/Listeners",
 "USER": "user",

https://iojs.org/dist
https://nodejs.org/dist

Chapter 4 ■ pM2

63

 "NVM_DIR": "/usr/local/opt/nvm",
 "NVM_PATH": "/usr/local/opt/nvm/versions/node/v0.12.4/lib/node",
 "TMPDIR": "/var/folders/y3/2fphz1fd6rg9l4cg2t8t7g840000gn/T/",
 "TERM": "xterm",
 "SHELL": "/bin/bash",
 "TERM_PROGRAM": "iTerm.app",
 "NVM_IOJS_ORG_VERSION_LISTING": "https://iojs.org/dist/index.tab",
 "pm_cwd": "/opt/my-app"
 },
 "versioning": {
 "type": "git",
 "url": "git@github.com:tkambler/pro-javascript-frameworks.git",
 "revision": "18104d13d14673652ee7a522095fc06dcf87f8ba",
 "update_time": "2015-05-25T20:53:50.000Z",
 "comment": "Merge pull request #28 from tkambler/ordered-build",
 "unstaged": true,
 "branch": "pm2",
 "remotes": ["origin"],
 "remote": "origin",
 "branch_exists_on_remote": false,
 "ahead": false,
 "next_rev": null,
 "prev_rev": "b0e486adab79821d3093c6522eb8a24455bfb051",
 "repo_path": "/Users/user/repos/pro-javascript-frameworks"
 }
 },
 "pm_id": 0,
 "monit": {
 "memory": 32141312,
 "cpu": 0
 }
 }]
}

Advanced Process Management
Most of this chapter’s focus so far has revolved around interactions with PM2 that occur primarily via the
command line. On their own, commands such as start, stop, restart, and delete provide us with simple
mechanisms for managing processes in a quick, one-off fashion. But what about more complex scenarios?
Perhaps an application requires that additional parameters be specified at runtime, or perhaps it expects
that one or more environment variables be set.

JSON Application Declarations
To meet these needs, additional configuration is needed, and the best way to accomplish this is with the
help of what PM2 refers to as “JSON application configuration” files. An example configuration file that
demonstrates most of the various options that are available is shown in Listing 4-5.

https://iojs.org/dist/index.tab

Chapter 4 ■ pM2

64

Listing 4-5. Sample of the Various Options Available Within a JSON Application Configuration File

{
 "name" : "my-app",
 "cwd" : "/opt/my-app",
 "args" : ["--argument1=value", "--flag", "value"],
 "script" : "index.js",
 "node_args" : ["--harmony"],
 "log_date_format" : "YYYY-MM-DD HH:mm Z",
 "error_file" : "/var/log/my-app/err.log",
 "out_file" : "/var/log/my-app/out.log",
 "pid_file" : "pids/my-app.pid",
 "instances" : 1, // or 0 => 'max'
 "max_restarts" : 10, // defaults to 15
 "max_memory_restart": "1M", // 1 megabytes, e.g.: "2G", "10M", "100K"
 "cron_restart" : "1 0 * * *",
 "watch" : false,
 "ignore_watch" : ["node_modules"],
 "merge_logs" : true,
 "exec_mode" : "fork",
 "autorestart" : false,
 "env": {
 "NODE_ENV": "production"
 }
}

JSON application configuration files provide us with a standard format for passing advanced settings to
PM2 in a way that is easily repeatable and that can be shared with others. Several of the options that you see
here should be familiar, based on previous examples (e.g., name, out_file, error_file, watch, etc.). Others
will be touched on later in the chapter. Descriptions for each are provided in Table 4-4.

Table 4-4. Descriptions of the Various Configuration Settings Shown in Listing 4-5

Setting Description

name Name of the application.

cwd Directory from which the application will be launched.

args Command-line arguments to be passed to the application.

script Path to the script with which PM2 will launch the application (relative to cwd).

node_args Command-line arguments to be passed to the node executable.

log_date_format Format with which log timestamps will be generated.

error_file Path to which standard error messages will be logged.

out_file Path to which standout output messages will be logged.

pid_file Path to which the application’s PID (process identifier) will be logged.

instances The number of instances of the application to launch. Discussed in further detail
in the next section.

max_restarts The maximum number of times PM2 will attempt to restart (consecutively) an
failed application before giving up.

(continued)

Chapter 4 ■ pM2

65

Setting Description

max_memory_restart PM2 will automatically restart the application if the amount of memory it
consumes crosses this threshold.

cron_restart PM2 will automatically restart the application on a specified schedule.

watch Whether or not PM2 should automatically restart the application as changes to
its file structure are detected. Defaults to false.

ignore_watch An array of locations for which PM2 should ignore file changes, if watching is
enabled.

merge_logs If multiple instances of a single application are created, PM2 should use a single
output and error log file for all of them.

exec_mode Method of execution. Defaults to fork. Discussed in further detail in the next
section.

autorestart Automatically restart a crashed or exited application. Defaults to true.

vizon If enabled, PM2 will attempt to read metadata from the application’s version
control files, if they exist. Defaults to true.

env Object containing environment variable keys/values to pass to the application.

Table 4-4. (continued)

Included with this chapter is a microservices project that provides a working demonstration of JSON
configuration files in action. Contained within this project are two applications: a weather application with
an API that returns random temperature information for a specified postal code, and a main application that
generates a request to the API every two seconds and prints the result to the console. The main script for
each of these applications is shown in Listing 4-6.

Listing 4-6. Source Code for the main and weather Applications

// microservices/main/index.js

var request = require('request');

if (!process.env.WEATHER_API_URL) {
 throw new Error('The `WEATHER_API_URL` environment variable must be set.');
}

setInterval(function() {

 request({
 'url': process.env.WEATHER_API_URL + '/api/weather/37204',
 'json': true,
 'method': 'GET'
 }, function(err, res, result) {
 if (err) throw new Error(err);
 console.log('The temperature is: %s', result.temperature.fahrenheit);
 });

}, 2000);

Chapter 4 ■ pM2

66

// microservices/weather/index.js

if (!process.env.PORT) {
 throw new Error('The `PORT` environment variable must be set.');
}

var express = require('express');
var morgan = require('morgan');
var app = express();
app.use(morgan('combined'));

var random = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1) + min);
};

app.get('/api/weather/:postal_code', function(req, res, next) {
 var fahr = random(70, 110);
 res.send({
 'temperature': {
 'fahrenheit': fahr,
 'celsius': (fahr - 32) * (5/9)
 }
 });
});

app.listen(process.env.PORT);

A single JSON application configuration file is also included with the microservices project, the
content of which is shown in Listing 4-7.

Listing 4-7. JSON Application Configuration File for this Chapter’s microservices Projectmicroservices/
pm2/development.json

[
 {
 "name" : "main",
 "cwd" : "../microservices",
 "script" : "main/index.js",
 "max_memory_restart": "60M",
 "watch" : true,
 "env": {
 "NODE_ENV": "development",
 "WEATHER_API_URL": "http://localhost:7010"
 }
 },
 {
 "name" : "weather-api",
 "cwd" : "../microservices",
 "script" : "weather/index.js",
 "max_memory_restart": "60M",
 "watch" : true,
 "env": {

Chapter 4 ■ pM2

67

 "NODE_ENV": "development",
 "PORT": 7010
 }
 }
]

The application configuration file shown here provides PM2 with instructions on how to launch each of
the applications included within this project. In this example, PM2 is instructed to restart each application if
changes are detected to either’s file structure, or if they begin to consume more than 60MB of memory. The
file also provides PM2 with separate environment variables to be passed to each process.

 ■ Note Before running this example, you will need to adjust the values for the cwd settings within this file
so that they reference the absolute path to the microservices folder on your computer. after making the
appropriate adjustments, launch both applications with a single call to pM2, as shown in Figure 4-12.

Figure 4-12. Launching the main and weather-api applications with PM2

As expected, PM2 has created two instances for us, one for each of the applications referenced within
our configuration file. As in previous examples, we can monitor the output that is generated with the help of
PM2’s logs command (see Figure 4-13).

Figure 4-13. Excerpt of the output generated by PM2’s logs command

Chapter 4 ■ pM2

68

Load-Balancing Across Multiple Processors
The single-threaded, nonblocking nature of Node’s I/O model makes it possible for developers to create
applications capable of handling thousands of concurrent connections with relative ease. While impressive,
the efficiency with which Node is capable of processing incoming requests comes with one major expense:
an inability to spread computation across multiple CPUs. Thankfully, Node’s core cluster module provides
a method for addressing this limitation. With it, developers can write applications capable of creating their
own child processes—each running on a separate processor, and each capable of sharing the use of ports
with other child processes and the parent process that launched it.

Before we close out this chapter, let’s take a look at a convenient abstraction of Node’s cluster
module that is provided by PM2. With this functionality, applications that were not originally written to
take advantage of Node’s cluster module can be launched in a way that allows them to take full advantage
of multiprocessor environments. As a result, developers can quickly scale up their applications to meet
increasing demand without immediately being forced to bring additional servers to bear.

Listing 4-8 shows the source code for a simple Express application that we will be scaling across multiple
processors with the help of PM2, while Listing 4-9 shows the accompanying JSON application configuration file.

Listing 4-8 Express Application to be Scaled Across Multiple CPUs

// multicore/index.js

if (!process.env.port) throw new Error('The port environment variable must be set');

var express = require('express');
var morgan = require('morgan');
var app = express();
app.use(morgan('combined'));

app.route('/')
 .get(function(req, res, next) {
 res.send('Hello, world.');
 });

app.listen(process.env.port);

Listing 4-9. JSON Application Configuration File with Which Our Application Will Be Launched

// multicore/pm2/development.json

{
 "name": "multicore",
 "cwd": "../multicore",
 "max_memory_restart": "60M",
 "watch": false,
 "script": "index.js",
 "instances": 0, // max
 "exec_mode": "cluster",
 "autorestart": true,
 "merge_logs": true,
 "env": {
 "port": 9000
 }
}

Chapter 4 ■ pM2

69

The application configuration file shown in Listing 4-9 contains two key items of interest. The first is
the instances property. In this example, we specify a value of 0, which instructs PM2 to launch a separate
process for every CPU that it finds. The second is the exec_mode property. By specifying a value of cluster,
we instruct PM2 to launch its own parent process, which will in turn launch separate child processes for our
application with the help of Node’s cluster module.

In Figure 4-14, we launch the application by passing the path to our application configuration file to
PM2’s start command. Afterward, PM2 displays a listing of every known process, as in previous examples.
In this instance, we see that PM2 has launched a separate process for each of the eight CPUs available within
our environment. We can verify this by monitoring CPU usage for each of these new processes using the
monit command, as shown in Figure 4-15.

Figure 4-14. Launching the application on cluster mode with PM2

Figure 4-15. Monitoring CPU usage with PM2’s monit command

Chapter 4 ■ pM2

70

 ■ Note When launching applications in cluster mode, pM2 will print a message to the console warning that
this functionality is still a beta feature. according to the lead developer of pM2, however, this functionality is
stable enough for production environments, so long as Node v0.12.0 or higher is being used.

Before you continue, you can quickly remove each of the eight processes launched by this example by
running $ pm2 delete multicore.

Zero-Downtime Deployments
After launching an application in cluster mode, PM2 will begin forwarding incoming requests in a round-
robin fashion to each of the eight processes under its control—providing us with an enormous increase in
performance. As an added benefit, having our application distributed across multiple processors also allows
us to release updates without incurring any downtime, as we will see in a moment.

Imagine a scenario in which an application under PM2’s control is running on one or more servers. As
updates to this application become available, releasing them to the public will involve two critical steps:

•	 Copying the updated source code to the appropriate server(s)

•	 Restarting each of the processes under PM2’s control

As these steps take place, a brief period of downtime will be introduced, during which incoming
requests to the application will be rejected—unless special precautions are taken. Fortunately, launching
applications with PM2 in cluster mode provides us with the tools we need to take those precautions.

To avoid any downtime when relaunching the application we previously saw in Listing 4-8, we will first
need to make a minor adjustment to our application’s source code and application configuration files. The
updated versions are shown in Listing 4-10.

Listing 4-10. Application Designed to Take Advantage of PM2’s gracefulReload Command

// graceful/index.js

if (!process.env.port) throw new Error('The port environment variable must be set');

var server;
var express = require('express');
var morgan = require('morgan');
var app = express();
app.use(morgan('combined'));

app.route('/')
 .get(function(req, res, next) {
 res.send('Hello, world.');
 });

process.on('message', function(msg) {
 switch (msg) {
 case 'shutdown':
 server.close();
 break;
 }
});

Chapter 4 ■ pM2

71

server = app.listen(process.env.port, function() {
 console.log('App is listening on port: %s', process.env.port);
});

// graceful/pm2/production.json

{
 "name": "graceful",
 "cwd": "../graceful",
 "max_memory_restart": "60M",
 "watch": false,
 "script": "index.js",
 "instances": 0, // max
 "exec_mode": "cluster",
 "autorestart": true,
 "merge_logs": false,
 "env": {
 "port": 9000,
 "PM2_GRACEFUL_TIMEOUT": 10000
 }
}

Previous examples have demonstrated the use of PM2’s restart command, which immediately
stops and starts a specified process. While this behavior is typically not a problem within nonproduction
environments, issues begin to surface when we consider the impact it would have on any active requests that
our application may be processing at the moment this command is issued. When stability is of the upmost
importance, PM2’s gracefulReload command serves as a more appropriate alternative.

When called, gracefulReload first sends a shutdown message to each of the processes under its control,
providing them with the opportunity to take any necessary precautions to ensure that any active
connections are not disturbed. Only after a configurable period of time has passed (specified via the
PM2_GRACEFUL_TIMEOUT environment variable) will PM2 then move forward with restarting the process.

In this example, after receiving the shutdown message, our application responds by calling the close()
method on the HTTP server that was created for us by Express. This method instructs our server to stop
accepting new connections, but allows those that have already been established to complete. Only after ten
seconds have passed (as specified via PM2_GRACEFUL_TIMEOUT) will PM2 restart the process, at which point
any connections managed by this process should already have been completed.

Figure 4-16 demonstrates the process by which this application can be started and subsequently
restarted through the use of the gracefulReload command. By doing so, we are able to release updates
without interrupting our application’s users.

Chapter 4 ■ pM2

72

Summary
PM2 provides developers with a powerful utility for managing Node applications that is equally at home
in both production and nonproduction environments. Simple aspects, such as the utility’s ability to
automatically restart processes under its control as source code changes occur, serve as convenient
timesavers during development. More advanced features, such as the ability to load balance applications
across multiple processors and to gracefully restart those applications in a way that does not negatively
impact users, also provide critical functionality for using Node in a significant capacity.

Related Resources
•	 PM2: https://github.com/Unitech/pm2

Figure 4-16. Gracefully reloading each of the processes under PM2’s control

https://github.com/Unitech/pm2

73

Chapter 5

RequireJS

It is more productive to think about what is within my control than to worry and fret about
things that are outside of my control. Worrying is not a form of thinking.

—Peter Saint-Andre

While JavaScript now plays a far more significant role in web applications, the HTML5 specification
(and therefore modern browsers) does not specify a means to detect dependency relationships among
scripts, or how to load script dependencies in a particular order. In the simplest scenario, scripts are typically
referenced in page markup with simple <script> tags. These tags are evaluated, loaded, and executed
in order, which means that common libraries or modules are typically included first, then application
scripts follow. (For example, a page might load jQuery and then load an application script that uses jQuery
to manipulate the Document Object Model [DOM].) Simple web pages with easily traceable dependency
hierarchies fit well into this model, but as the complexity of a web application increases, the number of
application scripts will grow and the web of dependencies may become difficult, if not impossible, to manage.

The whole process is made even messier by asynchronous scripts. If a <script> tag possesses an
async attribute, the script content will be loaded over HTTP in the background and executed as soon as it
becomes available. While the script is loading, the remainder of the page, including any subsequent script
tags, will continue to load. Large dependencies (or dependencies delivered by slow sources) that are loaded
asynchronously may not be available when application scripts are evaluated and executed. Even if application
<script> tags possess async attributes as well, a developer has no means of controlling the order in which all
asynchronous scripts are loaded, and therefore no way to ensure that the dependency hierarchy is respected.

 ■ Tip The HTML5 <script> tag attribute defer is similar to async but delays script execution until page
parsing has finished. Both of these attributes reduce page rendering delays, thereby improving user experience
and page performance. This is especially important for mobile devices.

RequireJS was created to address this dependency orchestration problem by giving developers a
standard way to write JavaScript modules (“scripts”) that declare their own dependencies before any module
execution occurs. By declaring all dependencies up front, RequireJS can ensure that the overall dependency
hierarchy is loaded asynchronously while executing modules in the correct order. This pattern, known as
Asynchronous Module Definition (AMD), stands in contrast to the CommonJS module-loading pattern
adopted by Node.js and the Browserify module-loading library. While there are certainly strong points to be
made for using both patterns in a variety of use cases, RequireJS and AMD were developed to address issues
specific to web browsers and DOM shortcomings. In reality, the concessions that RequireJS and Browserify
make in their implementations are usually mitigated by workflow and community plugins.

CHapTer 5 ■ requireJS

74

For example, RequireJS can create dynamic shims for non-AMD dependencies that it must load
(usually remote libraries on content delivery networks or legacy code). This is important because RequireJS
assumes that scripts in a web application may come from multiple sources and will not all directly be under
a developer’s control. By default, RequireJS does not concatenate all application scripts (“packing”) into a
single file, opting instead to issue HTTP requests for every script it loads. The RequireJS tool r.js, discussed
later, produces packed bundles for production environments, but can still load remote, shimmed scripts
from other locations. Browserify, on the other hand, takes a “pack-first” approach. It assumes that all internal
scripts and dependencies will be packed into a single file and that other remote scripts will be loaded
separately. This places remote scripts beyond the control of Browserify, but plugins like bromote work within
the CommonJS model to load remote scripts during the packing process. For both approaches, the end
result is the same: a remote resource is made available to the application at runtime.

Running the Examples
This chapter contains a variety of examples that may be run in a modern web browser. Node.js is necessary
to install code dependencies and to run all web server scripts.

To install the example code dependencies, open the code/requirejs directory in a terminal and
execute the command npm install. This command will read the package.json file and download the few
packages necessary to run each example.

Example code blocks throughout the chapter contain a comment at the top to indicate in which file the
source code may be found. The fictitious index.html file in Listing 5-1, for example, would be found in the
example-000/public directory. (This directory does not really exist, so don’t worry if you can’t find it.)

Listing 5-1. An Exciting HTML File

<!-- example-000/public/index.html -->
<html>
 <head></head>
 <body><h1>Hello world!</h1></body>
</html>

Unless otherwise specified, assume that all example code directories contain an index.js file that
launches a very basic web server. Listing 5-2 shows how Node.js would be used in a terminal to run the
fictitious web server script example-000/index.js.

Listing 5-2. Launching an Exciting Web Server

example-000$ node index.js
>> mach web server started on node 0.12.0
>> Listening on :::8080, use CTRL+C to stop

The command output shows that the web server is listening at http://localhost:8080. In a web
browser, navigating to http://localhost:8080/index.html would render the HTML snippet in Listing 5-1.

Working with RequireJS
The workflow for using RequireJS in a web application typically includes some common steps. First, RequireJS
must be loaded in an HTML file with a <script> tag. RequireJS may be referenced as a stand-alone script on a
web server or CDN, or it may also be installed with package managers like Bower and npm, then served from
a local web server. Next, RequireJS must be configured so that it knows where scripts and modules live, how to

CHapTer 5 ■ requireJS

75

shim scripts that are not AMD compliant, which plugins to load, and so on. Once configuration is complete,
RequireJS will load a primary application module that is responsible for loading the major page components,
essentially “kicking off” the page’s application code. At this point RequireJS evaluates the dependency tree
created by modules and begins asynchronously loading dependency scripts in the background. Once all
modules are loaded, the application code proceeds to do whatever is within its purview.

Each step in this process is given detailed consideration in the following sections. The examples code
used in each section represents the evolution of a simple application that will show inspirational and
humorous quotes by (semi-) famous persons.

Installation
The RequireJS script may be downloaded directly from http://requirejs.org. It comes in a few distinct
flavors: a vanilla RequireJS script, a vanilla RequireJS script prebundled with jQuery, and a Node.js package
that includes both RequireJS and its packing utility, r.js. For most examples in this chapter, the vanilla script
is used. The prebundled jQuery script is merely offered as a convenience for developers. If you wish to add
RequireJS to a project that is already using jQuery, the vanilla RequireJS script can accommodate the existing
jQuery installation with no issues, though older versions of jQuery may need to be shimmed. (Shimmed
scripts will be covered later.)

Once acquired, the RequireJS script is referenced in the web application with a <script> tag. Because
RequireJS is a module loader, it bears the responsibility of loading all other JavaScript files and modules that
an application may need. It is therefore very likely that the RequireJS <script> tag will be the only <script>
tag that occupies a web page. A simplified example is given in Listing 5-3.

Listing 5-3. Including the RequireJS Script on a Web Page

<!-- example-001/public/index.html -->
<body>
 <header>
 <h1>Ponderings</h1>
 </header
 <script src="/scripts/require.js"></script>
</body>

Configuration
After the RequireJS script is loaded on a page, it looks for a configuration which will primarily tell RequireJS
where script and modules live. Configuration options can be provided in in one of three ways.

First, a global require object may be created before the RequireJS script is loaded. This object may
contain all of the RequireJS configuration options as well as a “kickoff” callback that will be executed once
RequireJS has finished loading all application modules.

The script block in Listing 5-4 shows a newly minted RequireJS configuration object stored in the global
require variable.

Listing 5-4. Configuring RequireJS with a Global require Object

<!-- example-001/public/config01.html -->
<body>
 <header>
 <h1>Ponderings</h1>
 </header>

http://requirejs.org/

CHapTer 5 ■ requireJS

76

 <section id="quotes"></section>
 <script>
 /*
 * Will be automatically attached to the
 * global window object as window.require.
 */
 var require = {
 // configuration
 baseUrl: '/scripts',
 // kickoff
 deps: ['quotes-view'],
 callback: function (quotesView) {
 quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing elit.');
 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');
 }
 };
 </script>
 <script src="/scripts/require.js"></script>
</body>

The most important configuration property on this object, baseUrl, identifies a path relative to the
application root where RequireJS should begin to resolve module dependencies. The deps array specifies
modules that should be loaded immediately after configuration, and the callback function exists to receive
these modules once they are loaded. This example loads a single module, quotes-view. Once the callback is
invoked, it may access the properties and methods on this module.

The directory tree in Listing 5-5 shows the position of the quotes-view.js file relative to both
config01.html (the page being viewed) and require.js.

Listing 5-5. Application File Locations

├── config01.html
├── scripts
 │ ├── quotes-view.js
 │ └── require.js
└── styles
 └── app.css

Notice that the absolute path and file extension for the quotes-view module is omitted in the deps
array. By default, RequireJS assumes that any given module is located relative to the page being viewed
and that it is contained within a single JavaScript file with the appropriate file extension. In this case the
latter assumption is true but the first is not, which is why specifying a baseUrl property is necessary. When
RequireJS attempts to resolve any module, it will combine any configured baseUrl value and the module
name, then append the .js file extension to produce a full path relative to the application root.

When the config01.html page loads, the strings passed to the quotesView.addQuote() method will be
displayed on the page.

The second configuration method is similar to the first but uses the RequireJS API to perform
configuration after the RequireJS script is loaded, as demonstrated in Listing 5-6.

CHapTer 5 ■ requireJS

77

Listing 5-6. Configuration with the RequireJS API

<!-- example-001/public/config02.html -->
<body>
 <header>
 <h1>Ponderings</h1>
 </header>
 <section id="quotes"></section>
 <script src="/scripts/require.js"></script>
 <script>
 // configuration
 requirejs.config({
 baseUrl: '/scripts'
 });
 // kickoff
 requirejs(['quotes-view'], function (quotesView) {
 quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing elit.');
 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');
 });
 </script>
</body>

In this example a <script> block first uses the global requirejs object, created by the require.js
script, to configure RequireJS by invoking its config() method. It then invokes requirejs to kick off the
application. The object passed to the config() method resembles the global require object from
Listing 5-4, but lacks its deps and callback properties. The requirejs function accepts an array of
application dependencies and a callback function instead, a pattern that will become very familiar when
module design is covered later.

The net effect is the same: RequireJS uses its configuration to load the quotes-view module, and once
loaded, the callback function interacts with it to affect the page.

The third configuration method uses the syntax of the second, but moves the configuration and kickoff
code into its own script. The RequireJS <script> tag in Listing 5-7 uses the data-main attribute to tell
RequireJS where its configuration and kickoff module live.

Listing 5-7. Configuring RequireJS with an External Script

<!-- example-001/public/config03.html -->
<body>
 <header>
 <h1>Ponderings</h1>
 </header>
 <section id="quotes"></section>
 <script src="/scripts/require.js" data-main="/scripts/main.js"></script>
</body>

Once RequireJS has loaded, it will look for the data-main attribute and, if found, asynchronously
load the script specified in the attribute. Listing 5-8 shows the content of main.js, which is identical to the
<script> block in Listing 5-6.

CHapTer 5 ■ requireJS

78

Listing 5-8. The RequireJS Main Module

// example-001/public/scripts/main.js
// configuration
requirejs.config({
 baseUrl: '/scripts'
});

// kickoff
requirejs(['quotes-view'], function (quotesView) {
 quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing elit.');
 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');
});

 ■ Tip Because the data-main script is loaded asynchronously, scripts or <script> blocks included
immediately after requireJS will likely be run first. if requireJS manages all scripts in an application, or if
scripts loaded after requireJS have no bearing on the application itself (such as advertiser scripts), there will be
no conflicts.

Application Modules and Dependencies
RequireJS modules are defined by three things:

 1. A module name

 2. A list of dependencies (modules)

 3. A module closure that will accept the output from each dependency module as
function arguments, set up module code, and potentially return something that
other modules can use

Listing 5-9 shows each of these points in a fake module definition. Modules are created when the global
define() function is invoked. This function takes three arguments, corresponding to the three points above.

Listing 5-9. Module Anatomy

define(/*#1*/'m1', /*#2*/['d1', 'd2'], /*#3*/function (d1, d2) {
 /*
 * Variables declared within the module closure
 * are private to the module, and will not be
 * exposed to other modules
 */
 var privateModuleVariable = "can't touch this";

 /*
 * The returned value (if any) will now be available
 * to any other module if they specify m1 as a
 * dependency.
 */

CHapTer 5 ■ requireJS

79

 return {
 getPrivateModuleVariable: function () {
 return privateModuleVariable;
 }
 };
})

A module’s name is key. In Listing 5-9 a module name, m1, is explicitly declared. If a module name is
omitted (leaving the dependencies and module closure as the only arguments passed to define()), then
RequireJS will assume that the name of the module is the file name containing the module script, without its
.js extension. This is fairly common in practice, but the module name is shown here for clarity.

 ■ Tip Giving modules specific names can introduce unwanted complexity, as requireJS depends on script
urL paths for loading modules. if a module is explicitly named and the file name does not match the module
name, then a module alias that maps the module name to an actual JavaScript file needs to be defined in the
requireJS configuration. This is covered in the next section.

The dependency list in Listing 5-9 identifies two other modules that RequireJS should load. The values
d1 and d2 are the names of these modules, located in script files d1.js and d2.js. These scripts look similar
to the module definition in Listing 5-9, but they will load their own dependencies.

Finally, the module closure accepts the output from each dependency module as function arguments.
This output is any value returned from each dependency module’s closure function. The closure in
Listing 5-9 returns its own value, and if another module were to declare m1 as a dependency, it is this
returned value that would be passed to that module’s closure.

If a module has no dependencies, its dependency array will be empty and it will receive no arguments
to its closure.

Once a module is loaded, it exists in memory until the application is terminated. If multiple modules
declare the same dependency, that dependency is loaded only once. Whatever value it returns from its
closure will be passed to both modules by reference. The state of a given module, then, is shared among all
other modules that use it.

A module may return any valid JavaScript value, or none at all if the module exists only to manipulate
other modules or simply produce side effects in the application.

Listing 5-10 shows the structure of the example-002/public directory. This looks similar to
example-001 but a few additional modules have been added, namely data/quotes.js (a module for fetching
quote data) and util/dom.js (a module that wraps the global window object for other modules so that they
do not need to access window directly).

Listing 5-10. Public Directory Structure for example-002

public
 ├── index.html
 ├── scripts
 │ ├── data
 │ │ └── quotes.js
 │ ├── main.js
 │ ├── quotes-view.js
 │ ├── require.js
 │ └── util
 │ └── dom.js

CHapTer 5 ■ requireJS

80

Recall that a module’s dependencies exist relative to the RequireJS baseUrl value. When a module
specifies dependency paths, it does so relative to the baseUrl path. In Listing 5-11 the main.js file depends
on the data/quotes module (public/scripts/data/quotes.js), while the quotes-view.js module
depends on util/dom (public/scripts/util/dom.js).

Listing 5-11. Module Dependency Paths

// example-002/public/scripts/main.js
requirejs(['data/quotes', 'quotes-view'], function (quoteData, quotesView) {
 // ...
});

// example-002/public/scripts/data/quotes.js
define([/*no dependencies*/], function () {
 // ...
});

// example-002/public/scripts/quotes-view.js
define(['util/dom'], function (dom) {
 // ...
});

// example-002/public/scripts/util/dom.js
define([/*no dependencies*/], function () {
 // ...
});

Figure 5-1 shows the logical dependency tree created when these modules are loaded.

Figure 5-1. RequireJS dependency tree

CHapTer 5 ■ requireJS

81

As application dependencies multiply, module pathing can become tedious, but there are two ways to
mitigate this.

First, a module may use leading dot notation to specify dependencies relative to itself. For example, a
module with the declared dependency ./foo would load foo.js as a sibling file, located on the same URL
segment as itself, whereas a module with the dependency ../bar would load bar.js one URL segment “up”
from itself. This greatly reduces dependency verbosity.

Second, modules may be named with path aliases, defined in the RequireJS configuration, as described
in the next section.

Paths and Aliases
Assigning an alias to a module allows other modules to use the alias as a dependency name instead of the
full module pathname. This can be useful for a variety of reasons but is commonly used to simplify vendor
module paths, eliminate version numbers from vendor module names, or deal with vendor libraries that
declare their own module names explicitly.

The module in Listing 5-12 depends on the vendor library jQuery. If the jquery module script was
located at /scripts/jquery.js, no module aliasing would be required to load the dependency; RequireJS
would locate the module based on the configured baseUrl configuration value.

Listing 5-12. Specifying a jQuery Module Dependency

define(['jquery'], function ($) {
 // ...
});

It is unlikely that jquery lives at the module root defined by the baseUrl configuration, however. It is
more likely that the jquery script would exist within a vendor directory such as /scripts/vendor/jquery,
and that the script name would contain the jQuery version (e.g., jquery-2.1.3.min), as this is how jQuery
scripts are distributed. To further complicate matters, jQuery explicitly declares its own module name,
jquery. If a module attempted to load jquery using the full path to the jQuery script, /scripts/vendor/
jquery/jquery-2.1.3.min, RequireJS would load the script over HTTP and then fail to import the module
because its declared name is jquery, not jquery-2.1.3.min.

 ■ Tip explicitly naming modules is considered bad practice because application modules must use a
module’s declared name, and the script file that contains the module must either share its name or be aliased in
the requireJS configuration. a special concession is made for jquery because it is a fairly ubiquitous library.

Aliases are specified in the RequireJS configuration hash under the paths property. In Listing 5-13 the
alias jquery is assigned to vendor/jquery/jquery-2.1.3.min, a path which is relative to the baseUrl.

Listing 5-13. Configuration Module Path Aliases

requirejs.config({
 baseUrl: '/scripts',
 // ... other options ...
 paths: {
 'jquery': 'vendor/jquery/jquery-2.1.3.min'
 }
});

CHapTer 5 ■ requireJS

82

In the paths object, aliases are keys and the scripts to which they are mapped are values. Once a module
alias is defined, it may be used in any other module’s dependency list. Listing 5-14 shows the jquery alias in use.

Listing 5-14. Using a Module Alias in a Dependency List

// jquery alias points to vendor/jquery/jquery-2.1.3.min
define(['jquery'], function ($) {
 // ...
});

Because module aliases take precedence over actual module locations, RequireJS will resolve the
location of the jQuery script before attempting to locate it at /scripts/jquery.js.

 ■ Note anonymous modules (that do not declare their own module names) may be aliased with any module
name, but if named modules are aliased (like jquery) they must be aliased with their declared module names.

Loading Plugins with Proxy Modules
Libraries such as jQuery, Underscore, Lodash, Handlebars, and so forth all have plugin systems that let
developers extend the functionality of each. Strategic use of module aliases can actually help developers
load extensions for these libraries all at once, without having to specify such extensions in every module that
makes use of them.

In Listing 5-15 the jquery script location is aliased with the name jquery and a custom module,
util/jquery-all, is aliased with the name jquery-all for brevity. All application modules will load jquery
by specifying jquery-all as a dependency. The jquery-all module, in turn, loads the normal jquery
module and then attaches custom plugins to it.

Listing 5-15. Using Module Aliases to Load jQuery Plugins

requirejs.config({
 baseUrl: '/scripts',
 // ... other options ...
 paths: {
 // vendor script
 'jquery': 'vendor/jquery/jquery-2.1.3.min',
 // custom extensions
 'jquery-all': 'util/jquery-all'
 }
});

// example-003/public/scripts/util/jquery-all
define(['jquery'], function ($) {

 $.fn.addQuotes = function () {/*...*/};

 return $;
 // or
 //return $.noConflict(true);
});

CHapTer 5 ■ requireJS

83

The jquery-all proxy module returns the jQuery object itself, which allows modules that depend on
jquery-all to access jquery with the loaded custom extensions. By default, jQuery registers itself with
the global window object, even when it is used as an AMD module. If all application modules are accessing
jQuery through the jquery-all module (or even the plain jquery module, as most vendor libraries do), then
there is no need for the jQuery global. It may be removed by invoking $.noConflict(true). This will return
the jquery object and is the alternate return value for the jquery-all module in Listing 5-15.

Because jQuery is now part of the example application, the quotes-view module, responsible for
rendering quote data in the DOM, need no longer rely on the util/dom module. It can specify jquery-all as
a dependency and load jquery and the custom addQuotes() plugin method all at once. Listing 5-16 shows
the changes made to the quotes-view module.

Listing 5-16. Loading jQuery and Custom Plugins in the quotes-view Module

// example-003/public/scripts/quotes-view.js
define(['jquery-all'], function ($) {
 var $quotes = $('#quotes');

 return {
 render: function (groupedQuotes) {
 for (var attribution in groupedQuotes) {
 if (!groupedQuotes.hasOwnProperty(attribution)) continue;
 $quotes.addQuotes(attribution, groupedQuotes[attribution]);
 }
 }
 };
});

The advantage to using a module proxy to load jquery is that it eliminates the need to specify both
jquery and custom plugin modules in other modules that depend on both. Without this technique, for
example, application modules would all have multiple dependencies to ensure that the appropriate jQuery
plugins are loaded when needed, as shown in Listing 5-17.

Listing 5-17. Loading Plugins Without a Proxy Module

// scripts/util/jquery-plugin-1.js
define(['jquery'], function ($) {
 $.fn.customPlugin1 = function () {/*...*/};
});

// scripts/util/jquery-plugin-2.js
define(['jquery'], function ($) {
 $.fn.customPlugin2 = function () {/*...*/};
});

// scripts/*/module-that-uses-jquery.js
define(['jquery', 'util/jquery-plugins-1', 'util/jquery-plugins-2'], function ($) {
 // ...
});

In this case, even though jquery-plugin-1 and jquery-plugin-2 do not return values, they must still
be added as dependencies so that their side effects—adding plugins to the jquery module—still occur.

CHapTer 5 ■ requireJS

84

Shims
Libraries that support the AMD module format are straightforward to use with RequireJS. Non-AMD
libraries may still be used by configuring RequireJS shims, or by creating a shimmed modules manually.

The data/quotes module in example-003 exposes a groupByAttribution() method that iterates over
the collection of quotes. It creates a hash where keys are the names of people and values are arrays of quotes
attributed to them. This grouping functionality would likely be useful for other collections as well.

Fortunately, a vendor library, undrln, can provide a generalized version of this functionality, but it is
not AMD-compatible. A shim would be necessary for other AMD modules to use undrln as a dependency.
Undrln is written as a standard JavaScript module within a function closure, shown in Listing 5-18. It assigns
itself to the global window object, where it may be accessed by other scripts on a page.

 ■ Note The undrln.js script blatantly mimics a subset of the Lodash api without aMD module compatibility,
exclusively for this chapter’s examples.

Listing 5-18. The Completely Original Undrln Library

// example-004/public/scripts/vendor/undrln/undrln.js
/**
 * undrln (c) 2015 l33th@x0r
 * MIT license.
 * v0.0.0.0.1-alpha-DEV-theta-r2
 */
(function () {

 var undrln = window._ = {};

 undrln.groupBy = function (collection, key) {
 // ...
 };

}());

Several things must be added to the RequireJS configuration to create a shim. First, a module alias
must be created under paths so that RequireJS knows where the shimmed module lives. Second, a shim
configuration entry must be added to the shim section. Both are added to the RequireJS configuration in
Listing 5-19.

Listing 5-19. Configuration of a Module Shim

// example-004/public/scripts/main.js
requirejs.config({
 baseUrl: '/scripts',
 paths: {
 jquery: 'vendor/jquery/jquery-2.1.3.min',
 'jquery-all': 'util/jquery-all',
 // giving undrln a module alias
 undrln: 'vendor/undrln/undrln'
 },

CHapTer 5 ■ requireJS

85

 shim: {
 // defining a shim for undrln
 undrln: {
 exports: '_'
 }
 }
});

Each key under the shim section identifies the module alias (or name) to be shimmed, and the objects
assigned to those keys specify details about how the shim works. Under the hood, RequireJS creates a shim
by defining an empty AMD module that returns the global object created by a script or library. Undrln
creates the global window._ object, and so the name _ is specified in the shim configuration as undrln’s
export. The final, generated RequireJS shim will look something like the module in Listing 5-20. Note that
these shims are created dynamically as modules are loaded and do not actually exist as “files” on the web
server. (One exception to this rule is the r.js packing utility, discussed later, which writes generated shim
output to a bundle file as an optimization measure.)

Listing 5-20. Example RequireJS Shim Module

define('undrln', [], function () {
 return window._;
});

The quotes module in Listing 5-21 may now use the undrln shim as a dependency.

Listing 5-21. Using the Undrln Shim As a Dependency

// example-004/public/scripts/data/quotes.js
define(['undrln'], function (_) {
 //...
 return {
 groupByAttribution: function () {
 return _.groupBy(quoteData, 'attribution');
 },
 //...
 }
});

By shimming non-AMD scripts, RequireJS can use its asynchronous module-loading capabilities
behind the scenes to load non-AMD scripts when they are dependencies of other AMD modules. Without
this capability these scripts would need to be included on every page with a standard <script> tag and
loaded synchronously to ensure availability.

Running the web application in example-004 and then browsing to http://localhost:8080/index.html
will display a list of quotes. Figure 5-2 shows the rendered page and Chrome’s Network panel in which
all loaded JavaScript modules are listed. Note that the Initiator column clearly shows that RequireJS is
responsible for loading all modules, and that even undrln.js, a non-AMD module, is included in the list.

CHapTer 5 ■ requireJS

86

Shim Dependencies
It is reasonable to expect shimmed scripts to have dependencies, likely objects in the global scope. When
AMD modules specify dependencies, RequireJS ensures that the dependencies are loaded first, before the
module code is executed. Dependencies for shimmed scripts are specified in a similar manner within the
shim configuration. A shimmed script may depend on other shimmed scripts, or even AMD modules if those
modules make content available in the global scope (usually a bad idea, but sometimes necessary).

To enhance the example application, a search field has been added to the quote page in example-005.
Terms entered into the search field appear highlighted in the text of any quote in which they are found. Up to
this point all examples have used a single view, quotes-view, to display the rendered markup. Because the
application features are growing, two new modules will be introduced to help manage features: search-view
and quotes-state. The search-view module is responsible for monitoring a text field for user input. When
this field changes, the view informs the quotes-state module that a search has occurred, passing it the
search term. The quotes-state module acts as the single source of state for all views, and when it receives a
new search term, it triggers an event to which views may subscribe.

Digging through some legacy source code produced the file public/scripts/util/jquery.highlight.js,
a non-AMD jQuery plugin that highlights text in the DOM. When the quotes-view module receives the
search event from the quotes-state module, it uses this plugin to highlight text in the DOM based on the
search term stored in quotes-state. To use this legacy script, a path and a shim entry are both added to
the main.js configuration. The highlight plugin doesn’t export any values, but it does need jQuery to be
loaded first or the plugin will throw an error when it attempts to access the global jQuery object.

Figure 5-2. RequireJS modules shown loaded in Chrome

CHapTer 5 ■ requireJS

87

Dependencies have been added to the highlight shim with the deps property, shown in Listing 5-22.
This property contains an array of module names (or aliases) that should be loaded before the shim--in this
case jQuery.

Listing 5-22. The highlight Shim Depends on jQuery

// example-005/public/scripts/main.js
requirejs.config({
 baseUrl: '/scripts',
 paths: {
 jquery: 'vendor/jquery/jquery-2.1.3.min',
 'jquery-all': 'util/jquery-all',
 undrln: 'vendor/undrln/undrln',
 ventage: 'vendor/ventage/ventage',
 highlight: 'util/jquery.highlight'
 },
 shim: {
 undrln: {
 exports: '_'
 },
 highlight: {
 deps: ['jquery']
 }
 }
});

Once the highlight plugin has been shimmed, it may be loaded as a dependency of another module.
Since the jquery-all module is responsible for loading custom plugins anyway, making the highlight
module one of its dependencies in Listing 5-23 seems sensible.

Shimmed scripts should only have two kinds of dependencies:

•	 Other shimmed scripts that execute immediately and potentially create one or more
reusable variables or namespaces in the global scope

•	 AMD modules that also create reusable variables or namespaces in the global scope
(such as window.jQuery) as a side effect

Because AMD modules typically don’t meddle with the global scope at all, it is practically useless to
use them as dependencies for a shimmed script because there is no way for the shimmed script to access an
AMD module’s API. If an AMD module adds nothing to the global scope, it is useless to shimed scripts. Also,
AMD modules are loaded asynchronously and their closures are executed in a particular order (discussed
in the next section), whereas shimmed scripts will be run as soon as they are loaded. (Rembmer: shimmed
scripts are normal scripts that run once they’ve been introduced into the DOM. A generated shim module
simply delivers the global export created by a non-AMD script to other AMD modules as a dependency.)
Even if a shimmed script could access an AMD module’s API, there is no guarantee that the module would
be available when the shimmed script actually runs.

CHapTer 5 ■ requireJS

88

Listing 5-23. Loading the highlight Module As a Dependency of Another Module

// example-005/public/scripts/util/jquery-all.js
define(['jquery', 'highlight'], function ($) {

 $.fn.addQuotes = function (attribution, quotes) {
 // ...
 };

 return $;
});

With this arrangement there are likely two questions that spring to mind immediately:

 1. Since both the highlight and jquery-all modules declare jquery as a
dependency, when is jQuery actually loaded?

 2. Why isn’t a second highlight parameter specified in the jquery-all module
closure function?

First, when RequireJS evaluates dependencies among modules, it creates an internal dependency tree
based on module hierarchy. By doing this it can determine the optimal time to load any particular module,
starting from the leaves and moving toward the trunk. In this case the “trunk” is the jquery-all module, and
the furthest leaf is the jquery module on which highlight depends. RequireJS will execute module closures
in the following order: jquery, highlight, jquery-all. Because jquery is also a dependency of jquery-all,
RequireJS will simply deliver the same jquery instance created for the highlight module.

Second, the highlight module returns no value and is used merely for side effects—for adding a
plugin to the jQuery object. No parameter is passed to the jquery-all module because highlight returns
none. Dependencies that are used only for side effects should always be placed at the end of a module’s
dependency list for this reason.

Loader Plugins
There are several RequireJS loader plugins that are so useful, they find a home in most projects. A loader
plugin is an external script that is used to conveniently load, and sometimes parse, specific kinds of
resources that may then be imported as standard AMD dependencies, even though the resources themselves
may not be actual AMD modules.

text.js
The RequireJS text plugin can load a plain text resource over HTTP, serialize it as a string, and deliver it to
an AMD module as a dependency. This is commonly used to load HTML templates, or even raw JSON data
from HTTP endpoints. To install the plugin, the text.js script must be copied from the project repository
and, by convention, placed in the same directory as the main.js configuration file. (Alternative installation
methods are listed in the plugin project’s README.)

The quotes-view module in the example application uses a jQuery plugin to build up the list of quotes,
one DOM element at a time. This is not very efficient and could easily be replaced by a templating solution.
The AMD-compatible Handlebars templating library is a popular choice for such tasks. In Listing 5-24 the
library has been added to the vendor directory in example-006 and a convenient module alias has been
created in the main.js configuration.

CHapTer 5 ■ requireJS

89

Listing 5-24. Handlebars Module Alias

// example-006/public/scripts/main.js
requirejs.config({
 baseUrl: '/scripts',
 paths: {
 //...
 Handlebars: 'vendor/handlebars/handlebars-v3.0.3'
 },
 //...
});

When the quotes-view module renders itself, it uses quote data in an object hash where the keys are
attributions (i.e., the person credited with each quote) and the values are arrays of quotes for each. (A given
attribution may be associated with one or more quotes.) Listing 5-25 shows the template that will be bound
to this data structure, located in the public/scripts/templates/quotes.hbs file.

Listing 5-25. The quotes-view Handlebars Template

<!-- example-006/public/scripts/templates/quotes.hbs -->
{{#each this as |quotes attribution|}}
<section class="multiquote">
 <h2 class="attribution">{{attribution}}</h2>
 {{#each quotes}}
 <blockquote class="quote">
 {{#explode text delim="\n"}}
 <p>{{this}}</p>
 {{/explode}}
 </blockquote>
 {{/each}}
</section>
{{/each}}

It is not necessary to be completely familiar with Handlebars syntax to understand that this template
iterates over the data object, pulling out each attribution and its associated quotes. It creates an <h2>
element for the attribution, then for each quote builds a <blockquote> element to hold the quote text.
A special block helper, #explode, breaks the quote text apart at the new line (\n) delimiter, and then wraps
each segment of the quote text in a <p> tag.

The #explode helper is significant because it is not native to Handlebars. It is defined and registered as a
Handlebars helper in the file public/scripts/util/handlebars-all.js, as shown in Listing 5-26.

Listing 5-26. #explode Handlebars Helper

// example-006/public/scripts/util/handlebars-all.js
define(['Handlebars'], function (Handlebars) {
 Handlebars.registerHelper('explode', function (context, options) {
 var delimiter = options.hash.delim || '';
 var parts = context.split(delimiter);
 var processed = '';
 while (parts.length) {
 processed += options.fn(parts.shift().trim());
 }

CHapTer 5 ■ requireJS

90

 return processed;
 });
 return Handlebars;
});

Because this module adds helpers and then returns the Handlebars object, the quotes-view module
will import it as a dependency instead of the vanilla Handlebars module, in much the same way as
the jquery-all module is used in lieu of jquery. The appropriate module alias has been added to the
configuration in Listing 5-27.

Listing 5-27. handlebars-all Module Alias

// example-006/public/scripts/main.js
requirejs.config({
 baseUrl: '/scripts',
 paths: {
 //...
 Handlebars: 'vendor/handlebars/handlebars-v3.0.3',
 'handlebars-all': 'util/handlebars-all'
 },
 //...
});

In Listing 5-28, the quotes-view module has been modified to import both handlebars-all and the
quotes.hbs template. The module name for the text template is very specific: it must begin with the prefix
text! followed by the path to the template file relative to the baseUrl path defined in main.js.

Listing 5-28. The quotes.hbs Template Imported As a Module Dependency

// example-006/public/scripts/quotes-view.js
define([
 'jquery-all',
 'quotes-state',
 'handlebars-all',
 'text!templates/quote.hbs'
],
function ($, quotesState, Handlebars, quotesTemplate) {

 var bindTemplate = Handlebars.compile(quotesTemplate);

 var view = {
 // ...
 render: function () {
 view.$el.empty();
 var groupedQuotes = quotesState.quotes;
 view.$el.html(bindTemplate(groupedQuotes));
 },
 // ...
 };

 // ...
});

CHapTer 5 ■ requireJS

91

When RequireJS encounters a dependency name with the text! prefix, it automatically attempts to
load the text.js plugin script, which will then load and serialize the specified file content as a string. The
quotesTemplate function argument in the quotes-view closure will contain the serialized content of the
quotes.hbs file, which is then compiled by Handlebars and used to render the module in the DOM.

Page Load
When a web page has fully loaded, it triggers a DOMContentLoaded event (in modern browsers). Scripts that
are loaded before the browser has finished building the DOM often listen for this event to know when it is
safe to begin manipulating page elements. If scripts are loaded just before the ending </body> tag, they may
assume that the bulk of the DOM has already been loaded and that they need not listen for this event. Scripts
anywhere else in the <body> element, or more commonly the <head> element, have no such luxury, however.

Even though RequireJS is loaded before the closing </body> tag in the application example, the
main.js file (configuration omitted) in Listing 5-29 still passes a function to jQuery that will be executed
once the DOMContentLoaded has fired. If the RequireJS <script> tag were moved into the document <head>,
nothing would break.

Listing 5-29. Using jQuery to Determine If the DOM Is Fully Loaded

// example-006/public/scripts/main.js
// ...

requirejs(['jquery-all', 'quotes-view', 'search-view'],
 function ($, quotesView) {
 $(function () {
 quotesView.ready();
 });
});

The domReady plugin is a peculiar kind of “loader” in that it simply stalls the invocation of a module’s
closure until the DOM is completely ready. Like the text plugin, the domReady.js file must be accessible
to RequireJS within the baseUrl path defined in the main.js configuration. By convention it is typically a
sibling of main.js.

Listing 5-30 shows a modified version of main.js (configuration omitted) in which the jquery
dependency has been removed and the domReady! plugin has been appended to the dependency list. The
trailing exclamation mark tells RequireJS that this module acts as a loader plugin rather than a standard
module. Unlike the text plugin, domReady actually loads nothing, so no additional information is required
after the exclamation mark.

Listing 5-30. Using the domReady Plugin to Determine If the DOM Is Fully Loaded

// example-007/public/scripts/main.js
// ...

requirejs(['quotes-view', 'search-view', 'domReady!'],
 function (quotesView) {
 quotesView.ready();
});

CHapTer 5 ■ requireJS

92

i18n
RequireJS supports internationalization via the i18n loader plugin. (i18n is a numeronym, which means
that the number “18” represents the 18 characters between “i” and “n” in the word “internationalization”.)
Internationalization is the act of writing a web application such that it can adapt its content to a user’s
language and locale (also known as National Language Support, or NLS). The i18n plugin is primarily used
for translating text in a website’s controls and “chrome”: button labels, headers, hyperlink text, fieldset
legends, and so forth. To demonstrate this plugin’s capabilities, two new templates have been added to the
example application, one for the page title in the header, and one for the search field with placeholder text.
The actual quote data will not be translated because, presumably, it comes from an application server that
would be responsible for rendering the appropriate translation. In this application, though, the data is hard-
coded in the data/quotes module for simplicity and will always appear in English.

The search.hbs template in Listing 5-31 has also been extracted from the index.html file and now
accepts placeholder text for the search field as its only input. The search-view module has been adapted to
use this template when it renders content in the DOM.

Listing 5-31. The search.hbs Template Will Display the Placeholder Translation

<!-- example-008/public/scripts/templates/search.hbs -->
<form>
 <fieldset>
 <input type="text" name="search" placeholder="{{searchPlaceholder}}" />
 </fieldset>
</form>

Listing 5-32 shows the new header.hbs template that will be rendered by the new header-view module.
The template accepts a single input, the page title.

Listing 5-32. The header.hbs Template Will Display the Page Title Translation

<!-- example-008/public/scripts/templates/header.hbs -->
<h1>{{pageTitle}}</h1>

The header-view module in Listing 5-33 demonstrates not only how the template dependency is
imported with the text plugin, but also how a language module dependency is imported with the i18n
plugin. The familiar loader syntax looks nearly identical: the plugin name followed by an exclamation mark
and a module path relative to the configured baseUrl, in this case nls/lang. When a template is loaded, its
serialized string content is passed to a module’s closure, but the i18n plugin loads a language module that
contains translated text data and passes that module’s object to the closure. In Listing 5-33 this object will be
accessible through the lang parameter.

Listing 5-33. The header-view Module Depends on the i18n Language Object

// example-008/public/scripts/header-view.js
define([
 'quotes-state',
 'jquery-all',
 'handlebars-all',
 'text!templates/header.hbs',
 'i18n!nls/lang'
], function (quotesState, $, Handlebars, headerTemplate, lang) {
 // ...
});

CHapTer 5 ■ requireJS

93

The language module is a regular AMD module, but instead of passing a list of dependencies and a
closure to define(), a simple object literal is used. This object literal follows a very specific syntax, shown in
Listing 5-34.

Listing 5-34. Default English Language Module

// example-008/public/scripts/nls/lang.js
define({
 root: {
 pageTitle: 'Ponderings',
 searchPlaceholder: 'search'
 },
 de: true
});

First, a root property holds the key/value pairs that will be used to fetch translated data when the plugin
resolves the language translations. The keys in this object are simply keys by which the translated text may be
accessed programmatically. In the search template, for example, {{searchPlaceholder}} will be replaced
with the string value at the language object’s key searchPlaceholder when the template is bound to it.

Second, siblings to the root property are the various IETF language tags for active and inactive translations
that should be resolved based on a browser’s language setting. In this example, the German de language tag
is assigned the value true. If a Spanish translation was made available, an es-es property with the value true
could be added. And for a French translation, a fr-fr property could be added, and so forth for other languages.

When a new language tag is enabled in the default language module, a directory corresponding to the
language code must be made as a sibling to the module file. The nls/de directory can be seen in Listing 5-35.

Listing 5-35. Directory Structure for NLS Modules

├── nls
 │ ├── de
 │  │ └── lang.js
 │ └── lang.js

Once the language-specific directory has been created, a language module file of the same name as the
default language module file must be created within. This new language module will contain the translated
content of the root property in the default language module only. Listing 5-36 shows the German (de)
translation of the pageTitle and searchPlaceholder properties.

Listing 5-36. German (de) Translation Module

// example-008/public/scripts/nls/de/lang.js
define({
 pageTitle: 'Grübeleien',
 searchPlaceholder: 'suche'
});

When the default language module is loaded with the i18n plugin, it examines the browser’s
window.navigator.language property to determine what locale and language translation should be used.
If the default language module specifies a compatible, enabled locale, the i18n plugin loads the locale-specific
module and then merges it with the default language module’s root object. Missing translations in the
locale-specific module will be filled with values from the default language module.

Figure 5-3 shows how the quotes page looks when a Google Chrome browser’s language has been
set to German.

CHapTer 5 ■ requireJS

94

Figure 5-3. Switching the browser language loads the German translation

 ■ Note The window.navigator.language property is affected by different settings in different browsers.
For example, in Google Chrome it only reflects the user’s language setting, whereas in Mozilla Firefox it can be
affected by an Accept-Language header in a page’s HTTp response as well.

Cache Busting
Application servers often cache resources like script files, images, stylesheets, and so on to eliminate
unnecessary disk access when serving a resource that has not changed since it was last read. Cached
resources are often stored in memory and associated with some key, usually the URL of the resource.
When multiple requests for a given URL occur within a specified cache period, the resource is fetched from
memory using the key (URL). This can have significant performance benefits in a production environment,
but invalidating cache in development or testing environments every time a code change is made, or a new
resource is introduced, can become tedious.

Certainly caching can be toggled on a per-environment basis, but a simpler solution, at least for
JavaScript (or any resource loaded by RequireJS), might be to utilize the RequireJS cache-busting feature.
Cache busting is the act of mutating the URL for every resource request in such a way that the resource may
still be fetched, but will never be found in cache because its “key” is always different. This is commonly done
by including a query string parameter that changes whenever a page is reloaded.

CHapTer 5 ■ requireJS

95

A urlArgs property has been added to the configuration script in Listing 5-37. This will append the
query string parameter bust={timestamp} to all requests generated by RequireJS. The time stamp is
recalculated for each page load to ensure that the parameter value changes, making URLs unique.

Listing 5-37. The urlArgs Configuration Property Can Be Used to Bust Cache

// example-009/public/scripts/main.js
requirejs.config({
 baseUrl: '/scripts',
 urlArgs: 'bust=' + (new Date().getTime()),
 paths: {
 // ...
 },
 shim: {
 // ...
 }
});

Figure 5-4 shows that the bust parameter is indeed applied to each request initiated by RequireJS, even
XHR requests for text resources like header.hbs.

Figure 5-4. The bust parameter is appended to each RequireJS request

CHapTer 5 ■ requireJS

96

While the usefulness of this feature is evident, it can also create a few problems.
First, RequireJS respects HTTP cache headers, so even if urlArgs is used as a cache-busting

mechanism, RequireJS may still request (and receive) a cached version of a resource, depending on how
cache is implemented. If possible, always serve the appropriate cache headers in each environment.

Second, be aware that some proxy servers drop query string parameters. If a development or staging
environment includes proxies to mimic a production environment, a cache-busting query string parameter
may be ineffective. Some developers use urlArgs to specify particular resource versions in a production
environment (e.g., version=v2), but this is generally discouraged for this very reason. It is an unreliable
versioning technique, at best.

Finally, some browsers treat resources with different URLs as distinct, debuggable entities. In Chrome
and Firefox, for example, if a debug breakpoint is set in the source code for http://localhost:8080/
scripts/quotes-state.js?bust=1432504595280, it will be removed if the page is refreshed, when the
new resource URL becomes http://localhost:8080/scripts/quotes-state.js?bust=1432504694566.
Resetting breakpoints can become tedious, and though the debugger keyword can be used to circumvent
this problem by forcing the browser to pause execution, it still requires a diligent developer to ensure that all
debugger breakpoints are removed before code is promoted to production.

RequireJS Optimizer
The RequireJS optimizer, r.js, is a build tool for RequireJS projects. It can be used to concatenate all RequireJS
modules into a single file, minify source code, copy build output to a distinct directory, and much more.
This section introduces the tool and its basic configuration. Specific examples for several common scenarios
will be covered next.

The most common way to use r.js involves installing the RequireJS npm package for Node.js, either
as a global package or as a local project package. The examples in this section will use the local RequireJS
installation created when all npm modules were installed.

Configuring r.js
A wide array of parameters may be passed as arguments to the r.js tool to control its behavior. Fortunately
these parameters can also be passed to r.js in a regular JavaScript configuration file, which makes the
terminal command significantly shorter. For non-trivial projects this is the preferred configuration method,
and will be the only one covered in this chapter.

The code files in the example-010 directory have been moved into a standard src directory, and a
new file, rjs-config.js, has been placed in the directory root. This file, unsurprisingly, contains the r.js
configuration. Its contents are shown in Listing 5-38.

Listing 5-38. r.js Configuration

// example-010/rjs-config.js
({
 // build input directory for application code
 appDir: './src',
 // build output directory for application code
 dir: './build',
 // path relative to build input directory where scripts live
 baseUrl: 'public/scripts',
 // predefined configuration file used to resolve dependencies
 mainConfigFile: './src/public/scripts/main.js',

CHapTer 5 ■ requireJS

97

 // include all text! references as inline modules
 inlineText: true,
 // do not copy files that were combined in build output
 removeCombined: true,

 // specific modules to be built
 modules: [
 {
 name: 'main'
 }
],

 // uglify the output
 optimize: 'uglify'
})

Developers who are familiar with build tools will immediately recognize the input/output pattern
present in the configuration.

The appDir property specifies the project “input” directory, relative to the configuration file, where
uncompiled source code lives.

The dir property specifies the project “output” directory, relative to the configuration file, where
compiled and minified output will be written when the r.js tool runs.

The baseUrl property tells r.js where the project scripts are located relative to the appDir property. This
should not be confused with the baseUrl property in the main.js file, which tells RequireJS where modules
are located relative to the web application root.

The mainConfigFile property points to the actual RequireJS (not r.js) configuration. This helps r.js
understand how modules are related to each other, and what module aliases and shims exist, if any. It is
possible to omit this property and specify all of these paths in the r.js configuration, though that is beyond
the scope of this example.

Setting the inlineText property to true ensures that all text files referenced with the text plugin prefix
text! will be compiled with RequireJS modules in the final build output. This option is enabled by default
but is explicitly set in this project for clarity.

By default, r.js will minify and copy all scripts (packed and unpacked) to the output directory. The
removeCombined property toggles this behavior. In this case only the packed, compiled script(s) and any
other scripts that could not be included in the packed output will be copied to the output directory.

The modules array lists all of the top-level modules to be compiled. Because this is a single-page
application, only the actual main module needs to be compiled.

Finally, the optimize property instructs r.js to apply an uglify transform to all scripts, minimizing all
JavaScript code.

Running the r.js Command
Building the project is simply a matter of running the r.js command in a terminal, passing it the path to the
configuration file via its -o flag as shown in Listing 5-39.

Listing 5-39. Running the r.js Command

example-010$../node_modules/.bin/r.js -o rjs-config.js

Terminal output shows which files are compiled and copied by r.js during the build. Examining the
build output files in Listing 5-40 shows what, exactly, r.js optimized and copied.

CHapTer 5 ■ requireJS

98

Listing 5-40. Build Directory Content

example-010/build$ tree
.
├── build.txt
├── index.js
└── public
 ├── index.html
 ├── scripts
 │ ├── main.js
 │ ├── nls
 │ │ └── de
 │ │ └── lang.js
 │ ├── require.js
 │ ├── templates
 │ │ ├── header.hbs
 │ │ ├── quote.hbs
 │ │ └── search.hbs
 │ └── vendor
 │ └── ventage
 │ ├── LICENSE
 │ ├── README.md
 │ ├── bower.json
 │ ├── package.json
 │ └── test
 │ ├── index.html
 │ ├── main.js
 │ ├── ventage.clear.js
 │ ├── ventage.create.js
 │ ├── ventage.ctor.js
 │ ├── ventage.off.js
 │ ├── ventage.on.js
 │ ├── ventage.pipe.js
 │ ├── ventage.trigger.js
 │ └── ventage.triggerAsync.js
 └── styles
 └── app.css

9 directories, 24 files

Several things immediately stand out in the public/scripts directory.
First, the require.js and main.js scripts are both present. Since these scripts are the only files

referenced in index.html, their presence here is expected. Other scripts such as the quotes-view.js and
quotes-state.js scripts are noticeably absent, but examining the content of main.js reveals why: they have
been packed and minified according to the r.js build settings.

Second, the localization file nls/lang.js is now missing because it has been included as part of
main.js. The nls/de/lang.js script still remains as part of the build output, though its contents have
been minified. Any user browsing the example web page in the default locale will receive an optimized
experience, as RequireJS will not have to make an external AJAX call to load the default language
translations. Users from Germany will incur the additional HTTP request because the German localization
file has not been included in the packed output. This is a limitation of the localization plugin that r.js must
respect.

CHapTer 5 ■ requireJS

99

Third, the Handlebars templates, though compiled as part of the build output in main.js, have also
been copied to the public/scripts/templates directory. This happens because RequireJS plugins currently
have no visibility into the build process and therefore no method of honoring the removeCombined option in
the r.js configuration file. Fortunately, because these templates have been wrapped in AMD modules and
concatenated with main.js, RequireJS will not attempt to load them with AJAX requests. If deployment size
is an issue for this project, a post-build script or task can be created to remove the templates directory if
needed.

Fourth, the vendor/ventage directory has been copied to the build directory even though its core
module, ventage.js, has been concatenated with main.js. While RequireJS can automatically remove
individual module files (like ventage.js) after compilation, it will not clean up other files associated with a
module (in this case, unit tests and package definition files like package.json and bower.json), so they must
be removed manually, or as part of a post-build process.

Summary
RequireJS is a very pragmatic JavaScript module loader that works well in a browser environment. Its ability
to load and resolve modules asynchronously means that it does not rely solely on bundling or packing
scripts for performance benefits. For further optimization, though, the r.js optimization tool may be used
to combine RequireJS modules into a single, minified script to minimize the number of HTTP requests
necessary to load modules and other resources.

Though RequireJS modules must be defined in AMD format, RequireJS can shim non-AMD scripts so
that legacy code may be imported by AMD modules where necessary. Shimmed modules may also have
dependencies that can automatically be loaded by RequireJS.

The text plugin lets modules import external text file dependencies (such as templates) as strings.
These text files are loaded like any other module dependency, and may even be inlined in build output by
the r.js optimizer.

Localization is supported by the i18n module loader, which can dynamically load text translation
modules based on a browser’s locale settings. While the primary locale translation module can be optimized
and concatenated with r.js, additional locale translation modules will always be loaded with HTTP requests.

Module execution can be deferred by the pageLoad plugin, which prevents a module’s closure from
executing until the DOM has been fully rendered. This can be an effective way to eliminate repeat calls
to jQuery’s ready() function, or fumbling through the cross-browser code necessary to subscribe to the
DOMContentLoaded event manually.

Finally, the RequireJS configuration can automatically append query string parameters to all RequireJS
HTTP requests, providing a cheap but effective cache-busting feature for development environments.

101

Chapter 6

Browserify

Less is more.

—Ludwig Mies van der Rohe

Browserify is a JavaScript module loader that works around the language’s current lack of support for
importing modules within the browser by serving as a “pre-processor” for your code. In much the same way
that CSS extensions such as SASS and LESS have brought enhanced syntax support to stylesheets, Browserify
enhances client-side JavaScript applications by recursively scanning their source code for calls to a global
require() function. When Browserify finds such calls, it immediately loads the referenced modules (using
the same require() function that is available within Node.js) and combines them into a single, minified
file—a “bundle”—that can then be loaded within the browser.

This simple but elegant approach brings the power and convenience of CommonJS (the method
by which modules are loaded within Node.js) to the browser, while also doing away with the additional
complexity and boilerplate code required by Asynchronous Module Definition (AMD) loaders such as
RequireJS (described in Chapter 5).

In this chapter, you will learn how to

•	 Distinguish between AMD and CommonJS module loaders

•	 Create modular front-end JavaScript applications that follow the simple patterns for
module management popularized by tools such as Node.js

•	 Visualize a project’s dependency tree

•	 Compile your application as quickly as possible—as changes are made—using
Browserify’s sister application, Watchify

•	 Use third-party Browserify plugins (“transforms”) to extend the tool beyond its core
functionality

■ Note Portions of this chapter discuss concepts already covered in this book’s previous chapters on Bower
(Chapter 1) and Grunt (Chapter 2). If you are unfamiliar with these tools, you are encouraged to cover that
material before proceeding.

http://dx.doi.org/10.1007/978-1-4842-0662-1_5
http://dx.doi.org/10.1007/978-1-4842-0662-1_1
http://dx.doi.org/10.1007/978-1-4842-0662-1_2

ChaPter 6 ■ BrowserIfy

102

The AMD API vs. CommonJS
The Asynchronous Module Definition API, covered in Chapter 5, serves as a clever workaround to
JavaScript’s current lack of support for loading external modules inline. Often referred to as a “browser-first”
approach, the AMD API accomplishes its goal of bringing modules to the browser by requiring that
developers wrap each of their modules within a callback function, which can then be loaded asynchronously
(i.e., “lazy loaded”) as needed. This process is demonstrated by the modules shown in Listing 6-1.

Listing 6-1. Defining and Requiring an AMD Module

// requirejs-example/public/app/weather.js

define([], function() {
 return {
 'getForecast': function() {
 document.getElementById('forecast').innerHTML = 'Partly cloudy.';
 }
 };
});

// requirejs-example/public/app/index.js

define(['weather'], function(weather) {
 weather.getForecast();
});

The AMD API is both clever and effective, but many developers also find it to be a bit clumsy and
verbose. Ideally, JavaScript applications should be capable of referencing external modules without the
added complexity and boilerplate code that the AMD API requires. Fortunately, a popular alternative known
as CommonJS exists that addresses this concern.

While most people tend to associate JavaScript with web browsers, the truth is that JavaScript has
found widespread use in a number of other environments for quite some time—well before Node.js came
on the scene. Examples of such environments include Rhino, a server-side runtime environment created by
Mozilla, and ActionScript, a derivative used by Adobe’s once-popular Flash platform that has fallen out of
favor in recent years. Each of these platforms works around JavaScript’s lack of built-in module support by
creating its own approach.

Sensing a need for a standard solution to this problem, a group of developers got together and proposed
what became known as CommonJS, a standardized approach to defining and using JavaScript modules.
Node.js follows a similar approach, as does the next major update to JavaScript (ECMAScript 6, a.k.a. ES6
Harmony). This approach can also be used to write modular JavaScript applications that work in all web
browsers in use today, although not without the help of additional tools such as Browserify, the subject of
this chapter.

Installing Browserify
Before going any further, you should ensure that you have installed Browserify’s command-line utility.
Available as an npm package, the installation process is shown in Listing 6-2.

http://dx.doi.org/10.1007/978-1-4842-0662-1_5

ChaPter 6 ■ BrowserIfy

103

Listing 6-2. Installing the browserify Command-Line Utility via npm

$ npm install -g browserify
$ browserify --version
10.2.4

 ■ Note Node’s package manager (npm) allows users to install packages in one of two contexts: locally
or globally. In this example, browserify is installed within the global context, which is typically reserved for
command-line utilities.

Creating Your First Bundle
Much of Browserify’s appeal lies in its simplicity; JavaScript developers familiar with CommonJS and Node
will find themselves immediately at home. By way of an example, consider Listing 6-3, which shows the
CommonJS-based equivalent of the simple RequireJS-based application we saw in Listing 6-1.

Listing 6-3. Front-End Application That Requires Modules via CommonJS

// simple/public/app/index.js

var weather = require('./weather');
weather.getForecast();

// simple/public/app/weather.js

module.exports = {
 'getForecast': function() {
 document.getElementById('forecast').innerHTML = 'Partly cloudy.';
 }
};

Unlike our RequireJS-based example, this application cannot be run directly within the browser
because the browser lacks a built-in mechanism for loading modules via require(). Before the browser
can understand this application, we must first compile it into a bundle with the help of the browserify
command-line utility or via Browserify’s API.

The command for compiling this application using Browserify’s command-line utility is as follows:

$ browserify app/index.js -o public/dist/app.js

Here we pass the browserify utility the path to our application’s main file, public/app/index.js, and
specify that the compiled output should be saved to public/dist/app.js, the script referenced within the
project’s HTML (see Listing 6-4).

ChaPter 6 ■ BrowserIfy

104

Listing 6-4. HTML File Referencing Our Compiled Browserify Bundle

// simple/public/index.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Browserify - Simple Example</title>
</head>
<body>
 <div id="forecast"></div>
 <script src="/dist/app.js"></script>
</body>
</html>

In addition to using Browserify’s command-line utility, we also have the option of compiling this
application programmatically via Browserify’s API. Doing so will allow us to easily incorporate this step
into a larger build process (developed with tools such as Grunt). Listing 6-5 shows this project’s browserify
Grunt task.

Listing 6-5. Grunt Task That Compiles the Application via Browserify’s API

// simple/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {
 var done = this.async();
 var path = require('path');
 var fs = require('fs');
 var src = path.join('public', 'app', 'index.js');
 var target = path.join('public', 'dist', 'app.js');
 var browserify = require('browserify')([src]);
 browserify.bundle(function(err, data) {
 if (err) return grunt.fail.fatal(err);
 grunt.file.mkdir(path.join('public', 'dist'));
 fs.writeFileSync(target, data);
 done();
 });
 });

};

Visualizing the Dependency Tree
If you happen to be more of a visual learner, the chart shown in Figure 6-1 may go a long way toward
conveying what occurs during Browserify’s compilation process. Here we see a visualization of the various
dependencies encountered by Browserify as it compiled this chapter’s advanced project.

ChaPter 6 ■ BrowserIfy

105

Viewing this chart as a static rendering on a page really does not do it justice. For the full effect, you
should compile the project and view the chart within your browser by running npm start from within the
project’s folder. Doing so will allow you to hover your mouse over the various segments of the chart, each of
which represents a dependency encountered by Browserify during its compilation process. While it is not
evident in Figure 6-1, an in-depth analysis of the chart indicates that our application’s custom code accounts
for only a tiny sliver (9.7kB) of the total size of the bundle generated by Browserify. The vast majority of this
project’s nearly 2MB of code consists of third-party dependencies (e.g., Angular, jQuery, Lodash, etc.), an
important fact that will be referenced again later in the chapter.

 ■ Note you may also be interested in investigating the browserify-graph and colony command-line
utilities (also available via npm), which you can use to generate additional visualizations of a project’s
dependency tree.

Creating New Bundles As Changes Occur
Projects that take advantage of Browserify cannot be run directly within the browser—they must first be
compiled. In order to make the most efficient use of the tool, it is important that projects be set up in such a
way as to automatically trigger this step as changes occur within their source code. Let’s take a look at two
methods by which this can be achieved.

Figure 6-1. Visualizing the advanced project’s dependency tree

ChaPter 6 ■ BrowserIfy

106

Watching for File Changes with Grunt
In Chapter 2 on Grunt, you discovered how plugins such as grunt-contrib-watch allow developers to
trigger build steps as changes are made within an application’s source code. It’s easy to see how such
tools could be applied to projects using Browserify, triggering the creation of new bundles as changes
are detected. An example of this process in action can be seen by running the default Grunt task for this
chapter’s simple project, as shown in Listing 6-6.

Listing 6-6. Triggering the Creation of New Browserify Builds with Grunt

$ grunt
Running "browserify" task

Running "concurrent:serve" (concurrent) task
 Running "watch" task
 Waiting...
 Running "server" task
 App is now available at: http://localhost:7000
 >> File "app/index.js" changed.
 Running "browserify" task

 Done, without errors.
 Completed in 0.615s at Fri Jun 26 2015 08:31:25 GMT-0500 (CDT) - Waiting...

In this example, running the default Grunt task triggered three steps:

•	 A Browserify bundle was immediately created.

•	 A web server was launched to host the project.

•	 A watch script was executed that triggers the creation of new Browserify bundles as
source code changes are detected.

This simple approach typically serves most small projects quite well; however, as small projects
gradually evolve into large projects, developers often grow frustrated, understandably, with the ever-
increasing build times that accompany it. Having to wait several seconds before you can try out each of your
updates can quickly destroy any sense of “flow” that you might hope to achieve. Fortunately, Browserify’s
sister application, Watchify, can help us in these situations.

Watching for File Changes with Watchify
If Browserify (which compiles applications in their entirety) can be thought of as a meat cleaver, Watchify
can be thought of as a paring knife. When invoked, Watchify initially compiles a specified application in its
entirety; however, rather than exiting once this process has completed, Watchify continues to run, watching
for changes to a project’s source code. As changes are detected, Watchify recompiles only those files that
have changed, resulting in drastically faster build times. Watchify accomplishes this by maintaining its own
internal caching mechanism throughout each build.

As with Browserify, Watchify can be invoked via either the command line or a provided API. In
Listing 6-7, this chapter’s simple project is compiled with the help of Watchify’s command-line utility. In
this example, the -v argument is passed to specify that Watchify should run in verbose mode. As a result,
Watchify notifies us as changes are detected.

http://dx.doi.org/10.1007/978-1-4842-0662-1_2

ChaPter 6 ■ BrowserIfy

107

Listing 6-7. Installing Watchify via npm and Running It Against This Chapter’s simple Project

$ npm install -g watchify
$ watchify public/app/index.js -o public/dist/app.js -v
778 bytes written to public/dist/app.js (0.03 seconds)
786 bytes written to public/dist/app.js (0.01 seconds)

As with Browserify, Watchify provides a convenient API that allows us to integrate it into a larger build
process (see Listing 6-8). We can do so with just a few small tweaks to the Browserify task previously shown
in Listing 6-7.

Listing 6-8. Grunt Task Demonstrating the Use of Watchify’s API

// simple/tasks/watchify.js

module.exports = function(grunt) {

 grunt.registerTask('watchify', function() {

 var done = this.async();
 var browserify = require('browserify');
 var watchify = require('watchify');
 var fs = require('fs');
 var path = require('path');
 var src = path.join('public', 'app', 'index.js');
 var target = path.join('public', 'dist', 'app.js');
 var targetDir = path.join('public', 'dist');

 var browserify = browserify({
 'cache': {},
 'packageCache': {}
 });
 browserify = watchify(browserify);
 browserify.add(src);

 var compile = function(err, data) {
 if (err) return grunt.log.error(err);
 if (!data) return grunt.log.error('No data');
 grunt.file.mkdir(targetDir);
 fs.writeFileSync(target, data);
 };

 browserify.bundle(compile);

 browserify.on('update', function() {
 browserify.bundle(compile);
 });

 browserify.on('log', function(msg) {
 grunt.log.oklns(msg);
 });

 });

};

ChaPter 6 ■ BrowserIfy

108

In this example, we wrap our browserify instance with watchify. Afterward, we recompile the project
as needed by subscribing to the update event emitted by our wrapped instance.

Using Multiple Bundles
In the earlier section “Visualizing the Dependency Tree,” we looked at an interactive chart that allowed us to
visualize the various dependencies encountered by Browserify as it compiled this chapter’s advanced project
(see Figure 6-1). One of the most important facts that we can take away from this chart is that the project’s
custom code (found in /app) accounts for only a tiny portion (9.7kB) of the bundle’s total size of 1.8MB. In
other words, the vast majority of this project’s code consists of third-party libraries (e.g., Angular, jQuery,
Lodash, etc.) that are unlikely to frequently change. Let’s take a look at how we can use this knowledge to our
advantage.

This chapter’s extracted project is identical to the advanced project in every way, with one exception:
instead of compiling a single Browserify bundle, the extracted project’s build process creates two separate
bundles:

•	 /dist/vendor.js: Third-party dependencies

•	 /dist/app.js: Custom application code

By taking this approach, browsers can more efficiently access project updates as they are released.
In other words, as changes occur within the project’s custom code, browsers only need to re-download
/dist/app.js. Contrast this approach with that of the advanced project, in which each update (no matter
how small) forces clients to re-download the project’s nearly 2MB bundle.

Listing 6-9 shows the HTML file for the extracted project. As you can see, here we reference two
separate bundles, /dist/vendor.js and /dist/app.js.

Listing 6-9. HTML for This Chapter’s extracted Project

// extracted/public/index.html

<!DOCTYPE html>
<html ng-app="app">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Browserify - Advanced Example</title>
 <link rel="stylesheet" href="/css/style.css">
</head>
<body class="container">

 <navbar ng-if="user_id"></navbar>

 <div ng-view></div>

 <footer>View this project's dependency tree</footer>

 <script src="/dist/vendor.js"></script>
 <script src="/dist/app.js"></script>

</body>
</html>

ChaPter 6 ■ BrowserIfy

109

Listing 6-10 shows the extracted project’s Gruntfile. Take note of a special configuration value
(browserify.vendor_modules) that is being set.

Listing 6-10. Gruntfile for This Chapter’s extracted Project

// extracted/Gruntfile.js

module.exports = function(grunt) {

 grunt.initConfig({
 'browserify': {
 'vendor_modules': [
 'angular',
 'bootstrap-sass',
 'jquery',
 'angular-route',
 'angular-sanitize',
 'restangular',
 'jquery.cookie',
 'lodash',
 'underscore.string',
 'lodash-deep'
]
 }
 });

 grunt.loadTasks('tasks');

 grunt.registerTask('default', ['compass', 'browserify', 'browserify-vendor', 'init-db',
'concurrent']);

};

Listing 6-11 shows the contents of the extracted project’s browserify Grunt task. This task largely
mimics the corresponding task in the advanced project, with one major exception. In this task, we iterate
through the third-party modules that we defined in the project’s Gruntfile, and for each entry, we instruct
Browserify to exclude the referenced module from the compiled bundle.

Listing 6-11. The extracted Project’s browserify Grunt Task

// extracted/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {

 var done = this.async();
 var path = require('path');
 var fs = require('fs');
 var target = path.join('public', 'dist', 'app.js');
 var vendorModules = grunt.config.get('browserify.vendor_modules') || [];

ChaPter 6 ■ BrowserIfy

110

 var browserify = require('browserify')([
 path.join('app', 'index.js')
], {
 'paths': ['app'],
 'fullPaths': true,
 'bundleExternal': true
 });

 vendorModules.forEach(function(vm) {
 grunt.log.writelns('Excluding module from application bundle: %s', vm);
 browserify.exclude(vm);
 });

 browserify.bundle(function(err, data) {
 if (err) return grunt.fail.fatal(err);
 grunt.file.mkdir(path.join('public', 'dist'));
 fs.writeFileSync(target, data);
 grunt.task.run('disc');
 done();
 });

 });

};

Finally, Listing 6-12 shows the contents of the extracted project’s browserify-vendor Grunt task.
When run, this task will create a separate Browserify bundle consisting solely of the third-party modules that
we defined in Listing 6-10.

Listing 6-12. The extracted Project’s browserify-vendor Grunt Task

// extracted/tasks/browserify-vendor.js

module.exports = function(grunt) {

 grunt.registerTask('browserify-vendor', function() {

 var done = this.async();
 var path = require('path');
 var fs = require('fs');
 var target = path.join('public', 'dist', 'vendor.js');
 var vendorModules = grunt.config.get('browserify.vendor_modules') || [];

 var browserify = require('browserify')({
 'paths': [
 'app'
],
 'fullPaths': true
 });

ChaPter 6 ■ BrowserIfy

111

 vendorModules.forEach(function(vm) {
 browserify.require(vm);
 });

 browserify.bundle(function(err, data) {
 if (err) return grunt.fail.fatal(err);
 grunt.file.mkdir(path.join('public', 'dist'));
 fs.writeFileSync(target, data);
 done();
 });

 });

};

To see this process in action, navigate to the extracted project in your terminal and run $ npm start.
Any missing npm modules will be installed, and the project’s default Grunt task will be run. As this process
occurs, two separate bundles will be created. The bundle containing the project’s custom code, /dist/app.js,
comes in at only 14kB in size.

The Node Way
As mentioned in this chapter’s introduction, Browserify compiles a project by recursively scanning its source
code in search of calls to a global require() function. As these calls are found, Browserify loads the modules
they reference via the same require() function used by Node. Afterward, Browserify merges them into a
single bundle that browsers are capable of understanding.

In this regard, projects that use Browserify are best thought of as client-side Node applications. Many
aspects of Browserify that tend to confuse newcomers are more readily understood when this concept—
along with everything that it entails—is kept in mind. Let’s take a look at two such aspects now: module
resolution and dependency management.

Module Resolution and the NODE_PATH Environment Variable
Node applications have the ability to reference modules in a number of ways. For example, here we see a
simple Node application that requires a module by providing a relative path to its location:

var animals = require('./lib/animals');

In a similar manner, this example could also have provided the full, absolute path to this module.
Either way, the location at which Node is expected to find this module is rather obvious. Now consider the
following example, in which a module is referenced solely by name:

var animals = require('animals');

In situations such as this, Node will first attempt to locate the referenced module within its core library.
This process can be seen in action when loading modules such as fs, Node’s file system module. If no match
is found, Node will then proceed to search for folders named node_modules, starting with the location of
the module that called require() and working its way upward through the file system. As these folders
are encountered, Node will check to see if they contain a module (or package) matching that which was
requested. This process will continue until a match is found, and if none is found, an exception is thrown.

ChaPter 6 ■ BrowserIfy

112

This simple yet powerful method by which module resolution occurs within Node revolves almost
exclusively around the node_modules folder. However, Node provides an often-overlooked method that
allows developers to augment this behavior by defining additional folders within which Node should be
allowed to search for modules, should the previous steps turn up empty-handed. Let’s take a look at this
chapter’s path-env project, which demonstrates how this can be accomplished.

Listing 6-13 shows an excerpt from this project’s package.json file. Of particular importance is the
start script that has been defined. Based on the settings shown here, when $ npm start is run within this
project, the NODE_PATH environment variable will be updated to include a reference to this project’s
/lib folder before the application is run. As a result, Node will add this folder to those it uses to resolve the
location of named modules.

Listing 6-13. This Project’s npm start Script Updates the NODE_PATH Environment Variable

// path-env/package.json

{
 "name": "path-env",
 "version": "1.0.0",
 "main": "./bin/index.js",
 "scripts": {
 "start": "export NODE_PATH=$NODE_PATH:./lib && node ./bin/index.js"
 }
}

 ■ Note on os X and Linux, environment variables are set from the terminal by running
export ENVIRONMENT_VARIABLE=value. the command to be used within the windows command line is
set ENVIRONMENT_VARIABLE=value.

The significance of setting the NODE_PATH environment variable may not be obvious at first glance;
however, doing so can have a dramatically positive impact on the cleanliness and maintainability of complex
projects. Why? Because when this approach is used, it essentially allows developers to create a namespace
through which an application’s modules (those that do not exist as independent npm packages) can be
referenced by name, rather than by lengthy relative paths. Listing 6-14 shows a simple example of what this
looks like in practice.

Listing 6-14. Several of the Modules Contained Within the path-env Project

// path-env/bin/index.js

var api = require('app/api');

// path-env/lib/app/api/index.js

var express = require('express');
var path = require('path');
var app = express();
var animals = require('app/models/animal');
app.use('/', express.static(path.join(__dirname, '..', '..', '..', 'public')));

ChaPter 6 ■ BrowserIfy

113

app.get('/animals', function(req, res, next) {
 res.send(animals);
});
app.listen(7000, function() {
 console.log('App is now available at: http://localhost:7000');
});
module.exports = app;

// path-env/lib/app/models/animal/index.js

module.exports = [
 'Aardvarks', 'Cats', 'Dogs', 'Lemurs', 'Three-Toed Sloths', 'Zebras'
];

Take note of this example’s lack of relative module references. For example, notice how this project’s
main script, bin/index.js, is able to load a custom module responsible for initializing Express via
require('app/api');. The alternative would be to use a relative path: require('../lib/app/api');.
Anyone who has worked within complex Node applications and encountered module references along the
line of require('../../../../models/animal'); will quickly come to appreciate the increase in code
clarity that this approach affords.

 ■ Note It is important to bear in mind that the use of the NODE_PATH environment variable only makes sense
within the context of a Node (or Browserify) application—not a package. when creating a reusable package that
is intended to be shared with others, you should rely solely on Node’s default module resolution behavior.

Taking Advantage of NODE_PATH Within Browserify
Thus far, we have focused on how the NODE_PATH environment variable can have a positive impact on server-
side Node applications. Now that we have laid that groundwork, let’s see how this concept can be applied
within the context of client-side, browser-based applications compiled with Browserify.

Listing 6-15 shows the browserify Grunt task for this chapter’s advanced project, which is responsible
for compiling the application via Browserify’s API. Of particular importance is the use of the paths option,
which allows us to provide Browserify with an array of paths that should be appended to the NODE_PATH
environment variable before compilation begins. It is this setting that allows us to easily take advantage of
the same benefits demonstrated in this section’s previous examples.

Listing 6-15. The browserify Grunt Task for This Chapter’s advanced Project

// advanced/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {
 var done = this.async();
 var path = require('path');
 var fs = require('fs');
 var target = path.join('public', 'dist', 'app.js');
 var browserify = require('browserify')([

ChaPter 6 ■ BrowserIfy

114

 path.join('app', 'index.js')
], {
 'paths': [
 'app'
],
 'fullPaths': true
 });
 browserify.bundle(function(err, data) {
 if (err) return grunt.fail.fatal(err);
 grunt.file.mkdir(path.join('public', 'dist'));
 fs.writeFileSync(target, data);
 grunt.task.run('disc');
 done();
 });
 });

};

For a simple demonstration of how this approach has positively impacted this project, consider
Listing 6-16. Here we see a small module that is responsible for loading lodash and integrating two
third-party utilities, underscore.string and lodash-deep. The final, exported value is a single object
containing the combined functionality of all three modules.

Listing 6-16. Module Responsible for Loading Lodash and Integrating Various Third-Party Plugins

// advanced/app/utils/index.js

var _ = require('lodash');
_.mixin(require('underscore.string'));
_.mixin(require('lodash-deep'));
module.exports = _;

As a result of the paths value that was provided to Browserify, our application can now reference this
module from any location by simply calling require('app/utils');.

Dependency Management
Up until quite recently, the notion of “dependency management” has (for the most part) been a foreign
concept within the context of client-side, browser-based projects. The tide has swiftly turned, however,
thanks in large part to the rapidly increasing popularity of Node, along with additional utilities built on top
of it—a few of which this book has already covered (e.g., Bower, Grunt, and Yeoman). These utilities have
helped to bring desperately needed tooling and guidance to the untamed, “Wild West” that once was (and
largely still is) client-side development.

In regard to dependency management, Bower has helped address this need by providing client-side
developers with an easy-to-use mechanism for managing the various third-party libraries that
applications rely on. For developers who are new to this concept and are not using client-side compilers
such as Browserify, Bower has always been and continues to be a viable option for managing a project’s
dependencies; however, as developers begin to see the advantages afforded by tools such as Browserify,
Bower has begun to show signs of age.

ChaPter 6 ■ BrowserIfy

115

At the beginning of this section, we mentioned that projects using Browserify are best thought of
as client-side Node applications. In regard to dependency management, this statement is particularly
important. Recall that during Browserify’s compile process, a project’s source code is scanned for calls to
a global require() function. When found, these calls are executed within Node, and the returned value is
subsequently made available to the client-side application. The important implication here is that when
using Browserify, dependency management is significantly simplified when developers rely solely on npm,
Node’s package manager. While technically, yes, it is possible to instruct Browserify on how to load packages
installed by Bower, more often than not, it’s simply more trouble than it’s worth.

Defining Browser-Specific Modules
Consider a scenario in which you would like to create a new module, which you intend to publish and
share via npm. You want this module to work both within Node and within the browser (via Browserify). To
facilitate this, Browserify supports the use of a browser configuration setting within a project’s package.json
file. When defined, this setting allows developers to override the location used to locate a particular module.
To better understand how this works, let’s take a look at two brief examples.

Listing 6-17 shows the contents of a simple package. Within this package, two modules exist, lib/node.js
and lib/browser.js. According to this package’s package.json file, the main module for this package is
lib/node.js. In other words, when this package is referenced by name within a Node application, this
is the module Node will load. Notice, however, that an additional configuration setting has been defined:
"browser": "./lib/browser.js". As a result of this setting, Browserify will load this module rather than
the one specified by main.

Listing 6-17. Module Exposing Two Distinct Entry Points: One for Node, the Other for Browserify

// browser1/package.json

{
 "name": "browser1",
 "version": "1.0.0",
 "main": "./lib/node.js",
 "browser": "./lib/browser.js"
}

// browser1/lib/browser.js

module.exports = {
 'run': function() {
 console.log('I am running within a browser.');
 }
};

// browser1/lib/node.js

module.exports = {
 'run': function() {
 console.log('I am running within Node.');
 }
};

ChaPter 6 ■ BrowserIfy

116

As you will see in a moment, Browserify’s browser configuration setting need not be limited to simply
overriding the location of a package’s main module. It can also be used to override the location of multiple
modules within a package. By way of an example, consider Listing 6-18. In this instance, instead of providing
a string for our package.json file’s browser setting, we provide an object, allowing us to specify multiple,
browser-specific overrides.

Listing 6-18. Module Exposing Multiple, Distinct Modules for Node and Browserify

// browser2/package.json

{
 "name": "browser2",
 "version": "1.0.0",
 "main": "./lib/node.js",
 "browser": {
 "./lib/node.js": "./lib/browser.js",
 "./lib/extra.js": "./lib/extra-browser.js"
 }
}

As in Listing 6-17, a module that implements this pattern will expose distinct entry points into itself:
one for Node, and a separate one for applications compiled via Browserify. This example takes this concept a
step further, however. As this module is compiled, should it ever attempt to load the module located at lib/
extra.js, the module located at lib/extra-browser will be substituted instead. In this way, the browser
setting allows us to create modules with behavior that can vary greatly depending on whether those modules
are run within Node or within the browser.

Extending Browserify with Transforms
Developers can build upon Browserify’s core functionality by creating plugins, called transforms, that tap
into the compilation process that occurs as new bundles are created. Such transforms are installed via npm
and are enabled once their names are included within the browserify.transform array in an application’s
package.json file. Let’s take a look at a few useful examples.

brfs
The brfs transform simplifies the process of loading file contents inline. It extends Browserify’s compilation
process to search for calls to the fs.readFileSync() method. When found, the contents of the referenced
file are immediately loaded and returned.

Listing 6-19 shows an excerpt from the package.json file for this chapter’s transforms-brfs project.
In this example, the brfs module has been installed and included within the browserify.transform
configuration setting.

ChaPter 6 ■ BrowserIfy

117

Listing 6-19. Excerpt from the package.json File for This Chapter’s transforms-brfs Project

// transforms-brfs/package.json

{
 "name": "transforms-brfs",
 "dependencies": {
 "browserify": "^10.2.4",
 "brfs": "^1.4.0"
 },
 "browserify": {
 "transform": [
 "brfs"
]
 }
}

Listing 6-20 shows the contents of this project’s /app/index.js module. In this example, the brfs
transform will load the contents of /app/templates/lorem.html, which is subsequently assigned to the tpl
variable.

Listing 6-20. Loading a Template via fs.readFileSync()

// transforms-brfs/app/index.js

var fs = require('fs');
var $ = require('jquery');
var tpl = fs.readFileSync(__dirname + '/templates/lorem.html', 'utf8');
$('#container').html(tpl);

folderify
Much like the brfs transform, the folderify transform allows you to load the contents of files inline.
Rather than operating on a single file at a time, however, folderify allows you to quickly load the contents
of multiple files. By way of an example, consider Listing 6-21, which shows the contents of this chapter’s
transforms-folderify application.

Listing 6-21. Loading the Contents of Multiple Files with folderify

// transforms-folderify/app/index.js

var $ = require('jquery');
var includeFolder = require('include-folder');
var folder = includeFolder(__dirname + '/templates');

for (var k in folder) {
 $('#container').append('<p>' + k + ': ' + folder[k] + '</p>');
}

ChaPter 6 ■ BrowserIfy

118

As in the previous example, the package.json file for this project has been modified to include
folderify within its browserify.transform array. When compiled, Browserify will search for references to
the include-folder module. When the function it returns is called, Browserify will load the contents of each
file it finds within the specified folder and return them in the form of an object.

bulkify
With the bulkify transform, developers can import multiple modules with a single call. To better
understand how this works, see Listing 6-22, which shows an excerpt of the contents of the main application
file for this chapter’s transforms-bulkify project.

Listing 6-22. Main Application File for This Chapter’s transforms-bulkify Project

// transforms-bulkify/app/index.js

var bulk = require('bulk-require');

var app = angular.module('app', [
 'ngRoute'
]);

var routes = bulk(__dirname, [
 'routes/**/route.js'
]).routes;

app.config(function($routeProvider) {

 var defaultRoute = 'dashboard';

 _.each(routes, function(route, route_name) {
 route = route.route;
 route.config.resolve = route.config.resolve || {};
 $routeProvider.when(route.route, route.config);
 });

 $routeProvider.otherwise({
 'redirectTo': defaultRoute
 });

});

This particular example demonstrates the use of Browserify within the context of an Angular
application. If you are unfamiliar with Angular (covered in Chapter 8), don’t worry—the important aspect of
this example is the manner in which the bulk() method allows us to require() multiple modules matching
one or more specified patterns (in this case, routes/**/route.js).

Figure 6-2 shows the file structure for this project. As you can see, the app/routes module contains
three folders, each representing a route within our Angular application. The bulkify transform has allowed
us to quickly require() each of these modules with a single call to bulk(). Afterward, we are able to iterate
over the resulting object and pass each route to Angular.

http://dx.doi.org/10.1007/978-1-4842-0662-1_8

ChaPter 6 ■ BrowserIfy

119

Browserify-Shim
Developers using Browserify will occasionally find themselves needing to import modules that do not
conform to the CommonJS way of doing things. Consider a third-party Foo library that, once loaded, assigns
itself to the global window.Foo variable (see Listing 6-23). Such libraries can be imported with the help of the
browserify-shim transform.

Listing 6-23. Third-Party Foo Library That Assigns Itself to the Global Foo Variable

// transforms-shim/app/vendor/foo.js

function Foo() {
 console.log('Bar');
}

After installing the browserify-shim module locally via npm, enable it by adding its name to the
list of enabled transforms within a project’s package.json file, as shown previously in Listing 6-19. Next,
create a browserify-shim object at the root level of your application’s package.json file, which will serve
as the configuration object for this transform (see Listing 6-24). In this example, each key within this object
represents the path to an improperly exposed module, while the corresponding value specifies the global
variable to which the module has assigned itself.

Figure 6-2. File structure for this chapter’s transforms-bulkify project

ChaPter 6 ■ BrowserIfy

120

Listing 6-24. Configuring browserify-shim Within a Project’s package.json File

// transforms-shim/package.json

{
 "name": "transforms-shim",
 "version": "1.0.0",
 "main": "server.js",
 "browserify": {
 "transform": [
 "browserify-shim"
]
 },
 "browserify-shim": {
 "./app/vendor/foo.js": "Foo"
 }
}

With the browserify-shim transform installed and configured, the module located at app/vendor/foo.js
can now be properly imported via require().

Summary
Browserify is a powerful utility that extends the intuitive process by which modules are created and imported
within Node to the browser. With its help, browser-based JavaScript applications can be organized as a
series of small, easy-to-understand, and tightly focused modules that work together to form a larger and
more complicated whole. What’s more, there is nothing preventing applications that currently have no
module management system in place from putting Browserify to use right away. The process of refactoring
a monolithic application down into smaller components is not an overnight process, and is best taken one
step at a time. With the help of Browserify, you can do just that—as time and resources allow.

Related Resources
•	 Browserify: http://browserify.org

•	 Browserify transforms: https://github.com/substack/node-browserify/wiki/
list-of-transforms

•	 brfs: https://github.com/substack/brfs

•	 Watchify: https://github.com/substack/watchify

http://browserify.org/
https://github.com/substack/node-browserify/wiki/list-of-transforms
https://github.com/substack/node-browserify/wiki/list-of-transforms
https://github.com/substack/brfs
https://github.com/substack/watchify

121

Chapter 7

Knockout

Complex systems are characterized by simple elements, acting on local knowledge with
local rules, giving rise to complicated, patterned behavior.

—David West

Knockout is a JavaScript library concerned with binding HTML markup to JavaScript objects. It is not a full
framework. It has no state router, HTTP AJAX capability, internal message bus, or module loader. Instead,
it focuses on two-way data binding between JavaScript objects and the DOM. When the data in a JavaScript
application changes, HTML elements bound to Knockout views receive automatic updates. Likewise, when
DOM input occurs--through form field manipulation, for example--Knockout captures the input changes
and updates the application state accordingly.

In place of low-level, imperative HTML element manipulation, Knockout uses specialized objects called
observables and a custom binding syntax to express how application data relates to markup. The internal
mechanics are fully customizable so developers can extend Knockout’s capabilities with custom binding
syntax and behaviors.

As an independent JavaScript library, Knockout has no dependencies. The presence of other libraries
is often required to fulfill the application functions that Knockout does not perform, however, so it plays
well with many other common libraries like jQuery, Underscore, Q, etc. The Knockout API represents data
binding operations at a much higher level than strict DOM manipulation, and so places Knockout closer to
Backbone or Angular in terms of abstraction, but its slim, view-oriented feature set means it has a far smaller
footprint.

Knockout will fully function in all modern browsers and, as of this writing, extends back to cover
Firefox 3+, Internet Explorer 6+, and Safari 6+. Its backward compatibility is especially impressive in light of
its newest feature, HTML5-compatible components with custom markup tags. The Knockout team has taken
pains to make the Knockout development experience seamless in a variety of browser environments.

This chapter explores Knockout’s features and API through an example application that manages
kitchen recipes. All chapter code examples will be prefixed with a comment to indicate in which file
the example code actually resides. For example, in Listing 7-1, the index.js file would be found in the
knockout/example-000 directory distributed with this book’s source code.

Listing 7-1. Not a Real Example

// example-000/index.js
console.log('this is not a real example');

To run examples, first install Node.js (refer to the Node.js documentation for your system) and then run
npm install in the knockout directory to install all example code dependencies. Each example directory
will contain an index.js file that runs a simple Node.js web server. To run each example, it will be necessary

Chapter 7 ■ KnoCKout

122

to launch this server and then navigate to a specified URL in a web browser. For example, to run the index.js
file in Listing 7-1, navigate to the knockout/example-000 directory at a terminal prompt and run node
index.js.

All example pages include the core Knockout script in a <script> tag reference. You can download
this script from http://knockoutjs.com or from one of a number of reputable content delivery networks.
Knockout can also be installed as a Bower package or npm module and is both AMD and CommonJS
compatible. The Knockout documentation contains detailed instructions for all of these installation
methods.

Views, Models, and View Models
Knockout distinguishes between two sources of information in an application’s user interface: the data
model, which represents the state of the application, and the view model, which represents how that state
is displayed or communicated to the user. Both of these models are created in an application as JavaScript
objects. Knockout bridges them by giving view models a way to represent a data model in a view (HTML)
friendly way, while establishing bidirectional communication between views and data models so that input
affects application state, and application state affects how a view represents data.

Since HTML is the technology that represents data in a web browser, Knockout view models can either
bind directly to preexisting HTML document elements or create new elements with HTML templates.
Knockout can even create complete reusable HTML components (custom HTML tags with their own
attributes and behaviors).

The example application included with this chapter, Omnom Recipes, displays recipe data (“data
model”) in a browsable master/detail user interface. Both parts of this interface—the list of recipes and the
details presented for each—are logical components situated ideally for Knockout view models. Each will
have its own view model, and the application will coordinate the interactions between them. Eventually
users will want to add or edit recipes, so additional HTML markup and view models will be introduced for
that purpose.

Listing 7-2 shows the example application structure in the example-001 directory as output of the tree
command.

Listing 7-2. Example Application Structure

example-001$ tree --dirsfirst
.
├── public
 │ ├── scripts
 │  │ ├── vendor
 │  │  │ ├── jquery-2.1.3.min.js
 │  │  │ └── knockout-3.3.0.js
 │  │ ├── app.js
 │  │ ├── recipe-details.js
 │  │     └── recipe-list.js
 │   ├── styles
 │  │ └── app.css
 │ ├── index.html
├── index.js
└── recipes.json

The index.js file is responsible for launching a web server that will service requests for files in the
public directory. When the application’s web page makes an AJAX request for recipe data, the web server
will serialize the data in recipes.json and return it to the client.

http://knockoutjs.com/

Chapter 7 ■ KnoCKout

123

In the public directory the index.html file will be served up by default when a user visits
http://localhost:8080. This file contains application markup augmented with Knockout attributes.
The index.html file also references the app.css stylesheet in public/styles, the two vendor scripts in
public/scripts/vendor, and the three application scripts in public/scripts.

A Knockout view model can be applied to an entire page, or scoped to specific elements on a page. For
nontrivial applications, it is advisable to use multiple view models to maintain modularity. In the Omnom
Recipes application, the user interface exists as two logical “components”: a list of recipes and a detailed view
of a selected recipe. Instead of using a monolithic view model for the entire page, the application divides
Knockout logic into two JavaScript modules in public/scripts: recipe-list.js and recipe-details.js.
The app.js module consumes both of these view models and coordinates their activities on the page.

Figure 7-1 shows a screenshot of the rendered application, the recipe list clearly visible on the left and
the recipe details on the right.

Figure 7-1. Omnom Recipes screenshot

Chapter 7 ■ KnoCKout

124

 ■ Note to avoid confusion the example application makes use of simple JavaScript closures instead of
client-side frameworks or module-oriented build tools to organize modules. these closures often assign a
single object to a property on the global window object that will be consumed by other scripts. For example,
the recipe-list.js file creates a global object, window.RecipeList, to be used in the app.js file. While
completely valid, this architectural decision should be viewed in light of the example application’s simplistic
requirements.

The Recipe List
The index.html file, which contains the full page markup and Knockout templates, is divided into three key
top-level elements:

•	 The <header> element, which contains static HTML content that will not be
manipulated by Knockout

•	 The <nav id="recipe-list"> element, which contains an unordered list of recipes
and will be manipulated by Knockout

•	 The <section id="recipe-details"> element, which displays recipe information
and will also be manipulated by Knockout

Although the recipe list element is small, it contains a number of different Knockout-specific bindings.
The view model for this bit of HTML will be bound to the <nav> element. With that in mind, there are a
number of things that may be inferred about how Knockout bindings work strictly from examining the
markup in Listing 7-3.

Listing 7-3. Recipe List Markup and Bindings

<!-- example-001/public/index.html -->

<nav id="recipe-list">
 <ul data-bind="foreach: recipes">
 <li data-bind="text: title,
 click: $parent.selectRecipe.bind($parent),
 css: {selected: $parent.isSelected($data)}">

</nav>

First, it is apparent that Knockout bindings are applied to HTML elements with the data-bind attribute.
This is not the sole binding method but it is the most common. Both the element and the element
have bindings in the form binding-name: binding-value.

Second, multiple bindings may be applied to an element as a comma-delimited list, demonstrated by
the element, which has bindings for text, click, and css.

Third, bindings with more complex values, such as the css binding on the element, use key/value
hashes ({key: value, ... }) to define specific binding options.

Finally, binding values may refer to JavaScript primitives, view model properties, view model methods,
or any valid JavaScript expression.

The recipe list Knockout bindings reveal certain things about the Knockout view model that will be
bound to the <nav> element. Developers will immediately recognize the foreach flow control statement, and
correctly infer that recipes will be some collection exposed by the view model over which foreach will loop.

Chapter 7 ■ KnoCKout

125

The element within the unordered list has no HTML content of its own, so it may also be inferred
that this element serves as a kind of template element that will be bound and rendered for each item in
the recipes collection. As with most foreach loops, it is reasonable to expect the object within the loop
(the loop’s “context”) to be an element of the collection. The list item’s text binding references the title
property of the recipe object for the current iteration and will be injected as the text content of the
element when rendered.

The click and css bindings both reference the special $parent object, which tells Knockout that the
binding values should target the view model bound with foreach and not the current recipe object. (The
view model is the “parent” context and the recipe is its “child”.)

The click binding invokes the selectRecipe() method on the view model whenever the list item’s
click event is triggered. It binds the method to the view model specifically, by passing the $parent reference
to the method’s bind() function. This ensures that the value of this within the selectRecipe() method
does not refer to the DOM element on which the handler is attached when it executes (the DOM’s default
behavior).

In contrast, the isSelected() method on the $parent (view model) object is invoked by the css
binding, but Knockout, not the DOM, manages the invocation, ensuring the value of this within the method
refers to the view model and not a DOM element.

The css binding instructs Knockout to apply specific CSS classes to a DOM element whenever specific
criteria are met. The css binding value is a hash of selector/function pairs that Knockout evaluates whenever
the DOM element is rendered. If the isSelected() method returns true, the selected CSS class will be
added to the list item element. Another special variable, $data, is passed to isSelected(). The $data
variable always refers to the current object context in which Knockout is working, in this case an individual
recipe object. Some Knockout bindings, like text, operate on the current object context by default; others,
like foreach, cause a context switch as a side effect.

In Listing 7-4, the context objects and values of each special variable are shown in HTML comments.
Bindings have been abbreviated for clarity.

Listing 7-4. Changing Contexts with Knockout Bindings

<!-- example-001/public/index.html -->

<nav id="recipe-list">
 <!-- context: viewmodel -->
 <!-- $parent === undefined -->
 <!-- $data === viewmodel -->
 <ul data-bind="foreach: ...">
 <!-- context: recipe -->
 <!-- $parent === viewmodel -->
 <!-- $data === recipe -->
 <li data-bind="text: ...">

</nav>

The recipe list module in Listing 7-5 creates the view model object that Knockout will bind to the recipe
list markup when the page is rendered. The module’s create() method accepts a list of recipe objects—
JSON data loaded from the server—and returns a view model object with data properties and methods.
Nearly all Knockout view models will need to access helper functions on the global window.ko object, so it is
passed to the module’s closure function as an argument.

Chapter 7 ■ KnoCKout

126

Listing 7-5. Recipe List View Model

// example-001/public/scripts/recipe-list.js
'use strict';
window.RecipeList = (function (ko) {

 return {
 create: function (recipes) {
 var viewmodel = {};

 // properties
 viewmodel.recipes = recipes;
 viewmodel.selectedRecipe = ko.observable(recipes[0]);

 // methods
 viewmodel.selectRecipe = function (recipe) {
 this.selectedRecipe(recipe);
 };

 viewmodel.isSelected = function (recipe) {
 return this.selectedRecipe() === recipe;
 };

 return viewmodel;
 }
 };

}(window.ko));

 ■ Note the view model object itself may be created in any manner a developer chooses. In the example
code each view model is a simple object literal created by a factory method. It is common to see the JavaScript
constructor function pattern used to create view models in the wild, but view models are merely objects and
may be constructed as a developer sees fit.

Other than the selectedRecipe property, the recipe list view model is wholly unremarkable. The
template’s foreach binding is applied to the recipes property (an array of plain JavaScript objects), the
click binding on each list item invokes the selectRecipe() method (passing it a specific recipe), and when
each list item is rendered, the isSelected() method is called to determine if the recipe being evaluated
has been assigned to the selectedRecipe property or not. Actually, that is not entirely correct. The value of
selectedRecipe is not actually a recipe object, but a function--a Knockout observable.

An observable is a special kind of function that holds a value, and can notify potential subscribers
whenever that value changes. Bindings between HTML elements and observables automatically create
subscriptions that Knockout manages in the background. Observables are created with special factory
functions on the global ko object. The selectedRecipe observable in Listing 7-5 is created when ko.
observable(recipes[0]) is called. Its initial value is the first element in the recipes array. When
selectedRecipe() is invoked with no argument, it returns the value it contains (in this case, the object
in recipes[0]). Any value passed to selectedRecipe() will become its new value. Although the
selectedRecipe() property is not bound to any element in the recipe list template, it is manipulated when
the user interacts with the recipe list via the view model’s methods. The changing value of this element will
be used as input for the next page component: recipe details.

Chapter 7 ■ KnoCKout

127

Recipe Details
When a recipe is clicked in the recipe list, the recipe details are displayed in the right pane (refer to Figure 7-1).
The markup in Listing 7-6 shows the HTML elements and Knockout bindings used to render the recipe
details view model in the DOM.

Listing 7-6. Recipe Details Markup and Bindings

<!-- example-001/public/index.html -->
<section id="recipe-details">
 <h1 data-bind="text: title"></h1>

 <h2>Details</h2>
 <p>Servings: </p>
 <p>Approximate Cook Time: </p>

 <h2>Ingredients</h2>

 <ul data-bind="foreach: ingredients">
 <li data-bind="text: $data">

 <h2>Instructions</h2>

 <ol data-bind="foreach: instructions">
 <li data-bind="text: $data">

 <a data-bind="visible: hasCitation,
 attr: {href: citation, title: title}"
 target="_blank">Source

</section>

Some bindings, like the <h1> text binding, read a value from a view model property and inject its string
value into the HTML element.

Because the paragraphs under the “Details” heading have static content (the text “Servings:” and
“Approximate Cook Time:”), tags are used to anchor the Knockout bindings for the servings and
cookingTimes properties at the end of each paragraph.

The ingredients list iterates over a collection of strings with the foreach binding, so the context object
within each loop is a string represented by the $data variable. Each string becomes the text content of a
list item.

The <a> tag at the bottom links to the recipe’s website of origin as a citation. If the recipe has no citation,
the anchor will not be displayed. The element’s visible binding examines the view model’s hasCitation
observable and if the value is empty, hides the anchor element. Like the css binding used in the recipe list,
the attr binding takes a key/value hash as its binding value. Hash keys (href and title) are the element
attributes to be set on the the anchor, and values are properties on the view model that will be bound to
each attribute.

Chapter 7 ■ KnoCKout

128

The recipe details view model has many more members than the recipe list view model. Listing 7-7
shows that the recipe details view model is created in a similar fashion, by invoking the RecipeDetails.
create() function with a specific recipe object that will be used to add data to the view model. This module
uses several functions on the global ko object, and so, like the recipe list, it is passed as an argument to the
module closure.

Listing 7-7. Recipe Details View Model

// example-001/public/scripts/recipe-details.js
'use strict';
window.RecipeDetails = (function (ko) {

 return {
 create: function (recipe) {
 var viewmodel = {};
 // add properties and methods...
 return viewmodel;
 }
 };

}(window.ko));

For each property on the recipe object, the recipe details view model has a corresponding observable
property, shown in Listing 7-8. Observables are really only useful if the value they contain is expected to
change. If values are expected to be static, plain JavaScript properties and values may be used instead.
Observables are used in the recipe details view model because there will only be one instance of the view
model bound to the page. When a new recipe is selected in the recipe list, the recipe details view model
will be updated with the new recipe’s values. Because its properties are observables, the page’s markup will
change immediately.

Listing 7-8. Recipe Details View Model Properties

// example-001/public/scripts/recipe-details.js
// properties
viewmodel.title = ko.observable(recipe.title);
viewmodel.servings = ko.observable(recipe.servings);
viewmodel.hours = ko.observable(recipe.cookingTime.hours);
viewmodel.minutes = ko.observable(recipe.cookingTime.minutes);
viewmodel.ingredients = ko.observableArray(recipe.ingredients);
viewmodel.instructions = ko.observableArray(recipe.instructions);
viewmodel.citation = ko.observable(recipe.citation);

viewmodel.cookingTime = ko.computed(function () {
 return '$1 hours, $2 minutes'
 .replace('$1', this.hours())
 .replace('$2', this.minutes());
}, viewmodel);

Listing 7-8 shows two new types of observables: ko.observableArray() and ko.computed().

Chapter 7 ■ KnoCKout

129

Observable arrays monitor their values (normal JavaScript arrays) for additions, deletions, and index
changes, so that if the array mutates, any subscriber to the observable array is notified. While the ingredients
and instructions do not change in this example, code will be introduced later to manipulate the collections
and show the observable array’s automatic binding updates in action.

Computed observables generate or compute a value based on other values exposed by observables on
the view model. The ko.computed() function accepts callback that will be invoked to generate the value of
the computed observable, and optionally a context object that acts as the value of this within the callback.
When referenced by a template binding, a computed observable’s value will be whatever its callback returns.
The cookingTime property in Listing 7-8 creates a formatted string interpolated with the values from the
hours and minutes observables. If either hours or minutes changes, the cookingTime computed observable
will also update its subscribers.

 ■ Note Because hours and minutes are really functions (though they are treated as properties in
Knockout binding expressions), each must be invoked in the body of the computed observable in order to
retrieve its value.

The recipe details view model methods in Listing 7-9 are fairly straightforward. The hasCitation()
method tests the citation property for a nonempty value, while the update() method accepts a recipe and
updates observable properties on the view model with new values. This method is not bound to the view,
but will be used when a recipe in the recipe lists view model is selected.

Listing 7-9. Recipe Details View Model Methods

// example-001/public/scripts/recipe-details.js
// methods
viewmodel.hasCitation = function () {
 return this.citation() !== '';
};

viewmodel.update = function (recipe) {
 this.title(recipe.title);
 this.servings(recipe.servings);
 this.hours(recipe.cookingTime.hours);
 this.minutes(recipe.cookingTime.minutes);
 this.ingredients(recipe.ingredients);
 this.instructions(recipe.instructions);
 this.citation(recipe.citation);
};

Binding View Models to the DOM
Both view model factories are attached to the global window object and can be used to create individual view
model instances that will be bound to the page. The app.js file, shown in Listing 7-10, is the main script that
ties both recipe view models together.

Chapter 7 ■ KnoCKout

130

Listing 7-10. Binding View Models to the DOM

// example-001/public/scripts/app.js
(function app ($, ko, RecipeList, RecipeDetails) {
 // #1
 var getRecipes = $.get('/recipes');

 // #2
 $(function () {
 // #3
 getRecipes.then(function (recipes) {
 // #4
 var list = RecipeList.create(recipes);
 // #5
 var details = RecipeDetails.create(list.selectedRecipe());
 // #6
 list.selectedRecipe.subscribe(function (recipe) {
 details.update(recipe);
 });
 // #7
 ko.applyBindings(list, document.querySelector('#recipe-list'));
 ko.applyBindings(details, document.querySelector('#recipe-details'));

 }).fail(function () {
 alert('No recipes for you!');
 });
 });

}(window.jQuery, window.ko, window.RecipeList, window.RecipeDetails));

The app module is responsible for loading an initial set of recipe data from the server, waiting for
the DOM to enter a ready state, and then instantiating view model instances and binding each to the
appropriate elements. The following list describes each step comment (e.g., // #1) shown in Listing 7-10.

 1. A jQuery promise is created that will resolve at some point in the future, when
the data obtained from the GET /recipes request becomes available.

 2. The function passed to $() will be triggered when the DOM has been completely
initialized to ensure that all Knockout template elements will be present before
any binding attempts.

 3. When the jQuery promise resolves, it passes the list of recipes to its resolution
handler. If the promise fails, an alert is shown to the user indicating that a
problem occurred.

 4. Once the recipe data has been loaded, the list view model is created. The recipe
array is passed as an argument to RecipeList.create(). The return value is the
actual recipe list view model object.

 5. The recipe details view model is created in a similar fashion. Its factory function
accepts a single recipe, and so the selectedRecipe property on the recipe list is
queried for a value. (The recipe list view model chooses the very first recipe in its
data array for this value, by default.)

Chapter 7 ■ KnoCKout

131

 6. After the recipe details view model has been created, it subscribes to change
notifications on the recipe list’s selectedRecipe observable. This is the manual
equivalent of a DOM subscription created by Knockout when an observable is
bound to an HTML element. The function provided to the subscribe() method
will be invoked whenever selectedRecipe changes, receiving the new value as
an argument. When the callback fires the recipe details view model uses any
newly selected recipe to update itself, thereby changing the values of its own
observable properties.

 7. Finally, view models are bound to the DOM when the global ko.
applyBindings() function is invoked. In Listing 7-10 this function receives two
arguments: the view model to be bound, and the DOM element to which the
view model will be bound. Any binding attribute Knockout encounters on this
element or its descendants will be applied to the specified view model. If no
DOM element is specified, Knockout assumes that the view model applies to the
entire page. For simplistic pages this might be appropriate, but for more complex
scenarios, using multiple view models that encapsulate their own data and
behavior is the better option.

View Models and Forms
Knockout view model properties may be bound to form controls. Many controls, such as the <input>
elements, share standard bindings like value; but others like <select> have element-specific bindings. For
example, the options binding controls the creation of <option> elements within a <select> tag. In general,
form field bindings behave much like bindings seen in example code up to this point, but complex forms can
be tricky beasts and sometimes require more creative binding strategies.

The examples in this section build on the recipe details template and view model. Specifically, an “edit”
mode is introduced whereby a user viewing a particular recipe can choose to alter its details through form
fields. The same view model is used, but new form field elements have been added to the recipe details
template, adding additional complexity to both.

Switching to “Edit” Mode
Three buttons have been added to the top and bottom of the recipe details markup. Figures 7-2 and 7-3 show
how the buttons appear when rendered.

Figure 7-2. In “view” mode, the Edit button is visible

Chapter 7 ■ KnoCKout

132

The Edit button switches the page from viewing mode to edit mode (and shows the appropriate form
fields for each part of the recipe being viewed). While in edit mode the Edit button itself is hidden, but two
other buttons, Save and Cancel, become visible. If the user clicks the Save button any changes made to the
recipe will be persisted; in contrast, if the user clicks the Cancel button, the edit session will be aborted and
the recipe details will revert to their original states.

The Knockout bindings for each button, shown in Listing 7-11, vary slightly from the bindings discussed
so far.

Listing 7-11. Editing Button Markup

<!-- example-002/public/index.html -->
<div>
 <!-- in read-only view -->
 <button data-bind="click: edit, visible: !isEditing()">Edit</button>
 <!-- in edit view -->
 <button data-bind="click: save, visible: isEditing">Save</button>
 <button data-bind="click: cancelEdit, visible: isEditing">Cancel</button>
</div>

First, each button has a click event handler that calls a method on the view model: edit(), save(),
and cancelEdit(). But unlike previous examples, these methods do not use the bind() function to ensure
the value of this within the view model. Instead, all occurrences of the keyword this within the view
model have been replaced with a reference to the object literal viewmodel, shown in Listing 7-12. The new
properties and methods for these buttons have also been added to the recipe details view model. For brevity,
Listing 7-12 omits the portions of recipe-list.js that have not changed.

Listing 7-12. Methods reference the viewmodel object, not this

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.previousState = null;
viewmodel.isEditing = ko.observable(false);

// methods
viewmodel.edit = function () {
 viewmodel.previousState = ko.mapping.toJS(viewmodel);
 viewmodel.isEditing(true);
};

Figure 7-3. In “edit” mode, the Save and Cancel buttons are visible

Chapter 7 ■ KnoCKout

133

viewmodel.save = function () {
 // TODO save recipe
 viewmodel.isEditing(false);
};

viewmodel.cancelEdit = function () {
 viewmodel.isEditing(false);
 ko.mapping.fromJS(viewmodel.previousState, {}, viewmodel);
};

Because the view model itself is assigned to a variable within the RecipeDetails.create() closure, its
methods may reference it by name. By avoiding this altogether, event bindings are simplified and potential
bugs are avoided.

Second, each button has a visible binding attached to the view model’s isEditing observable, but
only the Edit button invokes the method directly as a function. It also possesses the only binding that uses a
negation (!) operator, which turns the binding value into an expression. Any observable evaluated within an
expression must be invoked as a function to retrieve its value. If an observable is itself used as the binding
value, as is the case with visible bindings for the Save and Cancel buttons, it will be invoked automatically
when Knockout evaluates the binding.

All three methods, edit(), save(), and cancelEdit(), manipulate the value of the isEditing
observable, which determines which button or buttons are displayed on the form (and, as shall be
demonstrated shortly, which form fields are displayed as well). Editing begins when the edit() method is
called and ends when the user either saves the recipe or cancels the editing session.

To ensure that changes to the recipe are discarded when a user cancels the edit session, the view model
serializes its state when the editing session begins in anticipation of possible reversion. If the editing session
is canceled, the previous state is deserialized and the value of each observable property is effectively reset.

The Knockout mapping plugin is used to serialize and deserialize the view model’s state in the edit()
and cancelEdit() methods:

// serializing the view model
viewmodel.previousState = ko.mapping.toJS(viewmodel);
// deserializing the view model
ko.mapping.fromJS(viewmodel.previousState, {}, viewmodel);

 ■ Tip Knockout’s mapping plugin is distributed separately from the core Knockout library. the current
version may be downloaded from http://knockoutjs.com/documentation/plugins-mapping.html. to install
the plugin, simply add a <script> tag reference to the plugin script after the core Knockout <script> tag on an
htML page. It will automatically create the ko.mapping namespace property on the global ko object.

The mapping plugin serializes/deserializes objects that possess observable properties, reading their
values during serialization and setting their values during deserialization. When the edit() method
calls ko.mapping.toJS(viewmodel), it receives a plain JavaScript object literal whose property names are

http://knockoutjs.com/documentation/plugins-mapping.html

Chapter 7 ■ KnoCKout

134

identical to those of the view model, but contain plain JavaScript data instead of observable functions.
To push these values back into the view model’s own observables when the edit session is cancelled, the
cancelEdit() method invokes ko.mapping.fromJS() with three arguments:

•	 The plain JavaScript object literal that contains the data to be written to the view
model’s observable properties

•	 An object literal that maps properties on the plain JavaScript state object to
observable properties on the view model (if this object is empty, it is assumed that
the properties for both share the same names)

•	 The view model that will receive the object literal’s data

 ■ Note the Knockout mapper plugin can serialize/deserialize view models as plain JavaScript object literals
with its toJS() and fromJS() functions, or as JSon strings with its toJSON() and fromJSON() functions. these
functions can be particularly useful for CruD (create + read + update + delete) view models that bind JSon
data to simple forms.

Although the Save button is present on the form, its method has only been stubbed in the view model.
Its functionality will be added in a later example.

Changing the Recipe Title
The recipe title is visible regardless of whether the recipe details view is in edit mode or read-only mode.
When the user clicks the Edit button, a label and input field become visible beneath the <h1> tag so the user
may update the recipe title if necessary. A visible binding on the containing <div> element controls shows
and hides this field by subscribing to the isEditing observable on the view model. The value of the input
field is bound to the view model’s title observable via the value binding. By default, the value binding
will only refresh data in an observable when the field to which the observable is bound looses focus. When
the title input in Listing 7-13 looses focus, the <h1> tag’s content will be instantly updated with the new title
value because both are bound to the title observable. The rendered field is shown in Figure 7-4.

Listing 7-13. Recipe Title Markup

<!-- example-002/public/index.html -->
<h1 data-bind="text: title"></h1>
<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <label for="recipe-title">Title:</label>
 <input data-bind="value: title" name="title" id="recipe-title" type="text" />
</div>

Chapter 7 ■ KnoCKout

135

Updating Recipe Servings and Cooking Time
In Listing 7-14 the recipe’s read-only serving size <p> element is hidden when the form enters edit mode.
In its place a <select> element is displayed with a number of serving size options from which the user may
select. Once again, the isEditing observable is used to determine which elements are displayed.

Listing 7-14. Serving Size Markup

<!-- example-002/public/index.html -->
<h2>Details</h2>
<!-- in read-only view -->
<p data-bind="visible: !isEditing()">
 Servings:
</p>
<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <label for="recipe-servings">Servings:</label>
 <select data-bind="options: servingSizes,
 optionsText: 'text',
 optionsValue: 'numeral',
 value: servings,
 optionsCaption: 'Choose...'"
 name="recipeServings"
 id="recipe-servings">
 </select>
</div>

New, element-specific Knockout bindings are declared for the <select> tag in Listing 7-14 to control
the manner in which it uses view model data. The options binding tells Knockout which property on the
view model holds the data set that will be used to create <option> elements within the tag. The binding
value is the name of the property (in this case servingSizes), a plain array of read-only reference data.

For primitive values, like strings or numbers, the options binding assumes that each primitive should
be both the text and value of its <option> element. For complex objects, the optionsText and optionsValue
bindings tell Knockout which properties on each object in the array will be used to generate the text and
value of each <option> element instead. The serving size objects are defined in Listing 7-15. Notice that the
text value is the name of each number, while the numeral value is a corresponding digit. When a serving size
is selected by the user the numeral value will be assigned to viewmodel.servings().

Figure 7-4. Editing the recipe title

Chapter 7 ■ KnoCKout

136

Listing 7-15. Recipe Serving Size Data in the View Model

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.servings = ko.observable(recipe.servings);
viewmodel.servingSizes = [
 {text: 'one', numeral: 1},
 {text: 'two', numeral: 2},
 {text: 'three', numeral: 3},
 {text: 'four', numeral: 4},
 {text: 'five', numeral: 5},
 {text: 'six', numeral: 6},
 {text: 'seven', numeral: 7},
 {text: 'eight', numeral: 8},
 {text: 'nine', numeral: 9},
 {text: 'ten', numeral: 10}
];

The <select> tag’s value binding ties the selected value of the drop-down to an observable on the view
model. When the <select> tag is rendered, this value will be automatically selected for the user in the DOM;
when the user chooses a new value the bound observable will be updated.

Finally, the optionsCaption binding creates a special <option> element in the DOM that appears at the
top of the drop-down options list, but will never be set as the selected value on the view model. It is a mere
cosmetic enhancement that gives some instruction to the user about how the drop-down is to be used.

Figures 7-5 and 7-6 show a collapsed and expanded serving size drop-down.

Figure 7-5. Servings drop-down with a pre-selected value

Chapter 7 ■ KnoCKout

137

The cooking time fields, also shown in Figure 7-5, contain no special bindings. Both input fields (hours
and minutes) shown in Listing 7-16 are number fields that use simple value bindings to update observables
on the view model. They are shown and hidden by the same visibility mechanism discussed earlier.

Listing 7-16. Cooking Time Markup

<!-- example-002/public/index.html -->
<!-- in read-only view -->
<p data-bind="visible: !isEditing()">
 Approximate Cook Time:
</p>
<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <label for="recipe-hours">Approximate Cook Time:</label>
 <input data-bind="value: hours"
 name="hours"
 id="recipe-hours"
 type="number" />
 <input data-bind="value: minutes"
 name="minutes"
 id="recipe-minutes"
 type="number" />
</div>

Figure 7-6. Choosing a new value from the Servings drop-down

Chapter 7 ■ KnoCKout

138

Recall that when cooking time is displayed to the user in read-only mode, the cookingTime computed
observable in Listing 7-17 is used, not the hours and minutes observables. When the values of these
observables change based on the input bindings in Listing 7-16, the computed observable regenerates the
formatted string for the view. Also notice that the computed observable no longer has a context argument,
because inside the observable the view model variable is referenced by name instead of being resolved with
the this keyword.

Listing 7-17. View Model Hours, Minutes, and Computed Cooking Time

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.hours = ko.observable(recipe.cookingTime.hours);
viewmodel.minutes = ko.observable(recipe.cookingTime.minutes);
viewmodel.cookingTime = ko.computed(function () {
 return '$1 hours, $2 minutes'
 .replace('$1', viewmodel.hours())
 .replace('$2', viewmodel.minutes());
});

Adding and Removing Ingredients
In read-only mode, recipe ingredients are rendered as an unordered list. To maintain form, when the recipe
details view enters edit mode, an input is generated for each item in the list, shown in Figure 7-7. A minus
button next to each ingredient allows the user to remove any or all ingredients, while an empty input field
and a plus button below the input list may be used to add a new ingredient. Text changes made within any
ingredient input will update the values in the view model’s ingredients array.

Figure 7-7. Creating and editing recipe ingredients

Chapter 7 ■ KnoCKout

139

Adding a new ingredient is more straight-forward than editing existing ingredients in place. The markup
in Listing 7-18 shows part of the changes to the Ingredients section of the form. The read-only unordered
list is present, and below it is a <div> element that contains all the new form fields. A comment block
indicates where the <input> elements for existing ingredients will go (discussed in a moment), but the new
Ingredients fields are shown below it.

Listing 7-18. New Ingredients Markup

<!-- example-002/public/index.html -->
<h2>Ingredients</h2>
<!-- in read-only view -->
<ul data-bind="foreach: ingredients, visible: !isEditing()">
 <li data-bind="text: $data">

<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">

 <!-- ingredient list inputs here... -->

 <input data-bind="value: newIngredient"
 type="text"
 name="new-ingredient"
 id="recipe-new-ingredient"/>
 <button data-bind="click: commitNewIngredient"
 class="fa fa-plus"></button>
</div>

To add a new ingredient a user enters text into the new ingredient <input> field and then clicks the plus
button next to it. The <input> is bound to the newIngredient observable on the view model, and the Plus
button’s click event invokes the commitNewIngredient() method, both shown in Listing 7-19.

Listing 7-19. Creating a New Ingredient in the View Model

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.ingredients = ko.observableArray(recipe.ingredients);
viewmodel.newIngredient = ko.observable('');

// methods
viewmodel.commitNewIngredient = function () {
 var ingredient = viewmodel.newIngredient();
 if (ingredient === '') return;
 viewmodel.ingredients.push(ingredient);
 viewmodel.newIngredient('');
};

The commitNewIngredient() method evaluates the content of the newIngredient observable to
determine if it is empty or not. If it is, the user has entered no text into the <input>, and so the method
returns prematurely. If not, the value of newIngredient is pushed into the ingredients observable array and
the newIngredient observable is cleared.

Chapter 7 ■ KnoCKout

140

 ■ Tip observable arrays share a nearly identical apI with normal JavaScript arrays. Most array operations,
such as push(), pop(), slice(), splice(), and so on, are available on observable arrays and will trigger
update notifications to the observable array’s subscribers when called.

When the new ingredient is appended to ingredients, Knockout updates the DOM to reflect the
change. The read-only list, hidden while in edit mode, silently acquires a new list item element, and the
editable list of existing <input> elements, shown in Listing 7-20, gains a new entry as well.

Listing 7-20. Ingredients Markup

<!-- example-002/public/index.html -->
<h2>Ingredients</h2>
<!-- in read-only view -->
<ul data-bind="foreach: ingredients, visible: !isEditing()">
 <li data-bind="text: $data">

<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <ul data-bind="foreach: ingredients" class="listless">

 <input data-bind="value: $data,
 valueUpdate: 'input',
 attr: {name: 'ingredient-' + $index()},
 event: {input: $parent.changeIngredient.bind($parent, $index())}"
 type="text" />
 <button data-bind="click: $parent.removeIngredient.bind($parent, $index())"
 class="fa fa-minus"></button>

 <!-- new ingredient input here... -->
</div>

For each ingredient in the ingredients observable array, an input is rendered above the new ingredient
field. These inputs are nested within an unordered list, and their values are all bound to specific ingredients
in the array, denoted by the $data variable within the foreach loop. The attr binding is used to give a
name to each <input> element by concatenating the string “ingredient-” with the current index of the loop,
exposed by the special $index observable. Like any observable used in a binding expression, $index must be
invoked to retrieve its value.

It cannot be emphasized enough that the bindings exposed by observable arrays apply only to the
arrays themselves and not to the elements they contain. When each ingredient is bound to a DOM <input>
element, it is wrapped in the $data observable, but there is no communication between this observable
and the containing observable array. If the value within $data changes because of input, the array will be
oblivious and still contain its own copy of the unchanged data. This is a source of consternation, but there
are several coping strategies that make it bearable.

First, the observable ingredients array could be filled with objects that each expose the ingredient text
as an observable property (something like { ingredient: ko.observable('20 mushrooms') }). The value
binding of each <input> would then use each object’s $data.ingredient property to establish a two-way
binding. The observable array still remains ignorant of changes to its members, but because each element is
an object that tracks its own data through an observable, this becomes a moot point.

Chapter 7 ■ KnoCKout

141

The second approach, taken in Listing 7-20, is to listen for change events on each <input> element
through the valueUpdate and event bindings, and then tell the view model to replace specific ingredient
values in the ingredients observable array as they change. Neither way is “right”—both merely have their
own advantages and disadvantages.

The valueUpdate binding first instructs Knockout to change the value of $data each time the DOM
input event fires on each <input> element. (Remember: Knockout normally updates $data once an element
looses focus, not when it receives input.) Second, a Knockout event binding is added that invokes the
changeIngredient() method on the view model every time the DOM input event fires as well. By default
Knockout submits the current value of $data to changeIngredient(), but since the new value will replace the
old, the view model must know which index in the ingredients array is being targeted. Using bind(), the value
of $index is bound to the method as the first argument ensuring that the value of $data will be the second.

The code in Listing 7-21 shows that the changeIngredient() method accesses the actual underlying
array within the ingredients observable array in order to replace a value at a given index.

Listing 7-21. Changing a Recipe Ingredient in the View Model

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.ingredients = ko.observableArray(recipe.ingredients);

// methods
viewmodel.changeIngredient = function (index, newValue) {
 viewmodel.ingredients()[index] = newValue;
};

Unfortunately, when an observable array’s underlying array structure is changed, the observable
array will not automatically notify any subscribers, which means that other DOM elements, such as the
read-only unordered list that displays the ingredients, will remain unchanged. To mitigate this, the view
model listens to its own isEditing observable, shown in Listing 7-22. When the value passed to the
observable is false (meaning that the user has either saved changes to the recipe or canceled the editing
session), the view model forcibly notifies any subscribers to the ingredients observable array by calling its
valueHasMutated() method. This ensures that the read-only unordered list displayed in “view” mode will
accurately reflect any changed values in the ingredients array.

Listing 7-22. Forcing Observable Arrays to Notify Their Subscribers of Underlying Changes

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.isEditing = ko.observable(false);
viewmodel.isEditing.subscribe(function (isEditing) {
 if (isEditing) return;
 // force refresh
 //
 viewmodel.ingredients.valueHasMutated();
});

Next to each recipe <input> is a minus button used to remove a given ingredient from the
ingredients observable array. Its click event is bound to the removeIngredient() method which, like
changeIngredient(), must also receive the value of $index so that the view model knows which element to
remove. Observable arrays expose a splice() method, shown in Listing 7-23, that may be used to remove an
element at a specific index. Using this method instead of manipulating the underlying array directly ensures
that subscribers to the ingredients observable array are notified of the change immediately.

Chapter 7 ■ KnoCKout

142

Listing 7-23. Removing a Recipe Ingredient

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.ingredients = ko.observableArray(recipe.ingredients);

// methods
viewmodel.removeIngredient = function (index) {
 viewmodel.ingredients.splice(index, 1);
};

Instructions
Recipe instructions are very similar to recipe ingredients but differ in two notable ways. First, instructions
are rendered in an ordered list because instructions must be followed step-by-step. And second, instructions
may be promoted or demoted within the list. Figure 7-8 shows a screenshot of the ordered Instructions fields
and the buttons associated with each.

The recipe instruction use cases that overlap with ingredient use cases (creating an instruction,
removing an instruction, updating an existing instruction) will not be discussed, as the markup, Knockout
bindings, and view model structure of both are essentially the same, but operate on the instructions
observable array instead. Instruction demotion and promotion within the array are new features, however,
represented by the addition of up and down <button> tags in Listing 7-24.

Listing 7-24. Instructions Markup

<!-- example-002/public/index.html -->
<h2>Instructions</h2>
<!-- in read-only view -->
<ol data-bind="foreach: instructions, visible: !isEditing()">
 <li data-bind="text: $data">

Figure 7-8. Creating and editing recipe instructions

Chapter 7 ■ KnoCKout

143

<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <!-- existing instructions -->
 <ul data-bind="foreach: instructions" class="listless">

 <input data-bind="value: $data,
 valueUpdate: 'input',
 attr: {name: 'instruction-' + $index()},
 event: {input: $parent.changeInstruction.bind($parent, $index())}"
 type="text" />
 <button data-bind="click: $parent.demoteInstruction.bind($parent, $index())"
 class="fa fa-caret-down"></button>
 <button data-bind="click: $parent.promoteInstruction.bind($parent, $index())"
 class="fa fa-caret-up"></button>
 <button data-bind="click: $parent.removeInstruction.bind($parent, $index())"
 class="fa fa-minus"></button>

 <!-- new instruction input here... -->
</div>

Like the minus button, both up and down buttons use Knockout click bindings to invoke methods on
the view model, passing the associated item index as an argument to each.

Listing 7-25 shows how both methods manipulate the instructions observable array. The
promoteInstruction() method evaluates the index and, if it is zero, exits early (the first instruction cannot
be promoted). It then plucks the instruction at the given index from the observable array using its splice()
method, calculates the new index for the instruction by subtracting one (e.g., going from index 2 to 1 would
be a promotion in the list), and then splices the instruction back into the observable array at its new index.
The demoteInstruction() method does the opposite. It prevents the instruction at the “end” of the list from
being demoted further; otherwise it moves instructions down the list by re-splicing the observable array. In
both cases any DOM elements bound to the instructions property are notified of changes automatically.

Listing 7-25. Promoting and Demoting Recipe Instructions in the View Model

// example-002/public/scripts/recipe-details.js
// properties
viewmodel.instructions = ko.observableArray(recipe.instructions);

viewmodel.promoteInstruction = function (index) {
 if (index === 0) return;
 var instruction = viewmodel.instructions.splice(index, 1);
 var newIndex = index - 1;
 viewmodel.instructions.splice(newIndex, 0, instruction);
};

viewmodel.demoteInstruction = function (index) {
 var lastIndex = (viewmodel.instructions.length - 1);
 if (index === lastIndex) return;
 var instruction = viewmodel.instructions.splice(index, 1);
 var newIndex = index + 1;
 viewmodel.instructions.splice(newIndex, 0, instruction);
};

Chapter 7 ■ KnoCKout

144

Citation
The Citation field addition is a fairly vanilla affair considering the complexities involved with instructions
and ingredients. A single text <input> uses the value binding to update the view model’s citation
observable. The rendered field is shown in Figure 7-9.

The visible binding on the citation hyperlink has been changed to a compound expression. Now, the
hyperlink in Listing 7-26 will only be displayed if the recipe details view is in read-only mode (!isEditing())
and the recipe actually has a citation.

Listing 7-26. Citation Field Markup

<!-- example-002/public/index.html -->
<a data-bind="visible: hasCitation() && !isEditing(),
 attr: {href: citation, title: title}"
 target="_blank">Source
<div data-bind="visible: isEditing" class="edit-field">
 <label>Citation:</label>
 <input name="citation" type="text" data-bind="value: citation" />
</div>

Custom Components
With inspiration from the popular webcomponents.js polyfill (http://webcomponents.org), Knockout
provides a custom component system that produces reusable HTML elements with custom tag names,
markup, and behavior.

In the Omnom Recipes application, the recipe details view contains two editable lists, Ingredients and
Instructions, that share many similar characteristics, both in terms of markup and view model properties
and methods. A custom component can, with a little effort, replace both of these lists in the application.
The goal is to reduce the complex markup and binding expressions in the DOM to new, custom elements,
envisioned in Listing 7-27.

Listing 7-27. Input List Element

<!-- example-003/public/index.html -->
<!-- editable ingredients list -->
<input-list params="items: ingredients,
 isOrdered: false"></input-list>

<!-- ... -->

<!-- editable instructions list -->
<input-list params="items: instructions,
 isOrdered: true"></input-list>

Figure 7-9. Updating a Recipe’s Citation

http://webcomponents.org/

Chapter 7 ■ KnoCKout

145

Knockout components are the intersection of several things:

•	 A factory function that creates a view model for each instance of the custom
component on a page

•	 An HTML template with its own Knockout bindings that will be injected wherever
the component is used

•	 A custom tag registration that tells Knockout where to find the template and how to
instantiate its view model when it encounters component tags on a page

The Input List View Model
The recipe details view model already possesses the properties and methods used to manipulate its
ingredients and instructions arrays, but it is necessary to abstract this code and move it into its own
module, input-list.js, so that Knockout can use it exclusively for the new input list component.

Listing 7-28 shows an abbreviated version of the input list module. It is structured in the same manner
as the other view model factory modules, exposing a create() method on the global InputList object. This
factory method accepts a params parameter that will be used to pass the input list component a reference
to an observable array (params.items), and a host of optional settings that will determine how the input
list will behave when bound to the rendered template: params.isOrdered, params.enableAdd, params.
enableUpdate, and params.enableRemove.

The defaultTo() function exists as a simple utility function that returns default values for missing
properties on the params object.

Listing 7-28. Input List View Model

// example-003/public/scripts/input-list.js
'use strict';
window.InputList = (function (ko) {

 function defaultTo(object, property, defaultValue) {/*...*/}

 return {
 create: function (params) {
 var viewmodel = {};

 // properties
 viewmodel.items = params.items; // the collection
 viewmodel.newItem = ko.observable('');

 viewmodel.isOrdered = defaultTo(params, 'isOrdered', false);
 viewmodel.enableAdd = defaultTo(params, 'enableAdd', true);
 viewmodel.enableUpdate = defaultTo(params, 'enableUpdate', true);
 viewmodel.enableRemove = defaultTo(params, 'enableRemove', true);

Chapter 7 ■ KnoCKout

146

 // methods
 viewmodel.commitNewItem = function () {/*...*/};
 viewmodel.changeItem = function (index, newValue) {/*...*/};
 viewmodel.removeItem = function (index) {/*...*/};
 viewmodel.promoteItem = function (index) {/*...*/};
 viewmodel.demoteItem = function (index) {/*...*/};

 return viewmodel;
 }
 };

}(window.ko));

The params.items and params.isOrdered properties correspond to the binding attributes in Listing 7-27.
When a component is used on a page, the values of its binding attributes are passed, by reference, to the
component’s view model via the params object. In this scenario, input list components will be given access
to the ingredients and instructions observable arrays on the recipe details view model.

Input list methods have been redacted in Listing 7-28 because they are nearly identical to their
counterparts in Listing 7-25. Instead of referencing ingredients or instructions, however, these methods
reference the abstracted items observable array. The component populates this array with data it receives
from params.items. The newItem observable holds the value of the new item input, in exactly the same
manner as the newIngredient and newInstruction observables behaved in the recipe-details.js module.
It is not shared with the recipe details view model, however, as it only has relevance within the input list.

Since the input list component will now handle the manipulation of the Ingredients and Instructions
lists on the page, the properties and methods in the recipe details view model that previously performed
these manipulations have been removed.

The Input List Template
A reusable component needs an abstracted, reusable template, so the markup associated with editing
instructions and ingredients has also been collected into a single HTML template. Each time an instance of
the input list component is created on the page, Knockout will inject the template into the DOM, then bind a
new instance of the input list view model to it.

Since the input list component can accommodate both ordered and unordered lists, the template
must use Knockout bindings to intelligently decide which kind of list to display. Only ordered lists will have
promotion and demotion buttons, while items can be added and removed from both kinds of lists. Since the
input list view model exposes boolean properties it receives from its params object, the template can alter
its behavior based on the values of those properties. For example, if the view model property isOrdered is
true, the template will show an ordered list; otherwise it will show an unordered list. Likewise the fields
and buttons associated with adding new items or removing existing items are toggled by the enableAdd and
enableRemove properties, respectively.

Template markup is typically added to the DOM in nonparsed elements like <template> or the <script
type="text/html"> element. In Listing 7-29, the full component markup and all bindings are shown within
a <template> tag. The element’s id will be used by Knockout to find the template content within the DOM
when the component is registered with the framework.

Chapter 7 ■ KnoCKout

147

Listing 7-29. Input List Component Template

<!-- example-003/public/index.html -->
<template id="item-list-template">
 <!-- ko if: isOrdered -->
 <!-- #1 THE ORDERED LIST -->
 <ol data-bind="foreach: items" class="listless">

 <input data-bind="value: $data,
 valueUpdate: 'input',
 attr: {name: 'item-' + $index()},
 event: {input: $parent.changeItem.bind($parent, $index())}"
 type="text" />
 <button data-bind="click: $parent.demoteItem.bind($parent, $index())"
 class="fa fa-caret-down"></button>
 <button data-bind="click: $parent.promoteItem.bind($parent, $index())"
 class="fa fa-caret-up"></button>
 <button data-bind="click: $parent.removeItem.bind($parent, $index()),
 visible: $parent.enableRemove"
 class="fa fa-minus"></button>

 <!-- /ko -->

 <!-- ko ifnot: isOrdered -->
 <!-- #2 THE UN-ORDERED LIST -->
 <ul data-bind="foreach: items" class="listless">

 <input data-bind="value: $data,
 valueUpdate: 'input',
 attr: {name: 'item-' + $index()},
 event: {input: $parent.changeItem.bind($parent, $index())}"
 type="text" />
 <button data-bind="click: $parent.removeItem.bind($parent, $index()),
 visible: $parent.enableRemove"
 class="fa fa-minus"></button>

 <!-- /ko -->

 <!-- ko if: enableAdd -->
 <!-- #3 THE NEW ITEM FIELD -->
 <input data-bind="value: newItem"
 type="text"
 name="new-item" />
 <button data-bind="click: commitNewItem"
 class="fa fa-plus"></button>
 <!-- /ko -->
</template>

There is a lot of markup to digest in the input list template, but it is really just the combination of both
the unordered Ingredients list and the ordered Instructions list, with a shared new item field.

Chapter 7 ■ KnoCKout

148

Special binding comments—the ko if and ko ifnot comment blocks—wrap portions of the template
to determine if the elements within the comment blocks should be added to the page. These comment
blocks evaluate properties on the view model and alter the template processing control flow accordingly.
This differs from the visible elements bindings, which merely hide elements that already exist in the DOM.

 ■ Tip the syntax used within ko comment block bindings is known as containerless control flow syntax.

All fields and buttons in the input list template are bound to properties and methods on the input list
view model. If a demote button is clicked, for example, the input list view model will manipulate its internal
items collection, which is really a reference to the instructions observable array in the recipe details
view model, shared via the items binding. The template determines which type of list to display based
on the isOrdered property, while the add and remove controls are toggled based on the enableAdd and
enableRemove properties. Because these properties are read from the params object in the view model, any
of them may be added to the <input-list> component tag as a binding attribute. In this way the component
abstracts and encapsulates all operations made against any collection that can be represented as a list of
inputs.

Registering the Input List Tag
Once a component view model and template have been defined, the component itself must be registered
with Knockout. This tells Knockout how to resolve component instances when it encounters the
component’s custom tag in the DOM, and also what template and view model to use when rendering the
component’s contents.

The app.js script has been updated in Listing 7-30 to register the input list component immediately
after the DOM becomes ready, but before any Knockout bindings are applied to the page (with ko.
applyBindings()). This ensures that Knockout has time to render the component’s markup in the DOM so
before any view model is bound to it.

Listing 7-30. Registering the Input List Component

// example-003/public/scripts/app.js
(function app ($, ko, InputList /*...*/) {
 // ...

 $(function () {
 // register the custom component tag before
 // Knockout bindings are applied to the page
 ko.components.register('input-list', {
 template: {
 element: 'item-list-template'
 },
 viewModel: InputList.create
 });

 // ...
 });

}(window.jQuery, window.ko, window.InputList /*...*/));

Chapter 7 ■ KnoCKout

149

In Listing 7-30, the ko.components.register() function receives two arguments: the name of the new
component’s custom tag, input-list, and an options hash that provides Knockout with the information it
needs to construct the component.

Knockout uses the custom tag name to identify the <input-list> element in the DOM and replace it
with the template content specified in the options hash.

Since markup for the input list element has been defined in a <template> element, the Knockout
component system only needs to know what element ID it should use to find that element in the DOM. The
template object in the options hash contains this ID in its element property. For smaller components, the
entire HTML template could be assigned, as a string, to the template property directly.

To construct a view model for the component, a factory function is assigned to the viewModel property
of the options hash. This property can also reference a regular constructor function, but using factory
functions sidesteps potential problems that arise when event bindings reassign the this keyword within
view models. Regardless of approach, the view model function will receive a params object populated with
values from the template’s binding declarations.

 ■ Tip Knockout can load component templates and view model functions via requireJS automatically.
Consult the Knockout component documentation for more details. the requireJS module loader is covered in
Chapter 5.

Now that the input list component is registered with Knockout, the complicated markup for the editable
Ingredients and Instructions lists can be replaced with simple instances of <input-list>. Listing 7-31 shows
the resulting lighter, cleaner page markup.

Listing 7-31. Editing Instructions and Ingredients with the Input List Component

<!-- example-003/public/index.html -->

<h2>Ingredients</h2>
<!-- in read-only view -->
<ul data-bind="foreach: ingredients, visible: !isEditing()">
 <li data-bind="text: $data">

<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <input-list params="items: ingredients,
 isOrdered: false"></input-list>
</div>

<h2>Instructions</h2>
<!-- in read-only view -->
<ol data-bind="foreach: instructions, visible: !isEditing()">
 <li data-bind="text: $data">

<!-- in edit view -->
<div data-bind="visible: isEditing" class="edit-field">
 <input-list params="items: instructions,
 isOrdered: true"></input-list>
</div>

http://dx.doi.org/10.1007/978-1-4842-0662-1_5

Chapter 7 ■ KnoCKout

150

Not only are the complexities of the input list obscured behind the new <input-list> tag, but aspects of
the list, such as the ability to add and remove items, are controlled through bound attributes. This promotes
both flexibility and maintainability as common behaviors are bundled into a single element.

Subscribables: Cheap Messaging
At this point the recipe details view model manipulates the recipe data but does nothing to persist changes.
It also fails to communicate recipe changes to the recipe list, so that even if a user modifies a recipe’s title, the
recipe list continues to display the recipe’s original title. From a use case perspective, the recipe list should
only be updated if the recipe details are sent to the server and successfully persisted. A more sophisticated
mechanism is needed to facilitate this workflow.

Knockout observables implement the behavior of a Knockout subscribable, a more abstract object
that does not hold a value but acts as a kind of eventing mechanism to which other objects may subscribe.
Observables take advantage of the subscribable interface by publishing their own changes through
subscribables, to which DOM bindings (and perhaps even other view models) listen.

Subscribables may be directly, attached to view models as properties, or passed around by reference
to any object interested in their events. In Listing 7-32 a subscribable is constructed in the app.js file and
passed as an argument to both the recipe list and recipe details modules. Note that, unlike an observable,
subscribables must be instantiated with the new keyword.

Listing 7-32. Knockout Subscribable Acting As a Primitive Message Bus

// example-004/public/scripts/app.js
var bus = new ko.subscribable();
var list = RecipeList.create(recipes, bus);
var details = RecipeDetails.create(list.selectedRecipe(), bus);

To effectively publish an updated recipe to the subscribable, the recipe details view model has been
modified in several ways.

First, the subscribable is passed to the recipe details factory function as an argument named bus
(shorthand for “poor developer’s message bus”). The recipe details module will use this subscribable to raise
events when recipe details change.

Second, the view model now tracks the recipe’s ID since this value will be used to update recipe data on
the server. The recipe list will also use the ID to replace stale recipe data after changes have been saved.

Finally, the save() method has been updated to trigger the recipe.saved event on the bus
subscribable, passing the modified recipe data as an argument that will be delivered to any subscribers. The
modified save() method is shown in Listing 7-33.

Listing 7-33. Recipe Details View Model Saving a Modified Recipe

// example-004/public/scripts/recipe-details.js
viewmodel.save = function () {
 var savedRecipe = {
 id: viewmodel.id,
 title: viewmodel.title(),
 ingredients: viewmodel.ingredients(),
 instructions: viewmodel.instructions(),
 cookingTime: {
 hours: viewmodel.hours(),
 minutes: viewmodel.minutes()
 },

Chapter 7 ■ KnoCKout

151

 servings: viewmodel.servings(),
 citation: viewmodel.citation()
 };
 bus.notifySubscribers(savedRecipe, 'recipe.saved');
 viewmodel.isEditing(false);
};

The notifySubscribers() method on a subscribable accepts two arguments—the data object
subscribers will receive and the name of the event being raised. The app.js module subscribes to the
recipe.saved event on the subscribable bus, shown in Listing 7-34, and initiates an AJAX request to send
the modified recipe data to the server. Because the recipe details view model and the app.js module
share a reference to the bus object, any events triggered by the recipe details view model can be handled in
the app.js module.

Listing 7-34. Saved Recipe Is Persisted to the Server

// example-004/public/scripts/app.js
var bus = new ko.subscribable();

bus.subscribe(function (updatedRecipe) {
 $.ajax({
 method: 'PUT',
 url: '/recipes/' + updatedRecipe.id,
 data: updatedRecipe
 }).then(function () {
 bus.notifySubscribers(updatedRecipe, 'recipe.persisted');
 })
}, null, 'recipe.saved');

The subscribable’s subscribe() method accepts three arguments:

•	 The callback function to be executed when the specified event is triggered on the
subscribable

•	 The context object that will be bound to the this keyword within the callback
function (or null, if the this keyword is never used within the callback)

•	 The name of the event to which the callback is subscribed (e.g., recipe.saved)

If the AJAX update succeeds, the app.js module triggers a recipe.persisted event on the subscribable
to notify listeners. A reference to the bus subscribable has also been passed to the recipe list view model,
which actively listens for the recipe.persisted event. When the event fires, the recipe list receives the saved
data in Listing 7-35 and updates its internal recipes collection and selected recipe based on the persisted
recipie’s ID.

Listing 7-35. Updating the Recipe List with a Persisted Recipe

// example-004/public/scripts/recipe-list.js
window.RecipeList = (function (ko) {

 return {
 create: function (recipes, bus) {
 var viewmodel = {};

Chapter 7 ■ KnoCKout

152

 // properties
 viewmodel.recipes = ko.observableArray(recipes);
 viewmodel.selectedRecipe = ko.observable(recipes[0]);

 // ...
 bus.subscribe(function (updatedRecipe) {

 var recipes = viewmodel.recipes();
 var i = 0,
 count = recipes.length;
 while (i < count) {
 if (recipes[i].id !== updatedRecipe.id) {
 i += 1;
 continue;
 }
 recipes[i] = updatedRecipe;
 viewmodel.recipes(recipes);
 viewmodel.selectRecipe(recipes[i]);
 break;
 }

 }, null, 'recipe.persisted');
 // ...
 }
 };

}(window.ko));

Though subscribables aren’t the only way to raise events in an application, they can be effective for
straightforward uses cases, creating a decoupled communication chain between modules.

Summary
Many front-end frameworks offer suites of compelling features and plugins, but Knockout really focuses on
the interaction between the HTML view and data model in an application. Knockout’s observables alleviate
the pain of manually pulling data from, and pushing data to, HTML DOM elements. Developers can add
data-bind attributes to any element on a page, gluing the markup to one or more view models through two-
way bindings.

While form data can be directly bound to view model properties, DOM event bindings can also invoke
methods on Knockout view models as well. Any changes these methods make to view model observable
properties are immediately reflected in the DOM. Bindings like visible and css determine how an element
is displayed to the user, while bindings like text and value determine an element’s content.

Observables are special objects that hold view model data values. When their values change,
observables notify any interested subscribers, including bound DOM elements. Primitive observables hold
single values, while observable arrays hold collections. Mutations that happen on observable arrays can be
tracked and mirrored by HTML elements that are bound to the collection. The foreach binding is especially
useful when iterating over an observable array’s elements, though special considerations must be taken if
individual members of an observable array are changed or replaced.

Chapter 7 ■ KnoCKout

153

Knockout templates and view models can be abstracted into reusable components with unique HTML
tags. These components can be added to a page and bound to other view model properties, just as any
standard HTML elements would be bound. Encapsulating state and behavior in a component reduces the
total markup on a page, and also guarantees that similar portions of an application (for example, a list of
inputs bound to a collection) behave the same wherever used.

Finally, subscribable objects—the basic building blocks behind observables—can be used as primitive
message busses, notifying subscribers of published events and potentially delivering payloads of data where
needed.

Related Resources
•	 Knockout website: http://knockoutjs.com/

•	 KnockMeOut.net: http://www.knockmeout.net/

http://knockoutjs.com/
http://www.knockmeout.net/

155

Chapter 8

AngularJS

The secret to building large apps is never build large apps. Break your applications into
small pieces. Then, assemble those testable, bite-sized pieces into your big application.

—Justin Meyer, creator of JavaScriptMVC

AngularJS has managed to attract a tremendous amount of attention within the developer community, and
with good reason: the framework’s unique approach to solving many of the challenges typically associated
with single-page application development differs significantly from those of popular alternatives. These
differences have won Angular a legion of devoted fans, as well as an increasingly vocal group of critics.

As you progress through this chapter, you will be introduced to several of the unique features that
distinguish Angular from alternative single-page application frameworks. We will also provide some
guidance as to what types of projects might best be able to benefit from Angular, as well as for what types of
projects other alternatives may be better suited. Before we close out the chapter, we will also spend a brief bit
of time discussing Angular’s history, its current state, and what the future holds for the framework.

A Declarative Approach to Building Web Applications
Angular’s most distinguishing characteristic is the manner in which it allows developers to create web
applications in a so-called “declarative” fashion, as opposed to the “imperative” approach that most
developers are accustomed to. The difference between these two approaches is subtle, but it must be
understood to truly appreciate the unique benefits that Angular brings to the table. Let’s take a look at two
examples that demonstrate each approach.

The Imperative Approach

imperative: having the form that expresses a command rather than a statement or a
question

—Merriam-Webster.com

When most people think of “programming,” the imperative approach is typically what they have in
mind. Using this approach, a developer instructs a computer on how to do something. As a result, a desired
behavior is (hopefully) achieved. By way of an example, consider Listing 8-1, which shows a simple web
application that uses an imperative approach to display an unordered list of animals.

Chapter 8 ■ angularJS

156

Listing 8-1. Simple, Imperative Web Application

// example-imperative/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Imperative App</title>
</head>
<body>

 <ul id="myList">

 <script src="/bower_components/jquery/dist/jquery.js"></script>

 <script>
 var App = function App() {
 this.init = function() {
 var animals = ['cats', 'dogs', 'aardvarks', 'hamsters', 'squirrels'];
 var $list = $('#myList');
 animals.forEach(function(animal) {
 $list.append('' + animal + '');
 });
 };
 };

 var app = new App();
 app.init();
 </script>

</body>
</html>

In this example, our application’s desired behavior—the creation of a list of animals—is achieved as a
result of our having explicitly instructed the computer on how to go about creating it:

 1. We start our application by creating a new instance of the App class and calling its
init() method.

 2. We specify our list’s entries in the form of an array (animals).

 3. We create a reference to the desired container of our list ($list).

 4. Finally, we iterate through each of our array’s entries and append them, one by
one, to the container.

When an application is created with an imperative approach, that application’s source code serves as
the primary source of control behind what that application does and when it does it. Put simply, imperative
applications tell computers how to behave.

Chapter 8 ■ angularJS

157

The Declarative Approach

declarative: having the form of a statement rather than a question or a command

—Merriam-Webster.com

The declarative approach to programming takes the traditional, imperative approach with which most
are familiar and flips it on its head. When developers use this approach, they focus their efforts on describing
a desired result, leaving the steps necessary to achieve that result up to the computer itself.

By way of an example, Listing 8-2 shows a simple web application very similar to that shown in Listing 8-1.
Here, an unordered list of animals is displayed using a more declarative approach with the help of Angular.

Listing 8-2. Declarative Web Application Developed with Angular

// example-declarative/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Declarative App</title>
</head>
<body>

 <div ng-controller="BodyController">

 <li ng-repeat="animal in animals">{{animal}}

 </div>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.controller('BodyController', function($scope) {
 $scope.animals = ['cats', 'dogs', 'aardvarks', 'hamsters', 'squirrels'];
 });
 </script>

</body>
</html>

The HTML shown in Listing 8-2 contains several items of importance, but for the moment, direct
your attention to the various nonstandard attributes that are used throughout the page (e.g., ng-app,
ng-controller, and ng-repeat). These attributes demonstrate the use of directives, one of Angular’s most
prominent and popular features.

Put simply, Angular directives allow developers to enhance HTML’s syntax with their own custom
extensions. These extensions can occur in the form of classes, custom attributes, comments, and
even entirely new DOM elements, as we’ll soon see. When Angular encounters these directives, it
automatically executes whatever functionality has been associated with them. This could include the
execution of a function, the loading of a template, and much more. Angular also includes several of its
own built-in directives (such as those used in Listing 8-2), many of which we will be covering throughout
this chapter.

Chapter 8 ■ angularJS

158

When a web application is created with a declarative approach, the responsibility for determining
the flow of control within that application shifts from its source code to its interface. Rather than explicitly
stating what needs to occur once our application has loaded (as shown in Listing 8-1), we allow our
application’s interface to describe for itself what needs to occur. Angular directives help make this possible.

For newcomers, the differences between the imperative and declarative approaches to application
development may seem subtle, but as we continue, I think you will find that there is much to be
 excited about.

Modules: A Foundation for Building Loosely
Coupled Applications
Complex applications cease to be complex when we approach them not as a single entity, but instead as
a collection of small components that work together to achieve a desired goal. Angular modules, which
serve as the fundamental building blocks of all Angular projects, provide us with a convenient pattern for
structuring our applications in this way.

Take another look at Listing 8-2 and take note of this example’s call to Angular’s module() method,
which serves as both a setter and a getter. Here we create a module representing our application as a whole.
To define a new module using the setter syntax, we supply the name of our new module, along with an
array of names referencing other modules that this module depends on. In this example, our module has
no dependencies, but we still pass an empty array in order to use the setter syntax. Listing 8-3, on the other
hand, demonstrates the creation of a new app module with two dependencies.

Listing 8-3. Creating a New Angular Module with Dependencies

/**
 * Creates a new module that depends on two other modules - `module1` and `module2`
 */
var app = angular.module('app', ['module1', 'module2']);

Once a module has been defined, we can get a reference to it later by using the module() method’s
getter syntax, as shown in Listing 8-4.

Listing 8-4. Angular’s module() Method Serves As a Getter when No Dependencies Array Is Passed

/**
 * Returns a reference to a pre-existing module named `app`
 */
var app = angular.module('app');

Throughout this chapter, we will take a look at a number of tools that Angular provides for building
applications. As we do so, bear in mind that these tools are always used within the context of a module.
Every Angular application is itself a module that relies on other modules. Knowing this, we can visualize the
general structure of an Angular application as resembling that shown in Figure 8-1.

Chapter 8 ■ angularJS

159

Specifying a Bootstrap Module
Significant architectural projects in the physical world often begin with the laying of a cornerstone, the first
block around which all other blocks are set in reference to. Similarly, every Angular project has what can be
considered a cornerstone of its own—a module representing the application itself. The process by which this
module (along with its dependencies) is initialized is referred to as Angular’s “bootstrap” process, and can
be kicked off in one of two possible ways.

Automatic Bootstrapping
Refer back to Listing 8-2 and take note of the ng-app directive that is attached to the page’s html tag. When
this page has finished loading, Angular will automatically check for the presence of this directive. If it is
found, the module that it references will serve as the application’s foundational module—the module
representing the application itself. This module will automatically be initialized, at which point the
application will be ready.

Manual Bootstrapping
For most applications, Angular’s automatic bootstrapping process should suffice. However, in certain
situations it can be useful to exert a greater degree of control over when this process occurs. In such cases, it
is possible to manually initiate Angular’s bootstrap process, as shown in Listing 8-5.

Figure 8-1. Every Angular application is a module, and Angular modules may specify other modules as
dependencies

Chapter 8 ■ angularJS

160

Listing 8-5. Deferring Angular’s Bootstrap Process Until the Completion of an Initial jQuery-based
AJAX Request

$.ajax({
 'url': '/api/data',
 'type': 'GET'
}).done(function() {
 angular.bootstrap(document, ['app']);
});

In this example, we defer Angular’s bootstrap process until an initial AJAX request completes. Only then
do we call Angular’s bootstrap() method, passing a DOM object to serve as a container for our application
(its “root element”), along with an array that specifies a module named app (the module representing our
application) as a dependency.

 ■ Note Most of the time, an angular application will exist as the only such application within a page;
however, multiple angular applications can coexist within the same page. When they do, only one may take
advantage of angular’s automatic bootstrap process, while others must manually bootstrap themselves at the
appropriate time.

Directives: An Abstraction Layer for the DOM
Through the use of prototypical inheritance, JavaScript provides developers with a mechanism for creating
named functions (the JavaScript equivalent of a class) with custom, built-in behavior. Other developers can
then instantiate and use such classes, without being required to understand the inner workings of how they
function. The example shown in Listing 8-6 demonstrates this process.

Listing 8-6. Prototypal Inheritance in Action

// example-prototype/index.js

function Dog() {
}

Dog.prototype.bark = function() {
 console.log('Dog is barking.');
};

Dog.prototype.wag = function() {
 console.log('Tail is wagging.');
};

Dog.prototype.run = function() {
 console.log('Dog is running.');
};

var dog = new Dog();
dog.bark();
dog.wag();
dog.run();

Chapter 8 ■ angularJS

161

This process by which complex behavior is abstracted behind simple interfaces is a fundamental
object-oriented programming concept. In much the same way, Angular directives can be thought of as an
abstraction layer for the DOM, one that provides developers with a mechanism for creating complex web
components that can be used through the use of nothing more than simple HTML markup. Listing 8-7
provides an example that should help to clarify this concept.

Listing 8-7. Example Demonstrating the Creation of a Simple Angular Directive

// example-directive1/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Directive</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <news-list></news-list>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.directive('newsList', function() {
 return {
 'restrict': 'E',
 'replace': true,
 'templateUrl': '/templates/news-list.html'
 };
 });
 </script>

</body>
</html>

After creating a module for our application, we define a new directive by calling our module’s
directive() method, passing a name and a factory function responsible for returning an object that
describes our new directive to Angular. Several different options may be specified by the object that our
factory function returns, but in this simple example, only three are used:

restrict: Specifies whether this directive should be paired with matching
attributes (A), classes (C), or DOM elements (E) that Angular finds (or any
combination of the three). In this example, a value of E specifies that Angular
should only pair our directive with DOM elements whose tag names match.
We could have easily specified all three by passing AEC.

Chapter 8 ■ angularJS

162

replace: A value of true indicates that our component should completely
replace the DOM element that it has been paired with. A value of false would
allow us to create a directive that simply augments an existing DOM element in
some way, instead of completely replacing it with something else.

templateUrl: The markup that Angular finds at this URL will represent our
directive once it has been inserted into the DOM. It is also possible to pass in the
contents of a template directly through the use of the template option.

 ■ Note In regard to the name of our new directive, note the use of camelCase formatting when we created
it within angular and the use of dash-delimited formatting when we referenced it within htMl. this difference
is due to the case-insensitive nature of htMl markup. as angular parses our htMl, it will automatically resolve
these differences in naming conventions for us.

Now when we load our application in the browser, Angular will automatically pair our newly defined
directive with any matching DOM elements that it finds. As a result, all instances of the <news-list> tag will
be replaced with the element shown in Figure 8-2.

Figure 8-2. Our newly defined directive

Chapter 8 ■ angularJS

163

The basic example that we’ve just covered did little more than replace a custom DOM element with
a different template (we’ll build on this example by adding our own custom logic in the next section).
However, you should already be starting to notice the power and convenience that Angular directives
afford developers. The ability to inject complex components into an application through the use of simple
tags such as the one seen in Listing 8-7 provides developers with a convenient mechanism for abstracting
complex functionality behind simple facades that are much easier to manage.

Taking Control
In the previous section, we stepped through the creation of a simple Angular directive that, in the end, did
little more than replace a custom DOM element with a separate template of our choosing. This is a useful
application of directives in and of itself, but in order to appreciate the full power of directives, we’ll need to
take this example a step further by applying our own custom logic that will allow instances of our directive to
behave in interesting ways. We can do so with the help of scopes and controllers.

Scopes and Prototypal Inheritance
Angular scopes can be a bit tricky to grasp at first because they are directly related to one of the more
confusing aspects of JavaScript in general: prototypal inheritance. Newcomers to Angular often find scopes
to be one of its more confusing concepts, but a solid understanding of them is essential to working with the
framework. Before we continue, let’s take a few minutes to explore their purpose and how they work.

Within most “classical” object-oriented languages, inheritance is accomplished through the use of
classes. JavaScript, on the other hand, implements an entirely different inheritance structure known as
prototypal inheritance, in which all inheritance is accomplished through the use of objects and functions.
Listing 8-8 show an example of this process in action.

Listing 8-8. Example of Prototypal Inheritance, in Which Car Extends Vehicle

// example-prototype2/index.js

/**
 * @class Vehicle
 */
var Vehicle = function Vehicle() {
 console.log(this.constructor.name, 'says: I am a vehicle.');
};

Vehicle.prototype.start = function() {
 console.log('%s has started.', this.constructor.name);
};

Vehicle.prototype.stop = function() {
 console.log('%s has stopped.', this.constructor.name);
};

Chapter 8 ■ angularJS

164

/**
 * @class Car
 */
var Car = function Car() {
 console.log(this.constructor.name, 'says: I am a car.');
 Vehicle.apply(this, arguments);
};

Car.prototype = Object.create(Vehicle.prototype);
Car.prototype.constructor = Car;

Car.prototype.honk = function() {
 console.log('%s has honked.', this.constructor.name);
};

var vehicle = new Vehicle();
vehicle.start();
vehicle.stop();

var car = new Car();
car.start();
car.honk();
car.stop();

/* Result:
Vehicle says: I am a vehicle.
Vehicle has started.
Vehicle has stopped.
Car says: I am a car.
Car says: I am a vehicle.
Car has started.
Car has honked.
Car has stopped.
*/

In this example, a Vehicle function is defined. We assign start() and stop() instance methods to it by
augmenting its prototype. Afterward, we define a Car function, only this time, we replace its prototype with
one that inherits from that of Vehicle. Finally, we assign a honk instance method to Car. When running this
example, take note of the fact that new instances of Vehicle can start and stop, while new instances of Car
can start, stop, and honk. This is prototypal inheritance at work.

This is an important concept to grasp—during Angular’s bootstrap phase, a similar process occurs in
which a parent object (referred to as $rootScope) is created and attached to the application’s root element.
Afterward, Angular will continue parsing the DOM in search of directives (Angular refers to this process as
“compilation”). As these directives are encountered, Angular will create new objects which inherit from their
nearest ancestor and assign them to the DOM element each directive is attached to. Angular is, in effect,
creating a special sandbox—in Angular terms, a “scope”—for each component within our application. The
result can be visualized as something like that which is shown in Figure 8-3.

Chapter 8 ■ angularJS

165

Manipulating Scope with Controllers
An Angular controller is nothing more than a function whose sole purpose is to manipulate a scope object,
and it is here that we can begin to add some intelligence to our application’s components. Listing 8-9 shows
an extended version of the example we looked at in Listing 8-7. The only difference is the addition of a
controller property to the object responsible for describing our directive. The contents of the template this
directive uses are shown in Listing 8-10.

Listing 8-9. Extended Version of Listing 8-7 Example That Adds Custom Behavior to Our New Directive

// example-directive2/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Directive</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <news-list></news-list>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.directive('newsList', function() {
 return {
 'restrict': 'E',
 'replace': true,
 'controller': function($scope, $http) {

Figure 8-3. A web application with various components created with the help of directives. On the right,
portions of the DOM are highlighted where new scopes have been created

Chapter 8 ■ angularJS

166

 $http.get('/api/news').then(function(result) {
 $scope.items = result.data;
 });
 },
 'templateUrl': '/templates/news-list.html'
 };
 });
 </script>

</body>
</html>

Listing 8-10. Contents of Our Directive’s Template

// example-directive2/public/templates/news-list.html

<div class="row">
 <div class="col-xs-8">
 <div ng-repeat="item in items">
 <div class="media">
 <div class="media-left">

 </div>
 <div class="media-body">
 <h4 class="media-heading" ng-bind="item.title"></h4>
 </div>
 </div>
 </div>
 </div>
</div>

In Listing 8-9, look specifically at the portion where we assign a function to our directive’s controller
property. Take note of the fact that our controller function receives two arguments: $scope and $http. For
the moment, don’t concern yourself with how these arguments came to be passed to our controller—we’ll
discuss that in the upcoming section on services. For now, the important thing to realize is that within our
controller, the $scope variable refers to the object that Angular automatically created for us when it first
encountered our directive in the DOM. At this point, our controller has the opportunity to alter that object
and, as a result, to see those changes reflected in the DOM due to Angular’s support for two-way data
binding.

Two-Way Data Binding
Data binding describes Angular’s ability to link a template with a JavaScript object (i.e., a scope), allowing
the template to reference properties within the scope that are then rendered to the browser. Figure 8-4
illustrates this process.

Chapter 8 ■ angularJS

167

Angular’s support for data binding doesn’t stop with this one-way process by which data referenced
within a scope is displayed within a view. The framework also provides directives that enable the inverse
effect, allowing a directive’s scope to update as changes occur within its view (e.g., when a form field’s value
changes). When Angular’s implementation of data binding is described as “two-way,” this is what is being
referred to.

 ■ Note the topic of two-way data binding will be discussed in greater detail later in the chapter in the
“Creating Complex Forms” section.

In Listing 8-9, our controller uses Angular’s $http service to fetch an array from our API that contains
headlines from National Public Radio and The Onion. It then assigns that array to the items property of our
directive’s $scope object. To see how this information gets reflected within the DOM, direct your attention to
the ng-repeat directive shown in Listing 8-10. This core Angular directive allows us to iterate over our array
from within our template, creating new <div class="media">...</div> elements for each item it contains.
Finally, Angular’s built-in ng-src and ng-bind directives allow us to dynamically assign image URLs and
textual content to the appropriate elements within our template.

The final result after having loaded this application in the browser can be seen in Figure 8-5.

Figure 8-4. Process by which data binding allows Angular applications to render data that is referenced
within a scope object

Chapter 8 ■ angularJS

168

Loose Coupling Through Services and Dependency Injection
In the previous section, you were introduced to the basic process by which Angular applications are
organized as a series of nested scopes, which can be manipulated by controllers and referenced by
templates via two-way data binding. Using only these concepts, it is possible to build fairly simple
applications (as demonstrated by some of the examples included in this chapter), but without planning,
attempts to build anything more complex will quickly run into growing pains. In this section, we’ll discover
how services can support developers in building loosely coupled Angular applications that are designed to
accommodate growth.

Dependency Injection
Before we dive into services, it’s important that we take a minute to talk about dependency injection, a
concept that is fairly new to the world of client-side frameworks and one that is relied on heavily by Angular.

First, take a look at Listing 8-11, which shows a very basic Node.js application with a single dependency,
the fs module. In this example, our module has the responsibility of retrieving the fs module via the
require() method.

Figure 8-5. Our application after having been loaded in the browser

Chapter 8 ■ angularJS

169

Listing 8-11. Node.js Application That Depends on the fs Module

var fs = require('fs');
fs.readFile('~/data.txt', 'utf8', function(err, contents) {
 if (err) throw new Error(err);
 console.log(contents);
});

The pattern that we see here, in which a module “requires” a dependency, intuitively makes sense. A
module needs another component, so it goes out and gets it. The concept of dependency injection, however,
flips this concept on its head. Listing 8-12 shows a simple example of dependency injection in action within
Angular.

Listing 8-12. Dependency Injection in Action Within Angular

var app = angular.module('app', []);
app.controller('myController', function($http) {
 $http.get('/api/news').then(function(result) {
 console.log(result);
 });
});

Frameworks such as Angular that implement dependency injection prescribe a common pattern by
which modules can register themselves with a central point of control. In other words, as an application
is initialized, modules are given the opportunity to say, “This is my name, and this is where you can find
me.” Afterward and throughout the execution of that program, modules that are loaded can reference their
dependencies simply by specifying them as arguments to their constructor function (or class). The order in
which they are specified makes no difference.

Refer back to Listing 8-12. In this example, we create a new app module to represent our application.
Next, we create a controller named myController within our application’s module, passing a constructor
function that will be called whenever a new instance is needed. Take note of the $http argument that is
passed into our controller’s constructor; this is an example of dependency injection at work. The $http
dependency that our controller refers to is a module included within Angular’s core codebase. During our
application’s bootstrap phase, Angular registered this module in the form of a service—the same type of
service that you’re about to learn how to create for yourself.

 ■ Note By convention, core services, apIs, and properties provided by angular are prefixed with $. to prevent
possible collisions, it is best if you avoid following this convention within your own code.

Thin Controllers and Fat Services
ake another look at Listing 8-9, which demonstrates the process by which controllers can be used to add
intelligence to an application’s directives. In this example, our controller creates an AJAX request that
returns an array of news headlines from our API. While that works, this example doesn’t address the very
real and foreseeable need to share this information throughout our application.

Chapter 8 ■ angularJS

170

While we could have other interested components duplicate this AJAX request themselves, that
wouldn’t be ideal for a number of reasons. We would be in a much better position if we could instead
abstract the logic for gathering these headlines into a centralized API that could be reused throughout our
application. Doing so would provide us with a number of benefits, including the ability to change the URL at
which this information is fetched in a single location, unbeknownst to consumers of the API.

As we’ll see in a moment, Angular services provide us with the tools we need to accomplish this goal.
Services provide us with a mechanism for creating well-defined interfaces that can be shared and reused
throughout an application. When the bulk of an Angular application’s logic is structured in this way, we can
begin to see controllers for what they really are: little more than a thin layer of glue responsible for binding
scopes with services in ways that make the most sense for a particular view.

Within Angular, three broad categories of service types (one of which is confusingly named “service”)
exist: factories, services, and providers. Let’s take a look at each of them.

Factories
The example shown in Listing 8-13 builds on Listing 8-9 by moving the logic required for fetching our
headlines into a factory.

Listing 8-13. Angular headlines Factory That Provides an API for Fetching News Headlines

// example-directive3/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Directive</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <news-list></news-list>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.directive('newsList', function() {
 return {
 'restrict': 'E',
 'replace': true,
 'controller': function($scope, headlines) {
 headlines.fetch().then(function(items) {
 $scope.items = items;
 });
 },
 'templateUrl': '/templates/news-list.html'
 };
 });
 app.factory('headlines', function($http) {
 return {

Chapter 8 ■ angularJS

171

 'fetch': function() {
 return $http.get('/api/news').then(function(result) {
 return result.data;
 });
 }
 };
 });
 </script>

</body>
</html>

In Listing 8-13, the headlines factory returns an object with a fetch() method that, when called, will
query our API for headlines and return them in the form of a promise.

In most Angular applications, factories are by far the most commonly used type of service. The first time
a factory is referenced as a dependency, Angular will invoke the factory’s function and return the result to
the requestor. Subsequent references to the service will receive the same result that was originally returned
the first time the service was referenced. In other words, factories can be thought of as singletons, in that
they are never invoked more than once.

Services
The example shown in Listing 8-14 builds on Listing 8-9 by moving the logic required for fetching our
headlines into a service.

Listing 8-14. Angular headlines Service That Provides an API for Fetching News Headlines

// example-directive4/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Directive</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <news-list></news-list>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.directive('newsList', function() {
 return {
 'restrict': 'E',
 'replace': true,
 'controller': function($scope, headlines) {
 headlines.fetch().then(function(items) {
 $scope.items = items;

Chapter 8 ■ angularJS

172

 });
 },
 'templateUrl': '/templates/news-list.html'
 };
 });
 app.service('headlines', function($http) {
 this.fetch = function() {
 return $http.get('/api/news').then(function(result) {
 return result.data;
 });
 };
 });
 </script>

</body>
</html>

Within Angular, services function almost identically to factories, with one key difference. While factory
functions are simply invoked, service functions are called as constructors via the new keyword, allowing
them to be defined in the form of a class that is instantiated. Which you choose to use largely depends on
style preferences, as the same end result can be achieved with both.

In this example, instead of returning an object as we did within our factory, we assign a fetch() method
to this, the object ultimately returned by our service’s constructor function.

Providers
The example shown in Listing 8-15 builds on Listing 8-9 by moving the logic required for fetching our
headlines into a provider.

Listing 8-15. Angular headlines Provider That Provides an API for Fetching News Headlines

// example-directive5/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Directive</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <news-list></news-list>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.directive('newsList', function() {
 return {
 'restrict': 'E',

Chapter 8 ■ angularJS

173

 'replace': true,
 'controller': function($scope, headlines) {
 headlines.fetch().then(function(items) {
 $scope.items = items;
 });
 },
 'templateUrl': '/templates/news-list.html'
 };
 });
 app.config(function(headlinesProvider) {
 headlinesProvider.limit = 10;
 });
 app.provider('headlines', function() {
 this.$get = function($http) {
 var self = this;
 return {
 'fetch': function() {
 return $http.get('/api/news', {
 'params': {
 'limit': self.limit || 20
 }
 }).then(function(result) {
 return result.data;
 });
 }
 };
 };
 });
 </script>

</body>
</html>

Unlike factories and services, which are fully responsible for determining their own settings, Angular
providers allow developers to configure them during their parent module’s configuration phase. In this way,
providers can be thought of as configurable factories. In this example, we define a headlines provider that
functions identically to the factory we created in Listing 8-13, only this time, the fetch() method passes a
configurable limit parameter to our API that allows it to specify a limit for the number of results it will receive.

In Listing 8-15, we define a factory function at this.$get within our provider. When the headlines
provider is referenced as a dependency, Angular will invoke this function and return its result to the
requestor, much like it did with our factory in Listing 8-13. In contrast, notice how our provider’s fetch()
method is able to reference a limit property that was defined within the module’s config block.

Creating Routes
So-called “single-page applications” built with frameworks such as Angular provide their users with fluid
experiences that are more akin to that of traditional desktop applications. They do so by preloading all (or
most) of the various resources they require (e.g., scripts, stylesheets, etc.) within a single, up-front page load.
Subsequent requests for different URLs are then intercepted and processed via background AJAX requests,
rather than requiring a full refresh of the page. In this section, you’ll learn how to manage such requests with
the help of Angular’s ngRoute module.

Chapter 8 ■ angularJS

174

Listing 8-16 builds on the example that was previously shown in Listing 8-13. This time, however, we
have added two routes to our application that allow users to navigate to sections labeled “Dashboard” and
“News Headlines.” Only after the user navigates to the /#/headlines route will our newsList directive be
injected into the page. The following steps are taken to achieve this goal:

 1. Define a configuration block that will be executed during our application’s
bootstrap phase. Within this function, we reference the $routeProvider service
provided by Angular’s angular-route package, which must be installed in
addition to Angular’s core library.

 2. Define an array, routes, within which objects are placed that define the various
routes to be made available by our application. In this example, each object’s
route property defines the location at which the route will be loaded, while the
config property allows us to specify a controller function and template to be
loaded at the appropriate time.

 3. Iterate through each entry of the routes array and pass the appropriate
properties to the when() method made available by the $routeProvider service.
This approach provides us with a simple method by which multiple routes can
be defined. Alternatively, we could have made two separate, explicit calls to the
$routeProvider.when() method without using an array.

 4. Utilize the $routeProvider.otherwise() method to define a default route to be
loaded in the event that no route (or an invalid route) is referenced by the user.

Listing 8-16. Angular Application That Defines Two Routes, dashboard and headlines

// example-router1/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Routing Example</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <ng-view></ng-view>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script src="/bower_components/angular-route/angular-route.js"></script>
 <script src="/modules/news-list.js"></script>
 <script>
 var app = angular.module('app', ['ngRoute', 'newsList']);
 app.config(function($routeProvider) {
 var routes = [
 {
 'route': '/dashboard',
 'config': {

Chapter 8 ■ angularJS

175

 'templateUrl': '/templates/dashboard.html'
 }
 },
 {
 'route': '/headlines',
 'config': {
 'controller': function($log) {
 $log.debug('Welcome to the headlines route.');
 },
 'templateUrl': '/templates/headlines.html'
 }
 }
];
 routes.forEach(function(route) {
 $routeProvider.when(route.route, route.config);
 });
 $routeProvider.otherwise({
 'redirectTo': '/dashboard' // Our default route
 });
 });
 </script>

</body>
</html>

Route Parameters
In practice, most of the routes that exist within a typical Angular application are designed to serve up
dynamic content that varies based on the value of one or more parameters that each route expects. The
example shown in Listing 8-17 demonstrates how this can be accomplished.

Listing 8-17. Angular Application with Routes That Vary Their Content Based on the Value of an Expected
Parameter

// example-router2/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Routing Example</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <ng-view></ng-view>

Chapter 8 ■ angularJS

176

 <script src="/bower_components/angularjs/angular.js"></script>
 <script src="/bower_components/angular-route/angular-route.js"></script>
 <script>
 var app = angular.module('app', ['ngRoute']);
 app.config(function($routeProvider) {
 var routes = [{
 'route': '/dashboard',
 'config': {
 'templateUrl': '/templates/dashboard.html',
 'controller': function($scope, $http) {
 return $http.get('/api/animals').then(function(result) {
 $scope.animals = result.data;
 });
 },
 }
 },
 {
 'route': '/animals/:animalID',
 'config': {
 'templateUrl': '/templates/animal.html',
 'controller': function($scope, $route, $http) {
 $http.get('/api/animals/' + $route.current.params.animalID).
then(function(result) {
 $scope.animal = result.data;
 });
 }
 }
 }];
 routes.forEach(function(route) {
 $routeProvider.when(route.route, route.config);
 });
 $routeProvider.otherwise({
 'redirectTo': '/dashboard' // Our default route
 });
 });
 </script>

</body>
</html>

Route Resolutions
If done correctly, single-page applications can provide their users with an experience that is substantially
improved over that of their standard counterparts. That said, these improvements don’t come without a cost.
Coordinating the various API calls that occur throughout a single-page application’s life cycle can be quite
challenging. Before we move on, let’s touch on a particularly useful feature provided by Angular’s ngRoute
module that can help us tame some of this complexity: resolutions.

Resolutions allow us to define one or more steps that must take place before a transition to a specific
route can occur. If any of the resolutions defined for a route happen to return promises, the transition to the
desired route will complete only after each of them has been resolved. The example shown in Listing 8-18
shows route resolutions in action.

Chapter 8 ■ angularJS

177

Listing 8-18. Route Resolutions in Action

// example-router3/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Routing Example</title>
 <link rel="stylesheet" href="/css/style.css">
 <link rel="stylesheet" href="/bower_components/bootstrap/dist/css/bootstrap.css">
</head>
<body class="container">

 <ng-view></ng-view>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script src="/bower_components/angular-route/angular-route.js"></script>
 <script>
 var app = angular.module('app', ['ngRoute']);
 app.config(function($routeProvider) {
 $routeProvider.when('/dashboard', {
 'templateUrl': '/templates/dashboard.html',
 'controller': function($scope, animals, colors) {
 $scope.animals = animals;
 $scope.colors = colors;
 },
 'resolve': {
 'animals': function($http) {
 return $http.get('/api/animals').then(function(result) {
 return result.data;
 });
 },
 'colors': function($http) {
 return $http.get('/api/colors').then(function(result) {
 return result.data;
 });
 }
 }
 });
 $routeProvider.otherwise({
 'redirectTo': '/dashboard' // Our default route
 });
 });
 </script>

</body>
</html>

Chapter 8 ■ angularJS

178

In this example, a single route is defined that displays a list of animals and colors after making two
corresponding calls to an API to fetch this information. Rather than request this information directly
from within our route’s controller, we create requests within the route’s resolve object. As a result, when
our route’s controller function is called, we can know with certainty that the requests have already been
completed.

Creating Complex Forms
HTML forms can be frustratingly difficult to manage. A major concern is validation, the process by which
users are made aware of problems (e.g., a required field that has not been filled out) and guided to their
resolution. In addition, complex forms frequently require additional logic that allows them to vary their
content based on the user’s answers to previous questions. Throughout the next several pages, we’ll take a
look at a few examples that demonstrate how Angular can help simplify some of these challenges.

Validation
Well-designed HTML forms give careful consideration to user experience. They don’t assume that users
fully understand what is being asked of them. They also go out of their way to notify users when problems
exist, along with the steps that are required to resolve them. Fortunately, Angular’s declarative syntax allows
developers to easily create forms that abide by these rules.

Listing 8-19 shows the HTML for our first example, while Listing 8-20 shows the accompanying
controller.

Listing 8-19. HTML Form That Implements Validation and Displays Dynamic Feedback to the User

// example-form1/public/index.html

<!DOCTYPE html>
<html lang="en" ng-app="app">
<head>
 <meta charset="utf-8">
 <title>Example Form</title>
 <link rel="stylesheet" href="/css/style.css">
</head>
<body ng-controller="formController">

 <form name="myForm" ng-class="formClass" ng-submit="submit()" novalidate>

 <div class="row">

 <div ng-class="{
 'has-error': !myForm.first_name.$pristine && !myForm.first_name.$valid,
 'has-success': !myForm.first_name.$pristine && myForm.first_name.$valid
 }">
 <label>First Name</label>
 <input
 type="text"
 name="first_name"
 ng-model="model.first_name"
 class="form-control"

Chapter 8 ■ angularJS

179

 ng-minlength="3"
 ng-maxlength="15"
 ng-required="true">
 <p ng-show="
 !myForm.first_name.$pristine &&
 myForm.first_name.$error.required">
 First name is required.
 </p>
 <p ng-show="
 !myForm.first_name.$pristine &&
 myForm.first_name.$error.minlength">
 First name must be at least 3 characters long.
 </p>
 <p ng-show="
 !myForm.first_name.$pristine &&
 myForm.first_name.$error.maxlength">
 First name can have no more than 15 characters.
 </p>
 </div>

 <div ng-class="{
 'has-error': !myForm.last_name.$pristine && !myForm.last_name.$valid,
 'has-success': !myForm.last_name.$pristine && myForm.last_name.$valid
 }">
 <label>Last Name</label>
 <input
 type="text"
 name="last_name"
 ng-model="model.last_name"
 class="form-control"
 ng-minlength="3"
 ng-maxlength="15"
 ng-required="true">
 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.required">
 Last name is required.
 </p>
 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.minlength">
 Last name must be at least 3 characters long.
 </p>
 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.maxlength">
 Last name can have no more than 15 characters.
 </p>
 </div>

Chapter 8 ■ angularJS

180

 </div>

 <div class="row">
 <div>
 <button type="submit" ng-disabled="myForm.$invalid">Submit</button>
 <button type="button" ng-click="reset()">Reset</button>
 </div>
 </div>

 </form>

 <hr>

 <div class="output" ng-bind="output"></div>

 <script src="/bower_components/angularjs/angular.js"></script>
 <script src="/app/index.js"></script>

</body>
</html>

Listing 8-20. Controller That Has Been Attached to the Document’s <body> Element

// example-form1/public/app/index.js

var app = angular.module('app', []);
app.controller('formController', function($scope, $http, $log) {

 $scope.formClass = null;
 $scope.model = {};

 $http.get('/api/model').then(function(result) {
 $scope.model = result.data;
 });

 $scope.submit = function() {
 if (!$scope.myForm.$valid) return;
 $http.post('/api/model', {
 'model': $scope.model
 }).then(function() {
 alert('Form submitted.');
 }).catch(function(err) {
 alert(err);
 });
 };

 $scope.reset = function() {
 $scope.model = {};
 $http.post('/api/model', {
 'model': $scope.model
 });
 };

Chapter 8 ■ angularJS

181

 /**
 * Angular's built-in `$watch()` method (available within every controller)
 * enables us to watch for and respond to changes that occur within variables
 * defined at the `$scope` level. Here we save the contents of our a form as
 * a JSON string to `$scope.output`, which is referenced by our template.
 */
 $scope.$watch('model', function() {
 $scope.output = angular.toJson($scope.model, 4);
 }, true);

});

As Angular compiles our application, it will apply a built-in form directive to the <form> element
contained within our template. This directive will create a new instance of a special controller,
FormController, that Angular reserves for managing form instances. Finally, based on the value of our
form’s name attribute (in this case, myForm), Angular will assign a reference to the newly created instance of
FormController to the form’s parent scope, allowing our controller to interact with our newly created form
at $scope.myForm.

Instances of FormController provide a number of useful properties and methods, which you can see
referenced throughout Listing 8-19 and Listing 8-20. For instance, note how we are able to dynamically
enable or disable our form’s submit button with the help of the ng-disabled directive. In this example,
we’ve set this directive to reference our form’s $invalid property, which will always return TRUE or FALSE to
indicate whether any of the inputs contained within our form are in an invalid state.

Listing 8-19 also applies additional built-in Angular directives (ng-minlength, ng-maxlength, and
ng-required) to implement some simple validation rules within our form. Directly below each of these
inputs, our template references various properties on the myForm object to determine what, if any, errors
currently exist. Based on this information, it can then hide or show the appropriate feedback to the user.

Note the use of the ng-model directive in Listing 8-19 on each of our form’s input fields. This directive
(which is specifically designed to be used with form controls) allows us to implement two-way data binding,
a concept that was briefly mentioned earlier in the chapter. As the values entered within each of these fields
is changed, so too will our scope be updated, at the properties referenced by ng-model. Thanks to two-way
data binding, the inverse effect also holds. If our controller were to modify a value referenced by ng-model,
the matching form input would also update accordingly. It’s important to note that the ng-model directive
is the preferred method by which we can determine a form’s input values. Within Angular, an input’s name
attribute is used solely for purposes of validation.

Figure 8-6, Figure 8-7, and Figure 8-8 show the end result that users will see in their browsers.

Chapter 8 ■ angularJS

182

Figure 8-7. As the user enters their information, the form dynamically displays the appropriate feedback,
based on the information that has been submitted. Here we notify the user that the “First Name” field should
be at least three characters long

Figure 8-6. Our form in its initial state. The example that is included with this chapter includes a preview of
our scope’s model object that will automatically update as data is entered into the form

Chapter 8 ■ angularJS

183

Conditional Logic
Forms often require additional logic to determine under what circumstances certain questions or other
information should be presented. A commonly encountered scenario would involve a form that asks a user
for their e-mail address only after they have selected “Email” as their preferred method of contact. Our
next example, shown in Listing 8-21, will build on the previous one by demonstrating how such logic can
be implemented through the use of the ng-if directive. Figure 8-9 and Figure 8-10 show the end result, as
rendered within the browser.

Listing 8-21. Excerpt from Our Example’s Template Showing the HTML Added to Our Previous Example

// example-form2/public/index.html

<div class="row">

 <div ng-class="{
 'has-error': !myForm.contact_method.$pristine && !myForm.contact_method.$valid,
 'has-success': !myForm.contact_method.$pristine && myForm.contact_method.$valid
 }">
 <label>Contact Method</label>
 <select
 name="contact_method"
 ng-model="model.contact_method"
 ng-required="true">
 <option value="">Select One</option>
 <option value="email">Email</option>
 <option value="phone">Phone</option>
 </select>
 <p ng-show="
 !myForm.contact_method.$pristine &&

Figure 8-8. Our form in its final state, after the user has entered all of their information

Chapter 8 ■ angularJS

184

 myForm.contact_method.$error.required">
 Contact method is required.
 </p>
 </div>

 <div ng-if="model.contact_method == 'email'" ng-class="{
 'has-error': !myForm.email.$pristine && !myForm.email.$valid,
 'has-success': !myForm.email.$pristine && myForm.email.$valid}">
 <label>Email Address</label>
 <input
 type="email"
 name="email"
 ng-model="model.email"
 ng-required="true">
 <p ng-show="
 !myForm.email.$pristine &&
 myForm.email.$error.required">
 Email address is required.
 </p>
 </div>

 <div ng-if="model.contact_method == 'phone'" ng-class="{
 'has-error': !myForm.phone.$pristine && !myForm.phone.$valid,
 'has-success': !myForm.phone.$pristine && myForm.phone.$valid}">
 <label>Phone Number</label>
 <input
 type="tel"
 name="phone"
 ng-model="model.phone"
 ng-required="true">
 <p ng-show="
 !myForm.phone.$pristine &&
 myForm.phone.$error.required">
 Phone number is required.
 </p>
 </div>

</div>

Chapter 8 ■ angularJS

185

Repeatable Sections
For our final example, let’s see how Angular can assist us in creating a form that employs repeatable sections,
based on input from the user. In Listing 8-22, we create a form that asks the user to create “Type” and
“Name” entries for each of their pets. Once added, each entry also provides a link that allows the user to
remove it.

Figure 8-9. The initial state of our form, before a value has been selected for “Contact Method”

Figure 8-10. Our form displaying the appropriate input field once a value has been chosen for
“Contact Method”

Chapter 8 ■ angularJS

186

Listing 8-22. Template (and Accompanying Controller) Demonstrating the use of Repeatable Sections

// example-form3/public/index.html

<div class="row">
 <div>
 <h2>Pets</h2> <small><a ng-click="addPet()">Add Pet</small>
 </div>
</div>

<div class="row" ng-repeat="pet in model.pets">

 <div>
 <label>Pet Type</label>
 <select
 ng-attr-name="pet_type{{$index}}"
 ng-model="pet.type"
 required>
 <option value="">Select One</option>
 <option value="cat">Cat</option>
 <option value="dog">Dog</option>
 <option value="Goldfish">Goldfish</option>
 </select>
 </div>

 <div ng-class="{
 'has-error': !myForm.last_name.$pristine && !myForm.last_name.$valid,
 'has-success': !myForm.last_name.$pristine && myForm.last_name.$valid
 }">
 <label>
 Pet's Name <small class="pull-right">
 <a ng-click="removePet(pet)">Remove Pet</small>
 </label>
 <input
 type="text"
 ng-attr-name="pet_name{{$index}}"
 ng-model="pet.name"
 ng-minlength="3"
 ng-maxlength="15"
 required>
 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.required">
 Last name is required.
 </p>

Chapter 8 ■ angularJS

187

 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.minlength">
 Last name must be at least 3 characters long.
 </p>
 <p ng-show="
 !myForm.last_name.$pristine &&
 myForm.last_name.$error.maxlength">
 Last name can have no more than 15 characters.
 </p>
 </div>

</div>
// example-form5/public/app/index.js

$scope.addPet = function() {
 $scope.model.pets.push({});
};

$scope.removePet = function(pet) {
 $scope.model.pets.splice($scope.model.pets.indexOf(pet), 1);
};

In Listing 8-22, we use Angular’s ng-repeat directive to iterate over entries in our scope’s model.pets
array. Note how we are able to reference {{$index}} within the scope created by ng-repeat to determine
our current position within the array. Using this information, we assign a unique name to each entry for
validation purposes.

Our template provides the user with a global “Add Pet” link at the top of the section that, when clicked,
calls the addPet() method that has been defined within our controller. Doing so appends an empty object to
our scope’s model.pets array. As our ng-repeat directive iterates over each entry, we also provide the user
with a link for removal. Clicking this link passes the current entry from our model.pets array to our scope’s
removePet() method, which removes it from the array.

Figure 8-11 shows the final result, as rendered within the browser.

Chapter 8 ■ angularJS

188

Figure 8-11. Our final example, as presented to the user

Summary
At the start of this chapter, we took a moment to compare the traditional, “imperative” approach to
development with the “declarative” approach favored by Angular. While each approach has its pros and
cons, it’s hard to deny that Angular’s approach is particularly well suited to solving problems associated with
form development. This is not a coincidence.

Over time, Angular has slowly evolved into a framework capable of supporting large applications, but
that was not its original intent. Angular’s original focus was in fact on form development, as one of the
co-creators behind Angular, Miško Hevery, readily admits. This is an important fact to be aware of, because
it speaks to the types of projects that Angular is particularly well suited for (as well as those for which more
appropriate alternatives may exist).

Angular has attracted a tremendous amount of commentary, mostly positive, since its initial release.
The framework’s implementation of directives and dependency injection has had a drastic impact on
the landscape of client-side development and has raised great questions as to what developers should be
expecting from similar frameworks.

Chapter 8 ■ angularJS

189

That said, the number of developers with valid criticisms of the framework has been steadily increasing
for some time. The bulk of this criticism revolves around performance concerns related to Angular’s use
of so-called “dirty checking” as part of its implementation of two-way data binding. This criticism is fair,
because Angular’s implementation of two-way data binding is inefficient. This author’s experience, however,
is that Angular’s performance is more than adequate for the vast majority of use cases for which it was
designed. At the time of this book’s publication, a major rewrite (version 2.0) was also underway, which
should address many, if not all, of these concerns.

If you are currently wondering whether Angular is a good fit for your project, there is no simple “yes”
or “no” answer; it depends entirely upon your specific needs. Generally speaking, however, I am a big fan.
Web-based applications are growing more complex and feature-rich by the day. Developers can only create
and maintain such applications when they have tools that allow them to abstract complexity behind simple
interfaces. Through the use of tools such as directives, Angular extends this well-understood concept to the
DOM in very exciting ways.

Related Resources
•	 AngularJS: https://angularjs.org/

https://angularjs.org/

191

Chapter 9

Kraken

An organization’s ability to learn, and translate that learning into action rapidly, is the
ultimate competitive advantage.

—Jack Welch

As development platforms go, Node is still the new kid on the block. But as many well-known and respected
organizations will attest, the benefits afforded by JavaScript as a server-side language have already had a
tremendous impact on the manner in which they develop and deploy software. Among the many accolades
for Node, Michael Yormark, Project Manager at Dow Jones, has proclaimed “The simple truth is Node has
reinvented the way we create websites. Developers build critical functionality in days, not weeks.”
(https://www.joyent.com/blog/the-node-firm-and-joyent-offer-node-js-training)

Kiran Prasad, Director of Mobile Engineering at LinkedIn, has stated “On the server side, our entire
mobile software stack is completely built in Node. One reason was scale. The second is Node showed us
huge performance gains.” (https://nodejs.org/download/docs/v0.6.7/)

Node is certainly generating some rather large waves in the development community, especially when
you consider its relatively young age. All that said, however, let’s be clear: the platform is far from perfect.
JavaScript is beautifully expressive and flexible, but it’s also flexible in a way that is easily abused. While
Node-based projects enjoy rapid development cycles and impressive performance gains, they frequently
suffer at the hands of an overall lack of convention both within the language itself and throughout the
development community as a whole. While this problem may not be obvious within small, centralized
development teams, it can quickly rear its head as teams grow in size and distribution—just ask Jeff Harrell,
Director of Engineering at PayPal (www.paypal-engineering.com/2013/11/):

We especially liked the ubiquity of Express, but found it didn’t scale well in multiple
development teams. Express is non-prescriptive and allows you to set up a server in
whatever way you see fit. This is great for flexibility, but bad for consistency in large
teams... Over time we saw patterns emerge as more teams picked up node.js and turned
those into Kraken.js; it’s not a framework in itself, but a convention layer on top of express
that allows it to scale to larger development organizations. We wanted our engineers to
focus on building their applications and not just focus on setting up their environments.

https://www.joyent.com/blog/the-node-firm-and-joyent-offer-node-js-training
https://nodejs.org/download/docs/v0.6.7/
http://www.paypal-engineering.com/2013/11/

Chapter 9 ■ KraKen

192

This chapter will introduce you to Kraken, a secure and scalable layer for Express-based applications
brought to you by the developers at PayPal. Topics covered within this chapter include

•	 Environment-aware configuration

•	 Configuration-based middleware registration

•	 Structured route registration

•	 The Dust template engine

•	 Internationalization and localization

•	 Enhanced security techniques

 ■ Note Kraken builds on the already firm foundation of express, the minimalist web framework for node
whose apI has become the de facto standard for frameworks in this category. as a result, this chapter assumes
the reader already has a basic, working familiarity with express. portions of this chapter also discuss concepts
covered in this book’s chapters on Grunt, Yeoman, and Knex/Bookshelf. If you are unfamiliar with these subjects,
you may wish to read those chapters before you continue.

Environment-Aware Configuration
As applications are developed, tested, staged, and deployed, they naturally progress through a series
of corresponding environments, each requiring its own unique set of configuration rules. For example,
consider Figure 9-1, which illustrates the process by which an application moves through a continuous
integration and delivery deployment pipeline.

Figure 9-1. Application that requires unique settings based on its environment

As the application in Figure 9-1 progresses through each environment, the settings that tell it how
to connect to the various external services on which it relies must change accordingly. Kraken’s confit
library provides developers with a standard convention for accomplishing this goal by offering a simple,
environment-aware configuration layer for Node applications.

Confit operates by loading a default JSON configuration file (typically named config.json). Confit then
attempts to load an additional configuration file based on the value of the NODE_ENV environment variable.
If an environment-specific configuration file is found, any settings it specifies are recursively merged with
those defined within the default configuration.

Chapter 9 ■ KraKen

193

This chapter’s confit-simple project provides a simple application that relies on confit for
determining its configuration. Listing 9-1 demonstrates the process by which confit is initialized, while
Listing 9-2 shows the contents of the project’s /config folder, from which confit is instructed to search for
configuration files.

Listing 9-1. Initializing confit

// confit-simple/index.js

var confit = require('confit');
var prettyjson = require('prettyjson');
var path = require('path');
var basedir = path.join(__dirname, 'config');

confit(basedir).create(function(err, config) {
 if (err) {
 console.log(err);
 process.exit();
 }
 console.log(prettyjson.render({
 'email': config.get('email'),
 'cache': config.get('cache'),
 'database': config.get('database')
 }));
});

Listing 9-2. Contents of the /config Folder

// Default configuration
// confit-simple/config/config.json

{
 // SMTP server settings
 "email": {
 "hostname": "email.mydomain.com",
 "username": "user",
 "password": "pass",
 "from": "My Application <noreply@myapp.com>"

},
 "cache": {
 "redis": {
 "hostname": "cache.mydomain.com",
 "password": "redis"

 }
}

}

Chapter 9 ■ KraKen

194

// Development configuration
// confit-simple/config/development.json

{
 "database": {
 "postgresql": {
 "hostname": "localhost",
 "username": "postgres",
 "password": "postgres",
 "database": "myapp"

 }
},

 "cache": {
 "redis": {
 "hostname": "localhost",
 "password": "redis"

 }
}

}

// Production configuration
// confit-simple/config/production.json

{
 "database": {
 "postgresql": {
 "hostname": "db.myapp.com",
 "username": "postgres",
 "password": "super-secret-password",
 "database": "myapp"

 }
},

 "cache": {
 "redis": {
 "hostname": "redis.myapp.com",
 "password": "redis"

 }
}

}

Before continuing, notice that our project’s default configuration file provides connection settings for
an e-mail server under the email property, while neither of the project’s environment-specific configuration
files provides such information. In contrast, the default configuration provides connection settings for
a Redis cache server under the nested cache:redis property, while both of the environment-specific
configurations provide overriding information for this property.

Notice also that the default configuration file includes a comment above the email property.
Comments, which are not part of the JSON specification, would normally result in an error being thrown
if we attempted to use Node’s require() method to parse the contents of this file. Confit, however, will
strip out such comments before attempting to parse the file, allowing us to embed comments within our
configuration as needed.

Chapter 9 ■ KraKen

195

Listing 9-3 shows the output that is logged to the console when the project is run with the NODE_ENV
environment variable set to development.

Listing 9-3. Running the confit-simple Project in development Mode

$ export NODE_ENV=development && node index

email:
 hostname: email.mydomain.com
 username: user
 password: pass
 from: My Application <noreply@myapp.com>
cache:
 redis:
 hostname: localhost
 password: redis
database:
 postgresql:
 hostname: localhost
 username: postgres
 password: postgres
 database: myapp

 ■ Note In Listing 9-3, $ export NODE_ENV=development is run from the terminal to set the value of the
NODE_ENV environment variable. this command applies only to Unix and Unix-like systems (including OS X).
Windows users will instead need to run $ set NODE_ENV=development. It’s also important to remember
that if the NODE_ENV environment variable is not set, confit will assume the application is running in the
development environment.

As you can see in Listing 9-3, confit compiled our project’s configuration object by merging the
contents of the config/development.json environment configuration file with the default config/config.json
file, giving priority to any settings specified in development.json. As a result, our configuration object
inherited the email settings that only exist in config.json, along with the cache and database settings
defined within the configuration file for the development environment. In Listing 9-1, these settings are
accessed through the use of the configuration object’s get() method.

 ■ Note In addition to accessing top-level configuration settings (e.g., database, as shown in Listing 9-1),
our configuration object’s get() method can also be used to access deeply nested configuration settings using:
as a delimiter. For example, we could have referenced the project’s postgresql settings directly with
config.get('database:postgresql').

In Listing 9-4, we run the confit-simple project again, only this time we set the NODE_ENV environment
variable with a value of production. As expected, the output shows that our configuration object inherited
the email property from config.json, while also inheriting the cache and database properties from
production.json.

Chapter 9 ■ KraKen

196

Listing 9-4. Running the confit-simple Project in production Mode

$ export NODE_ENV=production && node index

email:
 hostname: email.mydomain.com
 username: user
 password: pass
 from: My Application <noreply@myapp.com>
cache:
 redis:
 hostname: redis.myapp.com
 password: redis
database:
 postgresql:
 hostname: db.myapp.com
 username: postgres
 password: super-secret-password
 database: myapp

Shortstop Handlers
Confit is designed for processing JSON configuration files, as previous examples have shown. As a
configuration format, JSON is easy to work with, but it can occasionally leave a bit to be desired in terms
of flexibility. Confit helpfully makes up for this shortcoming with support for plugins that it refers to as
“shortstop handlers.” By way of an example, consider Listing 9-5, in which the two shortstop handlers
included within confit’s core library, import and config, are used.

Listing 9-5. Demonstrating the Use of the import and config Shortstop Handlers

// confit-shortstop/config/config.json

{
 // The `import` handler allows us to set a property's value to the contents
 // of the specified JSON configuration file.
 "app": "import:./app",
 // The `config` handler allows us to set a property's value to that of the
 // referenced property. Note the use of the `.` character as a delimiter,
 // in this instance.
 "something_else": "config:app.base_url"
}

// confit-shortstop/config/app.json

{
 // The title of the application
 "title": "My Demo Application",
 // The base URL at which the web client can be reached
 "base_url": "https://myapp.com",
 // The base URL at which the API can be reached
 "base_api_url": "https://api.myapp.com"
}

https://myapp.com/
https://api.myapp.com/

Chapter 9 ■ KraKen

197

Listing 9-6 shows the output that is printed to the console when this chapter’s confit-shortstop
project is run. In this example, the import shortstop handler has allowed us to populate the app property
with the contents of a separate JSON file, making it possible for us to break down particularly large
configuration files into smaller and more easily manageable components. The config handler has allowed
us to set a configuration value by referencing a preexisting value in another section.

Listing 9-6. Output of This Chapter’s confit-shortstop Project

$ node index.js

app:
 title: My Demo Application
 base_url: https://myapp.com
 base_api_url: https://api.myapp.com
something_else: https://myapp.com

While confit itself only includes support for the two shortstop handlers that we’ve just covered (import
and config), several additional handlers that are quite useful can be found in the shortstop-handlers
module. Let’s take a look at four examples.

The main script (index.js) from this chapter’s confit-shortstop-extras project is shown in
Listing 9-7. This script largely mirrors the one we’ve already seen in Listing 9-1, with a few minor differences.
In this example, additional handlers are imported from the shortstop-handlers module. Also, instead
of instantiating confit by passing the path to our project’s config folder (basedir), we pass an object of
options. Within this object, we continue to specify a value for basedir, but we also pass a protocols object,
providing confit with references to the additional shortstop handlers we’d like to use.

Listing 9-7. index.js Script from the confit-shortstop-extras Project

// confit-shortstop-extras/index.js

var confit = require('confit');
var handlers = require('shortstop-handlers');
var path = require('path');
var basedir = path.join(__dirname, 'config');
var prettyjson = require('prettyjson');

confit({
 'basedir': basedir,
 'protocols': {
 // The `file` handler allows us to set a property's value to the contents
 // of an external (non-JSON) file. By default, the contents of the file
 // will be loaded as a Buffer.
 'file': handlers.file(basedir /* Folder from which paths should be resolved */, {
 'encoding': 'utf8' // Convert Buffers to UTF-8 strings
 }),
 // The `require` handler allows us to set a property's value to that
 // exported from a module.
 'require': handlers.require(basedir),
 // The `glob` handler allows us to set a property's value to an array
 // containing files whose names match a specified pattern
 'glob': handlers.glob(basedir),

https://myapp.com/
https://api.myapp.com/
https://myapp.com/

Chapter 9 ■ KraKen

198

 // The path handler allows us to resolve relative file paths
 'path': handlers.path(basedir)
 }
}).create(function(err, config) {
 if (err) {
 console.log(err);
 process.exit();
 }
 console.log(prettyjson.render({
 'app': config.get('app'),
 'something_else': config.get('something_else'),
 'ssl': config.get('ssl'),
 'email': config.get('email'),
 'images': config.get('images')
 }));
});

In this example, four additional shortstop handlers (imported from the shortstop-handlers module)
are used:

•	 file: Sets a property using the contents of a specified file

•	 require: Sets a property using the exported value of a Node module (particularly
useful for dynamic values that can only be determined at runtime)

•	 glob: Sets a property to an array containing files whose names match a specified
pattern

•	 path: Sets a property to the absolute path of a referenced file

Listing 9-8 shows the default configuration file for this project. Finally, Listing 9-9 shows the output that
is printed to the console when this project is run.

Listing 9-8. Default Configuration File for the confit-shortstop-extras Project

// confit-shortstop-extras/config/config.json

{
 "app": "import:./app",
 "something_else": "config:app.base_url",
 "ssl": {
 "certificate": "file:./certificates/server.crt",
 "certificate_path": "path:./certificates/server.crt"
 },
 "email": "require:./email",
 "images": "glob:../public/images/**/*.jpg"
}

Chapter 9 ■ KraKen

199

Listing 9-9. Output from the confit-shortstop-extras Project

$ export NODE_ENV=development && node index

app:
 title: My Demo Application
 base_url: https://myapp.com
 base_api_url: https://api.myapp.com
something_else: https://myapp.com
ssl:
 certificate_path: /opt/confit-shortstop-extras/config/certificates/server.crt
 certificate:
 """
 -----BEGIN CERTIFICATE-----
 MIIDnjCCAoYCCQDy8G1RKCEz4jANBgkqhkiG9w0BAQUFADCBkDELMAkGA1UEBhMC
 VVMxEjAQBgNVBAgTCVRlbm5lc3NlZTESMBAGA1UEBxMJTmFzaHZpbGxlMSEwHwYD
 VQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxFDASBgNVBAMUCyoubXlhcHAu
 Y29tMSAwHgYJKoZIhvcNAQkBFhFzdXBwb3J0QG15YXBwLmNvbTAeFw0xNTA0MTkw
 MDA4MzRaFw0xNjA0MTgwMDA4MzRaMIGQMQswCQYDVQQGEwJVUzESMBAGA1UECBMJ
 VGVubmVzc2VlMRIwEAYDVQQHEwlOYXNodmlsbGUxITAfBgNVBAoTGEludGVybmV0
 IFdpZGdpdHMgUHR5IEx0ZDEUMBIGA1UEAxQLKi5teWFwcC5jb20xIDAeBgkqhkiG
 9w0BCQEWEXN1cHBvcnRAbXlhcHAuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A
 MIIBCgKCAQEAyBFxMVlMjP7VCU5w70okfJX/oEytrQIl1ZOAXnErryQQWwZpHOlu
 ZhTuZ8sBJmMBH3jju+rx4C2dFlXxWDRp8nYt+qfd1aiBKjYxMda2QMwXviT0Td9b
 kPFBCaPQpMrzexwTwK/edoaxzqs/IxMs+n1Pfvpuw0uPk6UbwFwWc8UQSWrmbGJw
 UEfs1X9kOSvt85IdrdQ1hQP2fBhHvt/xVVPfi1ZW1yBrWscVHBOJO4RyZSGclayg
 7LP+VHMvkvNm0au/cmCWThHtRt3aXhxAztgkI9IT2G4B9R+7ni8eXw5TLl65bhr1
 Gt7fMK2HnXclPtd3+vy9EnM+XqYXahXFGwIDAQABMA0GCSqGSIb3DQEBBQUAA4IB
 AQDH+QmuWk0Bx1kqUoL1Qxtqgf7s81eKoW5X3Tr4ePFXQbwmCZKHEudC98XckI2j
 qGA/SViBr+nbofq6ptnBhAoYV0IQd4YT3qvO+m3otGQ7NQkO2HwD3OUG9khHe2mG
 k8Z7pF0pwu3lbTGKadiJsJSsS1fJGs9hy2vSzRulgOZozT3HJ+2SJpiwy7QAR0aF
 jqMC+HcP38zZkTWj1s045HRCU1HdPjr0U3oJtupiU+HAmNpf+vdQnxS6aM5nzc7G
 tZq74ketSxEYXTU8gjfMlR4gBewfPmu2KGuHNV51GAjWgm9wLfPFvMMYjcIEPB3k
 Mla9+pYx1YvXiyJmOnUwsaop
 -----END CERTIFICATE-----

 """
email:
 hostname: smtp.myapp.com
 username: user
 password: pass
 from: My Application <noreply@myapp.com>
images:
 - /opt/confit-shortstop-extras/public/images/cat1.jpg
 - /opt/confit-shortstop-extras/public/images/cat2.jpg
 - /opt/confit-shortstop-extras/public/images/cat3.jpg

https://myapp.com/
https://api.myapp.com/
https://myapp.com/

Chapter 9 ■ KraKen

200

Configuration-Based Middleware Registration
Express processes incoming HTTP requests by pushing them through a series of configurable “middleware”
functions, as shown in Figure 9-2.

At each step of this process, the active middleware function has the ability to

•	 Modify the incoming request object

•	 Modify the outgoing response object

•	 Execute additional code

•	 Close the request-response cycle

•	 Call the next middleware function in the series

By way of an example, consider Listing 9-10, which shows a simple Express application that relies
on three middleware modules: morgan, cookie-parser, and ratelimit-middleware. As this application
processes incoming HTTP requests, the following steps occur:

 1. The morgan module logs the request to the console.

 2. The cookie-parser module parses data from the request’s Cookie header and
assigns it to the request object’s cookies property.

 3. The ratelimit-middleware module rate-limits clients that attempt to access the
application too frequently.

 4. Finally, the appropriate route handler is called.

Figure 9-2. Series of Express middleware calls

Chapter 9 ■ KraKen

201

Listing 9-10. Express Application That Relies on Three Middleware Modules

// middleware1/index.js

var express = require('express');
// Logs incoming requests
var morgan = require('morgan');
// Populates `req.cookies` with data parsed from the `Cookie` header
var cookieParser = require('cookie-parser');
// Configurable API rate-limiter
var rateLimit = require('ratelimit-middleware');

var app = express();
app.use(morgan('combined'));
app.use(cookieParser());
app.use(rateLimit({
 'burst': 10,
 'rate': 0.5,
 'ip': true
}));

app.get('/animals', function(req, res, next) {
 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);
});

app.listen(7000);

This approach provides developers with a considerable degree of flexibility, allowing them to execute
their own logic at any point during the request-response cycle. It also allows Express to maintain a relatively
small footprint by delegating responsibility for performing nonessential tasks to third-party middleware
modules. But as flexible as this approach is, it can also prove troublesome to manage as applications and the
teams that develop them grow in size and complexity.

Kraken’s meddleware module simplifies middleware management by providing a configuration-
based middleware registration process for Express applications. In doing so, it provides developers with a
standardized approach for specifying which middleware modules an Express application should rely on,
in what order they should be loaded, and the options that should be passed to each. Listing 9-11 shows an
updated version of the previous example, in which the meddleware module manages the registration of all
middleware functions.

Listing 9-11. Configuration-based Middleware Registration with the meddleware Module

// middleware2/index.js

var express = require('express');
var confit = require('confit');
var meddleware = require('meddleware');
var app = express();
var path = require('path');

Chapter 9 ■ KraKen

202

confit(path.join(__dirname, 'config')).create(function(err, config) {
 app.use(meddleware(config.get('middleware')));
 app.get('/animals', function(req, res, next) {
 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);
 });
 app.listen(7000);
});

// middleware2/config/config.json

{
 "middleware": {
 "morgan": {
 // Toggles the middleware module on / off
 "enabled": true,
 // Specifies the order in which middleware should be registered
 "priority": 10,
 "module": {
 // The name of an installed module (or path to a module file)
 "name": "morgan",
 // Arguments to be passed to the module's factory function
 "arguments": ["combined"]
 }
 },
 "cookieParser": {
 "enabled": true,
 "priority": 20,
 "module": {
 "name": "cookie-parser"
 }
 },
 "rateLimit": {
 "enabled": true,
 "priority": 30,
 "module": {
 "name": "ratelimit-middleware",
 "arguments": [{
 "burst": 10,
 "rate": 0.5,
 "ip": true
 }]
 }
 }
 }
}

With the help of Kraken’s meddleware module, all aspects of third-party middleware management
within this application have been moved from code to standardized configuration files. The result is an
application that is not only more organized, but also easier to understand and modify.

Chapter 9 ■ KraKen

203

Event Notifications
As middleware functions are registered with Express via the meddleware module, corresponding events are
emitted by the application, providing developers with an easy method for determining what middleware
functions are being loaded and in what order (see Listing 9-12).

Listing 9-12. Events Are Emitted As Middleware s Registered via the meddleware Module

var express = require('express');
var confit = require('confit');
var meddleware = require('meddleware');
var app = express();
var path = require('path');

confit(path.join(__dirname, 'config')).create(function(err, config) {

 // Listening to all middleware registrations
 app.on('middleware:before', function(data) {
 console.log('Registering middleware: %s', data.config.name);
 });

 // Listening for a specific middleware registration event
 app.on('middleware:before:cookieParser', function(data) {
 console.log('Registering middleware: %s', data.config.name);
 });

 app.on('middleware:after', function(data) {
 console.log('Registered middleware: %s', data.config.name);
 });

 app.on('middleware:after:cookieParser', function(data) {
 console.log('Registered middleware: %s', data.config.name);
 });

 app.use(meddleware(config.get('middleware')));

 app.get('/animals', function(req, res, next) {
 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);
 });

 app.listen(7000);

});

Structured Route Registration
In the previous section, you learned how Kraken’s meddleware module can simplify middleware function
registration by moving the logic required for loading and configuring those functions into standardized
JSON configuration files. In much the same way, Kraken’s enrouten module applies the same concept to
bring structure where there often is none to be found—Express routes.

Chapter 9 ■ KraKen

204

Simple Express applications with a small number of routes can often make due with a single module
in which every available route is defined. However, as applications gradually grow in depth and complexity,
such an organizational structure (or lack thereof) can quickly become unwieldy. Enrouten solves this
problem by providing three approaches with which Express routes can be defined in a consistent,
structured fashion.

Index Configuration
Using enrouten’s index configuration option, the path to a single module can be specified. This module will
then be loaded and passed an Express Router instance that has been mounted to the root path. This option
provides developers with the simplest method for defining routes, as it does not enforce any specific type of
organizational structure. While this option provides a good starting point for new applications, care must
be taken not to abuse it. This option is often used in combination with enrouten’s directory and routes
configuration options, which we will cover shortly.

Listing 9-13 shows a simple Express application whose routes are configured with the help of confit,
meddleware, and enrouten, along with the accompanying confit configuration file. Listing 9-14 shows the
contents of the module that is passed to enrouten’s index option. Subsequent examples within this section
will build on this example.

Listing 9-13. Express Application Configured with confit, meddleware, and enrouten

// enrouten-index/index.js

var express = require('express');
var confit = require('confit');
var handlers = require('shortstop-handlers');
var meddleware = require('meddleware');
var path = require('path');
var configDir = path.join(__dirname, 'config');
var app = express();

confit({
 'basedir': configDir,
 'protocols': {
 'path': handlers.path(configDir),
 'require': handlers.require(configDir)
 }
}).create(function(err, config) {
 app.use(meddleware(config.get('middleware')));
 app.listen(7000);
 console.log('App is available at: http://localhost:7000');
});

// enrouten-index/config/config.json

{
 "middleware": {
 "morgan": {
 "enabled": true,
 "priority": 10,
 "module": {

Chapter 9 ■ KraKen

205

 "name": "morgan",
 "arguments": ["combined"]
 }
 },
 "enrouten": {
 "enabled": true,
 "priority": 30,
 "module": {
 "name": "express-enrouten",
 "arguments": [
 {
 "index": "path:../routes/index"
 }
]
 }
 }
 }
}

Listing 9-14. Contents of the Module Passed to Enrouten’s index Option

// enrouten-index/routes/index.js

module.exports = function(router) {

 router.route('/')
 .get(function(req, res, next) {
 res.send('Hello, world.');
 });

 router.route('/api/v1/colors')
 .get(function(req, res, next) {
 res.send([
 'blue', 'green', 'red', 'orange', 'white'
]);
 });

};

Directory Configuration
Listing 9-15 demonstrates the use of enrouten’s directory configuration option. When set, enrouten will
recursively scan the contents of the specified folder, searching for modules that export a function accepting
a single argument. For each module it finds, enrouten will pass an Express Router instance that has been
mounted to a path predetermined by that module’s location within the directory structure—a “convention
over configuration” approach.

Chapter 9 ■ KraKen

206

Listing 9-15. Setting Enrouten’s directory Configuration Option

// enrouten-directory/config/config.json

{
 "middleware": {
 "enrouten": {
 "enabled": true,
 "priority": 10,
 "module": {
 "name": "express-enrouten",
 "arguments": [{ "directory": "path:../routes" }]
 }
 }
 }
}

Figure 9-3 shows the structure of this project’s /routes folder, while Listing 9-16 shows the contents
of the /routes/api/v1/accounts/index.js module. Based on this module’s location within the /routes
folder, the URLs for each route that it defines will be prefixed with /api/v1/accounts.

Listing 9-16. The /api/v1/accounts Controller

// enrouten-directory/routes/api/v1/accounts/index.js

var _ = require('lodash');
var path = require('path');

module.exports = function(router) {

 var accounts = require(path.join(APPROOT, 'models', 'accounts'));

 /**
 * @route /api/v1/accounts
 */
 router.route('/')
 .get(function(req, res, next) {
 res.send(accounts);
 });

Figure 9-3. Structure of This Project’s /routes Folder

Chapter 9 ■ KraKen

207

 /**
 * @route /api/v1/accounts/:account_id
 */
 router.route('/:account_id')
 .get(function(req, res, next) {
 var account = _.findWhere(accounts, {
 'id': parseInt(req.params.account_id, 10)
 });
 if (!account) return next(new Error('Account not found'));
 res.send(account);
 });

};

Routes Configuration
Enrouten’s directory configuration option provides an approach that favors “convention over
configuration” by automatically determining the structure of an application’s API based on the layout of
a specified folder. This approach provides a quick and easy method for structuring Express routes in an
organized and consistent way. However, complex applications may eventually come to find this approach to
be rather confining.

Applications with APIs that feature a number of complex, deeply nested routes will likely find greater
benefit from enrouten’s routes configuration option, which allows developers to create completely
separate modules for each of the application’s routes. API endpoints, methods, handlers, and route-specific
middleware are then specified within configuration files—an organized approach that allows for the greatest
degree of flexibility, at the expense of being slightly more verbose.

Listing 9-17 shows an excerpt from the configuration file for this chapter’s enrouten-routes project.
Here we pass an array of objects to enrouten’s routes configuration option, the entries of which describe the
various routes to be made available by Express. Note that in addition to specifying a route, HTTP method,
and handler, each entry also has the option of specifying an array of route-specific middleware functions.
As a result, this application is able to apply a middleware function responsible for authorizing incoming
requests on a route-by-route basis. As shown in Listing 9-17, the auth middleware function is not applied to
the route at which users initially sign in, allowing them to sign in before making subsequent requests.

Listing 9-17. Specifying Individual Routes via Enrouten’s routes Configuration Option

// enrouten-routes/config/config.json (excerpt)

"arguments": [{
 "index": "path:../routes",
 "routes": [
 {
 "path": "/api/v1/session",
 "method": "POST",
 "handler": "require:../routes/api/v1/session/create"
 },
 {
 "path": "/api/v1/session",
 "method": "DELETE",
 "handler": "require:../routes/api/v1/session/delete",
 "middleware": [

Chapter 9 ■ KraKen

208

 "require:../middleware/auth"
]
 },
 {
 "path": "/api/v1/users",
 "method": "GET",
 "handler": "require:../routes/api/v1/users/list",
 "middleware": [
 "require:../middleware/auth"
]
 },
 // ...
]
}]

Listing 9-18 shows the contents of the module responsible for handling incoming GET requests to this
application’s /api/v1/users route. The module exports a single function, which accepts the standard req,
res, next Express route handler signature.

Listing 9-18. The /routes/api/v1/users/list Route Handler

var models = require('../../../../lib/models');

module.exports = function(req, res, next) {

 models.User.fetchAll()
 .then(function(users) {
 res.send(users);
 })
 .catch(next);

};

Dust Templates
Many popular JavaScript template engines (e.g., Mustache and Handlebars) tout themselves as being
“logic-less”—an attribute that describes their ability to help developers maintain a clear separation of
concerns between an application’s business logic and its presentation layer. When properly maintained, this
separation makes it possible for significant changes to occur within the interface that users are presented
with, while requiring minimal (if any) accompanying changes behind the scenes (and vice versa).

So-called “logic-less” template engines accomplish this goal by enforcing a strict set of rules that
prevents developers from creating what is often referred to as “spaghetti code,” a tangled mess that combines
code with presentation in a way that is hard to grasp and even harder to unravel. Anyone who has ever had
to deal with a PHP script resembling that shown in Listing 9-19 will immediately grasp the importance of
maintaining a layer of separation between these two concerns.

Chapter 9 ■ KraKen

209

Listing 9-19. Spaghetti Code, an Unmaintainable Mess

<?php

print "<!DOCTYPE html><head><title>";
$result = mysql_query("SELECT * FROM settings") or die(mysql_error());
print $result[0]["title"] . "</title></head><body><table>";
print "<thead><tr><th>First Name</th><th>Last Name</th></tr></thead><tbody>";
$users = mysql_query("SELECT * FROM users") or die(mysql_error());
while ($row = mysql_fetch_assoc($users)) {
 print "<tr><td>" . $row["first_name"] . "</td><td>" . $row["last_name"] . "</td></tr>";
}
print "</tbody></table></body></html>";

?>

Logic-less template engines attempt to prevent developers from creating spaghetti code by banning the
use of logic within an application’s views. Such templates are typically capable of referencing values within a
provided payload of information, iterating through arrays, and toggling specific portions of their content on
and off based on simple boolean logic.

Unfortunately, this rather heavy-handed approach often brings about the very problems it hoped to
prevent, albeit in an unexpected way. Although logic-less template engines such as Handlebars prevent the
use of logic within templates themselves, they do not negate the need for that logic to exist in the first place.
The logic required for preparing data for template use must exist somewhere, and more often than not, the
use of logic-less template engines results in presentation-related logic spilling over into the business layer.

Dust, which is the JavaScript template engine favored by Kraken, seeks to solve this problem by taking
an approach that is better thought of as “less-logic” rather than strictly “logic-less.” By allowing developers to
embed slightly more advanced logic within their templates in the form of “helpers,” Dust allows presentation
logic to remain where it belongs, in the presentation layer, rather than the business layer.

Context and References
When using Dust templates, two primary components come into play: the template itself and an (optional)
object literal containing any data to be referenced from within the template. In Listing 9-20, this process is
demonstrated by an Express application that has specified Dust as its rendering engine. Note the use of the
adaro module in this example. The adaro module serves as a convenient wrapper for Dust, abstracting away
some additional setup that would otherwise be necessary to integrate Dust with Express. It also includes
some convenient helper functions by default that we will be covering later in the chapter.

Listing 9-20. Express Application Using Dust As Its Rendering Engine

// dust-simple/index.js

var express = require('express');
var adaro = require('adaro');
var app = express();

/**
 * By default, Dust will cache the contents of an application's templates as they are
 * loaded. In a production environment, this is usually the preferred behavior.
 * This behavior will be disabled in this chapter's examples, allowing you to modify

Chapter 9 ■ KraKen

210

 * templates and see the result without having to restart Express.
 */
app.engine('dust', adaro.dust({
 'cache': false
}));

app.set('view engine', 'dust');
app.use('/', express.static('./public'));

var data = {
 'report_name': 'North American Countries',
 'languages': ['English', 'Spanish'],
 'misc': {
 'total_population': 565000000
 },
 'countries': [
 {
 'name': 'United States',
 'population': 319999999,
 'english': true,
 'capital': { 'name': 'Washington D.C.', 'population': 660000 }
 },
 {
 'name': 'Mexico',
 'population': 118000000,
 'english': false,
 'capital': { 'name': 'Mexico City', 'population': 9000000 }
 },
 {
 'name': 'Canada',
 'population': 35000000,
 'english': true,
 'capital': { 'name': 'Ottawa', 'population': 880000 }
 }
]
};

app.get('/', function(req, res, next) {
 res.render('main', data);
});

app.listen(8000);

In Listing 9-20, an object literal containing an array of North American countries (referred to by Dust as
a “context”) is passed to a Dust template, the content of which is shown in Listing 9-21. Within this template,
data is referenced by wrapping the desired key within a single pair of curly brackets. Nested properties can
also be referenced through the use of dot notation ({misc.total_population}).

Chapter 9 ■ KraKen

211

Listing 9-21. Accompanying main Dust Template

// dust-simple/views/main.dust

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>App</title>
 <link href="/css/style.css" rel="stylesheet">
</head>
<body>
 {! Dust comments are created using this format. Data is referenced by wrapping the
 desired key within a single pair of curly brackets, as shown below. !}
 <h1>{report_name}</h1>
 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Population</th>
 <th>Speaks English</th>
 <th>Capital</th>
 <th>Population of Capital</th>
 </tr>
 </thead>
 <tbody>
 {! Templates can loop through iterable objects !}
 {#countries}
 <tr>
 <td>{name}</td>
 <td>{population}</td>
 <td>{?english}Yes{:else}No{/english}</td>
 {#capital}
 <td>{name}</td>
 <td>{population}</td>
 {/capital}
 </tr>
 {/countries}
 </tbody>
 </table>
 <h2>Languages</h2>

 {#languages}
 {.}
 {/languages}

 <h2>Total Population: {misc.total_population}</h2>
</body>
</html>

Chapter 9 ■ KraKen

212

Sections
As Dust goes about its rendering process, it fetches referenced data by applying one or more “contexts” to
the template in question. The simplest templates have a single context that references the outermost level
of the JSON object that was passed. For example, consider the template shown in Listing 9-21, in which two
references are used, {report_name} and {misc.total_population}. Dust processes these references by
searching for matching properties (starting at the outermost level) within the object shown in Listing 9-20.

Dust sections provide a convenient method by which additional contexts can be created, allowing
a template to access nested properties without requiring references that start at the outermost level. For
example, consider Listing 9-22, in which a new context, {#misc}...{/misc}, is created, allowing nested
properties to be accessed using a shorter syntax.

Listing 9-22. Creating a New Dust Section

// Template
<h1>{report_name}</h1>
{#misc}
<p>Total Population: {total_population}</p>
{/misc}

// Rendered Output
<h1>Information About North America</h1>
<p>Total Population: 565000000</p>

Iteration
In the previous example, a new Dust section (and corresponding context) was created. As a result, the
contents of the new section received direct access to the properties of the object literal that was referenced.
In much the same way, Dust sections can also be used to iterate through the entries of an array. Listing 9-23
demonstrates this process by creating a new section that references the countries array. Unlike the section
from the previous example, which was applied only once, the {#countries} ... {/countries} section will
be applied multiple times, once for each entry within the array that it references.

Listing 9-23. Iterating Through an Array with Sections

// Template
{#countries}
{! The current position within the iteration can be referenced at `$idx` !}
{! The size of the object through which we are looping can be referenced at `$len` !}
<tr>
 <td>{name}</td>
 <td>{population}</td>
 <td>{capital.name}</td>
 <td>{capital.population}</td>
</tr>
{/countries}

// Rendered Output
<tr>
 <td>United States</td>
 <td>319999999</td>

Chapter 9 ■ KraKen

213

 <td>Washington D.C.</td>
 <td>660000</td>
</tr>
<tr>
 <td>Mexico</td>
 <td>118000000</td>
 <td>Mexico City</td>
 <td>9000000</td>
</tr>
<tr>
 <td>Canada</td>
 <td>35000000</td>
 <td>Ottawa</td>
 <td>880000</td>
</tr>

Listing 9-24 demonstrates the process by which a template can loop through an array whose entries are
primitive data types (i.e., not objects). For each iteration, the value itself can be directly referenced via the
{.} syntax.

Listing 9-24. Iterating Through an Array Containing Primitive Data Types

// Template

 {#languages}{.}{/languages}

// Rendered Output

 English
 Spanish

Conditionality
Dust provides built-in support for conditionally rendering content, based on whether a simple truth test is
passed. The template shown in Listing 9-25 demonstrates this concept by rendering the text “Yes” or “No”
based on whether each country’s english property references a “truthy” value.

Listing 9-25. Applying Conditionality Within a Dust Template

// Template
{#countries}
<tr>
 <td>{name}</td>
 <td>{?english}Yes{:else}No{/english}</td>
 {!
 The opposite logic can be applied as shown below:
 <td>{^english}No{:else}Yes{/english}</td>
 !}
</tr>

Chapter 9 ■ KraKen

214

{/countries}

// Rendered Output
<tr>
 <td>United States</td>
 <td>Yes</td>
</tr>
<tr>
 <td>Mexico</td>
 <td>No</td>
</tr>
<tr>
 <td>Canada</td>
 <td>Yes</td>
</tr>

 ■ Note When applying conditionality within a template, it is important to understand the rules that Dust
will apply as it determines the “truthiness” of a property. empty strings, boolean false, empty arrays, null, and
undefined are all considered to be false. the number 0, empty objects, and string-based representations for
“0”, “null”, “undefined”, and “false” are all considered to be true.

Partials
One of Dust’s most powerful features, partials, allows developers to include templates within other templates.
As a result, complex documents can be broken down into smaller components (i.e., “partials”) that are easier
to manage and reuse. A simple example that demonstrates this process is shown in Listing 9-26.

Listing 9-26. Dust Template That References an External Template (i.e., “Partial”)

// Main Template
<h1>{report_name}</h1>
<p>Total Population: {misc.total_population}</p>
{>"countries"/}
{!
 In this example, an external template - `countries` - is included by a parent
 template which references it by name (using a string literal that is specified
 within the template itself). Alternatively, the name of the external template
 could have been derived from a value held within the template's context, using
 Dust's support for "dynamic" partials. To do so, we would have wrapped the
 `countries` string in a pair of curly brackets, as shown here:
 {>"{countries}"/}
!}

// "countries" template
{#countries}
<tr>
 <td>{name}</td>

Chapter 9 ■ KraKen

215

 <td>{population}</td>
 <td>{capital.name}</td>
 <td>{capital.population}</td>
</tr>
{/countries}

// Rendered Output
<h1>Information About North America</h1>
<p>Total Population: 565000000</p>
<tr>
 <td>United States</td>
 <td>Yes</td>
</tr>
<tr>
 <td>Mexico</td>
 <td>No</td>
</tr>
<tr>
 <td>Canada</td>
 <td>Yes</td>
</tr>

Blocks
Consider a commonly encountered scenario in which a complex web application consisting of multiple
pages is created. Each of these pages displays a unique set of content, while at the same time sharing
common elements, such as headers and footers, with the other pages. With the help of Dust blocks,
developers can define these shared elements in a single location. Afterward, templates that wish to inherit
from them can, while also retaining the ability to overwrite their content when necessary.

Let’s take a look at an example that should help to clarify this point. Listing 9-27 shows the content
of a Dust template that defines the overall layout of a site. In this instance, a default page title is specified,
{+title}App{/title}, along with an empty placeholder for body content.

Listing 9-27. Dust Block from Which Other Templates Can Inherit

// dust-blocks/views/shared/base.dust

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>{+title}App{/title}</title>
 <link href="/css/style.css" rel="stylesheet">
</head>
<body>
 {+bodyContent/}
</body>
</html>

Chapter 9 ■ KraKen

216

Listing 9-28 shows the content of a Dust template that inherits from the example presented in Listing 9-27.
It does so by first embedding the parent template within itself as a partial ({>"shared/base"/}). Next, it
injects content into the {+bodyContent/} placeholder that was defined, {<bodyContent}...{/bodyContent}.
In this instance, our template chooses not to overwrite the default page title that was specified in our
parent template.

Listing 9-28. Dust Template Inheriting from a Block

 // dust-blocks/views/main.dust

{>"shared/base"/}

{<bodyContent}
 <p>Hello, world!</p>
{/bodyContent}

Filters
Dust includes several built-in filters that allow a template to modify a value before it is rendered. By way
of an example, consider the fact that Dust will automatically HTML escape any values referenced within a
template. In other words, if a context were to contain a content key with a value matching that shown here:

<script>doBadThings();</script>

Dust would automatically render this value as

<script>doBadThings()</script>

While the behavior that we see here is typically desired, it is not uncommon to run into situations in
which this behavior needs to be disabled. This can be accomplished through the use of a filter:

{content|s}

In this example, the |s filter disables auto-escaping for the referenced value. Table 9-1 contains a list of
the built-in filters provided by Dust.

Table 9-1. List of Built-in Filters Provided by Dust

Filter Description

s Disables HTML escaping

h Forces HTML escaping

j Forces JavaScript escaping

u Encodes with encodeURI()

uc Encodes with encodeURIComponent()

js Stringifies a JSON literal

jp Parses a JSON string

Chapter 9 ■ KraKen

217

Creating Custom Filters
In addition to providing several core filters, Dust also makes it easy for developers to extend this behavior
by creating their own custom filters, such as that shown in Listing 9-29. In this example, a custom formatTS
filter is created. When applied, this filter will convert a referenced timestamp to a human-readable format
(e.g., Jul. 4, 1776).

Listing 9-29. Defining a Custom Dust Filter

// dust-filters/index.js

var express = require('express');
var adaro = require('adaro');
var app = express();
var moment = require('moment');

app.engine('dust', adaro.dust({
 'cache': false,
 'helpers': [
 function(dust) {
 dust.filters.formatTS = function(ts) {
 return moment(ts, 'X').format('MMM. D, YYYY');
 };
 }
]
}));

app.set('view engine', 'dust');
app.use('/', express.static('./public'));

app.get('/', function(req, res, next) {
 res.render('main', {
 'events': [
 { 'label': 'Moon Landing', 'ts': -14558400 },
 { 'label': 'Fall of Berlin Wall', 'ts': 626616000 },
 { 'label': 'First Episode of Who\'s the Boss', 'ts': 464529600 }
]
 });
});

// dust-filters/views/main.dist (excerpt)

<tbody>
 {#events}
 <tr>
 <td>{label}</td>
 <td>{ts|formatTS}</td>
 </tr>
 {/events}
</tbody>

Chapter 9 ■ KraKen

218

Context Helpers
In addition to storing data, Dust contexts are also capable of storing functions (referred to as “context
helpers”), the output of which can later be referenced by the templates to which they are passed. In this way,
a Dust context can be thought of as more than a simple payload of raw information, but rather as a view
model, a mediator between an application’s business logic and its views, capable of formatting information
in the most appropriate manner along the way.

This feature is demonstrated by the example shown in Listing 9-30, in which an application presents
the user with a table of servers. Each entry displays a name, along with a message indicating whether
each server is online. A header displays the overall health of the system, which is generated by the
systemStatus() context helper. Note that the template is able to reference our context helper just as it would
any other type of value (e.g., object literals, arrays, numbers, strings).

Listing 9-30. Dust Context Helper

// dust-context-helpers1/index.js (excerpt)

app.all('/', function(req, res, next) {
 res.render('main', {
 'servers': [
 { 'name': 'Web Server', 'online': true },
 { 'name': 'Database Server', 'online': true },
 { 'name': 'Email Server', 'online': false }
],
 'systemStatus': function(chunk, context, bodies, params) {
 var offlineServers = _.filter(this.servers, { 'online': false });
 return offlineServers.length ? 'Bad' : 'Good';
 }
 });
});

// dust-context-helpers1/views/main.dust (excerpt)

<h1>System Status: {systemStatus}</h1>
<table>
 <thead><tr><th>Server</th><th>Online</th></tr></thead>
 <tbody>
 {#servers}
 <tr>
 <td>{name}</td>
 <td>{?online}Yes{:else}No{/online}</td>
 </tr>
 {/servers}
 </tbody>
</table>

As shown in this example, every Dust context helper receives four arguments: chunk, context, bodies,
and params. Let’s take a look at a few examples that demonstrate their usage.

Chapter 9 ■ KraKen

219

chunk
A context helper’s chunk argument provides it with access to the current portion of the template being
rendered—referred to by Dust as a “chunk.” By way of an example, consider Listing 9-31, in which a
context helper is paired with default content that is defined within the template. In this example, the
systemStatus() context helper can choose to override the chunk’s default content, “Unknown,” with its own
value by calling the chunk.write() method. The helper can indicate that it has chosen to do so by returning
chunk as its value.

Listing 9-31. Dust Context Helper Paired with Default Content

// dust-context-helpers2/index.js (excerpt)

app.all('/', function(req, res, next) {
 res.render('main', {
 'servers': [
 { 'name': 'Web Server', 'online': true },
 { 'name': 'Database Server', 'online': true },
 { 'name': 'Email Server', 'online': false }
],
 'systemStatus': function(chunk, context, bodies, params) {
 if (!this.servers.length) return;
 if (_.filter(this.servers, { 'online': false }).length) {
 return chunk.write('Bad');
 } else {
 return chunk.write('Good');
 }
 }
 });
});

// dust-context-helpers2/views/main.dust (excerpt)

<h1>System Status: {#systemStatus}Unknown{/systemStatus}</h1>

context
The context argument provides context helpers with convenient access to the active section of the context,
as determined by the template. The template shown in Listing 9-32 demonstrates this by referencing the
isOnline() context helper once for every server it has been passed. Each time, the isOnline() helper
fetches the value of the active section’s online property via context.get().

Listing 9-32. The context Argument Provides Context Helpers with Access to the Active Section

// dust-context-helpers3/index.js (excerpt)

app.all('/', function(req, res, next) {
 res.render('main', {
 'servers': [
 { 'name': 'Web Server', 'online': true },
 { 'name': 'Database Server', 'online': true },
 { 'name': 'Email Server', 'online': false }

Chapter 9 ■ KraKen

220

],
 'systemStatus': function(chunk, context, bodies, params) {
 return _.filter(this.servers, { 'online': false }).length ? 'Bad': 'Good';
 },
 'isOnline': function(chunk, context, bodies, params) {
 return context.get('online') ? 'Yes' : 'No';
 }
 });
});

// dust-context-helpers3/views/main.dust (excerpt)

<h1>System Status: {systemStatus}</h1>
<table>
 <thead><tr><th>Server</th><th>Online</th></tr></thead>
 <tbody>
 {#servers}
 <tr>
 <td>{name}</td>
 <td>{isOnline}</td>
 </tr>
 {/servers}
 </tbody>
</table>

bodies
Imagine a scenario in which large portions of a template’s content are determined by one or more context
helpers. Instead of forcing developers to concatenate strings in an unwieldy fashion, Dust allows such
content to remain where it belongs—in the template—available as options from which a context helper can
choose to render.

Listing 9-33 demonstrates this by passing four different bodies of content to the description() context
helper. The helper’s bodies argument provides it with references to this content, which it can then choose to
render by passing the appropriate value to chunk.render().

Listing 9-33. Selectively Rendering Portions of a Template via the bodies Argument

// dust-context-helpers4/index.js (excerpt)

app.all('/', function(req, res, next) {
 res.render('main', {
 'servers': [
 { 'name': 'Web Server', 'online': true },
 { 'name': 'Database Server', 'online': true },
 { 'name': 'Email Server', 'online': false },
 { 'name': 'IRC Server', 'online': true }
],
 'systemStatus': function(chunk, context, bodies, params) {
 return _.filter(this.servers, { 'online': false }).length ? 'Bad': 'Good';
 },
 'isOnline': function(chunk, context, bodies, params) {

Chapter 9 ■ KraKen

221

 return context.get('online') ? 'Yes' : 'No';
 },
 'description': function(chunk, context, bodies, params) {
 switch (context.get('name')) {
 case 'Web Server':
 return chunk.render(bodies.web, context);
 break;
 case 'Database Server':
 return chunk.render(bodies.database, context);
 break;
 case 'Email Server':
 return chunk.render(bodies.email, context);
 break;
 }
 }
 });
});

// dust-context-helpers4/index.js (excerpt)

<h1>System Status: {systemStatus}</h1>
<table>
 <thead><tr><th>Server</th><th>Online</th><th>Description</th></tr></thead>
 <tbody>
 {#servers}
 <tr>
 <td>{name}</td>
 <td>{isOnline}</td>
 <td>
 {#description}
 {:web}
 A web server serves content over HTTP.
 {:database}
 A database server fetches remotely stored information.
 {:email}
 An email server sends and receives messages.
 {:else}
 -
 {/description}
 </td>
 </tr>
 {/servers}
 </tbody>
</table>

Chapter 9 ■ KraKen

222

params
In addition to referencing properties of the context in which it is called (via context.get()), a context helper
can also access parameters that have been passed to it by a template. The example shown in Listing 9-34
demonstrates this by passing each server’s uptime property to the formatUptime() context helper. In this
example, the helper converts the provided value, params.value, into a more easily readable form before
writing it out to the chunk.

Listing 9-34. Context Helpers Can Receive Parameters via the params Argument

// dust-context-helpers5/index.js (excerpt)

app.all('/', function(req, res, next) {
 res.render('main', {
 'servers': [
 { 'name': 'Web Server', 'online': true, 'uptime': 722383 },
 { 'name': 'Database Server', 'online': true, 'uptime': 9571 },
 { 'name': 'Email Server', 'online': false, 'uptime': null }
],
 'systemStatus': function(chunk, context, bodies, params) {
 return _.filter(this.servers, { 'online': false }).length ? 'Bad': 'Good';
 },
 'formatUptime': function(chunk, context, bodies, params) {
 if (!params.value) return chunk.write('-');
 chunk.write(moment.duration(params.value, 'seconds').humanize());
 }
 });
});

// dust-context-helpers5/views/main.dust (excerpt)

{#servers}
 <tr>
 <td>{name}</td>
 <td>{?online}Yes{:else}No{/online}</td>
 <td>{#formatUptime value=uptime /}</td>
 </tr>
{/servers}

In Listing 9-35, we see a slightly more complex demonstration of context helper parameters at work.
In this example, the parseLocation() helper receives a string in which context properties are referenced:
value="{name} lives in {location}". In order for these references to be correctly interpreted, the
parameter must first be evaluated with the help of Dust’s helpers.tap() method.

Chapter 9 ■ KraKen

223

Listing 9-35. Parameters That Reference Context Properties Must Be Evaluated

// dust-context-helpers6/index.js

var express = require('express');
var adaro = require('adaro');
var app = express();
var morgan = require('morgan');
app.use(morgan('combined'));
var engine = adaro.dust();
var dust = engine.dust;

app.engine('dust', engine);

app.set('view engine', 'dust');
app.use('/', express.static('./public'));

app.all('/', function(req, res, next) {
 res.render('main', {
 'people': [
 { 'name': 'Joe', 'location': 'Chicago' },
 { 'name': 'Mary', 'location': 'Denver' },
 { 'name': 'Steve', 'location': 'Oahu' },
 { 'name': 'Laura', 'location': 'Nashville' }
],
 'parseLocation': function(chunk, context, bodies, params) {
 var content = dust.helpers.tap(params.value, chunk, context);
 return chunk.write(content.toUpperCase());
 }
 });
});

app.listen(8000);

// dust-context-helpers6/views/main.dust

{#people}
 {#parseLocation value="{name} lives in {location}" /}
{/people}

Asynchronous Context Helpers
Helper functions provide Dust with much of its power and flexibility. They allow a context object to serve as
a view model—an intelligent bridge between an application’s business logic and its user interface, capable
of fetching information and formatting it appropriately for a specific use case before passing it along to one
or more views for rendering. But as useful as this is, we’ve really only begun to scratch the surface in terms of
how these helper functions can be applied to powerful effect.

In addition to returning data directly, Dust helper functions are also capable of returning data
asynchronously, a process that is demonstrated by the example shown in Listing 9-36. Here we create two
context helpers, cars() and trucks(). The former returns an array, while the latter returns a promise that
resolves to an array. From the template’s perspective, both of these functions are consumed identically.

Chapter 9 ■ KraKen

224

Listing 9-36. Helper Functions Can Return Promises

// dust-promise1/index.js (excerpt)

app.get('/', function(req, res, next) {
 res.render('main', {
 'cars': function(chunk, context, bodies, params) {
 return ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'];
 },
 'trucks': function(chunk, context, bodies, params) {
 return new Promise(function(resolve, reject) {
 resolve(['Chevrolet Colorado', 'GMC Canyon', 'Toyota Tacoma']);
 });
 }
 });
});

// dust-promise1/views/main.dust (excerpt)

<h1>Cars</h1>
{#cars}{.}{/cars}
<h2>Trucks</h1>
{#trucks}{.}{/trucks}

Dust also provides a convenient method for conditionally displaying content, in the event that a
promise is rejected. This process is demonstrated by Listing 9-37.

Listing 9-37. Handling Rejected Promises

// dust-promise2/index.js (excerpt)

app.get('/', function(req, res, next) {
 res.render('main', {
 'cars': function(chunk, context, bodies, params) {
 return ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'];
 },
 'trucks': function(chunk, context, bodies, params) {
 return new Promise(function(resolve, reject) {
 reject('Unable to fetch trucks.');
 });
 }
 });
});

// dust-promise2/views/main.dust (excerpt)

<h1>Cars</h1>
{#cars}{.}{/cars}
<h2>Trucks</h1>
{#trucks}
 {.}
 {:error}
 An error occurred. We were unable to get a list of trucks.
{/trucks}

Chapter 9 ■ KraKen

225

Having the ability to feed information to a template in the form of promises is useful for a number
of reasons, but things begin to get much more interesting when this functionality is paired with Dust’s
streaming interface. To better understand this, consider Listing 9-38, which largely mirrors our previous
example. In this instance, however, we take advantage of Dust’s streaming interface to push portions of our
template down to the client as they are rendered, rather than waiting for the entire process to complete.

Listing 9-38. Streaming a Template to the Client As Data Becomes Available

// dust-promise2/index.js

var Promise = require('bluebird');
var express = require('express');
var adaro = require('adaro');
var app = express();
var engine = adaro.dust();
var dust = engine.dust;
app.engine('dust', engine);
app.set('view engine', 'dust');
app.use('/', express.static('./public'));

app.get('/', function(req, res, next) {
 dust.stream('views/main', {
 'cars': ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'],
 'trucks': function(chunk, context, bodies, params) {
 return new Promise(function(resolve, reject) {
 setTimeout(function() {
 resolve(['Chevrolet Colorado', 'GMC Canyon', 'Toyota Tacoma']);
 }, 4000);
 });
 }
 }).pipe(res);
});

app.listen(8000);

Depending on the complexity of the template in question, the impact this approach can have on user
experience can often be dramatic. Rather than forcing users to wait for an entire page to load before they can
proceed, this approach allows us to push content down to the client as it becomes available. As a result, the
delay that users perceive when accessing an application can often be reduced significantly.

Dust Helpers
In the previous section, we explored how context objects can be extended to include logic that is relevant to
a specific view through the use of context helpers. In a similar manner, Dust allows helper functions to be
defined at a global level, making them available to all templates without being explicitly defined within their
contexts. Dust comes packaged with a number of such helpers. By taking advantage of them, developers can
more easily solve many of the challenges that are often encountered when working with stricter, logic-less
template solutions.

Chapter 9 ■ KraKen

226

Listing 9-39 shows an excerpt of the JSON data that will be referenced by the rest of this section’s
examples.

Listing 9-39. Excerpt of the JSON Data Passed to a Dust Template

// dust-logic1/people.json (excerpt)

[{
 "name": "Joe", "location": "Chicago", "age": 27,
 "education": "high_school", "employed": false, "job_title": null
}, {
 "name": "Mary", "location": "Denver", "age": 35,
 "education": "college", "employed": true, "job_title": "Chef"
}]

Logic Helpers
Listing 9-40 demonstrates the usage of a Dust logic helper, @eq, with which we can perform a strict
comparison between two specified values, key and value. In this example, the first value, job_title,
references a property within the current context. The second value, "Chef", is defined as a literal value from
within the template.

Listing 9-40. Using a Dust Logic Helper to Conditionally Display Content

// dust-logic1/views/main.dust (excerpt)

{#people}
 {@eq key=job_title value="Chef"}
 <p>{name} is a chef. This person definitely knows how to cook.</p>
 {:else}
 <p>{name} is not a chef. This person may or may not know how to cook.</p>
 {/eq}
{/people}

Knowing this, imagine a scenario in which we want to perform a strict equality check between two
numbers, one of which is referenced as a context property, while the other is specified as a literal from within
the template. In order to do so, we must cast our literal value to the appropriate type, as shown in Listing 9-41.

Listing 9-41. Casting a Literal Value to the Desired Type

{#people}
 {@eq key=age value="27" type="number"}
 <p>{name} is 27 years old.</p>
 {/eq}
{/people}

Dust provides a number of logic helpers with which simple comparisons can be made. Their names and
descriptions are listed in Table 9-2.

Chapter 9 ■ KraKen

227

Switch Statements
The frequently used @select helper provides a method by which we can mimic switch (...) statements,
making it possible for a template to specify multiple variations of content based on a specified value (see
Listing 9-42).

Listing 9-42. Mimicking a switch Statement with the @select Helper

{@gte key=age value=retirement_age}
 <p>{name} has reached retirement age.</p>
 {:else}
 <p>
 {@select key=job_title}
 {@eq value="Chef"}Probably went to culinary school, too.{/eq}
 {@eq value="Professor"}Smarty pants.{/eq}
 {@eq value="Accountant"}Good with numbers.{/eq}
 {@eq value="Astronaut"}Not afraid of heights.{/eq}
 {@eq value="Pilot"}Travels frequently.{/eq}
 {@eq value="Stunt Double"}Fearless.{/eq}
 {! @none serves as a `default` case !}
 {@none}Not sure what I think.{/none}
 {/select}
 </p>
{/gte}

Iteration Helpers
Dust provides three useful helpers for tackling problems that are frequently encountered when dealing
with iteration. For example, Listing 9-43 demonstrates the use of the @sep helper, with which we can define
content that will be rendered for every iteration except the last.

Listing 9-43. Ignoring Content During a Loop’s Last Iteration with @sep

// dust-logic1/views/main.dust (excerpt)
{#people}{name}{@sep}, {/sep}{/people}

// output
Joe, Mary, Wilson, Steve, Laura, Tim, Katie, Craig, Ryan

Table 9-2. Logic Helpers Provided by Dust

Logic Helper Description

@eq Strictly equal to

@ne Not strictly equal to

@gt Greater than

@lt Less than

@gte Greater than or equal to

@lte Less than or equal to

Chapter 9 ■ KraKen

228

Dust provides a total of three helpers for tackling iteration challenges. These are listed in Table 9-3.

Mathematical Expressions
Using Dust’s @math helper, templates can adjust their content based on the result of a mathematical
expression. Such adjustments can take place in one of two ways. The first is demonstrated in Listing 9-44,
in which the result of a mathematical expression is referenced directly within a template. The second is
demonstrated in Listing 9-45, in which content is conditionally rendered based on the result of a call to the
@math helper.

Listing 9-44. Directly Referencing the Result of a Mathematical Expression

// dust-logic1/views/main.dust (excerpt)

{#people}
 {@lt key=age value=retirement_age}
 <p>{name} will have reached retirement age in
 {@math key=retirement_age method="subtract" operand=age /} year(s).</p>
 {/lt}
{/people}

Listing 9-45. Conditionally Rendering Content Based on the Result of a Call to the @math Helper

// dust-logic1/views/main.dust (excerpt)

{#people}
 {@lt key=age value=retirement_age}
 {@math key=retirement_age method="subtract" operand=age}
 {@lte value=10}{name} will reach retirement age fairly soon.{/lte}
 {@lte value=20}{name} has quite a ways to go before they can retire.{/lte}
 {@default}{name} shouldn't even think about retiring.{/default}
 {/math}
 {/lt}
{/people}

The various “methods” supported by Dust’s @math helper include: add, subtract, multiply, divide,
mod, abs, floor, and ceil.

Table 9-3. Iteration Helpers

Iteration Helper Description

@sep Renders content for every iteration, except the last

@first Renders content only for the first iteration

@last Renders content only for the last iteration

Chapter 9 ■ KraKen

229

Context Dump
Useful during development, Dust’s @contextDump helper allows you to quickly render the current context
object (in JSON format), providing insight into the values Dust sees within the section in which it is called.
An example of its usage is shown here:

{#people}<pre>{@contextDump /}</pre>{/people}

Custom Helpers
Earlier in the chapter, you learned how to create context helpers with which context objects can be extended
to include custom functionality. In the same way, custom Dust helpers can also be created at the global level.
Listing 9-46 provides a demonstration of how this can be applied.

Listing 9-46. Creating and Using a Custom Dust Helper

// dust-logic1/index.js (excerpt)

dust.helpers.inRange = function(chunk, context, bodies, params) {
 if (params.key >= params.lower && params.key <= params.upper) {
 return chunk.render(bodies.block, context);
 } else {
 return chunk;
 }
}

// dust-logic1/views/main.dust (excerpt)

{#people}
 {@gte key=age value=20}
 {@lte key=age value=29}<p>This person is in their 20's.</p>{/lte}
 {/gte}
 {@inRange key=age lower=20 upper=29}<p>This person is in their 20's.</p>{/inRange}
{/people}

In this example’s template, a loop is created in which we iterate through each person defined within
the context. For each person, a message is displayed if they happen to fall within the twenty-something age
bracket. First, this message is displayed using a combination of preexisting logic helpers, @gte and @lt. Next,
the message is displayed again, using a custom @inRange helper that has been defined at the global level.

Now that you are familiar with many of the fundamental components that Kraken relies on, let’s move
forward with creating our first real Kraken application.

Chapter 9 ■ KraKen

230

Let’s Get Kraken
In this book’s first section on development tools, we covered four useful utilities that help manage many
of the tasks associated with web development - among them: Bower, Grunt, and Yeoman. Kraken relies on
each of these tools, along with a Yeoman generator that will assist us in building out the initial structure of
our project. If you have not already done so, you should install these modules globally via npm, as shown
here:

$ npm install -g yo generator-kraken bower grunt-cli

Creating a new Kraken project with Yeoman is an interactive process. In this example, we pass the
generator a name for our new project (app), at which point it begins to prompt us with questions. Figure 9-4
shows the steps that were taken to create this chapter’s app project.

Once you have answered these questions, the generator will create the project’s initial file structure and
begin installing the necessary dependencies. Afterward, you should find a new app folder containing the
contents of the project, which should resemble that shown in Figure 9-5.

Figure 9-4. Creating a Kraken application using the Yeoman generator

Chapter 9 ■ KraKen

231

Kraken’s Yeoman generator has automated the process of creating a new Express application that is
organized using modules that were previously covered in this chapter. We can immediately launch the
project in its current state as shown in Listing 9-47. Afterward, the project can be accessed at a local address
(see Figure 9-6).

Listing 9-47. Launching the Project for the First Time

$ npm start

> app@0.1.0 start /Users/tim/temp/app
> node server.js

Server listening on http://localhost:8000
Application ready to serve requests.
Environment: development

Figure 9-5. Initial file structure for the app project

Chapter 9 ■ KraKen

232

As you can see, our project has been preconfigured (with the help of confit and meddleware) to use a
number of helpful middleware modules (e.g., cookieParser, session, etc.). For some additional insight into
how all of this comes together, Listing 9-48 shows the contents of the project’s index.js script.

Listing 9-48. Contents of Our New Project’s index.js Script

// app/index.js

var express = require('express');
var kraken = require('kraken-js');

var options, app;

/*
 * Create and configure application. Also exports application instance for use by tests.
 * See https://github.com/krakenjs/kraken-js#options for additional configuration options.
 */
options = {
 onconfig: function (config, next) {
 /*
 * Add any additional config setup or overrides here. `config` is an initialized
 * `confit` (https://github.com/krakenjs/confit/) configuration object.
 */
 next(null, config);
 }
};

app = module.exports = express();

app.use(kraken(options));
app.on('start', function () {
 console.log('Application ready to serve requests.');
 console.log('Environment: %s', app.kraken.get('env:env'));
});

The kraken-js module, which we see here, is nothing more than a standard Express middleware library.
However, instead of simply augmenting Express with some small bit of additional functionality, Kraken takes
responsibility for configuring a complete Express application. It will do so with the help of many other modules,
including those that have already been covered in this chapter: confit, meddleware, enrouten, and adaro.

Figure 9-6. Viewing the Project in the Browser for the First Time

https://github.com/krakenjs/kraken-js#options
https://github.com/krakenjs/confit/

Chapter 9 ■ KraKen

233

As shown in Listing 9-48, Kraken is passed a configuration object containing an onconfig() callback
function, which will be called after Kraken has taken care of initializing confit for us. Here we can provide
any last-minute overrides that we may not want to define directly within the project’s JSON configuration
files. In this example, no such overrides are made.

Controllers, Models, and Tests
In this chapter’s “Structured Route Organization” section, we discovered how enrouten can help bring
order to the often haphazard manner in which Express routes are defined. By default, a new Kraken project
is set up to use enrouten’s directory configuration option, allowing it to recursively scan the contents of a
specified folder, searching for modules that export a function accepting a single argument (i.e., router). For
each module it finds (referred to as a “controller”), enrouten will pass an Express Router instance that has
been mounted to a path predetermined by that module’s location within the directory structure. We can see
this process in action by looking at the default controller that Kraken has created for our project, shown in
Listing 9-49.

Listing 9-49. Our Project’s Default Controller

// app/controllers/index.js

var IndexModel = require('../models/index');

module.exports = function (router) {

 var model = new IndexModel();

 /**
 * The default route served for us when we access the app at: http://localhost:8000
 */
 router.get('/', function (req, res) {
 res.render('index', model);
 });

};

In addition to creating a default controller for our project, Kraken has also taken care of creating a
corresponding model, IndexModel, which you can see referenced in Listing 9-49. We will discuss Kraken’s
relationship with models shortly, but first, let’s walk through the process of creating a new controller of
our own.

Chapter 3, which covered Yeoman, demonstrated that generators have the ability to provide
subcommands capable of providing developers with functionality whose usefulness extends well beyond the
initial creation of a project. Kraken’s Yeoman generator takes advantage of this by providing a controller
subcommand, with which new controllers can quickly be created. By way of an example, let’s create a new
controller that will be responsible for managing a collection of RSS feeds:

$ yo kraken:controller feeds

http://dx.doi.org/10.1007/978-1-4842-0662-1_3

Chapter 9 ■ KraKen

234

After specifying our desired path, feeds, to the generator’s controller subcommand, five new files are
automatically created for us:

•	 controllers/feeds.js: Controller

•	 models/feeds.js: Model

•	 test/feeds.js: Test suite

•	 public/templates/feeds.dust: Dust template

•	 locales/US/en/feeds.properties: Internationalization settings

For the moment, let’s place our focus on the first three files listed here, starting with the model. We’ll
take a look at the accompanying Dust template and internalization settings file in the next section.

The Model

Listing 9-50 shows the initial state of our project’s new feeds model. If you were expecting something
sophisticated, you will likely be disappointed. As you can see, this file serves as little more than a generic
stub that we are expected to replace with our own persistence layer.

Listing 9-50. Initial Contents of the feeds Model

// models/feeds.js

module.exports = function FeedsModel() {
 return {
 name: 'feeds'
 };
};

Unlike many other “full-stack” frameworks that attempt to provide developers with tools that address
every conceivable need (including data persistence), Kraken takes a minimalistic approach that does not
attempt to reinvent the wheel. This approach recognizes that developers already have access to a wide
variety of well-supported libraries for managing data persistence, two of which are covered by this book:
Knex/Bookshelf and Mongoose.

By way of an example, let’s update this module so that it exports a Bookshelf model capable of fetching
and storing information within a feeds table stored in a SQLite database. Listing 9-51 shows the updated
contents of the feeds model.

Listing 9-51. Updated feeds Model That Uses Knex/Bookshelf

// models/feeds.js

var bookshelf = require('../lib/bookshelf');
var Promise = require('bluebird');
var feedRead = require('feed-read');

var Feed = bookshelf.Model.extend({
 'tableName': 'feeds',
 'getArticles': function() {

Chapter 9 ■ KraKen

235

 var self = this;
 return Promise.fromNode(function(callback) {
 feedRead(self.get('url'), callback);
 });
 }
});

module.exports = Feed;

 ■ Note the updated model shown in Listing 9-51 assumes that you already familiar with the Knex and
Bookshelf libraries, along with the steps necessary to configure them. If that is not the case, you may want to
read Chapter 12. regardless, this chapter’s app project provides a fully functioning demonstration of the code
shown here.

The Controller

Listing 9-52 shows the initial contents of our project’s new feeds controller. As with the original controller
that accompanied our project, this controller references a corresponding model that Kraken has
conveniently created for us, which we have already seen.

Listing 9-52. Initial Contents of the feeds Controller

// controllers/feeds.js

var FeedsModel = require('../models/feeds');

/**
 * @url http://localhost:8000/feeds
 */
module.exports = function (router) {
 var model = new FeedsModel();
 router.get('/', function (req, res) {
 });
};

In its default state, the feeds controller accomplishes very little. Let’s update this controller to include
a few additional routes that will allow clients to interact with our application’s Feed model. The updated
version of the feeds controller is shown in Listing 9-53.

Listing 9-53. Updated feeds Controller

var Feed = require('../models/feeds');

module.exports = function(router) {

 router.param('feed_id', function(req, res, next, id) {
 Feed.where({
 'id': id
 }).fetch({

http://dx.doi.org/10.1007/978-1-4842-0662-1_12

Chapter 9 ■ KraKen

236

 'require': true
 }).then(function(feed) {
 req.feed = feed;
 next();
 }).catch(next);
 });

 /**
 * @url http://localhost:8000/feeds
 */
 router.route('/')
 .get(function(req, res, next) {
 return Feed.where({})
 .fetchAll()
 .then(function(feeds) {
 if (req.accepts('html')) {
 return res.render('feeds', {
 'feeds': feeds.toJSON()
 });
 } else if (req.accepts('json')) {
 return res.send(feeds);
 } else {
 throw new Error('Unknown `Accept` value: ' + req.headers.accept);
 }

 })
 .catch(next);
 });

 /**
 * @url http://localhost:8000/feeds/:feed_id
 */
 router.route('/:feed_id')
 .get(function(req, res, next) {
 res.send(req.feed);
 });

 /**
 * @url http://localhost:8000/feeds/:feed_id/articles
 */
 router.route('/:feed_id/articles')
 .get(function(req, res, next) {
 req.feed.getArticles()
 .then(function(articles) {
 res.send(articles);
 })
 .catch(next);
 });

};

Chapter 9 ■ KraKen

237

With these updates in place, clients now have the ability to

•	 List feeds

•	 Fetch information regarding a specific feed

•	 Fetch articles from a specific feed

In the next section, we will take a look at the test suite that Kraken has created for this portion of our
application. With this test suite, we can verify that the routes we have defined work as expected.

The Test Suite

Listing 9-54 shows the initial contents of the test suite that Kraken has created for our new controller. Here
we see a single test, which is defined with the help of SuperTest, which is an extension of SuperAgent, a
simple library for making HTTP requests.

Listing 9-54. Test Suite for the feeds Controller

// test/feeds.js

var kraken = require('kraken-js');
var express = require('express');
var request = require('supertest');

describe('/feeds', function() {

 var app, mock;

 beforeEach(function(done) {
 app = express();
 app.on('start', done);
 app.use(kraken({
 'basedir': process.cwd()
 }));
 mock = app.listen(1337);
 });

 afterEach(function (done) {
 mock.close(done);
 });

 it('should say "hello"', function(done) {
 request(mock)
 .get('/feeds')
 .expect(200)
 .expect('Content-Type', /html/)
 .expect(/"name": "index"/)
 .end(function (err, res) {
 done(err);
 });
 });

});

Chapter 9 ■ KraKen

238

In this example, a GET request is made to our application’s /feeds endpoint, and the following
assertions are made:

•	 The server should respond with an HTTP status code of 200.

•	 The server should respond with a Content-Type header containing the string html.

•	 The body of the response should contain the string "name": "index".

Given the recent updates that we have made to our new controller, these assertions no longer apply.
Let’s replace them with a few tests that are relevant. Listing 9-55 shows the updated contents of the test suite.

Listing 9-55. Updated Contents of the feeds Test Suite

// test/feeds/index.js

var assert = require('assert');
var kraken = require('kraken-js');
var express = require('express');
var request = require('supertest');

describe('/feeds', function() {

 var app, mock;

 beforeEach(function(done) {
 app = express();
 app.on('start', done);
 app.use(kraken({'basedir': process.cwd()}));
 mock = app.listen(1337);
 });

 afterEach(function(done) {
 mock.close(done);
 });

 it('should return a collection of feeds', function(done) {
 request(mock)
 .get('/feeds')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function(err, res) {
 if (err) return done(err);
 assert(res.body instanceof Array, 'Expected an array');
 done();
 });
 });

Chapter 9 ■ KraKen

239

 it('should return a single feed', function(done) {
 request(mock)
 .get('/feeds/1')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function(err, res) {
 if (err) return done(err);
 assert.equal(typeof res.body.id, 'number',
 'Expected a numeric `id` property');
 done();
 });
 });

 it('should return articles for a specific feed', function(done) {
 request(mock)
 .get('/feeds/1/articles')
 .expect('Content-Type', /json/)
 .expect(200)
 .end(function(err, res) {
 if (err) return done(err);
 assert(res.body instanceof Array, 'Expected an array');
 done();
 });
 });

});

Our updated test suite now contains three tests designed to verify that each of our new controller’s
routes are functioning correctly. Consider the first test, for instance, which will make a GET request to our
application’s /feeds endpoint and make the following assertions:

•	 The server should respond with an HTTP status code of 200.

•	 The server should respond with a Content-Type header containing the string json.

•	 The server should return one or more results in the form of an array.

 ■ Note recall that our application’s Feed model was created with the help of the Knex and
Bookshelf libraries. the data that you see referenced in this project originates from a Knex “seed” file
(seeds/developments/00-feeds.js) with which we can populate our database with sample data. at any
point, this project’s SQLite database can be reset to its initial state by running $ grunt reset-db from the
command line. If these concepts are unfamiliar to you, you may want to read Chapter 12.

http://dx.doi.org/10.1007/978-1-4842-0662-1_12

Chapter 9 ■ KraKen

240

Figure 9-7 shows the output that is printed to the console when our project’s test Grunt task is called.

Internationalization and Localization
Kraken provides built-in support for creating applications that are capable of adapting themselves to meet
the unique needs of multiple languages and regions, an important requirement for most products that hope
to see widespread use across multiple, diverse markets. In this section we’ll take a look at the two steps by
which this is accomplished, internationalization and localization, and how they can be applied within the
context of a Kraken application whose templates are generated on the server.

Internationalization (frequently shortened to i18n) refers to the act of developing applications that
are capable of supporting multiple regions and dialects. In practice, this is accomplished by avoiding the
direct use of locale-specific words, phrases, and symbols (e.g., currency symbols) within an application’s
templates. Placeholders are instead used, which are later populated at the moment a template is requested,
based on the location or settings of the user who is making the request. By way of an example, consider
the Dust template that is shown in Listing 9-56, which is responsible for rendering the home page of this
chapter’s app project.

Listing 9-56. Dust Template for the Home Page of app Project

// app/public/templates/index.dust

{>"layouts/master" /}

{<body}

 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">{@pre type="content" key="greeting" /}</h3>
 </div>
 <div class="panel-body">

Figure 9-7. Running the test suite

Chapter 9 ■ KraKen

241

 <form method="post" action="/sessions">
 <div class="form-group">
 <label>{@pre type="content" key="email_address" /}</label>
 <input type="email" name="email" class="form-control">
 </div>
 <div class="form-group">
 <label>{@pre type="content" key="password" /}</label>
 <input type="password" name="password" class="form-control">
 </div>
 <button type="submit" class="btn btn-primary">
 {@pre type="content" key="submit" /}
 </button>
 </form>

 </div>
 </div>

{/body}

The basic semantics at work here should be familiar, based on material that was previously covered in
this chapter’s section on Dust. As you can see, instead of directly embedding content, this template relies
on a special Dust helper provided by Kraken, @pre, with which we can reference content that is stored in
separate, locale-specific content files. The corresponding content files for this particular template are shown
in Listing 9-57.

Listing 9-57. Corresponding Content Files for the Dust Template Shown in Listing 9-56

// app/locales/US/en/index.properties
Comments are supported
greeting=Welcome to Feed Reader
submit=Submit
email_address=Email Address
password=Password

// app/locales/ES/es/index.properties
greeting=Bienvenida al Feed Reader
submit=Presentar
email_address=Correo Electrónico
password=Contraseña

 ■ Note take note of the location of this example’s template, public/templates/index.dust, and the
location of its corresponding content property files, locales/US/en/index.properties and locales/ES/es/
index.properties. Kraken is configured to pair Dust templates with content property files such as these on a
one-to-one basis, by matching them based on their paths and filenames.

Chapter 9 ■ KraKen

242

In contrast to internationalization (i18n), which is primarily concerned with the creation of applications
that are capable of supporting the injection of localized content, localization (l10n) refers to the process
by which locale- and dialect-specific content files, such as those shown in this example, are created. The
controller shown in Listing 9-58 demonstrates how Kraken helps developers brings these concepts together
to provide users with content that is tailored to meet their specific needs.

Listing 9-58. Serving a Locale-Specific Version of the Home Page

// app/controllers/index.js

module.exports = function (router) {

 /**
 * The default route served for us when we access the app
 * at http://localhost:8000
 */
 router.get('/', function (req, res) {
 res.locals.context = { 'locality': { 'language': 'es', 'country': 'ES' } };
 res.render('index');
 });

};

This example is an updated version of the controller that we originally saw in Listing 9-49, which is
responsible for rendering our application’s home page. Here we specify the country and language to be
used for locating content files by assigning them to the locals.context property of the incoming Express
response object. If no such value is specified, Kraken’s default behavior is to use US English. The English and
Spanish versions of the rendered template are shown in Figure 9-8 and Figure 9-9, respectively.

Figure 9-8. English version of the application’s home page

Chapter 9 ■ KraKen

243

Detecting Locality

The example shown in Listing 9-58 demonstrates the process by which specific regional settings can be
manually assigned to an incoming request. What it does not demonstrate, however, is the process by which a
user’s desired localization settings can be automatically detected.

Listing 9-59 demonstrates a simple method for determining locality based on the value of the accept-
language HTTP request header. In this example, we have removed the logic for determining a user’s locality
from our route and placed it in a more appropriate location - a middleware function that will be called for
every incoming request.

Listing 9-59. Detecting Locality Based on the Value of the accept-language HTTP Request Header

// app/lib/middleware/locale.js

var acceptLanguage = require('accept-language');

/**
 * Express middleware function that automatically determines locality based on the value
 * of the `accept-language` header.
 */
module.exports = function() {

 return function(req, res, next) {
 var locale = acceptLanguage.parse(req.headers['accept-language']);
 res.locals.context = {
 'locality': { 'language': locale[0].language, 'country': locale[0].region }
 };
 next();
 };

};

Figure 9-9. Spanish version of the application’s home page

Chapter 9 ■ KraKen

244

// app/config/config.json (excerpt)

"middleware":{
 "locale": {
 "module": {
 "name": "path:./lib/middleware/locale"
 },
 "enabled": true
 }
}

 ■ Note While helpful, the accept-language http request header does not always reflect the desired
localization settings of the user making the request. always be sure to provide users with a method for manually
specifying such settings on their own (e.g., as part of a “Settings” page).

Security
Given Kraken’s origins at PayPal, a worldwide online payments processor, it should come as no surprise
that the framework focuses heavily on security. Kraken does so with the help of Lusca, a library that extends
Express with a number of enhanced security techniques, as suggested by the Open Web Application Security
Project (OWASP). These extensions are provided in the form of multiple, independently configurable
middleware modules. In this section, we will briefly examine two ways in which Kraken can help secure
Express against commonly encountered attacks.

 ■ Note this material should by no means be considered exhaustive. It is merely intended to serve as a
starting point for implementing security within the context of a Kraken/express application. readers with a hand
in implementing security on the Web are highly encouraged to delve further into this topic by reading a few of
the many great books that are devoted entirely to this subject.

Defending Against Cross-Site Request Forgery Attacks

To understand the basic premise behind cross-site request forgery (CSRF) attacks, it is important
to understand the method by which most web applications authenticate their users: cookie-based
authentication. This process is illustrated in Figure 9-10.

Chapter 9 ■ KraKen

245

In a typical scenario, a user will submit their credentials to a web application, which will then compare
them with those it has on file. Assuming the credentials are valid, the server will then create a new session—
essentially, a record representing the user’s successful sign-in attempt. A unique identifier belonging to
this session is then transmitted to the user in the form of a cookie, which is automatically stored by the
user’s browser. Subsequent requests to the application made by the browser will automatically attach the
information stored in this cookie, allowing the application to look up the matching session record. As a
result, the application has the ability to verify the user’s identity without requiring the user to resubmit their
username and password along with every request.

A CSRF attack takes advantage of the trusted relationship (i.e., session) that exists between an
application and a user’s browser, by tricking that user into submitting an unintended request to the
application. Let’s take a look at an example that should help explain how this works. Figure 9-11 illustrates
the process by which a user signs into a trusted application—in this case, the csrf-server project that is
included with this chapter’s source code.

Figure 9-10. Cookie-based authentication

Figure 9-11. Signing into a trusted application

Chapter 9 ■ KraKen

246

Figure 9-12 shows the welcome screen that the user is presented with after successfully signing into
the application. Here we see some basic information about the user, including their name and when their
account was created.

At this point, imagine a scenario in which the user leaves the application (without signing out) and visits
another site, which, unbeknownst to the user, has malicious intent (see Figure 9-13). A copy of this malicious
site can be found in this chapter’s csrf-attack project. In this example, the malicious site lures the user into
clicking a button with the tempting promise of free candy and butterflies.

Listing 9-60 shows an excerpt from the HTML for this malicious site, which should help explain what is
going to happen when the user clicks this button. As you can see, clicking the button will trigger the creation
of a POST request to the original application’s /transfer-funds route.

Figure 9-13. Malicious web site attempting to convince the user to click a button

Figure 9-12. Successful sign-in attempt

Chapter 9 ■ KraKen

247

Listing 9-60. Malicious Web Form

// csrf-attack/views/index.dust (excerpt)

<form method="post" action="http://localhost:7000/transfer-funds">
 <button type="submit" class="btn btn-primary">
 Click Here for Free Candy and Butterflies
 </button>
</form>

After clicking the button, instead of receiving the free candy and butterflies that they were promised, the
user is greeted with a message indicating that all of the funds have been transferred out of their account, as
shown in Figure 9-14.

Several different steps can be taken to defend against attacks of this nature. The method by which
Kraken defends against them is referred to as the “synchronizer token pattern.” In this approach, a random
string is generated for each incoming request, which the client can subsequently access as part of a
template’s context or via a response header. Importantly, this string is not stored as a cookie. The next
POST, PUT, PATCH, or DELETE request made by the client must include this string, which the server will
then compare with the one it previously generated. The request will only be allowed to proceed if a match
is made.

Let’s take a look at how this works in practice. Figure 9-15 shows the sign-in page for this chapter’s app
project. Refer back to Listing 9-56 to see the underlying HTML for this page.

Figure 9-14. Successful CSRF attack

Chapter 9 ■ KraKen

248

In its current state, any attempt to sign-in using this form will result in the error shown in Figure 9-16.
Here we see an error message from Kraken warning us of a missing “CSRF token.”

This error can be resolved with the addition of a single, hidden input to our application’s login form.
Listing 9-61 shows an excerpt from our application’s updated Dust template, along with an excerpt from the
rendered output.

Figure 9-15. Sign-in page for this chapter’s app project

Figure 9-16. Kraken’s “CSRF token missing” Error

Chapter 9 ■ KraKen

249

Listing 9-61. Inserting a Hidden _csrf Field into the Sign-In Form

// app/public/templates/index.dust (excerpt)

<form method="post" action="/sessions">
 <input type="hidden" name="_csrf" value="{_csrf}">
 <!-- ... ->
</form>

// Rendered output

<form method="post" action="/sessions">
 <input type="hidden" name="_csrf" value="OERRGi9AGNPEYnNWj8skkfL9f0JIWJp3uKK8g=">
 <!-- ... ->
</form>

Here we create a hidden input with the name _csrf, the value for which Lusca has automatically
passed to our template’s context under a property with the same name. The value that we see rendered in
this example, OERRGi9AGNPEYnNWj8skkfL9f0JIWJp3uKK8g=, is a random hash that Lusca has generated for
us (i.e., the “synchronizer token”). When we submit this form, Lusca will verify that this value matches the
one it previously gave us. If they match, the request is allowed to proceed. Otherwise, an error is thrown.
This approach allows applications to defend against CSRF attacks by requiring additional, identifying
information that is not stored as part of a cookie, making it much more difficult for attackers to trick users
into performing unintended actions.

Configuring Content Security Policy Headers

Lusca provides developers with a convenient mechanism for configuring an application’s Content Security
Policy (CSP). These rules provide instructions to supporting browsers regarding the locations from which
various resources (e.g., scripts, stylesheets, images, etc.) can be loaded. When defined, these rules are
conveyed to browsers in the form of the Content-Security-Policy response header.

By way of an example, see Listing 9-62, in which Lusca’s csp middleware module is provided with a
configuration object specifying that only images may be loaded from any domain. All other resources must
originate from the application’s domain.

Listing 9-62. Configuring an Application’s Content Security Policy

app.use(lusca({
 'csp': {
 'default-src': '\'self\'',
 'img-src': '*'
 }
});

 ■ Note For a full list of the various options that can be configured via the Content-Security-Policy
header, visit the Open Web application Security project (OWaSp) at https://owasp.org.

https://owasp.org/

Chapter 9 ■ KraKen

250

Summary
The Node community is heavily influenced by the so-called “Unix philosophy,” which promotes (among
other things) the creation of small, tightly focused modules that are designed to do one thing well. This
approach has allowed Node to thrive as a development platform by fostering a large ecosystem of open
source modules. PayPal has taken this philosophy to heart by structuring Kraken not as a single, monolithic
framework, but rather as a collection of modules that extends and provides structure to Express-based
applications. By taking this approach, PayPal has managed to contribute several modules to the Node
ecosystem from which developers can benefit, regardless of whether they choose to use Kraken as a whole.

Related Resources
•	 Kraken: http://krakenjs.com/

•	 Confit: https://github.com/krakenjs/confit

•	 Meddleware: https://github.com/krakenjs/meddleware

•	 Enrouten: https://github.com/krakenjs/express-enrouten

•	 Dust.js: http://www.dustjs.com

•	 SuperAgent: https://github.com/visionmedia/superagent

•	 SuperTest: https://github.com/visionmedia/supertest

•	 Mocha: http://mochajs.org

•	 Open Web Application Security Project (OWASP): https://owasp.org

•	 Lusca: https://github.com/krakenjs/lusca

http://krakenjs.com/
https://github.com/krakenjs/confit
https://github.com/krakenjs/meddleware
https://github.com/krakenjs/express-enrouten
http://www.dustjs.com/
https://github.com/visionmedia/superagent
https://github.com/visionmedia/supertest
http://mochajs.org/
https://owasp.org/
https://github.com/krakenjs/lusca

251

Chapter 10

Mach

It is better to have a system omit certain anomalous features and improvements, but to
reflect one set of design ideas, than to have one that contains many good but independent
and uncoordinated ideas.

—Frederick P. Brooks

There is no shortage of Node.js web servers. Express/Connect, Kraken, and Sails are all popular choices.
Mach is a relatively young project in this space, though its predecessor, Strata.js, enjoyed a strong following
for several years. Mach was created by Michael Jackson, a former Twitter developer, with a few explicit
principles in mind:

•	 HTTP requests are seamlessly passed to JavaScript functions.

•	 A promise-oriented interface allows HTTP responses to be asynchronously deferred.
HTTP errors may also be propagated through promise chains. (See Chapter 14 for a
detailed description of how promises work.)

•	 Requests and responses can both take advantage of Node.js streams, so that large
amounts of data may be sent and received in chunks.

•	 Composable middleware easily expands Mach’s core capabilities.

The choice of which web server to use—indeed, the choice of any library, framework, or programming
language in general—should be driven by a project’s particular use cases. And while Mach has much to offer
for any web-based application, it can also be an HTTP client and proxy, route requests to virtual hosts (like
Apache and nginx), and rewrite URLs (like Apache’s mode_rewrite module). Mach functions as a Node.js
module, but some of its features can be used in the browser as well, making its use case surface area even wider.

Chapter Examples
This chapter contains a number of runnable examples included with the chapter’s sample code. Where
applicable, code listings refer to their corresponding file(s) with a comment at the top of the listing, as shown
in Listing 10-1.

Listing 10-1. Not a Real Example

// example-000/no-such-file.js
console.log('this is not a real example');

http://dx.doi.org/10.1007/978-1-4842-0662-1_14

Chapter 10 ■ MaCh

252

Most examples in this chapter launch a Node.js web server. Unless otherwise specified, assume that the
server may be launched by running the JavaScript file referred to in each listing. For example, the command
in Listing 10-2 will run the index.js file, launching the Mach web server in the example-001 directory.

Listing 10-2. Launching an Example Web Server

example-001$ node index.js
>> mach web server started on node 0.10.33
>> Listening on 0.0.0.0:8080, use CTRL+C to stop

Installation
Mach is a Node.js module that may be installed with the Node.js package manager, npm. The examples in this
chapter also use the Q promise library and a handful of other npm modules. All are listed as dependencies
in the example code’s package.json file, so simply running npm install in the example code directory will
download and install each module:

code/mach$ npm install

Mach, the Web Server
The Mach web server is superficially similar to many other web servers, taking inspiration from proven
patterns and designs, and only reinventing the wheel when it has something significant to offer. Creating
routes to handle HTTP requests in a Mach web server is a fairly straightforward process, and should be
familiar to developers who have used other REST-oriented web servers like Express (JavaScript), Sinatra
(Ruby), Nancy (.NET), and so forth.

After importing Mach as an application dependency, Mach application stacks are created by calling
mach.stack(). This is the first step to servicing HTTP requests. Listing 10-3 assigns the stack to the app
variable.

Listing 10-3. Creating the Application Stack

// example-001/index.js
'use strict';
var mach = require('mach');
// ... load other modules ...

// create a stack
var app = mach.stack();

// ...

Each Mach application is called a “stack” because each HTTP connection will travel through layers
of middleware—small bits of composable functionality—which may manipulate the request before it is
delivered to a route, and the response before it is delivered to a calling client. Middleware may also create
other side-effects that are important to the web server environment.

Mach itself comes with common web server middleware, which will be covered in the next section. The
web server in Listing 10-4 uses a piece of middleware, mach.logger, to print HTTP diagnostic information to
the terminal when the web server is receiving requests.

Chapter 10 ■ MaCh

253

Listing 10-4. Adding Middleware to the Application Stack

// example-001/index.js
'use strict';
var mach = require('mach');
// ... load other modules ...

// create a stack
var app = mach.stack();

// add some middleware
app.use(mach.logger);

// ...

A route is simply a function paired with a particular HTTP method and URL pattern that will handle
HTTP requests when they are received by the server. Routes are typically added to an application stack last,
after middleware, so that middleware have a chance to parse request information before, and manipulate
response information after, a route has an opportunity to interact with each.

The application stack exposes function methods mapped to standard HTTP request methods, as shown
in Listing 10-5. Routes are attached to the stack by invoking the appropriate method, followed by a URL
pattern and a route callback. When a route is matched to an incoming request, it will receive a connection
(typically abbreviated as conn) with which it may respond to the request.

Listing 10-5. Adding HTTP Routes to the Application Stack

// example-001/index.js

// add some routes

app.get('/book', function (conn) {/*...*/});

app.get('/book/:id', function (conn) {/*...*/});

app.delete('/book/:id', function (conn) {/*...*/});

app.post('/book', function (conn) {/*...*/});

app.put('/book/:id', function (conn) {/*...*/});

app.get('/author', function (conn) {/*...*/});

app.get('/library', function (conn) {/*...*/});

app.get('/', function (conn) {/*...*/});

// ...

When all middleware and routes have been attached to an application stack, the web server is ready
to listen for requests. Passing the application stack to Mach.serve() creates an HTTP listener to service
requests at the default HTTP scheme, host, and port: http://localhost:5000. Additional options may
be added to change this default behavior. In Listing 10-6 a new port number (8080) is passed as a second
argument to Mach.serve() to force the HTTP listener to service that port.

Chapter 10 ■ MaCh

254

Listing 10-6. Serving Up the Application Stack on Port 8080

// example-001/index.js

// serve the stack on a port
mach.serve(app, 8080);
// or mach.serve(app, {port: 8080});

If more options are necessary, they may be passed to Mach.serve() as an options hash instead. The
keys and values are described in Table 10-1. The examples in this chapter will make use of the port number
shorthand for convenience.

Table 10-1. Mach Server Options

Option Property Description

host Listen for connections to this hostname, only. No restriction by default.

port Listen for connections on this port. Defaults to 5000.

socket Listen for connections via Unix socket. Host and port are ignored.

quiet true to suppress startup and shutdown messages. Defaults to false.

timeout Duration to wait after receiving SIGINT or SIGTERM signals before forcibly closing
connections and terminating.

key Private key for SSL connections (HTTPS).

cert Public X509 certificate for SSL connections (HTTPS).

HTTP Routes
Mach routes can handle requests from the most common HTTP methods, and even some uncommon ones:

•	 GET

•	 POST

•	 PUT

•	 DELETE

•	 HEAD

•	 OPTIONS

•	 TRACE

The HTTP GET route in Listing 10-7 looks up all books in a fake database and delivers the records to the
client as an array of JSON objects.

Listing 10-7. Anatomy of a Route

// example-001/index.js
app.get('/book', function (conn) {
 /*
 * 1. Routes return promises. Q can adapt the callback-
 * driven database module so that its result (or error)
 * is passed through a promise chain. The makeNodeResolver()

Chapter 10 ■ MaCh

255

 * method will provide a callback to feed the deferred.
 */
 var deferred = Q.defer();
 db.books.all(deferred.makeNodeResolver());
 /*
 * 2. Adding handlers to the promise chain by calling
 * promise.then()
 */
 return deferred.promise.then(function (books) {
 /*
 * 3. The Connection.json() method returns a promise.
 * The HTTP status code will be sent as an HTTP header
 * in the response, and the array of books will be
 * serialized as JSON.
 */
 return conn.json(200, books);
 }, function (err) {
 /*
 * 4. An HTTP 500 will be delivered to the client on
 * error. The error's message will be used in the
 * serialized JSON response.
 */
 return conn.json(500, {error: err.message});
 });
});

Several things happen in this route that will be common to nearly every route created.
First, a deferred is created that will eventually generate a promise to be returned from the route. (Refer

to Chapter 14 for a detailed explanation of how promises work, specifically how values and errors can be
passed along a promise chain.) Here the Q promise library creates a deferred, then creates a special callback
with makeNodeResolver(). This callback is passed directly to the database.books.all() method, and will
feed any value or error generated to the promise chain.

Second, two handlers are attached to the deferred’s promise: a handler to receive the book data that needs
to be returned to client, and a handler to receive any error from the database should the record fetch fail.

Third, each handler turns its respective data into an HTTP response by calling conn.json() with an
HTTP status and a payload. This method is syntactic sugar that encapsulates the conn.send() method
(which will be covered in detail later), setting the appropriate Content-Type header, serializing the JSON
object, and returning a promise to be passed along the promise chain. When this promise is resolved, the
actual HTTP response will be sent.

In a terminal session the curl HTTP utility can make an HTTP GET request to the /book route. The
response body contains serialized book data in JSON form:

example-001$ curl -X GET http://localhost:8080/book
[{"id":1,"title":"God Emperor of Dune","author":"Frank Herbert"... }]

In the terminal session running the Mach server, the mach.logger middleware writes the request details
for GET /book to standard output:

example-001$ node index.js
>> mach web server started on node 0.12.0
>> Listening on :::8080, use CTRL+C to stop

::1 - - [17/Mar/2015 19:58:07] "GET /book HTTP/1.1" 200 - 0.002

http://dx.doi.org/10.1007/978-1-4842-0662-1_14

Chapter 10 ■ MaCh

256

URL Parameters
URL parameters are segments of a URL path that represent application data, such as unique identifiers.
It is common to see REST URLs written in patterns similar to /<entity-type>/<entity-id>/<entity-
particular>. The code in Listing 10-8 defines a route for fetching a specific book by its identifier. The actual
parameter, :id, is identified by a colon prefix. A route may have any number of parameters, but each must
have a unique name and must be an entire URL segment.

Parameters will be available to the route as properties on the conn.params object. Each property name
will be the URL parameter name without the colon prefix. All property values are also parsed by Mach as
strings. Because IDs are numeric in the database, this parameter is converted using the Number function
before it is consumed by the database query.

Listing 10-8. REST Route with a Single URL Parameter

// example-001/index.js
app.get('/book/:id', function (conn) {
 var id = Number(conn.params.id);
 var deferred = Q.defer();
 db.book.findByID(id, deferred.makeNodeResolver());
 return deferred.promise.then(function (book) {
 if (!book) {
 return conn.json(404);
 }
 return conn.json(200, book);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
});

Unlike the general /book route in Listing 10-8, this route searches for a specific entity that may or may
not exist in the database. If the database operation succeeds but the fetched book object is null, no record
for that ID exists, and the route resolves with an empty HTTP 404 response.

Query Strings and Request Bodies
While Mach parses URL parameters automatically and makes them available on the conn.params object,
the getParams() method must be invoked to parse the query string and the request body. Because request
bodies are streamed, parsing is not performed automatically, by default. It remains up to the developer to
decide if, and when, the parsing should occur. (If this sounds tedious, don’t worry: the params middleware,
covered later, can automate this process.)

In Listing 10-9 the /author route accepts a query parameter, genre, and then delivers a JSON array of
authors who write books in that genre. The connection’s getParams() method returns a promise, passing
a parsed params object to the resolution callback. Each property on the params object will be a named
parameter from the URL, query string, or request body.

Listing 10-9. Extracting Values from a Query String

// example-001/index.js
app.get('/author', function (conn) {
 return conn.getParams().then(function (params) {
 var deferred = Q.defer();
 db.author.findByGenre(params.genre, deferred.makeNodeResolver());

Chapter 10 ■ MaCh

257

 return deferred.promise.then(function (authors) {
 return conn.json(200, authors);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
 });
});

The curl command in Listing 10-10 sends the Horror genre parameter to the server, and the response
contains a single author record with a matching entry in the genres array.

Listing 10-10. Using cURL to Send a Request with a Query String

example-001$ curl -X GET http://localhost:8080/author?genre=Horror
[{"id":6,"name":"Dan Simmons","website":"http://www.dansimmons.com/",
"genres":["Science Fiction","Fantasy","Literature","Horror"]}]

The getParams() method has two other useful features. It accepts a single object argument where
keys represent whitelisted parameters to be parsed, and the values represent the parsing function for each
parameter. When the request body is parsed in Listing 10-11, any body parameter not specified in the
whitelist will be ignored. The primitive JavaScript functions String, Number, and Date all parse strings and
return deserialized objects. When the params object is passed to the promise’s resolution callback, each
property will be correctly typed. Custom functions may be used to deserialize request body parameters with
proprietary data formats as well.

Once the parameters have been parsed, a new book record is created in the database, then serialized
and returned to the client in the response body.

Listing 10-11. Extracting Values from a Request Body

// example-001/index.js
app.post('/book', function (conn) {
 return conn.getParams({
 title: String,
 author: String,
 seriesTitle: String,
 seriesPosition: Number,
 publisher: String,
 publicationDate: Date
 }).then(function (params) {
 var book = Book.fromParams(params);
 var deferred = Q.defer();
 db.book.save(book, deferred.makeNodeResolver());
 return deferred.promise.then(function (result) {
 return conn.json(result.isNew ? 201 : 200, book);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
 });
});

http://www.dansimmons.com/

Chapter 10 ■ MaCh

258

Mach can deserialize request bodies in URL-encoded, multipart, and JSON formats. For other formats,
custom middleware can be added to deserialize the request body before it arrives at a route handler, or the
raw request body stream may be accessed at conn.request.content.

Listing 10-12 shows two curl commands that POST new book data in URL-encoded and JSON formats,
and the output generated from each HTTP response.

Listing 10-12. Sending a POST Request Body with cURL

example-001$ curl -X POST http://localhost:8080/book \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "title=Leviathan%20Wakes&author=James%20S.A.%20Corey&publisher=Orbit&publication

Date=2011-06-15T05%3A00%3A00.000Z"
{"id":10,"title":"Leviathan Wakes","author":"James S.A. Corey","publisher":"Orbit"...}

example-001$ curl -X POST http://localhost:8080/book \
 -H "Content-Type: application/json" \
 -d @new-book.json
{"id":11,"title":"Ready Player One","author":"Ernest Cline","publisher":"Random House
NY"...}

When parameters from different sources (i.e., URL parameter, query string parameter, body parameter)
have the same name, the following resolution scheme applies:

 1. URL parameters always take precedence over query string and request body
parameters.

 2. Query string parameters take precedence over request body parameters.

 3. Nonconflicting request body parameters are included.

Sending Responses
So far the routes have only delivered JSON responses, but Mach can stream any valid HTTP response
content to a client.

The lowest-level response method on the Connection object is Connection.send(). This method
accepts an HTTP status code and a stream, buffer, or string to deliver in the response body. Many of the
other response methods (such as json() or html()) on the Connection object are merely facades that
manipulate the response by adding appropriate headers before calling send().

Table 10-2 shows each Mach response method, the type of content generally passed to each, and the
default values each method uses (if any) for various HTTP response headers. With the exception of back(),
an HTTP status code may be specified as the first parameter to each of these methods, followed by the
response body content. While the status code is an optional parameter, the examples in this chapter always
explicitly set it.

Chapter 10 ■ MaCh

259

The redirect() and back() methods do not deliver a response body, but instead manipulate the
Location header in the response to direct the client to another page. The file() method accepts either file
content (in the form of a stream, buffer, or string) or a file path that is then read into a stream, and delivers
the content of the file to the client.

Perhaps the most common response a web server will deliver to web browsers is an HTML response.
HTML pages are rarely stored as complete files anymore, however; developers break up HTML into reusable
components, mix markup with templating languages, and bind templates to dynamic data to create valid HTML.

In Listing 10-13, the swig templating library compiles two swig templates into functions, library()
(to display a user’s book library) and err500() (to display any server errors). When the route handles an
incoming request, it loads book data from the database and binds that data to the library.swig template
using the library() function. This produces a valid HTML string, which is then passed as the response body
to conn.html(). If an error occurs during this process, the err500() function does the same with the error
template and the error message.

Listing 10-13. Sending an HTML Response

// example-001/index.js
var swig = require('swig');
// ...

var library = swig.compileFile('./library.swig');
var err500 = swig.compileFile('./err500.swig');

app.get('/library', function (conn) {
 var deferred = Q.defer();
 db.book.all(deferred.makeNodeResolver());
 return deferred.promise.then(function (books) {
 return conn.html(200, library({books: books}));
 }, function (err) {
 return conn.html(500, err500({err: err.message}));
 });
});

Table 10-2. Mach Response Methods

Method Payload Response Header Defaults

Connection.send() Stream, buffer, or string (none)

Connection.redirect() Location 302 Redirect Location:

Connection.back() Location 302 Redirect Location:

Connection.text() Text string Content-Type: text/plain

Connection.html() HTML string Content-Type: text/html

Connection.json() JSON object or string Content-Type: application/json

Connection.file() File content (stream, buffer,
string, or path)

Content-Type is set if an appropriate MIME
type can be determined by the file extension.

Content-Length is set if a specified size is
passed to file() in an options hash, or if the
payload is a file path that can Node.js can
resolve and stat to determine file size.

Chapter 10 ■ MaCh

260

The advantage of using conn.html() over conn.send() in Listing 10-13 is purely one of convenience, as
html() will set the appropriate Content-Type: text/html header automatically. The conn.text() method
would do likewise with the text/plain content type.

For content types that Mach does not wrap, headers can be set manually before conn.send() is called.
For example, the route in Listing 10-14 delivers library data as XML instead of HTML by explicitly setting a
Content-Type: application/xml header on the connection’s response before the promise is returned from
the route. The book data is then serialized as an XML string before being sent to the client.

Listing 10-14. Setting the Content-Type Header Manually

// example-001/index.js
var xmlify = require('./xmlify');
// ...

app.get('/library.xml', function (conn) {
 var deferred = Q.defer();
 db.book.all(deferred.makeNodeResolver());
 conn.response.setHeader('Content-Type', 'application/xml');
 return deferred.promise.then(function (books) {
 return conn.send(200, xmlify('books', data));
 }, function (err) {
 return conn.send(500, xmlify('err', err.message));
 });
});

Not all response methods send content. The conn.redirect() method will send a Location header to
the HTTP client with a URL that it should follow, presumably because the content requested is no longer
available at the given route. The conn.back() method, in contrast, merely directs the client back to its
referer. An optional URL parameter acts as a fallback, in the event that the request’s Referer header is blank
(e.g., the user typed the address directly into the browser’s URL bar).

Listing 10-15 shows a simple redirect from the root of the web application to the /library route.

Listing 10-15. Sending a Redirect Response

// example-001/index.js
// ...

app.get('/', function (conn) {
 return conn.redirect('/library');
});

Making Connections
By now it should be obvious that the Connection object is the locus of all communication with a client. It
holds technical details about each HTTP request and response, and gives middleware and routes the means
to interact with and manipulate HTTP responses.

A Connection object has several properties of import to both middleware and routes:

•	 location

•	 request

•	 response

Chapter 10 ■ MaCh

261

Location
The Connection.location property contains information about the URL target of the connection’s request.
Table 10-3 shows the properties and data it contains.

Table 10-3. Connection Location Data

Location Property Description Example

href The full URL. http://user:pass@webapp.com:8080/
admin/dashboard.
html#news?showWelcome=1

protocol The URL scheme with trailing colon. http:, https:

auth URL authentication credentials
(if provided).

user:pass

host Full URL host, including any nonstandard
port number (e.g., not 80 or 443).

webapp.com:8080

hostname URL hostname. webapp.com

port URL host port. 8080

pathname URL path without query string. /admin/dashboard.html#news

search URL query string with the question
mark prefix.

?showWelcome=1

queryString URL query string without the question
mark prefix.

showWelcome=1

query URL query string parsed as an object hash. {showWelcome: 1}

If the location object’s API looks familiar, it’s because Mach takes some inspiration here from the
window.location object in modern web browsers.

A few Connection properties act as helpful facades for combining Location and header data, shown in
Table 10-4.

Table 10-4. Location Property Facades on the Connection Object

Connection Property Description Example

path Location.pathname + Location.
search.

/admin/dashboard.
html#news?showWelcome=1

auth Value of the Authorization header,
or Location.auth.

user:pass

isSSL true if Location.protocol is
“https:”, otherwise false.

true

Chapter 10 ■ MaCh

262

Request and Response Messages
Connections expose request and response properties, which are both instances of Message, an internal
Mach type that encapsulates HTTP message plumbing.

Message Headers

The example in Listing 10-14 illustrates how to set a single header on the response message by using conn.
response.setHeader(). The response message also exposes an addHeader() method that performs the
same function as Message.setHeader(), but with a caveat. If a header is set, it will overwrite any previous
header key/value pair with the same name. If a header is added, Mach assumes that it should be appended
to any preexisting header with the same name, effectively creating a multivalue header.

To fetch a specific header, call Message.getHeader() with the desired header name. The value will be
returned if the header is present in the message.

Headers may be manipulated en masse through the Message.headers property, which gets and sets the
internal header hash, the keys of which are header names (such as Content-Type) with associated header values.

Message Cookies

HTTP requests and responses carry cookie values to and from HTTP servers. These cookies are key/
value pairs that are stored in Cookie and Set-Cookie headers, respectively. Mach messages parse these
cookie values and expose them as an object hash via the Message.cookies property, while the Message.
getCookie() and Message.setCookie() methods behave like their header-oriented counterparts.

Message Content

Request and response bodies exist as streams in each object’s Message.content property. These streams
may be piped through other transformation streams, or replaced on each Message object entirely. If a
string is used instead of a stream when setting the content property value, it will be converted to a stream
automatically.

Several Message methods provide alternative access to its content stream. The Message.
bufferContent() method will read the stream into a memory buffer and return a promise for the result.
When the promise resolves, the buffer will be available for consumption by calling code. An optional length
parameter may be passed to restrict the amount of data read into the buffer. If the actual buffer length is
exceeded, the promise will fail. This method is useful when consuming code needs to deal with a request or
response body as a whole. If a Message has been buffered, its isBuffered property will return true.

The Message.stringifyContent() method returns a promise for the string value of the content.
Optional length and encoding arguments may be supplied to limit the amount of data converted and to
encode it appropriately. Like Message.bufferContent(), if a maximum length is supplied and the string
exceeds that length, the promise will fail.

The Connection.getParams() method calls the Message.parseContent() method under the hood,
but this method may also be called directly, perhaps in middleware if necessary. It applies the appropriate
parser to the message content based on media type (e.g., URL-encoded) and returns a promise for the
parsed result string. It also accepts a maximum length parameter.

Common Middleware
Mach comes bundled with a number of common middleware modules that encapsulate fairly standard web
server functionality, though a web server can operate without using a single piece of middleware. They are
all optional and may be added as needed.

Chapter 10 ■ MaCh

263

Each example in this chapter has used the mach.logger middleware to write HTTP request/response
output to the terminal while a Mach web server is running. Listing 10-16 shows this piece of middleware
being attached to the application stack by passing it to the app.use() method.

Listing 10-16. mach.logger Middleware

// example-002/index.js

// add some middleware
app.use(mach.logger);

// add some routes...

Under the hood, middleware are simply functions with a specific signature. This concept will be
examined in depth later, but in general, the app.use() method will accept the middleware function first
followed by optional configuration parameters.

The order in which middleware is added to a Mach application is important, as each middleware may
modify the request and response. Some middleware, like Mach.file, may prevent the connection from ever
reaching other middleware or a route handler at all.

When the web server receives a request, it passes it through middleware in an upstream fashion. Each
middleware handles the request in succession, passing it along until the chain is terminated by a piece of
middleware, handled by a route, or generates an error if it cannot be properly handled. Once the request
is handled, however, the connection passes back through the middleware chain going downstream, giving
each middleware a chance to evaluate the response. The diagram in Figure 10-1 illustrates, crudely, how
middleware is evaluated relative to request and response flow.

Figure 10-1. Order in which Mach middleware evaluates requests and responses

The impact that middleware order can have on an application will become more apparent as more
middleware are added to examples.

What Manner of Content Is This?
The Mach.contentType and Mach.charset middleware are two very simple functions that automatically
adjust the Content-Type response header if it is missing altogether, or does not specify a charset value.
These can be useful if routes serve homogeneous content (such as XML data) with Message.send(). Instead
of manipulating the Content-Type header in each route, a global override can be specified in middleware.
Both middleware are added to the application stack in Listing 10-17.

Chapter 10 ■ MaCh

264

Listing 10-17. Setting Default Header Values with Mach.contentType and Mach.charset

// example-002/index.js
// ...

app.use(mach.charset);
app.use(mach.contentType, 'application/xml');

// ...

By default, Mach.charset uses the utf-8 encoding, which is sufficient for most purposes. An alternative
encoding may be specified with a second string parameter passed to app.use(). Mach.contentType will use
text/html by default, but in this case the alternative application/xml value is specified instead.

As stated, the order in which middleware is added to the application stack is important. In this case,
Mach.charset is added before Mach.contentType, which may seem counterintuitive considering that a
charset value is part of the Content-Type header value (implying that the header value needs to be set first).
Recall, though, that responses pass through middleware in a “downstream” direction. And since the content
type and character set of a response cannot be determined until after a route has added content to the
response, these middleware will perform their work in reverse order.

The curl command in Listing 10-18 shows a simple route that streams an XML file from disk without
specifying a Content-Type header in the route. The verbose curl request output shows that the Content-
Type header has been set with the default content type and character set specified by Mach middleware.

Listing 10-18. Automatically Setting XML Content Headers

// example-002/index.js
// ...
app.use(mach.charset);
app.use(mach.contentType, 'application/xml');

var insultsFilePath = path.join(__dirname, 'insults.xml');
app.get('/insults', function (conn) {
 conn.send(200, fs.createReadStream(insultsFilePath));
});

example-002$ curl -v -X GET http://localhost:8080/insults
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /insults HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/xml;charset=utf-8
< Date: Sat, 28 Mar 2015 18:05:13 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked

Chapter 10 ■ MaCh

265

<
<?xml version="1.0" encoding="UTF-8"?>
<insults source="The Curse of Monkey Island">
 <insult value="Throughout the Caribbean my great deeds are celebrated!">
 <reply>Too bad they're all fabricated.</reply>
 </insult>
 <insult value="Coming face to face with me must leave you petrified.">
 <reply>Is that your face? I thought it was your backside!</reply>
 </insult>
 <insult value="I can't tell which of my traits has you the most intimidated.">
 <reply>Your odor alone makes me aggravated, agitated, and infuriated!</reply>
 </insult>
</insults>

My Kingdom for a File
The Mach.file middleware serves static files (e.g., .html, .css, .js) from a physical directory on disk. When
a request enters the application stack pipeline, Mach.file attempts to match the request URL pathname to
a path on disk, and if the match is successful, Mach.file streams the static file content to the connection
response. If no static file matches the request path, the connection is passed to the next middleware (or route).

Using Mach.file middleware is simply a matter of attaching the middleware function to the application
stack and specifying the directory from which static file content will be served. In Listing 10-19 an options
hash is passed to app.use() as a second argument. This object contains the few options used to configure
Mach.file, including the required root directory option. In this example the example-003/public directory
is specified.

Listing 10-19. Mach.file Middleware

// example-003/index.js
var path = require('path');
// ...

var publicDir = path.join(__dirname, 'public');
app.use(mach.file, {
 root: publicDir
 // ...other options...
});

// routes

 ■ Tip Because root is the only required option for Mach.file, the directory path string may be used as the
second argument to app.use() in lieu of the options hash.

The directory tree in Listing 10-20 shows the static content that will be served from the example-003/
public directory. Mach treats this directory as part of the web server root, so static files and directories will
all have URLs relative to / (e.g., http://localhost:8080/styles/index.css).

Chapter 10 ■ MaCh

266

Listing 10-20. Content of the Public Directory

├── images
 │ ├── bat-cat.jpg
 │  ├── computing.gif
 │  ├── llama.gif
 │ ├── no-idea.jpg
 │  └── swine.gif
├── index.html
├── scripts
 │  └── index.js
└── styles
   └── index.css

Since static file content is read-only, Mach.file will only service requests with the HTTP methods GET
and HEAD. It will also reject requests that attempt to access a file path outside of the specified static file
directory, sending a 403 Forbidden response back to the client.

After launching the web server, a browser may be pointed at http://localhost:8080/index.html.
Mach will serve the static index.html page and its assets, all magnificently depicted in Figure 10-2.

Figure 10-2. Serving a static HTML page with Mach.file

Chapter 10 ■ MaCh

267

You may have noticed that the index.html file is explicitly included in the URL. It is common practice
to map an index.html (or some equivalent “default” .html file) to the web server root, or some other nested
directory path. If the file name is removed from the URL, however, the Mach.file middleware will generate
a 404 Not Found response. To change this behavior and serve an index file automatically, an index property
may be added to the options hash. If this property is “truthy,” Mach.file will automatically search for an
index.html file at any terminating segment in a URL path, including the application root. If more granular
control is required, this property may also contain an array of file names for which to search, prioritized by
array order. Listing 10-21 shows this property and its possible values.

Listing 10-21. The Mach.file index Option Searches for Index Files at Directory Paths

// example-003/index.js
// ...

app.use(mach.file, {
 root: publicDir,
 index: true
 //or, index: ['index.html', 'index.htm', ...]
});

After the index option has been added and the web server restarted, visiting http://localhost:8080
will automatically serve the index.html file to the browser.

The Mach.file middleware can also generate directory listings for directories with no index file. The
autoIndex option in Listing 10-22 activates this feature.

Listing 10-22. The Mach.file autoIndex Option Creates a Directory Listing for Directories
Without Index Files

// example-003/index.js
// ...

app.use(mach.file, {
 root: publicDir,
 autoIndex: true
});

Browsing to http://localhost:8080/images displays a directory listing of all images, their sizes, MIME
types, and last modified timestamps, shown in Figure 10-3.

Chapter 10 ■ MaCh

268

Each image file name is a hyperlink to the image itself, while the Parent Directory hyperlink directs
the browser to the parent URL segment, in this case, the website root. If both the index and autoIndex
options are used together, any index page identified with the index option takes precedence and will be
displayed instead of a directory listing.

Zip It
Modern browsers automatically request compressed resources from a web server by issuing an Accept-
Encoding: gzip header with each request. Compression can dramatically reduce response size, improving
the speed and bandwidth required to fulfill each HTTP request. In exchange, a minor compression cost is
paid by the server and a decompression cost is paid by the browser.

Mach’s gzip middleware automatically compresses any response with the following Content-Type headers:

•	 text/*

•	 application/javascript

•	 application/json

Response bodies are compressed with the Node.js zlib module, and the following headers are set on
compressed response:

•	 Content-Encoding: gzip

•	 Content-Length: [compressed content length]

•	 Vary: Accept-Encoding

Figure 10-3. Auto-indexing the images directory

Chapter 10 ■ MaCh

269

 ■ Tip the Vary header tells any intermediary http cache that variations of this response should be cached
according to a particular header, in this case, Accept-Encoding. If Browser-a requests an uncompressed
response and Browser-B requests a compressed response for the same URL, http caches will store both
responses instead of storing only the first.

The code in Listing 10-23 introduces the Mach.gzip middleware before setting up a static file server.
When a response travels upstream, Mach.gzip will evaluate the request headers to see if Accept-Encoding:
gzip is present, then evaluate the response headers to determine if the Content-Type is a candidate for
compression. If both conditions are true, the response body will be compressed, as the curl request in
Listing 10-23 demonstrates.

Listing 10-23. Mach.gzip Compresses Response Bodies

// example-004/index.js
// ...

app.use(mach.gzip);

var publicDir = path.join(__dirname, 'public');
app.use(mach.file, {
 root: publicDir,
 index: true
});

example-004$ curl -X GET -H "Accept-Encoding: gzip" -v http://localhost:8080/index.html
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /index.html HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:8080
> Accept: */*
> Accept-Encoding: gzip
>
< HTTP/1.1 200 OK
< Content-Type: text/html
< Last-Modified: Tue, 31 Mar 2015 13:52:50 GMT
< Content-Encoding: gzip
< Vary: Accept-Encoding
< Date: Tue, 31 Mar 2015 14:14:09 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
H���� ��tvu�{������y���•
���vM�Fy^�
 =[�:$R��Z�•��6�
Y��Ť4XsF �p1����g�?�#���J\���mY��bԈ�@<��g��.x��L��
㋺�t�t•�:�5���|�0IHdΊ(�
�1�l
q�lyD��SR1�$�8��9�q"�U���������Өn/�V8q�?T�Gq•
�L�•s^�����d0#��|�L9E�5��dG�Ɨ����I�`

Chapter 10 ■ MaCh

270

For fine-grained control over the compression algorithm (compression level, memory consumption,
compression strategy, etc.), a zlib options object may be passed to the application stack when the Mach.
gzip middleware is attached. The technical details of each option are beyond the scope of this chapter. Refer
to the Node.js zlib documentation for more details.

Look at That Body
Earlier, in Listing 10-11, the Connection.getParams() method was used to parse and extract data from query
strings and POST request bodies. Performing this step within individual routes can quickly become tedious,
however. The Mach.params middleware relieves the developer of this responsibility, parsing query strings
and request body data automatically, affixing data to Connection.params (where URL parameter data lives)
before the connection is passed to a route.

In Listing 10-24, when data is POSTed to the route, the POST body parameters are appended to the
conn.params object. This object is then added as a database record. Output from the curl command shows
that the Mach.params middleware performed as expected.

Listing 10-24. Parsing a Request Body Automatically with Mach.params

// example-005/index.js
// ...

// Mach.params
app.use(mach.params);

app.post('/hero', function (conn) {
 var deferred = Q.defer();
 db.hero.save(conn.params, deferred.makeNodeResolver());
 return deferred.promise.then(function (result) {
 return conn.json(201, result);
 }, function (err) {
 return conn.json(500, {err: err.message});
 });
});

example-005$ curl -X POST http://localhost:8080/hero \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "name=Minsc&race=Human&class=Ranger&subclass=Berserker&alignment=Neutral%20
Good&companion=Boo"
{"id":6,"isNew":true}

 ■ Tip remember, UrL parameters will always take precedence over query string and request body
parameters. If a naming conflict exists between any parameter source, Mach favors UrL parameters first, then
query string parameters, and finally request body parameters.

To verify that the POSTed data was in fact added to the database, a request may be sent to the route
in Listing 10-25 with two query string parameters, skip and take. These parameters allow clients to page
through what might conceivably be a large collection of heroes by defining an offset (skip) from which to
start, and the quantity (take) of heroes to load from that offset. Because Mach.params handles both request
bodies and query strings, there is no need to parse them manually.

Chapter 10 ■ MaCh

271

The two following curl requests can be used to query records 1–3 and 4–6 respectively. The POSTed
hero, Minsc, is the last hero in the last page of data.

Listing 10-25. Parsing a Query String Automatically with Mach.params params

// example-005/index.js
// ...

// Mach.params
app.use(mach.params);

// ...

app.get('/hero'/*?skip=#&take=#*/, function (conn) {
 var skip = Number(conn.params.skip || 0),
 take = Number(conn.params.take || 0);
 var deferred = Q.defer();
 db.hero.page(skip, take, deferred.makeNodeResolver());
 return deferred.promise.then(function (heroes) {
 return conn.json(200, heroes);
 }, function (err) {
 return conn.json(500, {err: err.message});
 })
});

example-005$ curl -X GET http://localhost:8080/hero?skip=0\&take=3
[{"id":1,"name":"Dynaheir"...},{"id":2,"name":"Imoen"...},{"id":3,"name":"Khalid"...}]

example-005$ curl -X GET http://localhost:8080/hero?skip=3\&take=3
[{"id":4,"name":"Xan"...},{"id":5,"name":"Edwin"...},{"id":6,"name":"Minsc"...}]

Who Goes There?
Identifying and tracking users in web applications is a topic unto itself. Mach provides basic authentication
support for simple security use cases, and persistent session support that can accomodate many more.

The Mach.basicAuth middleware is added to the application stack like all other middleware, and
requires a simple validation function as its only parameter. This function takes two arguments, username
and password, both parsed from the authentication credentials sent along with the request. The validation
function may return one of three values:

•	 The username of a validated user

•	 A “falsy” value if validation fails

•	 A promise that will be resolved with the username of a validated user, or rejected
with a falsy value

The web server in Listing 10-26 will serve an index.html file to any authenticated user. The Mach.
basicAuth middleware will intercept each request and query the database for any provided credentials.
The db.user.byCredential() method returns a promise that will be resolved with the authenticated user
or rejected with an error. If resolved, the username is returned and propagated through the promise chain,
finally being set as the value of Connection.remoteUser. If an error occurs, a Boolean false is returned,
sending a 401 Unauthorized response to the client with the appropriate WWW-Authenticate header value.

Chapter 10 ■ MaCh

272

Listing 10-26. Securing Routes with Basic Authentication

// example-006/index.js
// ...

// Mach.basicAuth
app.use(mach.basicAuth, function (username, password) {
 return db.user.byCredential(username, password).then(function (user) {
 return user.username;
 }, function (/*err*/) {
 return false;
 });
});

var indexPath = path.join(__dirname, 'index.html');

app.get('/', function (conn) {
 return conn.html(200, fs.createReadStream(indexPath));
});

When the server is running and a user attempts to visit http://localhost:8080, he will be prompted
for credentials in response to the Basic Authentication challenge. Figure 10-4 shows the modal window that
Chrome displays.

Figure 10-4. A browser prompts the user for credentials when Basic Authentication fails

Chapter 10 ■ MaCh

273

The Velocity of an Unladen Session
Once a user has been authenticated, it is typical to track user-specific data in a server session. Adding the
Mach.session middleware to the application stack enables session cookie support automatically. The only
configuration property required on the Mach.session options object is a secret session key that will be used to
encrypt session data. Listing 10-27 shows session middleware added to the stack before any routes are defined.

Listing 10-27. Adding Session Middleware to the Application Stack

// example-007/index.js
// ...

var sessionSecret = 'c94ac0cf8f3b89bf9987d1901863f562592b477b450c26751a5d6964cbdce9eb085
c013d5bd48c7b4ea64a6300c2df97825b9c8b677c352a46d12b8cc5879554';

// Mach.session
app.use(mach.session, {
 secret: sessionSecret
});

var quizView = swig.compileFile('./quiz.swig');

app.get('/', function (conn) {
 return conn.html(200, quizView(conn.session));
});

// ...

The route in Listing 10-27 sends an HTML quiz to the browser, shown in Listing 10-28. This quiz is a
swig template that interpolates the name, quest, and colour properties of the session object as values for
each input. The first time this route is accessed, the session object will be empty, and so these inputs will
have no values.

Listing 10-28. A Perplexing Quiz (What Will Be Your Answers?)

<h1>Questions, three.</h1>
<form method="post" action="/questions/three">
 <fieldset>
 <h2>What... is your name?</h2>
 <div>
 <input name="name" type="text" value="{{name}}" />
 </div>
 <h2>What... is your quest?</h2>
 <div>
 <input name="quest" type="text" value="{{quest}}" />
 </div>
 <h2>What... is your favourite colour?</h2>
 <div>
 <input name="colour" type="text" value="{{colour}}" />
 </div>

Chapter 10 ■ MaCh

274

 <div>
 <button>Cross the Bridge of Death</button>
 </div>
 </fieldset>
</form>

When the form is POSTed to the /questions/three route, shown in Listing 10-29, the form values are
extracted from the request and the session object, and are used to populate the session object. The user is
then redirected to a success page where he or she is given the option to take the quiz again.

Listing 10-29. Setting Session Properties in a Route

// example-007/index.js
// ...

var successView = swig.compileFile('./success.swig');
var errView = swig.compileFile('./err.swig');

app.post('/questions/three', function (conn) {
 return conn.getParams().then(function (params) {
 conn.session.name = params.name;
 conn.session.quest = params.quest;
 conn.session.colour = params.colour;
 return conn.html(201, successView());
 }, function (err) {
 return conn.html(500, errView(err));
 });
});

When the user returns to the quiz page, the fields are automatically populated with the answers last
given to each question. Recall that in Listing 10-28 the session is being bound to the quiz template, and
since values were previously stored on the session object, they are now available to the template as well.
Figure 10-5 shows the prepopulated form values as well as the session cookie used to connect the browser to
the server-side session.

Chapter 10 ■ MaCh

275

Figure 10-5. Mach session cookie

Since Mach.session uses cookie storage by default, there are a number of additional cookie-specific
option properties that may be set when the middleware is added to the stack, as described in Table 10-5.

Table 10-5. Mach.session cookie options

Property Description

name Name of the cookie. Defaults to _session.

path Cookie path. Defaults to /.

domain Cookie domain. Defaults to null.

secure true to send the cookie over HTTPS only. Defaults to false.

expireAfter Seconds after which the cookie expires. Defaults to 0 (never expires).

httpOnly true to restrict this cookie to HTTP/S APIs. Defaults to true.

Chapter 10 ■ MaCh

276

Mach session storage is not limited to cookies, however. It natively supports in-memory and Redis
sessions. To change the middleware’s session storage mechanism, require() the appropriate module from
mach/middleware/session/*. Add a new instance of that module to the session configuration by setting the
store property on the options object. Listing 10-30 shows how the default cookie session store can easily be
replaced with a Redis session store.

Listing 10-30. Using Redis As a Session Store

// example-008/index.js
// ...

var RedisStore = require('mach/lib/middleware/session/RedisStore');

// Mach.session
app.use(mach.session, {
 store: new RedisStore({url: 'redis://127.0.0.1:6379'})
});

// ...

The MODified Squad
Mach’s modified middleware can inform HTTP clients when a requested resource has not been modified
since the last request for that resource, simply by using standard HTTP headers. There are two resource
modification scenarios that Mach.modified can handle before delivering a response.

ETag and If-None-Match

Web servers may identify a particular version of a requested resource by including some kind of version
identifier (commonly a message digest) in a response’s ETag header. This identifier can be sent back to the
server in the If-None-Match request header on subsequent requests for the same resource. If the resource
has not changed—that is, if its version identifier has not changed—the web server may respond with a
304 Not Modified response, omitting the actual resource from the response body. When this happens, the
client knows that the resource has not changed, and that it must continue to use the data it received from
its previous request. The code in Listing 10-31 shows how a digest of each book object is being added as the
ETag response header in each book route.

Listing 10-31. Adding the ETag Header to Each Book Response

// example-009/index.js
var jsonHash = require('./json-hash');
// ...

app.use(mach.modified);

app.get('/book/:id', function (conn) {
 var id = Number(conn.params.id);
 var deferred = Q.defer();
 db.book.findByID(id, deferred.makeNodeResolver());
 return deferred.promise.then(function (book) {

Chapter 10 ■ MaCh

277

 if (!book) {
 return conn.json(404);
 }
 conn.response.setHeader('ETag', jsonHash(book));
 return conn.json(200, book);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
});

app.put('/book/:id', function (conn) {
 var book = Book.fromParams(conn.params);
 var deferred = Q.defer();
 db.book.save(book, deferred.makeNodeResolver());
 return deferred.promise.then(function (result) {
 conn.response.setHeader('ETag', jsonHash(book));
 return conn.json(result.isNew ? 201 : 200, book);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
});

The first curl request in Listing 10-32 fetches a single book, Dune by Frank Herbert. The ETag header
in the response shows the message digest cf0fdc372106caa588f794467a17e893, and the response body
contains the serialized JSON book data. (The ETag message digest may vary based on your operating system.
For each curl command, use the ETag you receive in the HTTP response headers for further comparison.)

The second curl request uses the same URL but also includes an If-None-Match header with the ETag
value sent in the previous response. Because the book entity has not changed on the server (and thus its
message digest remains the same), Mach sends a 304 Not Modified response with no response body.

Listing 10-32. Using ETag and If-None-Match Headers to Test for Content Modification

example-009$ curl -v -X GET http://localhost:8080/book/1
...
< HTTP/1.1 200 OK
< ETag: cf0fdc372106caa588f794467a17e893
< Content-Type: application/json
< Date: Mon, 06 Apr 2015 01:39:11 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
{"id":1,"title":"God Emperor of Dune","author":"Frank Herbert"...}

example-009$ curl -v -H "If-None-Match: cf0fdc372106caa588f794467a17e893" -X GET http://
localhost:8080/book/1
...
< HTTP/1.1 304 Not Modified
< ETag: cf0fdc372106caa588f794467a17e893
< Content-Type: application/json
< Content-Length: 0
< Date: Mon, 06 Apr 2015 01:39:31 GMT
< Connection: keep-alive
<

Chapter 10 ■ MaCh

278

In Listing 10-33, the first curl request performs an HTTP PUT that assigns Frank Herbert’s full name to
the book Dune. The second curl request is identical to the second request in Listing 10-32, but this time the
server responds with an HTTP 200 OK because the message digest is different, reflecting the updated book
resource. Subsequent fetches would use the newer message digest in the response’s ETag header.

Listing 10-33. Updated ETag Header Passes the If-None-Match Check

example-009$ curl -X PUT http://localhost:8080/book/1 \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "title=God%20Emperor%20of%20Dune&author=Franklin%20Patrick%20

Herbert&publisher=Victor%20Gollancz&publicationDate=2003-03-13T06:00:00.000Z&series
Title=Dune%20Chronicles&seriesPosition=4"

{"id":1,"title":"God Emperor of Dune","author":"Franklin Patrick Herbert"...}

example-009$ curl -v -H "If-None-Match: cf0fdc372106caa588f794467a17e893" -X GET http://
localhost:8080/book/1
...
< HTTP/1.1 200 OK
< ETag: 2595cd82c364b04473358bb2d0153774
< Content-Type: application/json
< Date: Mon, 06 Apr 2015 01:54:33 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
{"id":1,"title":"God Emperor of Dune","author":"Franklin Patrick Herbert"...}

Last-Modified and If-Modified-Since

The Last-Modified response header is analogous to the ETag header mentioned in the previous section, but
instead of a version identifier it contains a timestamp indicating the last time the resource changed. When
an HTTP client makes a request, it may supply the timestamp in an If-Modified-Since header, which is
then compared to the resource’s timestamp on the server. The web server will deliver only newer versions of
the resource; otherwise, it will issue a 304 Not Modified response, indicating that the client should depend
on the previous resource as the unmodified resource will not be included in the response body.

The code in Listing 10-34 uses the lastModified timestamp on each author record to set the Last-
Modified header value in each response. This timestamp is changed automatically by the database when an
author record is updated.

Listing 10-34. Adding the Last-Modified Header to Each Author Response

// example-009/index.js

app.get('/author/:id', function (conn) {
 var id = Number(conn.params.id);
 var deferred = Q.defer();
 db.author.findByID(id, deferred.makeNodeResolver());
 return deferred.promise.then(function (author) {
 if (!author) {
 return conn.json(404);
 }

Chapter 10 ■ MaCh

279

 conn.response.setHeader('Last-Modified', author.lastModified);
 return conn.json(200, author);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
});

app.put('/author/:id', function (conn) {
 var author = Author.fromParams(conn.params);
 var deferred = Q.defer();
 db.author.save(author, deferred.makeNodeResolver());
 return deferred.promise.then(function (result) {
 conn.response.setHeader('Last-Modified', author.lastModified);
 return conn.json(result.isNew ? 201 : 200, author);
 }, function (err) {
 return conn.json(500, {error: err.message});
 });
});

In Listing 10-35, the first curl request fetches the author Hugh Howey, and the response informs the
client that the last time Hugh’s record was modified was on 2015-04-06T00:26:30.744Z. In the second
request, this ISO date string is used as the value of the If-Modified-Since header, in response to which
Mach sends a 304 Not Modified Response.

Listing 10-35. Using Last-Modified and If-Modified-Since Headers to Test for Content Modification

example-009$ curl -v -X GET http://localhost:8080/author/1
...
< HTTP/1.1 200 OK
< Last-Modified: 2015-04-06T00:26:30.744Z
< Content-Type: application/json
< Date: Mon, 06 Apr 2015 01:41:31 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
{"id":1,"name":"Hugh Howey","website":"http://www.hughhowey.com"...}

example-009$ curl -v -H "If-Modified-Since: 2015-04-06T00:26:30.744Z" -X GET
http://localhost:8080/author/1
...
< HTTP/1.1 304 Not Modified
< Last-Modified: 2015-04-06T00:26:30.744Z
< Content-Type: application/json
< Content-Length: 0
< Date: Mon, 06 Apr 2015 01:42:27 GMT
< Connection: keep-alive
<

Predictably, once the record has been updated (and thus, its lastModified date changed), Mach’s
response will now contain the updated JSON data in the response body, as well as a new Last-Modified
response header. Listing 10-36 shows this exchange with two curl requests.

http://www.hughhowey.com/

Chapter 10 ■ MaCh

280

Listing 10-36. Updated Last-Modified Header Passes the If-Modified-Since Check

example-009$ curl -X PUT http://localhost:8080/author/1 \
 -H "Content-Type: application/x-www-form-urlencoded" \
-d "name=Hugh%20C.%20Howey&website=http%3A%2F%2Fwww.hughhowey.com&genres=Science%20
Fiction%2CFantasy%2CShort%20Stories"
{"id":1,"name":"Hugh C. Howey","website":"http://www.hughhowey.com"...}

example-009$ curl -v -H "If-Modified-Since: 2015-04-06T00:26:30.744Z" -X GET http://
localhost:8080/author/1
...
< HTTP/1.1 200 OK
< Last-Modified: 2015-04-06T02:09:01.783Z
< Content-Type: application/json
< Date: Mon, 06 Apr 2015 02:09:09 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
{"id":1,"name":"Hugh C. Howey","website":"http://www.hughhowey.com"...}

These Are Not the Routes You’re Looking for...
Mach can rewrite request URLs with the Mach.rewrite middleware. While not as complex as tools like
Apache’s mod_rewrite module, Mach.rewrite is both simple and flexible enough to handle common rewrite
use cases.

Two required parameters must be supplied when Mach.rewrite is added to the application stack:

•	 A regular expression object (or string that will be cast to a regular expression object)
that matches incoming request URLs

•	 A route path to which the request will be silently forwarded

Consider a use case in which an author migrates his blog from a PHP-based system to a Node.js system
running Mach. Search engines have already indexed his valuable contributions to the world, and so his URLs
are solidified in perpetuity. By setting up a rewrite rule with Mach.rewrite, he can ensure that his old URLs
are still made available to the outside world while mapping them to his new routing scheme.

The Mach.rewrite middleware in Listing 10-37 uses a complicated regular expression object to
establish capture groups for parameters that will act as URL parameter inputs for the new blog post route:
year, month, day, and slug. After the regular expression, a string representing the rewritten URL route is
defined with placeholders for each of the extracted capture groups, in positional order. Under the hood
Mach.rewrite uses the String.prototype.replace() method to interpolate the extracted values.

Listing 10-37. Rewriting a URL with Parameters

// example-010/index.js

var blogView = swig.compileFile(path.join(__dirname, 'blog.swig'));
var errView = swig.compileFile(path.join(__dirname, 'err.swig'));

app.use(
 mach.rewrite,
 // converts: /index.php/blog/2015-04-02/bacon-ipsum-dolor-amet
 new RegExp('\/index\.php\/blog\/([\\d]{4})-([\\d]{2})-([\\d]{2})\/([^\/]+)'),

http://www.hughhowey.com/
http://www.hughhowey.com/

Chapter 10 ■ MaCh

281

 // into: /blog/2015/04/02/bacon-ipsum-dolor-amet
 '/blog/$1/$2/$3/$4'
);

// :year=$1, :month=$2, :day=$3, :slug=$4
app.get('/blog/:year/:month/:day/:slug', function (conn) {
 var year = Number(conn.params.year || 0),
 month = Number(conn.params.month || 0),
 day = Number(conn.params.day || 0),
 slug = conn.params.slug || '';
 var deferred = Q.defer();
 db.posts.find(year, month, day, slug, deferred.makeNodeResolver());
 return deferred.promise.then(function (post) {
 if (post) {
 return conn.html(200, blogView({posts: [post]}));
 }
 return conn.html(404, errView({message: 'I haven\t written that yet.'}))
 }, function (err) {
 return conn.html(500, errView(err));
 });
});

To an HTTP client, such as the web browser shown in Figure 10-6 (or a search engine bot), rewritten
URLs are still completely valid, though internally they are morphed into something different. This differs
from HTTP redirects or forwards where the client is responsible for interpreting response headers and then
loading another page. In this case the client is none the wiser.

Figure 10-6. Rewritten URLs appear unmodified to the HTTP client

Chapter 10 ■ MaCh

282

The rewrite rule in Listing 10-38 performs the same exact work, but uses a simple string instead of
a regular expression for the request URL match because it captures no parameters. Be aware that Mach.
rewrite will auto-escape any string before converting it to a regular expression. If you escape these strings
yourself, they will become doubly escaped and your match rule will fail.

Listing 10-38. Rewriting a URL with No Parameters

// example-010/index.js

app.use(
 mach.rewrite,
 '/index.php/blog',
 '/blog'
);

app.get('/blog', function (conn) {
 var deferred = Q.defer();
 db.posts.all(deferred.makeNodeResolver());
 return deferred.promise.then(function (posts) {
 return conn.html(200, blogView({posts: posts}));
 }, function (err) {
 return conn.html(500, errView(err));
 });
});

The Hosts with the Most
Mach.mapper is unique in that it performs its own manner of routing on top of Mach’s normal routing
mechanism. Up to this point it has been assumed that route paths exist for a single host (localhost) and
are all relative to that host’s name. The Mach.mapper middleware changes this paradigm by introducing a
middleware filter that can route requests by both hostname and URL pathname, in much the same spirit as
Apache’s virtual hosts, though with a much lighter footprint.

To demonstrate how Mach’s mapping feature works, execute the echo commands in Listing 10-39 to add
two aliases to the /etc/hosts file on your computer. Because /etc/hosts is protected on Unix-like systems,
the sudo command is used to elevate permissions. If this command fails, you may also add the aliases
manually to /etc/hosts with a text editor like vim or nano. The cat command will output the content
of /etc/hosts to the terminal so you can verify that the entries have been added.

Listing 10-39. Adding Aliases to /etc/hosts

example-011$ sudo echo "127.0.0.1 house-atreides.org" >> /etc/hosts
example-011$ sudo echo "127.0.0.1 house-harkonnen.org" >> /etc/hosts
example-011$ cat /etc/hosts
...
127.0.0.1 house-atreides.org
127.0.0.1 house-harkonnen.org

 ■ Tip If your computer runs the Microsoft Windows operating system, you will need to modify the file
C:\Windows\System32\drivers\etc\hosts. this file is typically protected by Windows, so you will need to use
a text editor running with administrator privileges to modify it.

Chapter 10 ■ MaCh

283

Once the /etc/hosts file has been modified, use the ping command as shown in Listing 10-40 to verify
that each alias resolves to 127.0.0.1 (localhost).

Listing 10-40. Using ping to Test Aliases in /etc/hosts

example-011$ ping -t 3 house-atreides.org
PING house-atreides.org (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.044 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.118 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.074 ms

--- house-atreides.org ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.044/0.079/0.118/0.030 ms

The web server in Listing 10-41 demonstrates how Mach.mapper works. It begins like any normal Mach
web server: an application stack is created, a few bits of middleware are added, and then things diverge a
bit. Two additional independent application stacks—atreidesApp and harkonnenApp—are also created, and
each of these stacks is assigned a route. In fact, all of the application stacks are given the same route, GET /
about.

Listing 10-41. Mach.mapper Middleware Maps Apps to Hostnames

// example-011/index.js
// ...

var app = mach.stack();

app.use(mach.logger);
app.use(mach.params);
app.use(mach.file, path.join(__dirname, 'public'));

var atreidesApp = mach.stack();

atreidesApp.get('/about', function (conn) {
 var pagePath = path.join(__dirname, 'atreides.html');
 return conn.html(200, fs.createReadStream(pagePath));
});

var harkonnenApp = mach.stack();

harkonnenApp.get('/about', function (conn) {
 var pagePath = path.join(__dirname, 'harkonnen.html');
 return conn.html(200, fs.createReadStream(pagePath));
});

app.use(mach.mapper, {
 'http://house-atreides.org/': atreidesApp,
 'http://house-harkonnen.org/': harkonnenApp
});

http://house-atreides.org/
http://house-harkonnen.org/

Chapter 10 ■ MaCh

284

app.get('/about', function (conn) {
 var pagePath = path.join(__dirname, 'about.html');
 return conn.html(200, fs.createReadStream(pagePath));
});

It is clear from examining the body of each route function that these apps all render different HTML
pages when invoked. These routes can all coexist because the Mach.mapper middleware maps the
atreidesApp application stack to the hose-atreides.org hostname and the harkonnenApp to the house-
harkonnen.org hostname in its options hash. When requests are received by the web server, they are passed
through the Mach.mapper middleware where the Connection.hostname property is evaluated. If it matches
any key on the mapping options object, the connection is passed to the application stack associated with
that key for further processing. This has several interesting consequences:

•	 Application stacks that vary by hostname may have the same routes, such as GET /
about.

•	 Since middleware are attached directly to application stacks, each stack may have
different middleware.

•	 Any middleware added to the hosting application stack before Mach.mapper will be
applied to all application stacks that Mach.mapper manages.

•	 Any routes added to the hosting application stack before Mach.mapper will be
evaluated before Mach.mapper has a chance to do hostname-based routing.
Because the hostname is not evaluated without Mach.mapper, routes on the hosting
application stack with the same URL pathname value would resolve, regardless of
hostname.

•	 Any routes added to the hosting application stack after Mach.mapper will act as
“fall-through” routes. If no mapped application stack can handle a request for the
connection’s hostname, these routes will then be evaluated.

 ■ Tip When adding a host to Mach.mapper, the protocol matters but the port number does not, so the port
number may be safely omitted. Mach only listens on one port. hostname keys should always end with a
trailing slash.

Run the web server, then launch a web browser and navigate to the URL http://localhost:8080/
about. This will open the page shown in Figure 10-7, which comes from the /about route defined on the
hosting application stack. This route handled the request because the hostname, localhost, did not match
any hostname in the Mach.mapper configuration.

Chapter 10 ■ MaCh

285

Figure 10-7. The /about route from localhost

The page source in Listing 10-42 reveals that the two hyperlink anchors, one for House Atreides and
one for House Harkonnen, both link to different hosts. Clicking on either link will render the page from the
mapped routes defined by Mach.mapper. Note that, though the port number is immaterial when declaring
mapped application stacks, they must be included in the page hyperlinks or the browser will attempt to use
port 80 automatically.

Listing 10-42. Anchors on the Default /about Page Link to Different Hosts

<h1>Great Houses of Arrakis</h1>
<h2>
 House Atreides
</h2>
<h2>
 House Harkonnen
</h2>

Figure 10-8 shows the House Atreides “about” page, fully rendered. Figure 10-9 shows the House
Harkonnen “about” page.

http://house-atreides.org:8080/about
http://house-harkonnen.org:8080/about

Chapter 10 ■ MaCh

286

Figure 10-8. The /about route from house-atreides.org

Figure 10-9. The /about route from house-harkonnen.org

Chapter 10 ■ MaCh

287

Looking at the source code for both “about” pages reveals something interesting. Images referenced on
both pages, such as the src attribute in Listing 10-43, do not specify a hostname prefix.

Listing 10-43. Images Do Not Have Hostname Prefixes

This is possible because the Mach.file middleware, which exposes the example-011/public directory
as a static resource directory, was added to the hosting application stack before Mach.mapper, thus affecting
all application stacks upstream. All static resources—images, fonts, scripts, and so on—can be stored in
the same location, available to all application stacks regardless of hostname. Each application stack can, of
course, use an alternative Mach.file middleware to expose different static asset directories if needed.

Custom Middleware
Creating custom Mach middleware is relatively straightforward. There are generally three “layers” involved
when creating custom middleware:

 1. A top-level function that is responsible for capturing an “app” and any options
that are passed to the middleware via app.use(). This layer returns...

 2. a function that will receive an incoming request connection. This function
may do one of two things. It may manipulate the connection directly and
send a response without passing the connection through the remainder of the
application stack (an authentication failure, for example), or...

 3. it may send the request downstream and then handle the response when the
application stack’s promise chain has resolved.

The middleware in Listing 10-44 shows all three stages at work.

Listing 10-44. Custom Middleware Module That Adds an API Version Header to the Response

// example-012/api-version.js
'use strict';

// layer 1
function apiVersion(app, options) {
 // layer 2
 return function (conn) {
 // layer 3
 return conn.call(app).then(function () {
 conn.response.headers['X-API-Version'] = options.version;
 });
 };
}

module.exports = apiVersion;

The top-level function, apiVersion(),is exposed via module.exports. It will be passed to app.use()
when the middleware is attached to an application stack. It captures the application instance and the
options object (layer 1), holding both in a closure for further processing. When a request is received, the

Chapter 10 ■ MaCh

288

returned function (layer 2) receives the connection object and makes a decision. This particular middleware
is only concerned with adding an “API version” header to the response, so at this point it invokes the
Connection.call() method, passing the app itself as the sole argument.

At this point some disambiguation is necessary. In Mach, the “application stack” created by invoking
Mach.stack() is a function that accepts a connection and returns the value of Connection.call(). This
process is identical to what a Mach middleware function does. In fact, this is nearly identical to what a route
does: both Connection.call() and all routes return promise objects that exist as a single promise chain!

The practical implication of this similitude is that the “app” a Mach middleware function receives may
be either another piece of downstream middleware or a route, depending on the order of middleware/routes
added to the application stack. By passing the app object to conn.call(), then, the custom middleware
propagates the connection to everything downstream, whatever that may be. When the promise returned
by conn.call() resolves (layer 3), all downstream middleware and/or a route have already dealt with the
connection object and the custom middleware may decide what, if anything, it must do with the response.

In Listing 10-44, the API version number is assigned to the custom X-API-Version header on the
response object once the response is moving upstream again. Had this middleware been designed to modify
the request before passing it downstream, it would have done so before invoking conn.call().

Custom middleware are attached to the application stack in the same manner as Mach’s native
middleware, as shown in Listing 10-45. In this example the apiVersion middleware will receive an options
object with the version number 1.2, which will be added to each response as a custom header value.
Note that Mach.gzip is added to the stack after apiVersion, which means that the “app” argument that
the apiVersion middleware receives will be the middleware function for Mach.gzip, since it exists just
downstream in the stack.

Listing 10-45. Adding Custom Middleware to the Application Stack

// example-012/index.js
var apiVersion = require('./api-version');

// create a stack
var app = mach.stack();

// custom middleware
app.use(apiVersion, {version: '1.2'});

// out-of-the-box middleware
app.use(mach.gzip);

app.get('/numbers', function (conn) {
 return conn.json(200, [4, 8, 15, 16, 23, 42]);
});

When the web server is queried in Listing 10-46, the X-API-Version header may be seen in the detailed
response.

Listing 10-46. API Version Middleware Response Header

example-012$ curl -v -X GET http://localhost:8080/numbers
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /numbers HTTP/1.1
> User-Agent: curl/7.37.1

Chapter 10 ■ MaCh

289

> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-API-Version: 1.2
< Date: Fri, 10 Apr 2015 01:41:42 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
[4,8,15,16,23,42]

Mach, the HTTP Client
Mach is much more than an HTTP server. Its internal architecture allows it to play multiple roles in multiple
environments. In fact, an examination of the Mach source code reveals that the portions of Mach that are
server-specific are implemented as extensions. This means that Mach’s core objects, such as Connection,
Location, and Message, can span multiple use cases.

The code in Listing 10-47 resembles the web server examples presented so far. A Mach application stack
is created to service HTTP requests, file middleware is added to serve static content from example-013/
public, and a single route, GET /mach/tags, is registered with the stack. The code within this route, however,
takes advantage of Mach’s HTTP client features to send a GET request for all of Mach’s repository tags to the
Github API.

Listing 10-47. Mach As Both Server and Client

// example-013/index.js
var app = mach.stack();
app.use(mach.logger);
app.use(mach.file, {
 root: path.join(__dirname, 'public'),
 index: true
});

app.get('/releases', function (conn) {
 function addUserAgent(conn) {
 conn.request.setHeader('User-Agent', 'nicholascloud/mach');
 }
 return mach.get('https://api.github.com/repos/mjackson/mach/tags', addUserAgent);
}).then(function (conn) {
 var tags = [];
 JSON.parse(conn.responseText).forEach(function (tagData) {
 tags.push(tagData.name);
 });
 return tags.sort(semver.rcompare);
 }).then(function (tags) {
 return conn.json(200, tags);
 }, function (err) {
 return conn.json(500, {err: err.message});
 });
});

https://api.github.com/repos/mjackson/mach/tags

Chapter 10 ■ MaCh

290

Mach’s HTTP client methods look much like Mach’s routing methods, but they exist on the Mach
module itself, not on an application stack. Mach can issue requests for any standard HTTP method.

In Listing 10-47 the Mach.get() method receives the request URL as its first parameter and an optional
function to modify the connection’s request before it has been sent as its second. This request connects
to the Github API and fetches tag information for the mjackson/mach repository. Because the Github API
requires a User-Agent header in all incoming requests, the addUserAgent() function modifies the outgoing
request by adding my own source code fork as the agent (per Github’s guidelines).

Like other parts of the Mach API, the Mach.get() method returns a promise. If the promise resolves, its
value will be the connection object with a response message property. If rejected, an error will be passed to
the failure callback.

The Github JSON data exists as a string at the Connection.responseText property (or as the stream
at Connection.response.content). Once this data is deserialized, the tag names are extracted, sorted in
descending order, and then passed along the promise chain.

When the web server is queried with curl in Listing 10-48, all of Mach’s release tags are delivered as a
JSON array.

Listing 10-48. Fetching Mach Releases with cURL

example-013$ curl http://localhost:8080/releases
["v1.3.4","v1.3.3","v1.3.2","v1.3.1","v1.3.0"...]

This JSON data is consumed by the HTML page in Listing 10-49. Notice that it also uses Mach.get()
to connect to the local web server. Because Mach’s environment-dependent features are implemented as
extensions, Mach can be useful in both server and browser code.

 ■ Note Because Mach is a Node.js module, it can be used by any CommonJS module loader, such as
Browserify or Webpack. all other uses, such as the plain script inclusion shown in Listing 10-49, should use the
global Mach build from the Mach Github repository.

Browse to http://localhost:8080 to see a list of links to all Mach releases.

Listing 10-49. Mach.get() in the Browser

<!-- example-013/public/index.html -->
<h1>Mach Releases</h1>
<h2>Git you one!</h2>
<ul id="tags">
<script src="/vendor/mach.min.js"></script>
<script>
(function (mach, document) {
 var href = 'https://github.com/mjackson/mach/releases/tag/:tag';
 var ul = document.querySelector('#tags');

 mach.get('/releases').then(function (conn) {
 var tags = JSON.parse(conn.responseText);
 tags.forEach(function (tag) {
 var li = document.createElement('li');

https://github.com/mjackson/mach/releases/tag/:tag

Chapter 10 ■ MaCh

291

 var a = document.createElement('a');
 a.innerHTML = tag;
 a.setAttribute('href', href.replace(':tag', tag));
 a.setAttribute('target', '_blank');
 li.appendChild(a);
 ul.appendChild(li);
 });
 });
}(window.mach, window.document))
</script>

Mach, the HTTP Proxy
While technically middleware, Mach’s HTTP proxy functionality can be used by itself to create a full HTTP
proxy server, or integrated with an existing application stack to proxy certain routes. This can be a useful
tool for migrating web applications piecemeal while still proxying calls to a legacy web application, or for
avoiding same-origin concerns in the browser by proxying calls to an external or third-party service through
the web application itself.

The code in Listing 10-50 creates a simple Mach application that serves both a root application route
and static files from the public directory. After the route declaration, a proxy application is created by calling
Mach.proxy() with the HTTP scheme, hostname, and port of another server. For this example, when the web
application is run it will listen for some requests on port 8080 while proxying other requests to another web
server running on port 8090. This proxy application stack becomes the middleware options argument for
Mach.proxy when both are passed to app.use().

Listing 10-50. Proxying Requests to Another Web Server

// example-014/web.js
var app = mach.stack();
app.use(mach.logger);
app.use(mach.file, path.join(__dirname, 'public'));

app.get('/', function (conn) {
 var pagePath = path.join(__dirname, 'index.html');
 return conn.html(200, fs.createReadStream(pagePath));
});

var apiProxy = mach.createProxy('http://localhost:8090');

app.use(mach.proxy, apiProxy);

mach.serve(app, 8080);

Typically middleware are added to an application stack before routes so that they have a chance to
examine the request and interrupt the middleware promise chain if some condition isn’t met, or modify the
request and pass it along for further processing. Unfortunately, Mach.proxy is fairly dumb, which means

Chapter 10 ■ MaCh

292

that it does not discriminate among requests; any request that passes through Mach.proxy will be sent to
the proxy server. If an application uses a mix of local and proxied routes, there are two ways to deal with this
“limitation”:

•	 Add the proxy middleware after application routes have been added. This ensures
that if an application route can handle a request, it will handle it, stopping the
propagation of the connection before it reaches Mach.proxy. This is the approach
taken in Listing 10-50.

•	 Wrap the proxy middleware in a lightweight custom middleware function that
discriminates among and only forwards certain requests to the proxy. Because it
filters requests, the custom middleware can be added to the stack before any routes.
This alternative approach is illustrated in Listing 10-51.

Listing 10-51. Wrapping a Proxy Application in Custom Middleware

// example-014/web2.js
var apiProxy = mach.createProxy('http://localhost:8090');

app.use(function (app) {
 return function (conn) {
 if (conn.location.pathname.indexOf('/api') !== 0) {
 // not an API method, call the app stack normally
 return conn.call(app);
 }
 // API method, call the proxy app stack
 return conn.call(apiProxy);
 };
});

app.get('/', function (conn) { /*...*/ });

The simulated API server that receives proxy requests is, to no one’s surprise, another Mach server. It
exposes two regular JSON routes, shown in Listing 10-52: one to fetch a tallied list of votes and another to
submit a single vote.

Listing 10-52. API Server’s Routes

// example-014/api.js
var votes = require('./votes');
// ...

app.get('/api/vote', function (conn) {
 var tallies = {};
 var voteCount = votes.length;
 votes.forEach(function (vote) {
 var tally = tallies[vote] || {
 count: 0,
 percent: 0.0
 };
 tally.count += 1;
 tally.percent = Number((tally.count / voteCount * 100).toFixed(2));

Chapter 10 ■ MaCh

293

 tallies[vote] = tally;
 return tallies;
 });
 return conn.json(200, tallies);
});

app.post('/api/vote', function (conn) {
 console.log(conn.params);
 var vote = conn.params.vote || '';
 if (!vote) {
 return conn.json(400, {err: 'Empty vote submitted.'});
 }
 votes.push(vote);
 return conn.json(201, {count: 1});
});

mach.serve(app, 8090);

 ■ Note to run example-014, both web.js (or web2.js) and api.js must be launched with Node.js. the web
server will listen for http requests on port 8080, and the apI server will listen on port 8090.

The web server renders an HTML page as the user interface for a small voting application. Though it is
common knowledge that “you don’t vote for kings,” the peasantry is still fond of popularity contests and this
web application indulges them. Figure 10-10 shows the rendered page at http://localhost:8080.

Figure 10-10. Voting for a new monarch

Chapter 10 ■ MaCh

294

When the form is submitted, an event handler finds the checked option value and sends a request
to the web server with the vote data. The sendVote() method in Listing 10-53 makes an AJAX request to
POST /api/data on the web server, which is then proxied to the API server where the vote is recorded.

Once the submission is complete, the getTallies() function in Listing 10-53 queries the web server
at GET /api/vote to fetch the vote tallies. Again, this request is proxied and the JSON data is returned to the
client.

Listing 10-53. Submitting a Vote

// example-014/index.html
var formPoll = document.querySelector('#poll');
// ...

function sendVote(vote) {
 function serializeVote(conn) {
 conn.request.setHeader('Content-Type', 'application/json');
 conn.request.content = JSON.stringify({
 vote: vote
 });
 }
 return mach.post('/api/vote', serializeVote);
}

function getTallies() {
 return mach.get('/api/vote').then(function (conn) {
 return JSON.parse(conn.responseText);
 });
}

formPoll.addEventListener('submit', function (e) {
 // ...
 var vote = checkbox.value;
 sendVote(vote).then(function () {
 // ...
 return getTallies().then(function (tallies) {
 // show tally data...
 });
 }).catch(function (error) {
 showError(error.err || error.message || 'The night is dark and full of errors.');
 });
});

The web page displays the proxied tally data, shown in Figure 10-11, once the response has been
received and parsed.

Chapter 10 ■ MaCh

295

Figure 10-11. Tallies are displayed when a vote is submitted

If errors occur during a proxied request—for example, if the API server is offline—they will be returned to
the client as HTTP request errors. Because these errors will be infrastructure related and not application related,
it may be wise to handle them in a custom middleware wrapper and deliver more meaningful errors instead.

Summary
While Mach certainly isn’t the only, or even the most popular, Node.js web server available, it has a strong
simplicity and terse API that make it flexible. Its core architecture ensures that its common components are
available everywhere while its environment-specific components are loaded as extensions.

A suite of common middleware that plugs into a promise-based API makes request and response chains
easy to tap and manipulate. Custom middleware is simple to write when more functionality is required.

Request and response messages build on Node’s native streams by parsing request queries and bodies
on-demand, and delivering response content to clients in chunks. This ensures that the lowest possible
memory and processing overhead are used during HTTP operations. Request and response content may
also be piped, converted to buffers for in-memory manipulation, parsed by various format handlers, and
converted to strings with varied encodings.

Beyond Mach’s role as an HTTP server, it can fulfill several other important HTTP-related roles:

•	 Rewriting request URLs

•	 Mapping requests to virtual hosts

•	 Acting as an HTTP proxy

•	 Sending HTTP client requests

Mach’s fresh ideas are worthy additions to the Node.js web server pantheon.

297

Chapter 11

Mongoose

The human mind gets used to strangeness very quickly if [strangeness] does not exhibit
interesting behavior.

—Dan Simmons

MongoDB is a popular cross-platform document database, often lumped into the “NoSQL” classification
with other nonrelational data stores such as CouchDB, Cassandra, RavenDB, and so forth. It is a popular
choice for data storage among Node.js developers because its “records” are stored as plain JSON objects,
and its query interface and stored functions are written in plain JavaScript.

Storing, accessing, and manipulating data in MongoDB is not terribly complex, but Node.js libraries
such as Mongoose can help application developers map MongoDB documents onto application objects that
have definite schemas, validations, and behavior—all concepts that are not (by design) parts of MongoDB.
Mongoose implements the query interface native to MongoDB, but also gives developers a composable,
fluent interface that simplifies portions of the query API.

Though MongoDB is not the direct subject of this chapter, it is necessary to establish a few basic
concepts about how MongoDB works before delving into Mongoose. If you’re familiar MongoDB already,
feel free to skip the next section.

Basic MongoDB Concepts
A relational database server hosts database schemas (sometimes just called databases), which encapsulate
related entities like tables, views, stored procedures, functions, etc. Database tables in turn contain tuples
(also known as rows or records). A tuple is composed of a number of fields, each containing a value of a
predetermined data type. The tuple is one-dimensional, and its definition (the data types its fields can hold) is
determined at the table level. All tuples within a table, then, share the same structure, though their individual
field values may differ. The names and data types of a tuple’s fields are referred to as the tuple’s schema.

MongoDB has a superficially similar data hierarchy, as shown in Table 11-1.

Chapter 11 ■ Mongoose

298

Table 11-2 defines the key terms that describe Mongoose components and how they relate to each
other. The code in Listing 11-1 shows how these terms are appear in code. This chapter will cover each
in detail but because many of them are closely related, you might wish to refer back to this section as the
chapter progresses.

Table 11-1. Understanding MongoDB by Analogy to Relational Database Systems

RDBMS MongoDB

Server Server

Schema Database

Table Collection

Tuple Document

Field Property

Table 11-2. Mongoose Terms and Definitions

Term Definition

Schema Defines the data types, constraints, defaults, validations, and so forth for the properties of a
document instance; enforced at the application level

Model Constructor function that creates or fetches document instances

Document Instance object created or fetched by a Mongoose model; will have Mongoose-specific
properties and methods as well as data properties

JSON object Plain JavaScript object that contains only the data properties from a document

Listing 11-1. Mongoose Terms and Definitions in Code

// albumSchema is a schema
var albumSchema = mongoose.Schema({/*...*/});

// Album is a model
var Album = mongoose.model('Album', albumSchema);

// Album is a model
Album.findById(/*...*/, function (err, album) {
 // album is a document
 console.log(album);
});

// Album is a model
Album.findById(/*...*/)
 .lean(true)
 .exec(function (err, album) {
 // album is a JSON object (because of `lean(true)`)
 console.log(album);
 });

Chapter 11 ■ Mongoose

299

// Album is a model
Album.findById(/*...*/)
 .exec(function (err, album) {
 // album is a document
 // toObject() returns a JSON object
 console.log(album.toObject());
 });

Unlike RDBMS tuples, MongoDB documents are not one-dimensional. They are complete JSON objects
that may contain other objects or arrays. In fact, documents within the same collection need not even have
the same properties, because MongoDB collections are actually schemaless. A MongoDB collection can hold
document objects of any shape or size (within MongoDB’s storage limits). In practice, though, collections
tend to hold documents of similar “shape,” though some may have optional properties, or may contain
properties that represent some arbitrary data. But in general, applications usually assume that data exists in
particular “shapes,” so although MongoDB does not enforce document schemas, applications often do.

By default, MongoDB documents are automatically assigned a surrogate primary key called _id. This
key has a special type (MongoDB’s ObjectId type) and is used as MongoDB’s primary collection index.
MongoDB can use a different field as a primary key if directed. Additional fields can be added to secondary
indexes within a collection, either as simple or compound keys.

MongoDB does not support the notion of foreign keys, a strong feature of RDBMS databases. Instead,
MongoDB relies on the power of nested documents to store data associations. Consider the classic trinity
of all RDBMS examples: customer, postal address, and shopping cart order. In an RDBMS system, there
would likely be foreign keys from the postal address to the customer (to identify residency), and from the
order to one or more postal addresses (to identify shipping and billing addresses). In a MongoDB customer
document, however, it would be sufficient to simply store the postal address as a nested object in the
customer document as well as the order document. Consider Listing 11-2.

Listing 11-2. Duplication Sometimes Acceptable in MongoDB

// customer
{
 "_id": 1001,
 "name": "...",
 "postalAddress" {
 "street": "...",
 "city": "...",
 "state": "...",
 "zip": "..."
 }
}

// order
{
 "_id": 2001,
 "customer": 1001,
 "items": [
 {"sku": 3001, "qty": 2}
],

Chapter 11 ■ Mongoose

300

 "shippingAddress" {
 "street": "...",
 "city": "...",
 "state": "...",
 "zip": "..."
 }
}

There are any number of reasons why this “violation” of referential integrity might be acceptable from a
business point of view:

•	 Perhaps orders are never altered. If there is a mistake in an order—for example, the
shipping address is wrong—the entire order gets re-created to offset the faulty order.
The correct shipping address gets added to the new order.

•	 If a customer changes a postal address, old orders won’t be updated with the new
address, so there’s no data integrity issue at stake.

•	 Maybe changing a postal address always happens within the customer domain,
never in the order domain.

•	 Perhaps a customer can override a shipping address with a “temporary” address
(shipping a gift) that should not be added to the customer record.

•	 If different postal metrics are derived from orders than from customers (e.g., a
C-level executive wants to know how many orders were shipped to Missouri last
month regardless of who actually lives in Missouri this month), that data is already
segregated.

•	 Maybe disk space is cheap and the velocity gained by not enforcing referential
integrity outweighs any potential cost.

While foreign keys and referential integrity are critical to RDBMS databases, strong MongoDB
document design can often render the issue moot.

Finally, though MongoDB’s query API may look a bit daunting to SQL practitioners, it quickly becomes
obvious that, for the most part, looking for data involves the same concepts: selecting (find), filtering
(where), applying compound conditions (and, or, in), aggregating (group), paging (skip, limit), and so on.
How queries are composed and executed differs mostly in syntax.

A Simple Mongoose Example
Mongoose is a library for Node.js applications. To develop with Mongoose (and follow the examples in this
chapter), you need to install Node.js and MongoDB on your platform of choice. The default installation
procedure and configuration for both should be sufficient to run this chapter’s example code.

 ■ Note this chapter assumes that you are familiar with node.js applications and modules, and that you know
how to install them with npm. a working knowledge of MongoDB will be very helpful, but it is not required, since
interaction with MongoDB will mostly occur through Mongoose in the chapter examples. some examples will
demonstrate how to query MongoDB directly to verify the results of Mongoose operations.

Chapter 11 ■ Mongoose

301

This section demonstrates basic Mongoose concepts that will be explored in detail later in this chapter.
This example involves three steps:

 1. Create a basic Mongoose schema that reflects the structured data in a JSON file.

 2. Read the JSON file and import the data into MongoDB with a Mongoose model.

 3. Run a basic web server that will use a Mongoose model to fetch data from
MongoDB and deliver it to a web browser.

The first line of each listing that follows will show the file path in which the example code may be found.
Subsequent examples will indicate whether a particular example file should be executed with Node.js in a
terminal.

Creating a Mongoose Schema for JSON Data
Mongoose documents represent the domain data in an application. For this chapter’s example application,
a JSON file of music albums defines the initial set of data to be added to MongoDB. Listing 11-3 shows the
structure of example-001/albums.json: an array of album objects, each containing information about the
composer, title, publication year, track list, and so forth.

Listing 11-3. Album JSON Data File

// example-001/albums.json
[
 {
 "composer": "Kerry Muzzey",
 "title": "Renaissance",
 "price": 4.95,
 "releaseDate": "2014-01-13T06:00:00.000Z",
 "inPublication": true,
 "genre": ["Classical", "Trailer Music", "Soundtrack"],
 "tracks": [
 {
 "title": "The Looking Glass",
 "duration": {
 "m": 3,
 "s": 20
 }
 }
 //additional tracks...
]
 }
 //additional albums...
]

Mongoose is an object data mapper (ODM), so at the heart of Mongoose data access are model functions
that can be used to query the MongoDB collections they represent. A Mongoose model must have a name by
which it can be referred, and a schema that enforces the shape of the data it will access and manipulate. The
code in Listing 11-4 creates an album schema that closely matches the JSON data in example-001/albums.
json. Schemas will be covered in detail later, but it should be apparent that a schema defines the properties
and their data types for a given Mongoose model. Finally, a model function is created by pairing a name
(“Album”) with a schema. This model function is assigned to module.exports in the example-001/album-
model.js file so that it can be imported into other modules as needed in a Node.js application.

Chapter 11 ■ Mongoose

302

 ■ Tip a Mongoose schema defines the data structure for a model. the model function provides the query
interface for working with stored document data. a model must have a name and a schema.

Listing 11-4. Mongoose Album Schema and Model

// example-001/album-model.js
'use strict';
var mongoose = require('mongoose');

var albumSchema = mongoose.Schema({
 composer: String,
 title: String,
 price: Number,
 releaseDate: Date,
 inPublication: Boolean,
 genre: [String],
 tracks: [
 {
 title: String,
 duration: {
 m: Number,
 s: Number
 }
 }
]
});

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

Importing Data with Mongoose
Now that the Album schema and model are defined, a Node.js script can read the data from albums.json and
use the Album model to create documents in MongoDB. The import script needs to do three things:

 1. Connect to a running MongoDB server with Mongoose

 2. Read and parse the contents of the albums.json file.

 3. Use the Album model to create documents in MongoDB.

Mongoose connects to MongoDB with a URI that identifies the protocol, server, and database that
Mongoose will use. In Listing 11-5 the URI simply points to the local MongoDB instance: mongodb://
localhost/music. Mongoose will proactively create the database if it does not already exist on the MongoDB
instance, so there is no need to do so manually. If the MongoDB connection fails, Mongoose will raise an
error event, and if it succeeds, Mongoose will raise an open event. Listing 11-5 demonstrates how both
events are handled with callback functions. Once the open event is emitted, the albums.json file is read and
parsed, and the array of albums is passed to the Album.create() method of the Album model. This creates
the album documents in MongoDB, which may then be queried with the Album model later.

Chapter 11 ■ Mongoose

303

Listing 11-5. Importing Album Data with Mongoose

// example-001/import-albums.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');
var file2json = require('./file2json');
var fs = require('fs');
var path = require('path');

// connect to the "music" database on localhost;
// the database will be automatically created
// if it does not exist
mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;

db.on('error', function (err) {
 console.error(err);
 process.exit(1);
});

db.once('open', function importAlbums() {
 var albumsFile = path.join(__dirname, 'albums.json');
 file2json(albumsFile, 'utf8', function (err, albums) {
 if (err) {
 console.error(err);
 return process.exit(1);
 }

 console.log('creating %d albums', albums.length);

 // use the model to create albums in bulk;
 // the collection will be automatically created
 // if it does not exist
 Album.create(albums, function (err) {
 if (err) {
 console.error(err);
 return process.exit(1);
 }
 process.exit(0);
 });
 });
});

Before running the script, MongoDB needs to be running locally. Some MongoDB installations will
configure MongoDB to start automatically, but others leave that decision to users. To determine if MongoDB
is running, simply execute the mongo command in your terminal. You should see output similar to Listing 11-6
if MongoDB is running. You may kill the process at any time by pressing Ctrl+c.

Chapter 11 ■ Mongoose

304

Listing 11-6. MongoDB Terminal Client, mongo

$ mongo
MongoDB shell version: 2.6.7
connecting to: test
>

If you receive an error, start the MongoDB server manually by executing mongod -f followed by the
location of the default MongoDB configuration file. The location of this file varies by system, so you may
need to consult the MongoDB installation documentation. On OS X systems with a Homebrew MongoDB
installation, for example, the configuration file may be found at /usr/local/etc/mongod.conf. Listing 11-7
shows how to start the daemon manually with this configuration file path.

Listing 11-7. Starting mongod Manually.

$ mongod -f /usr/local/etc/mongod.conf

Once the mongod server has been started, you can run the example-001/import-albums.js script with
Node.js. Listing 11-8 shows the output that will be displayed when the script has imported documents into
MongoDB.

Listing 11-8. Running the Import Script

example-001$ node import-albums.js
creating 3 albums

In Listing 11-9 the mongo terminal client is launched, followed by a series of commands (after each >
prompt) to verify that the music database and albums collection have been created. The show dbs command
displays all databases hosted by the running MongoDB instance. To see the collections in a database, first
switch to that database context by issuing the use <db> command, where <db> is the name of the database
you are targeting. Next, execute show collections to see a list of collections owned by the database—in this
case, albums and system.indexes (a collection that MongoDB manages).

Listing 11-9. Verifying Album Data Has Been Added to MongoDB

$ mongo
MongoDB shell version: 2.6.7
connecting to: test
> show dbs
admin (empty)
local 0.078GB
music 0.078GB
> use music
switched to db music
> show collections
albums
system.indexes
>

With the music database selected, you can issue a few basic queries to see the album data added
during the import. Within a database context, the database collections are accessed through the db object.
Collections exist as properties of the db object, and operations performed against collections are methods on
each collection object, respectively. To see the number of records within the albums collection, for example,

Chapter 11 ■ Mongoose

305

the db.albums.count() method can be invoked on the collection, as shown in Listing 11-10. Likewise,
to query album records, the db.albums.find() method can be used with criteria (“where” clause) and
projection (“select” clause) arguments to control what data is returned.

Listing 11-10. Querying Album Data in the albums Collection

> db.albums.count()
3
> db.albums.find({}, {composer: 1})
{ "_id" : ObjectId("54c537ca46a13e0f4cebda82"), "composer" : "Kerry Muzzey" }
{ "_id" : ObjectId("54c537ca46a13e0f4cebda88"), "composer" : "Audiomachine" }
{ "_id" : ObjectId("54c537ca46a13e0f4cebdaa3"), "composer" : "Jessica Curry" }

Because the criteria argument (the first object passed to db.albums.find()) is empty in Listing 11-10,
all records are returned. The projection object, however, specifies a single property to be returned by the
query: composer. All other properties are excluded except for _id, which is returned by default and will
always be included unless the projection parameter specifies otherwise.

Querying Data with Mongoose
Once the album data has been loaded into MongoDB, you can use the same model from Listing 11-4 to
query that data.

The code in Listing 11-11 uses the Node.js http module to create a rudimentary web server that can
receive HTTP requests and return JSON data in response. In this example the web server returns the same
response for any URL query (to keep things simple). When a request is received, the Album Mongoose model
is used to query MongoDB for album documents. Its find() function is invoked with a criteria argument,
a projection argument, and a callback. With the exception of the callback, this syntax is identical to the db.
albums.find() method used in Listing 11-10 to examine album documents.

Listing 11-11. Querying MongoDB with Mongoose

// example-001/http-server.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');
var http = require('http');
var url = require('url');

/*
 * The http server will handle requests and responses
 */
var server = http.createServer(function (req, res) {
 Album.find({}, {composer: 1}, function (err, albums) {
 var statusCode = err ? 500 : 200;
 var payload = err ? err : albums;
 res.writeHead(statusCode, {'Content-Type': 'application/json'});
 res.write(JSON.stringify(payload, null, ' '));
 res.end();
 });
});

Chapter 11 ■ Mongoose

306

/*
 * Connect to the MongoDB instance and report
 * errors if any occur.
 */
mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;

db.on('error', function (err) {
 console.error(err);
 process.exit(1);
});

db.once('open', function () {
 /*
 * The MongoDB connection is open, start
 * listening for HTTP requests.
 */
 server.listen(8080);
 console.log('listening on port 8080');
});

In Listing 11-12, the web server is launched from the example-001 directory with the command node
http-server.js. Pressing Ctrl+c will stop the server.

Listing 11-12. Running the HTTP Server

example-001$ node http-server.js
listening on port 8080

The album data fetched from MongoDB may now be viewed in a web browser by navigating to
http://localhost:8080, or by issuing the curl terminal command as shown in Listing 11-13.

Listing 11-13. Sending a curl Request to the HTTP Server

$ curl -v http://localhost:8080/
* Hostname was NOT found in DNS cache
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Thu, 29 Jan 2015 01:20:09 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
[

Chapter 11 ■ Mongoose

307

 {
 "_id": "54c7020c342ee81670b261ef",
 "composer": "Kerry Muzzey"
 },
 {
 "_id": "54c7020c342ee81670b261f5",
 "composer": "Audiomachine"
 },
 {
 "_id": "54c7020c342ee81670b26210",
 "composer": "Jessica Curry"
 }

The rest of this chapter will build on this Mongoose schema, model, and album data stored in the
MongoDB database.

Working with Schemas
Mongoose schemas are simple objects that describe the structure of and data types in a MongoDB
document. While MongoDB itself is schemaless, Mongoose enforces schemas for documents at the
application level. Schemas are defined by invoking the Mongoose module’s Schema() function, passing it an
object hash where the keys represent document properties and the values represent the data type for each
property. The return value is an object of type Schema with additional helper properties and functions for
expanding or augmenting the schema’s definition.

Data Types
For scalar properties, Mongoose uses the native JavaScript data types String, Boolean, Number, and Date,
shown in Listing 11-14.

Listing 11-14. Primitive Types in a Mongoose Schema

// example-001/album-model.js
var albumSchema = mongoose.Schema({
 composer: String,
 title: String,
 price: Number,
 releaseDate: Date,
 inPublication: Boolean
 // other properties...
});

Properties that are object literals or arrays use the literal notation for each type ({} and []). Nested
object literals are written inline, using the same Mongoose schema types for their own properties. Array
types contain only one element, which defines the type of object that will occupy the array. This type can be
any valid Mongoose data type, including an object literal defined inline as the first element of the array. In
Listing 11-15, genre is declared as an array of strings while tracks is declared as an array of object literals.

Chapter 11 ■ Mongoose

308

Listing 11-15. Complex Types in a Mongoose Schema

// example-001/album-model.js
var albumSchema = mongoose.Schema({
 // ...other properties
 genre: [String],
 tracks: [
 {
 title: String,
 duration: {
 m: Number,
 s: Number
 }
 }
]
});

Mongoose itself provides two special object types: ObjectId and Mixed.
When a document is created in MongoDB, it is assigned an _id property that serves as a unique

identifier for the record. This property uses MongoDB’s own ObjectId data type. Mongoose exposes this
type via mongoose.Schema.Types.ObjectId. This type is rarely used directly. When querying a document by
ID, for example, the string representation of the identifier is typically used.

 ■ Note When a schema property holds arbitrary data (remember, MongoDB is schemaless), it may be
declared with the type mongoose.Schema.Types.Mixed. If a property is marked as Mixed, Mongoose will not
track changes made against it. When Mongoose persists a document, it creates a query internally that only adds
or updates properties that have changed, and since a Mixed property is not tracked, the application must inform
Mongoose when it has changed. Documents created by Mongoose models expose a markModified(path)
method that will force Mongoose to consider the property identified by the path argument as dirty.

setting a Mongoose schema property to an empty object literal (one with no properties) will cause Mongoose to
treat it as Mixed.

Finally, because Mongoose is a Node.js library, it takes advantage of Node’s Buffer type to store large
blocks of binary data such as image, audio, or video assets. Because binary data can be quite large, many
applications store URL references to binary assets located on a content delivery network such as Amazon’s
Simple Storage Service (S3) instead of storing binaries in a data store such as MongoDB. Use cases differ
across applications, however, and Mongoose schemas are flexible enough to support either approach.

Nested Schemas
Mongoose schemas may be nested; that is, a schema may reference another schema as a property type.
This can be particularly useful if larger schemas share common custom data types, such as customer and
order schemas sharing a postal address data type. In Listing 11-16 the album track schema is declared
independent of the album schema, and gets assigned as the data type for the albumSchema.tracks property.

Chapter 11 ■ Mongoose

309

Listing 11-16. Nested Mongoose Schemas

// breaking apart schemas...
var trackSchema = mongoose.Schema({
 title: String,
 duration: {
 m: Number,
 s: Number
 }
});

var albumSchema = mongoose.Schema({
 // ...
 tracks: [trackSchema]
});

Default Property Values
Adding sensible default values to schema properties instructs Mongoose to fill in missing data when a
document is created. This is useful for document properties that aren’t optional but typically hold some
known value.

In Listing 11-17 the m and s properties (minute and second) of the album schema default to zero
because it is entirely possible that a track would be less than one minute long, or be exactly X minutes and
zero seconds. The releaseDate property in the album schema also has a default value: the function Date.
now. When a default value is a function, Mongoose will invoke the function, cast its return value to the type
of the property, and then assign that value to the property.

Listing 11-17. Default Property Values

// adding default property values...
var trackSchema = mongoose.Schema({
 // ...
 duration: {
 m: {type: Number, default: 0},
 s: {type: Number, default: 0}
 }
});

var albumSchema = mongoose.Schema({
 // ...
 price: {type: Number, default: 0.0},
 releaseDate: {type: Date, default: Date.now},
 // ...
});

Adding a default to a property requires that the type assignment look a bit different. Notice that
m: Number has become m: {type: Number, default: 0}. Normally, assigning an object hash to a property
would cause the property to have a Mixed or object type, but the presence of the type property in the object
literal short-circuits that process and tells Mongoose that the other key/value pairs in the hash are property
settings.

Chapter 11 ■ Mongoose

310

Required Properties
The required attribute may be used on the type definition of nonoptional properties. When a document is
saved, any missing property that the document schema requires will raise a validation error, which will be
passed to the save operation’s callback. Album composers, album titles, track titles, and even track duration
objects are all required in Listing 11-18.

Listing 11-18. Required Properties

// adding required attributes
var trackSchema = mongoose.Schema({
 title: {type: String, required: true},
 duration: {
 required: true,
 type: {
 m: {type: Number, default: 0},
 s: {type: Number, default: 0}
 }
 }
});

var albumSchema = mongoose.Schema({
 composer: {type: String, required: true},
 title: {type: String, required: true},
 // ...
});

If a string is used in place of a boolean value for a required attribute, the string will be used as the error
message if a validation error is raised, as shown in Listing 11-19. (Document validation will be covered shortly.)

Listing 11-19. Custom Error Message for a Required Property

var trackSchema = mongoose.Schema({
 title: {type: String, required: 'Missing track title!'},
 // ...
});

Secondary Indexes
Mongoose documents automatically acquire an indexed _id property when saved to MongoDB. Secondary
indexes can be added to a schema, however, to enhance performance when querying against other fields.

MongoDB supports both simple (single field) and compound (multifield) indexes. In Listing 11-20 the
following indexes are added to the track and album schemas:

•	 Track title (simple)

•	 Album composer (simple)

•	 Album title (simple)

•	 Album title + album composer (compound)

•	 Album genre (simple)

Chapter 11 ■ Mongoose

311

Listing 11-20. Adding Secondary Indexes to Schemas

// adding secondary indexes...
var trackSchema = mongoose.Schema({
 title: {type: String, required: true, index: true},
 // ...
});

var albumSchema = mongoose.Schema({
 composer: {type: String, required: true, index: true},
 title: {type: String, required: true, index: true},
 // ...
 genre: {type: [String], index: true},
 // ...
});

albumSchema.index({composer: 1, title: 1});

Simple indexes are added at the property level by appending an index field to a property type
declaration and setting it to true. Compound indexes, on the other hand, must be defined for the schema
as a whole using the Schema.index() method. The object passed to index() contains property names that
correspond to the schema properties to be indexed, and a numeric value that may be either 1 or -1.

MongoDB sorts indexes in either ascending or descending order. Compound indexes are defined
with a numeric value instead of a boolean value (like simple indexes) to indicate the order in which each
field should be indexed. For simple indexes, the order doesn’t matter because MongoDB can search either
way. But for compound indexes, the order is very important because it limits the kind of sort operations
MongoDB can perform when a query uses a compound index. The MongoDB documentation covers
compound indexing strategies in depth.

In Listing 11-20 a compound index for composer and title is added to the album schema in addition to
simple indexes for both fields. It is entirely likely that a user will search for an album by composer, title, or both.

Schema Validation
Mongoose will enforce schema validation rules when documents are persisted. A validation rule is a
function defined for a particular schema property that evaluates the property’s value and returns a boolean
value to indicate validity. Listing 11-21 demonstrates how to attach a property validator to a schema object.

Listing 11-21. Validating Schema Properties

// adding schema validation...
var trackSchema = mongoose.Schema({/*...*/});

var albumSchema = mongoose.Schema({
 // ...
 tracks: [trackSchema]
});

albumSchema.path('tracks').validate(function (tracks) {
 return tracks.length > 0;
}, 'Album has no tracks.');

Chapter 11 ■ Mongoose

312

The schema’s path() method returns an instance of SchemaType, an object that encapsulates the
definition of a schema’s property—in this case, the tracks property, which is an array of track objects for
the album. The SchemaType.validate() method attaches a validation function to the schema’s property.
The first argument is the actual validation function, which receives, as its only argument, the value to be
validated. The second argument to validate() is the message that will be used if a validation error is raised.

When an album document is saved, this function will be executed as part of the Mongoose validation
process, evaluating the tracks property to ensure that the album has at least one track.

Validation rules may also be attached to schema properties as part of the property definition. The
tracks definition in Listing 11-22 includes the validate property. The value of this property is a two-
element array (a tuple) where the validation function is element 0 and the error message is element 1.

Listing 11-22. Declaring Property Validators Inline

function validateTrackLength (tracks) {
 return tracks.length > 0;
}

var albumSchema = mongoose.Schema({
 // ...
 tracks: {
 type: [trackSchema],
 validate: [validateTrackLength, 'Album has no tracks.']
 }
});

While the Mongoose validation process is itself asynchronous, simple validation functions, like those
in Listing 11-22, are synchronous. For most cases synchronous validation is perfectly acceptable, but for
other cases asynchronous validators might be required. An asynchronous validation function accepts a
second argument—a callback called respond (by convention)—that will be invoked when the asynchronous
validation has completed. A true or false value is passed to respond to indicate successful or failed
validation, respectively. Listing 11-23 shows how the validation function for album tracks could be made
asynchronous.

Listing 11-23. Asynchronous Property Validators

albumSchema.path('tracks').validate(function (tracks, respond) {
 process.nextTick(function () {
 respond(tracks.length > 0);
 });
}, 'Album has no tracks.');

To see the validation function at work, the tracks for each album in example-002/albums.json can be
removed so that the JSON data resembles Listing 11-24.

Listing 11-24. Albums Without Tracks

// example-002/albums.json
[
 {
 "composer": "Kerry Muzzey",
 "title": "Renaissance",
 "price": 4.95,
 "releaseDate": "2014-01-13T06:00:00.000Z",

Chapter 11 ■ Mongoose

313

 "inPublication": true,
 "genre": ["Classical", "Trailer Music", "Soundtrack"],
 "tracks": []
 },
 {
 "composer": "Audiomachine",
 "title": "Tree of Life",
 "price": 9.49,
 "releaseDate": "2013-07-16T05:00:00.000Z",
 "inPublication": true,
 "genre": ["Classical", "Trailer Music"],
 "tracks": []
 },
 {
 "composer": "Jessica Curry",
 "title": "Dear Esther",
 "price": 6.99,
 "releaseDate": "2012-02-14T06:00:00.000Z",
 "inPublication": true,
 "genre": ["Classical", "Video Game Soundtrack"],
 "tracks": []
 }
]

Validation occurs whenever documents are persisted; that is, whenever Model.create() is called, or the
save() method is called on a document instance. If validation fails, an error is passed as the first argument
to a callback for each of these methods. (Documents will be discussed in detail later.)

If the import process is run again, the validator will trigger in example-002/import-albums.js when
Album.create() is called to create new Mongoose documents from the incomplete JSON data. The console
output in Listing 11-25 shows the serialized ValidationError that is raised, and the ValidatorError for the
tracks property present in its errors collection.

Listing 11-25. Console Output when Schema Validation Fails

example-002$ node import-albums.js
creating 3 albums
{ [ValidationError: Validation failed]
 message: 'Validation failed',
 name: 'ValidationError',
 errors:
 { tracks:
 { [ValidatorError: Album has no tracks.]
 message: 'Album has no tracks.',
 name: 'ValidatorError',
 path: 'tracks',
 type: 'user defined',
 value: [] } } }

After breaking apart the album and track schemas and adding default property values, required
attributes, secondary indexes, and validation, the album schema has changed quite a bit from the simple
schema in example-001. Listing 11-26 shows the more robust version.

Chapter 11 ■ Mongoose

314

Listing 11-26. More Robust Album Schema

// example-002/album.js
'use strict';
var mongoose = require('mongoose');

var trackSchema = mongoose.Schema({
 title: {type: String, required: true, index: true},
 duration: {
 required: true,
 type: {
 m: {type: Number, default: 0},
 s: {type: Number, default: 0}
 }
 }
});

var albumSchema = mongoose.Schema({
 composer: {type: String, required: true, index: true},
 title: {type: String, required: true, index: true},
 price: {type: Number, default: 0.0},
 releaseDate: {type: Date, default: Date.now},
 inPublication: Boolean,
 genre: {type: [String], index: true},
 tracks: [trackSchema]
});

albumSchema.index({composer: 1, title: 1});

albumSchema.path('tracks').validate(function (tracks) {
 return tracks.length > 0;
}, 'Album has no tracks.');

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

Schema References
Though MongoDB is a relationless data store, relationships between documents in collections can be
created through informal references that act as foreign keys. The integrity enforcement and resolution of
these foreign keys to objects is left entirely to the application, of course. Mongoose builds these informal
relationships through population references—links between schemas that enable automatic eager loading
(and manual lazy loading) of document graphs. To expand on the music application example, it is very likely
that users will create their own personal album libraries. Because album documents can be large, it might
be best to avoid duplicating album data in each library document. Instead, references will be created from
library documents to individual albums, a kind of many-to-many relationship. When libraries are loaded by
Mongoose, these references can be resolved so that full library object graphs are returned populated with
album documents.

Chapter 11 ■ Mongoose

315

To keep things simple, a single library is defined in example-003/library.json. This library, shown
in Listing 11-27, references albums by composer and title. Each album will need to be dereferenced to a
document ID in a corresponding MongoDB album document when the data is imported.

Listing 11-27. Library JSON Data

// example-003/library.json
{
 "owner": "Nicholas Cloud",
 "albums": [
 {
 "composer": "Kerry Muzzey",
 "title": "Renaissance"
 },
 {
 "composer": "Audiomachine",
 "title": "Tree of Life"
 },
 {
 "composer": "Jessica Curry",
 "title": "Dear Esther"
 }
]
}

The library import script is similar to the album import script, as shown in Listing 11-28, but it
performs one additional important step. After the library.json file is read and turned into a plain
JavaScript object, the album data is resolved to the actual album document objects imported in
example-001/import-albums.js.

Listing 11-28. Importing Library Data into MongoDB

// example-003/import-library.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');
var Library = require('./library-model');
var file2json = require('./file2json');
var fs = require('fs');
var path = require('path');

function handleError(err) {
 console.error(err);
 process.exit(1);
}

function resolveAlbums(libraryJSON, cb) {
 /*
 * [3] use a compound $or criteria to look up multiple
 * album documents
 */

Chapter 11 ■ Mongoose

316

 var albumCriteria = {
 $or: libraryJSON.albums
 };

 Album.find(albumCriteria, cb);
}

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function importLibrary () {

 /*
 * [1] read the library.json file data and convert it to
 * a normal JS object
 */
 var libraryFile = path.join(__dirname, 'library.json');
 file2json(libraryFile, 'utf8', function (err, libraryJSON) {
 if (err) return handleError(err);

 /*
 * [2] look up album documents that match each composer/title
 * in the library JSON data
 */
 resolveAlbums(libraryJSON, function (err, albumDocuments) {
 if (err) return handleError(err);

 console.log('creating library');

 /*
 * [4] assign the album documents to the library object
 */
 libraryJSON.albums = albumDocuments;

 /*
 * [5] then create a library document from the JSON data and
 * save the document
 */
 var libraryDocument = new Library(libraryJSON);

 libraryDocument.save(function (err) {
 if (err) return handleError(err);
 process.exit(0);
 });
 });

 });
});

Chapter 11 ■ Mongoose

317

Each step in the import flow is annotated in Listing 11-28, but several steps involve concepts that have
not yet been introduced.

In step [3] a compound $or criteria object is created to filter MongoDB album documents by composer
and title. The $or criteria property is covered later in the chapter, but for now it is sufficient to understand
that MongoDB will examine all documents in the albums collection and determine if the document matches
any of the composer/title pairs in the $or array, shown in Listing 11-29. Since all three albums previously
imported match at least one of the pairs in this criteria, they will all be returned as results.

Listing 11-29. Library Import $or Criteria

{ $or:
 [{ composer: 'Kerry Muzzey', title: 'Renaissance' },
 { composer: 'Audiomachine', title: 'Tree of Life' },
 { composer: 'Jessica Curry', title: 'Dear Esther' }] }

In step [4] the found album documents are assigned to the libraryJSON.albums property, replacing the
existing array of composer/title data. When the library document is saved, Mongoose will enforce the library
schema in Listing 11-30. Unlike previous property descriptions, the albums property is a reference property
that will hold an array of ObjectIds as defined by the type attribute. The ref attribute tells Mongoose that
this field can also be populated with album documents during a query (if specified), or when a library
document is saved.

Listing 11-30. Library Schema

// example-003/library-model.js
'use strict';
var mongoose = require('mongoose');

var librarySchema = mongoose.Schema({
 owner: String,
 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}]
});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

Mongoose documents may all be cast to their ObjectIds. Mongoose is smart enough to perform
this cast automatically, so adding album documents to the albums property will pass the schema check.
Alternatively, the import script could pluck the _id property from each album document and place it into
the albums array instead. The result would be identical.

Finally, in step [5] an individual document instance is created by invoking the Library constructor
and passing in the raw JSON data to assign to each document property. Documents may also be created
with no constructor argument, assigning data to each property on the instance imperatively, but using the
constructor argument shorthand is common. After the document has been created, its save() method is
invoked with a callback that is passed an error if the persistence process fails. This differs from the album
import script in which multiple album documents were created in MongoDB at once by using the model’s
static create() function. Listing 11-31 demonstrates the difference.

Chapter 11 ■ Mongoose

318

Listing 11-31. Creating a Single Document and Multiple Documents

// create a single document
var libraryDocument = new Library(plainJSONLibrary);
libraryDocument.save(function (err) {...});

// create multiple documents at once
Albums.create(arrayOfJSONAlbums, function (err) {...});

In Listing 11-32, the library import script is run exactly as the album import script was run.

Listing 11-32. Running the Library Import Script

example-003$ node import-library.js
creating library

Once the import has completed, the library data may be verified with the mongo terminal client. The
output in Listing 11-33 reveals that Mongoose did indeed satisfy the library schema by casting each album
object to its identifier. (The next section, Working with Models and Documents, will examine how schema
reference properties can be used to eagerly load referenced documents.)

Listing 11-33. Verifying the Library Import in MongoDB

example-003$ mongo
MongoDB shell version: 2.6.7
connecting to: test

> use music
switched to db music

> db.libraries.find()
{ "_id" : ObjectId("54ed1dfdb11e8ae7252af342"), "owner" : "Nicholas Cloud", "albums" :
[ObjectId("54ed1dcb6fb525ba25529bd1"), ObjectId("54ed1dcb6fb525ba25529bd7"),
ObjectId("54ed1dcb6fb525ba25529bf2")], "__v" : 0 }

Schema Middleware
Mongoose raises events on a schema object whenever particular MongoDB documents are validated, saved,
or removed from a document collection. Events are raised before and after each one of these operations.
Subscriptions to these events are assigned with a schema’s pre() and post() methods, respectively. A
subscription is simply a function, or middleware that receives arguments related to each event. Post-event
middleware simply observes the document after the event is complete, but pre-event middleware may
actually interrupt the document life cycle before an event is completely processed.

In Listing 11-34, a duration object has been added to the library schema, identical to the duration
object in each album track. This object, however, will hold the computed total length of the library as a
whole. A pre-event middleware function is attached to the library schema for the save event. Before the
library is saved, this function will iterate over each album and each track to sum the lengths of all tracks, then
assign the calculated values to properties on the duration object. The middleware function receives a single
argument, the callback function next(). When the duration summation has completed, next() is invoked to
trigger any additional middleware functions attached to the schema.

Chapter 11 ■ Mongoose

319

Listing 11-34. Pre-save Middleware

// example-004/library-model.js
'use strict';
var mongoose = require('mongoose');

var librarySchema = mongoose.Schema({
 owner: String,
 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],
 duration: {
 h: {type: Number, default: 0},
 m: {type: Number, default: 0}
 }
});

librarySchema.pre('save', function (next) {
 var hours = 0, mins = 0;
 /*
 * iterate over all albums and add hours
 * and minutes
 */
 this.albums.forEach(function (album) {
 album.tracks.forEach(function (track) {
 hours += track.duration.h;
 mins += track.duration.m;
 });
 });
 /*
 * divide total mins by 60 seconds and
 * add that to hours, then assign remaining
 * minutes back to mins
 */
 hours += (mins / 60);
 mins = (mins % 60);
 this.duration = {h: hours, m: mins};
 next();
});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

Pre-event middleware can execute in a synchronous or asynchronous manner. The code in Listing 11-34
is synchronous, which means that other middleware functions will be scheduled only after the duration
summation has been completed. To change this behavior and schedule them all immediately, one after
the next, the schema’s pre() method is called with an additional boolean argument that flags the handler
function as asynchronous middleware.

The middleware function itself also receives an additional parameter, the done() function callback
shown in Listing 11-35. In synchronous middleware, control is passed to the next middleware function when
a previous middleware function has finished and invoked next(). This is still the case with asynchronous

Chapter 11 ■ Mongoose

320

middleware, but the done() function must also be invoked when the asynchronous operation has finished
during a future event loop turn. The order of execution in Listing 11-35 is

 1. Schedule the duration summation process for the next event loop pass.

 2. Invoke next() to pass control to the next piece of middleware.

 3. At some future point in time, signal that this middleware operation is complete
by invoking done().

Listing 11-35. Asynchronous Pre-save Middleware

// example-005/library-model.js
// ...
librarySchema.pre('save', true, function (next, done) {

 var hours = 0, mins = 0;
 process.nextTick(function () { // #1
 /*
 * iterate over all albums and add hours
 * and minutes
 */
 this.albums.forEach(function (album) {
 album.tracks.forEach(function (track) {
 hours += track.duration.h;
 mins += track.duration.m;
 });
 });
 /*
 * divide total mins by 60 seconds and
 * add that to hours, then assign remaining
 * minutes back to mins
 */
 hours += (mins / 60);
 mins = (mins % 60);
 this.duration = {h: hours, m: mins};
 done(); // #3
 });

 next(); // #2
});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

If an error is raised in a synchronous, pre-event middleware function, it should be passed as the only
argument to next(). Errors raised during asynchronous functions, however, should be passed to done()
instead. Any error passed to these callbacks will cause the operation that triggered the event to fail, and will be
delivered to the final operation callback (for example, the callback passed to a document’s save() method).

Post-event middleware functions receive no control flow arguments, but instead receive a copy of the
document as it stands after the event’s operation has completed.

Chapter 11 ■ Mongoose

321

Working with Models and Documents
A Mongoose model is a constructor function that creates document instances. These instances conform to
a Mongoose schema and expose a collection of methods for document persistence. Models are associated
with MongoDB collections. In fact, when a Mongoose document is saved, the collection to which it
corresponds will be created if it does not already exist. By convention, models are named in the singular
form of the noun they represent (e.g., Album), but collections are named in the plural form (e.g., albums).

A model constructor function is created by invoking mongoose.model() with a model name and
a model schema. All documents created with this constructor function, either directly in user code or
indirectly when Mongoose executes queries and returns document instances, will conform to the model’s
schema. Listing 11-36 shows the code responsible for creating the Album constructor function used by the
import scripts to create album documents in MongoDB.

Listing 11-36. Album Model

// example-006/album-model.js

//...schema definition...

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

When a Mongoose model is registered with the mongoose.model() function, Mongoose can then
resolve that model by name when referenced in relationship properties. This technique was used earlier to
create a reference between the library schema and the Album model, as shown in Listing 11-37.

Listing 11-37. Library Schema References Album Model

// example-006/library-model.js

// ...
var librarySchema = mongoose.Schema({
 // ...
 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],
 // ...
});

New documents can be created with a model constructor function, or fetched from a MongoDB data
store with model query methods. Each document can save or remove itself from a MongoDB collection. This
is very similar to the ActiveRecord data access pattern commonly used in RDBMS libraries. In Listing 11-38,
a new album document instance is created with the Album constructor function. Album data is assigned to
each property (with the appropriate data types) defined by the album schema. Finally, the save() method
is called on the document, and its callback is invoked when the associated document has been created in
MongoDB.

Listing 11-38. Creating and Saving a New Document Instance

// example-006/add-album-instance.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');

Chapter 11 ■ Mongoose

322

function handleError(err) {
 console.error(err);
 process.exit(1);
}

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function addAlbumInstance() {

 var album = new Album();
 album.composer = 'nervous_testpilot';
 album.title = 'Frozen Synapse';
 album.price = 8.99;
 album.releaseDate = new Date(2012, 8, 6);
 album.inPublication = true;
 album.genre = ['Dance', 'DJ/Electronica', 'Soundtrack'];
 album.tracks = [
 {
 title: 'Welcome to Markov Geist',
 duration: {m: 1, s: 14}
 },
 // ...additional tracks...
];

 album.save(function (err) {
 if (err) return handleError(err);
 console.log('album saved', album);
 process.exit(0);
 });
});

The script output shows the document data after the album has been saved:

example-006$ node add-album-instance.js
album saved { __v: 0,
 inPublication: true,
 title: 'Frozen Synapse',
 composer: 'nervous_testpilot',
 _id: 54f117e4a27cc5375e156c6d... }

MongoDB can be queried to verify that the document was, in fact, created in the albums collection, as
shown in Listing 11-39.

Listing 11-39. Verifying the Mongoose Document Has Been Created in MongoDB

example-006$ mongo
MongoDB shell version: 2.6.7
connecting to: test
> use music
switched to db music
> db.albums.find({composer: 'nervous_testpilot'}, {_id: 1, composer: 1, title: 1})
{ "_id" : ObjectId("54f117e4a27cc5375e156c6d"), "title" : "Frozen Synapse",
"composer" : "nervous_testpilot" }

Chapter 11 ■ Mongoose

323

Document instance properties may also be set by passing an object hash directly to the model
constructor. This can be particularly useful when document data already exists in a plain JavaScript object,
such as a deserialized JSON web request body, or JSON data parsed from a flat file. Listing 11-40 adapts the
previous example to load the new album data from a JSON file, then uses the Album model constructor to
create a document from the new JSON data. Since the JSON data conforms to the album schema (or, in the
case of the releaseDate date string, can be converted directly to the property type Date), the album instance
will be persisted without errors.

Listing 11-40. Alternative Way to Create a Document with Property Data

// example-007/add-album-instance-alt.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');
var file2json = require('./file2json');
var path = require('path');

function handleError(err) {
 console.error(err);
 process.exit(1);
}

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function addAlbumInstance() {

 var albumFile = path.join(__dirname, 'album.json');
 file2json(albumFile, 'utf8', function (err, albumJSON) {
 var album = new Album(albumJSON);
 album.save(function (err) {
 if (err) return handleError(err);
 console.log('album saved', album);
 process.exit(0);
 });
 });

});

Document Instance Methods
Documents are more than just data: they may also include custom behavior. When document instances
are created, Mongoose creates a prototype chain with copies of functions defined on the schema object’s
methods property. Document methods defined in this way may access particular document instances with
the this keyword.

Listing 11-41 shows two instance methods defined on the album schema: one to find the next album
track given the previous track’s title, and another that will find similar albums based on shared genres. The
findSimilar() method uses query syntax that will be covered later in the section Working with Queries,
but for now you simply need to know that it effectively finds albums that have genres that overlap with the
instance album and that do not share the same _id as the instance album (so the instance itself is excluded
from the list).

Chapter 11 ■ Mongoose

324

Listing 11-41. Defining Document Instance Methods in a Schema

// example-008/album-model.js

// ...
var albumSchema = mongoose.Schema({/*...*/});

albumSchema.methods.nextTrack = function (previousTrackTitle) {
 var i = 0, len = this.tracks.length;
 for (i; i < len; i += 1) {
 if (this.tracks[i].title !== previousTrackTitle) {
 continue;
 }
 // return the next track, or, if this is the last track,
 // return the first track
 return this.tracks[i + 1] || this.tracks[0];
 }
 throw new Error('unable to find track ' + previousTrackTitle);
};

albumSchema.methods.findSimilar = function (cb) {
 var criteria = {
 _id: {$ne: this._id},
 genre: {$in: this.genre}
 };
 this.model('Album').find(criteria)
 .exec(cb);
};

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

The script in Listing 11-42 loads the album titled Renaissance, then calls album.nextTrack() to
determine which track follows “Fall from Grace.” Then it calls album.findSimilar() to load albums related
to Renaissance and prints their titles and genres to the terminal. The output reveals that there is, indeed,
overlapping genres for each album, and that the instance album itself is not included in the results.

Listing 11-42. Using Document Instance Methods

// example-008/index01.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');

function handleError(err) {
 console.error(err);
 process.exit(1);
}

Chapter 11 ■ Mongoose

325

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function () {
 Album.findOne({title: 'Renaissance'})
 .exec(function (err, album) {
 if (err) return handleError(err);

 var nextTrack = album.nextTrack('Fall from Grace');
 console.log('next track:', nextTrack.title);

 album.findSimilar(function (err, albums) {
 if (err) return handleError(err);
 console.log('this album:', album.title, album.genre);
 albums.forEach(function (album) {
 console.log('similar album:', album.title, album.genre);
 });
 process.exit(0);
 });
 });
});

example-008$ node index01.js
next track: Fall from Grace (Choir Version)
this album: Renaissance ["Classical","Trailer Music","Soundtrack"]
similar album: Tree of Life ["Classical","Trailer Music"]
similar album: Dear Esther ["Classical","Video Game Soundtrack"]
similar album: Frozen Synapse ["Dance","Electronica","Soundtrack"]

Document Virtuals
Like instance methods, virtual getter and setter properties can be added to documents via the schema. These
virtual properties act like normal data properties but are not persisted when the document is saved. They are
useful for computing and returning values based on document data, or for parsing data that contains, or can
be converted to, values for other document properties.

A virtual getter and setter have been added to the album schema in Listing 11-43 that define a
property, composerInverse, that will get the inversed version of a composer’s name (“last, first”) and set the
composer’s name correctly (“first last”) given an inverse form.

Listing 11-43. Virtual Document Properties

// example-08/album-model.js

var albumSchema = mongoose.Schema({/*...*/});

// ...
albumSchema.virtual('composerInverse').get(function () {
 var parts = this.composer.split(' '); //first last
 if (parts.length === 1) {
 return this.composer;
 }

Chapter 11 ■ Mongoose

326

 return [parts[1], parts[0]].join(', '); //last, first
});

albumSchema.virtual('composerInverse').set(function (inverse) {
 var parts = inverse.split(', '); //last, first
 if (parts.length === 1) {
 this.composer = inverse;
 }
 this.composer = [parts[1], parts[0]].join(' '); //first last
});
// ...

The string argument passed to the Schema.virtual() method defines the document path where
the property will reside once a document instance is created. Document virtuals may be assigned to
subdocuments and nested objects as well by specifying the full path starting at the root document. For
example, if the value of the composer property was an object with firstName and lastName properties, the
virtual might live at composer.inverse instead.

The script and subsequent output in Listing 11-44 shows the composerInverse property in action.

Listing 11-44. Getting and Setting a Virtual Property

// example-008/index02.js
'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');

function handleError(err) {
 console.error(err);
 process.exit(1);
}

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function () {
 Album.find({}).exec(function (err, albums) {
 if (err) return handleError(err);

 albums.forEach(function (album) {
 console.log('album.composer:', album.composer);
 var inverse = album.composerInverse;
 console.log('album.composerInverse:', inverse);
 album.composerInverse = inverse;
 console.log('album.composer:', album.composer);
 console.log(/*newline*/);
 });

 process.exit(0);
 });
});

Chapter 11 ■ Mongoose

327

example-008$ node index02.js
album.composer: Kerry Muzzey
album.composerInverse: Muzzey, Kerry
album.composer: Kerry Muzzey

album.composer: Audiomachine
album.composerInverse: Audiomachine
album.composer: Audiomachine

album.composer: Jessica Curry
album.composerInverse: Curry, Jessica
album.composer: Jessica Curry

album.composer: nervous_testpilot
album.composerInverse: nervous_testpilot
album.composer: nervous_testpilot

Static Model Methods
Static methods may also be added to models (not document instances), and are commonly used to
encapsulate complicated criteria construction when querying against a collection. The inPriceRange()
method in Listing 11-45 is attached to the album schema’s statics property. It receives two numeric
arguments that represent the lower and upper bounds of a price range, and finds albums that are priced
within that range, inclusively.

Listing 11-45. Adding a Static Method to a Model

// example-009/album-model.js

var albumSchema = mongoose.Schema({/*...*/});

// ...
albumSchema.statics.inPriceRange = function (lower, upper, cb) {
 var criteria = {
 price: {$gte: lower, $lte: upper}
 };
 this.find(criteria)
 .exec(cb);
};
// ...

When the album model is later created from the schema, any method on statics will be bound to the
model. While the value of this in instance methods is the document itself, the value of the this keyword in
static methods is the model constructor function (e.g., Album). Any function that can be called on the model,
such as find() and create(), may be accessed in a static method.

The script in Listing 11-46 receives two prices as command-line arguments and then finds albums
within the range of those prices. The inPriceRange() method is called on the Album model, just as any other
static method. Encapsulating queries in this manner can be a good way to maintain separate concerns, as
query logic is isolated to models and won’t pollute other portions of the application.

Chapter 11 ■ Mongoose

328

Listing 11-46. Using Static Model Methods// example-009/index.js

'use strict';
var mongoose = require('mongoose');
var Album = require('./album-model');

var lower = Number(process.argv[2] || 0);
var upper = Number(process.argv[3] || lower + 1);

console.log('finding albums between $%s and $%s', lower.toFixed(2), upper.toFixed(2));

function handleError(err) {
 console.error(err);
 process.exit(1);
}

mongoose.connect('mongodb://localhost/music');
var db = mongoose.connection;
db.on('error', handleError);
db.once('open', function () {
 Album.inPriceRange(lower, upper, function (err, albums) {
 if (err) return handleError(err);
 console.log('found albums:', albums.length);
 albums.forEach(function (album) {
 console.log(album.title, '$' + album.price.toFixed(2));
 });
 process.exit(0);
 });
});

example-009$ node index.js 5.00 10.00
finding albums between $5.00 and $10.00
found albums: 3
Tree of Life $9.49
Dear Esther $6.99
Frozen Synapse $8.99

example-009$ node index.js 9.00 10.00
finding albums between $9.00 and $10.00
found albums: 1
Tree of Life $9.49

example-009$ node index.js 20.00
finding albums between $20.00 and $21.00
found albums: 0

 ■ Note the query examples in the next section do not use static model methods for encapsulation. this is
done to simplify each example, though in a real maintainable application, it might be considered bad practice.

Chapter 11 ■ Mongoose

329

Working with Queries
Mongoose queries are plain objects composed of zero or more properties that specify the parameters of the
query. (An empty query object matches everything.) Properties on these criteria objects share MongoDB’s
native query syntax. Models expose several different query methods that use criteria objects in order to filter
and return Mongoose documents.

For the following examples a web server provides access to MongoDB data via Mongoose models.
To start the web server, ensure that your MongoDB instance is running and then execute the command
in Listing 11-47 in each example directory. (A comment at the top of each code example reveals which
directory it lives in.) The script output will inform you that the web server is running on port 8080. All
interactions with the web server will be demonstrated with the cURL terminal utility available for most
platforms, though each example could be run with any standard HTTP client.

Listing 11-47. Starting the Web Server in Example 10

example-XYZ$ node index.js
listening on port 8080

Model.find()
Basic CRUD operations may be conveniently mapped to corresponding Mongoose model functions with
very little effort. The route in Listing 11-48, for example, is a general route that uses Album.find() to locate
album documents that contain properties matching those in the criteria object. The criteria object gets
composer and title parameters from the URL query string if they have been sent as part of the request. If
one or both of these parameters are set on the criteria object, Mongoose will return only documents that
have matching properties (similar to a where clause in traditional SQL). If no parameters are sent, the criteria
object will remain empty and Mongoose will find all album documents.

Listing 11-48. Finding Albums That Match a Given Criteria

// example-010/album-routes.js

/**
 * GET /album(?composer={string}&title={string})
 * @param req
 * @param cb
 */
routes.GET['^\/album(?:\\?.+)?$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var criteria = {};
 if (req.query.composer) {
 criteria.composer = req.query.composer;
 }
 if (req.query.title) {
 criteria.title = req.query.title;
 }

Chapter 11 ■ Mongoose

330

 Album.find(criteria)
 .sort({composer: 1, title: 1})
 .lean(true)
 .exec(function (err, albums) {
 if (err) return cb(500, err);
 cb(200, albums);
 });
};

The Album.find() method will return a Mongoose Query object that exposes additional methods for
manipulating the results of the find operation.

 ■ Note Model methods can be invoked in several ways. the first, shown in Listing 11-48, returns a Query
object with a fluent interface that allows query options to be chained together until the Query.exec() method is
called. the second method avoids the Query object altogether. If a callback is passed as the last argument to a
model’s query method (e.g., find({}, function () {...})) the underlying query will be executed immediately
and the error or result passed to the callback. For simple queries, the second method is more terse.

The first Query directive is Query.sort(), which accepts an object that uses MongoDB’s sorting
notation. The properties in this object tell MongoDB which properties in the document should be used for
sorts, and in which direction each sort should be ordered (1 for ascending, -1 for descending). When the
results in Listing 11-48 are fetched, they will be ordered first by composer, then by album title.

After Query.sort(), the Query.lean() method is invoked to instruct Mongoose to deliver plain JSON
objects instead of Mongoose documents as results. By default, Mongoose will always fetch documents,
which carry Mongoose-specific properties and methods for validating, persisting, and otherwise managing
document objects. Since this route (and most routes in this file) simply serialize results and return them to the
client, it is preferable to fetch them as Plain Old JavaScript Objects (or JSON objects) populated only with data.

Once a query has been prepared, its exec() method is passed a callback to receive either an error or
data from the Album.find() operation. The results will be an array of album objects that match whatever
criteria (if any) was used to perform the query.

Several curl commands are shown in Listing 11-49 with various query string parameters. In each case
the output is a serialized JSON array delivered from the web API.

 ■ Note the following examples use MongoDB identifiers that were generated on my computer. these
identifiers will differ on your computer. You may use the mongo terminal client to discover the identifiers
assigned to your MongoDB documents, as demonstrated in previous examples.

Listing 11-49. Using curl to Find Albums with Various Criteria

example-010$ curl -X GET http://localhost:8080/album?composer=Kerry%20Muzzey
[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title":"Renaissance"...]

example-010$ curl -X GET http://localhost:8080/album?title=Dear%20Esther
[{"_id":"54ed1dcb6fb525ba25529bf2","composer":"Jessica Curry","title":"Dear Esther"...]

Chapter 11 ■ Mongoose

331

example-010$ curl -X GET
"http://localhost:8080/album?composer=Audiomachine&title=Tree%20of%20Life"
[{"_id":"54ed1dcb6fb525ba25529bd7","composer":"Audiomachine","title":"Tree of Life"...]

Model.findById()
While Album.find() will always fetch an array of documents (even if its criteria specifies a unique identifier),
Album.findById() will only find a single document that matches a given identifier, if any exist. The route
in Listing 11-50 fetches a single album by albumID—a parameter passed as the last URL segment instead of
the query string. The lean() method is again invoked on the returned Query to eliminate the unnecessary
properties and methods in a full Mongoose document instance.

Listing 11-50. Finding a Single Album That Matches a Given Criteria

// example-010/album-routes.js

/**
 * GET /album/{id}
 * @param req
 * @param cb
 */
routes.GET['^\/album\/([a-z0-9]+)$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var albumID = req.params[0];
 Album.findById(albumID)
 .lean(true)
 .exec(function (err, album) {
 if (err) return cb(500, err);
 cb(200, album);
 });
};

example-010$ curl -X GET http://localhost:8080/album/54f3a4df056601726f867685
{"_id":"54f3a4df056601726f867685","composer":"nervous_testpilot","title":"Frozen Synapse"... }

Earlier an additional album was created by the import script example-007/add-album-instance-alt.js,
in which a deserialized JSON object was passed to the Album constructor to create an album instance.
Listing 11-51 demonstrates the same process within an HTTP POST route. The body of the request is
serialized album data that is first converted to a JSON object, then passed to the Album model constructor.
Once the document instance has been created, the save() method validates the data (with rules defined in
the album schema) and creates the new MongoDB document.

Listing 11-51. Creating a New Album Document

// example-010/album-routes.js

/**
 * POST /album
 * @param req
 * @param cb
 */

Chapter 11 ■ Mongoose

332

routes.POST['^\/album$'] = function (req, cb) {
 console.log(req.body);
 cb = httpd.asJSON(cb);
 var albumJSON = req.body;
 var album = new Album(albumJSON);
 album.save(function (err) {
 if (err) return cb(500, err);
 cb(201, album.toObject());
 });
};

If validation fails, or if the album otherwise cannot be created, an error will be passed to the final
callback and delivered to the client as an HTTP 500 Internal Server Error. If the album document is
created, the data is passed back to the client as serialized JSON. Unlike previous routes where Query.lean()
was used to ensure that only data is serialized, the album document returns its own data in JSON format
when its toObject() method is called. This is the manual equivalent of the process that lean() performs in
a query chain.

The curl request in Listing 11-52 reads the content of example-010/new-album.json and sets it as the
request body. The Content-Type informs the web server to deserialize the payload accordingly.

Listing 11-52. Creating a New Album with a curl Request

example-010$ curl -X POST http://localhost:8080/album \
> -d @new-album.json \
> -H "Content-Type: application/json"
{"_id":"54f66ed2fa4af12b43fee49b","composer":"Aphelion","title":"Memento"... }

The album data in example-010/new-album.json lacks a releaseDate property, a condition that did
not cause the schema validation to fail on import because releaseDate is not required. Indeed, releaseDate
defaults to Date.now, and if queried with the mongo client, will be exactly that. Unfortunately, the album
was not, in fact, released today, so it is necessary to create another route to update the newly minted album
document.

Model.findByIdAndUpdate()
An album instance may be updated in a number of ways. The Album.findById() method could fetch the
document, its properties could be set with updated data, then it could be saved back to the data store. Or the
Album.findByIdAndUpdate() method could be used to do all of that at once and return the newly updated
album document, the exact approach taken in Listing 11-53.

Listing 11-53. Finding and Updating an Album by ID

// example-010/album-routes.js
/**
 * PUT /album/{id}
 * @param req
 * @param cb
 */
routes.PUT['^\/album\/([a-z0-9]+)$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var albumID = req.params[0];
 var updatedFields = req.body;

Chapter 11 ■ Mongoose

333

 Album.findByIdAndUpdate(albumID, updatedFields)
 .lean(true)
 .exec(function (err, album) {
 if (err) return cb(500, err);
 cb(200, album);
 });
};

Like Listing 11-51, a serialized JSON object is sent in the body of an HTTP request. This request is a PUT
request, however, and includes the album identifier in the URL. The only data sent in the request body are
the properties to be updated. It is unnecessary to send the full document across the wire because Mongoose
will apply the deltas appropriately. Once the request body is deserialized, the album ID and updated fields
are passed to findByIdAndUpdate(). If the update operation succeeds, the updated document will be passed
to the final query callback, assuming no errors occur.

The curl command in Listing 11-54 creates a PUT request with a simple JSON payload that specifies a
new value for releaseDate. When the request finishes, the printed response shows the updated album data.

Listing 11-54. Finding and Updating an Album by ID with curl

example-010$ curl -X PUT http://localhost:8080/album/54f66ed2fa4af12b43fee49b \
> -d '{"releaseDate": "2013-08-15T05:00:00.000Z"}' \
> -H "Content-Type: application/json"
{"_id":"54f66ed2fa4af12b43fee49b"..."releaseDate":"2013-08-15T05:00:00.000Z"... }

Model.findByIdAndRemove()
To remove a document from MongoDB, the DELETE route uses the Album.findByIdAndRemove() method
to look up the MongoDB document and then remove it from the albums collection. The removed album is
passed to the final callback in Listing 11-55 if the operation is successful.

Listing 11-55. Finding and Removing an Album by ID

// example-010/album-routes.js

/**
 * DELETE /album/{id}
 * @param req
 * @param cb
 */
routes.DELETE['^\/album\/([a-z0-9]+)$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var albumID = req.params[0];
 Album.findByIdAndRemove(albumID)
 .lean(true)
 .exec(function (err, album) {
 if (err) return cb(500, err);
 cb(200, album);
 });
};

example-010$ curl -X DELETE http://localhost:8080/album/54f3aa9447429f44763f2603
{"_id":"54f66ed2fa4af12b43fee49b","composer":"Aphelion","title":"Memento"... }

Chapter 11 ■ Mongoose

334

A document instance also has a remove() method that can be invoked much like its save() method.
In Listing 11-56 an album instance is fetched by ID. Query.lean() is not called this time because it is the
document, not its plain JSON representation, that will possess a remove() method. Once the instance is
fetched, remove() is called with a callback that will receive an error on failure, or a copy of the removed
document instance if successful.

Listing 11-56. Removing a Document Instance

Album.findById(albumID)
 .exec(function (err, albumInstance) {
 albumInstance.remove(function (err, removedAlbum) {
 // album has been removed
 });
 });

Model.count()
Another useful model method is count(), which receives the same type of criteria objects as the find*()
methods, but returns a simple record count instead of full objects. The HTTP route in Listing 11-57 uses the
same query parameters as the general album search and returns the result count in the HTTP response.

Listing 11-57. Counting Albums That Match Criteria

// example-011/album-routes.js

/**
 * GET /album/count(?composer={string}&title={string})
 * @param req
 * @param cb
 */
routes.GET['^\/album\/count(?:\\?.+)?$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var criteria = {};
 if (req.query.composer) {
 criteria.composer = req.query.composer;
 }
 if (req.query.title) {
 criteria.title = req.query.title;
 }
 Album.count(criteria)
 .exec(function (err, count) {
 if (err) return cb(500, err);
 cb(200, count);
 });
};

example-011$ curl -X GET http://localhost:8080/album/count
4

example-011$ curl -X GET http://localhost:8080/album/count?composer=Jessica%20Curry
1

Chapter 11 ■ Mongoose

335

Query.Populate()
Earlier, in Listing 11-28, a script was used to add a music library to MongoDB. The library schema defined an
array property, albums, that contained references to album documents, show in Listing 11-58.

Listing 11-58. Album References in the Library Schema

var librarySchema = mongoose.Schema({
 // ...
 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],
 // ...
});

Mongoose documents with foreign references can be fetched with or without resolving those references
to other document objects. The route in Listing 11-59 fetches a library by ID, then calls the Query.
populate() method to eagerly fetch the associated albums for the library. Mongoose is smart enough to
know that, even though albums is technically an array, the objects it contains actually refer to other album
documents.

Listing 11-59. Populating Albums with a Library Model

// example-011/library-routes.js

/**
 * GET /library/(id)
 * @param req
 * @param cb
 */
routes.GET['^\/library\/([a-z0-9]+)$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var libraryID = req.params[0];
 Library.findById(libraryID)
 .populate('albums')
 .lean(true)
 .exec(function (err, library) {
 if (err) return cb(500, err);
 if (!library) return cb(404, {
 message: 'no library found for ID ' + libraryID
 });
 cb(200, library);
 });
}

Figure 11-1 shows a formatted version of the HTTP response. Each album in the albums collection has
been fully dereferenced. Because Query.lean() was also called in the query chain, Mongoose converted the
library and album data into plain JSON objects.

Chapter 11 ■ Mongoose

336

Finding Documents with Query Operators
At this point the album and library routes consist of basic CRUD operations (create, read, update, and
delete) that form the basis of many web APIs, but more could be done to make the API robust. MongoDB
supports a number of helpful query operators that serve to filter data in specific ways.

The $lt and $gt Operators
The $lt and $gt operators can be used to find documents with values that are less than ($lt) or greater than
($gt) some value. The route in Listing 11-60 allows clients to search for albums that have been released on,
before, or after a specific date that is passed to the route as a query parameter.

Listing 11-60. Finding Albums by Release Date

// example-011/album-routes.js

/**
 * GET /album/released/MM-DD-YYYY
 * GET /album/released/MM-DD-YYYY/before
 * GET /album/released/MM-DD-YYYY/after
 * @param req
 * @param cb
 */

Figure 11-1. Library population results

Chapter 11 ■ Mongoose

337

routes.GET['^\/album\/released\/([\\d]{2}-[\\d]{2}-[\\d]{4})(?:\/(before|after))?$'] =
function (req, cb) {
 cb = httpd.asJSON(cb);
 var date = req.params[0];
 var when = req.params[1];

 var criteria = {releaseDate: {}};
 if (when === 'before') {
 criteria.releaseDate.$lt = new Date(date);
 } else if (when === 'after') {
 criteria.releaseDate.$gt = new Date(date);
 } else {
 when = null;
 criteria.releaseDate = new Date(date);
 }

 Album.find(criteria)
 .select('composer title releaseDate')
 .lean(true)
 .exec(function (err, albums) {
 if (err) return cb(500, err);
 if (albums.length === 0) {
 return cb(404, {
 message: 'no albums ' + (when || 'on') + ' release date ' + date
 });
 }
 cb(200, albums);
 });
};

To find albums released on a specific date, a normal criteria object is used to map the date value to the
releaseDate property:

{releaseDate: new Date(...)}

If searching for albums before or after the date, however, the criteria object uses the $lt or $gt operator,
respectively:

{releaseDate: {$lt: new Date(...)} }

// or

{releaseDate: {$gt: new Date(...)} }

To find albums that were released before, and up to, a specific date, the $lte (“less than or equal”)
operator could be used. Likewise, the $gte operator would find albums released from a specific date onward.
To find all albums that were released on any date but the date provided, the $ne (“not equal”) operator
would filter accordingly. Its inverse, $eq, if used alone is functionally equivalent to setting the releaseDate
value on the criteria object directly.

To keep the response small, the Query.select() method is invoked before the query is executed. This
method limits the properties returned from each result object. In this case, the query selects only the composer,
title, and releaseDate properties, all included in a space-separated string. All other properties are ignored.

Chapter 11 ■ Mongoose

338

Listing 11-61 shows the filtered JSON data returned for each kind of release date query.

Listing 11-61. Using curl to Find Albums by Release Date

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013
{"message":"no albums on release date 01-01-2013"}

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013/before
[{"_id":"54ed1dcb6fb525ba25529bf2","composer":"Jessica Curry","title":"Dear
Esther","releaseDate":"2012-02-14T06:00:00.000Z"},{"_id":"54f3a4df056601726f867685",
"composer":"nervous_testpilot","title":"Frozen Synapse","releaseDate":"2012-09-
06T05:00:00.000Z"}]

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013/after
[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title":"Renaissance",
"releaseDate":"2014-01-13T06:00:00.000Z"},{"_id":"54ed1dcb6fb525ba25529bd7","composer":
"Audiomachine","title":"Tree of Life","releaseDate":"2013-07-16T05:00:00.000Z"}]

Notice that, even though the Query.select() filter did not specify the _id property for inclusion, it
is still present in each response. To omit this property, a negation needs to be added to the select string.
Prefixing the _id property with a minus sign will prevent it from being selected:

Album.find(...)
 .select('-_id composer title releaseDate')
 // ...

 ■ Note the _id property is the only property that may be specified for exclusion when an inclusive select
(one that specifies the properties to be fetched) is performed. otherwise, excluded and included properties may
not be mixed. a query is either selecting only specific properties or excluding only specific properties, but not
both. If any property in a Query.select() string is negated (except for _id), all specified properties must be
negated or an error will be raised.

The $in and $nin Operators
It is often helpful to select documents with property values that match some subset of possibilities. The
$in operator (and its inverse, $nin) tests a document property value against each element in an array. The
document fulfills the criteria if its property matches at least one of the elements in the array. To find albums
from two composers, for example, the criteria object in Listing 11-62 might be used.

Listing 11-62. Using the $in Query Operator to Filter by Composer

{composer: {$in: ['Kerry Muzzey', 'Jessica Curry']}}

The $nin operator does the exact opposite: it will match only if the property value is not included in the
specified set.

Chapter 11 ■ Mongoose

339

Both $in and $nin work for properties with scalar values (like strings, numbers, dates, etc.), but they
can also be used to search within collections. The web route in Listing 11-63 accepts a music genre as a URL
parameter and returns related genres in the HTTP response.

Listing 11-63. Using the $in Query Operator to Filter by Genre

// example-011/album-routes.js

/**
 * GET /album/genre/(genre)/related
 * @param req
 * @param cb
 */
routes.GET['^\/album\/genre\/([a-zA-Z]+)/related$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var principalGenre = req.params[0];
 var criteria = {
 genre: {$in: [principalGenre]}
 };
 Album.find(criteria)
 .lean(true)
 .select('-_id genre')
 .exec(function (err, albums) {
 if (err) return cb(500, err);
 var relatedGenres = [];
 albums.forEach(function (album) {
 album.genre.forEach(function (albumGenre) {
 // don't include the principal genre
 if (albumGenre === principalGenre) return;
 // ensure duplicates are ignored
 if (relatedGenres.indexOf(albumGenre) < 0) {
 relatedGenres.push(albumGenre);
 }
 });
 });
 cb(200, {genre: principalGenre, related: relatedGenres});
 });
};

example-011$ curl -X GET http://localhost:8080/album/genre/Dance/related
{"genre":"Dance","related":["Electronica","Soundtrack"]}

To determine what constitutes a “related” genre, the criteria object selects albums that have the
principal genre as an element in each document’s genre array. It then compiles a list of all other genres that
have been assigned to albums in the result set and returns that list to the client. Though Album.genre is an
array, MongoDB knows to traverse it for values that match the elements in the $in operator. The Query.
select() method excludes the _id property and includes only the genre property, since it alone contains
the data in which this route is interested.

The $in operator is useful for finding elements in arrays of scalar values, but a different approach
is needed when searching arrays of complex objects. Each subdocument in Album.tracks has its own
properties and values, for example. To search for albums with tracks that meet some criteria, properties

Chapter 11 ■ Mongoose

340

for tracks can be referenced with their full property paths, starting from the album itself. In Listing 11-64,
albums will be fetched that posses any track with a title property that matches the value for tracks.title
in the criteria object.

Listing 11-64. Using a Subdocument Path in a Criteria Object

// example-012/album-routes.js
/**
 * GET /album(?composer={string}&title={string}&track={string})
 * @param req
 * @param cb
 */
routes.GET['^\/album(?:\\?.+)?$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var criteria = {};
 // ...
 if (req.query.track) {
 criteria['tracks.title'] = req.query.track;
 }
 // ...
 Album.find(criteria)
 .lean(true)
 .exec(function (err, albums) {
 if (err) return cb(500, err);
 cb(200, albums);
 });
};

example-012$ curl -X GET http://localhost:8080/album?track=The%20Looking%20Glass
[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title":"Renaissance"... }

The $and and $or Operators
Simple criteria objects can query a property by using normal object notation. For example, to find an album
that is in publication, the simple criteria object in Listing 11-65 would be sufficient.

Listing 11-65. Simple Criteria Object

Album.find({inPublication: true}, function (err, albums) {/*...*/});

This approach is insufficient for complicated, compound queries, however, such as the pseudo-query in
Listing 11-66.

Listing 11-66. Painful Pseudo-Query

(select albums that
 (
 (are in publication and were released within the last two years) or
 (are categorized as classical and priced between $9 and $10)
)
)

Chapter 11 ■ Mongoose

341

Fortunately, the $and and $or operators can be used to construct a criteria object that will produce the
desired set of albums. Both operators accept an array of criteria objects that may contain simple queries,
or complex queries that also contain $and, $or, or any other valid query operators. The $and operator
performs a logical AND operation using each criteria object in its array, selecting only documents that match
all specified criteria. In contrast, the $or operator performs a logical OR operation, selecting documents that
match any of its criteria.

In Listing 11-67, the album recommendations route composes a criteria object that uses both
compound operators. Note that whereas the keys in simple criteria objects are property names, in
compound criteria objects the keys are the compound operators followed by arrays of simple and/or
complex criteria objects.

Listing 11-67. Using $and and $or to Find Album Recommendations

// example-012/album-routes.js
/**
 * GET /album/recommended
 * @param req
 * @param cb
 */
routes.GET['^\/album\/recommended$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var nowMS = Date.now();
 var twoYearsMS = (365 * 24 * 60 * 60 * 1000 * 2);
 var twoYearsAgo = new Date(nowMS - twoYearsMS);

 var criteria = {
 $or: [
 // match all of these conditions...
 { $and: [{inPublication: true}, {releaseDate: {$gt: twoYearsAgo}}] },
 // OR
 // match all of these conditions...
 { $and: [{genre: {$in: ['Classical']}}, {price: {$gte: 5, $lte: 10}}] }
]
 };

 Album.find(criteria)
 .lean(true)
 .select('-_id -tracks')
 .exec(function (err, albums) {
 if (err) return cb(500, err);
 cb(200, albums);
 });
};

example-012$ curl -X GET http://localhost:8080/album/recommended
[{"composer":"Kerry Muzzey","title":"Renaissance","price":4.95... },
 {"composer":"Audiomachine","title":"Tree of Life","price":9.49... },
 {"composer":"Jessica Curry","title":"Dear Esther","price":6.99... }]

Chapter 11 ■ Mongoose

342

The $regex Operator
Often, searching for documents that match a precise text field query yields suboptimal results. Regular
expressions can be used to broaden these searches so that documents are selected with fields that resemble
a particular query parameter. In SQL-based languages, the like operator can be used for this purpose, but
MongoDB favors regular expressions. The $regex operator adds a regular expression to a criteria object
property, selecting documents that match the regular expression and excluding those that do not. It is often
paired with the $options operator which may contain any valid regular expression flag such as i (case-
insensitive). The route in Listing 11-68 accepts a query parameter, owner, which is converted to a regular
expression and applied against the owner property of every library document.

Listing 11-68. Finding a Library with a Regular Expression

// example-012/library-routes.js
/**
 * GET /library?
 * @param req
 * @param cb
 */
routes.GET['^\/library(?:\\?.+)?$'] = function (req, cb) {
 cb = httpd.asJSON(cb);
 var criteria = {};
 if (req.query.owner) {
 criteria.owner = {
 $regex: '^.*' + req.query.owner + '.*$',
 $options: 'i'
 }
 } else {
 return cb(404, {message: 'please specify an owner'});
 }
 Library.find(criteria)
 .populate('albums')
 .exec(function (err, libraries) {
 if (err) return cb(500, err);
 cb(200, libraries);
 });
};

The criteria object specifies the property against which the regular expression will be applied, and an
object that includes both the expression (the $regex property) and any options to apply while matching (the
$options property). In Listing 11-69 the curl command uses the owner cloud is as a query string parameter.
Since the regular expression in Listing 11-68 above surrounds the query parameter with the regular
expression wildcard .*, and since the regular expression options specify the case-insensitive option i, the
route will return the only library in MongoDB, owned by Nicholas Cloud. Listing 11-69 shows the curl
command and HTTP response output.

Listing 11-69. Finding a Library by Owner with cURL

 curl -X GET http://localhost:8080/library?owner=cloud
[{"_id":"54ed249312c06b3726d3abcd","owner":"Nicholas Cloud"...]

Chapter 11 ■ Mongoose

343

Advanced Query Operators
There are many more MongoDB operators that may be used in Mongoose queries, and while an in-depth
analysis of each warrants many more pages, Table 11-3 provides a high-level overview of additional
advanced query operators.

Table 11-3. Additional Advanced Query Operators

Operator Description

$not, $nor Negative logical operators that combine query clauses and select documents that match
accordingly

$exists Selects documents where the specified property exists (remember, MongoDB documents
are technically schemaless)

$type Selects documents where the specified property is of a given type

$mod Selects documents where a modulo operator on a specified field returns a specified result
(e.g., select all albums where the price is divisible evenly by 3.00)

$all Selects documents with an array property that contains all specified elements

$size Selects documents with an array property of a given size

$elemMatch Selects documents where a subdocument in an array matches more than one condition

Summary
MongoDB is schemaless and extremely flexible by design, but application developers often add constraints
on data in application code to enforce business rules, ensure data integrity, conform to existing application
abstractions, or achieve any number of other goals. Mongoose recognizes and embraces this reality, and
rests snugly between application code and the data store.

Mongoose schemas add constraints to otherwise free-form data. They define the shape and validity
of the data to be stored, enforce constraints, create relationships between documents, and expose the
document life cycle via middleware.

Models provide a full but extensible query interface. Criteria objects that conform to MongoDB query
syntax are used to find specific data. Chainable query methods give developers control over the property
selection, reference population, and whether full documents or plain JSON objects are retrieved. Custom
static methods that encapsulate complicated criteria objects and more involved queries can be added to
models to keep application concerns properly segregated.

Finally, Mongoose documents can be extended with custom instance methods that contain domain
logic, and custom getters and setters that aid in computed property manipulation.

345

Chapter 12

Knex and Bookshelf

The report of my death was an exaggeration.

—Samuel Langhorne Clemens (Mark Twain)

In this chapter, we will explore two libraries that work together to ease many of the difficulties that Node.js
developers often encounter when working with relational databases. The first, Knex, provides a flexible and
consistent interface for interacting with several well-known SQL platforms such as MySQL and PostgreSQL.
The second, Bookshelf, builds on this foundation by providing developers with a powerful object-relational
mapping (ORM) library that simplifies the process of modeling the entities that comprise an application’s
data structure, along with the various relationships that exist between them. Readers who are familiar with
Backbone.js and its emphasis on structuring data within Models and Collections will quickly find themselves
at home with Bookshelf, as the library follows many of the same patterns and provides many of the same APIs.

In this chapter, you will learn how to do the following:

•	 Create SQL queries with the Knex query builder

•	 Create complex database interactions without resorting to nested callback functions,
with the help of promises

•	 Ensure the integrity of your application’s data through the use of transactions

•	 Manage changes to your database’s schema with the help of Knex migration scripts

•	 Bootstrap your database with sample data using Knex seed scripts

•	 Define one-to-one, one-to-many, and many-to-many relationships between
Bookshelf models

•	 Use eager loading to efficiently retrieve complex object graphs based on Bookshelf
relationships

 ■ Note Most of the examples in this chapter make heavy use of the promise-based and Underscore-inspired
APIs that both Bookshelf and Knex provide. As a result, readers who are unfamiliar with either of these concepts
are encouraged to first read Chapter 17, which covers Q, and 19, which covers Underscore and Lo-Dash.

http://dx.doi.org/10.1007/978-1-4842-0662-1_17

ChAPter 12 ■ Knex AnD BooKsheLf

346

Knex
Knex provides a database abstraction layer (DBAL) for MySQL, PostgreSQL, MariaDB, and SQLite3, a unified
interface through which developers can interact with each of these Structured Query Language (SQL)
databases without having to concern themselves with minor variations in syntax and response format that
exist between each platform. Applications backed by such relational databases can benefit from a number of
Knex features, including these:

•	 A promise-based interface that allows for cleaner control of asynchronous processes

•	 A stream interface for efficiently piping data through an application as needed

•	 Unified interfaces through which queries and schemas for each supported platform
can be created

•	 Transaction support

In addition to the library itself, Knex also provides a command-line utility with which developers can do
the following:

•	 Create, implement, and (when necessary) revert database migrations, scripted
schema changes that can then be committed with an application’s source code

•	 Create database “seed” scripts, a consistent method by which an application’s
database can be populated with sample data for local development and testing

Each of these subjects will be covered in more detail throughout this chapter.

Installing the Command-Line Utility
Before going any further, you should ensure that you have installed the command-line utility provided by
Knex. Available as an npm package, the installation process is shown in Listing 12-1.

Listing 12-1. Installing the knex Command-Line Utility via npm

$ npm install -g knex$ knex --version
Knex CLI version: 0.7.3

Adding Knex to Your Project
In addition to installing the knex command-line utility, you will also need to add the knex npm module as a
local dependency within each project in which you intend to use it, along with a supported database library,
as shown in Listing 12-2.

Listing 12-2. Installing Knex and a Supported Database Library As a Local Project Dependency via npm

$ npm install knex --save
Supported database libraries include (be sure to --save):
$ npm install mysql
$ npm install mariasql
$ npm install pg
$ npm install sqlite3

ChAPter 12 ■ Knex AnD BooKsheLf

347

 ■ Note sQLite implements a self-contained, serverless database within a single file on your disk and requires
no additional tools. If you don’t have access to a database server such as MysQL at the moment, the sqlite3
library will provide you with a quick and easy way to begin experimenting with Knex without requiring additional
setup. The examples referenced throughout this chapter will use this library.

Configuring Knex
With your dependencies now in place, all that remains is to initialize Knex within your project. Listing 12-3
shows what that process looks like if you happen to be using MySQL, PostgreSQL, or MariaDB, while
Listing 12-4 shows how to initialize Knex for use with SQLite3.

Listing 12-3. Initializing Knex for Use with MySQL, PostgreSQL, or MariaDB (Substitute mysql for pg or
mariasql As Needed)

var knex = require('knex')({
 'client': 'mysql',
 'connection': {
 'host': '127.0.0.1',
 'user': 'user',
 'password': 'password',
 'database': 'database'
 },
 'debug': false // Set this to true to enable debugging for all queries
});

Listing 12-4. Initializing Knex for Use with SQLite3

// example-sqlite-starter/lib/db.js

var knex = require('knex')({
 'client': 'sqlite3',
 'connection': {
 'filename': 'db.sqlite'
 }
});

As you can see, the configuration settings required for SQLite3 are quite a bit simpler than those
required for other, more full-featured solutions. Instead of providing connection settings, we simply provide
the name of a file (db.sqlite) in which SQLite will store its data.

The SQL Query Builder
The primary focus of Knex is on providing developers with a unified interface through which they can
interact with multiple, SQL-based databases without having to worry about minor variations in syntax and
response format that exist between each of them. To that end, Knex provides a number of methods, most of
which fall into one of two categories: query builder methods and interface methods.

ChAPter 12 ■ Knex AnD BooKsheLf

348

Query Builder Methods
Query builder methods are those that aid developers in the creation of SQL queries. Examples of such
methods include select(), from(), where(), limit(), and groupBy(). At last count, Knex provides more
than 40 such methods, with which platform-agnostic queries can be created. Listing 12-5 shows a simple
SQL query, along with an example demonstrating how such a query can be created using Knex.

Listing 12-5. Example Demonstrating the Creation of a Simple SQL Query Using Knex

// example-sqlite-starter/example1.js
// SELECT id, name, postal_code FROM cities;knex.select('id', 'name', 'postal_code').
from('cities');

While the example shown in Listing 12-5 demonstrates the basic method by which SQL queries can
be created with Knex, it does little to convey the true value of the library. That value should start to become
more apparent as we take a look at the various interface methods that Knex provides. It is with these
methods that we can begin to submit our queries and process their resulting data.

Interface Methods
Knex provides a number of interface methods that allow us to submit and process our queries in several
convenient ways. In this section, we’ll take a look at two of the most useful approaches that are available to us.

Promises

The event-driven nature of JavaScript makes it well suited for efficiently handling complex, asynchronous
tasks. Traditionally, JavaScript developers have managed asynchronous control flow through the use of
callback functions, as shown in Listing 12-6.

Listing 12-6. Simple Callback Function

var request = require('request');
request({
 'url': 'http://mysite.com',
 'method': 'GET'
}, function(err, response) {
 if (err) throw new Error(err);
 console.log(response);
});

Callback functions allow us to defer the execution of a particular sequence of code until the appropriate
time. Such functions are easy to understand and implement. Unfortunately, they are also very difficult
to manage as applications grow in complexity. Imagine a scenario in which additional asynchronous
processes must run after the initial response is received in Listing 12-6. To do so would require the use of
additional, nested callback functions. As additional asynchronous steps are added to this code, we begin to
experience what many developers refer to as “callback hell” or the “pyramid of doom,” terms that describe
the unmaintainable mass of spaghetti code that frequently results from such an approach.

Fortunately, JavaScript promises provide developers with a convenient solution to this problem—a
solution that Knex makes extensive use of through its promise-based interface for submitting and processing
queries. Listing 12-7 shows this API in action.

http://mysite.com/

ChAPter 12 ■ Knex AnD BooKsheLf

349

Listing 12-7. Demonstration of the Promise-Based API Provided by Knex

// example-sqlite-starter/example2.js

knex.pluck('id').from('cities').where('state_id', '=', 1)
 .then(function(cityIds) {
 return knex.select('id', 'first_name', 'last_name').from('users')
 .whereIn('city_id', cityIds);
 })
 .then(function(users) {
 return [
 users,
 knex.select('*').from('bookmarks').whereIn('user_id', _.pluck(users, 'id'))
];
 })
 .spread(function(users, bookmarks) {
 _.each(users, function(user) {
 user.bookmarks = _.filter(bookmarks, function(bookmark) {
 return bookmark.user_id = user.id;
 });
 });
 console.log(JSON.stringify(users, null, 4));
 })
 .catch(function(err) {
 console.log(err);
 });

In this example, three queries are submitted in succession:

 1. Cities within a particular state are selected.

 2. Users who live within the returned cities are selected.

 3. Bookmarks for each of the returned users are selected.

After our final query has returned, we then attach each bookmark to the appropriate user and display
the result, which you can see in Listing 12-8.

Listing 12-8. Data Logged to the Console As a Result of the Code in Listing 12-7

[
 {
 "id": 1,
 "first_name": "Steve",
 "last_name": "Taylor",
 "bookmarks": [
 {
 "id": 1,
 "url": "http://reddit.com",
 "label": "Reddit",
 "user_id": 1,
 "created_at": "2015-03-12 12:09:35"
 },

http://reddit.com/

ChAPter 12 ■ Knex AnD BooKsheLf

350

 {
 "id": 2,
 "url": "http://www.theverge.com",
 "label": "The Verge",
 "user_id": 1,
 "created_at": "2015-03-12 12:09:35"
 }
]
 }
]

Thanks to the promise-based interface provided by Knex, at no point does our code ever reach beyond
one level of indentation, thereby ensuring that our application remains easy to follow. More importantly,
should an error occur at any point during this process, it would be conveniently caught and handled by our
final catch statement.

 ■ Note Javascript promises are a powerful tool for writing complex, asynchronous code in a manner that is
easy to follow and maintain. If you are unfamiliar with this concept, you are encouraged to skip to Chapter 17
and read about the Q promise library for more in-depth information on this subject.

Streams

One of the biggest benefits to writing applications with Node.js is the platform’s ability to execute I/O-
intensive procedures in a very efficient manner. Unlike synchronous languages such as PHP, Python,
or Ruby, Node.js is capable of handling thousands of simultaneous connections within a single thread,
allowing developers to write applications capable of meeting enormous demands, while using minimal
resources. Node.js provides several important tools for accomplishing this feat, one of the most important of
which is streams.

Before we take a look at streams, let’s examine another example of a traditional JavaScript callback
function, as shown in Listing 12-9.

Listing 12-9. JavaScript Callback Function That Accepts the Contents of a Loaded File

var fs = require('fs');
fs.readFile('data.txt', 'utf8', function(err, data) {
 if (err) throw new Error(err);
 console.log(data);
});

In this example, we use the readFile() method of the native fs library available within Node.js to read
the contents of a file. Once that data is loaded into memory (in its entirety), it is then passed to our callback
function for further processing. This approach is simple and easily understood. However, it’s not very
efficient, as our application must first load the entire contents of the file into memory before passing it back
to us. This isn’t a terrible problem for smaller files, but larger files may begin to cause issues, depending on
the resources available to the server that happens to be running this application.

Node.js streams resolve this issue by piping data through one or more functions in multiple, smaller
chunks. By doing so, streams allow developers to avoid dedicating large portions of a server’s available
resources for any single request. The example shown in Listing 12-10 accomplishes the same goal of our
previous example, without loading the contents of the entire file into memory all at once.

http://www.theverge.com/
http://dx.doi.org/10.1007/978-1-4842-0662-1_17

ChAPter 12 ■ Knex AnD BooKsheLf

351

Listing 12-10. Pair of Node.js Streams Working Together to Efficiently Load and Display
the Contents of a File

// example-read-file-stream/index.js

var fs = require('fs');
var Writable = require('stream').Writable;
var stream = fs.createReadStream('data.txt');
var out = Writable();
out._write = function(chunk, enc, next) {
 console.log(chunk.toString());
 next();
};
stream.pipe(out);

Streams are a relatively underutilized feature of Node.js, which is unfortunate, as they happen to be
one of the more powerful aspects of the platform. Fortunately, Knex provides a streaming interface for
consuming query results that allows us to take advantage of these benefits, as shown in Listing 12-11.

Listing 12-11. Processing the Results of a Query via the Streaming Interface Provided by Knex

var Writable = require('stream').Writable;
var ws = Writable();
ws._write = function(chunk, enc, next) {
 console.dir(chunk);
 next();
};
var stream = knex.select('*').from('users').stream();
stream.pipe(ws);

In this example, the results of our query on the users table (which could be quite large for some
applications) are streamed in smaller chunks to our writable stream, instead of being passed along in their
entirety. This approach can also be paired with the library’s promise interface to create a more robust
implementation, as shown in Listing 12-12.

Listing 12-12. Combining the Streaming and Promise-Based Interfaces Provided by Knex for Better
Error Handling

var Writable = require('stream').Writable;
var ws = Writable();
ws._write = function(chunk, enc, next) {
 console.dir(chunk);
 next();
};
knex.select('*').from('users').stream(function(stream) {
 stream.pipe(ws);
}).then(function() {
 console.log('Done.');
}).catch(function(err) {
 console.log(err);
});

ChAPter 12 ■ Knex AnD BooKsheLf

352

In this example, we combine the power of the streaming and promise-based interfaces provided by
Knex. When a callback function is passed to the library’s stream() method, that callback function receives
the generated promise as opposed to being returned directly. Instead, a promise is returned, which is
resolved once the stream is complete.

 ■ Note the streaming interface provided by Knex is compatible with MysQL, PostgresQL, and MariaDB
databases. sQLite3 is not currently supported.

Transactions

One of the biggest benefits to using ACID-compliant, relational databases lies in their ability to group
multiple queries into a single unit of work (i.e., a “transaction”) that will either succeed or fail as a whole. In
other words, should a single query within the transaction fail, any changes that may have occurred as a result
of previously run queries within the transaction would be reverted.

By way of an example, consider a financial transaction that occurs at your bank. Suppose you wanted to
send $25 to your cousin on her birthday. Those funds would first have to be withdrawn from your account
and then inserted into your cousin’s account. Imagine a scenario in which the application enabling that
exchange of funds were to crash for any number of reasons (e.g., a faulty line of code or a larger system
failure) after those funds were removed from your account, but before they were inserted into your cousin’s
account. Without the safety net provided by transactions, those funds would have essentially vanished into
thin air. Transactions allow developers to ensure that such processes only ever happen in full—never leaving
data in an inconsistent state.

 ■ Note the acronym ACID (Atomicity, Consistency, Isolation, Durability) refers to a set of properties that
describe database transactions. Atomicity refers to the fact that such transactions can either succeed in their
entirety or fail as a whole. such transactions are said to be “atomic.”

Previous examples within this chapter have demonstrated the process of creating and submitting
database queries with Knex. Before we continue, let’s review another example that does not take advantage
of transactions. Afterward, we’ll update this example to take advantage of the peace of mind that
transactions provide.

In the example shown in Listing 12-13, a moveFunds() function is declared that, when called, uses the
knex object to move the specified amount of funds from one account to another. This function returns a
promise that is either resolved or rejected once this process completes, depending on the success or failure
of the call. A glaring error exists here—can you spot it?

Listing 12-13. moveFunds() Function Demonstrating the Process of Moving Funds from One Account to
Another Without the Security of Transactions

// example-financial/bad.js

/**
 * Moves the specified amount of funds from sourceAccountID to destAccountID
 */
var moveFunds = function(sourceAccountID, destAccountID, amount) {

ChAPter 12 ■ Knex AnD BooKsheLf

353

 return knex.select('funds').from('accounts')
 .where('id', sourceAccountID)
 .first(function(result) {
 if (!result) {
 throw new Error('Unable to locate funds for source account');
 }
 if (result.funds < amount) {
 throw new Error('Not enough funds are available in account');
 }
 return knex('accounts').where('id', sourceAccountID).update({
 'funds': result.funds - amount
 });
 }).then(function() {
 return knex.select('funds').from('accounts')
 .where('id', destAccountID);
 }).first(function(result) {
 if (!result) {
 throw new Error('Unable to locate funds for destination account');
 }
 return knex('accounts').where('id', destAccountID).update({
 'funds': result.funds + amount
 });
 });

};

/* Move $25 from account 1 to account 2. */
moveFunds(1, 2, 25).then(function(result) {
 console.log('Transaction succeeded.', result);
}).catch(function(err) {
 console.log('Transaction failed!', err);
});

In this example, the following steps are required to accomplish the goal of moving funds from a source
account to a destination account:

 1. The total funds currently available within the source account are determined.

 2. If insufficient funds are available to complete the process, an error is thrown.

 3. The funds to be transferred are deducted from the source account.

 4. The total funds currently available within the destination account are
determined.

 5. If the destination account cannot be found, an error is thrown.

 6. The funds to be transferred are added to the destination account.

If you haven’t spotted the mistake already, a glaring problem presents itself at step 5. In the event that
the destination account cannot be found, an error is thrown, but at this point the funds to be moved have
already been deducted from the source account! We could attempt to solve this problem in a number of
ways. We could catch the error within our code and then credit the funds back to the source account, but this
would still not account for unforeseen errors that could arise due to network problems or in the event that
our application server were to lose power and completely crash in the middle of this process.

ChAPter 12 ■ Knex AnD BooKsheLf

354

It is at this point that the power of database transactions starts to become evident. In Listing 12-14, our
moveFunds() function is refactored to wrap this entire procedure into a single, “atomic” transaction that
will either succeed or fail as a whole. Note the creation of the trx object, from which our transaction-aware
queries are built.

Listing 12-14. Transaction-Aware Implementation of Listing 12-13

// example-financial/index.js

/**
 * Moves the specified amount of funds from sourceAccountID to destAccountID
 */
var moveFunds = function(sourceAccountID, destAccountID, amount) {

 return knex.transaction(function(trx) {

 return trx.first('funds')
 .from('accounts')
 .where('id', sourceAccountID)
 .then(function(result) {
 if (!result) {
 throw new Error('Unable to locate funds for source account');
 }
 if (result.funds < amount) {
 throw new Error('Not enough funds are available in account');
 }
 return trx('accounts').where('id', sourceAccountID)
 .update({
 'funds': result.funds - amount
 });
 })
 .then(function() {
 return trx.first('funds')
 .from('accounts')
 .where('id', destAccountID);
 })
 .then(function(result) {
 if (!result) {
 throw new Error('Unable to locate funds for destination account');
 }
 return trx('accounts').where('id', destAccountID)
 .update({
 'funds': result.funds + amount
 });
 });

 });

};

ChAPter 12 ■ Knex AnD BooKsheLf

355

/* Move $25 from account 1 to account 2. */
displayAccounts()
 .then(function() {
 return moveFunds(1, 2, 25);
 }).then(function() {
 console.log('Transaction succeeded.');
 }).catch(function(err) {
 console.log('Transaction failed!', err);
 });

As you can see, the transaction-aware example shown in Listing 12-14 largely resembles that shown
in Listing 12-13, but it does differ in one important way. Instead of creating our query by calling builder
methods directly on the knex object, we first initiate a transaction by calling knex.transaction(). The callback
function that we provide is then passed a “transaction-aware” stand-in (trx) from which we then begin to
create our series of queries. From this point forward, any queries that we create from the trx object will either
succeed or fail as a whole. The knex.transaction() method returns a promise that will be resolved or rejected
once the transaction as a whole is complete, allowing us to easily integrate this transaction into an even
larger series of promise-based actions.

Migration Scripts
Just as an application’s source code is destined to change over time, so too is the structure of the information
that it stores. As such changes are made, it is important that they be implemented in a way that can be
repeated, shared, rolled back when necessary, and tracked over time. Database migration scripts provide
developers with a convenient pattern for accomplishing this goal.

A Knex migration script is composed of two functions, up and down, as shown in Listing 12-15. The
script’s up function is responsible for modifying a database’s structure in some desired way (e.g., creating
a table, adding a column), while its down function is responsible for restoring the database’s structure to its
previous state.

Listing 12-15. Knex Migration Script with up Function Creating a New Table and down Function
Dropping the Table

// example-sqlite-starter/migrations/20150311082640_states.js

exports.up = function(knex, Promise) {
 return knex.schema.createTable('states', function(table) {
 table.increments().unsigned().primary().notNullable();
 table.string('name').notNullable();
 table.timestamp('created_at').defaultTo(knex.fn.now()).notNullable();
 });
};

exports.down = function(knex, Promise) {
 return knex.schema.dropTable('states');
};

ChAPter 12 ■ Knex AnD BooKsheLf

356

Configuring Your Project for Migrations
The Knex command-line utility provides developers with simple tools for creating and managing migration
scripts. To get started, you’ll first need to create a special configuration file by running the following
command within the root folder of your project:

$ knex init

After running this command, a file (knexfile.js) will be created with contents similar to those shown
in Listing 12-16. You should alter the contents of this file as needed. Whenever a Knex migration script is
run, Knex will determine its connection settings based on the contents of this file and the value of the
NODE_ENVIRONMENT environment variable.

 ■ Note on os x and Linux, environment variables are set from the terminal by running export
ENVIRONMENT_VARIABLE=value. the command to be used within the Windows command line is set
ENVIRONMENT_VARIABLE=value.

Listing 12-16. knexfile.js

// example-sqlite-starter/knexfile.js

module.exports = {

 'development': {
 'client': 'sqlite3',
 'connection': {
 'filename': './db.sqlite'
 }
 },
 'seeds': {
 'directory': './seeds'
 }
 },
 'staging': {
 'client': 'postgresql',
 'connection': {
 'database': 'my_db',
 'user': 'username',
 'password': 'password'
 },
 'pool': {
 'min': 2,
 'max': 10
 }
 }
 }
};

ChAPter 12 ■ Knex AnD BooKsheLf

357

Creating Your First Migration
With our Knex configuration file now in place, we can move forward with the creation of our first migration
script. The command for doing so is shown here:

$ knex migrate:make users_table

When creating your own migrations, substitute the users_table portion of the command with a term
that describes the change your migration implements. After running this command, Knex will create a
migration script for you that resembles the one shown in Listing 12-17.

Listing 12-17. New Knex Migration Script

exports.up = function(knex, Promise) {
};

exports.down = function(knex, Promise) {
};

After creating your first migration script, your project’s file structure should resemble that shown in
Listing 12-18.

Listing 12-18. Excerpt of Project’s File Structure After Creating First Migration

.
├── knexfile.js
└── migrations
 └── 20141203074309_users_table.js

 ■ Note Knex migration scripts are stored in a migrations folder at the root level of a project. If this directory
does not exist, Knex will create it for you. Knex automatically prepends a timestamp to the file name of
migration scripts, as shown in Listing 12-18. this ensures that a project’s migrations are always sorted by the
order in which they were created.

It is now up to us to modify the up and down functions within our newly created migration script. Let’s
take a look at two alternative approaches.

Defining Schema Updates with Schema Builder Methods

In addition to providing methods for constructing queries, Knex also provides methods for defining a
database’s underlying structure (schema). With the help of these “schema builder” methods, developers can
create platform-agnostic blueprints that describe the various tables, columns, indexes, and relationships
that make up a database. These blueprints can then be applied to any supported platform to generate the
desired database. The migration script shown in Listing 12-15 shows the Knex schema builder in action,
while Listing 12-19 shows the query generated by the script’s up method.

ChAPter 12 ■ Knex AnD BooKsheLf

358

Listing 12-19. SQL Query Generated Through Use of Schema Builder Methods, As Shown in Listing 12-15

// example-raw-migration/migrations/20150312083058_states.js

CREATE TABLE states (
 id integer PRIMARY KEY AUTOINCREMENT NOT NULL,
 name varchar(255) NOT NULL,
 created_at datetime NOT NULL DEFAULT(CURRENT_TIMESTAMP)
);

Schema builder methods are useful, in that they allow developers to easily define schemas in a way
that can be applied to each of the platforms supported by Knex. They also require a minimal amount of
knowledge regarding raw SQL queries, making it possible for developers with little experience working
directly with SQL databases to get up and running quickly. That said, schema builder methods are also
limiting. To provide a generic interface for defining database schemas that work across multiple platforms,
Knex must make certain decisions for you—a fact that you may not be comfortable with. Developers with
more experience working directly with SQL databases may wish to bypass the schema builder methods
entirely, opting instead to craft their own SQL queries. This is easily accomplished, as we are about to see.

Defining Schema Updates with Raw SQL Queries

In Listing 12-20, we see a Knex migration script that creates a new users table through the use of raw SQL
queries. This is accomplished through the use of the knex.schema.raw() method. When called, this method
returns a promise that will be either resolved or rejected, depending on the success or failure of the query
that it receives.

Listing 12-20. Knex Migration Script Defined with Raw SQL Queries

// example-raw-migration/migrations/20150312083058_states.js

var multiline = require('multiline');

exports.up = function(knex, Promise) {

 var sql = multiline.stripIndent(function() {/*
 CREATE TABLE states (
 id integer PRIMARY KEY AUTOINCREMENT NOT NULL,
 name varchar(255) NOT NULL,
 created_at datetime NOT NULL DEFAULT(CURRENT_TIMESTAMP)
);
 */});
 return knex.schema.raw(sql);

};

exports.down = function(knex, Promise) {
 return knex.schema.raw('DROP TABLE states;');
};

ChAPter 12 ■ Knex AnD BooKsheLf

359

 ■ Note the example shown in Listing 12-20 makes use of an additional library that is unrelated to Knex:
multiline. the multiline library is quite useful because it allows us to define large chunks of text that span
multiple lines without requiring that each line end with a continuation character.

Running Knex Migrations
With our newly created migration script now defined and ready for use, our only remaining task is to run
the migration, bringing our database up to date with our desired changes. The command for doing so is
shown here:

$ knex migrate:latest

This command will instruct Knex to run all available migration scripts that have not yet been run, in the
order in which they were created. Once complete, our database will have been brought fully up to date with
our desired changes. If you’re curious as to how Knex keeps track of which migrations have and have not been
run, the answer lies in the knex_migrations table that Knex automatically creates for itself (see Figure 12-1).
Within this table, Knex maintains a running list of which migrations have been implemented. The name of
this table can be changed by modifying the configuration file we created via the knex init command.

Figure 12-1. The knex_migrations table used by Knex to track which migration scripts have already been
applied to your database

Reverting Knex Migrations
The act of running Knex migration scripts is not a one-way street. They can also be undone, which is
particularly important during development. The command for doing so is as follows:

$ knex migrate:rollback

ChAPter 12 ■ Knex AnD BooKsheLf

360

This command will instruct Knex to revert all migration scripts that were run as a result of the most
recent execution of knex migrate:latest. To verify the status of your database in regard to your migration
scripts, you can run the following command to determine your database’s current migration version:

$ knex migrate:currentVersion

Seed Scripts
In the previous section, you learned how Knex migration scripts can empower you to script changes to a
database’s structure—scripts that can be shared with others, reverted when necessary, and tracked within
version control. Knex seed scripts serve a similar purpose, but with a focus on data rather than structure.
Seed scripts provide a consistent way in which to specify how a newly created database can be filled with
sample data, to get a new development environment up and running. Listing 12-21 shows the contents of a
seed script included with one of this chapter’s example projects.

Listing 12-21. Simple Knex Seed Script That Removes All Existing Records from the states Table and
Inserts Two New Ones

// example-sqlite-starter/seeds/01-states.js

exports.seed = function(knex, Promise) {

 return Promise.join(
 knex('states').del(),
 knex('states').insert([
 {
 'id': 1,
 'name': 'Georgia'
 },
 {
 'id': 2,
 'name': 'Tennessee'
 }
]);
);
};

Creating Seed Scripts
You can instruct Knex to create a new seed script using the following command:

$ knex seed:make users

By default, Knex saves newly created seed scripts to the seeds folder at the root path of your project.
You can customize this folder by modifying the contents of the your project’s knexfile.js configuration file
(see Listing 12-16).

Running Seed Scripts
After creating seed scripts for your application, you can populate your database with them by running this
command:

$ knex seed:run

ChAPter 12 ■ Knex AnD BooKsheLf

361

 ■ Note seed scripts are always run in alphabetical order. If the order in which your seeds are run is
important, take care to name them appropriately to ensure they run in the desired order.

Bookshelf
Bookshelf builds on the foundation laid by Knex to provide a flexible ORM library that simplifies the process
of creating classes (“models”) to represent the various objects that make up an application. This section
explores the various ways in which developers can use Bookshelf to accomplish the following:

•	 Create classes (“models”) to represent the various tables used within an
application’s database

•	 Extend models with custom behavior unique to the needs of their application

•	 Define complex relationships between models (one-to-one, one-to-many,
many-to-many)

•	 Easily navigate through the various relationships that exist between models without
resorting to complex SQL queries, with the help of “eager loading”

Developers who are familiar with Backbone will quickly find themselves at home with Bookshelf, as
it follows many of the same patterns and implements many of the same APIs. You could easily describe
Bookshelf as “Backbone for the server,” and you wouldn’t be far off base.

What Is an Object-Relational Mapper?
Relational databases store information as a series of rows within one or more tables, each table having one
or more columns that describe the various attributes of the records they contain—just as you might go
about structuring information within a spreadsheet. In most applications, separate tables are created to
represent each type of available entity (e.g., “Account”, “User”, “Comment”). The various relationships that
exist between each of these entities are then defined through the use of “foreign key” columns, as shown in
Figure 12-2.

Figure 12-2. Here, the relationship between users and accounts (an account has one or more users, users
belong to accounts) is described via the account_id foreign key column within the users table.

ChAPter 12 ■ Knex AnD BooKsheLf

362

This approach to storing information is powerful and serves as the predominant method by which
applications store data, for many good reasons (all of which extend well beyond the scope of this book).
Unfortunately, this approach is also at odds with the object-oriented approach with which most applications
tend to view data.

Object-relational mapping (ORM) tools such as Bookshelf allow developers to interact with the flat
tables of information stored within relational databases as a series of interconnected objects, with which
they can interact and navigate through to achieve some desired goal. In effect, ORM libraries provide
developers with a “virtual object database” that allows them to more easily interact with the flat records
contained within relational database tables.

Creating Your First Bookshelf Model
A Bookshelf model can be thought of as a class that, when instantiated, represents a record within a
database. In their simplest form, Bookshelf models serve as data containers, providing built-in functionality
for getting and setting attribute (i.e., column) values and for creating, updating, and destroying records. As
we’ll soon see, however, Bookshelf models become much more useful when we extend them with our own
custom methods and define the relationships that exist between them.

Bookshelf models are defined via the bookshelf.Model.extend() method, as shown in Listing 12-22. In
this simple example, a User model is defined whose records will be persisted to our database’s users table.

Listing 12-22. Simple Bookshelf Model That Represents an Application’s Users

// example-bookshelf1/lib/user.js

var knex = require('./db');
var bookshelf = require('bookshelf')(knex);

var User = bookshelf.Model.extend({
 'tableName': 'users',
 'idAttribute': 'id' // The primary key for our table. Defaults to: 'id'
});

module.exports = User;

Creating New Instances
In Listing 12-23, a new instance of the User model is created, modified, and then saved to the database.

Listing 12-23. Saving a New Instance of User to the Database

// example-bookshelf1/create.js

var User = require('./lib/user');
var user = new User();

user.set({
 'first_name': 'Steve',
 'last_name': 'Taylor',
 'email': 'steve.taylor@mydomain.com'
});

ChAPter 12 ■ Knex AnD BooKsheLf

363

// Individual attributes can also be set as shown below
// user.set('first_name', 'Steve');

user.save().then(function(user) {
 // user has been saved
 console.log('User saved', user.toJSON());
 /*
 {
 first_name: 'Steve',
 last_name: 'Taylor',
 email: 'steve.taylor@mydomain.com',
 id: 1
 }
 */
});

Bookshelf provides a convenient forge() method that allows us to simplify this example just a bit,
as shown in Listing 12-24. This method does nothing more than create and return a new instance of User
behind the scenes for us, allowing us to forego the use of the new keyword.

Listing 12-24. Creating a New Instance of the User Model via the forge() Method

// example-bookshelf1/forge.js

User.forge({
 'id': 1,
 'first_name': 'John'
}).fetch().then(function(user) {

 /* An object containing every attribute / value for
 this model can be retrieved via the 'toJSON' method. */
 console.log(user.toJSON());
});

Fetching Instances
Instances of the User model can be retrieved in a similar manner. In Listing 12-25, a new instance of User is
created with a value of 1 for its id attribute. When fetch() is called, Bookshelf will use any attributes set on
the model to build the query used to fetch the desired record. In this example, the query used will be

SELECT * FROM users WHERE 'id' = 1;

Listing 12-25. Retrieving an Instance of the User Model from the Database

// example-bookshelf1/fetch.js

User.where({
 'id': 1
}).fetch().then(function(user) {
 // Individual attributes get be retrieved with the get method
 // console.log('first_name', user.get('first_name'));
 console.log(user.toJSON());
});

ChAPter 12 ■ Knex AnD BooKsheLf

364

Destroying Instances
Just as model instances can be saved, they can also be deleted via the destroy() method, as shown in
Listing 12-26.

Listing 12-26. Deleting an Instance of the User Model

// example-bookshelf1/destroy.js

User.where({
 'id': 1
}).fetch().then(function(user) {
 return user.destroy();
}).then(function() {
 console.log('User destroyed.');
});

In this example, destroy is called as an instance method on user. We could, however, instruct
Bookshelf to simply seek out and destroy the record without first fetching the instance ourselves, as shown in
Listing 12-27.

Listing 12-27. Instructing Bookshelf to Destroy the Specified Record

User.where({
 'id': 1
}).destroy().then(function() {
 console.log('User destroyed.');
});

Fetching Multiple Models (Collections)
In addition to retrieving a single instance of our model via the fetch() method, we can also retrieve multiple
instances via the fetchAll() method, as shown in Listing 12-28.

Listing 12-28. Fetching All Instances of User with a Value of John for first_name

// example-bookshelf1/fetch-collection.js

User.where({
 'last_name': 'Doe'
}).fetchAll().then(function(users) {
 console.log(JSON.stringify(users.toJSON(), null, 4));
 /*
 [{
 "id": 3,
 "first_name": "John",
 "last_name": "Doe",
 "email": "john.doe@mydomain.com"
 },

ChAPter 12 ■ Knex AnD BooKsheLf

365

 {
 "id": 4,
 "first_name": "Jane",
 "last_name": "Doe",
 "email": "jane.doe@mydomain.com"
 }]
 */
});

In this example, our call to fetchAll() returns a promise that resolves to a collection of multiple users.
This collection provides a number of built-in methods specifically designed for interacting with multiple
models. Given Bookshelf’s strong focus on following Backbone patterns, most of the same methods available
within Backbone collections are also available here. Listing 12-29 demonstrates a few common use cases.

Listing 12-29. Commonly Used Bookshelf Collection Methods

/* Iterate through a collection */
users.each(function(user, index) {
 console.log(user, index);
});

/* Create an array composed of models matching more specific criteria */
users = users.filter(function(user, index) {
 if (user.get('last_name') === 'Smith') return true;
});

/* A simpler method for filtering models, when a function call is not needed */
users = users.where({
 'last_name': 'Smith'
});

/* Return the first entry matching the specified criteria */
var johnSmith = users.find(function(user) {
 if (user.get('last_name') === 'Smith') return true;
});

/* Returns an array containing the first name of every user */
var firstNames = users.pluck('first_name');

Extending with Custom Behavior
In their simplest state, Bookshelf models do little more than serve as containers for records within a
database, providing built-in methods for reading and writing attribute values and performing save or destroy
operations. While this is useful, Bookshelf models begin to reach their full potential only when we begin to
extend them with their own unique behavior as befitting the needs of our application.

An example of such behavior is demonstrated in Listing 12-30. Here, we update the User model seen
in previous examples to include a sendEmail() method. Doing so allows us to abstract away the complexity
involved with sending e-mail to registered users of our application.

ChAPter 12 ■ Knex AnD BooKsheLf

366

Listing 12-30. Extending the User Model with a Method for Sending Outbound E-mails from Our
Application

var Promise = require('bluebird');
var Handlebars = require('handlebars');

var User = bookshelf.Model.extend({
 'tableName': 'users',
 /**
 * Sends an e-mail to the user. Requires an `options` object
 * with values for `subject` and `message`. These values will be
 * compiled as Handlebars templates, passed this user's attributes,
 * and the result(s) will be used to generate the outgoing message.
 */
 'sendEmail': function(options) {
 var self = this;
 return Promise.resolve().then(function() {
 var subject = Handlebars.compile(options.subject)(self.toJSON());
 var message = Handlebars.compile(options.message)(self.toJSON());
 // Use your e-mail library of choice here, along with the
 // appropriate connection settings. });
 }
});

User.where({
 'id': 1
}).fetch().then(function(user) {
 return user.sendEmail({
 'subject': 'Welcome, {{first_name}}',
 'message': 'We are happy to have you on board, {{first_name}} {{last_name}}.'
 });
});

In addition to those methods inherited from Backbone, Bookshelf collections also provide several
methods of their own. Listing 12-31 demonstrates the use of the invokeThen() method, allowing us to easily
invoke methods on each of the models contained within the collection.

Listing 12-31. Invoking an Imagined sendEmail() Method on Each Model Contained Within a Collection

// example-bookshelf1/invoke-then.js

User.where({
 'last_name': 'Doe'
}).fetchAll().then(function(users) {
 return users.invokeThen('sendEmail', {
 'subject': 'Congratulations on having such a great name, {{first_name}}.',
 'message': '{{first_name}} really is a great name. Seriously - way to go.'
 });
}).then(function(users) {
 console.log('%s users were complimented on their name.', users.length);
});

ChAPter 12 ■ Knex AnD BooKsheLf

367

The invokeThen() method demonstrated in this example returns a promise of its own, which will be
resolved only after all the calls to sendEmail() on our collection’s models have themselves been resolved.
This pattern also provides us with a convenient method for interacting with multiple models simultaneously.

Performing Validation
Those familiar with Backbone will find Bookshelf’s event system quite familiar. In regard to validation, of
particular interest are the saving and destroying events emitted by Bookshelf. By tapping into these events,
Bookshelf models can be customized with unique behavior to either allow or deny these actions, based on
some desired criteria. Listing 12-32 shows an example in which users with an e-mail address containing the
string “hotmail.com” are prevented from being saved to the database.

Listing 12-32. Demonstration of Bookshelf’s Event System, Which Allows for Implementation of Custom
Validation Rules

// example-bookshelf1/lib/user.js

var User = bookshelf.Model.extend({
 'tableName': 'users',
 'initialize': function() {
 this.on('saving', this._validateSave);
 },
 '_validateSave': function() {
 var self = this;
 return Promise.resolve().then(function() {
 if (self.get('email').indexOf('hotmail.com') >= 0) {
 throw new Error('Hotmail email addresses are not allowed.');
 }
 });
 }
});

To prevent calls to save or destroy from succeeding, simply tap into the model’s saving or destroying
events, passing a reference to your own custom validation functions. If an error is thrown, the call will be
prevented. Asynchronous validation is also possible through the use of promises. In Listing 12-33, a custom
validation function returns a promise that is ultimately rejected.

Listing 12-33. Custom Validation Function That Returns a Promise

// example-bookshelf1/validation.js

User.forge({
 'first_name': 'Jane',
 'last_name': 'Doe',
 'email': 'jane.doe@hotmail.com'
}).save().then(function() {
 console.log('Saved.');
}).catch(function(err) {
 /* Our call to `save` will result in an error, due to this user's
 hotmail.com e-mail address. */
 console.log(err);
});

ChAPter 12 ■ Knex AnD BooKsheLf

368

Customizing the Export Process
Previous examples have shown the use of the toJSON() method, which (by default) returns an object
containing every available attribute/value for the model on which it is called (or for every available model,
if called on a collection). Should you wish to customize the data returned by this method, you can do so by
overriding the toJSON() method, as shown in Listing 12-34.

Listing 12-34. Customizing the Data Returned by Our Model’s toJSON() Method

var User = bookshelf.Model.extend({
 'tableName': 'users',
 'toJSON': function() {
 var data = bookshelf.Model.prototype.toJSON.call(this);
 data.middle_name = 'Danger';
 return data;
 }
});

Within this example’s overridden toJSON() method, we first call the prototype’s toJSON() method,
giving us the data that this method would have originally returned, had it not been overwritten. We then
strip out the data we wish to hide, add some additional information of our own, and return it.

A common scenario in which this pattern is often seen involves the use of a User model, within which
sensitive password information is held. Modifying the model’s toJSON() method to automatically strip out
such information, as shown in Listing 12-34, helps to prevent this information from unintentionally leaking
out over an API request.

Defining Class Properties
Bookshelf’s extend() method, which we’ve seen in previous examples, accepts two parameters:

•	 An object of instance properties to be inherited by created instances of the model

•	 An object of class properties to be assigned directly to the model

Previous examples within this chapter have demonstrated the process of assigning instance properties
via extend(), but we have yet to look at an example demonstrating the use of class properties. Listing 12-35
shows class properties in action.

Listing 12-35. Defining the getRecent() Class Method on the User Model

// example-bookshelf1/lib/user.js

var User = bookshelf.Model.extend({
 'tableName': 'users'
}, {

 /**
 * Returns a collection containing users who have signed in
 * within the last 24 hours.
 */
 'getRecent': function() {
 return User.where('last_signin', '>=', knex.raw("date('now', '-1 day')")).fetch();
 }

});

ChAPter 12 ■ Knex AnD BooKsheLf

369

// example-bookshelf1/static.js

User.getRecent().then(function(users) {
 console.log('%s users have signed in within the past 24 hours.', users.length);
 console.log(JSON.stringify(users.toJSON(), null, 4));
});

Class-level properties provide a convenient location in which we can define various helper methods
related to the model in question. In this contrived example, the getRecent() method returns a promise that
resolves to a collection containing every user who has signed in within the last 24 hours.

Extending with Subclasses
Bookshelf’s extend() method correctly sets up the prototype chain. As a result, in addition to creating
models that inherit directly from Bookshelf’s Model class, developers can also create models that inherit
from each other, as shown in Listing 12-36.

Listing 12-36. Creating a Base Model That Extends Directly from Bookshelf’s Model Class, from Which
Other Models Can Also Extend

// example-bookshelf-extend/lib/base.js

/**
 * This model serves as a base from which all other models
 * within our application extend.
 *
 * @class Base
 */
var Base = bookshelf.Model.extend({
 'initialize': function() {
 this._initEventBroadcasts();
 },
 'foo': function() {
 console.log('bar', this.toJSON());
 }
});

// example-bookshelf-extend/lib/user.js

/**
 * @class User
 */
var User = Base.extend({
 'tableName': 'users'
});

ChAPter 12 ■ Knex AnD BooKsheLf

370

// example-bookshelf-extend/index.js

var User = require('./lib/user');
User.where({
 'id': 1
}).fetch().then(function(user) {
 user.foo();
});

Having the ability to create models that extend across multiple levels of inheritance provides some
useful opportunities. Most of the applications in which we use Bookshelf follow the lead shown in
Listing 12-36, in which a Base model is created from which all other models within the application extend.
By following this pattern, we can easily add core functionality to all models within our application simply
by modifying our Base class. In Listing 12-36, the User model (along with every other model that extends
from Base) will inherit the Base model’s foo() method.

Relationships
ORM libraries such as Bookshelf provide convenient, object-oriented patterns for interacting with data
stored in flat, relational database tables. With Bookshelf’s help, we can specify the relationships that exist
between our application’s models. For example, an account may have many users, or a user may have many
bookmarks. Once these relationships have been defined, Bookshelf models open up new methods that allow
us to more easily navigate through these relationships.

The table shown in Table 12-1 list some of the more commonly used relationships.

Table 12-1. Commonly Used Bookshelf Relationships

Association Relationship Type Example

One-to-one hasOne A User has a Profile

One-to-one belongsTo A Profile has a User

One-to-many hasMany An Account has many Users

One-to-many belongsTo A User belongs to an Account

Many-to-many belongsToMany A Book has one or more Authors

In the following sections, you will discover the differences between these relationships, how they are
defined, and how they can best be put to use within an application.

One-to-One
A one-to-one association is the simplest form available. As its name suggests, a one-to-one association
specifies that a given model is associated with exactly one other model. That association can take
the form of a hasOne relationship or a belongsTo relationship, based on the direction in which the
association is traversed.

The database schema behind the example that we will soon see is shown in Figure 12-3. In this example,
the profiles table has a user_id foreign key column with which it is related to the users table.

ChAPter 12 ■ Knex AnD BooKsheLf

371

hasOne and belongsTo

A hasOne relationship specifies that a model “has one” of another model, while the belongsTo relationship
specifies just the opposite, that it is owned by or “belongs to” another model. In other words, a belongsTo
relationship serves as the inverse of the hasOne relationship. The process by which these relationships are
defined with Bookshelf is shown in Listing 12-37.

Listing 12-37. Defining the hasOne and belongsTo Bookshelf Relationships

// example-bookshelf-relationships1/lib/user.js

/**
 * @class User
 *
 * A User has one Profile
 */
var User = bookshelf.Model.extend({
 'tableName': 'users',
 /**
 * Bookshelf relationships are defined as model instance
 * methods. Here, we create a 'profile' method that will
 * allow us to access this user's profile. This method
 * could have been named anything, but in this case -
 * 'profile' makes the most sense.
 */
 'profile': function() {
 return this.hasOne(Profile);
 }
});

// example-bookshelf-relationships1/lib/profile.js

/**
 * @class Profile
 *
 * A Profile belongs to one User
 */

Figure 12-3. The database schema behind our one-to-one relationships

ChAPter 12 ■ Knex AnD BooKsheLf

372

var Profile = bookshelf.Model.extend({
 'tableName': 'profiles',
 'user': function() {
 return this.belongsTo(User);
 }
});

Bookshelf relationships are defined through the use of special instance methods, as shown in Listing 12-37.
With these relationships defined, we can now begin to use them in several convenient ways. For starters, see
Listing 12-38, which demonstrates the process of loading a relationship within a model that has already been
instantiated. The output from running this example is shown in Listing 12-39.

Listing 12-38. Loading a Relationship on a Model That Has Already Been Instantiated

// example-bookshelf-relationships1/index.js

User.where({
 'id': 1
}).fetch().then(function(user) {
 return user.load('profile');
}).then(function(user) {
 console.log(JSON.stringify(user.toJSON(), null, 4));
});

Listing 12-39. The Resulting Output from Listing 12-38

{
 "id": 1,
 "first_name": "Steve",
 "last_name": "Taylor",
 "created_at": "2014-10-02"
 "profile": {
 "id": 1,
 "user_id": 1,
 "twitter_handle": "staylor",
 "city": "Portland",
 "state": "OR",
 "created_at": "2014-10-02"
 }
}

In Listing 12-38, an instance of the User model is retrieved. When fetched, the default behavior of a
Bookshelf model is to retrieve only information about itself, not about its related models. As a result, in this
example we must first load the model’s related Profile via the load() method, which returns a promise that
is resolved once the related model has been fetched. Afterward, we can reference this user’s profile via the
user’s related instance method.

Bookshelf relationships become even more useful when we begin to look at the manner in which they
can be “eagerly loaded,” as shown in Listing 12-40. In this example, we fetch an instance of the User model
as well as its related Profile. We can do so by passing the fetch() method an object of options in which
we specify one or more relationships that we are also interested in. The returned promise resolves to an
instance of User that already has its profile relationship populated.

ChAPter 12 ■ Knex AnD BooKsheLf

373

Listing 12-40. Using “Eager Loading” to Fetch Our User, and Its Related Profile, with a Single Call

// example-bookshelf-relationships1/eager.js

User.where({
 'id': 1
}).fetch({
 'withRelated': ['profile']
}).then(function(user) {
 console.log(JSON.stringify(user.toJSON(), null, 4));
});

One-to-Many
The one-to-many association forms the basis for the most commonly encountered relationships. This
association builds on the simple one-to-one association we just saw, allowing us to instead associate
one model with many other models. These relationships can take the form of a hasMany or a belongsTo
relationship, as we will soon see.

The database schema behind the examples we are about to review is shown in Figure 12-4. In this
example, the users table has an account_id foreign key column with which it is related to the accounts table.

Figure 12-4. The database schema behind our one-to-many relationships

hasMany and belongsTo

A hasMany relationship specifies that a model may have multiple (or none at all) of a particular model. The
belongsTo relationship, which we have already seen in previous examples, is also applicable in one-to-many
associations. The process by which these relationships are defined with Bookshelf is shown in Listing 12-41.
Listing 12-42 demonstrates their usage.

Listing 12-41. Defining the hasMany and belongsTo Bookshelf Relationships

// example-bookshelf-relationships2/lib/account.js

/**
 * @class Account
 *
 * An Account has one or more instances of User
 */

ChAPter 12 ■ Knex AnD BooKsheLf

374

var Account = bookshelf.Model.extend({
 'tableName': 'accounts',
 'users': function() {
 return this.hasMany(User);
 }
});

// example-bookshelf-relationships2/lib/user.js

/**
 * @class User
 *
 * A User belongs to an Account
 * A User has one Profile
 */
User = bookshelf.Model.extend({
 'tableName': 'users',
 'account': function() {
 return this.belongsTo(Account);
 },
 'profile': function() {
 return this.hasOne(Profile);
 }
});

// example-bookshelf-relationships2/lib/profile.js

/**
 * @class Profile
 *
 * A Profile belongs to one User
 */
Profile = bookshelf.Model.extend({
 'tableName': 'profiles',
 'user': function() {
 return this.belongsTo(User);
 }
});

Listing 12-42. Loading an Instance of the Account Model, Along with All of Its Related Users

// example-bookshelf-relationships2/index.js

Account.where({
 'id': 1
}).fetch({
 'withRelated': ['users']
}).then(function(account) {
 console.log(JSON.stringify(account.toJSON(), null, 4));
});

ChAPter 12 ■ Knex AnD BooKsheLf

375

{
 "id": 1,
 "name": "Acme Company",
 "created_at": "2014-10-02",
 "users": [
 {
 "id": 1,
 "account_id": 1,
 "first_name": "Steve",
 "last_name": "Taylor",
 "email": "steve.taylor@mydomain.com",
 "created_at": "2014-10-02"
 },
 {
 "id": 2,
 "account_id": 1,
 "first_name": "Sally",
 "last_name": "Smith",
 "email": "sally.smith@mydomain.com",
 "created_at": "2014-10-02"
 }
]
}

In Listing 12-42, we see another example of Bookshelf’s “eager loading” functionality, with which
we can fetch a model as well as any of its related models that we also happen to be interested in. The
concept of “eager loading” becomes even more interesting when we discover that we can also load nested
relationships—those that exist deeper within the object(s) we wish to fetch. Only when we begin to utilize
Bookshelf’s eager loading functionality can we begin to appreciate the “virtual object database” that it and
similar ORM tools provide. The example shown in Listing 12-43 should help to clarify this concept.

Listing 12-43. Eagerly Loading an Account, All of Its Users, and the Profile for Each User

// example-bookshelf-relationships2/nested-eager.js

Account.where({
 'id': 1
}).fetch({
 'withRelated': ['users', 'users.profile']
}).then(function(account) {
 console.log(JSON.stringify(account.toJSON(), null, 4));
});

/*
{
 "id": 1,
 "name": "Acme Company",
 "created_at": "2014-10-02",
 "users": [

ChAPter 12 ■ Knex AnD BooKsheLf

376

 {
 "id": 1,
 "account_id": 1,
 "first_name": "John",
 "last_name": "Doe",
 "email": "john.doe@domain.site",
 "created_at": "2014-10-02",
 "profile": {
 "id": 1,
 "user_id": 1,
 "twitter_handle": "john.doe",
 "city": "Portland",
 "state": "OR",
 "created_at": "2014-10-02"
 }
 },
 {
 "id": 2,
 "account_id": 1,
 "first_name": "Sarah",
 "last_name": "Smith",
 "email": "sarah.smith@domain.site",
 "created_at": "2014-10-02",
 "profile": {
 "id": 2,
 "user_id": 2,
 "twitter_handle": "sarah.smith",
 "city": "Asheville",
 "state": "NC",
 "created_at": "2014-10-02"
 }
 }
]
}
*/

Many-to-Many
Many-to-many associations differ from the one-to-one and one-to-many associations this chapter has
already covered, in that they allow one record to be associated with one or more records of a different
type, and vice versa. To help clarify this point, see Figure 12-5, which illustrates a commonly cited example
involving authors and books.

ChAPter 12 ■ Knex AnD BooKsheLf

377

A single foreign key column, as seen in previous examples (see Figure 12-5), would not suffice here.
In order to model this relationship, a third join table (authors_books) is required, in which multiple
relationships for any given record can be stored.

belongsToMany

The database schema shown in Figure 12-5 can be modeled with Bookshelf via the belongsToMany
relationship, as shown in Listing 12-44.

Listing 12-44. Modeling a belongsToMany Relationship with Bookshelf

// example-bookshelf-relationships3/lib/author.js

var Author = bookshelf.Model.extend({
 'tableName': 'authors',
 'books': function() {
 return this.belongsToMany(require('./book'));
 }
});

// example-bookshelf-relationships3/lib/book.js

var Book = bookshelf.Model.extend({
 'tableName': 'books',
 'authors': function() {
 return this.belongsToMany(require('./author'));
 }
});

It is important to note that when using the belongsToMany relationship, Bookshelf will automatically
make a few assumptions regarding your database schema, unless specifically told otherwise. Bookshelf will
assume the following:

•	 That a third join table exists, which derives its name from that of the two related
tables, separated by an underscore, and ordered alphabetically. In this example:
authors_books.

•	 That the column names used within your join table are derived from the singular
versions of the two related tables, followed by _id. In this example: author_id
and book_id.

Figure 12-5. A many-to-many association made possible through the use of a third join table. In this example,
an author can write multiple books, and a book can have multiple authors

ChAPter 12 ■ Knex AnD BooKsheLf

378

If you prefer to follow a different naming convention, you can do so by modifying the call to this.
belongsToMany as shown in Listing 12-45.

Listing 12-45. Modeling a belongsToMany Relationship with Bookshelf, While Providing Specific Table and
Column Names

var Author = bookshelf.Model.extend({
 'tableName': 'authors',
 'books': function() {
 return this.belongsToMany(
 require('./book'), 'authors_books', 'author_id', 'book_id');
 }
});

var Book = bookshelf.Model.extend({
 'tableName': 'books',
 'authors': function() {
 var Author = require('../author');
 return this.belongsToMany(Author, 'authors_books', 'book_id', 'author_id');
 }
});

The process of using this relationship is shown in Listing 12-46.

Listing 12-46. Example Usage (and Resulting Output) of Code from Listing 12-45

// example-bookshelf-relationships3/index.js

Book.fetchAll({
 'withRelated': ['authors']
}).then(function(books) {
 console.log(JSON.stringify(books.toJSON(), null, 4));
});

/*
[
 {
 id: 1,
 name: 'Pro JavaScript Frameworks for Modern Web Development',
 authors: [{
 id: 1,
 first_name: 'Tim',
 last_name: 'Ambler',
 _pivot_book_id: 1,
 _pivot_author_id: 1
 }, {
 id: 2,
 first_name: 'Nicholas',
 last_name: 'Cloud',

ChAPter 12 ■ Knex AnD BooKsheLf

379

 _pivot_book_id: 1,
 _pivot_author_id: 2
 }]
 }
]
*/

Summary
If you were to quickly survey the database landscape over the past several years, it would be easy to walk
away with the impression that so-called “NoSQL” storage platforms have largely supplanted the old guard
of relational databases such as MySQL and PostgreSQL, but nothing could be further from the truth.
Much like Mark Twain’s prematurely reported death in 1897, the death of the relational database is also an
exaggeration.

Relational databases offer a number of compelling features, the vast majority of which lie far outside
the scope of this chapter. Many wonderful books are available that devote themselves entirely to this
subject, and we encourage you to read a few of them before making critical decisions regarding how and
where a project stores its information. That said, a key feature to look for in such systems (and one which
was covered earlier in the chapter) is support for transactions: the process by which multiple queries can
be grouped into a single unit of work that will either succeed or fail as a whole. The examples involving a
financial exchange that we looked at in Listing 12-13 and Listing 12-14 demonstrated the important role this
concept has in mission-critical applications.

The platform-agnostic API provided by Knex, combined with its promise-based interface, transaction
support, and migration manager, provides developers with a convenient tool for interacting with relational
databases. When paired with its sister application, Bookshelf, an ORM that is instantly familiar to those with
prior Backbone experience, a powerful combination is formed that simplifies the process of working with
complex data.

Related Resources
•	 Knex: http://knexjs.org

•	 Bookshelf: http://bookshelfjs.org

•	 Backbone.js: http://backbonejs.org

•	 Underscore.js: http://underscorejs.org

•	 MySQL: www.mysql.com

•	 PostgreSQL: www.postgresql.com

•	 MariaDB: http://mariadb.org

•	 SQLite: www.sqlite.org

•	 Multiline: https://github.com/sindresorhus/multiline

http://knexjs.org/
http://bookshelfjs.org/
http://backbonejs.org/
http://underscorejs.org/
http://www.mysql.com/
http://www.postgresql.com/
http://mariadb.org/
http://www.sqlite.org/
https://github.com/sindresorhus/multiline

381

Chapter 13

Faye

The problem with quotes on the Internet is you can never be sure they’re authentic.

—Abraham Lincoln

Web-based applications have grown increasingly sophisticated in recent years, thanks in large part to the
widespread adoption of modern web development technologies such as HTML5, WebSockets, and newly
standardized JavaScript APIs (e.g., Geolocation, Web Storage, and Web Audio). Functionality that was once
the exclusive domain of traditional desktop applications has found a new home in the browser, allowing web
developers to create applications that weren’t even possible just a few short years ago.

However, as web browsers have continued to mature, the fundamental protocol of the Web, HTTP, has
begun to show signs of age. The simple “request-response” pattern of communication that it implements, in
which a client (e.g., a web browser) requests a resource from a server and receives a response in return, no
longer addresses the real-time nature of the problems that many of today’s most innovative web applications
seek to solve. Applications that deal with rapidly changing data (e.g., multiplayer games, social networking
sites, and chat rooms) have a strong need to perform what is often referred to as “data push”—the ability to
initiate communication from the server to the client.

Just as web browsers have matured, so too have the expectations of the people who use them. Web
applications that provide their users with information only when asked for it will quickly find themselves
sidelined by more proactive alternatives that go out of their way to notify users when events of interest to
them occur.

In this chapter, we will be exploring Faye, a library for Node.js and the browser that provides developers
with a robust toolset for building applications that rely on near real-time communication. Topics covered
include

•	 HTTP, Bayeux, and WebSockets

•	 Communicating through Faye via publish-subscribe (PubSub) channels

•	 Developing Faye extensions

•	 Managing security

HTTP, Bayeux, and WebSockets
HTTP is referred to as a “request-response” protocol because it allows a client to request a resource from a
server and to receive a response in return. The protocol is also described as “stateless,” in that each of these
message pairs operates independently of the others; no “state” (i.e., memory) is maintained across requests.
This concept is illustrated in Figure 13-1.

Chapter 13 ■ Faye

382

HTTP’s greatest strength, the intuitive pattern of communication that it enables, has allowed the
Web to grow into the runaway success that it is today. Unfortunately, the protocol’s simpleness also comes
with a high cost, in that it is woefully inadequate at addressing the bidirectional, asynchronous nature of
event-driven messaging.

By way of an example, imagine a scenario in which multiple users are participating in a chat room
(see Figure 13-2). Each user needs to be notified as soon as other members post new messages, but the
request-response nature of HTTP fails to address how such events originating at the server level are to be
communicated to clients, as shown in Figure 13-3.

Figure 13-1. HTTP is a stateless, request-response protocol

Figure 13-2. An event-driven messaging platform, in which users must be notified as soon as new messages
are posted by fellow participants

Chapter 13 ■ Faye

383

WebSockets
Unlike HTTP, the WebSocket Protocol was purposefully designed to allow browsers to establish a
full-duplex (bidirectional), long-lived TCP connection with a remote server (see Figure 13-4). The protocol
was standardized in 2011 (RFC 6455) and now enjoys widespread support among recent versions of most
popular web browsers. As a result, supporting browsers can now communicate with servers in a truly
asynchronous fashion (assuming those servers are configured to support such connections). A simple
example that demonstrates the usage of the WebSocket API is shown in Listing 13-1.

Figure 13-3. HTTP does not allow a server to initiate communication with a client in this manner

Figure 13-4. The WebSocket Protocol allows clients to establish a long-lived connection with a remote server,
with which messages may be passed in both directions

Listing 13-1. Simple Example Demonstrating the Use of the WebSocket API Within the Browser

var connection = new WebSocket('ws://domain.com/app');

// The connection has been established
connection.onopen = function() {
 connection.send('Hello, world.');
};

// A message has been received from the server
connection.onmessage = function(e) {
 console.log('Incoming message', e);
};

Chapter 13 ■ Faye

384

With the introduction of the WebSocket Protocol, a new and exciting chapter for the Web was opened, a
chapter in which real-time messaging is possible. It is important to bear in mind, however, that the protocol
does have its limitations—limitations that aren’t necessarily obvious at first glance. These limitations will be
discussed in greater detail in the following section on the Bayeux protocol.

The Bayeux Protocol
Long before the arrival of widespread browser support for WebSockets, developers at the Dojo Foundation
worked together to tackle the problem of implementing asynchronous, event-driven messaging over HTTP.
The result was an innovative solution known as the Bayeux protocol that still has important implications to
this day.

Bayeux enables low-latency, event-driven messaging over standard HTTP requests through the use of
a technique known as “long-polling.” Using this approach, a client submits an HTTP request to a remote
server, which then hangs on to that request indefinitely instead of immediately returning a response (as
would occur in a standard HTTP transaction). As the server maintains this open connection, it waits to
be notified of any messages that need to be forwarded to the client. When a message arrives, the server
forwards the message to the client and closes the connection. Afterward, the client immediately establishes
another long-polling connection to the server, at which point the process repeats itself (see Figure 13-5).

Figure 13-5. Asynchronous messaging over HTTP, made possible by Bayeux’s use of long-polling

Now that WebSockets enjoy widespread support, you may be wondering why this chapter bothers
to discuss a seemingly outdated concept such as the Bayeux protocol. As it turns out, Bayeux isn’t
nearly as outdated as you might initially think. As wonderful as WebSockets are, they still have their
limitations—limitations that Bayeux happens to be particularly adept at resolving.

Network Challenges
Although recent versions of most popular web browsers now include support for WebSockets, a successful
connection between the client and the server is not always guaranteed. The long-lived connections that the
WebSocket Protocol was designed to enable differ significantly from the short-lived, “request-response”
connections that the Web was originally built on, and in order for these connections to function properly,
the various networks and proxy servers that forward information between a client and a server must be
properly configured. It’s not unheard of for improperly configured proxy servers to block such connections
entirely or to drop them without warning when they go unused for any significant amount of time.

Bayeux, the protocol on which the topic of this chapter, Faye, relies, was designed from the beginning
to be very forward thinking. Although Bayeux was originally designed to bring asynchronous messaging
to the Web via long-polling HTTP connections, the protocol also includes support for “upgrading” those
connections to more efficient, modern standards when possible (see Figure 13-6). As a result of this
behavior, Bayeux-based servers are capable of bringing asynchronous messaging to the Web even when
browser or network limitations attempt to get in the way.

Chapter 13 ■ Faye

385

Legacy Browser Support
As previously stated, WebSockets now enjoy widespread support among the latest versions of all major
browsers. Depending on the needs of your application, you may need to provide support for browsers that
don’t conform to the latest standards. The Bayeux protocol’s reliance on standard HTTP connections (which
are upgraded, when possible) allows you to do exactly that.

Dropped Connections and Missed Messages
The WebSocket Protocol provides no built-in support for detecting what (if any) messages might have been
lost in the event of a service interruption. Bayeux-based servers, on the other hand, are capable of hanging
on to messages in the event of a service interruption. The servers can then forward these messages once the
client is able to successfully reestablish their connection, preventing important messages from being lost in
the process.

A Focus on Channels Rather Than Sockets
The WebSocket API provides developers with a simple, clearly defined interface for establishing socket
connections between a client and a server and for sending messages between them (as discussed in
the following section). It does not, however, provide any higher-level abstractions for managing those
interactions. Faye takes an alternative approach, choosing instead to present users with an interface for
interacting via publish-subscribe (PubSub) channels, while completely hiding the inner workings of the
network layer that it operates on top of. As a result, Faye has the ability to transparently support a number of
different connection schemes, without requiring any changes at the application layer.

Getting Started with Faye
Faye consists of two distinct libraries: one for the server (Node.js) and one for the browser. Before we continue,
let’s take a look at the basic steps that are involved in installing and configuring Faye at the server level.

The following example demonstrates the installation of Faye from the command line via npm within an
existing Node.js project:

$ npm install faye --save

Figure 13-6. Bayeux connections are established via HTTP and upgraded when possible

Chapter 13 ■ Faye

386

Faye works in conjunction with Node’s built-in http and https modules to create a port capable of
accepting connections. This process is demonstrated in Listing 13-2. In this example, a web server is created
that serves static files from our project’s public folder. A new instance of Faye is then created and attached to
this server, allowing clients to connect to the web server and Faye on the same port.

Listing 13-2. Initializing Faye Within Node.js

// faye-starter/lib/server.js

var faye = require('faye');
var http = require('http');
var express = require('express');
var app = express();
var server = http.createServer(app);

// Creating a new instance of Faye
var bayeux = new faye.NodeAdapter({
 'mount': '/faye' // The path at which Faye can be reached
});

// Attaching Faye to the web server instance we have already created
bayeux.attach(server);

// Serving static files out of our project's `/public` folder
app.use('/', express.static(__dirname + '/../public'));

// Our web server and Faye are both reachable at port 7000
server.listen(7000);

Now that our server is ready to accept connections, we can move on to configuring Faye within the
browser (see Listing 13-3). We first create a script tag that loads Faye’s client-side library (client.js),
which is available under the mount path that we specified in Listing 13-2. Next, we create a new client and
configure it to connect to that mount path.

Listing 13-3. Configuring Faye Within the Browser

// faye-starter/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Faye - Starter Example</title>
</head>
<body>

Chapter 13 ■ Faye

387

 <script src="http://localhost:7000/faye/client.js"></script>
 <script>
 var client = new Faye.Client('http://localhost:7000/faye');
 </script>

</body>
</html>

PubSub Messaging
Instead of presenting developers with an API for interacting directly with socket connections, Faye
emphasizes the use of publish-subscribe (PubSub) topic channels. To see this process in action, revisit
Listing 13-2 (the example in which we configured our server) and append the code shown in Listing 13-4.
With the addition of this code, we instruct our server to publish a random number to the /numbers channel
every two seconds.

Listing 13-4. Publishing a Message to the /numbers Channel Every Two Seconds

// faye-starter/lib/server.js

setInterval(function() {
 // Pass a topic channel, along with a payload of data
 bayeux.getClient().publish('/numbers', {
 'number': Math.floor((Math.random() * 100) + 1)
 });
}, 2000);

Now revisit the example shown in Listing 13-3, in which we configured Faye for use within the browser.
Listing 13-5 shows an updated version of this example in which we subscribe to the /numbers channel.
As messages are received, their content is appended to the DOM. Note also that when we create this
subscription, we receive an object with a cancel() method that allows us to unsubscribe from this channel
at any time. Before you continue, take a few minutes to see this example in action by running npm start
within the faye-starter folder.

Listing 13-5. Listening for Messages on the /numbers Channel from Within the Browser

// faye-starter/public/index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Faye - Starter Example</title>
</head>
<body>

Chapter 13 ■ Faye

388

 Cancel Subscription to `/numbers` channel

 <ul id="container">

 <script src="http://localhost:7000/faye/client.js"></script>
 <script src="/bower_components/jquery/dist/jquery.js"></script>

 <script>
 var client = new Faye.Client('http://localhost:7000/faye');

 var subscription = client.subscribe('/numbers', function(data) {
 console.log('Incoming message on the `/numbers` channel', data);
 $('#container').append('' + data.number + '');
 });

 $('#cancelbt').one('click', function() {
 console.log('Canceling subscription to `/numbers` channel');
 subscription.cancel();
 });
 </script>

</body>
</html>

In Listing 13-4, we saw a demonstration of how messages can be published at the server level. The
process by which clients can publish their own messages works in almost the exact same way. The example
shown in Listing 13-6 demonstrates the sending of a Hello, world message to the /foo channel from a
browser-based client.

Listing 13-6. Publishing a Message from the Browser

client.publish('/foo', {
 'text': 'Hello, world.'
}).then(function() {
 // Message was received by server
});

Wildcard Channels
In addition to having the ability to subscribe to messages on a specific channel, Faye clients can also
subscribe to multiple channels by passing a wildcard pattern to the subscribe() method, as shown in
Listing 13-7.

Listing 13-7. Using Wildcard Syntax to Subscribe to Multiple Channels Matching a Specified Pattern

/**
 * Subscribes the client to a single channel segment. Messages received
 * on any channel that exists directly beneath `/foo` will be logged.
 */
client.subscribe('/foo/*', function(message) {
 console.log('Message received', message);
});

Chapter 13 ■ Faye

389

/**
 * Subscribes the client to *all* channel segments beneath `/foo`.
 */
client.subscribe('/foo/**', function(message) {
 console.log('Message received', message);
});

Faye’s support for wildcard channels presents several interesting possibilities, including the creation
of namespaced topic channels devoted to a specific user (or group of users). For example, consider an
application that organizes its users in a manner similar to that shown in Figure 13-7.

Figure 13-7. An application in which multiple users are grouped under a parent account

In this application, every user belongs to a parent account (which can have multiple users). Given this
structure, it is easy to imagine a scenario in which we might want to publish a message to a specific user, or
to all users within a particular account. With the help of wildcard subscriptions and namespaced channels,
we can easily accomplish this goal.

The faye-security project that is included with this chapter (see Figure 13-8) builds on several
previously covered topics (AngularJS, Knex, and Bookshelf) to create an application that allows registered
users to sign in and test out various aspects of Faye’s functionality—including the use of wildcard
subscriptions and namespaced channels.

Chapter 13 ■ Faye

390

When this application’s sign-in form is submitted, a request to the server is made that verifies the
username and password that the user provided. If this request is successful, the server returns an object
that contains information about the authorized user, including a token that will be used to authenticate all
future requests. An excerpt from the /login route’s Angular controller (which is responsible for making this
request) is shown in Listing 13-8.

Listing 13-8. A Token is Returned After a Successful Login Attempt

// faye-security/public/app.js (excerpt)

$scope.login = function() {
 if (!$scope.loginForm.$valid) return;
 $http.post('/api/auth', $scope.model)
 .then(function(result) {

Figure 13-8. After signing in, users are presented with a view that allows them to manage channel
subscriptions and to publish messages

Chapter 13 ■ Faye

391

 $.cookie('token', result.data.token, { 'path': '/' });
 $location.path('/messages');
 })
 .catch(function(err) {
 alert('Unable to sign in. Please try again.');
 });
};

Among other things, the controller for the /messages route will automatically create two wildcard
subscriptions for the user, as shown in Listing 13-9.

Listing 13-9. Angular Controller for the /messages Route Creates Two Subscriptions Using Faye’s
Wildcard Syntax

// faye-security/public/app.js (excerpt)

// Subscribe to channels pertaining to the user's account
faye.client.subscribe('/accounts/' + me.account_id + '/**');
// Subscribe to channels pertaining directly to the user
faye.client.subscribe('/users/' + me.id + '/**');

These subscriptions will allow us to publish messages to everyone within this user’s account (as well as
to the user directly) by directing those messages to channels that are prefixed appropriately. Listing 13-10
shows this process in action.

Listing 13-10. A Message is Published to Each Available Account Every Ten Seconds by the Server

// faye-security/lib/server.js (excerpt)

setInterval(function() {
 db.models.Account.where({}).fetchAll().then(function(accounts) {
 accounts.forEach(function(account) {
 bayeux.getClient().publish(_.sprintf('/accounts/%s/random', account.id), {
 'account': account.toJSON()
 });
 });
 });
}, 10000);

Implementing Security with Extensions
By default, Faye places no restrictions on clients in regard to which channels they are allowed to interact
with. This can be problematic, for obvious reasons: without additional safeguards, nothing would prevent
a user from interacting with channels that are intended for other users. Fortunately, we can easily put those
safeguards in place with the help of Faye’s support for extensions.

Faye provides a simple API for creating extensions that can intercept and (optionally) modify messages
as they move between the client and the server. Such extensions can be created both on the server and
within the browser. The process is identical, regardless of where they are created. Listing 13-11 shows a
simple example of a Faye extension.

Chapter 13 ■ Faye

392

Listing 13-11. Simple Faye Extension That Logs All Incoming and Outgoing Messages to the Console

client.addExtension({
 'incoming': function(message, callback) {
 console.log('Incoming message', message);
 callback(message);
 },
 'outgoing': function(message, callback) {
 console.log('Outgoing message', message);
 callback(message);
 }
});

Now that we have seen what a simple Faye extension looks like, let’s apply this concept to the sample
web application that is included with this chapter. Refer back to Listing 13-9 and take note of the fact that
after a user signs in, a token that allows us to authorize subsequent requests is stored as a cookie within the
user’s browser. Now refer to Listing 13-12, which shows how the application integrates this information into
a Faye extension.

Listing 13-12. A Faye Extension Is Created That Automatically Appends the User’s Token to All Outgoing
Messages

// faye-security/public/app.js (excerpt)

client.addExtension({
 'outgoing': function(message, callback) {
 message.ext = message.ext || {};
 message.ext.token = $.cookie('token');
 callback(message);
 }
});

With the Faye extension shown in Listing 13-12 in place, all outgoing messages, including subscription
requests, will automatically have the user’s token appended to them. We can use this fact to our advantage by
creating a corresponding extension on the server, as shown in Listing 13-13.

Listing 13-13. Server-side Faye Extension That Rejects Subscription Requests to Secure Channels when the
Appropriate Credentials Are Not Provided

// faye-security/lib/faye-extensions/auth.js

var db = require('../db');

module.exports = function(bayeux) {

 bayeux.addExtension({

 'incoming': function(message, callback) {
 if (message.channel !== '/meta/subscribe') return callback(message);
 var token = message.ext && message.ext.token;
 var segments = message.subscription.split('/');

Chapter 13 ■ Faye

393

 switch (segments[1]) {
 case 'accounts':
 db.models.User.where({
 'token': token,
 'account_id': segments[2]
 }).fetch({
 'require': true
 }).then(function(user) {
 return callback(message);
 }).catch(function(err) {
 message.error = 'Permission denied.';
 return callback(message);
 });
 break;
 case 'users':
 db.models.User.where({
 'token': token,
 'id': segments[2]
 }).fetch({
 'require': true
 }).then(function(user) {
 return callback(message);
 }).catch(function() {
 message.error = 'Permission denied.';
 return callback(message);
 });
 break;
 default:
 return callback(message);
 break
 }
 }

 });

};

When the server receives a message on the /meta/subscribe channel, the extension shown in
Listing 13-13 checks to see if the specified channel falls under one of our secure namespaces (/accounts or
/users). If it does, the extension checks for the presence of a token and uses that information to look up the
corresponding user from the database. If a match is found, the message is allowed to continue on its way.
Otherwise, the subscription is rejected as a result of the error property being assigned to the message.

Summary
In this chapter, you became familiar with a number of concepts that allow you to implement near real-time
communication within browser-based applications. You successfully installed and configured Faye both
on the server and within the browser. You discovered how Faye facilitates the passing of messages between
clients through the use of publish-subscribe topic channels. You then took that concept a step further through
the use of namespaced channels and wildcard subscriptions. You also learned how to extend Faye, allowing
you to monitor, modify, and (optionally) reject messages as they pass between clients and the server.

Chapter 13 ■ Faye

394

In our experience, the best approach for implementing asynchronous, event-driven communication
on the Web involves a plan that takes advantage of WebSockets, has fallback solutions in place, and
provides a convenient layer of abstraction on top that doesn’t force you to think about the network layer.
Faye aligns with these needs quite well by combining the speed and efficiency of WebSockets with the
stability of the Bayeux protocol to create a rock-solid approach to implementing asynchronous, event-driven
communication on the Web.

Related Resources
•	 Faye: http://faye.jcoglan.com/

•	 The Dojo Foundation: http://dojofoundation.org/

•	 The Bayeux Protocol: http://svn.cometd.org/trunk/bayeux/bayeux.html

http://faye.jcoglan.com/
http://dojofoundation.org/
http://svn.cometd.org/trunk/bayeux/bayeux.html

395

Chapter 14

Q

I’m an idea-man. Hard work isn’t my forte.

—Q, Star Trek: Voyager

JavaScript is an asynchronous language. Developers can instruct the JavaScript runtime, whether in the
browser or on the server, to “schedule” code to be run at a future point in time. This feature is often used
to delay the start of a CPU-intensive or long-running operation, giving an application time to finish its
current tasks before moving on to more labor-intensive ones. This feature is so powerful that traditionally
synchronous languages like Java, C#, PHP, and Ruby have followed suit and adopted it. Some languages, like
C#, have implemented the asynchronous execution model as a language feature (via the async and await
keywords); other languages, like PHP, support asynchronicity with external libraries like React (not to be
confused with FaceBoook’s JavaScript library, React). In either case, asynchronous code and synchronous
code are bound to meet.

Q, a JavaScript library that encapsulates asynchronous behavior behind an interface that reads very
much like synchronous code, is the topic of this chapter. Q produces promises, specialized objects that may
be chained together to eliminate nested callbacks, propogate values and errors, and generally manage flow
control in asynchronous code. Before plumbing the depths of Q, however, it is worthwhile to take a small
detour and examine why asynchronous code can be difficult to write and manage.

Timing Is Everything
Synchronous code is fairly simple to read because the computer executes one statement at a time. Return
values that are generated by synchronous code (for example, by a method invocation) are available to calling
code immediately after they are returned. Languages with structured exception handling features provide
try/catch/finally blocks that can be used to anticipate and deal with errors when they arise, so that trivial
(or recoverable) errors don’t prove fatal to an application. But structured exception handling only works with
synchronous code; it behaves like a goto statement that causes code to “jump” to some other point in the
application and resume statement execution at that point.

Asynchronous code behaves a bit differently. In JavaScript, asynchronous code is scheduled to run at
a future point in time (sometimes right after the currently executing code). This breaks the synchronous
model because future code will only run after the current stack unwinds. Return values and errors that are
created in asynchronous code, then, must also be handled in the future, when that code actually runs.

Many languages (JavaScript included) solve this problem with callbacks, functions that are passed
as arguments to asynchronous code that will be invoked once that code has run to handle errors and deal
with “return values.” The Node.js runtime, which relies heavily on JavaScript’s scheduling capabilities,
even specifies a standard signature for all callback functions so that asynchronous errors are handled and
propagated correctly.

Chapter 14 ■ Q

396

Unfortunately, nested asynchronous code can quickly become complex. Consider the example in
Listing 14-1.

Listing 14-1. Asynchronous Node.js Example

// example-001/index.js
'use strict';
var fs = require('fs');
var path = require('path');
var playerStats = require('./player-stats');

function getPlayerStats(gamesFilePath, playerID, cb) {
 // fs.readFile() is asynchronous
 fs.readFile(gamesFilePath, {encoding: 'utf8'}, function (err, content) {
 if (err) {
 return cb(err);
 }

 var games = JSON.parse(content);
 var playerGames = games.filter(function (game) {
 return game.player === playerID;
 });

 // playerStats.calcBest() is asynchronous
 playerStats.calcBest(playerGames, function (err, bestStats) {
 if (err) {
 return cb(err);
 }
 // playerStats.calcAvg() is asynchronous
 playerStats.calcAvg(playerGames, function (err, avgStats) {
 if (err) {
 return cb(err);
 }
 cb(null, {best: bestStats, avg: avgStats});
 });
 });
 });
}

var gamesFilePath = path.join(__dirname, 'games.json');
getPlayerStats(gamesFilePath, 42, function (err, stats) {
 if (err) {
 console.error(err);
 return process.exit(1);
 }
 console.log('best:', stats.best);
 console.log('avg: ', stats.avg)
});

Chapter 14 ■ Q

397

In this example, JavaScript code is scheduled four times:

 1. The declaration and invocation of getPlayerStats()

 2. The invocation of fs.readFile()

 3. The invocation of playerStats.calcBest()

 4. The invocation of playerStats.calcAvg()

It is easy to imagine that playerStats might be an external service that is slow to respond to inquiries.
But if this code was synchronous, as in Listing 14-2, everything would be scheduled once. Each function and
method would be invoked in order, all grouped in a try/catch block to deal with any synchronous errors,
and stats would be written to the console as received.

Listing 14-2. Synchronous Node.js Example

// example-002/index.js
'use strict';
var fs = require('fs');
var path = require('path');
var playerStats = require('./player-stats');

try {

var gamesFilePath = path.join(__dirname, 'games.json');
 // fs.readFileSync() is synchronous
 var content = fs.readFileSync(gamesFilePath, {encoding: 'utf8'});
 var games = JSON.parse(content);
 var playerGames = games.filter(function (game) {
 return game.player === 42;
 });
 // playerStats.calcBestSync() is synchronous
 console.log('best:', playerStats.calcBestSync(playerGames));
 // playerStats.calcAvgSync() is synchronous
 console.log('avg :', playerStats.calcAvgSync(playerGames));
} catch (e) {
 console.error(e);
 process.exit(1);
}

This synchronous example is much easier to follow though every statement blocks the flow of execution
until finished. Asynchronous callback-driven code, while alleviating this drawback, still has a number of
significant problems.

First, there is no real canonical standard to which callback signatures must adhere. The Node.js
convention is the most widely adopted, but module authors can (and do) create APIs that do not honor this
standard. Often this happens when a JavaScript module wraps or emulates an existing, non-JavaScript API.
The module author might make a decision to mimic the callback signature pattern of that API over the
Node.js convention for familiarity.

Second, callbacks propagate errors manually. Each callback must inspect the err object and determine
what to do with it or forward it to another callback that will do the same. A lot of boilerplate error-checking
code tends to be the result. In synchronous code, exceptions are propagated up the stack automatically until
handled by a catch block.

It is also easy to miss or improperly handle synchronous errors that occur in asynchronous code. In
Listing 14-3, a try/catch block wraps the synchronous JSON.parse call, then propagates either the parsed
JavaScript object when successful, or the caught exception when parsing fails.

Chapter 14 ■ Q

398

Listing 14-3. Improperly Invoking a Callback Within a try/catch Block

// example-003/improper-async-error-handling.js
'use strict';
var fs = require('fs');
var path = require('path');

function readJSONFile(filePath, cb) {
 fs.readFile(filePath, function (err, buffer) {
 try {
 var json = JSON.parse(buffer.toString());
 cb(null, json);
 } catch (e) {
 console.log('where did this error come from?', e.message);
 cb(e);
 }
 });
}

var gamesFilePath = path.join(__dirname, 'games.json');
readJSONFile(gamesFilePath, function (err, json) {
 if (err) {
 return console.error('parsing json did not succeed :(');
 }
 console.log('parsing json was successful :)');
 throw new Error('should never happen, right?');
});

Assume that the games.json file exists and has valid JSON data. In this example the callback will be
invoked within the try block, after the data has been parsed. But notice what happens when an exception
is thrown within the callback. This exception will unwind the stack back into the try block and cause the
catch block to trap the exception, invoking the callback a second time with the very same error the callback
generated. This will likely have unintended consequences. The appropriate way to handle this error, as
demonstrated in Listing 14-4, is to avoid invoking the callback in the try/catch block altogether.

Listing 14-4. Improperly Invoking a Callback Within a try/catch Block

// example-003/proper-async-error-handling.js
'use strict';
var fs = require('fs');
var path = require('path');

function readJSONFile(filePath, cb) {
 fs.readFile(filePath, function (err, buffer) {
 var json, err;
 try {
 json = JSON.parse(buffer.toString());
 } catch (e) {
 err = e;
 }

Chapter 14 ■ Q

399

 if (err) {
 console.log('where did this error come from?', e.message);
 return cb(err);
 }
 cb(null, json);
 });
}

var gamesFilePath = path.join(__dirname, 'games.json');
readJSONFile(gamesFilePath, function (err, json) {
 if (err) {
 return console.error('parsing json did not succeed :(');
 }
 console.log('parsing json was successful :)');
 throw new Error('should never happen, right?');
});

Finally, nesting callbacks is a double-edged sword. On the one hand, each callback has access to data
in its own closure and the closures encompassing it; on the other hand, nesting quickly leads to convoluted
and tightly coupled code. The true flow of a program can become obscured, producing an unmaintainable
ecosystem conducive to bugs.

Promises vs. Callbacks
To mitigate the challenges created by asynchronous callbacks, a number of proposals and specifications
were drawn up by members of the JavaScript community, culminating in the Promises/A+ specification.
This specification, and the others from which it draws, defines a way to encapsulate asynchronous operations
within a special object called a “promise” that may be combined with other promises to create a kind of
asynchronous chain through which values and errors can be propagated and dealt with as necessary.

A promise, as defined by the Promises/A+ spec, represents its asynchronous operation with three states:
pending, fulfilled, and rejected. If we think of this in callback terms, it would correspond to Listing 14-5.

Listing 14-5. Callback Equivalents to Promise States

// invoking the function means the operation is "pending"
asyncFunction(function asyncCallback (err, asyncData) {
 if (err) {
 // if an error occurred the operation is "rejected"
 }
 // otherwise the operation is "fulfilled"
});

A promise is also called a “thenable” because it has a then() method that accepts two optional
callbacks: the first to be invoked if the promise’s asynchronous operation is fulfilled, and the second to be
invoked if the operation is rejected. The full signature is displayed in Listing 14-6.

Chapter 14 ■ Q

400

Listing 14-6. Thenable Method Signature

/**
 * @param {Function} [onFulfilled]
 * @param {Function} [onRejected]
 * @returns {Promise}
 */
promise.then(onFulfilled, onRejected)

But wait! Isn’t the whole point of promises to eliminate callbacks? No, the point of promises is to streamline
the process of chaining asynchronous operations together, a process that usually leads developers down the
path of nested callbacks. Notice that a promise’s then() method actually returns a promise, too. This promise
will also be either fulfilled or rejected according to what happens in the original promise’s callbacks. By taking
advantage of this feature, the player stats code can be rewritten in Listing 14-7 to nearly eliminate nesting.

Listing 14-7. Promises Reduce Nesting

// example-004/index.js
'use strict';
var fs = require('fs');
var path = require('path');
var playerStats = require('./player-stats');
var Q = require('q');

function getPlayerStats(gamesFilePath, playerID, cb) {
 // load() returns a promise
 playerStats.load(gamesFilePath, playerID)
 .then(function (games) {
 // Q.all() returns a promise
 return Q.all([
 // calcBest() returns a promise
 playerStats.calcBest(games),
 // calcAvg() returns a promise
 playerStats.calcAvg(games)
]);
 })
 .done(function (allStats) {
 cb(null, {best: allStats[0], avg: allStats[1]});
 }, function (err) {
 cb(err);
 });
}

var gamesFilePath = path.join(__dirname, 'games.json');
getPlayerStats(gamesFilePath, 42, function (err, stats) {
 if (err) {
 console.error(err);
 return process.exit(1);
 }
 console.log('best:', stats.best);
 console.log('avg: ', stats.avg)
});

Chapter 14 ■ Q

401

In Listing 14-7, only the final done() invocation receives resolution and rejection callbacks; all other
invocations only receive a resolution callback (the functions from the playerStats module). Thenables
that are called in succession are called promise chains. What happens if one of those intermediate then()
invocations generates an error? Unlike the asynchronous callback model, promises will automatically
propagate an error through the promise chain until it is handled (like structured exception handling). There are
specific rules and use cases that can change this behavior, but in general it works exactly as one would expect.

Other interesting aspects of this example will be explained later (like how the return values of
fulfillment and rejection callbacks can affect a promise chain). It should be immediately evident, however,
that promises can reduce callback nesting and automate error propagation, two of the chief problems that
arise from asynchronous JavaScript code.

The Promise of Q
Q is an open source JavaScript library that implements the Promises/A+ specification, but it is hardly the
only one available to developers. Several other libraries, like when.js and Bluebird, offer thenables as well, a
fact that is important to note because a stated goal of the spec is to provide “an interoperable base which all
Promises/A+ conformant promise implementations can be depended on to provide.” This means that any
promise library that conforms to the specification may be used with any other library that does the same.
Developers aren’t forced to choose among a series of competing candidates. Most promise libraries offer
auxiliary functionality that complements the core thenable interface. Developers are free to choose and mix
promise libraries that solve different problems as needed. (Unfortunately, libraries that don’t conform to the
Promises/A+ spec, like jQuery.Deferred, will not integrate this way.)

Q is the subject of this chapter for a few strong reasons:

•	 It conforms to the Promises/A+ spec.

•	 It was written by Kris Kowal, a contributor to the spec.

•	 It enjoys wide adoption and support in the JavaScript community (client- and
server-side).

•	 AngularJS, a popular browser framework backed by Google, borrows heavily from Q.

The rest of this chapter will examine Q’s implementation in light of the case made for promises over
asynchronous, callback-driven code.

Deferreds and Promises
While the Promises/A+ specification defines how a thenable object behaves, it does not explicitly state
how an asynchronous operation should trigger the callbacks provided to a thenable. It only defines the
rules for representing the state of an asynchronous operation in a promise, and how values and errors are
propagated through promise chains. In practice, many promise libraries use an object called a deferred to
manipulate the state of a promise. Deferreds are usually created first, wired up to handle the resolution of an
asynchronous operation, then generate a promise to be used by calling code later. Listing 14-8 demonstrates
how to create a deferred and return its promise.

Chapter 14 ■ Q

402

Listing 14-8. Creating a Deferred

var Q = require('q');

function asyncFunc() {
 // create a deferred
 var d = Q.defer();

 // perform some async operation and
 // manipulate the *deferred*

 // return the deferred's promise
 return d.promise;
}

// the function returns a thenable!
asyncFunc().then(function () {
 // success :)
}, function () {
 // error :(
});

In Listing 14-8 Q.defer() is invoked to create a deferred object which will be used to manipulate
the state of the promise in the future, when asynchronous code is actually run (more on this in a bit). The
important thing here is that the deferred owns a promise—one that is returned from asyncFunc(), and
to which callbacks may be attached by calling its then() method. The actual invocation of asyncFunc()
and the subscriptions to the state changes for the returned promise are all scheduled together. However
asyncFunc() chooses to resolve or reject its deferred (and thereby change the state of the promise returned)
is entirely up to the developer.

Listing 14-9 is a simple implementation of the calcAvg() function from the fictitious playerStats
module mentioned earlier. Using a reduce operation to sum a series of numbers and then divide by
the series length (yielding the average) is a synchronous operation. To make it asynchronous, the code
is wrapped in the Node.js function process.nextTick(), which schedules the code to run on the next
iteration of the event loop. (The same could be accomplished with setTimeout() or setImmediate().)
If the calculation is successful, the promise is put into a resolved state with d.resolve(), which accepts
some value to be passed to any resolution callbacks attached to the promise. Likewise, if an error arises (for
example, the length of the games array is zero, generating a divide-by-zero error), the promise is placed into a
rejected state with d.reject().

Listing 14-9. Using a Deferred in the calcAvg() Implementation

// example-004/player-stats.js
var Q = require('q');

module.exports = {

 // load: function (gamesFilePath, playerID) {...}

 // calcBest: function (games) {...},

Chapter 14 ■ Q

403

 calcAvg: function (games) {
 var stats = {
 totalRounds: 0,
 avgRoundsWon: 0,
 avgRoundsLost: 0
 };

 var deferred = Q.defer();

 process.nextTick(function () {
 if (games.length === 0) {
 deferred.reject(new Error('no games'));
 return;
 }

 var wins = 0, losses = 0;
 games.forEach(function (game) {
 if (game.rounds === 0) return;
 stats.totalRounds += game.rounds;
 wins += game.won;
 losses += game.lost;
 });

 stats.avgRoundsWon = (wins / stats.totalRounds * 100)
 .toFixed(2) + '%';
 stats.avgRoundsLost = (losses / stats.totalRounds * 100)
 .toFixed(2) + '%';

 deferred.resolve(stats);
 });

 return deferred.promise;
 }
};

Listing 14-10 demonstrates how deferreds and promises can also be used to wrap asynchronous,
callback-driven APIs.

Listing 14-10. Using a Deferred to Wrap an Asynchronous, Callback-Driven API

// example-005/callbackdb/database.js
'use strict';

module.exports = {
 customer: {
 // requires a callback
 find: function (criteria, cb) {
 cb(null, {
 id: criteria.id,
 name: 'Nicholas Cloud'
 });
 }
 }
};

Chapter 14 ■ Q

404

// example-005/callbackdb/find-customer-callback.js
var Q = require('q'),
 db = require('./database');

function loadCustomer(customerID) {
 var d = Q.defer();

 // db.customer.find() is asynchronous
 db.customer.find({id: customerID}, function (err, customer) {
 if (err) {
 return d.reject(err);
 }
 d.resolve(customer);
 });

 return d.promise;
}

loadCustomer(1001).then(function (customer) {
 console.log('found', customer.id, customer.name);
}, function (err) {
 console.error(err);
});

This model of wrapping asynchronous code is so common, in fact, that Q provides a number of
convenience methods to reduce the burden of writing boilerplate code. Q’s deferred objects have a
makeNodeResolver() method that, when invoked, creates a dummy callback that can be passed to any
standard asynchronous callback-based function. When this callback is invoked, however, it simply changes
the state of the deferred with the appropriate value or error, whichever happened to be passed to the
callback. Listing 14-11 shows how a resolver can replace the need for a manually written callback.

Listing 14-11. Making a Node Resolver Callback

// example-005/callbackdb/database.js
'use strict';

module.exports = {
 customer: {
 // requires a callback
 find: function (criteria, cb) {
 cb(null, {
 id: criteria.id,
 name: 'Nicholas Cloud'
 });
 }
 }
};

// example-005/callbackdb/find-customer-makenoderesolver.js
var Q = require('q'),
 db = require('./database');

Chapter 14 ■ Q

405

function loadCustomer(customerID) {
 var d = Q.defer();

 // db.customer.find() is asynchronous
 var deferredCallback = d.makeNodeResolver();
 db.customer.find({id: customerID}, deferredCallback);

 return d.promise;
}

loadCustomer(2001).then(function (customer) {
 console.log('found', customer.id, customer.name);
}, function (err) {
 console.error(err);
});

In this case the client code calling loadCustomer() expects a promise, but the database API expects
a callback, so makeNodeResolver() naturally fits. If the inverse is true—if the client code expected to pass
a callback to the loadCustomer() function but the database actually returned a promise—invoking the
nodeify() method on the database’s promise would invoke the callback appropriately. The promise in
Listing 14-12 is tapped in precisely this manner.

Listing 14-12. Passing a Traditional Asynchronous Callback to a Promise with nodeify()

// example-005/promisedb/database.js
'use strict';
var Q = require('q');

module.exports = {
 customer: {
 // returns a promise; does not use callbacks
 find: function (criteria) {
 return Q({
 id: criteria.id,
 name: 'Nicholas Cloud'
 });
 }
 }
};

// example-005/promisedb/find-customer-nodeify.js
var Q = require('q'),
 db = require('./database');

function loadCustomer(customerID, cb) {

 // db.customer.find() returns a promise
 db.customer.find({id: customerID})
 .nodeify(cb);

Chapter 14 ■ Q

406

 /* equivalent to:
 *
 * db.customer.find({id: customerID}).then(function (customer) {
 * cb(null, customer);
 * }, function (err) {
 * cb(err);
 * });
 */
}

loadCustomer(3001, function (err, customer) {
 if (err) {
 return console.err(err);
 }
 console.log('found', customer.id, customer.name);
});

Values and Errors
Resolving deferreds with simple values or errors usually meets most needs, but there are a number of
promise resolution rules defined by the Promises/A+ spec—and Q’s implementation—that give a developer
further control over promise state.

Resolving Deferreds with Promised Values
The behavior of deferreds can change depending on what “value” is passed to their resolve() methods. If
the value is a normal object or primitive, it will be passed to the resolution callback attached to the deferred’s
promise as is. If the “value” is another promise, as in Listing 14-13, the state of the second promise will be
essentially “forwarded” to the appropriate callbacks of the first: if the second promise becomes resolved, the
resolution callback of the first will receive its value; if it becomes rejected, the rejection callback of the first
will receive its error.

Listing 14-13. Resolving a Deferred with a Promise

// example-006/index.js
'use strict';

var Q = require('q'),
 airport = require('./airport'),
 reservation = require('./reservation');

function findAvailableSeats(departingFlights) {
 var d = Q.defer();
 process.nextTick(function () {
 var availableSeats = [];
 departingFlights.forEach(function (flight) {
 var openFlightSeats = reservation.findOpenSeats(flight);
 availableSeats = availableSeats.concat(openFlightSeats);
 });

Chapter 14 ■ Q

407

 // resolve the deferred with an object value
 if (availableSeats.length) {
 d.resolve(availableSeats);
 } else {
 d.reject(new Error('sorry, no seats available'));
 }
 });
 return d.promise;
}

function lookupFlights(fromAirport, toAirport, departingAt) {
 var d = Q.defer();
 process.nextTick(function () {
 var departingFlights = airport.findFlights(
 fromAirport, toAirport, departingAt
);
 // resolve the deferred with another promise
 d.resolve(findAvailableSeats(departingFlights));
 });
 return d.promise;
}

lookupFlights('STL', 'DFW', '2015-01-10').then(function (seats) {
 console.log('available seats:', seats);
}, function (err) {
 console.error('sorry:', err);
});

Because the first deferred ultimately depends on the resolution or rejection of the second promise, it
will remain in a pending state for as long as the second promise is pending as well. Once the second promise
is resolved or rejected, the deferred will follow suit, invoking the appropriate callback.

Forwarding Values, Errors, and Promises in Callbacks
Once a resolution or rejection callback receives a value or error, several things can happen. If the end of the
promise chain has been reached (or if there is no other chained promises), usually the client code will do
something with the value or log the error.

Because thenables always return another promise when then() is invoked, however, it is possible to
use resolution and rejection callbacks to manipulate values and errors and then forward them to the new
promise, to be handled by later callbacks.

Manipulating a value is easy enough. Simply alter or transform the value passed to the resolution
callback and return it. In Listing 14-14 an array is manipulated in the resolution callback for a database
promise, and then returned once the values are appropriately filtered.

Listing 14-14. Returning a Value in a Resolution Callback

// example-007/index.js
'use strict';
var db = require('./database');

Chapter 14 ■ Q

408

function findPalindromeNames() {
 // db.customers.find() returns a promise
 return db.customer.find().then(function (customers) {
 // return a filtered array that will be forwarded
 // to the next resolution callback
 return customers.filter(function (customer) {
 // filter customers with palindrome names
 var name = customer.name.toLowerCase();
 var eman = name.split('').reverse().join('');
 return name === eman;
 }).map(function (customer) {
 // return only customer names
 return customer.name;
 });
 });
}

findPalindromeNames().then(function (names) {
 console.log(names);
});

Resolution callbacks can also forward errors to promises down the chain. If they do, then the next
rejection callback will be invoked with the returned error. In Listing 14-15, if a user submits too many
guesses (for some fictional contest), an error is created and thrown inside a thenable’s resolution callback.
This error will be propagated to the next rejection callback in the promise chain.

Listing 14-15. Throwing an Error in a Resolution Callback

// example-008/index.js
'use strict';
var db = require('./database');
var MaxGuessError = require('./max-guess-error');

var MAX_GUESSES = 5;

function submitGuess(userID, guess) {
 // db.user.find() returns a promise
 return db.user.find({id: userID}).then(function (user) {
 if (user.guesses.length === MAX_GUESSES) {
 throw new MaxGuessError(MAX_GUESSES);
 }
 // otherwise update the user...
 });
}

submitGuess(1001, 'Professor Plum').then(function () {
 // won't get called if there is an error
 console.log('guess submitted');
}, function (maxGuessError) {
 // oops, an error occurred!
 console.error('invalid guess');
 console.error(maxGuessError.toString());
});

Chapter 14 ■ Q

409

Recall that, in a traditional asynchronous callback model, thrown exceptions must be manually handled
and accounted for (which means that unpredictable exceptions will often slip past scrutiny). Q handles this
automatically; any exception thrown in a thenable callback will be caught and propagated appropriately,
even though all thenable callbacks are executed asynchronously.

Rejection callbacks follow similar rules, but with a mental twist. They do not receive values; instead,
they receive errors, so a developer might reasonably expect that returning an error from a rejection
callback would trigger the next rejection callback further down the promise chain. But that is incorrect.
In Listing 14-16, the last promise in the chain will be resolved, not rejected, even though an error is returned
from the rejection callback inside submitGuess().

Listing 14-16. Returning an Error in a Rejection Callback

// example-009/index.js
'use strict';
var db = require('./database');
var NotFoundError = require('./not-found-error');

function submitGuess(userID, guess) {
 // db.user.find() returns a promise
 return db.user.find({id: userID}).then(function (user) {
 /*
 * database generates an error so this promise
 * won't be resolved
 */
 }, function (err) {
 var notFoundError = new NotFoundError(userID);
 notFoundError.innerError = err;
 return notFoundError;
 });
}

submitGuess(1001, 'Colonel Mustard').then(function (value) {
 /*
 * oops, this promise was resolved, and
 * value === notFoundError!
 */
 console.log('guess submitted');
 console.log(value);
}, function (notFoundError) {
 /*
 * you expect this promise to get rejected...
 * but you are wrong
 */
 console.error('an error occurred');
 console.error(notFoundError);
});

This seems counterintuitive. If an error is returned from a rejection callback one might reasonably
expect it to propagate, but that isn’t what happens. On second glance, however, this begins to make sense,
because it allows developers to handle errors that do not need to be propagated and still gracefully resolve
the promise chain by returning some value.

If the code in Listing 14-16 is modified to queue guesses when the database becomes unavailable, it
makes sense to resolve the promise chain even when an error is generated, as demonstrated in Listing 14-17.

Chapter 14 ■ Q

410

Listing 14-17. Muffling an Error in a Rejection Callback

// example-010/index.js
'use strict';
var db = require('./database');
var guessQueue = require('./guess-queue');

function submitGuess(userID, guess) {
 // db.user.find() returns a promise
 return db.user.find({id: userID}).then(function (user) {
 /*
 * database generates an error so this promise
 * won't be resolved
 */
 }, function (err) {
 console.error(err);
 /*
 * database is probably offline, queue for future
 * processing
 */
 return guessQueue.enqueue(userID, guess);
 });
}

submitGuess(1001, 'Miss Scarlett').then(function (value) {
 /*
 * guess is queued when the database connection
 * fails, so the error is suppressed
 */
 console.log('guess submitted');
}, function (notFoundError) {
 console.error('an error occurred');
 console.error(notFoundError);
});

Like resolution callbacks, errors must be thrown in rejection callbacks in order to properly set the next
promise’s state to rejected, as demonstrated in Listing 14-18.

Listing 14-18. Throwing an Error in a Rejection Callback

// example-011/index.js
'use strict';
var db = require('./database');
var NotFoundError = require('./not-found-error');

function submitGuess(userID, guess) {
 // db.user.find() returns a promise
 return db.user.find({id: userID}).then(function (user) {
 /*
 * database generates an error so this promise
 * won't be resolved
 */

Chapter 14 ■ Q

411

 }, function (err) {
 /*
 * error is *thrown*, not returned
 */
 var notFoundError = new NotFoundError(userID);
 notFoundError.innerError = err;
 throw notFoundError;
 });
}

submitGuess(1001, 'Mrs. Peacock').then(function (value) {
 /*
 * since error was thrown within the promise
 * the promise will not be resolved
 */
}, function (notFoundError) {
 /*
 * the promise is rejected, as expected!
 */
 console.error('an error occurred');
 console.error(notFoundError);
});

Just as deferreds can be resolved with other promises, so too can thenable callbacks return promises
that, when resolved or rejected, will affect the state of the callback chain. Promises may be returned from
both resolution and rejection callbacks. In Listing 14-19, a second promise is returned if the database call is
successful, otherwise an exception is thrown.

Listing 14-19. Returning Another Promise in a Resolution Callback

// example-012/index.js
'use strict';
var db = require('./database');
var MaxGuessError = require('./max-guess-error');

var MAX_GUESSES = 5;

function submitGuess(userID, guess) {
 // db.user.find() returns a promise
 return db.user.find({id: userID}).then(function (user) {
 if (user.guesses.length === MAX_GUESSES) {
 throw new MaxGuessError(MAX_GUESSES);
 }
 // otherwise update the user
 user.guesses.push(guess);
 return db.user.update(user);
 });
}

Chapter 14 ■ Q

412

submitGuess(1001, 'Professor Plum').then(function () {
 /*
 * should be called with the database has
 * finished updating the user
 */
 console.log('guess submitted');
}, function (maxGuessError) {
 console.error('invalid guess');
 console.error(maxGuessError.toString());
});

Turning Simple Values into Promises
Q can turn any value into a promise, simply by invoking Q as a function with the value as its only argument.
Listing 14-20 wraps a simple string that will be used as the value passed to the next resolution handler in the
promise chain.

Listing 14-20. Turning a Value into a Promise

// example-013/index.js
'use strict';
var Q = require('q');

Q('khan!').then(function (value) {
 console.log(value); //khan!
});

This may seem trivial but it can be a convenient way to wrap existing, synchronous code with actual
return values into a promise-based API. You can invoke Q without a value, which will create an empty
promise in a resolved state.

Invoking Q with a promise from another library will also wrap that promise in Q’s interface as well. This
can be very helpful when a developer wishes to use Q’s promise methods like nodeify() when dealing with
another promise library that has no equivalent.

Reporting Progress
Sometimes asynchronous operations take a long period to complete. During this time it can be helpful
to give some indication of progress to client code, whether as a simple meter (e.g., percentage complete)
or to deliver bits of data as they are made available (e.g., events raised by EventEmitter). Q augments the
Promises/A+ spec by adding a third callback parameter to then(), shown in Listing 14-21, which can be
used to capture progress events as they occur.

Listing 14-21. Q’s Thenable Method Signature

/**
 * @param {Function} [onFulfilled]
 * @param {Function} [onRejected]
 * @param {Function} [onProgress]
 * @returns {Promise}
 */
promise.then(onFulfilled, onRejected, onProgress)

Chapter 14 ■ Q

413

While the Promises/A+ specification does not establish a pattern for progress notification, Q still
conforms because its thenables all still support the prescribed then() method signature.

Just as the fulfillment and rejection callbacks are invoked when a deferred is fulfilled or rejected, so too,
the progress callback is invoked when a deferred’s notify() method is called. This method accepts a single
argument, which is then passed to the progress callback. In Listing 14-22, a long-running asynchronous
operation keeps track of how many attempts it makes to do some work (perhaps call an API that is frequently
unresponsive). Each time an attempt is made, a counter is incremented and its value is passed to the
notify() method. The progress callback receives this data immediately. Once the deferred has been
resolved, the promise chain is finished and the final done() callback is invoked.

Listing 14-22. Notifying the Deferred’s Promise

<!-- example-014/index.html -->
<form>
 <p>The UI thread should respond to text field input, even though many DOM elements are
being added.</p>
 <input type="text" placeholder="type something here" />
</form>
<div id="output"></div>

<script>
 (function () {
 var Q = window.Q;
 var output = document.querySelector('#output');

 function writeOutput(msg) {
 var pre = document.createElement('pre');
 pre.innerHTML = msg;
 output.insertBefore(pre, output.firstChild);
 }

 function longAsync() {
 var d = Q.defer();

 var attempts = 0;

 var handle = setInterval(function () {
 // each time the scheduled code runs,
 // send a notification with the attempt
 // number
 attempts += 1;
 d.notify(attempts);
 if (attempts === 1200) {
 clearInterval(handle);
 return d.resolve();
 }
 }, 0);

 return d.promise;
 }

Chapter 14 ■ Q

414

 // not using the rejection callback, only the
 // resolution and progress callbacks
 longAsync().then(function () {
 writeOutput('(done)');
 }, null, function (attempts) {
 writeOutput('notification: ' + attempts);
 });
 }());
</script>

It is important to note that, while any resolution or rejection callbacks attached to a thenable will be
invoked according to what has already happened in a promise chain, only those progress callbacks that are
attached prior to a notification event will actually receive an update. Consider the code in Listing 14-23 and
the resulting console output in Listing 14-24.

Listing 14-23. Notifying a Deferred’s Promise Before Progress Callback Is Added

// example-015/index.js
'use strict';
var Q = require('q');

function brokenPromise() {
 var d = Q.defer();
 process.nextTick(function () {
 console.log('scheduled first');
 d.notify('notifying');
 d.resolve('resolving');
 console.log('logging');
 });
 return d.promise;
}

var promise = brokenPromise();

process.nextTick(function () {
 console.log('scheduled second');
 promise.then(function (value) {
 console.log(value);
 }, null, function (progress) {
 console.log(progress);
 });
});

In Listing 14-23, a deferred is created, then notified and resolved asynchronously. The callbacks are
attached to then() only after the deferred’s methods have been invoked. The console output in Listing 14-24
reflects what happens when the code is run as a Node.js script.

Chapter 14 ■ Q

415

Listing 14-24. Console Output Without Notification

$ node index.js
scheduled first
logging
scheduled second
resolving

The logging statement is displayed before notifying or resolving, as there are no callbacks attached
to the deferred’s promise when the scheduled code in the function brokenPromise() is actually run.
After brokenPromise() is invoked, more code is scheduled to attach a resolution callback and a progress
callback to the promise. When the scheduled code runs, the progress callback is completely ignored, yet
the resolution callback receives its value. Why? Because the progress callback was added in code scheduled
after the deferred’s notify() method was called. Resolutions and rejections are, according to the Promises/
A+ spec, guaranteed to propagate when new callbacks are added to a thenable, but Q treats notifications as
“real-time” events that only propagate to callbacks attached at the time of notification.

Everything Ends
To further mimic synchronous code conventions, Q provides both catch() and finally() methods that
parallel their respective counterparts in synchronous, structured exception handling.

The catch() method is really an alias for then(null, onRejection). Like then(), catch() will not halt
the promise chain, but it does allow developers to deal with errors at arbitrary points in the promise chain.
The code in Listing 14-25 uses catch() to intercept a potential HTTP failure. Because catch() itself returns a
promise, its callback can return any value (or throw another error) to be handled later in the promise chain.

Listing 14-25. Catching Errors in a Promise Chain

// example-016/index.js
'use strict';
var Q = require('q');
var api = require('./api');
var InvalidTeamError = require('./invalid-team-error');

function loadTeamRoster(teamID) {
 // api.get() returns a promise
 return api.get('/team/' + teamID + '/roster')
 .catch(function (err) {
 /*
 * throw a meaningful exception rather than
 * propagate an HTTP error
 */
 if (err.statusCode === 404) {
 throw new InvalidTeamError(teamID);
 }
 });
}

Chapter 14 ■ Q

416

loadTeamRoster(123).then(function (roster) {
 console.log(roster);
}).catch(function (err) {
 console.error(err.message);
});

The finally() method behaves like then() with one caveat: it may not alter any value or error it
receives, though it may return an entirely new promise to be propagated along the promise chain. If it
returns nothing, the original value or error it received will be passed along instead.

The real purpose of the finally() method mirrors the purpose of the finally portion of a try/catch
block. It allows code to clean up resources before the thread of execution proceeds. Listing 14-26 shows how
a database connection might be closed using a finally() block. Regardless of whether the connection or
update succeeds, the code in the finally() callback will always run, cleaning up the database handle if it
remains open.

Listing 14-26. Cleaning Up Resources in a Promise Chain

// example-017/index.js
'use strict';
var Q = require('q');
var db = require('./database');

var user = {
 id: 1001,
 name: 'Nicholas Cloud',
 occupation: 'Code Monkey'
};

db.connect().then(function (conn) {
 return conn.user.update(user)
 .finally(function () {
 if (conn.isOpen) {
 conn.close();
 }
 });
});

When finally() is called, it does not actually terminate the promise chain. But there will likely be
places in code where you will wish to do so, to handle a final value or error in a series of asynchronous
operations when no further handlers will be added. This can be accomplished in a number of ways. The
obvious way to terminate a chain is to simply discontinue it by ignoring a final promise created by then().
Unfortunately, that promise may have already been rejected by upstream code in the promise chain. This
means that Q will hold onto any error generated in the promise chain that is not handled in case a
future rejection callback is added. If a promise chain is “terminated” without a rejection callback, as in
Listing 14-27, the error is never reported—it evaporates into the ether—and the resolution callback will
never be executed.

Chapter 14 ■ Q

417

Listing 14-27. Improperly Terminating a Promise Chain

// example-018/index01.js
'use strict';
var Q = require('q');

function crankyFunction() {
 var d = Q.defer();
 process.nextTick(function () {
 d.reject(new Error('get off my lawn!'));
 });
 return d.promise;
}

// no rejection callback to display the error
crankyFunction().then(function (value) {
 console.log('never resolved');
});

To counter this, promises created by Q also have a done() method, which does not return a promise and
throws any unhandled error in a future turn of the event loop to be addressed by other means. This method
is demonstrated in Listing 14-28.

Listing 14-28. Terminating a Promise Chain with done()

// example-018/index02.js
crankyFunction().done(function (value) {
 //...
});

Even though a rejection callback is not supplied, the JavaScript context will still terminate because
an unhandled error was automatically thrown by Q’s done() method. The console output in Listing 14-29
shows what happens if crankyFunction()’s promise chain is terminated by a done() method.

Listing 14-29. Unhandled Error Thrown by done()

$ node index02.js
/.../node_modules/q/q.js:126
 throw e;
 ^
Error: get off my lawn!
 at /.../code/q/example-018/index02.js:7:14
 at process._tickCallback (node.js:419:13)
 at Function.Module.runMain (module.js:499:11)
 at startup (node.js:119:16)
 at node.js:906:3

Chapter 14 ■ Q

418

Flow Control with Q
Promise chains are a fantastic way to flatten asynchronous, callback-based APIs. They also simulate, in their
own way, the structured exception handling pattern developers become familiar with in synchronous code.
These features simplify flow control in promise-based code, but a bit of creativity can be used to leverage
promises for the following more complex flows in which a number of asynchronous operations can be
“grouped” and treated as a whole:

•	 Sequential flow: Independent asynchronous operations are scheduled and executed,
one at a time, each starting after the preceding completes.

•	 Parallel flow: Independent, asynchronous operations are all scheduled at once and
aggregate all results.

•	 Pipeline flow: Dependent, asynchronous operations are executed, one at a time,
each depending on the values created in a preceding operation.

In each type of flow, the rejection of one operation triggers the failure of the flow in general. The
sequential flow is concerned with side effects and not values (meaning it doesn’t actually fetch or create data
that will be used later), though it could be adapted to aggregate fetched data if necessary. The parallel flow
aggregates data from a number of different asynchronous operations and delivers its results when all are
complete. The pipeline flow passes some data through a series of operations, so at least one operation will
fetch or create data, and there will be some value to handle at the end of the flow.

Sequential Flow
The functions in Listing 14-30 represent a series of steps common to web applications. They change a user’s
password. Each is highly simplified, of course, but the three basic steps must be completed sequentially:

 1. Change the actual password.

 2. Notify the user (probably via e-mail) that their password has been changed.

 3. Because our company is a Good Corporate Citizen, it forwards the password on
to the National Security Agency (NSA).

Listing 14-30. Functions Executed in a Sequential Flow

// example-019/index.js
function changePassword(cb) {
 process.nextTick(function () {
 console.log('changing password...');
 cb(null);
 });
}

function notifyUser(cb) {
 process.nextTick(function () {
 console.log('notifying user...');
 var randomFail = Date.now() % 2 === 0;
 cb(randomFail ? new Error('fail!') : null);
 });
}

Chapter 14 ■ Q

419

function sendToNSA(cb) {
 process.nextTick(function () {
 console.log('sending to NSA...');
 cb(null);
 });
}

Each operation’s function is asynchronous and conforms to the standard Node.js callback pattern. The
changePassword() and sendToNSA() functions will always succeed in the example in Listing 14-30, but to
make things interesting, the notifyUser() function sometimes succeeds and other times fails based on a
calculated value.

To orchestrate these three operations in a sequential promise flow, they are first added to an array of
“steps” in the appropriate execution order. An “empty” promise (lastPromise) is created by invoking Q
without any parameters; it will be the first resolved promise in the sequential promise chain.

In Listing 14-31, the code iterates over the array of steps to encapsulate each step in a promise. For
each iteration, it invokes the then() method on lastPromise and assigns the result—a newly minted
promise—back to the lastPromise variable. (This builds a promise chain within a loop.)

Inside each resolution callback, the code transforms the current “step” (one of the functions defined in
Listing 14-30) into a promise by passing it to Q.denodeify(). The same could be accomplished manually by
setting up a deferred and using deferred.makeNodeResolver(), as demonstrated earlier in Listing 14-11,
but Q.denodeify() streamlines this process. The result is a promise that can be returned from the resolution
callback as the next step in the promise chain.

Listing 14-31. Orchestrating a Sequential Flow with Promises

// example-019/index.js
var Q = require('q');

var steps = [changePassword, notifyUser, sendToNSA];
var lastPromise = Q();
steps.forEach(function (step) {
 lastPromise = lastPromise.then(function () {
 /*
 * denodeify and invoke each function step
 * to return a promise
 */
 return Q.denodeify(step)();
 });
});

lastPromise.done(function () {
 console.log('all done');
}, function (err) {
 console.error(err);
});

Finally, resolution and rejection callbacks are attached to the last promise created by the loop.
When the next scheduled loop executes, the first step will begin. When it resolves, the next promise

in the chain will be invoked, and so on, until the end of the sequential flow is reached. If an error occurs at
any point in the chain, it will immediately cause the final rejection callback to be invoked. (There are no
intermediate rejection callbacks; a sequential flow should fail when any one step fails.) If all steps resolve,
the final resolution callback will output the console message: all done.

Chapter 14 ■ Q

420

Parallel Flow
Applications will often fetch data from a variety of sources, then send it to some client as a unified whole.
In Listing 14-32, user data and a list of US states are both fetched at the same time, perhaps for a web page
on which a user may change his or her mailing address.

Listing 14-32. Functions Executed in a Parallel Flow

// example-20/index01.js
function getUser(id, cb) {
 process.nextTick(function () {
 cb(null, {id: id, name: 'nick'});
 });
}

function getUSStates(cb) {
 process.nextTick(function () {
 cb(null, ['MO', 'IL' /*, etc.*/]);
 });
}

Because these two asynchronous functions have nothing to do with each other, it makes sense that they
should be scheduled at the same time (instead of one waiting for the other to finish). Q’s utility function
all() accepts an array of promises to be scheduled all at once, but since the functions in Listing 14-32 are
not yet promises, they must be converted with one of Q’s function call methods. Because the functions
conform to the Node.js callback signature, the code in Listing 14-33 passes each function to Q.nfcall()
(node-function-call), which will wrap each in promises, using deferreds to supply the appropriate callbacks.
Because the getUser() function accepts a single data parameter, the user ID must be passed as the second
argument to Q.nfcall() when the getUser() promise is created. Q will bind the user ID as the first
parameter to the getUser() function when it is invoked internally.

Q’s all() function itself returns a promise, which will be resolved with an array of values. The ordinal
position of each value in the array will correspond to the ordinal sequence in which the promises were
ordered in the array passed to Q.all(). In this case, user data will occupy index 0, while the US states array
will occupy index 1.

If an error occurs in any of the promises, the rejection callback on the aggregate promise will be invoked.

Listing 14-33. Orchestrating a Parallel Flow with Promises

// example-20/index01.js
var Q = require('q');

Q.all([
 Q.nfcall(getUser, 123),
 Q.nfcall(getUSStates)
]).then(function (results) {
 console.log('user:', results[0]);
 console.log('states:', results[1]);
}, function (err) {
 console.error('ERR', err);
});

Because accessing values in an array is ungainly, a promise may be continued with the spread()
method, which operates identically to then(), except that it “explodes” the results array into actual
individual arguments, as shown in Listing 14-34.

Chapter 14 ■ Q

421

Listing 14-34. Spreading Results

// example-20/index02.js
var Q = require('q');

Q.all([
 Q.nfcall(getUser, 123),
 Q.nfcall(getUSStates)
]).spread(function (user, states) {
 console.log('user:', user);
 console.log('states:', states);
}, function (err) {
 console.error('ERR', err);
});

Q also provides a companion function, Q.allSettled(), which behaves like Q.all() with a few key
differences. First, it will always invoke the resolution callback of the aggregate promise. Second, each value
will be an object with a state property, which will report the actual state of the promise that created the
value, and one of the following properties that depend on the value of state:

•	 value, which will contain the data created by the promise if it resolved

•	 reason, which will contain any error created if the promise was rejected

The choice between using Q.all() or Q.allSettled() will depend on the nature of the application
code, but either may be used to create a parallel flow.

Pipeline Flow
Pipeline flows are useful when a set of data needs to be transformed according to some sequential rule set.
The difference between a pipeline and the sequential flow covered earlier is that each step in a pipeline passes
data to the next, whereas the sequential flow is concerned primarily with creating a linear series of side effects.

The pipeline functions in Listing 14-35 represent a simplified filtering system, perhaps for a recruiting
agency looking to place talent with clients. The loadCandidates() function will “fetch” a list of possible
candidates, and the other functions will be responsible for whittling down the selection based on some
criteria. Notice that filterBySkill() and groupByStates() are actually factory functions. They accept
some configuration parameters (the skill and states desired), then return a function that accepts a Node.js
callback to be used in the pipeline.

Listing 14-35. Functions Executed in a Pipeline Flow

// example-021/index.js
function loadCandidates(cb) {
 console.log('loadCandidates', arguments);
 process.nextTick(function () {
 var candidates = [
 {name: 'Nick', skills: ['JavaScript', 'PHP'], state: 'MO'},
 {name: 'Tim', skills: ['JavaScript', 'PHP'], state: 'TN'}
];
 cb(null, candidates);
 });
}

Chapter 14 ■ Q

422

function filterBySkill(skill) {
 return function (candidates, cb) {
 console.log('filterBySkill', arguments);
 candidates = candidates.filter(function (c) {
 return c.skills.indexOf(skill) >= 0;
 });
 cb(null, candidates);
 };
}

function groupByStates(states) {
 var grouped = {};
 states.forEach(function (state) {
 grouped[state] = [];
 });
 return function (candidates, cb) {
 console.log('groupByStates', arguments);
 process.nextTick(function () {
 candidates.forEach(function (c) {
 if (grouped.hasOwnProperty(c.state)) {
 grouped[c.state].push(c);
 }
 });
 cb(null, grouped);
 });
 };
}

The loadCandidates() function is added to the steps array directly, but the filterBySkill() and
groupByStates() functions are invoked with their initialization values.

Like the serial and parallel flows, the pipeline flow uses promise chaining to coordinate the execution
sequence. In Listing 14-36, however, the result created by each step—the value passed to the resolution
callback for each promise—is placed into an array and passed as an argument to the next promise in
the sequence. In the parallel flow example, Q.nfcall() was used to invoke each step; in this example,
Q.nfapply() (node-function-apply) is used. Each call mimics its native JavaScript counterpart
(Function.prototype.call() and Function.prototype.apply()), which is why an array is used to pass the
result to each step instead of passing the result as a direct argument. This is necessary because the first step
in the pipeline, loadCandidates(), accepts no arguments (other than the callback). Passing an empty array
to Q.nfapply() ensures the function is called properly.

Listing 14-36. Orchestrating a Pipeline Flow with Promises

// example-021/index.js
var Q = require('q');

var steps = [
 loadCandidates,
 filterBySkill('JavaScript'),
 groupByStates(['MO', 'IL'])
];

Chapter 14 ■ Q

423

var lastPromise = Q();
steps.forEach(function (step) {
 lastPromise = lastPromise.then(function (result) {
 var args = [];
 if (result !== undefined) {
 args.push(result);
 }
 return Q.nfapply(step, args);
 });
});

lastPromise.done(function (grouped) {
 console.log('grouped:', grouped);
}, function (err) {
 console.error(err);
});

When the pipeline has finished, the last value passed to the last asynchronous callback will be the
value passed to the done() resolution callback. Should any asynchronous operation generate an error, the
rejection callback will be invoked instead.

A single value is passed to each callback for each asynchronous function in Listing 14-35. It is possible
to pass more than one value to these callbacks, even though the Promises/A+ specification stipulates that
only one value may be passed as a resolution parameter. Q mitigates this discrepancy by packaging up all
values passed to an asynchronous function callback into an array, which it then passes to the promise’s
resolution callback. This array would then need to be passed to Q.nfapply(), as it contains all the data to be
used as arguments to the next function step.

Summary
Callbacks are standard mechanisms to deal with asynchronous code. They provide a control flow
mechanism for developers to “continue” execution after a future turn of the event loop. But callbacks can
quickly become nested, convoluted, and hard to manage.

Using a promise library like Q to encapsulate asynchronous operations, to “flatten” code, can
dramatically improve a code base. Q’s ability to automatically propagate values and errors, to chain callbacks
in an asynchronous manner, report progress during long-running asynchronous operations, and deal with
unhandled errors at the end of a promise chain makes it a powerful tool in any developer’s toolbox.

Q can be used to manage trivial, linear program flows, but with a bit of creativity can also be adapted
to more complex flows. This chapter examined the sequential, parallel, and pipeline flows, but Q’s utility
methods give developers an extra measure of flexibility when orchestrating other flows as well.

Related Resources
•	 Q: https://github.com/kriskowal/q

•	 Promises/A+ spec: https://promisesaplus.com/

https://github.com/kriskowal/q
https://promisesaplus.com/

425

Chapter 15

Async.js

Always something new, always something I didn’t expect, and sometimes it isn’t horrible.

—Robert Jordan

Coordinating software flow can be cumbersome, especially when asynchronous operations finish at
different times. Chapter 16 demonstrated how promises can be used to address this problem. This chapter
discusses Async.js, a callback-driven JavaScript library that provides a suite of powerful functions to manage
asynchronous collection manipulation and control flow.

Chapter 16 covered three common flows in which asynchronous code can be problematic: sequential
flow, parallel flow, and pipeline flow. To address these flows with promises, Chapter 16 showed how to adapt
each callback-oriented task with Q’s helper methods so that each could be wrapped conveniently within
a promise. The Async.js library embraces the callback-driven approach to asynchronous programming,
however, but in such a way that many of the downsides presented by callback-driven code (such as nested
callbacks) are avoided.

Many of the Async.js control flow functions follow a similar pattern:

 1. The first argument to each control flow function is typically an array of functions
to be executed as tasks. Task function signatures will vary a bit based on the exact
Async.js control flow function used, but they will always receive a Node.js-style
callback as a last argument.

 2. The last argument to each control flow function is a final callback function
to be executed when all tasks are complete. The final control flow function
also receives a Node.js-style callback and may or may not receive additional
arguments as well.

 ■ Note A Node.js-style callback is simply a callback function that always expects an error as its first
agument. When the callback is invoked, either an error object is passed as its only argument, or null is passed
in for the error value and any further values are passed in as additional arguments.

http://dx.doi.org/10.1007/978-1-4842-0662-1_16
http://dx.doi.org/10.1007/978-1-4842-0662-1_16
http://dx.doi.org/10.1007/978-1-4842-0662-1_16

ChApter 15 ■ AsyNC.js

426

Listing 15-1 shows how this pattern is typically applied.

Listing 15-1. Flow Control Function Pattern

var tasks = [
 function (/*0..n args, */ cb) {/*...*/},
 function (/*0..n args, */ cb) {/*...*/},
 function (/*0..n args, */ cb) {/*...*/}
];

function finalCallback (err, result) {/*...*/};

async.someFlowControlFunction(tasks, finalCallback);

The rest of the chapter will examine a number of control flow functions, and how they vary, if at all, from
this general pattern. Since all flows organize tasks and handle errors and values in a similar way, it becomes
easier to understand each by contrast.

 ■ Note the meaning of async in Async.js relates to organizing asynchronous operations. the library itself
does not guarantee that task functions execute asynchronously. If a developer uses Async.js with synchronous
functions, each will be executed synchronously. there is one semi-exception to this rule. the async.memoize()
function (which has nothing to do with control flow) makes a function cacheable, so that subsequent invocations
won’t actually run the function but will return a cached result instead. Async.js forces each subsequent
invocation to be asynchronous because it assumes that the original function was itself asynchronous.

Sequential Flow
A sequential flow is one in which a series of steps must be executed in order. A step may not start until a
preceding step finishes (except for the first step), and if any step fails, the flow fails as a whole. The functions
in Listing 15-2 are the steps for changing a fictitious user’s password, the same scenario used to introduce
sequential flows in Chapter 16. These steps are slightly different, however.

First, each is wrapped in a factory function that takes some initial data and returns a callback-based
function to be used as a step in the sequential flow.

Second, the first step (the task wrapped in the changePassword() function) actually passes new
credentials to its callback as an operation result. Steps in a sequential flow are not required to generate
results, but if a step does pass a result to its callback, it has no bearing on the other steps in the sequence.
If some (or all) steps rely on results from previous steps, a pipeline flow is needed. (Pipelines are discussed
later in the chapter.)

Listing 15-2. Sequential Steps

// example-001/async-series.js
'use strict';
var async = require('async');
var userService = require('./user-service');
var emailService = require('./email-service');
var nothingToSeeHere = require('./nothing-to-see-here');

http://dx.doi.org/10.1007/978-1-4842-0662-1_16

ChApter 15 ■ AsyNC.js

427

function changePassword(email, password) {
 return function (cb) {
 process.nextTick(function () {
 userService.changePassword(email, password, function (err, hash) {
 // new credentials returned as results
 cb(null, {email: email, passwordHash: hash});
 });
 });
 };
}

function notifyUser(email) {
 return function (cb) {
 process.nextTick(function () {
 // the email service invokes the callback with
 // no result
 emailService.notifyPasswordChanged(email, cb);
 });
 };
}

function sendToNSA(email, password) {
 return function (cb) {
 process.nextTick(function () {
 // the nothingToSeeHere service invokes the
 // callback with no result
 nothingToSeeHere.snoop(email, password, cb);
 });
 }
}

In Listing 15-3, each factory function is executed with its initial data, returning task functions that
are added to a steps array. This array becomes the first argument to async.series(), followed by a final
callback that receives any error generated during the execution of the series, or an array of results populated
by each step in the series. If any results are generated, they are stored according to the order of their
corresponding steps in the steps array. For example, the result from changePassword() will be the first
element in the results array because changePassword() was invoked as the first task.

Listing 15-3. Sequential Flow

// example-001/async-series.js
var email = 'user@domain.com';
var password = 'foo!1';

var steps = [
 //returns function(cb)
 changePassword(email, password),
 //returns function(cb)
 notifyUser(email),
 //returns function(cb)
 sendToNSA(email, password)
];

ChApter 15 ■ AsyNC.js

428

async.series(steps, function (err, results) {
 if (err) {
 return console.error(err);
 }
 console.log('new credentials:', results[0]);
});

Because these steps are asynchronous, they can’t be invoked one at a time in the same way that
synchronous functions can be called. But Async.js tracks the executing of each step internally, invoking the
next step only when the previous step’s callback has been invoked, thus creating a sequential flow. If any step
in the sequential flow passes an error to its callback, the series will be aborted and the final series callback
will be invoked with that error. When an error is raised the results value will be undefined.

The factory functions used in this chapter are convenient ways to pass initial data to each step, but they
but not necessary. The factories could be eliminated in favor of JavaScript’s native function binding facilities,
as in Listing 15-4, but the code becomes more difficult to read when the steps are actually added to the array.
For simple scenarios in which no initial data or bindings are necessary, anonymous task functions may be
declared directly within the steps array. (It is always a good idea to name your functions and declare them
in a way that promotes readability and maintainability, however.)

Listing 15-4. Series Steps with Argument Binding

function changePassword(email, password, cb) {/*...*/}

function notifyUser(email, cb) {/*...*/}

function sendToNSA(email, password, cb) {/*...*/}

var steps = [
 changePassword.bind(null, email, password),
 notifyUser.bind(null, email),
 sendToNSA.bind(null, email, password)
];

For the rest of this chapter we’ll be using factory functions instead of bind(), but developers are free to
choose whatever approach feels most natural to them.

Parallel Flow
Sometimes it is helpful to run independent tasks in parallel and then aggregate results after all tasks
are finished. JavaScript is an asynchronous language, so it has no true parallelism, but scheduling long,
nonblocking operations in succession will release the event loop to handle other operations (like UI updates
in a browser environment, or handling additional requests in a server environment). Multiple asynchronous
tasks can be scheduled in one turn of the event loop, but there is no way to predict at which future turn each
task will complete. This makes it difficult to collect the results from each task and return them to calling
code. Fortunately, the async.parallel() function gives developers the means to do just that.

Listing 15-5 shows two functions that wrap jQuery GET requests. The first fetches user data for a given
userID, and the second fetches a list of U.S. states. It is easy to imagine that these functions may be part of a
user’s profile page on which the user would be able to update personal information such as phone numbers,
postal addresses, and so forth. When the page loads, it makes sense to fetch this information all at once.
These are two different API calls, though, so even if they are scheduled simultaneously, the results need to be
handled at some future point in time.

ChApter 15 ■ AsyNC.js

429

Listing 15-5. Parallel Steps

// example-002/views/async-parallel.html
function getUser(userID) {
 return function (cb) {
 $.get('/user/' + userID).then(function (user) {
 cb(null, user);
 }).fail(cb);
 };
}

function getUSStates(cb) {
 $.get('/us-states').then(function (states) {
 cb(null, states);
 }).fail(cb);
}

In Listing 15-6, Async.js is imported into a fictitious web page with a standard <script> tag. Tasks
are scheduled using the async.parallel() function, which, like async.series(), accepts an array of task
functions to be executed and a final callback function that will receive an error or the aggregated results.
Parallel tasks are simply functions that accept a single callback argument that should be invoked once the
asynchronous operation within a task function is completed. All callbacks conform to the Node.js callback
convention.

The getUser() function in Listing 15-6 is a factory that accepts a userID argument and returns
a function that accepts a conventional Node.js-style callback. Because getUSStates() has no actual
arguments it need not be wrapped in a factory function but is used directly instead.

Both functions fetch data with jQuery’s AJAX API. AJAX promises pass data from successful AJAX calls
to any callback passed to the promise’s then() method, whereas errors are passed to any callbacks passed
to the promise’s fail() method. Because the signature of a fail() callback accepts a single error argument,
the callback passed to each task from Async.js can also be used as the callback to fail().

Listing 15-6. Parallel Flow

<!-- example-002/views/async-parallel.html -->
<h1>User Profile</h1>
<form>
 <fieldset>
 <div>
 <label>First Name</label>
 <input type="text" id="first-name" />
 </div>
 <div>
 <label>US States</label>
 <select id="us-states"></select>
 </div>
 </fieldset>
</form>

<script>
(function (async, $) {

ChApter 15 ■ AsyNC.js

430

 function getUser(userID) {
 return function (cb) {
 $.get('/user/' + userID).then(function (user) {
 cb(null, user);
 }).fail(cb);
 };
 }

 function getUSStates(cb) {
 $.get('/us-states').then(function (states) {
 cb(null, states);
 }).fail(cb);
 }

 var userID = 1001;

 async.parallel([
 getUser(userID),
 getUSStates
], function (err, results) {
 if (err) {
 return alert(err.message);
 }
 var user = results[0],
 states = results[1];
 $('#first-name').val(user.firstName);

// ...
 $('#us-states').append(states.map(function (state) {
 return $('<option></option>')
 .html(state)
 .attr('value', state);
 }));
 });

}(window.async, window.jQuery));
</script>

The Async.js library will iterate over each task in the tasks array, scheduling them one after the other.
As each task completes, its data is stored, and once all tasks have finished, the final callback passed to
async.parallel() is invoked.

Results are sorted according to the order of tasks passed to async.parallel(), not the order in which
tasks are actually resolved. If an error occurs in any parallel task, that error will be passed to the final
callback, all unfinished parallel tasks will be ignored once they complete, and the results argument in the
final callback will be undefined.

Pipeline Flow
When tasks in a series each depends on a value from a preceding task, a pipeline flow (or waterfall) is
needed. Listing 15-7 represents tasks for a fictitious corporate rewards program in which a user’s age is
calculated (based on date of birth), and if the user’s age meets certain thresholds, the user is awarded a cash
prize.

ChApter 15 ■ AsyNC.js

431

Each function receives some input and then passes some output to its callback. The output of each
function becomes the input for the next function in the series.

 1. The getUser() factory function accepts a userID and returns another function
that, when invoked, looks up a user record. It passes the user record to its
callback.

 2. The calcAge() function accepts a user argument and invokes its callback with
the calculated age of the user.

 3. The reward() function accepts a numeric age argument and invokes its callback
with the selected reward if the age meets certain thresholds.

Listing 15-7. Waterfall (Pipeline) Steps

// example-003/callback-waterfall
'use strict';
var db = require('./database');

function getUser(userID, cb) {
 process.nextTick(function () {
 // pass cb directly to find because
 // it has the same signature:
 // (err, user)
 db.users.find({id: userID}, cb);
 });
}

function calcAge(user, cb) {
 process.nextTick(function () {
 var now = Date.now(),
 then = user.birthDate.getTime();
 var age = (now - then) / (1000 * 60 * 60 * 24 * 365);
 cb(null, Math.round(age));
 });
}

function reward(age, cb) {
 process.nextTick(function () {
 switch (age) {
 case 25: return cb(null, '$100');
 case 35: return cb(null, '$150');
 case 45: return cb(null, '$200');
 default: return cb(null, '$0');
 }
 });
}

This pipeline would be rather hideous and difficult to maintain if organized with nested callbacks.
If additional steps are ever added to the reward program, the code will need to be teased apart and
restructured to accommodate new steps in the pipeline flow. Trapping errors and propagating them through
callbacks also happens manually. The example code in Listing 15-8 shows how these tasks would be run
without Async.js.

ChApter 15 ■ AsyNC.js

432

Listing 15-8. A Waterfall of Nested Callbacks

// example-003/callback-waterfall
function showReward(userID, cb) {
 getUser(userID, function (err, user) {
 if (err) {
 return cb(err);
 }
 calcAge(user, function (err, age) {
 if (err) {
 return cb(err);
 }
 reward(age, cb);
 });
 })
}

showReward(123, function (err, reward) {
 if (err) {
 return console.error(err);
 }
 console.log(reward);
});

Fortunately Async.js makes it relatively painless to organize a pipeline flow that is both maintainable
and handles errors gracefully. The code in Listing 15-9 uses async.waterfall() to organize the series of
tasks to be executed, then provides a final callback to capture any error raised by pipeline tasks or to receive
the final reward value if no errors occurr.

Listing 15-9. Waterfall (Pipeline) Flow

// example-003/async-waterfall.js
'use strict';
var async = require('async');
var db = require('./database');

function getUser(userID) {
 // using a factory function to pass in
 // the userID argument and return another
 // function that will match the callback
 // signature that async.waterfall expects
 return function (cb) {
 process.nextTick(function () {
 // pass cb directly to find because
 // it has the same signature:
 // (err, user)
 db.users.find({id: userID}, cb);
 });
 };
}

ChApter 15 ■ AsyNC.js

433

// the calcAge and reward functions
// do not change

async.waterfall([
 getUser(1000),
 calcAge,
 reward
], function (err, reward) {
 if (err) {
 return console.error(err);
 }
 console.log('reward:', reward);
});

Like async.series() and async.parallel(), an error passed to a callback in any waterfall task will
immediately halt the pipeline and invoke the final callback with the error.

Reusing a Pipeline
Pipelines are so helpful for processing data that async.seq() will take a series of functions, just like async.
waterfall(), and combine them into a single, reusable pipeline function that can be called multiple times.
This could be done manually, of course, by using a closure to wrap async.waterfall(), but async.seq() is a
convenience function that saves developers the trouble.

Listing 15-10 shows a series of functions used to process a make-believe cellular phone bill. The
createBill() function accepts a calling plan and creates a bill object with both the plan and the normal
monthly rate. carrierFee() appends a chunk of change to this amount just because the phone company
can. The prorate() function then determines if some amount is to be credited to the user (if the user started
a new plan in the middle of a billing cycle, for example). And finally, govtExtortion() appends a calculated
tax onto the bill before it is delivered.

Listing 15-10. Sequence (Pipeline) Steps

// example-004/async-seq.js
'use strict';
var async = require('async');
var dateUtil = require('./date-util');

function createBill(plan, cb) {
 process.nextTick(function () {
 var bill = {
 plan: plan,
 total: plan.billAmt
 };
 cb(null, bill);
 });
}

function carrierFee(bill, cb) {
 process.nextTick(function () {
 bill.total += 10;
 cb(null, bill);
 });
}

ChApter 15 ■ AsyNC.js

434

function prorate(bill, cb) {
 if (!bill.plan.isNew) {
 return cb(null, bill);
 }
 process.nextTick(function () {
 bill.plan.isNew = false;
 var days = dateUtil().daysInMonth();
 var amtPerDay = bill.plan.billAmt / days;
 var prorateAmt = ((bill.plan.billDay - 1) * amtPerDay);
 bill.total -= prorateAmt;
 cb(null, bill);
 });
}

function govtExtortion(bill, cb) {
 process.nextTick(function () {
 bill.total = bill.total * 1.08;
 cb(null, bill);
 });
}

Creating a pipeline with async.seq() is very similar to using async.waterfall(), as shown in
Listing 15-11. The primary difference is that async.seq() does not invoke the steps immediately but returns
a pipeline() function that will be used to run the tasks later. The pipeline() function accepts the initial
arguments that will be passed to the first step, eliminating the need for factory functions or binding values to
the first step when the pipeline is defined. Also, unlike most other async functions, async.seq() is variadic
(accepts a varying number of arguments). It does not accept an array of tasks like async.waterfall(), but
instead accepts each task function as an argument.

In Listing 15-11 the pipeline() function is created and then invoked with two parameters: a plan
object, which will be passed to createBill(), and a final callback to receive either an error or a final bill
object for the user.

Listing 15-11. Sequence (Pipeline) Flow

// example-004/async-seq.js
var pipeline = async.seq(
 createBill,
 carrierFee,
 prorate,
 govtExtortion
);

var plan = {
 type: 'Lots of Cell Minutes Plan!+',
 isNew: true,
 billDay: 15,
 billAmt: 100
};

ChApter 15 ■ AsyNC.js

435

pipeline(plan, function (err, bill) {
 if (err) {
 return console.error(err);
 }
 //bill = govtExtortion(prorate(carrierFee(createBill(plan))))
 console.log('$', bill.total.toFixed(2));
});

Loop Flow
Flows that repeat until some condition is met are called loops. Async.js has several looping functions that
help coordinate the asynchronous code to be executed and the conditions to be tested within them.

Looping While Some Condition Remains True
The first two functions, async.whilst() and async.doWhilst(), parallel the well-known while and
do/while looping constructs in many programming languages. Each loop runs while some condition
evaluates to true. Once the condition evaluates to false, the loops halt.

The async.whilst() and async.doWhilst() functions are nearly identical, except that async.whilst()
performs the condition evaluation before any code in the loop is run, whereas async.doWhilst() executes
one iteration of the loop before performing evaluating the condition. Looping code in async.doWhilst()
is guaranteed to run at least once, whereas looping code in async.whilst() may not run at all if the initial
condition is false.

Listing 15-12 shows async.whilst() being used to call an API ten times to get a random “winner” for
some contest. Before the loop runs, an array of names is examined to determine if ten winners have already
been selected. This process is repeated until the array has a length of ten. If an error occurs during one of the
API calls within the loop, the async.whilst() flow is terminated and the final callback is invoked with the
error; otherwise the final callback will be invoked once the loop condition evaluates to false.

Listing 15-12. Looping While Some Condition Remains True

<!-- example-005/views/async-whilst.html -->
<h1>Winners!</h1>
<ul id="winners">

<script>
(function (async, $) {

 function pickWinners(howMany, cb) {
 var winners = [];

 async.whilst(
 // condition test:
 // continue looping until we have enough winners
 function () { return winners.length < howMany; },
 // looping code
 function (cb) {
 $.get('/employee/random').done(function (employee) {
 var winner = employee.firstName + ' ' + employee.lastName;

ChApter 15 ■ AsyNC.js

436

 // avoid potential duplicates
 if (winners.indexOf(winner) < 0) {
 winners.push(winner);
 }
 cb(null);
 }).fail(function (err) {
 cb(err);
 });
 },
 // final callback
 function (err) {
 // if there is an error just ignore it
 // and pass back an empty array, otherwise
 // pass the winners
 cb(null, err ? [] : winners);
 }
);
 }

 pickWinners(3, function (err, winners) {
 $('ul#winners').append(winners.map(function (winner) {
 return $('').html(winner);
 }));
 });

}(window.async, window.jQuery));
</script>

The code in Listing 15-13 shows an abbreviated modification of the async.whilst() loop using
async.doWhilst() instead. Notice that the order of arguments has changed. The looping function is now the
first argument to async.doWhilst() and the condition test is the second. This structurally mirrors do/while
loop syntax.

Listing 15-13. Looping Once and Then Continuing While Some Condition Remains True

<!-- example-005/views/async-dowhilst.html -->
<h1>Winners!</h1>
<ul id="winners">

<script>
(function (async, $) {

 function pickWinners(howMany, cb) {
 var winners = [];

 async.doWhilst(
 // looping code
 function (cb) {
 $.get('/employee/random').done(function (employee) {
 var winner = employee.firstName + ' ' + employee.lastName;
 // avoid potential duplicates

ChApter 15 ■ AsyNC.js

437

 if (winners.indexOf(winner) < 0) {
 winners.push(winner);
 }
 cb(null);
 }).fail(function (err) {
 cb(err);
 });
 },
 // condition test is now the second function
 // argument
 function () { return winners.length < howMany; },
 // final callback
 function (err) {
 // if there is an error just ignore it
 // and pass back an empty array, otherwise
 // pass the winners
 cb(null, err ? [] : winners);
 }
);
 }

 pickWinners(3, function (err, winners) {
 $('ul#winners').append(winners.map(function (winner) {
 return $('').html(winner);
 }));
 });

}(window.async, window.jQuery));
</script>

Looping Until Some Condition Becomes False
Closely related to the async.whilst() and async.doWhilst() functions are the async.until() and
async.doUntil() functions, which follow similar execution patterns but, instead of performing a loop when
some condition is true, perform loops until some condition tests false.

The code in Listing 15-14 shows how a simple HTTP heartbeat can be created in the browser to test
an API endpoint for availability. The Heartbeat() constructor function creates a loop with async.until()
that will execute repeatedly until the value of the _isStopped property is set to true. Heartbeat() exposes
a stop() method that, when invoked sometime after the object is created, will prevent the loop from
continuing. Each turn of the loop makes an HTTP request to the server, and if the request succeeds, the
loop sets the isAvailable property to true; if it fails, isAvailable is set to false. To create a delay between
iterations of the loop, a setTimeout() function wraps the callback invocation within the loop, scheduling
future iterations of the loop to run at a later time (every three seconds in this example).

ChApter 15 ■ AsyNC.js

438

Listing 15-14. Looping Until Some Condition Becomes False

<!-- example-006/views/async-until.html -->
<section id="output"></section>

<script>
(function (async, $) {

 var output = document.querySelector('#output');

 function write() {
 var pre = document.createElement('pre');
 pre.innerHTML = Array.prototype.join.call(arguments, ' ');
 output.appendChild(pre);
 }

 function Heartbeat(url, interval) {
 var self = this;
 this.isAvailable = false;
 this.isStopped = false;
 this.writeStatus = function () {
 write(
 '> heartbeat [isAvailable: %s, isStopped: %s]'
 .replace('%s', self.isAvailable)
 .replace('%s', self.isStopped)
);
 };

 async.until(
 // test condition
 function () { return self.isStopped; },
 // loop
 function (cb) {
 $.get(url).then(function () {
 self.isAvailable = true;
 }).fail(function () {
 self.isAvailable = false;
 }).always(function () {
 self.writeStatus();
 // delay the next loop by scheduling
 // the callback invocation in the
 // future
 setTimeout(function () {
 cb(null);
 }, interval);
 });
 },

ChApter 15 ■ AsyNC.js

439

 // final callback
 function (/*err*/) {
 self.isAvailable = false;
 self.writeStatus();
 }
);
 }

 Heartbeat.prototype.stop = function () {
 this.isStopped = true;
 };

 var heartbeat = new Heartbeat('/heartbeat', 3000);

 setTimeout(function () {
 // 10 seconds later
 heartbeat.stop();
 }, 10000);

}(window.async, window.jQuery));
</script>

The async.doUntil() function behaves like async.doWhilst(): it runs the loop first before evaluating
the test condition. Its signature also swaps the order of the test condition function and the looping function.

Retry Loops
A common use case for loops is the retry loop, where a task is attempted up to a given number of times. If the
task fails but hasn’t met the retry limit, it is executed again. If the retry limit is met, the task is aborted. The
async.retry() function simplifies this process by handling the retry logic for developers. Setting up a loop is as
simple as specifying a retry limit, a task to execute, and a final callback that will handle errors or receive a result.

Listing 15-15 demonstrates a simple API call for reserving a seat at some concert or movie. The available
seats are listed in an array, most preferable to least preferable. The execution limit is the length of the array.
Each time the task runs, it shifts the array, removing the first (most preferable) seat from the collection. If the
reservation fails, it continues this process until there are no more seats left.

Listing 15-15. Retry Loop

<!-- example-007/views/async-retry -->
<section id="output"></section>

<script>
(function (async, $) {

 var output = document.querySelector('#output');

 function write() {
 var pre = document.createElement('pre');
 pre.innerHTML = Array.prototype.join.call(arguments, ' ');
 output.appendChild(pre);
 }

ChApter 15 ■ AsyNC.js

440

 function reserve(name, availableSeats) {
 console.log(availableSeats);
 return function (cb) {
 var request = {
 name: name,
 seat: availableSeats.shift()
 };
 write('posting reservation', JSON.stringify(request));
 $.post('/reservation', request)
 .done(function (confirmation) {
 write('confirmation', JSON.stringify(confirmation));
 cb(null, confirmation);
 }).fail(function (err) {
 cb(err);
 });
 };
 }

 var name = 'Nicholas';
 var availableSeats = ['15A', '22B', '13J', '32K'];

 async.retry(
 availableSeats.length,
 reserve(name, availableSeats),
 function (err, confirmation) {
 if (err) {
 return console.error(err);
 }
 console.log('seat reserved:', confirmation);
 }
);
}(window.async, window.jQuery));
</script>

Each time the task is run it invokes its callback. If the task succeeds and passes a value to the callback,
the final async.retry() callback is invoked with that value (in this case, confirmation). If an error occurs,
the loop is repeated until it reaches the loop limit. The last error is passed to the final callback; previous
errors are lost unless accumulated manually. Listing 15-16 demonstrates a potential way to accomplish this
by collecting errors in an array, then passing the array itself as the err argument to the callback. If the retry
loop fails, the final callback’s error will be an array of every error generated during each turn of the loop.

Listing 15-16. Accumulating Errors in a Retry Loop

function reserve(name, availableSeats) {
 var errors = [];
 return function (cb) {

// ...
 $.post('/reservation', body)
 .done(function (confirmation) {
 cb(null, confirmation);

ChApter 15 ■ AsyNC.js

441

 }).fail(function (err) {
 errors.push(err);
 cb(errors);
 });
 };
}

Infinite Loops
Infinite loops are bad news in synchronous programming because they arrest the CPU and prevent any
other code from executing. But asynchronous infinite loops don’t suffer from this downside because, like all
other code, they are scheduled for future turns of the event loop by the JavaScript scheduler. Other code that
needs to be run can “butt in” and request to be scheduled.

An infinite loop can be scheduled with async.forever(). This function takes a task function as its
first argument and a final callback as its second. The task will continue to run indefinitely unless it passes
an error to its callback. Scheduling asynchronous operations back to back using setTimeout() with a wait
duration of 0 or setImmediate() can create near nonresponsive code in a loop, so it is best to pad each
asynchronous task with a longer wait duration, at least in the hundreds of milliseconds.

The loop in Listing 15-17 makes an HTTP GET request during each turn of the infinite loop, loading
stock information for the user’s dashboard. Each time the GET request succeeds the stock information is
updated and the loop waits for three seconds before executing again. If an error occurs during the loop, the
final callback is invoked with the error and the loop is terminated.

Listing 15-17. Infinite Loop

<!-- example-008/views/async-forever.html -->
<ul id="stocks">

<script>
(function (async, $) {
 $stockList = $('ul#stocks');

 async.forever(function (cb) {
 $.get('/dashboard/stocks')
 .done(function (stocks) {
 // refresh the stock list with new stock
 // information
 $stockList.empty();
 $stockList.append(stocks.map(function (stock) {
 return $('').html(stock.symbol + ' $' + stock.price);
 }));
 // wait three seconds before continuing
 setTimeout(function () {
 cb(null);
 }, 3000);
 }).fail(cb);
 }, function (err) {
 console.error(err.responseText);
 })
}(window.async, window.jQuery));
</script>

ChApter 15 ■ AsyNC.js

442

Batch Flow
The last type of control flow this chapter covers is batching. Batches are created by partitioning some data
into chunks, and then operating on each chunk one at a time. Batches have some threshold that defines how
much data can be put into a chunk. Data added to a batch flow after work has commenced on a chunk is
queued until work is complete, then gets processed in a new chunk.

Asynchronous Queue
An asynchronous queue is one way to process items in a batch flow. A queue can be created by calling
async.queue() with two parameters. The first is a task function that will be executed for each data item that
will be added to the queue. The second is a number that represents the maximum number of task workers
that the queue will schedule concurrently to process data. In Listing 15-18 a queue is created to make HTTP
requests for any URL added to the queue. The result of each HTTP request will be added to the results hash
when each request has been completed. The maximum number of HTTP requests that can be running at
any one time is three. If additional URLs are added to the queue while three requests are in progress, they
will be held for future processing. As workers are released (when requests complete) they will be assigned to
queued URLs as needed. There will never be more than three HTTP requests in progress at a given time.

Listing 15-18. Using Queue for Sequential Batches

// example-009/index.js
'use strict';
var async = require('async');
var http = require('http');

var MAX_WORKERS = 3;
var results = {};

var queue = async.queue(function (url, cb) {
 results[url] = '';
 http.get(url, function (res) {
 results[url] = res.statusCode + ' Content-Type: ' + res.headers['content-type'];
 cb(null);
 }).on('error', function (err) {
 cb(err);

});
}, MAX_WORKERS);

var urls = [// 9 urls
 'http://www.appendto.com',
 'http://www.nodejs.org',
 'http://www.npmjs.org',
 'http://www.nicholascloud.com',
 'http://www.devlink.net',
 'http://javascriptweekly.com',
 'http://nodeweekly.com',
 'http://www.reddit.com/r/javascript',
 'http://www.reddit.com/r/node'
];

http://www.appendto.com/
http://www.nodejs.org/
http://www.npmjs.org/
http://www.nicholascloud.com/
http://www.devlink.net/
http://javascriptweekly.com/
http://nodeweekly.com/
http://www.reddit.com/r/javascript
http://www.reddit.com/r/node

ChApter 15 ■ AsyNC.js

443

urls.forEach(function (url) {
 queue.push(url, function (err) {
 if (err) {
 return console.error(err);
 }
 console.log('done processing', url);
 });
});

The queue will emit a number of events at certain points in its life cycle. Functions may be assigned
to corresponding event properties on the queue object to handle these events. These event handlers are
optional; the queue will operate correctly with or without them.

The first time the queue has reached the maximum number of active workers, it will invoke any
function assigned to queue.saturated. When the queue is handling all items and no other items are queued,
it will call any function assigned to queue.empty. Finally, when all workers have completed and the queue
is empty, any function assigned to queue.drain will be called. The functions in Listing 15-19 handle each of
these raised events.

Listing 15-19. Queue Events

// example-009/index.js
queue.saturated = function () {
 console.log('queue is saturated at ' + queue.length());
};

queue.empty = function () {
 console.log('queue is empty; last task being handled');
};

queue.drain = function () {
 console.log('queue is drained; no more tasks to handle');
 Object.keys(results).forEach(function (url) {
 console.log(url, results[url]);
 });
 process.exit(0);
};

 ■ Note the empty and drained events differ subtly. When empty is triggered, workers may still be active
though no items remain in the queue. When drained is triggered, all workers have ceased and the queue is
completely empty.

Asynchronous Cargo
The async.cargo() function is similar to async.queue() in that it queues up items to be processed by some
task function. They differ, however, in how the work load is divided. async.queue() runs multiple workers
up to a maximum concurrency limit—its saturation point. async.cargo() runs a single worker at a time,
but splits up the queued items to be processed into payloads of a predetermined size. When the worker is
executed, it will be given one payload. When it has completed, it will be given another, until all payloads

ChApter 15 ■ AsyNC.js

444

have been processed. The saturation point for cargo, then, is when a full payload is ready to be processed.
Any items added to the cargo after the worker has started will be grouped into the next payload to be
processed.

A cargo is created by supplying the task function as the first argument to async.cargo() and a
maximum payload size as the second. The task function will receive an array of data (with a length up to the
maximum payload size) to be processed and a callback to be invoked once the operation is complete.

The code in Listing 15-20 shows how async.cargo() can be used to package a series of database
updates into a fictitious transaction, one payload at a time. The task function iterates over the “update”
objects supplied to it, converting each into an UPDATE query in some imaginary relational data store. Once all
the queries have been added to a transaction, the transaction is committed and the callback is invoked.

Listing 15-20. Using Cargo for Parallel Batches

// example-010/index-01.js
'use strict';
var async = require('async');
var db = require('db');

var MAX_PAYLOAD_SIZE = 4;
var UPDATE_QUERY = "UPDATE CUSTOMER SET ? = '?' WHERE id = ?;";

var cargo = async.cargo(function (updates, cb) {
 db.begin(function (trx) {
 updates.forEach(function (update) {
 var query = UPDATE_QUERY.replace('?', update.field)
 .replace('?', update.value)
 .replace('?', update.id);
 trx.add(query);

});
 trx.commit(cb);

});
}, MAX_PAYLOAD_SIZE);

var customerUpdates = [// 9 updates to be processed in payloads of 4
 {id: 1000, field: 'firstName', value: 'Sterling'},
 {id: 1001, field: 'phoneNumber', value: '222-333-4444'},
 {id: 1002, field: 'email', value: 'archer@goodisis.com'},
 {id: 1003, field: 'dob', value: '01/22/1973'},
 {id: 1004, field: 'city', value: 'New York'},
 {id: 1005, field: 'occupation', value: 'Professional Troll'},
 {id: 1006, field: 'twitter', value: '@2cool4school'},
 {id: 1007, field: 'ssn', value: '111-22-3333'},
 {id: 1008, field: 'email', value: 'urmom@internet.com'},
 {id: 1009, field: 'pref', value: 'rememberme=false&colorscheme=dark'}
];

customerUpdates.forEach(function (update) {
 cargo.push(update, function () {
 console.log('done processing', update.id);
 });
});

ChApter 15 ■ AsyNC.js

445

The cargo object has the same event properties as the queue object, shown in Listing 15-21. The main
difference is that the cargo’s saturation limit is reached once a maximum number of payload items has been
added, at which point the worker will commence.

Optional function handlers may be assigned to event properties as needed.

Listing 15-21. Cargo Events

// example-010/index-01.js
cargo.saturated = function () {
 console.log('cargo is saturated at ' + cargo.length());
};

cargo.empty = function () {
 console.log('cargo is empty; worker needs tasks');
};

cargo.drain = function () {
 console.log('cargo is drained; no more tasks to handle');
};

 ■ Note Both async.queue() and async.cargo() schedule the task function to run in the next immediate
tick of the event loop. If items are added to a queue or cargo synchronously, one after the other, then the
thresholds of each will be applied as expected; the queue will throttle the maximum number of workers, and the
cargo will divide the maximum number of items to be processed. If items are added to each asynchronously,
however—if items are added after the next immediate turn of the event loop—the task functions may be
invoked at less than their maximum capacities.

The code in Listing 15-22 pulls each update out of the customerUpdates array and pushes it to the
cargo, then schedules the next push to happen 500 milliseconds later, in a future turn of the event loop.
Because cargo schedules its task immediately, the UPDATE query will run with one—maybe two—updates
each time, depending on how long it takes for a task to finish and for the next task to be scheduled.

Listing 15-22. Adding Items to Cargo Asynchronously

// example-010/index-02.js
(function addUpdateAsync() {
 if (!customerUpdates.length) return;
 console.log('adding update');
 var update = customerUpdates.shift();
 cargo.push(update, function () {
 console.log('done processing', update.id);
 });
 setTimeout(addUpdateAsync, 500);
}());

To guarantee that the maximum thresholds are met for both queue and cargo, push items to each
synchronously.

ChApter 15 ■ AsyNC.js

446

Summary
This chapter has covered a number of common synchronous control flows and demonstrated how
Async.js can be used to adapt these patterns for asynchronous code. Table 15-1 shows each flow and the
corresponding Async.js functions that were covered.

Table 15-1. Flows and Corresponding Async.js Functions

Flow Async.js Function(s)

Sequential async.series()

Parallel async.parallel()

Pipeline async.waterfall(), async.seq()

Loop async.whilst()/async.doWhilst(), async.until()/async.doUntil()

async.retry(), async.forever()

Batch async.queue(), async.cargo()

Sequential and parallel flows allow developers to execute multiple independent tasks, then aggregate
results as needed. Pipeline flows can be used to chain tasks together, where the output of each task becomes
the input of a succeeding task. To repeat asynchronous tasks a given number of times, or according to some
condition, looping flows may be used. Finally, batching flows are available to divide data into chunks to be
processed asynchronously, one batch after the next.

By cleverly organizing asynchronous function tasks, coordinating the results of each task, and delivering
errors and/or task results to a final callback, Async.js helps developers avoid nested callbacks and brings
traditional synchronous control flow operations into the asynchronous world of JavaScript.

447

Chapter 16

Underscore and Lodash

You must be the kind of [person] who can get things done. But to get things done, you must
love the doing, not the secondary consequences.

—Ayn Rand

JavaScript is a pragmatic utility language, useful in no small part because of its simple APIs and sparse
type system. It is an easy language to learn and master because its surface area is so small. And while this
characteristic lends itself nicely to productivity, sadly it means that JavaScript types have historically lacked
advanced features that would make the language stronger, such as functional iteration constructs native to
collections and hashes.

To fill this gap, Jeremy Ashkenas created a library in 2009 called Underscore.js, a collection of over 100
functions used to manipulate, filter, and transform hashes and collections. Many of these functions, such as
map() and reduce(), embody concepts common to functional languages. Others, like isArguments() and
isUndefined() are specific to JavaScript.

As the presence of Underscore became ubiquities in many web applications, two exciting things
happened. First, the ECMAScript 5 specification was published in the same year. It features a number of
Underscore-like methods on native JavaScript objects such as Array.prototype.map(), Array.prototype.
reduce(), and Array.isArray(). While ECMAScript 5 (and to a lesser degree ECMAScript 6 and 7) expands
the APIs of several key types, it only includes a fraction of the functionality that Underscore.js provides.

Second, Underscore was forked into a new project called Lodash with the goal of dramatically
improving the performance and expanding its API. Since Lodash implements all of Underscore’s functions
while adding its own, Underscore is a subset of Lodash. All of the corresponding ECMAScript spec functions
are part of Lodash as well. The table in Listing 16-1 shows Underscore and Lodash functions mapped to their
native ECMAScript counterparts.

Chapter 16 ■ UndersCore and Lodash

448

Table 16-1. Underscore and Lodash Functions Compared to Current (and Proposed) Native JavaScript
Implementations

ECMAScript 5 Underscore/Lodash

Array.prototype.every() all()/every()

Array.prototype.filter() select()/filter()

Array.prototype.forEach() each()/forEach()

Array.isArray() isArray()

Object.keys() keys()

Array.prototype.map() map()

Array.prototype.reduce() inject()/foldl()/reduce()

Array.prototype.reduceRight() foldr()/reduceRight()

Array.prototype.some() some()

ECMAScript 6 Underscore/Lodash

Array.prototype.find() find()

Array.prototype.findIndex() findIndex()

Array.prototype.keys() keys()

ECMAScript 7 Underscore/Lodash

Array.prototype.contains() include()/contains()

Because Underscore and Lodash share an API Lodash can be used as a drop-in replacement for
Underscore. The inverse isn’t necessarily the case, however, because of the extra functionality that Lodash
supplies. For example, while both Underscore and Lodash have a clone() method, only Lodash implements
a cloneDeep() method. Often developers choose Lodash over Underscore because of these extra features,
but the performance benefit is tangible as well. According to a function-by-function performance
benchmark, Lodash is 35% faster on average than Underscore. It achieves this performance gain by favoring
simple loops over native delegation for functions like forEach(), map(), reduce(), and so forth.

This chapter focuses mostly on features of Underscore and Lodash that are not already (or are scheduled
to be) implemented in JavaScript (the functions in Listing 16-1 and Listing 16-2). Mozilla’s excellent
documentation covers each of the native functions, and the Underscore and Lodash API documentation
covers each of their implementations as well.

But Underscore and Lodash offer a great deal more than just a few handy functions for objects and
collections, several of which will be explored in this chapter.

 ■ Note For brevity, the remainder of this chapter simply refers to Underscore, but understand that, unless
otherwise noted, Underscore and Lodash are interchangeable.

Chapter 16 ■ UndersCore and Lodash

449

Installation and Usage
Underscore may be directly imported as a library in the web browser or any server-side JavaScript
environment, such as Node.js. It has no external dependencies.

You can download the Underscore.js script directly from the Underscore website
(http://underscorejs.org) or install it with a package manager like npm, Bower, or Component.

In the browser, you can include Underscore directly as a script, or load it with an AMD- or CommonJS-
compatible module loader (such as RequireJS or Browserify). In Node.js the package is simply required as a
CommonJS module.

Accessing the Underscore object (on which its utility functions live) depends on how the library
is loaded. When Underscore is loaded in the browser with a script tag, the library will attach itself to
window._. For variables created by module loaders in any environment, it is convention to assign the actual
underscore character to the module, as shown in Listing 16-1.

Listing 16-1. Loading the Underscore Library in a Node.js Module

// example-001/index.js
'use strict';
var _ = require('underscore');

console.log(_.VERSION);
// 1.8.2

All Underscore functions live on the _ (“underscore”) object. Because Underscore is a utility library,
it holds no state other than a handful of settings (but we’ll cover more on that later in the chapter). All
functions are idempotent, which means passing a value to any function multiple times will yield the same
result each time. Once the Underscore object is loaded, it may be used immediately.

Underscore’s utility functions operate mostly on collections (arrays and array-like objects, such as
arguments), object literals, and functions. Underscore is most commonly used to filter and transform
data. Many Underscore functions complement each other and can work together to create powerful
combinations. Because this can be so useful, Underscore has built-in support for function chains that create
terse pipelines that apply multiple transformations to data at once.

Aggregation and Indexing
Pieces of data in a collection often share similar schemas, yet have an identifying attribute that makes each
unique. It can be helpful to distinguish these two types of relationships in a set of data—commonality and
individuality—in order to quickly filter and work with a subset of objects that matches aggregation criteria.

Underscore has a number of functions that perform these tasks, but three specific functions can be
tremendously beneficial when working with collections: countBy(), groupBy(), and indexBy().

countBy()
Counting objects that share some characteristic is a common way to generalize data. Given a collection of
URLs, one can imagine some analytic process that determines how many URLs belong to specific top-level
domains (e.g., .com, .org, .edu, etc.). Underscore’s countBy() function is an ideal candidate for this task. It
invokes a callback on each element in an array to determines which category the element fits into (in this
example, which top-level domain the URL occupies). The callback returns some string value that represents
this category. The final result is an object with keys that represent all categories returned from the callback,
and numeric counts representing the number of elements that fall into each category. Listing 16-2 shows a
primitive implementation that yields an object with a count of two .org domains and one .com domain.

http://underscorejs.org/

Chapter 16 ■ UndersCore and Lodash

450

Listing 16-2. Counting Elements by Some Criteria

// example-002/index.js
'use strict';
var _ = require('underscore');

var urls = [
 'http://underscorejs.org',
 'http://lodash.com',
 'http://ecmascript.org'
];

var counts = _.countBy(urls, function byTLD(url) {
 if (url.indexOf('.com') >= 0) {
 return '.com';
 }
 if (url.indexOf('.org') >= 0) {
 return '.org';
 }
 return '?';
});

console.log(counts);
// { '.org': 2, '.com': 1 }

If the items in a collection are objects with properties, and the values for a specific property represent
the data to be counted, an iterator function is not required. The name of the property to be tested may be
used as a substitute. Note that in Listing 16-3 the keys in the final result will be the values for the property
examined on each object.

Listing 16-3. Counting Elements by Some Property

// example-003/index.js
'use strict';
var _ = require('underscore');

var urls = [
 {scheme: 'http', host: 'underscorejs', domain: '.org'},
 {scheme: 'http', host: 'lodash', domain: '.com'},
 {scheme: 'http', host: 'ecmascript', domain: '.org'},
];

var counts = _.countBy(urls, 'domain');

console.log(counts);
// { '.org': 2, '.com': 1 }

If one or more objects in the collection lack the property to be tested, the final result object will contain
an undefined key paired with the number of those objects as well.

http://underscorejs.org/
http://lodash.com/
http://ecmascript.org/

Chapter 16 ■ UndersCore and Lodash

451

groupBy()
Underscore’s groupBy() function is similar to countBy(), but instead of reducing results to numeric counts,
groupBy() places elements into categorized collections in the result object. The URL objects in Listing 16-4
are each placed into collections for each corresponding top-level domain.

Listing 16-4. Grouping Elements by Some Property

// example-004/index.js
'use strict';
var _ = require('underscore');

var urls = [
 {scheme: 'http', host: 'underscorejs', domain: '.org'},
 {scheme: 'http', host: 'lodash', domain: '.com'},
 {scheme: 'http', host: 'ecmascript', domain: '.org'},
];

var grouped = _.groupBy(urls, 'domain');

console.log(grouped);

/*
{
 '.org': [
 { scheme: 'http', host: 'underscorejs', domain: '.org' },
 { scheme: 'http', host: 'ecmascript', domain: '.org' }
],
 '.com': [
 { scheme: 'http', host: 'lodash', domain: '.com' }
]
}
*/

 ■ Note the groupBy() function may also use an iterator function as its second argument (instead of a
property name) if a greater degree of control is required to categorize elements.

It is worth mentioning that counts may easily be derived from grouped objects by simply querying the
length of each grouped array. It may be advantageous, depending on application context, to prefer grouping
over counting. Listing 16-5 shows how to get the count for a single set of grouped data, as well as a function
for creating an object of counts from groupBy() results.

Chapter 16 ■ UndersCore and Lodash

452

Listing 16-5. Deriving Counts from Grouped Objects

// example-005/index.js
'use strict';
var _ = require('underscore');

var urls = [
 {scheme: 'http', host: 'underscorejs', domain: '.org'},
 {scheme: 'http', host: 'lodash', domain: '.com'},
 {scheme: 'http', host: 'ecmascript', domain: '.org'},
];

var grouped = _.groupBy(urls, 'domain');
var dotOrgCount = grouped['.org'].length;
console.log(dotOrgCount);
// 2

function toCounts(grouped) {
 var counts = {};
 for (var key in grouped) {
 if (grouped.hasOwnProperty(key)) {
 counts[key] = grouped[key].length;
 }
 }
 return counts;
}

console.log(toCounts(grouped));
// { '.org': 2, '.com': 1 }

indexBy()
It can also be useful to identify differences amoung data in a collection, especially if those differences
can serve as unique identifiers. Fishing a single object out of a collection by a known identifier is a pretty
common scenario. Done manually, this would require looping over each element in the collection (perhaps
with a while or for loop) and returning the first that possesses a matching unique identifier.

Imagine an airline website on which a customer selects departure and destination airports. The user
chooses each airport via drop-down menus and is then shown additional data about each airport. This
additional data is loaded from airport objects in an array. The values chosen in each drop-down menu are
the unique airport codes, which are then used by the application to find the full, detailed airport objects.

Fortunately, the developer who created this application used Underscore’s indexBy() function to create
an index object from the airports array, shown in Listing 16-6.

Chapter 16 ■ UndersCore and Lodash

453

Listing 16-6. Indexing Objects by Property

// example-006/index.js
'use strict';
var _ = require('underscore');

var airports = [
 {code: 'STL', city: 'St Louis', timeZone: '-6:00'},
 {code: 'SEA', city: 'Seattle', timeZone: '-8:00'},
 {code: 'JFK', city: 'New York', timeZone: '-5:00'}
];

var selected = 'SEA';

var indexed = _.indexBy(airports, 'code');
console.log(indexed);
/*
{
 STL: {code: 'STL', city: 'St Louis', timeZone: '-6:00'},
 SEA: {code: 'SEA', city: 'Seattle', timeZone: '-8:00'},
 JFK: {code: 'JFK', city: 'New York', timeZone: '-5:00'}
}
*/

var timeZone = indexed[selected].timeZone;
console.log(timeZone);
// -8:00

The indexBy() function behaves a bit like groupBy(), except that each object has a unique value for the
indexed property, so the final result is an object whose keys (which must be unique) are the values of each
object for a specified property, and whose values are the objects that posses each property. In Listing 16-6
the keys for the indexed object are each airport code, and the values are the corresponding airport objects.

Keeping an indexed object with relatively stable reference data in memory is a fundamental caching
practice. It incurs a one-time performance penalty (the indexing process) to avoid multiple iteration
penalties (having to traverse the array each time an object is needed).

Being Choosy
Developers often extract wanted data, or omit unwanted data, from collections and objects. This might
be done for legibility (when data will be shown to a user), for performance (when data is to be sent over a
network connection), for privacy (when data returned from an object or module’s API should be sparse), or
for some other purpose.

Selecting Data from Collections
Underscore has a number of utility functions that select one or more elements from a collection of objects
based on some criteria. In some circumstances this criteria may be a function that evaluates each element
and returns true or false (whether the element “passes” the criteria test). In other circumstances the criteria
may be a bit of data that will be compared to each element (or a part of each element) for equality, the
success or failure of which determines whether the element “matches” the criteria used.

Chapter 16 ■ UndersCore and Lodash

454

filter()
The filter() function uses the criteria function approach. Given an array of elements and a function,
filter() applies the function to each element and returns an array consisting only of elements that passed
the criteria test. In Listing 16-7 an array of playing cards is filtered so that only spades are returned.

Listing 16-7. Filtering an Array with a Criteria Function

// example-007/index.js
'use strict';
var _ = require('underscore');

var cards = [
 {suite: 'Spades', denomination: 'King'},
 {suite: 'Hearts', denomination: '10'},
 {suite: 'Clubs', denomination: 'Ace'},
 {suite: 'Spades', denomination: 'Ace'},
];

var filtered = _.filter(cards, function (card) {
 return card.suite === 'Spades';
});

console.log(filtered);
/*
[
 { suite: 'Spades', denomination: 'King' },
 { suite: 'Spades', denomination: 'Ace' }
]
*/

where()
The where() function is similar to filter() but uses the comparison criteria approach instead. Its first
argument is an array of objects, but its second argument is a criteria object whose keys and values will
be compared to the keys and values of each element in the array. If an element contains all the keys and
corresponding values in the criteria object (using strict equality), the element will be included in the array
returned by where().

In Listing 16-8, a set of board game objects is filtered by an object that specifies a minimum player
count and play time. Pandemic is excluded because it does not match the playTime value of the criteria
object, though it does match the minPlayer value.

Listing 16-8. Filtering an Array by Criteria Comparison

// example-008/index.js
'use strict';
var _ = require('underscore');

var boardGames = [
 {title: 'Ticket to Ride', minPlayers: 2, playTime: 45},
 {title: 'Pandemic', minPlayers: 2, playTime: 60},
 {title: 'Munchkin Deluxe', minPlayers: 2, playTime: 45}
];

Chapter 16 ■ UndersCore and Lodash

455

var filtered = _.where(boardGames, {
 minPlayers: 2,
 playTime: 45
});

console.log(filtered);
/*
[
 { title: 'Ticket to Ride', minPlayers: 2, playTime: 45 },
 { title: 'Munchkin Deluxe', minPlayers: 2, playTime: 45 }
]
*/

find() and findWhere()
The filter() and where() functions always return collections. If no object passes the criteria test each
returns an empty set. A developer could use these functions to find an individual object within a set (e.g.,
by some unique identifier), but would then have to fish that object from the result array by using index
zero. Fortunately, Underscore provides find() and findWhere() functions that complement filter() and
where(). They each return the first object to pass the criteria check or return undefined if no objects in the
set pass. In Listing 16-9 a collection is searched twice for specific entries. Note that even though multiple
items would fulfill the {what: 'Dagger'} criteria object passed to findWhere(), only the first match in the
collection is returned.

Listing 16-9. Finding a Single Item in a Collection

// example-009/index.js
'use strict';
var _ = require('underscore');

var guesses = [
 {who: 'Mrs. Peacock', where: 'Lounge', what: 'Revolver'},
 {who: 'Professor Plum', where: 'Study', what: 'Dagger'},
 {who: 'Miss Scarlet', where: 'Ballroom', what: 'Candlestick'},
 {who: 'Reverend Green', where: 'Conservatory', what: 'Dagger'}
];

var result = _.find(guesses, function (guess) {
 return guess.where === 'Ballroom';
});

console.log(result);
// { who: 'Miss Scarlet', where: 'Ballroom', what: 'Candlestick' }

result = _.findWhere(guesses, {what: 'Dagger'});

console.log(result);
// { who: 'Professor Plum', where: 'Study', what: 'Dagger' }

Chapter 16 ■ UndersCore and Lodash

456

Selecting Data from Objects
The Underscore functions covered up to this point all filter larger collections into focused, smaller ones (or
even a single object) when a portion of data is unnecessary to the application. Objects are also collections of
data, indexed by string keys instead of ordered numbers; and like arrays, filtering data in individual objects
can be quite useful.

pluck()
A developer could get a property’s value from each object in a collection by looping over each element and
capturing the desired property value in an array, or by using Array.prototype.map() (or Underscore’s
equivalent, map()). But a faster, more convenient option is to use Underscore’s pluck() function, which
takes an array as its first argument and the name of the property to lift from each element as its second. The
pluck() function is used in Listing 16-10 to extract the numbers that landed face-up from a roll of three dice.
These values are then summed (with Array.prototype.reduce()) to determine the total value of the roll.

Listing 16-10. Plucking Properties from Objects in a Collection

// example-010/index.js
'use strict';
var _ = require('underscore');

var diceRoll = [
 {sides: 6, up: 3},
 {sides: 6, up: 1},
 {sides: 6, up: 5}
];

var allUps = _.pluck(diceRoll, 'up');

console.log(allUps);
// [3, 1, 5]

var total = allUps.reduce(function (prev, next) {
 return prev + next;
}, 0);

console.log(total);
// 9

While pluck() is quite useful for selecting individual properties from objects, it only operates on
collections and is not very useful for dealing with individual objects.

values()
The ECMAScript 5 specification introduced the keys() function on the Object constructor, a handy utility
for turning the keys of any object literal into an array of strings. Underscore has a corresponding keys()
implementation but also has a values() function that, sadly, has no counterpart in native JavaScript. The
values() function is used to extract all property values from an object, and is arguably most valuable (dad
joke) for objects that hold a collection of “constants,” or serve as an enumeration would in another language.
Listing 16-11 demonstrates how this extraction takes place.

Chapter 16 ■ UndersCore and Lodash

457

Listing 16-11. Extracting Values from an Object Literal

// example-011/index.js
'use strict';
var _ = require('underscore');

var BOARD_TILES = {
 IND_AVE: 'Indiana Avenue',
 BOARDWALK: 'Boardwalk',
 MARV_GARD: 'Marvin Gardens',
 PK_PLACE: 'Park Place'
};

var propertyNames = _.values(BOARD_TILES);

console.log(propertyNames);
// ['Indiana Avenue', 'Boardwalk', 'Marvin Gardens', 'Park Place']

Reference data (e.g., a hash of US state abbreviations and names) is often retrieved and cached all at
once. This data will typically be dereferenced by key so that some particular value can be extracted, but
sometimes it is useful to work with all values regardless of key, as the Underscore template in Listing 16-12
demonstrates. (Underscore templates will be discussed later in this chapter, but Listing 16-12 should give
you enough to grasp basic usage.) Each value in the BOARD_TILES hash (the tile name) is rendered as a list
item in an unordered list. The keys are inconsequential; only the values matter, a perfect scenario for the
values() function.

Listing 16-12. Extracting Values from an Object Literal

<!-- example-011/index.html -->

<div id="output"></div>

<script id="tiles-template" type="text/x-template">
<ul class="properties">
 <% _.each(_.values(tiles), function (property) { %>
 <%- property %>
 <% }); %>

</script>

<script>
(function (_) {
 var template = document.querySelector('#tiles-template').innerHTML;
 var bindTemplate = _.template(template);
 var BOARD_TILES = {
 IND_AVE: 'Indiana Avenue',
 BOARDWALK: 'Boardwalk',
 MARV_GARD: 'Marvin Gardens',
 PK_PLACE: 'Park Place'
 };
 var markup = bindTemplate({tiles: BOARD_TILES});
 document.querySelector('#output').innerHTML = markup;
}(window._));
</script>

Chapter 16 ■ UndersCore and Lodash

458

pick()
Finally, to whittle an object down to a subset of its keys and values, developers can use Underscore’s pick()
function. When passing in a target object and one or more property names, pick() will return another
object composed solely of those properties (and their values) from the target. In Listing 16-13 the name and
numPlayers properties are extracted from a larger hash of board game details with pick().

Listing 16-13. Picking Properties from an Object Literal

// example-012/index.js
'use strict';
var _ = require('underscore');

var boardGame = {
 name: 'Settlers of Catan',
 designer: 'Klaus Teuber',
 numPlayers: [3, 4],
 yearPublished: 1995,
 ages: '10+',
 playTime: '90min',
 subdomain: ['Family', 'Strategy'],
 category: ['Civilization', 'Negotiation'],
 website: 'http://www.catan.com'
};

var picked = _.pick(boardGame, 'name', 'numPlayers');

console.log(picked);
/*
{
 name: 'Settlers of Catan',
 numPlayers: [3, 4]
}
*/

omit()
The inverse of pick() is omit(), which returns an object composed of all properties except the ones
specified. The properties designer, numPlayers, yearPublished, ages, and playTime are all eliminated from
the result object created by omit() in Listing 16-14.

Listing 16-14. Omitting Properties from an Object Literal

// example-013/index.js
'use strict';
var _ = require('underscore');

var boardGame = {
 name: 'Settlers of Catan',
 designer: 'Klaus Teuber',
 numPlayers: [3, 4],

http://www.catan.com/

Chapter 16 ■ UndersCore and Lodash

459

 yearPublished: 1995,
 ages: '10+',
 playTime: '90min',
 subdomain: ['Family', 'Strategy'],
 category: ['Civilization', 'Negotiation'],
 website: 'http://www.catan.com'
};

var omitted = _.omit(boardGame, 'designer', 'numPlayers',
 'yearPublished', 'ages', 'playTime');

console.log(omitted);
/*
{
 name: 'Settlers of Catan',
 subdomain: ['Family', 'Strategy'],
 category: ['Civilization', 'Negotiation'],
 website: 'http://www.catan.com'
}
*/

In addition to property names, both pick() and omit() accept a predicate that will evaluate each
property and value instead. If the predicate returns true, the property will be included in the resulting
object; if it returns false, the property will be excluded. The predicate for pick() in listing 16-15 will
only add properties to the result object for values that are arrays; in this case, the properties numPlayers,
subdomain, and category.

Listing 16-15. Picking Properties from an Object Literal with a Predicate Function

// example-014/index.js
'use strict';
var _ = require('underscore');

var boardGame = {
 name: 'Settlers of Catan',
 designer: 'Klaus Teuber',
 numPlayers: [3, 4],
 yearPublished: 1995,
 ages: '10+',
 playTime: '90min',
 subdomain: ['Family', 'Strategy'],
 category: ['Civilization', 'Negotiation'],
 website: 'http://www.catan.com'
};

var picked = _.pick(boardGame, function (value, key, object) {
 return Array.isArray(value);
});

http://www.catan.com/
http://www.catan.com/
http://www.catan.com/

Chapter 16 ■ UndersCore and Lodash

460

console.log(picked);
/*
{
 numPlayers: [3, 4],
 subdomain: ['Family', 'Strategy'],
 category: ['Civilization', 'Negotiation']
}
*/

Chaining
Underscore contains a number of utility functions that are frequently used together to create transformation
pipelines for data. To begin a chain, an object or collection is passed to Underscore’s chain() function.
This returns a chain wrapper on which many Underscore functions may be called in a fluent manner, each
compounding the effects of the preceding function call.

Listing 16-16 shows an array of coffee shops and the hours during which each is open. The
whatIsOpen() function accepts a numeric hour and a period ('AM' or 'PM'). These are then used to evaluate
the coffee shops in the collection and return the names of the coffee shops that are open during that time.

Listing 16-16. Chaining Functions on a Collection

// example-015/index.js
'use strict';
var _ = require('lodash');

/*
Note that lodash, not underscore, is used for
this example. The cloneDeep() function below
is unique to lodash.
*/

var coffeeShops = [
 {name: 'Crooked Tree', hours: [6, 22]},
 {name: 'Picasso\'s Coffee House', hours: [6, 24]},
 {name: 'Sump Coffee', hours: [9, 16]}
];

function whatIsOpen(hour, period) {
 return _.chain(coffeeShops)
 .cloneDeep() // #1
 .map(function to12HourFormat (shop) { // #2
 shop.hours = _.map(shop.hours, function (hour) {
 return (hour > 12 ? hour – 12 : hour);
 }
 return shop;
 })
 .filter(function filterByHour (shop) { // #3
 if (period === 'AM') {
 return shop.hours[0] <= hour;
 }

Chapter 16 ■ UndersCore and Lodash

461

 if (period === 'PM') {
 return shop.hours[1] >= hour;
 }
 return false;
 })
 .map(function toShopName (shop) { // #4
 return shop.name;
 })
 .value(); // #5
}

console.log(whatIsOpen(8, 'AM'));
// ['Crooked Tree', 'Picasso\'s Coffee House']

console.log(whatIsOpen(11, 'PM'));
// ['Picasso\'s Coffee House']

After chain() wraps the coffeeShops array in a fluent API, the following functions are called to
manipulate and filter the collection until the desired data has been produced.

 1. cloneDeep() recursively clones the array and all objects and their properties. In
step 2 the array data is actually modified, so the array is cloned to preserve its
original state.

 2. map(function to12HourFormat() {/*...*/}) iterates over each item in the
cloned array and replaces the second 24-hour number in the hours array with its
12-hour equivalent.

 3. filter(function filterByHour() {/*...*/}) iterates over each modified
coffee shop and evaluates its hours based on the period ('AM' or 'PM') specified:
the first element for the opening hour and the second for the closing hour. The
function returns true or false to indicate whether the coffee shop should be
retained or dropped from the results.

 4. map(function toShopName() {/*...*/}) returns the name of each remaining
coffee shop in the collection. The result is an array of strings that will be passed
to any subsequent steps in the chain.

 5. Finally, value() is called to terminate the chain and return the final result:
the array of names of coffee shops that are open during the hour and period
provided to whatIsOpen() (or an empty array if none match the criteria).

This may seem like a lot to grasp, but Underscore chains can be reduced to a few simple principles that
are easy to remember:

•	 Chains can be created with any initial value, though object and array are the most
typical starting points.

•	 Any Underscore function that operates on a value is available as a chained function.

•	 The return value of a chained function becomes the input value of the next function
in the chain.

Chapter 16 ■ UndersCore and Lodash

462

•	 The first argument of a chained function is always the value on which it operates. For
example, Underscore’s map() function normally accepts two arguments, a collection
and a callback, but when invoked as a chained function, it only accepts a callback.
This pattern holds for all chained functions.

•	 Always invoke the value() function to terminate a chain and retrieve its final,
manipulated value. If a chain does not return a value, this is unnecessary.

Chaining functions for a collection or object might seem natural and obvious, but Underscore also has
a number of functions that work on primitives. Listing 16-17 shows how a chain can wrap the number 100 to
eventually generate the lyrics to “99 Bottles of Beer.”

Listing 16-17. Chaining Functions on a Primitive

// example-016/index.js
'use strict';
var _ = require('underscore');

_.chain(100)
 .times(function makeLyrics (number) {
 if (number === 0) {
 return '';
 }
 return [
 number + ' bottles of beer on the wall!',
 number + ' bottles of beer!',
 'Take one down, pass it around!',
 (number - 1) + ' bottles of beer on the wall!',
 '♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫',
].join('\n');
 })
 .tap(function orderLyrics (lyrics) {
 // reverse the array so the song is in order
 lyrics.reverse();
 })
 .map(function makeLoud (lyric) {
 return lyric.toUpperCase();
 })
 .forEach(function printLyrics (lyric) {
 console.log(lyric);
 });

The times() function takes a number as its first argument and a callback to be invoked for each
decremented value of that number. In this example, the callback makeLyrics() will be invoked starting with
the number 99 (not 100) and ending with the number 0, for 100 total iterations. For each invocation, one
refrain of “99 Bottles” is returned. This creates an array of strings, which is then passed to the next function
in the chain.

Because the final chained function forEach() creates side effects instead of returning a value, there is
no need to terminate the chain by calling value(). Instead, Listing 16-18 shows the results that are printed to
the console.

Chapter 16 ■ UndersCore and Lodash

463

Listing 16-18. The Song to Ruin All Road Trips

99 BOTTLES OF BEER ON THE WALL!
99 BOTTLES OF BEER!
TAKE ONE DOWN, PASS IT AROUND!
98 BOTTLES OF BEER ON THE WALL!
♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫
98 BOTTLES OF BEER ON THE WALL!
98 BOTTLES OF BEER!
TAKE ONE DOWN, PASS IT AROUND!
97 BOTTLES OF BEER ON THE WALL!
♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫
 ...

Function Timing
Functions execute when they are scheduled on JavaScript’s internal event loop. Native functions like
setTimeout(), setInterval(), and Node’s setImmediate() give developers a degree of control over when
these functions run—which turn of the event loop will handle their invocations. Underscore augments these
primitives with a number of control functions that add flexibility to function scheduling.

defer()
Underscore’s defer() function mimics the behavior of setImmediate() in a Node.js environment; which
is to say, defer() schedules a function to execute on the next immediate turn of the event loop. This is
equivalent to using setTimeout() with a delay of 0. Since setImmediate() is not a JavaScript standard
function, using Underscore’s defer() in both browser and server environments can provide a greater degree
of consistency than poly-filling setImmediate() in the browser.

The example code in Listing 16-19 demonstrates the value of defer() in a user interface. It loads a large
data set of playing card information for the popular card game Dominion, then populates an HTML table
with card details.

While the data is fetched from the server and then processed, the user sees the message, “Please be
patient while cards are loading!” Once the GET request has completed, the processCards() handler begins
to process almost 200 cards in blocks of 10. For each block (except the first), the handler defers processing,
which has two beneficial effects. First, it allows the UI time to paint the previous 10 processed rows in the
table, and second, it allows the user to scroll in between window paints. Because the block size is so small,
the scroll speed is relatively normal for the user. If processCards() attempted to render all table rows at
once, the UI would freeze until all DOM elements had been added to the table.

Listing 16-19. Deferring a Function

<!-- example-017/views/defer.html -->
<p id="wait-msg">Please be patient while cards are loading!</p>
<table id="cards">
 <thead>
 <tr>
 <th>Name</th>
 <th>Expansion</th>
 <th>Cost</th>

Chapter 16 ■ UndersCore and Lodash

464

 <th>Benefit</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody></tbody>
</table>

<script>
$(function () {
 var $waitMsg = $('#wait-msg');
 var $cards = $('#cards tbody');

 function processCards(cards) {
 var BLOCK_SIZE = 10;

 // process the first chunk of 10 cards
 (function processBlock() {
 if (!cards.length) {
 $waitMsg.addClass('hidden');
 return;
 }

 // take the first 10 cards from the array;
 // splice() will reduce the length of the array
 // by 10 each time
 var block = cards.splice(0, BLOCK_SIZE);

 _.forEach(block, function (card) {
 var $tr = $('<tr></tr>');
 $tr.append($('<td></td>').html(card.name));
 $tr.append($('<td></td>').html(card.expansion));
 $tr.append($('<td></td>').html(card.cost));
 $tr.append($('<td></td>').html(card.benefits.join(', ')));
 $tr.append($('<td></td>').html(card.description));
 $cards.append($tr);
 });

 // defer the next block of 10 cards to
 // allow the user to scroll and the UI to
 // refresh
 _.defer(processBlock);
 }());

 }

 // kick off the process by loading the data set
 $.get('/cards').then(processCards);
}());
</script>

Chapter 16 ■ UndersCore and Lodash

465

debounce()
“Debouncing” is the practice of ignoring duplicate invocations, requests, messages, and so forth in a
system for some period of time. In JavaScript, debouncing a function can be very helpful if a developer
anticipates that duplicate, identical function calls may be made in quick succession. A common scenario for
a debounced function, for example, is preventing a form’s submit handler from being called more than once
when a user accidentally clicks a Submit button multiple times on a web page.

A custom debounce implementation would require a developer to track the invocations of a
function over a short period of time (perhaps only hundreds of milliseconds) using setTimeout() and
clearTimeout() for each duplicate invocation. Fortunately, Underscore provides a debounce() function that
handles this plumbing for developers, as demonstrated in Listing 16-20.

Listing 16-20. Debouncing a Function

<!-- example-018/debounce.html -->
<button id="submit">Quickly Click Me Many Times!</button>
<script>
(function () {
 var onClick = _.debounce(function (e) {
 alert('click handled!');
 }, 300);

 document.getElementById('submit')
 .addEventListener('click', onClick);
}());
</script>

In Listing 16-20 an onClick() function is created by invoking debounce(). The first argument to
debounce() is the function that will actually be run once all duplicate invocations have stopped. The
second argument is a duration, in milliseconds, that must elapse between invocations for the callback to
finally be triggered. For example, if a user clicks the #submit button once, and then clicks it again within
the 300-millisecond time span, the first invocation is ignored and the wait timer is restarted. Once the wait
period has timed out, the debounce() callback will be invoked, alerting the user that the click has been
handled.

 ■ Note each time a debounced function is invoked, its internal timer is reset. the specified time span
represents the minimum time that must pass between the last invocation and its preceding invocation (if any)
before the callback function executes.

In Figure 16-1, a debounced function with a timeout of 300ms is called three times. After the first call at
point A, 250ms elapse, at which point another call happens at point B and the wait timer is reset. The interval
between B and the next call, C, is shorter: 100ms. Again, the wait timer resets. At point C a third call is made,
after which the wait duration of 300ms is met. At point D the debounced function’s callback is invoked.

Chapter 16 ■ UndersCore and Lodash

466

The debounced function’s callback will receive any arguments passed to the debounce() function itself.
For example, in Listing 16-20, jQuery’s event object e is forwarded to the debounced function’s callback.
While each invocation may pass different arguments, it is important to realize that only the arguments passed
during the last invocation within the wait period will actually be forwarded to the callback. The debounce()
function receives an optional third, immediate parameter which may be true or false. Setting this parameter
to true will invoke the callback for the first invocation instead, ignoring all subsequent duplicates for the
wait period. If the arguments passed to the debounced function vary, capturing the first parameters passed
instead of the last might be strategically beneficial.

throttle()
Underscore’s throttle() function is similar to debounce(). It ignores subsequent invocations of a function
for a specified period of time, but does not reset its internal timer with each function call. It effectively
ensures that only one invocation happens during a specified period, whereas debounce() guarantees that
only one invocation will happen sometime after the last invocation of a debounced function. Throttling a
function can be particularly useful if a function is likely to be called many times with the same arguments,
or when the granularity of the arguments is such that it is not useful to account for every invocation of the
function.

The in-memory JavaScript message bus, postal.js, is a useful library for routing messages through
an application. Some application modules send messages at a frequency that might not be useful for
humnan consumption, so any function that displays these messages to a user might be a good candidate for
throttling.

The code in Listing 16-21 demonstrates a simplified version of this scenario. Don’t worry about
understanding the postal.js API entirely—it is sufficient to understand that postal.publish() will place a
message onto the bus, and postal.subscribe() will invoke a callback when that message is received. In this
example a message is published once every 100ms. The callback attached to the subscription, however, is
throttled at 500ms. So, with a little padding for timing inconsistencies (the JavaScript event loop timer has
low precision), the UI will display roughly 20 or 21 updates even though 100 updates have been placed on
the message bus (roughly 1 in 5 messages will be displayed).

Figure 16-1. A debounced function invoked multiple times

Chapter 16 ■ UndersCore and Lodash

467

Listing 16-21. Using a Throttled Function to Control Status Updates

<!-- example-019/throttle.html -->
<section id="friends"></section>

<script>
$(function () {

 var $friends = $('#friends');

 function onStatusUpdate(data) {
 var text = data.name + ' is ' + data.status;
 $friends.append($('<p></p>').html(text));
 }

 /*
 * subscribing to status updates from friends
 * with a throttled callback that will only
 * fire *once* every 500ms
 */
 postal.subscribe({
 channel: 'friends',
 topic: 'status.update',
 callback: _.throttle(onStatusUpdate, 500)
 });

}());
</script>

<script>
 $(function () {
 var i = 1;
 var interval = null;

 /*
 * publishing a status update from a
 * friend every 100ms
 */
 function sendMessage() {
 if (i === 100) {
 return clearInterval(interval);
 }
 i += 1;
 postal.publish({
 channel: 'friends',
 topic: 'status.update',

Chapter 16 ■ UndersCore and Lodash

468

 data: {
 name: 'Jim',
 status: 'slinging code'
 }
 });
 }

 setInterval(sendMessage, 100);
 }());
</script>

Figure 16-2 illustrates how throttle() differs from defer(). Once a throttled function is invoked at
point A, it will ignore all further invocations (at points B and C) until its wait duration has passed—in this
case, 300ms. Once elapsed, the next call at point D will invoke the throttled function.

Templates
Underscore offers a micro-templating system that compiles a template string (typically HTML) into a
function. When this function is invoked with some data, it uses the template string’s binding expressions
to populate the template, returning a new HTML string. Developers who have used templating tools like
Mustache or Handlebars will be familiar with this process. Unlike these more robust templating libraries,
however, Underscore’s templates have a much smaller feature set and no real template extension points.
Underscore can be a strong choice as a template library when the templates in an application are fairly trivial
and you have no desire or need to incur the overhead of a template-specific library in an application.

Figure 16-2. A throttled function invoked multiple times

Chapter 16 ■ UndersCore and Lodash

469

Template systems usually begin with some markup, and Underscore is no exception. Data binding
expressions are added to a template with “gator tags” (so named because the opening and closing elements,
<% and %>, look kind of like alligators). Listing 16-22 shows a simple block of HTML that will later be bound to
an object literal containing two properties, title and synopsis.

Listing 16-22. Template with “Gator Tags”

<h1><%- title %></h1>
<p class="synopsis"><%- synopsis %></p>

Gator tags come in three varieties. The tags used in Listing 16-22 generate safe HTML output by
escaping any HTML tag sequences. If the movie synopsis contained an HTML tag such as , it would
be converted to . In contrast, the gator tag <%= may be used to output unescaped strings with
HTML markup in-tact. The third gator tag is the JavaScript evaluation tag, and it simply begins with <% (more
on this tag will be covered in a bit). All gator tags share the same closing tag, %>.

To turn the HTML in Listing 16-22 into a populated template the HTML string is first compiled by
passing it to Underscore’s template() function. A reusable binding function is returned. When a data object
is passed to this binding function, any properties that match the binding expressions in the original template
string will be substituted in the final, computed output. Under the hood Underscore uses JavaScript’s with
keyword to magically bring these properties into the template’s scope. Listing 16-23 demonstrates how to
bind a simple template string to a data object, and shows the HTML that is produced as a result.

Listing 16-23. Binding an Underscore Template

<!-- example-020/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<h1><%- title %></h1>' +
 '<p class="synopsis"><%- synopsis %></p>';

 // compile the string into a function
 var compiledTemplate = _.template(markup);

 // invoke the function with data to
 // get the rendered string
 var rendered = compiledTemplate({
 title: 'Sunshine',
 synopsis: 'A team of scientists are sent to re-ignite a dying sun.'
 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>
<div id="output">
 <h1>Sunshine</h1>
 <p class="synopsis">A team of scientists are sent to re-ignite a dying sun.</p>
</div>

Chapter 16 ■ UndersCore and Lodash

470

Once a template string is compiled to a function it may be invoked any number of times with different
data to produce different rendered markup. It is common for applications to compile template strings into
functions during page load (or during application startup, if Node.js is the runtime environment), then call
each as needed during the lifetime of the application. If template strings do not change, there is no need to
recompile them.

Loops and Other Arbitrary JavaScript in Templates
Many templating libraries include shorthand tags for common templating chores like iterating over a
collection. To keep its templating system thin, Underscore forgoes syntactical sugar and, instead, allows
developers to write template loops in plain, valid JavaScript.

In Listing 16-24 an unordered list of actors is created by using Underscore’s each() function within the
template. There are two important things to note here. First, plain JavaScript is evaluated within gator tag
code blocks. These blocks are created by using gator tags without a hyphen symbol in the opening tag (e.g.,
<% %> instead of <%- %>). Second, the each() loop is split in the middle, where valid templating markup
is used to render the actor variable, created by the loop itself, in a list item element. Finally, the loop is
terminated by a closing brace, parenthesis, and semicolon, as if it were a normal JavaScript loop.

Listing 16-24. Looping in a Template

<!-- example-021/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<h1><%- title %></h1>' +
 '<p class="synopsis"><%- synopsis %></p>' +
 '' +
 '<% _.each(actors, function (actor) { %>' +
 ' <%- actor %>' +
 '<% }); %>' +
 '';

 // compile the string into a function
 var compiledTemplate = _.template(markup);

 // invoke the function with data to
 // get the rendered string
 var rendered = compiledTemplate({
 title: 'Sunshine',
 synopsis: 'A team of scientists are sent to re-ignite a dying sun.',
 actors: ['Cillian Murphy', 'Hiroyuki Sanada', 'Chris Evans']
 });

 document.querySelector('#output').innerHTML = rendered;

Chapter 16 ■ UndersCore and Lodash

471

}(window._));
</script>
<div id="output">
 <h1>Sunshine</h1>
 <p class="synopsis">A team of scientists are sent to re-ignite a dying sun.</p>

 Cillian Murphy
 Hiroyuki Sanada
 Chris Evans

</div>

JavaScript evaluation tags can also be used to execute arbitrary JavaScript code. The template in
Listing 16-25 calculates a rating percentage for the movie based on X out of Y stars awarded to it by critics.
The template uses Underscore’s internal print() function to render the result of the calculation in the template
output, an alternative to gator tag interpolation that is sometimes used in more complex expressions.

Listing 16-25. Arbitrary JavaScript Within a Template

<!-- example-022/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<p>' +
 '<%- voted %> out of <%- total %> stars!' +
 ' (<% print((voted / total * 100).toFixed(0)) %>%)' +
 '</p>';

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({
 voted: 4, total: 5
 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>
<div id="output">
 <p>4 out of 5 stars! (80%)</p>
</div>

 ■ Note Generally it is bad practice to perform calculations in a template (the application’s “view”). Instead,
the actual calculated value should be part of the data passed to the compiled template function. Listing 16-25
should be considered for demonstration purposes only.

Chapter 16 ■ UndersCore and Lodash

472

Living Without Gator Tags
Gator tags can be a bit unruly in nontrivial templates. Fortunately, Underscore allows developers to
change the syntax of template tags with regular expressions. Setting the templateSettings property on the
Underscore object to a hash of key/value settings alters the behavior of Underscore for the lifetime of your
page (or Node.js process), and affects all rendered templates.

Listing 16-26 shows how to change Underscore’s gator tag syntax into a more terse Mustache/
Handlebars syntax. In this case, the three different types of tags (evaluation, interpolation, and escaped
interpolation) are each assigned a regular expression on the global settings object.

Listing 16-26. Changing Template Syntax

<!-- example-023/index.html -->
<div id="output"></div>

<script>
(function (_) {
 _.templateSettings = {
 // arbitrary JavaScript code blocks: {{ }}
 evaluate: /\{\{(.+?)\}\}/g,
 // unsafe string interpolation: {{= }}
 interpolate: /\{\{=(.+?)\}\}/g,
 // escaped string interpolation: {{- }}
 escape: /\{\{-(.+?)\}\}/g
 };

 var markup =
 '<h1>{{- title }}</h1>' +
 '<p class="synopsis">{{- synopsis }}</p>' +
 '' +
 '{{ _.each(actors, function (actor) { }}' +
 ' {{- actor }}' +
 '{{ }); }}' +
 '';

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({
 title: 'Sunshine',
 synopsis: 'A team of scientists are sent to re-ignite a dying sun.',
 actors: ['Cillian Murphy', 'Hiroyuki Sanada', 'Chris Evans']
 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>

Any markup compiled by the template system must now support the specified Mustache syntax.
Templates that still contain gator tags will not be rendered correctly.

Table 16-2 is a convenient reference for matching template settings to syntax and the regular
expressions that enable each syntax.

Chapter 16 ■ UndersCore and Lodash

473

Table 16-2. Global Template Settings

Setting Template Syntax Regular Expression

evaluate {{ ... }} /{{(.+?)}}/g

interpolate {{= ... }} /{{=(.+?)}}/g

escape {{- ... }} /{{-(.+?)}}/g

Accessing the Data Object Within a Template
As mentioned, Underscore uses JavaScript’s with keyword to evaluate a data object’s properties in a
template’s scope as “first class” variables. But the object itself may also be referenced through the obj
property in the template. To modify a previous example, in Listing 16-27 the template tests for the data
property obj.percent in an if/else block before attempting to calculate a percentage. If the percent
property exists on the data object, it is rendered; otherwise the calculated value is rendered.

Listing 16-27. The “obj” Variable

<!-- example-024/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<%- voted %> out of <%- total %> stars!' +
 '<% if (obj.percent) { %>' +
 ' (<%- obj.percent %>%)' +
 '<% } else { %>' +
 ' (<% print((voted / total * 100).toFixed(0)) %>%)' +
 '<% } %>';

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({
 voted: 4, total: 5, percent: 80.2
 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>

As a micro-optimization (and perhaps a security feature), the scoped object can be given a name so
that the with keyword is avoided altogether. This makes the templating function run slightly faster, but also
requires that all properties in the template be referenced as properties of the named data object. To specify
a name for the data object, an options object may be passed to Underscore’s template() function when
compiling the template. This object’s variable property will assign the data object’s variable name, which
may then be referred to in the template. Listing 16-28 shows this setting in action.

Chapter 16 ■ UndersCore and Lodash

474

Listing 16-28. Setting the Data Object’s Variable Name

<!-- example-025/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<%- movie.voted %> out of <%- movie.total %> stars!' +
 '<% if (movie.percent) { %>' +
 ' (<%- movie.percent %>%)' +
 '<% } else { %>' +
 ' (<% print((movie.voted / movie.total * 100).toFixed(0)) %>%)' +
 '<% } %>';

 var settings = {variable: 'movie'};
 // settings is the *third* parameter
 var compiledTemplate = _.template(markup, null, settings);

 var rendered = compiledTemplate({
 voted: 4, total: 5, percent: 80.1
 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>

 ■ Note the variable property may be set in Underscore’s global settings. however, giving variables good
and relevant names is important, so it makes more sense to name a variable according to its context. Instead of
defining some generic variable like data or item, the examples in this section use the variable name movie and
apply it by passing a settings object to template() when the movie template is compiled.

Default Template Data
While not part of its templating system, Underscore’s defaults() function can be used to ensure that
a template always has default data. This will prevent binding failures in the event that a data object is
missing one or more referenced properties. The first parameter to the defaults() function is an object with
potentially missing properties. Any following arguments may be objects with properties set to default values,
which will fill in any missing properties on the first object. The return value is an object that represents
the “merged” properties of all arguments. Listing 16-29 shows this effect on a data object that is missing
its synopsis property. When the data and DEFAULTS objects are passed to the defaults() function, the
returned object contains the title from data and the synopsis from DEFAULTS.

Chapter 16 ■ UndersCore and Lodash

475

Listing 16-29. Default Template Values

<!-- example-026/index.html -->
<div id="output"></div>

<script>
(function (_) {
 var markup =
 '<h1><%- title %></h1>' +
 '<p class="synopsis"><%- synopsis %></p>';

 // compile the string into a function
 var compiledTemplate = _.template(markup);

 var DEFAULTS = {
 title: 'A Great Film',
 synopsis: 'An epic hero defeats and evil villain and saves the world!'
 };

 var data = {
 title: 'Lord of the Rings'
 };

 // fill in any missing data values with defaults
 var merged = _.defaults(data, DEFAULTS);

 var rendered = compiledTemplate(merged);

 document.querySelector('#output').innerHTML = rendered;

}(window._));
</script>

If multiple default objects are passed to defaults(), they are evaluated from first to last. Once a missing
property is found on a default object, it will be ignored on any following default objects.

Summary
Modern and future implementations of ECMAScript have given developers a great many utility functions
on primitive types like String, Array, Object, and Function. Unfortunately, the world moves faster than
specifications come to fruition so libraries like Underscore and Lodash occupy the intersection of developer
needs and language maturity.

Chapter 16 ■ UndersCore and Lodash

476

With over 100 utility functions and a micro-templating system, Underscore enables developers to
manipulate, transform, and render data in objects and collections. Underscore can be used in browser and
server environments and has no dependencies. It can be added to a web page with a simple script tag or
imported as an AMD or CommonJS module. Popular package managers like Bower, npm, component, and
NuGet can all download prebuilt Underscore packages for a developer’s platform of choice.

Underscore’s strong feature set and ubiquitous availability make it an ideal and unobtrusive Swiss Army
knife for JavaScript projects.

Related Resources
•	 Underscore: http://underscorejs.org/

•	 Loadash: https://lodash.com/

http://underscorejs.org/
https://lodash.com/

477

��������� A
AMD See Asynchronous module definition (AMD)
AngularJS tool

Angular Directives
creation, 161
factory function, 161
newly defined directive, 162
prototypal inheritance, 160

controllers
manipulating scope object, 165–166
scopes and prototypal inheritance, 163–164
two-way data binding, 166–167

creating complex forms
conditional logic, 183, 185
repeatable sections, 185–188
validation, 178, 180–183

creating routes
dashboard and headlines, 174
goals, 174
parameters, 175
resolutions, 176–177

declarative approach, 157–158
imperative approach, 155–156
loosely coupled Angular applications

dependency injection, 168–169
factories, 170–171
providers, 172–173
services, 171–172

modules
Angular application, 158
Angular’s module() method, 158
automatic bootstrapping, 159
creating with dependencies, 158
manual bootstrapping, 159

Asynchronous module definition
(AMD), 73, 86–87, 102

Async.js library
batch flow

asynchronous cargo, 443–445
asynchronous queue, 442–443

control flow functions, 425
flow control function pattern, 426
flows and functions, 446
loop flow

infinite loop, 441
retry loop, 439–441
until some condition becomes

false, 437–439
while some condition remains

true, 435–436
parallel flow, 428

getUser() function, 429–430
steps, 428–429

pipeline flow
async.waterfall(), 432–433
calcAge() function, 431
getUser() factory function, 431
nested callbacks, 432
pipeline() function, 434–435
reward() function, 431
steps, 430–431, 433

sequential flow, 426
steps, 426–427
steps with argument binding, 428

async.parallel() function, 429
async.series(), 429
Automated JavaScript linting, Grunt, 28
Automated Sass stylesheet compilation,

Grunt, 29
Automated unit testing, Grunt, 31

��������� B
Bayeux protocol

browser, 386
dropped connections and messages, 385
legacy browser support, 385
long-polling technique, 384
network challenges, 384
Node.js, 386
socket connections, 385

Index

■ index

478

Bookshelf library
object-relational mapper, 361

creating model, 362
creating new instance, 362–363
customizing export process, 368
defining class properties, 368
destroying instances, 364
extending with custom behavior, 365–366
extending with subclasses, 369
fetching instances, 363
fetching multiple models, 364–365
validation, 367

relationships, 370
many-to-many association, 376–378
one-to-many association, 373–375
one-to-one association, 370–373

Bower tool
adding packages, 4–5
configuration, 2
creation

registry, 9
Semver Git Tags, 8
valid name, 8

dependency chain management, 7
finding packages, 3
installation, 2
manifestation, 2–3
removing packages, 5
semantic version number, 6

Browserify, JavaScript module loader See also
Transforms

AMD API vs. CommonJS, 102
browser module

lib/browser.js, 115
lib/extra-browser, 116
lib/extra.js, 116
lib/node.js, 115
multiple module, 116

bundles
browserify.js, 109
browserify-vendor.js, 110
Gruntfile, 109
HTML file, 108

front-end application, 103
Grunt task, 104, 107
HTML file, 104
installation, 103
Node

advantage, 113
creating namspace, 112
dependency management, 114
Grunt task, 113
loading Lodash, 114
NODE_PATH environment, 112

path-env project, 112–113
reference module, 111
resolution module, 112

triggering new bundle creation, 106
Watchify installation, 107

browserify-shim transform, 119
bulkify transform, 118

��������� C
calcAge() function, 431
calcAvg() function, 402
Callback-driven JavaScript library See Async.js

library
Callback hell, 348
catch() method, 415
changePassword() function, 419
Complex forms management, AngularJS

conditional logic, 183, 185
repeatable sections, 185–188
validation

built-in Angular directives, 181
controller, 180
displaying dynamic feedback, 178
dynamic display of feedback, 182
FormController, 181
ng-model directives, 181
output in final state, 183
output in initial state, 182

Connection.getParams() method, 262
Content Security Policy (CSP), 249
Context helpers

asynchronous, 223
bodies, 220
chunk, 219
context, 219
feature, 218
params, 222

Context helperssystemStatus()
context helper, 218

crankyFunction(), 417
Custom Dust Filter, 217

��������� D, E
Dependency management, 114
done() method, 401, 413, 417
Dust helpers

context dump, 229
custom helpers, 229
iteration helpers, 228
logic, 226–227
mathematical expression, 228
switch statement, 227

■ Index

479

��������� F
Faye library

Bayeux protocol
browser, 386
dropped connections and messages, 385
legacy browser support, 385
long-polling technique, 384
network challenges, 384
Node.js, 386
socket connections, 385

HTTP, 381–382
PubSub messaging

cancel() method, 387
/foo channel, 388
implementation, 391, 393
/numbers Channel, 387
wildcard channels, 388

WebSockets, 383
filterBySkill() function, 421–422
finally() method, 416
folderify transform, 117

��������� G
get() method, 195
getParams() method, 257
getUser() factory function, 431
getUser() function, 420
groupByStates() functions, 421– 422
Grunt tool

adding, 15
configuration, 15
Gruntfile.js, 12
grunt uglify, 17
installation, 12
interacting with file system

automated JavaScript linting, 28–29, 31
grunt-contrib-watch plugin, 28
methods, 25
source-destination mappings, 26–28

loadTasks() function, 15–17
plugins, 14

configuration, 32
file structure, 32
output, 35
publishing via npm, 35
source code, 33–34

tasks, 14
asynchronous, 19
dependencies, 20
descriptions, 18–19
managing configuration, 18
multi-tasks, 20–23

gzip middleware, Mach
compressed response

headers, 268
Content-Type headers, 268
Mach.gzip, 269
Vary header, 269

��������� H
HTTP routes, Mach

GET route, 254–255
methods, 254
query strings and request bodies

curl command, 257
extracting values, 256–257
sending POST request, 258

REST route, 256
sending responses, 259

Connection.send(), 258
setting Content-Type header, 260
methods, 258–259
redirect response, 260

��������� I
Internationalization and localization,

Kraken tool
Content Security Policy (CSP), 249
cookie-based authentication, 244–245
corresponding content files, 241
CSRF attack, 247
“CSRF token missing” error, 248
Dust template, 240–241
English version, 242
inserting hidden _csrf field, 248–249
locale-specific version, 242
locality detection, 243
malicious web form, 247
malicious web site, 246
sign-in attempt, 246
signing into trusted application, 245
sign-in page, 247–248
Spanish version, 243
synchronizer token pattern, 247

��������� J
JSON application configuration

file, 66
logs command, 67
main application, 65, 67
options, 64
settings, 64
weather application, 65, 67

■ index

480

��������� K
Knex library

adding knex npm module, 346
command-line utility, 346
configuring, 347
features, 346
migration scripts

configuration, 356
execution, 359
file structure, 357
new script, 357
reverting, 359
schema updates, 357–358
up and down functions, 355

seed scripts
creating, 360
execution, 360
simple Knex seed script, 360

SQL query builder
interface methods, 348–352, 354–355
query builder methods, 348

Knockout library
additions and removal

attr binding, 140
changeIngredient() method, 141
commitNewIngredient() method, 139
markup, 140
minus and plus buttons, 138–139
reflecting changes, 141
splice() method, 141
valueUpdate binding, 141

application structure, 122
binding view models to DOM, 130–131

steps, 130
changing contexts, 125
changing title, 134

markup, 135
custom component system

elements, 144
input list component, 148–149
input list template, 146–148
input list view model, 145–146

data model, 122
elements, 124

 element, 125
instructions

Citation field addition, 144
creating and editing, 142
demoteInstruction() method, 143
markup, 142
promoteInstruction() method, 143

isSelected() method, 126
markup and bindings, 124–125, 127

<a> tag, 127
<h1> text binding, 127

observable property, 126, 128
hasCitation() method, 129
ko.computed() function, 129
types, 128

RecipeDetails.create() function, 128
rendered application, 123
selectedRecipe observable, 126
selectRecipe() method, 126
subscribables

modified save() method, 150
notifySubscribers() method, 151
as primitive message bus, 150
subscribe() method, 151
updation, 151

switching to “Edit” mode
arguments, 134
bindings, 132–133
button appearance, 131–132
isEditing observable, 133
mapping plugin, 133

updations
drop-down options, 136–137
<option> element, 136
<select> element, 135–136
options binding, 135
regenerating formatted string, 138
simple value bindings, 137
viewmodel.servings(), 135

view model, 122–123, 125–126
Kraken tool

controller, 235
default controller, 233
Dust templates, 240–241

blocks, 215
conditionality, 213
context and references, 209
context helpers (see Context helpers)
Dust helpers (see Dust helpers)
Dust sections, 212
filters, 216
iteration, 212
logic-less template engines, 208–209
partials, 214

environment-aware configuration
application, 192
in development mode, 195
object’s get() method, 195
initializing confit, 193
in production mode, 196
project/config folder, 193
Node’s require() method, 194
Shortstop Handlers (see Shortstop

handlers)
Project’s index.js Script, 232
initial file structure, 231

■ Index

481

kraken-js module, 232
middleware functions

event notifications, 203
express application, 201
express processes, 200
flexibility, degree of, 201
meddleware module, 201–202
steps, 200

onconfig() callback function, 233
project launching, 231
structured route registration

directory configuration, 205
index configuration, 204
routes configuration, 207

test suite, 237
updated feeds model, 234
using Yeoman generator, 230

��������� L
loadCandidates() function, 422
loadCustomer() function, 405
Loader plugins, RequireJS

i18n
German (de) translation, 93
header.hbs template, 92
header-view module, 92
language module, 93
nls/de directory, 93
quotes page view, 93
search.hbs template, 92

text.js, 88
#explode helper, 89
module alias, 89–90
quotes.hbs template, 90
template, 89

Long-polling technique, 384

��������� M
Mach tool

adding HTTP routes, 253
adding middleware, 253
connections

Connection object, 260
location data, 261
location property, 261
message content, 262
message cookies, 262
message headers, 262

creating application stack, 252
custom middleware

adding application stack, 288
adding API Version Header, 287
apiVersion(), 287

layers, 287
X-API-Version header, 288

hosts
/about route, 284–286
adding aliases to /etc/hosts, 282
hostname prefixes, 287
linking to different hosts, 285
Mach.mapper, 282–284
ping command, 283

HTTP client
as both server and client, 289
fetching Mach’s release tags, 290
Mach.get() method, 290
Mach.get(), 290

HTTP proxy
JSON routes, 292
proxied tally data, 294–295
proxying requests to another web server, 291
rendered page for voting application, 293
submitting vote, 294
wrapping in custom middleware, 292

HTTP routes
GET route, 254–255
query strings, 256–257
request body, 257–258
sending responses, 258–260
URL parameters, 256

installation, 252
Mach.rewrite middleware

parameters, 280
rewrite rule, 282
rewriting URL, 280
unmodified rewritten URLs, 281

middleware
app.use(), 265
authentication, 271–272
autoIndex option, 267
auto-indexing, 267–268
automatic parsing of query string, 271
automatic parsing of request body, 270
automatic XML content headers setting, 264
functions, 263
gzip, 268–270
index option, 267
mach.logger, 263
modified middleware (see Modified

middleware, Mach)
public directory, 266
request/response evaluating order, 263
serving static HTML page, 266
session middleware (see Session

middleware, Mach)
setting default header values, 264

option property, 254
serving on port 8080, 254

■ index

482

Mach.basicAuth middleware, 271
makeNodeResolver() method, 404
Message.bufferContent() method, 262
Message.stringifyContent() method, 262
Migration scripts, Knex

configuration, 356
execution, 359
new script, 357–358
reverting, 359
schema updates

with raw SQL queries, 358
with schema builder methods, 357–358

up and down functions, 355
Modified middleware, Mach

ETag and If-None-Match
content modification, 277
adding ETag Header, 276
passing of If-None-Match Check, 278

Last-Modified and If-Modified-Since
adding Last-Modified Header, 278
content modification, 279
passing If-Modified-Since Check, 280

Mongoose library
data types

complex types, 308
object types, 308
primitive types, 307

default values, 309
JSON data

Album JSON Data File, 301
album schema, 302
importing data, 302–305
ODM, 301
querying data, 305–306

models and documents
creating Album constructor, 321
library schema and Album model, 321
creating document with property data, 323
document instance methods, 323–324
document virtuals, 325–326
mongoose.model(), 321
new album document instance, 321
static methods, 327–328
verification, 322

MongoDB
data hierarchy, 297–298
duplication, 299–300
_id key, 299
Relational Database Systems (RDBMS), 298
terms and definitions, 298–299

nested schemas, 308
queries

Model.count(), 334
Model.find(), 329–330
Model.findById(), 331–332

Model.findByIdAndRemove(), 333–334
Model.findByIdAndUpdate(), 332–333
Query.Populate(), 335–336

query operators
advanced query operators, 343
$and and $or operators, 340–341
$in and $nin operators, 338–340
$lt and $gt operators, 336–338
$regex operators, 342

required attribute, 310
schema middleware

asynchronous pre-save middleware, 320
order of execution, 320
pre-save middleware, 318–319

schema references
creating single/multiple documents, 318
importing library data, 315, 317
libraryJSON.albums property, 317
library JSON data, 315
running library import script, 318
verifying library import, 318
$or criteria, 317

schema validation
asynchronous property validators, 312
declaring property validators inline, 312
properties, 311
robust version, 314
ValidationError, 313

secondary indexes, 310–311
Multi-tasks, Grunt, 20

calling without specifying specific target, 21
command-line options, 24
with configuration options, 22
with configuration templates, 23
displaying feedback to user, 24–25
handling errors, 25
running against specific target, 21

��������� N
nodeify() method, 405
Node.js-style callback, 425
notify() method, 413, 415
notifyUser() function, 419

��������� O
Object data mapper (ODM), 301
Object-relational mapper, 361

��������� P
Package management, 1. See also Dependency

management
PM2 command-line utility

■ Index

483

accessing sole route, 55
commands, 55
details for specific PM2 process, 56
error recovery, 56–57
installation, 53
launching application, 54
load balancing

exec_mode property, 69
Express application scaling, 68
instances property, 69
JSON application configuration file, 68
launching application, 69
monit command, 69
monitoring CPU usage, 69

monitoring
arguments, 60
local resources, 60
logging incoming requests, 59
output from processes, 59
output from specific processes, 60
remote resources, 61

Node application information, 54
process management, 63–67
responding to file changes, 58
zero-downtime deployments

gracefulReload command, 70–71
modified application, 70
releasing updates to public, 70
reloading process, 72

process.nextTick() function, 402
Promises See Q library
PubSub messaging

cancel() method, 387
/foo channel, 388
implementation, 391
/numbers channel, 387
wildcard channels, 388

Pyramid of doom, 348

��������� Q
Q.all() function, 420–421
Q.allSettled() function, 421
Q library

asynchronous callback-driven code, 397
asynchronous code, 396
callbacks, 397, 399
catch() method, 415
cleaning up resources, 416
deferred

asynchronous, callback-driven API, 403
calcAvg() implementation, 402
creation, 402
definition, 401

nodeify() method, 405
node resolver callback, 404
notification, 413
resolve() methods, 406

done() method, 417
finally() method, 416
flow control

parallel flow, 420
pipeline flow, 421
sequential flow, 418

fs.readFile(), 397
getPlayerStats(), 397
Node.js runtime, 395
playerStats.calcAvg(), 397
playerStats.calcBest(), 397
promise chain termination, 417
Promises/A+ specification, 401
rejection callback

error muffling, 410
error return, 409
resolution callback, 411
throwing error, 410

reporting progress
console output, 415
Q’s thenable method signature, 412

resolution callback, 407
simple values, 412
synchronous code, 395, 397
try/catch block, 397

��������� R
RequireJS, JavaScript module loader

AMD, 73
application module and dependencies

logical dependency tree, 80
module anatomy, 78–79
module dependency paths, 80
public directory structure, 79

cache busting
bust parameter, 95
definition, 94
problems, 96
urlArgs property, 95

configuration
application file locations, 76
external script, 77
main module, 78
global require object, 75
RequireJS API, 77

exciting HTML file, 74
exciting web server, 74
installation, 75
loader plugins

■ index

484

i18n, 92–94
text.js, 88–90
web page loading, 91

loading plugins
jQuery and custom plugins, 83
using module aliases, 82
without proxy module, 83

non-AMD dependencies, 74
optimizer

configuring r.js, 96–97
public/scripts directory, 98
running r.js command, 97–98

paths and aliases
configuration module path aliases, 81
jquery alias, 82
jQuery module dependency, 81

shim dependencies
highlight module, 87–88
jQuery loading, 88
quotes-state module, 86
search-view module, 86
shimmed scripts, 87

shims
configuration, 84
module, 85
Undrln library, 84–85

window.navigator.language property, 94
resolve() methods, 406
reward() function, 431

��������� S
Semantic version number, 6
sendToNSA() functions, 419
Session middleware, Mach

adding to application Stack, 273
cookie, 275
cookie-specific option properties, 275
perplexing quiz, 273
Redis session store, 276
setting session properties, 274

Shortstop handlers
default configuration file, 198
file, 198
glob, 198
import and config, 196
index.js Script, 197
output, 197, 199
path, 198
require, 198

Source-destination mappings, Grunt
expand option, 28
Files Array format, 27–28
imaginary project’s public folder, 26
src key, 26–27

SQL query builder, Knex
callback function, 348
promise-based API, 349
results, 349
streams, 350–351
transactions, 352, 354

subscribe() method, 388

��������� T
then() method, 399, 402, 413, 416, 419
Transforms

brfs transform, 116–117
browserify-shim transform, 119
bulkify transform, 118
folderify transform, 117
fs.readFileSync(), 117
readFileSync() method, 116
transforms-brfs package, 117

��������� U
Underscore and Lodash functions

aggregation and indexing
countBy(), 449–450
groupBy(), 451–452
indexBy(), 452–453

chaining
on collection, 460
filtering collection, 461
forEach(), 462
on primitive, 462

data selection from collections
filter() and where(), 455
filter(), 454
where(), 454

data selection from objects
omit(), 458
pick(), 458–459
pluck(), 456
values(), 456–457

installation and usage, 449
vs. native ECMAScript, 447–448
templates

accessing data object, 473–474
changing template syntax, 472
default data, 474–475
global template settings, 473
looping, 470–471
reusable binding function, 469
with “gator tags”, 469

timing
debounce(), 465–466
defer(), 463
throttle(), 466–468

RequireJS, JavaScript module loader (cont.)

■ Index

485

��������� V, W, X
Visual learner, 104

custom code, 105
dependency tree, 105

��������� Y, Z
Yeoman generator

answer file, 40
Grunt task, 39
installation, 38
node modules, 42–43
question file, 38

subcommands
Grunt Task, 42
modernweb generator, 41
calling route sub-generator, 42

sub-generators
default app sub-generator, 43
app folder contents, 46
commands, 43
composability, 51
instance methods, 47
Lodash templates, 48–49
prototype methods, 47
secondary commands, 49–50

tools and libraries, 38

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Bower
	 Getting Started
	 Configuring Bower
	 The Manifest
	 Creating a New Manifest

	 Finding, Adding, and Removing Bower Packages
	 Finding Packages
	 Adding Packages
	Development Dependencies

	 Removing Packages

	 Semantic Versioning
	 Managing the Dependency Chain
	 Creating Bower Packages
	 Choose a Valid Name
	 Use Semver Git Tags
	 Publish Your Package to the Registry

	 Summary

	Chapter 2: Grunt
	 Installing Grunt
	 How Grunt Works
	 Gruntfile.js
	 Tasks
	 Plugins
	 Configuration

	 Adding Grunt to Your Project
	 Maintaining a Sane Grunt Structure

	 Working with Tasks
	 Managing Configuration
	 Task Descriptions
	 Asynchronous Tasks
	 Task Dependencies
	 Multi- Tasks
	 Multi-Task Options
	 Configuration Templates
	 Command-Line Options
	 Providing Feedback
	 Handling Errors

	 Interacting with the File System
	 Source-Destination Mappings
	 Watching for File Changes
	Automated JavaScript Linting
	Automated Sass Stylesheet Compilation
	Automated Unit Testing

	 Creating Plugins
	 Getting Started
	 Creating the Task
	 Publishing to npm

	 Summary
	 Related Resources

	Chapter 3: Yeoman
	 Installing Yeoman
	 Creating Your First Project
	 Subcommands

	 Creating Your First Generator
	 Yeoman Generators are Node Modules
	 Sub-Generators
	Lodash Templates

	 Defining Secondary Commands
	 Composability

	 Summary
	 Related Resources

	Chapter 4: PM2
	 Installation
	 Working with Processes
	 Recovering from Errors
	 Responding to File Changes

	 Monitoring Logs
	 Monitoring Resource Usage
	 Monitoring Local Resources
	 Monitoring Remote Resources

	 Advanced Process Management
	 JSON Application Declarations

	 Load-Balancing Across Multiple Processors
	 Zero-Downtime Deployments

	 Summary
	 Related Resources

	Chapter 5: RequireJS
	 Running the Examples
	 Working with RequireJS
	 Installation
	 Configuration
	 Application Modules and Dependencies
	 Paths and Aliases
	Loading Plugins with Proxy Modules

	 Shims
	Shim Dependencies

	 Loader Plugins
	text. js
	Page Load
	 i18n

	 Cache Busting

	 RequireJS Optimizer
	 Configuring r. js
	 Running the r.js Command

	 Summary

	Chapter 6: Browserify
	 The AMD API vs. CommonJS
	 Installing Browserify
	 Creating Your First Bundle
	 Visualizing the Dependency Tree
	 Creating New Bundles As Changes Occur
	 Watching for File Changes with Grunt
	 Watching for File Changes with Watchify

	 Using Multiple Bundles
	 The Node Way
	 Module Resolution and the NODE_PATH Environment Variable
	Taking Advantage of NODE_PATH Within Browserify

	 Dependency Management

	 Defining Browser-Specific Modules
	 Extending Browserify with Transforms
	 brfs
	 folderify
	 bulkify
	 Browserify- Shim

	 Summary
	 Related Resources

	Chapter 7: Knockout
	 Views, Models, and View Models
	 The Recipe List
	 Recipe Details

	 Binding View Models to the DOM
	 View Models and Forms
	 Switching to “Edit” Mode
	 Changing the Recipe Title
	 Updating Recipe Servings and Cooking Time
	 Adding and Removing Ingredients
	 Instructions
	 Citation

	 Custom Components
	 The Input List View Model
	 The Input List Template
	 Registering the Input List Tag

	 Subscribables: Cheap Messaging
	 Summary
	 Related Resources

	Chapter 8: AngularJS
	 A Declarative Approach to Building Web Applications
	 The Imperative Approach
	 The Declarative Approach

	 Modules: A Foundation for Building Loosely Coupled Applications
	 Specifying a Bootstrap Module
	Automatic Bootstrapping
	Manual Bootstrapping

	 Directives: An Abstraction Layer for the DOM
	 Taking Control
	 Scopes and Prototypal Inheritance
	 Manipulating Scope with Controllers
	Two-Way Data Binding

	 Loose Coupling Through Services and Dependency Injection
	 Dependency Injection
	 Thin Controllers and Fat Services
	Factories
	 Services
	 Providers

	 Creating Routes
	 Route Parameters
	 Route Resolutions

	 Creating Complex Forms
	 Validation
	 Conditional Logic
	 Repeatable Sections

	 Summary
	 Related Resources

	Chapter 9: Kraken
	 Environment-Aware Configuration
	 Shortstop Handlers

	 Configuration-Based Middleware Registration
	 Event Notifications

	 Structured Route Registration
	 Index Configuration
	 Directory Configuration
	 Routes Configuration

	 Dust Templates
	 Context and References
	 Sections
	 Iteration
	 Conditionality
	 Partials
	 Blocks
	 Filters
	Creating Custom Filters

	 Context Helpers
	chunk
	 context
	 bodies
	 params
	 Asynchronous Context Helpers

	 Dust Helpers
	Logic Helpers
	Switch Statements
	Iteration Helpers
	Mathematical Expressions
	 Context Dump
	 Custom Helpers

	 Let’s Get Kraken
	Controllers, Models, and Tests
	The Model
	 The Controller
	 The Test Suite

	 Internationalization and Localization
	Detecting Locality

	Security
	Defending Against Cross-Site Request Forgery Attacks
	Configuring Content Security Policy Headers

	 Summary
	 Related Resources

	Chapter 10: Mach
	 Chapter Examples
	 Installation
	 Mach, the Web Server
	 HTTP Routes
	URL Parameters
	Query Strings and Request Bodies
	Sending Responses

	 Making Connections
	Location
	Request and Response Messages
	Message Headers
	Message Cookies
	Message Content

	 Common Middleware
	What Manner of Content Is This?
	My Kingdom for a File
	Zip It
	Look at That Body
	Who Goes There?
	The Velocity of an Unladen Session
	The MODified Squad
	ETag and If-None-Match
	Last-Modified and If-Modified-Since

	 These Are Not the Routes You’re Looking for...
	 The Hosts with the Most
	 Custom Middleware

	 Mach, the HTTP Client
	 Mach, the HTTP Proxy
	 Summary

	Chapter 11: Mongoose
	 Basic MongoDB Concepts
	 A Simple Mongoose Example
	 Creating a Mongoose Schema for JSON Data
	Importing Data with Mongoose
	 Querying Data with Mongoose

	 Working with Schemas
	 Data Types
	 Nested Schemas
	 Default Property Values
	 Required Properties
	 Secondary Indexes
	 Schema Validation
	 Schema References
	 Schema Middleware

	 Working with Models and Documents
	 Document Instance Methods
	 Document Virtuals
	 Static Model Methods

	 Working with Queries
	 Model.find()
	Model.findById( )
	Model.findByIdAndUpdate( )
	Model.findByIdAndRemove( )
	Model.count( )
	Query.Populate( )

	 Finding Documents with Query Operators
	The $lt and $gt Operators
	The $in and $nin Operators
	The $and and $or Operators
	The $regex Operator
	Advanced Query Operators

	 Summary

	Chapter 12: Knex and Bookshelf
	 Knex
	 Installing the Command-Line Utility
	 Adding Knex to Your Project
	 Configuring Knex
	 The SQL Query Builder
	Query Builder Methods
	Interface Methods
	Promises
	 Streams
	 Transactions

	 Migration Scripts
	Configuring Your Project for Migrations
	Creating Your First Migration
	Defining Schema Updates with Schema Builder Methods
	Defining Schema Updates with Raw SQL Queries

	Running Knex Migrations
	Reverting Knex Migrations

	 Seed Scripts
	Creating Seed Scripts
	Running Seed Scripts

	 Bookshelf
	 What Is an Object-Relational Mapper ?
	 Creating Your First Bookshelf Model
	Creating New Instances
	Fetching Instances
	Destroying Instances
	Fetching Multiple Models (Collections)
	Extending with Custom Behavior
	Performing Validation
	Customizing the Export Process
	Defining Class Properties
	Extending with Subclasses

	 Relationships
	One-to-One
	hasOne and belongsTo

	One-to- Many
	hasMany and belongsTo

	Many-to- Many
	belongsToMany

	 Summary
	 Related Resources

	Chapter 13: Faye
	 HTTP, Bayeux, and WebSockets
	 WebSockets
	 The Bayeux Protocol
	Network Challenges
	 Legacy Browser Support
	Dropped Connections and Missed Messages
	A Focus on Channels Rather Than Sockets

	 Getting Started with Faye
	 PubSub Messaging
	 Wildcard Channels
	Implementing Security with Extensions

	 Summary
	 Related Resources

	Chapter 14: Q
	 Timing Is Everything
	 Promises vs. Callbacks
	 The Promise of Q
	 Deferreds and Promises
	 Values and Errors
	 Resolving Deferreds with Promised Values
	Forwarding Values, Errors, and Promises in Callbacks
	Turning Simple Values into Promises

	 Reporting Progress
	 Everything Ends

	 Flow Control with Q
	 Sequential Flow
	 Parallel Flow
	 Pipeline Flow

	 Summary
	 Related Resources

	Chapter 15: Async.js
	 Sequential Flow
	 Parallel Flow
	 Pipeline Flow
	 Reusing a Pipeline

	 Loop Flow
	 Looping While Some Condition Remains True
	 Looping Until Some Condition Becomes False
	 Retry Loops
	 Infinite Loops

	 Batch Flow
	 Asynchronous Queue
	 Asynchronous Cargo

	 Summary

	Chapter 16: Underscore and Lodash
	 Installation and Usage
	 Aggregation and Indexing
	 countBy()
	 groupBy()
	 indexBy()

	 Being Choosy
	 Selecting Data from Collections
	filter( )
	where( )
	find( ) and findWhere( )

	 Selecting Data from Objects
	pluck( )
	values( )
	pick( )
	omit( )

	 Chaining
	 Function Timing
	 defer()
	 debounce()
	 throttle()

	 Templates
	 Loops and Other Arbitrary JavaScript in Templates
	 Living Without Gator Tags
	 Accessing the Data Object Within a Template
	 Default Template Data

	 Summary
	 Related Resources

	Index

