Introduction to Programming

/" A Problem Solving Approach

John Dean Raymondmbe'an

http://www.allitebooks.org

Introduction to Programming

JAVA

A Problem Solving Approach

Apago Ribn Enbearcer

Park University

Raymond H. Dean

University of Kansas

McGraw-Hill
Higher Education
Boston Burr Ridge, IL Dubuque, IA New York San Francisco St. Louis

Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

M.al I itebooks.cogl

http://www.allitebooks.org

The McGraw-Hill companies

McGraw-Hill
Higher Education

INTRODUCTION TO PROGRAMMING WITH JAVA: A PROBLEM SOLVING APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,
Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for
distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOCO098

ISBN 978-0-07-304702-7
MHID 0-07-304702-3

Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Developmental Editor: Heidi Newsom Ap ag O PDF En h a n C e r
Executive Marketing Manager: Michael Weltz
Senior Project Manager: Kay J. Brimeyer

Lead Production Supervisor: Sandy Ludovissy
Designer: Laurie B. Janssen

Cover image: ©Don Palmer, Kansas Flint Hills
Compositor: Newgen

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley Crawfordsville, IN

Figure 1.1: Mouse: © BigStock Photos; Keyboard, Scanner, and Printer: © PhotoDisc/Getty Images;
Monitor: © Brand X/Punchstock; Figure 1.2: Motherboard, CPU chip, and main memory chips: © BigStock
Photos; Figure 1.4: Diskette: © BrandX/Jupiter Images; Compact disc: © Getty Royalty Free; Hard disk and
USB flash drive: © BigStock Photos

Library of Congress Cataloging-in-Publication Data

Dean, John, 1962—

Introduction to programming with Java : a problem solving approach / John Dean, Ray Dean.—Ist ed.

p. cm.

Includes index.

ISBN 978-0-07-304702—7 — ISBN 0-07-304702-3 (hard copy : alk. paper) 1. Java (Computer program
language) I. Dean, Ray, 1936— II. Title.
QA76.73.J38D4265 2008
005.13'3—dc22

2007037978

www.mhhe.com

lvww.allitebooks.cond

http://www.mhhe.com
http://www.allitebooks.org

@edication

—To Stacy and Sarah

Apago PDF Enhancer

lvww.allitebooks.cond

http://www.allitebooks.org

About the Authors

John Dean is the Department Chair of the Information and Computer Science De-
partment at Park University. He earned an M.S. degree in computer science from the
University of Kansas. He is Sun Java certified and has worked in industry as a software
engineer and project manager, specializing in Java and various Web technologies—
JavaScript, JavaServer Pages, and servlets. He has taught a full range of computer sci-
ence courses, including Java programming and Java-based Web programming.

Raymond Dean is a Professor Emeritus, Electrical Engineering and Computer Science,
University of Kansas. He earned an M.S. degree from MIT and a Ph.D. degree from
Princeton University, and he is a senior member of IEEE. He has published numerous
scientific papers and has 21 U.S. patents. He is currently a research scientist with The
Land Institute’s Climate and Energy Program, which advocates comprehensive energy

conservatio e sil hsumption with wind power
agen niranees

and electrical-energy storage.

M.al I itebookscom

http://www.allitebooks.org

Preface ix

Project Summary xxi

CHAPTER 1

Introduction to Computers and
Programming 1
1.1.
1.2.
1.3.
1.4.
1.5.

Introduction 1

Hardware Terminology 2
Program Development 9
Source Code 10
Compiling Source Code into
Object Code 12
Portability 12

Emergence of Java 14

1.6.
1.7.
1.8.
1.9. GUI Track: Hello World

(Optional) 20

2

Algorithms and Design 25

2.1.
2.2,
2.3.
2.4.

CHAPTER

Introduction 25

Output 26

Variables 27

Operators and Assignment
Statements 28

Input 29

Flow of Control and Flowcharts 30
if Statements 31

Loops 36

Loop Termination Techniques 38
Nested Looping 41

Tracing 42

Other Pseudocode Formats and
Applications 46

Problem Solving: Asset Management
(Optional) 48

2.5.
2.6.
2.7.
2.8.
29.
2.10.
2.11.
2.12.

2.13.

CHAPTER 3

Java Basics 56

3.1
3.2.
3.3.
34.
3.5.
3.6.
37
3.8.
3.9.
3.10.
3.11.
3.12.

3.14.
3.15.
3.16.

3.17.

3.18.
3.19.
3.20.
3.21.

3.22.
3.23.
3.24.

Introduction 57

“I Have a Dream” Program 57
Comments and Readability 58
The Class Heading 60

The main Method’s Heading 60
Braces 61
System.out.printin 62
Compilation and Execution 63
Identifiers 64

Variables 65

Assignment Statements 66
Initialization Statements 68

31 i —int, long, float,
First Program—Hello Worf(?\psa go PDF Eqm$m€wes int, long, floa

Constants 71

Arithmetic Operators 74

Expression Evaluation and Operator
Precedence 76

More Operators: Increment, Decrement, and
Compound Assignment 78

Tracing 80

Type Casting 80

char Type and Escape Sequences 83
Primitive Variables Versus Reference
Variables 85

Strings 86

Input—the Scanner Class 90

GUI Track: Input and Output with
JOptionPane (Optional) 95

CHAPTER 4

Control Statements 106

4.1.
4.2.
4.3.
44.

Introduction 107
Conditions and Boolean Values
i Statements 108
&& Logical Operator

107

111

M.al I itebookscom

http://www.allitebooks.org

4.5.
4.6.
4.1.
4.8.
4.9.
4.10.
4.11.

4.12.
4.13.
4.14.
4.15.

CHAPTER 5

Contents

| | Logical Operator 116 6.13. Problem Solving with Simulation
! Logical Operator 118 (Optional) 227

switch Statement 119

while Loop 123 CHAPTER 7

doLoop 126

Object-Oriented Programming—

for L 127
or “oop Additional Details 245

Solving the Problem of Which Loop

to Use 132 7.1. Introduction 246

Nested Loops 133 7.2. Object Creation—A Detailed Analysis 246
boolean Variables 135 7.3. Assigning a Reference 248

Input Validation 138 7.4. Testing Objects for Equality 252

Problem Solving with Boolean Logic 7.5. Passing References as Arguments 257
(Optional) 139 7.6. Method-Call Chaining 260

7.7. Overloaded Methods 262
7.8. Constructors 265
79. Overloaded Constructors 272

Using Pre-Built Methods 151 7.10. Problem Solving with Multiple Driven

Classes 275

5.1. Introduction 152
5.2. The API Library 153 CHAPTER 8
5.3. Math Class 155
5.4. Wrapper Classes for Primitive Types 161 Software Engineering 295
5.5. Character Class 165
8
s6. stringmennots 17 APAQ0 PDF SEMiraric er
. _ . Coding-Style Conventions 296
5.7. Formatted Output with the printf
Method 172 8.3. Helper Methods 305
5.8. Problem Solving with Random Numbers 8.4. Enc'a psulation (With Ins‘tance
(Optional) 177 Variables and Local Variables) 308
5.9. GUI Track: Drawing Images, Lines, 8.5. Design Phlloso!)hy 310
. 8.6. Top-Down Design 312
Rectangles, and Ovals in Java Applets S
(Optional) 182 8.7. Bottom-Up Design 321
8.8. Case-Based Design 323
6 8.9. Iterative Enhancement 324
CHAPTER 8.10. Merging Driver Method into Driven
. . . Class 326
Object-Oriented Programming 195 8.11. Accessing Instance Variables without
6.1. Introduction 196 Using this 327
6.2. Object-Oriented Programming Overview 196 8.12. Problem Solving with the API Calendar
6.3. First OOP Class 199 Class (Optional) 329
6.4. Driver Class 203 8.13. GUI Track: Problem Solving with CRC Cards
6.5. Calling Object, this Reference 206 (Optional) 331
6.6. Instance Variables 209
6.7. Tracing an OOP Program 210 CHAPTER 9
6.8. UML Class Diagrams 215 .
6.9. Local Variables 216 Classes with Class Members 345
6.10. The return Statement 218 9.1. Introduction 345
6.11. Argument Passing 222 9.2. Class Variables 346
6.12. Specialized Methods—Accessors, Mutators, 9.3. Class Methods 349
Boolean Methods 224 9.4. Named Constants 352

lvww.allitebooks.cond

http://www.allitebooks.org

9.5.
9.6.

9.7.

Writing Your Own Utility Class 354
Using Class Members in Conjunction with
Instance Members 354

Problem Solving with Class Members and
Instance Members in a Linked List Class
(Optional) 358

CHAPTER 10

Arrays and ArrayLists 370

10.1.
10.2.
10.3.
10.4.

10.5.
10.6.

10.7.
10.8.
10.9.
10.10.
10.11.
10.12.
10.13.

10.14.

Introduction 371

Array Basics 371

Array Declaration and Creation 373
Array length Property and Partially
Filled Arrays 377

Copying an Array 379

Problem Solving with Array Case
Studies 382

Searching an Array 388
Sorting an Array 393
Two-Dimensional Arrays
Arrays of Objects

396

The ArrayList Cl‘gfpag 0] PDF En h

Storing Primitives in an ArrayList 414
ArrayList Example Using Anonymous
Objects and the For-Each Loop 417
ArrayLists Versus Standard

Arrays 422

CHAPTER 11

Type Details and Alternate Coding
Mechanisms 433

11.1.
11.2.

11.3.

11.4.
11.5.

11.6.
11.7.
11.8.
11.9.
11.10.
11.11.

Introduction 434

Integer Types and Floating-Point

Types 434

char Type and the ASCII

Character Set 438

Type Conversions 441

Prefix/Postfix Modes for Increment/Decrement
Operators 443

Embedded Assignments 446
Conditional Operator Expressions 448
Expression Evaluation Review 449
Short-Circuit Evaluation 453

Empty Statement 454

break Statement within a Loop 456

11.12.
11.13.

Contents vii

for Loop Header Details 457
GUI Track: Unicode (Optional) 459

CHAPTER 12

Aggregation, Composition, and
Inheritance 471

12.1.
12.2.
12.3.
12.4.

12.5.
12.6.
12.7.

12.8.
12.9.

12.10.

12.11.

Introduction 472

Composition and Aggregation 472
Inheritance Overview 479
Implementation of Person/Employee/
Ful ITime Hierarchy 483
Constructors in a Subclass
Method Overriding 486
Using the Person/Employee/Ful ITime
Hierarchy 488

The Final Access Modifier 489

Using Inheritance with Aggregation and
Composition 490

Design Practice with Card Game

Example 493

Problem Solving with Association Classes

485

apreey @8

CHAPTER 13

Inheritance and Polymorphism 508

13.1.
13.2.

13.3.
13.4.
13.5.
13.6.

13.7.
13.8.
13.9.
13.10.
13.11.

Introduction 509

The Object Class and Automatic Type
Promotion 509

The equals Method 510

The toString Method 514
Polymorphism and Dynamic Binding 519
Assignments Between Classes in a Class
Hierarchy 522

Polymorphism with Arrays 524

Abstract Methods and Classes 530
Interfaces 533
The protected Access Modifier 539

GUI Track: Three-Dimensional Graphics
(Optional) 544

CHAPTER 14

Exception Handling 555

14.1.
14.2.

Introduction 556
Overview of Exceptions and Exception
Messages 556

lvww allitebooks.conj

http://www.allitebooks.org

viii

14.3.

14.4.
14.5.
14.6.

14.7.
14.8.
14.9.

14.10.
14.11.
14.12.

14.13.

Contents

Using try and catch Blocks to Handle
“Dangerous” Method Calls 557

Line Plot Example 559

try Block Details 563

Two Categories of Exceptions—Checked and
Unchecked 564

Unchecked Exceptions 566

Checked Exceptions 569

The Exception Class and Its getMessage
Method 572

Multiple catch Blocks 573

Understanding Exception Messages 576
Using throws <exception-type> to Postpone
the catch 580

GUI Track and Problem Solving: Line Plot
Example Revisited (Optional) 584

CHAPTER 15

Files

15.1.
15.2.
15.3.
15.4.
15.5.
15.6.

15.7.
15.8.
15.9.
15.10.

601

Introduction 601

Java API Classes You Need to Import 602
Text-File Output 604
Text-File Input 608
HTML File Generator 612

Text File Data Format Versus Binary
File Data Format 615

Binary File /O 618

Object File /O 622

The File Class 626

GUI Track: The JFileChooser
Class (Optional) 629

CHAPTER 16

GUI Programming Basics 644

16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.
16.10.
16.11.

Introduction 645

Event-Driven Programming Basics 646
A Simple Window Program 647
JFrame Class 649

Java Components 651

JLabel Component 652
JTextField Component 653
Greeting Program 654
Component Listeners 657
Inner Classes 658

Anonymous Inner Classes 659

16.12.
16.13.

16.14.
16.15.

16.16.
16.17.
16.18.

JButton Component 662

Dialog Boxes and the JOptionPane

Class 667

Distinguishing Between Multiple Events 671
Using getActionCommand to Distinguish
Between Multiple Events 673

Color 674

How GUI Classes Are Grouped Together 679
Mouse Listeners and Images (Optional) 680

CHAPTER 17

GUI Programming—Component Layout,
Additional GUI Components 693

17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
17.7.

Introduction 694

GUI Design and Layout Managers 694

FlowLayout Manager 696

BorderLayout Manager 698

GridLayout Manager 704

Tic-Tac-Toe Example 707

Problem Solving: Winning at Tic-Tac-Toe
ional) 710

(Opt
Apago PDF nERRGRACSH: vaneers 712
17.9.
17.10.
17.11.
17.12.
17.13.
17.14.
17.15.
17.16.

JPanel class 714
MathCalculator Program 715
JtextArea Component 719
JcheckBox Component 721
JradioButton Component
JcomboBox Component 726
Job Application Example 729
More Swing Components 734

724

Appendices

Appendix 1

Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7
Appendix 8
Appendix 9

Unicode/ASCII Character Set with
Hexadecimal Codes 745
Operator Precedence 749
Java Reserved Words 751
Packages 755

Java Coding-Style Conventions
Javadoc 771

UML Diagrams 778
Recursion 784
Multithreading 794

759

lvww.allitebooks.cond

http://www.allitebooks.org

Preface

In this book, we lead you on a journey into the fun and exciting world of computer programming. Through-
out your journey, we’ll provide you with lots of problem-solving practice. After all, good programmers need
to be good problem solvers. We’ll show you how to implement your problem solutions with Java programs.
We provide a plethora of examples, some short and focused on a single concept, some longer and more “real
world.” We present the material in a conversational, easy-to-follow manner aimed at making your journey a
pleasant one. When you’re done with the book, you should be a proficient Java programmer.

Our textbook targets a wide range of readers. Primarily, it targets students in a standard college-level
“Introduction to Programming” course or course sequence where no prerequisite programming experience
is assumed.

In addition to targeting students with no prerequisite programming experience, our textbook also tar-
gets industry practitioners and college-level students who have some programming experience and want to
learn Java. This second set of readers can skip the early chapters on general programming concepts and
focus on the features of Java that differ from the languages that they already know. In particular, since C++
and Java are so similar, readers with a C++ background should be able to cover the textbook in a single
three-credit-hour course. (But let us reiterate for those of you with no programming experience: You should
be fine. No prerequisite pr noxrEDEs fefiqancer

Finally, our textbook targets Ingh school students and readers outside of academia with no program-
ming experience. This third set of readers should read the entire textbook at a pace determined on a case-
by-case basis.

Textbook Cornerstone #1: Problem Solving

Being able to solve problems is a critical skill that all programmers must possess. We teach programmatic
problem solving by emphasizing two of its key elements—algorithm development and program design.

Emphasis on Algorithm Development

In Chapter 2, we immerse readers into algorithm development by using pseudocode for the algorithm ex-
amples instead of Java. In using pseudocode, students are able to work through non-trivial problems on
their own without getting bogged down in Java syntax—no need to worry about class headings, semicolons,
braces, and so on.! Working through non-trivial problems enables students to gain an early appreciation for
creativity, logic, and organization. Without that appreciation, Java students tend to learn Java syntax with
a rote-memory attitude. But with that appreciation, students tend to learn Java syntax more quickly and
effectively because they have a motivational basis for learning it. In addition, they are able to handle non-

! Inevitably, we use a particular style for our pseudocode, but we repeatedly emphasize that other pseudocode styles are fine as long
as they convey the intended meaning. Our pseudocode style is a combination of free-form description for high-level tasks and more
specific commands for low-level tasks. For the specific commands, we use natural English words rather than cryptic symbols. We’ve
chosen a pseudocode style that is intuitive, to welcome new programmers, and structured, to accommodate program logic.

M.al I itebooks.cogl

http://www.allitebooks.org

X Preface

trivial Java homework assignments fairly early because they have prior experience with similarly non-trivial
pseudocode homework assignments.

In Chapter 3 and in later chapters, we rely primarily on Java for algorithm-development examples. But for
the more involved problems, we sometimes use high-level pseudocode to describe first-cut proposed solutions.
Using pseudocode enables readers to bypass syntax details and focus on the algorithm portion of the solution.

Emphasis on Program Design

Problem solving is more than just developing an algorithm. It also involves figuring out the best implemen-
tation for the algorithm. That’s program design. Program design is extremely important and that’s why we
spend so much time on it. We don’t just present a solution. We explain the thought processes that arise when
coming up with a solution. For example, we explain how to choose between different loop types, how to split
up a method into multiple methods, how to decide on appropriate classes, how to choose between instance
and class members, and how to determine class relationships using inheritance and composition. We chal-
lenge students to find the most elegant implementations for a particular task.

We devote a whole chapter to program design—Chapter 8, Software Engineering. In that chapter, we
provide in-depth looks at coding-style conventions, modularization, and encapsulation. Also in the chapter,
we describe alternative design strategies—top-down, bottom-up, case-based, and iterative enhancement.

Problem-Solving Sections

We often address problem solving (algorithm development and program design) in the natural flow of explain-
ing concepts. But we also cover problem solving in sections that are wholly devoted to it. In each problem-
solving section, we present a situA? aeg@taip@ﬁreﬁm@ﬁ@ @ ¢oming up with a solution for
the problem, we try to mimic the real-world problem-solving experience by using an iterative design strategy.
We present a first-cut solution, analyze the solution, and then discuss possible improvements to it. We use a
conversational trial-and-error format (e.g., “What type of layout manager should we use? We first tried the
GridLayout manager. That works OK, but not great. Let’s now try the BorderLayout manager.”). This
casual tone sets the student at ease by conveying the message that it is normal, and in fact expected, that a
programmer will need to work through a problem multiple times before finding the best solution.

Additional Problem-Solving Mechanisms

We include problem-solving examples and problem-solving advice throughout the text (not just in Chapter 2,
Chapter 8, and the problem-solving sections). As a point of emphasis, we insert a problem-solving box, with
an icon and a succinct tip, next to the text that contains the problem-solving example and/or advice.

We are strong believers in learning by example. As such, our textbook contains a multitude of complete
program examples. Readers are encouraged to use our programs as recipes for solving similar programs on
their own.

Textbook Cornerstone #2: Fundamentals First

Postpone Concepts That Require Complex Syntax

We feel that many introductory programming textbooks jump too quickly into concepts that require complex
syntax. In using complex syntax early, students get in the habit of entering code without fully understanding
it or, worse yet, copying and pasting from example code without fully understanding the example code. That
can lead to less-than-ideal programs and students who are limited in their ability to solve a wide variety of

Preface Xi

problems. Thus, we prefer to postpone concepts that require complex syntax. We prefer to introduce such
concepts later on when students are better able to fully understand them.

As a prime example of that philosophy, we cover the simpler forms of GUI programming early (in an
optional graphics track), but we cover the more complicated forms of GUI programming late. Specifically,
we postpone event-driven GUI programming until the end of the book. This is different from some other
Java textbooks, which favor early full immersion into event-driven GUI programming. We feel that strategy
is a mistake because proper event-driven GUI programming requires a great deal of programming maturity.
By covering it at the end of the book, our readers are better able to fully understand it.

Tracing Examples

To write code effectively, it’s imperative to understand code thoroughly. We’ve found that step-by-step trac-
ing of program code is an effective way to ensure thorough understanding. Thus, in the earlier parts of the
textbook, when we introduce a new programming structure, we often illustrate it with a meticulous trace.
The detailed tracing technique we use illustrates the thought process programmers employ while debug-
ging. It’s a printed alternative to the sequence of screen displays generated by debuggers in IDE software.

Input and Output

In the optional GUI-track sections and in the GUI chapters at the end of the book, we use GUI commands
for input and output (I/O). But because of our emphasis on fundamentals, we use console commands for I/O
for the rest of the book.? For console input, we use the Scanner class. For console output, we use the stan-

dard System.out. priﬂpSésg(ﬁ . opm-n_-i nEh HW@@ rout -printf methods.

Textbook Cornerstone #3: Real World

More often than not, today’s classroom students and industry practitioners prefer to learn with a hands-on,
real-world approach. To meet this need, our textbook includes:

* compiler tools

* complete program examples

* practical guidance in program design

* coding-style guidelines based on industry standards
* UML notation for class relationship diagrams

* practical homework-project assignments

Compiler Tools

We do not tie the textbook to any particular compiler tool—you are free to use any compiler tool(s) that you
like. If you do not have a preferred compiler in mind, then you might want to try out one or more of these:

* Java2 SDK toolkit, by Sun
» TextPad, by Helios

2 We cover GUI I/O early on with the JOptionPane class. That opens up an optional door for GUI fans. If readers are so inclined,
they can use JOptionPane to implement all of our programs with GUI 1/O rather than console 1/0. To do so, they replace all con-
sole I/0 method calls with JOptionPane method calls.

xii Preface

* Eclipse, by the Eclipse Foundation
* Netbeans, backed by Sun
* Bluel, by the University of Kent and Deaken University

To obtain the above compilers, visit our textbook Web site at http:/www.mhhe.com/dean, find the ap-
propriate compiler link(s), and download away for free.

Complete Program Examples

In addition to providing code fragments to illustrate specific concepts, our textbook contains lots of com-
plete program examples. With complete programs, students are able to (1) see how the analyzed code ties in
with the rest of a program, and (2) test the code by running it.

Coding-Style Conventions

We include coding-style tips throughout the textbook. The coding-style tips are based on Sun’s coding
conventions (http://java.sun.com/docs/codeconv/) and industry practice. In Appendix 5, we provide a com-
plete reference for the book’s coding-style conventions and an associated example program that illustrates
the conventions.

UML Notation
The Universal Modeling Language (UML) has become a standard for describing the entities in large soft-

ware projects. Rather than overmlgig‘nin mEsthta efipr the entire UML (which is
quite extensive), we present a subset o ML. Throughout the textbook, we incorporate UML notation
to pictorially represent classes and class relationships. For those interested in more details, we provide ad-
ditional UML notation in Appendix 7.

Homework Problems

We provide homework problems that are illustrative, practical, and clearly worded. The problems range
from easy to challenging. They are grouped into three categories—review questions, exercises, and proj-
ects. We include review questions and exercises at the end of each chapter, and we provide projects on our
textbook’s Web site.

The review questions tend to have short answers and the answers are in the textbook. The review ques-
tions use these formats: short-answer, multiple-choice, true/false, fill-in-the-blanks, tracing, debugging,
write a code fragment. Each review question is based on a relatively small part of the chapter.

The exercises tend to have short to moderate-length answers, and the answers are not in the textbook.
The exercises use these formats: short-answer, tracing, debugging, write a code fragment. Exercises are
keyed to the highest prerequisite section number in the chapter, but they sometimes integrate concepts from
several parts of the chapter.

The projects consist of problem descriptions whose solutions are complete programs. Project solutions
are not in the textbook. Projects require students to employ creativity and problem-solving skills and apply
what they’ve learned in the chapter. These projects often include optional parts, which provide challenges
for the more talented students. Projects are keyed to the highest prerequisite section number in the chapter,
but they often integrate concepts from several preceding parts of the chapter.

An important special feature of this book is the way it specifies project problems. “Sample sessions”
show the precise output generated for a particular set of input values. These sample sessions include inputs
that represent typical situations and sometimes also extreme or boundary situations.

http://www.mhhe.com/dean
http://java.sun.com/docs/codeconv/

Preface xiii

Academic-Area Projects

To enhance the appeal of projects and to show how the current chapter’s programming techniques might ap-
ply to different areas of interest, we take project content from several academic areas:

* Computer Science and Numerical Methods
* Business and Accounting

* Social Sciences and Statistics

* Math and Physics

* Engineering and Architecture

* Biology and Ecology

The academic-area projects do not require prerequisite knowledge in a particular area. Thus, instructors are
free to assign any of the projects to any of their students. To provide a general reader with enough special-
ized knowledge to work a problem in a particular academic area, we sometimes expand the problem state-
ment to explain a few special concepts in that academic area.

Most of the academic-area projects do not require students to have completed projects from earlier
chapters; that is, the projects do not build on each other. Thus, instructors are free to assign projects without
worrying about prerequisite projects. In some cases, a project repeats a previous chapter’s project with a dif-
ferent approach. The teacher may elect to take advantage of this repetition to dramatize the availability of
alternatives, but this is not necessary.

Project assignments can be tailored to fit readers’ needs. For example:

» For readers outside of academia—

Readers can choose pA@t&@t@mtcP%nt&{ﬂ;h ancer

* When a course has students from one academic area—
Instructors can assign projects from the relevant academic area.

* When a course has students with diverse backgrounds—
Instructors can ask students to choose projects from their own academic areas, or
Instructors can ignore the academic-area delineations and simply assign projects that are most
appealing.

To help you decide which projects to work on, we’ve included a “Project Summary” section after the
preface. It lists all the projects by chapter, and for each project, it specifies:

 The associated section within the chapter
* The academic area

* The length and difficulty

* A brief description

After using the “Project Summary” section to get an idea of which projects you might like to work on, see
the textbook’s Web site for the full project descriptions.

Organization

In writing this book, we lead readers through three important programming methodologies: structured pro-
gramming, object-oriented programming (OOP), and event-driven programming. For our structured pro-
gramming coverage, we introduce basic concepts such as variables and operators, IF statements, and loops.
For our OOP coverage, we start by showing readers how to call pre-built methods from Sun’s Java Applica-

xiv Preface

tion Programming Interface (API) library. We then introduce basic OOP concepts such as classes, objects,
instance variables, and instance methods. Next, we move on to more advanced OOP concepts—class vari-
ables, arrays, and inheritance. Chapters on exception handling and files provide a transition into event-
driven graphical user interface (GUI) programming. We cover event-driven GUI programming in earnest in
the final two chapters.

The content and sequence we promote enable students to develop their skills from a solid foundation
of programming fundamentals. To foster this fundamentals-first approach, our book starts with a minimum
set of concepts and details. It then gradually broadens concepts and adds detail later. We avoid overloading
early chapters by deferring certain less-important details to later chapters.

GUI Track

Many programmers find GUI programming to be fun. As such, GUI programming can be a great motiva-
tional tool for keeping readers interested and engaged. That’s why we include graphics sections throughout
the book, starting in Chapter 1. We call those sections our “GUI track.” For readers who do not have time
for the GUI track, no problem. Any or all of the GUI track sections may be skipped as they cover material
that is independent of later material.

Chapter 1

In Chapter 1, we first explain basic computer terms—what are the hardware components, what is source
code, what is object code, and so on. We then narrow our focus and describe the programming language
we’ll be using for the remainder of the book—1Java. Finally, we give students a quick view of the classic

bare-bones “Hello World” progrAp@g@lin REcre Ik:l ANIE @deram using minimalist soft-
ware—Microsoft’s Notepad text editor and Sun’s command-line Software Development Kit (SDK) tools.

Chapter 2

In Chapter 2, we present problem-solving techniques with an emphasis on algorithmic design. In implement-
ing algorithm solutions, we use generic tools—flowcharts and pseudocode—with pseudocode being given
the greatest weight. As part of our algorithm-design explanation, we describe structured programming tech-
niques. In order to give students an appreciation for semantic details, we show how to trace algorithms.

Chapters 3-5

We present structured programming techniques using Java in Chapters 3-5. Chapter 3 describes sequential
programming basics—variables, input/output, assignment statements, and simple method calls. Chapter 4
describes non-sequential program flow—IF statements, Switch statements, and loops. In Chapter 5 we
explain methods in more detail and show readers how to use pre-built methods in the Java API library. In all
three chapters, we teach algorithm design by solving problems and writing programs with the newly intro-
duced Java syntax.

Chapters 6-8

Chapter 6 introduces the basic elements of OOP in Java. This includes implementing classes and implement-
ing methods and variables within those classes. We use UML class diagrams and object-oriented tracing
techniques to illustrate these concepts.

Chapter 7 provides additional OOP details. It explains how reference variables are assigned, tested for
equality, and passed as arguments to a method. It covers overloaded methods and constructors.

Preface XV

While the art of program design and the science of computerized problem-solving are developed
throughout the textbook, in Chapter 8, we focus on these aspects in the context of OOP. This chapter begins
with an organized treatment of programming style. It includes recommendations on how to use methods
to further the goal of encapsulation. It describes the major programming paradigms—top-down design,
bottom-up design, using pre-written software for low-level modules, and prototyping.

Chapter 9

Some Java textbooks teach how to implement class members before they teach how to implement instance
members. With that approach, students learn to write class members inappropriately, and that practice is
hard to break later on when instance members are finally covered. Proper programming practice dictates
that programmers (beginning programmers certainly included) should implement instance members more
often than class members. Thus, we teach how to implement instance members early on, and we postpone
how to implement class members until Chapter 9.

Chapter 10

In Chapter 10, we describe different ways to store related data. We present array basics and several impor-
tant array applications—searching, sorting, and histogram construction. We present more advanced array
concepts using two-dimensional arrays and arrays of objects. Finally, we look at a more powerful form of an
array—an ArrayList.

Chapter 11 Apago PDF Enhancer

Early on, students need to be immersed in problem-solving activities. Covering too much syntax detail early
can detract from that objective. Thus, we initially gloss over some less-important syntax details and come
back to those details later on in Chapter 11. Chapter 11 provides more details on items such as these:

* the byte and short primitive types

* the Unicode character set

* type promotions

* postfix versus prefix modes for the increment and decrement operators
* the conditional operator

* short-circuit evaluation

Chapters 12-13

We describe class relationships in Chapters 12 and 13. We spend two full chapters on class relationships be-
cause the subject matter is so important. We take the time to explain class relationship details in depth and
provide numerous examples. In Chapter 12, we discuss aggregation, composition, and inheritance. In Chap-
ter 13, we discuss more advanced inheritance-related details such as the Object class, polymorphism,
abstract classes, and interfaces.

Chapters 14-15

We cover exception handling in Chapter 14 and files in Chapter 15. We cover exception handling prior to
files because file-handling code utilizes exception handling; for example, opening a file requires that you
check for an exception.

xvi Preface

Chapters 16-17

We cover event-driven GUI programming at the end of the book in Chapters 16 and 17. By learning event-
driven GUI programming late, students are better able to grasp its inherent complexities.

Appendices

Most of the appendices cover reference material, such as the ASCII character set and the operator prece-
dence table. But the last two appendices cover advanced Java material—recursion and multithreading.

Subject-Matter Dependencies and
Sequence-Changing Opportunities

We’ve positioned the textbook’s material in a natural order for someone who wants fundamentals first and
also wants an early introduction to OOP. We feel that our order is the most efficient and effective order for
learning how to become a proficient OOP programmer. Nonetheless, we realize that different readers have
different content-ordering preferences. To accommodate those different preferences, we’ve provided some
built-in flexibility. Figure 0.1 illustrates that flexibility by showing chapter dependencies and, more impor-
tantly, chapter non-dependencies. For example, the arrow between Chapter 3 and Chapter 4 means that
Chapter 3 must be read prior to Chapter 4. And the lack of an arrow between Chapters 1 and 2 means that
Chapter 1 may be skipped.

Here are some sequence—chaﬁiﬁg é) %uniﬁsﬁiﬁealﬁw ﬁ%l,rﬁ OCI :e r

* Readers can skip Chapter 1 (Introduction to Computers and Programming).

* For an earlier introduction to OOP, readers can read the OOP overview section in Chapter 6 after read-
ing Chapter 1. And they can learn OOP syntax and semantics in Chapter 6 after finishing Java basics in
Chapter 3.

 For additional looping practice, readers can learn about arrays in Chapter 10 after finishing loops in
Chapter 4.

» Readers can skip Chapter 15 (Files).

Note Figure 0.1’s dashed arrow that connects Chapter 3 to Chapter 15. We use a dashed arrow to indicate
that the connection is partial. Some readers may wish to use files early on for input and output (I/O). Those
readers should read Chapter 3 for Java basics and then immediately jump to Chapter 15, Sections 15.3 and
15.4 for text-file I/O. With a little work, they’ll then be able to use files for all their I/O needs throughout the
rest of the book. We say “with a little work™ because the text-file I/O sections contain some code that won’t
be fully understood by someone coming directly from Chapter 3. To use the text-file I/O code, they’ll need
to treat it as a template. In other words, they’ll use the code even though they probably won’t understand
some of it.

To support content-ordering flexibility, the book contains “hyperlinks.” A hyperlink is an optional jump
forward from one place in the book to another place. The jumps are legal in terms of prerequisite knowl-
edge, meaning that the jumped-over (skipped) material is unnecessary for an understanding of the later
material. We supply hyperlinks for each of the non-sequential arrows in Figure 0.1. For example, we supply
hyperlinks that go from Chapter 1 to Chapter 6 and from Chapter 3 to Chapter 11. For each hyperlink tail
end (in the earlier chapter), we tell the reader where they may optionally jump to. For each hyperlink target
end (in the later chapter), we provide an icon at the side of the target text that helps readers find the place
where they are to begin reading.

Preface

Ch 1: Introduction

> §6.2: OOP Overview

Ch 2: Algorithms and

§11.1-§11.5:
Type details

§10.1-§10.6:
Arrays

Design
v
Ch 3: Java Basics —p §6.1-§6.8: OOP Basics
3
Ch 4: Control Statements < §15.3-§15.4: Text-Filel/O
v
Ch 5: Using Pre-Built Methods §11.6-§11.12: Alternate
Coding Mechanisms
v
Ch 6: Object-Oriented Programming
v
Ch 7: OOP —Additional Details
v
Ch 8: Software Engineering
ICEer
Ch 9: Classes with Class Members
v
Ch 10: Arrays and Arr ayLi sts — Recursion Appendix
v

Ch 11: Type Details and Alternate
Coding Mechanisms

v

Ch 12: Aggregation, Composition,

and Inheritance

v
Ch 13: Inheritance and Polymorphism Ch 14: Exception Handling
v v
Ch 16: GUI Programming Basics Ch15: Files
v v

Ch 17: GUI Programming—
Component Layout,

Additional GUI Components

Multithreading Appendix

Figure 0.1

Chapter dependencies

XVii

Xviii Preface

Pedagogy

(2]
o
-}
(7]

z Program elegance.
Indicates that the associated text deals with a program’s coding style, readability, maintainability,
robustness, and scalability. Those qualities comprise a program’s elegance.

Problem solving.
Indicates that the associated text deals with problem-solving issues. Comments associated with
icon attempt to generalize highlighted material in the adjacent text.

(-4

Common errors.
Indicates that the associated text deals with common errors.

Hyperlink target.
Indicates the target end of a hyperlink.

Fob

—@% Program efficiency.
Indicates that the associated text refers to program-efficiency issues.

Student Resources Anang DDE Enhancar

\rlvl.vv n el 11 DAL LW W1

At the textbook Web site, http://www.mhhe.com/dean, students (and also teachers) can view and download
these resources:

* Links to compiler software—for Sun’s Java2 SDK toolkit, Helios’s TextPad, Eclipse, NetBeans, and
BlueJ

¢ TextPad tutorial

* Eclipse tutorials

¢ Textbook errata

All textbook example programs and associated resource files

Instructor Resources

At the textbook Web site, http://www.mhhe.com/dean, instructors can view and download these resources:
* Customizable PowerPoint lecture slides with hidden notes

o Hidden notes provide comments that supplement the displayed text in the lecture slides.

o For example, if the displayed text asks a question, the hidden notes provide the answer.

o As an option, instructors can delete the hidden notes (with a convenient macro) before distributing
the lecture slides to the students. (That way, students are forced to go to lecture to hear the sage on
the stage fill in the blanks. ©)

 Exercise solutions
* Project solutions
* Test bank materials

http://www.mhhe.com/dean
http://www.mhhe.com/dean

Preface xix

Acknowledgments

Anyone who has written a textbook can attest to what a large and well-orchestrated team effort it requires.
Such a book can never be the work of only one person or even a few. We are deeply indebted to the team at
McGraw-Hill Higher Education who have shown continued faith in our writing and invested generously in it.

It was a pleasure to work with Alan Apt during the book’s two-year review period. He provided ex-
cellent guidance on several large design issues. We are grateful for the tireless efforts of Rebecca Olson.
Rebecca did a tremendous job organizing and analyzing the book’s many reviews. Helping us through the
various stages of production were Project Manager Kay Brimeyer and Designer Laurie Janssen. We would
also like to thank the rest of the editorial and marketing team, who helped in the final stages: Raghu Srini-
vasan, Global Publisher; Kristine Tibbetts, Director of Development; Heidi Newsom, Editorial Assistant;
and Michael Weitz, Executive Marketing Manager.

All the professionals we have encountered throughout the McGraw-Hill organization have been won-
derful to work with, and we sincerely appreciate their efforts.

We would like to acknowledge with appreciation the numerous and valuable comments, suggestions, and
constructive criticisms and praise from the many instructors who have reviewed the book. In particular,

William Allen, Florida Institute of Technology

Robert Burton, Brigham Young University

Priscilla Dodds, Georgia Perimeter College

Jeanne M. Douglas, University of Vermont

Dr. H.E. Dunsmore, Pu /5,53 @ztyPDF En h ancer
Deena Engel, New York University

Michael N. Huhns, University of South Carolina

Ibrahim Imam, University of Louisville

Andree Jacobson, University of New Mexico

Lawrence King, University of Texas, Dallas

Mark Llewellyn, University of Central Florida

Blayne E.Mayfield, Oklahoma State University

Mary McCollam, Queen’s University

Hugh McGuire, Grand Valley State University

Jeanne Milostan, Vanderbilt University

Shyamal Mitra, University of Texas, Austin

Benjamin B.Nystuen, University of Colorado, Colorado Springs
Richard E. Pattis, Carnegie Mellon University

Tom Stokke, University of North Dakota

Ronald Taylor, Wright State University

Timothy A.Terrill, University at Buffalo, The State University of New York
Ping Wu, Dell Inc

We would also like to thank colleagues Wen Hsin, Kevin Burger, John Cigas, Bob Cotter, Alice
Capson, and Mark Adams for helping with informal quick surveys and Barbara Kushan, Ed Tankins,

lvww.allitebooks.cond

http://www.allitebooks.org

XX Preface

Mark Reith, and Benny Phillips for class testing. And a special debt of gratitude goes to colleague and
grammarian nonpareil Jeff Glauner, who helped with subtle English syntax nuances.

Finally, thanks to the students. To the ones who encouraged the initial writing of the book, and to the
ones who provided feedback and searched diligently for mistakes in order to earn bonus points on the home-
work. In particular, thank you Aris Czamanske, Malallai Zalmai, Paul John, Joby John, Matt Thebo, Josh
McKinzie, Carol Liberty, Adeeb Jarrah, and Virginia Maikweki.

Sincerely,
John and Ray

Apago PDF Enhancer

Project Summary

One of the special features of this text is the diversity of its projects. Project subject matter spans six broad
academic areas, as this short table shows:

abbreviation description easy moderate difficult total
CS Computer Science and Numerical Methods 14 12 6 32
Business Business and Accounting 10 10 3 23
Sociology Social Sciences and Statistics 7 7 5 19
Math & Phys Math and Physics 9 5 3 17
Engineering Engineering and Architecture 3 7 5 15
Biol & Ecol Biology and Ecology 0 2 4 6

totals 43 43 26 112

The abbreviation in the first column above will be used in a larger table below as a brief identification
of a particular academic area. The four right-side columns in the above table indicate the number of projects
in various categories. Of course, the highest number of projects (32) occurs in the area of computer science
and numerical methods. 6 easy and Eﬁj ects are t p1ca1 CS introductory programming
problems. The 6 difficult AQ' @Jﬁle i ﬁ 1{"16 advanced topics like link list op-
erations, database operations, and 51mu1ated annealing.

In addition, there are 23 projects in business and accounting, which include miscellaneous financial cal-
culations, simple bookkeeping problems, and cost-accounting applications. There are 19 projects in social
sciences and statistics, which include applications in sociology and political science, as well as general ex-
perience. There are 17 projects in math and physics, which include applications in both classical and chaotic
mechanics. There are 15 projects in engineering and architecture, which include applications in heating venti-
lating and air conditioning (HVAC), electrical circuits, and structures. Finally, there are 6 projects in biology
and ecology, which include realistic growth and predator-prey simulations. Although we’ve associated each
project with one primary academic area, many of these projects can fit into other academic areas as well.

Because many of these projects apply to disciplines outside the field of computer science, we do not
expect that the average reader will already know about all of these “other” topics. Therefore, in our prob-
lem statements we usually take considerable time to explain the topic as well as the problem. And we often
explain how to go about solving the problem—in layman’s terms. Therefore, working many of these proj-
ects will be like implementing computer solutions for customers who are not programmers themselves but
understand their subject matter and know what they want you (the programmer) to do for them. They will
explain their problem and how to go about solving it. But then they will expect you to create the program
that actually solves that problem.

Because our project explanations frequently take considerable printed space, instead of putting them in
the book itself, we put them on our Web site:

http://www.mhhe.com/dean

The following table provides a summary of what’s on that Web site. This table lists all of the book’s projects
in a sequence that matches the book’s sequence. The first column identifies the first point in the book at

XXi

http://www.mhhe.com/dean

xxii

Project Summary

which you should be able to do the project, by chapter and section, in the form: ChapterNumber.Section-
Number. The second column is a unique project number for the chapter in question. The third column iden-
tifies the project’s primary academic area with an abbreviation that’s explained in the shorter table above.
The fourth column indicates the approximate number of pages of code that our solution contains. The fifth
column indicates the difficulty relative to where you are in your study of Java. For example, you can see that
what we call “easy” involves progressively more pages of code as you progress through the book. The last
two columns provide a title and brief description of each project.

Project Summary

Academic | Sol.
Ch./Sec | Proj. Area Pages | Difficulty Title Brief Description
27 1 Business 0.6 easy Annual Bonus— | Draw a flowchart for an algorithm that
(Flowchart) computes an annual bonus.
2.7 2 Business 0.3 easy Annual Bonus— | Write pseudocode for an algorithm that
(Pseudocode) computes an annual bonus.
2.7 3 Business 0.6 easy Number of Draw a flowchart for an algorithm that
Stamps— calculates the number of stamps needed
(Flowchart) for an envelope. Use one stamp for every
five sheets of paper.
2.7 4 Business 0.3 easy Number of Write pseudocode for an algorithm that
Stamps— calculates the number of stamps needed
(Pseudocode) for an envelope. Use one stamp for every
AnaaaPPE - Enh A fegsef paper.
2.7 5 Biol & Ecol S\ GhadeHte rFM'Ingd‘Unlnsl LI r!t%’pglfdocode for an algorithm that
(Pseudocode) identifies a biological kingdom from a
set of characteristics.
2.7 6 Math & 0.6 easy Speed of Sound— | Draw a flowchart for an algorithm
Phys (Flowchart) that provides the speed of sound in a
particular medium.
27 7 Math & 0.4 easy Speed of Sound— | Write pseudocode for an algorithm
Phys (Pseudocode) that provides the speed of sound in a
particular medium.
27 8 Business 0.6 | moderate Stock Market Draw a flowchart for an algorithm
Return— that prints the type of market and its
(Flowchart) probability given a particular rate of
return.
27 9 Business 0.4 | moderate Stock Market Write pseudocode for an algorithm
Return— that prints the type of market and its
(Pseudocode) probability given a particular rate of
return.
2.8 10 Business 0.3 | moderate | Bank Balance— | Write pseudocode for an algorithm that
(Pseudocode) determines the number of years until a
growing bank balance reaches a million
dollars.
29 11 | Engineering | 1.0 | moderate | Loop Termination | Draw a flowchart for an algorithm that
by User Query— | calculates the overall miles per gallon
(Flowchart) for a series of miles and gallons user
inputs.

Project Summary xxiii

Project Summary

Academic | Sol.
Ch./Sec | Proj. Area Pages | Difficulty Title Brief Description
29 12 | Engineering | 0.5 easy Loop Termination | Write pseudocode for an algorithm that
by User Query— | calculates the overall miles per gallon for
(Pseudocode) a series of miles and gallons user inputs.
2.9 13 | Engineering | 0.4 moderate | Loop Termination | Write pseudocode for an algorithm that
by Sentinal calculates the overall miles per gallon
Value— for a series of miles and gallons user
(Pseudocode) inputs.
29 14 | Engineering | 0.3 easy Loop Termination | Write pseudocode for an algorithm that
by Counter— calculates the overall miles per gallon for
(Pseudocode) a series of miles and gallons user inputs.
2.10 15 CS 0.4 | moderate | Average Weight— | Write pseudocode for an algorithm that
(Pseudocode) determines average weight for a group
of items.
32 1 CS NA easy Hello World Experiment with the Hello. java
Experimentation | program to learn the meanings of
typical compile-time and runtime error
messages.
33 2 CS NA | moderate Research Study Sun’s Java Coding Conventions.
33 3 CS NA | moderate | Research Study Appendix 5 “Java Coding-Style
Apago PDEF Enhangeentons”

3.16 4 Engineering-I 2.57 | difficult Truss Analysis Given the load in the center of a bridge

3.23 and the weights of all truss members,
compute the compression or tension
force in each truss member.

3.17 5 CS 1.0 easy Sequence of Trace a sequence of commands and

Commands write a program that executes those
commands.

3.17 6 CS 1.7 moderate | Computer Speed | Given a simple set of hardware and

3.23 software characteristics, write a
program that estimates the total time to
run a computer program.

3.17 7 | Engineering | 2.7 | moderate HVAC Load Calculate the heating and cooling loads

3.23 for a typical residence.

3.17 8 Sociology 35 difficult Campaign Write a program to help organize

3.23 Planning estimates of votes, money, and labor.

3.22 9 CS 1.0 easy String Processing | Trace a set of string processing
operations and write a program that
implements them.

3.23 10 CS 1.2 easy Swapping Trace an algorithm that swaps the values
in two variables, and write a program
that implements that algorithm.

3.23 11 Math & 1.0 easy Circle Parameters | Write a program that generates and

Phys prints circle-related values.

(continued)

XXiv

Project Summary

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficulty

Title

Brief Description

3.23

12

Sociology

0.4

easy

One-Hundredth
Birthday

Write a program that prompts the user
for his/her birthday month, day, and year
and prints the date of the user’s one-
hundredth birthday.

4.3

Math &
Phys

1.7

easy

Stopping Distance

Write a program which determines
whether a vehicle’s tailgating distance
is safe, given the speed of the vehicle,
the vehicle’s tailgating distance, and a
formula that gives the distance required
to stop the vehicle.

4.3
49

Engineering

1.9

easy

Column Safety

Write a program that determines whether
a structural column is thick enough to
support the column’s expected load.

4.3

Business

1.1

easy

Economic Policy

Write a program that reads in growth
rate and inflation values and outputs a
recommended economic policy.

4.8

Business

2.0

moderate

Bank Balance

Write a program that determines the
number of years until a growing bank
balance reaches a million dollars.

49
4.12

CS

A

ago'

PBE Exthdmeer

he game of NIM. Start the
game with a user-specified number

of stones in a pile. The user and the
computer take turns removing either one
or two stones from the pile. The player
who takes the last stone loses.

4.12

Math &
Phys

1.0

easy

Triangle

Write a program that generates an
isosceles triangle made of asterisks,
given user input for triangle size.

4.12

Sociology

0.8

easy

Mayan Calendar

Implement an algorithm that determines
the number of Tzolkins and the number
of Haabs in one Calendar Round.

4.12

CS

0.9

easy

Input Validation

Implement an algorithm that repeatedly
prompts for inputs until they fall within
an acceptable range and computes the
average of valid inputs.

4.14

Business

2.6

moderate

Tax Preparation

Write a program that calculates

customers’ income taxes using the

following rules:

* The amount of taxes owed equals the
taxable income times the tax rate.

* Taxable income equals gross income
minus $1,000 for each exemption.

¢ The taxable income cannot be less
than zero.

Project Summary XXV

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficulty

Title

Brief Description

4.14

10

CS

1.7

moderate

Text Parsing

Write a program that converts words to
Pig Latin.

5.3

Math &
Phys

easy

Trigonometric
Functions

Write a demonstration program that asks
the user to select one of three possible
inverse functions, arcsin, arccos, or
arctan, and input a trigonometric ratio. It
should generate appropriate output, with
diagnostics.

5.3

Math &
Phys

0.7

easy

Combining
Decibels

Determine the acoustical power level
produced by the combination of two
sound sources.

5.5

CS

1.5

moderate

Variable Name
Checker

Write a program that checks the
correctness of a user-entered variable
name, i.e., whether it is: (1) illegal,

(2) legal, but poor style, or (3) good
style. Assume that “good style” variable
names use letters and digits only,

and use a lowercase letter for the first
character.

5.6

CSAl

DAY

0PI

"Enhanger

lement a program that reads phone
numbers, and for each phone number,
it displays the phone number’s three
components—country code, area code,
and local number.

5.6

CS

1.1

difficult

Phone Number
Dissector—robust
version

Implement a more robust version of the
above phone number program. Allow

for shortened phone numbers—phone
numbers that have just a local digit group
and nothing else, and phone numbers
that have just a local digit group and an
area code and nothing else.

5.8

Business

moderate

Net Present Value
Calculation

Write a program that computes the net
present value of a proposed investment,
given a discount rate and an arbitrary set
of future cash flows.

6.4

Biol & Ecol

1.5

moderate

Plant Germination
Observation

Write a program that: (1) creates

an object called tree from the
MapleTree class; (2) calls a plant
method to record the planting of the
seed; (3) calls a germinate method
to record the first observation of a
seedling and record its height; (4) calls
a dumpData method to display the
current values of all instance variables.

(continued)

XXVi

Project Summary

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficulty

Title

Brief Description

6.4

Business

0.5

easy

Bank Account

Given the code for a BankAccount
class, provide a driver that tests that
class by instantiating an object and
calling its methods—setCustomer,
setAccountNum, and
printAccountinfo.

6.8

Math &
Phys

1.5

moderate

Logistic Equation

Exercise the logistic equation: nextX =
presentX + r X presentX X

(1 — presentX), where presentX =
(present x) / (maximum Xx), and r is a
growth factor.

6.9

Math &
Phys

0.9

easy

Circle

Given the code for a CircleDriver
class, write a Circle class that
defines a radius instance variable,

a setRadius method, and a
printAndCalculateCircleData
method that uses the circle’s radius to
calculate and print the circle’s diameter,
circumference, and area.

6.10

Engineering

AP

PO Enh;

i ula for a “Chebyshev
AL

low-pass” filter or a
“Butterworth second-order low-pass”
filter, with appropriate parameter values,
write a program that asks the user to
supply a sequence of raw input values
and generates the corresponding filtered
output.

6.10

Sociology

3.1

difficult

Vending Machine

Write a program that mimics the
operations of a vending machine. The
program should read amounts of money
inserted into the vending machine, ask
the user to select an item, and then print
the change that’s returned to the user.

6.12

Math &
Phys

1.1

easy

Rectangle

Implement a Rectangl e class that
defines a rectangle with length and
width instance variables, mutator and
accessor methods, and a boolean
isSquare method.

6.12

Biol & Ecol

4.0

difficult

Predator-Prey
Dynamics

Write a program that models a species
that could be either predator or prey or
both. Run a simulation that includes
predators, prey, and limited renewable
sustenance for the prey.

6.13

Math &
Phys

21

moderate

Guitar Mechanics

Write a program that simulates the

motion of a plucked guitar string.

Project Summary XXvii

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficu

Ity Title

Brief Description

7.5
79

CS

35

difficult

Linked List

Given the code for a driver, implement
a Recipe class that creates and
maintains a linked list of recipes.

The problem assignment specifies all
instance variables and methods in UML
class diagrams.

1.7

CS

2.5

easy

Automobile
Description

Use method-call chaining to help
display properties of automobiles.

77
79

Biol & Ecol

4.6

difficult

Carbon Cycle

Given the code for a driver, write a pair
of classes for a program that models the
carbon cycle in an ecosystem. Use two
generic classes. One class, Entity,
defines things. The other class,
Relationship, defines interactions.

7.8

CS

1.4

easy

IP Address

Implement an 1pAddress class that
stores an IP address as a dotted-decimal
string and as an array of four octet ints.

79

Math &

Phys
Al

4.5

nagy

D

moderate

P

Fraction Handler

DF Enhanc

é de the following instance

Given the main method of a driver
class, write a Fraction class.

methods: add, multiply, print,
printAsDouble, and a separate
accessor method for each instance
variable.

7.10

Engineering

2.8

moderate

Electric Circuit

Write branch and node classes for
lumped-circuit elements. A branch
carries current through a resistor in
series with an inductor. A node holds
voltage on a capacitor connected to
a common ground. Driver code is
provided in the problem assignment.

7.10

Business

5.1

difficult

Cost Accounting

Write an object-oriented program that
demonstrates cost accounting in a
manufacturing plant.

7.10

Sociology

6.4

difficult

Political Campaign

Write a program to help organize
estimates of votes, money, and labor.
This is an object-oriented version of
Project 8 in Chapter 3.

8.4

CS

1.6

easy

Input Validation

Implement an algorithm that repeatedly
prompts for inputs until they fall within
an acceptable range and computes

the average of valid inputs. This is an
object-oriented version of Project 8 in
Chapter 4.

(continued)

XXviii Project Summary
Project Summary
Academic | Sol.
Ch./Sec | Proj. Area Pages | Difficulty Title Brief Description

8.4 2 | Engineering | 4.0 difficult HVAC Load Calculate the heating and cooling loads
for a typical residence. This is an object-
oriented version of Project 7 in Chapter 3.

8.6 3 Sociology 2.6 | moderate | Elevator Control | Write a program that mimics the
operations of the inside of an elevator.
The program should simulate what
happens when the user chooses to go
to a particular floor and when the user
pulls the fire alarm.

8.9 4 CS 2.0 easy Prototype Consider the NestedLoopRectangle

Restructuring program in Figure 4.17 in Section 4.12
to be a prototype. Using top-down
methodology, restructure it into OOP
format.

9.3 1 Sociology 2.7 easy Person Class Define a class that simulates the creation
and display of Person objects.

9.4 2 Sociology 2.7 | moderate | Homework Scores | Write a program that handles homework
scores. Use instance variables for actual
and maximum points on a particular

and use class variables for
Ap ag 0 PDF En h aajmg[and maximum total points
on all homeworks combined.

9.3 3 Sociology 39 difficult | Political Approval | Write a program that determines

Rating the mean and standard deviation of
statistical samples.

9.4 4 | Engineering | 5.7 difficult Solar Input for Write a program that keeps track of

HVAC and Solar | where the sun is and determines how
Collectors much solar energy penetrates a glass
window of any orientation, at any place
and time.

9.6 5 Business 2.7 | moderate | NetPresent Value | Write a program that computes the net

Calculation present value of a proposed investment,
given a discount rate and an arbitrary
set of future cash flows. This is an OOP
version of Project 6 in Chapter 5.

9.7 6 Math & 7.0 difficult Three-Body Write a program to model the three-body

Phys Problem problem in which two equally sized
moons circle the earth in different orbits.
This illustrates chaotic dynamic motion.

10.4 1 Biol & Ecol | 5.0 difficult Demographic Write a program that projects future

Projections world population and average individual
wealth as a function of fertility rates and
resource extraction rates, and includes
effects of governmental taxation and
spending.

Project Summary XXiX

Project Summary

Academic | Sol.
Ch./Sec | Proj. Area Pages | Difficulty Title Brief Description
10.6 2 CS 3.3 | moderate Dice-Throwing | Write a program that simulates the
Simulator rolling of a pair of dice and prints a
histogram showing the frequencies of
possible results.
10.6 3 CS 5.1 difficult Simulated Write a program that uses simulated
Annealing—the | annealing to solve the intractable
Traveling problem of finding the shortest itinerary
Salesman Problem | that visits all of the world’s major cities
exactly one time.

10.7 4 Sociology 2.1 easy Party Guest List | Write a program that creates a Party
object, adds guests to the party, and
prints party information.

10.9 5 Sociology 2.7 easy Vowel Counter Write a program that counts the number
of uppercase and lowercase vowels in
user-entered lines of text and prints a
summary report of vowel counts.

10.9 6 Math & 7.6 difficult Solution of Write a program that loads a set of

Phys Simultaneous simultaneous algebraic equations
Algebraic into two-dimensional arrays and
Ap ag 0 PDl:: Eﬁah)a nc gl s the c?quations by Lower-Upper
ecomposition.

10.9 7 Math & 2.5 moderate | Linear Regression | Write a program that computes a linear

Phys regression by fitting a straight line to a
series of random data.

10.10 8 Business 3.4 | moderate | Purchase Vouchers | Write a program that creates business
vouchers that record purchases, displays
current voucher information, and
records payments for those purchases.

10.11 9 Sociology 1.1 easy Deck of Cards Write a class that uses an ArrayList
to hold a deck of cards.

10.13 10 Business 1.9 easy Bookstore Write a program that models the storing
and retrieving of books based on title.

11.13 1 Biol & Ecol | 5.5 difficult Game of Spawn | Model a “game” that simulates
reproduction and growth in a
rectangular grid of cells. An X indicates
life. A dead cell comes to life when it
has exactly three living neighbor cells.
A living cell remains alive only when
surrounded by two or three living
neighbor cells.

11.3 2 CS 0.7 easy ASCII Table Write a program that prints the 128-

character ASCII table. It should print
the table in eight tab-separated
columns.

lvww.allitebooks.cond

(continued)

http://www.allitebooks.org

XXX

Project Summary

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficulty

Title

Brief Description

11.7

CS

0.8

easy

Circular Queue

A given program implements a circular-
array queue. Rewrite the iSFull,
remove, and showQueue methods

by replacing conditional operators,
embedded assignments, and embedded
increment operators with simpler, more
understandable code.

11.7

Math &
Phys

41

moderate

Polynomial
Interpolation

Fit a polynomial to points on either side
of a pair of points in an array of data
and use that to estimate the value at a
position between the pair of points.

11.9

CS

1.4

moderate

Bitwise Operations

Use arithmetic and logical shifting to
display the binary values of numbers.

11.11

CS

35

moderate

Heap Sort

Use the heap-sort algorithm to sort
data. (This is a robust in-place sorting
algorithm with a computational
complexity of NLogN.)

12.2

Business

1.7

easy

2Tala)

Savings Accounts

PDF_Enh

Compute and display savings account
balances that accumulate with

oY alal interest.

12.4

Math &
Phys

134

“diFficult

StaTistics Functions

“Write a pr(')gram that generates values
for the Gamma, Incomplete Gamma,

Beta, Incomplete Beta, and Binomial

statistical functions.

12.5

Business

33

easy

Car Program

Using inheritance, write a program that
keeps track of information about new
and used cars.

12.10

Sociology

16.4

difficult

Game of Hearts

Write a program that simulates a basic
game of hearts with an arbitrary number
of players. Give all players an identical
set of good strategies which optimize
the chance of winning.

13.7

Business

9.0

difficult

Grocery Store
Inventory

Write an inventory program that keeps
track of various kinds of food items. Use
different methods in an Inventory
class to process heterogeneous objects
representing generic and branded food
items. Store the objects together in a
common ArrayList.

Project Summary XXXi

Project Summary

Ch./Sec

Proj.

Academic
Area

Sol.
Pages

Difficulty

Title

Brief Description

13.7

Engineering

8.7

difficult

Electric Circuit
Analysis

Write a program that calculates the
steady-state currents in a two-loop
electric circuit that has an arbitrary
combination of discrete resistors,
inductors, capacitors, and voltage
sources in the legs of the circuit.
Include methods to perform addition,
subtraction, multiplication, and division
of complex numbers—numbers that
have real and imaginary parts.

13.8

Business

54

moderate

Payroll

Use polymorphism to write an employee
payroll program that calculates and
prints the weekly payroll for a company.
Assume three types of employees—
hourly, salaried, and salaried plus
commission. Assume each type of
employee gets paid using a different
formula. Use an abstract base class.

13.8

Business

Al

29

nagy

D

moderate

PDI-

Bank Accounts

Enhanc

Write a bank account program that

é les bank account balances for an
ray of bank accounts. Use two types

of bank accounts, checking and savings,

derived from an abstract class named

BankAccount.

14.4

Sociology

4.0

moderate

Body Mass Index

Write a program that prompts the
user for height and weight values and
displays the associated body mass index.

14.5

CS

6.4

difficult

Storage and

Retrieval of

Objects in an
Array

Search for a match with the key value
in a relational table, using two different
search algorithms, a sequential search
and a hashed search.

14.9

CS

2.5

moderate

Date Formatting

Create a class named Date that stores
date values and prints out the date in
either a numeric format or an alphabetic
format. Use a separate class to handle all
exceptions.

14.9

CS

55

difficult

Input Utility

Write a utility class that reads inputs
from the keyboard and parses the
following datatypes: String, char,
double, float, long, and int.
It should do input approximately like
Scanner does.

(continued)

XXXii Project Summary
Project Summary
Academic | Sol.
Ch./Sec | Proj. Area Pages | Difficulty Title Brief Description

15.4 1 Engineering | 3.7 | moderate | Road Use Survey | Model traffic flowing on a highway past
a particular place, store observations,
and read file later for analysis.

15.4 2 Sociology 29 easy Mail Merge Write a program that reads a form letter
from a text file and modifies custom
fields.

15.5 3 CS 5.0 | moderate File Converter Write a program that changes

15.9 whitespace in text files.

15.8 4 CS 1.5 easy Appending Data to | Implement code needed to append data

an Object File to an object file.

16.12 1 Engineering | 4.1 moderate | Animated Garage | Write a program that simulates the

Door operation of an automatic garage door
and its controls and visually display its
position as it operates.

16.14 2 Sociology 3.0 | moderate Color Write a program that tests the user’s

Memorization ability to memorize a sequence of
colors.

16.14 3 Business 8.7 difficult | Grocery Inventory | Write a GUI version of the Grocery

GUI Store Inventory project in Chapter 13.

16.15 4 Sociology éAp ag@e %rde&ﬂtﬁ 8RR @ifple interactive game that
helps kids practice their alphabetic
skills.

16.16 5 Business 3.8 | moderate Airline Write a GUI program that assigns seats

Reservations on airline flights.

17.3 1 CS 1.7 easy Changing Color | Write an interactive program that

and Alignment | modifies the color and position of
buttons in a GUI window.

17.6 2 CS 1.9 easy Click Tracker Write an interactive program that
modifies the borders and labels of
buttons in a GUI window.

17.7 3 Sociology 3.4 | moderate Tic-Tac-Toe Create an interactive Tic-Tac-Toe game.

17.10 4 Sociology 4.3 | moderate | Word Order Game, | Modify Chapter 16’s Word Order Game

revisited program so it uses a layout manager.

17.10 5 Engineering | 7.5 difficult | Thermal Diffusion | Write a program that calculates

in a Ground- temperatures in the earth around

Source Heat a ground-source heat pump’s well.

Pump’s Well Display results in a color-coded plot of
temperature as a function of distance
from well center and time of year.

The McGraw-Hill companies

McGraw-Hill
Higher Education

INTRODUCTION TO PROGRAMMING WITH JAVA: A PROBLEM SOLVING APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,
Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for

distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOCO098

ISBN 978-0-07-128781-4
MHID 0-07-128781-7

Apago PDF Enhancer

www.mhhe.com

http://www.mhhe.com

Introduction to Computers
and Programming

Objectives

Describe the various components that make up a computer.

List the steps involved in program development.
e Know what it means to write algorithms using pseudocode.

Know what it means to write programs with programming language code.

Understand source code, object code, and the compilation process.

Describe how bytecoﬁ@l&g@a p(Pw En h ancer

Become familiar with Java’s history—why it was initially developed, how it got its name, and so forth.

Enter, compile, and run a simple Java program.

Outline

1.1 Introduction

1.2 Hardware Terminology

1.3 Program Development

1.4 Source Code

1.5 Compiling Source Code into Object Code
1.6 Portability

1.7 Emergence of Java

1.8 First Program—Hello World

1.9 GUI Track: Hello World (Optional)

1.1 Introduction

This book is about problem-solving. Specifically, it is about creating solutions to problems through a set of
precisely stated instructions. We call such a set of instructions (when in a format that can be entered into and
executed on a computer) a program. To understand what a program is, think about the following situation.

1

2 Chapter 1 Introduction to Computers and Programming

Suppose you manage a department store, and you don’t know when to restock the shelves because you have
difficulty keeping track of inventory. The solution to the problem is to write a set of instructions that keeps
track of items as they arrive at your store and as they are purchased. If the instructions are correct and in a
format that is understood by a computer, you can enter the instructions as a program, run the program, and
enter item-arrival and item-purchase data as they occur. You can then retrieve inventory information from
the computer any time you need it. That accurate and easily accessible knowledge enables you to restock your
shelves effectively, and you are more likely to turn a profit.

The first step to learning how to write programs is to learn the background concepts. In this chapter, we
teach background concepts. In subsequent chapters, we use the background concepts in explaining the really
good stuff—how to program.

We start this chapter by describing the various parts of a computer. We then describe the steps involved
in writing a program and in running a program. Next, we narrow our focus and describe the programming
language we’ll be using for the remainder of the book—1Java. We present step-by-step instructions on how
to enter and run a real Java program, so that you’ll be able to gain some hands-on experience early on. We
finish the chapter with an optional GUI-track section that describes how to enter and run a graphical user
interface (GUI) program.

1.2 Hardware Terminology

A computer system is all the components that are necessary for a computer to operate and the connections
between those components. Ther pg j.'a)@'ﬁes E ?r] dware and software. Hard-
ware refers to the physical components a crate ith a computer. Software refers to the programs that tell
a computer what to do. For now, let’s focus on hardware.

Our description of a computer’s hardware provides you with the information you’ll need as a beginning
programmer. (A programmer is a person who writes programs.) After you master the material here, if you
decide you want more, go to Webopedia’s Web site at http://www.webopedia.com/ and enter hardware in
the search box.

The Big Picture

Figure 1.1 shows the basic hardware components in a computer system. It shows input devices at the left
(keyboard, mouse, and scanner), output devices at the right (monitor and printer), storage devices at the bot-
tom, and the CPU and main memory in the center. The arrows in Figure 1.1 represent connections between
the components. For example, the arrow from the keyboard to the CPU-main memory represents a cable
(a connecting wire) that transmits information from the keyboard to the CPU and main memory. Through-
out this section, we explain the CPU, main memory, and all the devices in Figure 1.1.

Input and Output Devices

There are different definitions of an input device, but usually the term refers to a device that transfers infor-
mation into a computer. Remember—information going into a computer is input. For example, a keyboard is
an input device because when a person presses a key, the keyboard sends information into the computer (it
tells the computer which key was pressed).

There are different definitions of an output device, but usually the term refers to a device that transfers
information out of a computer. Remember—information going out of a computer is output. For example, a

http://www.webopedia.com/

1.2 Hardware Terminology 3

CPU Monitor

i—\/\/ Mouse I

Main memory

A4 A 4 v A4

Hard Diskette Compact usB
disk disc flash
drive

Storage devices
(auxiliary memory)

Figure 1.1 A simplified view of a computer

monitor (also called a displgy or a screen) W(pu ige becausge it displays information going out from
the computer. Ap ag 6 Eeﬁ h 5. ﬁ é er

Central Processing Unit

The central processing unit (CPU), often referred to as the processor or microprocessor, can be considered
the computer’s brain. As with a biological brain, the CPU splits its time between two basic activities—
thinking and managing the rest of its system. The “thinking” activities occur when the CPU reads a pro-
gram’s instructions and executes them. The “managing its system” activities occur when the CPU transfers
information to and from the computer system’s other devices.

Here’s an example of a CPU’s thinking activities. Suppose you have a program that keeps track of a sat-
ellite’s position in its orbit around the earth. Such a program contains quite a few mathematical calculations.
The CPU performs those mathematical calculations.

Here’s an example of a CPU’s managing-its-system activities. Suppose you have a job application pro-
gram. The program displays boxes in which a person enters his/her name, phone number, and so on. After
entering information, the person uses his/her mouse and clicks a Done button. For such a program, the CPU
manages its system as follows. To display the initial job application form, the CPU sends information to the
monitor. To gather the person’s data, the CPU reads information from the keyboard and mouse.

If you’re thinking about buying a computer, you’ll need to judge the quality of its components. To judge
the quality of its components, you need to know certain component details. For CPUs, you should know the
popular CPUs and the range of typical CPU speeds. We present the following CPUs and CPU speeds with
hesitation because such things change in the computer world at a precipitous rate. By presenting such de-
tails, we’re dating our book mercilessly. Nonetheless, we forge ahead. . . .

As of September, 2007:

* Popular CPUs—Core 2 Duo (manufactured by Intel), Athlon 64 (manufactured by AMD).
* Current CPU speeds—anywhere from 2.5 GHz up to 3.8 GHz.

4 Chapter 1 Introduction to Computers and Programming

What is GHz you ask? GHz stands for gigahertz. Giga means billion and hertz is a unit of measure that
deals with the number of times that something occurs per second. A 2.5 GHZ CPU uses a clock that ticks
2.5 billion times per second. That’s fast, but a 3.8 gigahertz CPU is even faster—it uses a clock that ticks
3.8 billion times per second. A CPU’s clock speed provides a rough measure for how fast the CPU gets
things done. Clock ticks are the initiators for computer tasks. With more clock ticks per second, there are
more opportunities for getting tasks done.

Main Memory

When a computer executes instructions, it often needs to save intermediate results. For example, in calcu-
lating the average speed for 100 speed measurements, the CPU needs to calculate the sum of all the speed
values prior to dividing by the number of measurements. The CPU calculates the sum by creating a storage
area for it. For each speed value, the CPU adds the value to the sum storage area. Think of memory as a col-
lection of storage boxes. The sum is stored in one of memory’s storage boxes.

There are two categories of memory—main memory and auxiliary memory. The CPU works more
closely with main memory. Think of main memory as a storage room next to the boss’s office. The boss is
the CPU, and he/she stores things in the storage room’s storage boxes whenever the need arises. Think of
auxiliary memory as a warehouse that’s across the street from the boss’s building. The boss uses the ware-
house to store things, but doesn’t go there all that often. We’ll consider auxiliary memory details in the next
subsection. For now, we’ll focus on main memory details.

The CPU relies on main memory a lot. It’s constantly storing data in main memory and reading data
from main memory. With this constant interaction, it’s important that the CPU and main memory are able
to communicate quickly. To ensﬁﬂia @m&lﬁ@ﬁn, tEﬁlh]a‘E}leae [nemory are physically close
together. They are both constructed'on c/#ps, and they both plug into the computer’s main circuit board, the

motherboard. See Figure 1.2 for a picture of a motherboard, a CPU chip, and main memory chips.

Motherboard

main memory card
with 8 memory chips

CPU chip s
m

Figure 1.2 Motherboard, CPU chip, and main memory chips

1.2 Hardware Terminology 5

Main memory contains storage boxes, and each storage box contains a piece of information. For ex-
ample, if a program stores our last name, Dean, it uses eight storage boxes: one for the first half of D, one for
the second half of D, one for the first half of e, one for the second half of e, and so on. After storing the four
letters, the program will probably need to retrieve them at some point later on. For information to be retriev-
able, it must have an address. An address is a specifiable location. A postal address uses street, city, and zip
code values to specify a location. A computer address uses the information’s position within main memory
to specify a location. Main memory’s first storage box is at the zero position, so we say it’s at address 0. The
second storage box is at the one position, so we say it’s at address 1. See Figure 1.3. It shows Dean stored in
memory starting at address 50,000.

Figure 1.3 The characters D, e, a, n
stored in memory starting at address
50,000

Memory
Address contents

50,000 [T~ < 3
50,001 |i__" __)
50,002 |7~ -,
50,003 |- __-__]
50,004 [T~~~ " 1
50,005 |[L__Z__!
50,006 [T~~~ 3
50,007 |i___' __]

~pago—OF Enhancer

It’s important to understand the formal terminology when talking about the size of main memory. Sup-
pose you’re buying a computer and you want to know how big a computer’s main memory is. If you ask a
sales person how many “storage boxes” it contains, you’ll probably get a perplexed look. What you need to
do is ask about its capacity—that’s the formal term for its size. If you ask for the main memory’s capacity,
the salesperson will say something like, “It’s one gigabyte.” You already know that giga means billion. A
byte refers to the size of one storage box. So a one gigabyte capacity main memory holds one billion storage
boxes.

Let’s describe storage boxes in more detail. You know that storage boxes can hold characters, like the
letter D. But computers aren’t very smart—they don’t understand the alphabet. They only understand 0’s
and 1’s. So computers map each alphabet character to a series of sixteen 0’s and 1’s. For example, the letter
D is 00000000 01000100. So in storing the letter D, main memory actually stores 00000000 01000100.
Each of the 0’s and 1’s is called a bit. And each of the eight-bit groupings is called a byte.

Are you wondering why computers use 0’s and 1’s? Computers understand only high-energy signals ver-
sus low-energy signals. When a computer generates a low-energy signal, that’s a 0. When a computer gener-
ates a high-energy signal, that’s a 1.

You know that computers store characters as 0’s and 1’s, but did you know that computers also store
numbers as 0’s and 1’s? Formally, we say that computers use the binary number system. The binary number
system uses just two digits, 0 and 1, to represent all numbers. For example, computers store the number 19 as
32 bits, 00000000 00000000 00000000 00010011. The reason those 32 bits represent 19 is that each 1-value
bit represents a power of 2. Note that there are three 1-value bits. They are at positions 0, 1, and 4, where
the positions start at 0 from the right side. A bit’s position determines its power of two. Thus, the rightmost
bit, at position 0, represents 2 raised to the power 0, which is 1 (2° = 1). The bit at position 1 represents

6 Chapter 1 Introduction to Computers and Programming

2 raised to the power 1, which is 2 (2! = 2). And the bit at position 4 represents 2 raised to the power 4, which
is 16 (2* = 16). Add the three powers and you get 19 (1 + 2 + 16 = 19). Voila!

Be aware that main memory is often referred to as RAM. RAM stands for random access memory.
Main memory is considered “random access” because data can be directly accessed at any address (i.e., at a
“random” address). That’s in contrast to some storage devices where data is accessed by starting at the very
beginning and stepping through all the data until the target data is reached.

Once again, if you’re buying a computer, you’ll need to judge the quality of its components. For the main
memory/RAM component, you’ll need to know whether its capacity is adequate. As of September, 2007,
typical main memory capacities range from 512 MB up to 3 GB. MB stands for megabyte, where mega is one
million. GB stands for gigabyte.

Auxiliary Memory

Main memory is volatile, which means that data is lost when power to the computer goes off. You might
ask if data is lost when power goes off, how can anyone save anything permanently on a computer?
The answer is something you do (or should do) frequently. When you perform a save command, the
computer makes a copy of the main memory data youre working on and stores the copy in auxiliary
memory. Auxiliary memory is nonvolatile, which means that data is not lost when power to the computer
goes off.

One advantage of auxiliary memory over main memory is that it’s nonvolatile. Another advantage is
that its cost per unit storage is much less than main memory’s cost per unit storage. A third advantage is that
it is more portable than main me a%@canmm&ed Eﬂ\hnaqq@@rto another more easily).

The disadvantage of auxiliary inemory is that its access time is quite a bit slower than main memory’s
access time. Access time is the time it takes to locate a single piece of data and make it available to the com-
puter for processing.

Auxiliary memory comes in many different forms, the most common of which are hard disks, diskettes,
compact discs, and USB flash drives. Those devices are called storage media or simply storage devices.
Figure 1.4 shows pictures of them.

The most popular types of compact discs can be grouped as follows:

* CD-Audio—for storing recorded music, usually referred to as just “CD” (for compact disc).
* CD-ROM, CD-R, CD-RW—for storing computer data and recorded music.
e DVD, DVD-R, DVD-RW—for storing video, computer data, and recorded music.

The “ROM” in CD-ROM stands for read-only memory. Read-only memory refers to memory that can
be read from, but not written to. Thus, you can read a CD-ROM, but you can’t change its contents. With
CD-Rs, you can write once and read as many times as you like. With CD-RWs, you can write and read as often
as you like.

DVD stands for “Digital Versatile Disc” or “Digital Video Disc.” DVDs parallel CD-ROMs in that you
can read from them, but you can’t write to them. Likewise, DVD-Rs and DVD-RWs parallel CD-Rs and
CD-RWs in terms of their reading and writing capabilities.

USB flash drives are fast, have high storage capacity, and are particularly portable. They are portable
because they are the size of a person’s thumb and they can be hot swapped into virtually any computer. (Hot
swapping is when you plug a device into a computer while the computer is on.) The “USB” in USB flash
drive stands for Universal Serial Bus, and it refers to a particular type of connection. More specifically, it

lvww.allitebooks.cond

http://www.allitebooks.org

1.2 Hardware Terminology 7

Hard disk

Diskette

Compact disc USB flash drive
Figure 1.4 Hard disk, diskette, compact disc, and USB flash drive

refers to a particular type of connection wire and connection socket. A flash drive uses that type of connec-
tion, and therefore it’s called a USB flash drive. By the way, many computer devices use USB connections,
and they are all hot swappable.
Different storage devicges have dlfferetﬂﬁa_.g es As &f %Ftember, 2007:
* Typical hard disks haxép capglty range from EB up to 1 TB (1B stands for terabyte, where fera is
one trillion).
 Typical diskettes have a capacity of 1.44 MB.
* Typical CD-ROMs, CD-Rs, and CD-RWs have a capacity of 700 MB.

* Typical DVDs, DVD-Rs, and DVD-RWs have a capacity range from 4.7 GB up to 8.5 GB.
 Typical USB flash drives have a capacity range from 128 MB up to 64 GB.

A drive is a mechanism that enables the computer system to access (read from and write to) data on a
storage device. A disk drive is a drive for a hard disk, diskette, or compact disc. A disk drive rotates its disk
very fast, and one or more heads (electronic sensors) access the disk’s data as it spins past.

To specify the storage media on which the data resides, you’ll need to use the storage media’s drive
letter followed by a colon. In computers using some version of Microsoft Windows, diskette drives are regu-
larly referred to as Az, hard disk drives are usually referred to as C: or Dz, compact disc drives are usually
referred to as D or E:., and USB flash drives are usually referred to as E- or F:.

In copying data, you’ll actually copy what’s known as a file, which is a group of related instructions or
a group of related data. For example, (1) a program is a file that holds a set of instructions, and (2) a Word
document is a file that holds text data created by Microsoft Word.

Common Computer-Hardware Vocabulary

When buying a computer or when talking about computers with your computer friends, you’ll want to make
sure to understand the vernacular—the terms that people use in everyday speech as opposed to the terms
found in textbooks—so that you will be able to understand what’s going on. When a computer-savvy person

8 Chapter 1 Introduction to Computers and Programming

refers to a computer’s memory by itself, the person typically means main memory—the computer’s RAM.
When someone refers to a computer’s disk space, the person typically means the capacity of the computer’s
hard disk. When someone refers to computer by itself, the person usually means the box that contains the
CPU, the main memory, the hard disk drive and its associated hard disk, and the diskette drive. I/O devices,
although they’re part of a computer system, are typically not considered to be part of the computer. Instead,
they are considered to be peripheral devices because they are on the periphery of the computer. When
someone says floppy or floppy disk, they mean a removable diskette.

Why is the term “floppy” used for a diskette? If you’ve got a diskette lying around, cut open the dis-
kette’s hard plastic case. You'll see that the storage media inside is flexible, or floppy. Be aware that in cutting
open the diskette case, you’ll destroy the diskette. Make sure the diskette doesn’t contain your homework.
We don’t want you to get a bad grade on your homework and tell your teacher “The authors made me
doit!”

Pace of Computer Improvements

For as long as memory and CPU components have been around, manufacturers of these devices have been
able to improve their products’ performances at a consistently high rate. For example, RAM and hard disk
capacities double approximately every two years. CPU speeds also double approximately every two years.
An urban legend is a story that spreads spontaneously in various forms and is popularly believed to
be true. The following exchange is a classic Internet urban legend that comments on the rapid pace of com-
puter improvements.' Although the exchange never took place, the comments, particularly the first one, are

relevant. éA\Q E)DF E h ancer
At a recent computer expo (CO &%%ill ates reporteﬁy compared the computer industry with the

auto industry and stated, “If GM had kept up with the technology like the computer industry has, we would
all be driving $25.00 cars that got 1,000 miles to the gallon.”

In response to Bill’'s comments, General Motors issued a press release stating:

If GM had developed technology like Microsoft, we would all be driving cars with the following
characteristics:

1. For no reason whatsoever, your car would crash twice a day.

2. Every time they repainted the lines in the road, you would have to buy a new car.

3. Occasionally your car would die on the freeway for no reason. You would have to pull over to the side of
the road, close all of the windows, shut off the car, restart it, and reopen the windows before you could
continue. For some reason you would simply accept this.

4. Occasionally, executing a maneuver such as a left turn would cause your car to shut down and refuse to
restart, in which case you would have to reinstall the engine.

5. Macintosh would make a car that was powered by the sun, was reliable, five times as fast and twice as
easy to drive—but would run on only five percent of the roads.

6. The oil, water temperature, and alternator warning lights would all be replaced by a single “This Car
Has Performed an Illegal Operation” warning light, and the car would not work.

7. Occasionally, for no reason whatsoever, your car would lock you out and refuse to let you in until you
simultaneously lifted the door handle, turned the key and grabbed hold of the radio antenna.

8. The airbag system would ask “Are you sure?”” before deploying.

! Snopes.com, Rumor Has It, on the Internet at http://www.snopes.com/humor/jokes/autos.asp (visited March 15, 2007).

http://www.snopes.com/humor/jokes/autos.asp

1.3 Program Development 9

1.3 Program Development

As mentioned earlier, a program is a set of instructions that can be used to solve a problem. Often, a pro-
gram contains many instructions, and the instructions are rather complicated. Therefore, developing a suc-
cessful program requires some effort. It requires careful planning, careful implementation, and ongoing
maintenance. Here is a list of typical steps involved in the program development process:

* Requirements analysis
* Design

* Implementation

* Testing

* Documentation

* Maintenance

Requirements analysis is determining the program’s needs and goals. Design is writing a rough outline
of the program. Implementation is writing the program itself. Testing is verifying that the program works.
Documentation is writing a description of what the program does. Maintenance is making improvements
and fixing errors later on. The steps are ordered in a reasonable sequence in that you’ll normally perform
requirements analysis first, design second, and so on. But some of the steps should be performed throughout
the development process rather than at one particular time. For example, you should work on the documen-
tation step throughout the development process, and you should work on the testing step during and after
the implementation step and also after the maintenance step. Be aware that you’ll often need to repeat the

sequence of steps as needspmpise, FQr exa -on ’s gnals changes, you’ll need to repeat
allqof the steps 1131 varying ﬁpsead 6 @D‘f" ?Hlﬁ g'oﬁr%né%o

We discuss the requirements analysis step and the design step in this section. We discuss the design step
in detail in Chapter 2, and we illustrate it with examples throughout the book. We discuss the implementa-
tion step in this chapter’s “Source Code” section, and we illustrate it with examples throughout the book. We
discuss the testing step in Chapter 8. We discuss the documentation step starting in Chapter 3 and illustrate

it with examples throughout the book. We discuss the maintenance step in Chapter 8 and illustrate it with
examples throughout the book.

Requirements Analysis

The first step in the program development process is a requirements analysis, where you determine the
needs and goals of your program. It’s important that the programmer thoroughly understands the customer’s
wishes. Unfortunately, it’s all too common for programmers to produce programs only to find out later that
the customer wanted something different. This unfortunate circumstance can often be blamed on imprecise
communication between the customer and the programmer at the beginning of the project. If a customer and
programmer rely solely on a verbal description of the proposed solution, it’s easy to omit important details.
Later on, those omitted details can be a problem when the customer and programmer realize that they had
different assumptions about how the details would be implemented.

To aid the up-front communication process, the customer and programmer should create screen shots
of data-entry screens and output reports. A screen shot is a picture of what the computer screen looks
like. To create screen shots, you can write short programs that print data-entry screens with hypothetical
input, and you can write short programs that print reports with hypothetical results. As a quicker alternative,
you can create screen shots with the help of drawing software or, if you're a decent artist, with pencil and

paper.

10 Chapter 1 Introduction to Computers and Programming

Program Design

After the requirements analysis step, the second step is program design, where you write a draft of your
program and focus on the basic logic, not the wording details. More specifically, you write instructions that
are coherent and logically correct, but you don’t worry about missing minor steps or misspelling words.
That sort of program is referred to as an algorithm. For example, a cake recipe is an algorithm. It contains
instructions for solving the problem of baking a cake. The instructions are coherent and logically correct,
but they don’t contain every minor step, like covering your hands with pot holders prior to removing the
cake from the oven.

Pseudocode

In writing an algorithm, you should focus on organizing the flow of the instructions, and you should try
to avoid getting bogged down in details. To facilitate that focus, programmers often write an algorithm’s
instructions using pseudocode. Pseudocode is an informal language that uses regular English terms to de-
scribe a program’s steps. With pseudocode, precise computer synfax is not required. Syntax refers to the
words, grammar, and punctuation that make up a language. Pseudocode syntax is lenient: Pseudocode must
be clear enough so that humans can understand it, but the words, grammar, and punctuation don’t have to be
perfect. We mention this leniency in order to contrast it with the precision required for the next phase in a
program’s development. In the next section, we’ll cover the next phase, and you’ll see that it requires perfect
words, grammar, and punctuation.

Example—Using Pseudocode to Find Average Miles Per Hour

Suppose you are asked to write aﬂ@@@@hate E@]@lﬂ G fur value for a given car trip.

Let’s step through the solution for this problem. To determine the average miles per hour, you’ll need to
divide the total distance traveled by the total time. Let’s assume that you have to calculate the total distance
from two given locations. To determine the total distance, you’ll need to take the ending-point location,
called “ending location,” and subtract the starting-point location, called “starting location,” from it. Let’s
assume that you have to calculate the total time in the same manner, subtracting the starting time from the
ending time. Putting it all together, the pseudocode for calculating average miles per hour looks like this:

Calculate ending location minus starting location.
Put the result in total distance.

Calculate ending time minus starting time.

Put the result in total time.

Divide total distance by total time.

At this point, some readers might want to learn about a relatively advanced form of program de-
velopment—object-oriented programming, or OOP as it’s commonly called. OOP is the idea that when
you're designing a program you should first think about the program’s components (objects) rather than
the program’s tasks. You don’t need to learn about OOP just yet, and you’re not properly prepared to learn
about OOP implementation details, but if you're interested in a high-level overview, you can find it in
Chapter 6, Section 2.

1.4 Source Code

In the early stages of a program’s development, you write an algorithm using pseudocode. Later, you translate
the pseudocode to source code. Source code is a set of instructions written in a programming language.

1.4 Source Code 11

Programming Languages

A programming language is a language that uses specially defined words, grammar, and punctuation that a
computer understands. If you try to run pseudocode instructions on a computer, the computer won’t under-
stand them. On the other hand, if you try to run programming language instructions (i.e., source code) on a
computer, the computer will understand them.

Just as there are many spoken languages in the world (English, Chinese, Hindi, etc.), there are many
programming languages as well. Some of the more popular programming languages are VisualBasic, C++,
and Java. Each programming language defines its own set of syntax rules. In this book, we’ll focus on the
Java programming language. If you write your program in Java, you must follow Java’s syntax rules pre-
cisely in terms of words, grammar, and punctuation. If you write Java source code using incorrect syntax
(e.g., you misspell a word or forget a semicolon), and you try to run such source code on a computer, the
computer won’t be able to understand it.

Example—Using Java to Find Average Miles Per Hour

Continuing with the earlier example where you wrote pseudocode to find the average miles per hour value
for a given car trip, let’s now translate the pseudocode into Java source code. In the table below, the pseudo-
code at the left translates into the Java source code at the right. Thus, the first two pseudocode instructions
translate into the single Java source code instruction at their right.

Pseudocode Java Source Code

Calculate ending location nﬁﬁ\!s)%y FPLUIR stdabtdl 1L BeationEnd - 1ocationstart;

location. Put the result in total distance.

Calculate ending time minus starting time. timeTotal = timeEnd - timeStart;
Put the result in total time.
Divide total distance by total time. averageMPH = distanceTotal / timeTotal;

Programmers normally refer to Java source code instructions as Java statements. For Java statements to
work, they must use precise syntax. For example, as shown above, Java statements must (1) use a — for sub-
traction, (2) use a / for division, and (3) have a semicolon at their right side. The precision required by Java
statements contrasts with the flexibility of pseudocode. Pseudocode allows any syntax, as long as it is un-
derstandable by a person. For example, in pseudocode, it would be acceptable to represent subtraction with
a — or the word “subtract.” Likewise, it would be acceptable to represent division with a / or a + or the word
“divide.”

Skipping the Pseudocode Step

Initially, programming language code will be harder for you to understand than pseudocode. But after gain-
ing experience with a programming language, you may become so comfortable with it that you're able to
skip the pseudocode step entirely and go right to the second step where you write the program using pro-
gramming language code.

For larger programs, we recommend that you do not skip the pseudocode step. Why? Because with
larger programs, it’s important to first focus on the big picture because if you don’t get that right, then noth-
ing else matters. And it’s easier to focus on the big picture if you use pseudocode where you’re not required

12 Chapter 1 Introduction to Computers and Programming

to worry about syntax details. After implementing a pseudocode solution, it’s relatively easy to convert the
pseudocode to source code.

1.5 Compiling Source Code into Object Code

After writing a program, you’ll want to have a computer perform the tasks specified by the program. Getting
that to work is normally a two-step process: (1) Perform a compile command. (2) Perform a run command.
When you perform a compile command, you tell the computer to translate the program’s source code to
code that the computer can run. When you perform a run command, you tell the computer to run the trans-
lated code and perform the tasks specified by the code. In this section, we describe the translation process.

The computer contains a special program called a compiler that’s in charge of the translation process.
If you submit source code to a compiler, the compiler translates it to code that the computer can run. More
formally, the compiler compiles the source code and produces object code as the result.? Object code is a
set of binary-format instructions that can be directly run by a computer to solve a problem. An object-code
instruction is made up of all 0’s and 1’s because computers understand only 0’s and 1’s. Here’s an example of
an object-code instruction:

0100001111101010

This particular object-code instruction is referred to as a 16-bit instruction because each of the O’s and
I’s is called a bit, and there are 16 of them. Each object-code instruction is in charge of only a simple com-
puter task. For example, one obj (& @rucF@DthtEnhalﬂ:@feqpymg a single number from
some place in main memory to some place in the CPU. There’s no need for general-purpose computer pro-
grammers to understand the details of how object code works. That’s the computer’s job, not the program-
mer’s job.

Programmers sometimes refer to object code as machine code. Object code is called machine code be-
cause it’s written in binary and that’s what a computer “machine” understands.

1.6 Portability

In Section 1.2’s “Auxiliary Memory” subsection, we said that auxiliary memory is more portable than main
memory because it can be moved from one computer to another fairly easily. In that context, portability
referred to hardware. Portability can also refer to software. A piece of software is portable if it can be used
on many different types of computers.

Portability Problem with Object Code

Object code is not very portable. As you now know, object code is comprised of binary-format instructions.
Those binary-format instructions are intimately tied to a particular type of computer. If you have object
code that was created on a type X computer, then that object code can run only on a type X computer. Like-

2 Most compilers produce object code, but not all. As you’ll see in the next section, Java compilers produce an intermediate form of
instructions. At a later time, that intermediate form of instructions is translated into object code.

1.6 Portability 13

wise, if you have object code that was created on a type Y computer, then that object code can run only on
atype Y computer.’

So what’s all the fuss about portability? Who cares that object code is not very portable? Software man-
ufacturers care. If they want to sell a program that runs on different computer types, they typically have to
compile their program on the different computer types. That produces different object-code files, and they
then sell those files. Wouldn’t it be easier if software manufacturers could provide one form of their program
that runs on all types of computers?

Java’s Solution to the Portability Problem

The inventors of Java attempted to address the inherent lack of portability in object code by introducing the
bytecode level between the source code and object code levels. Java compilers don’t compile all the way down
to object code. Instead, they compile down to bytecode, which possesses the best features of both object code
and source code:

* Like object code, bytecode uses a format that works closely with computer hardware, so it runs fast.
 Like source code, bytecode is generic, so it can be run on any type of computer.

How can bytecode be run on any type of computer? As a Java program’s bytecode runs, the bytecode
is translated into object code by the computer’s bytecode interpreter program. The bytecode interpreter
program is known as the Java Virtual Machine, or JVM for short. Figure 1.5 shows how the JVM translates

bytecode to object code. It glso shows howﬁbﬁc ngler translates source code to bytecode.
Ap cer

source code

Java compilers perform
<«— this translation as part of
\4 the compilation process

bytecode

The JVM performs this
<«—— translation as part of the
A 4 run process

object code

Figure 1.5 How a Java program is converted from source code to object code

To run Java bytecode, a computer must have a JVM installed on it. Fortunately, installing a JVM is
straightforward. It’s a small program, so it doesn’t take up much space in memory. And it’s easy to obtain—
anyone can download a JVM for free from the Internet. In Section 1.8, we explain how to download a JVM
and install it on your own computer.

3 There are about 15 or so different computer types that are in common use today. Those 15 computer types correspond to 15 catego-
ries of CPUs. Each CPU category has its own distinct instruction set. An instruction set defines the format and meanings of all the
object-code instructions that work on a particular type of CPU. A full discussion of instruction sets is beyond the scope of this book.
If you’d like to learn more, see Wikipedia’s Web site at http://en.wikipedia.org/ and enter “instruction set” in the search box.

http://en.wikipedia.org/

14 Chapter 1 Introduction to Computers and Programming

Why Is the Bytecode Interpreter Program Called a “Java Virtual Machine”?

We’ll now explain the origin of the name “Java Virtual Machine.” For programs written with most program-
ming languages, the CPU “machine” runs the program’s compiled code. For programs written in Java, the
bytecode interpreter program runs the program’s compiled code. So with Java, the bytecode interpreter
program acts like a CPU machine. But the bytecode interpreter is just a piece of software, not a piece of
hardware like a real CPU. Thus, it’s a virtual machine. And that’s why Java designers decided to call the
bytecode interpreter program a Java virtual machine.

1.7 Emergence of Java

Home-Appliance Software

In the early 1990s, putting intelligence into home appliances was thought to be the next “hot” technology. Ex-
amples of intelligent home appliances include coffee pots controlled by a computer and televisions controlled
by an interactive programmable device. Anticipating a strong market for such items, Sun Microsystems in
1991 funded a team of researchers to work on the secretive “Green Project” whose mission was to develop
software for intelligent home appliances.

An intelligent home appliance’s intelligence comes from its embedded processor chips and the software
that runs on those processor chips. Appliance processor chips change often because engineers continually
find ways to make them smaller, less expensive, and more powerful. To accommodate the frequent turnover

of new chips, the software that rugs on them shoﬁﬁﬁ(trﬁeﬁr flexible.
Originally, Sun planned to Apﬁg@ its -app h&%@,@lﬁ it soon realized that C++

wasn’t sufficiently portable. Rather than write C++ software and fight C+ +’s inherent portability problems,
Sun decided to develop a whole new programming language for its home-appliance software.

Sun’s new language was originally named Oak (for the tree that was outside project leader James Gos-
ling’s window), but it turned out that Oak was already being used as the name of another programming lan-
guage. As the story goes, while a group of Sun employees was on break at a local coffee shop, they came up
with the name “Java.” They liked the name “java” because of the significant role caffeine plays in the lives
of software developers. ©

World Wide Web

When the market for intelligent home-appliance software proved to be less fertile than anticipated, Sun
almost pulled the plug on its Java project during the prerelease development phase. Fortunately for Sun
(and for all of today’s Java lovers), the World Wide Web exploded in popularity. Sun realized that the Web’s
growth could fuel demand for a language like Java, so Sun decided to continue with its Java development
efforts. Those efforts bore fruit when they presented Java’s first release at the May 1995 SunWorld Confer-
ence. Soon thereafter, Netscape, the world’s most popular browser manufacturer at the time, announced its
intention to use Java in its browser software. With support from Netscape, Java started with a bang and it’s
been going strong ever since.

The Web relies on Web pages being downloaded and run on many different types of computers. To work
in such a diverse environment, Web page software must be extremely portable. You’re probably thinking,
Java to the rescue! Actually, that would be a bit of an exaggeration. The Web didn’t need rescuing—the Web
was doing reasonably well even before Java came into the picture, thank you very much. But Java was able to
add some much-needed functionality to plain old blah Web pages.

1.8 First Program—Hello World 15

Plain old blah Web pages? Prior to Java, Web pages were limited to one-way communication with their
users. Web pages sent information to users, but users did not send information to Web pages. More specifi-
cally, Web pages displayed information for users to read, but users did not enter data for Web pages to pro-
cess. When the Web community figured out how to embed Java programs inside Web pages, that opened the
door to more exciting Web pages. Java-embedded Web pages are able to read and process user input, and
that provides users with a more enjoyable, interactive experience.

Java Today

Today, programmers use Java in many different environments. They still embed Java programs in Web
pages, and those programs are called applets. The initial popularity of applets helped Java grow into one
of the leading programming languages in the world. Although applets still play a significant role in Java’s
current success, some of the other types of Java programs are coming close to surpassing applets in terms of
popularity, and some have already surpassed applets in terms of popularity.

To help with the small talk at your next Java social event, we’ll provide brief descriptions of some of the
more popular uses for Java. An applet is a Java program that’s embedded in a Web page. A servlet is a Java
program that supports a Web page, but it runs on a different computer than the Web page. A JavaServer Page
(JSP) is a Web page that has fragments of a Java program (as opposed to a complete Java program, like an ap-
plet) embedded in it. An advantage of servlets and JSPs over applets is that servlets and JSPs lead to Web pages
that display more quickly. A Micro Edition (ME) Java application is a Java program that runs on a limited-
resource device, for example, a device that has a limited amount of memory. Examples of limited-resource
devices are consumer appliances such as mobile phones and television set-top boxes. A Standard Edition (SE)
Java application is a Java pRogr ru tan, er—a desktop or a laptop. In this book, we
focus on SE Java applicatimg;d:éd tm%er t%ﬁ ﬁlﬁrﬁ){;g s because SE Java applications are

the most general purpose and they provide the best environment for learning programming concepts.

1.8 First Program—Hello World

Earlier you learned what it means to compile and run a Java program. But learning by reading only goes so
far. It’s now time to learn by doing. In this section, you’ll enter a Java program into a computer, compile the
program, and run it. What fun!

Development Environments

There are different ways to enter a Java program into a computer. You can use an integrated development
environment, or you can use a plain text editor. We’ll briefly describe the two options.

An integrated development environment (IDE) is a rather large piece of software that allows you to
enter, compile, and run programs. The entering, compiling, and running are all part of a program’s develop-
ment, and those three functions are integrated together into one environment. Thus, the name “integrated
development environment.” Some IDEs are free and some are quite expensive. We provide tutorials for
several popular IDEs on the book’s Web site.

A plain text editor is a piece of software that allows you to enter text and save your text as a file. Plain
text editors know nothing about compiling or running a program. If you use a plain text editor to enter a
program, you’ll need to use separate software tools to compile and run your program. Note that word pro-
cessors, like Microsoft Word, can be called text editors, but they’re not plain text editors. A word processor
allows you to enter text and save your text as a file. But the saved text is not “plain.” When a word processor
saves text to a file, it adds hidden characters that provide formatting for the text like line height, color, etc.

16 Chapter 1 Introduction to Computers and Programming

And those hidden characters create problems for Java programs. If you attempt to enter a program into a
computer using a word processor, your program won’t compile successfully and it certainly won’t run.

Different types of computers have different plain text editors. For example, computers that use Win-
dows have a plain text editor called Notepad. Computers that use UNIX or Linux have a plain text editor
called vi. Computers that use Mac OS X have a plain text editor called TextEdit. Note: Windows, UNIX,
Linux, and Mac OS X are operating systems. An operating system is a collection of programs whose pur-
pose is to help run the computer system. In running the computer system, the operating system manages the
transfer of information between computer components.

For the rest of this section, we’ll describe how you can enter, compile, and run a program using free,
bare-bones tools. You'll use a plain text editor for entering your program, and you’ll use simple software
tools from Sun for compiling and running your program. If you have no interest in using such bare-bones
tools, and you prefer instead to stick exclusively with an IDE, then refer to the IDE tutorials on the book’s
Web site and feel free to skip the rest of this section. If you’re unsure what to do, we encourage you to try
out the bare-bones tools. They’re free and they don’t require as much memory as the IDEs. They serve as a
standard baseline that you should be able to use on almost all computers.

Entering a Program into a Computer

We’ll now describe how you can enter a program into a computer using Notepad, the plain text editor that
comes with all versions of Microsoft Windows.

Move your mouse cursor on top of the Start button at the bottom-left corner of your Windows desktop.
Click the Start button. (When we ask you to “click” an item, we want you to move your mouse on top of
the item and press the left mousApta;that auﬁrﬂafa} I&?Cp@rr On the menu, move your
mouse on top of the Programs optién. Should cause another menu to appear. On that menu, move your
mouse on top of the Accessories option. That should cause another menu to appear. On that menu, click on
the Notepad option. That should cause the Notepad text editor to appear.

In the newly opened Notepad text editor, enter the source code for your first program. More specifically,
click somewhere in the middle of the Notepad window and then enter the seven lines of text that are shown
in Figure 1.6. When you enter the text, be sure to type the letters with uppercase and lowercase exactly as
shown. For example, enter Hel 10 with an uppercase H and lowercase €, 1, 1, and 0. Use spaces, not
tabs, for indentations. Your entered text comprises the source code for what is known as the Hello World
program. The Hello World program is the traditional first program for all programming students. It simply
prints a hello message. In Chapter 3, we’ll describe the meaning behind the words in the Hello World source
code. In this chapter, we’re more interested in hands-on experience, and we show you how to enter, compile,
and run the Hello World program.

After entering the source code into the Notepad window, you’ll need to save your work by storing it in a
file. To save your source code in a file, click the File menu in the top-left corner of the Notepad window. That
should cause a menu to appear. On the menu, select the Save As option. That should cause a Save As dialog
box to appear. A dialog box is a small window that performs one task. For this dialog box, the task is to save
a file.

Note the File name: box at the bottom of the dialog box. That’s where you’ll enter the name of your
file. But first, you should create a directory to store your file in. A directory, also called a folder, is an orga-
nizational entity that contains a group of files and other directories.* Move your mouse cursor over the down

+1In the Windows and Macintosh worlds, people tend to use the term “folder.” In the UNIX and Linux worlds, people tend to use the
term “directory.” As you’ll see in Chapter 15, Sun uses the term “directory” as part of the Java programming language. We like to
follow Sun, and we therefore use the term “directory” rather than “folder.”

lvww.allitebooks.cond

http://www.allitebooks.org

1.8 First Program—Hello World 17

& Untitled - Notepad
File Edit Format Yiew Help

public class Hello
public static woid main(string[] args)

System.out. printTn"Hello, world!"J;

Figure 1.6 The Notepad text editor with the Hello World program entered into it

arrow (%) that’s at the top center of the Save As dialog box. That should cause a directory tree to appear un-
der the down arrow’s box. In the directory tree, move your mouse on top of the C: icon if you'd like to save
on your hard drive, or move your mouse on top of the E: or F: icon if you'd like to save on your USB flash
drive. Click the appropriate drive letter icon. That should cause the clicked drive letter icon to appear in the
Save in: box next to the down arrow. Verify that your Save As dialog box now looks similar to the Save As
dialog box in Figure 1.7. In particular, note the F: drive in Figure 1.7°’s Save in: box. Your Save in: box may
be different, depending on what drive letter you clicked.

Apago PDF Enhancer

Save As
Savejn | < Removable Disk [F:) v &% =E
. i:f:liﬂhl'lFUHH |create Hew Foll:lerh
& [stacyFolder
My Recent
Documents
Desktop
My Documents
My Computes
. File name: |kt b | [Save]
by Metwark. Save as fype | Tt Dioctmeit f‘.-tn?] v| | Cancel
Encoding [amst v

Figure 1.7 Notepad’s Save As dialog box with user about to create a new folder

18 Chapter 1 Introduction to Computers and Programming

As shown in Figure 1.7, move your mouse cursor over the Create New Folder icon near the top-
right corner of the Save As dialog box. Click the icon. That should cause a new directory to appear in
the directory tree. The name of the new directory is New Folder by default. The New Folder name
should be selected/highlighted. Enter myJavaPgms, and as you do so, myJavaPgms should overlay the
New Folder name. Click the Open button in the bottom-right corner of the dialog box. That should cause
the new myJavaPgms directory to appear in the Save in: box.

Enter ""Hello.java" in the File name: box at the bottom of the dialog box. You must enter
"Hello. java" exactly as shown below:

File name: |"Hello.ia\ta" b |

Don’t forget the quotes, the uppercase H, and the lowercase subsequent letters. Click the Save button in the
bottom-right corner of the dialog box. That should cause the Save As dialog box to disappear, and the top
of the Notepad window should now say Hello.java. Shut down Notepad by clicking on the X in the top-right
corner of the Notepad window.

Installing a Java Compiler and the JVM

In the previous subsection, you entered the Hello World program and saved it to a file. Yeah! Normally,
the next step would be to compile the file. Remember what compiling is? That’s when a compiler trans-
lates a source code file into a bytecode file. For our Hello World program, the compiler will translate your
Hello. java source code file JA(paagO) . (P@Fbyt&l&haﬂ @@ working in a school’s com-
puter lab, chances are pretty good that your computer already has a Java compiler installed on it. If your
computer does not have a Java compiler installed on it, you’ll need to install it now in order to complete the
hands-on portion of this section.

Normally, if someone is interested in installing the Java compiler (to compile Java programs), they are
also interested in installing the JVM (to run Java programs). To make the installation easier, Sun bundles
the Java compiler together with the JVM. Sun calls the bundled software the Java Development Kit, or JDK
for short.

To install the JDK on your computer, you should follow the installation instructions on the book’s Web
site. Go to http://www.mhhe.com/dean and click on the JDK Installation Instructions link. Read the in-
structions and install the JDK accordingly. In particular, follow the instructions that describe how to set the
PATH variable permanently.

Compiling a Java Program

We’ll next describe how you can compile a program using a command prompt window (also called a con-
sole). A command prompt window allows you to enter operating system instructions where the instructions
are in the form of words. The words are referred to as commands. For example, on a computer that runs the
Windows operating system, the command for deleting a file is del (for delete). On a computer that runs the
UNIX or Linux operating system, the command for deleting a file is rm (for remove).

To open a command prompt window on a computer that runs the Windows operating system, click the
Start button at the bottom-left corner of your Windows desktop. That should cause a menu to appear. On
the menu, click the Run... option. That should cause a Run dialog box to appear. In the Run dialog box’s

http://www.mhhe.com/dean

1.8 First Program—Hello World 19

CAWINDOWS\system3 2\cmd. exe

Microsoft Yindows RF [Uersion 5.1.268d1
C(C» Copyright 1985-20801 Microszoft Corp.

C:wDocumentz and Settings“John Deanl_

Figure 1.8 A command prompt window when it first opens up

Open: box, type cmd (cmd stands for “command”) and click the OK button. That should cause a command
prompt window to appear. Figure 1.8 shows the newly opened command prompt window.
In Figure 1.8, note this line:

C:\Documents and Settings\John Dean>

That’s a prompt. In general, a prompt tells you to do something. For a command prompt window, the prompt
tells you to enter a comm@\argsg)n, pﬁBErnteETgAh?(ﬁie actual command prompt window.
But first, note the text at the 1ft o > symbol. The text C2\Documents and Settings\John Dean
forms the path to the current directory. A path specifies the location of a directory. More specifically, a
path starts with a drive letter and contains a series of one or more slash-separated directory names. In our
example, C: refers to the hard drive, Documents and Settings refers to the Documents and
Settings directory that’s on the hard drive, and John Dean refers to the John Dean directory that’s
contained within the Documents and Settings directory.

To compile your Hello World program, you’ll need to go first to the drive and directory where it resides.
Suppose your command prompt window’s prompt indicates that your current drive is C:, and you saved
Hello.java on F.. Then you’ll need to change your drive to F:. To do so, enter ¥ in your command
prompt window.

To change to the Hello World program’s directory, enter this cd command (cd stands for change
directory):

cd \myJavaPgms
Now you’re ready to compile your program. Enter this Javac command (javac stands for java compile):
jJavac Hello_java

In entering that command, if your command prompt window displays an error message, refer to Figure 1.9
for possible solutions. If your command prompt window displays no error messages, that indicates success.
More specifically, it indicates that the compiler created a bytecode file named Hello.class. To run the
Hello.class file, enter this java command:

Java Hello

20 Chapter 1 Introduction to Computers and Programming

The compilation error message says
something like this: Explanation:

"javac® is not recognized All three error messages indicate that the computer doesn’t understand
the Javac command because it can’t find the javac compiler program.
The error is probably due to the PATH variable being set improperly.

javac: command not found

bad command or filename Review the JDK installation instructions and reset the PATH variable
accordingly.
Hello.java: number: text There is a syntax error in the Hel lo. java source code. The specified

number provides the approximate line number in Hel lo. java where
the error occurs. The specified text provides an explanation for the error.
Review the contents of the Hel lo. java file and make sure that every
character is correct and uses the proper case (lowercase, uppercase).

Figure 1.9 Compilation errors and explanations

Your command prompt window should now display your program’s output—Hello, world! See
Figure 1.10. It shows the command prompt window after completing the steps described above.

CAWINDOWS\system32\cmd.exe

Microsoft Windows HEP [Version 5.1.26861
(C>» Copyright 1985-2081 Microszoft Corp.

C:~Documents and Settings“John Dean>f:
F:%>cd “mydavaPgnms

F:~myJavaPgms>javac Hello.java

F:smyJavaPgms > java Hello
Hello, world?

F:~mydavaPgms>_

Figure 1.10 Compiling and running the Hello World program

1.9 GUI Track: Hello World (Optional)

This section is the first installment of our optional graphical user interface (GUI) track. In each GUI-track
section, we provide a short introduction to a GUI concept. For example, in this section, we describe how
to display a message in a GUI window. In another GUI track section, we describe how to draw lines and

1.9 GUI Track: Hello World (Optional) 21

shapes. For readers who do not have time for the GUI track, no problem. Any or all of the GUI track sec-
tions may be skipped as they cover material that is independent of later material. Note that we cover hard-
core GUI material in earnest at the end of the book in Chapters 16 and 17. The GUI material in Chapters 16
and 17 is independent of the GUI material in the GUI track, so, once again, it’s OK to skip the GUI track.
But why skip it? GUI programming is sooooo much fun!

In this section, we present a GUI version of the Hello World program. We’ll start by showing you the
program’s output:

A GUI program is defined as a program that uses graphical tools for its interface. This program is in-
deed a GUI program because it uses these graphical tools for its interface: a title bar (the bar at the top of
the window), a close-window button (the “X” in the top-right corner), an OK button, and an i icon. Here’s
how the tools work: If you drag the title bar with your mouse, the window moves. If you click the close-
window button or the OK button, the window closes. The i icon is a visual cue that indicates the nature of the
window—the i stands for “Anformatjon” si wigﬁlmd'séﬁcs information.

See Figure 1.11. Theﬁﬁgﬂés itdi co ¢r the code in the previous section’s
Hello program. For now, don’t worry about the meaning of the program’s code. We’ll explain it later on.
For now, the goal is to give you some fun and valuable hands-on experience.

Go ahead and enter the program code into a text editor. If you need a refresher on how to do that, see
the previous section. This time, save your source code file with the name Hel loGUI . java instead of
Hello.java. When saving Hel1oGUI . Java, make sure you spell the filename with capitals for H, G,
U, and I since that’s how Hel loGUI is spelled in your program’s third line. Next, you’ll want to compile
and run the program. Once again, if you need a refresher, see the previous section.

The dashed boxes indicate code that differs
from the code in the previous section’s
Hel lo program.

Figure 1.11 GUI version of the Hello World program

22 Chapter 1 Introduction to Computers and Programming

Summary

A computer system is all the components that are necessary for a computer to operate and the con-
nections between those components. More specifically, a computer system consists of the CPU, main
memory, auxiliary memory, and I/O devices.

e Programmers write algorithms as first attempt solutions for programming problems.

Algorithms are written with pseudocode—similar to programming language code except that precise
syntax (words, grammar) isn’t required.

Source code is the formal term for programming language instructions.

Object code is a set of binary-encoded instructions that can be directly executed by a computer.

Most non-Java compilers compile from source code to object code.

Java compilers compile from source code to bytecode.

As a Java program runs, the Java Virtual Machine translates the program’s bytecode to object code.
Originally, Sun developed Java for use in home appliance software.

To expedite development, Java programmers often use integrated development environments, but you
can use a plain text editor and command prompt window.

Review Questions

§1.2 Hardware Terminology
1. What do the following abbreviations mean?

a) 1O Apago PDF Enhancer

b) CPU
¢) RAM
d) GHz
e) MB
2. Identify two important computer input devices.
3. Identify two important computer output devices.
4. Assertions:
a) Main memory is faster than auxiliary memory. (T / F)
b) Auxiliary memory is volatile. (T / F)
¢) The first position in main memory is at address 1. (T / F)
d) The CPU is considered to be a peripheral device. (T / F)
e) Hot swapping is when you plug a device into a computer while the computer is on. (T / F)

§1.3 Writing Algorithms Using Pseudocode

5. What is an algorithm?
6. What is pseudocode?

§1.4 Translating Pseudocode into Programming Language Code
7. Syntax rules are more lenient for which type of code—pseudocode or programming language code?

§1.5 Compiling Source Code into Object Code

8. What happens when you compile a program?
9. What is object code?

§1.6 Portability
10. What is a Java Virtual Machine?

Exercises 23

§1.7 Emergence of Java

11.

List five different types of Java programs.

Exercises

1.

e W

10.
11.
12.

[after §1.2] For each of the following items, determine whether it is associated with main memory or
auxiliary memory.

a) floppy disk main or auxiliary?
b) RAM main or auxiliary?
¢) hard disk main or auxiliary?
d) CD-RW main or auxiliary?

[after §1.2] What is a bit?
[after §1.2] What is a byte?
[after §1.2] What type of computer component does C - usually refer to?
[after §1.2] For each of the following computer system components, identify parallel components in a bear’s
biological system.
a) CPU
b) input devices
¢) output devices

[after §1.2] What is “Moore’s Law”? You won’t find the answer to the question in the book, but you can find

it on the Internet. (Hint; r‘a ore of Eetjjﬁv m)
[after §1.3] This questiA(b @b spe% dok= ﬁ her your solution conforms to some
prescribed answer. Just do whatever seems reasonable to you.

Using pseudocode in the form of short statements, provide an algorithm for a bear that describes the

steps involved in gathering honey. If a certain step or a group of steps is to be repeated, use an if statement
and an arrow to show the repetition. For example, your algorithm might include something like this:

<statement> ¢
<statement>
<statement>

<statement>
If still hungry, repeat

[after §1.5] Humans generally prefer to work with source code rather than object code because source code
is easier to understand than object code. So why is object code necessary?

[after §1.6] Most programming languages compile down to object code. Java compiles down to bytecode.
What is the primary benefit of bytecode over object code?

[after §1.6] What does the Java Virtual Machine do?

[after §1.7] What was the original name for the Java programming language?

[after §1.8] On a computer whose operating system is a recent version of Microsoft Windows, invoke Start >
Programs > Accessories > Command Prompt. Navigate to the directory that has the Hel lo. java
source code. Enterdir Hello. ™ tolistall files starting with “Hello”. If this list includes Hel lo . cl ass,
delete that file by entering del Hello.class. Enter javac Hello. java to compile the source code.
Againenterdir Hel lo.* and verify that the bytecode file, Hel 10 . class, has been created. Now you
can enter java Hel lo to execute the compiled program. Enter type Hello. java and type
Hello.class to get a feeling for how bytecode differs from source code.

24 Chapter 1 Introduction to Computers and Programming

13. [after §1.8] Experiment with the Hel lo. java program to learn the meanings of typical compilation
and runtime error messages:
a) Omit the final / from the header block.
b) Omit any part of the argument in the parentheses after main.
¢) Omit the semicolon from the end of the output statement.
d) One at a time, omit the braces—{ and }.
e) Try using lowercase, $, , or a number for the first character in the class name.
f) Make the program filename different from the class name.
g) Change main toMain.
h) One at a time, try omitting public, static, and void from before main.

14. [after §1.8] Learn how to use TextPad by working your way through the “Getting Started with TextPad”
tutorial on the book’s Web site. Submit hardcopy of the source code for your Countdown program (i.e., print
your program from within TextPad). Note that you’re not required to submit source code for your Hello
World program or submit output for either program.

Review Question Solutions

1. What do the following abbreviations mean?
a) I/O: input/output devices.
b) CPU: central processing unit or processor.
¢) RAM: random access memory or main memory.
d) GHz: Gigahertz = billions of cycles per second.

e) MB: MegaBytes = milli(ﬂﬁ ggsdvhetpDPyte E?if?ﬁ,alﬁoefétrs the answer to a single yes/

no question.

2. The keyboard and a mouse are the two most obvious examples of input devices. Another possible input
device is a telephone modem.

3. The display screen and a printer are the two most obvious examples of important output devices. Other
examples are a telephone modem and speakers.

4. Assertions:

a) True. Main memory is physically closer to the processor, and the bus that connects the main memory to
the processor is faster than the bus that connects the auxiliary memory to the processor. Main memory
is also more expensive and therefore usually smaller.

b) False. When power goes off, main memory loses its information, while auxiliary memory does not. An
unexpected power failure might corrupt information in auxiliary memory, however.

¢) False. The first position in main memory is at address 0.

d) False. The CPU is considered to be part of the computer itself; it’s not a peripheral device.

e) True. Hot swapping is when you plug a device into a computer while the computer is on.

. An algorithm is a step-by-step procedure for solving a problem.

. Pseudocode is an informal language that uses regular English terms to describe a program’s steps.

. Syntax rules are more lenient for pseudocode (as opposed to programming language code).

. Most compilers convert source code to object code. Java compilers convert source code to bytecode.

. Object code is the formal term for binary-format instructions that a processor can read and understand.

. A Java Virtual Machine (JVM) is an interpreter that translates Java bytecode into object code.

. Five different types of Java Programs are applets, servlets, JSP pages, micro edition applications, and
standard edition applications.

N I)|

—

Algorithms and Design

Objectives

e Learn how to write an informal text description of what you want a computer program to do.

e Understand how a flowchart describes what a computer program does.

e Become familiar with the standard well-structured control patterns.

e Learn how to structure conditional executions.

e Learn how to structure and terminate looping operations, including nested loops.

e Learn how to “trace through” a program’s sequence of operation.

e See how you can describe program operation at different levels of detail.

Outline

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.1
2.12
2.13

Apago PDF Enhancer

Introduction

Output

Variables

Operators and Assignment Statements

Input

Flow of Control and Flowcharts

if Statements

Loops

Loop Termination Techniques

Nested Looping

Tracing

Other Pseudocode Formats and Applications
Problem Solving: Asset Management (Optional)

2.1 Introduction

As indicated in Chapter 1, writing a computer program involves two basic activities: (1) figuring out what
you want to do and (2) writing code to do it. You might be tempted to skip the first step and jump imme-
diately to the second step—writing code. Try to resist that urge. Jumping immediately into the code often

25

[a-dgr

26 Chapter 2 Algorithms and Design

results in bad programs that work poorly and are hard to fix because poor organization makes them hard to
understand. Therefore, for all but the very simplest problems, it’s best to start by thinking about what you
want to do and then organize your thoughts.

As part of the organization process, you’ll want to write an algorithm.! An algorithm is a sequence of
instructions for solving a problem. It’s a recipe. When specifying an algorithm, two formats are common:

1. The first format is a natural-language outline called pseudocode, where the prefix “pseudo-" means
“fictitious or pretended,” so it’s not “real” code. Pseudocode, like real code, is composed of one or more
statements. A statement is the equivalent of a natural language “sentence.” If the sentence is simple, the
corresponding statement usually appears on one line, but if the sentence is complex, the statement may
be spread out over several lines. Statements can be nested inside each other, as in an outline. We’ll use
the term ““statement” a lot, and you’ll get a better appreciation for it as we go along.

2. The second format is an arrangement of boxes and arrows that help you visually step through the algo-
rithm. The most detailed form of boxes and arrows is called a flowchart. The boxes in a flowchart typi-
cally contain short statements that are similar to pseudocode statements.

This chapter shows you how to apply pseudocode and flowcharts to a fundamental set of standard pro-
gramming problems—problems that appear in almost all large programs. The chapter also shows you how
to trace an algorithm—step through it one statement at a time—to see what it’s actually doing. Our goal is
to give you a basic set of informal tools which you can use to describe what you want a program to do. The
tools help you organize your thinking before you start writing the actual program. Tracing helps you figure
out how an algorithm (or completed program) actually works. It helps you verify correctness and identify

problems when things are not rig}&pago PDF Enhancer
2.2 Output

The first problem to consider is the problem of displaying a program’s final result—its output. This may
sound like something to consider last, so why consider it first? The output is what the end user—the client,
Put yourself in the person who eventually uses the program—wants. It’s the goal. Thinking about the out-
user's place. put first keeps you from wasting time solving the wrong problem.

Hello World Algorithm

In Chapter 1, we showed you a Java program that generated “Hello, world!” output on the computer screen.
Now we’ll revisit that problem, but focus on the algorithm, not the program. You may recall that Chapter 1’s
Hello World program was seven lines long. Figure 2.1 shows the Hello World algorithm—it contains just
one line, a pseudocode print statement. The point of an algorithm is to show the steps necessary to solve a
problem without getting bogged down in syntax details. The Hello World algorithm does just that. It shows a
simple print statement, which is the only step needed to solve the Hello World problem.

Figure 2.1’s “Hello, world!” message is a string literal. A string is a generic term for a sequence of
characters. A string literal is a string whose characters are written out explicitly and enclosed in quotation
marks. If you print a string literal, you print the characters literally as they appear in the command. So Fig-
ure 2.1’s algorithm prints the characters H, e, 1, 1, o, comma, space, w, o, 1, 1, d, and !.

! Ninth century Persian mathematician Muhammad ibn Musa al-Khwarizmi is considered to be the father of algebra. The term algo-
rithm comes from Algoritmi, which is the Latin form of his shortened name, al-Khwarizmi.

lvww.allitebooks.cond

http://www.allitebooks.org

2.3 Variables 27

print “Hello, world!”

Figure 2.1 Hello World algorithm that prints the message “Hello, world!”

Rectangle Algorithm

For the next example, suppose you want to display the area of a particular rectangle. First consider what you
want the program to do. In Figure 2.2, look at the area = 40 line under Output. That shows what you
want the output to look like.

set length to 10

setwidthto 4
set rectangleAreato length *width g
print “area = rectangleArea -~

’ print statement ’

Output:

area = 40 4—{ This is what the output looks like. ’
Figure 2.2 Rectangle a|g¢.\p@g Onts o ERl&NCer

The top part of Figure 2.2 is the algorithm for calculating a rectangle’s area. Note that some of the
words, like length and width, appear with monospace font. Monospace font is when each character’s
width is uniform. We use monospace font to indicate that something is a variable. A variable is a container
that holds a value. The algorithm’s first two lines assign 10 and 4 to length and width, respectively. That
means that the length variable contains the value 10 and the width variable contains the value 4. The
third line describes two operations: First compute the area by multiplying length times width. (The *
is the multiplication “times” symbol.) Then assign the result (the product) to the variable, rectangleArea.
The fourth line prints two items — the string literal “area =" and the value of the rectangleArea vari-
able. When a variable appears in a print statement, the print statement prints the value stored inside the vari-
able. rectangleArea contains 40, so the print statement prints the value 40. Figure 2.2’s output shows
the desired display.

2.3 Variables

Now let’s consider variables in more detail. Figure 2.2’s Rectangle algorithm has three variables—
length, width, and rectangleArea. In rectangleArea, notice how we run together the
two words, “rectangle” and “area,” and notice how we start the second word with a capital letter. We
do this to help you develop good habits for later Java coding, which does not permit any spaces in a variable
name. Although it’s not necessary for pseudocode, in Java, it’s good style to begin a variable name with a
lowercase letter, as in rectangleArea. If the name is a combination of several words, in Java you must
remove the space(s) between multiple words in a single name, and you should begin all words after the first

i

28 Chapter 2 Algorithms and Design

one with an uppercase letter to make the combination readable. This is called camelCase, because of the
bump(s) in the middle. Again, it’s not necessary for pseudocode, but it’s a good habit to develop. Here are
two more examples that show how to name variables with camelCase:

Description A Good Variable Name
sports team name teamName
weight in grams weightInGrams

Variables can hold different fypes of data. Which type of data would the teamName variable probably
hold—a number or a string? It would probably be used to hold a string (e.g., “Jayhawks” or “Pirates”).
Which type of data would the weightInGrams variable probably hold—a number or a string? It would
probably be used to hold a number (e.g., 12.5). It’s relatively easy for a human to determine the type of a
named variable by just thinking about the name, but this kind of thinking is very difficult for a computer. So
in a real Java program, we must tell the computer the type of each data item.

However, since pseudocode is designed strictly for humans and not computers, in pseudocode we don’t
bother with type specification. Notice that Figure 2.2’s pseudocode representation of a Rectangle program
does not contain any mention of data type. Pseudocode ignores data type so that focus can be kept on the
algorithm’s essence—its instructions.

2.4 Operators and Assignment Statements

The previous section described variables by themselves. Now let’s consider relationships between variables

by looking at operators and assigﬁ(p'a.g o PDF Enhancer

Here is the third statement from Figute 2.2’s Rectangle algorithm:
set rectangleArea to length * width

Asindicated earlier, the * symbol is the multiplication operator. The other common arithmetic operators are +
for addition, - for subtraction, and / for division. These should be familiar to everyone. The length and
width variables are operands. In mathematics and again in programming, an operand is an entity (e.g.,
a variable or a value) that is operated on by an operator. The length and width variables are operands
because they are operated on by the * operator.

When we say “set variableA to X,” we mean “put the value of X into variableA” or “assign the
value of X to variableA.” So the set rectangleArea to length * width statement puts the product
of Iength times width into the rectangleArea variable. A picture is worth a thousand words. See
Figure 2.3—it visually describes what the statement does.

rectangleArea length width

(o] — =] - [E])

Figure 2.3 Assignment (or “set”) operation represented by left-pointing arrow

Figure 2.3 includes a pair of parentheses not shown in the pseudocode statement. You could put these
parentheses in the pseudocode if you wanted, but most people expect the multiplication operation to have a
higher precedence (occur sooner) than the assignment operation, so we did not bother including parentheses
in this particular pseudocode statement.

2.6 Input 29

Figure 2.3 shows that each of the three variables is a container that holds a value. Figure 2.3 also visu-
ally suggests that assignment goes in a right-to-left direction. Assignment in our pseudocode has no direc-
tionality, but in Chapter 3, you’ll see that assignment in Java code actually does go right to left. So if you are
a person who likes to visualize things, visualize assignment going right to left, as Figure 2.3 suggests.

2.5 Input

In the preceding Rectangle algorithm, the algorithm itself supplied the values for the length and width
variables. We did it that way to make the introductory discussion as simple as possible. Sometimes this is
an appropriate strategy, but in this particular case, it’s silly, because the algorithm solves the problem only
for one particular set of values. To make the algorithm more general, instead of having the algorithm sup-
ply the values for length and width, you should have the user (the person who runs the program) supply
the values. When a user supplies a value(s) for a program, that’s called user input, or just input. Figure 2.4
presents an improved Rectangle algorithm, where input length and input width perform user input
operations.

print “Enter a length in meters: ”
input length

print “Enter a width in meters: ”
input width

set rectangl eAreAPlargcm PRk Enhancer
C

print “The area is” rectangfeArea “square meters.”

Sample session: User inputs are italicized. ’
Enter a length in meters: 1

Enter a width in meters: 4

The area is 40 square meters.

Figure 2.4 Rectangle algorithm that gets length and width values from a user

Note the first two print statements in Figure 2.4—they’re called prompts because they tell (or prompt)
the user what to enter. Without prompts, most users would be left with an unpleasant sensation and the puz-
zling question, “What do I do now?”

Throughout the book, we provide sample sessions as a means of showing what happens when an al-
gorithm or program is run with a typical set of inputs. When there is space, we include the sample session
in the figure with the algorithm or program that generates it. Can you identify the user-input values in the
sample session in Figure 2.4? Our convention is to italicize sample session input values to distinguish them
from output. Thus, 10 and 4 are user-input values.

The combination of a pseudocode algorithm and a sample session represents a con- Write what you’ll
venient and efficient way to specify a simple algorithm or program. The sample session d0 and how
shows the format of desired inputs and outputs. It also shows representative input and out- RRai1do it.
put numerical values, which allow a programmer to verify that his/her completed pro-
gram actually behaves as required. In many of the book’s projects (projects are on the Web site), we provide
some combination of pseudocode and sample session to specify the problem we are asking you to solve.

¥

X

£

3

B9

&

30 Chapter 2 Algorithms and Design

2.6 Flow of Control and Flowcharts

In the preceding sections, we described various statements—print statements, assignment statements, and
input statements—and we focused on the mechanics of how each statement works. Now it’s time to focus
on the relationships between statements. More specifically, we’ll focus on flow of control. Flow of control is
the order in which program statements are executed. In our discussion of flow of control, we’ll refer to both
algorithms and programs. Flow of control concepts apply equally to both.

Flow of control is best explained with the help of flowcharts. Flowcharts are helpful because they are
pictures. As such, they help you to “see” an algorithm’s logic. A flowchart uses two basic symbols: (1) rect-
angles, which contain commands like print, assign, and input, and (2) diamonds, which contain yes/no ques-
tions. At each diamond, the flow of control splits. If the answer is “yes,” flow goes one way. If the answer is
“no,” flow goes another way.

The dashed boxes in Figure 2.5 show three standard structures for flow-of-control—a sequen-
tial structure, a conditional structure, and a looping structure. The flowchart on the left—the sequential
structure—is a picture of the Rectangle algorithm described in Figure 2.2. Sequential structures contain
statements that are executed in the sequence/order in which they are written; for example after execut-
ing a statement, the computer executes the statement immediately below it. Conditional structures con-
tain a yes/no question, and the answer to the question determines whether to execute the subsequent
block of statements or skip it. Looping structures also contain a yes/no question, and the answer to the
question determines whether to repeat the loop’s block of statements or move on to the statements after

the loop.
Apago PDF Enhancer

Sequential Conditional Looping

Figure 2.5 Well-structured flow of control

Structured programming is a discipline that requires programs to limit their flow of control to sequen-
tial, conditional, or looping structures. A program is considered to be well structured if it can be decom-
posed into the patterns in Figure 2.5. You should strive for well-structured programs because they tend
to be easier to understand and work with. To give you an idea of what not to do, see Figure 2.6. Its flow
of control is bad because there are two points of entry into the loop, and when you’re inside the loop,
it’s hard to know what’s happened in the past. When a program is hard to understand, it’s error-prone
and hard to fix. Code that implements an algorithm like this is sometimes called spaghetti code be-
cause when you draw a flowchart of the code, the flowchart looks like spaghetti. When you see spaghetti,
untangle it!

2.7 if Statements 31

Do not do this!

o
<

Figure 2.6 Poorly structured flow of control

In addition to standardizing sequential, conditional, and looping control structures, structured program-
ming also splits up large problems into smaller sub-problems. In Java, we put the solution to each sub-prob-
lem in a separate block of code called a method. We’ll discuss methods in Chapter 5, but for now, we’ll focus
on the three control structures shown in Figure 2.5.

mpyayuv 1w iV el

In previous sections describing print, assignment, and input statements, you saw examples of the sequential
control structure on the left side of Figure 2.5. Now let’s consider the conditional control structure in the
center of Figure 2.5. In going through a sequence of steps, sometimes you get to a “fork in the road,” at
which point you must choose which way to go. The choice you make depends on the situation. More specifi-
cally, it depends on the answer to a question. When a program has a fork in the road, programmers use an
if statement to implement the fork. The if statement asks a question and the answer to the question tells the
algorithm which way to go. More formally, the if statement contains a condition. A condition is a question
whose answer is either yes or no. The answer to the condition’s question determines which statement ex-
ecutes next. Here are three forms for the if statement:

i

“if, else”

“if, else if”

Now let’s look at each of these three forms separately.
[11 if!l

First, suppose you want to do either one thing or nothing at all. In that case, you should use the simple “if”
form of the if statement. Here is its format:

if <condition> <—| if statement’s heading I
;statement(s)>

| Indent subordinate statement I

32 Chapter 2 Algorithms and Design

Note the angled brackets “<>" that surround “condition” and “statement(s).” Throughout the book, we use
the italics and angled bracket notation for items that require a description. Thus, when you see “<condi-
tion>,” it tells you that an actual condition, not the word “condition,” is supposed to follow the word “if.”
Likewise, when you see “<statement(s)>,” it tells you that one or more actual statements, not the word
“statement(s),” is supposed to go underneath the if statement’s heading.

In the above if statement illustration, note how <statement(s)> is indented. Pseudocode emulates a
natural-language outline by using indentation to show encapsulation or subordination. The statements under
an if statement’s heading are subordinate to the if statement because they are considered to be part of the
larger, encompassing if statement. Since they are subordinate, they should be indented.

Here’s how the simple “if”” form of the if statement works:

o If the condition is true, execute all subordinate statements, that is, execute all indented statements im-
mediately below the “if.”

* If the condition is false, jump to the line after the last subordinate statement, that is, jump to the first
un-indented statement below the “if.”

Let’s put these concepts into practice by showing you an if statement in the context of a complete algorithm.
Figure 2.7’s Shape algorithm prompts the user for a shape. If the user enters “circle,” the algorithm prompts
for a radius, calculates the area of a circle using that radius, and prints the resulting area. Finally, regardless
of whether the user entered “circle” or not, the algorithm prints a friendly end-of-algorithm message.

print “What is your favorite shape?

inputshape o PDF Enhancer

print “Enter a radius value:
input radius These four statements are
)) <)
set areato 3.1416 * radius * radius SUSBIEIEE D e
L s encompassing if statement.
print “The area is” area
print “End of shape algorithm. Seeya!”

Sample session when shape is a circle:

What is your favorite shape? circle
Enter a radius value: 2

The area is 12.5664.

End of shape algorithm. Seeyal!

Sample session when shape is not a circle:

What is your favorite shape? trapezoid
End of shape algorithm. Seeyal!

Figure 2.7 Shape algorithm that calculates a circle’s area if the user’s favorite shape is a circle

You should take note of several items in the Shape algorithm. “shape is a circle” is the if statement’s
condition. It controls whether the if statement’s subordinate statements execute. Note how the set area
command and subsequent print command are separate statements. That’s perfectly acceptable and quite
common, but you should be aware of an alternative implementation where the two commands are merged
into one statement:

2.7 if Statements 33

print “The area is ” (3.1416 * radius * radius)

In this case, we put parentheses around the mathematical calculation to emphasize that we want the computer
to print the result of the calculation, rather than individual variable values. You can always use parentheses
to specify that operations inside the parentheses should be done before operations outside the parentheses.

“if, else”

Now for the second form of the if statement—the “if, else” form. Use the “if, else” form if you want to do
either one thing or another thing. Here is its format:

if <condition>
<statement(s)>

else
<statement(s)>

And here’s how the “if, else” form of the if statement works:

« If the condition is true, execute all statements subordinate to the “if,” and skip all statements subordi-
nate to the “else.”

* If the condition is false, skip all statement(s) subordinate to the “if,” and execute all statements subor-
dinate to the “else.”

Here’s an example that uses the “if, else” form of the if statement:

if grade is greater tlﬁptatqgo 6PDF En h ancer

print “Pass”
else
print “Fail”
Note how we indent the print “Pass” statement since it is subordinate to the if condition. Note how we indent
the print “Fail” statement since it is subordinate to the “else.”

“if, else if”

The “if, else” form of the if statement addresses situations in which there are exactly two possibilities. But
what if there are more than two possibilities? For example, suppose that you want to print one of five pos-
sible letter grades for a particular numerical score. You can do it by using the “if, else if”” form of the if state-
ment to establish parallel paths:

if grade is greater than or equal to 90
print “A”

else if grade is greater than or equal to 80
print “B”

else if grade is greater than or equal to 70
print “C”

else if grade is greater than or equal to 60
print “D”

else
print “F”

34 Chapter 2 Algorithms and Design

What happens if the grade is 85? The print “A” statement is skipped, and the print “B” statement is ex-
ecuted. Once one of the conditions is found to be true, then the rest of the entire if statement is skipped. So
the third, fourth, and fifth print statements are not executed.

What happens if all of the conditions are false? If all of the conditions are false, then the subordinate
statement under “else” is executed. So if the grade is 55, print “F” is executed. Note that you’re not required
to have an “else” with the “if, else if” statement. If you don’t have an “else” and all of the conditions are
false, then no statements are executed.

if Statement Summary

Use the first form (“if””) for problems where you want to do one thing or nothing. Use
the second form (“if, else”) for problems where you want to do either one thing or an-
other thing. Use the third form (“if, else if”’) for problems where there are three or more
possibilities.

EE Use the way that
@ fits best.

Practice Problem with Flowchart and Pseudocode

Let’s practice what you’ve learned about if statements by presenting a flowchart and having you write the
corresponding pseudocode for an algorithm that cuts a CEO’s excessively large salary in half. Figure 2.8
presents the flowchart.

An::uiln PDE Enhancer

print “Enter CEO Salary:”

!

input ceoSalary

ceoSalary
greater than
$500,000 ?

| set ceoSalary to ceoSalary * 0.5 |

!

| print “Reduced CEO Salary is $” ceoSalary |

»
L

v

Figure 2.8 Flowchart for reducing CEO salaries

In flowcharts, we omit the word “if”” from the condition in diamonds and add a question mark to turn
the condition into a question. The question format fits well with the “yes” and “no” on the exiting arrows.

2.7 if Statements 35

If the condition is true, the answer to the question is “yes.” If the condition is false, the practice writing
answer to the question is “no.” Given the flowchart in Figure 2.8, try to write a pseudo- a pseudocode @
code version of the cut-CEO-salary-in-half algorithm. When you’re done, compare your algorithm.

answer to our answer:

print “Enter CEO Salary: ”
input ceoSalary
if ceoSalary is greater than 500000
set ceoSalary to ceoSalary * 0.5
print “Reduced CEO Salary is $” ceoSalary

Practice Problems with Pseudocode Only

Everybody knows the saying, a picture is worth a thousand words. This may be true, but compare the space
consumed by and the effort to construct Figure 2.8’s flowchart with the space consumed by and the effort to
write the corresponding pseudocode. Pictures help you get started, but text is more efficient once you know
what you’re doing. So now let’s try skipping the flowchart and going immediately to pseudocode.

First, let’s write an algorithm that prints “No school!” if the temperature is below 0 degrees. Which if
statement form should you use for this problem? Since the problem description says to do either something
or nothing, you should use the simple “if” form:

print “Enter a temperature: ”
input temperature

if temperature is pﬁplardo PDF Enhancer

print “No school!”

Next, let’s write an algorithm that prints “warm” if the temperature is above 50 degrees and prints “cold”
otherwise. Which if statement form should we use? Since the problem description says to do one thing or
another thing, you should use the “if, else” form:

print “Enter a temperature: ”

input temperature

if temperature is greater than 50
print “warm”

else
print “cold”

Finally, let’s write an algorithm that prints “hot” if the temperature is above 80 degrees, prints “OK” if
it’s between 50 and 80 degrees, and prints “cold” if it’s less than 50 degrees. For this problem, it’s appropri-
ate to use the “if, else if” form, like this:

print “Enter a temperature: ”

input temperature

if temperature is greater than 80
print “hot”

else if temperature greater than or equal to 50
print “OK”

else
print “cold”

36 Chapter 2 Algorithms and Design

2.8 Loops

We’ve now discussed two of the three structures in Figure 2.5—sequential structures and conditional struc-
tures. Let’s now discuss the third structure—Ilooping structures. Looping structures repeat the execution of
a particular sequence of statements. If you need to execute a block of code many times, you could, of course,
repeatedly write the code wherever you need it. However, that leads to redundancy, which is something you
want to avoid in a computer program, because it opens the door to inconsistency. It’s better to write the
code once and then reuse it. The simplest way to reuse a block of code is to go back up to before where that
block starts, and run through it again. That’s called a loop. Every loop has a condition that determines how
many times to repeat the loop. Think of driving through western Kansas and seeing a sign for “Prairie Dog
Town.” Your kids demand that you take the prairie-dog drive-through tour. The decision about how many
times to repeat the tour parallels the condition in a loop statement.

A Simple Example

Suppose you want to print “Happy birthday!” 100 times. Rather than writing 100 print “Happy birthday!”
statements, wouldn’t it be better to use a loop? Figure 2.9 presents a solution to the Happy birthday algo-
rithm in the form of a flowchart with a loop. The flowchart implements the looping logic with an arrow that
goes from “set count to count + 17 back up to the “count less than or equal to 100?” condition.

l

setcount to 1

Apago P Ennancer

count
less than or equal to 100?

no

| print “Happy birthday” |

| set count to count + 1 I—

l

Figure 2.9 Flowchart for our Happy Birthday algorithm

In a loop you’ll often use a count variable that keeps track of the number of times the loop has repeated.
You can either count up or count down. The Happy birthday flowchart counts up.

In the last operation, instead of saying “set count to count + 1,” you could have said something
like “increment count by one.” We chose to use this “set” wording to reinforce a way of thinking that
corresponds to how a computer updates a variable’s value. Go back and review the thinking associated with
Figure 2.3. First the computer performs a mathematical calculation using existing variable values. In Figure
2.3, the calculation involved two variables, length and width, that were different from the variable be-
ing updated, rectangleArea. In Figure 2.9 the calculation involves the variable being updated, count.
After the computer completes the calculation, it assigns the result of the calculation to the variable being

lvww.allitebooks.cond

http://www.allitebooks.org

2.8 Loops 37

updated. This assignment overwrites the old value and replaces it with a new value. Thus, when it computes
count + 1, the computer uses the old value of count. Then (in the subsequent assignment) it changes the
value in count to the new value.

In practice, all loops should have some kind of termination. That is, they should stop executing at some
point. A loop that counts up normally uses a maximum value as a termination condition. For example,
Figure 2.9°s loop continues as long as count is less than or equal to 100, and it terminates (stops looping)
when count reaches 101. A loop that counts down normally uses a minimum value as a termination condi-
tion. For example, a loop might start with count equal to 100 and continue as long as count is greater
than zero. Then the loop would terminate when count reached zero.

When a loop’s condition compares a counter variable to a maximum value, the question often arises
about whether to use “less than or equal to” or just “less than.” Likewise, when a loop’s condition compares
a counter variable to a minimum value, the question often arises about whether to use “greater than or equal
to” or just “greater than.” There are no absolute answers to those questions. Sometimes you’ll need to do it
one way, and sometimes you’ll need to do it the other way—it depends on the situation. For example, look
again at the decision condition in Figure 2.9’s Happy birthday algorithm. Suppose you used “less than.” Then,
when count equaled 100, you would quit before printing the last (100th) “Happy birthday!” Therefore,
in this case you should use “less than or equal to.” If you mistakenly used “less than,” that would be an off-
by-one error. Such errors are called “off by one” because they occur when you execute a loop one more
time than you should or one less time than you should. To avoid off-by-one errors, you should always double
check the borderline cases for your algorithms’ loops.

The while Loop Apa o PDE IQhanC

Most popular programming anguages have several rent types of loops. Although it may be awkward,
theoretically, there’s always a way to convert any one type of loop to any other type of loop. So, for simplic-
ity and brevity, in this discussion of algorithms we’ll consider only one type of loop and look at the other
types when we get into the details of the Java language. The type of loop we’ll consider now is a very popu-
lar one, the while loop, which has this format:

while <condition>
<statement(s)>

This format should look familiar because it’s similar to the if statement’s format. The condition is at the
top, and the subordinate statements are indented. The subordinate statements, which are inside the loop,
are called the loop’s body. The number of times that a loop repeats is called the number of iterations. It’s
possible for a loop to repeat forever, which is called an infinite loop. It’s also possible for a loop to repeat
zero times. There’s no special name for the zero-iteration occurrence, but it’s important to be aware that this
sometimes happens. For an example, let’s see how Figure 2.9’s Happy birthday flowchart looks when it’s
presented as pseudocode with a while loop. This is shown in Figure 2.10.

set countto 1

while count is less than or equal to 100
print “Happy birthday!”
set count to count + 1

Figure 2.10 Pseudocode for another Happy Birthday algorithm

38 Chapter 2 Algorithms and Design

Here’s how the while loop works:

 If the condition is true, execute all of the loop’s subordinate statements, and then jump back to the
loop’s condition.

* When the loop’s condition finally becomes false, jump to below the loop, that is, the first statement after
the loop’s last subordinate statement, and continue execution there.

2.9 Loop Termination Techniques

In this section we describe three common ways to terminate loops:
» Counter

Use a counter variable to keep track of the number of iterations.

» User query

Ask the user if he/she wants to continue. If the user responds yes, then execute the body of the
loop. After each pass through the subordinate statements in the loop, ask the user again if he/she
wants to continue.

¢ Sentinel value

When a loop includes a datay t entplp'ﬂy a i inel value) that

is outside the normal range (ﬁ%ﬁ use it to indicagmﬂgﬁlg@sg)ﬁd terminate. For
example, if the normal range of input is positive numbers, the sentinel value could be a negative
number like 21. Here’s how you do it: Continue to read in values and execute the loop until the
entered value equals the sentinel value, and then stop the looping. In the real world, a sentinel is

a guard who lets people continue to pass until the enemy arrives. So a program’s sentinel value is
like a human sentinel—it allows the loop to continue or not.

Counter Termination

Figure 2.10’s Happy birthday algorithm is a good example of using a counter to terminate a looping opera-
tion. We should point out, however, that the normal place for a computer to start counting is 0, rather than
one. If we use the standard start-at-zero convention, Figure 2.10’s pseudocode changes to this:

set countto 0

while count is less than 100
print “Happy birthday!”
set count to count + 1

Notice that as we change the initial count value from 1 to 0, we also change condition comparison from
“less than or equal to” to “less than.” This will produce the same 100 iterations, but this time, the count val-
ues will be 0, 1, 2, ...98, 99. Each time you create a counter loop, it’s important to assure yourself that the
number of iterations will be exactly what you want. Because you can start with numbers different than one,
and because the termination condition can employ different comparison operators, it’s sometimes hard to be
sure about the total number of iterations you’ll get. Here’s a handy trick to give you more confidence:

2.9 Loop Termination Techniques 39

To check a loop’s terminal condition, temporarily change the terminal condition to Simplify the
produce what you think will be exactly one iteration. For example, in this most recent problem to check @
pseudocode version of the Happy birthday algorithm (where the initial count is zero), its essence.
change the final count from 100 to 1. Then ask yourself, “How many print operations
will occur?” In this case, the initial count is 0. The first time the condition is tested, the condition is “0 is
less than 1,” which is true. So the condition is satisfied and the loop’s subordinate statements execute. Since
the final statement in the loop increments the count to 1, the next time the condition is tested, the condition
is ““I is less than 1,” which is false. So the condition is not satisfied, and looping terminates. Since using 1 in
the loop condition produces one iteration, you can have confidence that using 100 in the loop condition will
produce 100 iterations.

User Query Termination

To understand user query termination, consider an algorithm which repeatedly asks a user for numbers and
calculates and prints the squares of the input values. This activity should continue as long as the user an-
swers “y” to a “Continue?” prompt.

Figure 2.11 displays this algorithm as pseudocode. Within the while loop body, the first statement
prompts the user to enter a number, the third statement does the computation, and the fourth statement
prints the result. The query “Continue? (y/n)” and the corresponding input come just before the end of the

body. This loop always executes at least one time, because we assign “y” to the continue variable before the
loop begins.

setcontinueto“y’e’pégo PDF Enhancer

while continue equ
print “Enter a number: *
input num
set square to num * num
print num “ squared is ” square
print “Continue? (y/n): ”
input continue

Figure 2.11 Print Squares algorithm that uses a query loop

Suppose that you want to give the user the opportunity to quit before entering even one number to
square. You can do that by replacing the first statement:

set continue to “y”
with these two statements:

print “Do you want to print a square? (y/n):
input continue

This provides the user the option to enter “n” so that no squares will be computed.

Sentinel Value Termination

To understand sentinel value termination, consider an algorithm that reads in bowling scores repeatedly
until a sentinel value of —1 is entered. Then, the algorithm prints the average score.

40 Chapter 2 Algorithms and Design

EE Mull it over. Often, you should spend time just thinking about a problem’s solution before writing any-
@ thing down. And you should think first about the solution at a high level, without worrying about
all the details. With that said, we encourage you to set the book aside now and think about the steps needed in
the Bowling Score algorithm.
Are you done thinking? If so, compare your thoughts to this high-level description:

Read in scores repeatedly and find the sum of all the scores.
Then, when —1 is entered, divide the sum by the number of scores entered.

There are two details in this high-level description that you now need to address. First, you need to think
about how to find the sum of all the scores. Before asking for any input, and before any looping, assign an
initial value of zero to a total Score variable. In other words, initialize it to zero. Then, in the same loop
which repeatedly asks the user for the next score, right after inputting that score, add it to the totalScore
variable to accumulate the scores as they come in. This way, after all the scores are in, the totalScore
variable will already contain the sum of all scores.

The sum of all scores is useful because the goal is to determine the average score, and to compute an
average you need the sum. But to compute an average you also need the total number of items, and that’s
not known ahead of time. How can you keep track of the number of scores entered so far? Initialize and ac-
cumulate a count variable while you initialize and update the totalScore variable. Note that just one
loop does all three activities (inputting, updating totalScore, and updating count). We chose —1 as a
sentinel value for a Bowling Score algorithm because it’s a value that would never be a valid bowling-score
entry. But any negative number would work as the sentinel value.

Figure 2.12 illustrates the alggrithm solution is prahlem,. Note how the prompt messages say “(—1

m to quit).” That is necessary becadép/algta, thé3 woﬁ{hlawm&/e)lauit. In general, always pro-

vide enough prompting information so that the user knows what to do next and knows how to quit.

set totalScoreto 0
setcountto 0
print “Enter score (—1 to quit): ”
input score
while score is not equal to —1
set totalScore to totalScore + score
set count to count + 1
print “Enter score (—1 to quit): ”
input score
set avg to totalScore / count
print “Average score is ” avg

Figure 2.12 Bowling Score algorithm using a sentinel-value loop

What would you expect to happen if the user enters — 1 as the very first input? That causes the loop body
to be skipped, and the count variable never gets updated from its original initialized value, zero. When
the set average statement attempts to calculate the average score, it divides totalScore by count.
Since count is zero, it divides by zero. As you may recall from your math courses, division by zero cre-

A ates problems. If an algorithm divides by zero, the result is undefined. If a Java program divides by zero, the
computer prints a cryptic error message and then immediately shuts down the program. Since the Bowling

210 Nested Looping 4

behave in a way that a typical user would consider to be both sensible and courteous, even when the input is
unreasonable. To make it more robust, replace the last two statements in Figure 2.12’s algorithm with an i F
statement like this:

Score algorithm allows for the possibility of division by zero, it is not very robust. To be robust, it should m{

if count is not equal to 0
set avg to totalScore / count
print “Average score is ” avg

else
print “No entries were made.”

Using this 1T statement enables the program to tell the user why a normal output was not produced, and it
avoids the problems inherent with division by zero.

2.10 Nested Looping

In the preceding two sections, we presented algorithms where each algorithm contained one loop. As you pro-
ceed through the book and as you proceed through your programming career, you’ll find that most programs
contain more than one loop. If a program has loops that are independent (i.e., the first loop ends before the
second loop begins), then the program’s flow should be reasonably straightforward. On the other hand, if a
program has a loop inside a loop, then the program’s flow can be harder to understand. In this section, we’ll try
to make you comfortable with a nested loo W isthe formal term for an inner loop that’s inside an outer
loop. Apago P nhancer

Suppose you're asked to write an algorithm that plays multiple games of “Find the largest number.” In
each game, the user enters a series of nonnegative numbers. When the user enters a negative number, the
algorithm prints the largest number in the series and asks the user if he/she wants to play another game.

Before writing anything down, you should think about a very important question: "

. Think about
What types of loops should be used? You'll need an outer loop that continues as long -+ type of ¢
as the user says that he/she wants to play another game. What type of loop should that |oops should be £3
be—counter loop, user-query loop, or sentinel value loop? You’ll need an inner loop that used.
plays one game by reading in numbers until a negative number is input. What type of
loop should that be—counter loop, user-query loop, or sentinel value loop? Have you attempted to answer
the questions? If so, read on. If not, stop and think.

The outer loop should be a user-query loop. The inner loop should be a sentinel value loop, where the
sentinel value is any negative number. Now look at the algorithm for this problem in Figure 2.13. Note that
the algorithm does indeed use a user-query outer loop—at the bottom of the loop, the user is prompted to
continue, and at the top of the loop, the response is checked. Note that the algorithm does indeed use a sen-
tinel value inner loop—the loop terminates when the user enters a negative number.

The inner loop’s logic is nontrivial and deserves special attention. Before examining the code itself,
think about the goal and the solution at a high level. The goal is to read in a series of numbers where the
last number is negative and then print the largest number. Suppose the input sequence is 7, 6, 8, 3, 4, —99.
After each new number is entered, the algorithm should ask the question: Is the new number I id a
bigger than the previous biggest number? If the new number is bigger, the new number Lyman do it? =
is the new “champion,” that is, the new biggest number. Note that the preceding question B3
started with the word “if.” That’s a good indication that you can implement that logic with an if statement.
Find the if statement in Figure 2.13’s inner loop and verify that it implements the aforementioned logic.

42 Chapter 2 Algorithms and Design

set continue to “y”
while continue equals “y”
set biggestto —1
print “Enter a number (negative to quit):
input num
while num is greater than or equal to 0
if num is greater than biggest
set biggest to value of num
print “Enter a number (negative to quit):
input num
ifbiggestisnotequalto—-1
print “The Biggest number entered was ” biggest
print “Play another game? (y/n): ”
input continue coeeeeeeeeeeee

inner outer
loop loop

Figure 2.13 Algorithm that plays multiple games of “Find the largest number”

You’ll see that the if statement checks the new number to see if it is bigger than the previous biggest number,
and if it is bigger, then the new number is assigned into the biggest variable. That assignment crowns the
new number as the new champion.
Use anloamn. . N.otf.: t.he sepbiggest to —.-I\J,ngpahzq-t.l-o_‘rl q,t.‘tl‘l‘e QP) of the outer loop. What’s .the point
Y case. of initializing g@@ Initialize the champion variable (biggest) with a starting value
that will automatically lose the first time a new number is compared to it. You know that —1
will lose to the first number in a find-the-largest-number contest because the contests are
limited to nonnegative numbers and nonnegative numbers are always greater than —1. After the first input re-
places biggest’s —1 initial value, subsequent inputs may or may not replace biggest’s value, depending
on the size of the input number and the size of biggest.

2.11 Tracing

Up until now we have focused on design. Now let’s look at analysis—breaking up of a

whole into its parts. In the present context, that means going through the details of an

£3 already-existing algorithm. The analysis technique we’ll use is called tracing, where you
essentially pretend that you're the computer. You step through an algorithm (or a program) line by line and
carefully record everything that happens. In the early parts of this book we’ll use tracing to illustrate pro-
gramming details we’re trying to explain. Tracing gives you a way to make sure that you really understand
newly learned programming mechanisms. Tracing also gives you a way to verify whether an existing algo-
rithm or Java code is correct, or whether it has bugs.

What are bugs? One of the early digital computers, the Harvard Mark II, used mechanical relays rather
than transistors, and programmers programmed by changing electrical connections. As the story goes,? even
though all the electrical connections were right, the computer kept making a mistake. Finally the programmer
discovered a moth squeezed between the contacts of one of the relays. Apparently, the moth had been squashed
when the relay contacts closed, and the moth’s dead body was interrupting the proper flow of electricity

% Dig into details.

2 http://www.fags.org/docs/jargon/B/bug.html

http://www.faqs.org/docs/jargon/B/bug.html

211 Tracing 43

between those contacts. After the programmer pulled the moth out—*“debugged” the computer program—the
computer gave the right answer. When you’re tracing an algorithm or program to find software bugs, you may
sometimes feel like one of these old-timers crawling around inside the CPU, looking for moths.

Qeloy*90 Cune(F
thﬁyl n = \q L.\ .

Fiest actual case o S Sith diunia
reF /oo g,,jw,J, St e '{ “1 ' 1{»&

Short-Form Tracing

We present two tracing forms—a short form, described in this subsection, and a long form, described in
the next subsection. The short-form tracing procedure is commonly used in industry and in classrooms. It
works well in a dynamic environment, where you can move back and forth between pseudocode (or Java
code, later) and a trace listing, and fill information in as you go. You may see your teacher go through this
dynamic operation on a whiteboard. For example, here’s an algorithm that prints the Happy-birthday song:

print “What is your n% ég o PDF Enhancer

input name
setcountto 0
while count is less than 2
print “Happy birthday to you.”
set count to count + 1
print “Happy birthday, dear ” name “.”
print “Happy birthday to you.”

Here’s what the short-form trace looks like after the trace is complete:

input name count output

Arjan Arjun What is your name?

Happy birthday to you.
Happy birthday to you.
Happy birthday, dear Arjun.
Happy birthday to you.

+ D

[\

The above trace listing has four columns—input, name, count, and output. The input column shows hypo-
thetical input for the algorithm. The output column shows what the algorithm produces when the algorithm
runs with the given input. The name and count columns show the values stored in the name and count
variables. In this example, we started with the input value “Arjun.” Then we stepped through the code, one
line at a time. In stepping through the code, we added values under the name, count, and output columns,
and we crossed out old count values as they were overwritten by new count values. Figure 2.14 describes
the general procedure.

44 Chapter 2 Algorithms and Design

Trace setup:
* If there is input, provide a column heading labeled input.
* Provide a column heading for each variable.
* Provide a column heading labeled output.

Trace the program by executing the algorithm one line at a time, and for each line, do this:

¢ For an Input statement, cross off the next input value under the input column heading.

* For an assignment statement, update a variable’s value by writing the new value under the
variable’s column heading. If there are already values under the column heading, insert the
new value below the bottom value and cross off the old value.

e For a print statement, write the printed value under the output column heading. If there are
already values under the output column heading, insert the new printed value below the bot-
tom of the output column.

Figure 2.14 Short-form tracing procedure

Short-form tracing works well in a live interactive context, but it does not work as well in a static con-
text like the pages of a printed book. That’s because in a book, the short-form tracing does not portray the
dynamics of the updating process very well. With our simple Happy birthday algorithm, you may have been
able to visualize the dynamics. But for more involved algorithms, a short-form trace listing on the page of

a book just “blows through” the dgtails it needs ighligh hj‘ifore, in this book, we’ll use a long-form
tracing procedure that keeps bet ch fte he SGRGEr

Long-Form Tracing

With the long-form tracing procedure, there’s an added emphasis on keeping track of where you are in the
algorithm. To implement that emphasis, (1) you need to have a separate row in the tracing table for each step
that’s executed in the algorithm, and (2) for each row in the tracing table, you need to provide a line number
that tells you the row’s associated line in the algorithm. For an example, see the long-form happy birthday
trace in Figure 2.15.

Figure 2.15’s long-form trace looks somewhat like the previous short-form trace, with a few notable ex-
ceptions. The input column has been moved above the main part of the tracing table. In its place is the line#
column, which holds line numbers in the algorithm that correspond to rows in the tracing table. Notice the
two 5, 6 line number sequences. That shows how the trace “unrolls” the loop and repeats the sequence of
statements within the loop for each loop iteration.

Using a Trace To Find a Bug

It’s time for you to get your money’s worth from all this tracing talk. We’ll provide you with an algorithm

and it’s up to you to determine whether it works properly. More specifically, trace the algorithm to deter-

E:E R e toD. mine wh.ether each step produces rgasonable output. If it produces faulty output, find
: the algorithm’s bug and fix the algorithm.

EE Suppose that Park University’s Student Housing office wrote the algorithm shown in Figure 2.16. The

algorithm is supposed to read in the names of freshmen and assign each freshman to one of two dormitories.

Freshmen with names that begin with A through M are assigned to Chestnut Hall and freshmen with names

2.

o

1 Tracing

print “What is your name?
input name
setcountto 0
while count is less than 2
print “Happy birthday to you.”
set count to count + 1
print “Happy birthday, dear ” name .’
print “Happy birthday to you.”

O~NO O WNER

line# | name | count output
1 What is your name?
Arjun

Happy birthday to you.

Happy birthday to you.

Happy birthday, dear Arjun.

pagorPPE _Enhancer

(N[O W (N
—

Figure 2.15 Happy Birthday trace—long form

1 print “Enter last name (q to quit): ”
2 input lastName
3 while lastName is not equal to q

4 if lastName’s first character is between A and M
5 print lastName “ is assigned to Chestnut Hall.”
6 else

7 print lastName “ is assigned to Herr House.”
input

Ponce

Galati

Aidoo

Nguyen

q

| line# | lastName output

Figure 2.16 Freshmen dormitory assignment algorithm and trace setup

46 Chapter 2 Algorithms and Design

that begin with N through Z are assigned to Herr House. Using the trace setup provided in Figure 2.16, try to
either complete the trace or get to a point in the trace where you’ve identified a problem.
Have you finished working on the trace? If so, compare your answer to this:

line# | lastName output
1 Enter last name (q to quit):
2 Ponce
7 Ponce is assigned to Herr House.
7 Ponce is assigned to Herr House.
7 Ponce is assigned to Herr House.

The trace points out a problem—the algorithm repeatedly prints Ponce’s dorm assignment, but no one else’s.

A There appears to be an infinite loop. Can you identify the bug? The trace shows that lastName gets the
first input value, Ponce, but it never gets any other input values. Referring back to Figure 2.16, you can see
that the algorithm prompts for the last name above the loop, but not inside the loop. Therefore, the first input
value is read in, but no others. The solution is to add another last name prompt inside the while loop, at its
bottom. Here is the corrected algorithm:

print “Enter last name (q to quit): ”
input lastName
while lastName is not equal to q

if lastName’s first chara ter 1s between [@%\/I
print lastName “is @ Ches »Enhancer

else

print lastName “is assigned to Herr House.”
print “Enter last name (q to quit): ”
input lastName

We encourage you to trace the corrected algorithm on your own, and youw’ll find that all four freshmen are
assigned to appropriate dorms. Yeah!

Software Development Tools

Most software development tools temporarily label each line of code with a line number to help identify
the locations of programming errors. Those line numbers are not actually part of the code, but when they
are available, you can use them as identifiers in the line# column of a long-form trace. Many software de-
velopment tools also include a debugger that enables you to step through a program one line at a time as it
executes. The debugger enables you to look at variable values as you go. Our tracing procedure emulates a
debugger’s step-by-step type of evaluation. Experience with the tracing used in this book will make it easier
for you to understand what an automated debugger is telling you.

2.12 Other Pseudocode Formats and Applications

Pseudocode comes in many different varieties. In this section, we describe several pseudocode variations
and the inherent differences between them.

212 Other Pseudocode Formats and Applications 47

Formal Pseudocode

The following Bowling Scores algorithm uses a more formal pseudocode:

totalScore - O
count - O
print "Enter score (-1 to quit): "
input score
while (score # —1)
{
totalScore - totalScore + score
count - count + 1
print "Enter score (-1 to quit): "
input score
}
avg - totalScore / count
print "Average score is

+ avg

This formal variation of pseudocode uses special symbols to make operations stand out more dramati-
cally. The left-pointing arrow (-) represents the right-to-left assignment illustrated previously in Figure 2.3.
The # says “is not equal to” more succinctly than words say it. The curly braces emphasize the subordinate
nature of the statements in the body of the whi Ie loop. Later you’ll see that Java requires such curly braces
whenever the body of an iAs@t r 1 nciud bordinate statement. The + in the
last line indicates that the't mite s ar difmgﬁ‘qgrge score is 7 is a string literal and
avg is a variable).

Up until now we have used pseudocode, flowcharts, and traces to describe algorithm logic fairly pre-
cisely. That precision corresponds closely to the precision found in individual Java-code statements. These
algorithmic descriptions have been giving you an informal implementation view of a desired program. The

final Java code for that program is a formal implementation view of the program. The people who care most
about and see implementation views of programs are the programmers who write those programs.

High-Level Pseudocode

Since pseudocode is so flexible, you can also use it to describe algorithms at a higher, more macroscopic
level—with more abstraction. The trick is to ignore the details of subordinate operations and just describe
and keep track of inputs to and outputs from those subordinate operations. This strategy presents the “big
picture” as seen by the outside world. It looks at the “forest” rather than the “trees.” It helps keep you on the
right track—so you don’t solve the wrong problem!

For example, the following Bowling Scores algorithm uses a more high-level pseudocode than what
you’ve seen in the past:

Input all scores.
Compute average score.
Print the average score.

This high-level description presents only the major features, not all the details. It indicates what the program
is supposed to do, but not how to do it.

(B35

[B-d2r

48 Chapter 2 Algorithms and Design

Describe Sometimes it’s appropriate to think about programs differently from how program-
program to mers think about programs. Suppose all you want to do is use somebody else’s program,
client. and you don’t really care how it’s written. In that case, you would be a user or a client,

and what you would need is a client view of the program. The high-level pseudocode im-
mediately above is an example of an informal client view of a desired program. A formal client view of that
program would typically include a description of how to use the program and examples of actual input and
output. Later, you’ll see many “client views” of Java code that has already been written and is free for you to
use as part of any program you write.

It’s useful to keep in mind these two alternate views of a typical computer program. You’ll want to be
able to switch back and forth between a client view (when you’re acting as or communicating with an end
user of a program), and an implementation view (when you’re designing and writing the program).

2.13 Problem Solving: Asset Management (Optional)

In this section, we ask you to think about a real-world managerial problem at a fairly abstract level. Imagine
that you are the Information-Technology (IT) specialist working in the government of a small city. The head
of that city’s water department respects your organizational skills and has asked you to come to a city coun-
cil meeting and lead a discussion of how you might set up a computer program to help the council manage
the assets of that city’s water system.

First, you suggest that the city-council members help you come up with an overall sequence of steps.

On a blackboard, you’ll write high-level seudocﬁe‘[ﬁr:the —program.” To avoid jargon, you’ll just call this
high-level pseudocode a “to-do lAp apg 0o En% ancer
After some discussion, the council members agree on—and you list—the following overall steps:3

Make an inventory of all water system assets.

Prioritize those assets.

Schedule future changes, replacements, and additions to those assets.
4. Prepare a long-range budget.

W

This high-level pseudocode is just four sequential steps, like the sequential steps in the left-hand picture in
Figure 2.5.

The council thanks you for your help, and for the next meeting, they ask you to flesh out this list with
enough detail to show how you plan to implement each of the four steps. They don’t want to see a bunch of
computer code. They just want to see how you’d proceed—to get a feeling for the difficulty of the project.

Back in your office, you create an informal implementation view of the problem. This

I[ii?]ils;(:w view is sometimes called a programmer view or the server view, because the programmer’s
into server implementation provides a service to the client. For step 1, you identify seven variables:

view. assetName, expectedLife, condition, serviceHistory, adjustedLife,

age, and remainingLife. For each asset, you’ll have to ask someone in the water depart-
ment to provide appropriate input for each of the first six variables. Then your program will calculate a value
for the last variable. You’ll have to repeat this for each significant asset. So here’s an abbreviated pseudocode
description of the implementation of step 1:

3 These four steps and their subsequent elaboration are based on recommendations in Asset Management: A Handbook for Small
Water Systems, Office of Water (4606M) EPA 816-R-03-016, www.epa.gov/safewater, September, 2003.

http://www.epa.gov/safewater

213 Problem Solving: Asset Management (Optional) 49

setmore to ‘y’

while more is equal to ‘y’
input assetName
input expectedLife
input condition
input serviceHistory
input adjustedLife
input age
set remainingLife to adjustedLife — age
print “Another asset? (y/n): ”
input more

This algorithm does not include prompts for the individual variables. Some of these variables may have
multiple components, and you may wish to establish and enforce certain conventions for what input values
will be acceptable. For example, condition and serviceHistory may each have several subordinate
components. You’ll deal with all those details later.

For step 2, you have five variables: assetName, remainingLife, importance, redundancy,
and priority. The assetName and remainingLife variables are the same as two of the variables
used for step 1, so you won’t need to input those again. But wait! If this is a separate loop, you’ll still have
to identify each asset to make sure the new values are being associated with the right asset. You could do
this by asking the user to re-enter the assetName, or you could do it by looping through all the existing
assets and printing out eam ! be[mﬁing&gﬁ aﬁign(gjditional information for that asset.
The second strategy is easle er, sO you pick It Here’ a iated pseudocode description of the

implementation of step 2:

while another asset exists
print assetName
input importance
input redundancy
input priority

Again, the algorithm does not include prompts, and it does not establish and enforce input conventions.
You’ll deal with those details later.

For step 3, you identify five variables: assetName, activity, yearsAhead, dollarCost, and
annualReserve. Again, assetName is already in the system, so again, you can identify it by printing it
out. But in scheduling things, the council members will want to deal with the most important things first, so
before you start going through the assets, you’ll want the program to sort them by priority. The sorting
operation might be a little tricky. But if you’re lucky, someone else already will have written code for that
popular computer task, and you’ll be able to use it instead of “reinventing the wheel.”

The activity, yearsAhead, and dol larCost are inputs, and you’ll want the program to com-
pute annuallReserve as dollarCost / yearsAhead. After computing the annual reserve for each
individual asset, you’ll want the program to add it to a totalAnnualReserve variable, and after the
loop you’ll want it to print the final value of totalAnnualReserve. Here’s an abbreviated pseudocode
description of the implementation of step 3:

50 Chapter 2 Algorithms and Design

sort assets by priority
set totalAnnualReserve to 0
while another asset exists
print assetName
input activity
input yearsAhead
input dol larCost
set annualReserve to dol larCost / yearsAhead
set totalAnnualReserve to totalAnnualReserve + annualReserve
print totalAnnualReserve

Again, the algorithm does not include prompts. You’ll deal with all those details later.

For step 4, you identify the three variables, totalAnnualReserve, currentNetlncome, and
additional Income. For this you need to get someone in the accounting department to provide a value
for currentNetlncome. Then have the program subtract it from the totalAnnualReserve com-
puted in step 3 to obtain the add i tional Income required to make the plan work. Oh yes! If the answer
comes out negative, you’ll want it to just print zero to indicate that your city won’t have to come up with any
additional income. Here’s a pseudocode description of the implementation of step 4:

input currentNetlncome
set additional Income to currentNetlncome — totalAnnualReserve
if additional Income is less than 0

set additional InconApagO PDF Enhancer

print “Additional income needed = additional Income

OK, that’s probably enough preparation for next week’s city council meeting. At least you’ll be able to give
the council members a reasonable feeling for the amount of work required.

Summary

e Use pseudocode to write informal descriptions of algorithms. Use understandable names for variables.
Indent subordinate statements.

e When your program needs an input, provide an informative prompt to tell the user what kind of infor-
mation to supply.

e A flowchart provides a visual picture of how the elements of a program are related and how control
flows through those elements as the program executes.

e There are three basic well-structured flow-of-control patterns—sequential, conditional, and looping.

e You can implement conditional execution using the three forms of the if statement: “if,” “if, else,” and
“if, else if.”

e Provide all loops with some kind of terminating condition such as counter, user query, or sentinel
value.

e Use a nested loop if there’s a need to repeat something during each iteration of an outer loop.

e Use tracing to (1) obtain an intimate understanding of what an algorithm does and (2) debug programs

that have logical errors.

Use more abstract language to describe larger and more complex programming operations succinctly.

Review Questions 51

Review Questions

§2.2 Output
1. Describe what this statement does:

print “user name =" userName

§2.3 Variables
2. Provide an appropriate variable name for a variable that holds the total number of students.

§2.4 Operators and Assignment Statements
3. Write a line of pseudocode that tells the computer to assign d i stance divided by time into a Speed
variable.

§2.5 Input
4. Write a line of pseudocode that tells the computer to put a user entry into a variable called height.

§2.6 Flow of Control and Flowcharts

5. What are the three types of control flow described in this chapter?
6. Looping is appropriate whenever the next thing done is something previously done. (T / F)

§2.7 if Statements
7. Consider the following pseudocode:

ifitis night, set sSAORIG@00 FFDF Enhancer

otherwise, set speedLimit to 65.

Suppose the value of the variable, night, is “false.” After this code runs, what should be the value of the
variable, speedLimit?
8. The above pseudocode does not have the exact form suggested in the text. Is that OK?
9. Draw a flowchart that implements this logic:
If the temperature is greater than 10°C and it’s not raining, print “walk.” Otherwise, print “drive.”
10. Provide a solution to the previous problem in the form of pseudocode.

§2.8 Loops

11. Where is a whi le loop’s terminating decision made?

12. When a whi le loop terminates, what executes next?

13. Is it possible for a whi le loop to have an infinite number of iterations?
14. Is it possible for a whi e loop to have zero iterations?

§2.9 Loop Termination Techniques
15. What are the three loop termination techniques described in this chapter?
16. A sentinel value is used to do which of the following?

a) Specify the first value printed.

b) Print an error message.

¢) Signal the end of input.

§2.10 Nested Looping
17. How does the form of pseudocode we use in most of this chapter differentiate an inner loop from an
outer loop?

52 Chapter 2 Algorithms and Design

§2.11 Tracing
18. Which of the following is true?
a) Tracing shows sequence of execution.
b) Tracing helps you debug a program.
¢) Tracing highlights errors in loop initialization and termination.
d) All of the above.
19. Trace the following Bowling Score algorithm (taken from Section 2.9). Use the setup shown below the
algorithm.

=

set totalScore to 0

2 setcountto0

3 print “Enter score (—1 to quit):

4 input score

5 while score is not equal to —1

6 set totalScore to totalScore + score
7 setcounttocount + 1

8 print “Enter score (—1 to quit): ”
input score

10 set avg to totalScore / count
11 print “Average score is ” avg

©

Trace setup:

input
94

4 Apago PDF Enhancer

-1

| line# | score | totalScore | count | avgl output |

Exercises

1. [after §2.5] Write pseudocode for an algorithm that (1) asks the user to input the length of the side of a
square, (2) computes the square’s area, and (3) prints the square’s area. Use the following sample session.

The italics signify

Sample session: ;
user input.

Enter length of side of square in meters: 1
The area of the square is 225 square meters.

2. [after §2.8] What is an infinite loop?

3. [after §2.8] Given the following pseudocode, circle the statements that are considered to be within the body
of the while loop:

input time

while time is less than 8
print time
set timetotime + 1

4. [after §2.9] In exercise 3, suppose the user’s input for time is 3. How many lines of output will the
algorithm generate?

Exercises 53

5. [after §2.11] Trace the following algorithm. The book presents two ways to do tracing—a short form and a
long form. To give you a head start, the setup for the short form and also the long form are given below. For
your answer, pick one setup and use it. Skip the other setup.

sety to 0

input X

while X is not equal to y
set Y to value of X
input X
setXtoX +y
print “X =" X
print“y ="y

Short-form setup:

O~NOO O WNPE

=3

ut X ¥ output

Long-form setup:

nput

— -

2
3
s Apago PDF Enhancer

|Iine# | X |y| output |

6. [after §2.11] Trace the following algorithm. The book presents two ways to do tracing—a short form and a
long form. To give you a head start, the setup for the short form and also the long form are given below. For
your answer, pick one setup and use it. Skip the other setup.

1 set numto 2
2 setcountto 1
3 while count is less than 5
4 set counttocount * num
5 if count/2is less than 2
6 print “Hello”
7 else
8 while count is less than 7
9 set count to count + 1
10 print “The count is” count

Short-form setup:
num count output

Long-form setup:

| line# | num | count | output

54

Chapter 2 Algorithms and Design

Review Question Solutions

® AW

10.

. The statement prints what is in quotation marks literally, and then prints the current value of the variable

userName.

. totalNumberOfStudents

. Pseudocode that tells the computer to assign distance divided by time into a speed variable:

set speed to distance / time

. Pseudocode statement:

input height

The three types of control flow discussed in Chapter 2 are sequential, conditional, and looping.
True. Looping is appropriate whenever the next thing done is something previously done.
After the code executes, the value of the variable, speedL imit, should be 65.

Yes. It’s OK because it’s only pseudocode, and it conveys the meaning unambiguously. However, if it were
supposed to be code the computer could compile, the syntax would have to conform exactly to prescribed
rules for a particular programming language like Java.

Flowchart that implements walk/drive logic:

|

print “Enter temperature in Celsius:"

| input temperature |

v

| print“Is it raining? (y/n):” |

v

| input raining |

temperature
greater than 10?7

A 4

print “drive” |

| print “walk” l—b

v

Provide a solution to the previous problem in the form of pseudocode.

print “Enter temperature in Celsius: ”
input temperature

print “Is it raining? (y/n): ”

input raining

11.
12.
13.
14.
15.
16.
17.

18.

19.

Review Question Solutions 55

if temperature is greater than 10
if raining equals “n”
print “walk”
else
print “drive”

A while loop’s terminating decision is made at the beginning of the loop.

After a while loop terminates, the next thing to execute is the first statement after the end of the loop.

Yes.

Yes.

The three loop termination techniques described in this chapter are: counter, user query, and sentinel value.
A sentinel value is used to: ¢) signal the end of input.

The inner loop is entirely inside the outer loop. The entire inner loop is shifted to the right compared to the
outer loop.

d) All of above. Tracing shows sequence of execution, helps debug, and highlights initialization and
termination errors.

Bowling Score algorithm trace:

input

94

104

14 Apago PDF Enhancer

-1

line# | score | totalScore | count | avg output

1 0
2 0
3 Enter score (-1 to quit):
4 94
6 94
7 1
8 Enter score (-1 to quit):
9 104
6 198
7 2
8 Enter score (-1 to quit):
9 114
6 312
7 3
8 Enter score (-1 to quit):
9 -1
10 104
11 Average score is 104

Java Basics

Objectives

e Write simple Java programs.

e Learn about style issues such as comments and readability.

e Declare, assign, and initialize variables.

e Understand primitive data types—integer, floating point, and character.
e Understand reference variables.

e Use the String class’s methods for string manipulation.

e Use the Scanner class for user input.

e Optionally, learn about GUI A#gtag orPDRRe Brtivetae evs.

Outline

3.1 Introduction
3.2 “I Have a Dream” Program
3.3 Comments and Readability
3.4 The Class Heading
3.5 The main Method’s Heading
3.6 Braces
3.7 System.out.printin
3.8 Compilation and Execution
3.9 Identifiers
3.10 Variables
3.11 Assignment Statements
3.12 Initialization Statements
3.13 Numeric Data Types—int, long, float, double
3.14 Constants
3.15 Arithmetic Operators
3.16 Expression Evaluation and Operator Precedence
3.17 More Operators: Increment, Decrement, and Compound Assignment

56

3.2 “I Have a Dream” Program 57

3.18 Tracing

3.19 Type Casting

3.20 char Type and Escape Sequences

3.21 Primitive Variables Versus Reference Variables

3.22 Strings

3.23 Input—the Scanner class

3.24 GUI Track: Input and Output with JOptionPane (Optional)

3.1 Introduction

In solving a problem, it’s best to spend time first thinking about what you want to do and organizing your
thoughts. In Chapter 2, you focused on the thinking and organizing by writing pseudocode algorithm solu-
tions for given problem descriptions. In this chapter, you’ll take the next step—you’ll focus on writing solu-
tions using a real programming language, Java. By using a real programming language, you’ll be able to run
your program on a computer and produce results on a computer screen.

As you progress through this chapter, you’ll find that much of Java’s code parallels pseudocode. The
primary difference is the precise syntax required for Java. Pseudocode syntax is lenient: Pseudocode must
be clear enough so that humans can understand it, but the spelling and grammar need not be perfect. Pro-
gramming-code syntax is stringent: It must be perfect in terms of spelling and grammar. Why? Because
regular programming code is read by computers, and computers are not able to understand instructions un-
less they’re perfect.

Since this chapter is M@QQA thf: JavEQ:lﬂ @@{Q%K basics. We'll present Java syntax
that’s needed for simple sequential-execution programs. A sequential-execution program is one in which
all the program’s statements are executed in the order in which they are written. As we write such pro-
grams, we’ll show you output, assignment, and input statements. In addition, we’ll describe data types
and arithmetic operations. Toward the end of the chapter, we’ll present a few slightly more advanced
topics—type casting and string methods—that will add important functionality without adding much com-
plexity. Let us begin the Java journey.

3.2 “l Have a Dream” Program

In this section, we present a simple program that prints a single line of text. In the next several sections, we’ll
analyze the different components of the program. The analysis may be a bit dry, but bear with us. It’s impor-
tant to understand the program’s components because all future programs will use those same components.
In the rest of the chapter, we’ll introduce new concepts that enable us to present more substantial programs.
See Figure 3.1. It shows a program that prints “I have a dream!”! In the upcoming sections, we’ll re-
fer to it as the Dream program. The program contains comments for human readers and instructions for
the computer to execute. We'll analyze the comments first, and then we’ll move on to the I ery
instructions. You can use this tiny program as a common starting point for all other Java program with
programs. Enter it, run it, and see what it does. Modify it, run it again, and so on, until you this code’s
have what you need. structure.

' Dr. Martin Luther King presented his famous “I have a dream” speech on the steps of the Lincoln Memorial as part of an August 28,
1963 civil rights march on Washington D.C. The speech supported desegregation and helped spur passage of the 1964 Civil Rights Act.

B3

58 Chapter 3 Java Basics

/**
* Dream.java
* Dean & Dean 4—400mments for human readers.

*

* This program prints "l have a dream."

-k-k*-k*-k*-k*-k*-k*-k*-k************************/

public class Dream

{

public static void main(String[] args)
{ R —
System.out.printIn(’'l have a dream!');

Instructions for the
computer to execute.

Comment for human readers.

Figure 3.1 Dream program

-~~~ | R .

ayv I-LJI_ irrialiv i
In the real world, you’ll spend a lot of your time looking at and fixing other people’s code. And other people

will spend a lot of their time looking at and fixing your code after you’ve moved on to something else. With
all this looking at other people’s code going on, everyone’s code needs to be understandable. One key to un-
derstanding is good comments. Comments are words that humans read but the compiler? ignores.

m 3.3 Comments and Readablllty

One-Line-Comment Syntax

There are two types of comments—one-line comments and block comments. If your comment text is short
enough to fit on one line, use a one-line comment. One-line comments start with two slashes. Here’s an
example:

} 7/ end class Dream

The compiler ignores everything from the first slash to the end of the line. So in the above line, the compiler
pays attention only to the right brace (}) and ignores the rest of the line. Why is the comment helpful? If
you're viewing a long piece of code on a computer screen and you’ve scrolled to the bottom of the code, it’s
nice to see a description of the code (e.g., end class Dream) without having to scroll all the way back
up to the beginning of the code.

Block-Comment Syntax

If your comment text is too long to fit on one line, you can use multiple one-line comments, but it’s a bit of a
pain to retype the //’s for every line. As an alternative, you can use a block comment. Block comments start
with an opening /* and end with a closing */. Here’s an example:

2 A compiler, defined in Chapter 1, is a special program that converts a source-code program into an executable program. An execut-
able program is a program that the computer can execute directly.

3.3 Comments and Readability 59

/*

The following code displays the androids in a high-speed chase,
wreaking havoc on nearby vehicles.

*/

The compiler ignores everything between the first slash and the last slash.

Prologue

A prologue is a special example of a block comment. You should put a prologue at the top of every one of
your programs. It provides information about the program so that a programmer can quickly glance at it and
get an idea of what the program is all about. To make is stand out, it’s common to enclose the prologue in a
box of asterisks. Here’s the Dream program’s prologue:

the start of the block comment
**'4-4..»4.¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢ AAAAAAAA

* Dream.java
* Dean & Dean
* ’ the end of the block comment .
* This program prints "I have a dream." /

/]

Note that the opening /* and the closing */ blend in with the other asterisks. That’s OK. The compiler still
recognizes the /* and */ ag the start and ints of the,block comment.
Include these items irAp(arng’s réloBue S‘Eﬂxh ancer
* aline of *’s
* filename
* programmer’s name
* aline with a single * at its left

* program description
* aline of *’s

Readability and Blank Lines

We say that a program is readable if a programmer can easily understand what the program does.
Comments are one way to improve a program’s readability. Another way to improve a program’s readability
is to use blank lines. How are blank lines helpful? Isn’t it easier to understand several short, simple recipes
rather than a single long, complicated recipe? Likewise, it’s easier to understand small chunks of code rather
than one large chunk of code. Using blank lines allows you to split up large chunks of code into smaller
chunks of code. In a prologue, we insert a blank line to separate the filename-author section from the de-
scription section. Also, we insert a blank line below the prologue to separate it from the rest of the program.
By the way, computers don’t care about readability; they just care about whether a program works. More
specifically, computers skip all comments, blank lines, and contiguous space characters. Since computers don’t
care about readability, your computer would be perfectly happy to compile and execute this Dream program:

public class Dream{public static void
main(String[Jargs){System.out.printIn(’'l have a dream!"");}}

But a person trying to read the program would probably be annoyed because of the program’s poor A
readability.

60 Chapter 3 Java Basics

3.4 The Class Heading

So far, we’ve focused on code that the computer ignores—comments. Now let’s talk about code that the
computer pays attention to. Here’s the first non-comment line in the Dream program:

public class Dream

That line is called a class heading because it’s the heading for the definition of the program’s class. What’s
a class? For now, think of a class simply as a container for your program’s code.

Let’s examine the three words in the class heading. First, the last word—Dream. Dream is the name of
the class. The compiler allows the programmer to choose any name for the class, but in the interest of mak-
ing your code readable, you should choose a word(s) that describes the program. Since the Dream program
prints “I have a dream,” Dream is a reasonable class name.

The first two words in the class heading, public and class, are reserved words. Reserved words,
also called keywords,? are words that are defined by the Java language for a particular purpose. They cannot
be redefined by a programmer to mean something else. That means programmers cannot use reserved words
when choosing names in their programs. For example, we were able to choose Dream for the class name
because Dream is not a reserved word. We would not have been allowed to choose public or class for
the class name.

So what are the meanings of the public and class reserved words? The word class is a marker
that signifies the beginning of the class. For now, with our simple one-class programs, the word class also
signifies the beginning of the program.

The word public is an acc dﬁ) —it, Ej:l&es tEﬂ ’ issions so that the class is acces-
sible by the “public.” Making thmaﬂ ly E ible i ﬁﬁjﬁﬁté/ en a user attempts to run it,
the user’s run command will be able to find it.

There are certain coding conventions that most programmers follow. We list such conventions in our
“Java Coding-Style Conventions” appendix. Throughout the book, when we refer to “standard coding con-
ventions,” we’re referring to the coding conventions found in the appendix. Standard coding conventions
dictate that class names start with an uppercase first letter; thus, the D in the Dream class name is upper-
case. Java is case-sensitive, which means that the Java compiler distinguishes between lowercase and upper-
case letters. Since Java is case-sensitive, the filename should also start with an uppercase first letter.

3.5 The main Method’s Heading

We’ve talked about the class heading. Now it’s time to talk about the heading that goes below the class
heading—the main method heading. In starting a program, the computer looks for a main method head-
ing, and execution begins with the first statement after the main method heading. The main method
heading must have this form:

public static void main(String[] args)

Let’s start our analysis of the main method heading by explaining the word main itself. So far, all you
know about main is that in starting a program, the computer looks for it. But main is more than that;
it’s a Java method. A Java method is similar to a mathematical function. A mathematical function takes
arguments, performs a calculation, and returns an answer. For example, the sin(x) mathematical function

31In Java, reserved words and keywords are the same. But in some programming languages, there is a subtle difference. In those lan-
guages, both terms refer to words that are defined by the programming language, but keywords can be redefined by the programmer,
and reserved words cannot be redefined by the programmer.

3.6 Braces 61

takes the x argument, calculates the sine of the given x angle, and returns the calculated sine of x. Likewise,
a Java method may take arguments, will perform a calculation, and may return an answer.

The rest of the main heading contains quite a few mysterious words whose explanations may be con-
fusing at this point. In later chapters, when you’re better prepared, we’ll explain the words in detail. For now,
it’s OK to treat the main method heading as a line of text that you simply copy and paste under the class
heading. We realize that some of you may be uncomfortable with that. For you folks, the rest of this section
explains main method heading details.

Explanation of main Method Heading Details

We’ll now explain the three reserved words at the left of the main method heading—public static
void. As previously mentioned, the word public is an access modifier—it grants permissions so that
main is accessible by the “public.” Since main is the starting point for all Java programs, it must be pub-
licly accessible.

While public specifies who can access the main method (everyone), the word static specifies how
to access the main method. With a non-static method, you must do some extra work prior to accessing
it. On the other hand, a Static method can be accessed immediately, without doing the extra work. Since
main is the starting point for all Java programs, it must be immediately accessible, and therefore it requires
the word static.

Now for the third reserved word in the main heading—Vvoid. Remember that a method is like a math-
ematical function—it calculates something and returns the calculated value. Well actually, a Java method
sometimes returns a value and sometimes returns nothing void indicates that a method returns nothing.

Since the main method re rcn%‘md’s heading.
Now for the (String ?gportlon of the mal n head emember that a mathematical func-

tion takes arguments. L1kew1se the main method takes arguments.’ Those arguments are represented by
the word args. InJava, if you ever have an argument, you need to tell the computer what type of value the
argument can hold. In this case, the argument’s type is defined to be String[], which tells the computer
that the args argument can hold an array of strings. The square brackets, [], indicate an array. An array
is a structure that holds a collection of elements of the same type. In this case String[] is an array that
holds a collection of strings. A string is a sequence of characters. You’ll learn more about strings later in this
chapter in Section 3.22, and you’ll learn about arrays in Chapter 10.

3.6 Braces

In the Dream program, we inserted opening braces, {, below the class heading and below the main head-
ing, and we inserted closing braces, }, at the bottom of the program. Braces identify groupings for humans
and for the computer. They must come in pairs—whenever you have an opening brace, you’ll need an as-
sociated closing brace. In the Dream program, the top and bottom braces group the contents of the entire
class, and the interior braces group the contents of the main method. For readability’s sake, you should put
an opening brace on a line by itself in the same column as the first character of the previous line. Look at the
following code fragment and note how the opening braces are positioned correctly.

4To access a non-static method (more formally called an instance method), you must first instantiate an object. We describe object
instantiation in Chapter 6.

3 Although the main method takes arguments, it’s rare for the main method to use those arguments. The book’s programs do not use
the main method’s arguments.

62 Chapter 3 Java Basics

public class Dream

{
public static void main(String[] args)
{
System.out.printIn(’'l have a dream!');
}

} 7/ end class Dream

The first brace is positioned immediately below the first character in the class heading, and the second
brace is positioned immediately below the first character in the main heading. For readability’s sake, you
should put a closing brace on a line by itself in the same column as its partner opening brace. Look at the
above code fragment and note how the closing braces are positioned correctly.

3.7 System.out.printin

In the Dream program, the main method contains this one statement:
System.out._printIn(’'l have a dream!');

The System.out.println statement tells the computer to print something. The word System refers to
the computer. System.out refers to the output part of the computer system—the computer’s monitor. The
word println (pronounced “print line”) refers to the Java printhn method that’s in charge of printing a
message to the computer screen. Ap@;g:@ateﬂmulcﬁﬂrh]a @& 1ed to as a println method
call. You call a method when you want to execute it.

The parentheses after printhn contain the message that is to be printed. The above statement prints
this message on a computer screen:

I have a dream!

Note the double quotes in System_out.printInC'l have a dream!'"); To print a group of charac-
ters (e.g., I, space, h, a, v, e, . . .), you need to group them together. As you learned in Chapter 2, the double
quotes are in charge of grouping together characters to form a string literal.

Note the semicolon at the end of System.out.printInC'l have a dream!""); A semicolon in
the Java language is like a period in natural language. It indicates the end of a statement. You’ll need to put
a semicolon at the end of every System.out._println statement.

You’'ll be calling the System.out.println method a lot, so you might want to try to memorize
its wording. To help with your memorization, think of it as an acronym—*"“Sop” for System, out, and
println. Don’t forget that the S is uppercase and the rest of the command is lowercase.

The System.out.println method prints a message and then moves to the beginning of the next
line. That means that if there is another System.out.println method call, it starts its printing on the
next line. The upcoming example illustrates what we’re talking about.

An Example

In our Dream program, we print just one short line—"I have a dream!” In our next example, we print mul-
tiple lines of varying lengths. See Figure 3.2’s Sayings program and its associated output. Note how each of
the three printhn method calls produces a separate line of output. Note how the second println method
call is too long to fit on one line, so we split it just to the right of the left parenthesis. The third println

3.8 Compilation and Execution 63

Sayings.java
Dean & Dean

ook X N

This program prints several sayings.

public class Sayings
{
public static void main(String[] args)
{
System.out.printIn(’'The future ain"t what it used to be.");
System.out.printin(
"Always remember you"re unique, just like everyone else.™);
System.out._printin(’"1f you are not part of the solution," +
' you are part of the precipitate.');
} 7/ end main
} 7/ end class Sayings

This connects/concatenates
the split-apart strings.

Output:
The future ain"t what |t used

Always remember vy Quelﬁbﬁ IEnh'an)Q:erse-

IT you are not part of the solution, you are part of the precipitate.

Figure 3.2 Sayings program and its associated output

method call is longer than the second println method call and as such, it could not fit on two lines if it
was split after the left parenthesis. In other words, this does not work:

System.out._printin(
"If you are not part of the solution, you are part of the pr
N