
Apago PDF Enhancer

www.allitebooks.com

http://www.allitebooks.org

Apago PDF EnhancerJohn S. Dean
Park University

Raymond H. Dean
University of Kansas

JAVAWITH

A Problem Solving Approach

Introduction to Programming

00-M4402-FM.indd i00-M4402-FM.indd i 12/17/07 4:15:47 PM12/17/07 4:15:47 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

INTRODUCTION TO PROGRAMMING WITH JAVA: A PROBLEM SOLVING APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights

reserved. No part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,

Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for

distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978–0–07–304702–7

MHID 0–07–304702–3

Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Developmental Editor: Heidi Newsom
Executive Marketing Manager: Michael Weitz
Senior Project Manager: Kay J. Brimeyer
Lead Production Supervisor: Sandy Ludovissy
Designer: Laurie B. Janssen
Cover image: ©Don Palmer, Kansas Flint Hills
Compositor: Newgen
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley Crawfordsville, IN

Figure 1.1: Mouse: © BigStock Photos; Keyboard, Scanner, and Printer: © PhotoDisc/Getty Images;
Monitor: © Brand X/Punchstock; Figure 1.2: Motherboard, CPU chip, and main memory chips: © BigStock
Photos; Figure 1.4: Diskette: © BrandX/Jupiter Images; Compact disc: © Getty Royalty Free; Hard disk and
USB fl ash drive: © BigStock Photos

Library of Congress Cataloging-in-Publication Data

Dean, John, 1962–

 Introduction to programming with Java : a problem solving approach / John Dean, Ray Dean.—1st ed.

 p. cm.

 Includes index.

 ISBN 978–0–07–304702–7 — ISBN 0–07–304702–3 (hard copy : alk. paper) 1. Java (Computer program

language) I. Dean, Ray, 1936– II. Title.

QA76.73.J38D4265 2008

005.13�3—dc22

2007037978

www.mhhe.com

00-M4402-FM.indd ii00-M4402-FM.indd ii 12/17/07 4:15:50 PM12/17/07 4:15:50 PM

www.allitebooks.com

http://www.mhhe.com
http://www.allitebooks.org

Apago PDF Enhancer

Dedication
—To Stacy and Sarah

00-M4402-FM.indd iii00-M4402-FM.indd iii 12/17/07 4:15:50 PM12/17/07 4:15:50 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

iv Chapter 4 Control Statements

John Dean is the Department Chair of the Information and Computer Science De-

partment at Park University. He earned an M.S. degree in computer science from the

University of Kansas. He is Sun Java certifi ed and has worked in industry as a software

engineer and project manager, specializing in Java and various Web technologies—

JavaScript, JavaServer Pages, and servlets. He has taught a full range of computer sci-

ence courses, including Java programming and Java-based Web programming.

Raymond Dean is a Professor Emeritus, Electrical Engineering and Computer Science,

University of Kansas. He earned an M.S. degree from MIT and a Ph.D. degree from

Princeton University, and he is a senior member of IEEE. He has published numerous

scientifi c papers and has 21 U.S. patents. He is currently a research scientist with The

Land Institute’s Climate and Energy Program, which advocates comprehensive energy

conservation and replacement of fossil and nuclear fuel consumption with wind power

and electrical-energy storage.

About the Authors

00-M4402-FM.indd iv00-M4402-FM.indd iv 12/17/07 4:15:50 PM12/17/07 4:15:50 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

0.0 Last A-Head v

v

Preface ix

Project Summary xxi

C H A P T E R 1
Introduction to Computers and
Programming 1

1.1. Introduction 1

1.2. Hardware Terminology 2

1.3. Program Development 9

1.4. Source Code 10

1.5. Compiling Source Code into

Object Code 12

1.6. Portability 12

1.7. Emergence of Java 14

1.8. First Program—Hello World 15

1.9. GUI Track: Hello World

(Optional) 20

C H A P T E R 2
Algorithms and Design 25

2.1. Introduction 25

2.2. Output 26

2.3. Variables 27

2.4. Operators and Assignment

Statements 28

2.5. Input 29

2.6. Flow of Control and Flowcharts 30

2.7. if Statements 31

2.8. Loops 36

2.9. Loop Termination Techniques 38

2.10. Nested Looping 41

2.11. Tracing 42

2.12. Other Pseudocode Formats and

Applications 46

2.13. Problem Solving: Asset Management

(Optional) 48

C H A P T E R 3
Java Basics 56

3.1. Introduction 57

3.2. “I Have a Dream” Program 57

3.3. Comments and Readability 58

3.4. The Class Heading 60

3.5. The main Method’s Heading 60

3.6. Braces 61

3.7. System.out.println 62

3.8. Compilation and Execution 63

3.9. Identifi ers 64

3.10. Variables 65

3.11. Assignment Statements 66

3.12. Initialization Statements 68

3.13. Numeric Data Types—int, long, float,

double 69

3.14. Constants 71

3.15. Arithmetic Operators 74

3.16. Expression Evaluation and Operator

Precedence 76

3.17. More Operators: Increment, Decrement, and

Compound Assignment 78

3.18. Tracing 80

3.19. Type Casting 80

3.20. char Type and Escape Sequences 83

3.21. Primitive Variables Versus Reference

Variables 85

3.22. Strings 86

3.23. Input—the Scanner Class 90

3.24. GUI Track: Input and Output with

JOptionPane (Optional) 95

C H A P T E R 4
Control Statements 106

4.1. Introduction 107

4.2. Conditions and Boolean Values 107

4.3. if Statements 108

4.4. && Logical Operator 111

Contents

00-M4402-FM.indd v00-M4402-FM.indd v 12/17/07 4:15:51 PM12/17/07 4:15:51 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

 4.5. || Logical Operator 116

 4.6. ! Logical Operator 118

 4.7. switch Statement 119

 4.8. while Loop 123

 4.9. do Loop 126

 4.10. for Loop 127

 4.11. Solving the Problem of Which Loop

to Use 132

 4.12. Nested Loops 133

 4.13. boolean Variables 135

 4.14. Input Validation 138

 4.15. Problem Solving with Boolean Logic

(Optional) 139

C H A P T E R 5
Using Pre-Built Methods 151

 5.1. Introduction 152

 5.2. The API Library 153

 5.3. Math Class 155

 5.4. Wrapper Classes for Primitive Types 161

 5.5. Character Class 165

 5.6. String Methods 167

 5.7. Formatted Output with the printf

Method 172

 5.8. Problem Solving with Random Numbers

(Optional) 177

 5.9. GUI Track: Drawing Images, Lines,

Rectangles, and Ovals in Java Applets

(Optional) 182

C H A P T E R 6
Object-Oriented Programming 195

 6.1. Introduction 196

 6.2. Object-Oriented Programming Overview 196

 6.3. First OOP Class 199

 6.4. Driver Class 203

 6.5. Calling Object, this Reference 206

 6.6. Instance Variables 209

 6.7. Tracing an OOP Program 210

 6.8. UML Class Diagrams 215

 6.9. Local Variables 216

 6.10. The return Statement 218

 6.11. Argument Passing 222

 6.12. Specialized Methods—Accessors, Mutators,

Boolean Methods 224

 6.13. Problem Solving with Simulation

(Optional) 227

C H A P T E R 7
Object-Oriented Programming—
Additional Details 245

 7.1. Introduction 246

 7.2. Object Creation—A Detailed Analysis 246

 7.3. Assigning a Reference 248

 7.4. Testing Objects for Equality 252

 7.5. Passing References as Arguments 257

 7.6. Method-Call Chaining 260

 7.7. Overloaded Methods 262

 7.8. Constructors 265

 7.9. Overloaded Constructors 272

 7.10. Problem Solving with Multiple Driven

Classes 275

C H A P T E R 8
Software Engineering 295

 8.1. Introduction 296

 8.2. Coding-Style Conventions 296

 8.3. Helper Methods 305

 8.4. Encapsulation (With Instance

Variables and Local Variables) 308

 8.5. Design Philosophy 310

 8.6. Top-Down Design 312

 8.7. Bottom-Up Design 321

 8.8. Case-Based Design 323

 8.9. Iterative Enhancement 324

 8.10. Merging Driver Method into Driven

Class 326

 8.11. Accessing Instance Variables without

Using this 327

 8.12. Problem Solving with the API Calendar

Class (Optional) 329

 8.13. GUI Track: Problem Solving with CRC Cards

(Optional) 331

C H A P T E R 9
Classes with Class Members 345

 9.1. Introduction 345

 9.2. Class Variables 346

 9.3. Class Methods 349

 9.4. Named Constants 352

vi Contents

00-M4402-FM.indd vi00-M4402-FM.indd vi 12/17/07 4:15:52 PM12/17/07 4:15:52 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

 9.5. Writing Your Own Utility Class 354

 9.6. Using Class Members in Conjunction with

Instance Members 354

 9.7. Problem Solving with Class Members and

Instance Members in a Linked List Class

(Optional) 358

C H A P T E R 10
Arrays and ArrayLists 370

 10.1. Introduction 371

 10.2. Array Basics 371

 10.3. Array Declaration and Creation 373

 10.4. Array length Property and Partially

Filled Arrays 377

 10.5. Copying an Array 379

 10.6. Problem Solving with Array Case

Studies 382

 10.7. Searching an Array 388

 10.8. Sorting an Array 393

 10.9. Two-Dimensional Arrays 396

 10.10. Arrays of Objects 402

 10.11. The ArrayList Class 409

 10.12. Storing Primitives in an ArrayList 414

 10.13. ArrayList Example Using Anonymous

Objects and the For-Each Loop 417

 10.14. ArrayLists Versus Standard

Arrays 422

C H A P T E R 11
Type Details and Alternate Coding
Mechanisms 433

 11.1. Introduction 434

 11.2. Integer Types and Floating-Point

Types 434

 11.3. char Type and the ASCII

Character Set 438

 11.4. Type Conversions 441

 11.5. Prefi x/Postfi x Modes for Increment/Decrement

Operators 443

 11.6. Embedded Assignments 446

 11.7. Conditional Operator Expressions 448

 11.8. Expression Evaluation Review 449

 11.9. Short-Circuit Evaluation 453

 11.10. Empty Statement 454

 11.11. break Statement within a Loop 456

 11.12. for Loop Header Details 457

 11.13. GUI Track: Unicode (Optional) 459

C H A P T E R 12
Aggregation, Composition, and
Inheritance 471

 12.1. Introduction 472

 12.2. Composition and Aggregation 472

 12.3. Inheritance Overview 479

 12.4. Implementation of Person/Employee/
FullTime Hierarchy 483

 12.5. Constructors in a Subclass 485

 12.6. Method Overriding 486

 12.7. Using the Person/Employee/FullTime

Hierarchy 488

 12.8. The final Access Modifi er 489

 12.9. Using Inheritance with Aggregation and

Composition 490

 12.10. Design Practice with Card Game

Example 493

 12.11. Problem Solving with Association Classes

(Optional) 498

C H A P T E R 13
Inheritance and Polymorphism 508

 13.1. Introduction 509

 13.2. The Object Class and Automatic Type

Promotion 509

 13.3. The equals Method 510

 13.4. The toString Method 514

 13.5. Polymorphism and Dynamic Binding 519

 13.6. Assignments Between Classes in a Class

Hierarchy 522

 13.7. Polymorphism with Arrays 524

 13.8. Abstract Methods and Classes 530

 13.9. Interfaces 533

 13.10. The protected Access Modifi er 539

 13.11. GUI Track: Three-Dimensional Graphics

(Optional) 544

C H A P T E R 14
Exception Handling 555

 14.1. Introduction 556

 14.2. Overview of Exceptions and Exception

Messages 556

 Contents vii

00-M4402-FM.indd vii00-M4402-FM.indd vii 12/17/07 4:15:53 PM12/17/07 4:15:53 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

 14.3. Using try and catch Blocks to Handle

“Dangerous” Method Calls 557

 14.4. Line Plot Example 559

 14.5. try Block Details 563

 14.6. Two Categories of Exceptions—Checked and

Unchecked 564

 14.7. Unchecked Exceptions 566

 14.8. Checked Exceptions 569

 14.9. The Exception Class and Its getMessage

Method 572

 14.10. Multiple catch Blocks 573

 14.11. Understanding Exception Messages 576

 14.12. Using throws <exception-type> to Postpone

the catch 580

 14.13. GUI Track and Problem Solving: Line Plot

Example Revisited (Optional) 584

C H A P T E R 15
Files 601

 15.1. Introduction 601

 15.2. Java API Classes You Need to Import 602

 15.3. Text-File Output 604

 15.4. Text-File Input 608

 15.5. HTML File Generator 612

 15.6. Text File Data Format Versus Binary

File Data Format 615

 15.7. Binary File I/O 618

 15.8. Object File I/O 622

 15.9. The File Class 626

 15.10. GUI Track: The JFileChooser

Class (Optional) 629

C H A P T E R 16
GUI Programming Basics 644

 16.1. Introduction 645

 16.2. Event-Driven Programming Basics 646

 16.3. A Simple Window Program 647

 16.4. JFrame Class 649

 16.5. Java Components 651

 16.6. JLabel Component 652

 16.7. JTextField Component 653

 16.8. Greeting Program 654

 16.9. Component Listeners 657

 16.10. Inner Classes 658

 16.11. Anonymous Inner Classes 659

 16.12. JButton Component 662

 16.13. Dialog Boxes and the JOptionPane

Class 667

 16.14. Distinguishing Between Multiple Events 671

 16.15. Using getActionCommand to Distinguish

Between Multiple Events 673

 16.16. Color 674

 16.17. How GUI Classes Are Grouped Together 679

 16.18. Mouse Listeners and Images (Optional) 680

C H A P T E R 17
GUI Programming—Component Layout,
Additional GUI Components 693

 17.1. Introduction 694

 17.2. GUI Design and Layout Managers 694

 17.3. FlowLayout Manager 696

 17.4. BorderLayout Manager 698

 17.5. GridLayout Manager 704

 17.6. Tic-Tac-Toe Example 707

 17.7. Problem Solving: Winning at Tic-Tac-Toe

(Optional) 710

 17.8. Embedded Layout Managers 712

 17.9. JPanel class 714

 17.10. MathCalculator Program 715

 17.11. JtextArea Component 719

 17.12. JcheckBox Component 721

 17.13. JradioButton Component 724

 17.14. JcomboBox Component 726

 17.15. Job Application Example 729

 17.16. More Swing Components 734

Appendices

Appendix 1 Unicode/ASCII Character Set with

Hexadecimal Codes 745

Appendix 2 Operator Precedence 749

Appendix 3 Java Reserved Words 751

Appendix 4 Packages 755

Appendix 5 Java Coding-Style Conventions 759

Appendix 6 Javadoc 771

Appendix 7 UML Diagrams 778

Appendix 8 Recursion 784

Appendix 9 Multithreading 794

viii Contents

00-M4402-FM.indd viii00-M4402-FM.indd viii 12/17/07 4:15:53 PM12/17/07 4:15:53 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

0.0 Last A-Head ix

1C H A P T E R

ix

Preface

In this book, we lead you on a journey into the fun and exciting world of computer programming. Through-

out your journey, we’ll provide you with lots of problem-solving practice. After all, good programmers need

to be good problem solvers. We’ll show you how to implement your problem solutions with Java programs.

We provide a plethora of examples, some short and focused on a single concept, some longer and more “real

world.” We present the material in a conversational, easy-to-follow manner aimed at making your journey a

pleasant one. When you’re done with the book, you should be a profi cient Java programmer.

Our textbook targets a wide range of readers. Primarily, it targets students in a standard college-level

“Introduction to Programming” course or course sequence where no prerequisite programming experience

is assumed.

In addition to targeting students with no prerequisite programming experience, our textbook also tar-

gets industry practitioners and college-level students who have some programming experience and want to

learn Java. This second set of readers can skip the early chapters on general programming concepts and

focus on the features of Java that differ from the languages that they already know. In particular, since C++

and Java are so similar, readers with a C++ background should be able to cover the textbook in a single

three-credit-hour course. (But let us reiterate for those of you with no programming experience: You should

be fi ne. No prerequisite programming experience is required.)

Finally, our textbook targets high school students and readers outside of academia with no program-

ming experience. This third set of readers should read the entire textbook at a pace determined on a case-

by-case basis.

Textbook Cornerstone #1: Problem Solving

Being able to solve problems is a critical skill that all programmers must possess. We teach programmatic

problem solving by emphasizing two of its key elements—algorithm development and program design.

Emphasis on Algorithm Development

In Chapter 2, we immerse readers into algorithm development by using pseudocode for the algorithm ex-

amples instead of Java. In using pseudocode, students are able to work through non-trivial problems on

their own without getting bogged down in Java syntax—no need to worry about class headings, semicolons,

braces, and so on.1 Working through non-trivial problems enables students to gain an early appreciation for

creativity, logic, and organization. Without that appreciation, Java students tend to learn Java syntax with

a rote-memory attitude. But with that appreciation, students tend to learn Java syntax more quickly and

effectively because they have a motivational basis for learning it. In addition, they are able to handle non-

1 Inevitably, we use a particular style for our pseudocode, but we repeatedly emphasize that other pseudocode styles are fi ne as long
as they convey the intended meaning. Our pseudocode style is a combination of free-form description for high-level tasks and more
specifi c commands for low-level tasks. For the specifi c commands, we use natural English words rather than cryptic symbols. We’ve
chosen a pseudocode style that is intuitive, to welcome new programmers, and structured, to accommodate program logic.

00-M4402-FM.indd ix00-M4402-FM.indd ix 12/17/07 4:15:54 PM12/17/07 4:15:54 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

trivial Java homework assignments fairly early because they have prior experience with similarly non-trivial

pseudocode homework assignments.

In Chapter 3 and in later chapters, we rely primarily on Java for algorithm-development examples. But for

the more involved problems, we sometimes use high-level pseudocode to describe fi rst-cut proposed solutions.

Using pseudocode enables readers to bypass syntax details and focus on the algorithm portion of the solution.

Emphasis on Program Design

Problem solving is more than just developing an algorithm. It also involves fi guring out the best implemen-

tation for the algorithm. That’s program design. Program design is extremely important and that’s why we

spend so much time on it. We don’t just present a solution. We explain the thought processes that arise when

coming up with a solution. For example, we explain how to choose between different loop types, how to split

up a method into multiple methods, how to decide on appropriate classes, how to choose between instance

and class members, and how to determine class relationships using inheritance and composition. We chal-

lenge students to fi nd the most elegant implementations for a particular task.

We devote a whole chapter to program design—Chapter 8, Software Engineering. In that chapter, we

provide in-depth looks at coding-style conventions, modularization, and encapsulation. Also in the chapter,

we describe alternative design strategies—top-down, bottom-up, case-based, and iterative enhancement.

Problem-Solving Sections

We often address problem solving (algorithm development and program design) in the natural fl ow of explain-

ing concepts. But we also cover problem solving in sections that are wholly devoted to it. In each problem-

solving section, we present a situation that contains an unresolved problem. In coming up with a solution for

the problem, we try to mimic the real-world problem-solving experience by using an iterative design strategy.

We present a fi rst-cut solution, analyze the solution, and then discuss possible improvements to it. We use a

conversational trial-and-error format (e.g., “What type of layout manager should we use? We fi rst tried the

GridLayout manager. That works OK, but not great. Let’s now try the BorderLayout manager.”). This

casual tone sets the student at ease by conveying the message that it is normal, and in fact expected, that a

programmer will need to work through a problem multiple times before fi nding the best solution.

Additional Problem-Solving Mechanisms

We include problem-solving examples and problem-solving advice throughout the text (not just in Chapter 2,

Chapter 8, and the problem-solving sections). As a point of emphasis, we insert a problem-solving box, with

an icon and a succinct tip, next to the text that contains the problem-solving example and/or advice.

We are strong believers in learning by example. As such, our textbook contains a multitude of complete

program examples. Readers are encouraged to use our programs as recipes for solving similar programs on

their own.

Textbook Cornerstone #2: Fundamentals First

Postpone Concepts That Require Complex Syntax

We feel that many introductory programming textbooks jump too quickly into concepts that require complex

syntax. In using complex syntax early, students get in the habit of entering code without fully understanding

it or, worse yet, copying and pasting from example code without fully understanding the example code. That

can lead to less-than-ideal programs and students who are limited in their ability to solve a wide variety of

x Preface

00-M4402-FM.indd x00-M4402-FM.indd x 12/17/07 4:15:55 PM12/17/07 4:15:55 PM

Apago PDF Enhancer

problems. Thus, we prefer to postpone concepts that require complex syntax. We prefer to introduce such

concepts later on when students are better able to fully understand them.

As a prime example of that philosophy, we cover the simpler forms of GUI programming early (in an

optional graphics track), but we cover the more complicated forms of GUI programming late. Specifi cally,

we postpone event-driven GUI programming until the end of the book. This is different from some other

Java textbooks, which favor early full immersion into event-driven GUI programming. We feel that strategy

is a mistake because proper event-driven GUI programming requires a great deal of programming maturity.

By covering it at the end of the book, our readers are better able to fully understand it.

Tracing Examples

To write code effectively, it’s imperative to understand code thoroughly. We’ve found that step-by-step trac-

ing of program code is an effective way to ensure thorough understanding. Thus, in the earlier parts of the

textbook, when we introduce a new programming structure, we often illustrate it with a meticulous trace.

The detailed tracing technique we use illustrates the thought process programmers employ while debug-

ging. It’s a printed alternative to the sequence of screen displays generated by debuggers in IDE software.

Input and Output

In the optional GUI-track sections and in the GUI chapters at the end of the book, we use GUI commands

for input and output (I/O). But because of our emphasis on fundamentals, we use console commands for I/O

for the rest of the book.2 For console input, we use the Scanner class. For console output, we use the stan-

dard System.out.print, System.out.println, and System.out.printf methods.

Textbook Cornerstone #3: Real World

More often than not, today’s classroom students and industry practitioners prefer to learn with a hands-on,

real-world approach. To meet this need, our textbook includes:

• compiler tools

• complete program examples

• practical guidance in program design

• coding-style guidelines based on industry standards

• UML notation for class relationship diagrams

• practical homework-project assignments

Compiler Tools

We do not tie the textbook to any particular compiler tool—you are free to use any compiler tool(s) that you

like. If you do not have a preferred compiler in mind, then you might want to try out one or more of these:

• Java2 SDK toolkit, by Sun

• TextPad, by Helios

2 We cover GUI I/O early on with the JOptionPane class. That opens up an optional door for GUI fans. If readers are so inclined,
they can use JOptionPane to implement all of our programs with GUI I/O rather than console I/O. To do so, they replace all con-
sole I/O method calls with JOptionPane method calls.

 Preface xi

00-M4402-FM.indd xi00-M4402-FM.indd xi 12/17/07 4:15:55 PM12/17/07 4:15:55 PM

Apago PDF Enhancer

• Eclipse, by the Eclipse Foundation

• Netbeans, backed by Sun

• BlueJ, by the University of Kent and Deaken University

To obtain the above compilers, visit our textbook Web site at http://www.mhhe.com/dean, fi nd the ap-

propriate compiler link(s), and download away for free.

Complete Program Examples

In addition to providing code fragments to illustrate specifi c concepts, our textbook contains lots of com-

plete program examples. With complete programs, students are able to (1) see how the analyzed code ties in

with the rest of a program, and (2) test the code by running it.

Coding-Style Conventions

We include coding-style tips throughout the textbook. The coding-style tips are based on Sun’s coding

 conventions (http://java.sun.com/docs/codeconv/) and industry practice. In Appendix 5, we provide a com-

plete reference for the book’s coding-style conventions and an associated example program that illustrates

the conventions.

UML Notation

The Universal Modeling Language (UML) has become a standard for describing the entities in large soft-

ware projects. Rather than overwhelm beginning programmers with syntax for the entire UML (which is

quite extensive), we present a subset of the UML. Throughout the textbook, we incorporate UML notation

to pictorially represent classes and class relationships. For those interested in more details, we provide ad-

ditional UML notation in Appendix 7.

Homework Problems

We provide homework problems that are illustrative, practical, and clearly worded. The problems range

from easy to challenging. They are grouped into three categories—review questions, exercises, and proj-

ects. We include review questions and exercises at the end of each chapter, and we provide projects on our

textbook’s Web site.

The review questions tend to have short answers and the answers are in the textbook. The review ques-

tions use these formats: short-answer, multiple-choice, true/false, fi ll-in-the-blanks, tracing, debugging,

write a code fragment. Each review question is based on a relatively small part of the chapter.

The exercises tend to have short to moderate-length answers, and the answers are not in the textbook.

The exercises use these formats: short-answer, tracing, debugging, write a code fragment. Exercises are

keyed to the highest prerequisite section number in the chapter, but they sometimes integrate concepts from

several parts of the chapter.

The projects consist of problem descriptions whose solutions are complete programs. Project solutions

are not in the textbook. Projects require students to employ creativity and problem-solving skills and apply

what they’ve learned in the chapter. These projects often include optional parts, which provide challenges

for the more talented students. Projects are keyed to the highest prerequisite section number in the chapter,

but they often integrate concepts from several preceding parts of the chapter.

An important special feature of this book is the way it specifi es project problems. “Sample sessions”

show the precise output generated for a particular set of input values. These sample sessions include inputs

that represent typical situations and sometimes also extreme or boundary situations.

xii Preface

00-M4402-FM.indd xii00-M4402-FM.indd xii 12/17/07 4:15:55 PM12/17/07 4:15:55 PM

http://www.mhhe.com/dean
http://java.sun.com/docs/codeconv/

Apago PDF Enhancer

Academic-Area Projects

To enhance the appeal of projects and to show how the current chapter’s programming techniques might ap-

ply to different areas of interest, we take project content from several academic areas:

• Computer Science and Numerical Methods

• Business and Accounting

• Social Sciences and Statistics

• Math and Physics

• Engineering and Architecture

• Biology and Ecology

The academic-area projects do not require prerequisite knowledge in a particular area. Thus, instructors are

free to assign any of the projects to any of their students. To provide a general reader with enough special-

ized knowledge to work a problem in a particular academic area, we sometimes expand the problem state-

ment to explain a few special concepts in that academic area.

Most of the academic-area projects do not require students to have completed projects from earlier

chapters; that is, the projects do not build on each other. Thus, instructors are free to assign projects without

worrying about prerequisite projects. In some cases, a project repeats a previous chapter’s project with a dif-

ferent approach. The teacher may elect to take advantage of this repetition to dramatize the availability of

alternatives, but this is not necessary.

Project assignments can be tailored to fi t readers’ needs. For example:

• For readers outside of academia—

 Readers can choose projects that match their interests.

• When a course has students from one academic area—

 Instructors can assign projects from the relevant academic area.

• When a course has students with diverse backgrounds—

 Instructors can ask students to choose projects from their own academic areas, or

 Instructors can ignore the academic-area delineations and simply assign projects that are most

appealing.

To help you decide which projects to work on, we’ve included a “Project Summary” section after the

preface. It lists all the projects by chapter, and for each project, it specifi es:

• The associated section within the chapter

• The academic area

• The length and diffi culty

• A brief description

After using the “Project Summary” section to get an idea of which projects you might like to work on, see

the textbook’s Web site for the full project descriptions.

Organization

In writing this book, we lead readers through three important programming methodologies: structured pro-

gramming, object-oriented programming (OOP), and event-driven programming. For our structured pro-

gramming coverage, we introduce basic concepts such as variables and operators, if statements, and loops.

For our OOP coverage, we start by showing readers how to call pre-built methods from Sun’s Java Applica-

 Preface xiii

00-M4402-FM.indd xiii00-M4402-FM.indd xiii 12/17/07 4:15:56 PM12/17/07 4:15:56 PM

Apago PDF Enhancer

tion Programming Interface (API) library. We then introduce basic OOP concepts such as classes, objects,

instance variables, and instance methods. Next, we move on to more advanced OOP concepts—class vari-

ables, arrays, and inheritance. Chapters on exception handling and fi les provide a transition into event-

driven graphical user interface (GUI) programming. We cover event-driven GUI programming in earnest in

the fi nal two chapters.

The content and sequence we promote enable students to develop their skills from a solid foundation

of programming fundamentals. To foster this fundamentals-fi rst approach, our book starts with a minimum

set of concepts and details. It then gradually broadens concepts and adds detail later. We avoid overloading

early chapters by deferring certain less-important details to later chapters.

GUI Track

Many programmers fi nd GUI programming to be fun. As such, GUI programming can be a great motiva-

tional tool for keeping readers interested and engaged. That’s why we include graphics sections throughout

the book, starting in Chapter 1. We call those sections our “GUI track.” For readers who do not have time

for the GUI track, no problem. Any or all of the GUI track sections may be skipped as they cover material

that is independent of later material.

Chapter 1

In Chapter 1, we fi rst explain basic computer terms—what are the hardware components, what is source

code, what is object code, and so on. We then narrow our focus and describe the programming language

we’ll be using for the remainder of the book—Java. Finally, we give students a quick view of the classic

bare-bones “Hello World” program. We explain how to create and run the program using minimalist soft-

ware—Microsoft’s Notepad text editor and Sun’s command-line Software Development Kit (SDK) tools.

Chapter 2

In Chapter 2, we present problem-solving techniques with an emphasis on algorithmic design. In implement-

ing algorithm solutions, we use generic tools—fl owcharts and pseudocode—with pseudocode being given

the greatest weight. As part of our algorithm-design explanation, we describe structured programming tech-

niques. In order to give students an appreciation for semantic details, we show how to trace algorithms.

Chapters 3–5

We present structured programming techniques using Java in Chapters 3–5. Chapter 3 describes sequential

programming basics—variables, input/output, assignment statements, and simple method calls. Chapter 4

describes non-sequential program fl ow—if statements, switch statements, and loops. In Chapter 5 we

explain methods in more detail and show readers how to use pre-built methods in the Java API library. In all

three chapters, we teach algorithm design by solving problems and writing programs with the newly intro-

duced Java syntax.

Chapters 6–8

Chapter 6 introduces the basic elements of OOP in Java. This includes implementing classes and implement-

ing methods and variables within those classes. We use UML class diagrams and object-oriented tracing

techniques to illustrate these concepts.

Chapter 7 provides additional OOP details. It explains how reference variables are assigned, tested for

equality, and passed as arguments to a method. It covers overloaded methods and constructors.

xiv Preface

00-M4402-FM.indd xiv00-M4402-FM.indd xiv 12/17/07 4:15:56 PM12/17/07 4:15:56 PM

Apago PDF Enhancer

While the art of program design and the science of computerized problem-solving are developed

throughout the textbook, in Chapter 8, we focus on these aspects in the context of OOP. This chapter begins

with an organized treatment of programming style. It includes recommendations on how to use methods

to further the goal of encapsulation. It describes the major programming paradigms—top-down design,

 bottom-up design, using pre-written software for low-level modules, and prototyping.

Chapter 9

Some Java textbooks teach how to implement class members before they teach how to implement instance

members. With that approach, students learn to write class members inappropriately, and that practice is

hard to break later on when instance members are fi nally covered. Proper programming practice dictates

that programmers (beginning programmers certainly included) should implement instance members more

often than class members. Thus, we teach how to implement instance members early on, and we postpone

how to implement class members until Chapter 9.

Chapter 10

In Chapter 10, we describe different ways to store related data. We present array basics and several impor-

tant array applications—searching, sorting, and histogram construction. We present more advanced array

concepts using two-dimensional arrays and arrays of objects. Finally, we look at a more powerful form of an

array—an ArrayList.

Chapter 11

Early on, students need to be immersed in problem-solving activities. Covering too much syntax detail early

can detract from that objective. Thus, we initially gloss over some less-important syntax details and come

back to those details later on in Chapter 11. Chapter 11 provides more details on items such as these:

• the byte and short primitive types

• the Unicode character set

• type promotions

• postfi x versus prefi x modes for the increment and decrement operators

• the conditional operator

• short-circuit evaluation

Chapters 12–13

We describe class relationships in Chapters 12 and 13. We spend two full chapters on class relationships be-

cause the subject matter is so important. We take the time to explain class relationship details in depth and

provide numerous examples. In Chapter 12, we discuss aggregation, composition, and inheritance. In Chap-

ter 13, we discuss more advanced inheritance-related details such as the Object class, polymorphism,

abstract classes, and interfaces.

Chapters 14–15

We cover exception handling in Chapter 14 and fi les in Chapter 15. We cover exception handling prior to

fi les because fi le-handling code utilizes exception handling; for example, opening a fi le requires that you

check for an exception.

 Preface xv

00-M4402-FM.indd xv00-M4402-FM.indd xv 12/17/07 4:15:56 PM12/17/07 4:15:56 PM

Apago PDF Enhancer

Chapters 16–17

We cover event-driven GUI programming at the end of the book in Chapters 16 and 17. By learning event-

driven GUI programming late, students are better able to grasp its inherent complexities.

Appendices

Most of the appendices cover reference material, such as the ASCII character set and the operator prece-

dence table. But the last two appendices cover advanced Java material—recursion and multithreading.

Subject-Matter Dependencies and
Sequence-Changing Opportunities

We’ve positioned the textbook’s material in a natural order for someone who wants fundamentals fi rst and

also wants an early introduction to OOP. We feel that our order is the most effi cient and effective order for

learning how to become a profi cient OOP programmer. Nonetheless, we realize that different readers have

different content-ordering preferences. To accommodate those different preferences, we’ve provided some

built-in fl exibility. Figure 0.1 illustrates that fl exibility by showing chapter dependencies and, more impor-

tantly, chapter non-dependencies. For example, the arrow between Chapter 3 and Chapter 4 means that

Chapter 3 must be read prior to Chapter 4. And the lack of an arrow between Chapters 1 and 2 means that

Chapter 1 may be skipped.

Here are some sequence-changing opportunities revealed by Figure 0.1:

• Readers can skip Chapter 1 (Introduction to Computers and Programming).

• For an earlier introduction to OOP, readers can read the OOP overview section in Chapter 6 after read-

ing Chapter 1. And they can learn OOP syntax and semantics in Chapter 6 after fi nishing Java basics in

Chapter 3.

• For additional looping practice, readers can learn about arrays in Chapter 10 after fi nishing loops in

Chapter 4.

• Readers can skip Chapter 15 (Files).

Note Figure 0.1’s dashed arrow that connects Chapter 3 to Chapter 15. We use a dashed arrow to indicate

that the connection is partial. Some readers may wish to use fi les early on for input and output (I/O). Those

readers should read Chapter 3 for Java basics and then immediately jump to Chapter 15, Sections 15.3 and

15.4 for text-fi le I/O. With a little work, they’ll then be able to use fi les for all their I/O needs throughout the

rest of the book. We say “with a little work” because the text-fi le I/O sections contain some code that won’t

be fully understood by someone coming directly from Chapter 3. To use the text-fi le I/O code, they’ll need

to treat it as a template. In other words, they’ll use the code even though they probably won’t understand

some of it.

To support content-ordering fl exibility, the book contains “hyperlinks.” A hyperlink is an optional jump

forward from one place in the book to another place. The jumps are legal in terms of prerequisite knowl-

edge, meaning that the jumped-over (skipped) material is unnecessary for an understanding of the later

material. We supply hyperlinks for each of the non-sequential arrows in Figure 0.1. For example, we supply

hyperlinks that go from Chapter 1 to Chapter 6 and from Chapter 3 to Chapter 11. For each hyperlink tail

end (in the earlier chapter), we tell the reader where they may optionally jump to. For each hyperlink target

end (in the later chapter), we provide an icon at the side of the target text that helps readers fi nd the place

where they are to begin reading.

xvi Preface

00-M4402-FM.indd xvi00-M4402-FM.indd xvi 12/17/07 4:15:56 PM12/17/07 4:15:56 PM

Apago PDF Enhancer

§6.1–§6.8: OOP Basics

§6.2: OOP Overview

Ch 14: Exception Handling

Ch15: Files

Multithreading Appendix

§15.3–§15.4: Text-FileI/OCh 4: Control Statements

Ch 5: Using Pre-Built Methods

Ch 6: Object-Oriented Programming

Ch 7: OOP –Additional Details

Ch 8: Software Engineering

Ch 9: Classes with Class Members

Ch 3: Java Basics

Ch 2: Algorithms and

Design

Ch 1: Introduction

Ch 11: Type Details and Alternate

Coding Mechanisms

Ch 12: Aggregation, Composition,

 and Inheritance

Ch 13: Inheritance and Polymorphism

Ch 16: GUI Programming Basics

Ch 10: Arrays and ArrayLists Recursion Appendix

§11.6–§11.12: Alternate

Coding Mechanisms

§11.1–§11.5:

 Type details

§10.1–§10.6:

 Arrays

Ch 17: GUI Programming—

Component Layout,

Additional GUI Components

Figure 0.1 Chapter dependencies

 Preface xvii

00-M4402-FM.indd xvii00-M4402-FM.indd xvii 12/17/07 4:15:57 PM12/17/07 4:15:57 PM

Apago PDF Enhancer

Pedagogy

Icons

 Program elegance.

Indicates that the associated text deals with a program’s coding style, readability, maintainability,

robustness, and scalability. Those qualities comprise a program’s elegance.

 Problem solving.

Indicates that the associated text deals with problem-solving issues. Comments associated with

icon attempt to generalize highlighted material in the adjacent text.

 Common errors.

Indicates that the associated text deals with common errors.

 Hyperlink target.

Indicates the target end of a hyperlink.

 Program effi ciency.

Indicates that the associated text refers to program-effi ciency issues.

Student Resources

At the textbook Web site, http://www.mhhe.com/dean, students (and also teachers) can view and download

these resources:

• Links to compiler software—for Sun’s Java2 SDK toolkit, Helios’s TextPad, Eclipse, NetBeans, and

BlueJ

• TextPad tutorial

• Eclipse tutorials

• Textbook errata

• All textbook example programs and associated resource fi les

Instructor Resources

At the textbook Web site, http://www.mhhe.com/dean, instructors can view and download these resources:

• Customizable PowerPoint lecture slides with hidden notes

Hidden notes provide comments that supplement the displayed text in the lecture slides.

For example, if the displayed text asks a question, the hidden notes provide the answer.

As an option, instructors can delete the hidden notes (with a convenient macro) before distributing

the lecture slides to the students. (That way, students are forced to go to lecture to hear the sage on

the stage fi ll in the blanks. ☺)

• Exercise solutions

• Project solutions

• Test bank materials

�

�

�

xviii Preface

00-M4402-FM.indd xviii00-M4402-FM.indd xviii 12/17/07 4:15:57 PM12/17/07 4:15:57 PM

http://www.mhhe.com/dean
http://www.mhhe.com/dean

Apago PDF Enhancer

Acknowledgments

Anyone who has written a textbook can attest to what a large and well-orchestrated team effort it requires.

Such a book can never be the work of only one person or even a few. We are deeply indebted to the team at

McGraw-Hill Higher Education who have shown continued faith in our writing and invested generously in it.

It was a pleasure to work with Alan Apt during the book’s two-year review period. He provided ex-

cellent guidance on several large design issues. We are grateful for the tireless efforts of Rebecca Olson.

Rebecca did a tremendous job organizing and analyzing the book’s many reviews. Helping us through the

various stages of production were Project Manager Kay Brimeyer and Designer Laurie Janssen. We would

also like to thank the rest of the editorial and marketing team, who helped in the fi nal stages: Raghu Srini-

vasan, Global Publisher; Kristine Tibbetts, Director of Development; Heidi Newsom, Editorial Assistant;

and Michael Weitz, Executive Marketing Manager.

All the professionals we have encountered throughout the McGraw-Hill organization have been won-

derful to work with, and we sincerely appreciate their efforts.

We would like to acknowledge with appreciation the numerous and valuable comments, suggestions, and

constructive criticisms and praise from the many instructors who have reviewed the book. In particular,

William Allen, Florida Institute of Technology

Robert Burton, Brigham Young University

Priscilla Dodds, Georgia Perimeter College

Jeanne M. Douglas, University of Vermont

Dr. H.E. Dunsmore, Purdue University

Deena Engel, New York University

Michael N. Huhns, University of South Carolina

Ibrahim Imam, University of Louisville

Andree Jacobson, University of New Mexico

Lawrence King, University of Texas, Dallas

Mark Llewellyn, University of Central Florida

Blayne E.Mayfi eld, Oklahoma State University

Mary McCollam, Queen’s University

Hugh McGuire, Grand Valley State University

Jeanne Milostan, Vanderbilt University

Shyamal Mitra, University of Texas, Austin

Benjamin B.Nystuen, University of Colorado, Colorado Springs

Richard E. Pattis, Carnegie Mellon University

Tom Stokke, University of North Dakota

Ronald Taylor, Wright State University

Timothy A.Terrill, University at Buffalo, The State University of New York

Ping Wu, Dell Inc

We would also like to thank colleagues Wen Hsin, Kevin Burger, John Cigas, Bob Cotter, Alice

Capson, and Mark Adams for helping with informal quick surveys and Barbara Kushan, Ed Tankins,

 Preface xix

00-M4402-FM.indd xix00-M4402-FM.indd xix 12/17/07 4:15:58 PM12/17/07 4:15:58 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

Mark Reith, and Benny Phillips for class testing. And a special debt of gratitude goes to colleague and

grammarian nonpareil Jeff Glauner, who helped with subtle English syntax nuances.

Finally, thanks to the students. To the ones who encouraged the initial writing of the book, and to the

ones who provided feedback and searched diligently for mistakes in order to earn bonus points on the home-

work. In particular, thank you Aris Czamanske, Malallai Zalmai, Paul John, Joby John, Matt Thebo, Josh

McKinzie, Carol Liberty, Adeeb Jarrah, and Virginia Maikweki.

Sincerely,

John and Ray

xx Preface

00-M4402-FM.indd xx00-M4402-FM.indd xx 12/17/07 4:15:58 PM12/17/07 4:15:58 PM

Apago PDF Enhancer

0.0 Last A-Head xxi

1C H A P T E R

xxi

One of the special features of this text is the diversity of its projects. Project subject matter spans six broad

academic areas, as this short table shows:

 abbreviation description easy moderate diffi cult total

 CS Computer Science and Numerical Methods 14 12 6 32

 Business Business and Accounting 10 10 3 23

 Sociology Social Sciences and Statistics 7 7 5 19

 Math & Phys Math and Physics 9 5 3 17

 Engineering Engineering and Architecture 3 7 5 15

 Biol & Ecol Biology and Ecology 0 2 4 6

 totals 43 43 26 112

The abbreviation in the fi rst column above will be used in a larger table below as a brief identifi cation

of a particular academic area. The four right-side columns in the above table indicate the number of projects

in various categories. Of course, the highest number of projects (32) occurs in the area of computer science

and numerical methods. The 26 easy and moderate CS projects are typical CS introductory programming

problems. The 6 diffi cult CS projects provide gentle introductions to some advanced topics like link list op-

erations, database operations, and simulated annealing.

In addition, there are 23 projects in business and accounting, which include miscellaneous fi nancial cal-

culations, simple bookkeeping problems, and cost-accounting applications. There are 19 projects in social

sciences and statistics, which include applications in sociology and political science, as well as general ex-

perience. There are 17 projects in math and physics, which include applications in both classical and chaotic

mechanics. There are 15 projects in engineering and architecture, which include applications in heating venti-

lating and air conditioning (HVAC), electrical circuits, and structures. Finally, there are 6 projects in biology

and ecology, which include realistic growth and predator-prey simulations. Although we’ve associated each

project with one primary academic area, many of these projects can fi t into other academic areas as well.

Because many of these projects apply to disciplines outside the fi eld of computer science, we do not

expect that the average reader will already know about all of these “other” topics. Therefore, in our prob-

lem statements we usually take considerable time to explain the topic as well as the problem. And we often

explain how to go about solving the problem—in layman’s terms. Therefore, working many of these proj-

ects will be like implementing computer solutions for customers who are not programmers themselves but

understand their subject matter and know what they want you (the programmer) to do for them. They will

explain their problem and how to go about solving it. But then they will expect you to create the program

that actually solves that problem.

Because our project explanations frequently take considerable printed space, instead of putting them in

the book itself, we put them on our Web site:

http://www.mhhe.com/dean

The following table provides a summary of what’s on that Web site. This table lists all of the book’s projects

in a sequence that matches the book’s sequence. The fi rst column identifi es the fi rst point in the book at

Project Summary

00-M4402-FM.indd xxi00-M4402-FM.indd xxi 12/17/07 4:15:58 PM12/17/07 4:15:58 PM

http://www.mhhe.com/dean

Apago PDF Enhancer

which you should be able to do the project, by chapter and section, in the form: ChapterNumber.Section-

Number. The second column is a unique project number for the chapter in question. The third column iden-

tifi es the project’s primary academic area with an abbreviation that’s explained in the shorter table above.

The fourth column indicates the approximate number of pages of code that our solution contains. The fi fth

column indicates the diffi culty relative to where you are in your study of Java. For example, you can see that

what we call “easy” involves progressively more pages of code as you progress through the book. The last

two columns provide a title and brief description of each project.

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
2.7 1 Business 0.6 easy Annual Bonus–

(Flowchart)

Draw a fl owchart for an algorithm that

computes an annual bonus.

2.7 2 Business 0.3 easy Annual Bonus—

(Pseudocode)

Write pseudocode for an algorithm that

computes an annual bonus.

2.7 3 Business 0.6 easy Number of

Stamps—

(Flowchart)

Draw a fl owchart for an algorithm that

calculates the number of stamps needed

for an envelope. Use one stamp for every

fi ve sheets of paper.

2.7 4 Business 0.3 easy Number of

Stamps—

(Pseudocode)

Write pseudocode for an algorithm that

calculates the number of stamps needed

for an envelope. Use one stamp for every

fi ve sheets of paper.

2.7 5 Biol & Ecol 0.5 moderate Five Kingdoms—

(Pseudocode)

Write pseudocode for an algorithm that

identifi es a biological kingdom from a

set of characteristics.

2.7 6 Math &

Phys

0.6 easy Speed of Sound—

(Flowchart)

Draw a fl owchart for an algorithm

that provides the speed of sound in a

particular medium.

2.7 7 Math &

Phys

0.4 easy Speed of Sound—

(Pseudocode)

Write pseudocode for an algorithm

that provides the speed of sound in a

particular medium.

2.7 8 Business 0.6 moderate Stock Market

Return—

(Flowchart)

Draw a fl owchart for an algorithm

that prints the type of market and its

probability given a particular rate of

return.

2.7 9 Business 0.4 moderate Stock Market

Return—

(Pseudocode)

Write pseudocode for an algorithm

that prints the type of market and its

probability given a particular rate of

return.

2.8 10 Business 0.3 moderate Bank Balance—

(Pseudocode)

Write pseudocode for an algorithm that

determines the number of years until a

growing bank balance reaches a million

dollars.

2.9 11 Engineering 1.0 moderate Loop Termination

by User Query—

(Flowchart)

Draw a fl owchart for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

xxii Project Summary

00-M4402-FM.indd xxii00-M4402-FM.indd xxii 12/17/07 4:15:59 PM12/17/07 4:15:59 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
2.9 12 Engineering 0.5 easy Loop Termination

by User Query—

(Pseudocode)

Write pseudocode for an algorithm that

calculates the overall miles per gallon for

a series of miles and gallons user inputs.

2.9 13 Engineering 0.4 moderate Loop Termination

by Sentinal

Value—

(Pseudocode)

Write pseudocode for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

2.9 14 Engineering 0.3 easy Loop Termination

by Counter—

(Pseudocode)

Write pseudocode for an algorithm that

calculates the overall miles per gallon for

a series of miles and gallons user inputs.

2.10 15 CS 0.4 moderate Average Weight—

(Pseudocode)

Write pseudocode for an algorithm that

determines average weight for a group

of items.

3.2 1 CS NA easy Hello World

Experimentation

Experiment with the Hello.java

program to learn the meanings of

typical compile-time and runtime error

messages.

3.3 2 CS NA moderate Research Study Sun’s Java Coding Conventions.

3.3 3 CS NA moderate Research Study Appendix 5 “Java Coding-Style

Conventions.”

3.16

3.23

4 Engineering 2.5 diffi cult Truss Analysis Given the load in the center of a bridge

and the weights of all truss members,

compute the compression or tension

force in each truss member.

3.17 5 CS 1.0 easy Sequence of

Commands

Trace a sequence of commands and

write a program that executes those

commands.

3.17

3.23

6 CS 1.7 moderate Computer Speed Given a simple set of hardware and

software characteristics, write a

program that estimates the total time to

run a computer program.

3.17

3.23

7 Engineering 2.7 moderate HVAC Load Calculate the heating and cooling loads

for a typical residence.

3.17

3.23

8 Sociology 3.5 diffi cult Campaign

Planning

Write a program to help organize

estimates of votes, money, and labor.

3.22 9 CS 1.0 easy String Processing Trace a set of string processing

operations and write a program that

implements them.

3.23 10 CS 1.2 easy Swapping Trace an algorithm that swaps the values

in two variables, and write a program

that implements that algorithm.

3.23 11 Math &

Phys

1.0 easy Circle Parameters Write a program that generates and

prints circle-related values.

(continued)

 Project Summary xxiii

00-M4402-FM.indd xxiii00-M4402-FM.indd xxiii 12/17/07 4:16:00 PM12/17/07 4:16:00 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
3.23 12 Sociology 0.4 easy One-Hundredth

Birthday

Write a program that prompts the user

for his/her birthday month, day, and year

and prints the date of the user’s one-

hundredth birthday.

4.3 1 Math &

Phys

1.7 easy Stopping Distance Write a program which determines

whether a vehicle’s tailgating distance

is safe, given the speed of the vehicle,

the vehicle’s tailgating distance, and a

formula that gives the distance required

to stop the vehicle.

4.3

4.9

2 Engineering 1.9 easy Column Safety Write a program that determines whether

a structural column is thick enough to

support the column’s expected load.

4.3 3 Business 1.1 easy Economic Policy Write a program that reads in growth

rate and infl ation values and outputs a

recommended economic policy.

4.8 4 Business 2.0 moderate Bank Balance Write a program that determines the

number of years until a growing bank

balance reaches a million dollars.

4.9

4.12

5 CS 2.6 diffi cult Game of NIM Implement the game of NIM. Start the

game with a user-specifi ed number

of stones in a pile. The user and the

computer take turns removing either one

or two stones from the pile. The player

who takes the last stone loses.

4.12 6 Math &

Phys

1.0 easy Triangle Write a program that generates an

isosceles triangle made of asterisks,

given user input for triangle size.

4.12 7 Sociology 0.8 easy Mayan Calendar Implement an algorithm that determines

the number of Tzolkins and the number

of Haabs in one Calendar Round.

4.12 8 CS 0.9 easy Input Validation Implement an algorithm that repeatedly

prompts for inputs until they fall within

an acceptable range and computes the

average of valid inputs.

4.14 9 Business 2.6 moderate Tax Preparation Write a program that calculates

customers’ income taxes using the

following rules:

• The amount of taxes owed equals the

taxable income times the tax rate.

• Taxable income equals gross income

minus $1,000 for each exemption.

• The taxable income cannot be less

than zero.

xxiv Project Summary

00-M4402-FM.indd xxiv00-M4402-FM.indd xxiv 12/17/07 4:16:00 PM12/17/07 4:16:00 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
4.14 10 CS 1.7 moderate Text Parsing Write a program that converts words to

Pig Latin.

5.3 1 Math &

Phys

1.2 easy Trigonometric

Functions

Write a demonstration program that asks

the user to select one of three possible

inverse functions, arcsin, arccos, or

arctan, and input a trigonometric ratio. It

should generate appropriate output, with

diagnostics.

5.3 2 Math &

Phys

0.7 easy Combining

Decibels

Determine the acoustical power level

produced by the combination of two

sound sources.

5.5 3 CS 1.5 moderate Variable Name

Checker

Write a program that checks the

correctness of a user-entered variable

name, i.e., whether it is: (1) illegal,

(2) legal, but poor style, or (3) good

style. Assume that “good style” variable

names use letters and digits only,

and use a lowercase letter for the fi rst

character.

5.6 4 CS 1.0 moderate Phone Number

Dissector

Implement a program that reads phone

numbers, and for each phone number,

it displays the phone number’s three

components—country code, area code,

and local number.

5.6 5 CS 1.1 diffi cult Phone Number

Dissector—robust

version

Implement a more robust version of the

above phone number program. Allow

for shortened phone numbers—phone

numbers that have just a local digit group

and nothing else, and phone numbers

that have just a local digit group and an

area code and nothing else.

5.8 6 Business 1.0 moderate Net Present Value

Calculation

Write a program that computes the net

present value of a proposed investment,

given a discount rate and an arbitrary set

of future cash fl ows.

6.4 1 Biol & Ecol 1.5 moderate Plant Germination

Observation

Write a program that: (1) creates

an object called tree from the

MapleTree class; (2) calls a plant

method to record the planting of the

seed; (3) calls a germinate method

to record the fi rst observation of a

seedling and record its height; (4) calls

a dumpData method to display the

current values of all instance variables.

(continued)

 Project Summary xxv

00-M4402-FM.indd xxv00-M4402-FM.indd xxv 12/17/07 4:16:01 PM12/17/07 4:16:01 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
6.4 2 Business 0.5 easy Bank Account Given the code for a BankAccount

class, provide a driver that tests that

class by instantiating an object and

calling its methods—setCustomer,

setAccountNum, and

printAccountInfo.

6.8 3 Math &

Phys

1.5 moderate Logistic Equation Exercise the logistic equation: nextX �

presentX � r � presentX �

(1 � presentX), where presentX �

(present x) / (maximum x), and r is a

growth factor.

6.9 4 Math &

Phys

0.9 easy Circle Given the code for a CircleDriver

class, write a Circle class that

defi nes a radius instance variable,

a setRadius method, and a

printAndCalculateCircleData

method that uses the circle’s radius to

calculate and print the circle’s diameter,

circumference, and area.

6.10 5 Engineering 2.0 moderate Digital Filter Given a formula for a “Chebyshev

second-order low-pass” fi lter or a

“Butterworth second-order low-pass”

fi lter, with appropriate parameter values,

write a program that asks the user to

supply a sequence of raw input values

and generates the corresponding fi ltered

output.

6.10 6 Sociology 3.1 diffi cult Vending Machine Write a program that mimics the

operations of a vending machine. The

program should read amounts of money

inserted into the vending machine, ask

the user to select an item, and then print

the change that’s returned to the user.

6.12 7 Math &

Phys

1.1 easy Rectangle Implement a Rectangle class that

defi nes a rectangle with length and

width instance variables, mutator and

accessor methods, and a boolean

isSquare method.

6.12 8 Biol & Ecol 4.0 diffi cult Predator-Prey

Dynamics

Write a program that models a species

that could be either predator or prey or

both. Run a simulation that includes

predators, prey, and limited renewable

sustenance for the prey.

6.13 9 Math &

Phys

2.1 moderate Guitar Mechanics Write a program that simulates the

motion of a plucked guitar string.

xxvi Project Summary

00-M4402-FM.indd xxvi00-M4402-FM.indd xxvi 12/17/07 4:16:01 PM12/17/07 4:16:01 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
7.5

7.9

1 CS 3.5 diffi cult Linked List Given the code for a driver, implement

a Recipe class that creates and

maintains a linked list of recipes.

The problem assignment specifi es all

instance variables and methods in UML

class diagrams.

7.7 2 CS 2.5 easy Automobile

Description

Use method-call chaining to help

display properties of automobiles.

7.7

7.9

3 Biol & Ecol 4.6 diffi cult Carbon Cycle Given the code for a driver, write a pair

of classes for a program that models the

carbon cycle in an ecosystem. Use two

generic classes. One class, Entity,

defi nes things. The other class,

Relationship, defi nes interactions.

7.8 4 CS 1.4 easy IP Address Implement an IpAddress class that

stores an IP address as a dotted-decimal

string and as an array of four octet ints.

7.9 5 Math &

Phys

4.5 moderate Fraction Handler Given the main method of a driver

class, write a Fraction class.

Include the following instance

methods: add, multiply, print,

printAsDouble, and a separate

accessor method for each instance

variable.

7.10 6 Engineering 2.8 moderate Electric Circuit Write branch and node classes for

lumped-circuit elements. A branch

carries current through a resistor in

series with an inductor. A node holds

voltage on a capacitor connected to

a common ground. Driver code is

provided in the problem assignment.

7.10 7 Business 5.1 diffi cult Cost Accounting Write an object-oriented program that

demonstrates cost accounting in a

manufacturing plant.

7.10 8 Sociology 6.4 diffi cult Political Campaign Write a program to help organize

estimates of votes, money, and labor.

This is an object-oriented version of

Project 8 in Chapter 3.

8.4 1 CS 1.6 easy Input Validation Implement an algorithm that repeatedly

prompts for inputs until they fall within

an acceptable range and computes

the average of valid inputs. This is an

object-oriented version of Project 8 in

Chapter 4.

(continued)

 Project Summary xxvii

00-M4402-FM.indd xxvii00-M4402-FM.indd xxvii 12/17/07 4:16:01 PM12/17/07 4:16:01 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
8.4 2 Engineering 4.0 diffi cult HVAC Load Calculate the heating and cooling loads

for a typical residence. This is an object-

oriented version of Project 7 in Chapter 3.

8.6 3 Sociology 2.6 moderate Elevator Control Write a program that mimics the

operations of the inside of an elevator.

The program should simulate what

happens when the user chooses to go

to a particular fl oor and when the user

pulls the fi re alarm.

8.9 4 CS 2.0 easy Prototype

Restructuring

Consider the NestedLoopRectangle

program in Figure 4.17 in Section 4.12

to be a prototype. Using top-down

methodology, restructure it into OOP

format.

9.3 1 Sociology 2.7 easy Person Class Defi ne a class that simulates the creation

and display of Person objects.

9.4 2 Sociology 2.7 moderate Homework Scores Write a program that handles homework

scores. Use instance variables for actual

and maximum points on a particular

homework, and use class variables for

actual total and maximum total points

on all homeworks combined.

9.3 3 Sociology 3.9 diffi cult Political Approval

Rating

Write a program that determines

the mean and standard deviation of

statistical samples.

9.4 4 Engineering 5.7 diffi cult Solar Input for

HVAC and Solar

Collectors

Write a program that keeps track of

where the sun is and determines how

much solar energy penetrates a glass

window of any orientation, at any place

and time.

9.6 5 Business 2.7 moderate Net Present Value

Calculation

Write a program that computes the net

present value of a proposed investment,

given a discount rate and an arbitrary

set of future cash fl ows. This is an OOP

version of Project 6 in Chapter 5.

9.7 6 Math &

Phys

7.0 diffi cult Three-Body

Problem

Write a program to model the three-body

problem in which two equally sized

moons circle the earth in different orbits.

This illustrates chaotic dynamic motion.

10.4 1 Biol & Ecol 5.0 diffi cult Demographic

Projections

Write a program that projects future

world population and average individual

wealth as a function of fertility rates and

resource extraction rates, and includes

effects of governmental taxation and

spending.

xxviii Project Summary

00-M4402-FM.indd xxviii00-M4402-FM.indd xxviii 12/17/07 4:16:02 PM12/17/07 4:16:02 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
10.6 2 CS 3.3 moderate Dice-Throwing

Simulator

Write a program that simulates the

rolling of a pair of dice and prints a

histogram showing the frequencies of

possible results.

10.6 3 CS 5.1 diffi cult Simulated

Annealing—the

Traveling

Salesman Problem

Write a program that uses simulated

annealing to solve the intractable

problem of fi nding the shortest itinerary

that visits all of the world’s major cities

exactly one time.

10.7 4 Sociology 2.1 easy Party Guest List Write a program that creates a Party

object, adds guests to the party, and

prints party information.

10.9 5 Sociology 2.7 easy Vowel Counter Write a program that counts the number

of uppercase and lowercase vowels in

user-entered lines of text and prints a

summary report of vowel counts.

10.9 6 Math &

Phys

7.6 diffi cult Solution of

Simultaneous

Algebraic

Equations

Write a program that loads a set of

simultaneous algebraic equations

into two-dimensional arrays and

solves the equations by Lower-Upper

Decomposition.

10.9 7 Math &

Phys

2.5 moderate Linear Regression Write a program that computes a linear

regression by fi tting a straight line to a

series of random data.

10.10 8 Business 3.4 moderate Purchase Vouchers Write a program that creates business

vouchers that record purchases, displays

current voucher information, and

records payments for those purchases.

10.11 9 Sociology 1.1 easy Deck of Cards Write a class that uses an ArrayList

to hold a deck of cards.

10.13 10 Business 1.9 easy Bookstore Write a program that models the storing

and retrieving of books based on title.

11.13 1 Biol & Ecol 5.5 diffi cult Game of Spawn Model a “game” that simulates

reproduction and growth in a

rectangular grid of cells. An X indicates

life. A dead cell comes to life when it

has exactly three living neighbor cells.

A living cell remains alive only when

surrounded by two or three living

neighbor cells.

11.3 2 CS 0.7 easy ASCII Table Write a program that prints the 128-

character ASCII table. It should print

the table in eight tab-separated

columns.

(continued)

 Project Summary xxix

00-M4402-FM.indd xxix00-M4402-FM.indd xxix 12/17/07 4:16:02 PM12/17/07 4:16:02 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
11.7 3 CS 0.8 easy Circular Queue A given program implements a circular-

array queue. Rewrite the isFull,

remove, and showQueue methods

by replacing conditional operators,

embedded assignments, and embedded

increment operators with simpler, more

understandable code.

11.7 4 Math &

Phys

4.1 moderate Polynomial

Interpolation

Fit a polynomial to points on either side

of a pair of points in an array of data

and use that to estimate the value at a

position between the pair of points.

11.9 5 CS 1.4 moderate Bitwise Operations Use arithmetic and logical shifting to

display the binary values of numbers.

11.11 6 CS 3.5 moderate Heap Sort Use the heap-sort algorithm to sort

data. (This is a robust in-place sorting

algorithm with a computational

complexity of NLogN.)

12.2 1 Business 1.7 easy Savings Accounts Compute and display savings account

balances that accumulate with

compound interest.

12.4 2 Math &

Phys

13.4 diffi cult Statistics Functions Write a program that generates values

for the Gamma, Incomplete Gamma,

Beta, Incomplete Beta, and Binomial

statistical functions.

12.5 3 Business 3.3 easy Car Program Using inheritance, write a program that

keeps track of information about new

and used cars.

12.10 4 Sociology 16.4 diffi cult Game of Hearts Write a program that simulates a basic

game of hearts with an arbitrary number

of players. Give all players an identical

set of good strategies which optimize

the chance of winning.

13.7 1 Business 9.0 diffi cult Grocery Store

Inventory

Write an inventory program that keeps

track of various kinds of food items. Use

different methods in an Inventory

class to process heterogeneous objects

representing generic and branded food

items. Store the objects together in a

common ArrayList.

xxx Project Summary

00-M4402-FM.indd xxx00-M4402-FM.indd xxx 12/17/07 4:16:03 PM12/17/07 4:16:03 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
13.7 2 Engineering 8.7 diffi cult Electric Circuit

Analysis

Write a program that calculates the

steady-state currents in a two-loop

electric circuit that has an arbitrary

combination of discrete resistors,

inductors, capacitors, and voltage

sources in the legs of the circuit.

Include methods to perform addition,

subtraction, multiplication, and division

of complex numbers—numbers that

have real and imaginary parts.

13.8 3 Business 5.4 moderate Payroll Use polymorphism to write an employee

payroll program that calculates and

prints the weekly payroll for a company.

Assume three types of employees—

hourly, salaried, and salaried plus

commission. Assume each type of

employee gets paid using a different

formula. Use an abstract base class.

13.8 4 Business 2.9 moderate Bank Accounts Write a bank account program that

handles bank account balances for an

array of bank accounts. Use two types

of bank accounts, checking and savings,

derived from an abstract class named

BankAccount.

14.4 1 Sociology 4.0 moderate Body Mass Index Write a program that prompts the

user for height and weight values and

displays the associated body mass index.

14.5 2 CS 6.4 diffi cult Storage and

Retrieval of

Objects in an

Array

Search for a match with the key value

in a relational table, using two different

search algorithms, a sequential search

and a hashed search.

14.9 3 CS 2.5 moderate Date Formatting Create a class named Date that stores

date values and prints out the date in

either a numeric format or an alphabetic

format. Use a separate class to handle all

exceptions.

14.9 4 CS 5.5 diffi cult Input Utility Write a utility class that reads inputs

from the keyboard and parses the

following datatypes: String, char,

double, float, long, and int.

It should do input approximately like

Scanner does.

(continued)

 Project Summary xxxi

00-M4402-FM.indd xxxi00-M4402-FM.indd xxxi 12/17/07 4:16:03 PM12/17/07 4:16:03 PM

Apago PDF Enhancer

Project Summary

Ch./Sec Proj.
Academic

Area
Sol.

Pages Diffi culty Title Brief Description
15.4 1 Engineering 3.7 moderate Road Use Survey Model traffi c fl owing on a highway past

a particular place, store observations,

and read fi le later for analysis.

15.4 2 Sociology 2.9 easy Mail Merge Write a program that reads a form letter

from a text fi le and modifi es custom

fi elds.

15.5

15.9

3 CS 5.0 moderate File Converter Write a program that changes

whitespace in text fi les.

15.8 4 CS 1.5 easy Appending Data to

an Object File

Implement code needed to append data

to an object fi le.

16.12 1 Engineering 4.1 moderate Animated Garage

Door

Write a program that simulates the

operation of an automatic garage door

and its controls and visually display its

position as it operates.

16.14 2 Sociology 3.0 moderate Color

Memorization

Write a program that tests the user’s

ability to memorize a sequence of

colors.

16.14 3 Business 8.7 diffi cult Grocery Inventory

GUI

Write a GUI version of the Grocery

Store Inventory project in Chapter 13.

16.15 4 Sociology 4.2 moderate Word Order Game Create a simple interactive game that

helps kids practice their alphabetic

skills.

16.16 5 Business 3.8 moderate Airline

Reservations

Write a GUI program that assigns seats

on airline fl ights.

17.3 1 CS 1.7 easy Changing Color

and Alignment

Write an interactive program that

modifi es the color and position of

buttons in a GUI window.

17.6 2 CS 1.9 easy Click Tracker Write an interactive program that

modifi es the borders and labels of

buttons in a GUI window.

17.7 3 Sociology 3.4 moderate Tic-Tac-Toe Create an interactive Tic-Tac-Toe game.

17.10 4 Sociology 4.3 moderate Word Order Game,

revisited

Modify Chapter 16’s Word Order Game

program so it uses a layout manager.

17.10 5 Engineering 7.5 diffi cult Thermal Diffusion

in a Ground-

Source Heat

Pump’s Well

Write a program that calculates

temperatures in the earth around

a ground-source heat pump’s well.

Display results in a color-coded plot of

temperature as a function of distance

from well center and time of year.

xxxii Project Summary

00-M4402-FM.indd xxxii00-M4402-FM.indd xxxii 12/17/07 4:16:03 PM12/17/07 4:16:03 PM

Apago PDF Enhancer

INTRODUCTION TO PROGRAMMING WITH JAVA: A PROBLEM SOLVING APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights

reserved. No part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,

Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for

distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978-0-07-128781-4

MHID 0-07-128781-7

www.mhhe.com

00A-M4402-FM-ISE.indd ii00A-M4402-FM-ISE.indd ii 11/29/07 3:57:52 PM11/29/07 3:57:52 PM

http://www.mhhe.com

Apago PDF Enhancer

0.0 Last A-Head 1

Introduction to Computers

and Programming

Objectives

Describe the various components that make up a computer.

List the steps involved in program development.

Know what it means to write algorithms using pseudocode.

Know what it means to write programs with programming language code.

Understand source code, object code, and the compilation process.

Describe how bytecode makes Java portable.

Become familiar with Java’s history—why it was initially developed, how it got its name, and so forth.

Enter, compile, and run a simple Java program.

Outline

 1.1 Introduction

 1.2 Hardware Terminology

 1.3 Program Development

 1.4 Source Code

 1.5 Compiling Source Code into Object Code

 1.6 Portability

 1.7 Emergence of Java

 1.8 First Program—Hello World

 1.9 GUI Track: Hello World (Optional)

1.1 Introduction

This book is about problem-solving. Specifi cally, it is about creating solutions to problems through a set of

precisely stated instructions. We call such a set of instructions (when in a format that can be entered into and

executed on a computer) a program. To understand what a program is, think about the following situation.

•
•
•
•
•
•
•
•

1C H A P T E R

1

01-M4402.indd 101-M4402.indd 1 12/17/07 4:16:24 PM12/17/07 4:16:24 PM

Apago PDF Enhancer

Suppose you manage a department store, and you don’t know when to restock the shelves because you have

diffi culty keeping track of inventory. The solution to the problem is to write a set of instructions that keeps

track of items as they arrive at your store and as they are purchased. If the instructions are correct and in a

format that is understood by a computer, you can enter the instructions as a program, run the program, and

enter item-arrival and item-purchase data as they occur. You can then retrieve inventory information from

the computer any time you need it. That accurate and easily accessible knowledge enables you to restock your

shelves effectively, and you are more likely to turn a profi t.

The fi rst step to learning how to write programs is to learn the background concepts. In this chapter, we

teach background concepts. In subsequent chapters, we use the background concepts in explaining the really

good stuff—how to program.

We start this chapter by describing the various parts of a computer. We then describe the steps involved

in writing a program and in running a program. Next, we narrow our focus and describe the programming

language we’ll be using for the remainder of the book—Java. We present step-by-step instructions on how

to enter and run a real Java program, so that you’ll be able to gain some hands-on experience early on. We

fi nish the chapter with an optional GUI-track section that describes how to enter and run a graphical user

interface (GUI) program.

1.2 Hardware Terminology

A computer system is all the components that are necessary for a computer to operate and the connections

between those components. There are two basic categories of components—hardware and software. Hard-

ware refers to the physical components associated with a computer. Software refers to the programs that tell

a computer what to do. For now, let’s focus on hardware.

Our description of a computer’s hardware provides you with the information you’ll need as a beginning

programmer. (A programmer is a person who writes programs.) After you master the material here, if you

decide you want more, go to Webopedia’s Web site at http://www.webopedia.com/ and enter hardware in

the search box.

The Big Picture

Figure 1.1 shows the basic hardware components in a computer system. It shows input devices at the left

(keyboard, mouse, and scanner), output devices at the right (monitor and printer), storage devices at the bot-

tom, and the CPU and main memory in the center. The arrows in Figure 1.1 represent connections between

the components. For example, the arrow from the keyboard to the CPU-main memory represents a cable

(a connecting wire) that transmits information from the keyboard to the CPU and main memory. Through-

out this section, we explain the CPU, main memory, and all the devices in Figure 1.1.

Input and Output Devices

There are different defi nitions of an input device, but usually the term refers to a device that transfers infor-

mation into a computer. Remember—information going into a computer is input. For example, a keyboard is

an input device because when a person presses a key, the keyboard sends information into the computer (it

tells the computer which key was pressed).

There are different defi nitions of an output device, but usually the term refers to a device that transfers

information out of a computer. Remember—information going out of a computer is output. For example, a

2 Chapter 1 Introduction to Computers and Programming

01-M4402.indd 201-M4402.indd 2 12/17/07 4:16:25 PM12/17/07 4:16:25 PM

http://www.webopedia.com/

Apago PDF Enhancer
monitor (also called a display or a screen) is an output device because it displays information going out from

the computer.

Central Processing Unit

The central processing unit (CPU), often referred to as the processor or microprocessor, can be considered

the computer’s brain. As with a biological brain, the CPU splits its time between two basic activities—

thinking and managing the rest of its system. The “thinking” activities occur when the CPU reads a pro-

gram’s instructions and executes them. The “managing its system” activities occur when the CPU transfers

information to and from the computer system’s other devices.

Here’s an example of a CPU’s thinking activities. Suppose you have a program that keeps track of a sat-

ellite’s position in its orbit around the earth. Such a program contains quite a few mathematical calculations.

The CPU performs those mathematical calculations.

Here’s an example of a CPU’s managing-its-system activities. Suppose you have a job application pro-

gram. The program displays boxes in which a person enters his/her name, phone number, and so on. After

entering information, the person uses his/her mouse and clicks a Done button. For such a program, the CPU

manages its system as follows. To display the initial job application form, the CPU sends information to the

monitor. To gather the person’s data, the CPU reads information from the keyboard and mouse.

If you’re thinking about buying a computer, you’ll need to judge the quality of its components. To judge

the quality of its components, you need to know certain component details. For CPUs, you should know the

popular CPUs and the range of typical CPU speeds. We present the following CPUs and CPU speeds with

hesitation because such things change in the computer world at a precipitous rate. By presenting such de-

tails, we’re dating our book mercilessly. Nonetheless, we forge ahead. . . .

As of September, 2007:

Popular CPUs—Core 2 Duo (manufactured by Intel), Athlon 64 (manufactured by AMD).

Current CPU speeds—anywhere from 2.5 GHz up to 3.8 GHz.

•

•

Figure 1.1 A simplifi ed view of a computer

Monitor

Printer
Scanner

Mouse

Keyboard

USB

flash

drive

Compact

disc
DisketteHard

disk

Storage devices

(auxiliary memory)

Main memory

CPU

 1.2 Hardware Terminology 3

01-M4402.indd 301-M4402.indd 3 12/17/07 4:16:25 PM12/17/07 4:16:25 PM

Apago PDF Enhancer

4 Chapter 1 Introduction to Computers and Programming

What is GHz you ask? GHz stands for gigahertz. Giga means billion and hertz is a unit of measure that

deals with the number of times that something occurs per second. A 2.5 GHZ CPU uses a clock that ticks

2.5 billion times per second. That’s fast, but a 3.8 gigahertz CPU is even faster—it uses a clock that ticks

3.8 billion times per second. A CPU’s clock speed provides a rough measure for how fast the CPU gets

things done. Clock ticks are the initiators for computer tasks. With more clock ticks per second, there are

more opportunities for getting tasks done.

Main Memory

When a computer executes instructions, it often needs to save intermediate results. For example, in calcu-

lating the average speed for 100 speed measurements, the CPU needs to calculate the sum of all the speed

values prior to dividing by the number of measurements. The CPU calculates the sum by creating a storage

area for it. For each speed value, the CPU adds the value to the sum storage area. Think of memory as a col-

lection of storage boxes. The sum is stored in one of memory’s storage boxes.

There are two categories of memory—main memory and auxiliary memory. The CPU works more

closely with main memory. Think of main memory as a storage room next to the boss’s offi ce. The boss is

the CPU, and he/she stores things in the storage room’s storage boxes whenever the need arises. Think of

auxiliary memory as a warehouse that’s across the street from the boss’s building. The boss uses the ware-

house to store things, but doesn’t go there all that often. We’ll consider auxiliary memory details in the next

subsection. For now, we’ll focus on main memory details.

The CPU relies on main memory a lot. It’s constantly storing data in main memory and reading data

from main memory. With this constant interaction, it’s important that the CPU and main memory are able

to communicate quickly. To ensure quick communication, the CPU and main memory are physically close

together. They are both constructed on chips, and they both plug into the computer’s main circuit board, the

motherboard. See Figure 1.2 for a picture of a motherboard, a CPU chip, and main memory chips.

main memory card

with 8 memory chips

CPU chip

Motherboard

Figure 1.2 Motherboard, CPU chip, and main memory chips

01-M4402.indd 401-M4402.indd 4 12/17/07 4:16:26 PM12/17/07 4:16:26 PM

Apago PDF Enhancer

Main memory contains storage boxes, and each storage box contains a piece of information. For ex-

ample, if a program stores our last name, Dean, it uses eight storage boxes: one for the fi rst half of D, one for

the second half of D, one for the fi rst half of e, one for the second half of e, and so on. After storing the four

letters, the program will probably need to retrieve them at some point later on. For information to be retriev-

able, it must have an address. An address is a specifi able location. A postal address uses street, city, and zip

code values to specify a location. A computer address uses the information’s position within main memory

to specify a location. Main memory’s fi rst storage box is at the zero position, so we say it’s at address 0. The

second storage box is at the one position, so we say it’s at address 1. See Figure 1.3. It shows Dean stored in

memory starting at address 50,000.

Figure 1.3 The characters D, e, a, n

stored in memory starting at address

50,000
Address

···
50,000

50,001

50,002

50,003

50,004

50,005

50,006

50,007

···

D

e

a

n

Memory

contents

 1.2 Hardware Terminology 5

It’s important to understand the formal terminology when talking about the size of main memory. Sup-

pose you’re buying a computer and you want to know how big a computer’s main memory is. If you ask a

sales person how many “storage boxes” it contains, you’ll probably get a perplexed look. What you need to

do is ask about its capacity—that’s the formal term for its size. If you ask for the main memory’s capacity,

the salesperson will say something like, “It’s one gigabyte.” You already know that giga means billion. A

byte refers to the size of one storage box. So a one gigabyte capacity main memory holds one billion storage

boxes.

Let’s describe storage boxes in more detail. You know that storage boxes can hold characters, like the

letter D. But computers aren’t very smart—they don’t understand the alphabet. They only understand 0’s

and 1’s. So computers map each alphabet character to a series of sixteen 0’s and 1’s. For example, the letter

D is 00000000 01000100. So in storing the letter D, main memory actually stores 00000000 01000100.

Each of the 0’s and 1’s is called a bit. And each of the eight-bit groupings is called a byte.

Are you wondering why computers use 0’s and 1’s? Computers understand only high-energy signals ver-

sus low-energy signals. When a computer generates a low-energy signal, that’s a 0. When a computer gener-

ates a high-energy signal, that’s a 1.

You know that computers store characters as 0’s and 1’s, but did you know that computers also store

numbers as 0’s and 1’s? Formally, we say that computers use the binary number system. The binary number

system uses just two digits, 0 and 1, to represent all numbers. For example, computers store the number 19 as

32 bits, 00000000 00000000 00000000 00010011. The reason those 32 bits represent 19 is that each 1-value

bit represents a power of 2. Note that there are three 1-value bits. They are at positions 0, 1, and 4, where

the positions start at 0 from the right side. A bit’s position determines its power of two. Thus, the rightmost

bit, at position 0, represents 2 raised to the power 0, which is 1 (20 � 1). The bit at position 1 represents

01-M4402.indd 501-M4402.indd 5 12/17/07 4:16:27 PM12/17/07 4:16:27 PM

Apago PDF Enhancer

6 Chapter 1 Introduction to Computers and Programming

2 raised to the power 1, which is 2 (21 � 2). And the bit at position 4 represents 2 raised to the power 4, which

is 16 (24 � 16). Add the three powers and you get 19 (1 � 2 � 16 � 19). Voila!

Be aware that main memory is often referred to as RAM. RAM stands for random access memory.
Main memory is considered “random access” because data can be directly accessed at any address (i.e., at a

“random” address). That’s in contrast to some storage devices where data is accessed by starting at the very

beginning and stepping through all the data until the target data is reached.

Once again, if you’re buying a computer, you’ll need to judge the quality of its components. For the main

memory/RAM component, you’ll need to know whether its capacity is adequate. As of September, 2007,

typical main memory capacities range from 512 MB up to 3 GB. MB stands for megabyte, where mega is one

million. GB stands for gigabyte.

Auxiliary Memory

Main memory is volatile, which means that data is lost when power to the computer goes off. You might

ask if data is lost when power goes off, how can anyone save anything permanently on a computer?

The answer is something you do (or should do) frequently. When you perform a save command, the

computer makes a copy of the main memory data you’re working on and stores the copy in auxiliary

memory. Auxiliary memory is nonvolatile, which means that data is not lost when power to the computer

goes off.

One advantage of auxiliary memory over main memory is that it’s nonvolatile. Another advantage is

that its cost per unit storage is much less than main memory’s cost per unit storage. A third advantage is that

it is more portable than main memory (i.e., it can be moved from one computer to another more easily).

The disadvantage of auxiliary memory is that its access time is quite a bit slower than main memory’s

access time. Access time is the time it takes to locate a single piece of data and make it available to the com-

puter for processing.

Auxiliary memory comes in many different forms, the most common of which are hard disks, diskettes,

compact discs, and USB fl ash drives. Those devices are called storage media or simply storage devices.
Figure 1.4 shows pictures of them.

The most popular types of compact discs can be grouped as follows:

CD-Audio—for storing recorded music, usually referred to as just “CD” (for compact disc).

CD-ROM, CD-R, CD-RW—for storing computer data and recorded music.

DVD, DVD-R, DVD-RW—for storing video, computer data, and recorded music.

The “ROM” in CD-ROM stands for read-only memory. Read-only memory refers to memory that can

be read from, but not written to. Thus, you can read a CD-ROM, but you can’t change its contents. With

CD-Rs, you can write once and read as many times as you like. With CD-RWs, you can write and read as often

as you like.

DVD stands for “Digital Versatile Disc” or “Digital Video Disc.” DVDs parallel CD-ROMs in that you

can read from them, but you can’t write to them. Likewise, DVD-Rs and DVD-RWs parallel CD-Rs and

CD-RWs in terms of their reading and writing capabilities.

USB fl ash drives are fast, have high storage capacity, and are particularly portable. They are portable

because they are the size of a person’s thumb and they can be hot swapped into virtually any computer. (Hot

swapping is when you plug a device into a computer while the computer is on.) The “USB” in USB fl ash

drive stands for Universal Serial Bus, and it refers to a particular type of connection. More specifi cally, it

•

•

•

01-M4402.indd 601-M4402.indd 6 12/17/07 4:16:27 PM12/17/07 4:16:27 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

refers to a particular type of connection wire and connection socket. A fl ash drive uses that type of connec-

tion, and therefore it’s called a USB fl ash drive. By the way, many computer devices use USB connections,

and they are all hot swappable.

Different storage devices have different storage capacities. As of September, 2007:

Typical hard disks have a capacity range from 80 GB up to 1 TB (TB stands for terabyte, where tera is

one trillion).

Typical diskettes have a capacity of 1.44 MB.

Typical CD-ROMs, CD-Rs, and CD-RWs have a capacity of 700 MB.

Typical DVDs, DVD-Rs, and DVD-RWs have a capacity range from 4.7 GB up to 8.5 GB.

Typical USB fl ash drives have a capacity range from 128 MB up to 64 GB.

A drive is a mechanism that enables the computer system to access (read from and write to) data on a

storage device. A disk drive is a drive for a hard disk, diskette, or compact disc. A disk drive rotates its disk

very fast, and one or more heads (electronic sensors) access the disk’s data as it spins past.

To specify the storage media on which the data resides, you’ll need to use the storage media’s drive

letter followed by a colon. In computers using some version of Microsoft Windows, diskette drives are regu-

larly referred to as A:, hard disk drives are usually referred to as C: or D:, compact disc drives are usually

referred to as D: or E:., and USB fl ash drives are usually referred to as E: or F:.

In copying data, you’ll actually copy what’s known as a fi le, which is a group of related instructions or

a group of related data. For example, (1) a program is a fi le that holds a set of instructions, and (2) a Word

document is a fi le that holds text data created by Microsoft Word.

Common Computer-Hardware Vocabulary

When buying a computer or when talking about computers with your computer friends, you’ll want to make

sure to understand the vernacular—the terms that people use in everyday speech as opposed to the terms

found in textbooks—so that you will be able to understand what’s going on. When a computer-savvy person

•

•

•

•

•

Figure 1.4 Hard disk, diskette, compact disc, and USB fl ash drive

Hard disk

Diskette

Compact disc USB flash drive

 1.2 Hardware Terminology 7

01-M4402.indd 701-M4402.indd 7 12/17/07 4:16:28 PM12/17/07 4:16:28 PM

Apago PDF Enhancer

8 Chapter 1 Introduction to Computers and Programming

refers to a computer’s memory by itself, the person typically means main memory—the computer’s RAM.

When someone refers to a computer’s disk space, the person typically means the capacity of the computer’s

hard disk. When someone refers to computer by itself, the person usually means the box that contains the

CPU, the main memory, the hard disk drive and its associated hard disk, and the diskette drive. I/O devices,

although they’re part of a computer system, are typically not considered to be part of the computer. Instead,

they are considered to be peripheral devices because they are on the periphery of the computer. When

someone says fl oppy or fl oppy disk, they mean a removable diskette.

Why is the term “fl oppy” used for a diskette? If you’ve got a diskette lying around, cut open the dis-

kette’s hard plastic case. You’ll see that the storage media inside is fl exible, or fl oppy. Be aware that in cutting

open the diskette case, you’ll destroy the diskette. Make sure the diskette doesn’t contain your homework.

We don’t want you to get a bad grade on your homework and tell your teacher “The authors made me

do it!”

Pace of Computer Improvements

For as long as memory and CPU components have been around, manufacturers of these devices have been

able to improve their products’ performances at a consistently high rate. For example, RAM and hard disk

capacities double approximately every two years. CPU speeds also double approximately every two years.

An urban legend is a story that spreads spontaneously in various forms and is popularly believed to

be true. The following exchange is a classic Internet urban legend that comments on the rapid pace of com-

puter improvements.1 Although the exchange never took place, the comments, particularly the fi rst one, are

relevant.

At a recent computer expo (COMDEX), Bill Gates reportedly compared the computer industry with the

auto industry and stated, “If GM had kept up with the technology like the computer industry has, we would

all be driving $25.00 cars that got 1,000 miles to the gallon.”

In response to Bill’s comments, General Motors issued a press release stating:

If GM had developed technology like Microsoft, we would all be driving cars with the following

characteristics:

 1. For no reason whatsoever, your car would crash twice a day.

 2. Every time they repainted the lines in the road, you would have to buy a new car.

 3. Occasionally your car would die on the freeway for no reason. You would have to pull over to the side of

the road, close all of the windows, shut off the car, restart it, and reopen the windows before you could

continue. For some reason you would simply accept this.

 4. Occasionally, executing a maneuver such as a left turn would cause your car to shut down and refuse to

restart, in which case you would have to reinstall the engine.

 5. Macintosh would make a car that was powered by the sun, was reliable, fi ve times as fast and twice as

easy to drive—but would run on only fi ve percent of the roads.

 6. The oil, water temperature, and alternator warning lights would all be replaced by a single “This Car

Has Performed an Illegal Operation” warning light, and the car would not work.

 7. Occasionally, for no reason whatsoever, your car would lock you out and refuse to let you in until you

simultaneously lifted the door handle, turned the key and grabbed hold of the radio antenna.

 8. The airbag system would ask “Are you sure?” before deploying.

1 Snopes.com, Rumor Has It, on the Internet at http://www.snopes.com/humor/jokes/autos.asp (visited March 15, 2007).

01-M4402.indd 801-M4402.indd 8 12/17/07 4:16:28 PM12/17/07 4:16:28 PM

http://www.snopes.com/humor/jokes/autos.asp

Apago PDF Enhancer

1.3 Program Development

As mentioned earlier, a program is a set of instructions that can be used to solve a problem. Often, a pro-

gram contains many instructions, and the instructions are rather complicated. Therefore, developing a suc-

cessful program requires some effort. It requires careful planning, careful implementation, and ongoing

maintenance. Here is a list of typical steps involved in the program development process:

Requirements analysis

Design

Implementation

Testing

Documentation

Maintenance

Requirements analysis is determining the program’s needs and goals. Design is writing a rough outline

of the program. Implementation is writing the program itself. Testing is verifying that the program works.

Documentation is writing a description of what the program does. Maintenance is making improvements

and fi xing errors later on. The steps are ordered in a reasonable sequence in that you’ll normally perform

requirements analysis fi rst, design second, and so on. But some of the steps should be performed throughout

the development process rather than at one particular time. For example, you should work on the documen-

tation step throughout the development process, and you should work on the testing step during and after

the implementation step and also after the maintenance step. Be aware that you’ll often need to repeat the

sequence of steps as needs arise. For example, if one of the program’s goals changes, you’ll need to repeat

all of the steps in varying degrees.

We discuss the requirements analysis step and the design step in this section. We discuss the design step

in detail in Chapter 2, and we illustrate it with examples throughout the book. We discuss the implementa-

tion step in this chapter’s “Source Code” section, and we illustrate it with examples throughout the book. We

discuss the testing step in Chapter 8. We discuss the documentation step starting in Chapter 3 and illustrate

it with examples throughout the book. We discuss the maintenance step in Chapter 8 and illustrate it with

examples throughout the book.

Requirements Analysis

The fi rst step in the program development process is a requirements analysis, where you determine the

needs and goals of your program. It’s important that the programmer thoroughly understands the customer’s

wishes. Unfortunately, it’s all too common for programmers to produce programs only to fi nd out later that

the customer wanted something different. This unfortunate circumstance can often be blamed on imprecise

communication between the customer and the programmer at the beginning of the project. If a customer and

programmer rely solely on a verbal description of the proposed solution, it’s easy to omit important details.

Later on, those omitted details can be a problem when the customer and programmer realize that they had

different assumptions about how the details would be implemented.

To aid the up-front communication process, the customer and programmer should create screen shots

of data-entry screens and output reports. A screen shot is a picture of what the computer screen looks

like. To create screen shots, you can write short programs that print data-entry screens with hypothetical

input, and you can write short programs that print reports with hypothetical results. As a quicker alternative,

you can create screen shots with the help of drawing software or, if you’re a decent artist, with pencil and

paper.

•

•

•

•

•

•

 1.3 Program Development 9

01-M4402.indd 901-M4402.indd 9 12/17/07 4:16:28 PM12/17/07 4:16:28 PM

Apago PDF Enhancer

10 Chapter 1 Introduction to Computers and Programming

Program Design

After the requirements analysis step, the second step is program design, where you write a draft of your

program and focus on the basic logic, not the wording details. More specifi cally, you write instructions that

are coherent and logically correct, but you don’t worry about missing minor steps or misspelling words.

That sort of program is referred to as an algorithm. For example, a cake recipe is an algorithm. It contains

instructions for solving the problem of baking a cake. The instructions are coherent and logically correct,

but they don’t contain every minor step, like covering your hands with pot holders prior to removing the

cake from the oven.

Pseudocode

In writing an algorithm, you should focus on organizing the fl ow of the instructions, and you should try

to avoid getting bogged down in details. To facilitate that focus, programmers often write an algorithm’s

instructions using pseudocode. Pseudocode is an informal language that uses regular English terms to de-

scribe a program’s steps. With pseudocode, precise computer syntax is not required. Syntax refers to the

words, grammar, and punctuation that make up a language. Pseudocode syntax is lenient: Pseudocode must

be clear enough so that humans can understand it, but the words, grammar, and punctuation don’t have to be

perfect. We mention this leniency in order to contrast it with the precision required for the next phase in a

program’s development. In the next section, we’ll cover the next phase, and you’ll see that it requires perfect

words, grammar, and punctuation.

Example—Using Pseudocode to Find Average Miles Per Hour

Suppose you are asked to write an algorithm that fi nds the average miles per hour value for a given car trip.

Let’s step through the solution for this problem. To determine the average miles per hour, you’ll need to

divide the total distance traveled by the total time. Let’s assume that you have to calculate the total distance

from two given locations. To determine the total distance, you’ll need to take the ending-point location,

called “ending location,” and subtract the starting-point location, called “starting location,” from it. Let’s

assume that you have to calculate the total time in the same manner, subtracting the starting time from the

ending time. Putting it all together, the pseudocode for calculating average miles per hour looks like this:

Calculate ending location minus starting location.

Put the result in total distance.

Calculate ending time minus starting time.

Put the result in total time.

Divide total distance by total time.

At this point, some readers might want to learn about a relatively advanced form of program de-

velopment—object-oriented programming, or OOP as it’s commonly called. OOP is the idea that when

you’re designing a program you should fi rst think about the program’s components (objects) rather than

the program’s tasks. You don’t need to learn about OOP just yet, and you’re not properly prepared to learn

about OOP implementation details, but if you’re interested in a high-level overview, you can fi nd it in

Chapter 6, Section 2.

1.4 Source Code

In the early stages of a program’s development, you write an algorithm using pseudocode. Later, you translate

the pseudocode to source code. Source code is a set of instructions written in a programming language.

01-M4402.indd 1001-M4402.indd 10 12/17/07 4:16:29 PM12/17/07 4:16:29 PM

Apago PDF Enhancer

Programming Languages

A programming language is a language that uses specially defi ned words, grammar, and punctuation that a

computer understands. If you try to run pseudocode instructions on a computer, the computer won’t under-

stand them. On the other hand, if you try to run programming language instructions (i.e., source code) on a

computer, the computer will understand them.

Just as there are many spoken languages in the world (English, Chinese, Hindi, etc.), there are many

programming languages as well. Some of the more popular programming languages are VisualBasic, C��,

and Java. Each programming language defi nes its own set of syntax rules. In this book, we’ll focus on the

Java programming language. If you write your program in Java, you must follow Java’s syntax rules pre-

cisely in terms of words, grammar, and punctuation. If you write Java source code using incorrect syntax

(e.g., you misspell a word or forget a semicolon), and you try to run such source code on a computer, the

computer won’t be able to understand it.

Example —Using Java to Find Average Miles Per Hour

Continuing with the earlier example where you wrote pseudocode to fi nd the average miles per hour value

for a given car trip, let’s now translate the pseudocode into Java source code. In the table below, the pseudo-

code at the left translates into the Java source code at the right. Thus, the fi rst two pseudocode instructions

translate into the single Java source code instruction at their right.

Pseudocode Java Source Code

Calculate ending location minus starting

location. Put the result in total distance.

distanceTotal = locationEnd - locationStart;

Calculate ending time minus starting time.

Put the result in total time.

timeTotal = timeEnd - timeStart;

Divide total distance by total time. averageMPH = distanceTotal / timeTotal;

Programmers normally refer to Java source code instructions as Java statements. For Java statements to

work, they must use precise syntax. For example, as shown above, Java statements must (1) use a - for sub-

traction, (2) use a / for division, and (3) have a semicolon at their right side. The precision required by Java

statements contrasts with the fl exibility of pseudocode. Pseudocode allows any syntax, as long as it is un-

derstandable by a person. For example, in pseudocode, it would be acceptable to represent subtraction with

a - or the word “subtract.” Likewise, it would be acceptable to represent division with a / or a � or the word

“divide.”

Skipping the Pseudocode Step

Initially, programming language code will be harder for you to understand than pseudocode. But after gain-

ing experience with a programming language, you may become so comfortable with it that you’re able to

skip the pseudocode step entirely and go right to the second step where you write the program using pro-

gramming language code.

For larger programs, we recommend that you do not skip the pseudocode step. Why? Because with

larger programs, it’s important to fi rst focus on the big picture because if you don’t get that right, then noth-

ing else matters. And it’s easier to focus on the big picture if you use pseudocode where you’re not required

 1.4 Source Code 11

01-M4402.indd 1101-M4402.indd 11 12/17/07 4:16:29 PM12/17/07 4:16:29 PM

Apago PDF Enhancer

12 Chapter 1 Introduction to Computers and Programming

to worry about syntax details. After implementing a pseudocode solution, it’s relatively easy to convert the

pseudocode to source code.

1.5 Compiling Source Code into Object Code

After writing a program, you’ll want to have a computer perform the tasks specifi ed by the program. Getting

that to work is normally a two-step process: (1) Perform a compile command. (2) Perform a run command.

When you perform a compile command, you tell the computer to translate the program’s source code to

code that the computer can run. When you perform a run command, you tell the computer to run the trans-

lated code and perform the tasks specifi ed by the code. In this section, we describe the translation process.

The computer contains a special program called a compiler that’s in charge of the translation process.

If you submit source code to a compiler, the compiler translates it to code that the computer can run. More

formally, the compiler compiles the source code and produces object code as the result.2 Object code is a

set of binary-format instructions that can be directly run by a computer to solve a problem. An object-code

instruction is made up of all 0’s and 1’s because computers understand only 0’s and 1’s. Here’s an example of

an object-code instruction:

0100001111101010

This particular object-code instruction is referred to as a 16-bit instruction because each of the 0’s and

1’s is called a bit, and there are 16 of them. Each object-code instruction is in charge of only a simple com-

puter task. For example, one object-code instruction might be in charge of copying a single number from

some place in main memory to some place in the CPU. There’s no need for general-purpose computer pro-

grammers to understand the details of how object code works. That’s the computer’s job, not the program-

mer’s job.

Programmers sometimes refer to object code as machine code. Object code is called machine code be-

cause it’s written in binary and that’s what a computer “machine” understands.

1.6 Portability

In Section 1.2’s “Auxiliary Memory” subsection, we said that auxiliary memory is more portable than main

memory because it can be moved from one computer to another fairly easily. In that context, portability

referred to hardware. Portability can also refer to software. A piece of software is portable if it can be used

on many different types of computers.

Portability Problem with Object Code

Object code is not very portable. As you now know, object code is comprised of binary-format instructions.

Those binary-format instructions are intimately tied to a particular type of computer. If you have object

code that was created on a type X computer, then that object code can run only on a type X computer. Like-

2 Most compilers produce object code, but not all. As you’ll see in the next section, Java compilers produce an intermediate form of
instructions. At a later time, that intermediate form of instructions is translated into object code.

01-M4402.indd 1201-M4402.indd 12 12/17/07 4:16:29 PM12/17/07 4:16:29 PM

Apago PDF Enhancer

wise, if you have object code that was created on a type Y computer, then that object code can run only on

a type Y computer.3

So what’s all the fuss about portability? Who cares that object code is not very portable? Software man-

ufacturers care. If they want to sell a program that runs on different computer types, they typically have to

compile their program on the different computer types. That produces different object-code fi les, and they

then sell those fi les. Wouldn’t it be easier if software manufacturers could provide one form of their program

that runs on all types of computers?

Java’s Solution to the Portability Problem

The inventors of Java attempted to address the inherent lack of portability in object code by introducing the

bytecode level between the source code and object code levels. Java compilers don’t compile all the way down

to object code. Instead, they compile down to bytecode, which possesses the best features of both object code

and source code:

Like object code, bytecode uses a format that works closely with computer hardware, so it runs fast.

Like source code, bytecode is generic, so it can be run on any type of computer.

How can bytecode be run on any type of computer? As a Java program’s bytecode runs, the bytecode

is translated into object code by the computer’s bytecode interpreter program. The bytecode interpreter

program is known as the Java Virtual Machine, or JVM for short. Figure 1.5 shows how the JVM translates

bytecode to object code. It also shows how a Java compiler translates source code to bytecode.

•

•

3 There are about 15 or so different computer types that are in common use today. Those 15 computer types correspond to 15 catego-
ries of CPUs. Each CPU category has its own distinct instruction set. An instruction set defi nes the format and meanings of all the
object-code instructions that work on a particular type of CPU. A full discussion of instruction sets is beyond the scope of this book.
If you’d like to learn more, see Wikipedia’s Web site at http://en.wikipedia.org/ and enter “instruction set” in the search box.

 1.6 Portability 13

Figure 1.5 How a Java program is converted from source code to object code

source code

bytecode

object code

Java compilers perform

this translation as part of

the compilation process

The JVM performs this

translation as part of the

run process

To run Java bytecode, a computer must have a JVM installed on it. Fortunately, installing a JVM is

straightforward. It’s a small program, so it doesn’t take up much space in memory. And it’s easy to obtain—

anyone can download a JVM for free from the Internet. In Section 1.8, we explain how to download a JVM

and install it on your own computer.

01-M4402.indd 1301-M4402.indd 13 12/17/07 4:16:30 PM12/17/07 4:16:30 PM

http://en.wikipedia.org/

Apago PDF Enhancer

14 Chapter 1 Introduction to Computers and Programming

Why Is the Bytecode Interpreter Program Called a “Java Virtual Machine”?

We’ll now explain the origin of the name “Java Virtual Machine.” For programs written with most program-

ming languages, the CPU “machine” runs the program’s compiled code. For programs written in Java, the

bytecode interpreter program runs the program’s compiled code. So with Java, the bytecode interpreter

program acts like a CPU machine. But the bytecode interpreter is just a piece of software, not a piece of

hardware like a real CPU. Thus, it’s a virtual machine. And that’s why Java designers decided to call the

bytecode interpreter program a Java virtual machine.

1.7 Emergence of Java

Home-Appliance Software

In the early 1990s, putting intelligence into home appliances was thought to be the next “hot” technology. Ex-

amples of intelligent home appliances include coffee pots controlled by a computer and televisions controlled

by an interactive programmable device. Anticipating a strong market for such items, Sun Microsystems in

1991 funded a team of researchers to work on the secretive “Green Project” whose mission was to develop

software for intelligent home appliances.

An intelligent home appliance’s intelligence comes from its embedded processor chips and the software

that runs on those processor chips. Appliance processor chips change often because engineers continually

fi nd ways to make them smaller, less expensive, and more powerful. To accommodate the frequent turnover

of new chips, the software that runs on them should be extremely fl exible.

Originally, Sun planned to use C�� for its home-appliance software, but it soon realized that C��

wasn’t suffi ciently portable. Rather than write C�� software and fi ght C��’s inherent portability problems,

Sun decided to develop a whole new programming language for its home-appliance software.

Sun’s new language was originally named Oak (for the tree that was outside project leader James Gos-

ling’s window), but it turned out that Oak was already being used as the name of another programming lan-

guage. As the story goes, while a group of Sun employees was on break at a local coffee shop, they came up

with the name “Java.” They liked the name “java” because of the signifi cant role caffeine plays in the lives

of software developers. ☺

World Wide Web

When the market for intelligent home-appliance software proved to be less fertile than anticipated, Sun

almost pulled the plug on its Java project during the prerelease development phase. Fortunately for Sun

(and for all of today’s Java lovers), the World Wide Web exploded in popularity. Sun realized that the Web’s

growth could fuel demand for a language like Java, so Sun decided to continue with its Java development

efforts. Those efforts bore fruit when they presented Java’s fi rst release at the May 1995 SunWorld Confer-

ence. Soon thereafter, Netscape, the world’s most popular browser manufacturer at the time, announced its

intention to use Java in its browser software. With support from Netscape, Java started with a bang and it’s

been going strong ever since.

The Web relies on Web pages being downloaded and run on many different types of computers. To work

in such a diverse environment, Web page software must be extremely portable. You’re probably thinking,

Java to the rescue! Actually, that would be a bit of an exaggeration. The Web didn’t need rescuing—the Web

was doing reasonably well even before Java came into the picture, thank you very much. But Java was able to

add some much-needed functionality to plain old blah Web pages.

01-M4402.indd 1401-M4402.indd 14 12/17/07 4:16:30 PM12/17/07 4:16:30 PM

Apago PDF Enhancer

Plain old blah Web pages? Prior to Java, Web pages were limited to one-way communication with their

users. Web pages sent information to users, but users did not send information to Web pages. More specifi -

cally, Web pages displayed information for users to read, but users did not enter data for Web pages to pro-

cess. When the Web community fi gured out how to embed Java programs inside Web pages, that opened the

door to more exciting Web pages. Java-embedded Web pages are able to read and process user input, and

that provides users with a more enjoyable, interactive experience.

Java Today

Today, programmers use Java in many different environments. They still embed Java programs in Web

pages, and those programs are called applets. The initial popularity of applets helped Java grow into one

of the leading programming languages in the world. Although applets still play a signifi cant role in Java’s

current success, some of the other types of Java programs are coming close to surpassing applets in terms of

popularity, and some have already surpassed applets in terms of popularity.

To help with the small talk at your next Java social event, we’ll provide brief descriptions of some of the

more popular uses for Java. An applet is a Java program that’s embedded in a Web page. A servlet is a Java

program that supports a Web page, but it runs on a different computer than the Web page. A JavaServer Page

(JSP) is a Web page that has fragments of a Java program (as opposed to a complete Java program, like an ap-

plet) embedded in it. An advantage of servlets and JSPs over applets is that servlets and JSPs lead to Web pages

that display more quickly. A Micro Edition (ME) Java application is a Java program that runs on a limited-

resource device, for example, a device that has a limited amount of memory. Examples of limited-resource

devices are consumer appliances such as mobile phones and television set-top boxes. A Standard Edition (SE)

Java application is a Java program that runs on a standard computer—a desktop or a laptop. In this book, we

focus on SE Java applications as opposed to the other types of Java programs because SE Java applications are

the most general purpose and they provide the best environment for learning programming concepts.

1.8 First Program—Hello World

Earlier you learned what it means to compile and run a Java program. But learning by reading only goes so

far. It’s now time to learn by doing. In this section, you’ll enter a Java program into a computer, compile the

program, and run it. What fun!

Development Environments

There are different ways to enter a Java program into a computer. You can use an integrated development

environment, or you can use a plain text editor. We’ll briefl y describe the two options.

An integrated development environment (IDE) is a rather large piece of software that allows you to

enter, compile, and run programs. The entering, compiling, and running are all part of a program’s develop-

ment, and those three functions are integrated together into one environment. Thus, the name “integrated

development environment.” Some IDEs are free and some are quite expensive. We provide tutorials for

several popular IDEs on the book’s Web site.

A plain text editor is a piece of software that allows you to enter text and save your text as a fi le. Plain

text editors know nothing about compiling or running a program. If you use a plain text editor to enter a

program, you’ll need to use separate software tools to compile and run your program. Note that word pro-
cessors, like Microsoft Word, can be called text editors, but they’re not plain text editors. A word processor

allows you to enter text and save your text as a fi le. But the saved text is not “plain.” When a word processor

saves text to a fi le, it adds hidden characters that provide formatting for the text like line height, color, etc.

 1.8 First Program—Hello World 15

01-M4402.indd 1501-M4402.indd 15 12/17/07 4:16:31 PM12/17/07 4:16:31 PM

Apago PDF Enhancer

16 Chapter 1 Introduction to Computers and Programming

And those hidden characters create problems for Java programs. If you attempt to enter a program into a

computer using a word processor, your program won’t compile successfully and it certainly won’t run.

Different types of computers have different plain text editors. For example, computers that use Win-

dows have a plain text editor called Notepad. Computers that use UNIX or Linux have a plain text editor

called vi. Computers that use Mac OS X have a plain text editor called TextEdit. Note: Windows, UNIX,

Linux, and Mac OS X are operating systems. An operating system is a collection of programs whose pur-

pose is to help run the computer system. In running the computer system, the operating system manages the

transfer of information between computer components.

For the rest of this section, we’ll describe how you can enter, compile, and run a program using free,

bare-bones tools. You’ll use a plain text editor for entering your program, and you’ll use simple software

tools from Sun for compiling and running your program. If you have no interest in using such bare-bones

tools, and you prefer instead to stick exclusively with an IDE, then refer to the IDE tutorials on the book’s

Web site and feel free to skip the rest of this section. If you’re unsure what to do, we encourage you to try

out the bare-bones tools. They’re free and they don’t require as much memory as the IDEs. They serve as a

standard baseline that you should be able to use on almost all computers.

Entering a Program into a Computer

We’ll now describe how you can enter a program into a computer using Notepad, the plain text editor that

comes with all versions of Microsoft Windows.

Move your mouse cursor on top of the Start button at the bottom-left corner of your Windows desktop.

Click the Start button. (When we ask you to “click” an item, we want you to move your mouse on top of

the item and press the left mouse button.) That should cause a menu to appear. On the menu, move your

mouse on top of the Programs option. That should cause another menu to appear. On that menu, move your

mouse on top of the Accessories option. That should cause another menu to appear. On that menu, click on

the Notepad option. That should cause the Notepad text editor to appear.

In the newly opened Notepad text editor, enter the source code for your fi rst program. More specifi cally,

click somewhere in the middle of the Notepad window and then enter the seven lines of text that are shown

in Figure 1.6. When you enter the text, be sure to type the letters with uppercase and lowercase exactly as

shown. For example, enter Hello with an uppercase H and lowercase e, l, l, and o. Use spaces, not

tabs, for indentations. Your entered text comprises the source code for what is known as the Hello World

program. The Hello World program is the traditional fi rst program for all programming students. It simply

prints a hello message. In Chapter 3, we’ll describe the meaning behind the words in the Hello World source

code. In this chapter, we’re more interested in hands-on experience, and we show you how to enter, compile,

and run the Hello World program.

After entering the source code into the Notepad window, you’ll need to save your work by storing it in a

fi le. To save your source code in a fi le, click the File menu in the top-left corner of the Notepad window. That

should cause a menu to appear. On the menu, select the Save As option. That should cause a Save As dialog
box to appear. A dialog box is a small window that performs one task. For this dialog box, the task is to save

a fi le.

Note the File name: box at the bottom of the dialog box. That’s where you’ll enter the name of your

fi le. But fi rst, you should create a directory to store your fi le in. A directory, also called a folder, is an orga-

nizational entity that contains a group of fi les and other directories.4 Move your mouse cursor over the down

4 In the Windows and Macintosh worlds, people tend to use the term “folder.” In the UNIX and Linux worlds, people tend to use the
term “directory.” As you’ll see in Chapter 15, Sun uses the term “directory” as part of the Java programming language. We like to
follow Sun, and we therefore use the term “directory” rather than “folder.”

01-M4402.indd 1601-M4402.indd 16 12/17/07 4:16:31 PM12/17/07 4:16:31 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

arrow () that’s at the top center of the Save As dialog box. That should cause a directory tree to appear un-

der the down arrow’s box. In the directory tree, move your mouse on top of the C: icon if you’d like to save

on your hard drive, or move your mouse on top of the E: or F: icon if you’d like to save on your USB fl ash

drive. Click the appropriate drive letter icon. That should cause the clicked drive letter icon to appear in the

Save in: box next to the down arrow. Verify that your Save As dialog box now looks similar to the Save As

dialog box in Figure 1.7. In particular, note the F: drive in Figure 1.7’s Save in: box. Your Save in: box may

be different, depending on what drive letter you clicked.

Figure 1.6 The Notepad text editor with the Hello World program entered into it

 1.8 First Program—Hello World 17

Figure 1.7 Notepad’s Save As dialog box with user about to create a new folder

01-M4402.indd 1701-M4402.indd 17 12/17/07 4:16:31 PM12/17/07 4:16:31 PM

Apago PDF Enhancer

18 Chapter 1 Introduction to Computers and Programming

As shown in Figure 1.7, move your mouse cursor over the Create New Folder icon near the top-

right corner of the Save As dialog box. Click the icon. That should cause a new directory to appear in

the directory tree. The name of the new directory is New Folder by default. The New Folder name

should be selected/highlighted. Enter myJavaPgms, and as you do so, myJavaPgms should overlay the

New Folder name. Click the Open button in the bottom-right corner of the dialog box. That should cause

the new myJavaPgms directory to appear in the Save in: box.

Enter "Hello.java" in the File name: box at the bottom of the dialog box. You must enter

"Hello.java" exactly as shown below:

Don’t forget the quotes, the uppercase H, and the lowercase subsequent letters. Click the Save button in the

bottom-right corner of the dialog box. That should cause the Save As dialog box to disappear, and the top

of the Notepad window should now say Hello.java. Shut down Notepad by clicking on the X in the top-right

corner of the Notepad window.

Installing a Java Compiler and the JVM

In the previous subsection, you entered the Hello World program and saved it to a fi le. Yeah! Normally,

the next step would be to compile the fi le. Remember what compiling is? That’s when a compiler trans-

lates a source code fi le into a bytecode fi le. For our Hello World program, the compiler will translate your

Hello.java source code fi le into a Hello.class bytecode fi le. If you’re working in a school’s com-

puter lab, chances are pretty good that your computer already has a Java compiler installed on it. If your

computer does not have a Java compiler installed on it, you’ll need to install it now in order to complete the

hands-on portion of this section.

Normally, if someone is interested in installing the Java compiler (to compile Java programs), they are

also interested in installing the JVM (to run Java programs). To make the installation easier, Sun bundles

the Java compiler together with the JVM. Sun calls the bundled software the Java Development Kit, or JDK

for short.

To install the JDK on your computer, you should follow the installation instructions on the book’s Web

site. Go to http://www.mhhe.com/dean and click on the JDK Installation Instructions link. Read the in-

structions and install the JDK accordingly. In particular, follow the instructions that describe how to set the

PATH variable permanently.

Compiling a Java Program

We’ll next describe how you can compile a program using a command prompt window (also called a con-
sole). A command prompt window allows you to enter operating system instructions where the instructions

are in the form of words. The words are referred to as commands. For example, on a computer that runs the

Windows operating system, the command for deleting a fi le is del (for delete). On a computer that runs the

UNIX or Linux operating system, the command for deleting a fi le is rm (for remove).

To open a command prompt window on a computer that runs the Windows operating system, click the

Start button at the bottom-left corner of your Windows desktop. That should cause a menu to appear. On

the menu, click the Run... option. That should cause a Run dialog box to appear. In the Run dialog box’s

01-M4402.indd 1801-M4402.indd 18 12/17/07 4:16:32 PM12/17/07 4:16:32 PM

http://www.mhhe.com/dean

Apago PDF Enhancer

Open: box, type cmd (cmd stands for “command”) and click the OK button. That should cause a command

prompt window to appear. Figure 1.8 shows the newly opened command prompt window.

In Figure 1.8, note this line:

C:\Documents and Settings\John Dean>

That’s a prompt. In general, a prompt tells you to do something. For a command prompt window, the prompt

tells you to enter a command. Very soon, you’ll enter commands in your actual command prompt window.

But fi rst, note the text at the left of the > symbol. The text C:\Documents and Settings\John Dean

forms the path to the current directory. A path specifi es the location of a directory. More specifi cally, a

path starts with a drive letter and contains a series of one or more slash-separated directory names. In our

example, C: refers to the hard drive, Documents and Settings refers to the Documents and
Settings directory that’s on the hard drive, and John Dean refers to the John Dean directory that’s

contained within the Documents and Settings directory.

To compile your Hello World program, you’ll need to go fi rst to the drive and directory where it resides.

Suppose your command prompt window’s prompt indicates that your current drive is C:, and you saved

Hello.java on F:. Then you’ll need to change your drive to F:. To do so, enter f: in your command

prompt window.

To change to the Hello World program’s directory, enter this cd command (cd stands for change

directory):

cd \myJavaPgms

Now you’re ready to compile your program. Enter this javac command (javac stands for java compile):

javac Hello.java

In entering that command, if your command prompt window displays an error message, refer to Figure 1.9

for possible solutions. If your command prompt window displays no error messages, that indicates success.

More specifi cally, it indicates that the compiler created a bytecode fi le named Hello.class. To run the

Hello.class fi le, enter this java command:

java Hello

Figure 1.8 A command prompt window when it fi rst opens up

 1.8 First Program—Hello World 19

01-M4402.indd 1901-M4402.indd 19 12/17/07 4:16:32 PM12/17/07 4:16:32 PM

Apago PDF Enhancer

20 Chapter 1 Introduction to Computers and Programming

Your command prompt window should now display your program’s output—Hello, world! See

Figure 1.10. It shows the command prompt window after completing the steps described above.

The compilation error message says
something like this: Explanation:

'javac' is not recognized All three error messages indicate that the computer doesn’t understand

the javac command because it can’t fi nd the javac compiler program.

The error is probably due to the PATH variable being set improperly.

Review the JDK installation instructions and reset the PATH variable

accordingly.

javac: command not found

bad command or filename

Hello.java: number: text There is a syntax error in the Hello.java source code. The specifi ed

number provides the approximate line number in Hello.java where

the error occurs. The specifi ed text provides an explanation for the error.

Review the contents of the Hello.java fi le and make sure that every

character is correct and uses the proper case (lowercase, uppercase).

Figure 1.9 Compilation errors and explanations

Figure 1.10 Compiling and running the Hello World program

1.9 GUI Track: Hello World (Optional)

This section is the fi rst installment of our optional graphical user interface (GUI) track. In each GUI-track

section, we provide a short introduction to a GUI concept. For example, in this section, we describe how

to display a message in a GUI window. In another GUI track section, we describe how to draw lines and

01-M4402.indd 2001-M4402.indd 20 12/17/07 4:16:32 PM12/17/07 4:16:32 PM

Apago PDF Enhancer

import javax.swing.JOptionPane;

public class HelloGUI
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null, "Hello, World!");
 }
}

shapes. For readers who do not have time for the GUI track, no problem. Any or all of the GUI track sec-

tions may be skipped as they cover material that is independent of later material. Note that we cover hard-

core GUI material in earnest at the end of the book in Chapters 16 and 17. The GUI material in Chapters 16

and 17 is independent of the GUI material in the GUI track, so, once again, it’s OK to skip the GUI track.

But why skip it? GUI programming is sooooo much fun!

In this section, we present a GUI version of the Hello World program. We’ll start by showing you the

program’s output:

A GUI program is defi ned as a program that uses graphical tools for its interface. This program is in-

deed a GUI program because it uses these graphical tools for its interface: a title bar (the bar at the top of

the window), a close-window button (the “X” in the top-right corner), an OK button, and an i icon. Here’s

how the tools work: If you drag the title bar with your mouse, the window moves. If you click the close-

window button or the OK button, the window closes. The i icon is a visual cue that indicates the nature of the

window—the i stands for “information” since the window simply displays information.

See Figure 1.11. The dashed boxes indicate code that differs from the code in the previous section’s

Hello program. For now, don’t worry about the meaning of the program’s code. We’ll explain it later on.

For now, the goal is to give you some fun and valuable hands-on experience.

Go ahead and enter the program code into a text editor. If you need a refresher on how to do that, see

the previous section. This time, save your source code fi le with the name HelloGUI.java instead of

Hello.java. When saving HelloGUI.java, make sure you spell the fi lename with capitals for H, G,
U, and I since that’s how HelloGUI is spelled in your program’s third line. Next, you’ll want to compile

and run the program. Once again, if you need a refresher, see the previous section.

Figure 1.11 GUI version of the Hello World program

The dashed boxes indicate code that differs

from the code in the previous section’s

Hello program.

 1.9 GUI Track: Hello World (Optional) 21

01-M4402.indd 2101-M4402.indd 21 12/17/07 4:16:33 PM12/17/07 4:16:33 PM

Apago PDF Enhancer

22 Chapter 1 Introduction to Computers and Programming

Summary

A computer system is all the components that are necessary for a computer to operate and the con-

nections between those components. More specifi cally, a computer system consists of the CPU, main

memory, auxiliary memory, and I/O devices.

Programmers write algorithms as fi rst attempt solutions for programming problems.

Algorithms are written with pseudocode—similar to programming language code except that precise

syntax (words, grammar) isn’t required.

Source code is the formal term for programming language instructions.

Object code is a set of binary-encoded instructions that can be directly executed by a computer.

Most non-Java compilers compile from source code to object code.

Java compilers compile from source code to bytecode.

As a Java program runs, the Java Virtual Machine translates the program’s bytecode to object code.

Originally, Sun developed Java for use in home appliance software.

To expedite development, Java programmers often use integrated development environments, but you

can use a plain text editor and command prompt window.

Review Questions

§1.2 Hardware Terminology

 1. What do the following abbreviations mean?
 a) I/O
 b) CPU
 c) RAM
 d) GHz
 e) MB

 2. Identify two important computer input devices.
 3. Identify two important computer output devices.
 4. Assertions:

 a) Main memory is faster than auxiliary memory. (T / F)
 b) Auxiliary memory is volatile. (T / F)
 c) The first position in main memory is at address 1. (T / F)
 d) The CPU is considered to be a peripheral device. (T / F)
 e) Hot swapping is when you plug a device into a computer while the computer is on. (T / F)

§1.3 Writing Algorithms Using Pseudocode

 5. What is an algorithm?
 6. What is pseudocode?

§1.4 Translating Pseudocode into Programming Language Code

 7. Syntax rules are more lenient for which type of code—pseudocode or programming language code?

§1.5 Compiling Source Code into Object Code

 8. What happens when you compile a program?
 9. What is object code?

§1.6 Portability

 10. What is a Java Virtual Machine?

•

•
•

•
•
•
•
•
•
•

01-M4402.indd 2201-M4402.indd 22 12/17/07 4:16:33 PM12/17/07 4:16:33 PM

Apago PDF Enhancer

§1.7 Emergence of Java

 11. List fi ve different types of Java programs.

Exercises

 1. [after §1.2] For each of the following items, determine whether it is associated with main memory or
auxiliary memory.
 a) floppy disk main or auxiliary?
 b) RAM main or auxiliary?
 c) hard disk main or auxiliary?
 d) CD-RW main or auxiliary?

 2. [after §1.2] What is a bit?
 3. [after §1.2] What is a byte?
 4. [after §1.2] What type of computer component does C: usually refer to?
 5. [after §1.2] For each of the following computer system components, identify parallel components in a bear’s

biological system.
 a) CPU
 b) input devices
 c) output devices

 6. [after §1.2] What is “Moore’s Law”? You won’t fi nd the answer to the question in the book, but you can fi nd
it on the Internet. (Hint: Gordon Moore was one of the founders of Intel.)

 7. [after §1.3] This question is not very specifi c, so don’t worry about whether your solution conforms to some
prescribed answer. Just do whatever seems reasonable to you.

 Using pseudocode in the form of short statements, provide an algorithm for a bear that describes the
steps involved in gathering honey. If a certain step or a group of steps is to be repeated, use an if statement
and an arrow to show the repetition. For example, your algorithm might include something like this:

<statement>
<statement>
<statement>
.
.
<statement>
If still hungry, repeat

 8. [after §1.5] Humans generally prefer to work with source code rather than object code because source code
is easier to understand than object code. So why is object code necessary?

 9. [after §1.6] Most programming languages compile down to object code. Java compiles down to bytecode.
What is the primary benefi t of bytecode over object code?

 10. [after §1.6] What does the Java Virtual Machine do?
 11. [after §1.7] What was the original name for the Java programming language?
 12. [after §1.8] On a computer whose operating system is a recent version of Microsoft Windows, invoke Start >

Programs > Accessories > Command Prompt. Navigate to the directory that has the Hello.java
source code. Enter dir Hello.* to list all fi les starting with “Hello”. If this list includes Hello.class,
delete that fi le by entering del Hello.class. Enter javac Hello.java to compile the source code.
Again enter dir Hello.* and verify that the bytecode fi le, Hello.class, has been created. Now you
can enter java Hello to execute the compiled program. Enter type Hello.java and type
Hello.class to get a feeling for how bytecode differs from source code.

 Exercises 23

01-M4402.indd 2301-M4402.indd 23 12/17/07 4:16:33 PM12/17/07 4:16:33 PM

Apago PDF Enhancer

24 Chapter 1 Introduction to Computers and Programming

 13. [after §1.8] Experiment with the Hello.java program to learn the meanings of typical compilation

and runtime error messages:
 a) Omit the final / from the header block.
 b) Omit any part of the argument in the parentheses after main.
 c) Omit the semicolon from the end of the output statement.
 d) One at a time, omit the braces—{ and }.
 e) Try using lowercase, $, _, or a number for the first character in the class name.
 f) Make the program filename different from the class name.
 g) Change main to Main.
 h) One at a time, try omitting public, static, and void from before main.

 14. [after §1.8] Learn how to use TextPad by working your way through the “Getting Started with TextPad”
tutorial on the book’s Web site. Submit hardcopy of the source code for your Countdown program (i.e., print
your program from within TextPad). Note that you’re not required to submit source code for your Hello
World program or submit output for either program.

Review Question Solutions

 1. What do the following abbreviations mean?
 a) I/O: input/output devices.
 b) CPU: central processing unit or processor.
 c) RAM: random access memory or main memory.
 d) GHz: Gigahertz � billions of cycles per second.
 e) MB: MegaBytes � millions of bytes, where one byte is 8 bits, and one bit is the answer to a single yes/

no question.

 2. The keyboard and a mouse are the two most obvious examples of input devices. Another possible input
device is a telephone modem.

 3. The display screen and a printer are the two most obvious examples of important output devices. Other
examples are a telephone modem and speakers.

 4. Assertions:
 a) True. Main memory is physically closer to the processor, and the bus that connects the main memory to

the processor is faster than the bus that connects the auxiliary memory to the processor. Main memory
is also more expensive and therefore usually smaller.

 b) False. When power goes off, main memory loses its information, while auxiliary memory does not. An
unexpected power failure might corrupt information in auxiliary memory, however.

 c) False. The first position in main memory is at address 0.
 d) False. The CPU is considered to be part of the computer itself; it’s not a peripheral device.
 e) True. Hot swapping is when you plug a device into a computer while the computer is on.

 5. An algorithm is a step-by-step procedure for solving a problem.
 6. Pseudocode is an informal language that uses regular English terms to describe a program’s steps.
 7. Syntax rules are more lenient for pseudocode (as opposed to programming language code).
 8. Most compilers convert source code to object code. Java compilers convert source code to bytecode.
 9. Object code is the formal term for binary-format instructions that a processor can read and understand.
 10. A Java Virtual Machine (JVM) is an interpreter that translates Java bytecode into object code.
 11. Five different types of Java Programs are applets, servlets, JSP pages, micro edition applications, and

standard edition applications.

01-M4402.indd 2401-M4402.indd 24 12/17/07 4:16:34 PM12/17/07 4:16:34 PM

Apago PDF Enhancer

0.0 Last A-Head 25

25

Algorithms and Design

Objectives

Learn how to write an informal text description of what you want a computer program to do.

Understand how a fl owchart describes what a computer program does.

Become familiar with the standard well-structured control patterns.

Learn how to structure conditional executions.

Learn how to structure and terminate looping operations, including nested loops.

Learn how to “trace through” a program’s sequence of operation.

See how you can describe program operation at different levels of detail.

Outline

 2.1 Introduction

 2.2 Output

 2.3 Variables

 2.4 Operators and Assignment Statements

 2.5 Input

 2.6 Flow of Control and Flowcharts

 2.7 if Statements

 2.8 Loops

 2.9 Loop Termination Techniques

 2.10 Nested Looping

 2.11 Tracing

 2.12 Other Pseudocode Formats and Applications

 2.13 Problem Solving: Asset Management (Optional)

2.1 Introduction

As indicated in Chapter 1, writing a computer program involves two basic activities: (1) fi guring out what

you want to do and (2) writing code to do it. You might be tempted to skip the fi rst step and jump imme-

diately to the second step—writing code. Try to resist that urge. Jumping immediately into the code often

•
•
•
•
•
•
•

2C H A P T E R

02-M4402.indd 2502-M4402.indd 25 12/17/07 4:16:52 PM12/17/07 4:16:52 PM

Apago PDF Enhancer

results in bad programs that work poorly and are hard to fi x because poor organization makes them hard to

understand. Therefore, for all but the very simplest problems, it’s best to start by thinking about what you

want to do and then organize your thoughts.

As part of the organization process, you’ll want to write an algorithm.1 An algorithm is a sequence of

instructions for solving a problem. It’s a recipe. When specifying an algorithm, two formats are common:

 1. The fi rst format is a natural-language outline called pseudocode, where the prefi x “pseudo-” means

“fi ctitious or pretended,” so it’s not “real” code. Pseudocode, like real code, is composed of one or more

statements. A statement is the equivalent of a natural language “sentence.” If the sentence is simple, the

corresponding statement usually appears on one line, but if the sentence is complex, the statement may

be spread out over several lines. Statements can be nested inside each other, as in an outline. We’ll use

the term “statement” a lot, and you’ll get a better appreciation for it as we go along.

 2. The second format is an arrangement of boxes and arrows that help you visually step through the algo-

rithm. The most detailed form of boxes and arrows is called a fl owchart. The boxes in a fl owchart typi-

cally contain short statements that are similar to pseudocode statements.

This chapter shows you how to apply pseudocode and fl owcharts to a fundamental set of standard pro-

gramming problems—problems that appear in almost all large programs. The chapter also shows you how

to trace an algorithm—step through it one statement at a time—to see what it’s actually doing. Our goal is

to give you a basic set of informal tools which you can use to describe what you want a program to do. The

tools help you organize your thinking before you start writing the actual program. Tracing helps you fi gure

out how an algorithm (or completed program) actually works. It helps you verify correctness and identify

problems when things are not right.

2.2 Output

The fi rst problem to consider is the problem of displaying a program’s fi nal result—its output. This may

sound like something to consider last, so why consider it fi rst? The output is what the end user—the client,

the person who eventually uses the program—wants. It’s the goal. Thinking about the out-

put fi rst keeps you from wasting time solving the wrong problem.

Hello World Algorithm

In Chapter 1, we showed you a Java program that generated “Hello, world!” output on the computer screen.

Now we’ll revisit that problem, but focus on the algorithm, not the program. You may recall that Chapter 1’s

Hello World program was seven lines long. Figure 2.1 shows the Hello World algorithm—it contains just

one line, a pseudocode print statement. The point of an algorithm is to show the steps necessary to solve a

problem without getting bogged down in syntax details. The Hello World algorithm does just that. It shows a

simple print statement, which is the only step needed to solve the Hello World problem.

Figure 2.1’s “Hello, world!” message is a string literal. A string is a generic term for a sequence of

characters. A string literal is a string whose characters are written out explicitly and enclosed in quotation

marks. If you print a string literal, you print the characters literally as they appear in the command. So Fig-

ure 2.1’s algorithm prints the characters H, e, l, l, o, comma, space, w, o, r, l, d, and !.

1 Ninth century Persian mathematician Muhammad ibn Musa al-Khwarizmi is considered to be the father of algebra. The term algo-
rithm comes from Algoritmi, which is the Latin form of his shortened name, al-Khwarizmi.

26 Chapter 2 Algorithms and Design

Put yourself in
user’s place.

02-M4402.indd 2602-M4402.indd 26 12/17/07 4:16:53 PM12/17/07 4:16:53 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

Rectangle Algorithm

For the next example, suppose you want to display the area of a particular rectangle. First consider what you

want the program to do. In Figure 2.2, look at the area = 40 line under Output. That shows what you

want the output to look like.

Figure 2.2 Rectangle algorithm that prints the area of a rectangle

set length to 10

set width to 4

set rectangleArea to length * width
print “area = ” rectangleArea

Output:

area = 40

algorithm

print statement

This is what the output looks like.

⎫
 ⎢
⎬
 ⎢⎭

2.3 Variables 27

print “Hello, world!”

Figure 2.1 Hello World algorithm that prints the message “Hello, world!”

The top part of Figure 2.2 is the algorithm for calculating a rectangle’s area. Note that some of the

words, like length and width, appear with monospace font. Monospace font is when each character’s

width is uniform. We use monospace font to indicate that something is a variable. A variable is a container

that holds a value. The algorithm’s fi rst two lines assign 10 and 4 to length and width, respectively. That

means that the length variable contains the value 10 and the width variable contains the value 4. The

third line describes two operations: First compute the area by multiplying length times width. (The *
is the multiplication “times” symbol.) Then assign the result (the product) to the variable, rectangle Area.

The fourth line prints two items – the string literal “area =” and the value of the rectangleArea vari-

able. When a variable appears in a print statement, the print statement prints the value stored inside the vari-

able. rectangleArea contains 40, so the print statement prints the value 40. Figure 2.2’s output shows

the desired display.

2.3 Variables

Now let’s consider variables in more detail. Figure 2.2’s Rectangle algorithm has three variables—

length, width, and rectangleArea. In rectangleArea, notice how we run together the

two words, “rectangle” and “area,” and notice how we start the second word with a capital letter. We

do this to help you develop good habits for later Java coding, which does not permit any spaces in a variable

name. Although it’s not necessary for pseudocode, in Java, it’s good style to begin a variable name with a

lowercase letter, as in rectangleArea. If the name is a combination of several words, in Java you must

remove the space(s) between multiple words in a single name, and you should begin all words after the fi rst

02-M4402.indd 2702-M4402.indd 27 12/17/07 4:16:53 PM12/17/07 4:16:53 PM

Apago PDF Enhancer

28 Chapter 2 Algorithms and Design

one with an uppercase letter to make the combination readable. This is called camelCase, because of the

bump(s) in the middle. Again, it’s not necessary for pseudocode, but it’s a good habit to develop. Here are

two more examples that show how to name variables with camelCase:

Description A Good Variable Name

sports team name teamName
weight in grams weightInGrams

Variables can hold different types of data. Which type of data would the teamName variable probably

hold—a number or a string? It would probably be used to hold a string (e.g., “Jayhawks” or “Pirates”).

Which type of data would the weightInGrams variable probably hold—a number or a string? It would

probably be used to hold a number (e.g., 12.5). It’s relatively easy for a human to determine the type of a

named variable by just thinking about the name, but this kind of thinking is very diffi cult for a computer. So

in a real Java program, we must tell the computer the type of each data item.

However, since pseudocode is designed strictly for humans and not computers, in pseudocode we don’t

bother with type specifi cation. Notice that Figure 2.2’s pseudocode representation of a Rectangle program

does not contain any mention of data type. Pseudocode ignores data type so that focus can be kept on the

algorithm’s essence—its instructions.

2.4 Operators and Assignment Statements

The previous section described variables by themselves. Now let’s consider relationships between variables

by looking at operators and assignments.

Here is the third statement from Figure 2.2’s Rectangle algorithm:

set rectangleArea to length * width

As indicated earlier, the * symbol is the multiplication operator. The other common arithmetic operators are �

for addition, - for subtraction, and / for division. These should be familiar to everyone. The length and

width variables are operands. In mathematics and again in programming, an operand is an entity (e.g.,

a variable or a value) that is operated on by an operator. The length and width variables are operands

because they are operated on by the * operator.

When we say “set variableA to x,” we mean “put the value of x into variableA” or “assign the

value of x to variableA.” So the set rectangleArea to length * width statement puts the product

of length times width into the rectangleArea variable. A picture is worth a thousand words. See

Figure 2.3—it visually describes what the statement does.

Figure 2.3 Assignment (or “set”) operation represented by left-pointing arrow

rectangleArea

40

length

10

width

4((*

Figure 2.3 includes a pair of parentheses not shown in the pseudocode statement. You could put these

parentheses in the pseudocode if you wanted, but most people expect the multiplication operation to have a

higher precedence (occur sooner) than the assignment operation, so we did not bother including parentheses

in this particular pseudocode statement.

02-M4402.indd 2802-M4402.indd 28 12/17/07 4:16:54 PM12/17/07 4:16:54 PM

Apago PDF Enhancer

Figure 2.3 shows that each of the three variables is a container that holds a value. Figure 2.3 also visu-

ally suggests that assignment goes in a right-to-left direction. Assignment in our pseudocode has no direc-

tionality, but in Chapter 3, you’ll see that assignment in Java code actually does go right to left. So if you are

a person who likes to visualize things, visualize assignment going right to left, as Figure 2.3 suggests.

2.5 Input

In the preceding Rectangle algorithm, the algorithm itself supplied the values for the length and width
variables. We did it that way to make the introductory discussion as simple as possible. Sometimes this is

an appropriate strategy, but in this particular case, it’s silly, because the algorithm solves the problem only

for one particular set of values. To make the algorithm more general, instead of having the algorithm sup-

ply the values for length and width, you should have the user (the person who runs the program) supply

the values. When a user supplies a value(s) for a program, that’s called user input, or just input. Figure 2.4

presents an improved Rectangle algorithm, where input length and input width perform user input

operations.

Write what you’ll
do and how
you’ll do it.

2.6 Input 29

Figure 2.4 Rectangle algorithm that gets length and width values from a user

print “Enter a length in meters: ”

input length
print “Enter a width in meters: ”

input width
set rectangleArea to length * width
print “The area is” rectangleArea “square meters.”

Sample session:

Enter a length in meters: 10
Enter a width in meters: 4
The area is 40 square meters.

User inputs are italicized.

Note the fi rst two print statements in Figure 2.4—they’re called prompts because they tell (or prompt)

the user what to enter. Without prompts, most users would be left with an unpleasant sensation and the puz-

zling question, “What do I do now?”

Throughout the book, we provide sample sessions as a means of showing what happens when an al-

gorithm or program is run with a typical set of inputs. When there is space, we include the sample session

in the fi gure with the algorithm or program that generates it. Can you identify the user-input values in the

sample session in Figure 2.4? Our convention is to italicize sample session input values to distinguish them

from output. Thus, 10 and 4 are user-input values.

The combination of a pseudocode algorithm and a sample session represents a con-

venient and effi cient way to specify a simple algorithm or program. The sample session

shows the format of desired inputs and outputs. It also shows representative input and out-

put numerical values, which allow a programmer to verify that his/her completed pro-

gram actually behaves as required. In many of the book’s projects (projects are on the Web site), we provide

some combination of pseudocode and sample session to specify the problem we are asking you to solve.

02-M4402.indd 2902-M4402.indd 29 12/17/07 4:16:55 PM12/17/07 4:16:55 PM

Apago PDF Enhancer

2.6 Flow of Control and Flowcharts

In the preceding sections, we described various statements—print statements, assignment statements, and

input statements—and we focused on the mechanics of how each statement works. Now it’s time to focus

on the relationships between statements. More specifi cally, we’ll focus on fl ow of control. Flow of control is

the order in which program statements are executed. In our discussion of fl ow of control, we’ll refer to both

algorithms and programs. Flow of control concepts apply equally to both.

Flow of control is best explained with the help of fl owcharts. Flowcharts are helpful because they are

pictures. As such, they help you to “see” an algorithm’s logic. A fl owchart uses two basic symbols: (1) rect-

angles, which contain commands like print, assign, and input, and (2) diamonds, which contain yes/no ques-

tions. At each diamond, the fl ow of control splits. If the answer is “yes,” fl ow goes one way. If the answer is

“no,” fl ow goes another way.

The dashed boxes in Figure 2.5 show three standard structures for fl ow-of-control—a sequen-

tial structure, a conditional structure, and a looping structure. The fl owchart on the left—the sequential

structure—is a picture of the Rectangle algorithm described in Figure 2.2. Sequential structures contain

statements that are executed in the sequence/order in which they are written; for example after execut-

ing a statement, the computer executes the statement immediately below it. Conditional structures con-

tain a yes/no question, and the answer to the question determines whether to execute the subsequent

block of statements or skip it. Looping structures also contain a yes/no question, and the answer to the

question determines whether to repeat the loop’s block of statements or move on to the statements after

the loop.

Figure 2.5 Well-structured fl ow of control

Sequential Conditional Looping

? ?

30 Chapter 2 Algorithms and Design

Structured programming is a discipline that requires programs to limit their fl ow of control to sequen-

tial, conditional, or looping structures. A program is considered to be well structured if it can be decom-

posed into the patterns in Figure 2.5. You should strive for well-structured programs because they tend

to be easier to understand and work with. To give you an idea of what not to do, see Figure 2.6. Its fl ow

of control is bad because there are two points of entry into the loop, and when you’re inside the loop,

it’s hard to know what’s happened in the past. When a program is hard to understand, it’s error-prone

and hard to fi x. Code that implements an algorithm like this is sometimes called spaghetti code be-

cause when you draw a fl owchart of the code, the fl owchart looks like spaghetti. When you see spaghetti,

untangle it!

02-M4402.indd 3002-M4402.indd 30 12/17/07 4:16:55 PM12/17/07 4:16:55 PM

Apago PDF Enhancer

In addition to standardizing sequential, conditional, and looping control structures, structured program-

ming also splits up large problems into smaller sub-problems. In Java, we put the solution to each sub-prob-

lem in a separate block of code called a method. We’ll discuss methods in Chapter 5, but for now, we’ll focus

on the three control structures shown in Figure 2.5.

2.7 if Statements

In previous sections describing print, assignment, and input statements, you saw examples of the sequential

control structure on the left side of Figure 2.5. Now let’s consider the conditional control structure in the

center of Figure 2.5. In going through a sequence of steps, sometimes you get to a “fork in the road,” at

which point you must choose which way to go. The choice you make depends on the situation. More specifi -

cally, it depends on the answer to a question. When a program has a fork in the road, programmers use an

if statement to implement the fork. The if statement asks a question and the answer to the question tells the

algorithm which way to go. More formally, the if statement contains a condition. A condition is a question

whose answer is either yes or no. The answer to the condition’s question determines which statement ex-

ecutes next. Here are three forms for the if statement:

“if”

“if, else”

“if, else if”

Now let’s look at each of these three forms separately.

“if”

First, suppose you want to do either one thing or nothing at all. In that case, you should use the simple “if”

form of the if statement. Here is its format:

if <condition>

 <statement(s)>
if statement’s headingif statement’s heading

Indent subordinate statementIndent subordinate statement

2.7 if Statements 31

Figure 2.6 Poorly structured fl ow of control

?

?

Do not do this!

⎫
 ⎢
 ⎢
 ⎢
 ⎢
 ⎢
 ⎢
⎬
 ⎢
 ⎢
 ⎢
 ⎢
 ⎢
 ⎢
⎭

02-M4402.indd 3102-M4402.indd 31 12/17/07 4:16:56 PM12/17/07 4:16:56 PM

Apago PDF Enhancer

32 Chapter 2 Algorithms and Design

Note the angled brackets “<>” that surround “condition” and “statement(s).” Throughout the book, we use

the italics and angled bracket notation for items that require a description. Thus, when you see “<condi-
tion>,” it tells you that an actual condition, not the word “condition,” is supposed to follow the word “if.”

Likewise, when you see “<statement(s)>,” it tells you that one or more actual statements, not the word

“statement(s),” is supposed to go underneath the if statement’s heading.

In the above if statement illustration, note how <statement(s)> is indented. Pseudocode emulates a

natural-language outline by using indentation to show encapsulation or subordination. The statements under

an if statement’s heading are subordinate to the if statement because they are considered to be part of the

larger, encompassing if statement. Since they are subordinate, they should be indented.

Here’s how the simple “if” form of the if statement works:

If the condition is true, execute all subordinate statements, that is, execute all indented statements im-

mediately below the “if.”

If the condition is false, jump to the line after the last subordinate statement, that is, jump to the fi rst

un-indented statement below the “if.”

Let’s put these concepts into practice by showing you an if statement in the context of a complete algorithm.

Figure 2.7’s Shape algorithm prompts the user for a shape. If the user enters “circle,” the algorithm prompts

for a radius, calculates the area of a circle using that radius, and prints the resulting area. Finally, regardless

of whether the user entered “circle” or not, the algorithm prints a friendly end-of-algorithm message.

•

•

Figure 2.7 Shape algorithm that calculates a circle’s area if the user’s favorite shape is a circle

print “What is your favorite shape? ”

input shape
if shape is a circle

 print “Enter a radius value: ”

 input radius
 set area to 3.1416 * radius * radius
 print “The area is” area
print “End of shape algorithm. Seeya!”

Sample session when shape is a circle:

What is your favorite shape? circle
Enter a radius value: 2
The area is 12.5664.
End of shape algorithm. Seeya!

Sample session when shape is not a circle:

What is your favorite shape? trapezoid
End of shape algorithm. Seeya!

condition

These four statements are

subordinate to the

encompassing if statement.

⎫
 ⎢
⎬
 ⎢⎭

You should take note of several items in the Shape algorithm. “shape is a circle” is the if statement’s

condition. It controls whether the if statement’s subordinate statements execute. Note how the set area
command and subsequent print command are separate statements. That’s perfectly acceptable and quite

common, but you should be aware of an alternative implementation where the two commands are merged

into one statement:

02-M4402.indd 3202-M4402.indd 32 12/17/07 4:16:56 PM12/17/07 4:16:56 PM

Apago PDF Enhancer

 2.7 if Statements 33

print “The area is ” (3.1416 * radius * radius)

In this case, we put parentheses around the mathematical calculation to emphasize that we want the computer

to print the result of the calculation, rather than individual variable values. You can always use parentheses

to specify that operations inside the parentheses should be done before operations outside the parentheses.

“if, else”

Now for the second form of the if statement—the “if, else” form. Use the “if, else” form if you want to do

either one thing or another thing. Here is its format:

if <condition>
 <statement(s)>
else

 <statement(s)>

And here’s how the “if, else” form of the if statement works:

If the condition is true, execute all statements subordinate to the “if,” and skip all statements subordi-

nate to the “else.”

If the condition is false, skip all statement(s) subordinate to the “if,” and execute all statements subor-

dinate to the “else.”

Here’s an example that uses the “if, else” form of the if statement:

if grade is greater than or equal to 60

 print “Pass”

else

 print “Fail”

Note how we indent the print “Pass” statement since it is subordinate to the if condition. Note how we indent

the print “Fail” statement since it is subordinate to the “else.”

“if, else if”

The “if, else” form of the if statement addresses situations in which there are exactly two possibilities. But

what if there are more than two possibilities? For example, suppose that you want to print one of fi ve pos-

sible letter grades for a particular numerical score. You can do it by using the “if, else if” form of the if state-

ment to establish parallel paths:

if grade is greater than or equal to 90

 print “A”

else if grade is greater than or equal to 80

 print “B”

else if grade is greater than or equal to 70

 print “C”

else if grade is greater than or equal to 60

 print “D”

else

 print “F”

•

•

02-M4402.indd 3302-M4402.indd 33 12/17/07 4:16:57 PM12/17/07 4:16:57 PM

Apago PDF Enhancer

34 Chapter 2 Algorithms and Design

What happens if the grade is 85? The print “A” statement is skipped, and the print “B” statement is ex-

ecuted. Once one of the conditions is found to be true, then the rest of the entire if statement is skipped. So

the third, fourth, and fi fth print statements are not executed.

What happens if all of the conditions are false? If all of the conditions are false, then the subordinate

statement under “else” is executed. So if the grade is 55, print “F” is executed. Note that you’re not required

to have an “else” with the “if, else if” statement. If you don’t have an “else” and all of the conditions are

false, then no statements are executed.

if Statement Summary

Use the fi rst form (“if”) for problems where you want to do one thing or nothing. Use

the second form (“if, else”) for problems where you want to do either one thing or an-

other thing. Use the third form (“if, else if”) for problems where there are three or more

possibilities.

Practice Problem with Flowchart and Pseudocode

Let’s practice what you’ve learned about if statements by presenting a fl owchart and having you write the

corresponding pseudocode for an algorithm that cuts a CEO’s excessively large salary in half. Figure 2.8

presents the fl owchart.

Use the way that
fi ts best.

no yes

set ceoSalary to ceoSalary * 0.5

print “Reduced CEO Salary is $” ceoSalary

ceoSalary
greater than
$500,000 ?

print “Enter CEO Salary:”

input ceoSalary

Figure 2.8 Flowchart for reducing CEO salaries

In fl owcharts, we omit the word “if” from the condition in diamonds and add a question mark to turn

the condition into a question. The question format fi ts well with the “yes” and “no” on the exiting arrows.

02-M4402.indd 3402-M4402.indd 34 12/17/07 4:16:57 PM12/17/07 4:16:57 PM

Apago PDF Enhancer

 2.7 if Statements 35

If the condition is true, the answer to the question is “yes.” If the condition is false, the

answer to the question is “no.” Given the fl owchart in Figure 2.8, try to write a pseudo-

code version of the cut-CEO-salary-in-half algorithm. When you’re done, compare your

answer to our answer:

print “Enter CEO Salary: ”

input ceoSalary
if ceoSalary is greater than 500000

 set ceoSalary to ceoSalary * 0.5

 print “Reduced CEO Salary is $” ceoSalary

Practice Problems with Pseudocode Only

Everybody knows the saying, a picture is worth a thousand words. This may be true, but compare the space

consumed by and the effort to construct Figure 2.8’s fl owchart with the space consumed by and the effort to

write the corresponding pseudocode. Pictures help you get started, but text is more effi cient once you know

what you’re doing. So now let’s try skipping the fl owchart and going immediately to pseudocode.

First, let’s write an algorithm that prints “No school!” if the temperature is below 0 degrees. Which if

statement form should you use for this problem? Since the problem description says to do either something

or nothing, you should use the simple “if” form:

print “Enter a temperature: ”

input temperature
if temperature is less than 0

 print “No school!”

Next, let’s write an algorithm that prints “warm” if the temperature is above 50 degrees and prints “cold”

otherwise. Which if statement form should we use? Since the problem description says to do one thing or

another thing, you should use the “if, else” form:

print “Enter a temperature: ”

input temperature
if temperature is greater than 50

 print “warm”

else

 print “cold”

Finally, let’s write an algorithm that prints “hot” if the temperature is above 80 degrees, prints “OK” if

it’s between 50 and 80 degrees, and prints “cold” if it’s less than 50 degrees. For this problem, it’s appropri-

ate to use the “if, else if” form, like this:

print “Enter a temperature: ”

input temperature
if temperature is greater than 80

 print “hot”

else if temperature greater than or equal to 50

 print “OK”

else

 print “cold”

Practice writing
a pseudocode
algorithm.

02-M4402.indd 3502-M4402.indd 35 12/17/07 4:16:57 PM12/17/07 4:16:57 PM

Apago PDF Enhancer

36 Chapter 2 Algorithms and Design

2.8 Loops

We’ve now discussed two of the three structures in Figure 2.5—sequential structures and conditional struc-

tures. Let’s now discuss the third structure—looping structures. Looping structures repeat the execution of

a particular sequence of statements. If you need to execute a block of code many times, you could, of course,

repeatedly write the code wherever you need it. However, that leads to redundancy, which is something you

want to avoid in a computer program, because it opens the door to inconsistency. It’s better to write the

code once and then reuse it. The simplest way to reuse a block of code is to go back up to before where that

block starts, and run through it again. That’s called a loop. Every loop has a condition that determines how

many times to repeat the loop. Think of driving through western Kansas and seeing a sign for “Prairie Dog

Town.” Your kids demand that you take the prairie-dog drive-through tour. The decision about how many

times to repeat the tour parallels the condition in a loop statement.

A Simple Example

Suppose you want to print “Happy birthday!” 100 times. Rather than writing 100 print “Happy birthday!”

statements, wouldn’t it be better to use a loop? Figure 2.9 presents a solution to the Happy birthday algo-

rithm in the form of a fl owchart with a loop. The fl owchart implements the looping logic with an arrow that

goes from “set count to count � 1” back up to the “count less than or equal to 100?” condition.

no

yes

print “Happy birthday”

set count to count + 1

count
less than or equal to 100?

set count to 1

Figure 2.9 Flowchart for our Happy Birthday algorithm

In a loop you’ll often use a count variable that keeps track of the number of times the loop has repeated.

You can either count up or count down. The Happy birthday fl owchart counts up.

In the last operation, instead of saying “set count to count + 1,” you could have said something

like “increment count by one.” We chose to use this “set” wording to reinforce a way of thinking that

 corresponds to how a computer updates a variable’s value. Go back and review the thinking associated with

Figure 2.3. First the computer performs a mathematical calculation using existing variable values. In Figure

2.3, the calculation involved two variables, length and width, that were different from the variable be-

ing updated, rectangleArea. In Figure 2.9 the calculation involves the variable being updated, count.

After the computer completes the calculation, it assigns the result of the calculation to the variable being

02-M4402.indd 3602-M4402.indd 36 12/17/07 4:16:58 PM12/17/07 4:16:58 PM

www.allitebooks.com

http://www.allitebooks.org

Apago PDF Enhancer

 2.8 Loops 37

updated. This assignment overwrites the old value and replaces it with a new value. Thus, when it computes

count � 1, the computer uses the old value of count. Then (in the subsequent assignment) it changes the

value in count to the new value.

In practice, all loops should have some kind of termination. That is, they should stop executing at some

point. A loop that counts up normally uses a maximum value as a termination condition. For example,

Figure 2.9’s loop continues as long as count is less than or equal to 100, and it terminates (stops looping)

when count reaches 101. A loop that counts down normally uses a minimum value as a termination condi-

tion. For example, a loop might start with count equal to 100 and continue as long as count is greater

than zero. Then the loop would terminate when count reached zero.

When a loop’s condition compares a counter variable to a maximum value, the question often arises

about whether to use “less than or equal to” or just “less than.” Likewise, when a loop’s condition compares

a counter variable to a minimum value, the question often arises about whether to use “greater than or equal

to” or just “greater than.” There are no absolute answers to those questions. Sometimes you’ll need to do it

one way, and sometimes you’ll need to do it the other way—it depends on the situation. For example, look

again at the decision condition in Figure 2.9’s Happy birthday algorithm. Suppose you used “less than.” Then,

when count equaled 100, you would quit before printing the last (100th) “Happy birthday!” Therefore,

in this case you should use “less than or equal to.” If you mistakenly used “less than,” that would be an off-
by-one error. Such errors are called “off by one” because they occur when you execute a loop one more

time than you should or one less time than you should. To avoid off-by-one errors, you should always double

check the borderline cases for your algorithms’ loops.

The while Loop

Most popular programming languages have several different types of loops. Although it may be awkward,

theoretically, there’s always a way to convert any one type of loop to any other type of loop. So, for simplic-

ity and brevity, in this discussion of algorithms we’ll consider only one type of loop and look at the other

types when we get into the details of the Java language. The type of loop we’ll consider now is a very popu-

lar one, the while loop, which has this format:

while <condition>
 <statement(s)>

This format should look familiar because it’s similar to the if statement’s format. The condition is at the

top, and the subordinate statements are indented. The subordinate statements, which are inside the loop,

are called the loop’s body. The number of times that a loop repeats is called the number of iterations. It’s

possible for a loop to repeat forever, which is called an infi nite loop. It’s also possible for a loop to repeat

zero times. There’s no special name for the zero-iteration occurrence, but it’s important to be aware that this

sometimes happens. For an example, let’s see how Figure 2.9’s Happy birthday fl owchart looks when it’s

presented as pseudocode with a while loop. This is shown in Figure 2.10.

set count to 1

while count is less than or equal to 100

 print “Happy birthday!”

 set count to count + 1

Figure 2.10 Pseudocode for another Happy Birthday algorithm

02-M4402.indd 3702-M4402.indd 37 12/17/07 4:16:58 PM12/17/07 4:16:58 PM

Apago PDF Enhancer

38 Chapter 2 Algorithms and Design

Here’s how the while loop works:

If the condition is true, execute all of the loop’s subordinate statements, and then jump back to the

loop’s condition.

When the loop’s condition fi nally becomes false, jump to below the loop, that is, the fi rst statement after

the loop’s last subordinate statement, and continue execution there.

2.9 Loop Termination Techniques

In this section we describe three common ways to terminate loops:

Counter

Use a counter variable to keep track of the number of iterations.

User query

Ask the user if he/she wants to continue. If the user responds yes, then execute the body of the

loop. After each pass through the subordinate statements in the loop, ask the user again if he/she

wants to continue.

Sentinel value

When a loop includes a data-input statement, identify a special value (a sentinel value) that

is outside the normal range of input, and use it to indicate that looping should terminate. For

example, if the normal range of input is positive numbers, the sentinel value could be a negative

number like 21. Here’s how you do it: Continue to read in values and execute the loop until the

entered value equals the sentinel value, and then stop the looping. In the real world, a sentinel is

a guard who lets people continue to pass until the enemy arrives. So a program’s sentinel value is

like a human sentinel—it allows the loop to continue or not.

Counter Termination

Figure 2.10’s Happy birthday algorithm is a good example of using a counter to terminate a looping opera-

tion. We should point out, however, that the normal place for a computer to start counting is 0, rather than

one. If we use the standard start-at-zero convention, Figure 2.10’s pseudocode changes to this:

set count to 0

while count is less than 100

 print “Happy birthday!”

 set count to count � 1

Notice that as we change the initial count value from 1 to 0, we also change condition comparison from

“less than or equal to” to “less than.” This will produce the same 100 iterations, but this time, the count val-

ues will be 0, 1, 2, . . . 98, 99. Each time you create a counter loop, it’s important to assure yourself that the

number of iterations will be exactly what you want. Because you can start with numbers different than one,

and because the termination condition can employ different comparison operators, it’s sometimes hard to be

sure about the total number of iterations you’ll get. Here’s a handy trick to give you more confi dence:

•

•

•

•

•

02-M4402.indd 3802-M4402.indd 38 12/17/07 4:16:58 PM12/17/07 4:16:58 PM

Apago PDF Enhancer

 2.9 Loop Termination Techniques 39

Simplify the
 problem to check
its essence.

To check a loop’s terminal condition, temporarily change the terminal condition to

produce what you think will be exactly one iteration. For example, in this most recent

pseudocode version of the Happy birthday algorithm (where the initial count is zero),

change the fi nal count from 100 to 1. Then ask yourself, “How many print operations

will occur?” In this case, the initial count is 0. The fi rst time the condition is tested, the condition is “0 is

less than 1,” which is true. So the condition is satisfi ed and the loop’s subordinate statements execute. Since

the fi nal statement in the loop increments the count to 1, the next time the condition is tested, the condition

is “1 is less than 1,” which is false. So the condition is not satisfi ed, and looping terminates. Since using 1 in

the loop condition produces one iteration, you can have confi dence that using 100 in the loop condition will

produce 100 iterations.

User Query Termination

To understand user query termination, consider an algorithm which repeatedly asks a user for numbers and

calculates and prints the squares of the input values. This activity should continue as long as the user an-

swers “y” to a “Continue?” prompt.

Figure 2.11 displays this algorithm as pseudocode. Within the while loop body, the fi rst statement

prompts the user to enter a number, the third statement does the computation, and the fourth statement

prints the result. The query “Continue? (y/n)” and the corresponding input come just before the end of the

body. This loop always executes at least one time, because we assign “y” to the continue variable before the

loop begins.

set continue to “y”

while continue equals “y”

 print “Enter a number: “

 input num
 set square to num * num
 print num “ squared is ” square
 print “Continue? (y/n): ”

 input continue

Figure 2.11 Print Squares algorithm that uses a query loop

Suppose that you want to give the user the opportunity to quit before entering even one number to

square. You can do that by replacing the fi rst statement:

set continue to “y”

with these two statements:

print “Do you want to print a square? (y/n): ”

input continue

This provides the user the option to enter “n” so that no squares will be computed.

Sentinel Value Termination

To understand sentinel value termination, consider an algorithm that reads in bowling scores repeatedly

until a sentinel value of �1 is entered. Then, the algorithm prints the average score.

02-M4402.indd 3902-M4402.indd 39 12/17/07 4:16:59 PM12/17/07 4:16:59 PM

Apago PDF Enhancer

40 Chapter 2 Algorithms and Design

Often, you should spend time just thinking about a problem’s solution before writing any-

thing down. And you should think fi rst about the solution at a high level, without worrying about

all the details. With that said, we encourage you to set the book aside now and think about the steps needed in

the Bowling Score algorithm.

Are you done thinking? If so, compare your thoughts to this high-level description:

Read in scores repeatedly and fi nd the sum of all the scores.

Then, when �1 is entered, divide the sum by the number of scores entered.

There are two details in this high-level description that you now need to address. First, you need to think

about how to fi nd the sum of all the scores. Before asking for any input, and before any looping, assign an

initial value of zero to a totalScore variable. In other words, initialize it to zero. Then, in the same loop

which repeatedly asks the user for the next score, right after inputting that score, add it to the totalScore

variable to accumulate the scores as they come in. This way, after all the scores are in, the totalScore

variable will already contain the sum of all scores.

The sum of all scores is useful because the goal is to determine the average score, and to compute an

average you need the sum. But to compute an average you also need the total number of items, and that’s

not known ahead of time. How can you keep track of the number of scores entered so far? Initialize and ac-

cumulate a count variable while you initialize and update the totalScore variable. Note that just one

loop does all three activities (inputting, updating totalScore, and updating count). We chose �1 as a

sentinel value for a Bowling Score algorithm because it’s a value that would never be a valid bowling-score

entry. But any negative number would work as the sentinel value.

Figure 2.12 illustrates the algorithm solution for this problem. Note how the prompt messages say “(�1

to quit).” That is necessary because without it, the user wouldn’t know how to quit. In general, always pro-

vide enough prompting information so that the user knows what to do next and knows how to quit.

Mull it over.

set totalScore to 0

set count to 0

print “Enter score (�1 to quit): ”

input score
while score is not equal to �1

 set totalScore to totalScore + score
 set count to count + 1

 print “Enter score (�1 to quit): ”

 input score
set avg to totalScore / count
print “Average score is ” avg

Figure 2.12 Bowling Score algorithm using a sentinel-value loop

What would you expect to happen if the user enters �1 as the very fi rst input? That causes the loop body

to be skipped, and the count variable never gets updated from its original initialized value, zero. When

the set average statement attempts to calculate the average score, it divides totalScore by count.

Since count is zero, it divides by zero. As you may recall from your math courses, division by zero cre-

ates problems. If an algorithm divides by zero, the result is undefi ned. If a Java program divides by zero, the

computer prints a cryptic error message and then immediately shuts down the program. Since the Bowling

02-M4402.indd 4002-M4402.indd 40 12/17/07 4:16:59 PM12/17/07 4:16:59 PM

Apago PDF Enhancer

 2.10 Nested Looping 41

Score algorithm allows for the possibility of division by zero, it is not very robust. To be robust, it should

behave in a way that a typical user would consider to be both sensible and courteous, even when the input is

unreasonable. To make it more robust, replace the last two statements in Figure 2.12’s algorithm with an if

statement like this:

if count is not equal to 0

 set avg to totalScore / count
 print “Average score is ” avg
else

 print “No entries were made.”

Using this if statement enables the program to tell the user why a normal output was not produced, and it

avoids the problems inherent with division by zero.

2.10 Nested Looping

In the preceding two sections, we presented algorithms where each algorithm contained one loop. As you pro-

ceed through the book and as you proceed through your programming career, you’ll fi nd that most programs

contain more than one loop. If a program has loops that are independent (i.e., the fi rst loop ends before the

second loop begins), then the program’s fl ow should be reasonably straightforward. On the other hand, if a

program has a loop inside a loop, then the program’s fl ow can be harder to understand. In this section, we’ll try

to make you comfortable with a nested loop, which is the formal term for an inner loop that’s inside an outer

loop.

Suppose you’re asked to write an algorithm that plays multiple games of “Find the largest number.” In

each game, the user enters a series of nonnegative numbers. When the user enters a negative number, the

algorithm prints the largest number in the series and asks the user if he/she wants to play another game.

Before writing anything down, you should think about a very important question:

What types of loops should be used? You’ll need an outer loop that continues as long

as the user says that he/she wants to play another game. What type of loop should that

be—counter loop, user-query loop, or sentinel value loop? You’ll need an inner loop that

plays one game by reading in numbers until a negative number is input. What type of

loop should that be—counter loop, user-query loop, or sentinel value loop? Have you attempted to answer

the questions? If so, read on. If not, stop and think.

The outer loop should be a user-query loop. The inner loop should be a sentinel value loop, where the

sentinel value is any negative number. Now look at the algorithm for this problem in Figure 2.13. Note that

the algorithm does indeed use a user-query outer loop—at the bottom of the loop, the user is prompted to

continue, and at the top of the loop, the response is checked. Note that the algorithm does indeed use a sen-

tinel value inner loop—the loop terminates when the user enters a negative number.

The inner loop’s logic is nontrivial and deserves special attention. Before examining the code itself,

think about the goal and the solution at a high level. The goal is to read in a series of numbers where the

last number is negative and then print the largest number. Suppose the input sequence is 7, 6, 8, 3, 4, �99.

After each new number is entered, the algorithm should ask the question: Is the new number

bigger than the previous biggest number? If the new number is bigger, the new number

is the new “champion,” that is, the new biggest number. Note that the preceding question

started with the word “if.” That’s a good indication that you can implement that logic with an if statement.

Find the if statement in Figure 2.13’s inner loop and verify that it implements the aforementioned logic.

Think about
what type of
loops should be
used.

How would a
human do it?

02-M4402.indd 4102-M4402.indd 41 12/17/07 4:16:59 PM12/17/07 4:16:59 PM

Apago PDF Enhancer

42 Chapter 2 Algorithms and Design

You’ll see that the if statement checks the new number to see if it is bigger than the previous biggest number,

and if it is bigger, then the new number is assigned into the biggest variable. That assignment crowns the

new number as the new champion.

Note the set biggest to �1 initialization at the top of the outer loop. What’s the point

of initializing biggest to �1? Initialize the champion variable (biggest) with a starting value

that will automatically lose the fi rst time a new number is compared to it. You know that �1

will lose to the fi rst number in a fi nd-the-largest-number contest because the contests are

limited to nonnegative numbers and nonnegative numbers are always greater than �1. After the fi rst input re-

places biggest’s �1 initial value, subsequent inputs may or may not replace biggest’s value, depending

on the size of the input number and the size of biggest.

2.11 Tracing

Up until now we have focused on design. Now let’s look at analysis—breaking up of a

whole into its parts. In the present context, that means going through the details of an

already-existing algorithm. The analysis technique we’ll use is called tracing, where you

essentially pretend that you’re the computer. You step through an algorithm (or a program) line by line and

carefully record everything that happens. In the early parts of this book we’ll use tracing to illustrate pro-

gramming details we’re trying to explain. Tracing gives you a way to make sure that you really understand

newly learned programming mechanisms. Tracing also gives you a way to verify whether an existing algo-

rithm or Java code is correct, or whether it has bugs.
What are bugs? One of the early digital computers, the Harvard Mark II, used mechanical relays rather

than transistors, and programmers programmed by changing electrical connections. As the story goes,2 even

though all the electrical connections were right, the computer kept making a mistake. Finally the programmer

discovered a moth squeezed between the contacts of one of the relays. Apparently, the moth had been squashed

when the relay contacts closed, and the moth’s dead body was interrupting the proper fl ow of electricity

2 http://www.faqs.org/docs/jargon/B/bug.html

Use an extreme
case.

Dig into details.

Figure 2.13 Algorithm that plays multiple games of “Find the largest number”

set continue to “y”

while continue equals “y”

 set biggest to �1

 print “Enter a number (negative to quit): ”

 input num
 while num is greater than or equal to 0

 if num is greater than biggest
 set biggest to value of num
 print “Enter a number (negative to quit): ”

 input num
 if biggest is not equal to �1

 print “The Biggest number entered was ” biggest
 print “Play another game? (y/n): ”

 input continue

outer

loop

inner

loop

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎬
⎪
⎪
⎭

02-M4402.indd 4202-M4402.indd 42 12/17/07 4:17:00 PM12/17/07 4:17:00 PM

http://www.faqs.org/docs/jargon/B/bug.html

Apago PDF Enhancer

 2.11 Tracing 43

between those contacts. After the programmer pulled the moth out—“debugged” the computer program—the

computer gave the right answer. When you’re tracing an algorithm or program to fi nd software bugs, you may

sometimes feel like one of these old-timers crawling around inside the CPU, looking for moths.

Short-Form Tracing

We present two tracing forms—a short form, described in this subsection, and a long form, described in

the next subsection. The short-form tracing procedure is commonly used in industry and in classrooms. It

works well in a dynamic environment, where you can move back and forth between pseudocode (or Java

code, later) and a trace listing, and fi ll information in as you go. You may see your teacher go through this

dynamic operation on a whiteboard. For example, here’s an algorithm that prints the Happy-birthday song:

print “What is your name? “

input name
set count to 0

while count is less than 2

 print “Happy birthday to you.”

 set count to count � 1
print “Happy birthday, dear ” name “.”

print “Happy birthday to you.”

Here’s what the short-form trace looks like after the trace is complete:

input name count output

Arjun Arjun 0 What is your name?

1 Happy birthday to you.

2 Happy birthday to you.

Happy birthday, dear Arjun.

Happy birthday to you.

The above trace listing has four columns—input, name, count, and output. The input column shows hypo-

thetical input for the algorithm. The output column shows what the algorithm produces when the algorithm

runs with the given input. The name and count columns show the values stored in the name and count

variables. In this example, we started with the input value “Arjun.” Then we stepped through the code, one

line at a time. In stepping through the code, we added values under the name, count, and output columns,

and we crossed out old count values as they were overwritten by new count values. Figure 2.14 describes

the general procedure.

02-M4402.indd 4302-M4402.indd 43 12/17/07 4:17:01 PM12/17/07 4:17:01 PM

Apago PDF Enhancer

44 Chapter 2 Algorithms and Design

Trace setup:

If there is input, provide a column heading labeled input.

Provide a column heading for each variable.

Provide a column heading labeled output.

Trace the program by executing the algorithm one line at a time, and for each line, do this:

For an input statement, cross off the next input value under the input column heading.

For an assignment statement, update a variable’s value by writing the new value under the

variable’s column heading. If there are already values under the column heading, insert the

new value below the bottom value and cross off the old value.

For a print statement, write the printed value under the output column heading. If there are

already values under the output column heading, insert the new printed value below the bot-

tom of the output column.

•

•

•

•

•

•

Figure 2.14 Short-form tracing procedure

Check each step.

Short-form tracing works well in a live interactive context, but it does not work as well in a static con-

text like the pages of a printed book. That’s because in a book, the short-form tracing does not portray the

dynamics of the updating process very well. With our simple Happy birthday algorithm, you may have been

able to visualize the dynamics. But for more involved algorithms, a short-form trace listing on the page of

a book just “blows through” the details it needs to highlight. Therefore, in this book, we’ll use a long-form

tracing procedure that keeps better track of each step as the process unfolds.

Long-Form Tracing

With the long-form tracing procedure, there’s an added emphasis on keeping track of where you are in the

algorithm. To implement that emphasis, (1) you need to have a separate row in the tracing table for each step

that’s executed in the algorithm, and (2) for each row in the tracing table, you need to provide a line number

that tells you the row’s associated line in the algorithm. For an example, see the long-form happy birthday

trace in Figure 2.15.

Figure 2.15’s long-form trace looks somewhat like the previous short-form trace, with a few notable ex-

ceptions. The input column has been moved above the main part of the tracing table. In its place is the line#

column, which holds line numbers in the algorithm that correspond to rows in the tracing table. Notice the

two 5, 6 line number sequences. That shows how the trace “unrolls” the loop and repeats the sequence of

statements within the loop for each loop iteration.

Using a Trace To Find a Bug

It’s time for you to get your money’s worth from all this tracing talk. We’ll provide you with an algorithm

and it’s up to you to determine whether it works properly. More specifi cally, trace the algorithm to deter-

mine whether each step produces reasonable output. If it produces faulty output, fi nd

the algorithm’s bug and fi x the algorithm.

Suppose that Park University’s Student Housing offi ce wrote the algorithm shown in Figure 2.16. The

algorithm is supposed to read in the names of freshmen and assign each freshman to one of two dormitories.

Freshmen with names that begin with A through M are assigned to Chestnut Hall and freshmen with names

02-M4402.indd 4402-M4402.indd 44 12/17/07 4:17:01 PM12/17/07 4:17:01 PM

Apago PDF Enhancer

 2.11 Tracing 45

1 print “Enter last name (q to quit): ”

2 input lastName
3 while lastName is not equal to q

4 if lastName’s fi rst character is between A and M

5 print lastName “ is assigned to Chestnut Hall.”

6 else

7 print lastName “ is assigned to Herr House.”

input

Ponce

Galati

Aidoo

Nguyen

q

line# lastName output

Figure 2.16 Freshmen dormitory assignment algorithm and trace setup

1 print “What is your name? ”

2 input name
3 set count to 0

4 while count is less than 2

5 print “Happy birthday to you.”

6 set count to count + 1

7 print “Happy birthday, dear ” name “.”

8 print “Happy birthday to you.”

input

Arjun

line# name count output

1 What is your name?

2 Arjun

3 0

5 Happy birthday to you.

6 1

5 Happy birthday to you.

6 2

7 Happy birthday, dear Arjun.

8 Happy birthday to you.

Figure 2.15 Happy Birthday trace—long form

02-M4402.indd 4502-M4402.indd 45 12/17/07 4:17:02 PM12/17/07 4:17:02 PM

Apago PDF Enhancer

46 Chapter 2 Algorithms and Design

that begin with N through Z are assigned to Herr House. Using the trace setup provided in Figure 2.16, try to

either complete the trace or get to a point in the trace where you’ve identifi ed a problem.

Have you fi nished working on the trace? If so, compare your answer to this:

line# lastName output

1 Enter last name (q to quit):

2 Ponce

7 Ponce is assigned to Herr House.

7 Ponce is assigned to Herr House.

7 Ponce is assigned to Herr House.

� �

The trace points out a problem—the algorithm repeatedly prints Ponce’s dorm assignment, but no one else’s.

There appears to be an infi nite loop. Can you identify the bug? The trace shows that lastName gets the

fi rst input value, Ponce, but it never gets any other input values. Referring back to Figure 2.16, you can see

that the algorithm prompts for the last name above the loop, but not inside the loop. Therefore, the fi rst input

value is read in, but no others. The solution is to add another last name prompt inside the while loop, at its

bottom. Here is the corrected algorithm:

print “Enter last name (q to quit): ”

input lastName
while lastName is not equal to q

 if lastName’s fi rst character is between A and M

 print lastName “is assigned to Chestnut Hall.”

 else

 print lastName “is assigned to Herr House.”

 print “Enter last name (q to quit): ”

 input lastName

We encourage you to trace the corrected algorithm on your own, and you’ll fi nd that all four freshmen are

assigned to appropriate dorms. Yeah!

Software Development Tools

Most software development tools temporarily label each line of code with a line number to help identify

the locations of programming errors. Those line numbers are not actually part of the code, but when they

are available, you can use them as identifi ers in the line# column of a long-form trace. Many software de-

velopment tools also include a debugger that enables you to step through a program one line at a time as it

executes. The debugger enables you to look at variable values as you go. Our tracing procedure emulates a

debugger’s step-by-step type of evaluation. Experience with the tracing used in this book will make it easier

for you to understand what an automated debugger is telling you.

2.12 Other Pseudocode Formats and Applications

Pseudocode comes in many different varieties. In this section, we describe several pseudocode variations

and the inherent differences between them.

02-M4402.indd 4602-M4402.indd 46 12/17/07 4:17:02 PM12/17/07 4:17:02 PM

Apago PDF Enhancer

 2.12 Other Pseudocode Formats and Applications 47

Formal Pseudocode

The following Bowling Scores algorithm uses a more formal pseudocode:

totalScore ← 0
count ← 0
print "Enter score (�1 to quit): "
input score
while (score ≠ �1)
{
 totalScore ← totalScore � score
 count ← count � 1
 print "Enter score (�1 to quit): "
 input score
}
avg ← totalScore / count
print "Average score is " � avg

This formal variation of pseudocode uses special symbols to make operations stand out more dramati-

cally. The left-pointing arrow (←) represents the right-to-left assignment illustrated previously in Figure 2.3.

The ≠ says “is not equal to” more succinctly than words say it. The curly braces emphasize the subordinate

nature of the statements in the body of the while loop. Later you’ll see that Java requires such curly braces

whenever the body of an if statement or loop includes more than one subordinate statement. The � in the

last line indicates that the two printed items are different types (“Average score is ” is a string literal and

avg is a variable).

Up until now we have used pseudocode, fl owcharts, and traces to describe algorithm logic fairly pre-

cisely. That precision corresponds closely to the precision found in individual Java-code statements. These

algorithmic descriptions have been giving you an informal implementation view of a desired program. The

fi nal Java code for that program is a formal implementation view of the program. The people who care most

about and see implementation views of programs are the programmers who write those programs.

High-Level Pseudocode

Since pseudocode is so fl exible, you can also use it to describe algorithms at a higher, more macroscopic

level—with more abstraction. The trick is to ignore the details of subordinate operations and just describe

and keep track of inputs to and outputs from those subordinate operations. This strategy presents the “big

picture” as seen by the outside world. It looks at the “forest” rather than the “trees.” It helps keep you on the

right track—so you don’t solve the wrong problem!

For example, the following Bowling Scores algorithm uses a more high-level pseudocode than what

you’ve seen in the past:

Input all scores.

Compute average score.

Print the average score.

This high-level description presents only the major features, not all the details. It indicates what the program

is supposed to do, but not how to do it.

02-M4402.indd 4702-M4402.indd 47 12/17/07 4:17:03 PM12/17/07 4:17:03 PM

Apago PDF Enhancer

48 Chapter 2 Algorithms and Design

Sometimes it’s appropriate to think about programs differently from how program-

mers think about programs. Suppose all you want to do is use somebody else’s program,

and you don’t really care how it’s written. In that case, you would be a user or a client,
and what you would need is a client view of the program. The high-level pseudocode im-

mediately above is an example of an informal client view of a desired program. A formal client view of that

program would typically include a description of how to use the program and examples of actual input and

output. Later, you’ll see many “client views” of Java code that has already been written and is free for you to

use as part of any program you write.

It’s useful to keep in mind these two alternate views of a typical computer program. You’ll want to be

able to switch back and forth between a client view (when you’re acting as or communicating with an end

user of a program), and an implementation view (when you’re designing and writing the program).

2.13 Problem Solving: Asset Management (Optional)

In this section, we ask you to think about a real-world managerial problem at a fairly abstract level. Imagine

that you are the Information-Technology (IT) specialist working in the government of a small city. The head

of that city’s water department respects your organizational skills and has asked you to come to a city coun-

cil meeting and lead a discussion of how you might set up a computer program to help the council manage

the assets of that city’s water system.

First, you suggest that the city-council members help you come up with an overall sequence of steps.

On a blackboard, you’ll write high-level pseudocode for the “program.” To avoid jargon, you’ll just call this

high-level pseudocode a “to-do list.”

After some discussion, the council members agree on—and you list—the following overall steps:3

 1. Make an inventory of all water system assets.

 2. Prioritize those assets.

 3. Schedule future changes, replacements, and additions to those assets.

 4. Prepare a long-range budget.

This high-level pseudocode is just four sequential steps, like the sequential steps in the left-hand picture in

Figure 2.5.

The council thanks you for your help, and for the next meeting, they ask you to fl esh out this list with

enough detail to show how you plan to implement each of the four steps. They don’t want to see a bunch of

computer code. They just want to see how you’d proceed—to get a feeling for the diffi culty of the project.

Back in your offi ce, you create an informal implementation view of the problem. This

view is sometimes called a programmer view or the server view, because the programmer’s

implementation provides a service to the client. For step 1, you identify seven variables:

assetName, expectedLife, condition, serviceHistory, adjustedLife,

age, and remainingLife. For each asset, you’ll have to ask someone in the water depart-

ment to provide appropriate input for each of the fi rst six variables. Then your program will calculate a value

for the last variable. You’ll have to repeat this for each signifi cant asset. So here’s an abbreviated pseudocode

description of the implementation of step 1:

Describe
program to
client.

Translate
client view
into server
view.

3 These four steps and their subsequent elaboration are based on recommendations in Asset Management: A Handbook for Small
Water Systems, Offi ce of Water (4606M) EPA 816-R-03-016, www.epa.gov/safewater, September, 2003.

02-M4402.indd 4802-M4402.indd 48 12/17/07 4:17:03 PM12/17/07 4:17:03 PM

http://www.epa.gov/safewater

Apago PDF Enhancer

 2.13 Problem Solving: Asset Management (Optional) 49

set more to ‘y’

while more is equal to ‘y’

 input assetName
 input expectedLife
 input condition
 input serviceHistory
 input adjustedLife
 input age
 set remainingLife to adjustedLife � age
 print “Another asset? (y/n): ”

 input more

This algorithm does not include prompts for the individual variables. Some of these variables may have

multiple components, and you may wish to establish and enforce certain conventions for what input values

will be acceptable. For example, condition and serviceHistory may each have several subordinate

components. You’ll deal with all those details later.

For step 2, you have fi ve variables: assetName, remainingLife, importance, redundancy,

and priority. The assetName and remainingLife variables are the same as two of the variables

used for step 1, so you won’t need to input those again. But wait! If this is a separate loop, you’ll still have

to identify each asset to make sure the new values are being associated with the right asset. You could do

this by asking the user to re-enter the assetName, or you could do it by looping through all the existing

assets and printing out each name just before asking for the required additional information for that asset.

The second strategy is easier for the user, so you pick it. Here’s an abbreviated pseudocode description of the

implementation of step 2:

while another asset exists

 print assetName
 input importance
 input redundancy
 input priority

Again, the algorithm does not include prompts, and it does not establish and enforce input conventions.

You’ll deal with those details later.

For step 3, you identify fi ve variables: assetName, activity, yearsAhead, dollarCost, and

annualReserve. Again, assetName is already in the system, so again, you can identify it by printing it

out. But in scheduling things, the council members will want to deal with the most important things fi rst, so

before you start going through the assets, you’ll want the program to sort them by priority. The sorting

operation might be a little tricky. But if you’re lucky, someone else already will have written code for that

popular computer task, and you’ll be able to use it instead of “reinventing the wheel.”

The activity, yearsAhead, and dollarCost are inputs, and you’ll want the program to com-

pute annualReserve as dollarCost / yearsAhead. After computing the annual reserve for each

individual asset, you’ll want the program to add it to a totalAnnualReserve variable, and after the

loop you’ll want it to print the fi nal value of totalAnnualReserve. Here’s an abbreviated pseudocode

description of the implementation of step 3:

02-M4402.indd 4902-M4402.indd 49 12/17/07 4:17:03 PM12/17/07 4:17:03 PM

Apago PDF Enhancer

sort assets by priority

set totalAnnualReserve to 0

while another asset exists

 print assetName
 input activity
 input yearsAhead
 input dollarCost
 set annualReserve to dollarCost / yearsAhead
 set totalAnnualReserve to totalAnnualReserve � annualReserve
print totalAnnualReserve

Again, the algorithm does not include prompts. You’ll deal with all those details later.

For step 4, you identify the three variables, totalAnnualReserve, currentNetIncome, and

additionalIncome. For this you need to get someone in the accounting department to provide a value

for currentNetIncome. Then have the program subtract it from the totalAnnualReserve com-

puted in step 3 to obtain the additionalIncome required to make the plan work. Oh yes! If the answer

comes out negative, you’ll want it to just print zero to indicate that your city won’t have to come up with any

additional income. Here’s a pseudocode description of the implementation of step 4:

input currentNetIncome
set additionalIncome to currentNetIncome � totalAnnualReserve
if additionalIncome is less than 0

 set additionalIncome to 0

print “Additional income needed = ” additionalIncome

OK, that’s probably enough preparation for next week’s city council meeting. At least you’ll be able to give

the council members a reasonable feeling for the amount of work required.

Summary

Use pseudocode to write informal descriptions of algorithms. Use understandable names for variables.

Indent subordinate statements.

When your program needs an input, provide an informative prompt to tell the user what kind of infor-

mation to supply.

A fl owchart provides a visual picture of how the elements of a program are related and how control

fl ows through those elements as the program executes.

There are three basic well-structured fl ow-of-control patterns—sequential, conditional, and looping.

You can implement conditional execution using the three forms of the if statement: “if,” “if, else,” and

“if, else if.”

Provide all loops with some kind of terminating condition such as counter, user query, or sentinel

value.

Use a nested loop if there’s a need to repeat something during each iteration of an outer loop.

Use tracing to (1) obtain an intimate understanding of what an algorithm does and (2) debug programs

that have logical errors.

Use more abstract language to describe larger and more complex programming operations succinctly.

•

•

•

•
•

•

•
•

•

50 Chapter 2 Algorithms and Design

02-M4402.indd 5002-M4402.indd 50 12/17/07 4:17:04 PM12/17/07 4:17:04 PM

Apago PDF Enhancer

Review Questions

§2.2 Output

 1. Describe what this statement does:

print “user name = ” userName

§2.3 Variables

 2. Provide an appropriate variable name for a variable that holds the total number of students.

§2.4 Operators and Assignment Statements

 3. Write a line of pseudocode that tells the computer to assign distance divided by time into a speed
variable.

§2.5 Input

 4. Write a line of pseudocode that tells the computer to put a user entry into a variable called height.

§2.6 Flow of Control and Flowcharts

 5. What are the three types of control fl ow described in this chapter?
 6. Looping is appropriate whenever the next thing done is something previously done. (T / F)

§2.7 if Statements

 7. Consider the following pseudocode:

 if it is night, set speedLimit to 55;
 otherwise, set speedLimit to 65.

 Suppose the value of the variable, night, is “false.” After this code runs, what should be the value of the
variable, speedLimit?

 8. The above pseudocode does not have the exact form suggested in the text. Is that OK?
 9. Draw a fl owchart that implements this logic:
 If the temperature is greater than 10˚C and it’s not raining, print “walk.” Otherwise, print “drive.”
 10. Provide a solution to the previous problem in the form of pseudocode.

§2.8 Loops

 11. Where is a while loop’s terminating decision made?
 12. When a while loop terminates, what executes next?
 13. Is it possible for a while loop to have an infi nite number of iterations?
 14. Is it possible for a while loop to have zero iterations?

§2.9 Loop Termination Techniques

 15. What are the three loop termination techniques described in this chapter?
 16. A sentinel value is used to do which of the following?

 a) Specify the first value printed.
 b) Print an error message.
 c) Signal the end of input.

§2.10 Nested Looping

 17. How does the form of pseudocode we use in most of this chapter differentiate an inner loop from an
outer loop?

 Review Questions 51

02-M4402.indd 5102-M4402.indd 51 12/17/07 4:17:04 PM12/17/07 4:17:04 PM

Apago PDF Enhancer

§2.11 Tracing

 18. Which of the following is true?
 a) Tracing shows sequence of execution.
 b) Tracing helps you debug a program.
 c) Tracing highlights errors in loop initialization and termination.
 d) All of the above.

 19. Trace the following Bowling Score algorithm (taken from Section 2.9). Use the setup shown below the
algorithm.

 1 set totalScore to 0
 2 set count to 0
 3 print “Enter score (�1 to quit): ”
 4 input score
 5 while score is not equal to �1
 6 set totalScore to totalScore � score
 7 set count to count � 1
 8 print “Enter score (�1 to quit): ”
 9 input score
10 set avg to totalScore / count
11 print “Average score is ” avg

Trace setup:

input
94
104
114

�1

line# score totalScore count avg output

Exercises

 1. [after §2.5] Write pseudocode for an algorithm that (1) asks the user to input the length of the side of a
square, (2) computes the square’s area, and (3) prints the square’s area. Use the following sample session.

 Sample session:

Enter length of side of square in meters: 15
The area of the square is 225 square meters.

 2. [after §2.8] What is an infi nite loop?

 3. [after §2.8] Given the following pseudocode, circle the statements that are considered to be within the body
of the while loop:

input time
while time is less than 8
 print time
 set time to time � 1

 4. [after §2.9] In exercise 3, suppose the user’s input for time is 3. How many lines of output will the
algorithm generate?

The italics signify

user input.

52 Chapter 2 Algorithms and Design

02-M4402.indd 5202-M4402.indd 52 12/17/07 4:17:05 PM12/17/07 4:17:05 PM

Apago PDF Enhancer

 5. [after §2.11] Trace the following algorithm. The book presents two ways to do tracing—a short form and a
long form. To give you a head start, the setup for the short form and also the long form are given below. For
your answer, pick one setup and use it. Skip the other setup.

1 set y to 0
2 input x
3 while x is not equal to y
4 set y to value of x
5 input x
6 set x to x � y
7 print “x = ” x
8 print “y = ” y

Short-form setup:

input x y output
2
3
4
0

Long-form setup:

input
2
3
4
0.

line# x y output

 6. [after §2.11] Trace the following algorithm. The book presents two ways to do tracing—a short form and a
long form. To give you a head start, the setup for the short form and also the long form are given below. For
your answer, pick one setup and use it. Skip the other setup.

 1 set num to 2
 2 set count to 1
 3 while count is less than 5
 4 set count to count * num
 5 if count / 2 is less than 2
 6 print “Hello”
 7 else
 8 while count is less than 7
 9 set count to count � 1
10 print “The count is” count “.”

Short-form setup:

num count output

Long-form setup:

line# num count output

 Exercises 53

02-M4402.indd 5302-M4402.indd 53 12/17/07 4:17:05 PM12/17/07 4:17:05 PM

Apago PDF Enhancer

Review Question Solutions

 1. The statement prints what is in quotation marks literally, and then prints the current value of the variable
userName.

 2. totalNumberOfStudents

 3. Pseudocode that tells the computer to assign distance divided by time into a speed variable:
 set speed to distance / time

 4. Pseudocode statement:
 input height

 5. The three types of control fl ow discussed in Chapter 2 are sequential, conditional, and looping.

 6. True. Looping is appropriate whenever the next thing done is something previously done.

 7. After the code executes, the value of the variable, speedLimit, should be 65.

 8. Yes. It’s OK because it’s only pseudocode, and it conveys the meaning unambiguously. However, if it were
supposed to be code the computer could compile, the syntax would have to conform exactly to prescribed
rules for a particular programming language like Java.

 9. Flowchart that implements walk/drive logic:

print “walk”

print “drive”

no

no
yes

yes

raining?

temperature
greater than 10 ?

input temperature

print “Is it raining? (y/n): ”

input raining

print “Enter temperature in Celsius:”

 10. Provide a solution to the previous problem in the form of pseudocode.

print “Enter temperature in Celsius: ”
input temperature
print “Is it raining? (y/n): ”
input raining

54 Chapter 2 Algorithms and Design

02-M4402.indd 5402-M4402.indd 54 12/17/07 4:17:06 PM12/17/07 4:17:06 PM

Apago PDF Enhancer

if temperature is greater than 10
 if raining equals “n”
 print “walk”
else
 print “drive”

 11. A while loop’s terminating decision is made at the beginning of the loop.

 12. After a while loop terminates, the next thing to execute is the fi rst statement after the end of the loop.

 13. Yes.

 14. Yes.

 15. The three loop termination techniques described in this chapter are: counter, user query, and sentinel value.

 16. A sentinel value is used to: c) signal the end of input.

 17. The inner loop is entirely inside the outer loop. The entire inner loop is shifted to the right compared to the
outer loop.

 18. d) All of above. Tracing shows sequence of execution, helps debug, and highlights initialization and
termination errors.

 19. Bowling Score algorithm trace:

input
94
104
114
�1

line# score totalScore count avg output

1 0

2 0

3 Enter score (-1 to quit):

4 94

6 94

7 1

8 Enter score (-1 to quit):

9 104

6 198

7 2

8 Enter score (-1 to quit):

9 114

6 312

7 3

8 Enter score (-1 to quit):

9 -1

10 104

11 Average score is 104

 Review Question Solutions 55

02-M4402.indd 5502-M4402.indd 55 12/17/07 4:17:06 PM12/17/07 4:17:06 PM

Apago PDF Enhancer

56 Chapter 3 Java Basics

C H A P T E R

56

Java Basics

Objectives

Write simple Java programs.

Learn about style issues such as comments and readability.

Declare, assign, and initialize variables.

Understand primitive data types—integer, fl oating point, and character.

Understand reference variables.

Use the String class’s methods for string manipulation.

Use the Scanner class for user input.

Optionally, learn about GUI input and output with the JOptionPane class.

Outline

 3.1 Introduction

 3.2 “I Have a Dream” Program

 3.3 Comments and Readability

 3.4 The Class Heading

 3.5 The main Method’s Heading

 3.6 Braces

 3.7 System.out.println
 3.8 Compilation and Execution

 3.9 Identifi ers

 3.10 Variables

 3.11 Assignment Statements

 3.12 Initialization Statements

 3.13 Numeric Data Types—int, long, float, double

 3.14 Constants

 3.15 Arithmetic Operators

 3.16 Expression Evaluation and Operator Precedence

 3.17 More Operators: Increment, Decrement, and Compound Assignment

•
•
•
•
•
•
•
•

3

03-M4402.indd 5603-M4402.indd 56 12/17/07 4:18:01 PM12/17/07 4:18:01 PM

Apago PDF Enhancer

 3.18 Tracing

 3.19 Type Casting

 3.20 char Type and Escape Sequences

 3.21 Primitive Variables Versus Reference Variables

 3.22 Strings

 3.23 Input—the Scanner class

 3.24 GUI Track: Input and Output with JOptionPane (Optional)

3.1 Introduction

In solving a problem, it’s best to spend time fi rst thinking about what you want to do and organizing your

thoughts. In Chapter 2, you focused on the thinking and organizing by writing pseudocode algorithm solu-

tions for given problem descriptions. In this chapter, you’ll take the next step—you’ll focus on writing solu-

tions using a real programming language, Java. By using a real programming language, you’ll be able to run

your program on a computer and produce results on a computer screen.

As you progress through this chapter, you’ll fi nd that much of Java’s code parallels pseudocode. The

primary difference is the precise syntax required for Java. Pseudocode syntax is lenient: Pseudocode must

be clear enough so that humans can understand it, but the spelling and grammar need not be perfect. Pro-

gramming-code syntax is stringent: It must be perfect in terms of spelling and grammar. Why? Because

regular programming code is read by computers, and computers are not able to understand instructions un-

less they’re perfect.

Since this chapter is your fi rst real taste of Java, we’ll stick to the basics. We’ll present Java syntax

that’s needed for simple sequential-execution programs. A sequential-execution program is one in which

all the program’s statements are executed in the order in which they are written. As we write such pro-

grams, we’ll show you output, assignment, and input statements. In addition, we’ll describe data types

and arithmetic operations. Toward the end of the chapter, we’ll present a few slightly more advanced

topics—type casting and string methods—that will add important functionality without adding much com-

plexity. Let us begin the Java journey.

3.2 “I Have a Dream” Program

In this section, we present a simple program that prints a single line of text. In the next several sections, we’ll

analyze the different components of the program. The analysis may be a bit dry, but bear with us. It’s impor-

tant to understand the program’s components because all future programs will use those same components.

In the rest of the chapter, we’ll introduce new concepts that enable us to present more substantial programs.

See Figure 3.1. It shows a program that prints “I have a dream!” 1 In the upcoming sections, we’ll re-

fer to it as the Dream program. The program contains comments for human readers and instructions for

the computer to execute. We’ll analyze the comments fi rst, and then we’ll move on to the

instructions. You can use this tiny program as a common starting point for all other Java

programs. Enter it, run it, and see what it does. Modify it, run it again, and so on, until you

have what you need.

1 Dr. Martin Luther King presented his famous “I have a dream” speech on the steps of the Lincoln Memorial as part of an August 28,
1963 civil rights march on Washington D.C. The speech supported desegregation and helped spur passage of the 1964 Civil Rights Act.

 3.2 “I Have a Dream” Program 57

Start every
program with
this code’s
structure.

03-M4402.indd 5703-M4402.indd 57 12/17/07 4:18:02 PM12/17/07 4:18:02 PM

Apago PDF Enhancer

58 Chapter 3 Java Basics

2 A compiler, defi ned in Chapter 1, is a special program that converts a source-code program into an executable program. An execut-
able program is a program that the computer can execute directly.

3.3 Comments and Readability

In the real world, you’ll spend a lot of your time looking at and fi xing other people’s code. And other people

will spend a lot of their time looking at and fi xing your code after you’ve moved on to something else. With

all this looking at other people’s code going on, everyone’s code needs to be understandable. One key to un-

derstanding is good comments. Comments are words that humans read but the compiler 2 ignores.

One-Line-Comment Syntax

There are two types of comments—one-line comments and block comments. If your comment text is short

enough to fi t on one line, use a one-line comment. One-line comments start with two slashes. Here’s an

example:

} // end class Dream

The compiler ignores everything from the fi rst slash to the end of the line. So in the above line, the compiler

pays attention only to the right brace (}) and ignores the rest of the line. Why is the comment helpful? If

you’re viewing a long piece of code on a computer screen and you’ve scrolled to the bottom of the code, it’s

nice to see a description of the code (e.g., end class Dream) without having to scroll all the way back

up to the beginning of the code.

Block-Comment Syntax

If your comment text is too long to fi t on one line, you can use multiple one-line comments, but it’s a bit of a

pain to retype the //’s for every line. As an alternative, you can use a block comment. Block comments start

with an opening /* and end with a closing */. Here’s an example:

/**
* Dream.java
* Dean & Dean
*
* This program prints "I have a dream."
**/

public class Dream
{
 public static void main(String[] args)
 {
 System.out.println("I have a dream!");
 }
} // end class Dream

Figure 3.1 Dream program

⎫
 ⎢
⎬
 ⎢

⎭
Comments for human readers.

Comment for human readers.

⎫
 ⎢
 ⎢ ⎬
 ⎢
 ⎢
⎭

Instructions for the

computer to execute.

03-M4402.indd 5803-M4402.indd 58 12/17/07 4:18:03 PM12/17/07 4:18:03 PM

Apago PDF Enhancer

/*
The following code displays the androids in a high-speed chase,
wreaking havoc on nearby vehicles.
*/

The compiler ignores everything between the fi rst slash and the last slash.

Prologue

A prologue is a special example of a block comment. You should put a prologue at the top of every one of

your programs. It provides information about the program so that a programmer can quickly glance at it and

get an idea of what the program is all about. To make is stand out, it’s common to enclose the prologue in a

box of asterisks. Here’s the Dream program’s prologue:

/**
* Dream.java
* Dean & Dean
*
* This program prints "I have a dream."
**/

Note that the opening /* and the closing */ blend in with the other asterisks. That’s OK. The compiler still

recognizes the /* and */ as the start and end points of the block comment.

Include these items in your program’s prologue section:

a line of *’s

fi lename

programmer’s name

a line with a single * at its left

program description

a line of *’s

Readability and Blank Lines

We say that a program is readable if a programmer can easily understand what the program does.

Comments are one way to improve a program’s readability. Another way to improve a program’s readability

is to use blank lines. How are blank lines helpful? Isn’t it easier to understand several short, simple recipes

rather than a single long, complicated recipe? Likewise, it’s easier to understand small chunks of code rather

than one large chunk of code. Using blank lines allows you to split up large chunks of code into smaller

chunks of code. In a prologue, we insert a blank line to separate the fi lename-author section from the de-

scription section. Also, we insert a blank line below the prologue to separate it from the rest of the program.

By the way, computers don’t care about readability; they just care about whether a program works. More

specifi cally, computers skip all comments, blank lines, and contiguous space characters. Since computers don’t

care about readability, your computer would be perfectly happy to compile and execute this Dream program:

public class Dream{public static void
main(String[]args){System.out.println("I have a dream!");}}

But a person trying to read the program would probably be annoyed because of the program’s poor

readability.

•

•

•

•

•

•

the start of the block commentthe start of the block comment

the end of the block commentthe end of the block comment

 3.3 Comments and Readability 59

03-M4402.indd 5903-M4402.indd 59 12/17/07 4:18:04 PM12/17/07 4:18:04 PM

Apago PDF Enhancer

60 Chapter 3 Java Basics

3.4 The Class Heading

So far, we’ve focused on code that the computer ignores—comments. Now let’s talk about code that the

computer pays attention to. Here’s the fi rst non-comment line in the Dream program:

public class Dream

That line is called a class heading because it’s the heading for the defi nition of the program’s class. What’s

a class? For now, think of a class simply as a container for your program’s code.

Let’s examine the three words in the class heading. First, the last word—Dream. Dream is the name of

the class. The compiler allows the programmer to choose any name for the class, but in the interest of mak-

ing your code readable, you should choose a word(s) that describes the program. Since the Dream program

prints “I have a dream,” Dream is a reasonable class name.

The fi rst two words in the class heading, public and class, are reserved words. Reserved words,

also called keywords,3 are words that are defi ned by the Java language for a particular purpose. They cannot

be redefi ned by a programmer to mean something else. That means programmers cannot use reserved words

when choosing names in their programs. For example, we were able to choose Dream for the class name

because Dream is not a reserved word. We would not have been allowed to choose public or class for

the class name.

So what are the meanings of the public and class reserved words? The word class is a marker

that signifi es the beginning of the class. For now, with our simple one-class programs, the word class also

signifi es the beginning of the program.

The word public is an access modifi er—it modifi es the class’s permissions so that the class is acces-

sible by the “public.” Making the class publicly accessible is crucial so that when a user attempts to run it,

the user’s run command will be able to fi nd it.

There are certain coding conventions that most programmers follow. We list such conventions in our

“Java Coding-Style Conventions” appendix. Throughout the book, when we refer to “standard coding con-

ventions,” we’re referring to the coding conventions found in the appendix. Standard coding conventions

dictate that class names start with an uppercase fi rst letter; thus, the D in the Dream class name is upper-

case. Java is case-sensitive, which means that the Java compiler distinguishes between lowercase and upper-

case letters. Since Java is case-sensitive, the fi lename should also start with an uppercase fi rst letter.

3.5 The main Method’s Heading

We’ve talked about the class heading. Now it’s time to talk about the heading that goes below the class

heading—the main method heading. In starting a program, the computer looks for a main method head-

ing, and execution begins with the fi rst statement after the main method heading. The main method

heading must have this form:

public static void main(String[] args)

Let’s start our analysis of the main method heading by explaining the word main itself. So far, all you

know about main is that in starting a program, the computer looks for it. But main is more than that;

it’s a Java method. A Java method is similar to a mathematical function. A mathematical function takes

arguments, performs a calculation, and returns an answer. For example, the sin(x) mathematical function

3 In Java, reserved words and keywords are the same. But in some programming languages, there is a subtle difference. In those lan-
guages, both terms refer to words that are defi ned by the programming language, but keywords can be redefi ned by the programmer,
and reserved words cannot be redefi ned by the programmer.

03-M4402.indd 6003-M4402.indd 60 12/17/07 4:18:05 PM12/17/07 4:18:05 PM

Apago PDF Enhancer

takes the x argument, calculates the sine of the given x angle, and returns the calculated sine of x. Likewise,

a Java method may take arguments, will perform a calculation, and may return an answer.

The rest of the main heading contains quite a few mysterious words whose explanations may be con-

fusing at this point. In later chapters, when you’re better prepared, we’ll explain the words in detail. For now,

it’s OK to treat the main method heading as a line of text that you simply copy and paste under the class

heading. We realize that some of you may be uncomfortable with that. For you folks, the rest of this section

explains main method heading details.

Explanation of main Method Heading Details

We’ll now explain the three reserved words at the left of the main method heading—public static
void. As previously mentioned, the word public is an access modifi er—it grants permissions so that

main is accessible by the “public.” Since main is the starting point for all Java programs, it must be pub-

licly accessible.

While public specifi es who can access the main method (everyone), the word static specifi es how

to access the main method. With a non-static method, you must do some extra work prior to accessing

it.4 On the other hand, a static method can be accessed immediately, without doing the extra work. Since

main is the starting point for all Java programs, it must be immediately accessible, and therefore it requires

the word static.

Now for the third reserved word in the main heading—void. Remember that a method is like a math-

ematical function—it calculates something and returns the calculated value. Well actually, a Java method

sometimes returns a value and sometimes returns nothing. void indicates that a method returns nothing.

Since the main method returns nothing, we use void in the main method’s heading.

Now for the (String[] args) portion of the main heading. Remember that a mathematical func-

tion takes arguments. Likewise the main method takes arguments.5 Those arguments are represented by

the word args. In Java, if you ever have an argument, you need to tell the computer what type of value the

argument can hold. In this case, the argument’s type is defi ned to be String[], which tells the computer

that the args argument can hold an array of strings. The square brackets, [], indicate an array. An array

is a structure that holds a collection of elements of the same type. In this case String[] is an array that

holds a collection of strings. A string is a sequence of characters. You’ll learn more about strings later in this

chapter in Section 3.22, and you’ll learn about arrays in Chapter 10.

3.6 Braces

In the Dream program, we inserted opening braces, {, below the class heading and below the main head-

ing, and we inserted closing braces, }, at the bottom of the program. Braces identify groupings for humans

and for the computer. They must come in pairs—whenever you have an opening brace, you’ll need an as-

sociated closing brace. In the Dream program, the top and bottom braces group the contents of the entire

class, and the interior braces group the contents of the main method. For readability’s sake, you should put

an opening brace on a line by itself in the same column as the fi rst character of the previous line. Look at the

following code fragment and note how the opening braces are positioned correctly.

4 To access a non-static method (more formally called an instance method), you must fi rst instantiate an object. We describe object
instantiation in Chapter 6.
5 Although the main method takes arguments, it’s rare for the main method to use those arguments. The book’s programs do not use
the main method’s arguments.

 3.6 Braces 61

03-M4402.indd 6103-M4402.indd 61 12/17/07 4:18:06 PM12/17/07 4:18:06 PM

Apago PDF Enhancer

62 Chapter 3 Java Basics

public class Dream

{
 public static void main(String[] args)
 {
 System.out.println("I have a dream!");
 }
} // end class Dream

The fi rst brace is positioned immediately below the fi rst character in the class heading, and the second

brace is positioned immediately below the fi rst character in the main heading. For readability’s sake, you

should put a closing brace on a line by itself in the same column as its partner opening brace. Look at the

above code fragment and note how the closing braces are positioned correctly.

3.7 System.out.println

In the Dream program, the main method contains this one statement:

System.out.println("I have a dream!");

The System.out.println statement tells the computer to print something. The word System refers to

the computer. System.out refers to the output part of the computer system—the computer’s monitor. The

word println (pronounced “print line”) refers to the Java println method that’s in charge of printing a

message to the computer screen. The above statement would normally be referred to as a println method

call. You call a method when you want to execute it.

The parentheses after println contain the message that is to be printed. The above statement prints

this message on a computer screen:

I have a dream!

Note the double quotes in System.out.println("I have a dream!"); To print a group of charac-

ters (e.g., I, space, h, a, v, e, . . .), you need to group them together. As you learned in Chapter 2, the double

quotes are in charge of grouping together characters to form a string literal.

Note the semicolon at the end of System.out.println("I have a dream!"); A semicolon in

the Java language is like a period in natural language. It indicates the end of a statement. You’ll need to put

a semicolon at the end of every System.out.println statement.

You’ll be calling the System.out.println method a lot, so you might want to try to memorize

its wording. To help with your memorization, think of it as an acronym—“Sop” for System, out, and

println. Don’t forget that the S is uppercase and the rest of the command is lowercase.

The System.out.println method prints a message and then moves to the beginning of the next

line. That means that if there is another System.out.println method call, it starts its printing on the

next line. The upcoming example illustrates what we’re talking about.

An Example

In our Dream program, we print just one short line—“I have a dream!” In our next example, we print mul-

tiple lines of varying lengths. See Figure 3.2’s Sayings program and its associated output. Note how each of

the three println method calls produces a separate line of output. Note how the second println method

call is too long to fi t on one line, so we split it just to the right of the left parenthesis. The third println

03-M4402.indd 6203-M4402.indd 62 12/17/07 4:18:06 PM12/17/07 4:18:06 PM

Apago PDF Enhancer

method call is longer than the second println method call and as such, it could not fi t on two lines if it

was split after the left parenthesis. In other words, this does not work:

 System.out.println(
 "If you are not part of the solution, you are part of the pr

Thus, we split the third println method call in the middle of the string that is to be printed. To split a

string literal, you need to put opening and closing quotes around each of the two split-apart substrings,

and you need to insert a + between the substrings. See the quotes and the + in Figure 3.2’s third println
method call.

3.8 Compilation and Execution

Up to this point in the chapter, you’ve been exposed only to the theory behind Java code (the theory behind

the Dream program’s code and the theory behind the Sayings program’s code). To gain a more complete

appreciation for code, you need to enter it on a computer, compile it, and run it. After all, learning how to

program requires lots of hands-on practice. It’s a “contact sport”! We’ve provided several tutorials on the

Not enough room.Not enough room.

Figure 3.2 Sayings program and its associated output

/**
* Sayings.java
* Dean & Dean
*
* This program prints several sayings.
***/

public class Sayings
{
 public static void main(String[] args)
 {
 System.out.println("The future ain't what it used to be.");
 System.out.println(
 "Always remember you're unique, just like everyone else.");
 System.out.println("If you are not part of the solution," +
 " you are part of the precipitate.");
 } // end main
} // end class Sayings

Output:

The future ain't what it used to be.
Always remember you're unique, just like everyone else.
If you are not part of the solution, you are part of the precipitate.

This connects/concatenates

the split-apart strings.

⎯ ⎯

 3.8 Compilation and Execution 63

03-M4402.indd 6303-M4402.indd 63 12/17/07 4:18:07 PM12/17/07 4:18:07 PM

Apago PDF Enhancer

64 Chapter 3 Java Basics

book’s Web site that step you through the compilation and execution of a few simple Java programs. We

recommend that you now take the time to work your way through one or more of those tutorials. The rest of

this section covers some basic concepts related to compilation and execution. Be aware that we cover these

concepts plus additional details in the tutorials.

After entering a program’s source code on a computer, save it in a fi le whose name is comprised of

the class name plus a .java extension. For example, since the Dream program’s class name is Dream, its

source-code fi lename must be Dream.java.

After saving a program’s source code in an appropriately named fi le, create Java bytecode6 by submit-

ting the source code fi le to a Java compiler. In compiling the source code, the compiler generates a bytecode

program fi le whose name is comprised of the class name plus a .class extension. For example, since the

Dream program’s class name is Dream, its bytecode fi lename will be Dream.class.

The next step after creating the bytecode program fi le is to run it. To run a Java program, submit the

bytecode program fi le to the Java Virtual Machine (JVM).

3.9 Identifi ers

So far in this chapter, you’ve learned Java by looking at code. Eventually, you’ll need to learn it by writing

your own code. When you do so, you’ll need to pick out names for your program components. Java has cer-

tain rules for naming your program components. We’ll look at those rules now.

An identifi er is the technical term for a program component’s name—the name of a class, the name of a

method, and so on. In our Dream program, Dream was the identifi er for the class name, and main was the

identifi er for the method name.

Identifi ers must consist entirely of letters, digits, dollar signs ($), and/or underscore (_) characters.

The fi rst character must not be a digit. If an identifi er does not follow these rules, your program won’t

compile.

Coding-convention rules are narrower than compiler rules when it comes to identifi ers. Coding con-

ventions suggest that you limit identifi ers to just letters and digits. Do not use dollar signs, and (except for

named constants—to be described later) do not use underscores. They also suggest that you use lowercase

for all your identifi er letters except:

Start class names with an uppercase letter. For example, our Dream class starts with an uppercase D.
Run together the words in a multiple-word identifi er, using an uppercase letter for the fi rst letter in the

second word, third word, and so on. For example, if a method prints a favorite color, an appropriate

method name would be printFavoriteColor.

Perhaps the most important coding-convention identifi er rule is the one that says identifi ers must be

descriptive. Returning to the example of a method that prints a favorite color, printFavoriteColor is

plenty descriptive. But how about favColor? Nope, not good enough. Some programmers like to use ab-

breviations (like “fav”) in their identifi ers. That works OK sometimes, but not all that often. We recommend

staying away from abbreviations unless they’re standard. Using complete and meaningful words in identi-

fi ers promotes self documentation. A program is self-documenting if the code itself explains the meaning,

without needing a manual or lots of comments.

If you break a coding-conventions rule, it won’t affect your program’s ability to compile, but it will de-

tract from your program’s readability. Suppose you have a sngs method that prints a list of the week’s top

•

•

6 Bytecode, defi ned in Chapter 1, is a binary-encoded version of the source code. The computer cannot execute source code, but it can
execute bytecode.

03-M4402.indd 6403-M4402.indd 64 12/17/07 4:18:08 PM12/17/07 4:18:08 PM

Apago PDF Enhancer

40 songs. Even though sngs might work, you should rename it to something like printTop40Songs to

improve your program’s readability.

3.10 Variables

To this point, our programs haven’t done a whole lot; they’ve just printed a message. If you want to do more

than that, you’ll need to be able to store values in variables. A Java variable can hold only one type of value.

For example, an integer variable can hold only integers and a string variable can hold only strings.

Variable Declarations

How does the computer know which type of data a particular variable can hold? Before a variable is used,

its type must be declared in a declaration statement.

Declaration statement syntax:

<type> <list-of-variables-separated-by-commas>;

Example declarations:

int row, col;
String firstName; // student's first name
String lastName; // student's last name
int studentId;

In each declaration statement, the word at the left specifi es the type for the variable or variables at the right.

For example, in the fi rst declaration statement, int is the type for the row and col variables. Having an

int type means that the row and col variables can hold only integers (int stands for integer). In the sec-

ond declaration statement, String is the type for the firstName variable. Having a String type means

that the firstName variable can hold only strings.

Have you noticed that we sometimes spell string with an uppercase S and we sometimes spell it with a

lowercase s? When we use “string” in the general sense, to refer to a sequence of characters, we use a lower-

case s. In Java, String is a data type that happens to be a class name also. As you now know, coding conven-

tions dictate that class names begin with an uppercase letter. Thus, the String class/data type begins with

an uppercase S. So when we refer to String as a data type, in code and in conversational text, we use an

uppercase S.

When you declare a variable(s), don’t forget to put a semicolon at the end of the declaration statement.

When you declare more than one variable with one declaration statement, don’t forget to separate the vari-

ables with commas.

Style Issues

The compiler will accept a variable declaration anywhere in a block of code, as long as it’s above where the

variable is used. However, in the interest of readability, you should normally put your declarations at the top

of the main method. That makes them easy to fi nd.

Although it may waste some space, we recommend that you normally declare only one variable per

declaration statement. That way, you’ll be able to provide a comment for each variable (and you should nor-

mally provide a comment for each variable).

 3.10 Variables 65

03-M4402.indd 6503-M4402.indd 65 12/17/07 4:18:08 PM12/17/07 4:18:08 PM

Apago PDF Enhancer

66 Chapter 3 Java Basics

We do make exceptions to these recommendations. Note how these row and col variables are declared

together with one declaration statement:

int row, col;

That’s acceptable because they are intimately related. Note that the row and col variables are declared

without a comment. That’s acceptable because row and col are standard names that all programmers

should understand. It would be overkill to include a comment like this:

int row, col; // row and col hold row and column index numbers

Note how this studentId variable is declared without a comment:

int studentId;

That’s acceptable because the studentId name is so completely descriptive that everyone should be able

to understand it. It would be overkill to include a comment like this:

String studentId; // a student's ID value

Variable names are identifi ers. Thus, when you name your variables, you should follow the identifi er rules

covered earlier. The studentId variable is well named—it uses all lowercase letters except for the fi rst

letter in its second word, Id.

One fi nal recommendation for your variable declarations: Try to align your comments such that they all

begin in the same column. For example, note how the //’s are in the same column:

String lastName; // student's last name
String firstName; // student's first name

3.11 Assignment Statements

You now know how to declare a variable in Java. After declaring a variable, you’ll want to use it, and the

fi rst step in using a variable is to put a value inside of it. We’ll now consider the assignment statement, which

allows you to assign/put a value into a variable.

Java Assignment Statements

Java uses the single equal sign (=) for assignment statements. See Figure 3.3’s BonusCalculator program. In

particular, note the salary = 50000; line. That’s an example of a Java assignment statement. It assigns

the value 50000 into the variable salary.

In the BonusCalculator program, note the blank line below the declaration statements. In accordance

with the principles of good style, you should insert blank lines between logical chunks of code. A group of

declaration statements is usually considered to be a logical chunk of code, so you should normally insert a

blank line below your bottom declaration statement.

Let’s analyze the code fragment’s bonusMessage assignment statement. Note the * operator. The

* operator performs multiplication. Note the + operator. If a + operator appears between a string and some-

thing else (e.g., a number or another string), then the + operator performs string concatenation. That means

that the JVM appends the item at the right of the + to the item at the left of the +, forming a new string. In

our example, the mathematical expression, .02 * salary, is evaluated fi rst since it’s inside parentheses.

The JVM then appends the result, 100000, to “Bonus � $”, forming the new string “Bonus � $100000”.

03-M4402.indd 6603-M4402.indd 66 12/17/07 4:18:09 PM12/17/07 4:18:09 PM

Apago PDF Enhancer
In the bonusMessage assignment statement, note the parentheses around .02 * salary. Although

the parentheses are not required by the compiler, we prefer to include them here because they improve the

code’s readability. They improve readability by making it clear that the math operation (.02 × salary) is

separate from the string concatenation operation. Use of discretionary parentheses to enhance clarity is an

art. Sometimes it’s helpful, but don’t get carried away. If you use parentheses too often, your code can look

cluttered.

In the salary assignment statement, note the 50000. You might be tempted to insert a comma in

50000 to make it read better; that is, you might be tempted to enter 50,000. If you do insert the comma,

your program will not compile successfully. In Java programs, numbers are not allowed to have commas.

Unfortunately, this makes it easy to accidentally enter the wrong number of zeros in a large number. Count

those zeros!

Tracing

As part of a program’s presentation, we’ll sometimes ask you to trace the program. Tracing forces you to

understand program details thoroughly. And understanding program details thoroughly is important for

writing good programs. To set up a trace, provide a column heading for each variable and for output. Then

execute each statement, starting with the fi rst statement in main. For declaration statements, write a ? in the

declared variable’s column, indicating that the variable exists, but it doesn’t have a value yet. For assignment

statements, write the assigned value in the variable’s column. For a print statement, write the printed value

in the output column.7

/**
* BonusCalculator.java
* Dean & Dean
*
* This program calculates and prints a person's work bonus.
**/

public class BonusCalculator
{
 public static void main(String[] args)
 {
 int salary; // person's salary
 String bonusMessage; // specifies work bonus

 salary = 50000;
 bonusMessage = "Bonus � $" + (.02 * salary);
 System.out.println(bonusMessage);
 } // end main
} // end class BonusCalculator

Figure 3.3 BonusCalculator program

7 If you’d like a more detailed discussion of tracing, see Chapter 2, Section 2.11.

 3.11 Assignment Statements 67

03-M4402.indd 6703-M4402.indd 67 12/17/07 4:18:09 PM12/17/07 4:18:09 PM

Apago PDF Enhancer

68 Chapter 3 Java Basics

3.12 Initialization Statements

A declaration statement specifi es a data type for a particular variable. An assignment statement puts a value

into a variable. An initialization statement is a combination of the declaration and assignment statements—

it specifi es a data type for a variable, and it puts a value into that variable.

The Java language is strongly typed, meaning that all variable types are fi xed. Once a variable is de-

clared, it cannot be redeclared. Therefore, you can have only one declaration statement for a particular vari-

able. Likewise, since an initialization statement is a specialized form of a declaration statement, you can

have only one initialization statement for a particular variable.

Here’s the syntax for an initialization statement:

<type> <variable> = <value>;

And here are some initialization examples:

String name = "John Doe"; // student's name
int creditHours = 0; // student's total credit hours

The name variable is declared to be a String type, and it’s given the initial value of “John Doe.” 9 The

creditHours variable is declared to be an int and it’s given the initial value of 0.

8 If you run the code fragment on a computer, you’ll see a .0 at the end of the output (Bonus = 1000.0). The .0 should make sense
when you learn about mixed expressions and promotion later in this chapter.
9 John Doe is commonly used as a fi ller in the United States and Great Britain when a person’s real name is unknown. We use it here
as a default value for a student’s name. It serves as an indication that the student’s real name has not yet been fi lled in.

1 int salary;
2 String bonusMessage;
3
4 salary = 50000;
5 bonusMessage = "Bonus = $" + (.02 * salary);
6 System.out.println(bonusMessage);

line# salary bonusMessage output

1 ?

2 ?

4 50000

5 Bonus = $1000

6 Bonus = $1000

Figure 3.4 Calculating a bonus—code fragment and its associated trace

For your fi rst Java trace, we’ll make things easy. Rather than asking you to do a trace on your own, we

just ask you to study the completed trace in Figure 3.4. But please do study it. Make sure you understand

how all the column values get fi lled in.8

03-M4402.indd 6803-M4402.indd 68 12/17/07 4:18:09 PM12/17/07 4:18:09 PM

Apago PDF Enhancer

Here’s an alternative way to do the same thing using declaration and assignment statements (instead of

using initialization statements):

String name; // student's name
int creditHours; // student's total credit hours

name = "John Doe";

creditHours = 0;

It’s OK to use either technique—initialization or declaration/assignment. You’ll see it done both ways

in the real world. Initialization has the benefi t of compactness. Declaration/assignment has the benefi t of

leaving more room in the declaration for a comment.

3.13 Numeric Data Types—int, long, float, double

Integers

We’ve already mentioned one Java numeric data type—int. We’ll now discuss numeric types in more detail.

Variables that hold whole numbers (e.g., 1000, �22) should normally be declared with the int data type or

the long data type. A whole number is a number with no decimal point and no fractional component.

An int uses 32 bits of memory. A long uses 64 bits of memory (twice as many bits as an int). The

range of values that can be stored in an int variable is approximately �2 billion to �2 billion. The range of

values that can be stored in a long variable is approximately �9 � 1018 to �9 � 10 18. Here’s an example that

declares studentId to be an int variable and satelliteDistanceTraveled to be a long variable:

int studentId;
long satelliteDistanceTraveled;

If you attempt to store a really big number (a number over 2 billion) in an int variable, you’ll get an

“integer number too large” error when you compile your program. So to be safe, why shouldn’t you just

always declare your integer variables as type long rather than type int? An int takes up less storage in

memory. And using less storage means your computer will run faster because there’s more free space. So in

the interest of speed/effi ciency, use an int rather than a long for a variable that holds values less than 2

billion.10 If you’re not sure whether a variable will hold values greater than 2 billion, play it safe and use a

long. If you want the greatest possible precision in fi nancial calculations, convert everything to cents, and

use long variables to hold all values.

Floating-Point Numbers

In Java, numbers that contain a decimal point (e.g., 66. and �1234.5) are called fl oating-point numbers.

Why? Because a fl oating-point number can be written with different forms by shifting (fl oating) its decimal

point. For example, the number �1234.5 can be written equivalently as �1.2345 � 103. See how the deci-

mal point has “fl oated” to the left in the second version of the number?

There are two types for fl oating-point numbers—float and double. A float uses 32 bits of mem-

ory. A double uses 64 bits of memory. A double is called a “double” because it uses twice as many bits

as a float.

10 The suggestion to use an int for effi ciency reasons is valid, but be aware that the speed difference is only occasionally noticeable.
It’s only noticeable if you’ve got lots of long numbers and you’ve got a small amount of available memory, such as when you’re run-
ning a program on a personal digital assistant (PDA).

 3.13 Numeric Data Types—int, long, float, double 69

03-M4402.indd 6903-M4402.indd 69 12/17/07 4:18:10 PM12/17/07 4:18:10 PM

Apago PDF Enhancer

70 Chapter 3 Java Basics

Here’s an example that declares gpa as a float variable and cost as a double variable:

float gpa;
double cost;

The double data type is used much more often than the float data type. You should normally de-

clare your fl oating-point variables to be double rather than float because (1) double variables can hold

a wider range of numbers11 and (2) double variables can store numbers with greater precision. Greater

precision means more signifi cant digits. You can rely on 15 signifi cant digits for a double variable but only

6 signifi cant digits for a float variable.

Six signifi cant digits may seem like a lot, but for many cases, six signifi cant digits are not enough. With

only six signifi cant digits, accuracy errors can creep into float-based programs whenever there’s a math-

ematical operation (addition, multiplication, etc.). If such a program performs a signifi cant number of math-

ematical operations, then the accuracy errors become nontrivial. So as a general rule, use double rather

than float for programs that perform a signifi cant number of fl oating-point mathematical operations. And

since accuracy is particularly important with money, scientifi c measurements, and engineering measure-

ments, use double rather than float for calculations that involve those items.

Assignments Between Different Types

You’ve learned about assigning integer values into integer variables and fl oating-point values into fl oating-

point variables, but you haven’t learned about assignments where the types are different.

Assigning an integer value into a fl oating-point variable works just fi ne. Note this example:

double bankAccountBalance = 1000;

Assigning an integer value into a fl oating-point variable is like putting a small item into a large box.

The int type goes up to approximately 2 billion. It’s easy to fi t 2 billion into a double “box” because a

double goes all the way up to 1.8 � 10 308.

On the other hand, assigning a fl oating-point value into an integer variable is like putting a large item

into a small box. By default, that’s illegal.12 For example, this generates an error:

int temperature = 26.7;

Since 26.7 is a fl oating-point value, it cannot be assigned into the int variable, temperature. That should

make sense when you realize that it’s impossible to store .7, the fractional portion of 26.7, in an int. After

all, int variables don’t store fractions; they store only whole numbers.

This statement also generates an error:

int count = 0.0;

The rule says that it’s illegal to assign a fl oating-point value into an integer variable. 0.0 is a fl oating-point

value. It doesn’t matter that the fractional portion of 0.0 is insignifi cant (it’s .0); 0.0 is still a fl oating-point

value, and it’s always illegal to assign a fl oating-point value into an integer variable. That type of error is

known as a compile-time error or compilation error because the error is identifi ed by the compiler during

the compilation process.

Later in the book, we provide additional details about integer and fl oating-point data types. You don’t

need those details now, but if you can’t wait, you can fi nd the details in Chapter 11, Section 11.2.

11 A float variable can store positive values between 1.2 � 10�38 and 3.4 � 10�38 and negative values between �3.4 � 10�38 and
�1.2 � 10�38. A double variable can store positive values between 2.2 � 10�308 and 1.8 � 10�308 and negative values between
�1.8 � 10�308 and �2.2 � 10�308.
12 Although such an assignment is normally illegal, you can do it if you add some code. Specifi cally, you can do it if you add a cast
operator. We’ll describe cast operators later in this chapter.

03-M4402.indd 7003-M4402.indd 70 12/17/07 4:18:10 PM12/17/07 4:18:10 PM

Apago PDF Enhancer

3.14 Constants

We’ve used numeric and string values in our examples, but we haven’t given you the formal name for them.

Numeric and string values are called constants. They’re called constants because their values are fi xed—

they don’t change. Here are some examples:

 Integer Constants Floating-Point Constants String Constants

 8 -34.6 "Hi, Bob"
 -45 .009 "yo"

 2000000 8. "dog"

For a constant to be a fl oating-point constant, it must contain a decimal point, but numbers to the right

of the decimal point are optional. Thus, 8. and 8.0 represent the same fl oating-point constant.

What is the default type for integer constants—int or long? You’d probably guess int since integer

sounds like int. And that guess is correct — the default type for an integer constant is int. So the above

integer examples (8, �45, and 2000000) are all int constants.

What is the default type for fl oating-point constants—float or double? Although you might be

tempted to say float, after the discussion in the previous section, it should not surprise you that Java’s

default for fl oating-point constants is double.

Try to identify the compile-time errors in this code fragment:

float gpa = 2.30;
float mpg;
mpg = 28.6;

The 2.30 and 28.6 constants both default to type double, which uses 64 bits. The 64 bits can’t squeeze into

the 32-bit gpa and mpg variables so this code generates “possible loss of precision” error messages.

There are two possible solutions for these types of errors. The easiest solution is to use

double variables instead of fl oat variables all the time. Here’s another solution: Explicitly

force the fl oating-point constants to be float by using an f or F suffi x, like this:

float gpa = 2.30f;
float mpg;
mpg = 28.6F;

Two Categories of Constants

Constants can be split into two categories—hard-coded constants and named constants. The constants we’ve

covered so far can be referred to as hard-coded constants. A hard-coded constant is an explicitly specifi ed

value. Hard-coded constants are also called literals. “Literal” is a good, descriptive term because literals

refer to items that are interpreted literally; for example, 5 means 5, “hello” means “hello.” In the following

statement, the forward slash (/) is the division operator, and 299792458.0 is a hard-coded constant (or

literal):

propagationDelay = distance / 299792458.0;

Assume that this code fragment is part of a program that calculates delays in messages carried through

space. What’s the meaning behind the value 299792458.0? Not very obvious, eh? Read on.

In space, message signals travel at the speed of light. Since time � distance / velocity, the time it takes

a message signal to travel from a satellite equals the satellite’s distance divided by the speed of light. Thus,

in the code fragment, the number 299792458.0 represents the speed of light.

 3.14 Constants 71

Use a larger
data type

03-M4402.indd 7103-M4402.indd 71 12/17/07 4:18:11 PM12/17/07 4:18:11 PM

Apago PDF Enhancer

72 Chapter 3 Java Basics

The above code fragment is somewhat confusing. The meaning behind the hard-coded constant

299792458.0 may be clear to science techies, but it isn’t very clear to the rest of us. For a better solution,

use a named constant.

Named Constants

A named constant is a constant that has a name associated with it. For example, in this code fragment,

SPEED_OF_LIGHT is a named constant:

final double SPEED_OF_LIGHT = 299792458.0; // in meters/sec
. . .
propagationDelay = distance / SPEED_OF_LIGHT;

As you should be able to discern from this code fragment, a named constant is really a variable. Now there’s

an oxymoron—a constant is a variable. Note how SPEED_OF_LIGHT is declared to be a double variable,

and it’s initialized to the value 299792458.0. How is the SPEED_OF_LIGHT initialization different from

initializations that you’ve seen in the past? The word final appears at the left.

The reserved word final is a modifi er—it modifi es SPEED_OF_LIGHT so that its value is fi xed or

“fi nal.” And being fi xed is the whole point of a named constant. Thus, all named constants use the final

modifi er. The final modifi er tells the compiler to generate an error if your program ever tries to change

the final variable’s value at a later time.

Standard coding conventions suggest that you capitalize all characters in a named constant and use an

underscore to separate the words in a multiple-word named constant. Example: SPEED_OF_LIGHT. The

rationale for the uppercase is that uppercase makes things stand out. And you want named constants to

stand out because they represent special values.

Named Constants Versus Hard-Coded Constants

Not all constants should be named constants. For example, if you need to initialize a count variable to 0,

use a hard-coded 0 like this:

int count = 0;

So how do you know when to use a hard-coded constant versus a named constant? Use a named constant if

it makes the code easier to understand. The above count initialization is clear the way it is now. If you re-

place the 0 with a named constant (e.g., int count = COUNT_STARTING_VALUE), it does not improve

the clarity, so stick with the hard-coded constant. On the other hand, this code is unclear:

propagationDelay = distance / 299792458.0;

By replacing 299792458.0 with a SPEED_OF_LIGHT named constant, it does improve the clarity, so

switch to the named constant.

There are two main benefi ts of using named constants:

 1. Named constants make code more self-documenting, and therefore more understandable.

 2. If a programmer ever needs to change a named constant’s value, the change is easy—fi nd the named

constant initialization at the top of the method and change the initialization value. That im-

plements the change automatically everywhere within the program. There is no danger of

forgetting to change one of many occurrences of some constant value. There is consistency.

Make it easy
to change.

03-M4402.indd 7203-M4402.indd 72 12/17/07 4:18:11 PM12/17/07 4:18:11 PM

Apago PDF Enhancer

An Example

Let’s put what you’ve learned about constants into practice by using them within a complete program. In

Figure 3.5’s TemperatureConverter program, we convert a Fahrenheit temperature value to a Celsius temper-

ature value. Note the two named constant initializations at the top of the program: (1) the FREEZING_POINT

named constant gets initialized to 32.0 and (2) the CONVERSION_FACTOR named constant gets initialized to

5.0 / 9.0. Usually, you’ll want to initialize each named constant to a single hard-coded constant. For example,

FREEZING_POINT’s initialization value is 32.0. But be aware that it’s legal to use a constant expression for

a named constant initialization value. For example, CONVERSION_FACTOR’s initialization value is 5.0 / 9.0.

That expression is considered to be a constant expression because constant values are used, not variables.

/***
* TemperatureConverter.java
* Dean & Dean
*
* This program converts a Fahrenheit temperature to Celsius
***/

public class TemperatureConverter
{
 public static void main(String[] args)
 {
 final double FREEZING_POINT = 32.0;
 final double CONVERSION_FACTOR = 5.0 / 9.0;
 double fahrenheit = 50; // temperature in Fahrenheit
 double celsius; // temperature in Celsius

 celsius = CONVERSION_FACTOR * (fahrenheit - FREEZING_POINT);
 System.out.println(fahrenheit + " degrees Fahrenheit = " +
 celsius + " degrees Celsius.");
 } // end main
} // end class TemperatureConverter

Output:

50.0 degrees Fahrenheit = 10.0 degrees Celsius.

Figure 3.5 TemperatureConverter program and its output

 3.14 Constants 73

In the TemperatureConverter program, this statement performs of the conversion:

celsius = CONVERSION_FACTOR * (fahrenheit - FREEZING_POINT);

By using named constants, CONVERSION_FACTOR and FREEZING_POINT, we’re able to embed some

meaning into the conversion code. Without named constants, the statement would look like this:

celsius = 5.0 / 9.0 * (fahrenheit - 32.0);

The 5.0 / 9.0 may be distracting to some readers. They may spend time wondering about the signifi cance

of the 5.0 and the 9.0. By using a CONVERSION_FACTOR named constant, we tell the reader “Don’t

03-M4402.indd 7303-M4402.indd 73 12/17/07 4:18:12 PM12/17/07 4:18:12 PM

Apago PDF Enhancer

74 Chapter 3 Java Basics

worry about it; it’s just a conversion factor that some scientist came up with.” If someone who is unfamiliar

with the Fahrenheit scale reads the above statement, they won’t know the signifi cance of the 32.0. Using a

FREEZING_POINT named constant makes things clearer.

3.15 Arithmetic Operators

We’ve talked about numbers for a while now—how to declare numeric variables, how to assign numbers,

and how to work with numeric constants. In addition, we’ve shown a few examples of using numbers in

mathematical expressions. In this section and the next two sections, we study expressions in more depth. An

expression is a combination of operands and operators that performs a calculation. Operands are variables

and constants. An operator is a symbol, like + or -, that performs an operation. In this section, we’ll look at

arithmetic operators for numeric data types. Later, we’ll look at operators for other data types.

Addition, Subtraction, and Multiplication

Java’s +, -, and * arithmetic operators should be familiar to you. They perform addition, subtraction, and

multiplication, respectively.

Floating-Point Division

Java performs division differently depending on whether the numbers/operands being divided are integers

or whether they’re fl oating-point numbers. Let’s fi rst discuss fl oating-point division.

When the Java Virtual Machine (JVM) performs division on fl oating-point numbers, it performs “calcu-

lator division.” We call it “calculator division” because Java’s fl oating-point division works the same as divi-

sion performed by a standard calculator. For example, if you enter this on your calculator, what is the result?

The result is 3.5. Likewise, this line of Java code prints 3.5:

System.out.println (7.0 / 2.0);

Note that calculators use the ÷ key for division and Java uses the / character.

To explain arithmetic operators, we’ll need to evaluate lots of expressions. To simplify that discussion,

we’ll use the ⇒ symbol. It means “evaluates to.” Thus, this next line says that 7.0 / 2.0 evaluates to 3.5:

7.0 / 2.0 ⇒ 3.5

This next line asks you to determine what 5 / 4. evaluates to:

5 / 4. ⇒ ?

5 is an int and 4. is a double. This is an example of a mixed expression. A mixed expression is an expres-

sion that contains operands with different data types. double values are considered to be more complex

than int values because double values contain a fractional component. Whenever there’s a mixed expres-

sion, the JVM temporarily promotes the less complex operand’s type so that it matches the more complex

 operand’s type, and then the JVM applies the operator. In the 5 / 4. expression, the JVM promotes 5 to a

7 . 0 ÷ 2 . 0 =

03-M4402.indd 7403-M4402.indd 74 12/17/07 4:18:12 PM12/17/07 4:18:12 PM

Apago PDF Enhancer

double and then performs fl oating-point division on the two fl oating-point values. The expression evalu-

ates to 1.25.

Integer Division

When the JVM performs division on integers, it performs “grade school division.” We call it grade school

division because Java’s integer division works the same as the division you did by hand in grade school.

Remember how you calculated two values for each division operation? You calculated a quotient and also

a remainder. Likewise, Java has the ability to calculate both a quotient and a remainder when integer divi-

sion is called for. But Java doesn’t calculate both values simultaneously. If Java’s / operator is used, then the

quotient is calculated. If Java’s % operator is used, then the remainder is calculated. The % operator is more

formally called the modulus operator. Note these examples:

7 / 2 ⇒ 3

7 % 2 ⇒ 1

These correspond to the equivalent grade school arithmetic notation:

 3
2 �7

 -6
 1

We’ll give you many expression evaluation problems like this. As a sanity check, we recommend that

you verify at least some of the calculated results by executing the expressions on a com-

puter. To execute the expressions, embed the expressions into print statements, embed the

print statements into a test program, and run the test program. For example, to execute the

above expressions, use the TestExpressions program in Figure 3.6.

quotientquotient

remainderremainder

 3.15 Arithmetic Operators 75

Print details to
see what com-
puter does.

public class TestExpressions
{
 public static void main(String[] args)
 {
 System.out.println("7 / 2 = " + (7 / 2));
 System.out.println("7 % 2 = " + (7 % 2));
 System.out.println("8 / 12 = " + (8 / 12));
 System.out.println("8 % 12 = " + (8 % 12));
 } // end main
} // end class TestExpressions

Output:

7 / 2 = 3
7 % 2 = 1
8 / 12 = 0
8 % 12 = 8

Figure 3.6 TestExpressions program and its output

03-M4402.indd 7503-M4402.indd 75 12/17/07 4:18:13 PM12/17/07 4:18:13 PM

Apago PDF Enhancer

76 Chapter 3 Java Basics

Figure 3.6 also illustrates these additional examples:

8 / 12 ⇒ 0

8 % 12 ⇒ 8

Here is the corresponding grade school arithmetic notation:

 0
12 �8
 -0
 8

3.16 Expression Evaluation and Operator Precedence

In the above examples, the expressions were pretty basic—they each contained only one operator—so they

were fairly easy to evaluate. Expressions are sometimes fairly complicated. In this section, we discuss how

to evaluate those more complicated expressions.

Average Bowling Score Example

Suppose you’d like to calculate the average bowling score for three bowling games. Would this statement

work?

bowlingAverage = game1 + game2 + game3 / 3;

The code looks reasonable. But it’s not good enough to rely on your sense of what looks reasonable. To be a

good programmer, you need to be sure. The code you should be focusing on is the expression on the right side:

game1 + game2 + game3 / 3. More specifi cally, you should be asking yourself, “Which operator

executes fi rst—the left addition operator or the division operator?” To answer that question, we turn to the

operator precedence table.

Operator Precedence Table

The key to understanding complicated expressions is to understand the operator precedence shown in

Figure 3.7. Please study Figure 3.7’s operator precedence table now.

The operator precedence table might need some clarifi cation. The groups at the top have higher prece-

dence than the groups at the bottom. That means that if one of the top operators appears in an expression

along with one of the bottom operators, then the top operator executes fi rst. For example, if * and + both

appear in the same expression, then the * operator executes before the + operator (because the * operator’s

group is higher in the table than the + operator’s group). If parentheses appear within an expression, then the

items inside the parentheses execute before the items that are outside the parentheses (because parentheses

are at the very top of the table).

If an expression has two or more operators in the same group (from Figure 3.7’s groups), then ap-

ply the operators from left to right. In mathematics, that’s referred to as left-to-right associativity. In

Java, that means that operators appearing at the left should be executed before operators appearing at the

right. For example, since the * and / operator are in the same group, if * and / both appear in the same

expression and / appears further to the left than * within that expression, division is performed before

multiplication.

quotientquotient

remainderremainder

03-M4402.indd 7603-M4402.indd 76 12/17/07 4:18:13 PM12/17/07 4:18:13 PM

Apago PDF EnhancerThe operators in the second-from-the-top group are unary operators. A unary operator is an operator that

applies to just one operand. The unary + operator is cosmetic; it does nothing. The unary - operator (negation)

reverses the sign of its operand. For example, if the variable x contains a 6, then -x evaluates to a negative 6.

The (<type>) operator represents the cast operators. We’ll get to cast operators later in this chapter.

Average Bowling Score Example Revisited

Let’s return to the average bowling score example and apply what you’ve learned about operator precedence.

Does the following statement correctly calculate the average bowling score for three bowling games?

bowlingAverage = game1 + game2 + game3 / 3;

No. The operator precedence table says that the / operator has higher priority than the + operator, so divi-

sion is performed fi rst. After the JVM divides game3 by 3, the JVM adds game1 and game2. The correct

way to calculate the average is to add the three game scores fi rst and then divide the sum by 3. In other

words, you need to force the + operators to execute fi rst. The solution is to use parentheses like this:

bowlingAverage = (game1 + game2 + game3) / 3;

Expression Evaluation Practice

Let’s do some expression evaluation practice problems to ensure that you really under-

stand this operator precedence material. Given these initializations:

int a = 5, b = 2;
double c = 3.0;

 1. grouping with parentheses:

 (<expression>)

 2. unary operators:

 +x
 -x
 (<type>) x

 3. multiplication and division operators:

 x * y
 x / y
 x % y

 4. addition and subtraction operators:

 x + y
 x - y

Figure 3.7 Abbreviated operator precedence table (see Appendix 2 for the complete table)

Operator groups at the top of the table have higher precedence than operator groups at the bottom of the table.

All operators within a particular group have equal precedence, and they evaluate left to right.

 3.16 Expression Evaluation and Operator Precedence 77

Hand calcula-
tion helps your
understanding.

03-M4402.indd 7703-M4402.indd 77 12/17/07 4:18:14 PM12/17/07 4:18:14 PM

Apago PDF Enhancer

78 Chapter 3 Java Basics

What does the following expression evaluate to?

(c + a / b) / 10 * 5

Here’s the solution:

 1. (c + a / b) / 10 * 5 ⇒
 2. (3.0 + 5 / 2) / 10 * 5 ⇒

 3. (3.0 + 2) / 10 * 5 ⇒
 4. 5.0 / 10 * 5 ⇒
 5. 0.5 * 5 ⇒
 6. 2.5

In solving expression evaluation problems, we recommend that you show each step of the evaluation

process so your solution is easy to follow. In the above solution, we show each step, and we also show line

numbers. There’s normally no need to show line numbers, but we do it here to help with our explanation.

From line 1 to line 2, we replace variables with their values. From line 2 to line 3, we evaluate the highest

priority operator, the / inside the parentheses. From line 3 to line 4, we evaluate the next highest priority

operator, the + inside the parentheses. Study the remaining lines on your own.

Let’s do one more expression evaluation practice problem. Given these initializations:

int x = 5;
double y = 3.0;

What does the following expression evaluate to?

(0 % x) + y + (0 / x)

Here’s the solution:

(0 % x) + y + (0 / x) ⇒
(0 % 5) + 3.0 + (0 / 5) ⇒
0 + 3.0 + (0 / 5) ⇒
0 + 3.0 + 0 ⇒
3.0

Perhaps the trickiest part of the above solution is evaluating 0 % 5 and 0 / 5. They both evaluate to 0.

This grade school arithmetic notation shows why:

 0
5 �0
 -0
 0

3.17 More Operators: Increment, Decrement,
and Compound Assignment

So far, we’ve covered Java math operators that correspond to operations found in math books—addition,

subtraction, multiplication, and division. Java provides additional math operators that have no counter-

parts in math books. In this section, we’ll talk about the increment, decrement, and compound assignment

operators.

quotientquotient

remainderremainder

03-M4402.indd 7803-M4402.indd 78 12/17/07 4:18:14 PM12/17/07 4:18:14 PM

Apago PDF Enhancer

Increment and Decrement Operators

It’s fairly common for a computer program to count the number of times something occurs. For example,

have you ever seen a Web page that displays the number of “visitors”? The number of visitors is tracked by

a program that counts the number of times the Web page has been loaded on someone’s Web browser. Since

counting is such a common task for programs, there are special operators for counting. The increment op-

erator (++) counts up by 1. The decrement operator (--) counts down by 1.

Here’s one way to increment the variable x:

x = x + 1;

And here’s how to do it using the increment operator:

x++;

The two techniques are equivalent in terms of their functionality. Experienced Java programmers al-

most always use the second form rather than the fi rst form. And proper style suggests using the second form.

So use the second form.

Here’s one way to decrement the variable x:

x = x - 1;

And here’s how to do it using the decrement operator:

x--;

Once again, you should use the second form.

Compound Assignment Operators

Let’s now discuss fi ve of Java’s compound assignment operators: +=, -=, *=, /=, and %=.

The += operator updates a variable by adding a specifi ed value to the variable. Here’s one way to incre-

ment x by 3:

x = x + 3;

And here’s how to do it using the += operator:

x += 3;

The two techniques are equivalent in terms of their functionality. Experienced Java pro-

grammers almost always use the shorter second form rather than the longer fi rst form. And

proper style suggests using the second form. So use the second form.

The -= operator updates a variable by subtracting a specifi ed value from the variable. Here’s one way

to decrement + by 3:

x = x - 3;

And here’s how to do it using the -= operator:

x -= 3;

Once again, you should use the second form.

 3.17 More Operators: Increment, Decrement, and Compound Assignment 79

Look for
shortcuts.

03-M4402.indd 7903-M4402.indd 79 12/17/07 4:18:15 PM12/17/07 4:18:15 PM

Apago PDF Enhancer

80 Chapter 3 Java Basics

The *=, /=, and %= operators parallel the += and -= operators so we won’t bore you with detailed

explanations for those remaining three operators. But we do encourage you to study the *=, /=, and %=

examples shown below:

x += 3; ≡ x = x + 3;
x -= 4; ≡ x = x - 4;
x *= y; ≡ x = x * y;
x /= 4; ≡ x = x / 4;
x %= 16; ≡ x = x % 16;
x *= y + 1; ≡ x = x * (y + 1);

The examples show assignment operator statements on the left and their equivalent long-form statements on

the right. The ≡ symbol means “is equivalent to.” It’s better style to use the forms on the left rather than the

forms on the right, but don’t ignore the forms on the right. They show how the assignment operators work.

The bottom example is the only one in which the compound assignment operator uses an expression

rather than a single value; that is, the expression to the right of the *= assignment operator is y � 1, rather

than just 1. For cases like these, the compound assignment form is somewhat confusing. Therefore, for these

cases, it’s acceptable style-wise to use the equivalent long form rather than the compound assignment form.

Why are the +=, -=, *=, /=, and %= operators called compound assignment operators? Because they

compound/combine a math operation with the assignment operation. For example, the += operator performs

addition and assignment. The addition part is obvious, but what about the assignment part? The += does

indeed perform assignment because the variable at the left of the += is assigned a new value.

3.18 Tracing

To make sure that you really understand the increment, decrement, and compound assignment operators,

let’s trace a program that contains those operators. Earlier in the chapter, we showed a trace, but the trace

was for a very limited code fragment—the code fragment contained two assignment statements and that

was it. In this section, we present a more complicated trace.

See the TestOperators program and associated trace table in Figure 3.8. In particular, look at the fi rst

three lines under the heading in the trace table. They contain the variables’ initial values. For variables

declared as part of an initialization, their initial value is the initialization value. For variables declared with-

out an initialization, we say their initial value is garbage because its actual value is unknown. Use a ques-

tion mark to indicate a garbage value.

We suggest you cover up the bottom part of the trace, and try to complete the trace on

your own. When you’re done, compare your answer to Figure 3.8’s trace table.

There are different modes for the increment and decrement operators—prefi x mode

and postfi x mode. Later in the book, we explain the modes and provide details on how they

work within the context of a trace. You don’t need those details now, but if you can’t wait, you can fi nd the

details in Chapter 11, Section 11.5.

3.19 Type Casting

We’ve now described simple arithmetic operators (+, -, *, /, %), increment and decrement operators

(++, --), and compound assignment operators (+=, -=, *=, /=, %=). In this section, we’ll discuss yet

another operator, the cast operator.

Put yourself in
computer’s
place.

03-M4402.indd 8003-M4402.indd 80 12/17/07 4:18:15 PM12/17/07 4:18:15 PM

Apago PDF Enhancer

Cast Operator

In writing a program, you’ll sometimes need to convert a value to a different data type. The cast operator

can be used to perform that sort of conversion. Here’s the syntax:

(<type>) <value>

As shown above, a cast operator consists of a data type inside parentheses. You should place a cast

operator at the left of the value that you’d like to convert.

cast operatorcast operator

1 public class TestOperators
2 {
3 public static void main(String[] args)
4 {
5 int x;
6 int y = 2;
7 double z = 3.0;
8
9 x = 5;
10 System.out.println("x + y + z = " + (x + y + z));
11 x += y;
12 y++;
13 z--;
14 z *= x;
15 System.out.println("x + y + z = " + (x + y + z));
16 } // end main
17 } // end class TestOperators

Trace:

line# x y z output

5 ?

6 2

7 3.0

9 5

10 x � y � z � 10.0

11 7

12 3

13 2.0

14 14.0

15 x � y � z � 24.0

Figure 3.8 TestOperators program and its trace

 3.19 Type Casting 81

03-M4402.indd 8103-M4402.indd 81 12/17/07 4:18:15 PM12/17/07 4:18:15 PM

Apago PDF Enhancer

82 Chapter 3 Java Basics

Suppose you’ve got a variable named interest that stores a bank account’s interest as a double.

You’d like to extract the dollars portion of the interest and store it in a variable of type int that is named

interestInDollars. To do that, use the int cast operator like this:

interestInDollars = (int) interest;

The int cast operator returns the whole number portion of the casted value, truncating the fractional por-

tion. Thus, if interest contains the value 56.96, after the assignment, interestInDollars contains

the value 56. Note that the cast operation does not change the value of interest. After the assignment,

interest still contains 56.96.

Use Parentheses to Cast an Expression

If you ever need to cast more than just a single value or variable, then make sure to put parentheses around

the entire expression that you want to cast. Note this example:

double interestRate;
double balance;
int interestInDollars;
. . .
interestInDollars = (int) (balance * interestRate);

In the interestInDollars assignment, balance * interestRate is the formula for calculating

interest. This code fragment performs basically the same operation as the previous one-line code fragment.

It extracts the dollars portion of the interest and stores it in an int variable named interestInDollars.

The difference is that the interest this time is in the form of an expression, balance * interestRate,

rather than in the form of a simple variable, interest. Since we want the cast operator to apply to the en-

tire expression, we need to put parentheses around balance * interestRate.

In the above code fragment, what would happen if there were no parentheses around the

expression, balance * interestRate? The cast would then apply only to the fi rst thing at its right,

balance, rather than the entire expression. That should make sense when you look at the operator prece-

dence table. The operator precedence table shows that the cast operator has very high precedence. So with-

out the parentheses, the cast operator would execute prior to the multiplication operator, and the cast would

thus apply only to balance. And that leads to an incorrect calculation for interest in dollars.

Use a Floating-Point Cast to Force Floating-Point Division

Suppose you’ve got a variable named earnedPoints that stores a student’s earned grade points for a

semester’s worth of classes. Suppose you’ve got a variable named numOfClasses that stores the number

of classes taken by the student. The student’s grade point average (GPA) is calculated by dividing earned

points by number of classes. In the following statement, earnedPoints and numOfClasses are ints

and gpa is a double. Does the statement correctly calculate the student’s GPA?

gpa = earnedPoints / numOfClasses;

Suppose earnedPoints holds 14 and numOfClasses holds 4. You’d like gpa to get

a value of 3.5 (because 14 ÷ 4 � 3.5). But alas, gpa gets a value of 3. Why? Because the

/ operator performs integer division on its two int operands. Integer division means the

quotient is returned. The quotient of 14 ÷ 4 is 3. The solution is to force fl oating-point divi-

sion by introducing the cast operator. Here’s the corrected code:

gpa = (double) earnedPoints / numOfClasses;

Parentheses are necessary hereParentheses are necessary here

Compare out-
put with what
you expect.

03-M4402.indd 8203-M4402.indd 82 12/17/07 4:18:16 PM12/17/07 4:18:16 PM

Apago PDF Enhancer

After casting earnedPoints to a double, the JVM sees a mixed expression and promotes

numOfClasses to a double. Then fl oating-point division takes place.

For this example, you should not put parentheses around the earnedPoints / numOfClasses

expression. If you did so, the / operator would have higher precedence than the cast operator, and the JVM

would perform division (integer division) prior to performing the cast operation.

Later in the book, we provide additional details about type conversions. You don’t need those details

now, but if you can’t wait, you can fi nd the details in Chapter 11, Section 11.4.

3.20 char Type and Escape Sequences

In the past, when we’ve stored or printed text, we’ve always worked with groups of text characters (strings),

not with individual characters. In this section, we’ll use the char type to work with individual characters.

char Type

If you know that you’ll need to store a single character in a variable, use a char variable. Here’s an example

that declares a char variable named ch and assigns the letter A into it.

char ch;
ch = 'A';

Note the 'A'. That’s a char literal. char literals must be surrounded by single quotes. That syntax par-

allels the syntax for string literals—string literals must be surrounded by double quotes.

What’s the point of having a char type? Why not just use one-character strings for all character pro-

cessing? Because for applications that manipulate lots of individual characters, it’s more effi cient (faster) to

use char variables, which are simple, rather than string variables, which are more complex. For example,

the software that allows you to view Web pages has to read and process individual characters as they’re

downloaded onto your computer. In processing the individual characters, it’s more effi cient if they’re stored

as separate char variables rather than as string variables.

String Concatenation with char
Remember how you can use the + symbol to concatenate two strings together? You can also use the + sym-

bol to concatenate a char and a string. What do you think this code fragment prints?

char first, middle, last; // a person's initials

first = 'J';
middle = 'S';
last = 'D';
System.out.println("Hello, " + first + middle + last + '!');

Here’s the output:

Hello, JSD!

Escape Sequences

Usually, it’s easy to print characters. Just stick them inside a System.out.println statement. But some

characters are hard to print. We use escape sequences to print hard-to-print characters such as the tab char-

acter. An escape sequence is comprised of a backslash (\) and another character. See Java’s most popular

escape sequences in Figure 3.9.

 3.20 char Type and Escape Sequences 83

03-M4402.indd 8303-M4402.indd 83 12/17/07 4:18:17 PM12/17/07 4:18:17 PM

Apago PDF Enhancer

84 Chapter 3 Java Basics

If you print the tab character (\t), the computer screen’s cursor moves to the next tab stop. The com-

puter screen’s cursor is the position on the screen where the computer prints next. If you print the newline

character (\n), the computer screen’s cursor moves to the beginning of the next line.

Here’s an example of how you could print two column headings, BALANCE and INTEREST, sepa-

rated by a tab, and followed by a blank line:

System.out.println("BALANCE" + '\t' + "INTEREST" + '\n');

Note that escape sequences are indeed characters, so to print the tab and newline characters, we’ve sur-

rounded them with single quotes.

Normally the compiler interprets a double quote, a single quote, or a backslash as a control character.
A control character is in charge of providing special meaning to the character(s) that follows it. The double

quote control character tells the computer that the subsequent characters are part of a string literal. Like-

wise, the single quote control character tells the computer that the subsequent character is a char literal.

The backslash control character tells the computer that the next character is to be interpreted as an escape

sequence character.

But what if you’d like to print one of those three characters as is and bypass the character’s control

functionality? To do that, preface the control character (double quote, single quote, backslash) with a back-

slash. The initial backslash turns off the subsequent character’s control functionality and thus allows the

subsequent character to be printed as is. If that doesn’t make sense, all you really have to know is this:

To print a double quote, use \".

To print a single quote, use \'.

To print a backslash, use \\.

Suppose you’d like to print this message:

"Hello.java" is stored in the c:\javaPgms folder.

Here’s how to do it:

System.out.println('\"' + "Hello.java" + '\"' +
 " is stored in the c:" + '\\' + "javaPgms folder.");

Embedding an Escape Sequence within a String

Write a print statement that generates this heading for a computer-specifi cations report:

HARD DISK SIZE RAM SIZE ("MEMORY")

\t move the cursor to the next tab stop

\n newline—go to fi rst column in next line

\r return to fi rst column in current line

\" print a literal double quote

\' print a literal single quote

\\ print a literal backslash

Figure 3.9 Common escape sequences

03-M4402.indd 8403-M4402.indd 84 12/17/07 4:18:17 PM12/17/07 4:18:17 PM

Apago PDF Enhancer

Specifi cally, your print statement should generate a tab, a HARD DISK SIZE column heading, two more

tabs, a RAM SIZE (“MEMORY”) column heading, and then two blank lines. Here’s one solution:

System.out.println('\t' + "HARD DISK SIZE" + '\t' + '\t' +
 "RAM SIZE (" + '\"' + "MEMORY" + '\"' + ")" + '\n' + '\n');

That’s pretty cluttered. Fortunately, there’s a better way. An escape sequence is designed

to be used like any other character within a string of text, so it’s perfectly acceptable to embed

escape sequences within strings and omit the +’s and the single quotes. For example, here’s an

alternative solution for the PC specifi cations report heading problem where the +’s and single quotes have

been removed:

System.out.println("\tHARD DISK SIZE\t\tRAM SIZE (\"MEMORY\")\n\n");

Everything is now all within just one string literal. By omitting the +’s and single quotes, the clutter is re-

duced and that makes everyone happy. (Exception—author John’s preschoolers love clutter and would thus

abhor this second solution.)

Origin of the Word “Escape” for Escape Sequences

Why is the word “escape” used for escape sequences? The backslash forces an “escape” from the normal

behavior of a specifi ed character. For example, if t is in a print statement, the computer normally prints t.

If \t is in a print statement, the computer escapes from printing t; instead it prints the tab character. If the

double quote character (") is in a print statement, the computer normally treats it as the start or end of a

string literal. If \" is in a print statement, the computer escapes from the start/end string behavior; instead

the computer prints the double quote character.

Later in the book, we present relatively advanced syntax details that pertain to the char type. You

don’t need those details now, but if you can’t wait, you can fi nd the details in Chapter 11, Section 11.3.

3.21 Primitive Variables Versus Reference Variables

Throughout the chapter, we’ve defi ned and discussed various types of variables—String, int, long,

float, double, and char variables. It’s now time to step back and get a big-picture view of the two dif-

ferent categories of variables in Java—primitive variables and reference variables.

Primitive Variables

A primitive variable stores a single piece of data. It’s helpful to think of a primitive variable’s data item

as being inherently indivisible. More formally, we say that it’s “atomic” because, like an atom, it’s a basic

“building block” and it cannot be broken apart.13 Primitive variables are declared with a primitive type, and

those types include:

int, long (integer types)

float, double (fl oating-point types)

char (character type)

13 The word “atom” comes from the Greek a-tomos and means indivisible. In 1897, J. J. Thomson discovered one of the atom’s compo-
nents—the electron—and thus dispelled the notion of an atom’s indivisibility. Nonetheless, as a holdover from the original defi nition
of atom, the term “atomic” still refers to something that is inherently indivisible.

 3.21 Primitive Variables Versus Reference Variables 85

Look for
shortcuts.

03-M4402.indd 8503-M4402.indd 85 12/17/07 4:18:18 PM12/17/07 4:18:18 PM

Apago PDF Enhancer

86 Chapter 3 Java Basics

There are additional primitive types (boolean, byte, short), which we’ll get to in Chapters 4

and 11, but for most situations these fi ve primitive types are suffi cient.

Reference Variables

Whereas a primitive variable stores a single piece of data, a reference variable stores a memory location

that points to a collection of data. This memory location is not a literal memory address, like a street ad-

dress. It’s a coded abbreviation, like a post-offi ce box number. However, for everything you can do in Java,

the value in a reference variable acts exactly like a literal memory address, so we’ll pretend it is one. We said

a reference variable’s “address” points to a collection of data. More formally, it points to an object. You’ll

learn about object details in Chapter 6, but for now, just realize that an object is a collection of related data

wrapped in a protective shell. To access an object’s data, you need to use a reference variable (or reference
for short) that points to the object.

String variables are examples of reference variables. A string variable holds a memory address that

points to a string object. The string object holds the data—the string’s characters.

Reference variables are declared with a reference type. A reference type is a type that provides for the

storage of a collection of data. String is a reference type, and it provides for the storage of a collection of

characters. So in the following example, declaring name with a String reference type means that name

points to the collection of characters T, h, a, n, h, space, N, g, u, y, e, n.

String name = "Thanh Nguyen";

String is just one reference type from among a multitude of reference types. Classes, arrays, and inter-

faces are all considered to be reference types. You’ll learn about arrays in Chapter 10 and interfaces in

Chapter 13. You’ll learn about class details in Chapter 6, but for now, it’s good enough to know that a class

is a generic description of the data in a particular type of object. For example, the String class describes

the nature of the data in string objects. More specifi cally, the String class says that each string object can

store zero or more characters and the characters are stored in a sequence.

An Example

Let’s look at an example that uses primitive variables and reference variables. In this code fragment, we

declare variables that keep track of a person’s basic data:

int ssn; // social security number
String name; // person's name
Calendar bday; // person's birthday

As you can tell by the int and String data types, ssn is a primitive variable and name is a reference

variable. In the third line, Calendar is a class. That tells us that bday is a reference variable. The Cal-
endar class allows you to store date information such as year, month, and day.14 Since bday is declared

with the Calendar class, bday is able to store year, month, and day data items.

3.22 Strings

We’ve used strings for quite a while now, but we’ve stored them and printed them and that’s it. Many pro-

grams need to do more with strings than just store and print. For example, Microsoft Offi ce programs

14 Explaining the Calendar class in depth is beyond the scope of this chapter. If you want an in-depth explanation, go to Sun’s Java
documentation Web site (http://java.sun.com/javase/6/docs/api/) and search for Calendar.

03-M4402.indd 8603-M4402.indd 86 12/17/07 4:18:18 PM12/17/07 4:18:18 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

(Word, Excel, PowerPoint) all include text search and text replace capabilities. In this section, we describe

how Java provides that sort of string-manipulation functionality in the String class.

String Concatenation

As you know, strings are normally concatenated with the + operator. Note that strings can also be concat-

enated with the += compound assignment operator. In the following example, if the animal string refer-

ences “dog” originally, it references “dogfi sh” after the statement is executed:

animal += "fish";

We recommend that you now go through a trace to make sure you thoroughly understand

string concatenation. See the code fragment in Figure 3.10. Try to trace the code fragment

on your own prior to looking at the solution.

 3.22 Strings 87

Put yourself in
computer’s
place.

Figure 3.10 Code fragment and associated trace for string concatenation illustration

declaration

initialization

assignment

concatenation, then assignment

concatenation, then compound

assignment

1 String s1;
2 String s2 = "and I say hello";
3
4 s1 = "goodbye";
5 s1 = "You say " + s1;
6 s1 += ", " + s2 + '.';
7 System.out.println(s1);

line# s1 s2 output

1 ?

2 and I say hello

4 goodbye

5 You say goodbye

6 you say goodbye, and I say hello.

7 You say goodbye, and I say hello.

Get help from
the source.

String Methods

In the previous section, we defi ned an object to be a collection of data. An object’s data is normally protected,

and, as such, it can be accessed only through special channels. Normally, it can be accessed only through the

object’s methods. A string object stores a collection of characters, and a string object’s characters can be ac-

cessed only through its charAt method. In the remainder of this section, we’ll describe the charAt method

as well as three other popular string methods—length, equals, and equalsIgnoreCase. These meth-

ods, as well as many about other string methods, are defi ned in the String class.

If you’d like to learn more about the String class and all of its methods, visit Sun’s

Java documentation Web site, http://java.sun.com/javase/6/docs/api/, and follow links that

take you to the String class.

03-M4402.indd 8703-M4402.indd 87 12/17/07 4:18:18 PM12/17/07 4:18:18 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

88 Chapter 3 Java Basics

The charAt Method

Suppose you initialize a string variable, animal, with the value “cow”. The animal variable then points

to a string object that contains three data items—the three characters ‘c’, ‘o’, and ‘w’. To retrieve a data item

(i.e., a character), call the charAt method. charAt stands for character at. The charAt method returns

a character at a specifi ed position. For example, if animal calls charAt and specifi es the third position,

then charAt returns ‘w’ because ‘w’ is the third character in “cow”.

So how do you call the charAt method? Let us answer that question by comparing a charAt method

call to a method call that you’re already comfortable with—the println method call. See Figure 3.11.

In Figure 3.11, note how the charAt method call and the println method call both use this syntax:

<reference-variable> . <method-name> (<argument>)

In the charAt call, animal is the reference variable, charAt is the method name and 2 is the ar-

gument. The argument is the tricky part. The argument specifi es the index of the character that is to be

returned. The positions of characters within a string are numbered starting with index zero, not index one.

For emphasis, we say again! The positions in a string start with index zero. So if animal contains “cow,”

what does animal.charAt(2) return? As the following table indicates, the ‘w’ character is at index 2, so

animal.charAt(2) returns ‘w.’

index: 0 1 2

“cow” string’s characters: c o w

If you call charAt with an argument that’s negative or that’s equal to or greater than the string’s length,

your code will compile OK, but it won’t run properly. For example, suppose you run this program:

public class Test
{
 public static void main(String[] args)
 {
 String animal = "sloth";
 System.out.println("Last character: " + animal.charAt(5));
 }
}

inappropriate index inappropriate index

Figure 3.11 Comparison of charAt method call to println method call

 animal.charAt(2)

System.out.println("Hello, world!");

argument (2 is the index position of the third character in animal)

reference variable method name argument (the message that is to be printed)

⎫⎬⎭ ⎫⎬⎭

⎫ ⎬ ⎭ ⎫ ⎬ ⎭ ⎫ ⎬ ⎭

03-M4402.indd 8803-M4402.indd 88 12/17/07 4:18:19 PM12/17/07 4:18:19 PM

Apago PDF Enhancer

Since sloth’s last index is 4, not 5, the JVM prints an error message. More specifi cally, it prints this:

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException:
 String index out of range: 5
 at java.lang.String.charAt(String.java:558)
 at Test.main(Test.java:6)

At fi rst, such error messages are intimidating and depressing, but eventually you’ll

learn to love them. Well, maybe not quite love them, but you’ll learn to appreciate the in-

formation they provide. They provide information about the type of error and where the

error occurred. Try to view each error message as a learning opportunity! At this point,

don’t worry about understanding all the details in the above error message. Just focus on the two callouts

and the lines that they refer to.

The above error is an example of a runtime error. A runtime error is an error that occurs while a pro-

gram is running, and it causes the program to terminate abnormally. Said another way, it causes the program

to crash.

The length Method

The length method returns the number of characters in a particular string. What does this code fragment

print?

String s1 = "hi";
String s2 = "";
System.out.println("number of characters in s1 = " + s1.length());
System.out.println("number of characters in s2 = " + s2.length());

Since s1’s string contains two characters (‘h’ and ‘i’), the fi rst print statement prints this:

number of characters in s1 = 2

s2 is initialized with the "" value. The "" value is commonly known as the empty string. An empty string

is a string that contains no characters. Its length is zero. The second print statement prints this:

number of characters in s2 = 0

In calling the charAt method, you need to insert an argument (an index value) in the method call’s pa-

rentheses. For example, animal.charAt(2). On the other hand, in calling the length method, there’s

no need to insert an argument in the method call’s parentheses. For example, s1.length(). You may

be thinking “With no argument, why bother with the parentheses?” In calling a method, you always need pa-

rentheses, even if they’re empty. Without the parentheses, the compiler won’t know that the method call is a

method call.

The equals Method

To compare two strings for equality, it’s necessary to step through the characters in both strings and com-

pare same-positioned characters, one at a time. Fortunately, you don’t have to write code to do that rather

tedious comparison operation every time you want to see if two strings are equal. You just have to call the

The 5 refers to the specifi ed

index; it is “out of range.”

The 5 refers to the specifi ed

index; it is “out of range.”

The 6 refers to the line number in the

program where the error occurred.

The 6 refers to the line number in the

program where the error occurred.

 3.22 Strings 89

Ask: What is
computer trying
to tell me?

03-M4402.indd 8903-M4402.indd 89 12/17/07 4:18:20 PM12/17/07 4:18:20 PM

Apago PDF Enhancer

90 Chapter 3 Java Basics

equals method, and it does the tedious comparison operation automatically, behind the scenes. More suc-

cinctly, the equals method returns true if two strings contain the exact same sequence of characters. It

returns false otherwise.

We recommend that you now go through a trace to make sure you thoroughly under-

stand the equals method. See the code fragment in Figure 3.12. Try to trace the code

fragment on your own prior to looking at the solution.

Since newCreature contains the value “HorseFly”, the equals method returns a value of true

when newCreature is compared to “HorseFly”. On the other hand, when newCreature is compared to

lowercase “horsefl y”, the equals method returns a value of false.

The equalsIgnoreCase Method

Sometimes, you might want to disregard uppercase versus lowercase when comparing strings. In other

words, you might want “HorseFly” and “horsefl y” to be considered equal. To test for case-insensitive equal-

ity, call the equalsIgnoreCase method.

What does this code fragment print?

System.out.println("HorseFly".equalsIgnoreCase("horsefly"));

Since equalsIgnoreCase considers “HorseFly” and “horsefl y” to be equal, the code fragment prints

true.

3.23 Input—the Scanner Class

Programs are normally a two-way street. They produce output by displaying something on the computer

screen, and they read input from the user. Up to this point, all our Java programs and code fragments have

Figure 3.12 Code fragment that illustrates the equals method and its associated trace

1 String animal1 = "Horse";
2 String animal2 = "Fly";
3 String newCreature;
4
5 newCreature = animal1 + animal2;
6 System.out.println(newCreature.equals("HorseFly"));
7 System.out.println(newCreature.equals("horsefly"));

line# animal 1 animal 2 newCreature output

1 Horse

2 Fly

3 ?

5 HorseFly

6 true

7 false

Put yourself in
computer’s
place.

03-M4402.indd 9003-M4402.indd 90 12/17/07 4:18:21 PM12/17/07 4:18:21 PM

Apago PDF Enhancer

gone just one way—they’ve displayed something on the screen, but they haven’t read any input. With no in-

put, our programs have been rather limited. In this section, we’ll discuss how to get input from a user. With

input, we’ll be able to write programs that are much more fl exible and useful.

Suppose you’re asked to write a program that calculates earnings for a retirement fund.

If there’s no input, your program must make assumptions about contribution amounts, years

before retirement, and so on. Your program then calculates earnings based on those assumptions. Bottom

line: Your no-input program calculates earnings for one specifi c retirement-fund plan. If input is used, your

program asks the user to supply contribution amounts, years before retirement, and so forth. Your program

then calculates earnings based on those user inputs. So which version of the program is better—the no-input

version or the input version? The input version is better because it allows the user to plug in what-if scenar-

ios. What happens if I contribute more money? What happens if I postpone retirement until I’m 90?

Input Basics

Sun provides a pre-built class named Scanner, which allows you to get input from either a keyboard or a

fi le. We describe fi le input in Chapter 15. Prior to that, when we talk about input, you should assume that

we’re talking about keyboard input.

The Scanner class is not part of the core Java language. So if you use the Scanner class, you need

to tell the compiler where to fi nd it. You do that by importing the Scanner class into your program. More

specifi cally, you need to include this import statement at the top of your program (right after your pro-

logue section):

import java.util.Scanner;

We describe import details (like what is java.util?) in Chapter 5. For now, suffi ce it to say that

you need to import the Scanner class in order to prepare your program for input.

There’s one more thing you need to do to prepare your program for input. Insert this statement at the top

of your main method:

Scanner stdIn = new Scanner(System.in);

The new Scanner(System.in) expression creates an object. As you now know, an object stores a

collection of data. In this case, the object stores characters entered by a user at a keyboard. The stdIn vari-

able is a reference variable, and it gets initialized to the address of the newly created Scanner object. After

the initialization, the stdIn variable allows you to perform input operations.

With the above overhead in place, you can read and store a line of input by calling the nextLine

method like this:

<variable> = stdIn.nextLine();

Let’s put what you’ve learned into practice by using the Scanner class and the nextLine method

call in a complete program. See the FriendlyHello program in Figure 3.13. The program prompts the user

to enter his/her name, saves the user’s name in a name variable, and then prints a greeting with the user’s

name embedded in the greeting.

In the FriendlyHello program, note the “Enter your name: ” print statement. It uses a System.out.
print statement rather than a System.out.println statement. Remember what the “ln” in println

stands for? It stands for “line.” The System.out.println statement prints a message and then moves

the screen’s cursor to the next line. On the other hand, the System.out.print statement prints a message

and that’s it. The cursor ends up on the same line as the printed message (just to the right of the last printed

character).

 3.23 Input—the Scanner Class 91

Ask: What if?

03-M4402.indd 9103-M4402.indd 91 12/17/07 4:18:21 PM12/17/07 4:18:21 PM

Apago PDF Enhancer

92 Chapter 3 Java Basics

So why did we bother to use a print statement instead of a println statement for the “Enter your

 name:” prompt? Because users are used to entering input just to the right of a prompt message. If we used

println, then the user would have to enter input on the next line. One additional item: We inserted a colon

and a blank space at the end of the prompt. Once again, the rationale is that that’s what users are used to.

Input Methods

In the FriendlyHello program, we called the Scanner class’s nextLine method to get a line of input. The

Scanner class contains quite a few other methods that get different forms of input. Here are some of those

methods:

nextInt() Skip leading whitespace until an int value is found. Return the int value.

nextLong() Skip leading whitespace until a long value is found. Return the long value.

nextFloat() Skip leading whitespace until a float value is found. Return the float value.

nextDouble() Skip leading whitespace until a double value is found. Return the double value.

next() Skip leading whitespace until a token is found. Return the token as a String value.

The above descriptions need some clarifi cation:

 1. What is leading whitespace?

 Whitespace refers to all characters that appear as blanks on a display screen or printer. This includes

the space character, the tab character, and the newline character. The newline character is generated with

the enter key. Leading whitespace refers to whitespace characters that are at the left side of the input.

Figure 3.13 FriendlyHello program

/**
* FriendlyHello.java
* Dean & Dean
*
* This program displays a personalized Hello greeting.
***/

import java.util.Scanner;

public class FriendlyHello
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String name;
 System.out.print("Enter your name: ");
 name = stdIn.nextLine();
 System.out.println("Hello " + name + "!");
 } // end main
} // end class FriendlyHello

These two statements create a

keyboard-input connection.

This gets a line of input.

03-M4402.indd 9203-M4402.indd 92 12/17/07 4:18:22 PM12/17/07 4:18:22 PM

Apago PDF Enhancer

 2. What happens if the user provides invalid input?

 The JVM prints an error message and stops the program. For example, if a user enters 45g or 45.0 in

response to a nextInt() call, the JVM prints an error message and stops the program.

 3. The next method looks for a token. What is a token?

 Think of a token as a word since the next method is usually used for reading in a single word. But

more formally, a token is a sequence of non-whitespace characters. For example, “gecko” and “B@a!”

are tokens. But “Gila monster” is not a token because of the space between “Gila” and “monster.”

Examples

To make sure you understand Scanner methods, study the programs in Figures 3.14 and 3.15. They illus-

trate how to use the nextDouble, nextInt, and next methods. Pay particular attention to the sample

sessions. The sample sessions show what happens when the programs run with typical sets of input. In

 3.23 Input—the Scanner Class 93

/**
* PrintPO.java
* Dean & Dean
*
* This program calculates and prints a purchase order amount.
**/

import java.util.Scanner;

public class PrintPO
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 double price; // price of purchase item
 int qty; // number of items purchased

 System.out.print("Price of purchase item: ");
 price = stdIn.nextDouble();
 System.out.print("Quantity: ");
 qty = stdIn.nextInt();
 System.out.println("Total purchase order = $" + price * qty);
 } // end main
} // end class PrintPO

Sample session:

Price of purchase item: 34.14
Quantity: 2
Total purchase order = $68.28

Figure 3.14 PrintPO program that illustrates nextDouble() and nextInt()

03-M4402.indd 9303-M4402.indd 93 12/17/07 4:18:22 PM12/17/07 4:18:22 PM

Apago PDF Enhancer

94 Chapter 3 Java Basics

Figure 3.14, note the italics for 34.14 and 2. In Figure 3.15, note the italics for Malallai Zalmai. We

italicize input values in order to distinguish them from the rest of the program. Be aware that the italiciza-

tion is a pedagogical technique that we use for clarifi cation purposes in the book. Input values are not really

italicized when they appear on a computer screen.

/***
* PrintInitials.java
* Dean & Dean
*
* This program prints the initials for a user-entered name.
***/

import java.util.Scanner;

public class PrintInitials
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String first; // first name
 String last; // last name

 System.out.print(
 "Enter your first and last name separated by a space: ");
 first = stdIn.next();
 last = stdIn.next();
 System.out.println("Your initials are " +
 first.charAt(0) + last.charAt(0) + ".");
 } // end main
} // end class PrintInitials

Sample session:

Enter first and last name separated by a space: Malallai Zalmai
Your initials are MZ.

Figure 3.15 PrintInitials program that illustrates next()

A Problem with the nextLine Method

The nextLine method and the other Scanner methods don’t play well together. It’s OK to use a series of

nextLine method calls in a program. It’s also OK to use a series of nextInt, nextLong, nextFloat,

nextDouble, and next method calls in a program. But if you use the nextLine method and the other

Scanner methods in the same program, be careful. Here’s why you need to be careful.

The nextLine method is the only method that processes leading whitespace. The other methods skip

it. Suppose you have a nextInt method call and the user types 25 and then presses the enter key. The

nextInt method call reads the 25 and returns it. The nextInt method call does not read in the enter

03-M4402.indd 9403-M4402.indd 94 12/17/07 4:18:23 PM12/17/07 4:18:23 PM

Apago PDF Enhancer

key’s newline character. Suppose that after the nextInt method call, you have a nextLine method call.

The nextLine method call does not skip leading whitespace, so it’s stuck with reading whatever is left

over from the previous input call. In our example, the previous input call left the enter key’s newline charac-

ter. Thus, the nextLine call is stuck with reading it. Uh oh.

What happens if the nextLine method reads a newline character? It quits because it’s done reading a

line (the newline character marks the end of a line, albeit a very short line). So the nextLine method call

doesn’t get around to reading the next line, which is probably the line that the programmer intended it to read.

One solution to this nextLine problem is to include an extra nextLine method call whose sole

purpose is to read in the leftover newline character. Another solution is to use one Scanner reference

variable for nextLine input (e.g., stdIn1) and another Scanner reference variable for other input (e.g.,

stdIn2). But for the most part, we’ll try to steer clear of the problem altogether. We’ll try to avoid next-
Line method calls that follow one of the other Scanner method calls.

As you progress through the book, you’ll see that input from the computer keyboard and output to the

computer screen is all the I/O you need to solve a vast array of complex problems. But if you have a large

amount of input, it might be easier and safer to use a simple text processor to write that input once into

a fi le and then reread it from that fi le each time you rerun the program. And if you have a large amount

of output, it might be easier to analyze the output if it’s stored in an output fi le. You don’t need to use

fi les now, but if you can’t wait, you can fi nd the details in Chapter 15, Sections 15.3 and 15.4. At this

time you probably won’t be able to understand many of the details in those later sections of the book.

But if you just consider the little program in Figure 15.2 to be a recipe, it will show you how to output to

a fi le anything you can output to the computer screen. Likewise, if you just consider the little program

in Figure 15.5 to be a recipe, it will show you how to input from a fi le anything you can input from the

keyboard.

At this point, some readers might want to apply what they’ve learned to an object-oriented programming

(OOP) context. OOP is the idea that programs should be organized into objects. You’re not required to learn

about OOP just yet, but if you can’t wait, you can fi nd such details in Chapter 6, Sections 6.1 through 6.8.

3.24 GUI Track: Input and Output with JOptionPane (Optional)

This section is the second installment of our optional graphical user interface (GUI) track. In each GUI

track section, we provide an introduction to a GUI concept. In this section, we describe how to implement

rudimentary input/output (I/O) in a GUI window.

Up to this point in the chapter, we’ve used console windows for displaying input and output. In this sec-

tion, we use GUI windows. What’s the difference? A console window is a window that can display text only.

A GUI window is a window that can display not only text, but also graphical items like buttons, text boxes,

and pictures. For an example, see Figure 3.16’s GUI window. It displays text (an installation message), a but-

ton (an OK button), and a picture (a circled i icon).

Figure 3.16’s window is a specialized type of window. It’s called a dialog box. A dialog box performs

just one specifi c task. Figure 3.16’s dialog box performs the task of displaying information (the i in the i icon

stands for “information”). In later GUI track sections and again in Chapters 16 and 17, we’ll use general-

purpose standard windows. But for now, we’ll stick with dialog boxes.

The JOptionPane Class and Its showMessageDialog Method

In order to display a dialog box, you need to use the JOptionPane class. The JOptionPane class is not

part of the core Java language. So if you use the JOptionPane class, you need to tell the compiler where

 3.24 GUI Track: Input and Output with JOptionPane (Optional) 95

03-M4402.indd 9503-M4402.indd 95 12/17/07 4:18:23 PM12/17/07 4:18:23 PM

Apago PDF Enhancer

96 Chapter 3 Java Basics

to fi nd it. You do that by importing the JOptionPane class into your program. More specifi cally, you need

to include this import statement at the top of your program:

import java.util.JOptionPane;

See the InstallationDialog program in Figure 3.17. It produces the dialog box shown in Figure 3.16. The In-

stallationDialog program’s code should look familiar. At the top, it has the JOptionPane import state-

ment. Then it has the standard class heading, standard main method heading, and braces. What’s new is the

JOptionPane.showMessageDialog method call.

/**
* InstallationDialog.java
* Dean & Dean
*
* This program illustrates JOptionPane's message dialog.
**/

import javax.swing.JOptionPane;

public class InstallationDialog
{
 public static void main(String[] args)
 {
 JOptionPane.showMessageDialog(null,
 "Before starting the installation, " +
 "shut down all applications.");
 }
} // end class InstallationDialog

Figure 3.17 InstallationDialog program

Figure 3.16 A dialog box that displays installation information

The showMessageDialog method displays a message in a dialog box. Here’s the syntax for calling

the showMessageDialog method:

JOptionPane.showMessageDialog(null, <message>)

The showMessageDialog method takes two arguments. The fi rst argument specifi es the position of the

dialog box on the computer screen. We’ll keep things simple and go with the default position, which is the

03-M4402.indd 9603-M4402.indd 96 12/17/07 4:18:24 PM12/17/07 4:18:24 PM

Apago PDF Enhancer

center of the screen. To go with the default position, specify null for the fi rst argument. The second argu-

ment specifi es the message that appears in the dialog box.

Input Dialog Box

Note that a dialog box is often referred to simply as a dialog. Both terms are acceptable. There are several

types of JOptionPane dialogs. We consider two of them—the message dialog for output and the input di-

alog for input. We’ve already described the message dialog. That’s what showMessageDialog produces.

We’ll now look at the input dialog.

The input dialog displays a prompt message and an input box. The top four dialogs in Figure 3.18 are

input dialogs. These display a question mark icon as a visual cue that the dialog is asking a question and

waiting for user input. Clicking OK processses the value entered. Clicking Cancel closes the dialog box

without processing.

 3.24 GUI Track: Input and Output with JOptionPane (Optional) 97

Figure 3.18 Sample session for PrintPOGUI program

prompt message

input box

1. Initial display

2. After entering “painting, dogs playing poker”

4. After clicking OK and entering 2

3. After clicking OK and entering 42.22

5. After clicking OK

03-M4402.indd 9703-M4402.indd 97 12/17/07 4:18:24 PM12/17/07 4:18:24 PM

Apago PDF Enhancer

98 Chapter 3 Java Basics

The purpose of the input dialog is to read a user-entered value and store it in a variable. To read text

values, call showInputDialog like this:

<string-variable> = JOptionPane.showInputDialog(<prompt-message>);

To read in a number, you need to call showInputDialog and then convert the read-in string to a number.

More specifi cally, to read an int value, do this:

<int-variable> = Integer.parseInt(JOptionPane.showInputDialog)(<prompt-message>);

And to read a double value, do this:

<double-variable> = Double.parseDouble(JOptionPane.showInputDialog
(<prompt-message>));

Now look at Figure 3.19. It shows how to use these new statements to produce Figure 3.18’s displays.

/***
* PrintPOGUI.java
* Dean & Dean
*
* This program calculates and prints a purchase order report.
***/

import javax.swing.JOptionPane;

public class PrintPOGUI
{
 public static void main(String[] args)
 {
 String itemName; // name of purchase item
 double price; // price of purchase item
 int qty; // number of items purchased

 itemName = JOptionPane.showInputDialog("Name of purchase item:");
 price = Double.parseDouble(
 JOptionPane.showInputDialog("Price of one item:"));
 qty = Integer.parseInt(
 JOptionPane.showInputDialog("Quantity:"));
 JOptionPane.showMessageDialog(null,
 "PURCHASE ORDER:\n\n" +
 "Item: " + itemName + "\nQuantity: " + qty +
 "\nTotal price: $" + price * qty);
 } // end main
} // end class PrintPOGUI

Figure 3.19 PrintPOGUI program

03-M4402.indd 9803-M4402.indd 98 12/17/07 4:18:25 PM12/17/07 4:18:25 PM

Apago PDF Enhancer

Integer.parseInt converts the read-in string to an int value, and Double.parseDouble con-

verts the read-in string to a double value. Integer and Double are wrapper classes. parseInt and

parseDouble are wrapper class methods. We’ll describe wrapper classes and their methods in Chapter 5.

I/O for the Remainder of the Book

For the GUI track sections and for the GUI chapters at the end of the book, we’ll of course use GUI win-

dows for I/O. But for the remainder of the book, we’ll use console windows. We use console windows for the

remainder of the book because that leads to simpler programs. Simpler programs are important so we can

cut through clutter and focus on newly introduced material. But if you’ve decided that you love all things

GUI and you can’t get enough of it, feel free to convert all our console-window programs to GUI-window

programs. To do so, replace all of our output code with showMessageDialog calls, and replace all of our

input code with showInputDialog calls.

Summary

Comments are used for improving a program’s readability/understandability.

The System.out.println method prints a message and then moves the screen’s cursor to the next

line. The System.out.print method prints a message and leaves the cursor on the same line as the

printed message.

Variables can hold only one type of data item and that type is defi ned with a variable declaration

statement.

An assignment statement uses the = operator, and it puts a value into a variable.

An initialization statement is a combination of a declaration statement and an assignment statement. It

declares a variable’s type and also gives the variable an initial value.

Variables that hold whole numbers should normally be declared with the int data type or the long

data type.

Variables that hold fl oating-point numbers should normally be declared with the double data type.

If you’re sure that a variable is limited to small fl oating-point numbers, it’s OK to use the float data

type.

Named constants use the final modifi er.

There are two types of integer division. One type fi nds the quotient (using the / operator). The other

type fi nds the remainder (using the % operator).

Expressions are evaluated using a set of well-defi ned operator precedence rules.

The cast operator allows you to return a different-data-type version of a given value.

Use an escape sequence (with a backslash) to print hard-to-print characters such as the tab character.

A reference variable stores a memory address that points to an object. An object is a collection of re-

lated data wrapped in a protective shell.

The String class provides methods that can be used for string processing.

The Scanner class provides methods that can be used for input.

Review Questions

§3.2 “I Have a Dream” Program

 1. What does this chapter’s Dream.java program do?
 2. What are the fi lename extensions for Java source code and bytecode, respectively?

•
•

•

•
•

•

•

•
•

•
•
•
•

•
•

 Review Questions 99

03-M4402.indd 9903-M4402.indd 99 12/17/07 4:18:25 PM12/17/07 4:18:25 PM

Apago PDF Enhancer

100 Chapter 3 Java Basics

§3.3 Comments and Readability

 3. Why does source code have comments?

§3.4 The Class Heading

 4. For a fi le with a public class, the program’s fi lename must match the program’s class name except that the
fi lename has a .java extension added to it. (T / F)

 5. Standard coding conventions dictate that class names start with a lowercase fi rst letter. (T / F)
 6. In Java, the case of a character does matter. (T / F)

§3.5 The main Method’s Heading

 7. A program’s start-up method, main, should be in a class that is public. (T / F)
 8. The main method itself must be public. (T / F)
 9. From your memory alone (don’t look for the answer in the book), write the main method heading.

§3.6 Braces

 10. Identify two types of groupings that must be enclosed in braces.

§3.7 System.out.println

 11. From your memory alone (don’t look for the answer in the book), write the statement that tells the computer
to display this string of text:

Here is an example

§3.9 Identifi ers

 12. List all of the types of characters that may be used to form an identifi er.
 13. List all of the types of characters that may be used as the fi rst character of an identifi er.

§3.10 Variables

 14. You should abbreviate variable names by omitting vowels, in order to save space. (T / F)
 15. Why is it good practice to use a separate line to declare each separate variable?

§3.11 Assignment Statements

 16. There must be a semicolon after every assignment statement. (T / F)

§3.12 Initialization Statements

 17. Initialization “kills two birds with one stone”. What are the “two birds”?

§3.13 Numeric Data Types—int, long, float, double

 18. The most appropriate type to use for fi nancial accounting is —————— .
 19. For each statement, specify true or false:

 a) 1234.5 is a floating-point number. (T / F)
 b) 1234 is a floating-point number. (T / F)
 c) 1234. is a floating-point number. (T / F)

 20. If you try to assign an int value into a double variable, the computer automatically makes the conversion
without complaining, but if you try to assign a double value into an int variable, the compiler generates
an error. Why?

§3.14 Constants

 21. For each statement, specify true or false:
 a) 0.1234 is a float. (T / F)
 b) 0.1234f is a float. (T / F)

03-M4402.indd 10003-M4402.indd 100 12/17/07 4:18:26 PM12/17/07 4:18:26 PM

Apago PDF Enhancer

 c) 0.1234 is a double. (T / F)
 d) 1234.0 is a double. (T / F)

 22. What modifi er specifi es that a variable’s value is fi xed/constant?

§3.15 Arithmetic Operators

 23. What is the remainder operator?
 24. Write the following mathematical expressions as legal Java expressions:

 a. 3x�1
 x2

 b. 1
�

 1
 2 xy

§3.16 Expression Evaluation and Operator Precedence

 25. Assume this:

 int m = 3, n = 2;
 double x = 7.5;

Evaluate the following expressions:
 a) (7 - n) % 2 * 7.5 � 9
 b) (4 + n / m) / 6.0 * x

§3.17 More Operators: Increment, Decrement, .and Compound Assignment

 26. Write the shortest Java statement that increments count by one.
 27. Write the shortest Java statement that decrements count by 3.
 28. Write the shortest Java statement that multiplies number by (number - 1) and leaves the product in

number.

§3.18 Tracing

 29. What does it mean if a variable contains garbage?
 30. In a trace listing, what are line numbers for?

§3.19 Type Casting

 31. Write a Java statement that assigns the double variable, myDouble, to the int variable, myInteger.

§3.20 char Type and Escape Sequences

 32. What’s wrong with the following initialization?

char letter = "y";
 33. If we try to put a quotation mark (") somewhere inside a string literal to be printed, the computer interprets

the quotation mark as the end of the string literal. How can we overcome this problem and force the
computer to recognize the quotation mark as something we want to print?

 34. When describing the location of a fi le or directory, computers use directory paths. In Windows
environments, use the backslash character (\) to separate directories and fi les within a directory path. If
you need to print a directory path within a Java program, how should you write the backslash character?

§3.21 Primitive Variables Versus Reference Variables

 35. The type name for a primitive type is not capitalized, but the type name for a reference type is usually
capitalized. (T / F)

 36. List the primitive types this chapter describes, in the following categories:
 a) Integer numbers.
 b) Floating point numbers.
 c) Individual text characters and special symbols.

 Review Questions 101

03-M4402.indd 10103-M4402.indd 101 12/17/07 4:18:26 PM12/17/07 4:18:26 PM

Apago PDF Enhancer

102 Chapter 3 Java Basics

§3.22 Strings

 37. What two operators perform string concatenation, and what’s the difference between the operators?
 38. What method can be used to retrieve a character at a specifi ed position within a string?
 39. What two methods can be used to compare strings for equality?

§3.23 Input—the Scanner class

 40. What is whitespace?
 41. Write the statement that you must put before any other code to tell the compiler that you will be using the

Scanner class.
 42. Write the statement that creates a connection between your program and the computer’s keyboard.
 43. Write a statement that inputs a line of text from the keyboard and puts it into a variable named line.
 44. Write a statement that inputs a double number from the keyboard and puts it into a variable named

number.

Exercises

 1. [after §3.3] Illustrate the two ways to provide comments in a Java program by writing the following as a
comment in both formats:
 This a very long comment with lots of useless and unnecessary words that
force us to use multiple lines to include it all.
When using the block syntax, minimize your use of asterisks.

 2. [after §3.5] Why does public static void Main(String[] args) generate an error?

 3. [after §3.6] What are braces used for?

 4. [after §3.8] What program is in charge of
 a) Reading Java source code and creating bytecode?
 b) Executing bytecode?

 5. [after §3.9] To enhance readability of an identifi er that’s comprised of several words, use periods between
the words. (T / F)

 6. [after §3.10] For each of the below variable names, indicate (with y or n) whether it’s legal and whether it
uses proper style. Note: You may skip the style question for illegal variable names since style is irrelevant in
that case.

 legal (y/n)? proper style (y/n)?
 a) _isReady
 b) 3rdName
 c) num of wheels
 d) money#on#hand
 e) taxRate
 f) SeatNumber

 7. [after §3.10] You don’t need a semicolon after a variable declaration. (T / F)

 8. [after §3.13] If we just write a fl oating point number without specifying its type, what type does the
computer assume it is?

 9. [after §3.14] How would you specify the square root of two as a named constant? Use 1.41421356237309 for
your named constant’s value.

 10. [after §3.15] Write the following mathematical expressions as legal Java expressions:

 a) ⎛3 � k⎞ 2
 ⎝ 4 ⎠

03-M4402.indd 10203-M4402.indd 102 12/17/07 4:18:26 PM12/17/07 4:18:26 PM

Apago PDF Enhancer

 b) 9x � (4.5 � y)
 2x

 11. [after §3.16] Assume this:

int a = 9;
double b = 0.5;
int c = 0;

 Evaluate each of the following expressions by hand. Show your work, using a separate line for each
evaluation step. Check your work by writing and executing a program that evaluates these expressions and
outputs the results.
 a) a + 3 / a
 b) 25 / ((a - 4) * b)
 c) a / b * a
 d) a % 2 - 2 % a

 12. [after §3.19] Type Casting:
 Assume the following declarations:

int integer;
double preciseReal;
float sloppyReal;
long bigInteger;

 Rewrite those of the following statements which would generate a compile-time error using an appropriate
cast that makes the error go away. Do not provide a cast for any statement which the compiler automatically
promotes.
 a) integer = preciseReal;
 b) bigInteger = sloppyReal;
 c) preciseReal = integer;
 d) sloppyReal = bigInteger;
 e) integer = sloppyReal;
 f) bigInteger = preciseReal;
 g) sloppyReal = integer;
 h) preciseReal = bigInteger;
 i) integer = bigInteger;
 j) sloppyReal = preciseReal;
 k) preciseReal = sloppyReal;
 l) bigInteger = integer;

 13. [after §3.20] Assuming that tab stops are 4 columns apart, what output does the following statement
generate?

System.out.println("\"pathName:\"\n\tD:\\myJava\\Hello.java");

 14. [after §3.21] Reference types begin with an uppercase letter. (T / F)

 15. [after §3.22] Assume that you have a string variable named myName. Provide a code fragment that prints
myName’s third character.

 16. [after §3.22] What does this code fragment print?

String s = "hedge";
s += "hog";
System.out.println(s.equals("hedgehog"));
System.out.println((s.length()-6) + " " + s.charAt(0) + "\'s");

 Exercises 103

03-M4402.indd 10303-M4402.indd 103 12/17/07 4:18:27 PM12/17/07 4:18:27 PM

Apago PDF Enhancer

104 Chapter 3 Java Basics

Review Question Solutions

 1. It generates the output:
I have a dream!

 2. The Java source code extension is .java. The bytecode extension is .class.

 3. Source code has comments to help Java programmers recall or determine how a program works.
(Comments are ignored by the computer, and they are not accessible to ordinary users.) The initial comment
block includes the fi le name as a continuous reminder to the programmer. It contains program authors,
for help and reference. It may include date and version number to identify context. It includes a short
description to facilitate rapid understanding. Punctuation comments like // end class <class-name>
help keep a reader oriented. Special comments identify variables and annotate obscure formulas.

 4. True. If a fi le has a public class, the fi lename must equal this class name.

 5. False. Class names should start with an uppercase fi rst letter.

 6. True. Java is case sensitive. Changing the case of any letter creates a completely different identifi er.

 7. True.

 8. True. Otherwise, the startup procedure cannot be accessed.

 9. public static void main(String[] args)

 10. One must use braces for (1) all the contents of a class and (2) all the contents of a method.

 11. System.out.println("Here is an example");

 12. Upper-case characters, lower-case characters, numbers, underscore, and dollar sign.

 13. Upper-case characters, lower-case characters, underscore, and dollar sign. No numbers.

 14. False: In source code, saving space is not as important as good communication. Weird abbreviations are
hard to say and not as easy to remember as real words.

 15. If each variable is on a separate line, each variable has space at the right for an elaborating comment.

 16. True.

 17. Variable declaration and assigning a value into the variable.

 18. Type double, or type long, with value in cents.

 19. a) True; b) False; c) True

 20. Assigning an integer value into a fl oating point variable is like putting a small object into a large box.
The int type goes up to approximately 2 billion. It’s easy to fi t 2 billion into a double “box” because
a double goes all the way up to 1.8 � 10308. On the other hand, assigning a fl oating point value into an
integer variable is like putting a large object into a small box. By default, that’s illegal.

 21. a) False; b) True; c) True; d) True

 22. The final modifi er specifi es that a variable’s value is fi xed/constant.

 23. The remainder operator is a percent sign: %.

 24. Write the following mathematical expressions as legal Java expressions:
 a) (3 * x � 1) / (x * x)
 b) 1.0 / 2 � 1.0 / (x * y)
 or
 .5 � 1.0 / (x * y)

03-M4402.indd 10403-M4402.indd 104 12/17/07 4:18:27 PM12/17/07 4:18:27 PM

Apago PDF Enhancer

 25. Expression evaluation:

 a) (7 - n) % 2 * 7.5 + 9 ⇒
 5 % 2 * 7.5 + 9 ⇒
 1 * 7.5 + 9 ⇒
 7.5 + 9 ⇒
 16.5
 b) (4 + n / m) / 6.0 * x ⇒
 (4 + 2 / 3) / 6.0 * 7.5 ⇒
 (4 + 0) / 6.0 * 7.5 =>
 4 / 6.0 * 7.5 ⇒
 0.666666666666666667 * 7.5 ⇒
 5.0

 26. count++;

 27. count -= 3;

 28. number *= (number - 1);

 29. For variables declared without an initialization, the initial value is referred to as garbage because its actual
value is unknown. Use a question mark to indicate a garbage value.

 30. Line numbers tell you which statement in the code generates the current trace results.

 31. myInteger = (int) myDouble;

 32. The variable, letter, is of type char, but the double quotes in "y" specify that the initial value has type
String, so the types are incompatible. It should be written:

 char letter = 'y';

 33. To print a double quotation mark, put a backslash in front of it, that is, use \".

 34. To print a backslash, use two backslashes, that is, use \\.

 35. True.

 36. List the primitive types this chapter describes, in the following categories:
 a) Integer numbers: int, long
 b) Floating point numbers: float, double
 c) Individual text characters and special symbols: char

 37. The + and += operators perform concatenation. The + operator does not update the operand at its left. The
+= operator does update the operand at its left.

 38. The charAt method can be used to retrieve a character at a specifi ed position within a string.

 39. The equals and equalsIgnoreCase methods can be used to compare strings for equality.

 40. Whitespace � the characters associated with the spacebar, the tab key, and the enter key.

 41. import java.util.Scanner;

 42. Scanner stdIn = new Scanner(System.in);

 43. line = stdIn.nextLine();

 44. number = stdIn.nextDouble();

 Review Question Solutions 105

03-M4402.indd 10503-M4402.indd 105 12/17/07 4:18:27 PM12/17/07 4:18:27 PM

Apago PDF Enhancer

106 Chapter 4 Control Statements

C H A P T E R

106

Control Statements

Objectives

Learn how to use if statements to alter a program’s sequence of execution.

Become familiar with Java’s comparison and logical operators, and learn how to use them to describe

complex conditions.

Learn how to use the switch statement to alter a program’s sequence of execution.

Recognize repetitive operations, understand the various kinds of looping that Java supports, and learn

how to select the most appropriate type of loop for each problem that requires repetitive evaluation.

Be able to trace a looping operation.

Learn how and when to nest a loop inside another loop.

Learn how to use boolean variables to make code more elegant.

Learn how to validate input data.

Optionally, learn how to simplify complicated logical expressions.

Outline

 4.1 Introduction

 4.2 Conditions and Boolean Values

4.3 if Statements

4.4 && Logical Operator

4.5 || Logical Operator

4.6 ! Logical Operator

 4.7 switch Statement

 4.8 while Loop

 4.9 do Loop

 4.10 for Loop

 4.11 Solving the Problem of Which Loop to Use

 4.12 Nested Loops

 4.13 boolean Variables

 4.14 Input Validation

 4.15 Problem Solving with Boolean Logic (Optional)

•
•

•
•

•
•
•
•
•

4

04-M4402.indd 10604-M4402.indd 106 12/17/07 4:18:50 PM12/17/07 4:18:50 PM

Apago PDF Enhancer

4.1 Introduction

In Chapter 3, we kept things simple and wrote pure sequential programs. In a pure sequential program,

 statements execute in the sequence/order in which they are written; that is, after executing a statement, the

computer executes the statement that immediately follows it. Pure sequential programming works well for

trivial problems, but for anything substantial, you’ll need the ability to execute in a nonsequential fashion. For

 example, if you’re writing a recipe-retrieval program, you probably don’t want to print all of the program’s

recipes one after another. You’ll want to execute the chocolate chip cookie print statements if the user indi-

cates an affi nity for chocolate chip cookies, and you’ll want to execute the crab quiche print statements if the

user indicates an affi nity for crab quiche. That sort of functionality requires the use of control statements. A

control statement controls the order of execution of other statements. In Chapter 2 you used pseudocode if and

while statements to control the order of execution within an algorithm. In this chapter, you’ll use Java if and

while statements, plus a few additional Java statements, to control the order of execution within a program.

In controlling the order of execution, a control statement uses a condition (a question) to decide which

way to go. We start Chapter 4 with an overview of Java conditions. We then describe Java’s control state-

ments—the if statement, the switch statement, the while loop, the do loop, and the for loop. Along

the way, we describe Java’s logical operators &&, ||, and !, which are needed when dealing with more

 complicated conditions. We conclude the chapter with several loop-related concepts—nested loops, input

validation, and boolean variables. Good stuff!

4.2 Conditions and Boolean Values

In Chapter 2’s fl owcharts, we used diamond shapes to represent logical decision points—points where con-

trol fl ow went either one way or another. Into those diamonds we inserted various abbreviated questions like,

“ceoSalary greater than $500,000?” and “count less than or equal to 100?” Then we labeled alternate

paths away from those diamonds with “yes” or “no” answers to those questions. In Chapter 2’s pseudocode,

we used “if” and “while” clauses to describe logical conditions. Examples included: “if shape is a circle,”

“if grade is greater than or equal to 60,” and “while score is not equal to �1.” We considered pseudo-

code conditions to be either “true” or “false.”

Informal condition expressions like these are fi ne for fl owcharts and pseudocode, but when you

start writing real Java code, you must be precise. The computer interprets each “if” condition or loop condi-

tion as a two-way choice. What are the two possible values recognized by Java? They are the Java values

true and false. These values, true and false, are called Boolean values, after George Boole, a fa-

mous 19th century logician. Throughout the rest of this chapter, you’ll see if statements and loop state-

ments where conditions appear as little fragments of code within a pair of parentheses, like this:

if (<condition>)

{

 . . .

}

while (<condition>)

{

 . . .

}

 4.2 Conditions and Boolean Values 107

04-M4402.indd 10704-M4402.indd 107 12/17/07 4:18:51 PM12/17/07 4:18:51 PM

Apago PDF Enhancer

108 Chapter 4 Control Statements

Whatever is in the places marked by <condition> always evaluates to either true or false.

Typically, each condition involves some type of comparison. With pseudocode, you can use words to

describe the comparisons, but in real Java code, you must use special comparison operators. Comparison

operators (also called equality and relational operators) are like mathematical operators in that they link

adjacent operands, but instead of combining the operands in some way, they compare them. When a math-

ematical operator combines two numbers, the combination is a number like the operands being combined.

But when a comparison operator compares two numbers, the result is a different type. It is not a number like

the operands being compared. It is a Boolean truth value—either true or false.

Here are Java’s comparison operators:

==, !=, <, >, <=, >=

The == operator tests whether two values are equal. Notice that this symbol uses two equals signs! This is

different from the single equals sign that we all use instinctively to represent equality. Why does Java use

two equals signs for equality in a comparison? It’s because Java already uses the single equals sign for as-

signment, and context is not enough to distinguish assignment from equality. Do not try to use a single = for

comparison! The Java compiler will not like it.

The != operator tests whether two values are unequal. As you’d expect, the < operator tests whether a

value on the left is less than a value on the right. The > operator tests whether a value on the left is greater

than a value on the right. The <= operator tests whether a value on the left is less than or equal to a value on

the right. The >= operator tests whether a value on the left is greater than or equal to a value on the right.

The result of any one of these tests is always either true or false.

4.3 if Statements

Now, let’s look at a simple example of the condition in an if statement. Here’s a simple if statement that

checks a car’s temperature gauge value and prints a warning if the temperature is above 215 degrees:

if (temperature > 215)

{

 System.out.println("Warning! Engine coolant is too hot.");

 System.out.println("Stop driving and allow engine to cool.");

}

The condition uses the > operator to generate a true value if the temperature is above 215 degrees

or a false value if it is not. The subordinate statements execute only if the condition generates a true
value.

Syntax

In the above example, note the parentheses around the condition. Parentheses are required whenever you

have a condition, regardless of whether it’s for an if statement, a while loop, or some other control struc-

ture. Note the braces around the two subordinate print statements. Use braces to surround statements that

are logically inside something else. For example, braces are required below the main method’s heading

and at the bottom of the main method because the statements inside the braces are logically inside the

main method. Likewise, you should use braces to surround the statements that are logically inside an

condition

04-M4402.indd 10804-M4402.indd 108 12/17/07 4:18:51 PM12/17/07 4:18:51 PM

Apago PDF Enhancer

if statement. To emphasize the point that statements inside braces are logically inside something else, you

should always indent statements that are inside braces. Since this is so important, we’ll say it again: Always

indent when you’re inside braces!

When an if statement includes two or more subordinate statements, you must enclose the subordinate

statements in braces. Said another way, you must use a block. A block, also called a compound statement, is

a set of zero or more statements surrounded by braces. A block can be used anywhere a standard statement

can be used. If you don’t use braces for the if statement’s two subordinate statements, the computer con-

siders only the fi rst statement to be subordinate to the if statement. When there is supposed to be just one

subordinate statement, you’re not required to enclose it in braces, but we recommend that you do so anyway.

That way, you won’t get into trouble if you come back later and want to insert additional subordinate state-

ments at that point in your program.

Three Forms of the if Statement

There are three basic forms for an if statement:

“if”—use when you want to do one thing or nothing.

“if, else”—use when you want to do one thing or another thing.

“if, else if”—use when there are three or more possibilities.

Chapter 2 presented pseudocode versions of these forms. Figures 4.1, 4.2, and 4.3 show Java forms.

•

•

•

 4.3 if Statement 109

Figure 4.2 Syntax and semantics for the “if, else” form of the if statement

false

true<if-condition>

<statement(s)>

<else-statement(s)>

<following-statement>

if (<condition>)
{
 <if-statement(s)>
}
else
{
 <else-statement(s)>
}

Figure 4.1 Syntax and semantics for the simple “if” form of the if statement

false

true
<if-condition>

<statement(s)>

<following-statement>

if (<condition>)
{
 <statement(s)>
}

04-M4402.indd 10904-M4402.indd 109 12/17/07 4:18:52 PM12/17/07 4:18:52 PM

Apago PDF Enhancer

110 Chapter 4 Control Statements

if (<if-condition>)
{
 <if-statement(s)>
}
else if (<else-if-condition>)
{
 <else-if-statement(s)>
}
 . ⎫
 . ⎬
 . ⎭
else
{ ⎫
 <else-statement(s)> ⎬
} ⎭

false

false

true

true

<if-condition>

<else-if-condition>

<statement(s)>

<else-if-statement(s)>

<else-statement(s)>

<following-statement>

optional additional

else if’s

optional

Figure 4.3 Syntax and semantics for the “if, else if” form of the if statement

Take several minutes and examine Figures 4.1, 4.2, and 4.3. The fi gures show the syntax and semantics

for the three forms of the Java if statement. The semantics of a statement is a description of how the state-

ment works. For example, Figure 4.1’s fl owchart illustrates the semantics of the “if” form of the if state-

ment by showing the fl ow of control for different values of the if statement’s condition.

Most of what you see in the if statement fi gures should look familiar since it parallels what you

learned in Chapter 2. But the “if, else if” form of the if statement deserves some extra attention. You may

include as many “else if” blocks as you like—more “else if” blocks for more choices. Note that the “else”

block is optional. If all the conditions are false and there’s no “else” block, none of the statement blocks

is executed. Here’s a code fragment that uses the “if, else if” form of the if statement to troubleshoot iPod1

problems:

if (iPodProblem.equals("no response"))
{
 System.out.println("Unlock iPod's Hold switch.");
}
else if (iPodProblem.equals("songs don't play"))
{
 System.out.println("Use iPod Updater to update your software.");
}
else
{
 System.out.println("Visit http://www.apple.com/support.");
}

1 The iPod is a portable media player designed and marketed by Apple Computer.

04-M4402.indd 11004-M4402.indd 110 12/17/07 4:18:52 PM12/17/07 4:18:52 PM

http://www.apple.com/support

Apago PDF Enhancer

Practice Problem

Now let’s put what you’ve learned into practice by using the if statement within a complete program.

 Suppose you’re asked to write a sentence-tester program that checks whether a user-entered line ends with a

period. Your program should print an error message if the last character in the line is not

a period. In writing the program, use a sample session as a guide. Note that the italicized

Mahatma Gandhi quote is a user- entered input value.

Sample session:

Enter a sentence:
Permanent good can never be the outcome of violence.

Another sample session:

Enter a sentence:
Permanent good can never be the outcome of
Invalid entry – your sentence is not complete!

As your fi rst step in implementing a solution, use pseudocode to generate an informal outline of the basic

logic:

print “Enter a sentence: ”

input sentence

if sentence’s last character is not equal to ‘.’

 print “Invalid entry – your sentence is not complete!”

Note the simple “if” form of the if statement. That’s appropriate because there’s a need to do something

(print an invalid entry message) or nothing. Why nothing? Because the problem description does not say to

print anything for user entries that are legitimate sentences. In other words, the program should skip what’s

in the if statement if you fi nish the sentence properly. Now we suggest that you try writing the Java code

to implement this algorithm. You’ll need to use a couple of the String methods described near the end of

Chapter 3. When you’re ready, look at the SentenceTester solution in Figure 4.4.

How does the SentenceTester program determine whether the last character is a period? Suppose the

user enters “Hello.” In that case, what value would be assigned to the lastCharPosition variable?

String’s length method returns the number of characters in a string. The number of characters in

“Hello.” is six. Since the fi rst position is zero, lastCharPosition would get assigned a value of (6 � 1)

or 5. Why do we want lastCharPosition? We need to see if the last character in the user-entered value

is a period. To do so, we use lastCharPosition as the argument in a charAt method call. String’s
charAt method returns the character at a specifi ed index position within a string. The index position of

the period in “Hello.” is 5, and the if condition checks whether the user-entered value’s last character is a

period.

4.4 && Logical Operator

Up to this point, all of our if statement examples have used simple conditions. A simple condition evaluates

directly to either true or false. In the next three sections, we introduce you to logical operators, like the

“and” operator (&&) and the “or” operator (||), which make it possible to construct compound conditions.

A compound condition is a conjunction (either an “anding” or an “oring”) of two or more conditions. When

Use desired out-
put to specify
problem.

 4.4 && Logical Operator 111

04-M4402.indd 11104-M4402.indd 111 12/17/07 4:18:53 PM12/17/07 4:18:53 PM

Apago PDF Enhancer

112 Chapter 4 Control Statements

you have a compound condition, each part of the compound condition evaluates to either true or false,

and then the parts combine to produce a composite true or false for the whole compound condition.

The combining rules are what you might expect: When you “and” two conditions together, the combination

is true only if the fi rst condition is true and the second condition is true. When you “or” two conditions

together, the combination is true if the fi rst condition is true or the second condition is true. You’ll see

plenty of examples as the chapter progresses.

&& Operator Example

Let’s begin our discussion of logical operators with an example that uses the && operator. (Note: && is pro-

nounced “and”). Suppose you want to print “OK” if the temperature is between 50 and 90 degrees and print

“not OK” otherwise:

Figure 4.4 SentenceTester program

/**
* SentenceTester.java
* Dean & Dean
*
* This program checks for period at the end of line of input.
***/

import java.util.Scanner;

public class SentenceTester
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String sentence;
 int lastCharPosition;

 System.out.println("Enter a sentence:");
 sentence = stdIn.nextLine();
 lastCharPosition = sentence.length() - 1;
 if (sentence.charAt(lastCharPosition) != '.')
 {
 System.out.println(
 "Invalid entry - your sentence needs a period!");
 }
 } // end main
} // end class SentenceTester

This condition

checks for proper

termination.

not OK not OKOK50° 90°

04-M4402.indd 11204-M4402.indd 112 12/17/07 4:18:53 PM12/17/07 4:18:53 PM

Apago PDF Enhancer

Here’s a pseudocode description of the problem:

if temp � 50 and � 90

 print “OK”

else

 print “not OK”

Notice that the pseudocode condition uses � and � rather than � and �. The original problem specifi ca-

tion says to print “OK” if the temperature is between 50 and 90 degrees. When people say “between,” they

usually, but not always, mean to include the end points. Thus, we assumed that the 50 and 90 end points

were supposed to be included in the OK range, and we chose to use � and � accord-

ingly. But in general, if you’re writing a program and you’re unsure about the end points

for a particular range, you should not assume. Instead, you should ask the customer what

he/she wants. The end points are important.

See Figure 4.5. It shows the Java implementation for the temperature-between-50-and-90 problem. In

Java, if both of two criteria must be met for a condition to be satisfi ed (e.g., temp >= 50 and temp <= 90),

then separate the two criteria with the && operator. As indicated by Figure 4.5’s fi rst callout, if both criteria

use the same variable (e.g., temp), you must include the variable on both sides of the &&. Note the use of

>= and <=. In pseudocode, it’s OK to use �, �, or even the words “greater than or equal to,” and “less than

or equal to.” But in Java, you must use >= and <=.

Think about
where boundary
values go.

4.4 && Logical Operator 113

if ((temp >= 50) && (temp <= 90))
{
 System.out.println("OK");
}
else
{
 System.out.println("not OK");
}

temp must be repeated

Use ��, not �.

Figure 4.5 Java implementation for the temperature-between-50-and-90 problem

Operator Precedence

In Figure 4.5, note the parentheses around each of the two temperature comparisons. They force evaluation

of the comparisons before evaluation of the &&. What would happen if we omitted those inner parentheses?

To answer that sort of question, you need to refer to an operator precedence table. Appendix 2 provides a

complete operator precedence table, but most of the cases you’ll encounter are covered by the abbreviated

precedence table in Figure 4.6. All operators within a particular numbered group have equal precedence,

but operators at the top of the fi gure (in groups 1, 2, . . .) have higher precedence than operators at the bot-

tom of the fi gure (in groups . . . 7, 8).

Figure 4.6 shows that the comparison operators >= and <= have higher precedence than the logical op-

erator &&. Thus, the >= and <= operations execute before the && operation—even if the inner parentheses

in the condition in Figure 4.5 are omitted. In other words, we could have written Figure 4.5’s condition more

simply, like this:

04-M4402.indd 11304-M4402.indd 113 12/17/07 4:18:54 PM12/17/07 4:18:54 PM

Apago PDF Enhancer

114 Chapter 4 Control Statements

 1. grouping with parentheses:
 (<expression>)

 2. unary operators:
+x
-x
(<type>) x
x++
x--
!x

 3. multiplication and division operators:
x * y
x / y
x % y

 4. addition and subtraction operators:
x + y
x – y

 5. less than and greater than relational operators:
x < y
x > y
x <= y
x >= y

 6. equality operators:
x == y
x != y

 7. “and” logical operator:
x && y

 8. “or” logical operator:
x || y

Figure 4.6 Abbreviated operator precedence table (see Appendix 2 for complete table)

The operator groups at the top of the table have higher precedence than the operator groups at the bottom of

the table. All operators within a particular group have equal precedence. If an expression has two or more same-

precedence operators, then within that expression ones on the left are executed before ones on the right.

if (temp >= 50 && temp <= 90)

You may include these extra parentheses or not, as you wish. We included them in Figure 4.5 to emphasize the

order of evaluation in this initial presentation, but in the future we will often omit them to minimize clutter.

Another Example

For another example, consider commercial promotions at sports events. Suppose the local Yummy Burgers

restaurant is willing to provide free French fries to all fans at a basketball game whenever the home team

wins and scores at least 100 points. The problem is to write a program that prints the following message

whenever that condition is satisfi ed:

04-M4402.indd 11404-M4402.indd 114 12/17/07 4:18:54 PM12/17/07 4:18:54 PM

Apago PDF Enhancer

/**
* FreeFries.java
* Dean & Dean
*
* This program reads points scored by the home team and the
* opposing team and determines whether the fans win free
* french fries.
***/

import java.util.Scanner;

public class FreeFries
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int homePts; // points scored by home team
 int opponentPts; // points scored by opponents

 System.out.print("Home team points scored: ");
 homePts = stdIn.nextInt();
 System.out.print("Opposing team points scored: ");
 opponentPts = stdIn.nextInt();

 <insert-code-here>

 } // end main
} // end class FreeFries

Sample session:

Home team points scored: 103
Opposing team points scored: 87
Fans: Redeem your ticket stub for a free order of French fries at Yummy
Burgers.

Figure 4.7 FreeFries program with “and” condition

homePts must be repeated

4.4 && Logical Operator 115

“Fans: Redeem your ticket stub for a free order of French fries at Yummy Burgers.”

Figure 4.7 shows the framework. Within the fi gure, note where it says <insert code here>. Before look-

ing ahead at the answer, see if you can provide the inserted code on your own.

Here’s what you should insert:

if (homePts > opponentPts && homePts >= 100)
{
 System.out.println("Fans: Redeem your ticket stub for" +
 " a free order of French fries at Yummy Burgers.");
}

04-M4402.indd 11504-M4402.indd 115 12/17/07 4:18:55 PM12/17/07 4:18:55 PM

Apago PDF Enhancer

116 Chapter 4 Control Statements

4.5 || Logical Operator

Now let’s look at the complement to the “and” operator—the “or” operator. Assume that you have a variable

named response that contains (1) a lowercase or uppercase “q” if the user wants to quit or (2) some other

character if the user wants to continue. Write a code fragment that prints “Bye” if the user enters either a

lowercase or uppercase “q.” Using pseudocode, you’d probably come up with something like this for the

critical part of the algorithm:

if response equals “q” or “Q”

 print “Bye”

Note the “or” in the if statement’s condition. That works fi ne for pseudocode, where syntax rules are le-

nient, but for Java, you must use || for the “or” operation, not “or.” (Note: || is pronounced “or”) To enter

the || operator on your computer, look for the vertical bar key on your keyboard and press it twice. Here’s a

tentative Java implementation of the desired code fragment:

Scanner stdIn = new Scanner(System.in);
String response;

System.out.print("Enter q or Q: ");
response = stdIn.nextLine();
if (response == "q" || response == "Q") ⎫{
 System.out.println("Bye"); ⎬
} ⎭

Note that the response variable appears twice in the if statement’s condition. That’s necessary because

if both sides of an || condition involve the same variable, you must repeat the variable.

The callout indicates that something is wrong. What is it? If you insert this code fragment into a valid

program shell, the program compiles and runs. But when a user responds to the prompt by dutifully entering

either “q” or “Q,” nothing happens. The program does not print “Bye.” Why not? Should we have used in-

terior parentheses in the “if” condition? Figure 4.6 shows that the == operator has a higher precedence than

the || operator, so what we did was OK. The problem is something else.

Don’t Use == to Compare Strings

The problem is with the response == "q" and response == "Q" expressions. We’ll focus on

the response == "q" expression. The response string variable and the “q” string literal both hold

memory addresses that point to string objects; they don’t hold string objects themselves. So when you use

==, you’re comparing the memory addresses stored in the response string variable and the “q” string

literal. If the response string variable and the “q” string literal contain different memory addresses (i.e.,

they point to different string objects), then the comparison evaluates to false, even if both string objects

contain the same sequence of characters. The following picture shows what we’re talking about. The arrows

represent memory addresses. Since they point to two different objects, response == "q" evaluates to

false.

When inserted in a main

method, this compiles, but

it does not “work”!

04-M4402.indd 11604-M4402.indd 116 12/17/07 4:18:55 PM12/17/07 4:18:55 PM

Apago PDF Enhancer

So what can you do to solve this problem? In Chapter 3, you learned to use the equals method to test

strings for equality. The equals method compares the string objects pointed to by the memory addresses.

In the above picture, the string objects hold the same sequence of characters, q and q, so the method call,

response.equals("q"), returns true, which is what you want. Here’s the corrected code fragment:

if (response.equals("q") || response.equals("Q"))
{
 System.out.println("Bye");
}

Or as a more compact alternative, use the equalsIgnoreCase method like this:

if (response.equalsIgnoreCase("q"))
{
 System.out.println("Bye");
}

A third alternative is to use the String class’s charAt method to convert the string input into a character

and then use the == operator to compare that character with the character literals, ‘q’ and ‘Q’:

char resp = response.charAt(0);
if (resp == 'q' || resp == 'Q')
{
 System.out.println("Bye");
}

These implementations are not trivial translations from the pseudocode that specifi ed the

algorithm. It’s important to organize your thoughts before you start writing Java code. But

even very good preparation does not eliminate the need to keep thinking as you proceed.

Details matter also!

Errors

We made a big deal about not using == to compare strings because it’s a very easy mistake to make and it’s

a hard mistake to catch. It’s easy to make this mistake because you use == all the time when comparing

primitive values. It’s hard to catch this mistake because programs that use == for string comparison com-

pile and run with no reported errors. No reported errors? Then why worry? Because although there are no

reported errors, there are still errors—they’re called logic errors.

A logic error occurs when your program runs to completion without an error mes-

sage, and the output is wrong. Logic errors are the hardest errors to fi nd and fi x because

there’s no error message glaring at you, telling you what you did wrong. To make matters

worse, using == for string comparison generates a logic error only some of the time, not all of the time.

Because the logic error occurs only some of the time, programmers can be lulled into a false sense of confi -

dence that their code is OK, when in reality it’s not OK.

The devil is in
the details.

Be careful. Test
every aspect.

 4.5 || Logical Operator 117

response == "q" ⇒ false
response.equals("q") ⇒ true

response "q"

q q

04-M4402.indd 11704-M4402.indd 117 12/17/07 4:18:56 PM12/17/07 4:18:56 PM

Apago PDF Enhancer

118 Chapter 4 Control Statements

There are three main categories of errors—compile-time errors, runtime errors, and logic errors. A

compile-time error is an error that is identifi ed by the compiler during the compilation process. A runtime

error is an error that occurs while a program is running and it causes the program to terminate abnormally.

The compiler generates an error message for a compile-time error, and the Java Virtual Machine (JVM)

generates an error message for a runtime error. Unfortunately, there are no error messages for a logic error.

It’s up to the programmer to fi x logic errors by analyzing the output and thinking carefully about the code.

4.6 ! Logical Operator

Now it’s time to consider the logical “not” operator (!). Assume that you have a char variable named resp

that contains (1) a lowercase or uppercase ‘q’ if the user wants to quit or (2) some other character if the user

wants to continue. This time, the goal is to print “Let’s get started. . . .” if resp contains anything other

than a lowercase or uppercase “q.” You could use an “if, else” statement with an empty “if” block like this:

if (resp == 'q' || resp == 'Q')
{ }
else
{
 System.out.println("Let's get started. . . .");
 . . .

But this is not very elegant. Programmers often use the term elegant to describe code that is well written

and has “beauty.” More specifi cally, elegant code is easy to understand, easy to update, robust, reasonably

compact, and effi cient. The above code’s empty “if” block is inelegant because it’s not compact. If you ever

have an empty “if” block with a nonempty “else” block, you should try to rewrite it as just an “if” block with

no “else” block. The trick is to invert the if statement’s condition. In the above example, that means testing

for the absence of lowercase or uppercase ‘q’ rather than the presence of lowercase or uppercase ‘q.’ To test

for the absence of lowercase or uppercase ‘q,’ use the ! operator.

The ! operator changes true values into false values and vice versa. This true-to-false, false-to-true

toggling functionality is referred to as a “not” operation, and that’s why the ! operator is called the “not”

operator. Since we want to print “Let’s get started. . . .” if the above if statement’s condition is not true, we

insert ! at the left of the condition like this:

if (!(resp == 'q' || resp == 'Q'))
{
 System.out.println("Let's get started. . . .");
 . . .

Note that the ! is inside one set of parentheses and outside another set. Both sets of parentheses are re-

quired. The outer parentheses are necessary because the compiler requires parentheses around the entire

condition. The inner parentheses are also necessary because without them, the ! operator would operate

on the resp variable instead of on the entire condition. Why? Because the operator precedence table (Fig-

ure 4.6) shows that the ! operator has higher precedence than the == and || operators. The way to force the

== and || operators to be executed fi rst is to put them inside parentheses.

Don’t confuse the ! (not) operator with the != (inequality) operator. The ! operator returns the oppo-

site value of the given expression (a true expression returns false and a false expression returns true).

The != operator asks a question—are the two expressions unequal?

04-M4402.indd 11804-M4402.indd 118 12/17/07 4:18:56 PM12/17/07 4:18:56 PM

Apago PDF Enhancer

4.7 switch Statement

The switch statement works similarly to the “if, else if” form of the if statement in that it allows you to

follow one of several paths. But a key difference between the switch statement and the if statement is that

the switch statement’s determination of which path to take is based on a single value. (With an if state-

ment, the determination of which path to take is based on multiple conditions, one for each path.) Having

the determination based on a single value can lead to a more compact, more understandable implementation.

Think of driving on Route 1 along the California coastline and coming to a junction with alternate routes

through and around a city. The different routes are better at certain times of the day. If it’s 8 am or 5 pm, you

should take the outer business loop to avoid rush-hour traffi c. If it’s 8 pm, you should take the coastal bluffs

route to appreciate the scenic sunset view. If it’s any other time, you should take the through-the-city route

because it is the most direct and fastest. Using a single value, time of day, to determine the route parallels

the decision-making process in a switch statement.

Syntax and Semantics

Study the switch statement’s syntax in Figure 4.8. When executing a switch statement, control jumps to

the case constant that matches the controlling expression’s value, and the computer executes all subsequent

statements up to a break statement. The break statement causes control to exit from the switch state-

ment (to below the closing brace). If there are no case constants that match the controlling expression’s

value, then control jumps to the default label (if there is a default label) or out of the switch state-

ment if there is no default label.

Usually, break statements are placed at the end of every case block. That’s because you normally

want to execute just one case block’s subordinate statement(s) and then exit the switch statement. How-

ever, break statements are not required. Sometimes you want to omit them, and being able to omit them

is a special feature of the switch construct. But accidentally forgetting to include a break statement that

should be included is a common error. If there’s no break at the bottom of a particular case block, control

fl ows through subsequent case constants and executes all subordinate statements until a break statement

 4.7 switch Statement 119

04-M4402.indd 11904-M4402.indd 119 12/17/07 4:18:56 PM12/17/07 4:18:56 PM

Apago PDF Enhancer

120 Chapter 4 Control Statements

is reached. If there’s no break at the bottom of the last case block, control fl ows through to the subordi-

nate statements in the default block (if there is a default block).

Referring to Figure 4.8, take note of these details:

There must be parentheses around the controlling expression.

The controlling expression must evaluate to either an int or a char.2 It’s illegal to use a Boolean

value, a long, a fl oating point value, or a string value as the controlling expression.

Although it’s common for the controlling expression to consist of a single variable, it can consist of

a more complicated expression as well—multiple variables, operators, and even method calls are al-

lowed—provided the expression evaluates to an int or a char.

There must be braces around the switch statement’s body.

There must be a colon after each case constant.

Even though statements following the case constants are indented, braces ({ }) are unnecessary. That’s

unusual in Java—it’s the only time where you don’t need braces around statements that are logically

inside something else.

It’s good style to include // end switch after the switch statement’s closing brace.

ZIP Code Example

To exercise your understanding of the switch statement, write a program that reads in a ZIP Code and

uses the fi rst digit to print the associated geographic area. Here’s what we’re talking about:

If ZIP Code begins with Print this message

0, 2, 3 <zip> is on the East Coast.

4-6 <zip> is in the Central Plains area.

7 <zip> is in the South.

8-9 <zip> is in the West.

other <zip> is an invalid ZIP Code.

•

•

•

•

•

•

•

Figure 4.8 switch statement’s syntax

switch (<controlling expression>)
{
 case <constant>:
 <statement(s)>;
 break; }
 case < constant>:
 <statement(s)>;
 break; }
 . . .
 default:
 <statement(s)>; }
} // end switch

optional

2 Actually, a controlling expression can also evaluate to a byte, a short, or an enum type. We discuss byte and short types in
Chapter 12. Enum types are beyond the scope of this book, but if you want to learn about them on your own, see http://java.sun.com/
docs/books/tutorial/java/javaOO/enum.html.

04-M4402.indd 12004-M4402.indd 120 12/17/07 4:18:57 PM12/17/07 4:18:57 PM

http://java.sun.com/

Apago PDF Enhancer

The fi rst digit of a U.S. postal ZIP Code identifi es a particular geographic area within the United States. ZIP

Codes that start with 0, 2, or 3 are in the east, ZIP Codes that start with 4, 5, or 6 are in the central region,

and so on.3 Your program should prompt the user for his/her ZIP Code and use the fi rst character of the

entered value to print the user’s geographical region. In addition to printing the geographical region, your

program should echo print the user’s ZIP Code. (Echo print means print out an input exactly as it was read

in.) Here’s an example of what the program should do:

Sample session:

Enter a ZIP Code: 56044
56044 is in the Central Plains area.

That’s the client’s view of the program. Now let’s look at the implementation view of the

program—the problem solution. It’s shown in Figure 4.9.

Look at the controlling expression, (zip.charAt(0)). This evaluates to the fi rst character in zip. As

an alternative, you could have started by reading the fi rst character into a separate variable (for example,

firstChar), and then inserted that variable into the controlling expression. But because the fi rst character

was needed only at one point, the code is made more compact by embedding the zip.charAt(0) method

call directly in the controlling expression’s parentheses.

The switch statement compares the character in its controlling expression with each of the case con-

stants until it fi nds a match. Since the controlling expression’s charAt method returns a char value, the

case constants must all be chars. Therefore, the case constants must have single quotes around them.

If you don’t use single quotes—if you use double quotes or no quotes—you’ll get a compile-time error. The

switch statement is not very fl exible!

As previously mentioned, it’s a common error to accidentally omit a break statement at the end of a

switch statement’s case block. For example, suppose you did this in the ZipCode program:

case '4': case '5': case '6':
 System.out.println(
 zip + " is in the Central Plains area.");
case '7':
 System.out.println(zip + " is in the South.");
 break;

Note that there’s no longer a break statement at the end of the case 4, 5, 6 block. The following sample

session illustrates what happens. With an input of 56044, the switch statement searches for a ‘5’ and stops

when it reaches the case '5': label. Execution begins there and continues until it reaches a break state-

ment. So it fl ows through the case '6': label and prints the Central Plains message. The fl ow then contin-

ues into the case: '7': block and inappropriately prints the South message.

Sample session:

Enter a ZIP Code: 56044
56044 is in the Central Plains area.
56044 is in the South. error!

Use client’s
view to specify
program.

4.7 switch Statement 121

3 http://www.nass.usda.gov/census/census97/zipcode/zipcode.htm.

04-M4402.indd 12104-M4402.indd 121 12/17/07 4:18:57 PM12/17/07 4:18:57 PM

http://www.nass.usda.gov/census/census97/zipcode/zipcode.htm

Apago PDF Enhancer

122 Chapter 4 Control Statements

switch Statement Versus “if, else if” Form of the if Statement

Now you know that the switch statement allows you to do one or more things from a list of multiple

possibilities. But so does the “if, else if” form of the if statement, so why would you ever use a switch

statement? Because the switch statement provides a more elegant solution (cleaner, better-looking organi-

zation) for certain kinds of problems.

Now for the opposite question: Why would you ever use the “if, else if” form of the if statement rather

than the switch statement? Because if statements are more fl exible. With a switch statement, each test

/**
* ZipCode.java
* Dean & Dean
*
* This program identifies geographical region from ZIP code.
**/

import java.util.Scanner;

public class ZipCode
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String zip; // user-entered ZIP code

 System.out.print("Enter a ZIP Code: ");
 zip = stdIn.nextLine();

 switch (zip.charAt(0))
 {
 case '0': case '2': case '3':
 System.out.println(zip + " is on the East Coast.");
 break;
 case '4': case '5': case '6':
 System.out.println(
 zip + " is in the Central Plains area.");
 break;
 case '7':
 System.out.println(zip + " is in the South.");
 break;
 case '8': case '9':
 System.out.println(zip + " is in the West.");
 break;
 default:
 System.out.println(zip + " is an invalid ZIP Code.");
 } // end switch
 } // end main
} // end class ZipCode

Figure 4.9 Using a switch statement to fi nd geographical region from ZIP Code

04-M4402.indd 12204-M4402.indd 122 12/17/07 4:18:58 PM12/17/07 4:18:58 PM

Apago PDF Enhancer

(i.e., each case label) is limited to an exact match with an int or char constant. With an if statement,

each test can be a full-blooded expression, complete with operators, variables, and method calls.

In a nutshell, when you need to do one thing from a list of multiple possibilities:

Use a switch statement if you need to match an int or char value.

Use an if statement if you need more fl exibility.

4.8 while Loop

There are two basic categories of control statements—forward branching statements and looping statements.

The if statement and switch statement implement forward branching functionality (so named because the

decisions cause control to “branch” to a statement that is ahead of the current statement). The while loop,

do loop, and for loop implement looping functionality. We describe the while loop in this section and the

do and for loops in the next two sections. But fi rst an overview of loops in general.

In solving a particular problem, one of the fi rst and most important things to think

about is whether there are any repetitive tasks. Repetitive tasks should normally be imple-

mented with the help of a loop. For some problems, you can avoid a loop by implementing

the repetitive tasks with consecutive sequential statements. For example, if you are asked

to print “Happy Birthday!” 10 times, you could implement a solution with 10 consecutive print statements.

But such a solution would be a poor one. A better solution is to insert a single print statement inside a loop

that repeats ten times. The loop implementation is better because it’s more compact. Also, updating is easier

and safer because the updated code appears in only one place. For example, if you need to change “Happy

Birthday!” to “Bon Anniversaire!” (happy birthday in French), then it’s only a matter of changing one print

statement inside a loop rather than updating 10 separate print statements.

while Loop Syntax and Semantics

Now let’s look at the simplest kind of loop, the while loop. Figure 4.10 shows the syntax and semantics of

the while loop. The syntax for the while loop looks like the syntax for the if statement except that the

word while is used instead of the word if. Don’t forget the parentheses around the condition. Don’t forget

the braces, and don’t forget to indent the subordinate statements they enclose.

•

•

Don’t duplicate
code. Use a
loop.

4.8 while Loop 123

while (<condition>) }
{ ⎫
 <statement(s)> ⎬
} // end while ⎭

Figure 4.10 Syntax and semantics for the while loop

false

true

<statement(s)>

<condition>body

header

04-M4402.indd 12304-M4402.indd 123 12/17/07 4:18:58 PM12/17/07 4:18:58 PM

Apago PDF Enhancer

124 Chapter 4 Control Statements

A while loop’s condition is the same as an if statement’s condition. It typically employs comparison

and logical operators, and it evaluates to true or false. Here’s how the while loop works:

 1. Check the while loop’s condition.

 2. If the condition is true, execute the while loop’s body (the statements that are inside the braces),

jump back to the while loop’s condition, and repeat step 1.

 3. If the condition is false, jump to below the while loop’s body and continue with the next statement.

Example

Now let’s consider an example—a program that creates a bridal gift registry. More specifi cally, the program

repeatedly prompts the user for two things—a gift item and the store where the gift can be purchased. When the

user is done entering gift and store values, the program prints the bridal registry list. Study this sample session:

Sample session:

Do you wish to create a bridal registry list? (y/n): y
Enter item: candle holder
Enter store: Sears
Any more items? (y/n): y
Enter item: lawn mower
Enter store: Home Depot
Any more items? (y/n): n

Bridal Registry:
candle holder - Sears
lawn mower - Home Depot

That’s the problem specifi cation. Our solution appears in Figure 4.11. As you can tell by

the while loop’s more == 'y' condition and the query at the bottom of the loop, the

program employs a user-query loop. The initial query above the while loop makes it pos-

sible to quit without making any passes through the loop. If you want to force at least one

pass through the loop, you should delete the initial query and initialize more like this:

char more = 'y';

The BridalRegistry program illustrates several peripheral concepts that you’ll want to remember for future

programs. Within the while loop, note the += assignment statements, repeated here for your convenience:

registry += stdIn.nextLine() + " - ";
registry += stdIn.nextLine() + "\n";

The += operator comes in handy when you need to incrementally add to a string variable. The Bridal-

Registry program stores all the gift and store values in a single String variable named registry. Each

new gift and store entry gets concatenated to the registry variable with the += operator.

At the top and bottom of the BridalRegistry program’s while loop, note the nextLine and charAt

method calls, repeated here for your convenience:

more = stdIn.nextLine().charAt(0);

The method calls are chained together by inserting a dot between them. The nextLine() method call

reads a line of input from the user and returns the input as a string. That string then calls the charAt(0),
which returns the string’s fi rst character. Note that it’s acceptable and fairly common to chain multiple

method calls together like this.

Use I/O sample
to specify
problem.

04-M4402.indd 12404-M4402.indd 124 12/17/07 4:18:59 PM12/17/07 4:18:59 PM

Apago PDF Enhancer

Infi nite Loops

Suppose you’re trying to print the numbers 1 through 10. Will the following code fragment work?

int x = 0;
while (x < 10)
{
 System.out.println(x + 1);
}

/***
* BridalRegistry.java
* Dean & Dean
*
* This makes entries in a bridal registry.
***/

import java.util.Scanner;

public class BridalRegistry
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String registry = "";
 char more;

 System.out.print(
 "Do you wish to create a bridal registry list? (y/n): ");

 more = stdIn.nextLine().charAt(0);

 while (more == 'y')
 {
 System.out.print("Enter item: ");
 registry += stdIn.nextLine() + " - ";
 System.out.print("Enter store: ");
 registry += stdIn.nextLine() + "\n";
 System.out.print("Any more items? (y/n): ");
 more = stdIn.nextLine().charAt(0);
 } // end while

 if (!registry.equals(""))
 {
 System.out.println("\nBridal Registry:\n" + registry);
 }
 } // end main
} // end BridalRegistry class

Figure 4.11 BridalRegistry program with while loop and user-query terrmination

 4.8 while Loop 125

04-M4402.indd 12504-M4402.indd 125 12/17/07 4:18:59 PM12/17/07 4:18:59 PM

Apago PDF Enhancer

126 Chapter 4 Control Statements

The while loop body does just one thing—it prints 1 (since 0 � 1 is 1). It does not update x’s value

(since there’s no assignment or increment statement for x). With no update for x, the while loop’s condi-

tion (x < 10) always evaluates to true. That’s an example of an infi nite loop. The computer executes the

statements in the loop body over and over—forever. When you have an infi nite loop, the computer seems to

freeze or “hang up.”

Sometimes, what seems to be an infi nite loop is just an extremely ineffi cient algo-

rithm that takes a long time to fi nish. In either of these cases, you can fi gure out what’s

happening by inserting into the loop a diagnostic statement that prints a value you think

should be changing in a certain way. Then run the program and watch what happens to

that value.

4.9 do Loop

Now let’s consider a second type of Java loop—the do loop. A do loop is appropriate when you’re sure that

you want the loop body to be repeated at least one time. Because the do loop matches the way most com-

puter hardware performs looping operations, it is slightly more effi cient than the other types of loops. Un-

fortunately, its awkwardness makes it prone to programming error, and therefore some programmers don’t

like to use it. But at the very least, you need to be aware of it.

Syntax and Semantics

Figure 4.12 shows the do loop’s syntax and semantics. Note that the do loop’s condition is at the bottom. This

contrasts with the while loop, where the condition is at the top. Having the condition tested at the bottom

is how the do loop guarantees that the loop executes at least one time. Note the semicolon at the right of the

condition. That’s required by the compiler, and omitting it is a common error. Finally, note that the while

part is on the same line as the closing brace—that’s good style. It’s possible to put while (<condition>);

on the line after the closing brace, but that would be bad style because it would look like you’re trying to

start a new while loop.

Figure 4.12 Syntax and semantics for the do loop

false

true

<statement(s)>

<condition>

do
{
 <statement(s)>
} while (<condition>);

Insert tempo-
rary print state-
ments to see
details.

04-M4402.indd 12604-M4402.indd 126 12/17/07 4:19:00 PM12/17/07 4:19:00 PM

Apago PDF Enhancer

Here’s how the do loop works:

 1. Execute the do loop’s body.

 2. Check the fi nal condition.

 3. If the condition is true, jump back to the top of the do loop and repeat step 1.

 4. If the condition is false, continue with the statement immediately below the loop.

Practice Problem

Now let’s illustrate the do loop with an example problem. Suppose you’re asked to write a program that

prompts the user to enter length and width dimensions for each room in a proposed house so that total fl oor

space can be calculated for the entire house. After each length/width entry, ask the user if there are any

more rooms. When there are no more rooms, print the total fl oor space.

To solve this problem, fi rst ask whether a loop is appropriate. Does anything need to

be repeated? Yes, you’ll want to read in dimensions repeatedly, so a loop is appropriate. To

determine the type of loop, ask yourself: Will you always need to execute the read-in-the-

 dimensions loop body at least once? Yes, every house must have at least one room, so you’ll need to read

in at least one set of dimensions. Thus, it’s appropriate to use a do loop for this problem. Now that you’ve

thought through the looping issues, you’re ready to put pencil to paper and write down your solution. Go

for it.

When you’re done working out a solution on your own, look at our solution in Figure 4.13. Did you

prompt for length and width values within your do loop and then add the length times width product to a

total fl oor space variable? Did you then prompt the user for a continue decision?

Compare the loop-termination technique used in the FloorSpace program with the loop- termination

technique used in the BridalRegistry program in Figure 4.11. In the BridalRegistry program, we needed

two user queries—one before the start of the loop and one within the loop just before its end. In the

FloorSpace program, we need only one user query—within the loop just before its end. The do loop

requires that there be at least one pass, but if this is acceptable, it requires fewer lines of code than the

while loop.

Before leaving the FloorSpace program, take note of a style feature. Do you see the blank lines above

and below the do loop? It’s good style to separate logical chunks of code with blank lines. Since a loop is a

logical chunk of code, it’s nice to surround loops with blank lines unless the loop is very short, that is, less

than about four lines.

4.10 for Loop

Now let’s consider a third type of loop—the for loop. A for loop is appropriate when you know the exact

number of loop iterations before the loop begins. For example, suppose you want to perform a countdown

from 10, like this:

Sample session:

10 9 8 7 6 5 4 3 2 1 Liftoff!

In your program, you’ll need to print 10 numbers, and you should print each number with the help of a print

statement inside a loop. Since the print statement should execute 10 times, you know the exact number of

iterations for the loop, 10. Therefore, you should use a for loop.

How many
repeats?

 4.10 for Loop 127

04-M4402.indd 12704-M4402.indd 127 12/17/07 4:19:00 PM12/17/07 4:19:00 PM

Apago PDF Enhancer

128 Chapter 4 Control Statements

For another example, suppose you want to fi nd the factorial of a user-entered number, like this:

Sample session:

Enter a whole number: 4
4! = 24

For 4 factorial, you need to multiply the values 1 through 4: 1 	 2 	 3 	 4 � 24. The three 	’s in-

dicate that three multiplications are necessary. So 4 factorial requires three loop iterations. For the general

case, where you need to fi nd the factorial for a user-entered number, store the user-entered number in a

count variable. Then multiply the values 1 through count like this:

1 * 2 * 3 * . . . * count

count - 1 number of *’s

/***
* FloorSpace.java
* Dean & Dean
*
* This program calculates total floor space in a house.
**/

import java.util.Scanner;

public class FloorSpace
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 double length, width; // room dimensions
 double floorSpace = 0; // house's total floor space
 char response; // user's y/n response

 do
 {
 System.out.print("Enter the length: ");
 length = stdIn.nextDouble();
 System.out.print("Enter the width: ");
 width = stdIn.nextDouble();
 floorSpace += length * width;
 System.out.print("Any more rooms? (y/n): ");
 response = stdIn.next().charAt(0);
 } while (response == 'y' || response == 'Y');

 System.out.println("Total floor space is " + floorSpace);
 } // end main
} // end class FloorSpace

Figure 4.13 Using a do loop to calculate total fl oor space

⎧ ⎪ ⎨ ⎪ ⎪ ⎩

04-M4402.indd 12804-M4402.indd 128 12/17/07 4:19:00 PM12/17/07 4:19:00 PM

Apago PDF Enhancer

The *’s indicate that count - 1 multiplications are necessary. So count factorial requires count - 1

loop iterations. Since you know the number of iterations for the loop (count - 1), use a for loop.

Syntax and Semantics

Figure 4.14 shows the for loop’s syntax and semantics. The for loop header does a lot of work. So much

work that it’s split into three components—the initialization, condition, and update components. The fol-

lowing list explains how the for loop uses the three components. As you read the list, refer to Figure 4.14’s

fl owchart to get a better idea of what’s going on.

 1. Initialization component

 Before the fi rst pass through the body of the loop, execute the initialization component.

 2. Condition component

 Before each loop iteration, evaluate the condition component:

• If the condition is true, execute the body of the loop.

• If the condition is false, terminate the loop (exit to the statement below the loop’s closing brace).

 3. Update component

 After each pass through the body of the loop, return to the loop header and execute the update compo-

nent. Then, recheck the continuation condition in the second component, and if it’s satisfi ed, go through

the body of the loop again.

Countdown Example

Here is a code fragment for the countdown example mentioned at the start of this section:

for (int i=10; i>0; i--)
{
 System.out.print(i + " ");
}
System.out.println("Liftoff!");

false

true

<initialization>

<condition>

<statement(s)>

<update>

for (<initialization>; <condition>;
<update>)
{
 <statement(s)>
}

Figure 4.14 Syntax and semantics for the for loop

 4.10 for Loop 129

04-M4402.indd 12904-M4402.indd 129 12/17/07 4:19:01 PM12/17/07 4:19:01 PM

Apago PDF Enhancer

130 Chapter 4 Control Statements

Note that the same variable, i, appears in all three components of the for loop header. That variable is

given a special name. It’s called an index variable. Index variables in for loops are often, but not always,

named i for “index.” Index variables often start at a low value, increment up, and then stop when they reach

a threshold set by the condition component. But in the above example, the index variable does just the oppo-

site. It starts at a high value (10), decrements down, and then stops when it reaches the threshold of 0. Let’s

informally trace the example:

The initialization component assigns 10 to the index, i.

The condition component asks “Is i � 0?” The answer is yes, so execute the body of the loop.

Print 10 (because i is 10), and append a space.

Since you’re at the bottom of the loop, the update component decrements i from 10 to 9.

The condition component asks “Is i � 0?” The answer is yes, so execute the body of the loop.

Print 9 (because i is 9) and append a space.

Since you’re at the bottom of the loop, the update component decrements i from 9 to 8.

The condition component asks “Is i � 0?” The answer is yes, so execute the body of the loop.

Repeat the previous printing and decrementing until you print 1.

. . .

After printing 1, since you’re at the bottom of the loop, decrement i from 1 to 0.

The condition component asks “Is i � 0?” The answer is no, so quit the loop, drop down to the fi rst

statement after the closing brace, and print “Liftoff!”

Alternatively, we could have implemented the solution with a while loop or a do loop. Why is the for

loop preferable? With a while loop or a do loop, you’d need two extra statements to initialize and update

the count variable. That would work OK, but using a for loop is more elegant.

Factorial Example

Now, let’s make sure you really understand how the for loop works by studying a formal trace of the sec-

ond example mentioned at the start of this section—the calculation of a factorial. Figure 4.15 shows the

factorial-calculation code listing and its associated trace. Note the input column in the top-left corner of

the trace. You didn’t have input in Chapter 3’s trace examples, so input is worth mentioning now. When the

program reads an input value, you copy the next input from the input column into the next row under the

variable to which the input is assigned. In this case, when you get to number = stdIn.nextInt(), you

copy the 4 from the input column to the next row in the number column.

This trace shows that the 8, 10 sequence repeats three times, so there are indeed three iterations, as ex-

pected. Suppose you entered number = 0. Does the program work for that extreme case? The loop header

initializes int i=2 and then immediately tests to see if i<=number. Since this condition is false, the

loop terminates before it starts, and the code prints the initial value of factorial, which is 1.0. That’s cor-

rect, since 0 factorial does indeed equal 1.

What about the other extreme case—when the input value is very large? The factorial of a number in-

creases much more rapidly than the number itself increases. If we had declared factorial to be of type

int, then input values greater than 12 would cause the factorial variable to overfl ow, and the output value

would be horribly wrong! That’s why we declared factorial to be of type double.

A double has more precision than an int, and it gives approximately correct answers

even when its precision is inadequate. This makes the program more robust, because it

fails more gracefully. That is, when it fails, it fails just a little bit, not a lot.

Little mistakes
are better than
big ones.

04-M4402.indd 13004-M4402.indd 130 12/17/07 4:19:01 PM12/17/07 4:19:01 PM

Apago PDF Enhancer

Scope of for Loop Index

In the for loop examples presented so far, the loop’s index variable (i) is initialized (declared and given

an initial value) in the for loop header. This limits the scope or recognizable range of the index variable to

the for loop itself. In other words, whenever a variable is declared in the for loop header, it exists and can

be recognized and used only by code that is within the body of that for loop. For example, if you tried to

use the value of the i index variable in the print statement that followed the fi nal brace of the for loop in

Figure 4.15, the compiler would say “cannot fi nd symbol. . . variable i.”

Sometimes, variables used in a loop need to have a scope beyond the loop’s scope. The above Factorial

program illustrates what we’re talking about. The factorial variable must be available for the print state-

ment after the end of the loop, so it must be declared outside the loop. Since it is also needed in the loop, it

must be declared before the loop, so we declare it at the beginning of the method with the other variables

whose scopes extend throughout the method.

 1 Scanner stdIn = new Scanner(System.in);
 2 int number;
 3 double factorial = 1.0;
 4
 5 System.out.print("Enter a whole number: ");
 6 number = stdIn.nextInt();
 7
 8 for (int i=2; i<=number; i++)
 9 {
10 factorial *= i;
11 }
12
13 System.out.println(number + "! = " + factorial);

input

4

line# number factorial i output

2 ?

3 1.0

5 Enter a whole number:

6 4

8 2

10 2.0

8 3

10 6.0

8 4

10 24.0

8 5

13 4! � 24.0

Figure 4.15 Code fragment that illustrates factorial calculation plus its associated trace

Declare for loop index variables

within the for loop header.

4.10 for Loop 131

04-M4402.indd 13104-M4402.indd 131 12/17/07 4:19:01 PM12/17/07 4:19:01 PM

Apago PDF Enhancer

132 Chapter 4 Control Statements

4.11 Solving the Problem of Which Loop to Use

Now, let’s compare the various kinds of loops.

The do loop’s decision point is at the bottom of the loop. That’s in contrast to the while and for

loops, where the decision point is at the top of the loop. When the decision point is at the top of the loop, the

decision stands out more and the code is therefore less prone to programming error.

With programming, as in life, there are usually many different ways to accomplish

the same thing. For example, for a problem that requires repetition, you can actually use

any of the three loops to solve any repetition problem. Even though that’s the case, you

should strive to make your programs elegant, and that means choosing the most appropri-

ate loop even though any loop could be made to work.

Flexibility makes programming fun if you like to be creative. But if you’re just starting out, that fl ex-

ibility can lead to confusion. In Figure 4.16, we provide a table that attempts to alleviate some of that confu-

sion. It suggests a way to choose an appropriate type of loop and how to get started with that loop’s code.

We use angled brackets around text to indicate that the enclosed text is a description of code, not actual

code. Thus, in using Figure 4.16’s do loop and while loop templates, you’ll need to replace <prompt—do it
again (y/n?)> with actual code. For example, for a game program, you might use this actual code:

System.out.print("Do you want to play another game (y/n)? ");
response = stdIn.nextLine().charAt(0);

Loop Type When to Use Template

for loop: When you know, prior to the start of the

loop, how many times you want to repeat

the loop.

for (i=0; i<max; i++)

{

 <statements>

}

do

{

 <statements>

 <prompt - do it again (y/n)?>

} while (<response �� ‘y’>);

<prompt - do it (y/n)?>

while (<response �� ‘y’>)

{

 <statements>

 <prompt - do it again (y/n)?>

}

do loop: When you always need to do the repeated

thing at least one time.

while loop: When looping is “event driven”; that is,

you loop until some special condition

changes.

Figure 4.16 Choosing the right loop and getting started with the loop’s code

A toolkit needs
more than one
tool.

04-M4402.indd 13204-M4402.indd 132 12/17/07 4:19:02 PM12/17/07 4:19:02 PM

Apago PDF Enhancer

When fi guring out which loop to use, it’s best to think about the loops in the order of appearance in Fig-

ure 4.16. Why? Note how the for loop uses the fewest lines, the do loop uses the next fewest lines, and the

while loop uses the most lines. Thus, the for loop is the most compact and the do loop is the next most

compact. But the while loop is more popular than the do loop because its condition is at the beginning of

the loop, which makes it easier to fi nd. Although you may wish to avoid the do loop because of its relatively

awkward structure, in general, you should use the loop that’s most appropriate for your particular problem.

When deciding how to write loop code, you can use the templates shown in Figure 4.16 as starting

points. Be aware that in writing loop code, you have to do more than just copy code from Figure 4.16. You

need to adapt the code to your particular problem. For example, in writing a for loop, it’s common to use

i=0 for the initialization component, and that’s why the for loop template’s initialization component shows

i=0. However, if some other initialization component is more appropriate, like count=10, then use the

more appropriate code.

4.12 Nested Loops

A nested loop is a loop that’s inside another loop. You’ll see nested loops quite often in real-world programs.

In this section, we discuss some of the common characteristics inherent to nested loops.

Suppose you’re asked to write a program that prints a rectangle of characters where the user specifi es

the rectangle’s height, the rectangle’s width, and the character’s value.

Sample session:

Enter height: 4
Enter width: 3
Enter character: <
<<<
<<<
<<<
<<<

To fi gure out the loops, you fi rst need to think about what needs to be repeated. So, . . .

what needs to be repeated? You need to print rows of characters repeatedly. What type of

loop should you use to print the rows repeatedly? First try to use a for loop. The test for a

for loop is whether you know the number of times you’ll need to repeat the loop. Do you know the number

of times you’ll need to repeat this loop? Yes, the user enters the height, you can use that entered value to de-

termine the number of rows, and that tells you the number of times to repeat the loop. Therefore, you should

use a for loop to print successive rows.

Now that you know how to print multiple rows, you need to know how to print an individual row. Do

you need to repeat anything when printing an individual row? Yes, you need to print characters repeatedly.

So what type of loop should you use for that? Use another for loop because you can use the user’s width

entry to determine the number of characters to be printed.

So there you go—you need two for loops. Should you put one loop right after the other? No! You need

to nest the second loop, the one that prints an individual row, inside the fi rst loop. That should make sense if

you word the goal carefully—“Print multiple rows and within each row, print a sequence of characters.” The

key word is “within.” That tells you to insert the second for loop inside the fi rst for loop’s braces.

Using this discussion as a guideline, now write a complete program solution. When you’re done, com-

pare your answer to the NestedLoopRectangle program in Figure 4.17.

Select the best
tool for the job.

 4.12 Nested Loops 133

04-M4402.indd 13304-M4402.indd 133 12/17/07 4:19:02 PM12/17/07 4:19:02 PM

Apago PDF Enhancer

134 Chapter 4 Control Statements

Note how we use the print method for the print statement inside the inner loop to keep subsequent

printed characters on the same line. Then after the inner loop fi nishes, we use a separate println method

to go to the next line.

For most problems where you’re dealing with a two-dimensional picture like this rectangle example,

you’ll want to use nested for loops with index variables named row and col (col is short for column).

Why? It makes code more understandable. For example, in the fi rst for loop header, the row variable goes

from 1 to 2 to 3, and so on, and that corresponds perfectly with the actual rows printed by the program.

However, be aware that it’s also common for nested for loops to use index variables named i and j. Why i
and j? Because i stands for “index,” and j comes after i.

/**
* NestedLoopRectangle.java
* Dean & Dean
*
* This program uses nested looping to draw a rectangle.
***/

import java.util.Scanner;

public class NestedLoopRectangle
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int height, width; // rectangle's dimensions
 char printCharacter;

 System.out.print("Enter height: ");
 height = stdIn.nextInt();
 System.out.print("Enter width: ");
 width = stdIn.nextInt();
 System.out.print("Enter character: ");
 printCharacter = stdIn.next().charAt(0);

 for (int row=1; row<=height; row++)
 {
 for (int col=1; col<=width; col++)
 {
 System.out.print(printCharacter);
 }
 System.out.println();
 }
 } // end main
} // end class NestedLoopRectangle

Figure 4.17 Program that uses nested loops to draw a rectangle

Use print here, to

stay on same line.

Use println here,

to move to new line.

04-M4402.indd 13404-M4402.indd 134 12/17/07 4:19:03 PM12/17/07 4:19:03 PM

Apago PDF Enhancer

In the NestedLoopRectangle program, there are two levels of nesting, but in general there may be any

number of nesting levels. Each level adds another dimension to the problem. Our NestedLoopRectangle

program is quite symmetrical. Both loops are the same type (they’re both for loops), and both loops do the

same kind of thing (they both print something). In general, however, nested loops do not have to be the same

type, and they do not have to do the same kinds of things.

4.13 boolean Variables

The conditions that appear in if statements and loops all evaluate to either true or false. We described

these Boolean values in Section 4.2. Java also allows us to defi ne a boolean variable, which is a variable

that can hold a Boolean value. To declare a boolean variable, specify boolean for the variable’s type,

like this:

boolean upDirection;

In this section, we describe when to use boolean variables in general, and we provide a program that uses

boolean variables, including the upDirection variable shown above.

When to Use a boolean Variable

Programs often need to keep track of the state of some condition. You can use a boolean variable to keep

track of any two-way state—a yes/no, up/down, on/off attribute of some entity. For example, if you’re writ-

ing a program that simulates the operations of an electronic garage door opener, you’ll need to keep track of

the state of the garage door’s direction—is the direction up or down? You need to keep track of the direction

“state” because the direction determines what happens when the garage door opener’s button is pressed. If

the direction state is up, then pressing the garage door button causes the direction to switch to down. If the

direction state is down, then pressing the garage door button causes the direction to switch to up.

boolean variables are good at keeping track of the state of some condition when the state has one of

two values. For example:

Values for the state of a garage door
opener’s direction

Comparable values for a boolean
variable named upDirection

up true

down false

Garage Door Opener Example

The following code skeleton illustrates how the upDirection variable works:

boolean upDirection = true;
do
{
 . . .
 upDirection = !upDirection;
 . . .
} while (<user presses the garage door opener button>);

 4.13 boolean Variables 135

04-M4402.indd 13504-M4402.indd 135 12/17/07 4:19:03 PM12/17/07 4:19:03 PM

Apago PDF Enhancer

136 Chapter 4 Control Statements

The boolean upDirection = true; statement tells the program to start in the down/closed position

and go up when the garage door opener is fi rst pressed. Each iteration of the loop represents what happens

when the user presses the garage door opener button. The upDirection = !upDirection state-

ment implements the garage door opener’s toggling operation. If upDirection holds the value true, this

statement changes it to false, and vice versa.

Now let’s look at the upDirection variable in the context of a complete GarageDoor program. In the

program, each push of the Enter key on the computer keyboard simulates a push of the garage door opener

button. The fi rst push makes the door move upward. The second push makes the door stop. The third push

makes the door move downward. The fourth push makes the door stop. And so forth, until the user enters ‘q’

to make the program quit. Note this client view for the GarageDoor program:

Sample session:

GARAGE DOOR OPENER SIMULATOR

Press Enter, or enter 'q' to quit:
moving up
Press Enter, or enter 'q' to quit:
stopped
Press Enter, or enter 'q' to quit:
moving down
Press Enter, or enter 'q' to quit:
stopped
Press Enter, or enter 'q' to quit: q

Figure 4.18 contains an implementation view of this program—the code. In the program, verify that up-
Direction is used as previously discussed. Note that there’s a second boolean variable, inMotion.

The upDirection boolean variable keeps track of the state of going up or down. That one state variable

would be good enough if pressing a garage door opener button always generated an up or down motion. But

as shown in the sample session, that’s not the case. Half the time, pressing the garage door opener causes

the garage door to stop moving. Here’s the key point: If the door is moving, the door stops, and if the door is

stopped, the door starts moving. We keep track of whether the garage door is currently moving with the help

of a second state variable, inMotion. The inMotion state variable toggles (goes from false to true

or vice versa) at each button push, whereas the upDirection state variable toggles only when the door is

stopped—at every other button push.

Note how we use the inMotion and upDirection boolean variables by themselves as conditions

for if statements:

if (inMotion)
{
 if (upDirection)
 {
 . . .

In the past, you used relational operators within your conditions (e.g., ==, <=) But the only rule for a condi-

tion is that it needs to evaluate to true or false. A boolean variable is either true or false, so using

a boolean variable by itself for a condition is legal. Actually, using a boolean variable by itself for a

04-M4402.indd 13604-M4402.indd 136 12/17/07 4:19:04 PM12/17/07 4:19:04 PM

Apago PDF Enhancer

/***
* GarageDoor.java
* Dean & Dean
*
* This simulated operation of a garage door.
***/

import java.util.Scanner;

public class GarageDoor
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String entry; // user's entry - enter key or q
 boolean upDirection = true; // Is the current direction up?
 boolean inMotion = false; // Is garage door currently moving?

 System.out.println("GARAGE DOOR OPENER SIMULATOR\n");

 do
 {
 System.out.print("Press Enter, or enter 'q' to quit: ");
 entry = stdIn.nextLine();

 if (entry.equals("")) // pressing Enter generates ""
 {
 inMotion = !inMotion; // button toggles run state
 if (inMotion)
 {
 if (upDirection)
 {
 System.out.println("moving up");
 }
 else
 {
 System.out.println("moving down");
 }
 }
 else
 {
 System.out.println("stopped");
 upDirection = !upDirection; // direction reverses at stop
 }
 } // end if entry = ""
 } while (entry.equals(""));
 } // end main
} // end GarageDoor class

Figure 4.18 GarageDoor program

! operator toggles motion every time

! operator toggles direction when stopped

4.13 boolean Variables 137

04-M4402.indd 13704-M4402.indd 137 12/17/07 4:19:04 PM12/17/07 4:19:04 PM

Apago PDF Enhancer

138 Chapter 4 Control Statements

condition is often considered to be elegant. For example, the above if conditions are more elegant than the

following functionally equivalent if conditions:

if (inMotion == true)
{
 if (upDirection == true)
 {
 . . .

The GarageDoor program is user-friendly because it requires a minimum amount of user input. A given

user entry serves one of two purposes. The simplest kind of entry (pressing the Enter key) simulates push-

ing the button on a garage door opener. Any other entry (not just a ‘q’ entry) terminates the looping process.

Whenever a special data value (in this case anything except a plain Enter) tells a program to stop looping,

we say we’re using a sentinel value to terminate the looping process. Because the program imposes a mini-

mum burden on the user in terms of input, and because the code is relatively concise and effi cient, it’s ap-

propriate to call this an elegant implementation.

4.14 Input Validation

In the previous section, you learned to use a boolean variable to keep track of a two-way state. In this sec-

tion, you’ll learn to use a boolean variable for a particularly common two-way state—the state of a user’s

input in terms of whether it’s valid or invalid.

Input validation is when a program checks a user’s input to make sure it’s valid, that is, correct and

reasonable. If it’s valid, the program continues. If it’s invalid, the program enters a loop that warns the user

about the erroneous input and then prompts the user to re-enter.

In the GarageDoor program, note how the program checks for an empty string (which indicates the

user wants to continue). If the string is not empty, it assumes that the user entered a ‘q’, but it doesn’t check

specifi cally for a ‘q’. Consequently, it does not deal well with the possibility that the user accidentally hits

another key before pressing the Enter key. It interprets that input as a quit command instead of a mistake.

To make the program more robust, you should provide input validation. There are several possible ways

to do this. One of the simplest ways is to insert a while loop whose condition and’s together all bad pos-

sibilities and whose body warns the user about the erroneous input and then prompts the user to re-enter. For

the GarageDoor program in Figure 4.18, input validation is provided by the code fragment in Figure 4.19.

while (!entry.equals("") && !entry.equalsIgnoreCase("q"))
{
 System.out.println("Invalid entry.");
 System.out.print("Press Enter, or enter 'q': ");
 entry = stdIn.nextLine();
}

Figure 4.19 Input validation loop to insert after the input statement in Figure 4.18

Where should you insert this code fragment? You want to validate the input right after the input is

entered. So to make the GarageDoor program more robust, you should insert the above code fragment into

Figure 4.18 immediately after this statement:

entry = stdIn.nextLine();

04-M4402.indd 13804-M4402.indd 138 12/17/07 4:19:05 PM12/17/07 4:19:05 PM

Apago PDF Enhancer

Running the modifi ed program produces the following sample session:

Sample session:

GARAGE DOOR OPENER SIMULATOR

Press Enter, or enter 'q' to quit:
moving up
Press Enter, or enter 'q' to quit: stop
Invalid entry.
Press Enter, or enter 'q':
stopped
Press Enter, or enter 'q' to quit: q

Optional Forward References

At this point, some readers might want to learn about arrays. An array is a collection of related items of the

same type. Array manipulations require the use of loops. As such, arrays provide a means for readers to gain

further practice with the material presented in Chapter 4, specifi cally the loop material. You’re not required

to learn about arrays just yet, but if you can’t wait, you can read about arrays in Chapter 10, Sections 10.1

through 10.6.

Later in the book, we present relatively advanced syntax details that pertain to control statements. For

example, embedding an assignment expression in a loop header or using a break statement to break out of

a loop. You’re not required to learn those details just yet, but if you can’t wait, you can read about them in

Chapter 11, Sections 11.6 through 11.12.

4.15 Problem Solving with Boolean Logic (Optional)

The conditions for if statements and loops can sometimes get complicated. For a better

understanding of complicated conditions, we’ll now look at the logic that comprises a con-

dition. Learning how to manipulate logic should help you to (1) simplify condition code

and (2) debug logical problems. What we’ll be talking about is known as Boolean logic or

Boolean algebra.
The building blocks for Boolean logic are things that you’ve already seen—the logical operators &&,

||, and !. You’ve seen how the logical operators work when applied to comparison-operator conditions. For

example, this code (which uses the && operator in conjunction with the >= and <= comparison operators)

probably already makes sense to you:

(temp >= 50.0 && temp <= 90.0)

Boolean Algebra Basic Identities

Sometimes, however, a logical expression is harder to understand. This is particularly true when it includes

several “not” (!) operators. To gain a better understanding of what the code means and is supposed to do, it’s

sometimes helpful to transform the logical expression to another form. Boolean algebra provides a special

set of formulas called basic identities, which anyone can use to make transformations. These basic identities

are listed in Figure 4.20. The precedence of the various operators is the precedence given in Figure 4.6. That

is, ! has highest precedence, && has next highest precedence, || has the lowest precedence. The ←→ symbol

means equivalence; that is, whatever is on the left side of the double arrow can be replaced by whatever is on

the right side, and vice versa.

invalid entry

corrected entry

Make the logic
as clean as
possible.

4.15 Problem Solving with Boolean Logic (Optional) 139

04-M4402.indd 13904-M4402.indd 139 12/17/07 4:19:05 PM12/17/07 4:19:05 PM

Apago PDF Enhancer

140 Chapter 4 Control Statements

The fi rst 13 identities are relatively straightforward, and you should be able to satisfy yourself of their va-

lidity by just thinking about them. Likewise, you shouldn’t have to memorize them. You should be able to use

them instinctively. For example, commutation means you can switch the order without changing anything,

and association means you can move the parentheses without changing anything. The last four identities

are more mysterious, and some of them might even seem unreasonable at fi rst. For example, distribution is a

kind of shuffl ing, and DeMorgan’s theorem says you can negate everything and exchange all and’s and or’s.

Proving the Boolean Identities

Now that you’ve seen the basic identities, let’s see how to prove them. The proof technique is to write a

program that compares two arbitrary logical expressions for all possible values of the boolean variables

they contain. If the two expressions evaluate to the same truth values for all possible variable values, they

are logically equivalent. Figure 4.21 contains a program that does just that for the special case of the expres-

sions on either side of basic identity 16 in Figure 4.20.

It’s straightforward to modify the TruthTable program in Figure 4.21 to test any of the other basic iden-

tities in Figure 4.20. In fact, you can modify the program to test any prospective logical equivalence. To test

a different equivalence, substitute the left and right sides of the prospective equivalence for the expressions

assigned to result1 and result2, respectively.

1. !!x ←→ x

2. x || false ←→ x
3. x && true ←→ x

4. x || true ←→ true
5. x && false ←→ false

6. x || x ←→ x
7. x && x ←→ x

8. x || !x ←→ true
9. x && !x ←→ false

10. x || y ←→ y || x
11. x && y ←→ y && x

⎫
⎬
⎭

12. x || (y || z) ←→ (x || y) || z
13. x && (y && z) ←→ (x && y) && z

⎫
⎬
⎭

14. x && (y || z) ←→ x && y || x && z
15. x || y && z ←→ (x || y) && (x || z)

⎫
⎬
⎭

16. !(x || y) ←→ !x && !y
17. !(x && y) ←→ !x || !y

⎫
⎬
⎭

Figure 4.20 Basic identities of Boolean algebra

You can use these identities in any combination to change the form of any conditional expression.

commutation

association

distribution

DeMorgan

04-M4402.indd 14004-M4402.indd 140 12/17/07 4:19:06 PM12/17/07 4:19:06 PM

Apago PDF Enhancer

4.15 Problem Solving with Boolean Logic (Optional) 141

/**
* TruthTable.java
* Dean & Dean
*
* This proves equivalence of two boolean expressions
**/

public class TruthTable
{
 public static void main(String[] args)
 {
 boolean x = false;
 boolean y = false;
 boolean result1, result2;

 System.out.println("x\ty\tresult1\tresult2");
 for (int i=0; i<2; i++)
 {
 for (int j=0; j<2; j++)
 {
 result1 = !(x || y);
 result2 = !x && !y;
 System.out.println(x + "\t" + y +
 "\t" + result1 + "\t" + result2);
 y = !y;
 } // end for j
 x = !x;
 } // end for i
 } // end main
} // end TruthTable class

Sample output:

x y result1 result2
false false true true
false true false false
true false false false
true true false false

Figure 4.21 Program that generates a truth table for two logical expressions

If result1 and result2 values are the same in all rows, the expressions are equivalent.

To test the equivalence of any two

boolean expressions, substitute them

for these two (shaded) expressions.
⎧⎪⎨⎪⎩

Applications

There are many ways you can use Boolean identities.

For example, consider the condition in the if statement in Figure 4.5, which looked like this:

((temp >= 50) && (temp <= 90))

04-M4402.indd 14104-M4402.indd 141 12/17/07 4:19:06 PM12/17/07 4:19:06 PM

Apago PDF Enhancer

142 Chapter 4 Control Statements

Using the standard defi nition of the not operator, !, you can apply ! to each of the above comparison opera-

tor conditions and come up with this equivalent condition:

(!(temp < 50) && !(temp > 90))

You can apply basic identity 16 to the above condition and come up with this equivalent condition:

!((temp < 50) || (temp > 90))

You can use the above condition as part of a replacement for Figure 4.5’s original if statement where the if

and else subordinate statements are swapped. Here’s the resulting functionally equivalent if statement:

if ((temp < 50) || (temp > 90))
{
 System.out.println("not OK");
}
else
{
 System.out.println("OK");
}

For another example, consider the condition in the while loop in Figure 4.19, which looks like this:

(!entry.equals("") && !entry.equalsIgnoreCase("q"))

You can apply basic identity 16 to the above condition and come up with this equivalent condition:

!(entry.equals("") || entry.equalsIgnoreCase("q"))

Chapter Summary

You can alter a program’s sequence of execution by using an if statement. The choice of which of two

alternative paths to take is determined by the truth of the if statement’s condition.

Use the “if, else if” form of the if statement to choose among three or more alternatives.

You must use braces around two or more subordinate statements within any part of an if statement,

and it’s advisable to use them even when there is only one subordinate statement.

A condition’s comparison operators (<, >, <=, >=, ==, and !=) have higher priority than its “and” (&&)

and “or” (||) logical operators.

To negate the result of && and/or || operations, enclose them in parentheses and precede them with a

! operator.

Use a switch statement to choose among several alternatives on the basis of integer or character

identifi ers.

Use case <number>: or case <character>: and a following break; to delimit each alternative in

a switch statement.

If the condition in a while loop’s header is true, whatever is in the subsequent block executes, and

then if the condition is still true, that execution repeats.

A do loop executes its block at least once, and it repeats that execution as long as the condition after the

fi nal while remains true.

A for loop executes its block as long as the condition in the second component of its header remains

true. The fi rst component in the header initializes a count variable before the fi rst execution, and

•

•
•

•

•

•

•

•

•

•

04-M4402.indd 14204-M4402.indd 142 12/17/07 4:19:06 PM12/17/07 4:19:06 PM

Apago PDF Enhancer

the third component in the header updates that count variable after each execution and before the next

evaluation of the second component’s condition.

You can perform multidimensional iteration by putting loops inside other loops.

To avoid duplication and/or clutter, assign complicated logical expressions to boolean variables, and

use those variables in if statement or looping conditions.

Use input validation to avoid bringing bad data into your programs.

Optionally, use Boolean logic to simplify the expressions in if statement and looping conditions, and

use truth tables to verify the equivalence of alternative logical expressions.

Review Questions

§4.2 Conditions and boolean Values

 1. What are Java’s two Boolean values?
 2. Provide a list of Java’s comparison operators.

§4.3 if Statements

 3. Provide an if statement that implements this logic:
 When the water temperature is less than 120
F, turn the heater on by assigning the value “on” to a heater

string variable. When the water temperature is greater than 140
 F, turn the heater off by assigning the
value “off” to a heater string variable. Don’t do anything when the water temperature is between these
two temperatures.

 4. What is the maximum number of “else if” blocks allowed in an if statement that uses the “if, else if”
form?

§4.4 && Logical Operator

 5. The relational and equality operators have higher precedence than the arithmetic operators. (T / F)

§4.5 || Logical Operator

 6. Correct the following code fragment so that it executes and outputs OK if a, an int variable, is equal to
either 2 or 3:

if (a = 2 || 3)
{
 print("OK\n");
}

§4.6 ! Logical Operator

 7. What Java operator reverses the truth or falsity of a condition?

§4.7 switch Statement

 8. What happens if you forget to include break; at the end of a block of statements after a particular case:
label?

 9. If you are trying to substitute a switch statement for an “if, else” statement, you can use the if condition
as the controlling expression in the switch statement. (T / F)

 10. Suppose the controlling expression in a switch statement is (stdIn.next().charAt(0)), and you
want to allow either 'Q' or 'q' to produce the same result, which is:

 System.out.println("quitting");
 Write the code fragment for the case that produces this result.

§4.8 while Loop

 11. What must a while loop condition evaluate to?

•
•

•
•

 Review Questions 143

04-M4402.indd 14304-M4402.indd 143 12/17/07 4:19:07 PM12/17/07 4:19:07 PM

Apago PDF Enhancer

144 Chapter 4 Control Statements

 12. Suppose you want to use the user-query technique to terminate a simple while loop. Where should you put
the user query?

§4.9 do Loop

 13. What’s wrong with this code fragment?
int x = 3;
do
{
 x -= 2;
} while (x >= 0)

§4.10 for Loop

 14. If you know ahead of time the exact number of iterations through a loop, what type of loop should you use?
 15. Implement the following as a for loop:

int age = 0;
while (age < 5)
{
 System.out.println("Happy Birthday# " + age);
 age = age + 1;
} // end while

 What output will your equivalent for loop generate?

§4.11 Solving the Problem of Which Loop to Use

 16. If you know that a loop should be executed at least one time, what type of loop is most appropriate?

§4.12 Nested Loops

 17. Construct a template for a for loop inside a for loop. Use i for the outer for loop’s index variable and
use j for the inner for loop’s index variable.

§4.13 Boolean Variables

 18. Assume that the variable OK has been declared to be of type boolean. Replace the following code with an
equivalent for loop:

OK = false;
while (!OK)
{
 <statement(s)>
}

§4.15 Problem Solving with Boolean Logic (Optional)

 19. Given the logical expression:
!(!a || !b)

 Replace it with an equivalent logical expression that is completely devoid of “not” operations.

Exercises

 1. [after §4.3] Whenever you mail a letter, you must decide how much postage to put on the envelope. You like
to use this rule of thumb—use one stamp for every fi ve sheets of paper or fraction thereof. For example, if
you have 11 sheets of paper, then you use three stamps. To save money, you simply don’t mail the letter if an
envelope requires more than three stamps.

 Given that the number of sheets is stored in a variable named numSheets, write a code fragment that
prompts the user and inputs the number of sheets, calculates the number of stamps required, and prints “Use
<number-of-stamps> stamps” or “Don’t mail,” where <number-of-stamps> is an appropriate integer value.

04-M4402.indd 14404-M4402.indd 144 12/17/07 4:19:07 PM12/17/07 4:19:07 PM

Apago PDF Enhancer

 2. [after §4.8] Given this code fragment:

1 double x = 2.1;
2
3 while (x * x <= 50)
4 {
5 switch ((int) x)
6 {
7 case 6:
8 x--;
9 System.out.println("case 6, x= " + x);
10 case 5:
11 System.out.println("case 5, x= " + x);
12 case 4:
13 System.out.println("case 4, x= " + x);
14 break;
15 default:
16 System.out.println("something else, x= " + x);
17 } // end switch
18 x +=2;
19 } // end while

 Trace the code using either the short form or the long form. To help you get started, here’s the trace setup.
For the short form, you won’t need the line# column.

line# x output

 3. [after §4.9] The following main method is supposed to print the sum of the numbers 1 through 5 and the
product of the numbers 1 through 5. Find all the bugs in the program and fi x them. Do not add or delete
statements. Just fi x existing statements. We encourage you to check your work by running test code on a
computer.

public static void main(String[] args)
{
 int count = 0;
 int sum = 0;
 int product = 0;
 do
 {
 count++;
 sum += count;
 product *= count;
 if (count == 5)
 System.out.println("Sum = " + sum);
 System.out.println("Product = " + product);
 } while (count < 5)
} // end main

Intended output:

Sum = 15
Product = 120

 Exercises 145

04-M4402.indd 14504-M4402.indd 145 12/17/07 4:19:07 PM12/17/07 4:19:07 PM

Apago PDF Enhancer

146 Chapter 4 Control Statements

 4. [after §4.10] Given this main method:

1 public static void main(String[] args)
2 {
3 int i;
4 String debug;
5 for (int i=0; i<3; i++)
6 {
7 switch (i * i)
8 {
9 case 0:
10 debug = "first";
11 break;
12 case 1: case 2:
13 debug = "second";
14 case 3:
15 debug = "third";
16 default:
17 System.out.println("In default");
18 } // end switch
19 } // end for
20 System.out.println("i = " + i);
21 } // end main

 Trace the code using either the short form or the long form. To help you get started, here’s the trace setup.
For the short form, you won’t need the line# column.

line# i debug output

 5. [after §4.10] Given the below program skeleton. Insert code in the <insert-code-here> section such that the
program prints the product of even integers from 2 to num. You are not required to perform input validation.

public class ProductEvenInts
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int i, num, product;

 System.out.print("Enter a positive even number: ");
 num = stdIn.nextInt();

 <insert-code-here>

 System.out.println("Product = " + product);
 } // end main
} // end class ProductEvenInts

Sample session:

Enter a positive even number: 8
Product = 384

04-M4402.indd 14604-M4402.indd 146 12/17/07 4:19:08 PM12/17/07 4:19:08 PM

Apago PDF Enhancer

 6. [after §4.12] Given this main method:

1 public static void main(String[] args)
2 {
3 for (int start=1; start<=5; start+=2)
4 {
5 for (int count=start; count>=1; count--)
6 {
7 System.out.print(count + " ");
8 }
9 System.out.println("Liftoff!");
10 }
11 } // end main

 Trace the code using either the short form or the long form. To help you get started, here’s the trace setup.
For the short form, you won’t need the line# column.

line# start count output

 7. [after §4.13] Given this main method:

1 public static void main(String[] args)
2 {
3 boolean sheLovesMe = true;
4
5 for (int num=0; num<4; num++)
6 {
7 sheLovesMe = !sheLovesMe;
8 }
9 if (sheLovesMe)
10 {
11 System.out.println("She loves me!");
12 }
13 else
14 {
15 System.out.println("She loves me not!");
16 }
17 } // end main

 Trace the code using either the short form or the long form. To help you get started, here’s the trace setup.
For the short form, you won’t need the line# column.

line# sheLovesMe num output

 8. [after §4.13] Consider the BowlingScores program below.

/***
* BowlingScores.java
* Dean & Dean
*
* This implements a bowling scores algorithm.
***/

 Exercises 147

04-M4402.indd 14704-M4402.indd 147 12/17/07 4:19:08 PM12/17/07 4:19:08 PM

Apago PDF Enhancer

148 Chapter 4 Control Statements

import java.util.Scanner;

public class BowlingScores
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int score;
 int totalScore = 0;
 int count = 0;
 double average;

 System.out.print("Enter score (-1 to quit): ");
 score = stdIn.nextInt();

 while (score >= 0)
 {
 totalScore += score;
 count++;
 System.out.print("Enter score (-1 to quit): ");
 score = stdIn.nextInt();
 }

 average = (double) totalScore / count;
 System.out.println("Average score is " + average);
 } // end main
} // end BowlingScores class

 Modify this program to avoid division by zero. Initialize a boolean variable called more with true, and
use it as the while loop condition. Eliminate the prompt and input before the loop and move the prompt
and input inside the loop to the top of the loop. Use an “if, else” structure in the loop to set more to false
and bypass the normal calculation if the input is negative.

 9. [after §4.13] Consider the following code fragment. Without changing the loop type, modify the code as
follows. Incorporate an if statement in the loop body to prevent printout when the input equals the sentinel
value of zero.

int x;
do
{
 x = stdIn.nextInt();
 System.out.println("square = " + (x * x));
} while (x != 0);

 10. [after §4.15] Here’s a brainteaser that uses Boolean logic:
 You’re traveling on a road, and you come to a fork in the road. You know that one path leads to a pot of

gold and the other path leads to a dragon. There are two elves at the fork, both of whom know the way
to the pot of gold. You know that one elf always tells the truth and the other elf always lies, but you don’t
know which elf is which. What single question should you ask to fi gure out the proper path to the pot
of gold?

04-M4402.indd 14804-M4402.indd 148 12/17/07 4:19:08 PM12/17/07 4:19:08 PM

Apago PDF Enhancer

Review Question Solutions

 1. Java’s Boolean values are true and false.

 2. Java’s comparison operators are:

==, !=, <, >, <=, >=

 3. Use an “if, else if ” statement, like this:

if (temp < 120)
{
 heater = "on";
}
else if (temp > 140)
{
 heater = "off";
}

 Do not include a fi nal else.

 4. There is no limit on the number of “else if ” blocks that are allowed.

 5. False. The arithmetic operators have higher precedence than the comparison operators.

 6. The corrections are underlined:

(a == 2 || a == 3)
{
 System.out.print("OK\n");
}

 7. The ! operator reverses the truth or falsity of a condition.

 8. If you omit the break, control fl ows into the next case block, and that case block’s statements execute
also.

 9. False. An “if, else” condition evaluates to either true or false. The controlling expression in a switch
statement must evaluate to either int or char (or byte or short).

 10. When more than one identifi er produces the same result, concatenate on the same line, if possible, using
separate case <identifi er>: for each identifi er:

case 'Q': case 'q':
 System.out.println("quitting");

 11. A while condition evaluates to either true or false.

 12. The user query should occur just prior to where the termination condition is tested. A while loop tests the
termination condition at the beginning of the loop. Therefore, the user query should occur just above the
top of the loop and also just above the bottom of the loop. If you want the loop to always execute at least
once, then omit the user query above the loop and replace it with an assignment that forces the termination
condition to be true.

 13. There is no semicolon after the while condition.

 14. If you know ahead of time the exact number of iterations through a loop, use a for loop.

 Review Question Solutions 149

04-M4402.indd 14904-M4402.indd 149 12/17/07 4:19:08 PM12/17/07 4:19:08 PM

Apago PDF Enhancer

150 Chapter 4 Control Statements

 15. Happy birthday as a for loop:

for (int age=0; age < 5; age++)
{
 System.out.println("Happy Birthday# " + age);
} // end for

Output:

Happy Birthday# 0
Happy Birthday# 1
Happy Birthday# 2
Happy Birthday# 3
Happy Birthday# 4

 16. A do loop is most appropriate in simple situations where there will always be at least one pass.

 17. Template for a pair of nested for loops:
for (int i=0; i<imax; i++)
{
 for (int j=0; j<jmax; j++)
 {
 <statement(s)>
 } // end for j
} // end for i

 18. A for loop representation of a while loop:
for (boolean OK=false; !OK;)
{
 <statement(s)>
}

 19. Given the expression:

!(!a || !b)

 Starting on the left side of basic identity 16 and going to the right side gives this:

!!a && !!b

 Then using basic identity 1 gives this:

a && b

04-M4402.indd 15004-M4402.indd 150 12/17/07 4:19:09 PM12/17/07 4:19:09 PM

Apago PDF Enhancer

0.0 Last A-Head 151

C H A P T E R

151

Using Pre-Built Methods

Objectives

See what it takes to incorporate Java’s pre-built API software into your programs, and become

acquainted with Sun’s documentation of the API software.

Use the methods and named constants defi ned in Java’s Math class.

Use the parsing methods in wrapper classes to convert text representations of numbers into numerical

format, and learn to use the toString methods to go the other way.

Use methods in the Character class to identify and alter character types and formats.

Use methods in the String class to fi nd the fi rst index of a particular character, extract or replace

substrings, convert case, and trim leading and trailing whitespaces.

Format output with the System.out.printf method.

Optionally use the Random class to generate non-uniform random-number distributions.

Optionally see how to draw geometric shapes, display pictures, and display text on a graphics display

window and run a Java applet.

Outline

 5.1 Introduction

 5.2 The API Library

 5.3 Math Class

 5.4 Wrapper Classes for Primitive Types

 5.5 Character Class

 5.6 String Methods

 5.7 Formatted Output with the printf Method

 5.8 Problem Solving with Random Numbers (Optional)

 5.9 GUI Track: Drawing Images, Lines, Rectangles, and Ovals in Java Applets (Optional)

•

•
•

•
•

•
•
•

5

05-M4402.indd 15105-M4402.indd 151 12/17/07 4:19:25 PM12/17/07 4:19:25 PM

Apago PDF Enhancer

152 Chapter 5 Using Pre-Built Methods

5.1 Introduction

In Chapters 3 and 4, we focused on basic Java programming language constructs—variables, assignments,

operators, if statements, loops, and so on. We also introduced a more advanced programming technique—

calling a method. Method calls provide a lot of “bang for your buck.” In other words, they do a lot and

require very little work on your part. For example, you get great benefi t for little effort when you call the

print and println methods for output, the next, nextLine, nextInt, and nextDouble methods

for input, and the charAt, length, equals, and equalsIgnoreCase methods for string manipula-

tion. In this chapter, we want to expose you to other methods that are already written, already tested, and are

readily accessible to all Java programmers.

While this chapter raises your awareness of valuable already-written methods, it also gives you a better

feeling for what methods can do in general. And learning what methods can do is an important fi rst step in

learning about object-oriented programming (OOP). We describe OOP in all its glory in the next chapter, but

for now, here’s a pared-down explanation: OOP is the idea that programs should be organized into objects.

An object is a set of related data plus a set of behaviors. For example, a string is an object: A string’s “set of

related data” is its characters, and its “set of behaviors” is its methods (the length method, the charAt

method, etc.). Each object is an instance of a class. For example, a single string object, “hello,” is an instance

of the String class. This chapter serves as a transition from Java basics in Chapters 3 and 4 to OOP in the

remainder of the book. We carry out this transition by showing you how to use pre-built OOP code without

having to implement it yourself. More specifi cally, in this chapter, you learn how to use methods, and in the

next chapter, you’ll learn how to write your own classes and the methods that go inside those classes.

There are two basic types of methods, instance methods and class methods, and we provide exam-

ples of both in this chapter. Instance methods are methods that are associated with a particular instance

of a class. For example, to call the String class’s length method, you have to associate it with a par-

ticular string. So in the example below, note how the firstName string is associated with the length

method:

firstNameSize = firstName.length();

The firstName string is an example of a calling object. As the name implies, a calling object is an object

that calls a method. Whenever you call an instance method, you have to prefi x the method name with a call-

ing object and then a dot.

Class methods are methods that are associated with an entire class, not with a particular instance of a

class. For example, there’s a Math class that contains many class methods. Its methods are associated with

math in general, not with a particular instance of math (a particular instance of math doesn’t even make

sense). To call a class method, you prefi x the method name with the name of the class that defi nes it. For ex-

ample, the Math class contains a round method that returns the rounded version of a given value. To call

the round method, you prefi x it with Math like this:

paymentInDollars = Math.round(calculatedEarnings);

We start the chapter with an overview of the API library, which is Sun’s collection of pre-built classes. We

then examine the Math class, which provides methods for mathematical calculations. We next turn our at-

tention to the wrapper classes, which encapsulate (wrap up) primitive data types. We then expand on our

previous discussion of the String class by providing additional string methods. After that, we describe the

printf method, which provides formatted output functionality. We then discuss the Random class, which

provides methods for generating random numbers. We end the chapter with an optional GUI track section.

In it, we discuss methods provided by the Graphics class and describe how to call graphics methods from

within a Java applet. Very cool stuff!

05-M4402.indd 15205-M4402.indd 152 12/17/07 4:19:27 PM12/17/07 4:19:27 PM

Apago PDF Enhancer

5.2 The API Library

When working on a programming problem, you should normally check to see if there are pre-built classes

that meet your program’s needs. If there are such pre-built classes, then use those classes—don’t “reinvent

the wheel.” For example, user input is a rather complicated task. Java’s Scanner class handles user input.

Whenever you need user input in a program, use the Scanner class rather than writing and using your own

input class.

There are two primary advantages of using pre-built classes. Using pre-built classes can save you time

since you don’t have to write the classes yourself. Using pre-built classes can also improve the quality of

your programs since the classes have been thoroughly tested, debugged, and scrutinized for effi ciency.

Searching API Class Library Documentation

Java’s pre-built classes are stored in the Application Programming Interface (API) class library, which is

more simply known as the API library. You should be able to fi nd documentation for the API library at Sun’s

Java API Web site:

http://java.sun.com/javase/6/docs/api/

The API library contains tens of thousands of pre-built methods defi ned in thousands

of classes. The classes are organized in almost two hundred groups called packages (a pack-

age is a group of classes). It’s unlikely that you’ll be able to memorize the names of all those

methods, where they are, and what they do. So how do you locate the particular piece of pre-built software

that might be just what you need for your current programming project?

Use a textbook (like this textbook ☺) to get you started with selected sample classes and methods. Then

go to Sun’s Java API Web site and browse. See Figure 5.1. It shows that the Web site’s window is partitioned

5.2 The API Library 153

Use available
resources.

Figure 5.1 Sun’s Java API Web site

class list

package list

When Overview is selected, the right pane

displays a package list and package descriptions.

05-M4402.indd 15305-M4402.indd 153 12/17/07 4:19:27 PM12/17/07 4:19:27 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

154 Chapter 5 Using Pre-Built Methods

into three window panes. The top-left pane displays a list of all of Java’s packages. The bottom-left pane

displays a list of all of Java’s classes. The right pane displays a variety of different content, where the type of

content depends on what the user specifi es.

The Web site provides several ways to look things up:

 1. If you hope that the API library contains a method or class that might help with your current program-

ming project, but you’re unsure, you’ll have to do some browsing. Start by making sure the Overview

link at the top of the Web site is selected. When the Overview link is selected, the right window pane

displays a list of all the packages and a brief description of each package. If you fi nd a package that

looks promising, click the package’s name. That causes the right pane to display all the classes within

the selected package and a brief description of each class. If you fi nd a class that looks promising, click

the class’s name. That causes the right pane to display all the methods within the selected class and a

brief description of each method. If you fi nd a method that looks promising, click the method’s name.

That causes the right pane to display the method’s complete details.

 2. If you know the name of a particular class that you want details on, click anywhere in the bottom-left

window pane and press Ctrl�f (hold the control key down and tap the f key). The f stands for “fi nd” and

pressing Ctrl�f causes a Find dialog box to appear. Enter the name of the class in the Find dialog box

and click the Find Next button. That should cause the class to be found and highlighted in the bottom-

left window pane. Click the class and that causes the right window pane to display the class’s details.

 3. If you know the name of a particular method that you want details on, click the Index link at the top

of the window. That causes the right window pane to display the letters of the alphabet. Click the letter

that matches the fi rst letter of the method you’re interested in. That causes the right window pane to

 display methods (and other entities, like classes) that begin with the clicked letter. Find the method

you’re interested in and click it to display all its details.

Using Sun’s Java API Web site is like surfi ng the net, but you’re not surfi ng the whole world. You’re just surf-

ing the Java class library. You can do it, and we encourage you to give it a try whenever you’re curious.

Using the API Class Library

To use an API class in your program, you must fi rst import it (i.e., load it) into your program. For example,

to use the Scanner class, you must include this statement at the top of your program:

import java.util.Scanner;

Note the java.util part of java.util.Scanner. The java.util part is the name of a package. The

“util” stands for “utility,” and the java.util package contains general-purpose utility classes. The only

java.util class you’ll need right now is the Scanner class. But there are many other useful classes in

the java.util package. Examples are:

The Random class, for helping you work with random numbers—discussed in an optional section at the

end of this chapter.

The Calendar class, for helping you work with times and dates—discussed in an optional section

at the end of Chapter 8.

The Arrays, ArrayList, LinkedList, and Collections classes, for helping you work with

lists or collections of similar data—ArrayLists are discussed in Chapter 10.

If you have a program that needs to use more than one of the classes in a particular package, like two or more

of the util package classes just mentioned, you can import them all at once using a statement like this:

import java.util.*;

•

•

•

05-M4402.indd 15405-M4402.indd 154 12/17/07 4:19:29 PM12/17/07 4:19:29 PM

Apago PDF Enhancer

The asterisk is a wildcard. In the above statement, the asterisk causes all classes in the java.util package

to be imported—not just the Scanner class. There’s no ineffi ciency in using the wildcard notation. The

compiler includes only as much as it needs in the compiled program.

Several classes are so important that the Java compiler automatically imports them for you. These au-

tomatically imported classes are in the java.lang package, where lang stands for “language.” In effect,

the Java compiler automatically inserts this statement at the top of every Java program:

import java.lang.*;

Since this is automatic and understood, there’s no need to write it explicitly.

The Math class is in the java.lang package, so there’s no need for you to import the Math class if

you want to perform math operations. Likewise, the System class is in the java.lang package, so there’s

no need for you to import the System class if you want to perform a System.out.println command.

Headings for API Methods

To use an API class, you don’t need to know the internals of the class; you just need to know how to “inter-

face” with it. To interface with a class, you need to know how to use the methods within the class. For ex-

ample, to perform input, you need to know how to use the Scanner class’s methods—next, nextLine,

nextInt, nextDouble, and so on. To use a method, you need to know what type of arguments to pass to

it and what type of value it returns. Arguments are the input you supply to a method when you call it, or ask

it to do something for you, and the value it returns is the answer it gives you back.

The standard way to present method-interface information is to show the method’s source code head-

ing. For example, here’s the source code heading for the Scanner class’s nextInt method:

public int nextInt()

5.3 Math Class 155

The arguments that you pass to the method go inside the

parentheses (no arguments are passed to the nextInt method).

The return type (int in this example) indicates the type of the

value that’s being returned from the method.

public means that the method is directly accessible from

everywhere; that is, the “public” can access it.

In the above nextInt heading, the public access modifi er should look familiar because your main
method headings all use public. We’ll discuss private methods in Chapter 8. They’re accessible only

from within the class that defi nes them. Note that the nextInt method returns an int value and that it has

no arguments inside the parentheses. Here’s an example of a Java statement that shows how you might call

the nextInt method:

int days = stdIn.nextInt();

5.3 Math Class

The Math class is one of the pre-built classes in the always-available java.lang package. This class

contains methods which implement standard mathematical functions. A mathematical function generates a

05-M4402.indd 15505-M4402.indd 155 12/17/07 4:19:30 PM12/17/07 4:19:30 PM

Apago PDF Enhancer

156 Chapter 5 Using Pre-Built Methods

numeric value based on one or more other numeric values. For example, a square root function generates the

square root of a given number. Likewise, the Math class’s sqrt method returns the square root of a given

number. In addition to providing mathematical methods, the Math class also provides two mathematical

constants—� (the ratio of a circle’s circumference to its diameter) and e (the base of natural logarithms).

Basic Math Methods

Let’s now look at some of the Math class’s methods. Throughout the book, when there’s a need to present a

group of methods from the API library, we’ll introduce the methods by showing a list of method headings

and associated brief descriptions. Headings for API methods are commonly referred to as API headings.
Figure 5.2 contains API headings for some of the more popular methods in the Math class, with associated

brief descriptions.

As you read through Figure 5.2, we hope that you’ll fi nd most of the methods to be straightforward. But

some items may need clarifi cation. Note the static modifi er at the left of all the Math methods. All the

methods in the Math class are static. The static modifi er means they are class methods and must be

called by prefacing the method’s name with the name of the class in which they are defi ned. For example,

here’s how you’d call the abs method:

Call Math methods by prefacing them with Math dot.

int num = Math.abs(num);

The above statement updates num’s value, so num gets the absolute value of its original value. For example,

if num starts out with �15, it ends up with 15.

Note that the following statement does not work properly:

Math.abs(num);

It fi nds the absolute value of num, but it does not update the content stored inside num. Math methods

return a value. They do not update a value. So if you want to update a value, you must use an assignment

operator.

In Figure 5.2, note that there’s only one pow method—one with double parameters. There’s no pow
method with int parameters. But that’s no big deal because you can pass an int value to the pow method.

More generally, it’s legal to pass an integer value to a method that accepts a fl oating-point argument. It’s like

assigning an integer value into a fl oating-point variable, discussed in Chapter 3. Let’s see how this works

within a code fragment. There is an empirical rule called “Horton’s Law,” which says that the length of a

river scales with the area drained by the river in accordance with this formula:

length ≈ 1.4 (area)0.6

Here’s how you might implement Horton’s Law in Java code:

int area = 10000; // square miles drained
System.out.println("river length = " + 1.4 * Math.pow(area, 0.6));

Output:

river length = 351.66410041134117

OK to pass an int (area), into pow,

which accepts double arguments.

05-M4402.indd 15605-M4402.indd 156 12/17/07 4:19:31 PM12/17/07 4:19:31 PM

Apago PDF Enhancer

 5.3 Math Class 157

public static double abs(double num)
Returns the absolute value of a double num.

public static int abs(int num)
Returns the absolute value of an int num.

public static double ceil(double num)
Returns the smallest whole number greater than or equal to num. ceil stands for “ceiling.”

public static double exp(double power)
Returns E (base of natural logarithms) raised to the specifi ed power.

public static double floor(double num)
Returns the largest whole number that is less than or equal to num.

public static double log(double num)
Returns the natural logarithm (base E) of num.

public static double log10(double num)
Returns the base 10 logarithm of num.

public static double max(double x, double y)
Returns the more positive of the two double values, x and y.

public static int max(int x, int y)
Returns the more positive of the two int values, x and y.

public static double min(double x, double y)
Returns the less positive of the two double values, x and y.

public static int min(int x, int y)
Returns the less positive of the two int values, x and y.

public static double pow(double num, double power)
Returns num raised to the specifi ed power.

public static double random()
Returns a uniformly distributed value between 0.0 and 1.0, but not including 1.0.

public static long round(double num)
Returns the whole number that is closest to num.

public static double sqrt(double num)
Returns the square root of num.

Figure 5.2 API headings and brief descriptions of some of the methods in the java.lang.Math class

05-M4402.indd 15705-M4402.indd 157 12/17/07 4:19:31 PM12/17/07 4:19:31 PM

Apago PDF Enhancer

158 Chapter 5 Using Pre-Built Methods

Note the round method in Figure 5.2. How is it different from using an (int) type cast operator on a

double value? The (int) operator truncates the fraction, whereas the round method rounds up if the

fraction is � 0.5.

As shown in Figure 5.2, Math’s random method returns a uniformly distributed value between 0.0

and 1.0, not including 1.0. “Uniformly distributed” means that there’s the same chance of getting any value

within the specifi ed range. In other words, if you have a program that calls random, the chances are the

same for random returning 0.317, 0.87, 0.02, or any value between 0.0 and 1.0, not including 1.0.

Why would you want to call the random method? If you need to analyze a real-world situation that

involves random events, you should consider writing a program that uses the random method to model the

random events. For example, if you work for a city transportation department, and you’re in charge of im-

proving traffi c fl ow at traffi c light intersections, you could write a program that uses the random method

to model the arrival of automobiles at the traffi c lights. For each traffi c light that you’re interested in, you’d

set the traffi c light’s cycle time (e.g., two minutes between each new green signal) and then simulate auto-

mobiles arriving at the traffi c light at random intervals. You’d run the program so that it simulates one week

of traffi c fl ow, and you’d keep track of average wait time for all vehicles. You’d then adjust the traffi c light’s

cycle time (e.g., one minute and forty-fi ve seconds between each new green signal), run the simulation

again, and determine which traffi c light cycle time produces shorter average wait times.

Let’s wrap up the discussion of Figure 5.2’s Math methods with a complete program example. Sup-

pose you want to calculate the length of the hypotenuse of a right triangle, given the lengths of its base and

height, as shown in this picture:

Figure 5.3 contains a simple program that asks the user to provide base and height values. Then it uses

Math’s sqrt method to calculate and print the square root of the sum of the squares. Notice that we did not

use the Math.pow method to square the base and square the height. For small powers, it’s more effi cient

just to multiply them out.

Trigonometric Math Methods

Figure 5.4 contains API headings and descriptions for some of the methods in the Math class that can help

you solve problems in trigonometry. The sin, cos, and tan methods implement the sine, cosine, and

tangent functions, respectively. The asin, acos, and atan methods implement the arcsine, arccosine,

and arctangent functions, respectively. The trigonometric and inverse trigonometric functions all use or

return angle values as radians, not degrees. Using or assuming degrees is a common programming error. Be

careful!

height2 + base2hypotenuse =height

base

hypotenuse

05-M4402.indd 15805-M4402.indd 158 12/17/07 4:19:32 PM12/17/07 4:19:32 PM

Apago PDF Enhancer

Named Constants

The Math class also contains double values for two important named constants:

PI = 3.14159265358979323846
E = 2.7182818284590452354

PI and E are standard mathematical constants. PI is the ratio of a circle’s perimeter to its diameter. E
is Euler’s number, the base for natural logarithm calculations. The names PI and E are in all uppercase

 characters, because that’s standard style for named constants. Constants have fi xed values, and if you at-

tempt to assign a value to them, you’ll get a compilation error. Just as Math’s methods are called class meth-

ods, these constants are called class constants, and you access them through the Math class name. In other

words, if you need �, specify Math.PI.

 5.3 Math Class 159

/**
* FindHypotenuse.java
* Dean & Dean
*
* This program computes the hypotenuse of a right triangle.
**/

import java.util.Scanner;

public class FindHypotenuse
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 double base;
 double height;
 double hypotenuse;

 System.out.print("Enter right triangle base: ");
 base = stdIn.nextDouble();
 System.out.print("Enter right triangle height: ");
 height = stdIn.nextDouble();
 hypotenuse = Math.sqrt(base * base + height * height);

 System.out.println("Hypotenuse length = " + hypotenuse);
 } // end main
} // end FindHypotenuse

Sample session:

Enter right triangle base: 3.0
Enter right triangle height: 4.0
Hypotenuse length = 5.0

Figure 5.3 FindHypotenuse program demonstrates use of one of Java’s pre-built math functions

⎧ ⎨ ⎩

call to Math class’s sqrt method

05-M4402.indd 15905-M4402.indd 159 12/17/07 4:19:32 PM12/17/07 4:19:32 PM

Apago PDF Enhancer

160 Chapter 5 Using Pre-Built Methods

Suppose you want to compute the water needed for a 10 centimeter diameter water balloon. Here’s the

formula for the volume of a sphere:

�
6

 diameter3

And here’s the code and resulting output for computing the volume of water for the water balloon:

double diameter = 10.0;
double volume = Math.PI / 6.0 * diameter * diameter * diameter;
System.out.print("Balloon volume in cubic cm = " + volume);

Output:

Balloon volume in cubic cm = 523.5987755982989

Some of Java’s Math class methods are extremely helpful when you need to evaluate a non-trivial math-

ematical function, like raising a fl oating-point number to a fractional power. Others do simple things you

could do yourself. For example, can you think of a primitive way to do the same thing that Math.round

does? It’s pretty easy. Just add 0.5 to your original double number and then use a long cast operator

on that double value to end up with a rounded version of the original number. (That’s what was done in

days of yore.) If it’s that easy, why bother to use Math.round? Because it makes code more readable! The

 expression, Math.round(number), is self-documenting. It’s more informative than the odd-looking ex-

pression, ((long) (0.5 + number)).

Figure 5.4 API headings and brief descriptions of some trigonometric methods in the java.lang.Math class

public static double acos(double ratio)
Returns the angle in radians between 0.0 and � whose cosine equals the given value.

public static double asin(double ratio)
Returns the angle in radians between ��/2 and ��/2 whose sine equals the given value.

public static double atan(double ratio)
Returns the angle in radians between ��/2 and ��/2 whose tangent equals the given value.

public static double cos(double radians)
Returns the cosine of an angle expressed in radians.

public static double sin(double radians)
Returns the sine of an angle expressed in radians.

public static double tan(double radians)
Returns the tangent of an angle expressed in radians.

public static double toDegrees(double radians)
Converts an angle measured in radians to an angle measured in degrees.

public static double toRadians(double degrees)
Converts an angle measured in degrees to an angle measured in radians.

05-M4402.indd 16005-M4402.indd 160 12/17/07 4:19:33 PM12/17/07 4:19:33 PM

Apago PDF Enhancer

5.4 Wrapper Classes for Primitive Types

A wrapper is a construct that wraps (contains) a primitive data type and converts it to an object with a

similar name, so it can be used in a situation where only objects are allowed. Wrapper classes do more than

wrapping, however. They also provide some useful class methods and class constants. The java.lang

package provides wrapper classes for all of the Java primitive types. Since this package is always available,

you don’t need to use import to access these classes. Here are the wrapper classes that we’ll consider,

along with the primitive types they encapsulate:

Wrapper Class Primitive Type

Integer int

Long long

Float float

Double double

Character char

For most wrapper classes, the wrapper class’s name is the same as its associated primitive type except

that it uses an uppercase fi rst letter. There are two exceptions. The wrapper class for int is Integer, and

the wrapper class for char is Character.

Methods

Like the Math class, wrapper classes contain methods and constants. We start with methods. We limit our

coverage to just two sets of methods—methods that convert strings to primitives and methods that convert

primitives to strings. So when would you need to convert a string to a primitive? For example, when would

you need to convert the string “4” to the int 4? If you need to read a value in as a string and then later ma-

nipulate the value as a number, you’ll need to perform a string-to-number conversion. Later in this section,

we’ll show a program that reads a value that could be either a number (for a lottery-number choice) or a “q”

(for quitting). The program reads the user entry as a string, and if the value is not a “q,” then the program

converts the user entry to a number.

Now for the other direction—when would you need to convert a primitive to a string? If you need to

call a method that takes a string argument and what you’ve got is a number argument, then you’ll need to

perform a number-to-string conversion. With graphical user interface (GUI) programs, all numeric output is

string based. So to display a number, you need to convert the number to a string prior to calling the GUI dis-

play method. With GUI programs, all numeric input is string based, too. So to read a number, you fi rst read

the input as a string and then convert the string to a number. You’ll see many examples of these processes

later, in Chapters 16 and 17.

Here’s the syntax for converting strings to primitives and primitives to strings:

Wrapper Class String → Primitive Primitive → String

Integer Integer.parseInt(<string>) Integer.toString(<#>)

Long Long.parseLong(<string>) Long.toString(<#>)

Float Float.parseFloat(<string>) Float.toString(<#>)

Double Double.parseDouble(<string>) Double.toString(<#>)

All the number wrapper classes work similarly. So if you understand how to convert from a string to an

int, then you’ll also understand how to convert from a string to another primitive type. To convert from a

 5.4 Wrapper Classes for Primitive Types 161

05-M4402.indd 16105-M4402.indd 161 12/17/07 4:19:35 PM12/17/07 4:19:35 PM

Apago PDF Enhancer

162 Chapter 5 Using Pre-Built Methods

string to an int, use int’s wrapper class, Integer, to call parseInt. In other words, call Integer.
parseInt(<string>) and the string’s corresponding int is returned. Likewise, to convert from a string to

a double, use double’s wrapper class, Double, to call parseDouble. In other words, call Double.
parseDouble(<string>) and the string’s corresponding double is returned. Later in this section, we’ll

show a non-trivial example that uses the wrapper class conversion methods. But fi rst we’ll show some trivial

examples to get you used to the method-call syntax. Here we use parseInt and parseDouble to con-

vert from strings to primitives:

String yearStr = "2002";
String scoreStr = "78.5";
int year = Integer.parseInt(yearStr);
double score = Double.parseDouble(scoreStr);

To remember the syntax for the string-to-number method calls, think of <type>.parse<type> for

Integer.parseInt, Long.parseLong, and so on.

To convert from an int to a string, use int’s wrapper class, Integer, to call toString. In other

words, call Integer.toString(<int-value>) and the int value’s corresponding string is returned. Like-

wise, to convert from a double to a string, use double’s wrapper class, Double, to call toString. In

other words, call Double.toString(<double-value>) and the double value’s corresponding string is

returned. Note this example:

int year = 2002;
float score = 78.5;
String yearStr = Integer.toString(year);
String scoreStr = Float.toString(score);

About half of the numerical wrapper-class methods are class methods. We’re focusing on those methods.

Since they’re class methods, you call them by prefacing the method call with the wrapper class’s name, just

as we have done.

Named Constants

The wrapper classes contain more than just methods; they also contain named constants. All the number

wrappers provide named constants for minimum and maximum values. The fl oating-point wrappers also

provide named constants for plus and minus infi nity and “Not a Number,” which is the indeterminate value

you get if you try to divide zero by zero. Here’s how you access the most important named constants defi ned

in the Integer and Double wrapper classes:

Integer.MAX_VALUE
Integer.MIN_VALUE
Double.MAX_VALUE
Double.MIN_VALUE
Double.POSITIVE_INFINITY
Double.NEGATIVE_INFINITY
Double.NaN

There are comparable named constants for the Long and Float wrappers.

NaN stands for “not a number.”

05-M4402.indd 16205-M4402.indd 162 12/17/07 4:19:35 PM12/17/07 4:19:35 PM

Apago PDF Enhancer

An Example

Let’s put the wrapper and Math.random material into practice by showing it in the context of a complete

program. Figure 5.5’s Lottery program prompts the user to guess a randomly generated number between 0

and the maximum int value. The user pays $1.00 for each guess and wins $1,000,000 if the guess is cor-

rect. The user enters a “q” to quit.

In the initialization of winningNumber, note how the program generates a random winning-number

value:

winningNumber = (int) (Math.random() * Integer.MAX_VALUE);

The starting point is Math.random(), a random number between 0.0 and 1.0. The

Java Virtual Machine (JVM) then multiplies by Integer.MAX_VALUE to expand the

range from (0.0 to 1.0) to (0.0 to 2147483647.0). The JVM then performs an (int) cast

to truncate the fractional component.

 5.4 Wrapper Classes for Primitive Types 163

/***
* Lottery.java
* Dean & Dean
*
* This program prompts the user to choose a randomly selected number.
***/

import java.util.Scanner;

public class Lottery
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String input;
 int winningNumber = (int) (Math.random() * Integer.MAX_VALUE);

 System.out.println("Want to win a million dollars?");
 System.out.println("If so, guess the winning number (a" +
 " number between 0 and " + (Integer.MAX_VALUE - 1) + ").");
 do
 {
 System.out.print(
 "Insert $1.00 and enter your number or 'q' to quit: ");
 input = stdIn.nextLine();
 if (input.equals("give me a hint")) // a back door
 {
 System.out.println("try: " + winningNumber);
 }

Figure 5.5a Lottery program illustrates use of the Integer wrapper class—part A

Initialize with scaled

random number.

Adapt existing
software to your
needs

05-M4402.indd 16305-M4402.indd 163 12/17/07 4:19:36 PM12/17/07 4:19:36 PM

Apago PDF Enhancer

164 Chapter 5 Using Pre-Built Methods

Note how the program reads in the user’s number guess as a string:

input = stdIn.nextLine();

By reading the number guess as a string rather than a number, the program can handle the user entering a

nonnumerical input, such as “q” for quit or “give me a hint” for a hint. If the user enters “q,” the program

quits. If the user enters “give me a hint,” the program prints the winning number. Big hint, eh? In this case,

the hint is really a backdoor. A backdoor is a secret technique for gaining access to a program. The Lottery

program’s backdoor can be used for testing purposes.

If the user does not enter “q” or “give me a hint,” the program attempts to convert the user entry to a

number by calling Integer.parseInt. The program then compares the converted number to the win-

ning number and responds accordingly.

The Lottery program might produce the following output:

Sample session:

Want to win a million dollars?
If so, guess the winning number (a number between 0 and 2147483646).
Insert $1.00 and enter your number or 'q' to quit: 66761
Sorry, good guess, but not quite right.
Insert $1.00 and enter your number or 'q' to quit: 1234567890
Sorry, good guess, but not quite right.
Insert $1.00 and enter your number or 'q' to quit: give me a hint
try 1661533855
Insert $1.00 and enter your number or 'q' to quit: 1661533855
YOU WIN!
Thanks for playing. Come again!

 else if (!input.equals("q"))
 {
 if (Integer.parseInt(input) == winningNumber)
 {
 System.out.println("YOU WIN!");
 input = "q"; // if someone wins, they're forced to quit
 }
 else
 {
 System.out.println(
 "Sorry, good guess, but not quite right.");
 }
 } // end else if
 } while (!input.equals("q"));
 System.out.println("Thanks for playing. Come again!");
 } // end main
} // end Lottery class

The Integer.parseInt method converts

type from String to int.

Figure 5.5b Lottery program—part B

05-M4402.indd 16405-M4402.indd 164 12/17/07 4:19:37 PM12/17/07 4:19:37 PM

Apago PDF Enhancer

5.5 Character Class

In the previous section, we mentioned the Character wrapper class, but we didn’t explain it. It’s time to

explain it. Often, you’ll need to write programs that manipulate individual characters in a string of text. For

example, you might need to read in a phone number and store just the digits, skipping the other characters

(dashes, spaces, etc.). To check for digits, use the Character class’s isDigit method. Figure 5.6 shows

some of the more popular methods in the Character class, including the isDigit method.

Most of Figure 5.6’s methods are straightforward, but the toUpperCase and toLowerCase methods

may need some clarifi cation. Since the two methods are so similar, we’ll clarify only one of the methods,

toUpperCase. If you call toUpperCase and pass in a lowercase letter, the method returns the upper-

case version of the lowercase letter. But what if you call toUpperCase and pass in an uppercase letter or a

 nonletter? The method returns the passed-in character, unchanged. And what if you pass in a char variable

to toUpperCase instead of a char constant? The method returns the uppercase version of the passed-in

char variable, but it does not change the passed-in variable’s value.

As evidenced by the static modifi ers in Figure 5.6, most of the Character methods are class

methods. Since they’re class methods, you call them by prefacing the method call with the wrapper class’s

name. Let’s look at an example. Suppose you’ve got a char variable named middleInitial and you’d

like to have its content be converted to an uppercase letter. Here’s a fi rst-cut attempt at changing middle-
Initial’s content to an uppercase letter:

Character.toUpperCase(middleInitial);

 5.5 Character Class 165

public static boolean isDigit(char ch)
Returns true if the specifi ed character is a numerical digit.

public static boolean isLetter(char ch)
Returns true if the specifi ed character is a letter of the alphabet.

public static boolean isUpperCase(char ch)
Returns true if the specifi ed character is an uppercase letter.

public static boolean isLowerCase(char ch)
Returns true if the specifi ed character is a lowercase letter.

public static boolean isLetterOrDigit(char ch)
Returns true if the specifi ed character is a letter or a digit.

public static boolean isWhitespace(char ch)
Returns true if the specifi ed character is any kind of whitespace (blank, tab, newline).

public static char toUpperCase(char ch)
Returns input character as an uppercase character.

public static char toLowerCase(char ch)
Returns input character as a lowercase character.

Figure 5.6 API headings and brief descriptions of some of the methods in the Character class

05-M4402.indd 16505-M4402.indd 165 12/17/07 4:19:37 PM12/17/07 4:19:37 PM

Apago PDF Enhancer

166 Chapter 5 Using Pre-Built Methods

/***
* IdentifierChecker.java
* Dean & Dean
*
* Check a user entry to see if it's a legal identifier.
***/

import java.util.Scanner;

public class IdentifierChecker
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String line; // user entry
 char ch;
 boolean legal = true; // Is entered line a legal identifier?

 System.out.println("This program checks the validity of a" +
 " proposed Java identifier.");
 System.out.print("Enter a proposed identifier: ");
 line = stdIn.nextLine();
 ch = line.charAt(0);
 if (!(Character.isLetter(ch) || ch == '$' || ch == '_'))
 {
 legal = false;
 }
 for (int i=1; i<line.length() && legal; i++)
 {
 ch = line.charAt(i);
 if (!(Character.isLetterOrDigit(ch) || ch == '$' || ch == '_'))
 {
 legal = false;
 }
 }
 if (legal)
 {
 System.out.println(
 "Congratulations, " + line + " is a legal Java identifier.");
 }
 else
 {
 System.out.println(
 "Sorry, " + line + " is not a legal Java identifier.");
 }
 } // end main
} // end class IdentifierChecker

Figure 5.7 Identifi erChecker program

Character

method calls

05-M4402.indd 16605-M4402.indd 166 12/17/07 4:19:38 PM12/17/07 4:19:38 PM

Apago PDF Enhancer

 5.6 String Methods 167

That statement compiles and runs, but it does not change middleInitial’s content. Here’s the proper way

to do it:

middleInitial = Character.toUpperCase(middleInitial);

The Identifi erChecker program in Figure 5.7 illustrates the character class in the context of a com-

plete program. It uses the Character class’s isLetter and isLetterOrDigit methods to check

whether the user entry is a legal identifi er.

5.6 String Methods

The String class is another one of the classes in the always-available java.lang package. In Chap-

ter 3 you saw several examples of useful methods associated with objects of the String class such as

the charAt method, the length method, the equals method, and the equalsIgnoreCase method.

In this section, we describe some additional String methods—the String methods shown in Figure 5.8.

These String methods do not have the static access modifi er, so they are not class methods, and you

cannot access them with the class name. They are instance methods and you must access them with a par-

ticular string instance. Or said another way, you must access them with a calling-object string.

Lexicographical Ordering of Strings

You know that numbers can be compared to determine which number is greater. Strings can also be com-

pared. When computers compare strings to determine which string is greater, they use lexicographical or-
dering. For the most part, lexicographical ordering is the same as dictionary order. The string “hyena” is

greater than the string “hedgehog” because hyena comes after hedgehog in the dictionary.

The String class’s compareTo method compares two strings to determine which is greater.

As explained in Figure 5.8, compareTo returns a positive number if the calling string is greater than

the argument string, a negative number if the calling string is less than the argument string, and zero if

the calling string and argument string are the same. The following code fragment illustrates what we’re

 talking about. It compares YouTube1 video titles and prints the results of the comparisons. If you run this

code fragment, don’t be surprised if your fi rst two output values are different from 1 and �14. According

to Sun’s specifi cation, the fi rst two output values can be any positive number and any negative number,

respectively.

String youTubeVideo = "Colbert Invades Cuba";
System.out.println(
 youTubeVideo.compareTo("Bad Day at Work") + " " +
 youTubeVideo.compareTo("Colbert Whitehouse Dinner") + " " +
 youTubeVideo.compareTo("Colbert Invades Cuba"));

Output:

1 -14 0

Checking for the Empty String

Previously, you learned that the empty string is a string that contains no characters, and it’s represented by

two quotes with nothing between them—"". Sometimes you’ll need to check a string variable to see whether

1 YouTube is a popular free video sharing Web site, acquired by Google in October, 2006, which lets users upload, view, and share
video clips.

05-M4402.indd 16705-M4402.indd 167 12/17/07 4:19:38 PM12/17/07 4:19:38 PM

Apago PDF Enhancer

168 Chapter 5 Using Pre-Built Methods

public String compareTo(String str)
Returns an integer that indicates the lexicographical ordering of the calling string when compared
to the argument string. If the calling string is “greater than” the argument string, a positive number
is returned. If the calling string is “less than” the argument string, a negative number is returned. If
the calling string equals the argument string, zero is returned.

public int indexOf(int ch)
Returns the position of the fi rst occurrence of the specifi ed character.

public int indexOf(int ch, int fromIndex)
Returns the position of the fi rst occurrence of the specifi ed character at or after fromIndex.

public int indexOf(String str)
Returns the start position of the fi rst occurrence of the specifi ed string.

public int indexOf(String str, int fromIndex)
Returns the start position of the fi rst occurrence of the specifi ed string at or after fromIndex.

public boolean isEmpty()
Returns true if the calling string is the empty string (""). Otherwise, returns false.

public String replaceAll(String target, String replacement)
Returns a new string with all occurrences of the calling string’s target replaced by
replacement.

public String replaceFirst(String target, String replacement)
Returns a new string with the fi rst occurrence of the calling string’s target replaced by
replacement.

public String substring(int beginIndex)
Returns the portion of the calling string from beginIndex to the end.

public String substring(int beginIndex, int afterEndIndex)
Returns the portion of the calling string from beginIndex to just before afterEndIndex.

public String toLowerCase()
Returns a new string with all characters in the calling string converted to lowercase.

public String toUpperCase()
Returns a new string with all characters in the calling string converted to uppercase.

public String trim()
Returns a new string with all whitespace removed from the start and end of the calling string.

Figure 5.8 API headings and brief descriptions of some of the methods in the String class

it contains the empty string. For example, when reading an input string from a user, you might want to check

for the empty string as part of input validation. The following code fragment illustrates:

if (userInput.equals(""))
...

05-M4402.indd 16805-M4402.indd 168 12/17/07 4:19:39 PM12/17/07 4:19:39 PM

Apago PDF Enhancer

Since checking for the empty string is such a common need, Sun provides a method to handle that need. The

isEmpty method returns true if the calling string contains the empty string and false otherwise. Fig-

ure 5.9’s program uses the isEmpty method as part of an input validation while loop. The while loop

forces the user to enter a non-empty name.

Substring Retrieval

Note the two substring methods in Figure 5.8. The one-parameter substring method returns a string

that is a subset of the calling-object string, starting at the beginIndex parameter’s position and extending

to the end of the calling-object string. The two-parameter substring method returns a string that is a

subset of the calling-object string. The returned substring starts at the beginIndex position and extends

 5.6 String Methods 169

Figure 5.9 StringMethodDemo program exercises various String class methods

/***
* StringMethodDemo.java
* Dean & Dean
*
* This program exercises the String class's isEmpty method.
***/

import java.util.Scanner;

public class StringMethodDemo
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String name;

 System.out.print("Enter your name: ");
 name = stdIn.nextLine();

 while (name.isEmpty())
 {
 System.out.print("Invalid entry. You must enter your name: ");
 name = stdIn.nextLine();
 }
 System.out.println("Hello, " + name + "!");
 } // end main
} // end StringMethodDemo

Sample session:

Enter your name:
Invalid entry. You must enter your name: Virginia Maikweki
Hello, Virginia Maikweki!

This checks for the empty string.

The user immediately presses

Enter here.

05-M4402.indd 16905-M4402.indd 169 12/17/07 4:19:40 PM12/17/07 4:19:40 PM

Apago PDF Enhancer

170 Chapter 5 Using Pre-Built Methods

to the afterEndIndex-1 position, where beginIndex and afterEndIndex are the substring
method’s two parameters.

The following code fragment processes a quote from Candide.2 In its candide.substring(8)
method call, candide is the calling object, and 8 is the beginIndex parameter value. As you might recall,

string indices start at 0. So the 8 refers to candide’s ninth character, which is ‘c’. Thus, the fi rst println
statement prints cultivate our garden. Note the code fragment’s candide. substring(3,17)
method call. The 3 and 17 refer to candide’s fourth and eighteenth characters, which are ‘m’ and a space.

Thus, the second println statement prints must cultivate.

String candide = "we must cultivate our garden";
System.out.println(candide.substring(8));
System.out.println(candide.substring(3,17));

Output:

cultivate our garden
must cultivate

If you want to test the above code fragment or any of the following String method code fragments,

use Figure 5.9’s program as a template. More specifi cally, replace Figure 5.9’s main method body with the

new code fragment. Then compile and run the resulting program.

Position Determination

Note the one-parameter indexOf methods in Figure 5.8. They return the position of the fi rst occurrence

of a given character or substring within the calling-object string. If the given character or substring does not

appear within the calling-object string, indexOf returns �1.

Note the two-parameter indexOf methods in Figure 5.8. They return the position of the fi rst occurrence

of a given character or substring within the calling-object string, starting the search at the position specifi ed

by indexOf’s second parameter. If the given character or substring is not found, indexOf returns �1.

It’s common to use one of the indexOf methods to locate a character or substring of interest and then

use one of the substring methods to extract it. For example, consider this code fragment:3

Here’s the beginning of the hamlet2 substring.

String hamlet = "To be, or not to be: that is the question;";
int index = hamlet.indexOf(':');
String hamlet2 = hamlet.substring(index + 1);
System.out.println(hamlet2);

Output:

 that is the question;

Notice that the fi rst character printed is a space.

2 Voltaire, Candide, translated by Lowell Bair, Bantam Books, 1959, fi nal sentence.
3 Shakespeare, Hamlet, Act III, Sc. 1.

05-M4402.indd 17005-M4402.indd 170 12/17/07 4:19:40 PM12/17/07 4:19:40 PM

Apago PDF Enhancer

Text Replacement

Note the replaceAll and replaceFirst methods in Figure 5.8. The replaceAll method searches

its calling-object string for target, replaceAll’s fi rst parameter. It returns a new string, in which all

occurrences of target are replaced with replacement, replaceAll’s second parameter. The

replaceFirst method works the same as replaceAll except that only the fi rst occurrence of the

searched-for target string is replaced. Here’s an example that illustrates both methods:4

String ladyMacBeth = "Out, damned spot! Out, I say!";
System.out.println(ladyMacBeth.replaceAll("Out", "Expunge"));
ladyMacBeth = ladyMacBeth.replaceFirst(", damned spot", "");
System.out.println(ladyMacBeth);

Output:

Expunge, damned spot! Expunge, I say!
Out! Out, I say!

Note how the second statement prints the Lady MacBeth quote with both occurrences of “Out” replaced

by “Expunge,” but it does not change the content of the ladyMacBeth string object. You can tell that

it doesn’t change the content of the ladyMacBeth string object because the next two statements gener-

ate Out! Out, I say!, where “Out” is used, not “Expunge.” The reason that the second statement’s

replace All method does not change content of the ladyMacBeth string object is that string objects are

immutable. Immutable means unchangeable. String methods such as replaceAll and replaceFirst
return a new string, not an updated version of the calling-object string. If you really want to change the

content of a string variable, you need to assign a new string object into it. That’s what happens in the third

statement where the JVM assigns the result of the replaceFirst method call into the ladyMacBeth

variable.

In the Lady MacBeth example, the replaceFirst method call deletes the “damned spot” by replacing

it with an empty string. Since there is only one occurrence of “damned spot,” replaceAll would yield the

same result as replaceFirst. But replaceFirst is slightly more effi cient and that’s why we use it here.

Whitespace Removal and Case Conversion

Note the trim, toLowerCase, and toUpperCase methods in Figure 5.8. The trim method removes all

whitespace from before and after a calling-object string. The toLowerCase method returns a string iden-

tical to the calling-object string except that all the characters are lowercase. The toUpperCase method re-

turns an uppercase version of the calling-object string. To see how these methods work, suppose we change

the previous Hamlet code to this:

String hamlet = "To be, or not to be: that is the question;";
int index = hamlet.indexOf(':');
String hamlet2 = hamlet.substring(index + 1);
System.out.println(hamlet2);
hamlet2 = hamlet2.trim();
hamlet2 = hamlet2.toUpperCase();
System.out.println(hamlet2);

 5.6 String Methods 171

Update the content of the ladyMacBeth string variable.

4 Shakespeare, MacBeth, Act V, Sc. I.

05-M4402.indd 17105-M4402.indd 171 12/17/07 4:19:41 PM12/17/07 4:19:41 PM

Apago PDF Enhancer

172 Chapter 5 Using Pre-Built Methods

Now the output looks like this:

Output:

 that is the question;
THAT IS THE QUESTION;

Note how the trim method strips the leading space from hamlet2’s string. Also note how the

to UpperCase method returns an all-uppercase version of hamlet2.

Insertion

To make an insertion, you must know where you want to make it. If you don’t already know the index of

where you want the insertion to start, you can fi nd it by using the indexOf method with a unique substring

argument. Then extract the substring up to that index, concatenate the desired insertion, and concatenate the

substring after that index. The following code fragment performs two insertions within a string. More specifi -

cally, the code fragment starts with a philosophy espoused by 17th century French mathematician and philos-

opher Renéé Descartes: “All nature will do as I wish it.” It then inserts two strings and transforms the message

into a starkly contrasting quote from Charles Darwin: “All nature is perverse & will not do as I wish it.” 5

String descartes = "All nature will do as I wish it.";
String darwin;
int index;
index = descartes.indexOf("will");
darwin = descartes.substring(0, index) +
 "is perverse & " +
 descartes.substring(index);
index = darwin.indexOf("do");
darwin = darwin.substring(0, index) +
 "not " +
 darwin.substring(index);
System.out.println(darwin);

Output:

All nature is perverse & will not do as I wish it.

5.7 Formatted Output with the printf Method

You’ve used the System.out.print and System.out.println methods for quite a while now. They

work fi ne most of the time, but there’s a third System.out method that you’ll want to use every now and

5Charles Darwin’s Letters, edited by Frederick Burkhardt, Cambridge (1996). Charles Darwin started college at the University of
Edinburgh in 1825, studying to be a medical doctor like his father. A medical career didn’t appeal to him, so he transferred to Cam-
bridge University, where he earned a B.A. in preparation for a career as a country parson. But what he really enjoyed was searching
for bugs in the family barn. Right after his graduation, and before he began his fi rst job as a country parson, family connections, a
good reference from a college professor, and a pleasant personality gave him the chance to travel around the world as the companion
of a brilliant sea captain named Robert FitzRoy (who later invented weather forecasting). This trip launched Darwin’s career as one
of the most infl uential scientists of the modern world.

05-M4402.indd 17205-M4402.indd 172 12/17/07 4:19:42 PM12/17/07 4:19:42 PM

Apago PDF Enhancer

then for formatted output. It’s the printf method, where the “f” stands for “formatted.” We describe the

printf method in this section.

Formatted Output

For most programs, the goal is to calculate something and then display the result. It’s important that the dis-

played result is understandable. If it’s not understandable, then no one will bother to use the program, even if

it calculates fl awlessly. One way to make your displayed results understandable is to format your output. By

that, we mean having data columns align properly, having fl oating-point numbers show the same number of

digits after the decimal point, and so on. Note the formatting in the budget report below. The left column is

left-aligned. The other columns are right aligned. The numbers show two digits at the right of the decimal

point. The numbers show commas between every third digit at the left of the decimal point. And fi nally, the

numbers show parentheses to indicate negativeness.

Account Actual Budget Remaining
------- ------ ------ ---------
Office Supplies 1,150.00 1,400.00 250.00
Photocopying 2,100.11 2,000.00 (100.11)

Total remaining: $149.89

The System.out.printf method is in charge of generating formatted output. The

printf method has lots of formatting features. We’ll keep things simple and explain only

a few of the more popular features. We begin our explanation of the printf method by

showing you how to generate the “Total remaining” line in the above budget report. Here’s

the code:

System.out.printf(
 "\nTotal remaining: $%.2f\n", remaining1 + remaining2);

The printf method’s fi rst argument is known as the format string. It contains text that prints as is, plus

format specifi ers that handle formatted printing. In the above example, “\nTotal remaining: $...\n” is the text

that prints as is. And %.2f is the format specifi er. Think of a format specifi er as a hole where you plug in a

data item. In the above example, remaining1 + remaining2 is the data item that gets plugged in. If

remaining1 holds 250 and remaining2 holds �100.11, the sum is 149.89 and 149.89 gets plugged into

the format specifi er hole. The format specifi er starts with % because all format specifi ers must start with %.

The format specifi er’s .2 causes two digits to be displayed after the decimal point. The format specifi er’s

f indicates that the data item is a floating-point number. The example shows only one format specifi er.

You can have as many format specifi ers as you like in a given format string. For each format specifi er, you

should have a corresponding data item/argument. Here’s an illustration of what we’re talking about:

System.out.printf("<text> % <text> % <text>", <item1>, <item2>);

format specifi er

 5.7 Formatted Output with the printf Method 173

Learn how to
use versatile
tools.

format string

format specifi er holes

05-M4402.indd 17305-M4402.indd 173 12/17/07 4:19:42 PM12/17/07 4:19:42 PM

Apago PDF Enhancer

174 Chapter 5 Using Pre-Built Methods

Format Specifi er Details

Format specifi ers are powerful little critters. We won’t try to describe all of their power, but we’ll provide

enough details to get you up and running. If you come across a formatting issue that you can’t resolve with

our limited coverage, look up printf on Sun’s Java API Web site and search for format string details. But

be prepared for lots of details. Sun provides a tremendous number of options with the printf method.

Here’s the syntax for a format specifi er:

%[fl ags][width][.precision]conversion-character

You’ve already seen the % symbol. It indicates the start of a format specifi er. The fl ags, width, precision,

and conversion character represent the different parts of a conversion specifi er. Each of them specifi es a

different formatting trait. We’ll cover them in right-to-left order. Thus, we’ll describe the conversion char-

acter fi rst. But before jumping into conversion character details, note the square brackets. They indicate that

something is optional. So the fl ags, width, and precision parts are optional. Only the % and the conversion

character are required.

Conversion Character

The conversion character tells the JVM the type of data that is to be printed. For example, it might tell the

JVM to print a string, or it might tell the JVM to print a fl oating-point number. Here is a partial list of con-

version characters:

s This displays a string.

d This displays a decimal integer (an int or a long).

f This displays a fl oating-point number (a float or a double) with a decimal point and at

least one digit to the left of the decimal point.

e This displays a fl oating-point number (float or double) in scientifi c notation.

In explaining each part of a format specifi er (conversion character, precision, width, and fl ags), we’ll

provide short examples that illustrate the syntax and semantics. After we’re done with all the explanations,

we’ll show a complete program example. Note this code fragment and its associated output:

System.out.printf("Planet: %s\n", "Neptune");
System.out.printf("Number of moons: %d\n", 13);
System.out.printf("Orbital period (in earth years): %f\n", 164.79);
System.out.printf(
 "Average distance from the sun (in km): %e\n", 4498252900.0);

Ouput:

Planet: Neptune
Number of moons: 13
Orbital period (in earth years): 164.790000
Average distance from the sun (in km): 4.498253e+09

Note that by default, the f and e conversion specifi ers generate six digits at the right of the decimal

point.

The f and e

conversion

specifi ers print six

digits by default.

05-M4402.indd 17405-M4402.indd 174 12/17/07 4:19:43 PM12/17/07 4:19:43 PM

Apago PDF Enhancer

Precision and Width

The precision part of a format specifi er works in conjunction with the f and e conversion characters; that is,

it works with fl oating-point data items. It specifi es the number of digits that are to be printed to the right of

the decimal point. We’ll refer to those digits as the fractional digits. If the data item has more fractional digits

than the precision’s value, then rounding occurs. If the data item has fewer fractional digits than the precision’s

value, then zeros are added at the right so the printed value has the specifi ed number of fractional digits.

The width part of a format specifi er specifi es the minimum number of characters that are to be printed.

If the data item contains more than the specifi ed number of characters, then all of the characters are printed.

If the data item contains fewer than the specifi ed number of characters, then spaces are added. By default,

output values are right aligned, so when spaces are added, they go on the left side.

Note this code fragment and its associated output:

Ouput

System.out.printf("Cows are %6s\n", "cool"); Cows are cool
System.out.printf("But dogs %2s\n", "rule"); But dogs rule
System.out.printf("PI = %7.4f\n", Math.PI); PI = 3.1416

In the third statement above, note the %7.4f specifi er. It’s easy to get fooled by the 7.4. It looks like

it might be saying “seven places to the left of the decimal point and four places to the right of the deci-

mal point,” but it’s actually saying “seven total spaces, with four places to the right of the decimal point.”

And don’t forget that the decimal point is counted as one of those seven total spaces. Math.PI’s value

is 3.141592653589793, and when it gets printed with four places to the right of the decimal point, it gets

rounded to 3.1416.

Flags

As a refresher, here’s the syntax for a format specifi er:

%[fl ags][width][.precision]conversion-character

We’ve described the conversion, precision, and width parts of a format specifi er. It’s now time to dis-

cuss fl ags. Flags allow you to add supplemental formatting features, one fl ag character for each formatting

feature. Here’s a partial list of fl ag characters:

- Display the printed value using left justifi cation.

0 If a numeric data item contains fewer characters than the width specifi er’s value, then pad the

printed value with leading zeros (i.e., display zeros at the left of the number).

, Display a numeric data item with locale-specifi c grouping separators. In the United States,

that means commas are inserted between every third digit at the left of the decimal point.

(Display a negative numeric data item using parentheses, rather than using a minus sign. Using

parentheses for negative numbers is a common practice in the fi eld of accounting.

Let’s see how format specifi ers work in the context of a complete program. See Figure 5.10’s BudgetReport

program. Note that we use the same format string for printing the column headers and the column under-

lines, and the format string is stored in a HEADING_FMT_STR named constant. If you use a format string

5.7 Formatted Output with the printf Method 175

7 characters

6 characters

05-M4402.indd 17505-M4402.indd 175 12/17/07 4:19:44 PM12/17/07 4:19:44 PM

Apago PDF Enhancer

176 Chapter 5 Using Pre-Built Methods

Figure 5.10 BudgetReport program and its ouput

/***
* BudgetReport.java
* Dean & Dean
*
* This program generates a budget report.
***/

public class BudgetReport
{
 public static void main(String[] args)
 {
 final String HEADING_FMT_STR = "%-25s%13s%13s%15s\n";
 final String DATA_FMT_STR = "%-25s%,13.2f%,13.2f%(,15.2f\n";
 double actual1 = 1149.999; // amount spent on 1st account
 double budget1 = 1400; // budgeted for 1st account
 double actual2 = 2100.111; // amount spent on 2nd account
 double budget2 = 2000; // budgeted for 2nd account
 double remaining1, remaining2; // unspent amounts

 System.out.printf(HEADING_FMT_STR,
 "Account", "Actual", "Budget", "Remaining");
 System.out.printf(HEADING_FMT_STR,
 "-------", "------", "------", "---------");

 remaining1 = budget1 - actual1 ;
 System.out.printf(DATA_FMT_STR,
 "Office Supplies", actual1, budget1, remaining1);
 remaining2 = budget2 - actual2;
 System.out.printf(DATA_FMT_STR,
 "Photocopying", actual2, budget2, remaining2);

 System.out.printf(
 "\nTotal remaining: $%(,.2f\n", remaining1 + remaining2);
 } // end main
} // end class BudgetReport

Output:

Account Actual Budget Remaining
------- ------ ------ ---------
Office Supplies 1,150.00 1,400.00 250.00
Photocopying 2,100.11 2,000.00 (100.11)

Total remaining: $149.89

left justifi cation parentheses for negatives,

comma for group separators

05-M4402.indd 17605-M4402.indd 176 12/17/07 4:19:45 PM12/17/07 4:19:45 PM

Apago PDF Enhancer

in more than one place, it’s a good idea to save the format string in a named constant and use the named con-

stant in the printf statements. By storing the format string in one common place (in a named constant),

you ensure consistency and you make it easier to update the format string in the future.

In the BudgetReport program, note the minus sign in the HEADING_FMT_STR and DATA_FMT_STR

format strings. That left justifi es the fi rst column’s data. Note the commas in the DATA_FMT_STR format

string. That causes locale-specifi c characters (commas in the United States) to appear between every third

digit at the left of the decimal point. Note the left parenthesis in the DATA_FMT_STR format string. That

causes negative numbers to use parentheses instead of a minus sign.

5.8 Problem Solving with Random Numbers (Optional)

This section will show you how to generate random variables that have probability distributions different

from the 0.0 to 1.0 uniform distribution assumed in a simple Math.random method call.

Using Math.random to Generate Random Numbers with
Other Probability Distributions

As indicated in Figure 5.2, in Section 5.3, when you need a random number, you can use the Math.random

method to generate one. Suppose you want a random number from a range that’s different from the range 0.0

to 1.0. As we did in the initialization of winningNumber in Figure 5.5, you can expand the range to any

maximum value by multiplying the random number generated by Math.random() by your desired maxi-

mum value. You can also offset the range by adding or subtracting a constant. For example, suppose you

want to pick a random number that’s uniformly distributed in the range between �5.0 and �15.0. Instead of

using just plain old Math.random(), use this:

(20.0 * Math.random()) - 5.0.

It’s possible to manipulate numbers produced by Math.random to get any kind of distribution you want.

For example, you can generate any of the distributions shown in Figure 5.11.

Now, let’s look at how to generate these fi ve types of random numbers from Math.random.

 1. The fi rst type (a continuous uniform distribution) is easy. To get a value for a random number, x, uni-

formly distributed in the interval between zero and unity (0.0 � x � 1.0), use a statement like this:

double r1 = Math.random();

 This fi rst type of random number is the basis of all other types of random numbers.

 2. For the second type (an offset and expanded continuous uniform distribution), you must have some

minimum and maximum values, for example:

double minReal = 1.07; // meters for shortest adult human
double maxReal = 2.28; // meters for tallest adult human

 Then you shift and expand the basic random number by using a statement like this:

double r2 = minReal + Math.random() * (maxReal - minReal);

 3. For the third type (a discrete uniform distribution), you create integer versions of the limits, for

example:

 5.8 Problem Solving with Random Numbers (Optional) 177

05-M4402.indd 17705-M4402.indd 177 12/17/07 4:19:45 PM12/17/07 4:19:45 PM

Apago PDF Enhancer

178 Chapter 5 Using Pre-Built Methods

Figure 5.11 Important types of random number distributions

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1. Random number for the default continuous uniform
distribution

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2. Random number for a scaled and offset continuous
uniform distribution

P
ro

b
a

b
ili

ty
P

ro
b

a
b

ili
ty

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8

3. Random number for a discrete uniform distribution

P
ro

b
a

b
ili

ty

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4. Random number for a discrete triangular distribution

P
ro

b
a

b
ili

ty

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5. Random number for a continuous exponential
distribution

P
ro

b
a

b
ili

ty

05-M4402.indd 17805-M4402.indd 178 12/17/07 4:19:46 PM12/17/07 4:19:46 PM

Apago PDF Enhancer

int min = 1; // fewest dots on one die
int max = 6; // most dots on one die

 Then you shift and expand the basic random number, sort of like you did for the second type:

double r3 = min + (int) (Math.random() * (max - min + 1));

 This time, you must remember that integer subtraction produces a distance that is one less than the

number of integers in the range (6 minus 1 equals 5, not 6), so you have to add 1 to the difference like

this (max - min + 1). The double returned by Math.random automatically promotes every-

thing to double, so the shifted and expanded range is from 1.0 to 6.99999. The random selection gives

equal weight to each of the six intervals above the integers of interest (1, 2, 3, 4, 5, and 6). The fi nal

(int) cast drops fractions.

 4. For the fourth type (a discrete triangular distribution), at fi rst you might think you could just use the

third type with min = 2 and max = 12, but that would be wrong. It would generate just as many 2’s and

12’s as 7’s, but the chance of getting a 7 is actually six time higher than getting either a 2 or a 12! The

most straightforward way to get the right answer is to call Math.random twice, and add the results:

int twoDice = r3 + r3;

 5. The fi fth type of distribution (a continuous exponential distribution) has been included because it’s used

in models of many important real-world phenomena, like:

Inter-arrival time of automobiles at an isolated traffi c light.

Time between infrequent telephone calls.

Time between radioactive emissions from an unstable atom.

Time to breakdown of a piece of machinery.

Time to failure of a semiconductor device.

 To generate a random variable with a continuous exponential distribution, use a statement like this:

double r5 = -Math.log(1.0 - Math.random()) * averageTimeBetweenEvents;
The logarithm of zero is �infi nity, but that never occurs, because Math.random never generates a number

as high as 1.0, so (1.0 - Math.random()) is never as low as zero.

Using the Random class

Although it is possible to get any kind of distribution from Math.random, it’s not always

easy. For example, the algorithm you need to convert Math.random’s uniform distribu-

tion to a Gaussian (bell-curve) distribution is rather convoluted. So it would be nice to have

some pre-built methods that immediately generate random numbers from this and other

distributions. The Random class in the java.util package provides help. Here are API headings for some

of the Random class methods:

public double nextDouble()
public int nextInt()
public int nextInt(int n)
public boolean nextBoolean()
public double nextGaussian()

�
�
�
�
�

 5.8 Problem Solving with Random Numbers (Optional) 179

Use the
resource that
fi ts best.

05-M4402.indd 17905-M4402.indd 179 12/17/07 4:19:46 PM12/17/07 4:19:46 PM

Apago PDF Enhancer

180 Chapter 5 Using Pre-Built Methods

The nextDouble method does essentially the same thing as Math.random does. This distribution

appears in the top graph in Figure 5.11. The zero-parameter nextInt method generates random integers

uniformly from the entire range of integers, that is, from �2147483648 to �2147483647, inclusive. The one-

parameter nextInt method generates random integers uniformly from zero to one less than the parameter

value. This distribution is almost like what appears in Figure 5.11’s third graph for the special case of n � 7,

except zero is allowed also. The nextBoolean method generates random values of true or false. The

nextGaussian method generates a double value from a distribution having a mean value of 0.0 and a

standard deviation of 1.0.

Notice that the Random class methods do not have the static modifi er, so they are not class meth-

ods, and you cannot use the Random class name to access these methods. You must create an object fi rst,

and then use that object’s name to access these methods. To create an object from any class other than the

String class, you need to call a constructor. A constructor is a special type of method that’s in charge of

creating and initializing objects. To call a constructor, specify the Java keyword new, the name of the con-

structor, and then an argument list surrounded by parentheses. For example, see the Random constructor

call in Figure 5.12. Note that no arguments are passed to the constructor, so the constructor call’s parentheses

are empty. Also note how the Random constructor call is assigned to a reference variable named random.

The random object then generates two random numbers by calling the nextInt and nextGausssian

methods. Due to the Integer.MAX _VALUE argument, nextInt generates a random number between 0

and one less than the maximum integer value. The nextGaussian method generates a random number

drawn from a Gaussian distribution having a mean of 5.0 and a standard deviation of 0.8.

Using a Fixed Seed to Freeze a Random Number Sequence

You can call the Random constructor with no arguments, as shown in Figure 5.12, and you can also call it

with one argument, where the argument is a seed. A seed provides a starting point for the internal state of

the random number generator. Suppose you change the body of the main method in Figure 5.12 to this:

Random random = new Random(123);

System.out.println(5.0 + 0.8 * random.nextGaussian());
System.out.println(5.0 + 0.8 * random.nextGaussian());
System.out.println(5.0 + 0.8 * random.nextGaussian());

Now, if you run the program you’ll get this:

Sample session:

3.8495605526872745
5.507356060142144
5.1808496102657315

If you run the program again, and again, and again, you’ll get exactly the same three “random” num-

bers every time! The 123 seed establishes a starting point, and this determines the “random” sequence pre-

cisely. If you pick a different seed, you’ll get a different sequence, but that sequence will always be the same

as long as you stick with that particular seed. Now you know why the methods in the Random class are not

class methods. They need an object to call the methods because the methods need to know some informa-

tion the object contains—the seed and the current position in the random-number sequence.

05-M4402.indd 18005-M4402.indd 180 12/17/07 4:19:47 PM12/17/07 4:19:47 PM

Apago PDF Enhancer

You can use the deterministic nature of the seeded random-number generator to

make your life a lot easier when you are developing and debugging programs that use

random numbers.

If you do not use a seeded random number generator, whenever a program gener-

ates a random number, what comes out will be a surprise, because it’s random! This unpredictability can be

quite frustrating when you are trying to develop and test a program that uses random numbers, because every

test run produces different numerical values. During development and testing, what you’d like is a fi xed set

of “random” numbers, which turn out to be exactly the same every time you rerun a program you’re testing.

To establish a fi xed random-number test set, you could write a simple program that prints a particular

set of random numbers. You could copy those particular numbers into assignment statements in your pro-

gram, that is, hard code them in your program for development and testing. Then, after your program has

been tested and verifi ed, you could replace each hard-coded “random number” by a random-number genera-

tor that produces a different number every time it’s invoked.

But the Random class provides a more elegant way to develop programs that have random variables.

During development, use its one-parameter constructor with a fi xed seed to produce exactly the same se-

quence of randomly distributed numbers every time you run the program. Then, when all your bugs are

fi xed, simply delete the seed number from the Random constructor in the initialization statement at the be-

ginning of your code, and—voila—your random-number generator produces completely different numbers

from that time forward.

Figure 5.12 RandomTest program uses Random class methods to generate random numbers from different

distributions

/**
* RandomTest.java
* Dean & Dean
*
* This program demonstrates methods of the Random class.
**/

import java.util.Random;

public class RandomTest
{
 public static void main(String[] args)
 {
 Random random = new Random();

 System.out.println(random.nextInt(Integer.MAX_VALUE));
 System.out.println(5.0 + 0.8 * random.nextGaussian());
 } // end main
} // end class RandomTest

Sample session:

1842579217
4.242694469045554

Use new to invoke an explicit

object constructor.

5.8 Problem Solving with Random Numbers (Optional) 181

When testing,
fi x your random
numbers.

05-M4402.indd 18105-M4402.indd 181 12/17/07 4:19:47 PM12/17/07 4:19:47 PM

Apago PDF Enhancer

182 Chapter 5 Using Pre-Built Methods

5.9 GUI Track: Drawing Images, Lines, Rectangles,
and Ovals in Java Applets (Optional)

This section shows you how to display images, lines, rectangles, and ovals in a GUI window. The simplest

way to do this is to call methods in Java’s Graphics class from within a Java applet. As you might recall

from Chapter 1, an applet is a Java program that’s embedded in a Web page. You execute a Java applet by

calling it from the Web page’s HTML code (HTML is the base language for most Web pages). You can run

the Web page by loading it within an Internet browser.

Image Files

Java can handle many kinds of images. Some images are stylized icons. Others are digitized photographs.

For example, suppose you have a digitized photograph of a family member, like author John’s nephew, Max,

shown in Figure 5.13.

Suppose this photo is stored in a fi le named hurricanes.jpg. “Hurricanes” is the name of Max’s

soccer team. The extension, “.jpg,” is short for JPEG, which stands for Joint Photographic Experts Group.

Files with this extension should conform to JPEG standards for digital compression of photographic images.

Exact representations of simple drawn images are usually stored in fi les with a “.gif” extension. GIF stands

for Graphics Interchange Format. For simplicity we’ll assume that the image fi le is in the current direc-

tory—the same directory that holds the Java program that will display it.

Figure 5.13 A typical image stored in a .jpg fi le

05-M4402.indd 18205-M4402.indd 182 12/17/07 4:19:48 PM12/17/07 4:19:48 PM

Apago PDF Enhancer

Figure 5.14 ImageInfo program determines the width and height of an image in an image fi le

/***
* ImageInfo.java
* Dean & Dean
*
* This supplies width and height of an image.
***/

import java.util.Scanner;
import javax.swing.ImageIcon;

public class ImageInfo
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 ImageIcon icon;

 System.out.print("Enter image filename: ");
 icon = new ImageIcon(stdIn.nextLine());
 System.out.println("image width = " + icon.getIconWidth());
 System.out.println("image height = " + icon.getIconHeight());
 }
} // end ImageInfo

Sample session:

Enter image filename: hurricanes.jpg
image width = 640
image height = 427

 5.9 GUI Track: Drawing Images, Lines, Rectangles, and Ovals in Java Applets (Optional) 183

Before you can use a picture in a program, you need to know how big it is—its width and height in

 numbers of pixels. Pixels are the tiny dots of color a computer uses to display something on its screen. Fig-

ure 5.14 contains a program you can use to determine the pixel width and pixel height of the contents of an

image fi le. The program imports Java’s Scanner class to retrieve a keyboard entry of the fi lename, and it

imports Java’s ImageIcon class to read the image fi le and determine image properties. After prompting

the user for a fi lename, the program uses that name to create an object we call icon, which manages in-

formation transfer from the image fi le—like our stdIn object manages information transfer from the key-

board. The getWidth and getHeight methods return the image’s width and height in pixels. This gives

the default size of the area required to display the image on a computer screen.

Graphics Class Methods

The Java API class called Graphics contains several methods for displaying images and geometric shapes.

Figure 5.15 presents API headings and descriptions for some of these methods. Notice that these headings

do not have static modifi ers. This means that you must use an object of the Graphics class to call all

of these methods, just like you must use a String object to call most of the methods of the String class.

This Graphics object contains a reference to the window on which things are drawn, and it contains other

05-M4402.indd 18305-M4402.indd 183 12/17/07 4:19:48 PM12/17/07 4:19:48 PM

Apago PDF Enhancer

184 Chapter 5 Using Pre-Built Methods

Figure 5.15 Selected methods from the Java API Graphics class

public boolean drawImage(Image img,
 int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver observer)
 Selects whatever is between sx1 and sx2 pixels to the right of the left edge of the source image

and between sy1 and sy2 pixels below the top of the source image. Scales this selection as re-
quired to fi t between dx1 and dx2 pixels to the right of the left edge of the destination window
and between dy1 and dy2 below the top of the destination window.

public void setColor(Color c)
 Establishes a specifi ed painting color.

public void drawRect(int x, int y, int width, int height)
 Draws the outline of a rectangle whose upper left corner is x pixels to the right of the left side of

the window and y pixels below the top of the window. Uses most recently set color.

public void drawLine(int x1, int y1, int x2, int y2)
 Draws a straight line from a point x1 pixels to the right of the left side of the window and y1

pixels below the top of the window to a point x2 pixels to the right of the left side of the window
and y2 pixels below the top of the window. Uses most recently set color.

public void fillOval(int x, int y, int width, int height)
 Fills an ellipse bounded by the specifi ed rectangle with the most recently set color.

public void drawString(String text, int x, int y)
 Prints the specifi ed text on a line that starts x pixels to the right of the left side of the window

and y pixels down from the top of the window. Uses the most recently set color.

necessary information like current position of that window on the computer screen, current color, and cur-

rent font type.

Most of Figure 5.15’s methods have pairs of parameters (like int x, int y), which indicate x and

y coordinates in an image or window. These coordinates are always measured in pixels. The x coordinate is

the number of pixels in from the left side of the image or window. The y coordinate is the number of pixels

down from the top of the image or window. The x coordinate is like what you probably expect, but the y

coordinate might seem funny, because normally we think of y increasing upward. However, in a computer

display, y increases downward, because when a computer paints something on a screen, it paints the top line

fi rst, the line below second, and so on, in a top-to-bottom sequence.

In a method heading, x and y coordinate parameter names sometimes employ numerical suffi xes to

distinguish one point from another. In the drawImage method’s parameters, there is also a character prefi x

before each coordinate identifi er. The d prefi x stands for “destination,” which means position in the display

window. The s prefi x stands for “source,” which means position in the original image.

Sometimes numbers in a sequence of parameters are not x and y coordinates. Instead, they are width

and height, which are coordinate differences. This is the case for the drawRect and fillOval methods.

It’s easy to forget which technique a particular method uses to specify width or height. Does it specify posi-

tions of upper left and lower right corners, or does it specify position of upper left corner and then width and

height? Be careful. This is a common source of GUI programming errors.

05-M4402.indd 18405-M4402.indd 184 12/17/07 4:19:48 PM12/17/07 4:19:48 PM

Apago PDF Enhancer

The drawImage method copies a rectangular portion of the source image and pastes an expanded or

contracted version of it into a specifi ed rectangle in the destination window. The fi rst parameter is a refer-

ence to the source image. The second and third parameters are the destination (display window) coordinates

of the top left corner of the copied part of the image. The fourth and fi fth parameters are the destination

coordinates of the bottom right corner of the copied part of the image. The sixth and seventh parameters

are the coordinates of the top left corner of the part of the source image to be copied. The eighth and ninth

parameters are the coordinates of the bottom right corner of the part of the source image to be copied. The

last parameter enables the method to send out current-status information.

The setColor method establishes a color to be used in subsequent operations that draw lines or geo-

metric fi gures or write text. You pass this method an argument like Color.BLUE, which identifi es one of

several named constants defi ned in the Java API Color class. You can fi nd the names of the other named

colors in the documentation for the Java API Color class. Most of those names are pretty obvious, so as a

practical matter, you can just guess and see what happens.

The drawRect method draws the border of a rectangle using the most recently set color. The fi rst and

second parameters are the coordinates of the top left corner of the rectangle in the display window. The

third and fourth parameters are the width and height of the rectangle.

The drawLine method draws a straight line between two specifi ed points using the most recently set

color. The fi rst and second parameters are the coordinates of the starting point. The third and fourth param-

eters are the coordinates of the ending point.

The fillOval method draws an ellipse in the specifi ed rectangle and fi lls it with the most recently set

color. The parameters are like those for drawRect: The fi rst and second parameters are the coordinates of

the top left corner of the enclosing rectangle in the display window. The third and fourth parameters are the

width and height of the enclosing rectangle, and the width and height of the oval itself.

The drawString method prints text at the specifi ed position using the most recently set color. The

fi rst parameter is the string to be printed. The second and third parameters are the coordinates of the upper

left corner of the string.

Using Graphics Methods in a Java Applet

Figure 5.16 provides an example of how you can use the graphics methods in Figure 5.15 to manipulate a

photographic image and add your own lines, shapes, and text to it. The overall window in Figure 5.16 is 640

pixels wide and 640 pixels high.

Figure 5.17 shows the Java code needed to render the display in Figure 5.16. The code is all in the body

of a method called paint. The paint method’s parameter g is used as a prefi x on each of the method calls

in paint. It refers to the Graphics object that manages the painting operation. Within paint, the fi rst

statement retrieves a reference to the source image. The next statement’s drawImage method employs the

source image reference to access the source image.

The drawImage method shrinks the hurricanes.jpg image in Figure 5.13 to two thirds of its

original size and pastes it into the upper left corner of the display window. The setColor method sets the

current color to blue. The drawRect method draws a square around an area of interest. Then four calls

to the drawLine method draw four straight lines to the corners of where a three-times enlargement of

the area of interest will go. Another call to the drawImage method pastes an enlarged version of the area

of interest at this location. Another call to drawRect puts a rectangle around this enlargement. Then the

fillOval method paints a blue oval in the enlargement, and fi nally the drawString method prints the

name “MAX” in the center of this blue oval. Notice how each subsequent operation over-writes or covers all

previous operations.

 5.9 GUI Track: Drawing Images, Lines, Rectangles, and Ovals in Java Applets (Optional) 185

05-M4402.indd 18505-M4402.indd 185 12/17/07 4:19:49 PM12/17/07 4:19:49 PM

Apago PDF Enhancer

186 Chapter 5 Using Pre-Built Methods

The code in Figure 5.17 is very skimpy. For example, it does not include a defi nition of the getImage

method. So how can it call that method? As you’ll discover in Chapter 12, Java allows any class you defi ne

to borrow the methods of another class that’s already been defi ned. In particular, the GraphicsDemo class

defi ned in Figure 5.17 borrows the getImage method from the already-defi ned Java API Applet class.

It does this by appending the clause extends Applet to its class heading. Of course, the compiler must

know where to fi nd the Applet class, so the program must import it. It also imports the java.awt

package to provide access to the Graphics, Image, and Color classes used by statements in the paint

method.

Figure 5.16 Output produced by program in Figure 5.17

05-M4402.indd 18605-M4402.indd 186 12/17/07 4:19:49 PM12/17/07 4:19:49 PM

Apago PDF Enhancer

Figure 5.17 GraphicsDemo Java applet that illustrates graphics methods listed in Figure 5.15

This applet produces the output shown in Figure 5.16.

/***
* GraphicsDemo.java
* Dean & Dean
*
* This defines a Java applet that displays an image and graphics.
***/

import java.awt.*; // for Graphics, Image, and Color classes
import java.applet.Applet;

public class GraphicsDemo extends Applet
{
 public void paint (Graphics g)
 {
 Image image =
 this.getImage(getDocumentBase(),"hurricanes.jpg");

 // display smaller complete image in upper left corner of window
 g.drawImage(image, 0, 0, 427, 284, // destination topL, botR
 0, 0, 640, 427, this); // source topL, botR

 // establish color of all lines to be drawn
 g.setColor(Color.BLUE);

 // draw rectangle around region to be expanded
 g.drawRect(200, 60, 120, 120); // topL, width & height

 // draw lines between corners of rectangles
 g.drawLine(200, 60, 240, 240); // upper left
 g.drawLine(320, 60, 600, 240); // upper right
 g.drawLine(200, 180, 240, 600); // lower left
 g.drawLine(320, 180, 600, 600); // lower right

 // display expanded part of original image
 g.drawImage(image, 240, 240, 600, 600, // destination topL, botR
 300, 90, 480, 270, this); // source topL, botR

 // draw rectangle around expanded part of image
 g.drawRect(240, 240, 360, 360); // topL, width & height

 // create BLUE colored oval and write name on it
 g.fillOval(520, 380, 45, 30); // topL, width & height
 g.setColor(Color.WHITE); // change color for text
 g.drawString("MAX", 530, 400); // string & start position
 } // end paint
} // end GraphicsDemo class

5.9 GUI Track: Drawing Images, Lines, Rectangles, and Ovals in Java Applets (Optional) 187

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ The extends Applet appended to the

class heading allows this class to “borrow”

the getImage method from the already-

defi ned Java API Applet class.

05-M4402.indd 18705-M4402.indd 187 12/17/07 4:19:50 PM12/17/07 4:19:50 PM

Apago PDF Enhancer

188 Chapter 5 Using Pre-Built Methods

Notice that the getImage method call has the word this as a prefi x, and the word this also ap-

pears in the last argument in the two calls to the drawImage method. The next chapter will explain that

the special Java term this refers to whatever object happened to call the currently executing method. In

our GraphicsDemo program, this refers to the object that calls the paint method, and that object is an

instance of the GraphicsDemo class defi ned by the code in Figure 5.17. But where is the code that creates

a GraphicsDemo object, where is the code that retrieves a reference to the associated Graphics object,

and where is the code that calls the paint method? It’s in a separate fi le. . . .

Applet Execution

Did you notice that there is no main method in Figure 5.17? A Java applet is different from a Java applica-

tion. Because a Java applet does not have a main method, it cannot be executed in the normal manner. Typi-

cally, it’s embedded in another program, such that its code executes when that other program calls it. The

primary purpose of a Java applet is to liven up a Web page. So we typically call Java applets from HTML

(HyperText Markup Language) programs that defi ne Web pages. Figure 5.18 contains a minimal HTML

program that calls the GraphicsDemo applet defi ned in Figure 5.17.

Notice that the part of this HTML code that’s specifi c to our particular applet is all in the fi fth line. This

identifi es the compiled version of the applet, and it specifi es the pixel width and pixel height of the window

that will hold whatever the applet will display. You can write this HTML code with any primitive text edi-

tor, like Microsoft notepad or UNIX vi. Then save it in the same directory as the code that has the compiled

version of the applet it drives. For example, in the directory that contains the GraphicsDemo.class fi le.

When you save it, give it a name which has the html extension, like graphicsDemo.html.

You have three alternate ways to run the HTML fi le (and its associated Java applet):

 1. Open a browser like Microsoft’s Internet Explorer, navigate to the directory that contains the HTML

fi le, and double click on the HTML fi lename.

 2. Open a Command Prompt Window, navigate to the directory that contains the HTML fi le, and enter:

appletviewer graphicsDemo.html
 3. Select “Run a Java Applet” in your local IDE (Integrated Development Environment), and select the

desired HTML fi lename.

Figure 5.18 Code for an HTML fi le that runs the GraphicsDemo code in Figure 5.17

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <applet code="GraphicsDemo.class" width="640" height="640">
 </applet>
 </body>
</html>

size of display window

name of fi le containing compiled Java applet code

05-M4402.indd 18805-M4402.indd 188 12/17/07 4:19:50 PM12/17/07 4:19:50 PM

Apago PDF Enhancer

Summary

Sun’s Java documentation identifi es the public interface of all Java API software. It also provides a brief

description of what it does and how to use it. The java.lang package is always available.

The Math class provides methods that enable you to compute powers and roots, maximums or mini-

mums, angle conversions, and many trigonometric functions. The random function generates a ran-

dom number whose distribution is uniform in the range 0.0 to 0.9 repeating. This class also provides

named constant values for PI and E.

Numerical wrapper classes like Integer, Long, Float and Double contain parsing methods like

parseInt that enable you to convert String representations of numbers into numerical format.

MIN_VALUE and MAX_VALUE named constants give maximum and minimum allowable values for

the various numerical data types.

The Character class provides methods that tell you whether a character is whitespace, a digit, or let-

ter, and if it’s a letter whether it’s lowercase or uppercase. Other methods allow you to change case.

The String class’s indexOf method helps you fi nd the position of a particular character in a

string of text. The substring method allows you to extract any part of a given string of text. The

replace All and replaceFirst methods make substitutions within a string of text. You can make

case conversions with the toLowerCase and toUpperCase methods, and you can use the trim

method to remove whitespace from either end of a string of text.

The fi rst argument in the System.out.printf method is a format string which enables you to use a

special code to specify the output format of text and numbers. For example, to display a double num-

ber called price as dollars and cents with commas between groups of three digits and a zero to the left

of the decimal for values less than $1.00, you would write:

System.out.printf("$%,04.2f\n", price);
Use the Random class in the java.util package to get various random number distributions or ob-

tain exactly the same list of random numbers every time you run a particular program.

Use methods in Java API’s Graphics class to display photographic images, geometric fi gures, and

text in graphics windows.

To execute a Java applet, create an HTML fi le that specifi es the Java applet, and load the HTML fi le

within a Web browser.

Review Questions

§5.3 Math Class

 1. Given these declarations:

 double diameter = 3.0;
 double perimeter;

 Provide a statement that assigns the length of a circle’s perimeter to the perimeter variable. Use the
diameter variable.

 2. What is the name of the class that contains the abs, min, and round methods?
 a) Arithmetic
 b) Math
 c) Number

•

•

•

•

•

•

•

•

•

 Summary 189

AU: We usually avoid having
1 line of text under a head.

—Comp

05-M4402.indd 18905-M4402.indd 189 12/17/07 4:19:51 PM12/17/07 4:19:51 PM

Apago PDF Enhancer

190 Chapter 5 Using Pre-Built Methods

§5.4 Wrapper Classes for Primitive Types

 3. Provide a statement that assigns positive infi nity into a double variable named num.
 4. Provide a statement that converts a string variable named s to a long and assigns the result to a long

variable named num.
 5. Provide a statement that converts an int variable named num to a string and assigns the result to a

String variable named numStr. Use a wrapper class method.

§5.5 Character Class

 6. What does the following code fragment print?

 System.out.println(Character.isDigit('#'));
 System.out.println(Character.isWhitespace('\t'));
 System.out.println(Character.toLowerCase('B'));

§5.6 String Methods

 7. Given this declaration:6

 String snyder = "Stick together.\nLearn the flowers.\nGo light.";

 Write a Java statement that fi nds the index of the letter ‘G’ and prints everything in snyder from that point
on. In other words, it prints Go light.

§5.7 Formatted Output with the printf Method

 8. Write a format string that handles the display of three data items in three columns. The fi rst column should
be 20 spaces wide, and it should print a left-aligned string. The second column should be 10 spaces wide,
and it should print a right-aligned integer. The third column should be 16 spaces wide, and it should print
a right-aligned fl oating-point number in scientifi c format with 6 decimal places. Your format string should
cause the screen’s cursor to move to the next line after printing the third data item.

 9. Provide a format specifi er that handles the display of a fl oating-point data item. It should print a rounded
version of the data item with no decimal places. It should insert grouping separators, and it should use
parentheses if the number is negative.

§5.8 Problem Solving with Random Numbers (Optional)

 10. Write a Java statement that prints a random number for the total number of dots on a roll of a pair of dice.
 11. Write a program that prints fi ve random boolean values with the seed, 123L. Then display those values.

Exercises

 1. [after §5.3] Write a statement that computes and prints the cube root of a double variable named number.
[Hint: look for an appropriate method in Sun’s documentation of the Math class.]

 2. [after §5.3] In probability calculations, we frequently need to compute the value of the factorial of some
number n. The factorial of a number n (designated n!) is given by the formula,
 n! ← n * (n-1) * (n-2) * ... * 3 * 2 * 1.

 When n is a very large number, this is a time-consuming calculation. Fortunately there is a handy formula,
called Stirling’s Formula, which gives a very good approximation to n! whenever n is large. Stirling’s
formula says:
 n! ≈ (1 + 1/(12n -1)) * sqrt(2nπ) * (n/E)n

6 Gary Snyder, “For the Children” in Turtle Island, New Directions (1974).

05-M4402.indd 19005-M4402.indd 190 12/17/07 4:19:51 PM12/17/07 4:19:51 PM

Apago PDF Enhancer

 The symbol π is the ratio of a circle’s perimeter to its diameter, and the symbol E is the base of natural
logarithms. The actual value of n! is always slightly smaller than the value given by this formula. For this
exercise, write a Java code fragment that implements Stirling’s formula.

 3. [after §5.3] Write a main method that asks the user for an angle, θ, in degrees, and prints out the values of
sin(θ), cos(θ), and tan(θ).

 Sample session:

Enter an angle in degrees: 30
sin(deg) = 0.49999999999999994
cos(deg) = 0.8660254037844387
tan(deg) = 0.5773502691896257

 4. [after §5.3] Provide a statement that prints the length of the hypotenuse of a right triangle whose base is
given by the variable base, and whose height is given by the variable height. In your statement, you must
use the Math class’s hypot method. To learn about the hypot method, see Sun’s Java API Web site.

 5. [after §5.3] Given the base-e log, you can always fi nd the log to any other base, with the formula: logbase(x)
� loge(x) / loge(base). For example, a computer scientist might be interested in how many bits are needed to
express a given positive integer x in binary. In that case, the total number of bits required is log2(x), rounded
up to the next higher integer. Write a Java statement that (1) calculates the number of bits required to store
variable x’s value and (2) assigns that calculated value into an int variable named bits.

 6. [after §5.6] In the following program skeleton, replace <Insert code here.> with your own code. Hint: Use
the variables that are already declared for you (songs, searchText, foundIndex, and count). The
resulting program should prompt the user for a search string and then display the number of occurrences of
the search string in a given list of songs. Study the sample session.

import java.util.Scanner;

public class CountSubstringOccurrences
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String songs =
 "1. Green Day - American Idiot\n" +
 "2. Jesus Jones - Right Here, Right Now\n" +
 "3. Indigo Girls - Closer to Fine\n" +
 "4. Peter Tosh - Equal Rights\n";

 String searchText; // text that is searched for
 int foundIndex; // position of where text is found
 int count = 0; // number of occurrences of search text

 System.out.print("Enter search text: ");
 searchText = stdIn.nextLine();

 <Insert code here.>

 System.out.println("Number of occurrences of \"" +
 searchText + "\": " + count);
 } // end main
} // end class CountSubstringOccurrences

 Exercises 191

05-M4402.indd 19105-M4402.indd 191 12/17/07 4:19:52 PM12/17/07 4:19:52 PM

Apago PDF Enhancer

192 Chapter 5 Using Pre-Built Methods

 Sample session:

Enter search text: Right
Number of occurrences of "Right": 3

 7. [after §5.6] In the following program skeleton, replace <Insert code here.> with your own code. Hint: Use
the variables that are already declared for you (songs, songNum, songIndex, eolIndex, and song).
The resulting program should prompt the user for a song number and then extract the song number plus the
rest of that string’s line from a given list of songs. Study the sample session. You may assume that the user
enters a valid song number (no need for input validation).

import java.util.Scanner;

public class ExtractLine
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String songs =
 "1. Bow Wow - Fresh Azimiz\n" +
 "2. Weezer - Beverly Hills\n" +
 "3. Dave Matthews Band - Crash Into Me\n" +
 "4. Sheryl Crow - Leaving Las Vegas\n";

 String songNum; // song number that is searched for
 int songIndex; // position of where song number is found
 int eolIndex; // position of end of line character
 String song; // the specified line

 System.out.print("Enter song number: ");
 songNum = stdIn.nextLine();

 <Insert code here.>

 System.out.println(song);
 } // end main
} // end class ExtractLine

 Sample session:

Enter song number: 3
3. Dave Matthews Band - Crash Into Me

 8. [after §5.7] Given the below program skeleton. Replace the four <add code here> items so that the program
produces the below output. Try to mimic the output’s format precisely, but it’s OK if your column widths
vary slightly from the shown column widths.

public class CarInventoryReport
{
 public static void main(String[] args)
 {
 final String HEADING_FMT_STR = <add code here>;
 final String DATA_FMT_STR = <add code here>;
 String item1 = "Mazda RX-8";

05-M4402.indd 19205-M4402.indd 192 12/17/07 4:19:53 PM12/17/07 4:19:53 PM

Apago PDF Enhancer

 int qty1 = 10;
 double price1 = 27999.99;
 String item2 = "MINI Cooper";
 int qty2 = 100;
 double price2 = 23000.25;

 System.out.printf(HEADING_FMT_STR,
 "Item", "Quantity", "Price", "Value");
 System.out.printf(HEADING_FMT_STR,
 "-----", "-------", "------", "------");
 System.out.printf(DATA_FMT_STR, <add code here>);
 System.out.printf(DATA_FMT_STR, <add code here>);
 } // end main
} // end class CarInventoryReport

 Output:

Item Quantity Price Value
----- --------- ------ ------
Mazda RX-8 10 28,000 280,000
MINI Cooper 100 23,000 2,300,025

 9. [after §5.8] Provide a statement that uses Math.Random to generate the total number of dots on a rolled
pair of dice.

Review Question Solutions

 1. perimeter = Math.PI * diameter;

 2. The class that contains the abs, min, and round methods is: b) Math

 3. num = Double.POSITIVE_INFINITY;

 4. num = Long.parseLong(s);

 5. numStr = Integer.toString(num);

 6. Here is the code fragment’s output:

false
true
b

 7. System.out.println(snyder.substring(snyder.indexOf('G')));

 8. "%-20s%10d%16.6e\n"
 or
 "%-20s%10d%16e\n"
 (It’s OK to omit the .6 because the e conversion specifi er prints 6 decimal places by default.)

 9. "%(,.0f"
 or
 "%,(.0f"
 (The order of fl ag specifi er characters is irrelevant.)

 Review Question Solutions 193

05-M4402.indd 19305-M4402.indd 193 12/17/07 4:19:53 PM12/17/07 4:19:53 PM

Apago PDF Enhancer

194 Chapter 5 Using Pre-Built Methods

 10. Statement that prints the total number of dots on a thrown pair of dice:

 System.out.println(2 + (int) (6 * (Math.random())) +
 (int) (6 * (Math.random())));

 11. Program that prints fi ve random boolean values with seed 123L:

import java.util.Random;

public class RandomBoolean
{
 public static void main(String[] args)
 {
 Random random = new Random(123L);

 for (int i=0; i<5; i++)
 {
 System.out.println(random.nextBoolean());
 }
 } // end main
} // end RandomBoolean

The values are:
true
false
true
false
false

05-M4402.indd 19405-M4402.indd 194 12/17/07 4:19:53 PM12/17/07 4:19:53 PM

Apago PDF Enhancer

0.0 Last A-Head 195

C H A P T E R

 195

Object-Oriented Programming

Objectives

Learn what an object is and how it relates to a class.

Learn how to encapsulate and access data inside an object.

Learn how to partition your programs into “driver” and “driven” classes, to create an object of the

driven class, and to give the driver a reference to that object.

Learn the differences between an object’s data and data that is local to a method, and learn how to

distinguish between those pieces of data when both have the same name.

Understand implicit initialization (default values) of various kinds of variables.

Learn how to trace an object-oriented program.

Learn how to use a UML class diagram.

Learn how to make a method return a suitable value.

Learn how values are passed to methods.

Write methods that get, set, and test the values of an object’s data.

Optionally learn how to improve the speed and accuracy of a simulation.

Outline

 6.1 Introduction

 6.2 Object-Oriented Programming Overview

 6.3 First OOP Class

 6.4 Driver Class

 6.5 Calling Object, this Reference

 6.6 Instance Variables

 6.7 Tracing an OOP Program

 6.8 UML Class Diagrams

 6.9 Local Variables

 6.10 The return Statement

 6.11 Argument Passing

 6.12 Specialized Methods—Accessors, Mutators, Boolean Methods

 6.13 Problem Solving with Simulation (Optional)

•
•
•

•

•
•
•
•
•
•
•

6

06-M4402.indd 19506-M4402.indd 195 12/17/07 4:20:29 PM12/17/07 4:20:29 PM

Apago PDF Enhancer

196 Chapter 6 Object-Oriented Programming

6.1 Introduction

As discussed in the Preface, we’ve written the book with some built-in fl exibility in terms of content order-

ing. Readers who want an early introduction to object-oriented programming (OOP) have the option of read-

ing Sections 6.1 through 6.8 after completing Chapter 3.

Chapter 5 served as a bridge from basic programming language constructs (variables, assignments,

operators, if statements, loops, etc.) to OOP concepts. We focused primarily on one important as-

pect of OOP—learning how to use pre-built methods. You used methods associated with an object, like

substring and indexOf for string objects, and you used methods associated with a class, like abs and

pow from the Math class. In this chapter, you’ll learn how to do more than just use pre-built classes and

methods; you’ll learn how to write your own classes and methods.

As you’ll come to see, OOP makes large programs easier to work with. And making large programs eas-

ier to work with is very important because today’s computers use lots of very large programs! The tension in

learning OOP is that the fi rst OOP programs a student can understand are necessarily small, and they can’t

show the power of OOP very well. But hang in there. Think of your study of this chapter and most of the next

chapter as an investment. By the end of the next chapter, you’ll be getting some return on that investment.

In this chapter, we start with an overview of basic OOP terms and concepts. We then step through the

design and implementation of a simple OOP program. Typically, OOP design starts with a simple Unifi ed

Modeling Language (UML) class diagram, which provides a high-level, pictorial description of what you

want the program to model. Then OOP design proceeds to the program’s details. We’ll show you how to

adapt the previously described tracing technique to an OOP environment. We’ll show you how to specify

method details. In the previous chapter you looked at methods from the outside—with a user or client view.

Now you’ll be looking at methods from the inside—with an implementation or server view.

We end the chapter with an optional problem-solving section that introduces you to an important com-

puter application—computer simulation. Computer simulation allows humans to solve problems that are

diffi cult or impossible to solve by hand. We describe a special strategy which enables you to substantially

improve both the accuracy and effi ciency of computer simulations.

6.2 Object-Oriented Programming Overview

Readers who want a very early OOP overview have the option of reading this section after completing

Chapter 1, Section 1.3 (Program Development).

Before OOP, the standard programming technique was procedural programming. Procedural program-

ming is so named because the emphasis is on the procedures or tasks that make up a problem solution. You

think fi rst about what you want to do—your procedures. In contrast, the OOP programming paradigm in-

vites you to think about what you want the program to represent. You typically respond to this invitation by

identifying some things in the world that you want your program to model. Those things might be physical

entities or conceptual entities. Once you have identifi ed the things you want to model, you identify their basic

 properties/attributes. Then you determine what the things can do (their behaviors) or what the things can have

done to them. You group each thing’s properties and behaviors together into a coherent structure called an

object. In writing an OOP program, you defi ne objects, create them, and have them interact with each other.

Objects

An object is:

 a set of related data which identifi es the current state of the object

� a set of behaviors.

06-M4402.indd 19606-M4402.indd 196 12/17/07 4:20:30 PM12/17/07 4:20:30 PM

Apago PDF Enhancer

An object’s state refers to the characteristics that currently defi ne the object. For example, if you’re writing

a program that keeps track of employee salaries, you’d probably want to have employee objects, where an

employee object’s state consists of the employee’s name and current salary.

An object’s behaviors refer to the activities associated with the object. Once again, if you’re writing a

program that keeps track of employee salaries, you’d probably want to defi ne a behavior that adjusts an em-

ployee’s salary. That type of behavior parallels a real-world behavior—a pay raise or a pay cut. In Java, you

implement an object’s behaviors as methods. For example, you’d implement the salary adjustment behavior

as an adjustSalary method. We’ll describe method implementation details shortly. But it’s important to

complete our OOP overview fi rst.

Here are some entities that would make good candidates for objects in an object-oriented program:

Physical Objects Human Objects Mathematical Objects

cars in a traffi c-fl ow simulation employees points in a coordinate system

aircraft in an air-traffi c control system customers complex numbers

electrical components in a circuit-design program students time

Let’s think about the fi rst example object. If a car is considered to be an object in a traffi c-fl ow-simula-

tion program, what is the data stored in each car object? In order to analyze traffi c fl ow, each car’s position

and speed should be monitored. Therefore, those two pieces of data should be stored as part of a car object’s

state. And what behaviors are associated with the car objects? You’d need to be able to start the car, stop the

car, slow down, and so on. So you’d probably want to implement these methods:

start, stop, slowDown

An object’s behaviors can change an object’s state. For example, a car object’s start method causes the

car’s position and speed data items to change.

Encapsulation

Objects provide encapsulation. In general terms, encapsulation is when something is wrapped up inside a

protective covering. When applied to objects, encapsulation means that an object’s data are protected by be-

ing “hidden” inside the object. With hidden data, how can the rest of the program access an object’s data?

(Accessing an object’s data refers to either reading the data or modifying it.) The rest of the program cannot

access an object’s data directly, but it can access the data with the help of the object’s methods. Assuming

an object’s methods are well written, the methods ensure that data is accessed in an appropriate manner.

Returning to the employee-salaries program example, an employee object’s salary should be modifi ed only

by calling the adjustSalary method. The adjustSalary method ensures that an employee object’s

salary is modifi ed appropriately. For example, the adjustSalary method prevents an employee object’s

salary from becoming negative.

See Figure 6.1. It illustrates how an object’s methods form the interface between an object’s data and

the rest of the program.

Benefi ts of OOP

Now that you have a basic idea of what OOP is, you may be asking yourself what all the hype is about. Why

is OOP preferred over procedural programming for most of today’s new programs? Here are some benefi ts

of OOP:

OOP programs have a more natural organization—Since people tend to think about real-world prob-

lems in terms of real-world objects, it’s easier for people to understand a program that’s organized

around objects.

•

 6.2 Object-Oriented Programming Overview 197

06-M4402.indd 19706-M4402.indd 197 12/17/07 4:20:30 PM12/17/07 4:20:30 PM

Apago PDF Enhancer

198 Chapter 6 Object-Oriented Programming

OOP makes it easier to develop and maintain large programs—Although switching to OOP program-

ming typically makes a small program more complicated, it naturally partitions things so that the pro-

gram grows gracefully and does not evolve into a giant mess. Since objects provide encapsulation, bugs

(errors) and bug repairs tend to be localized.

The second bullet item needs some clarifi cation. When an object’s data can be modifi ed only by using

one of that object’s methods, it’s hard for a programmer to mess up an object’s data accidentally. Return-

ing again to the employee-salaries program example, assume the only way to change an employee object’s

salary is to use its adjustSalary method. Then, if there’s a bug relating to an employee’s salary, the pro-

grammer immediately knows where to look for the problem—in the adjustSalary method or in one of

the calls to the adjustSalary method.

Classes

Having discussed objects, it’s now time to talk about an intimately related entity—a class. We’ll start with

a broad defi nition of a class, and we’ll refi ne it later. Broadly speaking, a class is a description of all the ob-

jects it defi nes. As such, it is an abstraction—a concept apart from any particular instances. In Figure 6.2,

note the three computers on a conveyor belt in a manufacturing plant. The three computers represent objects.

The specifi cations document that hovers above the computers is a blueprint that describes the computers: it

lists the computers’ components and describes the computers’ features. The computer-specifi cation docu-

ment represents a class. Each object is an instance of its class. Thus, for practical purposes, “object” and

“instance” are synonyms.

One class can have any number of objects associated with it. A class can even have zero objects associ-

ated with it. This should make sense if you think about the computer-manufacturing example. Isn’t it pos-

sible to have a blueprint for a computer, but not yet have any computers manufactured from that blueprint?

We’ll now present a more complete description of a class. Above, we said that a class is a description for

a set of objects. The description consists of:

 a list of variables

� a list of methods

Classes can defi ne two types of variables—class variables and instance variables. And classes can

defi ne two types of methods—class methods and instance methods. Chapter 5 showed you how to use the

Math class’s class methods, and you have been defi ning a class method called main since the beginning.

In Chapter 9 we’ll show you when it’s appropriate to defi ne other class methods and defi ne and use class

 variables. But it’s easy to fall into the trap of defi ning and using class methods and class variables improp-

•

Figure 6.1 To access an

object’s data, you should use the

object’s methods as an interface

methods rest of program

data

object

06-M4402.indd 19806-M4402.indd 198 12/17/07 4:20:31 PM12/17/07 4:20:31 PM

Apago PDF Enhancer

erly. We want to keep you away from that trap until after you have developed good OOP habits. Therefore,

we focus on instance variables and instance methods throughout this chapter and the next several chapters.

A class’s instance variables specify the type of data that an object can store. For example, if you have a

class for computer objects, and the Computer class contains a hardDiskSize instance variable, then each

computer object stores a value for the size of the computer’s hard disk. A class’s instance methods specify the

behavior that an object can exhibit. For example, if you have a class for computer objects, and the Computer
class contains a printSpecifications instance method, then each computer object can print a specifi -

cations report (the specifi cations report shows the computer’s hard disk size, CPU speed, cost, etc.).

Note the use of the term “instance” in “instance variable” and “instance method.” That reinforces the

fact that instance variables and instance methods are associated with a particular object instance. For ex-

ample, each employee object would have its own value for a salary instance variable, which would be

accessed through its adjustSalary instance method. That contrasts with class methods. Class methods

are associated with an entire class. For example, the Math class contains the round class method, which is

not associated with a particular instance of the Math class.

6.3 First OOP Class

In the next several sections, we put what you’ve learned into practice by implementing a complete OOP

program. The program will contain a Mouse class, and it will simulate the growth of two Mouse objects

(we’re talking about rodents here, not computer pointing devices). As is customary with OOP

programs, we start the implementation process by describing the solution pictorially with

a UML class diagram. A UML class diagram is a diagrammatic technique for describing

classes, objects, and the relationships between them. It is widely accepted in the software industry as a stan-

dard for modeling OOP designs. After describing our mouse-simulation solution with a UML class diagram,

we will present the Mouse program’s source code and walk you through it.

Figure 6.2 Conveyor

belt portrayal of the class-

objects relationship

Use UML to
specify OOP.

6.3 First OOP Class 199

Specifications for a computer

computer objects

06-M4402.indd 19906-M4402.indd 199 12/17/07 4:20:31 PM12/17/07 4:20:31 PM

Apago PDF Enhancer

200 Chapter 6 Object-Oriented Programming

UML Class Diagram

See Figure 6.3. It contains an abbreviated UML class diagram for a Mouse class. A UML class diagram box

is divided into three parts—class name at the top, attributes in the middle, and operations at the bottom. With

Java programs, attributes equate to variables and operations equate to methods. Henceforth, we’ll use the Java

terms, variables and methods, rather than the formal UML terms, attributes and operations. Collectively, we

refer to a class’s variables and methods as the class’s members. Let’s now describe each Mouse member.

The Mouse class has three instance variables—age, weight, and percentGrowthRate. The age

instance variable keeps track of how old a Mouse object is, in days. The weight instance variable keeps

track of a Mouse object’s weight, in grams. The percentGrowthRate instance variable is the percent-

age of its current weight that gets added to its weight each day. If the percentGrowthRate is 10 percent

and the mouse’s current weight is 10 grams, then the mouse gains 1 gram by the next day.

The Mouse class has three instance methods—setPercentGrowthRate, grow, and display.

The setPercentGrowthRate method assigns a specifi ed value to the percentGrowthRate instance

variable. The grow method simulates one day of weight gain for a mouse. The display method prints a

mouse’s age and weight.

Referring to Figure 6.3, note how we specify variable types in a class diagram. The type appears at the

right of the variable (e.g., age : int). That’s opposite from Java declarations, where we write the type at the

left of the variable (e.g., int age;)
Some programmers use UML class diagrams as a means to document programs after

they’ve already been written. That’s OK, but it’s not how class diagrams were originally

intended to be used. We encourage you to start drawing class diagrams as a fi rst step in

your solution implementation. The class diagram details provide an outline for your program. Depending

on the complexity of the program and your affi nity for pseudocode, you may want to code the methods

directly with Java or you may want to code the methods fi rst with pseudocode as an intermediate step. For

our Mouse example, the Mouse class’s methods are straightforward, so we’ll code them directly with Java.

Let’s now take a look at the Mouse class’s Java source code.

Mouse Class Source Code

Figure 6.4 shows the Mouse class implemented with Java. Note the Mouse class’s three instance variable

declarations for age, weight, and percentGrowthRate. Instance variables must be declared outside

all methods, and to make your code more self documenting, you should declare them all at the beginning

of the class defi nition. Instance variable declarations are very similar to variable declarations you’ve seen

in the past: The variable’s type goes at the left of the variable, and you can optionally assign an initial value

to the variable. Do you remember what it’s called when you assign a value to a variable as part of a declara-

Mouse

age : int

weight : double

percentGrowthRate : double

setPercentGrowthRate(percentGrowthRate : double)

grow()

display()

← class name

← attributes/variables

← operations/methods

Figure 6.3 Abbreviated UML class diagram for a Mouse class

Start docu-
menting early.

06-M4402.indd 20006-M4402.indd 200 12/17/07 4:20:33 PM12/17/07 4:20:33 PM

Apago PDF Enhancer

Figure 6.4 Mouse class

/***
* Mouse.java
* Dean & Dean
*
* This class models a mouse for a growth simulation program.
***/

public class Mouse
{
 private int age = 0; // age of mouse in days
 private double weight = 1.0; // mouse weight in grams
 private double percentGrowthRate; // increase per day

 //***

 // This method assigns the mouse's percent growth rate.

 public void setPercentGrowthRate(double percentGrowthRate)
 {
 this.percentGrowthRate = percentGrowthRate;
 } // end setPercentGrowthRate

 //***

 // This method simulates one day of growth for the mouse.

 public void grow()
 {
 this.weight +=
 (.01 * this.percentGrowthRate * this.weight);
 this.age++;
 } // end grow

 //***

 // This method prints the mouse's age and weight.

 public void display()
 {
 System.out.printf("Age = %d, weight = %.3f\n",
 this.age, this.weight);
 } // end display
} // end class Mouse

To access instance

variables, use this dot.

method

body

⎫
⎪
⎬
⎪
⎭

parameter

instance variable declarations

6.3 First OOP Class 201

06-M4402.indd 20106-M4402.indd 201 12/17/07 4:20:33 PM12/17/07 4:20:33 PM

Apago PDF Enhancer

202 Chapter 6 Object-Oriented Programming

tion? That’s called an initialization. Note the initializations for age and weight. We initialize age to 0

because newborn mice are zero days old. We initialize weight to 1 because newborn mice weigh approxi-

mately 1 gram.

The primary difference between instance variable declarations and variable declarations you’ve seen

in the past is the private access modifi er. If you declare a member to be private, then the member can

be accessed only from within the member’s class and not from the “outside world” (i.e., by code that’s

outside of the class in which the member resides). Instance variables are almost always declared with the

private access modifi er because you almost always want an object’s data to be hidden. Making an in-

stance variable private gives you control over how its value can be changed. For example, you could as-

sure that a weight is never made negative. Constraining data access is what encapsulation is all about, and

it’s one of the cornerstones of OOP.

In addition to the private access modifi er, there’s also a public access modifi er. Given the stan-

dard defi nitions of the words “public” and “private,” you can probably surmise that public members are

easier to access than private members. If you declare a member to be public, then the member can be

accessed from anywhere (from within the member’s class, and also from outside the member’s class). You

should declare a method to be public when you want it to be a portal through which the outside world

accesses your objects’ data. Go back and verify that all three methods in the Mouse class use the public

access modifi er. When you want a method to help perform a local task only, you should declare it to be

private, but we’ll delay that consideration until Chapter 8.

Look once again at the Mouse class’s instance variable declarations. Note that we initialize age

and weight to 0 and 1.0, respectively, but we don’t initialize percentGrowthRate. That’s because

we’re comfortable with age = 0 and weight = 1.0 for all newborn Mouse objects, but we’re not comfort-

able with a predefi ned initial value for percentGrowthRate. Presumably, we’ll want to use different

 percentGrowthRate values for different Mouse objects (mice in a doughnut-eating study might have

higher percentGrowthRate values than mice in a cigarette-smoking study).

With no initialization for the percentGrowthRate instance variable, how can you set the growth

rate for a Mouse object? You can have the Mouse object call the setPercentGrowthRate method

with a growth rate value as an argument. For example, here’s how a Mouse object can set its growth rate to

10 (percent):

setPercentGrowthRate(10);

As you may recall from Chapter 5, a method call’s parenthetical values are referred to as arguments.
Thus, in this example, 10 is an argument. The 10 gets passed into the percentGrowthRate variable

in set PercentGrowthRate’s heading. A method heading’s parenthetical variables are referred to as

parameters. Thus, in the example shown in Figure 6.4, percentGrowthRate is a parameter. Within the

setPercentGrowthRate method body (the code between the method’s opening and closing braces), the

percentGrowthRate parameter is assigned into the percentGrowthRate instance variable. Here’s

the relevant assignment statement:

this.percentGrowthRate = percentGrowthRate;

Note the “this dot” in this.percentGrowthRate. The this dot is how you tell the Java compiler

that the variable you’re referring to is an instance variable. Since the percentGrowthRate variable at

the right does not have this dot, the Java compiler knows that that percentGrowthRate refers to

the percentGrowthRate parameter, not the percentGrowthRate instance variable. In Figure 6.4’s

set PercentGrowthRate method, the instance variable and the parameter have the same name. That’s

a common practice. There’s no problem distinguishing between the two variables because the instance vari-

able uses this dot and the parameter does not.

06-M4402.indd 20206-M4402.indd 202 12/17/07 4:20:34 PM12/17/07 4:20:34 PM

Apago PDF Enhancer

Now, take a look at the Mouse class’s display and grow methods. The display method is straight-

forward; it prints a mouse’s age and weight. The grow method simulates one day of weight gain for a mouse.

The weight-gain formula adds a certain percentage of the current weight to the current weight. That means

that the mouse will continue to grow every day of its life. That’s a simple, but not very accurate, portrayal of

normal weight gain. We’ve intentionally kept the weight-gain formula simple in order to avoid getting bogged

down in complicated math. In the fi nal section of this chapter, we provide more realistic growth models.

Finally, take a look at the Mouse class’s comments. Note the descriptions above each method. Proper

style suggests that, above each method, you should have a blank line, a line of asterisks, a blank line, a

 description of the method, and another blank line. The blank lines and asterisks serve to separate the meth-

ods. The method descriptions allow someone who’s reading your program to quickly get an idea of what’s

going on.

6.4 Driver Class

What Is a Driver?

Driver is a common computer term that applies to a piece of software that runs or “drives” something else. For

example, a printer driver is a program that is in charge of running a printer. Likewise, a driver class is a class

that is in charge of running another class.

In Figure 6.5, we present a MouseDriver class. We name the class MouseDriver because it is in

charge of driving the Mouse class. We say that the MouseDriver class drives the Mouse class because it

creates Mouse objects and then manipulates them. For example, note the gus = new Mouse() and the

jaq = new Mouse() statements. That code creates Mouse objects gus and jaq.1 In addition note

the gus.setPercentGrowthRate(growthRate) code. That code manipulates the gus object by

updating gus’s percentGrowthRate value.

Normally, a driver class consists entirely of a main method and nothing else. The driver class, with

its main method, is the starting point for the program. It calls upon the driven class to create objects and

manipulate them. The driven class dutifully carries out the object creation and object manipulation requests.

Normally, carrying out those tasks is the primary focus of the program, and their implementation requires

the majority of the program’s code. Thus, driven classes are typically (but not always) longer than driver

classes.

Driver classes, such as the MouseDriver class, are in separate fi les from the classes that they drive.

To make them accessible from the outside world, driver classes must be public. Each public class must

be stored in a separate fi le whose name is the same as the class name, so the MouseDriver class must

be stored in a fi le named MouseDriver.java. For MouseDriver’s code to fi nd the Mouse class, both

classes should be in the same directory.2

Reference Variables

In the MouseDriver class, we create Mouse objects, and we refer to those Mouse objects using gus and

jaq, where gus and jaq are reference variables. The value contained in a reference variable is a “refer-

ence” to an object (thus the name reference variable). More precisely, a reference variable holds the address

of where an object is stored in memory. For a pictorial explanation, see Figure 6.6. In the fi gure, the little

1 Father of two preschool girls, author John Dean is immersed in all things Disney. Gus and Jaq are mice in the Disney classic,
Cinderella.
2 We’re keeping things simple by telling you to put both classes in the same directory. Actually, the fi les may be in different directo-
ries, but then you’d need to use a package to group together your classes. Appendix 4 describes how to group classes into a package.

 6.4 Driver Class 203

06-M4402.indd 20306-M4402.indd 203 12/17/07 4:20:34 PM12/17/07 4:20:34 PM

Apago PDF Enhancer

204 Chapter 6 Object-Oriented Programming

boxes immediately to the right of gus and jaq represent addresses. So gus’s little box holds the address of

the fi rst object.

Industry OOP Vernacular

Most Java programmers in industry don’t use the term reference variable. Instead, they just use the term ob-

ject. This blurs the distinction between reference variables and objects. For example, in the MouseDriver
class in Figure 6.5, this statement initializes the gus reference variable:

Mouse gus = new Mouse();

Even though it’s a reference variable, most industry Java programmers would refer to gus as an object. De-

spite the common practice of using “object” as a substitute for “reference variable,” it’s important to know the

difference—an object holds a group of data, and a reference variable holds the location where that group of

data is stored in memory. Understanding the difference between an object and a reference variable will help

you to understand the behavior of Java code.

Figure 6.5 MouseDriver class that drives Mouse class in Figure 6.4

/***
* MouseDriver.java
* Dean & Dean
*
* This is a driver for the Mouse class.
***/

import java.util.Scanner;

public class MouseDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 double growthRate;
 Mouse gus = new Mouse();
 Mouse jaq = new Mouse();

 System.out.print("Enter % growth rate: ");
 growthRate = stdIn.nextDouble();
 gus.setPercentGrowthRate(growthRate);
 jaq.setPercentGrowthRate(growthRate);
 gus.grow();
 jaq.grow();
 gus.grow();
 gus.display();
 jaq.display();
 } // end main
} // end class MouseDriver

the creation of two

Mouse objects

06-M4402.indd 20406-M4402.indd 204 12/17/07 4:20:34 PM12/17/07 4:20:34 PM

Apago PDF Enhancer
Declaring a Reference Variable

You must always declare a variable before you can use it. For example, in order to use an int variable

named count, you must fi rst declare count like this:

int count;

Likewise, in order to use a gus reference variable, you must fi rst declare gus like this:

Mouse gus;

As you can see, the process for declaring reference variables mirrors the process for declaring primitive

variables. The only difference is that instead of writing a primitive type on the left (e.g., int), for reference

variables you write a class name on the left (e.g., Mouse).

Instantiation and Assigning a Value to a Reference Variable

As you know, the point of a reference variable is to store a reference to an object. But before you can store a

reference to an object, you have to have an object. So let’s look at object creation.

To create an object, use the new operator. For example, to create a Mouse object, specify new
Mouse(). The new operator should make sense when you realize that new Mouse() creates a new

object. The formal term for creating an object is instantiating an object. So new Mouse() instantiates an

object. The term “instantiate” is a verbalized form of the noun “instance.” It is computer jargon for “make

an instance of a class” or “create an object.”

After instantiating an object, you’ll normally assign it to a reference variable. For example, to assign a

Mouse object to the gus reference variable, do this:

gus = new Mouse();

After the assignment, gus holds a reference to the newly created Mouse object.

Figure 6.6 Reference variables and objects for the Mouse program in Figures 6.4 and 6.5 The two reference

variables on the left, gus and jaq, contain references that point to the two objects on the right.

object #1

object #2

gus

jaq

age

Weight

PercentGrowthRate

age

Weight

PercentGrowthRate

 6.4 Driver Class 205

06-M4402.indd 20506-M4402.indd 205 12/17/07 4:20:35 PM12/17/07 4:20:35 PM

Apago PDF Enhancer

206 Chapter 6 Object-Oriented Programming

Let’s review. Here’s how we declared a gus reference variable, instantiated a Mouse object, and as-

signed the object’s address to gus:

Mouse gus;
gus = new Mouse();

Now here’s how to do the same thing with only one statement:

Mouse gus = new Mouse();

The above statement is what appears in Figure 6.5’s MouseDriver class. It’s an initialization. As men-

tioned previously, an initialization is when you declare a variable and assign it a value, all in one statement.

Calling a Method

After you instantiate an object and assign its reference to a reference variable, you can call/invoke an in-

stance method using this syntax:

<reference-variable>.<method-name>(<comma-separated-arguments>);

Here are three example instance method calls from the MouseDriver class:

gus.setPercentGrowthRate(growthRate);
gus.grow();
gus.display();

Note how the three method calls mimic the syntax template. The fi rst method call has one argument and the

next two method calls have zero arguments. If we had a method with two parameters, we’d call it with two

arguments separated by a comma.

When a program calls a method, it passes control from the calling statement to the fi rst execut-

able statement in the called method. For example, when the MouseDriver’s main method calls the

setPercentGrowthRate method with gus.setPercentGrowthRate(growthRate), control

passes to this statement in the Mouse class’s setPercentGrowthRate method:

this.percentGrowthRate = percentGrowthRate;

Go back to Figure 6.4’s Mouse class and verify that the setPercentGrowthRate method contains the

above statement.

After the last statement in any called method executes, control returns to the calling method at the point

just after where the call was made. For a pictorial explanation, see Figure 6.7.

6.5 Calling Object, this Reference

Suppose you have two objects that are instances of the same class. For example, gus and jaq refer to

two objects that are instances of the Mouse class. And suppose you want the two objects to call the same

 instance method. For example, you want both gus and jaq to call setPercentGrowthRate. For

each method call, the Java Virtual Machine (JVM) needs to know which object to update (if gus calls

setPercentGrowthRate, then the JVM should update gus’s percentGrowthRate; if jaq calls

declaration

instantiation and assignment

initialization

06-M4402.indd 20606-M4402.indd 206 12/17/07 4:20:35 PM12/17/07 4:20:35 PM

Apago PDF Enhancer

setPercentGrowthRate, then the JVM should update jaq’s percentGrowthRate). This section

describes how the JVM knows which object to update.

Calling Object

As mentioned in Chapter 5, whenever an instance method is called, it is associated with a calling object.

You can identify the calling object by looking to the left of the dot in an instance method call statement. Can

you identify the calling objects in the following main method?

public static void main(String[] args)
{
 Scanner stdIn = new Scanner(System.in);
 double growthRate;
 Mouse gus = new Mouse();

 System.out.print("Enter % growth rate: ");
 growthRate = stdIn.nextDouble();
 gus.setPercentGrowthRate(growthRate);
 gus.grow();
 gus.display();
} // end main

Figure 6.7 Calling a method

called
method

method call

 6.5 Calling Object, this Reference 207

06-M4402.indd 20706-M4402.indd 207 12/17/07 4:20:36 PM12/17/07 4:20:36 PM

Apago PDF Enhancer

208 Chapter 6 Object-Oriented Programming

The gus object is the calling object for these statements:

gus.setPercentGrowthRate(growthRate);
gus.grow();
gus.display();

Are there any other calling objects? Yes. The stdIn object is a calling object in this statement:

growthRate = stdIn.nextDouble();

The this Reference

It’s easy to identify the calling object when you’re looking at a method call statement. But what if you’re in-

side the called method—how can you tell what object called the method? For example, when you’re looking

at the defi nition of the Mouse class in Figure 6.4, can you identify the calling object that called its grow

method? Here is that method again:

public void grow()
{
 this.weight +=
 (0.01 * this.percentGrowthRate * this.weight);
 this.age++;
} // end grow

The pronoun this (called the this reference) stands for the calling object, but it doesn’t tell you

which object that is. Thus, you can’t tell what the calling object is just by looking at the method that was

called. You must look at what called that method. If the statement that called grow was gus.grow(), then

gus is the calling object. Alternately, if the statement that called grow was jaq.grow(), then jaq is the

calling object. As you’ll see when we do the upcoming trace, you must know which object, gus or jaq, is

the current calling object so that you update the proper object. Within the above grow method, note this.
weight and this.age. The this reference reminds you that weight and age are instance variables.

Instance variables in which object? In the calling object!

The setPercentGrowthRate method in Figure 6.4 provides another example. Here is that method

again:

public void setPercentGrowthRate(double percentGrowthRate)
{
 this.percentGrowthRate = percentGrowthRate;
} // end setPercentGrowthRate

The this reference tells you the variable on the left side of this method’s lone statement is an instance vari-

able in the calling object. As indicated earlier, the this reference in this statement also helps the compiler

and a human distinguish the variable on the left side from the variable on the right side. Before the advent

of OOP, computer languages did not include this dot functionality. Then, the only way the compiler and

a human could distinguish between variables in different places that referred to essentially the same thing

was to give them similar but slightly different names.

The ad hoc (special case) nature of how old-time programmers devised slightly different names made

programs confusing and increased programming errors. Java’s this reference provides a standard way to

make the distinction and show the relationship at the same time. You can use exactly the same name to show

the relationship and then use this dot to make the distinction. So it is no longer necessary to use slightly

different names for that purpose, and we recommend against that archaic practice.

06-M4402.indd 20806-M4402.indd 208 12/17/07 4:20:36 PM12/17/07 4:20:36 PM

Apago PDF Enhancer

To emphasize the meaning and utility of Java’s this reference, we will use it with all examples of

instance variables up to the end of the next chapter—even when it is not necessary to draw a distinction be-

tween an instance variable and a parameter. There is no performance penalty in using this dot, and it pro-

vides an immediate indicator to everyone that the variable is an instance variable. Thus, it helps to explain

the program; that is, it provides useful self documentation.

6.6 Instance Variables

You’ve been exposed to instance variables for a while now. You know that an object stores its data in in-

stance variables. You know that an instance method accesses its instance variables by prefacing them with

the this reference (e.g., this.weight). In this section, we consider a few more instance variable details.

Specifi cally, we consider default values and persistence.

Default Values for Instance Variables

As implied by the common defi nition of “default,” a variable’s default value is the variable’s value when

there’s no explicitly assigned initial value; that is, when there’s no initialization. Different types of variables

have different default values.

There are two integer types that we’ve covered so far—int and long. Integer-type instance variables

are assigned 0 by default. But in the Mouse class, notice that we initialize the age instance variable to 0:

private int age = 0; // age of mouse in days

Why bother with the explicit initialization? Wouldn’t age be assigned 0 by default even if “= 0” was omit-

ted? Yes, the program would work the same either way. But it’s poor practice to depend on hidden default val-

ues. By explicitly assigning values to variables, we show our intent. That’s a form of self-documenting code.

There are two fl oating-point types—float and double. Floating-point-type instance variables are

assigned 0.0 by default. The Mouse class declares two fl oating-point instance variables—weight and

percentGrowthRate:

private double weight = 1.0; // weight of mouse in grams
private double percentGrowthRate; // % weight increase per day

In this case, we initialize the weight instance variable to 1.0, so the default value doesn’t come into play. We

do not initialize the percentGrowthRate value, so percentGrowthRate is initialized to 0.0 by de-

fault. Didn’t we just say that it’s poor practice to depend on hidden default values? Yes, but in this case, we’re

not depending on the default value. In the MouseDriver class, we overlay the percentGrowthRate

default value with a custom value by calling setPercentGrowthRate like this:

gus.setPercentGrowthRate(growthRate);

boolean instance variables are assigned false by default. For example, if you added a boolean

instance variable named vaccinated to the Mouse class, vaccinated would be assigned false by

default.

Reference-type instance variables are assigned null by default. For example, if you added a String

instance variable named breed to the Mouse class, breed would be assigned null by default. Normally,

a reference variable holds the address of an object and that address points to an object. The Java designers

added null to the language as a way to indicate that a reference variable points to nothing. So the default

for a reference-type instance variable is to point to nothing.

 6.6 Instance Variables 209

06-M4402.indd 20906-M4402.indd 209 12/17/07 4:20:36 PM12/17/07 4:20:36 PM

Apago PDF Enhancer

210 Chapter 6 Object-Oriented Programming

Here’s a summary of default values for instance variables:

Instance Variable’s Type Default Value

integer 0

fl oating point 0.0

boolean false

reference null

Instance Variable Persistence
Now consider variable persistence. Persistence refers to how long a variable’s value survives before it’s

wiped out. Instance variables persist for the duration of a particular object. Thus, if an object makes two

method calls, the second called method does not reset the calling object’s instance variables to their initial-

ized values. Instead, the object’s instance variables retain their values from one method call to the next. For

example, in the MouseDriver class, gus calls grow twice. In the fi rst call to grow, gus’s age incre-

ments from 0 to 1. In the second call to grow, gus’s age starts out as 1 and increments to 2. gus’s age

retains its value from one grow call to the next because age is an instance variable.

6.7 Tracing an OOP Program

To reinforce what you’ve learned so far in this chapter, we’ll trace the Mouse program. Remember the trac-

ing procedure we used in prior chapters? It worked fi ne for programs with only one method—the main

method. But for OOP programs with multiple classes and multiple methods, you’ll need to keep track of

which class and which method you’re in and which object called that method. In addition, you’ll need to

keep track of parameters and instance variables. This requires a more elaborate trace table.

In tracing the Mouse program, we’ll use a slightly different driver, the MouseDriver2 class, shown in

Figure 6.8. In MouseDriver2, we delay the instantiation of the individual mice and assign their growth rates

(by calling setPercentGrowthRate) immediately after each instantiation. This is better style, because

it more closely associates each object’s instantiation with its growth rate assignment. How-

ever, in changing the driver we “accidentally” forget to call setPercentGrowthRate

for jaq, the second mouse. You can see the effect of this logic error in the output—jaq

doesn’t grow (after the fi rst day, jaq still weighs 1 gram). But let’s pretend that you don’t

know why this error occurs and use the trace to help fi nd its cause. Remember—tracing is

an effective tool when you need help debugging a program.

To perform the trace, in addition to the driver, you’ll also need the code for the driven class. For your

convenience, we repeat the original driven Mouse class in Figure 6.9.

Trace Setup

Figure 6.10 shows the setup. As with the traces in the previous chapters, the input goes in the top-left corner.

Unlike the traces in the previous chapters, the headings under the input now require more than one line. The

fi rst line of headings shows the class names—MouseDriver2 and Mouse. Under each class name head-

ing, there’s a heading for each of the class’s methods. In the trace setup, fi nd the setPercentGrowth-
Rate, grow, and display method headings (to save space, we abbreviated setPercentGrowthRate

and display to setPGR and disp, respectively). And under each method-name heading, there’s a heading

for each of the method’s local variables and parameters.

Use trace to
fi nd cause of
problem.

06-M4402.indd 21006-M4402.indd 210 12/17/07 4:20:37 PM12/17/07 4:20:37 PM

Apago PDF Enhancer

We’ll discuss local variables in detail later, but for now, just realize that growthRate (abbreviated

to rate in the trace setup), gus, and jaq are considered to be local variables because they’re declared and

used “locally” within one particular method, the main method. That’s different from the age, weight,

and percentGrowthRate instance variables, which are declared outside of all methods, at the top of the

class. Note that stdIn is another local variable within main, but there’s no need to trace it because it’s in-

stantiated from an API class, Scanner. There’s no need to trace API classes because they’ve already been

traced and tested thoroughly by the good folks at Sun. You can assume that they work properly.

Now let’s examine the trace setup’s parameters. The setPercentGrowthRate method has two

parameters—percentGrowthRate, abbreviated to rate in the trace setup, and the this reference,

an implicit parameter. As you may recall, the this reference points to the calling object. For the

Figure 6.8 MouseDriver2 class that drives Mouse class in Figure 6.9

 1 /***
 2 * MouseDriver2.java
 3 * Dean & Dean
 4 *
 5 * This is a driver for the Mouse class.
 6 ***/
 7
 8 import java.util.Scanner;
 9
10 public class MouseDriver2
11 {
12 public static void main(String[] args)
13 {
14 Scanner stdIn = new Scanner(System.in);
15 double growthRate;
16 Mouse gus, jaq;
17
18 System.out.print("Enter % growth rate: ");
19 growthRate = stdIn.nextDouble();
20 gus = new Mouse();
21 gus.setPercentGrowthRate(growthRate);
22 gus.grow();
23 gus.display();
24 jaq = new Mouse();
25 jaq.grow();
26 jaq.display();
27 } // end main
28 } // end class MouseDriver2

Sample session:

Enter % growth rate: 10
Age = 1, weight = 1.100
Age = 1, weight = 1.000

This declares reference variables

but does not initialize them.

jaq doesn’t grow. A bug!

There’s a logic error

here. We “accidentally”

forget to initialize the

growth rate in jaq.

Try to group

initialization

activities.

⎫
⎬
⎭

6.7 Tracing an OOP Program 211

06-M4402.indd 21106-M4402.indd 211 12/17/07 4:20:37 PM12/17/07 4:20:37 PM

Apago PDF Enhancer

212 Chapter 6 Object-Oriented Programming

 1 /**
 2 * Mouse.java
 3 * Dean & Dean
 4 *
 5 * This class models a mouse for a growth simulation program.
 6 **/
 7
 8 public class Mouse
 9 {
10 private int age = 0; // age of mouse in days
11 private double weight = 1.0; // mouse weight in grams
12 private double percentGrowthRate; // increase per day
13
14 //***
15
16 // This method assigns the mouse's percent growth rate.
17
18 public void setPercentGrowthRate(double percentGrowthRate)
19 {
20 this.percentGrowthRate = percentGrowthRate;
21 } // end setPercentGrowthRate
22
23 //***
24
25 // This method simulates one day of growth for the mouse.
26
27 public void grow()
28 {
29 this.weight +=
30 (.01 * this.percentGrowthRate * this.weight);
31 this.age++;
32 } // end grow
33
34 //***
35
36 // This method prints the mouse's age and weight.
37
38 public void display()
39 {
40 System.out.printf(
41 "Age = %d, weight = %.3f\n", this.age, this.weight);
42 } // end display
43 } // end class Mouse

Figure 6.9 Mouse class repeated from Figure 6.4

06-M4402.indd 21206-M4402.indd 212 12/17/07 4:20:38 PM12/17/07 4:20:38 PM

Apago PDF Enhancer

 setPercentGrowthRate, grow, and display methods, we include a column for this so the trace

can keep track of which object called the method.

Note the vacant area under the Mouse heading. We’ll fi ll in more headings there as we execute the trace.

Trace Execution

Using Figure 6.10’s trace setup as a starting point, we’ll walk you through the key sections of the trace

shown in Figure 6.11. We’ll focus on the OOP parts of the trace since those are the parts that are new to you.

When starting a method, under the method’s local variable headings, write initial values for each of the local

 variables. Use a question mark for local variables that are uninitialized. In the fi rst three lines of Figure 6.11’s

trace, note the ?’s for the uninitialized growthRate (abbreviated to rate), gus, and jaq local variables.

When an object is instantiated, under the object’s class-name heading, provide a column heading named

“obj#”, where # is a unique number. Under the obj# heading, provide an underlined column heading for each

of the object’s instance variables. Under the instance variable headings, write initial values for each of the

instance variables. In Figure 6.11’s trace, note the obj1 and obj2 column headings and their age, weight,

and percentGrowthRate (abbreviated to rate) subheadings. Also note the initial values for the age,

weight, and percentGrowthRate instance variables.

When there’s an assignment into a reference variable, write obj# under the reference variable’s column

heading, where obj# matches up with the associated obj# in the object portion of the trace. For example, in

Figure 6.11’s trace, we created obj1 while tracing the gus = new Mouse(); statement. Subsequently, we

put obj1 under the gus column heading.

When there’s a method call, under the called method’s this column heading, write the calling object’s

obj#. In Figure 6.11’s trace, note obj1 under setPercentGrowthRate’s this heading. If the method

call contains an argument, write the argument’s value under the called method’s associated parameter. In

the trace, note the passed-in 10 under the setPercentGrowthRate’s percentGrowthRate heading.

Inside the method, if there’s a this reference, fi nd the obj# under the method’s this column heading.

Then go to the found obj#’s heading and read or update the obj#’s value accordingly. In Figure 6.9’s Mouse

class, note this.percentGrowthRate in the setPercentGrowthRate method body. In the trace,

note that setPercentGrowthRate’s this reference refers to obj1, so obj1’s percentGrowthRate is

updated accordingly.

When you fi nish tracing a method, draw a horizontal line under the method’s variable values to indicate

the end of the method trace and to signify that the values in the method’s local variables are wiped out. For

example, in the trace, the heavy horizontal line in Mouse line #20 under set PGR indicates the end of the

setPercentGrowthRate method, and it signifi es that percentGrowthRate’s value is wiped out.

Figure 6.10 Trace setup for the Mouse program

input

10

MouseDriver2 Mouse

line#

main

line#

setPGR grow disp

rate gus jaq this rate this this output

 6.7 Tracing an OOP Program 213

06-M4402.indd 21306-M4402.indd 213 12/17/07 4:20:38 PM12/17/07 4:20:38 PM

Apago PDF Enhancer

214 Chapter 6 Object-Oriented Programming

input

10

MouseDriver2 Mouse

line#

main

line#

setPGR grow disp obj1 obj2

rate gus jaq this rate this this age wt rate age wt rate output

15 ?

16 ? ?

18 Enter % growth rate:

19 10.0

20

10 0

11 1.000

12 0.0

20 obj1

21 obj1 10.0

20 10.0

22 obj1

29 1.100

31 1

23 obj1

40 Age � 1, weight � 1.100

24

10 0

11 1.000

12 0.0

24 obj2

25 obj2

29 1.000

31 1

26 obj2

40 Age � 1, weight � 1.000

Figure 6.11 Completed trace for the Mouse program

Now that we’ve walked you through the new techniques for tracing an OOP program, we

encourage you to go back to the trace setup in Figure 6.10 and do the entire trace on your own.

Pay particular attention to what happens when gus and jaq call the grow method. Verify that gus’s

weight increases (as it should) and jaq’s weight fails to increase (a bug). When you’re done with the trace,

compare your answer to Figure 6.11.

Experience with the long-form tracing used in this book will make it easier for you to understand

what an automated debugger in an Integrated Development Environment (IDE) is telling you. As you step

through a program that’s running in debug mode under the control of an IDE debugger, when you get to a

Practice.

06-M4402.indd 21406-M4402.indd 214 12/17/07 4:20:38 PM12/17/07 4:20:38 PM

Apago PDF Enhancer

method call, you have two choices. You can “step into” and go through all the statements

in the called method, like we do in Figure 6.11, or you can “step over” and just see what

happens after the method returns. In a typical debugging activity, you will use a combina-

tion of stepping over and stepping in. For the example problem we have been considering,

the sample session in Figure 6.8 tells you that the simulation is OK for the fi rst object. The problem is with

the second object. So, the appropriate thing to do is step over the method calls down through line 23 in the

MouseDriver2 class. Then, starting at line 24 in the MouseDriver2 class, step into the methods calls

to zero in on what caused the problem.

6.8 UML Class Diagrams

The Mouse class’s grow method is not very fl exible—it forces the driver to call the grow method sepa-

rately for each day or to provide a for loop for each multiple-day simulation. It isn’t good style to include

such things in a driver. It’s better to include multiple-day functionality within the driven class. In this sec-

tion, we do just that. We present a revised mouse class with a grow method that handles any number of

days, not just one day.

To specify a second-generation mouse class (Mouse2) and an associated driver class

(Mouse2Driver), let’s create another UML class diagram. The diagram we presented in

Figure 6.3 was a pared-down UML class diagram. It did not include all the standard features. This time,

in Figure 6.12, we present a UML class diagram that includes all the standard features, plus an extra feature.

Figure 6.12’s class diagram includes class diagram boxes for both classes—one diagram for the

Mouse2Driver class and another diagram for the Mouse2 class. The Mouse2 class has the same three

instance variables as the original Mouse class—age, weight, and percentGrowthRate. It also has

the same setPercentGrowthRate method. But the getAge and getWeight methods are new and the

6.8 UML Class Diagrams 215

Organize.

Paper trace
emulates IDE
debugger.

Mouse2

‒age : int = 0

‒weight : double = 1.0

‒percentGrowthRate : double

+setPercentGrowthRate(percentGrowthRate : double) : void

+getAge() : int

+getWeight() : double

+grow(days : int) : void

main :

stdIn : Scanner

mickey : Mouse2

days : int

+main() : void

Mouse2Driver

grow:

i : int

Figure 6.12 A UML class diagram for a second-generation Mouse program

UML notes use

dashed lines and

bent top-right

corners.

06-M4402.indd 21506-M4402.indd 215 12/17/07 4:20:39 PM12/17/07 4:20:39 PM

Apago PDF Enhancer

216 Chapter 6 Object-Oriented Programming

grow method is improved. The getAge method retrieves a mouse’s age. Remember the age variable is

private, so the only way for the outside world to read a mouse object’s age is to use a public method—

the getAge method. The getWeight method retrieves a mouse’s weight. The grow method simulates

a mouse’s growth for a specifi ed number of days. Note the days parameter. The number of days is passed

into the days parameter and that’s how the method knows how many days to simulate.

Here are some of the standard UML class diagram features not found in Figure 6.3 that do appear in

Figure 6.12:

To specify member accessibility, prefi x all member specifi cations with a “-” for private access or a

“+” for public access. The instance variables have “-” prefi xes, since we want them to be private,

and the methods have “+” prefi xes, since we want them to be public.

To specify initialization, append “= <value>” to each variable declaration that includes initialization.

For example, note the “ = 0” after the age instance variable’s specifi cation.

Underline the main method in the MouseDriver class diagram box, since the main method is de-

clared with the static modifi er. UML standards suggest that you underline all methods and variables

that are declared with the static modifi er. As you learned in Chapter 5, the static modifi er indi-

cates a class member. You’ll learn more about class members in Chapter 9.

Include a “: <type>” suffi x with each method. This specifi es the type of value that the method returns.

All the methods in the Mouse class in Figure 6.4 returned void (nothing), but in Chapter 5 you saw

many Java API class methods with return types like int and double, and we’ll discuss implementa-

tion of such methods later in this chapter.

Figure 6.12 also includes an extra UML class diagram feature. It has notes for two of its methods—the

main and grow methods. The notes are depicted by the rectangles with the bent top-right corners. Why

bent corners? They are supposed to give the impression of a piece of paper with its corner folded, an indica-

tion of a hardcopy “note.” Including a note in a UML class diagram is purely optional. Usually we won’t use

them, but this time, we did use them because we wanted to show how you can include local variables in a

UML class diagram.

6.9 Local Variables

A local variable is a variable that’s declared and used “locally” inside a method. That’s different from an

instance variable, which is declared at the top of a class, outside all methods. As you perhaps now realize,

all the variables we defi ned in chapters prior to this chapter were local variables. They were all declared

within main methods, so they were all local variables within the main method. We didn’t bother to explain

the term “local variable” until now because there were no other methods besides main, and the idea of a

variable being local to main wouldn’t have made much sense. But the OOP context makes the concept of a

local variable more meaningful.

Scope

A local variable has local scope—it can be used only from the point at which the variable is declared to

the end of the variable’s block. A variable’s block is established by the closest pair of braces that enclose

the variable’s declaration. Most of the time, you should declare a method’s local variables at the top of the

method’s body. The scope of such variables is then the entire body of the method.

for loop index variables are local variables, but they are special. Their scope rule is slightly different

from what is described above. As you know from Chapter 4, you should normally declare a for loop’s index

•

•

•

•

06-M4402.indd 21606-M4402.indd 216 12/17/07 4:20:40 PM12/17/07 4:20:40 PM

Apago PDF Enhancer

variable within the for loop’s header. The scope of such a variable is the for loop’s header plus the for
loop’s body.

Method parameters are usually not considered to be local variables, but they are very similar to local

variables in that they are declared and used “locally” inside a method. As with local variables, the scope of

a method’s parameters is limited to within the body of that method.

Let’s round out the discussion of scope by comparing local scope to the scope used by instance variables.

While variables with local scope can be accessed only within one particular method, instance variables can

be accessed by any instance methods within the instance variable’s class. Furthermore, if an instance vari-

able is declared with the public access modifi er, it can be accessed from outside of the instance variable’s

class (with the help of an instantiated object from the instance variable’s class).

Mouse2Driver Class

To illustrate local variable principles, we present the Mouse2 program in Figures 6.13 and 6.14. The

code includes line numbers to facilitate tracing in an end-of-chapter exercise. The main method in the

Mouse2Driver class has three local variables—stdIn, mickey, and days. These appear in the UML

class diagram note at the top of Figure 6.12, and they also appear as declarations in the main method in

Figure 6.13.

6.9 Local Variables 217

1 /**
2 * Mouse2Driver.java
3 * Dean & Dean
4 *
5 * This is a driver for the Mouse2 class.
6 **/
7
8 import java.util.Scanner;
9
10 public class Mouse2Driver
11 {
12 public static void main(String[] args)
13 {
14 Scanner stdIn = new Scanner(System.in);
15 Mouse2 mickey = new Mouse2();
16 int days;
17
18 mickey.setPercentGrowthRate(10);
19 System.out.print("Enter number of days to grow: ");
20 days = stdIn.nextInt();
21 mickey.grow(days);
22 System.out.printf("Age = %d, weight = %.3f\n",
23 mickey.getAge(), mickey.getWeight());
24 } // end main
25 } // end class Mouse2Driver

Figure 6.13 Mouse2Driver class that drives the Mouse2 class in Figure 6.14

local

variables

⎫
⎬
⎭

06-M4402.indd 21706-M4402.indd 217 12/17/07 4:20:41 PM12/17/07 4:20:41 PM

Apago PDF Enhancer

218 Chapter 6 Object-Oriented Programming

Let’s examine Figure 6.13’s Mouse2Driver class. In the call to setPercentGrowthRate, note

that we pass in a constant, 10, instead of a variable. Normally, you’ll use variables for your arguments, but

this example shows that it’s legal to use constants also. After setting the percent growth rate, we prompt the

user for the number of days of simulated growth, and then we pass the days value into the grow method.

Then we print mickey’s age and weight by embedding getAge and getWeight method calls within

a printf statement.

Mouse2 Class

Now look at the Mouse2 class in Figure 6.14. Are there any local variables there? The age, weight, and

percentGrowthRate variables are instance variables, not local variables, because they’re declared out-

side of all the methods, at the top of the class. Inside the grow method, we highlight this fact by prefi xing

each of these instance variables with a this reference. The grow method also includes a local variable—

the i in the for loop. Since i is declared within the for loop header, its scope is limited to the for loop

block. So you can read and update i only within the for loop. If you try to access i outside the for loop,

you’ll get a compilation error. This grow method is similar to the previous Mouse program’s grow method,

but this time we use a for loop to simulate multiple days of growth rather than just one day. The days pa-

rameter determines how many times the loop will repeat.

Previously we described the default values for instance variables. Now we’ll describe the default values

for local variables. Local variables contain garbage by default. Garbage means that the variable’s value is

unknown—it’s whatever just happens to be in memory at the time that the variable is created. If a program

attempts to access a variable that contains garbage, the compiler generates a compilation error. For example,

what would happen if the =0 initialization were removed from the for loop header in the grow method in

Figure 6.14? In other words, suppose that for loop was replaced by this:

for (int i; i
{
 this.weight +=
 (0.01 * this.percentGrowthRate * this.weight);
}

Since i is no longer assigned zero, i contains garbage when the i<days condition is tested. If you tried to

compile code with a statement like this, it wouldn’t compile, and the compiler would report:

variable i might not have been initialized

Local Variable Persistence

OK, let’s say you do initialize a local variable. How long will it persist? A local variable (or parameter)

persists only within its scope and only for the current duration of the method (or for loop) in which it is

defi ned. The next time the method (or for loop) is called, the local variable’s value resets to the value given

it by whatever initialization it gets. The horizontal line drawn in a trace after a method terminates reminds

you that method termination converts all the method’s local variables into garbage.

6.10 The return Statement

If you look back at our original Mouse class in Figures 6.4 and 6.10, you’ll notice that every method head-

ing has a void modifi er located at the left of the method name. That means the method does not return any

value, and we say “the method has a void return type” or more simply “it’s a void method.” But recall from

06-M4402.indd 21806-M4402.indd 218 12/17/07 4:20:41 PM12/17/07 4:20:41 PM

Apago PDF Enhancer

Figure 6.14 Mouse2 class

1 /***
2 * Mouse2.java
3 * Dean & Dean
4 *
5 * This class models a mouse for a growth simulation program.
6 ***/
7
8 import java.util.Scanner;
9
10 public class Mouse2
11 {
12 private int age = 0; // age in days
13 private double weight = 1.0; // weight in grams
14 private double percentGrowthRate; // % daily weight gain
15
16 //**
17
18 public void setPercentGrowthRate(double percentGrowthRate)
19 {
20 this.percentGrowthRate = percentGrowthRate;
21 } // end setPercentGrowthRate
22
23 //**
24
25 public int getAge()
26 {
27 return this.age;
28 } // end getAge
29
30 //**
31
32 public double getWeight()
33 {
34 return this.weight;
35 } // end getWeight
36
37 //**
38
39 public void grow(int days)
40 {
41 for (int i=0; i<days; i++)
42 {
43 this.weight +=
44 (0.01 * this.percentGrowthRate * this.weight);
45 }
46 this.age += days;
47 } // end grow
48 } // end class Mouse2

parameter

parameter

local variable

6.10 The return Statement 219

06-M4402.indd 21906-M4402.indd 219 12/17/07 4:20:41 PM12/17/07 4:20:41 PM

Apago PDF Enhancer

220 Chapter 6 Object-Oriented Programming

Chapter 5 that many of the Java API methods return some kind of value, and in each case the type of value re-

turned is indicated by an appropriate return type in the method heading located at the left of the method name.

Returning a Value

If you look at the Mouse2 class in Figure 6.14, you’ll see that two of the methods have a return type that is

different from void. Here is one of those methods:

public int getAge()
{
 return this.age;
} // end getAge

The return statement in this method allows you to pass a value from the method back to the place

from which the method was called. In this case, the getAge method returns age to Mouse2Driver’s

printf statement in Figure 6.13. Here is that statement again:

System.out.printf("Age = %d, weight = %.3f\n",
 mickey.getAge(), mickey.getWeight());

In effect, the JVM “assigns” the return value (this.age) to the method call (mickey.getAge()). To per-

form a mental trace, imagine that the method call is overlaid by the returned value. So if Mickey’s age is 2,

then 2 is returned, and you can replace the getAge method call by the value 2.

Whenever a method heading’s type is different from void, that method must return a value by means

of a return statement, and the type of that value must match the type specifi ed in the method heading.

For example, the getAge method heading specifi es an int return type. The return statement within

the getAge method returns this.age. In Figure 6.14, the age instance variable was declared to be an

int, and that matches getAge’s int return type, so all is well. It’s OK to have an expression following the

word return; you aren’t limited to just having a simple variable. But the expression must evaluate to the

method’s return type. For example, would it be legal to use this?

return this.age + 1;

Yes, because this.age + 1 evaluates to an int type, and that matches getAge’s return type.

When a method includes conditional branching (with an if statement or a switch statement), it’s

possible to return from more than one place in the method. In such cases, all returns must match the type

specifi ed in the method heading.

Empty return Statement

For methods with a void return type, it’s legal to have an empty return statement. The empty return

statement looks like this:

return;

The empty return statement does what you’d expect. It terminates the current method and causes control

to be passed back to the calling module at the point that immediately follows the method call. Here’s a

variation of our previous grow method that uses an empty return statement:

return type

return statement

⎫⎪⎪⎬⎪⎪⎭

method call

06-M4402.indd 22006-M4402.indd 220 12/17/07 4:20:42 PM12/17/07 4:20:42 PM

Apago PDF Enhancer

public void grow(int days)
{
 int endAge = this.age + days;

 while (this.age < endAge)
 {
 if (this.age >= 100)
 {
 return;
 }
 this.weight +=
 .01 * this.percentGrowthRate * this.weight;
 this.age++;
 } // end while
} // end grow

In this variation of the grow method, we cut off the aging process at 100 days—after “adolescence”—by

checking age inside the loop and returning when age is greater than or equal to 100. Notice the empty

return statement. Since nothing is returned, the method heading must specify void for its return type.

It would be illegal to have an empty return statement and a non-empty return statement in the

same method. Why? Empty and non-empty return statements have different return types (void for

an empty return statement and some other type for a non-empty return statement). There is no way to

specify a type in the heading that simultaneously matches two different return types.

The empty return statement is a helpful statement in that it provides an easy way to exit quickly from

a method. However, it does not provide unique functionality. Code that uses an empty return statement

can always be replaced by code that is devoid of return statements. For example, here’s a return-less

version of the previous grow method:

public void grow(int days)
{
 int endAge = this.age + days;

 if (endAge > 100)
 {
 endAge = 100;
 }
 while (this.age < endAge)
 {
 this.weight +=
 .01 * this.percentGrowthRate * this.weight;
 this.age++;
 } // end while
} // end grow

return Statement Within a Loop

Programmers in industry often are asked to maintain (fi x and improve) other people’s code. In doing

that, they often fi nd themselves having to examine the loops and, more specifi cally, the loop termination

6.10 The return Statement 221

empty return statement

06-M4402.indd 22106-M4402.indd 221 12/17/07 4:20:42 PM12/17/07 4:20:42 PM

Apago PDF Enhancer

222 Chapter 6 Object-Oriented Programming

conditions in the program they’re working on. Therefore, it’s important that loop termination conditions

are clear. Normally, loop termination conditions appear in the standard loop-condition section. For while
loops, that’s the header, for for loops, that’s the header’s second component, and for do loops that’s the

closing. However, a return statement inside a loop results in a loop termination condition that’s not in a

standard location. For example, in the fi rst grow method on the previous page the return statement is

inside an if statement and the loop termination condition is consequently “hidden” in the if statement’s

condition.

In the interest of maintainability, you should use restraint when considering the use of a return state-

ment inside a loop. Based on the context, if inserting return statements inside a loop improves clarity,

then feel free to insert. However, if it simply makes the coding chores easier and it does not add clarity, then

don’t insert. So which grow implementation is better—the empty return version or the return-less ver-

sion? In general, we prefer the return-less version for maintainability reasons. However, because the code

in both of our adolescent grow methods is so simple, it doesn’t make much difference here.

6.11 Argument Passing

In the previous section you saw that when a method fi nishes, the JVM effectively assigns the return value

to the method call. This section describes a similar transfer in the other direction. When a method is called,

the JVM effectively assigns the value of each argument in the calling statement to the corresponding param-

eter in the called method.

Example

Let’s examine argument passing by looking at an example—another version of our Mouse program called

Mouse3. Here is the code for this new version’s driver:

public class Mouse3Driver
{
 public static void main(String[] args)
 {
 Mouse3 minnie = new Mouse3();
 int days = 365;

 minnie.grow(days);
 System.out.println("# of days aged = " + days);
 } // end main
} // end class Mouse3Driver

The Mouse3Driver class calls the grow method with an argument called days, whose value hap-

pens to be 365. Then it assigns this value (365) to the parameter called days in the grow method. The fol-

lowing code shows what happens to the days parameter within the grow method:

public class Mouse3
{
 private int age = 0; // age in days
 private double weight = 1.0; // weight in grams

The JVM makes a copy of days’s

value and passes it to the grow method.

06-M4402.indd 22206-M4402.indd 222 12/17/07 4:20:43 PM12/17/07 4:20:43 PM

Apago PDF Enhancer

 private double percentGrowthRate = 10; // % daily weight gain
 public void grow(int days)
 {
 this.age += days;
 while (days > 0)
 {
 this.weight +=
 .01 * this.percentGrowthRate * this.weight;
 days--;
 }
 } // end grow
} // end class Mouse3

Within a method, parameters are treated like local variables. The only difference is that a local vari-

able is initialized inside the method, whereas a parameter is initialized by an argument in the method call.

As you can see in the above loop body, the days parameter decrements down to zero. What happens to the

days variable in the main method in Mouse3Driver? Because the two days variables are distinct, the

days variable in the main method does not change with the days parameter in the grow method. So when

Mouse3Driver prints its version of days, it prints the unchanged value of 365 like this:

of days aged = 365.

Pass-By-Value

We say that Java uses pass-by-value for its argument-passing scheme. As illustrated by Figure 6.15, pass-by-

value means that the JVM passes a copy of the argument’s value (not the argument itself) to the parameter.

Changing the copy does not change the original.

In Mouse3Driver and Mouse3, notice that the calling method’s argument is called days and the

grow method’s parameter is called days also. Is the parameter the same variable as the argument? No!

They are separate variables separately encapsulated in separate blocks of code. Because these two variables

are in separate blocks of code, there is no confl ict, and it’s OK to give them the same name. Using the same

name is natural because these two variables describe the same kind of thing. When names are in different

blocks, you don’t have to worry about whether they are the same or not. That’s the beauty of encapsulation.

Big programs would be horrible nightmares if you were prohibited from using the same name in different

blocks of code.

Same Name Versus Different Names for Argument-Parameter Pairs

Most of the time, you’ll want to use the same name for an argument/parameter pair. But be aware that using

different names is legal and fairly common. When it’s more natural and reasonable to use different names

for an argument/parameter pair, then use different names. The only requirement is that the argument’s type

must match the parameter’s type. For example, in the Mouse3 program, if num is an int variable, then the

following method call successfully passes num’s value to the days int parameter:

minnnie.grow(num);

6.11 Argument Passing 223

The days parameter decrements

down to 0.

The JVM assigns the passed-in

value to the days parameter.

06-M4402.indd 22306-M4402.indd 223 12/17/07 4:20:43 PM12/17/07 4:20:43 PM

Apago PDF Enhancer

224 Chapter 6 Object-Oriented Programming

6.12 Specialized Methods—Accessors, Mutators, Boolean Methods

Let’s now discuss some of the common types of specialized methods. You won’t be asked to learn any new

syntax; you’ll just be asked to apply what you’ve learned so far.

Accessor Methods

An accessor is a method that retrieves part of an object’s stored data—typically private data. Note the

following getAge and getWeight methods (taken from Figure 6.14’s Mouse2 class). They are accessor

methods as they retrieve the values of the instance variables, age and weight, respectively.

public int getAge()
{
 return this.age;
} // end getAge

public double getWeight()
{
 return this.weight;
} // end getWeight

As evidenced by the getAge and getWeight methods, accessor methods should be named with a “get”

prefi x. That’s why accessor methods are often called get methods.

public class Mouse3Driver
{
 public static void main(String[] args)
 {
 ...
 minnie.grow(days);
 ...
 } // end main
} // end class Mouse3Driver

public class Mouse3
{
 ...
 public void grow(int days)
 {
 ...
 } // end grow
} // end class Mouse3

Figure 6.15 Pass-by-value means a copy of the argument’s value goes to the corresponding parameter

06-M4402.indd 22406-M4402.indd 224 12/17/07 4:20:43 PM12/17/07 4:20:43 PM

Apago PDF Enhancer

A method should perform one task. It should be written such that it accomplishes only the one thing

that its name implies. For example, a getAge method should simply return its object’s age instance vari-

able value and do nothing else. We mention this notion because there is sometimes a temptation to provide

extra functionality to a method to avoid having to implement that functionality elsewhere. One particularly

common faux pas (a French term meaning error in etiquette) is to add print statements to a method that

doesn’t need to print. For example, a novice programmer might implement the getAge method like this:

public int getAge()
{
 System.out.println("Age = " + this.age);
 return this.age;
} // end getAge

That getAge method might work fi ne for the novice programmer’s program, which takes into account the

getAge method’s non-standard print statement. But if later on another programmer needs to work with the

program and call the getAge method, the new programmer would be surprised to fi nd the non-standard

print statement. The new programmer would then either have to (1) accommodate the print statement or

(2) remove it from the getAge method and check for any ripple effects. To avoid that scenario, you should

include print statements in a method only if the purpose of the method is to print something.

The exception to the above rule is that it’s acceptable and helpful to temporarily add print statements to

methods when you’re trying to debug a program. For example, if you think there’s some-

thing wrong with your getAge method, you might want to add the above print statement

to verify the correctness of the age value just before getAge returns it. If you add such de-

bug print statements, don’t forget to remove them later on, once your program is working.

Mutator Methods

A mutator is a method that changes or “mutates” an object’s state by changing some or all of that object’s

stored data—typically private data. For example, here is the mutator method for setting or changing a

mouse’s percentGrowthRate instance variable:

public void setPercentGrowthRate(double percentGrowthRate)
{
 this.percentGrowthRate = percentGrowthRate;
} // end setPercentGrowthRate

As evidenced by the setPercentGrowthRate method, mutator methods should be named with a “set”

prefi x. That’s why mutator methods are often called set methods.
An accessor allows you to read a private instance variable. A mutator allows you to update a private

instance variable. If you provide a private instance variable with both an accessor and a simple mutator

like the setPercentGrowthRate method above, it effectively converts that private instance vari-

able into a public instance variable, and it breaks the encapsulation of that variable. There’s not much

danger with having an accessor alone, but having a simple mutator allows an outsider to enter an unrea-

sonable value that may produce erratic program operation. However, if you include con-

straint checking and perhaps correcting code in your mutators, they can serve as data fi lters

that assign only proper data to your private instance variables. For example, here’s a

set PercentGrowthRate mutator that fi lters out growth rates that are less than �100%:

debug with
temporary print
statements.

6.12 Specialized Methods—Accessors, Mutators, Boolean Methods 225

Use mutator
to fi lter input.

inappropriate

print statement

06-M4402.indd 22506-M4402.indd 225 12/17/07 4:20:44 PM12/17/07 4:20:44 PM

Apago PDF Enhancer

226 Chapter 6 Object-Oriented Programming

public void setPercentGrowthRate(double percentGrowthRate)
{
 if (percentGrowthRate < -100)
 {
 System.out.println("Attempt to assign an invalid growth rate.");
 }
 else
 {
 this.percentGrowthRate = percentGrowthRate;
 }
} // end setPercentGrowthRate

Our examples will occasionally include some mutator error checking to illustrate this fi ltering function, but

to reduce clutter we’ll usually employ the minimal form.

Boolean Methods

A Boolean method checks to see whether some condition is true or false. If the condition is true, then true

is returned. If the condition is false, then false is returned. To accommodate the boolean returned value,

Boolean methods must always specify a boolean return type. A Boolean method name should normally

start with “is.” For example, here’s an isAdolescent method that determines whether a Mouse object is

an adolescent by comparing its age value to 100 days:

public boolean isAdolescent()
{
 if (this.age <= 100)
 {
 return true;
 }
 else
 {
 return false;
 }
} // end isAdolescent

Here’s how this code might be shortened:

public boolean isAdolescent()
{
 return this.age <= 100;
} // end isAdolescent

To show how the shortened method works, we’ll plug in sample values. But fi rst, let’s get settled on the

goal: Whenever age is less than or equal to 100, we want the method to return true to indicate adoles-

cence. If age is 50, what is returned? true (Because the return statement’s this age <= 100 ex-

pression evaluates to true.) If age is 102, what is returned? false (Because the return statement’s

this age <= 100 expression evaluates to false.) Plug in any number for age and you’ll see that the

shortened function does indeed work properly. In other words, the shortened isAdolescent method does

indeed return true whenever age is less than or equal to 100.

06-M4402.indd 22606-M4402.indd 226 12/17/07 4:20:44 PM12/17/07 4:20:44 PM

Apago PDF Enhancer

Are you bothered by the lack of parentheses around the return statement’s returned expression? With

statements that use a condition (if statement, while statement, etc.), the condition must be surrounded by

parentheses. With the return statement’s returned expression, the parentheses are optional. You’ll see it

both ways in industry—sometimes parentheses are included and sometimes they’re omitted.

Here’s how the isAdolescent method could be used in a calling module:

Mouse pinky = new Mouse();
. . .
if (pinky.isAdolescent() == false)
{
 System.out.println("The mouse's growth is no longer" +
 " being simulated - too old.");
}

Do you know how the above if statement can be shortened? Here’s a functionally equivalent if state-

ment with an improved condition:

if (!pinky.isAdolescent())
{
 System.out.println("The mouse's growth is no longer" +
 " being simulated - too old.");
}

The goal is to print the warning message if pinky is old (not an adolescent). If isAdolescent returns

false (indicating an old Pinky), then the if statement’s condition is true (!false evaluates to true)

and the program prints the warning message. On the other hand, if isAdolescent returns true (indi-

cating a young Pinky), then the if statement’s condition is false (!true evaluates to false) and the

program skips the warning message.

Although the shortened-version if statement might be harder to understand initially, experienced pro-

grammers would prefer it. Following that lead, we encourage you to use ! rather than == false for similar

situations.

6.13 Problem Solving with Simulation (Optional)

In our previous mouse examples, to keep the focus on OOP concepts rather than mouse growth details, we

used a simplistic growth formula. In this section we show you how to simulate growth in a way that is much

closer to the kind of growth that occurs in the real world. Then we show you a simple trick that can be ap-

plied to many simulation problems to greatly improve the program’s speed and accuracy.

Previously, we modeled growth by assuming that added weight is proportional to weight, like this:

addedWeight � fractionGrowthRate � weight

where

fractionGrowthRate � .01 � percentGrowthRate

This kind of growth makes weight increase exponentially and continue to curve upward in time, as indi-

cated by Figure 6.16. This is a good approximation for a young plant or animal, where most of the ingested

food energy goes into new growth.

 6.13 Problem Solving with Simulation (Optional) 227

06-M4402.indd 22706-M4402.indd 227 12/17/07 4:20:45 PM12/17/07 4:20:45 PM

Apago PDF Enhancer

228 Chapter 6 Object-Oriented Programming

Maturation

But there’s a problem with the exponential growth model. Nothing keeps growing forever! After a while,

old tissue starts to die, and some of the ingested nutrients must be used to replace the old tissue instead of

just adding to it. This slows the growth. As a larger fraction of ingested nutrients go into replacement, the

growth curve straightens out, begins to bend the other way, and approaches a maximum. The easiest way to

modify the basic exponential growth formula to make it describe maturation is to multiply by another factor

to obtain what’s called the logistic equation:

A quick inspection of this improved growth formula shows that as weight approaches maxWeight,

the quantity in parentheses on the right approaches zero, and therefore the added weight on the left ap-

proaches zero. At that point, there’s no more growth. This provides a reasonable description of an organism

reaching maturity.

Computer simulations rely on approximate mathematical models, like the model provided by the above

logistic equation. Such simulation models are sometimes good, sometimes not so good, and it’s diffi cult to

know how good they are without comparing them to actual live data. But for the current weight gain prob-

lem, we have the luxury of being able to compare the simulation model with an exact mathematical model.

Here is a closed form exact mathematical solution that determines the weight of any given time.

This formula contains a growth constant, g0, which is:

8

7

6

5

4

3

2

1

0

W
ei

g
h

t
in

 g
ra

m
s

0 0.5 1 1.5 2 2.5

Time in weeks

Figure 6.16 Exponential growth

weight

addedWeight � fractionGrowthRate � weight � �1.0 � �

maxWeight

 1.0
weight �

1.0

maxWeight

� e�(fractionGrowthRate�time+go)

 minWeight
g0 � loge � minWeight� 1.0 � maxWeight

06-M4402.indd 22806-M4402.indd 228 12/17/07 4:20:45 PM12/17/07 4:20:45 PM

Apago PDF Enhancer

You can fi nd g0 by plugging minWeight and maxWeight values into the second formula. Then fi nd weight
by plugging g0 into the fi rst formula.

Simulation

Usually an exact solution is not available, and the only way to solve a problem is with a

simulation. But for this weight gain problem, we have both. Let’s look at a program that

If you can
describe it, you
can simulate it.

Figure 6.17 Growth class that implements different ways to evaluate growth

/**
* Growth.java
* Dean & Dean
*
* This provides different ways to calculate growth.
**/

public class Growth
{
 private double startSize; // initial size
 private double endSize; // maximum size
 private double fractionGrowthRate; // per unit time

 //***

 public void initialize(double start, double end, double factor)
 {
 this.startSize = start;
 this.endSize = end;
 this.fractionGrowthRate = factor;
 } // end initialize

 //***

 public double getSize(double time)
 {
 double g0 = Math.log(startSize / (1.0 - startSize / endSize));

 return 1.0 / (1.0 / endSize +
 Math.exp(-(fractionGrowthRate * time + g0)));
 } // end getSize

 //***

 public double getSizeIncrement(double size, double timeStep)
 {
 return fractionGrowthRate *
 size * (1.0 - size / endSize) * timeStep;
 } // end getSizeIncrement
} // end class Growth

 6.13 Problem Solving with Simulation (Optional) 229

06-M4402.indd 22906-M4402.indd 229 12/17/07 4:20:45 PM12/17/07 4:20:45 PM

Apago PDF Enhancer

230 Chapter 6 Object-Oriented Programming

displays time, the exact solution, and the simulated solution together. See the program’s Growth class in

Figure 6.17.

The Growth class has three instance variables, startSize, endSize, and fractionGrowthRate,

 and three methods. The initialize method initializes the three instance variables. The getSize

method uses the closed form mathematical solution formula provided earlier. It returns the size (e.g., current

mouse weight) at the given time. Notice that this method’s name starts with “get,” so it looks like the name

of an accessor method, and it returns a double value just like our previous getWeight method does. But

this class does not have any instance variable called “size.” So here’s an example of a method that is not

really an accessor like the accessors described in Section 6.12, even though its name makes it look like an

accessor. The point is: any method can return a value, not just an accessor method, and any method can have

any name that seems appropriate—getSize is simply the most appropriate name we could think of for this

method that computes and returns a size.

The getSizeIncrement method implements one simulation step. It returns the change in size be-

tween the current time and the next time. Notice that the getSize and getSizeIncrement methods do

different things. The fi rst one gives the answer directly. The second one gives an incremental value which

must be added to a previous answer to get the next answer.

If you are writing your own class and you want to model the growth of one of your class’s entities, you

could copy and paste the Growth class’s variables and methods into your class. Alternatively, you could

delegate the work to a Growth class object just like you delegate work to Scanner class objects. To do

this, use new to instantiate a Growth object, initialize it with the growth-related data in your object, and

then ask the Growth object to solve the growth problem for you by calling its getSize or getSize-
Increment method. In your program, you could use code like that in the main method of the Growth-
Driver class in Figure 6.18.

This driver class may seem imposing, but it’s not diffi cult. We start by declaring and initializing local

variables, and this includes instantiating and initializing a Growth object. Then we ask the user to provide

a time increment and the total number of time increments. Finally, we use a for loop to print time, the exact

solution, and the simulated solution for each time step. If you run the program composed of the code in Fig-

ures 6.17 and 6.18 you’ll get this result:

Sample session:

Enter time increment: 1
Enter total time units to simulate: 15
 exact simulated
time size size
 0.0 1.0 1.0
 1.0 2.6 2.0
 2.0 6.4 3.9
 3.0 13.6 7.3
 4.0 23.3 13.3
 5.0 31.7 22.2
 6.0 36.5 32.1
 7.0 38.6 38.4
 8.0 39.5 39.9
 9.0 39.8 40.0
10.0 39.9 40.0

06-M4402.indd 23006-M4402.indd 230 12/17/07 4:20:46 PM12/17/07 4:20:46 PM

Apago PDF Enhancer

11.0 40.0 40.0
12.0 40.0 40.0
13.0 40.0 40.0
14.0 40.0 40.0
15.0 40.0 40.0

6.13 Problem Solving with Simulation (Optional) 231

Figure 6.18 GrowthDriver class that demonstrates the Growth class in Figure 6.17

/**
* GrowthDriver.java
* Dean & Dean
*
* This compares exact and simulated solutions for growth.
**/

import java.util.Scanner;

public class GrowthDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 double timeStep;
 double timeMax;
 Growth entity = new Growth();
 double startSize = 1.0; // weight in grams
 double endSize = 40.0; // weight in grams
 double fractionGrowthRate = 1.0; // per unit time
 double size = startSize;

 entity.initialize(startSize, endSize, fractionGrowthRate);
 System.out.print("Enter time increment: ");
 timeStep = stdIn.nextDouble();
 System.out.print("Enter total time units to simulate: ");
 timeMax = stdIn.nextDouble();
 System.out.println(" exact simulated");
 System.out.println("time size size");

 for (double time=0.0; time<=timeMax; time+=timeStep)
 {
 System.out.printf("%4.1f%8.1f%8.1f\n",
 time, entity.getSize(time), size);
 size += entity.getSizeIncrement(size, timeStep);
 } // end for
 } // end main
} // end class GrowthDriver

Instantiate Growth object.

Initialize

Growth

object.

06-M4402.indd 23106-M4402.indd 231 12/17/07 4:20:46 PM12/17/07 4:20:46 PM

Apago PDF Enhancer

232 Chapter 6 Object-Oriented Programming

Figure 6.19 shows what this data looks like in a two-dimensional plot. Alas, the simulated solution

doesn’t agree very well with the exact solution. It doesn’t rise quickly enough, and then it overshoots. The

reason for this error is actually quite simple. Each size increment is based on the size at the beginning of

the increment. But as time passes, the actual size changes, so for all but the fi rst instant in the increment the

calculation is using old data.

The most straightforward way to fi x this accuracy problem is to use a smaller time step. With this simu-

lation algorithm, the error is proportional to the size of the time step. If you cut the time step in half, this cuts

the error in half, if you divide the time step by 10, this divides the error by 10, and so on. In the above output,

at four weeks the exact solution says the size is 23.3 grams, but the simulation says it’s only 13.3 grams.

That’s an error of 23.3 � 13.3 � 10 grams. If we want to reduce this error to less than 1 gram, we need to

reduce the time step by a factor of about 10.

If you don’t know the exact solution, how do you know your error? Here’s a rule of thumb: If you want

less than 1% error, make sure the size increment in each time step is always less than about 1% of the aver-

age size in that time interval.

This simple algorithm works fi ne for simple problems. But if you have a tough problem, some things

may be sensitive to very small errors, and you may have to take a very large number of very small steps.

This might take more time than you can stand. There’s also a more insidious problem. Even a double num-

ber has limited precision, and when you process many numbers, round-off errors can accumulate. In other

words, as you make step sizes smaller, errors initially decrease, but eventually they begin to increase again.

Improved Accuracy and Effi ciency Using a Step-with-Midpoint Algorithm3

There’s a better way to improve accuracy. It’s based on a simple principle: Instead of us-

ing the condition(s) (e.g., weight) at the beginning of the interval to estimate the change(s)

during the interval, use the condition(s) in the middle of the interval to estimate the

change(s) during the interval. But how can you know the conditions in the middle of the interval until you

get there? Send out a “scouting party”! In other words, make a tentative half-step forward, and evaluate the

45

40

35

30

25

20

15

10

5

0

W
e

ig
h

t
in

 g
ra

m
s

0 2 4 6 8 10 12 14 16

Time in weeks

Figure 6.19 Simulated solution with time increment = 1 (solid) compared to exact solution (dashed)

Remove bias.

3 The formal name for this algorithm is: “Second-order Runge-Kutta.”

06-M4402.indd 23206-M4402.indd 232 12/17/07 4:20:46 PM12/17/07 4:20:46 PM

Apago PDF Enhancer

conditions there. Then go back to the beginning and use the condition(s) at the midpoint to determine what

the change(s) will be in a full step forward.

At fi rst, this might sound like a hard way to do an easy thing. Why not just cut the step size in half and

take two small steps forward? The qualitative answer is: That still leaves a regular bias toward old data. The

quantitative answer is: If you use a step-with-midpoint algorithm for your simulation, the size of the error is

proportional to the square of the size of the time step. That means that if you reduce the full-step size by a

factor of 100, the error goes down by a factor of 10,000. In other words, you can get an extra factor-of-100

accuracy by increasing the computer’s work by only a factor of 2.

But what about the work you do? How much harder is it to implement a step-with-midpoint algorithm?

Not much. All you have to do is add one simple method. Specifi cally, to the Growth class in Figure 6.17,

just add the getSizeIncrement2 method shown in Figure 6.20.

Figure 6.20 Method that implements step-with-midpoint algorithm

Add this method to the code in Figure 6.17 to improve simulation accuracy and effi ciency.

public double getSizeIncrement2(double sizeCopy, double timeStep)
{
 sizeCopy += getSizeIncrement(sizeCopy, 0.5 * timeStep);
 return getSizeIncrement(sizeCopy, timeStep);
} // end getSizeIncrement2

No prefi x necessary since getSizeIncrement

and getSizeIncrement2 are in the same class.

How does this little method work? It simply calls the original getSizeIncrement method two

times. Notice that the sizeCopy parameter in Figure 6.20 is just a copy of the size variable in the driver

class. The fi rst call to getSizeIncrement uses the size at the beginning of the time increment, and it

goes only half a time step forward. Then, it uses the returned value to increment sizeCopy to the size at

the midpoint. The second call to getSizeIncrement uses this computed midpoint size and a full time

step to determine the change from the beginning to the end of the full time interval.

Within the getSizeIncrement2 method defi nition, note the calls to getSizeIncrement. There’s

no reference variable dot prefi x at the left of getSizeIncrement. Here’s why: If you call a method that’s

in the same class as the current class, then you can call the method directly, with no reference variable dot

prefi x.

The work required to modify the driver is negligible. All you have to do is change the name of the

method called to the name of the new method. In our case, all you have to do is change the last statement in

the driver in Figure 6.18 to this:

size += entity.getSizeIncrement2(size, timeStep);

Figure 6.21 shows what the improved algorithm produces with a full step size equal to the step size

used for Figure 6.19. This takes twice as much computer time as what’s in Figure 6.19, but it’s clearly much

This appended ‘2’ is the only difference!

6.13 Problem Solving with Simulation (Optional) 233

06-M4402.indd 23306-M4402.indd 233 12/17/07 4:20:47 PM12/17/07 4:20:47 PM

Apago PDF Enhancer

234 Chapter 6 Object-Oriented Programming

more than twice as good. For example, at 4 weeks the error is now only 1.5 grams, instead of the previous

10 grams.

Summary

An object is a group of related data which identifi es the current condition or state of the object plus the

methods that describe the behavior of that object.

Objects are instances of the classes which defi ne them. A class defi nition specifi es the instance vari-

ables an object of that class contains, and it defi nes the methods an object of that class may call. Each

object contains its own copy of the instance variables its class defi nes, and a given instance variable

generally has different values in different objects.

Use the private access modifi er to specify that a particular variable is encapsulated or hidden. Use

the public access modifi er to make methods accessible to the outside world.

To make a class as general as possible, drive it from a main method in a separate “driver” class. In the

driver’s main method, declare a reference variable of the driven class’s type. Then, use Java’s keyword

new to instantiate an object of the driven class, and initialize the reference variable with the object ref-

erence returned by new.

Use Java’s keyword this to refer to the calling object from within one of that object’s methods. Use

this to distinguish an instance variable from a same-named parameter or local variable.

When you trace an object-oriented program, you need to keep track of which class you’re in, which

method you’re in, which object called that method, parameter and local variable names, and the names

of all instance variables in each object.

A UML class diagram has separate boxes for the class name, a description of the class’s variables, and

headings for the class’s methods. Use a “+” prefi x for public and a “-” prefi x for private. Specify

variable and method return types and non-default initial values.

Instance variable default values are zero for numbers, false for boolean values, and null for ref-

erences. Instance variable values persist for the life of their object. Local variable default values are

undefi ned garbage. Local variables and parameters persist for as long as their method is being executed,

and after that, their values are undefi ned.

•

•

•

•

•

•

•

•

45

40

35

30

25

20

15

10

5

0

W
e

ig
h

t
in

 g
ra

m
s

0 5 10 15

Time in weeks

Figure 6.21 Step-with-midpoint simulated solution with time increment = 1 (solid) compared to exact solution

(dashed)

06-M4402.indd 23406-M4402.indd 234 12/17/07 4:20:48 PM12/17/07 4:20:48 PM

Apago PDF Enhancer

Unless a method’s return type is void, every path through the method must end with a statement that

returns a value of the method’s type.

A method’s parameter must have the same type as the method call’s argument. What the method gets

is a copy of what is in the calling program, so changing a parameter in a method does not change the

calling program’s value.

Use setX and getX methods to modify and retrieve private instance variable values. Include fi lter-

ing in setX methods to protect your program from bad input. Use boolean isX methods to return

true or false depending on the value of some condition.

Optionally improve simulation speed and accuracy by computing the next increment with values deter-

mined half way between that increment’s starting and ending points.

Review Questions

§6.2 Object-Oriented Programming Overview

 1. A class is an instance of an object. (T / F)
 2. How many objects may there be within a single class?

§6.3 First OOP Class

 3. A class’s instance variables must be declared outside of all , and all instance variable declarations
should be located at the .

 4. Methods accessible from outside a class are public, but instance variables (even those that an outsider
may need to change or read) are usually private. Why?

§6.4 Driver Class

 5. Where does main go—in the driver class or in one of the driven classes?
 6. When a program has both driver and driven classes, where should most of the program code reside?
 7. How do you retrieve a private instance variable’s value from within a main method?
 8. A reference variable holds the of an object.

§6.5 Calling Object, this Reference

 9. An instance method might contain a statement like this.weight = 1.0; but if that method’s class
currently has fi ve instantiated objects, there are fi ve different variables called weight. How can we
determine which one is getting the new value?

§6.6 Instance Variables

 10. What are the default values for int, double, and boolean for an object’s instance variables?
 11. In the Mouse program of Figures 6.4 and 6.5, what is the persistence of gus’s age variable?

§6.8 UML Class Diagrams

 12. After a program is written, a UML class diagram provides a brief outline of each class in the program. It
helps other people see what methods are available and what arguments they need. Give some reasons why
it might be helpful to have an already created class diagram in front of you while you are implementing the
class and writing its methods .

§6.9 Local Variables

 13. Assume the main method in Mouse2Driver had started more simply with only Mouse mickey; What
would be the value of mickey immediately after this statement?

§6.10 The return Statement

 14. Usually, the use of multiple return statements leads to code that is more understandable. (T / F)

•

•

•

•

 Review Questions 235

06-M4402.indd 23506-M4402.indd 235 12/17/07 4:20:48 PM12/17/07 4:20:48 PM

Apago PDF Enhancer

236 Chapter 6 Object-Oriented Programming

§6.11 Argument Passing

 15. How is a method parameter like a local variable, and how do they differ?
 16. What is the relationship and difference between a method argument and a method parameter?

§6.12 Specialized Methods—Accessors, Mutators, Boolean Methods

 17. What is the standard prefi x for an accessor method?
 18. What is the standard prefi x for a mutator method?
 19. What is the standard prefi x for a Boolean method?

§6.13 Problem Solving with Simulation (Optional)

 20. Identify two general ways to reduce the size of the error in a simulation. For a given accuracy, which way is
more effi cient?

Exercises

 1. [after §6.2] Suppose you are asked to model plants using an OOP program. For each of the following plant-
related entities, specify the most appropriate item to use for its implementation. For each entity, select one
of the following: instance variable, object, method, or class.
 a) plant height
 b) sequence of activities that occur when a seed germinates
 c) an indication of whether the plant contains a vascular system
 d) an individual plant

 2. [after §6.3] In Java, how do you encapsulate an instance variable?

 3. [after §6.4] Describe the relationship between the main method and driver and driven classes. Give an
example of a class that runs by itself and does not need a separate driver.

 4. [after §6.4] Wrapper objects: The wrapper classes discussed in Chapter 5 also provide you with the ability
to instantiate objects that are wrapped versions of primitive variables. For example, to create a wrapped
version of the double number x, you can do this:

double x = 55.0;
Double xWrapped = new Double(x)

 This instantiates an object of type Double, which is a wrapped version of the primitive variable, x.
Then it assigns a reference to that object to the reference variable, xWrapped. The Double class has a
number of pre-built methods that work with Double objects. You can read about these methods in Sun’s
documentation on the Double class. The following program illustrates some of these methods.

/***
* Wrapper.java
* Dean & Dean
*
* This program exercises some wrapped primitive numbers.
***/

public class Wrapper
{
 public static void main(String[] args)
 {
 double x = 44.5;
 double y = 44.5;

06-M4402.indd 23606-M4402.indd 236 12/17/07 4:20:49 PM12/17/07 4:20:49 PM

Apago PDF Enhancer

 Double xW = new Double(x); // the object: wrapped x
 Double yW = new Double(y); // the object: wrapped y

 System.out.println("object == object? " + (xW == yW));
 System.out.println("value == value? " +
 (xW.doubleValue() == yW.doubleValue()));
 System.out.println(
 "object.equals(object)? " + xW.equals(yW));
 System.out.println("object.compareTo(object)? " +
 xW.compareTo(yW));

 yW = new Double(y + 3.0);
 System.out.println("object.compareTo(largerObject)? " +
 xW.compareTo(yW));

 yW = new Double(Double.NEGATIVE_INFINITY);
 System.out.println("-infinity isInfinite()? " +
 yW.isInfinite());
 } // end main
} // end Wrapper class

 Compile and run this program, and display the output. Read about the Double class in Sun’s
documentation, and explain why each of the outputs comes out the way it does.

 5. [after §6.4] Suppose you have a Town class that describes the demographics of small towns. The vital
statistics described by this class are numberOfAdults and numberOfChildren. These vital statistics
are encapsulated and not directly accessible from outside the class.

 a) Write the following methods for class Town:
 i. An initialize method that establishes initial values of instance variables. Assume that

 initialize gathers all the data it needs by prompting for and inputting values from a user.
 ii. A simulateBirth method that simulates the birth of one child.
 iii. A printStatistics method that prints out the current vital statistics.

 b) Write a main method for a separate driver class that does the following:
 i. Creates a town named newHome
 ii. Calls initialize to establish initial values of instance variables for newHome.
 iii. Simulates the birth of a pair of twins.
 iv. Prints out newHome’s vital statistics.

 6. [after §6.7] Given this PcDesign program:

 1 /**
 2 * PcDesignDriver.java
 3 * Dean & Dean
 4 *
 5 * This exercises the PcDesign class.
 6 **/
 7
 8 public class PcDesignDriver
 9 {
10 public static void main(String[] args)
11 {
12 PcDesign myPc = new PcDesign();

 Exercises 237

06-M4402.indd 23706-M4402.indd 237 12/17/07 4:20:49 PM12/17/07 4:20:49 PM

Apago PDF Enhancer

238 Chapter 6 Object-Oriented Programming

13 myPc.assignRamSize();
14 myPc.assignDiskSize();
15 myPc.assignProcessor();
16 myPc.calculateCost();
17 myPc.printSpecification();
18 } // end main
19 } // end class PcDesignDriver

 1 /***
 2 * PcDesign.java
 3 * Dean & Dean
 4 *
 5 * This class collects specifications for a PC.
 6 ***/
 7
 8 import java.util.Scanner;
 9
10 public class PcDesign
11 {
12 private long ramSize = (long) 1000000000.0;
13 private long diskSize;
14 private String processor;
15 private double cost;
16
17 //**
18
19 void assignRamSize()
20 {
21 this.ramSize = (long) 2000000000.0;
22 } // end assignRamSize
23
24 //**
25
26 void assignDiskSize()
27 {
28 Scanner stdIn = new Scanner(System.in);
29 long diskSize;
30 diskSize = stdIn.nextLong();
31 } // end assignDiskSize
32
33 //**
34
35 void assignProcessor()
36 {
37 Scanner stdIn = new Scanner(System.in);
38 this.processor = stdIn.nextLine();
39 } // end assignProcessor
40
41 //**
42

06-M4402.indd 23806-M4402.indd 238 12/17/07 4:20:49 PM12/17/07 4:20:49 PM

Apago PDF Enhancer

43 void calculateCost()
44 {
45 this.cost = this.ramSize / 10000000.0 +
46 this.diskSize / 100000000.0;
47 if (this.processor.equals("Intel"))
48 {
49 this.cost += 400;
50 }
51 else
52 {
53 this.cost += 300;
54 }
55 } // end calculateCost
56
57 //**
58
59 public void printSpecification()
60 {
61 System.out.println("RAM = " + this.ramSize);
62 System.out.println("Hard disk size = " + this.diskSize);
63 System.out.println("Processor = " + this.processor);
64 System.out.println("Cost = $" + this.cost);
65 } // end printSpecification
66 } // end class PcDesign

 Use the following trace setup to trace the PC-design program. Note that we have used abbreviations to keep
the trace setup’s width as small as possible. Don’t forget to specify default and initial values even if they
don’t impact the fi nal result.

input

60000000000
Intel

Driver PcDesign

line#

main

line#

aRSize assignDiskSize aProc cCostprintS obj1

myPc this this diskSize this this this ramSize dSize proc cost output

 7. [after §6.8]The answer to this exercise is not in the book—you’ll need to look elsewhere. Who are UML’s
“Three Amigos”?

 8. [after §6.8] Construct a UML class diagram for fi les in a computer directory. The class name should be
File. Include the following methods: public String getName(), public long length(), and
public boolean isHidden(). Also include the instance variable associated with the fi rst of these
methods. Include indication of whether the member is public or private and the type of the return
value or variable. A File class already exists as part of the Java language, and this class also has many
other methods, but the API library documentation for this class does not show any instance variables. Does
that mean this class has no instance variables?

 9. [after §6.9] If an object calls the same method two separate times, in the second execution, the method’s
local variables begin with the values they had at the end of the previous execution of that method. (T / F)

 Exercises 239

06-M4402.indd 23906-M4402.indd 239 12/17/07 4:20:49 PM12/17/07 4:20:49 PM

Apago PDF Enhancer

240 Chapter 6 Object-Oriented Programming

 10. [after §6.9] Trace the Mouse2 program shown in Figures 6.13 and 6.14. Use the following trace setup. Note
that we have used abbreviations to keep the trace setup’s width as small as possible.

input

2

Mouse2Driver Mouse

line#

main

line#

setPGR getAge getWt grow obj1

mickey days this rate this this this days i age wt rate output

 11. [after §6.11] The diagram below shows Mouse2 program methods, with their parameters and local variables
indented, and the one instantiated object, with its instance variables indented. Your task is to construct a
time line for each method, local variable or parameter, object, and instance variable. Each time line should
show that item’s persistence (when it starts and ends) relative to the other items. To help you get started we
have provided the time lines for the main method and one of its local variables. Provide all the other time
lines, and show how they align with each other and those already provided. (Assume that the object and its
instance variables come into existence simultaneously.)

 time →
methods:
 main |------------------------|
 mickey |-----------------------|
 days
 setPercentGrowthRate
 getAge
 getWeight
 grow
 days
 i
object:
 mickey
 age
 weight
 percentGrowthRate

 12. [after §6.12] Complete the following StudentIdDriver class skeleton by replacing all six occurrences
of <insert-code-here> with your own code such that the program operates properly. For details, read the
comments above or next to the <insert-code-here> insertions. Note the StudentId class, which is below
the StudentIdDriver class. The two classes are in separate fi les.

import java.util.Scanner;

public class StudentIdDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 StudentId student;

06-M4402.indd 24006-M4402.indd 240 12/17/07 4:20:50 PM12/17/07 4:20:50 PM

Apago PDF Enhancer

 String name;
 // Instantiate StudentId object and assign it to student.
 <insert-code-here>

 System.out.print("Enter student name: ");
 name = stdIn.nextLine();

 // Assign name to the student object.
 <insert-code-here>

 System.out.print("Enter student id: ");
 // In a single line, read an int for the id value,
 // and assign it to the student object.
 <insert-code-here>

 // If invalid id, execute the loop.
 // (Use the isValid method in the while loop condition.)
 while (<insert-code-here>)
 {
 System.out.print("Invalid student id - reenter: ");
 // In a single line, read an int for the id value
 // and assign it to the student object.
 <insert-code-here>
 }

 System.out.println("\n" + name +
 ", your new e-mail account is: \n" +
 <insert-code-here> // Get email account.
 } // end main
} // end class StudentIdDriver

public class StudentId
{
 private String name;
 private int id;

 //***

 public void setName(String n)
 {
 this.name = n;
 }

 public String getName()
 {
 return this.name;
 }

 Exercises 241

06-M4402.indd 24106-M4402.indd 241 12/17/07 4:20:50 PM12/17/07 4:20:50 PM

Apago PDF Enhancer

242 Chapter 6 Object-Oriented Programming

 public void setId(int id)
 {
 this.id = id;
 }

 public int getId()
 {
 return this.id;
 }

 //***

 public String getEmailAccount()
 {
 // Include "" in concatenation to convert to strings.
 return "" + this.name.charAt(0) + this.id +
 "@pirate.park.edu";
 }

 //***

 public boolean isValid()
 {
 return this.id >= 100000 && this.id <= 999999;
 }
} // end class StudentId

 13. [after §6.13] Construct a UML class diagram for the Growth class in Figure 6.17, with the
getSizeIncrement2 method of Figure 6.20 included.

Review Question Solutions

 1. False. An object is an instance of a class.
 2. Any number, including zero.
 3. A class’s instance variables must be declared outside of all methods, and all instance variable declarations

should be located at the top of the class defi nition.
 4. Instance variables are usually private to further the goal of encapsulation. That means an object’s data

is harder to access, and, consequently, harder to mess up. The only way for the data to be accessed from
outside of the class is if the data’s associated public methods are called.

 5. The main method goes in the driver class.
 6. Most of a program’s code should be in driven classes.
 7. To access a private instance variable from within a main method, you have to use an instantiated

object’s reference variable and then call an accessor method. In other words, use this syntax:
‹reference-variable›.‹accessor-method-call›

 8. A reference variable holds the memory location of an object.
 9. Go back to where the method was called, and look at the reference variable which precedes the method

name at that point. That reference variable is the one that the method uses whenever this is used.

06-M4402.indd 24206-M4402.indd 242 12/17/07 4:20:50 PM12/17/07 4:20:50 PM

mailto:"@pirate.park.edu

Apago PDF Enhancer

 10. For an object’s instance variables, the default values are: int = 0, double = 0.0, boolean =
false.

 11. gus’s age is an instance variable. Instance variables persist for the duration of a particular object. Since
the gus object is declared in main, gus and its instance variables (including age) persist for the duration
of the main method.

 12. Some reasons to construct a UML class diagram before writing code:
 a) It provides a complete “to do” list. When you are into the details of writing one method, and wondering

whether that method should perform a particular function, the diagram reminds you of what other meth-
ods might be able to perform that function.

 b) It provides a complete “parts list,” like the parts list of a typical user-assembled “kit.” This pre-defined
list helps you avoid accidentally generating different and conflicting names for variables and parameters
as you write your code.

 c) It’s a working document that can change as work progresses. Changing the UML class diagram helps
identify needed alterations to previous work.

 13. Immediately after the statement Mouse mickey; the value of mickey would be garbage.
 14. False. Normally, for a method that returns a value, you should have a single return statement at the end of

the method. However, it’s also legal to have return statements in the middle of a method. That might be
appropriate in a very short method, where an internal return is immediately obvious. If the method is
relatively long, however, a reader might not notice an internal return. With a large method, it’s better
practice to arrange things so that there is only one return, located at the end of the method.

 15. Parameters and local variables both have method scope and persistence. The code inside the method treats
parameters just like it treats local variables. The method initializes the local variables, while the method
call initializes the parameters.

 16. Arguments and parameters are two different words describing data that passes into a called method. An
arguments is the method call’s name for the data, and a parameter is the method’s name for the same data.
A parameter is just a copy of the method call’s argument, however, so if the called method changes the
value of one if its parameters, this does not alter the value of the method call’s argument.

 17. The standard prefi x for an accessor method is get.
 18. The standard prefi x for a mutator method is set.
 19. The standard prefi x for a Boolean method is is.
 20. To reduce the error in a simulation, you can reduce step size or switch to a step-with-midpoint algorithm.

For a given accuracy, the step-with-midpoint algorithm is more effi cient.

 Review Question Solutions 243

06-M4402.indd 24306-M4402.indd 243 12/17/07 4:20:50 PM12/17/07 4:20:50 PM

Apago PDF Enhancer

06-M4402.indd 24406-M4402.indd 244 12/17/07 4:20:51 PM12/17/07 4:20:51 PM

Apago PDF Enhancer

0.0 Last A-Head 245

C H A P T E R

245

Object-Oriented Programming—

Additional Details

Objectives

Improve your understanding of the relationship between a reference variable and an object.

Learn what happens when you assign a reference.

Learn how Java recycles memory space.

Learn how to compare the equality of two different objects.

Be able to swap the data in two different objects.

See how a reference parameter can enhance data transfer to and from a called method.

Learn how to execute a sequence of several method calls in the same statement.

Learn how to create alternative variations for a method.

Learn how to combine object creation and initialization in a constructor.

Learn how to avoid code redundancy by nesting method and constructor calls.

Learn how to partition a large problem into several smaller problems with multiple driven classes.

Outline

 7.1 Introduction

 7.2 Object Creation—A Detailed Analysis

 7.3 Assigning a Reference

 7.4 Testing Objects for Equality

 7.5 Passing References as Arguments

 7.6 Method-Call Chaining

 7.7 Overloaded Methods

 7.8 Constructors

 7.9 Overloaded Constructors

 7.10 Problem Solving with Multiple Driven Classes

•
•
•
•
•
•
•
•
•
•
•

7

07-M4402.indd 24507-M4402.indd 245 12/17/07 4:21:19 PM12/17/07 4:21:19 PM

Apago PDF Enhancer

246 Chapter 7 Object-Oriented Programming—Additional Details

7.1 Introduction

In Chapter 6, you learned to write simple object-oriented programming (OOP) programs using simple OOP

building blocks. In this chapter, you learn to write more advanced OOP programs using more advanced OOP

concepts. In particular, you learn the details of what happens behind the scenes when a program instantiates

an object and stores its address in a reference variable. That will help you to appreciate and understand what

happens when a program assigns one reference variable to another.

One of the OOP concepts you learn about in this chapter is testing objects for equality. It’s common to

compare primitives for equality (for example, if (team1Score == team2Score)), and likewise, it’s

common to compare references for equality. Comparing references for equality requires a bit more effort,

and in this chapter, you learn what that effort entails. Another concept you learn about is what happens be-

hind the scenes when a program passes a reference as an argument. That’s important to know because you’ll

often need to pass references as arguments.

In addition to presenting more advanced OOP concepts, this chapter also presents more advanced

 applications of what you already know in regard to OOP. For example, you learn to call several methods in

succession, all within one statement. That’s called method-call chaining, and it can lead to more compact

and more elegant code. You also learn about method overloading. That’s when you have different versions

of a method and each version operates on different kinds of data. That should sound familiar because you

saw it with the Math class. Remember the two versions of the Math.abs method? One version returns the

absolute value of a double, and one version returns the absolute value of an int.

In the previous chapter, you learned how to instantiate an object in one statement (for example,

Mouse gus = new Mouse();) and assign a value to the object in a separate statement (for example,

gus. setPercentGrowthRate(10);). In this chapter you learn how to combine those two tasks into

one statement. To do that, you’ll use a special kind of method called a constructor. Like methods, construc-

tors can be overloaded by using different types of data for the different constructor versions. But unlike

methods, constructors are designed specifi cally for object creation and initialization.

In a fi nal problem-solving section, you learn how to partition large programming problems into several

smaller and simpler problems by using multiple driven classes. As this text progresses, the size and com-

plexity of problems gradually increases, and you’ll see more and more examples of programs with multiple

driven classes.

7.2 Object Creation—A Detailed Analysis

Let’s start the chapter with a behind-the-scenes detailed look at what happens when a program instantiates

an object and stores its address in a reference variable. Having a clear understanding will help when it comes

time to understand other OOP operations, and it will help with some debugging efforts.

Consider the following code fragment:

Car car1;

car1 = new Car();
car1.year = 1998;

reference variable declaration

object instantiation

assign 1998 to car1’s year instance variable

07-M4402.indd 24607-M4402.indd 246 12/17/07 4:21:21 PM12/17/07 4:21:21 PM

Apago PDF Enhancer

Let’s now examine this code in detail one statement at a time.

Statement 1:

The fi rst statement is a variable declaration for the car1 reference variable. It allocates space in

memory for the car1 reference variable—just the reference variable itself, not an object. Eventually,

the car1 reference variable will hold the address of an object, but since there’s no object created

for it yet, it doesn’t yet hold a legitimate address. What’s the default value for a reference variable? It

depends. If the reference variable is defi ned locally within a method (that is, it’s a local variable), then

it gets garbage initially. If it’s defi ned at the top of a class, above all the method defi nitions (that is,

it’s an instance variable), then it gets initialized to null. Since Statement 1 doesn’t have an access

modifi er (private), we can assume it’s a local variable. So car1 will contain garbage by default,

and that’s what this picture indicates:

car1 ?

reference

Statement 2:

The second statement’s new operator allocates space in memory for a new Car object. The assignment

operator assigns the address (memory location) of the allocated space to the car1 reference variable.

Don’t forget this operation. Forgetting to instantiate is a common beginner’s error.

reference

car1

object

make

year

color

nul1

0

nul1

Statement 3:

The third statement uses the car1 variable’s value (the address of a Car object) to fi nd a particular

Car object in memory. Once that Car object is found, 1998 is assigned into it. More specifi cally, 1998

is assigned into the year instance variable portion of that Car object. Normally, we’d use a method to

assign 1998 into car1’s year instance variable. In the interest of simplifi cation for clarity’s sake, we

avoided the method call by assuming that year is a public instance variable.

objectreference

car1 make

year

color

nul1

1998

nul1

 7.2 Object Creation – A Detailed Analysis 247

07-M4402.indd 24707-M4402.indd 247 12/17/07 4:21:22 PM12/17/07 4:21:22 PM

Apago PDF Enhancer

248 Chapter 7 Object-Oriented Programming—Additional Details

7.3 Assigning a Reference

The result of assigning one reference variable to another is that both reference variables then refer to the

same object. Why do they refer to the same object? Since reference variables store addresses, you’re actu-

ally assigning the right-side reference variable’s address into the left-side’s reference variable. So after the

assignment, the two reference variables hold the same address, and that means they refer to the same object.

With both reference variables referring to the same object, if the object is updated using one of the reference

variables, then the other reference variable will benefi t (or suffer) from that change when it attempts to ac-

cess the object. Sometimes, that’s just what you want, but if it’s not, it can be disconcerting.

An Example

Suppose you want to create two Car objects that are the same except for their color. Your plan is to instanti-

ate the fi rst car, use it as a template when creating the second car, and then update the second car’s color
instance variable. Will this code accomplish that?

Car johnCar = new Car();
Car stacyCar;
johnCar.setMake("Honda");
johnCar.setYear(2003);
johnCar.setColor("silver");
stacyCar = johnCar;
stacyCar.setColor("peach");

The problem with the above code is that the stacyCar = johnCar; statement causes the two refer-

ences to point to the same single Car object. Figure 7.1a illustrates what we’re talking about.

Later, we’ll see that this aliasing (using different names for the same object) can be quite useful, but

in this case, it’s not what we wanted. In the last statement in the code fragment above, when we use the

setColor method to change Stacy’s car to “peach,” we’re not specifying the color for a new car. What

we’re doing is repainting the original car. Figure 7.1a depicts the result. Uh oh . . . John may not be pleased

to fi nd his car repainted to peach!

Figure 7.1a Effect of assignment: stacyCar = johnCar;

Both reference variables refer to exactly the same object.

stacyCar

johnCar

object

"Honda"

2003

make

year

color "silver" "peach"

This makes stacyCar refer to

the same object as johnCar.

If you want to make a copy of a reference variable, you should not assign the reference to another refer-

ence. Instead, you should instantiate a new object for the second reference and then assign the two objects’

instance variables one at a time. Figure 7.1b shows what we’re talking about.

07-M4402.indd 24807-M4402.indd 248 12/17/07 4:21:22 PM12/17/07 4:21:22 PM

Apago PDF Enhancer

To illustrate the strategy outlined in Figure 7.1b, we present the Car program in Figures 7.2 and 7.3.

The code includes line numbers to facilitate tracing in an end-of-chapter exercise. Look at the makeCopy

method in the Car class in Figure 7.2. As its name implies, that’s the method that’s in charge of making a

copy of a Car object. The makeCopy method instantiates a new Car object and assigns its reference to

a local variable named car. Then it copies each of the calling object’s instance variable values into car’s

instance variables. Then it returns car to the calling module. By returning car, it returns a reference to the

newly instantiated Car object.

Now look at the driver in Figure 7.3. Note how main assigns makeCopy’s returned value to

 stacyCar. After stacyCar gets the reference to the newly created Car object, it calls setColor

to change the Car object’s color. Since stacyCar and johnCar refer to two separate objects, the

stacyCar.setColor("peach") method call updates only the stacyCar object, not the johnCar

object. Yeah!

Whenever a method fi nishes, its parameters and locally declared variables are deleted. In our traces, we

represent this deletion by drawing a heavy line under all of the terminating method’s parameters and local

variables. In the makeCar method in Figure 7.2, there is one local variable, the reference variable, car.

When the makeCar method fi nishes, the car reference variable is deleted. When a reference variable is

deleted, the reference it holds is lost, and if that reference is not saved in a separate variable, the program

will have no way of fi nding the object it referred to. In the makeCar method, the car reference variable’s

value does get saved. It gets returned to main where it gets assigned to stacyCar.

Inaccessible Objects and Garbage Collection

Sometimes, you’ll want to instantiate a temporary object inside a method, use it for some purpose in that

method, and then abandon that object when the method fi nishes. At other times you may wish to abandon

an object before a method fi nishes. For example, suppose that in the main method in Figure 7.3, after call-

ing makeCopy and creating a new Car object for stacyCar, you want to model John’s old car being

destroyed in a fi re and Stacy volunteering to let him become a co-owner of her new car. You could represent

this joint ownership of one car with the statement:

johnCar = stacyCar;

make

year

color

make

year

color

stacyCar

johnCar

Figure 7.1b Effect of instantiating two separate objects and copying instance variable values from fi rst object

into instance variables of second object

johnCar = newCar();
stacyCar = new Car();

<assign johnCar instance
variables to stacyCar
instance variables>

 7.3 Assigning a Reference 249

07-M4402.indd 24907-M4402.indd 249 12/17/07 4:21:23 PM12/17/07 4:21:23 PM

Apago PDF Enhancer

250 Chapter 7 Object-Oriented Programming—Additional Details

 1 /***
 2 * Car.java
 3 * Dean & Dean
 4 *
 5 * This class implements copy functionality for a car.
 6 ***/
 7
 8 public class Car
 9 {
10 private String make; // car's make
11 private int year; // car's manufacturing year
12 private String color; // car's primary color
13
14 //**
15
16 public void setMake(String make)
17 {
18 this.make = make;
19 }
20
21 public void setYear(int year)
22 {
23 this.year = year;
24 }
25
26 public void setColor(String color)
27 {
28 this.color = color;
29 }
30
31 //**
32
33 public Car makeCopy()
34 {
35 Car car = new Car();
36
37 car.make = this.make;
38 car.year = this.year;
39 car.color = this.color;
40 return car;
41 } // end makeCopy
42
43 //**
44
45 public void display()
46 {
47 System.out.printf("make= %s\nyear= %s\ncolor= %s\n",
48 this.make, this.year, this.color);
49 } // end display
50 } // end class Car

Figure 7.2 Car class with makeCopy method that returns a reference to copy of calling object

This instantiates a new object.

This returns a reference to the new object.

07-M4402.indd 25007-M4402.indd 250 12/17/07 4:21:23 PM12/17/07 4:21:23 PM

Apago PDF Enhancer

Doing this overlays johnCar’s previous reference to John’s original Car object, and that Car object be-

comes inaccessible to the program (abandoned), like Car object #1 is in this picture:

johnCar

stacyCar Car object #2

Car object #1

1 /**
2 * CarDriver.java
3 * Dean & Dean
4 *
5 * This class demonstrates copying an object.
6 **/
7
8 public class CarDriver
9 {
10 public static void main(String[] args)
11 {
12 Car johnCar = new Car();
13 Car stacyCar;
14
15 johnCar.setMake("Honda");
16 johnCar.setYear(2003);
17 johnCar.setColor("silver");
18 stacyCar = johnCar.makeCopy();
19 stacyCar.setColor("peach");
20 System.out.println("John's car:");
21 johnCar.display();
22 System.out.println("Stacy's car:");
23 stacyCar.display();
24 } // end main
25 } // end class CarDriver

Output:

John's car:
make= Honda
year= 2003
color= silver
Stacy's car:
make= Honda
year= 2003
color= peach

Figure 7.3 CarDriver class that drives Car class in Figure 7.2

This assigns the

returned reference to a

reference variable in

the calling method.

7.3 Assigning a Reference 251

07-M4402.indd 25107-M4402.indd 251 12/17/07 4:21:23 PM12/17/07 4:21:23 PM

Apago PDF Enhancer

252 Chapter 7 Object-Oriented Programming—Additional Details

The question is, how does the Java Virtual Machine (JVM) treat abandoned or inaccessible objects?

Inaccessible objects can’t participate in the program, so there’s no need to keep them around. They become

“garbage.” In fact, it would be bad to keep them around, because they can lead to clogging up the computer’s

memory. A computer has a fi nite amount of memory, and each piece of garbage uses up some of that mem-

ory. And that means less memory is available for new tasks. If garbage is allowed to accumulate unabated,

it would eventually chew up all the free space in a computer’s memory (free space is the portion of memory

that is unused). If there’s no free space in memory, there’s no space for any new objects, and the computer

stops working (until a reboot).

If an inaccessible object is allowed to persist and use up space in a computer’s memory, that’s called

a memory leak. Memory leaks can occur in computer programs that allocate memory during execution.

When a computer language requires the programmer to do something specifi c to prevent memory leaks, and

the programmer forgets to do that, a nasty bug is born—a bug that is very hard to fi nd. In creating the Java

language, James Gosling and the good folks at Sun realized this, and they opted to make the language itself

deal with the problem. How? By going into the garbage collection business. Not what Dirk and Lenny do

when they pick up the trash at your curb every Tuesday, but Java garbage collection! Actually, James Gos-

ling didn’t invent garbage collection; it’s been around since the dawn of garbage. But Java is the fi rst popular

programming language to include it as a standard service.

So what in the heck is garbage collection? It’s when a garbage collection program searches for inac-

cessible objects and recycles the space they occupy by asking the operating system to designate their space

in memory as free space. This space might not be used right away, and some computer whiz kid might be

able to fi nd some of those old abandoned objects—like wandering through a trash dump, fi ghting off mean

dogs, and looking for furniture—but for practical purposes, you should consider those abandoned objects

unrecoverable and gone.

The beauty of Java’s automatic garbage collection is that the programmer doesn’t have to worry about

it—it just happens whenever it’s appropriate. And when is it appropriate? Whenever the computer is running

low on free space in memory or whenever nothing else is happening, such as when a program is waiting for

keyboard input. At that point, the operating system wakes up his buddy the Java garbage collector, and tells

him to go earn his keep.

7.4 Testing Objects for Equality

The previous section illustrated returning a reference from a method. This section illustrates passing a refer-

ence to a method to allow the method to read the referenced object’s data. One of the most common applica-

tions of this occurs in testing two objects for equality. Before looking at this application, it’s appropriate to

look at the simplest way to evaluate equality.

The == Operator

The == operator works the same for primitive variables and for reference variables. It tests if the values

stored in these variables are the same. When applied to reference variables, the == operator returns true if

and only if the two reference variables refer to the same object; that is, the two reference variables contain

the same address and thus are aliases for the same object. For example, what does the following code frag-

ment print?

Car car1 = new Car();
Car car2 = car1;

07-M4402.indd 25207-M4402.indd 252 12/17/07 4:21:24 PM12/17/07 4:21:24 PM

Apago PDF Enhancer

if (car1 == car2)
{
 System.out.println("the same");
}
else
{
 System.out.println("different");
}

It prints “the same” because car1 and car2 hold the same value—the address of the lone Car object.

But if you want to see if two different objects have the same instance-variable values, the == operator is not

what you want. For example, what does this code print?

Car car1 = new Car();
Car car2 = new Car();

car1.setColor("red");
car2.setColor("red");
if (car1 == car2)
{
 System.out.println("the same");
}
else
{
 System.out.println("different");
}

This code prints “different” because car1 == car2 returns false. It doesn’t matter that car1 and

car2 contain the same data (red). The == operator doesn’t look at the object’s data; it just looks at whether

the two reference variables point to the same object. In this case, car1 and car2 refer to distinct objects,

with different storage locations in memory.

The equals Method

If you want to see whether two different objects have the same characteristics, you need to compare the

contents of two objects rather than just whether two reference variables point to the same object. To do that,

you need an equals method in the object’s class defi nition that compares the two objects’

instance variables. Having such an equals method is very common since you often want

to test two objects to see whether they have the same characteristics. For Java’s API classes,

use the classes’ built-in equals methods. For example, in comparing the contents of two

strings, call the String class’s equals method. For classes that you implement yourself,

adopt the habit of writing your own equals methods.

An Example

The following diagram depicts two objects with identical instance variable values. Comparing nathanCar

to nickCar with the == operator generates false, because the two reference variables point to different

objects. However, comparing nathanCar to nickCar with a standard equals method generates true,

because a standard equals method compares instance variable values, and these two objects have identi-

cal instance variable values.

An equals
method is a
handy utility.

The car1 == car2 expression returns false. Why?

7.4 Testing Objects for Equality 253

07-M4402.indd 25307-M4402.indd 253 12/17/07 4:21:24 PM12/17/07 4:21:24 PM

Apago PDF Enhancer

254 Chapter 7 Object-Oriented Programming—Additional Details

nathanCar

nickCar

make

year

color

"Audi"

"green"

1998

make

year

color

"Audi"

"green"

1998

The Car2 program in Figures 7.4 and 7.5 illustrates this example. Figure 7.5’s Car2 class defi nes an

equals method, and Figure 7.4’s Car2Driver class calls the equals method while comparing two

Car2 objects. As is common with equals method calls, Figure 7.4’s equals method call is embedded

in the condition of an if statement. That should make sense when you realize that an if statement condi-

tion must evaluate to true or false and an equals method does indeed evaluate to true or false.

Typically, an equals method evaluates to true if the instance variables in two objects contain the same

data values, and it evaluates to false otherwise. For our Car2 program, the equals method evaluates to

true if nathanCar contains the same data (make, year, and color) as nickCar. Figure 7.4 shows

that nathanCar and nickCar are assigned the same data. Therefore, the equals method returns true

and the program prints “Cars have identical features.”

In the equals method call, note how the fi rst Car2 reference variable, nathanCar, appears at the

left of the .equals and the second Car2 reference variable, nickCar, appears inside the parentheses.

Thus, nathanCar is the calling object, and nickCar is an argument This happens a lot when using two

reference variables with a method call—one reference variable will be the calling object and the other one

will be the argument.

Let’s now examine the equals method defi nition in Figure 7.5. First, note the equals method head-

ing. Why is the return type boolean? Because the return type must match the type of the returned

value, and equals methods always return a Boolean value (either true or false). Also note that the

type of the otherCar parameter is Car2. That should make sense when you look back at the equals

method call in Figure 7.4. It shows that the argument being passed into the equals method is nickCar,

and nickCar is a Car2 reference variable.

OK, now it’s time to examine the body of the equals method. Notice that there is just one statement—

the return statement. The return value must be a boolean, so the expression after the word return

must evaluate to either true or false. This expression is an “anding” together of three boolean sub-

 expressions, each of which evaluates to either true or false. For the overall expression to be true all

three of the sub-expressions must be true.

Each sub-expression checks whether a particular instance variable has the same value in the calling ob-

ject and the passed-in parameter object. For example, to check whether the year instance variable has the

same value in the calling object and the passed-in parameter object, we do this:

this.year == otherCar.year

In this case, we use the == operator to check for equality. That works fi ne for the year instance variable

because year is an int. But the make and color instance variables are strings, and the == operator is

07-M4402.indd 25407-M4402.indd 254 12/17/07 4:21:25 PM12/17/07 4:21:25 PM

Apago PDF Enhancer

anathema to strings. We must use the equals method for strings! Thus, to check whether the make in-

stance variable has the same value in the calling object and the passed-in parameter object, we do this:

this.make.equals(otherCar.make)

Hmmm Does it strike you as odd to use the String class’s equals method inside of our Car2

class’s equals method? That’s perfectly OK—the compiler doesn’t care if two methods happen to have the

same name as long as they are in different classes. That’s part of the beauty of encapsulation!

Can you think of another way to write the body of the Car2 class’s equals method? We might have

used that boolean expression to the right of the return keyword as the condition of an if statement and

then put return true in the if clause and return false in the else clause. But that would have

been a harder and longer way to do the same thing—and probably more confusing, too, because it would

have required more parentheses. Although Figure 7.5’s return statement might appear at fi rst glance to be

a Cerberean rat’s nest,1 most veteran programmers would consider it to be rather elegant.

/**
* Car2Driver.java
* Dean & Dean
*
* This class is a demonstration driver for the Car2 class.
**/

public class Car2Driver
{
 public static void main(String[] args)
 {
 Car2 nathanCar = new Car2();
 Car2 nickCar = new Car2();

 nathanCar.setMake("Audi");
 nathanCar.setYear(1998);
 nathanCar.setColor("green");
 nickCar.setMake("Audi");
 nickCar.setYear(1998);
 nickCar.setColor("green");
 if (nathanCar.equals(nickCar))
 {
 System.out.println("Cars have identical features.");
 }
 } // end main
} // end class Car2Driver

Figure 7.4 Car2Driver class that drives the Car2 class in Figure 7.5

1 You probably already know what a “rat’s nest” is—a tangled mess. But how about “Cerberean”? In Greek mythology, Cerberus is
a vicious three-headed dog creature that guards the entrance to Hades (the world of the dead). We say our return statement might
appear to be a Cerberean rat’s nest because it’s complicated and it has three parts. Which would you rather meet in a dark alley—a
vicious three-headed dog creature or a complicated return statement?

7.4 Testing Objects for Equality 255

Note how equals method call is

embedded in an if condition.

07-M4402.indd 25507-M4402.indd 255 12/17/07 4:21:25 PM12/17/07 4:21:25 PM

Apago PDF Enhancer

256 Chapter 7 Object-Oriented Programming—Additional Details

/**
* Car2.java
* Dean & Dean
*
* This class implements equals functionality for a car.
**/

public class Car2
{
 private String make;
 private int year;
 private String color;

 //**

 public void setMake(String make)
 {
 this.make = make;
 }

 public void setYear(int year)
 {
 this.year = year;
 }

 public void setColor(String color)
 {
 this.color = color;
 }

 //**

 // This method tests whether two cars hold the same data.

 public boolean equals(Car2 otherCar)
 {
 return this.make.equals(otherCar.make) &&
 this.year == otherCar.year &&
 this.color.equals(otherCar.color);
 } // end equals
} // end class Car2

Figure 7.5 Car2 class with equals method

This

compares

all instance

variables.

⎫
⎬
⎭

Suppose you want uppercase colors to be considered the same as lowercase colors. In other words, you

want a silver 2005 Ford to be considered the same as a Silver 2005 Ford. How should you change the code to

handle that? Use equalsIgnoreCase instead of equals when comparing the color strings:

this.color.equalsIgnoreCase(otherCar.color)

07-M4402.indd 25607-M4402.indd 256 12/17/07 4:21:26 PM12/17/07 4:21:26 PM

Apago PDF Enhancer

This shows that you can make your equals method return true when there is only approximate equal-

ity, where you defi ne “approximate” however you wish. We’ll discuss the equals method in more depth in

Chapter 13.

7.5 Passing References as Arguments

By now, you should be fairly comfortable with the concept of passing an argument to a method. We’ve cov-

ered all you need to know about passing primitive types as arguments. But you still need to know a bit more

about passing references as arguments. In the example in Figure 7.4, we passed the nickCar reference as an

argument to the equals method. The equals method assigned the nickCar reference to its otherCar

parameter, and then it used the otherCar parameter to read the object’s data. In that example, we used a

passed-in reference to read an object’s data. Now let’s use a passed-in reference to update an object’s data.

Suppose you pass a reference variable to a method, and inside the method you update the reference vari-

able’s instance variables. What happens? Remember that a reference variable holds the address of an object,

not the object itself. So in passing a reference variable argument to a method, a copy of the object’s address

(not a copy of the object itself) is passed to the method and stored in the method’s parameter. Since the pa-

rameter and the argument hold the same address value, they point to the same object. Thus, if the parameter’s

instance variables are updated, then the update simultaneously updates the argument’s instance variables in

the calling module. This is a case where aliasing (using two names for the same thing) is really handy.

Person-Swapping Example

Let’s see if you understand all of this reference-passing stuff by putting it in the context of a complete pro-

gram. See the Person program in Figures 7.6 and 7.7. The Person program swaps names for two Person

objects. As shown in Figure 7.6’s main method, the person1 reference variable starts with the name “Jon-

athan” and the person2 reference variable starts with the name “Benji.” After the swapPerson method

call, person1 has the name “Benji,” and person2 has the name “Jonathan.” The swapPerson method

swaps the names by taking advantage of the phenomenon discussed above—if a reference variable is passed

to a method, then the parameter and the argument refer to the same object, and an update to one means an

update to the other as well. Bottom line: When you pass a reference to a method, you enable the method to

modify the referenced object.

General-Purpose Swapping Algorithm

Before digging deeper into the Person program’s code, let’s come up with a general-purpose

swapping algorithm. Having to swap two values is a very common programming require-

ment, so you should make sure that you fully understand how to do it.

Suppose you’re asked to provide an algorithm that swaps the contents of two variables, x and y. To

make the goal more concrete, you are given the following algorithm skeleton. Replace <Insert swap code
here.> with appropriate pseudocode so that the algorithm prints x=8, y=3.

x ← 3
y ← 8
<Insert swap code here.>
print "x = " + x + ", y = " + y

Note that the algorithm skeleton uses the formal version of pseudocode introduced near the end of Chap-

ter 2. The formal-version pseudocode is more compact and closer to Java than the informal version. For

How do you
swap two
values?

 7.5 Passing References as Arguments 257

07-M4402.indd 25707-M4402.indd 257 12/17/07 4:21:26 PM12/17/07 4:21:26 PM

Apago PDF Enhancer

258 Chapter 7 Object-Oriented Programming—Additional Details

 example, rather than saying “set x to 3,” the formal-version pseudocode uses a backwards arrow and says

“x ← 3.” We feel that at this point, with several chapters of Java under your belt, the formal-version

pseudocode is preferable to the informal version because of its conciseness.

Would the following code work? Would it swap x and y’s contents successfully?

y ← x
x ← y

The fi rst statement puts x’s original value into y. The second statement attempts to put y’s original value into

x. Unfortunately, the second statement doesn’t work because y’s original value is gone (overwritten by x in

the fi rst statement). If you inserted the above code into the above algorithm, the algorithm would print:

x = 3, y = 3

That’s not what you want! The trick is to save the value of y before you wipe it out with x’s

value. How do you save it? Use a temporary variable like this:

temp ← y
y ← x
x ← temp

Figure 7.6 Driver for program that implements swapping by passing a reference to a method

/***
* PersonDriver.java
* Dean & Dean
*
* This class is a demonstration driver for the Person class.
***/

public class PersonDriver
{
 public static void main(String[] args)
 {
 Person person1 = new Person();
 Person person2 = new Person();

 person1.setName("Jonathan");
 person2.setName("Benji");
 System.out.println(person1.getName() + ", " +
 person2.getName());

 person1.swapPerson(person2);
 System.out.println(person1.getName() + ", " +
 person2.getName());
 } // end main
} // end class PersonDriver

Output:
Jonathan, Benji
Benji, Jonathan

This argument allows the called method

to modify the referenced object.

Swapping
requires a
 temporary
variable.

07-M4402.indd 25807-M4402.indd 258 12/17/07 4:21:27 PM12/17/07 4:21:27 PM

Apago PDF Enhancer

Person-Swapping Example—Continued

Now look at the Person class in Figure 7.7. In particular, let’s examine how the swapPerson method

implements the swapping algorithm. The swapped items are the passed-in object’s name and the calling

object’s name. The passed-in object is accessed via the otherPerson parameter. Note how we access

the passed-in object’s name with otherPerson.name. And note how we access the calling object’s

name with this.name. And fi nally, note how we use a temp local variable as temporary storage for

otherPerson.name.

Figure 7.7 Person class which implements swapping by passing a reference to a method

/***
* Person.java
* Dean & Dean
*
* This stores, retrieves, and swaps a person's name.
***/

public class Person
{
 private String name;

 //**

 public void setName(String name)
 {
 this.name = name;
 }

 public String getName()
 {
 return this.name;
 }

 //**

 // This method swaps the names for two Person objects.

 public void swapPerson(Person otherPerson)
 {
 String temp;

 temp = otherPerson.name;
 otherPerson.name = this.name;
 this.name = temp;
 } // end swapPerson
} // end class Person

the swapping algorithm
⎫
⎬
⎭

7.5 Passing References as Arguments 259

07-M4402.indd 25907-M4402.indd 259 12/17/07 4:21:27 PM12/17/07 4:21:27 PM

Apago PDF Enhancer

260 Chapter 7 Object-Oriented Programming—Additional Details

/***
* Car3Driver.java
* Dean & Dean
*
* This drives Car3 to illustrate method-call chaining.
***/

public class Car3Driver
{
 public static void main(String[] args)
 {
 Car3 car = new Car3();

 car.setMake("Honda").setYear(1998).printIt();
 } // end main
} // end class Car3Driver

7.6 Method-Call Chaining

At this point, you should be fairly comfortable with calling a method. Now it’s time to go one step further.

In this section, you learn to call several methods in succession, all within one statement. That’s called

method-call chaining, and it can lead to more compact and more elegant code.

If you look back at Figures 7.3 and 7.4, you’ll see several instances where we call several methods one

after another, and we use a separate statement for each successive method call, like this code fragment from

 Figure 7.4:

nathanCar.setMake("Audi");
nathanCar.setYear(1998);

Wouldn’t it be nice to be able to chain the method calls together like this?

nathanCar.setMake("Audi").setYear(1998);

Method-call chaining is an option, not a requirement. So why use it? Because it can often lead to more

elegant code—more compact and easier to understand.

Let’s look at method-call chaining in the context of a complete program. See the method-call

chain (indicated by a callout) in Figure 7.8’s Car3Driver class. Left-to-right precedence applies, so

car.setMake executes fi rst. The setMake method returns the calling object, which is the car object

at the left of car.setMake. The returned car object is then used to call the setYear method. The

setYear method calls the printIt method in a similar fashion.

Method call chaining doesn’t work by default. If you want to enable method-call chaining for methods

from the same class, you need the following two items in each method defi nition:

 1. The last line in the method body should return the calling object by specifying return this;

 2. In the method heading, the return type should be the method’s class name.

Figure 7.8 Car3 program driver which illustrates method-call chaining

Use dots to chain together method calls.

07-M4402.indd 26007-M4402.indd 260 12/17/07 4:21:27 PM12/17/07 4:21:27 PM

Apago PDF Enhancer

We’ve implemented those items in the Car3 class in Figure 7.9. Verify that setMake and setYear are

enabled properly for method-call chaining. Specifi cally, verify that (1) the last line in each method body is

return this;, and (2) in each method heading, the return type is the method’s class name, Car3.

Whenever you fi nish a method with a return this; statement, you’re making it possible to use the

same object to call the next method in the chain. However, you can also chain methods called by differ-

ent types of objects. Just arrange the chain so that the reference type returned by each preceding method

matches the class of each following method. So, in general, to make a method chainable, do these two

things:

1. In the method heading, specify the return type as the class of a potential following method.

2. Finish the method body with:

return <reference-to-object-that-will-call-the-following-method>;

/**
* Car3.java
* Dean & Dean
*
* This class illustrates methods that can be chained.
**/

public class Car3
{
 private String make;
 private int year;

 //***

 public Car3 setMake(String make)
 {
 this.make = make;
 return this;
 } // end setMake

 public Car3 setYear(int year)
 {
 this.year = year;
 return this;
 } // end setYear

 //***

 public void printIt()
 {
 System.out.println(make + ", " + year);
 } // end printIt
} // end class Car3

Return the calling object.

The return type is the same

as the class name.

Figure 7.9 Car3 class

7.6 Method-Call Chaining 261

07-M4402.indd 26107-M4402.indd 261 12/17/07 4:21:28 PM12/17/07 4:21:28 PM

Apago PDF Enhancer

262 Chapter 7 Object-Oriented Programming—Additional Details

Here is a familiar example that illustrates chaining of two methods defi ned in the Java API:

ch = stdIn.nextLine().charAt(0);

The stdIn variable is a reference to an object of the Scanner class. It calls Scanner’s nextLine

method, which returns a reference to an object of the String class. Then that object calls String’s

charAt method, which returns a character.

7.7 Overloaded Methods

Up until this point, all of the methods we defi ned for a given class have had unique names. But if you think

back to some of the Java API methods presented in Chapter 5, you’ll recall that there were several examples

where the same name (abs, max, min) was used to identify more than one method in the same class (the

Math class). This section will show you how to do this in classes you write.

What Are Overloaded Methods?

Overloaded methods are two or more methods in the same class that use the same name. Since they use the

same name, the compiler needs something else besides the name in order to distinguish them. Parameters

to the rescue! To make two overloaded methods distinguishable, you defi ne them with different parameters.

More specifi cally, you defi ne them with a different number of parameters or different types of parameters.

The combination of a method’s name, the number of its parameters, and the types of its parameters is called

the method’s signature. Each distinct method has a distinct signature. Could these three lines be used as

headings for three overloaded findMaximum methods?

int findMaximum(int a, int b, int c)
double findMaximum(double a, double b, double c)
double findMaximum(double a, double b, double c, double d)

Yes, they are a legal overloading of the findMaximum method name, because each heading is distinguish-

able in terms of number and types of parameters. How about the next two lines—could the findAverage

method name be overloaded in this way?

int findAverage(int a, int b, int c)
double findAverage(int x, int y, int z)

No. These are not distinguishable methods because they have the same signature—same method names and

same number and types of parameters. Since these two methods are not distinguishable, if you try to include

these two method headings in the same class, the compiler will think you’re defi ning the same method

twice. And that will make the compiler irritable. Be prepared for it to snarl back at you with a “duplicate

defi nition” compile-time error message.

Note that the above findAverage method headings have different return types. You might think that

the different return types indicate different signatures. Not true. The return type is not part of the signature,

so you cannot use just a different return type to distinguish overloaded methods.

Benefi t of Overloaded Methods

When should you use overloaded methods? When there’s a need to perform essentially the same task

with different parameters. For example, the methods associated with the above findMaximum headings

 perform essentially the same basic task—they calculate the maximum value from a given list of numbers.

07-M4402.indd 26207-M4402.indd 262 12/17/07 4:21:28 PM12/17/07 4:21:28 PM

Apago PDF Enhancer

But they perform the task on different sets of parameters. Given that situation, overloaded methods are a

perfect fi t.

Note that the use of overloaded methods is never an absolute requirement. As an alternative, you can

always use different method names to distinguish different methods. So why are the above findMaximum

method headings better than the below method headings?

int findMaximumOf3Ints(int a, int b, int c)
double findMaximumOf3Doubles(double a, double b, double c)
double findMaximumOf4Doubles(double a, double b, double c, double d)

As these examples suggest, using different method names is cumbersome. With only one method name,

the name can be simple. As a programmer, wouldn’t you prefer to use and remember just one simple name

rather than several cumbersome names?

An Example

Look at the class in Figure 7.10. It uses overloaded setHeight methods. Both methods assign a height

parameter to a height instance variable. The difference is the technique for assigning the height’s units.

The fi rst method automatically assigns a hard-coded “cm” (for centimeters) to the units instance variable.

The second method assigns a user-specifi ed units parameter to the units instance variable. The second

method thus requires two parameters, height and units, whereas the fi rst method requires only one pa-

rameter, height. The two methods perform pretty much the same task, with only a slight variation. That’s

why we want to use the same name and “overload” that name.

Now look at the driver in Figure 7.11 and its two setHeight method calls. For each method

call, can you tell which of the two overloaded methods is called? Figure 7.11’s fi rst method call,

setHeight(72.0, "in"), calls Figure 7.10’s second setHeight method because the two arguments

in the method call match the two parameters in the second method’s heading. Figure 7.11’s second method

call, setHeight(180.0), calls Figure 7.10’s fi rst setHeight method because the one argument in the

method call matches the one parameter in the fi rst method’s heading.

Calling an Overloaded Method from within an Overloaded Method

Suppose you have overloaded methods and you want one of the overloaded methods to call another one of the

overloaded methods. Figure 7.12 provides an example that shows how to do that. Figure 7.12’s setHeight

method is an alternative version of Figure 7.10’s one-parameter setHeight method. Note how it calls the

two-parameter setHeight method.

The additional method call makes the program slightly less effi cient, but some might consider it more

elegant because it eliminates code redundancy. In Figure 7.10, this.height = height; appears in

both methods, and that’s code redundancy—albeit trivial code redundancy.

Why is there no reference variable dot at the left of the setHeight method call in the body of the

method in Figure 7.12? Because if you’re in an instance method, and if you call another method that’s

in the same class, the reference variable dot prefi x is unnecessary. And in this case, the two overloaded

setHeight methods are instance methods and they are indeed in the same class.

With no reference variable dot prefi x in Figure 7.12’s setHeight(height, "cm"); method call,

you might be thinking that the method call has no calling object. Actually, there is an implied calling ob-

ject; it’s the same calling object that called the current method. Review quiz: How can you access the cur-

rent method’s calling object? Use the this reference. If you want to make the this reference explicit, you

can add it to Figure 7.12’s setHeight method call as follows:

this.setHeight(height, "cm");

 7.7 Overloaded Methods 263

07-M4402.indd 26307-M4402.indd 263 12/17/07 4:21:29 PM12/17/07 4:21:29 PM

Apago PDF Enhancer

264 Chapter 7 Object-Oriented Programming—Additional Details

Figure 7.10 Height class with overloaded methods

/***
* Height.java
* Dean & Dean
*
* This class stores and prints height values.
***/

class Height
{
 double height; // a person's height
 String units; // like cm for centimeters

 //**

 public void setHeight(double height)
 {
 this.height = height;
 this.units = "cm";
 }

 //**

 public void setHeight(double height, String units)
 {
 this.height = height;
 this.units = units;
 }

 //**

 public void print()
 {
 System.out.println(this.height + " " + this.units);
 }
} // end class Height

We point out this alternative syntax not because we want you to use it, but because we want you to get a

clearer picture of calling object details.

Program Evolution

The ability to overload a method name promotes graceful program evolution because it corresponds to

how natural language regularly overloads the meanings of words. For example, the fi rst version of your

 program might defi ne just the one-parameter version of its setHeight method. Later, when you decide

to enhance your program, it’s easier for your existing users if you minimize the new things they have to

learn. In this case, you let them either keep using the original method or switch to the improved method.

07-M4402.indd 26407-M4402.indd 264 12/17/07 4:21:29 PM12/17/07 4:21:29 PM

Apago PDF Enhancer

When they want to use the improved method, all they have to remember is the original

method name and adding a second argument, for units, to the method call. That’s an al-

most obvious variation, and it’s easier to remember than a different method name. It’s cer-

tainly easier than being forced to learn a new method name for the old task—which would

be a necessary cost of upgrading if method overloading were not available.

7.8 Constructors

Up to this point, we have used mutators to assign values to the instance variables in newly instantiated

objects. That works OK, but it requires having and calling one mutator for each instance variable. As an al-

ternative, you could use a single method to initialize all of an object’s instance variables as soon as possible

after you create that object. For example, in this chapter’s Car class in Figure 7.2, instead of defi ning three

mutator methods, you could defi ne a single initCar method to initialize Car objects. Then you could use

it like this:

Car allexCar = new Car();
allexCar.initCar("Porsche", 2006, "beige");

Figure 7.11 HeightDriver class that drives the Height class in Figure 7.10

/***
* HeightDriver.java
* Dean & Dean
*
* This class is a demonstration driver for the Height class.
***/

public class HeightDriver
{
 public static void main(String[] args)
 {
 Height myHeight = new Height();

 myHeight.setHeight(72.0, "in");
 myHeight.print();
 myHeight.setHeight(180.0);
 myHeight.print();
 } // end main
} // end class HeightDriver

Figure 7.12 Example of method that calls another method in the same class

This helps avoid duplication of code details and possible internal inconsistencies.

public void setHeight(double height)
{
 setHeight(height, "cm");
}

Do not put a reference

variable dot prefi x here.

7.8 Constructors 265

Keep it simple
by re-using
good names.

07-M4402.indd 26507-M4402.indd 265 12/17/07 4:21:29 PM12/17/07 4:21:29 PM

Apago PDF Enhancer

266 Chapter 7 Object-Oriented Programming—Additional Details

This code fragment uses one statement to allocate space for a new object, and it uses another statement to

initialize that object’s instance variables. Since the instantiation and initialization of an object is so com-

mon, wouldn’t it be nice if there were a single statement that could handle both of these operations? There is

such a statement, and here it is:

Car allexCar = new Car("Porsche", 2006, "beige");

This unifi es the creation of an object and the initialization of its instance variables in just one call. It guar-

antees that an object’s instance variables are initialized as soon as the object is created. The code that

follows the word new should remind you of a method call. Both that code and a method call consist of a

 programmer-defi ned word (Car in this case) and then parentheses around a list of items. You can think of

that code as a special method call, but it’s so special that it has its own name. It’s used to construct objects,

so it’s called a constructor.

What Is a Constructor?

A constructor is a method-like entity that’s called automatically when an object is instantiated. The above

new Car("Porsche", 2006, "beige") object instantiation calls a constructor named Car that

has three parameters—a String, an int, and a String. Here’s an example of such a constructor:

public Car(String m, int y, String c)
{
 this.make = m;
 this.year = y;
 this.color = c;
}

As you can see, this constructor simply assigns passed-in parameter values to their corresponding instance

variables. After the constructor is executed, the JVM returns the address of the newly instantiated and

initialized object to the place where the constructor was called. In the above Car allexCar = new
Car("Porsche", 2006, "beige") declaration, the address of the instantiated Car object gets as-

signed to the allexCar reference variable.

There are several constructor details you should know before looking at a complete program example.

A constructor’s name must be the same as the class it’s associated with. Thus, a Car class’s constructor must

be named Car, with an uppercase “C.”

In the heading of a method, you must include a return type, so you might expect the same require-

ment for the heading of a constructor. Nope. Return types are not used in constructor headings 2 because a

constructor call (with new) automatically returns a reference to the object it constructs, and the type of this

object is always specifi ed by the constructor name itself. Just specify public at the left and then write the

class name (which is the name of the constructor).

An Example

Let’s now look at a complete program example that uses a constructor. See the Car4 program in Figures 7.13

and 7.14. In Figure 7.13, note that we put the constructor above the getMake method. In all class defi ni-

tions, it’s good style to put constructors above methods.

2 If you try to defi ne a constructor with a return type specifi cation, the compiler will not recognize it as a constructor and will think
it is an ordinary method instead.

07-M4402.indd 26607-M4402.indd 266 12/17/07 4:21:30 PM12/17/07 4:21:30 PM

Apago PDF Enhancer

Accommodating Java’s Fickle Default Constructor

Any time you instantiate an object (with new), there must be a matching constructor. That is, the number

and types of arguments in your constructor call must match the number and types of parameters in a defi ned

constructor. But until recently, we’ve instantiated objects without any explicit constructor. So were those

 examples wrong? No. They all used a zero-parameter freebie default constructor that the Java compiler

automatically provides if and only if there is no explicitly defi ned constructor. The Employee program in

Figures 7.15a and 7.15b illustrates the use of Java’s implicit zero-parameter default constructor.

In Figure 7.15a, note how main’s new Employee() code calls a zero-parameter constructor. But

Figure 7.15b does not defi ne a zero-parameter constructor. No problem. Since there are no other construc-

tors, the Java compiler provides the default zero-parameter constructor, and it matches up with the new
Employee() zero-argument constructor call.

Note that as soon as you defi ne any kind of constructor for a class, Java’s default constructor becomes un-

available. So if your class contains an explicit constructor defi nition, and if main includes a zero- argument

constructor call, you must also include an explicit zero-parameter constructor in your class defi nition.

7.8 Constructors 267

Figure 7.13 Car4 class, which has a constructor

/**
* Car4.java
* Dean & Dean
*
* This class stores and retrieves data for a car.
**/

public class Car4
{
 private String make; // car's make
 private int year; // car's manufacturing year
 private String color; // car's primary color

 //***

 public Car4(String m, int y, String c)
 {
 this.make = m;
 this.year = y;
 this.color = c;
 } // end constructor

 //***

 public String getMake()
 {
 return this.make;
 } // end getMake
} // end class Car4

constructor

defi nition

⎫
⎪
⎪
⎬
⎪
⎪
⎭

07-M4402.indd 26707-M4402.indd 267 12/17/07 4:21:30 PM12/17/07 4:21:30 PM

Apago PDF Enhancer

268 Chapter 7 Object-Oriented Programming—Additional Details

Figure 7.15a Driver for Employee program

public class EmployeeDriver
{
 public static void main(String[] args)
 {
 Employee emp = new Employee();

 emp.readName();
 } // end main
} // end class EmployeeDriver

zero-parameter

constructor call

Figure 7.14 Car4Driver class which drives the Car4 class in Figure 7.13

/***
* Car4Driver.java
* Dean & Dean
*
* This class is a demonstration driver for the Car4 class.
***/

public class Car4Driver
{
 public static void main(String[] args)
 {
 Car4 allexCar = new Car4("Porsche", 2006, "beige");
 Car4 latishaCar = new Car4("Saturn", 2002, "red");

 System.out.println(allexCar.getMake());
 } // end main
} // end class Car4Driver

Output:

Porsche

constructor

calls

⎫
⎬
⎭

See the Employee2 program in Figures 7.16a and 7.16b. The driven class in Figure 7.16a compiles suc-

cessfully, but the driver in Figure 7.16b generates a compilation error. As in Figure 7.15a, the driver code

in Figure 7.16b calls a zero-parameter constructor. It worked before, so why doesn’t it work this time? This

time, the driven class in Figure 7.16a explicitly defi nes a constructor, so Java does not provide a default zero-

parameter constructor. And without that constructor, the compiler complains that there’s no matching con-

structor for the zero-parameter constructor call. How can you fi x the Employee2 program to get rid of this

error? Add the following zero-parameter Employee2 constructor to your Employee2 class:

public Employee2()
{ }

07-M4402.indd 26807-M4402.indd 268 12/17/07 4:21:30 PM12/17/07 4:21:30 PM

Apago PDF Enhancer

Figure 7.15b Driven class for Employee program

This works even though there is no explicitly defi ned constructor because the Java compiler supplies a matching

default zero-parameter constructor.

import java.util.Scanner;

public class Employee
{
 private String name;

 //***

 public void readName()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Name: ");
 this.name = stdIn.nextLine();
 } // end readName
} // end class Employee

Figure 7.16a Driven class for Employee2 program

import java.util.Scanner;

public class Employee2
{
 private String name;

 //***************************************

 public Employee2(String n)
 {
 this.name = n;
 } // end constructor

 //***************************************

 public void readName()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Name: ");
 this.name = stdIn.nextLine();
 } // end readName
} // end class Employee2

 7.8 Constructors 269

07-M4402.indd 26907-M4402.indd 269 12/17/07 4:21:31 PM12/17/07 4:21:31 PM

Apago PDF Enhancer

270 Chapter 7 Object-Oriented Programming—Additional Details

That’s an example of a dummy constructor. It’s called a dummy constructor because it doesn’t do anything

other than satisfy the compiler. Note how the braces are on a line by themselves with a blank space between

them. That’s a style issue. By writing the dummy constructor like that, it makes the empty braces more

prominent and clearly shows the intent of the programmer to make the constructor a dummy constructor.

Initializing Named Constants

If you include the final modifi er in the declaration of an instance variable, that “variable” becomes a

named constant. Whenever you use final, it’s good style to write the variable name in uppercase. In Chap-

ter 3 we used final and uppercase to declare and initialize named constants like this:

final double FREEZING_POINT = 32.0;

At that point, all our named constant declarations were within a method (the main method). When a named

constant is defi ned within a method, it’s called a local named constant and its scope is limited to that one

method. If you want an attribute that’s constant throughout the life of a particular object, you’ll need another

kind of named constant, an instance constant. You declare this kind of named constant at the beginning

of a class, but you normally do not initialize it in the declaration. Instead, you initialize it in a constructor.

This allows you to initialize instance constants with different values for different objects. Thus, an instance

constant can represent an attribute whose value varies from one object to another, but remains constant

throughout the life of any particular object. It represents an inalienable attribute of that object, an attribute

which permanently distinguishes that object from all other objects in the same class. Because the final
modifi er keeps a named constant from being changed after it’s initialized, it’s safe to make an instance con-

stant public. This makes it especially easy to determine the value of an object’s permanent attributes. Just

use this syntax:

<reference-variable>.<instance-constant>

For example, instead of treating an employee’s name as an instance variable, as we did in the Employee and

Employee2 classes, you can treat it as an instance constant, as in the Employee3 class of Figure 7.17a.

Notice that the Employee3 class does not include a zero-parameter constructor. Why don’t we include

one here? Because we want to force use of our one-parameter constructor to make sure NAME is initialized

with a distinct value that’s appropriate for each object. To drive the Employee3 class, you can use some-

thing like what’s in Figure 7.17b. Notice how the public modifi er on the instance constant in Figure 7.17a

makes it possible to access this constant value directly from another class.

Figure 7.16b Driver for Employee2 program

public class Employee2Driver
{
 public static void main(String[] args)
 {
 Employee2 waitress = new Employee2("Wen-Jung Hsin");
 Employee2 hostess = new Employee2();

 hostess.readName();
 } // end main
} // end class Employee2Driver

Zero-parameter constructor call

generates a compilation error.

07-M4402.indd 27007-M4402.indd 270 12/17/07 4:21:31 PM12/17/07 4:21:31 PM

Apago PDF EnhancerFigure 7.17a Employee3 class uses an instance constant

/**
* Employee3.java
* Dean & Dean
*
* This gives an employee a permanent name.
**/

import java.util.Scanner;

public class Employee3
{
 Scanner stdIn = new Scanner(System.in);
 public final String NAME;

 //***

 public Employee3(String name)
 {
 this.NAME = name;
 } // end constructor
} // end class Employee3

declaration of instance constant

initialization of instance constant

Figure 7.17b Driver for the Employee3 class in Figure 7.17a

/**
* Employee3Driver.java
* Dean & Dean
*
* This instantiates an object and prints permanent attribute.
**/

import java.util.Scanner;

public class Employee3Driver
{
 public static void main(String[] args)
 {
 Employee3 waitress = new Employee3("Angie Klein");

 System.out.println(waitress.NAME);
 } // end main
} // end class Employee3Driver

Output:

Angie Klein

direct access to

instance constant

7.8 Constructors 271

07-M4402.indd 27107-M4402.indd 271 12/17/07 4:21:31 PM12/17/07 4:21:31 PM

Apago PDF Enhancer

272 Chapter 7 Object-Oriented Programming—Additional Details

Elegance

Note that the use of programmer-defi ned constructors is never an absolute requirement. Although it would

defeat their purpose, you could initialize instance constants when you declared them. And you can always

instantiate an object with empty parentheses and then call an initialization method to initialize instance

variables as we did earlier. So why bother to use programmer-defi ned constructors? If you want distinctive

instance constants, you must initialize them in a constructor—the compiler won’t let you do it in a method.

Whenever you need to initialize an object’s instance variables, it’s more elegant to do it with the constructor

that instantiates the object. The constructor intimately ties instance constant and instance variable initializa-

tion with object creation. Constructors simplify things by avoiding a separate initialization step, and you

don’t need a separate name for them because they just use the class name. Bravo, constructors!

7.9 Overloaded Constructors

Overloading a constructor is like overloading a method. Constructor overloading occurs when there are two

or more constructors with the same name and different parameters. Overloaded constructors are very com-

mon (more common than overloaded methods). That’s because you’ll often want to be able to create objects

with different amounts of initialization. Sometimes you’ll want to pass in initial values to the constructor.

At other times, you’ll want to refrain from passing in initial values to the constructor, and rely on assigning

values later on. To enable both of those scenarios, you need overloaded constructors—one constructor with

parameters and one constructor without parameters.

An Example

Suppose you want to implement a Fraction class, which stores the numerator and denominator for a

given fraction. The Fraction class also stores the fraction’s quotient, which is produced by dividing the

numerator by the denominator. Normally, you want to instantiate the Fraction class by passing a nu-

merator argument and a denominator argument to a two-parameter Fraction constructor. But for a whole

number, you want to instantiate a Fraction class by passing just one argument (the whole number) to a

Fraction constructor, rather than passing two arguments. For example, to instantiate a 3 whole number

as a Fraction object, you want to pass in just a 3 to a Fraction constructor, rather than a 3 for the

numerator and a 1 for the denominator. To handle two-argument Fraction instantiations as well as one-

argument Fraction instantiations, you need overloaded constructors. One way to begin solving a problem

is to write a driver that shows how you want the solution to be used. With that in mind, we present a driver in

Figure 7.18 that illustrates how the proposed Fraction class and its overloaded constructors can be used.

The driver’s code includes line numbers to facilitate later tracing.

Assume that within the Fraction class, numerator and denominator are int instance vari-

ables and quotient is a double instance variable. The two-parameter constructor should look some-

thing like this:

public Fraction(int n, int d)
{
 this.numerator = n;
 this.denominator = d;
 this.quotient = (double) this.numerator / this.denominator;
}

07-M4402.indd 27207-M4402.indd 272 12/17/07 4:21:32 PM12/17/07 4:21:32 PM

Apago PDF Enhancer

Why the (double) cast? Without it, we’d get integer division and truncation of fractional values. The cast

converts numerator into a double, the double numerator promotes the denominator instance vari-

able to double, fl oating-point division occurs, and fractional values are preserved. Our

cast to double also provides a more graceful response if the denominator is zero. Integer di-

vision by zero causes the program to crash. But fl oating-point division by zero is acceptable. Instead of crash-

ing, the program prints “Infi nity” if the numerator is positive or “-Infi nity” if the numerator is negative.

For a whole number like 3, we could call the above two-parameter constructor with 3 as the fi rst argument

and 1 as the second argument. But we want our Fraction class to be friendlier. We want it to have another

(overloaded) constructor which has just one parameter. This one-parameter constructor could look like this:

public Fraction(int n)
{
 this.numerator = n;
 this.denominator = 1;
 this.quotient = (double) this.numerator;
}

Calling a Constructor from within Another Constructor

The two constructors above contain duplicate code. Duplication makes programs longer.

More importantly, it introduces the possibility of inconsistency. Earlier we used over-

loaded methods to avoid this kind of danger. Instead of repeating code as in Figure 7.10,

Figure 7.18 FractionDriver class which drives Fraction class in Figure 7.19

 1 /**
 2 * FractionDriver.java
 3 * Dean & Dean
 4 *
 5 * This driver class demonstrates the Fraction class.
 6 **/
 7
 8 public class FractionDriver
 9 {
10 public static void main(String[] args)
11 {
12 Fraction a = new Fraction(3, 4);
13 Fraction b = new Fraction(3);
14
15 a.printIt();
16 b.printIt();
17 } // end main
18 } // end class FractionDriver

Sample session:

3 / 4 = 0.75
3 / 1 = 3.0

calls to

overloaded

constructors

⎫
⎬
⎭

Make it robust.

Avoid duplicate
code.

7.9 Overloaded Constructors 273

07-M4402.indd 27307-M4402.indd 273 12/17/07 4:21:32 PM12/17/07 4:21:32 PM

Apago PDF Enhancer

274 Chapter 7 Object-Oriented Programming—Additional Details

in Figure 7.12 we inserted a call to a previously written method that already had the code we wanted. You do

the same thing with constructors; that is, you can call a previously written constructor from within another

constructor. Constructor calls are different from method calls in that they use the reserved word new, which

tells the JVM to allocate space in memory for a new object. Within the original constructor, you could use

the new operator to call another constructor. But that would create a separate object from the original ob-

ject. And most of the time, that’s not what you want. Normally, if you call an overloaded constructor, you

want to work with the original object, not a new, separate object.

Figure 7.19 Fraction class with overloaded constructors

 1 /**
 2 * Fraction.java
 3 * Dean & Dean
 4 *
 5 * This class stores and prints fractions.
 6 **/
 7
 8 public class Fraction
 9 {
10 private int numerator;
11 private int denominator;
12 private double quotient;
13
14 //***
15
16 public Fraction(int n)
17 {
18 this(n, 1);
19 }
20
 21 //***
22
23 public Fraction(int n, int d)
24 {
25 this.numerator = n;
26 this.denominator = d;
27 this.quotient = (double) this.numerator / this.denominator;
28 }
29
30 //***
31
32 public void printIt()
33 {
34 System.out.println(this.numerator + " / " +
35 this.denominator + " = " + this.quotient);
36 } // end printIt
37 } // end class Fraction

This statement calls

the other constructor.

07-M4402.indd 27407-M4402.indd 274 12/17/07 4:21:33 PM12/17/07 4:21:33 PM

Apago PDF Enhancer

To avoid creating a separate object, Java designers came up with special syntax that allows an over-

loaded constructor to call one of its partner overloaded constructors such that the original object is used.

Here is the syntax:

this(<arguments-for-target-constructor>);

A this(<arguments-for-target-constructor>) constructor call may appear only in a constructor defi ni-

tion, and it must appear as the very fi rst statement in the constructor defi nition. That means you can’t use

this syntax to call a constructor from inside a method defi nition. It also means you can have only one such

constructor call in a constructor defi nition, because only one call statement could be the “very fi rst state-

ment in the constructor defi nition.”

Now look at the Fraction class in Figure 7.19. It has three instance variables—numerator,

 denominator, and quotient. The quotient instance variable holds the fl oating-point result of di-

viding the numerator by the denominator. The fi rst constructor is just like the two-parameter constructor we

wrote above. But the second constructor is shorter. Instead of repeating code appearing in the fi rst construc-

tor, it calls the fi rst constructor with the this(...) command.

Suppose during program development, for debugging purposes, you decided to print “In 1-parameter

constructor” from within the Fraction class’s one-parameter constructor. Where would you put that print

statement? Since the this(n, 1) constructor call must be the fi rst statement in the constructor defi nition,

you would have to put the print statement below the constructor call.

Tracing with Constructors

Figure 7.20 shows a trace of the Fraction program. In the following discussion of it, you’ll need to actively

refer to not only the trace fi gure, but also the FractionDriver class (Figure 7.18) and the Fraction

class (Figure 7.19). Note how line 12 in the FractionDriver class passes 3 and 4 to the two-parameter

Fraction constructor. 3 and 4 are assigned to the constructor’s n and d parameters. As part of the implied

constructor functionality, lines 10-12 in the Fraction class are executed, and they initialize Fraction

instance variables with their default values. Then lines 25-27 overwrite those initialized values. Going back

to FractionDriver, new returns an object reference (obj1) to the reference variable a. Then on line

13, the driver passes 3 to the one-parameter constructor. After parameter assignment and instance vari-

able initialization, line 18 in the Fraction class passes 3 and 1 to the two-parameter constructor. After

the two-parameter constructor overwrites the instance variables, control fl ows back to the one-parameter

constructor, and back to FractionDriver, where new returns an object reference (obj2) to the reference

variable b. Finally, in lines 15 and 16, the driver prints out the two results.

7.10 Problem Solving with Multiple Driven Classes

We started simply and we are gradually adding complexity. In Chapters 1 through 5, we showed you pro-

grams that contain only one class and one method (the main method). In Chapters 6 and 7 we’ve been

showing you programs that contain two classes: (1) a driver class, which contains a single main method and

(2) a driven class, which typically contains several methods.

So far we’ve used only one driven class to keep things simple, but in the real world, you’ll often need

more than one driven class. That’s because most real-world systems are heterogeneous—they contain mix-

tures of different types of things. For each different type of thing, it’s appropriate to have a different class.

Having more than one driven class allows you to partition a complicated problem into several simpler prob-

lems. That lets you focus on one type of thing at a time. When you’ve fi nished that type of thing, you can

move onto another type of thing. In this step-by-step fashion you can gradually build up a large program.

 7.10 Problem Solving with Multiple Driven Classes 275

07-M4402.indd 27507-M4402.indd 275 12/17/07 4:21:33 PM12/17/07 4:21:33 PM

Apago PDF Enhancer

276 Chapter 7 Object-Oriented Programming—Additional Details

Figure 7.20 Trace of Fraction program in Figures 7.18 and 7.19

FractionDriver Fraction

line#

main

line#

Fraction Fraction printIt obj1 obj2

a b n d n this num den quot num den quot output

12 3 4

10 0

11 0

12 0.00

25 3

26 4

27 0.75

12 obj1

13 3

10 0

11 0

12 0.00

18 3 1

25 3

26 1

27 3.00

13 obj2

15 obj1

34 3 / 4 � 0.75

16 obj2

34 3 / 1 � 3.00

It’s no big deal to drive more than one driven class from a single driver. In fact, you already saw us do

it back in Chapter 5 when statements in a single main method called methods from more than one wrapper

class, like Integer and Double. The only thing to remember is that when you’re compiling the driver,

the compiler must be able to fi nd all the driven classes. If they are pre-built classes they must be part of the

java.lang package or you must import them. If they are classes you write, they should be in the same

directory as your driver.3

Example—Garage Door Opener

As an example, suppose you want to write a program that models the operation of a garage door opener. A

typical system contains four control components—a push button, a normally closed up switch, a normally

closed down switch, and a controller. The push button starts the door moving, or if the door is moving and

has not yet reached the end of its normal travel, the push button stops the door. Whenever the door stops,

its travel direction reverses, and the next push-button push makes the door go in the direction opposite to

the direction it was going before it stopped. The up switch stops upward travel by opening its contacts and

stopping the door at its upper limit. The up switch contacts close again when the door starts to go down.

3 It’s possible to put your own classes in your own packages in separate directories and import them as you import pre-built classes.
You can learn how to do this in Appendix 4. However, if all your driven classes are in the same directory as your driver class, it’s not
necessary to package and import them, and we assume this to be the case throughout the body of this book.

07-M4402.indd 27607-M4402.indd 276 12/17/07 4:21:33 PM12/17/07 4:21:33 PM

Apago PDF Enhancer

The down switch stops downward travel by opening its contacts and stopping the door at its lower limit. The

down switch contacts close again when the door starts to go up.

The controller interprets the information from the various switches, and it operates the motor that

raises and lowers the door. The system has four distinct states: Door stopped after going down, which we’ll

call state #0. Door going up, which we’ll call state #1. Door stopped after going up, which we’ll call state

#2. Door going down, which we’ll call state #3.

Here’s the kind of thing we want our program to do:

Sample session:

Door initially down.
Enter number of operations: 8
Enter 'b' for button or 'e' for end switch: e
Already stopped. Enter 'b': b
Button switch hit. Door moving up.
Enter 'b' for button or 'e' for end switch: e
Upper limit switch hit. Door is up.
Enter 'b' for button or 'e' for end switch: b
Button switch hit. Door moving down.
Enter 'b' for button or 'e' for end switch: b
Button switch hit. Door stopped by button.
Enter 'b' for button or 'e' for end switch: e
Already stopped. Enter 'b': b
Button switch hit. Door moving up.
Enter 'b' for button or 'e' for end switch: e
Upper limit switch hit. Door is up.
Enter 'b' for button or 'e' for end switch: b
Button switch hit. Door moving down.
Enter 'b' for button or 'e' for end switch: e
Lower limit switch hit. Door is down.

Now that we’ve described the problem and said what we want the program to do, let’s

analyze the problem to see how the program might be organized.

The up an down end switches are hard wired, and the push button contains a radio

transmitter. But from a modeling viewpoint, we can think of the push button as being

hard wired like the end switches. So the two end switches and the push button can be just three instances of

a generic thing called a “switch.” This suggests that we write a Switch class and construct three objects

from it—an upSwitch, a downSwitch, and a button.

Although the three switches are similar to each other, they are all different from the controller that

gathers information from them and does things to change the state of the door. So it makes sense to use a

separate class for the controller—a GarageDoorController class. We’ll have our driver construct one

object from it—a control.

There is also the door, which is what we really care about. You can think of the door in the nar-

row sense as just another component, or you can think of it in the broader sense as the system—the

 GarageDoorSystem. A system is an object that contains other objects (its components), and it knows

about its components. In our current example, a GarageDoorSystem object contains the door, the con-

troller that moves the door, and the three switches that send signals to the controller.

Use a separate
class for each
type of thing.

 7.10 Problem Solving with Multiple Driven Classes 277

07-M4402.indd 27707-M4402.indd 277 12/17/07 4:21:34 PM12/17/07 4:21:34 PM

Apago PDF Enhancer

278 Chapter 7 Object-Oriented Programming—Additional Details

Figure 7.21 shows a fi rst-cut Unifi ed Modeling Language (UML) class diagram for the program. This

fi rst-cut diagram shows public methods but no instance variables or instance constants. Each of the driven

classes contains a single constructor. Notice that each constructor is underlined. That conforms to UML

standards, which suggest that you underline all constructors.

As usual, GarageDoorDriver has only a main method. Because we plan to do most of the con-

trolling activities in the GarageDoorSystem class instead of in the driver class, that main method

can be very simple. As you can see in Figure 7.22, our driver does just two things. It constructs a

GarageDoorSystem object, and it runs a test on that object.

Notice that this driver does not construct any of the system’s components. It delegates that job to the

GarageDoorSystem constructor. Since component construction probably depends on what the compo-

nents are like, let’s look at those components next. Figure 7.23 contains the code for the controller.

As we wrote the code in Figure 7.23 we became aware of the need for several instance variables. They

expand the UML class diagram for the Controller class to this:

Controller

-system : GarageDoorSystem

-state : int

-motorDirection : boolean � false;

+Controller(system : GarageDoorSystem, state : int)

+actionEvent() : void

Figure 7.21 First-cut UML diagram for Garage Door program

GarageDoorSystem

+Controller(system : GarageDoorSystem, state : int)

+actionEvent() : void

Controller

Switch

+Switch(normallyOpen : boolean, control : Controller, use : String)

+hit() : void

+GarageDoorSystem()

+setState(state : int) : void

+run(steps : int) : void

+main(args : String[]) : void

GarageDoorDriver

07-M4402.indd 27807-M4402.indd 278 12/17/07 4:21:34 PM12/17/07 4:21:34 PM

Apago PDF Enhancer

The system instance variable gives the controller a reference to the system that includes it. We’ll

want the constructor to initialize or re-initialize the system, state, and motorDirection instance

variables.

The state and motorDirection instance variables represent electromechanical relays or solid-

state fl ip fl ops (primitive electronic memory elements). These primitive memory elements keep track of

the current state of the controller—its current mode of operation. In the physical controller these primi-

tive memory elements determine what the controller does. The actionEvent method changes the

values of these primitive memory elements when it’s called by a switch. Every time the actionEvent

method is called, the state increments by one, modulo four. Modular four means the value of state cycles

through four values like this: 0, 1, 2, 3, 0, 1, 2, and so on. Also, whenever the motor stops, it reverses direc-

tion. That is, whenever state changes to an even value (0 or 2), the motorDirection variable toggles

to its opposite boolean value.

Figure 7.24 contains the code that defi nes the switches. Each switch is characterized by a named in-

stance constant, NORMALLY_OPEN. NORMALLY_OPEN is a switch contact property. If NORMALLY_OPEN

is true, when you push the switch, its contacts close. On the other hand, if NORMALLY_OPEN is false,

when you push the switch, its contacts open. So, when you push on either of the two limit switches, its

contacts open and this stops current fl ow to the motor. The instance variable, use, tells how the switch fi ts

into the system. The instance variable, controller, is a reference to the controller to which the switch

is attached. (If there were two garage door systems, a particular switch might be associated with either

Figure 7.22 Driver for Garage Door program

/**
* GarageDoorDriver.java
* Dean & Dean
*
* This simulates installation and testing.
**/

import java.util.Scanner;

public class GarageDoorDriver
{
 public static void main(String[] args)
 {
 GarageDoorSystem system;
 Scanner stdIn = new Scanner(System.in);

 // Install system
 system = new GarageDoorSystem();

 // Test system
 System.out.print("Enter number of operations: ");
 system.run(stdIn.nextInt());
 } // end main
} // end class GarageDoorDriver

 7.10 Problem Solving with Multiple Driven Classes 279

07-M4402.indd 27907-M4402.indd 279 12/17/07 4:21:35 PM12/17/07 4:21:35 PM

Apago PDF Enhancer

280 Chapter 7 Object-Oriented Programming—Additional Details

system’s controller.) The constructor initializes these three values. The hit method prints a message that

identifi es which switch was hit. Then it calls control’s actionEvent method in the Controller

class.

The instance constant and instance variables in Figure 7.24 expand the UML class diagram for the

Switch class to this:

Figure 7.23 Controller class for the Garage Door program

/***
* Controller.java
* Dean & Dean
*
* This class models controller with sensors attached.
**/

public class Controller
{
 private GarageDoorSystem system;
 private int state; // 0=down, 1=goingUp, 2=up, 3=goingDown
 private boolean motorDirection = false; // true = go up

 //***

 public Controller(GarageDoorSystem system, int state)
 {
 this.system = system;
 this.state = state;
 if (state < 2)
 {
 this.motorDirection = true;
 }
 } // end constructor

 //***

 public void actionEvent()
 {
 this.state++;
 this.state %= 4;
 if (this.state % 2 == 0)
 {
 this.motorDirection = !this.motorDirection;
 }
 system.setState(this.state);
 } // end actionEvent
} // end class Controller

07-M4402.indd 28007-M4402.indd 280 12/17/07 4:21:35 PM12/17/07 4:21:35 PM

Apago PDF Enhancer

Now, we’re ready for the GarageDoorSystem class, shown in Figures 7.25a and 7.25b. In Figure 7.25a,

we declare an instance variable called state. Then we declare the four reference variables that refer to the

Figure 7.24 Switch class for the Garage Door program

/***
* Switch.java
* Dean & Dean
*
* This class models switches.
***/

import java.util.Scanner;

public class Switch
{
 public final boolean NORMALLY_OPEN; // hit makes connection
 public String use; // role in the system
 private Controller control;

 //**

 public Switch(
 boolean normallyOpen, Controller control, String use)
 {
 this.NORMALLY_OPEN = normallyOpen;
 this.control = control;
 this.use = use;
 } // end constructor

 //**

 public void hit()
 {
 System.out.print(this.use + " switch hit. ");
 control.actionEvent();
 } // end hit
} // end class Switch

 7.10 Problem Solving with Multiple Driven Classes 281

Switch

+NORMALLY_OPEN : boolean

+use : String

-control : Controller

+Switch(normallyOpen : boolean, control : Controller, use : String)

+hit() : void

07-M4402.indd 28107-M4402.indd 281 12/17/07 4:21:35 PM12/17/07 4:21:35 PM

Apago PDF Enhancer

282 Chapter 7 Object-Oriented Programming—Additional Details

/**
* GarageDoorSystem.java
* Dean & Dean
*
* This represents a garage door.
**/

import java.util.Scanner;

public class GarageDoorSystem
{
 private int state; // 0=down, 1=goingUp, 2=up, 3=goingDn
 private Controller control;
 private Switch upSwitch; // upper limit switch
 private Switch downSwitch; // lower limit switch
 private Switch button; // electronic pushbutton

 //**

 public GarageDoorSystem()
 {
 this.state = 0;
 System.out.println("Door initially down.");
 this.control = new Controller(this, this.state);
 this.upSwitch =
 new Switch(false, this.control, "Upper limit");
 this.downSwitch =
 new Switch(false, this.control, "Lower limit");
 this.button = new Switch(true, this.control, "Button");
 } // end constructor

 //**

 public void setState(int state)
 {
 this.state = state;
 }

 //**

Figure 7.25a GarageDoorSystem class for the Garage Door program—Part A

four component objects in the system. The constructor instantiates all of the component objects and initial-

izes all of its instance reference variables with references to those component objects. It initializes state

to 0, corresponding to the door-down position, and in the Controller constructor call, it passes this

state value to the new control object to synchronize that object’s state with the state of the complete

system. The setState method provides a way for the subordinate control object to keep the system’s

state synchronized with the controller’s state immediately after the controller takes action that changes the

state.

07-M4402.indd 28207-M4402.indd 282 12/17/07 4:21:35 PM12/17/07 4:21:35 PM

Apago PDF Enhancer

 7.10 Problem Solving with Multiple Driven Classes 283

Figure 7.25b GarageDoorSystem class for the Garage Door program—Part B

 public void run(int steps)
 {
 Scanner stdIn = new Scanner(System.in);
 char input;
 boolean OK = false;

 for (int step=0; step<steps; step++)
 {
 System.out.print(
 "Enter 'b' for button or 'e' for end switch: ");
 do
 {
 input = stdIn.nextLine().charAt(0);
 if (input == 'b')
 {
 button.hit();
 switch (state)
 {
 case 0: case 2:
 System.out.println("Door stopped by button.");
 break;
 case 1:
 System.out.println("Door moving up.");
 break;
 case 3:
 System.out.println("Door moving down.");
 } // end switch
 OK = true;
 }
 else
 {
 switch (state)
 {
 case 1:
 upSwitch.hit();
 System.out.println("Door is up.");
 OK = true;
 break;
 case 3:
 downSwitch.hit();
 System.out.println("Door is down.");
 OK = true;
 break;
 default:
 System.out.print("Already stopped. Enter 'b': ");
 OK = false;
 } // end switch
 } // end if
 } while (!OK);
 } // end for
 } // end run
} // end GarageDoorSystem class

07-M4402.indd 28307-M4402.indd 283 12/17/07 4:21:35 PM12/17/07 4:21:35 PM

Apago PDF Enhancer

284 Chapter 7 Object-Oriented Programming—Additional Details

The instance variables in Figure 7.25a expand the UML class diagram for the GarageDoorSystem

class to this:

GarageDoorSystem

-state : int

-control : Controller

-upSwitch : Switch

-downSwitch : Switch

-button : Switch

+GarageDoorSystem()

+setState(state : int) : void

+run(steps : int) : void

Figure 7.25b contains the rest of the GarageDoorSystem class. This is all just one big method, the run

method, which describes the garage-door operation—the system’s process. It’s a big for loop that takes a

specifi ed number of steps. At each step, the user specifi es one of two types of events, either a button press or

an arrival at one of the travel limits. A big do loop uses the input value to print out an appropriate message

and perhaps ask for data re-entry. Delegating this detail to a subordinate class is more elegant than trying to

handle it all in the main method of a driver.

Summary

When you declare a reference variable, the JVM allocates space in memory for holding a reference to

an object. At that point, there is no memory allocation for the object itself.

Assigning one reference variable to another does not clone an object. It just makes both reference vari-

ables refer to the same object and gives that object an alternate name—an alias.

To create a separate object, you must use Java’s new operator. To make a second object be like a fi rst

object, copy the fi rst object’s instance variable values into the corresponding instance variables in the

second object.

A method can return an assortment of data originating in a method by returning a reference to an inter-

nally instantiated object that contains that data.

Java’s garbage collection program searches for inaccessible objects and recycles the space they occupy

by asking the operating system to designate their space in memory as free space.

If you compare two object references with ==, the result is true if and only if the references point to

the same object.

To see whether two different objects contain similar data, you must write an equals method that indi-

vidually compares respective instance variable values.

To swap two variables’ values, you need to store one of the variable’s values in a temporary variable.

If you pass a reference as an argument, and if the reference parameter’s instance variables are up-

dated, then the update simultaneously updates the reference argument’s instance variables in the calling

module.

If a method returns a reference to an object, you can use what’s returned to call another method in the

same statement. That’s method-call chaining.

•

•

•

•

•

•

•

•
•

•

07-M4402.indd 28407-M4402.indd 284 12/17/07 4:21:36 PM12/17/07 4:21:36 PM

Apago PDF Enhancer

To make a program more understandable, you can overload a method name by using the same name

again in a different method defi nition that has a different sequence of parameter types. The combina-

tion of method name, number of parameters, and parameter types is called a method’s signature.

A constructor enables you to initialize instance variables separately for each object. A constructor’s

name is the same as its class name, and there is no return value specifi cation.

For a constructor call to work there must be a matching constructor defi nition, that is, a defi nition with

the same signature.

If you defi ne a constructor, the default zero-parameter constructor vanishes.

Use a constructor to initialize instance constants, which represent permanent attributes of individual

objects.

To call an overloaded constructor from within a constructor, make the fi rst statement in the constructor

be: this(<constructor-argument(s)>).

Partition a large problem into a set of simpler problems by using multiple driven classes.

Review Questions

§7.2 Object Creation—A Detailed Analysis

 1. The statement

Car car;

 allocates space in memory for an object. (T / F)
 2. What does the new operator do?

§7.3 Assigning a Reference

 3. Assigning one reference variable to another copies the right-side object’s instance variables into the left-side
object’s instance variables. (T / F)

 4. What is a memory leak?

§7.4 Testing Objects for Equality

 5. Consider this code fragment:

boolean same;
Car carX = new Car();
Car carY = carX;
same = (carX == carY);

 What is the fi nal value of same?
 6. What is the return type of an equals method?
 7. By convention, we use the name equals for methods that perform a certain kind of evaluation. What is

the difference between the evaluation performed by an equals method and the == operator?

§7.5 Passing References as Arguments

 8. When you pass a reference to a method, you enable the method to modify the referenced object. (T / F)

§7.6 Method-Call Chaining

 9. What two things must be included in a method defi nition so that it may be called as part of a method-
call-chaining statement?

•

•

•

•
•

•

•

 Review Questions 285

07-M4402.indd 28507-M4402.indd 285 12/17/07 4:21:36 PM12/17/07 4:21:36 PM

Apago PDF Enhancer

286 Chapter 7 Object-Oriented Programming—Additional Details

§7.7 Overloaded Methods

 10. What is it called when you have two or more methods with the same name in the same class?
 11. If you want the current object to call a different method in the same class as the current class, the method

call is easy—just call the method directly, with no reference variable dot prefi x. (T / F)

§7.8 Constructors

 12. What is the return type of a constructor?
 13. The name of a constructor must be exactly the same as the name of its class. (T / F)
 14. Standard coding conventions suggest that you put constructor defi nitions after the defi nitions of all

methods. (T / F)

§7.9 Overloaded Constructors

 15. If a class’s source code contains a single one-parameter constructor, the constructor is overloaded
because this one-parameter constructor has the same name as the default zero-parameter constructor.
(T / F)

 16. Suppose you have a class with two constructors. What are the rules for calling one constructor from the
other constructor?

§7.10 Problem Solving with Multiple Driven Classes

 17. You can partition a large problem into many smaller problems by using many driven classes. (T / F)
 18. How do you give a component object a reference to its container or another component in the same

container?
 19. What do you do to make one object logically contain another object?

Exercises

 1. [after §7.2] Given a Car class with these two instance variables:

String make;
int year;

 Describe all the operations that occur when this statement executes:

Car caidenCar = new Car();

 2. [after §7.3] Trace the Car program shown in Figures 7.2 and 7.3. Use the following trace setup. Note that we
have used abbreviations to keep the trace’s width as small as possible.

CarDriver Car

line#

main

line#

setMake setYear setColor makeCopy disp obj1 obj2

jCar sCar this make this year this color this car this make year color make year color output

 3. [after §7.3] What is garbage collection?

07-M4402.indd 28607-M4402.indd 286 12/17/07 4:21:36 PM12/17/07 4:21:36 PM

Apago PDF Enhancer

 4. [after §7.5] Suppose a Computer class contains, along with other instance variables, a hardDrive string
instance variable. Complete the following swapHardDrive method that swaps the calling object’s hard
drive value with the passed-in parameter’s hard drive value.

public void swapHardDrive(Computer otherComputer)
{
 <insert code here>

} // end swapHardDrive

 5. [after §7.5] Normally, we give each object a unique name by assigning its address to only one reference
variable. Assigning the value of one reference variable to another reference variable creates two different
names for the same thing, which is ambiguous. Identify a situation where this kind of assignment is useful,
even though there is name ambiguity.

 6. [after §7.6] Given this automobile-specifi cation program:

 1 /**
 2 * AutoOptionsDriver.java
 3 * Dean & Dean
 4 *
 5 * This exercises the AutoOptions class.
 6 **/
 7
 8 import java.util.Scanner;
 9
10 public class AutoOptionsDriver
11 {
12 public static void main(String[] args)
13 {
14 Scanner stdIn = new Scanner(System.in);
15 String serial;
16 AutoOptions auto = new AutoOptions();
17
18 System.out.print("Enter serial number: ");
19 serial = stdIn.nextLine();
20 auto.specifyEngine(auto.setSerial(serial).
21 specifyFrame().specifyBody().isTight());
22 auto.specifyTransmission();
23 auto.printOptions();
24 } // end main
25 } // end class AutoOptionsDriver

 1 /**
 2 * AutoOptions.java
 3 * Dean & Dean
 4 *
 5 * This class records options for "custom" automobiles.
 6 ***/
 7

 Exercises 287

07-M4402.indd 28707-M4402.indd 287 12/17/07 4:21:37 PM12/17/07 4:21:37 PM

Apago PDF Enhancer

288 Chapter 7 Object-Oriented Programming—Additional Details

 8 import java.util.Scanner;
 9
 10 public class AutoOptions
 11 {
 12 private String serial; // automobile serial number
 13 private char frame = 'x'; // frame type: A,B
 14 private String body = ""; // body style: 2Door,4Door
 15 private int hp = 0; // engine horsepower: 85, 115, 165
 16
 17 // transmission: false = manual, true = automatic
 18 private boolean automatic = false;
 19
 20 //**
 21
 22 public AutoOptions setSerial(String serial)
 23 {
 24 this.serial = serial;
 25 return this;
 26 } // end setSerial
 27
 28 //**
 29
 30 public AutoOptions specifyFrame()
 31 {
 32 Scanner stdIn = new Scanner(System.in);
 33
 34 while (this.frame != 'A' && this.frame != 'B')
 35 {
 36 System.out.print("Enter frame (A or B): ");
 37 this.frame = stdIn.nextLine().charAt(0);
 38 } // end while
 39 return this;
 40 } // end specifyFrame
 41
 42 //**
 43
 44 public AutoOptions specifyBody()
 45 {
 46 Scanner stdIn = new Scanner(System.in);
 47
 48 while (!this.body.equals("2-door")
 49 && !this.body.equals("4-door"))
 50 {
 51 System.out.print(
 52 "Enter (2-door or 4-door): ");
 53 this.body = stdIn.nextLine();
 54 } // end while
 55 return this;
 56 } // end specifyBody
 57

07-M4402.indd 28807-M4402.indd 288 12/17/07 4:21:37 PM12/17/07 4:21:37 PM

Apago PDF Enhancer

 58 //***
 59
 60 public boolean isTight()
 61 {
 62 boolean tight = false;
 63
 64 if (this.frame == 'A' && this.body.equals("4-door"))
 65 {
 66 tight = true;
 67 }
 68 return tight;
 69 } // end isTight
 70
 71 //***
 72
 73 public void specifyEngine(boolean tight)
 74 {
 75 Scanner stdIn = new Scanner(System.in);
 76
 77 if (tight)
 78 {
 79 while (this.hp != 85 && this.hp != 115)
 80 {
 81 System.out.print("Enter HP (85 or 115): ");
 82 this.hp = stdIn.nextInt();
 83 } // end while
 84 }
 85 else
 86 {
 87 while (this.hp != 85 && this.hp != 115 && this.hp != 165)
 88 {
 89 System.out.print("Enter HP (85, 115, 165): ");
 90 this.hp = stdIn.nextInt();
 91 } // end while
 92 } // end if tight else
 93 stdIn.nextLine(); // flush \r\n after nextInt
 94 } // end specifyEngine
 95
 96 //***
 97
 98 public void specifyTransmission()
 99 {
100 Scanner stdIn = new Scanner(System.in);
101
102 System.out.print("Automatic (y/n?): ");
103 if (stdIn.nextLine().charAt(0) == 'y')
104 {
105 this.automatic = true;
106 }
107 } // end specifyTransmission

 Exercises 289

07-M4402.indd 28907-M4402.indd 289 12/17/07 4:21:37 PM12/17/07 4:21:37 PM

Apago PDF Enhancer

290 Chapter 7 Object-Oriented Programming—Additional Details

108
109 //***
110
111 public void printOptions()
112 {
113 System.out.printf("serial# %s\n%s frame\n%s\n%-3d HP\n",
114 this.serial, this.frame, this.body, this.hp);
115 if (automatic)
116 {
117 System.out.println(" automatic");
118 }
119 else
120 {
121 System.out.println("4-speed manual");
122 }
123 } // end printOptions
124 } // end class AutoOptions

 Use the following trace setup to trace the AutoOptions program. Note that we have used abbreviations to
keep the trace setup’s width as small as possible.

input

X142R
A
4-door
165
115
Y

AutoOptionsDriver AutoOptions

line#

main

line#

setSerial
spec

Frame
spec
Body isTight specEngine

spec
Trans

print
Opt obj1

ser auto this ser this this this tight this tight this this ser frm body hp auto output

 7. [after §7.6] In the following Time and TimeDriver class skeletons, replace the italicized <insert . . . >
lines with your own code such that the program operates properly. More specifi cally:
 a) In the Time class, provide a method definition for the setHours method such that setHours can

be called as part of a method-call chain.
 b) In the TimeDriver class, provide a single statement that chains calls to the setHours, set-

Minutes, setSeconds, and printTime methods. Use reasonable values for your method-call
arguments. If you pass 8 to setHours, 59 to setMinutes, and 0 to setSeconds, then your
method-call-chaining statement should print this:

 08:59:00

public class Time
{
 private int hours;
 private int minutes;
 private int seconds;

07-M4402.indd 29007-M4402.indd 290 12/17/07 4:21:37 PM12/17/07 4:21:37 PM

Apago PDF Enhancer

 //**

 <insert setHours method defi nition here>

 public Time setMinutes(int minutes)
 {
 this.minutes = minutes;
 return this;
 } // end setMinutes

 public Time setSeconds(int seconds)
 {
 this.seconds = seconds;
 return this;
 } // end setSeconds

 //**

 public void printTime()
 {
 System.out.printf("%02d:%02d:%02d\n", hours, minutes, seconds);
 } // end printTime
} // end Time class

public class TimeDriver
{
 public static void main(String[] args)
 {
 Time time = new Time();
 <insert chained-method-calls statement here>

 }
} // end TimeDriver class

 8. [after §7.7]
 a) Modify the two-parameter setHeight method in Figure 7.10 to make it test its units parameter to

see if units is equal to one of the following allowable symbols: “m,” “cm,” “mm,” “in,” or “ft.” If it
is equal to one of these, set the instance variables and return true. If it is not equal to one of these,
return false.

 b) Does this modification require any change to any program that calls the two-argument setHeight
method? Why or why not?

 c) Write a statement that calls the modified method and utilizes the returned information to print an error
message “Error: units not recognized” if the units argument is not one of the allowed values.

 9. [after §7.8] Provide a standard three-parameter constructor for a class named JewelryItem. The class
contains three instance variables—description, price, and qtyOnHand. The constructor simply
assigns its three parameters to the three instance variables.

 10. [after §7.9] Overloaded Constructors:
 a) Add a pair of constructors to the Height class that implement the initializations provided by the two

setHeight operations in Figure 7.11. Minimize the total number of statements by having the
one-parameter constructor call the one-parameter setHeight method and having the two-parameter
constructor call the two-parameter setHeight method.

 Exercises 291

07-M4402.indd 29107-M4402.indd 291 12/17/07 4:21:37 PM12/17/07 4:21:37 PM

Apago PDF Enhancer

292 Chapter 7 Object-Oriented Programming—Additional Details

 b) Provide a complete, rewritten main method for the HeightDriver class such that the new main
method uses one of the new constructors from part a) to generate this output:

6.0 ft

 11. [after §7.9] Overloaded Constructors:

 Assume that the Height class of Figure 7.10 contains only one setHeight method—the two-parameter
version. Write two constructors for the Height class, one with one argument (double height),
and the other with two arguments (double height and String units). For the one-argument
constructor, use the default of “m” for units.

 Do not duplicate any internal code. That is, have the one-parameter constructor transfer control to the
two-parameter constructor, and have the two-parameter constructor transfer control to the two-parameter
setHeight method.

 12. [after §7.9]: Assume that the following two classes are compiled and run. What is their output?

public class SillyClassDriver
{
 public static void main(String[] args)
 {
 SillyClass sc = new SillyClass();
 sc.display();
 }
} // end SillyClassDriver class

public class SillyClass
{
 private int x = 10;

 public SillyClass()
 {
 this(20);
 System.out.println(this.x);
 }

 public SillyClass(int x)
 {
 System.out.println(this.x);
 System.out.println(x);
 this.x = 30;
 x = 40;
 }

 public void display()
 {
 int x = 50;
 display(x);
 System.out.println(x);
 }

07-M4402.indd 29207-M4402.indd 292 12/17/07 4:21:38 PM12/17/07 4:21:38 PM

Apago PDF Enhancer

 public void display(int x)
 {
 x += 10;
 System.out.println(x);
 }
} // end SillyClass class

Review Question Solutions

 1. False. It just allocates memory for a reference variable.

 2. The new operator allocates memory for an object and returns the address of where that object is stored in
memory.

 3. False. Assigning a reference variable to another reference variable causes the address in the right side’s
reference variable to be put into the left side’s reference variable. And that makes both reference variables
refer to the same object.

 4. A memory leak is when an inaccessible object is allowed to persist and use up space in a computer’s
memory.

 5. The fi nal value of same is true.

 6. The return type of an equals method is boolean.

 7. The == operator compares the values of two variables of the same type. If the variables are reference
variables, == compares their addresses to see if they refer to the same object. An equals method typically
compares the values of all the instance variables in the object referred to by its parameter with the values of
corresponding instance variables in the object that called it. The equals method returns true only if all
corresponding instance variables have the same values.

 8. True. The reference gives the method access to the reference’s object.

 9. For a method to be called as part of a method-call-chaining statement, include these things:

Within the method body, specify return <reference-variable>;
Within the method heading, specify the reference variable’s associated class as the return type.

 10. If you have two or more methods with the same name in the same class, they’re called overloaded methods.

 11. True.

 12. A constructor does not have a return type and it does not use a return statement, but when you call a
constructor, new returns a reference to the constructed object.

 13. True.

 14. False. Standard coding conventions suggest that you put constructor defi nitions before all other method
defi nitions.

 15. False. There is only one constructor, because if a class contains a programmer-defi ned constructor, then the
compiler does not provide a default constructor.

 16. Use this syntax:

this(<arguments-for-target-constructor>);

 17. True.

•
•

 Review Questions Solutions 293

07-M4402.indd 29307-M4402.indd 293 12/17/07 4:21:38 PM12/17/07 4:21:38 PM

Apago PDF Enhancer

294 Chapter 7 Object-Oriented Programming—Additional Details

 18. For the component in question, you declare an instance reference variable for the container or other
component you want it to know about. Then when you instantiate the component in question, you pass
its constructor a reference to the container or other component, and you have its constructor initialize the
corresponding instance reference variable.

 19. In your defi nition of the container class, you declare an instance reference variable for each prospective
component. In the container constructor you instantiate each component and assign a reference to it to the
corresponding instance reference variable.

07-M4402.indd 29407-M4402.indd 294 12/17/07 4:21:38 PM12/17/07 4:21:38 PM

Apago PDF Enhancer

0.0 Last A-Head 295

C H A P T E R

295

Software Engineering

Objectives

Develop good coding style.

Learn how to simplify complicated algorithms by encapsulating subordinate tasks.

Distinguish use of instance variables and local variables.

Learn when and how to use a top-down design strategy.

Learn when and how to use a bottom-up design strategy.

Resolve to use prewritten software whenever feasible.

Recognize role of prototyping.

Develop habit of frequent and thorough testing.

Avoid unnecessary use of the this prefi x.

Outline

 8.1 Introduction

 8.2 Coding-Style Conventions

 8.3 Helper Methods

 8.4 Encapsulation (With Instance Variables and Local Variables)

 8.5 Design Philosophy

 8.6 Top-Down Design

 8.7 Bottom-Up Design

 8.8 Case-Based Design

 8.9 Iterative Enhancement

 8.10 Merging Driver Method into Driven Class

 8.11 Accessing Instance Variables without Using this

 8.12 Problem Solving with the API Calendar Class (Optional)

 8.13 GUI Track: Problem Solving with CRC Cards (Optional)

•

•

•

•

•

•

•

•

•

8

08-M4402.indd 29508-M4402.indd 295 12/17/07 4:22:41 PM12/17/07 4:22:41 PM

Apago PDF Enhancer

296 Chapter 8 Software Engineering

8.1 Introduction

In Chapters 6 and 7, we looked mostly at the “science” of Java programming—how to declare objects,

defi ne classes, defi ne methods, and so on. In this chapter, we’ll be looking more at the “practice” of Java

 programming—how to design and develop a program, and how to make it easy to read. The practice of pro-

gramming is nicely summed up in the term software engineering, where software engineering is:1

 1. The application of a systematic, disciplined, quantifi able approach to the development, operation, and

maintenance of software, that is, the application of engineering to software.

 2. The study of approaches as in 1.

We start the chapter with an in-depth discussion of coding-style conventions that help make programs more

readable. We show how to divide a large task into a set of smaller tasks by delegating some of the work in

a method to other methods. We discuss encapsulation, one of the cornerstones of proper OOP design. Next,

we describe alternative design strategies—top-down, bottom-up, and case-based. As you work with some-

thing, your understanding of it improves, and we suggest that you plan to continuously redesign with more

sophistication in an evolutionary process called iterative enhancement. We emphasize that you’ll be happier

and your product will be better if you test thoroughly and frequently as you go along. To facilitate modular

testing, we show how you can include a main method in each class. Up until now we’ve made heavy use

of this to emphasize that each execution of an instance method is uniquely tied to a particular object, but

near the end of the chapter we show how you can streamline your code by omitting this when there is no

ambiguity. In a fi nal optional section, we show how you can use simple graphics to construct a handy orga-

nizational tool called CRC cards.

8.2 Coding-Style Conventions

We’ll now present some guidelines for coding style. We’ve mentioned and illustrated many of these style

guidelines previously, so much of this section should be review. We’ll provide more guidelines later as we de-

scribe more Java. For a complete list of all the coding-style guidelines used in this book, refer to Appendix 5,

“Java Coding-Style Conventions.” The coding-style conventions we use are for the most part a simplifi ed

subset of the style conventions presented in Sun’s Java Code Conventions Web site.2 If you have a style ques-

tion that is not addressed in Appendix 5, refer to Sun’s Web site.

We realize there are some style issues where there is legitimate disagreement over the best way to do

things. Many different standards exist. Sun attempts to choose the best conventions from among the com-

monly used conventions. We attempt to do the same. If you’re reading this book as part of a course and your

teacher disagrees with the book’s style conventions or Sun’s style conventions, please follow your teacher’s

guidelines. One thing in particular that your teacher might require is special formatting for class and method

documentation. Many professional Java programmers use Java’s javadoc tool to aid with class and method

documentation. The javadoc tool extracts specially commented documentation from the source code and

displays it in a neatly organized report. Sun uses the javadoc tool to produce its API library documentation.

See Appendix 6 for details.

1 Defi nition taken from Institute of Electrical and Electronics Engineers (IEEE) Standard 610.12.
2 http://java.sun.com/docs/codeconv

08-M4402.indd 29608-M4402.indd 296 12/17/07 4:22:42 PM12/17/07 4:22:42 PM

http://java.sun.com/docs/codeconv

Apago PDF Enhancer

We’ll illustrate coding-style conventions by referring to the Student program in Figure 8.1 and

 Figures 8.2a and 8.2b. This program is a modifi ed version of the Student program at the back of the “Java

Coding-Style Conventions” appendix.

Prologue Section

Note the boxed text at the tops of Figures 8.1 and 8.2a. They’re called prologues. Include a prologue section

at the top of each fi le. The prologue contains these things in this order:

line of asterisks

fi lename

programmer name(s)

blank line with one asterisk

description

line of asterisks

blank line

Enclose the prologue in a /*. . .*/ comment, and to make the prologue look like a box, insert an asterisk

and a space in front of the fi lename, programmer name, blank line, and description lines.

Named Constants and Instance Variables

Provide a blank line, a line of asterisks, and another blank line after the block of statements that declares

and/or initializes all named constants and instance variables.

•

•

•

•

•

•

•

Figure 8.1 StudentDriver class

/***
* StudentDriver.java
* Dean & Dean
*
* This class acts as a driver for the Student class.
**/

public class StudentDriver
{
 public static void main(String[] args)
 {
 Student s1; // first student
 Student s2; // second student

 s1 = new Student();
 s1.setFirst("Adeeb");
 s1.setLast("Jarrah");
 s2 = new Student("Heejoo", "Chun");
 s2.printFullName();
 } // end main
} // end class StudentDriver

 8.2 Coding-Style Conventions 297

08-M4402.indd 29708-M4402.indd 297 12/17/07 4:22:43 PM12/17/07 4:22:43 PM

Apago PDF Enhancer

298 Chapter 8 Software Engineering

Method Descriptions

Note the descriptions above one of the constructors in Figure 8.2a and the methods in Figure 8.2b. Put

things in this order above each method:

blank line

line of asterisks

blank line

description

blank line

For short obvious methods, it’s OK to omit the method description. Between short constructors and between

short accessor and mutator methods, it’s also OK to omit the line of asterisks.

•

•

•

•

•

Figure 8.2a Student class—part A

/***
* Student.java
* Dean & Dean
*
* This class handles processing of a student's name.
***/

import java.util.Scanner;

public class Student
{
 private String first = ""; // student's first name
 private String last = ""; // student's last name

 //**

 public Student()
 { }

 // This constructor verifies that each passed-in name starts
 // with an uppercase letter and follows with lowercase letters.

 public Student(String first, String last)
 {
 setFirst(first);
 setLast(last);
 }

 //**

08-M4402.indd 29808-M4402.indd 298 12/17/07 4:22:43 PM12/17/07 4:22:43 PM

Apago PDF Enhancer

Figure 8.2b Student class—part B

 // This method verifies that first starts with an uppercase
 // letter and contains lowercase letters thereafter.

 public void setFirst(String first)
 {
 // [A-Z][a-z]* is a regular expression. See API Pattern class.
 if (first.matches("[A-Z][a-z]*"))
 {
 this.first = first;
 }
 else
 {
 System.out.println(first + " is an invalid name.\n" +
 "Names must start with an uppercase letter and have" +
 " lowercase letters thereafter.");
 }
 } // end setFirst

 //**

 // This method verifies that last starts with an uppercase
 // letter and contains lowercase letters thereafter.

 public void setLast(String last)
 {
 // [A-Z][a-z]* is a regular expression. See API Pattern class.
 if (last.matches("[A-Z][a-z]*"))
 {
 this.last = last;
 }
 else
 {
 System.out.println(last + " is an invalid name.\n" +
 "Names must start with an uppercase letter and have" +
 " lowercase letters thereafter.");
 }
 } // end setLast

 //***

 // Print the student's first and last names.

 public void printFullName()
 {
 System.out.println(this.first + " " + this.last);
 } // end printFullName
} // end class Student

 8.2 Coding-Style Conventions 299

08-M4402.indd 29908-M4402.indd 299 12/17/07 4:22:43 PM12/17/07 4:22:43 PM

Apago PDF Enhancer

300 Chapter 8 Software Engineering

Blank Lines

In general, use blank lines to separate logical chunks of code. In Figure 8.1’s StudentDriver class, note

the blank lines:

Between the prologue section and the class defi nition.

Right after a method’s local variable declarations.

It’s not shown in the Student program, but for long methods, it’s appropriate to insert blank lines between

logically separate chunks of code within the method. Also, when a comment line appears within the body of

the code, it’s nice to have white space above that comment to make it more visible.

Meaningful Names

Use meaningful names for your classes and variables. For example, Student is a good name for the class

in Figures 8.2a and 8.2b because the class models a student. Similarly, setName would be a good name for

a mutator method that sets a student’s first and last name instance variables, and getLast would be

a good name for an accessor method that returns the last name.

Braces and Indentations

As shown in Figure 8.1 and Figures 8.2a and 8.2b, place opening braces ({) immediately below the fi rst let-

ter of the preceding line. Indent everything that’s logically inside the brace. When you’re done with a block

(that is, when you’re ready for the closing brace), “outdent” so the opening and closing braces for a particular

block are aligned. By following this indent-outdent scheme, you’ll always align opening and closing brace

partners in the same column. For example, note how the Student class’s opening and closing braces are

both in the same column.

Our recommendation on where to put the opening brace ({) is different from Sun’s recommendation,

which is that the opening brace be at the end of the previous line, like this:

public void setName(String first, String last) {
 this.first = first;
 this.last = last;
}

This is one of the few places where our recommendation differs from Sun’s recommendation. Many pro-

grammers follow the recommendation we prefer, because it provides better visual bracketing of the block

of code that the braces defi ne. However, placing the opening brace at the end of the previous line makes the

code a little tighter, and if you or your teacher or your boss wants the opening brace at the end of the previ-

ous line, you have our blessing to follow that convention.

Be consistent with your indentations. Any indentation width between two and fi ve is acceptable as long

as you’re consistent throughout your program. We use two spaces in the book because book page widths are

less than computer screen widths, and we don’t want to run out of room for programs with deep nesting.

Many novice programmers indent improperly. They either don’t indent when they should indent, or they

indent when they shouldn’t indent, or they use inconsistent widths for their indents. That leads to programs

that are unprofessional looking and diffi cult to read. Some novice programmers postpone entering their in-

dents until the end, after they’ve fi nished debugging. Big mistake! Use proper indentation as you enter your

program. That should be pretty easy since there are really only two rules to remember:

 1. Use braces to surround a block of code that is logically inside something else.

 2. Indent the code that is inside the braces.

•

•

08-M4402.indd 30008-M4402.indd 300 12/17/07 4:22:43 PM12/17/07 4:22:43 PM

Apago PDF Enhancer

There is one exception to the fi rst rule:

Code that follows a switch statement’s case clause is considered to be logically inside the case

clause, but braces are not used.

Variable Declarations

As shown in Figure 8.1’s main method, place all local variable declarations at the top of the method (even

though that’s not required by the compiler). Exception: Unless you need a for loop iteration variable to per-

sist beyond the end of the for loop, declare it in the initialization fi eld of the for loop header.

Normally, specify only one variable declaration per line. Exception: If several variables with obvious

meanings are intimately related, it’s OK to group them on one line.

Include a comment for every variable whose meaning is not obvious. For example, the cryptic local

variable declarations in the main method in Figure 8.1 defi nitely need comments, and we also provide com-

ments for the instance-variable declarations in Figure 8.2a. Note how those comments are aligned—their

//’s are in the same column. In general, if you have comments that appear at the right side of several nearby

lines, try to align those comments.

Line Wrap

If you have a statement that is too long to fi t on one line, split it at one or more natural breaking points within

the statement. For example, note where we break the long print statement in Figure 8.2b’s setFirst and

setLast methods. We consider these to be natural breaking points:

right after the opening parenthesis

after a concatenation operator

after a comma that separates parameters

at whitespace in expressions

After a break point in a long statement, indent the remaining part of the statement on the next line. In

Figure 8.2b, note how we indented the continuation lines with the same standard two-space width that we

use for all other indentations.

Rather than simply indenting continuation lines with the standard indentation width, some program-

mers prefer to align continuation lines with a parallel entity on the previous line. For example, in the afore-

mentioned print statement, they would align the continuation line with first like this:

System.out.println(first +
 " is an invalid name.\n" +
 " Names must start with an uppercase" +
 " letter and have lowercase letters" +
 " thereafter.");

In our opinion, the above code is pushed too far to the right and is unnecessarily chopped up. That’s why we

prefer to keep it simple and just indent with the normal indentation width.

Braces That Surround One Statement

For a loop statement or an if statement that includes only one subordinate, it’s legal to omit the braces

around the statement. For example, in Figure 8.2b’s setFirst method, the if-else statement could be writ-

ten like this:

•

•

•

•

 8.2 Coding-Style Conventions 301

08-M4402.indd 30108-M4402.indd 301 12/17/07 4:22:44 PM12/17/07 4:22:44 PM

Apago PDF Enhancer

302 Chapter 8 Software Engineering

if (first.matches("[A-Z][a-z]*"))
 this.first = first;
else
 System.out.println(first + " is an invalid name.\n" +
 "Names must start with an uppercase letter and have" +
 " lowercase letters thereafter.");

However, we like to use braces for all loop statements and if statements, even if there is only one enclosed

statement. Why?

Braces provide a visual cue for remembering to indent.

Braces help you avoid a logical mistake if you add code later that’s supposed to be within the loop state-

ment or the if statement.

The second point can best be understood with an example. Assume that a program contains this code:

if (person1.isFriendly())
 System.out.println("Hi there!");

Assume that a programmer wants to add a second print statement (“How are you?”) for a friendly person1

object. A careless programmer might do it like this:

if (person1.isFriendly())
 System.out.println("Hi there!");
 System.out.println("How are you?");

Since the second print statement is not within braces, it is executed regardless of whether person1 is

friendly. And do you want to ask an unfriendly person “How are you?” You might get a scowl for a response.

On the other hand, if the program followed our style guidelines, the original code would look like this:

if (person1.isFriendly())
{
 System.out.println("Hi there!");
}

Then if a programmer wants to add a second print statement (“How are you?”) for a friendly person1

object, it would be harder to make a mistake. Even a careless programmer would probably code the second

print statement correctly like this:

if (person1.isFriendly())
{
 System.out.println("Hi there!");
 System.out.println("How are you?");
}

In our above discussion, we said that “we like to use braces for all loop statements and if statements.” More

formally stated, we like to use a block for all loop statements and if statements. A block is a set of state-

ments surrounded by braces.

Comments

As shown in Figure 8.1 and Figures 8.2a and 8.2b, for all but the shortest blocks, include a comment after a

closing brace in order to specify the block that is being closed. For example, in Figure 8.2b, note this closing

brace line for the setFirst method:

•

•

08-M4402.indd 30208-M4402.indd 302 12/17/07 4:22:44 PM12/17/07 4:22:44 PM

Apago PDF Enhancer

} // end setFirst

Why is that good practice? So someone reading the program can quickly identify the block that is being

ended without having to scroll to the top of the block to fi nd out. It’s OK to omit closing-curly-brace com-

ments for short blocks of less than about fi ve lines. For short blocks, it’s easy to tell what block the closing

brace is attached to, and the fi nal comment just adds clutter.

Include comments for code segments that would not be obvious to a typical Java programmer. In

Figure 8.2b, notice this comment that appears at the tops of the bodies of the setFirst and setLast

methods:

// [A-Z][a-z]* is a regular expression. See API Pattern class.

This comment is helpful because the subsequent statement is more obscure than most.

The comment should either explain directly or help the programmer fi nd more informa-

tion on the topic, or both. A comment like this that references an authoritative source

is especially important whenever code implements something mysterious—an arbitrary defi nition like the

“regular expression” above, a formula with empirical coeffi cients, or a mysterious mathematical expression.

Whenever a comment is too long to fi t at the right of the line that is being explained, put it on one or

more lines by itself above the line that is being explained. The // should be indented the same as the de-

scribed line. If you put a comment on a line by itself, make sure there is suffi cient whitespace above it. In

the setFirst and setLast methods of Figure 8.2b, there’s suffi cient whitespace above the comments

because the prior lines happen to be opening braces for their respective method bodies. In other cases,

you’ll need to insert a full blank line above the comment. It’s optional whether you insert a blank line

below it.

Do not add individual comments that just restate what the code already tells you. For example, for the

fi rst assignment statement in Figure 8.1’s main method, this comment would be overkill:

s1 = new Student(); // instantiate a Student object

Developing readable programs is an important skill and a bit of an art form. Having too few comments is

bad because it leads to programs that are diffi cult to understand. But having too many comments is also

bad because it leads to cluttered programs that are diffi cult to wade through. There’s a similar balanc-

ing act for blank lines. Having too few blank lines is bad because it leads to programs that are diffi cult to

understand. But having too many blank lines is also bad because it leads to programs with too much dead

space.

Blank Spaces

As shown in Figure 8.1 and Figures 8.2a and 8.2b, include blank spaces:

after the single asterisks in the prologue

before and after all operators (except for the operators inside a for loop header)

between a closing brace and the //’s for its associated comment

after the //’s for all comments

after the if, while, and switch keywords

On the other hand, do not include blank spaces:

between a method call and its opening parenthesis

within each of the three components in a for loop header

•

•

•

•

•

•

•

Direct reader to
more info.

 8.2 Coding-Style Conventions 303

08-M4402.indd 30308-M4402.indd 303 12/17/07 4:22:44 PM12/17/07 4:22:44 PM

Apago PDF Enhancer

304 Chapter 8 Software Engineering

The last point can best be understood with an example. Here is a nicely written for loop header:

for (int i=0; i<10; i++)

Note that there are no spaces surrounding the = operator or the < operator. Why is that good practice? Be-

cause the for loop header is inherently complex. In order to temper that complexity, we add visual cues to

compartmentalize the for loop header. More specifi cally, we consolidate each section (no spaces within

each section), and we insert a space after each semicolon to keep the three sections separate.

Grouping Constructors, Mutators, and Accessors

For short, obvious methods, you should omit descriptions. For example, mutators and accessors are short

and obvious, so you should omit descriptions for them. Constructors are sometimes short and obvious, but

not always. If a constructor simply assigns parameter values to associated instance variables, then it is short

and obvious and you should omit a description for it. If, on the other hand, a constructor performs non-

 obvious input validation on user-entered values prior to assigning them into associated instance variables,

then you should include a description for the constructor.

In the interest of grouping similar things together, we recommend omitting the line of asterisks be-

tween mutators and accessors and between short obvious constructors. Assuming that a class contains two

short, obvious constructors, several mutator and accessor methods, and two short, obvious other methods,

here’s the framework for such a class:

<class-heading>

{

 <instance-variable-declarations>

 //***

 <constructor-defi nition>

 <constructor-defi nition>

 //***

 <mutator-defi nition>

 <mutator-defi nition>

 <accessor-defi nition>

 <accessor-defi nition>

 //***

 <method-defi nition>

 //***

 <method-defi nition>

}

08-M4402.indd 30408-M4402.indd 304 12/17/07 4:22:44 PM12/17/07 4:22:44 PM

Apago PDF Enhancer

For this case, there are no descriptions for the constructors, the accessors, or the mutators. There is a line of

asterisks above the fi rst mutator, but not above the subsequent mutator and accessors. These omissions make

the program more readable by grouping similar things together.

8.3 Helper Methods

In the fi rst four chapters, we solved essentially every problem we addressed in just one module—the main

method in one class. As problems get bigger, however, it becomes more and more necessary to partition

them into subproblems, each of which has a manageable size. We started doing this in Chapter 5 when our

main method called on some of Java’s API methods for help. Then in Chapter 6 and Chapter 7, we split our

programs into two classes—a driver class, which contained the main method, and a driven class, which

contained all other methods. At the end of Chapter 7 we introduced the concept of multiple driven classes,

each of which contained other methods. Then, part of the partitioning came from splitting the program into

two or more classes, and part of the partitioning came from defi ning multiple methods in each class. This

enabled the main method in the driver class to delegate most of its work to methods in other classes.

In a broad sense, you could say that all of the other methods called by code in the main method are

“helper methods”—they help the main method do its job. In other words, in a broad sense, any method that

is called by another method is a helper method—the called method helps the calling method. The calling

method is a client, and the called method (the broad-sense helper method) is a server.
You can narrow the defi nition of helper method by restricting it to a called method that happens to be

in the same class as the calling method. In the previous section, the Student constructor of Figure 8.2a

calls two of the same class’s methods, setFirst and setLast, in Figure 8.2b. Presumably, these muta-

tors were written to allow a user to change the instance variables in an object after the object was originally

initialized. But once their code is written, why not reuse it? By including calls to these two ordinary meth-

ods in the constructor, we avoid duplication of the code in the called methods. Because the setFirst and

setLast mutator methods each include a signifi cant amount of error-checking code that helps the con-

structor do its job, this organization helps divide the problem into smaller chunks.

You can narrow the defi nition of helper method even more. Up to this point, all methods we’ve covered

have used the public access modifi er. These public methods are part of the class’s interface, because

they are responsible for the communication between an object’s data and the outside world. Sometimes,

you’ll want to create a method that is not part of the interface; instead it just supports the operation of other

methods within its own class. This special type of method—a method that is in the same class and has a

private access modifi er—is often called a helper method.
For example, suppose you’re asked to write a program that handles order entries for sports-uniform

shirts. For each shirt order, the program should prompt the user for a shirt’s primary color and its trim color.

For each color selection, the program should perform the same input validation. It should verify that the

entered color is one of three values—w, r, or y, for white, red, or yellow. That input validation code is non-

trivial. It’s in charge of:

Prompting the user for a color entry.

Checking whether the entry is valid.

Repeating the prompt if the entry is invalid.

Converting the single-character color entry to a full-word color value.

These four tasks are a coherent group of activities. Therefore, it’s logical to encapsulate them (bundle them

together) in a separate module. The fact that the Shirt constructor needs to perform this coherent group

of activities two separate times provides an additional reason to encapsulate them in a separate module.

•

•

•

•

 8.3 Helper Methods 305

08-M4402.indd 30508-M4402.indd 305 12/17/07 4:22:45 PM12/17/07 4:22:45 PM

Apago PDF Enhancer

306 Chapter 8 Software Engineering

Thus, instead of repeating the complete code for these four tasks in the constructor each time color selection

is needed, you should put this color-selection code in a separate helper method and then call that method

whenever color selection is needed. Study the Shirt program and sample session in Figures 8.3, 8.4a, and

8.4b, especially the public constructor, Shirt, and the private helper method, selectColor. Note

how the constructor calls the selectColor method twice. In this particular case (and in the previous

section’s Student class), the helper method calls are from a constructor. You can also call a helper method

from any ordinary method in the same class.

There are two main benefi ts to using helper methods:

First, by moving some of the details from public methods into private methods, they enable the

public methods to be more streamlined. That leads to public methods whose basic functionality

is more apparent. And that in turn leads to improved program readability.

Second, using helper methods can reduce code redundancy. Why is that? Assume that a particular

task (such as color input validation) needs to be performed at several places within a program. With a

helper method, the task’s code appears only once in the program, and whenever the task needs to be

performed, the helper method is called. On the other hand, without helper methods, whenever the task

needs to be performed, the task’s complete code needs to be repeated each time the task is done.

Figure 8.3 ShirtDriver class and associated sample session

/**
* ShirtDriver.java
* Dean & Dean
*
* This is a driver for the Shirt class.
**/

public class ShirtDriver
{
 public static void main(String[] args)
 {
 Shirt shirt = new Shirt();

 System.out.println();
 shirt.display();
 } // end main
} // end ShirtDriver

Sample session:

Enter person's name: Corneal Conn
Enter shirt's primary color (w, r, y): m
Enter shirt's primary color (w, r, y): r
Enter shirt's trim color (w, r, y): w

Corneal Conn's shirt:
red with white trim

08-M4402.indd 30608-M4402.indd 306 12/17/07 4:22:45 PM12/17/07 4:22:45 PM

Apago PDF Enhancer

Note that in Figure 8.4a, we call the selectColor method without a reference variable prefi x:

this.primary = selectColor("primary");

Why is there no reference variable dot prefi x? If you’re in a constructor (or an instance method, for that

matter), and you want the current object to call another method that’s in the same class, the reference vari-

able dot prefi x is unnecessary. Since the constructor and the selectColor method are in the same class,

no reference variable dot prefi x is necessary.

Figure 8.4a Shirt class—part A

/**
* Shirt.java
* Dean & Dean
*
* This class stores and displays color choices for
* a sports-uniform shirt.
**/

import java.util.Scanner;

public class Shirt
{
 private String name; // person's name
 private String primary; // shirt's primary color
 private String trim; // shirt's trim color

 //***

 public Shirt()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Enter person's name: ");
 this.name = stdIn.nextLine();

 this.primary = selectColor("primary");
 this.trim = selectColor("trim");
 } // end constructor

 //***

 public void display()
 {
 System.out.println(this.name + "'s shirt:\n" +
 this.primary + " with " + this.trim + " trim");
 } // end display

 //***

No need for a

reference variable

dot prefi x here.

8.3 Helper Methods 307

08-M4402.indd 30708-M4402.indd 307 12/17/07 4:22:45 PM12/17/07 4:22:45 PM

Apago PDF Enhancer

308 Chapter 8 Software Engineering

8.4 Encapsulation (With Instance Variables and Local Variables)

We say that a program exhibits encapsulation if its data is hidden; that is, if its data is diffi cult to access

from the “outside world.” Why is encapsulation a good thing? Since the outside world isn’t able to directly

access the encapsulated data, it’s more diffi cult for the outside world to mess things up.

Encapsulation Implementation Guidelines

There are two main techniques for implementing encapsulation:

First, break a big problem into separate classes where each class defi nes a set of encapsulated data

that describe the current state of an object of that class. Encapsulate this object-state data by using the

•

Figure 8.4b Shirt class—part B: selectColor helper method

 // Helper method prompts for and inputs user's selection

 private String selectColor(String colorType)
 {
 Scanner stdIn = new Scanner(System.in);
 String color; // chosen color, first a letter, then a word

 do
 {
 System.out.print("Enter shirt's " + colorType +
 " color (w, r, y): ");
 color = stdIn.nextLine();
 } while (!color.equals("w") && !color.equals("r") &&
 !color.equals("y"));

 switch (color.charAt(0))
 {
 case 'w':
 color = "white";
 break;
 case 'r':
 color = "red";
 break;
 case 'y':
 color = "yellow";
 } // end switch

 return color;
 } // end selectColor
} // end class Shirt

Use the private access modifi er for a helper method.

08-M4402.indd 30808-M4402.indd 308 12/17/07 4:22:46 PM12/17/07 4:22:46 PM

Apago PDF Enhancer

 private access modifi er for each such data item. As you already know, a class’s object-state data

items are called instance variables.

Second, break a class’s tasks into separate methods, where each method holds a set of additional encap-

sulated data it needs to do its job. As you already know, a method’s data items are called local variables.

Declaring instance variables within a class is one form of encapsulation, and declaring local variables within

a method is another form of encapsulation. Which is the stronger (more hidden) form of encapsulation? All

instance methods have access to all instance variables defi ned in the same class. On the other hand, only the

current method has access to one of its local variables. Therefore, a local variable is more encapsulated than

an instance variable. Thus, to promote encapsulation, use local variables, not instance variables, whenever

possible.

In writing a method, you’ll often fi nd the need for more data than what’s provided by the current instance

variables. The question then becomes—how should you store that data? In another instance variable? Or lo-

cally? Try to resist the urge to add another instance variable. You should use instance variables only for stor-

ing fundamental attributes of the class’s objects, not for storing additional details. If you can store the data

locally, then do so. That furthers the goal of encapsulation. Usually when we think of storing data locally, we

think of a local variable declared inside a method’s body. Be aware that parameters are another way to store

data locally. Remember that a parameter is declared in a method’s heading—that tells us it has local scope.

Local Variables Versus Instance Variables in The Shirt Class

Now let’s see how the above philosophy plays out in the Shirt class. The fundamental attributes of a shirt

are its name, its primary color and its trim color. That’s the basis for our declaration of the three instance

variables declared in Figure 8.4a:

private String name; // person's name
private String primary; // shirt's primary color
private String trim; // shirt's trim color

Now let’s look at the other variables we need as we write the class’s methods. All of these other vari-

ables are somehow associated with the selectColor method in Figure 8.4b. We need to transfer data in

both directions between the calling Shirt constructor and the called selectColor method.

First, consider transfer of data into the selectColor method. If a shirt’s primary color is needed,

then selectColor should print this prompt message:

Enter shirt's primary color (w, r, b):

If a shirt’s trim color is needed, then selectColor should print this prompt message:

Enter shirt's trim color (w, r, b):

We must transfer data into the selectColor method that tells the selectColor method which query

to print. It would be possible to transfer this data by declaring another instance variable called colorType,

have the Shirt constructor write a value to this instance variable, and then have the selectorColor

method read the value of this instance variable. But this would be bad practice because it would break the

encapsulation within the selectColor method and add confusing clutter to our nice clean list of object

attributes. The proper way to implement this method-to-method communication is the way we did it, with

an argument/parameter transfer.

Second, consider transfer of data out of the selectColor method. We also have to transfer data back

from the selectColor method to the Shirt constructor. This data is the string representation of the

selected color. There are three good ways to transfer data back to the calling method:

•

 8.4 Encapsulation (With Instance Variables and Local Variables) 309

08-M4402.indd 30908-M4402.indd 309 12/17/07 4:22:46 PM12/17/07 4:22:46 PM

Apago PDF Enhancer

310 Chapter 8 Software Engineering

 1. If there is only a single return value, you can send it back to the calling module as a return value.

 2. If there is more than one value to return, you can assemble these values into an object, create that object

in the helper method, and return a reference to that locally created “communication object.”

 3. You can pass into the helper method references to “communication objects” instantiated in the calling

module and use code in the helper method to write to those objects.

It’s also possible to transfer data back to the calling module by declaring other instance variables, having the

helper method write values to them, and having the calling module read from them after the helper method

terminates its execution. But this would be bad practice, because it would break the encapsulation and add

confusing clutter to our nice clean list of object attributes. The proper way to implement this method-to-

method communication is the way we did it, with a return value. In this case, the return value is a

reference to a String object.

The Shirt class has one other variable to consider, the stdIn reference to a keyboard communication

object. This particular object is used by both the calling constructor and the called helper method, and it is

instantiated twice, once in each of those two modules. It is tempting to try to avoid duplicate instantiation

by making stdIn an instance variable. And it will “work.” But we recommend against it, because stdIn

is clearly not a fundamental attribute of this class’s objects. It’s not a variable that describes the state of a

shirt! In a later version of the program, you might want to change the method of input from the keyboard

to something else, like a data fi le, described later in Chapter 15. You might even want to use one method of

input for the name and a different method of input for the other state variables. Then you’d need to change

stdIn, and you might want to change it in different ways for different methods. Declaring it local makes

future modifi cations local also, and it’s better design practice.

An argument used for not making a variable local is “maybe someday we’ll need broader scope.” If you

have a specifi c plan that truly requires the broader scope you propose, OK. But if it’s just “maybe someday,”

don’t provide broader scope until that “someday” actually comes. Then, at that time, modify your program

to increase scope only where it’s absolutely necessary.

8.5 Design Philosophy

In the next several sections, we discuss alternative strategies for solving problems. That’s plural “strategies”

because there’s not just one cookie-cutter strategy that can be used to solve all problems. If there were just

one universal strategy, programming would be easy and anyone could do it. But it’s not easy. That’s why

good programmers are in demand and earn a decent wage.

Simplistic Approach to Design

Here’s a simplistic recipe for how to design things:

 1. Figure out what you want to do.

 2. Figure out how to do it.

 3. Do it.

 4. Test it.

At fi rst this list seems like obvious common sense. But actually, it works only for very simple problems—

problems where everything is easy and you don’t need any recipe. What’s wrong with this recipe?

First, if a problem is diffi cult, it’s hard to know what its solution will be like. Often we need experience to

know even what we want to do. Most clients recognize this and are fl exible enough to accept a range of possible

08-M4402.indd 31008-M4402.indd 310 12/17/07 4:22:46 PM12/17/07 4:22:46 PM

Apago PDF Enhancer

Check most
obvious things
fi rst.

solutions. They want to avoid imposing arbitrary specifi cations that would cause them to miss inexpensive

opportunities or incur expensive penalties. With diffi cult problems, people want to keep their options open.

Second, most problems have several alternate ways in which they can be solved. It takes some experi-

mentation to determine the best way to solve a diffi cult problem. For very diffi cult problems, it’s impossible

to know exactly “how to do it” until we have done it.

Third, when we “do it,” we must recognize it will not be perfect. There will be hidden errors. We will

discover a better way to do it. The client will discover it would have been better to have asked for something

different. And we’ll need to do it again.

Fourth, if we defer testing of anything complicated until the end, we are almost sure to fail. The thing

might pass its one fi nal “test,” but it will probably fail in its ultimate job, because one fi nal test cannot catch

all problems.

So, how can you deal with these diffi culties?

 1. Develop and maintain a sensible compromise between tight specifi cation and fl exibility.

 2. Perform continuous testing at all levels. This helps you identify problems early when they are easy to

fi x, and it gives you objective assessment of progress. Suppose you’re in charge of a large programming

project, and you ask your programmers, “How’s it coming?” You don’t want them just to say, “fi ne.”

You want them to show you—by running tests that demonstrate what their current code actually does.

Testing

It’s been said that, on average, experienced programmers make one mistake for every 8 or 10 lines of code.3

Whew! That’s a lot of mistakes. With such a high incidence of mistakes, we hope you’re properly convinced

about the importance of testing.

Testing has three aspects:

First, subject your program to typical input values. If your program doesn’t work with

typical input values, you’re in real trouble. Co-workers and end users may question

your competence if your program generates wrong answers for the typical cases.

Second, subject your program to input values that are at the boundaries of accept-

ability. These boundary tests often reveal subtle problems that wouldn’t show up until later, and such

problems might be much harder to fi x at that time.

Third, subject your program to invalid input values. In response to an invalid input value, your program

should print a user-friendly message that identifi es the problem and prompts the user to try again.

Testing is something that many people envision occurring after a product is fi nished. That’s an unfortunate

notion, because a lone test at the end of the production of a complicated product is almost worthless. If the

product fails such a test, it may be hard to determine why it failed. If the fi x requires many changes, a great

deal of work may have been wasted. If the product does not fail a lone fi nal test, you may be lulled into

thinking everything is OK even when it’s not. Passing a lone fi nal test may actually be worse than failing a

lone fi nal test, because passing motivates you to release the product. It’s much more costly to fi x a problem

after a product has been released. (Ray knows about this!) Bottom line—Don’t wait until the end to start

your testing. Test your program on a regular basis throughout the development process.

Novice programmers sometimes get the idea that it would be “unscientifi c” to form a pre-conception of

what a test result should be before you do the test. That’s wrong. It’s important that you do have a good idea

•

•

•

3 Of course, we, John and Ray, never make any mistakes. ☺

 8.5 Design Philosophy 311

08-M4402.indd 31108-M4402.indd 311 12/17/07 4:22:47 PM12/17/07 4:22:47 PM

Apago PDF Enhancer

312 Chapter 8 Software Engineering

of what the test result should be before you perform a test. Before you push the “run” button, say out loud

what you think the result should be! This improves your chance of recognizing an error.

Testing keeps you on track. In any development program, you should interleave testing and coding so

that you get quick feedback. If an experienced programmer makes a mistake in every 8 or 10 lines of code,

a new programmer is well advised to perform some kind of test after every 4 or 5 lines of new code! This

makes it easy to identify errors, and it reduces your level of stress. The more frequently you test, the more

positive feedback you get, and this helps your attitude—it gives you a “warm-fuzzy feeling.” Frequent test-

ing makes programming a more pleasant experience.

There is no practical way to verify all the aspects of a complicated system by looking at it only from the

outside. Testing should be performed on each component and on combinations of components, at all levels.

As you’ll see in subsequent discussion, testing typically requires creation of some kind of extra testing code.

Sometimes it’s a special driver. Sometimes it’s a special driven module. Creating such test code may seem

like extra work for something that’s to be used only in a test environment and not in an actual runtime envi-

ronment. Yes, it is extra work, but it is well worth the effort. Writing and using test code will save you time

in the long run, and it will lead to a better fi nal product.

8.6 Top-Down Design

The dominant design methodology for large high-performance systems is the top-down design strategy.

Top-down design requires the designer to think about the big picture fi rst—that’s the “top.” After complet-

ing the design at the top, the designer works on the design at the next lower level. The design process contin-

ues in this iterative manner until the bottom level (the level with the most detail) is reached.

For an object-oriented programming project, top-down design means starting with a problem descrip-

tion and working toward a solution using these guidelines:

 1. Decide on the classes that are needed. You should normally include a driver class as one of the classes.

To determine the other classes, think of the problem in terms of its component objects. Specify one

class for each unique type of object. With large systems that have many classes, pure top-down design

defers identifi cation of detailed classes until later, because identifying detail classes is itself a detail.

 2. For each class, decide on its instance variables, which should be state variables identifying object at-

tributes. The driver class should not have any instance variables.

 3. For each class, decide on its public methods. The driver class should contain only one public

method—main.

 4. For each public method, implement in a top-down fashion. Consider each public method to be

a “top” method. If it is fairly involved and can be broken into subtasks, have it call private helper

methods to do the subtask work. Finish writing the top methods before starting to write the lower level

helper methods. Initially, implement the helper methods as stubs. A stub is a dummy method that acts

as a placeholder for an actual method. A stub’s body typically consists of a print statement that displays

something like “In method x, parameters � a, b, c” where x is the name of the method and a, b, and c

are values of passed-in arguments. We’ll show an example later in this section.

5. Test and debug the program. The suggested stub print messages will help you trace the

program’s actions.

 6. Replace stub methods one at a time with fully implemented helper methods. After each

replacement, test and debug the program again.

Top-down design is sometimes referred to as stepwise refi nement. The term stepwise refi nement is used

because the methodology encourages programmers to implement solutions in an iterative manner where

Start testing
right away.

08-M4402.indd 31208-M4402.indd 312 12/17/07 4:22:47 PM12/17/07 4:22:47 PM

Apago PDF Enhancer

each solution “step” is a refi ned version of a previous solution step. After implementing top-level tasks, the

programmer goes back and refi nes the solution by implementing the subtasks at the next lower levels.

Benefi ts of Using Top-Down Design

In top-down design, the designer doesn’t worry initially about the details of subtask implementation. The

designer focuses on the “big picture” fi rst. Because it focuses on the big picture fi rst, top-down design

is good at getting a project going in the right direction. That helps to ensure that the completed program

matches the original specifi cations.

Top-down design is particularly appropriate when a project involves many programmers. Its early em-

phasis on the big picture forces the project’s programmers to agree on common goals. Its strong organiza-

tional emphasis promotes coherence and prevents the project from splintering off in different directions.

The top-down design methodology facilitates tight managerial control.

Square Program Example: First-Cut Version

Let’s now apply the top-down design methodology to a simple example. We’ll implement a Square class

such that each Square object can:

Initialize the square’s width.

Calculate and return its area.

Draw itself with asterisks using either an asterisks border or a solid pattern of asterisks.

Each time the square is drawn, the user is prompted as to whether he/she would like a

border format or a solid format, like one of these:

border-format square
width = 6

solid-format square
width = 4

Using the above top-down design guidelines, the fi rst step is to decide on the classes. In this simple example,

it’s easy to identify all the classes right at the start—SquareDriver and Square. The next step is to

decide on the instance variables. They should be a minimum defi nitive set of object properties—state vari-

ables. All you need to specify a square is one number. The typical number that people use is the width. So

we’ll use width as our lone instance variable.

But what about the square’s area? Area is a property, but it’s a simple function of width: area equals

width squared. Since we can easily calculate area from width, it would be redundant to include area as

another state variable. In principle, we could use area as the only state variable, and calculate width as

the square root of area any time we needed width. But computing the square root is more diffi cult than

computing the square, and we would frequently end up with a non-integer value for width, which would be

hard to display in our prescribed asterisk format. So, for our problem, it’s a better strategy to use width as

the lone instance variable.

What about the solidness of the square? This is a conceptual choice. If you want to

think of solidness as an inherent property of Square-class objects, it’s appropriate to create

another instance variable like boolean solid. On the other hand, if you want to think

of solidness as just a temporary display option, solidness should not have state-variable status and it should

•

•

•

Devise a way
to solve the
problem.

Identify state
variables.

 8.6 Top-Down Design 313

08-M4402.indd 31308-M4402.indd 313 12/17/07 4:22:48 PM12/17/07 4:22:48 PM

Apago PDF Enhancer

314 Chapter 8 Software Engineering

not be an instance variable. For our example, we’ve elected to think of solidness as just a temporary display

option, so we do not include it as another instance variable.

Returning to the top-down design guidelines, we see that the next step is to decide on the public

methods. The problem description often determines what needs to be public. Here’s what we need:

a constructor that sets the square’s width

getArea—compute the square’s area

draw—display the square with asterisks using either an asterisks border or a solid pattern of asterisks

Let’s now step back and look at what we’ve done so far. See Figure 8.5. It presents a fi rst-cut UML class

diagram for our solution’s classes, instance variables, and constructor and public methods.

•

•

•

+main() : void

Square

-width : int

+Square(width : int)

+getArea() : int
+draw() : void

SquareDriver
Figure 8.5 Square program’s UML

class diagrams: fi rst-cut version

Figure 8.6 SquareDriver class

/***
* SquareDriver.java
* Dean & Dean
*
* This is the driver for the Square class.
***/

import java.util.Scanner;

public class SquareDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Square square;

 System.out.print("Enter width of desired square: ");
 square = new Square(stdIn.nextInt());
 System.out.println("Area = " + square.getArea());
 square.draw();
 } // end main
} // end class SquareDriver

The next step in the top-down design process is to implement the main method in the top-level class

This implementation appears in Figure 8.6. The code in main includes calls to the Square constructor and

08-M4402.indd 31408-M4402.indd 314 12/17/07 4:22:48 PM12/17/07 4:22:48 PM

Apago PDF Enhancer

methods identifi ed in Figure 8.5, but it does not yet say anything about how those members of the Square

class are implemented.

The next step is to implement the public methods in the Square class. This implementation appears in

Figure 8.7a. The constructor and getArea methods are straightforward and do not need explanation. But

notice that the “get” in getArea makes this method look like an accessor that simply retrieves an instance

Figure 8.7a Square class: fi rst-cut version—part A

/**
* Square.java
* Dean & Dean
*
* This class manages squares.
**/

import java.util.Scanner;

public class Square
{
 private int width;

 //***

 public Square(int width)
 {
 this.width = width;
 }

 //***

 public int getArea()
 {
 return this.width * this.width;
 }

 //***

 public void draw()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Print with (b)order or (s)olid? ");
 if (stdIn.nextLine().charAt(0) == 'b')
 {
 drawBorderSquare();
 }
 else
 {
 drawSolidSquare();
 }
 } // end draw

 8.6 Top-Down Design 315

08-M4402.indd 31508-M4402.indd 315 12/17/07 4:22:48 PM12/17/07 4:22:48 PM

Apago PDF Enhancer

316 Chapter 8 Software Engineering

variable. Is it OK to create this “false” impression? Yes, it is, because the instance variable is private and

therefore hidden from public view. In fact, as noted above, we might actually have used area as the lone

instance variable! A user of a class does not have to know exactly how it’s implemented. Don’t worry about

the implementation when you pick a method name. It’s the effect that matters, and getArea accurately

describes the effect of calling that method.

The draw method prompts the user to choose a border format or a solid format for the square’s dis-

play. It’s now becoming apparent that the draw method is not trivial. The drawBorderSquare and

draw SolidSquare method calls are examples of subtasks that we should split off into separate helper

methods.

Stubs

Top-down design tells us to implement helper methods initially as stubs. For our Square program, that means

implementing drawBorderSquare and drawSolidSquare as stubs. Note the stubs in Figure 8.7b.

Figure 8.7b Square class: fi rst-cut version—part B

 //**

 private void drawBorderSquare() // a STUB
 {
 System.out.println("In drawBorderSquare");
 }

 //**

 private void drawSolidSquare() // a STUB
 {
 System.out.println("In drawSolidSquare");
 }
} // end class Square

As you can probably surmise from the examples, a stub doesn’t do much. Its main purpose is to satisfy

the compiler so that the program is able to compile and run. Its secondary purpose is to provide an output

that confi rms that the method was called, and (where appropriate) show values passed into that method.

When the stubbed Square program runs, it produces either this sample session:

Enter width of desired square: 5
Area = 25.0
Print with (b)order or (s)olid? b
In drawBorderSquare

or this sample session:

Enter width of desired square: 5
Area = 25.0
Print with (b)order or (s)olid? s
In drawSolidSquare

08-M4402.indd 31608-M4402.indd 316 12/17/07 4:22:49 PM12/17/07 4:22:49 PM

Apago PDF Enhancer

Using stubs lets programmers test their partially implemented programs to determine

whether their behavior is correct down to the stub level. Second, it makes debugging eas-

ier. After compiling and running the program successfully with stubs, replace the stubs

with actual code one method at a time. As each stub is replaced, test and debug the updated program. If a

bug appears, it should be easy to fi nd since you know it’s probably in the most recently replaced method.

Square Program Example: Second-Cut Version

The next step in the top-down design process is to replace the helper methods’ stub implementations

with actual implementations. We have two helper methods to work on—drawBorderSquare and

drawSolidSquare.

Let’s start with the drawBorderSquare helper method. It prints a horizontal line of asterisks,

prints the square’s sides, and then prints another horizontal line of asterisks. Here’s pseudocode for this

algorithm:

drawBorderSquare method

 draw horizontal line of asterisks

 draw sides

 draw horizontal line of asterisks

All three of drawBorderSquare’s draw statements represent non-trivial tasks. Thus, when we trans-

late the drawBorderSquare pseudocode into a Java method, we use method calls for each of the draw

subtasks:

private void drawBorderSquare()
{
 drawHorizontalLine();
 drawSides();
 drawHorizontalLine();
} // end drawBorderSquare

Now let’s consider the drawSolidSquare helper method. It prints a series of horizontal lines of aster-

isks. Here’s pseudocode for its algorithm:

drawSolidSquare method

 for (int i�0; i�square’s width; i��)

 draw horizontal line of asterisks

Once again, the draw statement represents a non-trivial task. Thus, when we translate the drawSolidSquare

pseudocode into a Java method, we use a repeated method call for the draw subtask:

private void drawSolidSquare()
{
 for (int i=0; i<this.width; i++)
 {
 drawHorizontalLine();
 }
} // end drawSolidSquare

Test one thing
at a time.

 8.6 Top-Down Design 317

08-M4402.indd 31708-M4402.indd 317 12/17/07 4:22:49 PM12/17/07 4:22:49 PM

Apago PDF Enhancer

318 Chapter 8 Software Engineering

Notice that the drawBorderSquare method and the drawSolidSquare method both call the same

drawHorizontalLine helper method. Being able to share the drawHorizontalLine method is a

nice reward for our diligent use of helper methods, and it provides a good example for this general principle:

If two or more methods perform the same subtask, avoid redundant code by having those methods call

a shared helper method that performs the subtask.

By writing fi nal code for the drawBorderSquare and drawSolidSquare methods and writing stub

code for the drawHorizontalLine and drawSides methods, we complete the coding for the Square

program’s second-cut version. When executed with appropriate print statements in the two stub methods,

drawHorizontalLine and drawSides, the second-cut version produces either this sample session:

Enter width of desired square: 5
Area = 25.0
Print with (b)order or (s)olid? b
In drawHorizontalLine
In drawSides
In drawHorizontalLine

or this sample session:

Enter width of desired square: 5
Area = 25.0
Print with (b)order or (s)olid? s
In drawHorizontalLine
In drawHorizontalLine
In drawHorizontalLine
In drawHorizontalLine
In drawHorizontalLine

Square Program Example: Final Version

To facilitate management, it’s a good idea to formalize your program’s design at various

points during the design process. The formalization usually takes the form of UML class

diagrams. Having up-to-date UML class diagrams helps to ensure project coherence. At

a minimum, current UML class diagrams ensure that all members of a project are using

the same classes, instance variables, and method headings. See Figure 8.8.

Keep
 documentation
current.

SquareDriver

+main() : void

-width : int

+Square(width : int) : void

+getArea() : int

+draw() : void

-drawBorderSquare() : void

-drawSolidSquare() : void

-drawHorizontalLine() : void

-drawSides() : void

Square

Figure 8.8 Square program’s UML class diagram: fi nal version

08-M4402.indd 31808-M4402.indd 318 12/17/07 4:22:49 PM12/17/07 4:22:49 PM

Apago PDF Enhancer

 8.6 Top-Down Design 319

Figure 8.9a Square class: fi nal version—part A (an exact copy of Figure 8.7a.)

/**
* Square.java
* Dean & Dean
*
* This class manages squares.
**/

import java.util.Scanner;

public class Square
{
 private int width;

 //**

 public Square(int width)
 {
 this.width = width;
 }

 //**

 public double getArea()
 {
 return this.width * this.width;
 }

 //**

 public void draw()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Print with (b)order or (s)olid? ");
 if (stdIn.nextLine().charAt(0) == 'b')
 {
 drawBorderSquare();
 }
 else
 {
 drawSolidSquare();
 }
 } // end draw

Figure 8.8 presents a UML class diagram for our complete Square program. It’s the same as our earlier

UML class diagram except that we’ve added the helper methods.

08-M4402.indd 31908-M4402.indd 319 12/17/07 4:22:49 PM12/17/07 4:22:49 PM

Apago PDF Enhancer

320 Chapter 8 Software Engineering

Figure 8.9b Square class: fi nal version—part B (a fl eshed-out version of Figure 8.7b)

 //***

 private void drawBorderSquare()
 {
 drawHorizontalLine();
 drawSides();
 drawHorizontalLine();
 } // end drawBorderSquare

 //***

 private void drawSolidSquare()
 {
 for (int i=0; i<this.width; i++)
 {
 drawHorizontalLine();
 }
 } // end drawSolidSquare

 //***

 private void drawHorizontalLine()
 {
 for (int i=0; i<this.width; i++)
 {
 System.out.print("*");
 }
 System.out.println();
 } // end drawHorizontalLine

 //***

 private void drawSides()
 {
 for (int i=1; i<(this.width-1); i++)
 {
 System.out.print("*");
 for (int j=1; j<(this.width-1); j++)
 {
 System.out.print(" ");
 }
 System.out.println("*");
 }
 } // end drawSides
} // end class Square

08-M4402.indd 32008-M4402.indd 320 12/17/07 4:22:50 PM12/17/07 4:22:50 PM

Apago PDF Enhancer

 8.7 Bottom-Up Design 321

The second-cut version of the Square program contains stub implementations for the

drawHorizontalLine and drawSides methods. Now, we need to replace those stub methods with

actual methods. Figures 8.9a and 8.9b contain our fi nal version Square class. The only new items are

the drawHorizontalLine and drawSides methods, which are straightforward. We encourage you to

study their implementations on your own in Figure 8.9b.

Top-Down-Design Downside

Almost every human-designed project must necessarily include some form of top-down thinking. However,

pure top-down design has some undesirable side effects. One such side effect is that subordinate modules

tend to be overly specialized. A well-known and particularly egregious example of how the top-down way

of thinking can lead to excessive specialization is the case of the $660 Pentagon ashtrays. The Pentagon

(headquarters of the United States Department of Defense) hired a large military contractor to manufacture

ashtrays for Pentagon use. Since compatibility is important for many military components, the military

generally wants faithful adherence to its specifi cations, and contractors naturally develop procedures and

attitudes that promote conformity. However, sometimes there can be too much of a good thing. The ashtrays

conformed perfectly to their specifi cation, but each one had a price of $660. Top-down design went to a ri-

diculous extreme. Even though some of the top-level specifi cations may have been unconventional, the con-

tractor probably followed the standard operating procedure and tried to match them perfectly. Hypothetical

quote from the contractor’s marketing manager: “What was specifi ed did not match anything that was avail-

able, so we had to make it by hand in the machine shop.”

You may be thinking—Interesting story, but how do the $660 ashtrays relate to programming? The

top-down philosophy can lead to ineffi cient development practices. In the extreme case, that philosophy led

to the military contractor expending enormous effort on the design and manufacture of something as sim-

ple as an ashtray. In general, the top-down design philosophy can motivate people to “reinvent the wheel.”

This tends to increase overall product cost. It also tends to reduce the reliability of the fi nal product. Why?

Because with everything being new or reinvented, there’s no past history of testing and debugging to

rely on.

8.7 Bottom-Up Design

Now, let’s look at the logical opposite of top-down design—bottom-up design. Bottom-up design imple-

ments specifi c low-level tasks fi rst. To apply bottom-up design to the Square program, you might imple-

ment a drawSolidSquare method fi rst. Next, you might implement a drawBorderSquare method.

After fi nishing these bottom-level methods, you would implement higher-level methods, which are in

charge of more general tasks, like a draw method to draw either type of square—a solid square or a border

square.

As you implement each program component, you should test it immediately with a custom driver that’s

tailored to that particular component. You won’t need any stubs, since already-tested lower-level methods

will be available to be called by whatever higher-level method you are currently testing.

For simple programs like many of those that appear throughout the body of this book, bottom-up design

is an appropriate strategy to use because it allows you to focus quickly on the essence of whatever problem

is currently most critical, and it allows you to defer presentation details until later. For an example of bottom

up design, look at any program in this book in which we present a driven class before we present a driver

08-M4402.indd 32108-M4402.indd 321 12/17/07 4:22:50 PM12/17/07 4:22:50 PM

Apago PDF Enhancer

322 Chapter 8 Software Engineering

for that class. Whenever we do that, we are using a bottom up presentation, and we are inviting you to think

about the program being described from the bottom up.

Bottom-up design also makes it easiest for you to use prewritten software, like that in the Java API and

described previously in Chapter 5. The Java API is a particularly good source for prewritten software be-

cause its code is (1) optimized for high speed and low-memory consumption and (2) highly reliable because

it has undergone testing and debugging for years. It’s good to use the Java API, but it takes time to learn how

to use it. To learn about the Java API, see Sun’s Java API Web site at http://java.sun.com/javase/6/docs/api/.

There, you’ll fi nd several ways to look things up. Here are two techniques:

 1. Try guessing the name of a class that seems appropriate. Use the scrollbar in the classes frame to

search for the guessed class name. There are about 4000 classes so fi nding a particular class requires a

well-behaved mouse (we recommend proper diet and exercise to keep your mouse running smoothly).

When you fi nd a class name that looks promising, click on it and read about its public constants and

methods.

 2. Related classes are grouped together in about 166 packages. Use the scrollbar in the packages frame to

fi nd a package that looks promising. Click on that package and scroll through its classes. Again, when

you fi nd a class name that looks promising, click on it and read about its public constants and methods.

Using pre-written software for your low-level modules reduces development time and project cost. It also

improves product quality, because presumably the pre-written parts of your program have already been

thoroughly tested and debugged. As in the case of Java API code, you’ll often fi nd that pre-written low-level

software is quite fl exible, because it was designed for a broad spectrum of applications. This inherent low-

level fl exibility will make it easier for you to expand the capabilities of your program when you upgrade it in

the future. Using pre-written software can facilitate parallel development. If several different programmers

want to use a common subordinate module, they can do it independently. They do not have to coordinate

their efforts, because that module’s design is already established and stable.

Another benefi t of bottom-up design is that it provides freedom to implement tasks in the most benefi -

cial order. If there’s a signifi cant concern as to whether a particular calculation is feasible,

it’s important to begin working on that calculation as soon as possible. With bottom-up

design, there’s no need to wait around to address the concern—just attack it immediately.

That way, you can determine at the earliest possible time whether the concern will be a

show stopper. Likewise, if there is some low-level task that will take a long time to complete, bottom-up

design allows you to begin work on it immediately and avoid a potential bottleneck later.

There are several drawbacks to using bottom-up design, however. As compared to top-down design,

bottom-up design provides less structure and guidance. It’s often hard to know where to start, and because

development is hard to predict, bottom-up programming projects are hard to manage. In particular, with less

inherent guidance, it’s harder for managers to keep their programmers on track. As a result, programmers

might spend signifi cant amounts of time working on code that may not be relevant to the fi nal program.

Another drawback in using bottom-up design is that it can lead to diffi culties in getting the fi nal product to

conform precisely to design specifi cations. Top-down design facilitates conformity by addressing specifi ca-

tions in detail at the beginning. With bottom-up design, specifi cations receive only superfi cial consideration

at the beginning.

So, when should you use bottom-up design? When you can use a substantial amount of pre-written

and pre-tested low-level software, the bottom-up design process makes it easy for you to design around

that software so that it fi ts naturally into your complete program. When you can use a substantial amount

of pre-written software that is open to your inspection and already designed to fi t together (like Java API

software4), bottom-up design simultaneously promotes high quality and low cost. When low-level details are

Work on most
critical problem
fi rst.

08-M4402.indd 32208-M4402.indd 322 12/17/07 4:22:50 PM12/17/07 4:22:50 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

critical, bottom-up design motivates you to deal with the tough problems fi rst—it gives you the most time to

solve them. Thus, bottom-up design can also help you minimize delivery time.

A familiar example of bottom-up software design is the early development of the Microsoft Windows

o perating system. The original version of Windows was built on top of the already existing and successful

DOS operating system.5 The next major version of Windows was built on top of a novel low-level software core

called “NT” (for New Technology). It’s important to note that the component source code in these cases was

always open to and under the control of system developers, because it was all owned by the same company.6

8.8 Case-Based Design

There is another basic way to solve problems and design things. It’s what normal people do most of the time

in their everyday lives. Instead of going through a formal top-down or bottom-up sequence of steps, you

look around for an already-solved problem that’s like the problem at hand. Then you fi gure out how that

problem was solved, and you modify that solution to fi t your problem. This approach is holistic. It starts with

a whole solution and “bends” that whole solution to a different application.

If you have access to source code and the right to copy it or modify it and then redistribute it in a new

context, you can modify an existing program or signifi cant parts of existing code. Sometimes the code you

want to borrow is code you wrote yourself for a different application. Such code deserves your consider-

ation, because you’ll be intimately familiar with what it does and how it does it. For example, many of this

book’s projects were designed to show you how to solve a wide range of real-world problems. You can use

the algorithms presented in the project assignments to generate Java code that solves particular versions of

those problems. Once you have written that code, you’ll be completely free to modify it and re-use it in any

other context to solve other variations of those problems.

Frequently, the code you’d like to use will be code that somebody else wrote. Would it be theft or pla-

giarism to use such code? It might be. If the code is copyrighted, and you don’t have permission to use it,

you shouldn’t try to use it. But you might have permission to use it. Whenever you use code that somebody

else wrote, be sure to acknowledge and identify your source.

There is a growing body of what’s called “free” software7 that is debugged and maintained by a select body

of experts, and it’s available to all people to use and modify for their own purposes, provided they conform to

certain reasonable rules. Basically, these rules are: acknowledge the source, and don’t try to make a profi t on

resale of the original code. Sometimes this software is low-level code that you can use like Java API software.

But sometimes it’s a complete program, which you can adapt to a problem you’re currently addressing.

4 Although we have been encouraging you to think of Java API software as being completely encapsulated, Sun does not keep the
Java API source code secret. It can be downloaded and is available for inspection by Java developers.
5 The set of commands you can enter into a Microsoft Windows command-prompt window are essentially DOS commands—they are
a software legacy of the IBM PC that came out in the early 1980s.
6 In principle, it’s possible to build software systems out of components that are Commercial-Off-The-Shelf (COTS) programs from
different companies. This strategy can be used to avoid “reinventing the wheel” in a big way, and it minimizes new code to the “glue”
that provides component interfaces. However, it takes longer to write this glue code than it does to write ordinary code. Moreover,
since (in general) the system developer does not have access to component source code and does not have control of component evolu-
tion, the development process is relatively risky, and the resulting composite program is relatively brittle. COTS-based system design
has a distinctive methodology that is outside the scope of this text.
7 See http://www.fsf.org. The Free Software Foundation is “dedicated to promoting computer users’ rights to use, study, copy, modify,
and redistribute computer programs.” Two famous examples of this kind of software are the GNU/Linux operating system (GNU
stands for “Gnu’s Not Unix”) and the Apache software that underlies most Web servers (http://www.apache.org).

 8.8 Case-Based Design 323

08-M4402.indd 32308-M4402.indd 323 12/17/07 4:22:51 PM12/17/07 4:22:51 PM

http://www.fsf.org
http://www.apache.org

Apago PDF Enhancer

324 Chapter 8 Software Engineering

8.9 Iterative Enhancement

Often, you have to start working on a problem in order to understand how to solve the problem. That leads

to a design process that is often iterative in nature. In the fi rst iteration, you implement a bare-bones solution

to the problem. In the next iteration, you add features and implement an improved solution. You continue

adding features and repeating the design process until you have implemented a solution that does everything

you need. This repetitive process is called iterative enhancement.

Prototyping—An Optional First Step

A prototype is a very “thin” or “bare-bones” implementation or perhaps just a faked “simulation” of a pro-

spective program. Because of a prototype’s limited scope, developers can produce prototypes relatively

quickly and present them to customers very early in the development process.

A prototype helps end users get an early feel for what it will be like to use the

 program—well before the program is fi nished. It helps clients provide early feedback that

improves the quality of product specifi cation. Thus, prototyping provides a valuable adjunct

to the fi rst part of the top-down design process, and it complements early work in a bottom-

up design process. Without a prototype, there’s always a risk that you’ll solve the wrong problem. Even if you

solve the problem with great elegance, if it’s the wrong problem, the whole effort is a waste of time.

There are two basic ways to generate a prototype. One way is to write a very limited version of the fi nal

program in Java. Since a prototype should be relatively simple, you could use whatever design approach

seemed easiest. The other way is to use a computer application that provides nice presentations to simulate

the fi nal program’s user interface for particular “canned” data or a narrow range of user inputs.

Prototyping can be a valuable communication tool, but use it with caution. Suppose you create a pro-

totype, show it to the client, and the client says: “I like it. Give me a copy so I can start using it tomorrow!”

Don’t do it! If your prototype is an early iteration of an orderly sequence of planned iterations, fold in what

you learn from client reaction, and proceed to the next iteration as originally planned. If your prototype is

just a visual presentation pasted together from disparate components, resist the temptation to expand that

prototype into a fi nished product. That’s tempting because you might think it would reduce development

time. However, adding patches to a cobbled-together mock-up typically produces a messy result that is hard

to maintain and upgrade. Eventually, it becomes necessary to rewrite massive amounts of code, and the as-

sociated confusion can destroy the program. It’s better to think of this kind of prototype as no more than a

communication aid that elicits feedback which improves product specifi cation.

Iterating

The fi rst normal design iteration—or the iteration after an optional prototype—should be either a simple

adaptation of some already existing program or a bare-bones implementation developed with either the top-

down or bottom-up design strategy. Subsequent iterations may or may not continue to use the same design

strategy.

How do you decide which strategy to use for each iteration? Select that strategy

which best addresses your greatest current need or concern:

If your greatest current need is to understand what the customer wants, construct a

prototype.

If your greatest concern is on-time delivery, try to use an adaptation of existing

software.

•

•

Make sure you
are solving the
right problem.

Adjust design
strategy to
address greatest
 current need
with resources
 currently
available.

08-M4402.indd 32408-M4402.indd 324 12/17/07 4:22:51 PM12/17/07 4:22:51 PM

Apago PDF Enhancer

If your greatest current concern is whether some particular functionality can be implemented, use the

bottom-up design strategy to implement that functionality as soon as possible.

If your greatest needs are reliability and low cost, use pre-written software with bottom-up design.

If your greatest concern is overall performance and managerial control, use the top-down design

strategy.

A famous iterated-design example is NASA’s man-on-the-moon space program. President Kennedy was

thinking top-down when he announced the program. However, the fi rst implementation was a prototype.

Using a modifi ed version of the existing Atlas ICBM rocket, “Project Mercury” shot one man a few hundred

miles out into the Atlantic Ocean.

Subsequent iterations of Project Mercury used a bottom-up approach to put astronauts into earth orbit.

Then, NASA replaced the Atlas booster rocket with the newer and larger Titan ICBM rocket, which carried

several people into earth orbit in several iterations of “Project Gemini.”

NASA’s next iteration was a top-down design plan known as “Project Apollo.” Project Apollo originally

envisioned the use of a gigantic booster rocket called Nova. After working on that for awhile, NASA real-

ized that a much smaller booster rocket (called Saturn) would suffi ce if a smaller moon lander was separated

from the mother ship orbiting the moon, and the moon lander’s return module was separated from its de-

scent mechanism.

Project Apollo was a top-down design, optimized for NASA’s requirements, rather than a bottom-up

adaptation of existing military equipment. In the end, the top-down plan involving Nova was scrapped and

replaced by a radically different top-down plan. This apparently erratic development sequence is a great

example of successful real-world design. The history of successful software is the same. Different design

cycles often emphasize different design strategies, and sometimes there are major changes.

Maintenance

After a program has been developed and put into operation, you might think there’s no more need to work

on it. Not so. In the real world, if a program is useful, programmers are often asked to maintain it long after

that program is fi rst put into operation. On average, 80% of the work on a successful program is done after

the program is fi rst put into operation. Maintenance consists of fi xing bugs and making improvements.

Maintenance is much easier if good software practices are employed at the beginning and throughout the

life of the program. This includes writing the code elegantly in the fi rst place, preserving elegance when you

make changes, and providing and keeping complete and well organized documentation.

Remember that documentation is more than just comments for programmers reading source code. Doc-

umentation is also interface information for programmers who want to use already-compiled classes. Ap-

pendix 6 shows how to embed interface information in your source code so that it can be read by java doc

and presented like Sun’s documentation of the Java API. Documentation also includes information for peo-

ple who are not programmers at all but need to use a fi nished program. This type of documentation needs to

be even more user-oriented than javadoc’s output.

If you are responsible for maintaining an existing program, here are some useful thumb rules:

 1. Respect your predecessor. Don’t change any piece of code you think is wrong until you have spent as

much time thinking about it as some other programmer (or you) spent creating it in the fi rst place. There

may have been an important reason for doing something in a certain way, even if there is a problem in

how it was done, and you want to understand that reason before you make changes.

 2. Respect your successor. Whenever you have trouble fi guring out what a particular section of code is do-

ing, after you thoroughly understand the problem, fi x the code and documentation so that it is easier to

fi gure out next time.

•

•

•

 8.9 Iterative Enhancement 325

08-M4402.indd 32508-M4402.indd 325 12/17/07 4:22:51 PM12/17/07 4:22:51 PM

Apago PDF Enhancer

326 Chapter 8 Software Engineering

 3. Maintain a “standard” bank of test input data (and the corresponding output data), and use it to verify

that any changes you have made affect only the problem you are trying to solve and do not have other

unwanted effects that ripple through the program.

8.10 Merging Driver Method into Driven Class

It’s legal to include a main method in any class. Figure 8.10 contains a simple Time program that in-

cludes its own main method.

Figure 8.10 Time class with built-in main driver method

/**
* Time.java
* Dean & Dean
*
* This class stores time in the form of hours, minutes, and
* seconds. It prints the time using military format.
**/

public class Time
{
 private int hours, minutes, seconds;

 //***

 public Time(int h, int m, int s)
 {
 this.hours = h;
 this.minutes = m;
 this.seconds = s;
 }

 //***

 public void printIt()
 {
 System.out.printf("%02d:%02d:%02d\n",
 hours, minutes, seconds);
 } // end printIt

 //***

 public static void main(String[] args)
 {
 Time time = new Time(3, 59, 0);
 time.printIt();
 } // end main
} // end class Time

⎫
⎪
⎪
⎬
⎪
⎪
⎭

This is a driver for

the rest of the code

in this class.

08-M4402.indd 32608-M4402.indd 326 12/17/07 4:22:52 PM12/17/07 4:22:52 PM

Apago PDF Enhancer

 Up until now, we’ve split each of our OOP programs into separate classes—a driver class and one

or more driven classes. It’s easiest to grasp the concept of an object if it’s associated with one class, while

the code that instantiates it is associated with another class. Driven classes and driver classes have distinc-

tive roles. A driven class describes a thing that’s being modeled. For example, in our Mouse programs, the

Mouse class describes a mouse. A driver class contains a main method, and it drives the separate Mouse

class. In our Mouse programs, the MouseDriver class instantiates Mouse objects and performs actions

on those objects. Using two or more classes fosters the habit of putting different types of things in different

modules.

Although we’ll continue to use separate classes for most of our programs, for short programs that don’t

do much except demonstrate a concept, we’ll sometimes merge main into the class that implements the rest

of the program. It’s a matter of convenience—there’s one less fi le to create and there’s slightly less code to

enter.

In a big program that has one driver class in charge of a large number of driven classes,

it’s sometimes handy to insert an additional main method in some or all of the driven

classes. The additional main method in a driven class serves as a local tester for the code

in that class. Whenever you make a change in the code of a particular class, you can use its

local main method to test that class directly. It’s easy. Just execute the class of interest, and the JVM au-

tomatically uses that class’s main method. Once you’ve verifi ed the changes you’ve made locally, you can

proceed to execute the driver in a higher-level module to test more or all of the program. You don’t have to

remove the local main methods. You can just leave them there for future local testing or demonstration of

the features of each particular class. When you execute the overall program’s driver class, the JVM auto-

matically uses the main method in that driver class, and it ignores any main methods that may happen to

be in other classes in the program.

Thus, you can add a main method to any class, so that the class can be executed directly and act as its

own driver. When a multiclass program contains multiple main methods (no more than one per class), the

particular main method that’s used is the one in the class that’s current when execution starts.

8.11 Accessing Instance Variables Without Using this

For a while now, we’ve used this to access the calling object’s instance variables from within a method.

Here’s a formal explanation for when to use this:

Use this within an instance method or a constructor to access the calling object’s instance variables.

The this reference distinguishes instance variables from other variables (like local variables and

parameters) that happen to have the same name.

However, if there is no name ambiguity, you may omit the this prefi x when accessing an instance

variable.

The code in Figure 8.11 has several places where the this prefi x is worth mentioning. It’s OK to omit

this in the statement in the setAge method, because the instance variable name is different from the

 parameter name. It’s not OK to omit this in the statement in the setWeight method, because the simi-

larity in instance variable and parameter names would create an ambiguity. It is OK to omit this in the

statement in the print method, because there is no name ambiguity.

Sometimes an instance method is called by one object and has a parameter which refers to a different

object in the same class. String’s equals method is a familiar example of this situation. Inside such

a method, there will be code that needs to refer to two different objects, the calling object and the object

 8.11 Accessing Instance Variables Without Using this 327

Provide each
class with a
built-in test
method.

08-M4402.indd 32708-M4402.indd 327 12/17/07 4:22:52 PM12/17/07 4:22:52 PM

Apago PDF Enhancer

328 Chapter 8 Software Engineering

Figure 8.11 MouseShortcut class illustrates the use and omission of this

/**
* MouseShortcut.java
* Dean & Dean
*
* This class illustrates uses and omissions of this.
**/

public class MouseShortcut
{
 private int age; // age in days
 private double weight; // weight in grams

 //**

 public MouseShortcut(int age, double weight)
 {
 setAge(age);
 setWeight(weight);
 } // end constructor

 //**

 public void setAge(int a)
 {
 age = a;
 } // end setAge

 //**

 public void setWeight(double weight)
 {
 this.weight = weight;
 } // end setWeight

 //***

 public void print()
 {
 System.out.println("age = " + age +
 ", weight = " + weight);
 } // end print
} // end class MouseShortcut

⎫
⎬
⎭

OK to omit this before age

and weight instance variables.

Not OK to omit this before instance variable,

weight, because it’s same as parameter, weight.

OK to omit this before instance variable,

age, because it’s different from parameter, a.

08-M4402.indd 32808-M4402.indd 328 12/17/07 4:22:53 PM12/17/07 4:22:53 PM

Apago PDF Enhancer

referred to by the parameter. The safest and most understandable way to refer to these two objects is to use

the this prefi x to refer to the calling object and the reference-parameter prefi x to refer to the other object.

However, it’s OK to omit the this when referring to the calling object, and you’ll see this done quite fre-

quently. It makes the code more compact.

8.12 Problem Solving with the API Calendar Class (Optional)

Although textbooks (including ours) ask you to write little programs that manipulate times and dates, if you

get serious about times and dates, you will discover it’s a hornet’s nest of different number

bases, different length months, leap years, daylight savings time, different time zones, and

many different formatting conventions. For serious time and date work, you should use

Java API prewritten software. Unfortunately, it’s not always easy to fi nd the right Java class. This is a case

in point, because most of the methods in the obvious classes, Time and Date, are obsolete. Usually, you

should use the Calendar class instead. Figure 8.12 contains an example program that exercises some of

the methods in the Calendar class.

The Calendar class is in the java.util package. To include it in your program, you could use this

import statement:

import java.util.Calendar;

However, since the Calendar class is in the same package as the Scanner class, which this program

also needs, it’s easier to make both classes available simultaneously with this one “wildcard” import

statement:

import java.util.*;

In the fi rst declaration, the program loads StdIn with a reference to an instance of the Scanner class.

In the second declaration, the program loads time with a reference to an instance of the Calendar

class. Notice, however, that the program creates the Calendar object in a strange way. For a reason we’ll

explain later in Chapter 13, you can’t just use new Calendar()directly. Instead, you have to use the

 get Instance method. If you look up the getInstance method in the Java API documentation for the

Calendar class, you’ll see that this method has a static modifi er, so it’s a class method. How do you

invoke a class method? Think back to how you invoked Math-class methods in Chapter 5. Instead of using

an instance variable before the method name, you use the class name. How does getInstance work?

We’re not supposed to know, because it’s an encapsulated module, but it probably internally instantiates a

Calendar object, initializes it with the current time, and then returns a reference to that object. Although

this is not the standard way to instantiate new objects, it works. The Java API includes several examples of

this indirect type of object construction.

For the rest of the program, you can forget about how the time object was created and use it like you

would any other object to call instance methods in its own class. The fi rst print statement uses Calendar’s

getTime method to retrieve the time information, and then it prints it all out as shown in the fi rst line of

the sample session.

The next two statements use the object reference with get methods to retrieve two particular instance

variable values. But wait! There’s something wonderfully strange about these two get

methods. They’re not two separate methods like getDayOfYear and getHour would

be. They’re both the same method—one method called just plain get. Instead of using

the method name to identify the instance variable that will be retrieved, the designers of

this class decided to use an int parameter value to identify that variable. We don’t have

Don’t reinvent
the wheel.

Use ID number
in argument to
select one of
many similar
variables.

 8.12 Problem Solving with the API Calendar Class (Optional) 329

08-M4402.indd 32908-M4402.indd 329 12/17/07 4:22:53 PM12/17/07 4:22:53 PM

Apago PDF Enhancer

330 Chapter 8 Software Engineering

Figure 8.12 Demonstration program for the Calendar class.

/**
* CalendarDemo.java
* Dean & Dean
*
* This program demonstrates how to use the Calendar class.
**/

import java.util.*; // for Scanner and Calendar

public class CalendarDemo
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Calendar time = Calendar.getInstance(); // initially now
 int day; // day of year
 int hour; // hour of day

 System.out.println(time.getTime());
 day = time.get(time.DAY_OF_YEAR);
 hour = time.get(time.HOUR_OF_DAY);
 System.out.println("day of year= " + day);
 System.out.println("hour of day= " + hour);

 System.out.print("Enter number of days to add: ");
 day += stdIn.nextInt();
 System.out.print("Enter number of hours to add: ");
 hour += stdIn.nextInt();

 time.set(time.DAY_OF_YEAR, day);
 time.set(time.HOUR_OF_DAY, hour);
 System.out.println(time.getTime());
 } // end main
} // end class CalendarDemo

Sample session:

Mon Sep 24 16:42:27 CDT 2007
day of year= 267
hour of day= 16
Enter number of days to add: 8
Enter number of hours to add: 13
Wed Oct 03 05:42:27 CDT 2007

⎫
⎬
⎭

Parameters are int codes

that specify the kind of

information desired.

08-M4402.indd 33008-M4402.indd 330 12/17/07 4:22:53 PM12/17/07 4:22:53 PM

Apago PDF Enhancer

to know how the method is implemented, because it’s encapsulated, but we can use a plausible guess to shed

light on what it does. For example, get’s parameter could be a switch index that steers the control fl ow to

a particular case, where there’s code that returns the value of the instance variable that corresponds to that

index number.

The problem with using an index number to identify one of many instance variables is that simple

integers don’t convey much meaning. But you know a solution to this problem. All you have to do is make

each such index number a named constant. Then, for the distinguishing method argument, use the named

constant instead of the number. That’s how the Calendar class implements its generic get method. And

it’s at least as easy for a user to remember one get method with different named-constant arguments as it

would be to remember different get-method names.

Armed with this concept, you should now be able to see what the rest of the code in our CalendarDemo

program is doing. It gets the current day of the year and the current hour of the day. Then it adds a user-

input number of days to the current day and a user-input number of hours to the current hour. Then it uses

 Calendar’s generic set method (which probably works like Calendar’s generic get method) to mu-

tate the object’s instance variables for day-of-year and hour. Finally, it prints out the mutated time.

The Calendar class nicely illustrates the value of using pre-written software. It really is easier to

learn to use that class than it is to write a program that does what it does. Moreover, other people’s code

sometimes illustrates techniques that may be applicable to code you write. However, the Calendar class

also illustrates the kinds of penalties associated with using pre-written software. The biggest penalty is usu-

ally the time you have to spend to locate and fi gure out what’s available. Another penalty is that what you

fi nd may not exactly match your immediate needs, and you might have to provide extra code to adapt the

pre-written software to your current program. Such penalties motivate many programmers to say, “Oh heck,

I’ll just write it myself.” Sometimes that’s the thing to do, but in the long run you’ll be ahead if you take time

to learn about what others have already developed.

8.13 GUI Track: Problem Solving with CRC Cards (Optional)

When you begin a new design, there’s often a period of head-scratching when you’re trying

to fi gure out what your classes should be and what they should do. Section 8.6 presented a

formal top-down recipe, but sometimes you just need to “muck around” or brainstorm for

awhile to get your thinking straight.

Even when you’re just mucking around and brainstorming, it’s still helpful to write things down. To

provide a minimal structure for this informal activity, several years ago computer scientists Kent Beck and

Ward Cunningham8 suggested using old-fashioned 3" � 5" fi le cards, with a pencil and eraser. Their idea

was to allocate one card to each proposed class, with three kinds of information on each card: (1) At the top,

put a class name. (2) Below and on the left, make a list of active verb phrases that described what that class

will do. (3) Below and on the right, make a list of other classes with which the current class interacts—either

actively as a client or passively as a server. The acronym, CRC, helps you remember the kinds of informa-

tion each card should have. The fi rst ‘C’ stands for “Class.” The ‘R’ stands for “Responsibility.” The last ‘C’

stands for “Collaboration.”

When several different people are participating in a brainstorming session, pencils, erasers, and little

white cards might indeed be the best medium to employ. But when you’re the only designer, it might be

more fun to use little windows on your computer screen. The program presented in Figure 8.13 sets up simu-

lated CRC cards on your computer screen so you can do just that.

Explore your
options.

8 OOPSLA ’89 Conference Proceedings.

 8.13 GUI Track: Problem Solving with CRC Cards (Optional) 331

08-M4402.indd 33108-M4402.indd 331 12/17/07 4:22:54 PM12/17/07 4:22:54 PM

Apago PDF Enhancer

332 Chapter 8 Software Engineering

Put containers

into split panes.

Figure 8.13 Program that puts interactive CRC cards on your computer screen

/**
* CRCCard.java
* Dean & Dean
*
* This program creates a GUI display of CRC cards.
**/

import java.util.Scanner;
import javax.swing.*; // for JFrame, JTextArea, & JSplitFrame

public class CRCCard
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String input;

 System.out.print("Enter class name or 'q' to quit: ");
 input = stdIn.nextLine();
 while (!input.equalsIgnoreCase("q"))
 {
 JFrame frame = new JFrame("Class: " + input);
 JTextArea responsibilities =
 new JTextArea("RESPONSIBILITIES:\n");
 JTextArea collaborators =
 new JTextArea("COLLABORATORS:\n");
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 responsibilities, collaborators);

 frame.setSize(350, 210);
 frame.add(splitPane);
 frame.setLocationByPlatform(true);
 frame.setVisible(true);
 frame.toFront();
 splitPane.setDividerLocation(0.67);

 System.out.print("Enter class name or 'q' to quit: ");
 input = stdIn.nextLine();
 } // end while
 } // end main
} // end class CRCCard

⎫
⎪
⎬
⎪
⎭

Create two containers.

Create a new

window.

⎫
⎬
⎭

Put split pane in window.

08-M4402.indd 33208-M4402.indd 332 12/17/07 4:22:54 PM12/17/07 4:22:54 PM

Apago PDF Enhancer

This program imports the javax.swing package to provide access to three classes in the Java API:

JFrame, JTextArea, and JSplitPane. In a main method, it repeatedly asks the user for another

class until a ‘q’ entry says it’s time to quit. After the user enters each class name, the program instantiates a

small JFrame window that represents one CRC card. The JFrame constructor automatically inserts the

text, “Class: <classname>” in that window’s header and thereby implements the fi rst ‘C’ in CRC. Then the

program instantiates two JTextArea “panes,” which act like little erasable scratch pads, on which you

can write any text anywhere. The two JTextArea constructor calls automatically write “RESPONSI-

BILITIES:” and “COLLABORATORS:,” respectively, on the fi rst line of each of these two JTextArea

panes. Then, the program instantiates a JSplitPane with a HORIZONTAL_SPLIT specifi cation that

splits the window into two side-by-side “openings” separated by a moveable vertical partition. The last two

 JSplitPane parameters paste the individual JTextArea panes into these two openings.

The setSize method call sizes the window to make it about like a 3" � 5" fi le card. The add method

call adds the split pane to the window. The setLocationByPlatform method call tells the computer

to offset each additional card so that you can continue to see the titles and borders of previously created

cards as they “pile up” on your desktop. The setVisible method makes each new card visible. The

 toFront method moves it to the front of your screen. The setDividerLocation method positions the

 JSplitPane divider two-thirds of the way to the right, to provide twice as much space for “responsibili-

ties” text as for “collaboration” text. The specifi ed window dimensions and the location of the split-pane

divider are just initial settings, and if you fi nd you need more space, you’ll be able to change them interac-

tively on the computer screen at any time while the program is running.

When you run the program in a Windows environment, you’ll get a Command Prompt window with a

query asking for a class name, like what appears in Figure 8.14.

Figure 8.14 Initial Command Prompt display for CRCCards program

 8.13 GUI Track: Problem Solving with CRC Cards (Optional) 333

After you enter a class name, an additional window appears. This is your fi rst CRC card. If the Com-

mand Prompt window is now underneath the new card, drag the Command Prompt window down and to the

right, to get it out of the way. Then, move the cursor to the new CRC card, and fi ll in additional information,

like the “run program” entry in the RESPONSIBILITIES pane and the “GarageDoorSystem” entry in the

COLLABORATORS pane in Figure 8.15.

Go back to the Command Prompt and enter another class name, and so on. until you have created all

the CRC cards you need. They should automatically pile up in a “stack” that looks something like the four

cards in the upper left of the computer screen shown in Figure 8.16.

Now, before you enter a ‘q’ in the Command Prompt window, you can reduce it to an icon and play

around with four CRC cards. You can drag them anywhere on the screen to form logical hierarchies or

08-M4402.indd 33308-M4402.indd 333 12/17/07 4:22:55 PM12/17/07 4:22:55 PM

Apago PDF Enhancer

334 Chapter 8 Software Engineering

Figure 8.15 First CRC Card after user entries

Figure 8.16 What you might see after creating four CRC cards

08-M4402.indd 33408-M4402.indd 334 12/17/07 4:22:55 PM12/17/07 4:22:55 PM

Apago PDF Enhancer

groupings. On any of the cards you can change any of the wordings in either of the two panes. If you decide

that one of the classes is no good, you can click on its X box to throw it away, reactivate the Command

Prompt window, and create more new CRC cards with different class names. When you’re through with

everything, use Ctrl-PrtScr to print the screen to record your thinking, and then enter ‘q’ in the Command

Prompt window to terminate the program.

Summary

Begin every class with a prologue. Include program name, author(s), and a brief description of what the

class does.

Provide a descriptive comment above or after any code that an experienced Java programmer would not

understand.

Use meaningful names for everything. Do not be cryptic.

Enclose logical blocks of code in braces. The opening and closing braces should be in the same column

as the start of the line that precedes the opening brace.

Supply a // end <block-name> comment after a block’s closing brace to improve readability.

Declare each variable at the beginning of its class or method, or in its for loop header. Normally use

one line per variable and follow each declaration with an appropriate descriptive comment.

Use subordinate helper methods to simplify large methods and reduce code redundancy. Make helper

methods private to minimize clutter in the class interface.

Use instance variables for object attributes (state information) only. Use local variables and input pa-

rameters for calculations within a method and to transfer data into a method. Use return values and/or

input reference parameters to transfer data out of a method.

Plan to test the software you develop frequently and thoroughly as you go along. Include typical, bound-

ary, and unreasonable cases.

Top-down design is appropriate for large projects that have well-understood objectives. Proceed from

general to specifi c, using stubs to defer implementation of subordinate methods.

Bottom-up design allows you to give priority to critical details. It fosters re-use of existing software,

which reduces development cost and improves system reliability. But this methodology makes large

projects hard to manage.

Expect to go through several design iterations. Use prototyping to help customers get a clearer under-

standing of what they want, but avoid the trap of trying to convert a clumsy prototype directly into a

fi nal product. In each subsequent iteration, select that design strategy which best addresses the greatest

current need or concern. A successful program will require ongoing maintenance, and you can make

this easier if you preserve and enhance elegance as the program changes and grows.

To facilitate modular testing, provide a main method with every class.

If there is no name ambiguity, you may omit the this prefi x when accessing an instance member.

Review Questions

§8.2 Coding-Style Conventions

 1. One should avoid inserting blank lines between different code sections (because that leads to wasted paper
when the program is printed). (T / F)

 2. In order, list the seven items that we recommend you include in a fi le prologue.

•

•

•
•

•
•

•

•

•

•

•

•

•
•

 Review Questions 335

08-M4402.indd 33508-M4402.indd 335 12/17/07 4:22:55 PM12/17/07 4:22:55 PM

Apago PDF Enhancer

336 Chapter 8 Software Engineering

 3. When adding a comment to a variable declaration, always begin the comment one space after the end of the
declaration. (T / F)

 4. To get the most on each line of code, always break a long line at the point determined by your text editor or
IDE. (T / F)

 5. For an if or while that has only one statement in its body, braces for the body are optional. The compiler
does not require them, but proper style suggests that you should include them. Give at least one reason why
it’s a good idea to put braces around the body’s single statement.

 6. What’s wrong with the style of a class description that ends like this?

 }
 }
 }

 What might you do to fi x it?
 7. What should you use to separate large “chunks” of code?
 8. For each, write “yes” or “no” to indicate whether it is good style to include a blank space.

after the single asterisks in the prologue
between a method call and its opening parentheses
within each of the three components in a for loop header
after the two semicolons in the for loop header
between a closing brace and the //’s for its associated comment
after the //’s for all comments
after the if, while, and switch keywords

§8.3 Helper Methods

 9. Which of the following is a legitimate reason for creating a helper method?
 a) You want the method to be hidden from the outside world.
 b) You have a long and complicated method and would like to partition it into several smaller modules.
 c) Your class contains two or more methods where some of the code is the same in both methods.
 d) All of above.

 10. Does a class’s interface include the names of private methods?

§8.4 Encapsulation (with Instance Variables and Local Variables)

 11. In the interest of encapsulation, use local variables instead of instance variables whenever possible. (T / F)
 12. If a method modifi es a particular instance variable, and if a program calls the same method two separate

times, the value of the instance variable at the beginning of the second method call is guaranteed to be the
same as the value it had at the end of the fi rst method call. (T / F)

§8.5 Design Philosophy

 13. Since some of your preliminary code might change in the course of development, do not waste time testing
until everything is done. (T / F)

 14. When you are testing a program, it’s important to not have any preconceived expectations of what your
output should look like. (T / F)

§8.6 Top-Down Design

 15. The top-down design methodology is good because:
 a) It keeps everyone focused on a common goal. (T / F)
 b) It avoids “reinventing the wheel.” (T / F)
 c) It keeps management informed. (T / F)
 d) It minimizes the chances of solving the wrong problem. (T / F)

•
•
•
•
•
•
•

08-M4402.indd 33608-M4402.indd 336 12/17/07 4:22:56 PM12/17/07 4:22:56 PM

Apago PDF Enhancer

 e) It minimizes overall cost. (T / F)
 f) It results in the fewest number of undetected bugs. (T / F)

 16. In a top-down design process, which do you decide on fi rst—the classes or the public methods?

§8.7 Bottom-Up Design

 17. When should you use bottom-up design?

§8.9 Iterative Enhancement

 18. If a prototype is successful, what temptation should you resist?
 19. Once you select a particular design methodology, keep using that same methodology throughout the entire

design process, and do not allow other methodologies to “contaminate” the process originally selected.
(T / F)

§8.10 Merging Driver Method into Driven Class

 20. You can drive any class from a main method within that class, and you can retain that main method for
future testing of that class even though that class is normally driven from another class in a larger program.
(T / F)

Exercises

 1. [after §8.2] Describe the way to declare variables that conforms to good style. Include description of when
and how to include associated comments.

 2. [after §8.2] Correct the style of the following class defi nition.

/*Environment.java This class models the world's environment.
It was written by Dean & Dean and it compiles so it must be OK*/
public class Environment{//instance variables
private double sustainableProduction;private double
initialResources;private double currentResources;private
double yieldFactor = 2.0;public void setSustainableProduction
(double production){this.sustainableProduction = production;}
// Set pre-industrial mineral and fossil resources
public void setInitialResources(double resources){this.
initialResources=resources;}
// Initialize remaining mineral and fossil resources
public void setCurrentResources(double resources){this.
currentResources = resources;}
// Fetch remaining mineral and fossil resources
public double getCurrentResources(){return this.
currentResources;}/*Compute annual combination of renewable
and non-renewable environmental production*/public double
produce(double populationFraction,double extractionExpense){
double extraction;extraction=this.yieldFactor*
extractionExpense*(this.currentResources/this.
initialResources);this.currentResources-= extraction;return
extraction+populationFraction*this.sustainableProduction;}}

 3. [after §8.3] Given the following shirt-design program, which is the same as the Shirt program in Figures 8.3
and 8.4, except for a slight modifi cation in main:

 Exercises 337

08-M4402.indd 33708-M4402.indd 337 12/17/07 4:22:56 PM12/17/07 4:22:56 PM

Apago PDF Enhancer

338 Chapter 8 Software Engineering

 1 /**
 2 * ShirtDriver.java
 3 * Dean & Dean
 4 *
 5 * This is a driver for the Shirt class.
 6 **/
 7
 8 public class ShirtDriver
 9 {
10 public static void main(String[] args)
11 {
12 Shirt shirt1 = new Shirt();
13 Shirt shirt2 = new Shirt();
14
15 System.out.println();
16 shirt1.display();
17 shirt2.display();
18 } // end main
19 } // end ShirtDriver

 1 /**
 2 * Shirt.java
 3 * Dean & Dean
 4 *
 5 * This class stores and displays color choices for
 6 * a sports-uniform shirt.
 7 **/
 8
 9 import java.util.Scanner;
10
11 public class Shirt
12 {
13 private String name; // person's name
14 private String primary; // shirt's primary color
15 private String trim; // shirt's trim color
16
17 //***
18
19 public Shirt()
20 {
21 Scanner stdIn = new Scanner(System.in);
22 System.out.print("Enter person's name: ");
23 this.name = stdIn.nextLine();
24
25 this.primary = selectColor("primary");
26 this.trim = selectColor("trim");
27 } // end constructor
28
29 //***
30
31 public void display()

08-M4402.indd 33808-M4402.indd 338 12/17/07 4:22:56 PM12/17/07 4:22:56 PM

Apago PDF Enhancer

32 {
33 System.out.println(this.name + "'s shirt:\n" +
34 this.primary + " with " + this.trim + " trim");
35 } // end display
36
37 //***
38
39 // Helping method prompts for and inputs user's selection
40
41 private String selectColor(String colorType)
42 {
43 Scanner stdIn = new Scanner(System.in);
44 String color; // chosen color, first a letter, then word
45
46 do
47 {
48 System.out.print("Enter shirt's " + colorType +
49 " color (w, r, y): ");
50 color = stdIn.nextLine();
51 } while (!color.equals("w") && !color.equals("r") &&
52 !color.equals("y"));
53
54 switch (color.charAt(0))
55 {
56 case 'w':
57 color = "white";
58 break;
59 case 'r':
60 color = "red";
61 break;
62 case 'y':
63 color = "yellow";
64 } // end switch
65
66 return color;
67 } // end selectColor
68 } // end class Shirt

 Trace the above shirt-design program using either the short form or the long form. To help you get started,
here’s the trace setup, including the input. For the short form, you won’t need the line# column.

input

Corneal
r
w
Jill
w

y

ShirtDriver Shirt

line#

main

line#

Shirt display selectColor obj1 obj2

sh1 sh2 this this this cType color name prim trim name prim trim output

 Exercises 339

08-M4402.indd 33908-M4402.indd 339 12/17/07 4:22:56 PM12/17/07 4:22:56 PM

Apago PDF Enhancer

340 Chapter 8 Software Engineering

 4. [after §8.3] Assume that the GarageDoorSystem class in Figures 7.25a and 7.25b has another instance
variable:

public final String SYSTEM_ID;

 Rewrite the GarageDoorSystem constructor so that it calls a helper method called initialize which
asks the user to supply a name for SYSTEM_ID. In that method, also ask the user if the starting position
is to be up. Then, use the user’s input to initialize the state variable, assuming the only possible starting
states are down (0) or up (2).

 5. [after §8.4] This exercise demonstrates using a reference parameter to pass data back to the calling method.
Suppose you want a Car5 class to include a method with this heading:

public boolean copyTo(Car5 newCar)

 This method is supposed to be called by an existing Car5 object with an argument to a new Car5 object.
If any of the calling car’s instance variables has not been initialized, the desired method should not try to
modify any of the new car’s instance variable values, and the method should return false. Otherwise,
the method should copy all of the calling car’s instance variable values into the new car and return true.
Here’s a driver that illustrates the usage:

/**
* Car5Driver.java
* Dean & Dean
*
* This class is a demonstration driver for the Car5 class.
**/

public class Car5Driver
{
 public static void main(String[] args)
 {
 Car5 annaCar = new Car5();
 Car5 nickCar = new Car5();

 System.out.println(annaCar.copyTo(nickCar));
 annaCar = new Car5("Porsche", 2006, "beige");
 System.out.println(annaCar.copyTo(nickCar));
 } // end main
} // end class Car5Driver

Output:

false
true

 Write the code for the desired copyTo method.

 6. [after § 8.5] We recommend that you test frequently, even if it means creating special test code that is not
used in the fi nal program. Why might it be useful to save such special test code?

 7. [after §8.6] Assuming it will be called by the draw method in the Square class in Figure 8.7a, write
a drawSolidSquare method that asks the user for the character to print and draws the desired solid
square all by itself, without calling any separate drawHorizontalLine method.

08-M4402.indd 34008-M4402.indd 340 12/17/07 4:22:57 PM12/17/07 4:22:57 PM

Apago PDF Enhancer

 Sample session:

Enter width of desired square: 5
Area = 25
Print with (b)order or (s)olid? s
Enter character to use: #
#####
#####
#####
#####
#####

 8. [after §8.6] Assuming it will be called by the draw method in the Square class in Figure 8.7a, write
a drawBorderSquare method that asks the user for two characters to use to draw a bordered square,
one character of the border and a different character for the space in the middle. Notice that using the
same character for the border and the middle makes this method draw a solid square, and thus this
method makes the drawSolidSquare method redundant, although this method requires more user
interaction.

 Sample session:

Enter width of desired square: 5
Area = 25
Print with (b)order or (s)olid? b
Enter character for border: B
Enter character for middle: m
BBBBB
BmmmB
BmmmB
BmmmB
BBBBB

 9. [after §8.6] Figure 8.2b has two if statement conditions that contain what are called regular expressions.
As indicated these are explained in the Java API Pattern class. This exercise is intended to help you get
a better feeling for Java’s regular expressions and their usage. Use your Java API documentation on the
Pattern class to get the answers to these questions:
 a) What is the meaning of the regular expression, "[A-Z][a-z]*", which appears in Figure 8.2b?
 b) What is the regular expression for a character string starting with a ‘Z’ and containing any number of

additional characters of any kind except for a space or a tab?
 c) What is the regular expression for a string that represents a U.S. long-distance telephone number (three

digits, a dash or space, three digits, a dash or space, and four digits)?

 10. [after §8.6] Defi ne “stepwise refi nement.”

 11. [after §8.6] Write stubs for all the constructors and methods in the Student class of Figures 8.2a and 8.2b.
Each stub should print out the method name followed by the initial (passed-in) values of all parameters, like
this sample output:

in Student
in setFirst, first= Adeeb
in setLast, last= Jarrah
in Student, first= Heejoo, last= Chun
in printFullName

 Exercises 341

08-M4402.indd 34108-M4402.indd 341 12/17/07 4:22:57 PM12/17/07 4:22:57 PM

Apago PDF Enhancer

342 Chapter 8 Software Engineering

 12. [after §8.7] Write a generic drawRow method having this heading:

private void drawRow(int startCol, int endCol)

 startCol and endCol are the column numbers of the left and right borders, respectively. Then modify
the Square class’s draw method in Figure 8.7a to draw either a solid square or a solid triangle whose
height and width equal the width of the input width of a square container. What about the area now? Is it
a redundant value, or is it a legitimate object attribute? Modify the instance variables and the getArea
method accordingly. Then drive your modifi ed Square class (call it Square2) with a Square2Driver
whose main method looks like this:

public static void main(String[] args)
{
 Scanner stdIn = new Scanner(System.in);
 Square2 square;

 System.out.print("Enter width of square container: ");
 square = new Square2(stdIn.nextInt());
 square.draw();
 System.out.println("Area = " + square.getArea());
} // end main

 Sample session:

Enter width of square container: 5
Print (s)quare or (t)riangle? t
*
**

Area = 15

 13. [after §8.9] Write a prototype of the Square program, using just one class called SquarePrototype, with
only one method, main. Write the minimum amount of code needed to generate the prescribed output for
only the simplest case of a solid square. The sample session should look exactly like it would for the fi nal
program described in Figures 8.6, 8.9a, and 8.9b, if the user selects the (s)olid option. If the user selects the
(b)order option, however, the prototype should respond by printing a “Not Implemented.”

 14. [after §8.9] When you design something, you should select the design methodology that is best able to
address the greatest current design concern. (T / F)

 15. [after §8.10] Write a separate driver program that executes the Time class shown in Figure 8.10 and sets the
time for 17 hours, 30 minutes, and zero seconds. Assume that the main method that appears in Figure 8.10
is still there.

 16. [after §8.11] Rewrite the Car class in Figure 7.2 to eliminate the use of this.

 17. [after §8.12] The Java API Calendar class contains a method called getTimeInMillisec which
enables you to retrieve the absolute time (in milliseconds) at which any Calendar object was created. As
indicated in Section 8.12, you can get such an object by calling the getInstance class method. You can
use this capability to evaluate the runtime of any chunk of code. All you have to do is create a Calendar
object before the test code starts, create another Calendar object right after the code ends, and print
out the difference in those two object’s times. To demonstrate this capability, write a short program called

08-M4402.indd 34208-M4402.indd 342 12/17/07 4:22:57 PM12/17/07 4:22:57 PM

Apago PDF Enhancer

TestRuntime that asks the user for a desired number of iterations, num. Then have it measure the runtime
for a loop of num iterations that executes the single statement:

Math.cos(0.01 * i);

 The variable i is the loop count variable.

Review Question Solutions

 1. False. Readability is an important attribute of good computer code. To save printer paper, print on both
sides of the page and/or use smaller font.

 2. The seven items to include in a fi le prolog are:
line of asterisks
fi lename
programmer name(s)
blank line with one asterisk
description
line of asterisks
blank line

 3. False. That would provide maximum room for each comment, but good programmers make the beginnings
of declaration comments line up with each other, and they try to make declaration comments short enough
to avoid line wrap.

 4. False. Take control, and break a long line at the most logical place(s).

 5. Even though it’s not necessary, it’s a good idea to provide braces with single-statement if and while
statements because

Braces provide a visual cue for remembering to indent.
Braces help you avoid a logical mistake if you add code later.

 6. Unless a block is very short, it may not be immediately obvious which block is being terminated by a
particular brace. It’s good practice to terminate all but the shortest blocks with a comment, for example,

 } // end if
 } // end main
} // end class Whatever

 7. Separate large chunks of code with blank lines.

 8. Yes means include a space, No means do not.
Yes, after the single asterisks in the prologue.
No, not between a method call and its opening parentheses.
No, not within each of the three components in a for loop header.
Yes, after the two semicolons in the for loop header.
Yes, between a closing brace and the //’s for its associated comment.
Yes, after the //’s for all comments.
Yes, after the if, while, and switch keywords.

 9. d) All of above.

 10. No. the interface does not describe private members.

 11. True. You should generally try to keep things as local as possible, and using local variables instead of
instance variables is one way to do this. Instance variables should be reserved for attributes that describe an
object’s state.

•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•

 Review Question Solutions 343

08-M4402.indd 34308-M4402.indd 343 12/17/07 4:22:57 PM12/17/07 4:22:57 PM

Apago PDF Enhancer

344 Chapter 8 Software Engineering

 12. False. It’s true that an instance variable persists throughout the life of an object, and if the second call of
the same method were right after the fi rst call of that method, the fi nal value of the instance variable in the
fi rst call would be the same as the initial value in the second call of that method. However, it’s possible that
some other method could change the value of the instance variable between the two calls of the method in
question.

 13. False. Test frequently throughout the development process.

 14. False. It’s important to have a clear idea of what you expect to see before you do a test, so you will have the
best chance of recognizing a discrepancy when it occurs.

 15. The top-down design methodology is the best because:
 a) True.
 b) False. It sometimes forces people to re-invent the wheel.
 c) True.
 d) False. If you’re worried about solving the wrong problem, use prototyping.
 e) False. To minimize cost, organize the design to reuse existing components.
 f) False. To maximize reliability, organize the design to reuse existing components.

 16. In top-down design you decide on the classes before the public methods.

 17. You should use bottom-up design when your program can utilize a substantial amount of prewritten
software or when low-level details are critical and require early attention.

 18. If a prototype is successful, it’s important to resist the temptation of continuing the development by
tinkering with that prototype.

 19. False. Many problems need benefi ts of more than one design methodology. It’s a good idea to stick with one
methodology through one design cycle (planning, implementation, testing and evaluation), but you might
need to switch to a different methodology in the next design iteration.

 20. True. The particular main method used is the one that’s current when execution starts.

08-M4402.indd 34408-M4402.indd 344 12/17/07 4:22:57 PM12/17/07 4:22:57 PM

Apago PDF Enhancer

0.0 Last A-Head 345

C H A P T E R

345

Classes with Class Members

Objectives

Learn how and when to use class variables.

Learn how to write class methods and when to use them.

Learn how and when to use class constants.

Practice some of the design approaches suggested in Chapter 8.

Optionally, learn how to construct a linked list of objects and access them through class methods.

Outline

 9.1 Introduction

 9.2 Class Variables

 9.3 Class Methods

 9.4 Named Constants

 9.5 Writing Your Own Utility Class

 9.6 Using Class Members in Conjunction with Instance Members

 9.7 Problem Solving with Class Members and Instance Members in a Linked List Class (Optional)

9.1 Introduction

When you think about an object-oriented solution, what do you envision? Based on what you’ve learned up

to this point, you should see separate objects, each with their own set of data and behaviors (instance vari-

ables and instance methods, respectively). That’s a valid picture, but you should be aware that in addition to

data and behaviors that are specifi c to individual objects, you can also have data and behaviors that relate to

an entire class. Since they relate to an entire class, such data and behaviors are referred to as class variables
and class methods, respectively.

Let’s look at an example. Suppose you are charged with keeping track of YouTube videos. You need to

instantiate a YouTube object for each YouTube video, and within each object you need to store attributes like

the videographer, the video’s length, and the video fi le itself. You should store those attributes in instance

variables because they are associated with individual YouTube objects. You also need to store attributes

like the number of videos and the most popular video. You should store those attributes in class variables

because they relate to the collection of YouTube objects as a whole.

•
•
•
•
•

9

09-M4402.indd 34509-M4402.indd 345 12/17/07 4:23:58 PM12/17/07 4:23:58 PM

Apago PDF Enhancer

346 Chapter 9 Classes with Class Members

For another example, think about the Math class. Its members, like Math.round and Math.PI, are

class members because they are associated with the Math class as a whole. In Chapter 5, you learned how to

access and use the Math class’s class members. In this chapter, you learn how to implement your own class

members.

We start the chapter by showing you how to implement your own class variables. We then show you

how to implement class methods, and we use class variables within those methods. Next, we discuss class

constants, which are class variables that use the final modifi er. After that we present a utility class—a

class with general-purpose functionality that other classes can easily use. In the last part of the chapter,

you’ll see different kinds of instance and class members brought together in two complete programs. The

second of those programs does more than just provide another example with instance and class members.

It implements an important data structure called a linked list, which allows you to dynamically create an

arbitrarily large number of chained-together objects.

9.2 Class Variables

You already know that class variables are variables that are associated with a class as a whole. In this sec-

tion, you’ll learn more details about class variables such as how to declare them, when to use them, what

their default values are, and what their scope is. In the next section, you’ll see examples of using class vari-

ables from within class methods.

Class Variable Declaration Syntax

To make a variable a class variable, use the static modifi er in its declaration. The static modifi er is

why many programmers use the term “static variable” when talking about class variables. Likewise, since

class constants and class methods also use the static modifi er, many programmers use the terms static

constant and static method. We’ll stick with the terms class variable, class constant, and class method since

those are the terms that Sun uses.

Here is the syntax for a class variable declaration statement:

<private-or-public> static <type> <variable-name>;

And here is an example:

private static int mouseCount; // total number of mouse objects

Should class variables be public or private? The philosophy on this is the same as it is for instance

variables. Since you can always write public get/set class methods, you don’t need public class vari-

ables any more than you need public instance variables. It’s best to keep your variables as private as

possible to maintain control over how they are accessed. Therefore, in addition to making instance variables

private, you should also make class variables private.

Why the Term “static”?

As you know, when the Java Virtual Machine (JVM) sees the new operator in a program, it instantiates an

object for the specifi ed class. In so doing, it allocates memory space for all of the object’s instance variables.

Later, the garbage collector might deallocate (take away) that memory space before the program stops if

all references to that space disappear. That sort of memory management, done while the program runs, is

called dynamic allocation. Class variables are different. The JVM allocates space for a class variable when

the program starts, and that class-variable space remains allocated as long as the program runs. That sort of

memory management is called static allocation. That’s why class variables are called static.

09-M4402.indd 34609-M4402.indd 346 12/17/07 4:23:59 PM12/17/07 4:23:59 PM

Apago PDF Enhancer

Class Variable Examples

As you know, each use of new creates a separate copy of all instance variables for each object. Class vari-

ables are different. For a particular class, there is only one copy of each class variable, and all objects share

that single copy. Thus, you should use class variables to describe properties of a class’s objects that need to

be shared by all of the objects. For example, consider again the problem of simulating mouse growth. In our

previous mouse programs, we kept track of data pertinent to each individual mouse—a mouse’s growth rate,

a mouse’s age, and a mouse’s weight. For a more useful simulation program, you’d probably also want to

keep track of group data and common environmental data. For example:

mouseCount would keep track of the total number of mice.

youngestMouse would keep track of which mouse was born last.

averageLifeSpan would keep track of the average life span for all of the mice.

simulationDuration would limit the number of simulation iterations.

researcher would identify a person in charge of an experiment on the group of mice.

noiseOn would indicate the presence or absence of a stressful noise heard by all the mice.

If you used instance variables for mouseCount, averageLifeSpan, and so on, each individual mouse

object would have its own copy of that data. So if there were one hundred total mice, each of the one hun-

dred mice would store the value 100 in its own mouseCount variable, the average life span value in its own

 averageLifeSpan variable, and so on. This would mean that every time a new mouse was born or died

or aged a year, you would have to update 100 separate copies of mouseCount, averageLifeSpan, and

so on—all with exactly the same information. What a waste of effort! Why not just do it once and let every-

one write and read the same common data? If mouseCount, averageLifeSpan, and so on are class

variables, all mouse objects can write to and read from a single record of each of these pieces of information.

An outsider can access these class properties by just prefi xing the class name to an appropriate class method.

It’s neither necessary nor desirable to go through a particular instance to get to this group information.

The class variable declarations in our enhanced Mouse class would look something like the code in

Figure 9.1. In the fi gure, does it strike you as odd that the type of youngestMouse is the name of the

class in which it is defi ned? Does that mean there’s a mouse within a mouse? No! The static modifi er in

youngestMouse’s declaration means that youngestMouse is a class variable. As such, it’s a property

of the collection of all mice. More specifi cally, it identifi es the mouse object that was most recently instanti-

ated. In the next section, we present youngestMouse in the context of a complete program, and you’ll see

how it gets updated every time there’s a mouse object instantiation.

public class Mouse
{
 private static int mouseCount;
 private static Mouse4 youngestMouse;
 private static double averageLifeSpan = 18; // months
 private static int simulationDuration = 730; // days
 private static String researcher;
 private static boolean noiseOn;
 ...

attributes of the

environment

Initializations

are allowed.

Figure 9.1 Class variable declarations in an enhanced Mouse class

⎫
⎬
⎭

⎫
⎬
⎭

9.2 Class Variables 347

09-M4402.indd 34709-M4402.indd 347 12/17/07 4:23:59 PM12/17/07 4:23:59 PM

Apago PDF Enhancer

348 Chapter 9 Classes with Class Members

Default Values

Class variables use the same default values as instance variables:

Class Variable's Type Default Value

integer 0

floating point 0.0

boolean false

reference null

It follows that the default values for Figure 9.1’s class variables are:

mouseCount = 0
youngestMouse = null
averageLifeSpan = 0.0
simulationDuration = 0
researcher = null
noiseOn = false

Presumably, the program updates mouseCount, youngestMouse, and averageLifeSpan as it runs.

The default values of averageLifeSpan and simulationDuration are zero like mouseCount,

but in Figure 9.1 the defaults don’t apply because the declarations include initializations. Even though we ex-

pect the program to recompute averageLifeSpan, we initialize it to provide documentation of what we

think is a reasonable value. We also initialize simulationDuration (to 730) even though we expect the

program to reassign simulationDuration with a user-entered value. Presumably, the program prompts

the user to enter the number of days to simulate. With appropriate code, the user might be invited to enter

�1 to get a “standard” 730-day simulation.

Scope

Let’s now compare class variables, instance variables, and local variables in terms of their scopes. You can

access a class variable from anywhere within its class. More specifi cally, that means you can access class

variables from instance methods as well as from class methods. That contrasts with instance variables,

which you can access only from instance methods. Thus, class variables have broader scope than instance

variables. Local variables, on the other hand, have narrower scope than instance variables. They can be ac-

cessed only within one particular method. Here is the scope continuum:

local variables instance variables class variables

broadest scopenarrowest scope

Having narrower scope for local variables might seem like a bad thing because it’s less “powerful,” but it’s

actually a good thing. Why? Narrower scope equates to more encapsulation, and as you learned in Chapter 6,

encapsulation means you are less vulnerable to inappropriate changes. Class variables, with their broad

scope and lack of encapsulation, can be accessed and updated from many different places, and that makes

programs hard to understand and debug. Having broader scope is necessary at times, but in general you

should try to avoid broader scope. We encourage you to prefer local variables over instance variables and

instance variables over class variables.

09-M4402.indd 34809-M4402.indd 348 12/17/07 4:24:00 PM12/17/07 4:24:00 PM

Apago PDF Enhancer

9.3 Class Methods

Class methods, like class variables, relate to the class as a whole, and they don’t relate to individual objects.

As such, if you need to perform a task that involves the class as a whole, then you should implement and

use a class method. In Chapter 5 you used class methods defi ned in the Java API Math class; for example,

Math.round and Math.sqrt. Now you’ll learn how to write your own class methods. Class methods

often access class variables, and in writing your own class methods, you’ll get an opportunity to see how to

access class variables that you’ve defi ned.

Class Method Syntax

See Figure 9.2’s Mouse4 class. In particular, look at the printMouseCount method. It deals with class-

wide information, so it’s appropriate to make it a class method. More specifi cally, it prints the value of

mouseCount, where mouseCount is a class variable that keeps track of the total number of mouse

objects.

⎫
⎬
⎭

class variables

specifi es a class method

Normally, to access a class variable,

prefi x it with <class-name> dot.

Normally, to access a class method,

prefi x it with <class-name> dot.

public class Mouse4
{
 private static int mouseCount;
 private static Mouse4 youngestMouse;
 private int age;

 public Mouse4()
 {
 Mouse4.mouseCount++;
 Mouse4.youngestMouse = this;
 }

 public static void printMouseCount()
 {
 System.out.println("Total mice = " + Mouse4.mouseCount);
 }

 public void olderByOneDay()
 {
 this.age++;
 }

 //***

 public static void main(String[] args)
 {
 Mouse4 pinky = new Mouse4();
 pinky.olderByOneDay();
 Mouse4.printMouseCount();
 }
} // end class Mouse4

Figure 9.2 A simple mouse program that illustrates class member concepts

9.3 Class Methods 349

09-M4402.indd 34909-M4402.indd 349 12/17/07 4:24:00 PM12/17/07 4:24:00 PM

Apago PDF Enhancer

350 Chapter 9 Classes with Class Members

To declare a class method, use this syntax for the method heading:

<private-or-public> static <return-type> <method-name>(<parameters>)

Note how Figure 9.2’s printMouseCount method follows that syntax pattern.

Normally, to access a class member, you should prefi x the class member with the class member’s

class name and then a dot. For example, within the printMouseCount method and the Mouse4 con-

structor, note how mouseCount and youngestMouse are accessed with Mouse4 dot prefi xes—

Mouse4.mouseCount and Mouse4.youngestMouse. Also, within the main method, see how the

printMouseCount class method is called with Mouse4.printMouseCount(). Prefi xing a class

member with its class name and then a dot should look familiar. You’ve done that with Math class members

for quite a while (e.g., Math.round(), Math.PI).

Be aware that you don’t always have to use the class name dot prefi x when accessing a class member. In

accessing a class member, you may omit the class name dot prefi x if the class member is in the same class as

the class from which you’re trying to access it. So in the Mouse4 class, since all the class member accesses

and the class members themselves are in the same Mouse4 class, all the class name dot prefi xes can be

omitted. But if the program were written with main appearing in a separate driver class, then the Mouse4
dot could not be omitted from main’s call to printMouseCount.

Although it’s often legal to omit the class name dot prefi x, we have a slight preference for always in-

cluding it because it’s a form of self documentation. It alerts the person reading the code to the fact that the

accessed member is special—it deals with class-wide information.

Calling an Instance Method from within a Class Method

If you’re within a class method, you’ll get a compilation error if you attempt to access an instance member

directly. To access an instance member, you fi rst must have an object, and then you access the object’s in-

stance member by prefacing it with the object’s reference variable. The reference variable is often referred to

as the calling object. Does all that sound familiar? The main method is a class method (main’s heading in-

cludes the static modifi er), and you’ve been calling instance methods from main for quite a while now.

But whenever you do that, you fi rst must instantiate an object and assign the object’s reference to a reference

variable. Then you call the instance method by prefi xing it with the reference variable and a dot. Figure 9.2’s

main method shows what we’re talking about:

public static void main(String[] args)
{
 Mouse4 pinky = new Mouse4();
 pinky.olderByOneDay();
 Mouse4.printMouseCount();
}

If you attempt to access an instance method directly from within a class method, you’ll see an error message

like this:

Non-static <method-name> cannot be referenced from a static context

That error message is very common (you’ve probably seen it many times) because it’s easy to forget to prefi x

instance method calls with a reference variable. When veteran programmers see it, they know what to do; they

make sure to prefi x the instance method call with a calling object’s reference variable. But when beginning

programmers see the error message, they often compound the error by trying to “fi x” the bug inappropriately.

Reference variable dot prefi x is

necessary when calling an instance

method from within a class method

09-M4402.indd 35009-M4402.indd 350 12/17/07 4:24:01 PM12/17/07 4:24:01 PM

Apago PDF Enhancer

More specifi cally, when confronted with the non-static method error message, a beginning programmer will

often change the offending instance method to a class method, by inserting static in the method’s head-

ing. (In the Mouse4 program, olderByOneDay would be changed to a class method). They then get the

non-static member error message for any instance variables within the method. They then compound the

problem further by changing the method’s instance variables to class variables. (In the Mouse4 program,

olderByOneDay’s age variable would be changed to a class variable). With that change in place, the pro-

gram compiles successfully and the beginning programmer is happy as a lark, ready to slay the next dragon.

Unfortunately, that type of solution leads to a worse problem than a compilation error. It leads to a logic error.

As you know, if a class’s member relates to one object rather than to the class as a whole, you should

make it an instance member. If you do as described above and “fi x” a bug by changing an instance member

to a class member, you can get your program to compile and run. And if you have only one object, your

program might even produce a valid result. But if you have more than one object, either now or in the future,

then with class variables, the objects will share the same data. If you change one object’s data, you’ll simul-

taneously change all other objects’ data, and normally that would be incorrect.

Aside: Accessing a Class Member from an Instance Method or Constructor

Although you can’t access an instance member directly from a class method, you can access a class member

from an instance method. In addition, you can access a class variable from a constructor, and Figure 9.2 il-

lustrates that. The relevant code is repeated below for your convenience. It shows how the mouseCount

and youngestMouse class variables are updated automatically with each new instantiation. Note how the

this reference assigns the constructor’s newly instantiated mouse to the youngestMouse variable.

public Mouse4()
{
 Mouse4.mouseCount++;
 Mouse4.youngestMouse = this;
}

When To Use Class Methods

When should you make a method a class method? The general answer is “when you need to perform a task

that involves the class as a whole.” But let’s get more specifi c. Here are situations where class methods are

appropriate:

 1. If you have a method that uses class variables and/or calls class methods, then it’s a good candidate

for being a class method. For example, Figure 9.2’s printMouseCount is a class method because it

prints the mouseCount class variable. Warning: If in addition to accessing class members, the method

also accesses instance members, then the method must be an instance method, not a class method.

 2. If you might need to call a method even when there are no objects from the method’s class, then you

should make it a class method. For example, during a mouse population simulation, you might call

printMouseCount when there are no mouse objects (they’ve all died perhaps). Since it’s a class

method, you do it like this, without needing a calling object:

Mouse4.printMouseCount();

 3. The main method is the starting point for all programs and, as such, it gets executed prior to the instan-

tiation of any objects. To accommodate that functionality, you’re required to make the main method a

class method. If your main method is rather long and you decide to break it up with helper methods,

 9.3 Class Methods 351

09-M4402.indd 35109-M4402.indd 351 12/17/07 4:24:01 PM12/17/07 4:24:01 PM

Apago PDF Enhancer

352 Chapter 9 Classes with Class Members

then the helper methods (assuming that they don’t involve instance members) should be class methods

as well. By making them class methods, it’s easier for main to call them.

 4. If you have a general-purpose method that stands on its own, make it a class method. By standing on

its own, we mean that the method is not related to a particular object. Such methods are called utility
methods. You’ve seen examples of utility methods, like Math.round and Math.sqrt, in the Math

class. In Section 9.5, you’ll learn how to write your own utility methods.

9.4 Named Constants

Using names instead of hard-coded values makes a program more self-documenting. When a constant value

is needed in more than one place in the block of code, establishing the value at one place at the beginning of

that block minimizes the chance of inconsistency. In Java, you can defi ne named constants at several levels

of scale.

Local Named Constants—A Review from Chapter 3

At the most microscopic level, you can defi ne local named constants. Back in Figure 3.5 of Chapter 3, we

defi ned two local named constants, FREEZING_POINT, and CONVERSION_FACTOR, to self-document

the Fahrenheit-to-Celsius conversion formula in a simple program that did nothing more than make a tem-

perature conversion. Usually, we embed this kind of activity in some larger program by putting it in a helper

method like this:

private double fahrenheitToCelsius(double fahrenheit)
{
 final double FREEZING_POINT = 32.0;
 final double CONVERSION_FACTOR = 5.0 / 9.0;

 return CONVERSION_FACTOR * (fahrenheit - FREEZING_POINT);
} // end fahrenheitToCelsius

The local named constants in this method make the code easier to understand.

Instance Named Constants—A Review from Chapter 7

At the next higher level of scale, sometimes you want a constant that’s a permanent property of an ob-

ject and accessible to all instance methods associated with that object. Those constants are called instance

named constants, or, more simply, instance constants. Here’s an example instance constant declaration that

identifi es a permanent property of a Person object:

public final String SOCIAL_SECURITY_NUMBER;

An instance constant declaration differs from a local named constant declaration in three ways: (1) An in-

stance constant declaration should appear at the top of the class defi nition, rather than within a method,

(2) An instance constant declaration is preceded by a public or private access modifi er, and (3) Although

it’s legal to initialize an instance constant in a declaration, it’s more common to initialize it in a constructor.

Class Named Constants

At the next higher level of scale, sometimes you want a constant that’s the same for all objects in a class.

In other words, you want something that’s like a class variable, but it’s constant. Those constants are called

class named constants, or, more simply, class constants. In Chapter 5 you learned about two class constants

09-M4402.indd 35209-M4402.indd 352 12/17/07 4:24:01 PM12/17/07 4:24:01 PM

Apago PDF Enhancer

defi ned in the Java API Math class, PI and E. Now you’ll learn how to write your own class constants. To

declare a class constant, use this syntax:

 <private-or-public> static final <type> <variable-name> = <initial-value>;

A class constant declaration differs from an instance constant declaration in two ways: (1) A class constant

includes the static modifi er; and (2) A class constant should be initialized as part of its declaration.1 If

you attempt to assign a value to a class constant later on, that generates a compilation error.

As with an instance constant, a class constant declaration should be preceded by a public or private

access modifi er. If the constant is needed only within the class (and not outside the class), you should make it

private. This allows you to modify the constant without upsetting somebody else who previously elected to

use your constant in one of their programs. However, if you want the constant to be available to other classes,

it’s appropriate to make it public. It’s safe to do that because the final modifi er makes it immutable (un-

changeable). In the next section, you’ll see examples of public class constants embedded in a utility class.

The following Human class contains a NORMAL_TEMP named constant. We make it a class constant

(with the static and final modifi ers) because all Human objects have the same normal temperature of

98.6° Fahrenheit. We make it a private class constant because it is needed only within the Human class.

public class Human
{
 private static final double NORMAL_TEMP = 98.6;
 private double currentTemp;
 ...
 public boolean isHealthy()
 {
 return Math.abs(currentTemp - NORMAL_TEMP) < 1;
 } // end isHealthy

 public void diagnose()
 {
 if ((currentTemp - NORMAL_TEMP) > 5)
 {
 System.out.println("Go to the emergency room now!");
 ...

} // end class Human

Let’s summarize when you should use the three different types of named constants. Use a local named con-

stant if the constant is needed within only one method. Use an instance constant if the constant describes a

permanent property of an object. And use a class constant if the constant is a property of the collection of all

the objects in the class or of the class in general.

Positions of Declarations

Now for some coding-style issues. We recommend putting all class constant declarations above all instance

constant declarations. Putting declarations at the top makes them stand out more, and it’s appropriate for

class constants to stand out the most since they have the broadest scope. Likewise, we recommend putting

1 Although relatively rare, it’s legal to declare a class constant as part of a static initializer block. For details on initializer blocks, see
http://java.sun.com/docs/books/tutorial/java/javaOO/initial.html.

 9.4 Named Constants 353

09-M4402.indd 35309-M4402.indd 353 12/17/07 4:24:02 PM12/17/07 4:24:02 PM

http://java.sun.com/docs/books/tutorial/java/javaOO/initial.html

Apago PDF Enhancer

354 Chapter 9 Classes with Class Members

all class variable declarations above all instance variable declarations. Here is the preferred sequence of

declarations within a given class:

class constants

instance constants

class variables

instance variables

constructors

methods

9.5 Writing Your Own Utility Class

Up to this point, you’ve implemented methods that solve problems for a particular class. Suppose you want

to implement methods that are more general purpose, so that multiple and unforeseen classes can use them.

Those types of methods are called utility methods. In the past, you’ve used utility methods from the Math

class; for example, Math.round and Math.sqrt. In this section you learn to write your own utility

methods as part of a utility class.

See Figure 9.3’s PrintUtilities class. It contains print-oriented utility constants and methods.

The two constants, MAX_COL and MAX_ROW, keep track of the maximum column and maximum row for

a standard-sized piece of paper. If you have multiple classes that print reports, those constants can help to

ensure report-size uniformity. The printCentered method prints a given string horizontally centered.

The printUnderlined method prints a given string with dashes underneath it. We put those methods in

a utility class because they perform print routines that might be needed by multiple other classes.

In the PrintUtilities class, note that the constants and methods all use the public and static

modifi ers. That’s normal for utility class members. The public and static modifi ers make it easy for

other classes to access PrintUtilities’ members.

9.6 Using Class Members in Conjunction with Instance Members

Now, let’s look at a problem that requires a combination of instance members and class members. The goal

is to model a collection of penny jars. With each insertion of a penny in any jar, we want the program to

print “clink” and increment the penny count for that jar and the total penny count. When the total number of

pennies exceeds a fi xed goal, the program should print “Time to spend!” Then the program should print the

total number of pennies in each jar and the total number of pennies in all jars.

The Primary Class

The most important part of this problem is the usage of instance and class members.

So let’s address this complexity immediately. We need a class that describes both in-

dividual penny jars and the collection of all penny jars. Figure 9.4 has a UML class

diagram for a PennyJar class that does what we want. To handle the pennies in an

individual PennyJar object, it uses instance members—pennies, addPenny, and getPennies. To

handle the pennies in the collection of all penny jars, it uses class members—GOAL, allPennies, and

 getAllPennies. In the UML diagram, you can tell that those three members are class members because

they are underlined (as you may recall, UML standards suggest that you underline all class members). The

UML diagram does not include a main method, so this class won’t run by itself. In effect, we’re starting

Address the
most critical
problem as soon
as possible.

Address the
most critical
problem as soon
as possible.

09-M4402.indd 35409-M4402.indd 354 12/17/07 4:24:02 PM12/17/07 4:24:02 PM

Apago PDF Enhancer

with an implementation view of the problem and developing the program from bottom up, because our

 current focus is on the details of instance and class members.

See Figure 9.5. It contains an implementation of the PennyJar class. Let’s fi rst examine PennyJar’s

constant and variable declarations:

GOAL is the target number of pennies to be saved for all penny jars combined. As such, it’s a class

member and uses the static modifi er. Since the goal amount is fi xed, GOAL is a named constant and

uses the final modifi er and all uppercase letters. The GOAL is initialized to 10000, which amounts

•

/**
* PrintUtilities.java
* Dean & Dean
*
* This class contains constants and methods for fancy printing.
**/

public class PrintUtilities
{
 public static final int MAX_COL = 80; // last allowed column
 public static final int MAX_ROW = 50; // last allowed row

 //***

 // Print given string horizontally centered.

 public static void printCentered(String s)
 {
 int startingCol; // starting point for string
 startingCol = (MAX_COL / 2) - (s.length() / 2);

 for (int i=0; i<startingCol; i++)
 {
 System.out.print(" ");
 }
 System.out.println(s);
 } // end printCentered

 //***

 // Print given string with dashes underneath it.

 public static void printUnderlined(String s)
 {
 System.out.println(s);
 for (int i=0; i<s.length(); i++)
 {
 System.out.print("-");
 }
 } // end printUnderlined
} // end class PrintUtilities

Figure 9.3 Example utility class that handles special-needs printing

 9.6 Using Class Members in Conjunction with Instance Members 355

09-M4402.indd 35509-M4402.indd 355 12/17/07 4:24:02 PM12/17/07 4:24:02 PM

Apago PDF Enhancer

356 Chapter 9 Classes with Class Members

to $100.00. Presumably, when the user reaches the GOAL amount, he/she will empty all penny jars and

spend all the money in a big shopping spree.

The allPennies variable stores the total pennies in all jars. Since allPennies is an attribute of

all the penny jars, it’s a class member and uses the static modifi er. Although we could just accept the

zero default as the initial value, we explicitly initialize to zero to emphasize what we want.

The pennies variable is an ordinary instance variable. Again, although we could just accept the zero

default as the initial value, we explicitly initialize to zero to emphasize what we want.

Let’s now examine the method defi nitions:

The getPennies method is a typical accessor method, and it retrieves the value of the pennies

instance variable. Accessing the pennies instance variable means that getPennies must be an

instance method. You can see that getPennies is an instance method because there’s no static

modifi er in its heading.

The addPenny method simulates adding a penny to a jar. It updates the pennies instance variable

for the jar that the penny was added to and updates the allPennies class variable for the collection

of jars. Accessing the pennies instance variable means that addPenny must be an instance method,

and, as such, there’s no static modifi er in its heading.

The getAllPennies method retrieves the value of the allPennies class variable. Since

 getAllPennies deals only with class-wide data, it’s appropriate to make it a class method. You can

see that getAllPennies is a class method because of the static modifi er in its heading.

Driver

Figure 9.6 contains a driver for the PennyJar class. Notice how main calls the instance methods

 addPenny and getPennies by fi rst creating PennyJar objects. It assigns the newly created objects

to the reference variables pennyJar1 and pennyJar2. Then it uses those reference variables to call the

instance methods.

Notice how main uses a different technique for calling getAllPennies. Instead of prefi xing

 getAllPennies with a reference variable (pennyJar1 or pennyJar2), main calls getAllPennies

by prefi xing it with the PennyJar class name. That’s because getAllPennies is a class method, not an

instance method. Would it be OK to omit the class name prefi x and just call getAllPennies directly? No.

We cannot omit the class name prefi x because getAllPennies is in a separate class. If we had merged

main into the PennyJar class to run the program from that class, then we could omit the PennyJar p refi x

from the getAllPennies method call. However, it never hurts to include the class name prefi x for a class

method call. It makes it easier to cut and paste, and it helps make the code more self-documenting.

•

•

•

•

•

+GOAL : int = 10000
-allPennies : int = 0
-pennies : int = 0

+addPenny() : void

+getPennies() : int

+getAllPennies() : int

PennyJar

Figure 9.4 Class describing penny jars individually and as a group

09-M4402.indd 35609-M4402.indd 356 12/17/07 4:24:03 PM12/17/07 4:24:03 PM

Apago PDF Enhancer

class variables

instance method

class method

Figure 9.5 A PennyJar class that illustrates both instance members and class members

/**
* PennyJar.java
* Dean & Dean
*
* This class counts pennies for individual penny jars and for
* all penny jars combined.
**/

public class PennyJar
{
 public static final int GOAL = 10000;
 private static int allPennies = 0;
 private int pennies = 0;

 //***

 public int getPennies()
 {
 return this.pennies;
 }

 //***

 public void addPenny()
 {
 System.out.println("Clink!");
 this.pennies++;
 PennyJar.allPennies++;

 if (PennyJar.allPennies >= PennyJar.GOAL)
 {
 System.out.println("Time to spend!");
 }
 } // end addPenny

 //***

 public static int getAllPennies()
 {
 return PennyJar.allPennies;
 }
} // end class PennyJar

⎫
⎬
⎭

instance variable

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎬
⎪
⎪
⎭

9.6 Using Class Members in Conjunction with Instance Members 357

09-M4402.indd 35709-M4402.indd 357 12/17/07 4:24:03 PM12/17/07 4:24:03 PM

Apago PDF Enhancer

358 Chapter 9 Classes with Class Members

9.7 Problem Solving with Class Members and Instance Members
in a Linked List Class (Optional)

The previous PennyJar program is admittedly just a “toy” program, but sometimes toy programs can help

you learn new techniques. In this section, you’ll use the case-based design approach described in Chapter 8

and turn the PennyJar program into something more practical.

FundRaiser Program

Each penny jar is an agent in the process of collecting money. Think of the agent as a

human solicitor. Then the collection of all penny jars becomes a body of people working

in an organized fund-raising activity. The penny jar pennies become donation pledges,

and the GOAL of 10,000 pennies becomes a GOAL of 10,000 dollars in donations. Now for the big picture:

Replace the PennyJar class with a more general Agent class. And replace the PennyJarDriver class

with a FundRaiser class.

The Agent class should have methods that are similar to the methods in the PennyJar class. You can

replace the getPennies instance method with a getValue instance method, the addPenny instance

Adapt a previous
program to a new
purpose.

Adapt a previous
program to a new
purpose.

Figure 9.6 Driver for the PennyJar class in Figure 9.5

/**
* PennyJarDriver.java
* Dean & Dean
*
* This class drives the PennyJar class.
**/

public class PennyJarDriver
{
 public static void main(String[] args)
 {
 PennyJar pennyJar1 = new PennyJar();
 PennyJar pennyJar2 = new PennyJar();

 pennyJar1.addPenny();
 pennyJar1.addPenny();
 pennyJar2.addPenny();
 System.out.println(pennyJar1.getPennies());
 System.out.println(PennyJar.getAllPennies());
 } // end main
} // end class PennyJarDriver

Output:

Clink!
Clink!
Clink!
2
3

09-M4402.indd 35809-M4402.indd 358 12/17/07 4:24:03 PM12/17/07 4:24:03 PM

Apago PDF Enhancer

method with an addValue instance method, and the getAllPennies class method with getAllValues

class method. When you do this, ask yourself if there might be a better way to allocate the work done by

these methods.

Since you have turned the passive penny jars into active human agents, you should ask yourself, “Where

is the time-to-spend decision made?” This high-level decision should be made in the driver. So as you tran-

sition from the PennyJar program to the FundRaiser program, you need to switch the location of the fi nal

spending decisions. That means the GOAL constant should be moved up to the FundRaiser class.

Similarly, you should ask yourself, “Where are the decisions made about individual contributions?” Are

they made at the level of the manager in the FundRaiser class, or are they made at the level of individual

agents in the Agent class? The donors talk to individual agents, so that information should enter the

 program through an Agent method, probably the addValue method. Since individual contribution deci-

sions are now decentralized, you should coordinate efforts from the top. You should plan to conduct a se-

quence of centrally directed publicity campaigns. To carry out each campaign, you should defi ne another

class method—addAllValues. In an attempt to get multiple donation pledges, the addAllValues

method loops through all of the agents and has each agent call addValue. After each campaign, call the

getAllValues class method to see if the total value exceeds the GOAL. If it does, print the total value

and quit.

In a real fund raiser, you can’t predict how many donors you’ll have. Likewise, in the

FundRaiser program, you want to be able to handle an unknown number of donor agents.

The trick is to set things up like a “treasure hunt”—a trip in which each intermediate des-

tination gives you the next destination. Each agent tells you where the next agent is, until

you get the last agent, who tells you that’s all.

You’ll use this strategy for the getAllValues method as well as for the

addAllValues method. Instead of just reading a previously accumulated value from a class variable like

allPennies, the getAllValues method will accumulate values from individual agents. This avoids

data duplication and eliminates the need for an allValues class variable. It also frees each individual

agent from the task of adding the current contribution to an allValues variable in addition to adding it to

its own value.

The Agent class still needs one class variable, however—a reference variable that tells class methods

where to start their trips. We’ll call this one class reference variable listOfAgents. This variable always

contains a reference to the fi rst object to visit. Each object contains an instance reference variable called

nextAgent, which refers to the next object to visit. In the last object in the list, the nextAgent reference

variable contains null. This says the trip is done. This structure is called a linked list, and the single class

reference variable, listOfAgents, points to the object at the head of the list.

Initially, there are no objects in the list, and the value in the listOfAgents variable is null. The

constructor for each new Agent object inserts that object at the head of the Agent class’s linked list, using

this algorithm:

set this agent’s nextAgent to listOfAgents
set listOfAgents to this agent

This means that the fi rst object visited in a trip through all the objects is the last object constructed, and

the last object visited is the fi rst object constructed. In other words, the visitation sequence is opposite to the

construction sequence.

Figure 9.7 shows a UML class diagram for the program. As usual, the driver class (FundRaiser) has

a main method. It also has a class constant, GOAL, which establishes the stopping criterion. The Agent

class has a constructor, two public class methods (getAllValues and addAllValues), and two

private instance methods (getValue and addValue). Notice that the two public class methods

Use a linked
list to access
all objects
from one point.

Use a linked
list to access
all objects
from one point.

 9.7 Problem Solving with Class Members and Instance Members in a Linked List Class (Optional) 359

09-M4402.indd 35909-M4402.indd 359 12/17/07 4:24:04 PM12/17/07 4:24:04 PM

Apago PDF Enhancer

360 Chapter 9 Classes with Class Members

provide the only access route to everything else in this class. Do you remember the rule that a class method

cannot access an instance member directly? If that rule is valid, and everything else is some kind of in-

stance member, how can these two class methods access everything else? These methods do not access any

instance members directly. They directly access the class variable listOfAgents. That class variable

gives them a reference to an object, and each object gives them the reference to the next object. These object

references enable the class members to access everything indirectly.

It’s time to look at the implementation code. Figure 9.8 shows the FundRaiser driver class. The

driver prompts the user to enter a desired number of agents, and the for loop steps through a process that

inputs each agent’s name and instantiates an Agent object with that name. The subsequent do loop initi-

ates each fund-raising campaign by calling the addAllValues method. Then it determines the result

of that campaign by calling the getAllValues method. Then it prints the cumulative result after that

campaign. If the result is still less than GOAL, it launches another campaign until the goal is attained. Notice

that this driver contains no references to particular Agent objects. It does not even contain a reference to

the linked list of agents. All access to data in the Agent class is controlled by the Agent class methods,

addAllValues and getAllValues. The data is well encapsulated—a very good thing indeed!

Figure 9.9a shows the fi rst part of the Agent class. The class variable, listOfAgents, initially con-

tains null, because initially there are no objects in the list. Now look at the constructor. The fi rst instan-

tiation assigns this null value to the fi rst object’s nextAgent reference variable. Then it uses the this

reference to assign the fi rst object to the listOfAgents class variable. The second instantiation assigns

the reference now in the listOfAgents reference variable (a reference to the fi rst object) to the second

object’s nextAgent instance reference variable. Then it uses the this reference to assign the second ob-

ject to the listOfAgents class variable. Thus, the list of linked objects builds up like this:

after fi rst instantiation:

<First object>
nextAgent

nulllistOfAgents

after second instantiation:

<First object>
nextAgent

<Second object>
nextAgent

nulllistOfAgents

Figure 9.7 UML class

diagram for driver of

FundRaiser program

FundRaiser

+GOAL : double = 10000.0

+main(args : String[]) : void

Agent

-listOfAgents : Agent

-NAME : String

-value : double = 0.0
-nextAgent : Agent

+Agent(name : String)

-getValue() : double

-addValue() : void

+getAllValues() : double

+addAllValues() : void

09-M4402.indd 36009-M4402.indd 360 12/17/07 4:24:04 PM12/17/07 4:24:04 PM

Apago PDF Enhancer

/**
* FundRaiser.java
* Dean & Dean
*
* This program manages fund-raising agents.
**/

import java.util.Scanner;

public class FundRaiser
{
 public static final double GOAL = 10000.00;

 //***

 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int numberOfAgents;
 double totalValue;
 String name;

 System.out.print("Enter total number of agents: ");
 numberOfAgents = stdIn.nextInt();
 stdIn.nextLine();
 for (int i=0; i<numberOfAgents; i++)
 {
 System.out.print("Enter agent name: ");
 name = stdIn.nextLine();
 new Agent(name);
 }
 do
 {
 Agent.addAllValues();
 totalValue = Agent.getAllValues();
 System.out.printf("Total value = $%,.2f\n", totalValue);
 } while (totalValue < GOAL);
 System.out.println("Time to Spend!");
 } // end main
} // end FundRaiser class

Figure 9.8 Top level of FundRaiser program

This drives the Agent class in Figure 9.9a and 9.9b.

Notice that this driver does not need to

keep track of any object references.

All subsequent access to Agent

class is through class methods.

9.7 Problem Solving with Class Members and Instance Members in a Linked List Class (Optional) 361

09-M4402.indd 36109-M4402.indd 361 12/17/07 4:24:05 PM12/17/07 4:24:05 PM

Apago PDF Enhancer

362 Chapter 9 Classes with Class Members

This inserts each new object at the

head of the linked list.

/**
* Agent.java
* Dean & Dean
*
* Class that describes agents that collect quantitative values.
**/

import java.util.Scanner;

public class Agent
{
 private static Agent listOfAgents = null; // head of list

 private final String NAME;
 private double value = 0.0;
 private Agent nextAgent; // next in list

 //***

 public Agent(String name)
 {
 this.NAME = name;
 this.nextAgent = listOfAgents;
 listOfAgents = this;
 } // end constructor

 //***

 private double getValue()
 {
 return this.value;
 }

 //***

 private void addValue()
 {
 Scanner stdIn = new Scanner(System.in);

 System.out.printf("Enter %s's contribution: ", this.NAME);
 this.value += stdIn.nextDouble();
 } // end addValue

Figure 9.9a First part of Agent class of FundRaiser program

This code and the code in 9.9b are driven by the FundRaiser class in Figure 9.8.

⎫
⎬
⎭

09-M4402.indd 36209-M4402.indd 362 12/17/07 4:24:05 PM12/17/07 4:24:05 PM

Apago PDF Enhancer

 //**

 public static double getAllValues()
 {
 double totalValue = 0.0;
 Agent agent = listOfAgents;
 while (agent != null)
 {
 totalValue += agent.getValue();
 agent = agent.nextAgent;
 }
 return totalValue;
 } // end getAllValues

 //**

 public static void addAllValues()
 {
 Agent agent = listOfAgents;
 while (agent != null)
 {
 agent.addValue();
 agent = agent.nextAgent;
 }
 } // end addAllValues
} // end class Agent

Figure 9.9b Class methods in Agent class of FundRaiser program

This code and the code in Figure 9.9a are driven by the FundRaiser class in Figure 9.8.

This retrieves location of

next object in list.

The rest of the code in Figure 9.9a is straightforward. The getValue instance method returns the

value in the value instance variable. The addValue instance method assigns a user input to the value

instance variable.

Figure 9.9b shows the two class methods in the Agent class. The addAllValues method starts at

the object referred to by the class reference variable, listOfObjects. It calls that object’s addValue

instance method to retrieve input and add it to that object’s value instance variable. Then it uses the cur-

rent object’s nextAgent instance variable to fi nd the next object in the list, and it repeats the process

until nextAgent is null. The getAllValues method initializes local variables, totalValue and

agent. Then it steps through the objects just like the addAllValues method did, adding the value re-

turned by the instance method getValue to totalValue. When the agent reference becomes null,

it stops and returns the accumulated totalValue.

The sample session below shows what the program does. Notice that the sequence employed when new

objects are added is opposite to the sequence employed when the original objects were created. That’s be-

cause each new object is inserted at the head of the linked list, rather than at the tail, as you might normally

expect. You could append each new object to the tail end of the list and make the sequences the same, but

that would require an additional class variable and more code in the constructor.

9.7 Problem Solving with Class Members and Instance Members in a Linked List Class (Optional) 363

09-M4402.indd 36309-M4402.indd 363 12/17/07 4:24:05 PM12/17/07 4:24:05 PM

Apago PDF Enhancer

364 Chapter 9 Classes with Class Members

Sample session:

Enter total number of agents: 3
Enter agent name: Bavitha
Enter agent name: Alan
Enter agent name: Rebecca
Enter Rebecca's contribution: 6000
Enter Alan's contribution: 6000
Enter Bavitha's contribution: 6000
Total value = $18,000.00
Time to Spend!

LinkedList API Class

Sun’s API library contains several classes that handle collections of data. Those classes are referred to as

the collections framework or the collections API. We’ll discuss one such collection class, the ArrayList

class, in depth in the next chapter. In this chapter, and this section specifi cally, you’ve learned about linked

lists. Programmers often implement linked lists from scratch as shown in this section, but as an alterna-

tive, they also implement linked lists using the LinkedList class, another class from the collections

framework. To learn about the LinkedList class and all the other collection classes, see http://java.sun

.com/javase/6/docs/technotes/guides/collections/.

Summary

Class variables have a static modifi er. Use class variables for attributes of the collection of all ob-

jects in a class. Use instance variables for the attributes of individual objects.

Remember that class variables have broader scope than instance variables, and instance variables have

broader scope than local variables. To improve encapsulation, you should try to use variables with nar-

rower scope rather than broader scope.

An instance method can directly access class members as well as instance members.

A class method can directly access class members, but it cannot directly access instance members. To

access a class member from a class method, you need to use a class name dot prefi x.

Use class methods for processes related to the group of all the objects in a class, for processes that must ex-

ist before any objects are defi ned (like main), for class method helpers, and for general-purpose utilities.

Instance constants have a final modifi er only. Use them for permanent attributes of individual objects.

Use class constants for permanent data that is not associated with any particular object. Class constants

use the final and static modifi ers.

You can use a class variable to refer to an arbitrarily long linked list of a class’s objects. This enables

another class to access all of the class’s objects through class methods only, and the other class does not

need any references to specifi c objects.

Review Questions

§9.2 Class Variables

 1. Normally, you should use the private access modifi er for class variables. (T / F)
 2. When should you declare a variable to be a class variable as opposed to an instance variable?
 3. What are the default values for class variables?

•

•

•
•

•

•
•

•

09-M4402.indd 36409-M4402.indd 364 12/17/07 4:24:06 PM12/17/07 4:24:06 PM

http://java.sun

Apago PDF Enhancer

§9.3 Class Methods

 4. In Figure 9.2’s Mouse4 class, assume you have a method whose heading is public int getAge().
Suppose you want to call this method from another class. What’s wrong with the following statement?

int age = Mouse4.getAge();

 5. Member access:
 a) It is OK to use this in a class method. (T / F)
 b) It is OK to use the class name as a prefix when calling a class method. (T / F)
 c) Within a main method, it is OK to omit the class name prefix before the name of another class method

being called. (T / F)
 6. It is legal to access a class member from an instance method and also from a constructor. (T / F)
 7. It is legal to directly access an instance member from a class method. (T / F)
 8. What are four common reasons for making a method a class method?

§9.4 Named Constants

 9. What keyword converts a variable into a constant?
 10. If you want a named constant used by instance methods to have the same value regardless of which object

accesses it, the declaration should include the static modifi er. (T / F)
 11. A class constant should be initialized within a constructor. (T / F)
 12. Suppose you have a grading program that instantiates multiple exam objects from an Exam class. Provide a

declaration for a constant minimum passing score. Assume the minimum passing score for all exams is 59.5.

§9.5 Writing Your Own Utility Class

 13. A utility class’s members should normally use the private and static modifi ers. (T / F)

Exercises

 1. [after §9.2] Given a class with a class variable. All of the class’s objects get a separate copy of the class
variable. (T / F)

 2. [after §9.2] In general, why should you prefer local variables over instance variables and instance variables
over class variables?

 3. [after §9.2] Given a program that keeps track of book details with the help of a Book class, for each of the
following program variables, specify whether it should be a local variable, an instance variable, or a class
variable.

 bookTitle (the title of a particular book)
 averagePrice (the average price of all of the books)
 price (the price of a particular book)
 i (an index variable used to loop through all of the books)

 4. [after §9.3] If a method accesses a class variable and also an instance variable, the method:
 a) must be a local method
 b) must be an instance method
 c) must be a class method
 d) can be either a class method or an instance method—it depends on other factors

 5. [after §9.3] If you attempt to directly access an instance method from within a class method, you’ll see an
error message like this:

Non-static <method-name> cannot be referenced from a static context

 Normally, how should you fi x the bug?

 Exercises 365

09-M4402.indd 36509-M4402.indd 365 12/17/07 4:24:06 PM12/17/07 4:24:06 PM

Apago PDF Enhancer

366 Chapter 9 Classes with Class Members

 6. [after §9.3] Consider the following program.

public class Test
{
 private int x;
 private static int y;
 public void doIt()
 {
 x = 1;
 y = 2;
 }
 public static void tryIt()
 {
 x = 3;
 y = 4;
 }
 public static void main(String[] args)
 {
 doIt();
 tryIt();
 Test t = new Test();
 t.doIt();
 Test.doIt();
 Test.tryIt();
 }
} // end Test class

 a) Mark all of the lines of code that have a compilation error.
 b) For each compilation-error line, explain why it is incorrect.

 Note:
 There are no errors in the variable declarations and there are no errors in the method headings, so
don’t mark any of those lines as having an error.
 For each compilation error, just provide the reason that the error occurs. In particular, do not solve
the problem by fi xing the code until you get rid of all the compilation errors.

 7. [after §9.4] Why is it safe to declare named constants public?

 8. [after §9.4] Write appropriate declarations for the following constants. In each case, decide whether to
include the keyword, static, and whether to include initialization in the declaration. Also, make each
constant as easily accessible as possible, consistent with protection from inadvertent corruption.
 a) The year of birth of a person.
 b) The format string, "%-25s%,13.2f%,13.2f%(,15.2f\n", to use in several printf statements

in a single method.
 c) The “golden ratio” or width / length of a golden rectangle. It’s equal to (sqrt(5) � 1) / 2 �

0.6180339887498949.

 9. [after §9.5] Write a utility class called RandomDistribution, which contains the following four class
methods. You should be able to implement all of these methods with calls to Math class methods and/or
calls to one of the uniform methods within the RandomDistribution class.
 a) Write a method called uniform that generates a double random number from a continuous distribu-

tion that is uniform between double values min and max.
 b) Write another (overloaded) method called uniform that generates an int random number from a dis-

crete distribution that is uniform between int values min and max, including both of these end points.

•

•

09-M4402.indd 36609-M4402.indd 366 12/17/07 4:24:06 PM12/17/07 4:24:06 PM

Apago PDF Enhancer

 c) Write a method called triangular that generates an int random number from a symmetrical dis-
crete triangular distribution that goes between the int values min and max, including both of these
end points. (Hint: Make two calls to the int version of the above uniform method.)

 d) Write a method called exponential that generates a double random number from an
exponential distribution having an expected time between random arrival events equal to
 averageTimeInterval. Here is the algorithm:

return ← averageTimeInterval * loge(1.0 � Math.random)

 10. [after §9.6] In the PennyJar program, the PennyJar dot prefi x is used to access PennyJar members.
There are four PennyJar dot prefi xes in the PennyJar class and one PennyJar dot prefi x in the
PennyJarDriver class. For each such prefi x, is it legal to omit it?

 11. [after §9.7] PetMouse program:
 The program below creates a linked list of objects. The class reference variable, pets, refers to the

fi rst object in the list, and each subsequent object contains an instance reference variable that refers to
the next object, except the instance reference variable in the last object refers to null. Notice that the
individual pets are anonymous objects, in that they do not have separate names. The class reference
variable, pets, actually refers to the fi rst object in the list, but conceptually it refers to all the objects in
the list. Notice that we use the same word, next, for a local variable in a class method and an instance
variable, because both variables are really talking about the same things, and it would be unnatural to
use different terms.

 1 /**
 2 * PetMouseDriver.java
 3 * Dean & Dean
 4 *
 5 * This creates & displays a linked list of simple objects.
 6 **/
 7
 8 public class PetMouseDriver
 9 {
10 public static void main(String[] args)
11 {
12 new PetMouse();
13 new PetMouse();
14 new PetMouse();
15 PetMouse.list();
16 } // end main
17 } // end class PetMouseDriver

 1 /**
 2 * PetMouse.java
 3 * Dean & Dean
 4 *
 5 * This creates & displays a linked list of simple objects.
 6 **/
 7
 8 import java.util.Scanner;
 9
10 public class PetMouse
11 {

 Exercises 367

09-M4402.indd 36709-M4402.indd 367 12/17/07 4:24:06 PM12/17/07 4:24:06 PM

Apago PDF Enhancer

368 Chapter 9 Classes with Class Members

12 private static PetMouse pets; // points to list of pets
13
14 private String name;
15 private PetMouse next;
16
17 //**
18
19 // Insert each new object at beginning of existing list.
20
21 public PetMouse()
22 {
23 Scanner stdIn = new Scanner(System.in);
24
25 this.next = pets;
26 System.out.print("Enter name: ");
27 this.name = stdIn.nextLine();
28 pets = this;
29 } // end constructor
30
31 //**
32
33 public static void list()
34 {
35 PetMouse next = pets;
36
37 while (next != null)
38 {
39 System.out.print(next.name + " ");
40 next = next.next;
41 }
42 System.out.println();
43 } // end list
44 } // end class PetMouse

 Use the following trace setup to trace the PetMouse program. Note how the pets class variable is
underneath the PetMouse header, but separate from the three objects. We’ve shown pets’s initial value,
null.

input

cutie
sugar
fl uffy

Driver PetMouse

line# line#

static

pets

list obj1 obj2 obj3

next name next name next name next output

null

09-M4402.indd 36809-M4402.indd 368 12/17/07 4:24:07 PM12/17/07 4:24:07 PM

Apago PDF Enhancer

Review Question Solutions

 1. True.

 2. You should declare a variable to be a class variable as opposed to an instance variable if the variable holds
data that is associated with the class as a whole. You should use class variables to describe properties of a
class’s objects that need to be shared by all of the objects.

 3. The default values for class variables are the same as they are for instance variables of the same type. Here
are the default values:

integer types get 0

fl oating point types get 0.0

boolean types get false
reference types get null

 4. Because there’s no static modifi er, getAge is an instance method. The Mouse4.getAge() call uses
a Mouse4 dot prefi x. It’s illegal to use a class name (Mouse4) as a prefi x for an instance method call. To
call an instance method, you need to use a reference variable dot prefi x.

 5. Member access:
 a) False. You cannot use this in a class method.
 b) True. You can always use the class name as a class method prefix.
 c) True, if the main method is “merged” into the same class as the other method.

False, if the other method is in a different class.
Including the class name prefix allows you to move the main method to another class later.

 6. True. You can access a class member from an instance method and also from a constructor—just prefi x the
class member with the class name.

 7. False. You can access an instance member from a class method only if you prefi x the method name with a
reference to a particular object.

 8. You should make a method a class method:
 a) If you have a method that uses class variables and/or calls class methods, then it’s a good candidate for

being a class method.
 b) If you might need to call a method even when there are no objects from the method’s class, then you

should make it a class method.
 c) The main method has to be a class method. If a main method uses helper methods that don’t involve

instance members, then the helper methods should be class methods.
 d) If you have a general-purpose method that stands on its own, make it a class method.

 9. The keyword final converts a variable into a constant.

 10. True. Use static to make a constant be the same for all objects.

 11. False. A class constant should normally be initialized as part of its declaration. If it is assigned a value later
on, including within a constructor, it generates a compilation error.

 12. Minimum passing score declaration:

private static final double MIN_PASSING_SCORE = 59.5;

 13. False. A utility class’s members should normally use the public and static modifi ers.

 Review Question Solutions 369

09-M4402.indd 36909-M4402.indd 369 12/17/07 4:24:07 PM12/17/07 4:24:07 PM

Apago PDF Enhancer

370 Chapter 10 Arrays and ArrayLists

C H A P T E R

370

10
Arrays and ArrayLists

Objectives

Compare an array with other objects.

Create and initialize arrays.

Copy values from one array to another.

Shift data in an array.

Make histograms.

Search an array for particular data.

Sort data.

Create and use two-dimensional arrays.

Create and use arrays of objects.

See how the ArrayList class makes arrays more fl exible.

Store primitives in an ArrayList.

Pass anonymous objects to and from methods.

Learn how to use for-each loops.

Outline

 10.1 Introduction

10.2 Array Basics

10.3 Array Declaration and Creation

10.4 Array length Property and Partially Filled Arrays

10.5 Copying an Array

10.6 Problem Solving with Array Case Studies

10.7 Searching an Array

10.8 Sorting an Array

10.9 Two-Dimensional Arrays

10.10 Arrays of Objects

10.11 The ArrayList Class

10.12 Storing Primitives in an ArrayList

•
•
•
•
•
•
•
•
•
•
•
•
•

10-M4402.indd 37010-M4402.indd 370 12/17/07 4:24:26 PM12/17/07 4:24:26 PM

Apago PDF Enhancer

 10.13 ArrayList Example Using Anonymous Objects and the For-Each Loop

 10.14 ArrayLists Versus Standard Arrays

10.1 Introduction

In the past, you’ve seen that objects typically contain more than one data item, and the different data items

each have a different name. Now, we’ll look at a special kind of object that holds several items of the same

type and uses the same name for all of them. Natural language has ways to give a single name to a popula-

tion: “pack” of wolves, “herd” of cattle, “pride” of lions, “passel” of possum, “fesnying” of ferrets, and so

on. Java has a way to do the same thing.

When you have a collection of items of the same type, and you’d like to use the same name for all of

them, you can defi ne them all together as an array. Each item in the array is more formally called an array

element. To distinguish the different elements in the array, you use the array name plus a number that identi-

fi es the position of the element within the array. For example, if you stored a collection of song titles in an

array named songs, you’d distinguish the fi rst song title by saying songs[0], and you’d distinguish the

second song title by saying songs[1]. As evidenced by this example, array elements start at position 0.

An array’s position numbers (0, 1, 2, and so on) are more formally called indexes. We’ll have more to say

about array indexes in the next section.

There’s an important advantage in using one name for all of a group of similar items and distinguishing

them only by a number. It can lead to simpler code. For example, if you need to store 100 song titles, you

could declare 100 separate variables. But what a pain it would be to have to write 100 declaration statements

and keep track of 100 different variable names. The easier solution is to use an array and declare just one

variable—a songs array variable.

Readers who want an early introduction to arrays have the option of reading Sections 10.1 through 10.6

after completing Chapter 4. The natural connection between Chapter 4 and this chapter is that Chapter 4

describes loops and arrays rely heavily on loops.

Starting with Section 10.7, we present arrays in an object-oriented context, where arrays are members of a

class. We discuss techniques for searching an array and sorting an array. We describe different organizational

structures for arrays—two-dimensional arrays and arrays of objects. We then present Array Lists, which

are similar to arrays but provide more fl exibility. ArrayLists grow dynamically as you add elements, and

it’s easy to insert or delete elements in the middle of ArrayLists. Finally, we describe a special type of

for loop called a for-each loop, which is particularly useful for processing the elements in an ArrayList.

10.2 Array Basics

In this section, we show you how to perform simple operations on an array, such as loading an array with

data and printing an array. To illustrate these operations, we’ll refer to the phoneList array in Figure 10.1.

The phoneList array holds a list of fi ve speed-dial phone numbers for a cell phone. The fi rst phone num-

ber is 8167412000, the second phone number is 2024561111, and so on.

Accessing an Array’s Elements

To work with an array, you need to access an array’s elements. For example, to print the contents of an array,

you need to access the array’s fi rst element, print it, access the array’s second element, print it, and so on. To

access an element within an array, you specify the array’s name, followed by square brackets surrounding the

 10.2 Array Basics 371

10-M4402.indd 37110-M4402.indd 371 12/17/07 4:24:28 PM12/17/07 4:24:28 PM

Apago PDF Enhancer

372 Chapter 10 Arrays and ArrayLists

Beginning programmers often think that the last index in an array is equal to the number of elements in

the array. For example, a beginning programmer might think that the last index in the phoneList array

equals 5 because the phoneList array has 5 elements. Not so. The fi rst index is 0, and the last index is 4.

Try to remember this important rule: The last index in an array is equal to one less than the number of ele-

ments in the array. If you attempt to access an array element with an index that’s greater than the last index or

less than zero, you’ll get a program crash. So if you specify phoneList[5] or phoneList[-1], you’ll

get a program crash. As part of that crash, the Java Virtual Machine (JVM) prints an error message with

the word “ArrayIndexOutOfBoundsException” in it. ArrayIndexOutOfBounds Exception
is an exception. You’ll learn about exceptions in Chapter 15, but for now, just think of an exception as a so-

phisticated type of error that can be used by programmers to determine the source of a bug.

Now that you know how to access an array element, let’s put it to use. Here’s how you can change the

fi rst phone number to 2013434:

phoneList[0] = 2013434;

And here’s how you can print the second phone number:

System.out.println(phoneList[1]);

Figure 10.1 Example array—fi ve-element array for holding a list of speed-dial phone numbers

8167412000

2024561111

7852963232

8008675309

0035318842133

phoneList

fi rst speed-dial phone number

last speed-dial phone number

Figure 10.2 Accessing elements in a phoneList array

index phoneList
how to access

each element

8167412000

2024561111

7852963232

8008675309

0

1

2

3

4 0035318842133

phoneList[0]

phoneList[1]

phoneList[2]

phoneList[3]

phoneList[4]

⎫
⎪
⎪
⎬
⎪
⎪
⎭

5 elements

 element’s index. Figure 10.2 shows how to access the individual elements within the phoneList array. The

fi rst element’s index is 0, so you access the fi rst element with phoneList[0]. Why is the fi rst element’s in-

dex 0 instead of 1? The index is a measure of how far you are from the beginning of the array. If you’re right

at the beginning, the distance from the beginning is 0. So the fi rst element uses 0 for its index value.

10-M4402.indd 37210-M4402.indd 372 12/17/07 4:24:29 PM12/17/07 4:24:29 PM

Apago PDF Enhancer

Be aware that some people use the term “subscript” rather than “index” because subscripting is the standard

English way to represent an element from within a group. In other words, x0, x1, x2, and so on in ordinary

writing is the same as x[0], x[1], x[2], and so on in Java.

Example Program

Let’s see how arrays are used within the context of a complete program. In Figure 10.3, the SpeedDialList

program prompts the user for the number of speed-dial phone numbers that are to be entered, fi lls up the

phoneList array with user-entered phone numbers, and prints the created speed-dial list. To fi ll an array

and to print an array’s elements, you typically need to step through each element of the array with the help

of an index variable that increments from zero to the index of the array’s last fi lled element. Often, the index

variable’s increment operations are implemented with the help of a for loop. For example, the SpeedDial-

List program uses the following for loop header to increment an index variable, i:

for (int i=0; i<sizeOfList; i++)

With each iteration of the for loop, i goes from 0 to 1 to 2, and so on, and i serves as an index for the dif-

ferent elements in the phoneList array. Here’s how the loop puts a phone number into each element:

phoneList[i] = phoneNum;

10.3 Array Declaration and Creation

In the previous section, we showed you how to perform simple operations on an array. In so doing, we fo-

cused on accessing an array’s elements. In this section, we focus on another key concept—declaring and

creating arrays.

Array Declaration

An array is a variable and, as such, it must be declared before you can use it. To declare an array, use this

syntax:

<element-type>[] <array-variable>;

The <array-variable> is the name of the array. The empty square brackets tell us that the variable is defi ned

to be an array. The <element-type> indicates the type of each element in the array—int, double, char,

String, and so on.

Here are some array declaration examples:

double[] salaries;
String[] names;
int[] employeeIds;

The salaries variable is an array whose elements are of type double. The names variable is an array

whose elements are of type String. And fi nally, the employeeIds variable is an array whose elements

are of type int.

Java provides an alternative declaration format for arrays, where the square brackets go after the vari-

able name. Here’s what we’re talking about:

double salaries[];

 10.3 Array Declaration and Creation 373

10-M4402.indd 37310-M4402.indd 373 12/17/07 4:24:30 PM12/17/07 4:24:30 PM

Apago PDF Enhancer

374 Chapter 10 Arrays and ArrayLists

Figure 10.3 SpeedDialList program that shows how to create, fi ll, and print an array

/**
* SpeedDialList.java
* Dean & Dean
*
* This program creates a cell phone speed-dial phone number
* list and prints the created list.
**/

import java.util.Scanner;

public class SpeedDialList
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 long[] phoneList; // list of phone numbers
 int sizeOfList; // number of phone numbers
 long phoneNum; // an entered phone number

 System.out.print(
 "How many speed-dial numbers would you like to enter? ");
 sizeOfList = stdIn.nextInt();
 phoneList = new long[sizeOfList];

 for (int i=0; i<sizeOfList; i++)
 {
 System.out.print("Enter phone number: ");
 phoneNum = stdIn.nextLong();
 phoneList[i] = phoneNum;
 } // end for

 System.out.println("\nSpeed Dial List:");
 for (int i=0; i<sizeOfList; i++)
 {
 System.out.println((i + 1) + ". " + phoneList[i]);
 } // end for
 } // end main
} // end class SpeedDialList

Sample session:

How many speed-dial numbers would you like to enter? 2
Enter phone number: 8167412000
Enter phone number: 2024561111

Speed Dial List:
1. 8167412000
2. 2024561111

Create an array with

a user-specifi ed size.

Fill the array.

Print the array.

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎪
⎬
⎪
⎪
⎭

10-M4402.indd 37410-M4402.indd 374 12/17/07 4:24:30 PM12/17/07 4:24:30 PM

Apago PDF Enhancer

The two formats are identical in terms of functionality. Most folks in industry prefer the fi rst format, and that’s

what we use, but you should be aware of the alternative format in case you see it in someone else’s code.

Array Creation

An array is an object, albeit a special kind of object. As with any object, an array holds a group of data

items. As with any object, an array can be created/instantiated using the new operator. Here’s the syntax for

creating an array object with the new operator and assigning the array object into an array variable:

<array-variable> = new <element-type>[<array-size>];

The <element-type> indicates the type of each element in the array. The <array-size> indicates the number

of elements in the array. The following code fragment creates a 10-element array of longs:

long[] phoneList;
phoneList = new long[10];

These two lines perform three operations: (1) The fi rst line declares the phoneList variable, (2) the boxed

code creates the array object, and (3) the assignment operator assigns a reference to the array object into the

phoneList variable.

It’s legal to combine an array’s declaration, creation, and assignment operations into one statement. The

following example does just that. It reduces the previous two-line code fragment to just one line:

long[] phoneList = new long[10];

Here, we use a constant (10) for the array’s size, but you’re not required to use a constant. You can use any

expression for the array’s size. Figure 10.3’s SpeedDialList program prompts the user for the size of the

array, stores the entered size in a sizeOfList variable, and uses sizeOfList for the array creation.

Here’s the array creation code from the SpeedDialList program:

phoneList = new long[sizeOfList];

Array Element Initialization

Usually, you’ll want to declare and create an array in one place and assign values to your array elements in a

separate place. For example, the following code fragment declares and creates a temperatures array in

one statement, and assigns values to the temperatures array in a separate statement, inside a loop.

double[] temperatures = new double[5];
for (int i=0; i<5; i++)
{
 temperatures[i] = 98.6;
}

On the other hand, sometimes you’ll want to declare and create an array, and assign values to your array, all

in the same statement. That’s called an array initializer. Here’s the syntax:

<element-type>[] <array-variable> = {<value1>, <value2>, . . ., <valuen>};

The code at the left of the assignment operator declares an array variable using syntax that you’ve seen

before. The code at the right of the assignment operator specifi es a comma-separated list of values that are

assigned into the array’s elements. Note this example:

double[] temperatures = {98.6, 98.6, 98.6, 98.6, 98.6};

array creation

declare and create array

assign a value to the ith array element

10.3 Array Declaration and Creation 375

10-M4402.indd 37510-M4402.indd 375 12/17/07 4:24:30 PM12/17/07 4:24:30 PM

Apago PDF Enhancer

376 Chapter 10 Arrays and ArrayLists

Comparing the above statement to the previous temperatures code fragment, you can see that it is the

same in terms of functionality but different in terms of structure. Key differences: (1) It’s one line, rather

than fi ve lines. (2) There’s no new operator. (3) There’s no array-size value. With no array-size value, how

do you think the compiler knows the size of the array? The size of the array is dictated by the number of

values in the element-values list. In the above example, there are fi ve values in the initializer list, so the

compiler creates an array with fi ve elements.

We presented two solutions for assigning values to a temperatures array. Which is better—the fi ve-line

code fragment or the one-line array initializer? We prefer the array initializer solution because it’s simpler.

But remember that you can use the array initializer technique only if you know the assigned values when

you fi rst declare the array. For the temperatures example, we do know the assigned values when we fi rst

declare the array—we initialize each temperature to 98.6, the normal human body temperature in degrees

Fahrenheit. You should limit your use of array initializers to situations where the number of assigned values

is reasonably small. For the temperatures example, the number of assigned values is reasonably small—it’s

fi ve. If you need to keep track of a hundred temperatures, it would be legal to use the array initializer solu-

tion, but it would be cumbersome:

double[] temperatures =
{
 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6,
 <repeat above line eight times>

 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6, 98.6
}

Default Values

You now know how to initialize an array’s elements explicitly with an array initializer. But what do an

array’s elements get by default if you don’t use an array initializer? An array is an object, and an array’s ele-

ments are the instance variables for an array object. As such, an array’s elements get default values when the

array is created, the same as any other instance variables get default values. Here are the default values for

array elements:

Array Element’s Type Default Value

integer 0

fl oating point 0.0

boolean false

reference null

So what are the default values for the elements in the arrays below?

double[] rainfall = new double[365];
String[] colors = new String[5];

The rainfall array gets 0.0 for each of its 365 elements. The colors array gets null for each of its

5 elements.

10-M4402.indd 37610-M4402.indd 376 12/17/07 4:24:31 PM12/17/07 4:24:31 PM

Apago PDF Enhancer

10.4 Array length Property and Partially Filled Arrays

As illustrated earlier, when working with an array, it’s common to step through each element in the array.

In doing so, you need to know the size of the array and/or the number of fi lled elements in the array. In this

section, we discuss how to obtain the size of an array and how to keep track of the number of fi lled elements

in an array.

Array length Property

Suppose you have a fi ve-element colors array that’s been initialized like this:

String[] colors = {"blue", "gray", "lime", "teal", "yellow"};

Here’s how to print such an array:

for (int i=0; i<5; i++)
{
 System.out.println(colors[i]);
}

That works OK, but suppose you have several other color-related loops in your code, each of them using

i<5. If you modify your program to accommodate more colors, and change the fi ve-element array to a

ten-element array, you’d have to change all occurrences of i<5 to i<10. To avoid such maintenance work,

wouldn’t it be nice to replace i<5 or i<10 with something generic, like i � array’s size? You can do that

by using the color array’s length property. Every array object contains a length property that stores

the number of elements in the array. The length property is called a “property,” but it’s actually just an

instance variable with public and final modifi ers. The public modifi er says that length is directly

accessible without need of an accessor method. The final modifi er makes length a named constant; so

you can’t update it. Here’s how the length property can be used:

for (int i=0; i<colors.length; i++)
{
 System.out.println(colors[i]);
}

Array length Property Versus String length Method

Remember where else you’ve seen the word length in the Java language? The String class provides

a length method to retrieve the number of characters in a string. Remember that String’s length
is a method, so you must use trailing parentheses when calling it. On the other hand, an array’s length is

a constant, so you don’t use trailing parentheses when accessing it. Figure 10.4’s SpeedDialList2 program il-

lustrates these concepts. Note that phoneNum.length() uses parentheses when checking for the length

of the phoneNum string as part of input validation. And note that phoneList.length does not use

parentheses when checking the number of elements in the phoneList array to make sure that there’s room

for another phone number.

If you’re like us, you might have a hard time remembering when to use parentheses and when not to.

Try using the mnemonic acronym ANSY, which stands for Arrays No, Strings Yes. “Arrays No” means that

number of elements in the array

hard-coded array size

10.4 Array length Property and Partially Filled Arrays 377

10-M4402.indd 37710-M4402.indd 377 12/17/07 4:24:31 PM12/17/07 4:24:31 PM

Apago PDF Enhancer

378 Chapter 10 Arrays and ArrayLists

Figure 10.4 SpeedDialList2 program that processes a partially fi lled array, using the array length property and

the String length method

/**
* SpeedDialList2.java
* Dean & Dean
*
* This program creates a speed-dial phone number list and
* prints the created list. It uses a partially filled array.
**/

import java.util.Scanner;

public class SpeedDialList2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String[] phoneList = new String[100]; // phone numbers
 int filledElements = 0; // number of phone numbers
 String phoneNum; // an entered phone number

 System.out.print("Enter phone number (or q to quit): ");
 phoneNum = stdIn.nextLine();
 while (!phoneNum.equalsIgnoreCase("q") &&
 filledElements < phoneList.length)
 {
 if (phoneNum.length() < 1 || phoneNum.length() > 16)
 {
 System.out.println("Invalid entry." +
 " Must enter between 1 and 16 characters.");
 }
 else
 {
 phoneList[filledElements] = phoneNum;
 filledElements++;
 }
 System.out.print("Enter phone number (or q to quit): ");
 phoneNum = stdIn.nextLine();
 } // end while

 System.out.println("\nSpeed Dial List:");
 for (int i=0; i<filledElements; i++)
 {
 System.out.println((i + 1) + ". " + phoneList[i]);
 } // end for
 } // end main
} // end class SpeedDialList2

Update number of fi lled elements.

Use filledElements

for printing the array.

Array length property

does not use ()’s.

String length

method uses ()’s.

10-M4402.indd 37810-M4402.indd 378 12/17/07 4:24:32 PM12/17/07 4:24:32 PM

Apago PDF Enhancer

arrays do not use parentheses when specifying length. “Strings Yes” means that strings do use parentheses

when specifying length. If you don’t like DFLAs,1 you can try a more analytical approach to remembering

the parentheses rule. Arrays are special-case objects that don’t have methods; therefore, an array’s length

must be a constant, not a method. And constants don’t use parentheses.

Partially Filled Arrays

In Figure 10.4, note how the SpeedDialList2 program declares the phoneList array to have 100 ele-

ments. The program repeatedly prompts the user to enter a phone number or enter q to quit. Typically, the

user will enter fewer than the maximum 100 phone numbers. That results in the phoneList array be-

ing partially fi lled. If you have a partially fi lled array, as opposed to a completely fi lled array, you have to

keep track of the number of fi lled elements in the array so you can process the fi lled elements differently

from the unfi lled elements. Note how the SpeedDialList2 program uses the filledElements variable

to keep track of the number of phone numbers in the array. filledElements starts at zero and gets in-

cremented each time the program stores a phone number in the array. To print the array, the program uses

filledElements in the following for loop header.

for (int i=0; i<filledElements; i++)

It’s fairly common for programmers to accidentally access unfi lled elements in a partially fi lled array. For

example, suppose SpeedDialList2’s for loop looked like this:

for (int i=0; i<phoneList.length; i++)
{
 System.out.println((i + 1) + ". " + phoneList[i]);
} // end for

Using phoneList.length in the for loop header works great for printing a completely fi lled array,

but not so great for printing a partially fi lled array. In the SpeedDialList2 program, unfi lled elements hold

null (the default value for a string), so the above for loop would print null for each of the unfi lled ele-

ments. And that makes for confused and unhappy users. �

10.5 Copying an Array

In the previous sections, we focused on array syntax details. In the next several sections, we’ll focus less

on the syntax and more on the application side of things. In this section, we discuss a general-purpose

problem—how to copy from one array to another.

Using Arrays to Hold a Store’s Prices

Suppose you use arrays to hold a store’s prices, one array for each month’s prices. Here’s the array for

January’s prices:

double[] pricesJanuary = {1.29, 9.99, 22.50, 4.55, 7.35, 6.49};

1 DFLA � dumb four-letter acronym.

 10.5 Copying an Array 379

10-M4402.indd 37910-M4402.indd 379 12/17/07 4:24:32 PM12/17/07 4:24:32 PM

Apago PDF Enhancer

380 Chapter 10 Arrays and ArrayLists

Your intent is to use January’s array as a starting point for the other month’s arrays. Specifi cally, you want

to copy January’s prices into the other months’ arrays and modify the other months’ prices when neces-

sary. The below statement creates the array for February’s prices. Note how pricesJanuary.length
 ensures that February’s array is the same length as January’s array.

double[] pricesFebruary = new double[pricesJanuary.length];

Suppose you want the values in February’s array to be the same as the values in January’s array except for

the second entry, which you want to change from 9.99 to 10.99. In other words, you want something like

this:

Output:

 Jan Feb
 1.29 1.29
 9.99 10.99
 22.50 22.50
 4.55 4.55
 7.35 7.35
 6.49 6.49

To minimize re-entry effort and error, it would be nice to have the computer copy the fi rst array’s values

into the second array and then just alter the one element of the second array that needs changing. Would the

following code fragment work?

pricesFebruary = pricesJanuary;
pricesFebruary[1] = 10.99;

An array name is just a reference. It contains the address of a place in memory where the array’s data be-

gins. So pricesFebruary = pricesJanuary; gets the address of pricesJanuary’s data and

copies the address into pricesFebruary. Then pricesFebruary and pricesJanuary refer to the

same physical data. This picture illustrates the point:

pricesFebruary

pricesJanuary

array object

1.29
10.99
22.50
4.55
7.35
6.49

The problem with pricesFebruary and pricesJanuary referring to the same physical data is that if

you change the data for one of the arrays, then you automatically change the data for the other array. For ex-

ample, the above pricesFebruary[1] = 10.99; statement updates not only pricesFebruary’s

second element, but also pricesJanuary’s second element. And that’s not what you want.

Usually when you make a copy of an array, you’ll want the copy and the original to point to different

array objects. To do that, assign array elements one at a time. See Figure 10.5’s ArrayCopy program. It uses

a for loop to assign pricesJanuary elements to pricesFebruary elements one at a time.

Not a good idea.

10-M4402.indd 38010-M4402.indd 380 12/17/07 4:24:32 PM12/17/07 4:24:32 PM

Apago PDF Enhancer

This is what the code in Figure 10.5 produces:

pricesJanuary 1.29
9.99
22.50
4.55
7.35
6.49

pricesFebruary 1.29
10.99
22.50
4.55
7.35
6.49

System.arraycopy
Copying data from one array to another is a very common operation, so Java designers provide a spe-

cial method, System.arraycopy, just for that purpose. It allows you to copy any number of elements

from any place in one array to any place in another array. Here’s how you could use it, copy Figure 10.5’s

 pricesJanuary array to the pricesFebruary array:

System.arraycopy(pricesJanuary, 0, pricesFebruary, 0, 6);
pricesFebruary[1] = 10.99;

The fi rst argument is the source array name, that is, the name of the array you’re copying from. The second

argument is the index of the source array’s fi rst element to copy. The third argument is the destination array

Figure 10.5 ArrayCopy program that copies an array and then alters the copy

/***
* ArrayCopy.java
* Dean & Dean
*
* This copies an array and then alters the copy.
**/

public class ArrayCopy
{
 public static void main(String[] args)
 {
 double[] pricesJanuary =
 {1.29, 9.99, 22.50, 4.55, 7.35, 6.49};
 double[] pricesFebruary = new double[pricesJanuary.length];

 for (int i=0; i<pricesJanuary.length; i++)
 {
 pricesFebruary[i] = pricesJanuary[i];
 }
 pricesFebruary[1] = 10.99;

 System.out.printf("%7s%7s\n", "Jan", "Feb");
 for (int i=0; i<pricesJanuary.length; i++)
 {
 System.out.printf("%7.2f%7.2f\n",
 pricesJanuary[i], pricesFebruary[i]);
 }
 } // end main
} // end class ArrayCopy

 10.5 Copying an Array 381

10-M4402.indd 38110-M4402.indd 381 12/17/07 4:24:33 PM12/17/07 4:24:33 PM

Apago PDF Enhancer

382 Chapter 10 Arrays and ArrayLists

name, that is, the name of the array you’re copying to. The fourth argument is the index of the destination

array’s fi rst element to replace. The fi nal argument is the total number of elements to copy.

10.6 Problem Solving with Array Case Studies

In this section, we present two array-based case studies. For each case study, we present a

problem and then examine its solution. The point of these case studies isn’t so much that you

memorize the details. The point is that you get a feel for how to solve array-oriented problems.

Then when you’re a programmer in the real world, you’ll have a “bag of tricks” that you can draw from.

You’ll probably have to modify the case-study solutions to make them fi t your specifi c real-world problems,

but that’s OK. You’ve got to earn your keep, after all.

Shifting Array-Element Values

Consider the hours array in Figure 10.6. The hours array contains the scheduled work hours for a person

for a 31 day period of time. The fi rst element (hours[0]) contains the scheduled work hours for the person

for the current day. The last element (hours[30]) contains the scheduled work hours for the person for

the day that’s 30 days in the future. At the beginning of each new day, the work hours need to shift to lower-

index positions. For example, the hours[1] value needs to shift to the hours[0] element. That should

make sense when you realize that when you’re going to a new day, you need to make what was the next day’s

scheduled hours, hours[1], become the current day’s scheduled hours, hours[0].

Learn by
examples.
Learn by
examples.

Now let’s look at Java code that performs this shifting operation. We want to shift each hours element

value to its adjacent lower-indexed element. In other words, we want to copy the second element’s value into

the fi rst element, copy the third element’s value into the second element, and so on. Then we want to assign

a user-entered value to the last element. Here’s the code:

for (int d=0; d<hours.length–1; d++)
{
 hours[d] = hours[d+1];
}

System.out.print("Enter last day's scheduled hours: ");
hours[hours.length-1] = stdIn.nextInt();

Figure 10.6 Array that holds scheduled work hours for next 31 days

index hours

0 4

1 8

2 0

30 8

fi rst day’s hours

last day’s hours

To shift values to lower-index

positions, you must start at

the low-index end and work

toward the other end.

⎫
⎪
⎬
⎪
⎭

10-M4402.indd 38210-M4402.indd 382 12/17/07 4:24:33 PM12/17/07 4:24:33 PM

Apago PDF Enhancer

There are several things to note about this code fragment. It’s OK to use an expression inside the []’s—we

use hours[d+1] to access the element after the hours[d] element. Notice how we shift elements at

the low-index end fi rst. What would happen if you started the shifting at the high-index end? You’d over-

write the next element you wanted to move and end up fi lling the entire array with the value that was origi-

nally in the highest element. Not good.

Calculating a Moving Average

Let’s now borrow code from the above example and apply it to another problem. Suppose

you need to present a four-day moving average of the Dow Jones Industrial Average (DJIA)

at the end of each business day. Assume you already have a four-element array holding the

values of the DJIA at the end of the day on each of the past four days, with four-days-ago’s value at index 0,

three-days-ago’s value at index 1, two-days-ago’s value at index 2, and yesterday’s value at index 3. For today’s

four-day moving average, you’ll want the sum of the values for the last three days plus the value for today.

This means you’ll need to shift everything in the array to lower-index positions and insert today’s value at

the high-index end. Then you’ll need to sum up everything in the array and divide by the length of the array.

Presumably, you’ll save the shifted array somewhere and then do the same thing again at the end of each day

in the future. You could do the shifting and summing in separate loops, but it’s easier to do both in the same

loop as shown in Figure 10.7.

To allow for different lengths of time, it’s best not to hard code the array length. Instead, you should

always use <array-name>.length. Think carefully about each boundary. Notice that the index [d+1]on

the right side of the fi rst statement in the inside for loop is one greater than the count variable value d.

Remember that the highest index value in an array is always one less than the array’s length. So the highest

value of the count variable should be the array’s length minus two. That’s why the loop-continuation con-

dition is d<days.length-1. Also notice that we insert the new fi nal value for the array after the loop

terminates, and then we include this fi nal value in the sum before computing the average. Here’s an example

of what the program does:

Sample session:

Enter number of days to evaluate: 4
Enter next day's value: 9800
Moving average = 9650
Enter next day's value: 9800
Moving average = 9725
Enter next day's value: 9700
Moving average = 9750
Enter next day's value: 9600
Moving average = 9725

A moving average is smoother than an instantaneous plot, but notice that its values lag behind.

There’s a simpler way to do shifting. Do you remember the API arraycopy method mentioned in the

previous section? You can use it to implement shifts to lower-index positions with this code fragment:

System.arraycopy(days, 1, days, 0, days.length-1);
System.out.print("Enter next day's value: ");
days[days.length-1] = stdIn.nextInt();

Borrow code
and modify it.
Borrow code
and modify it.

 10.6 Problem Solving with Array Case Studies 383

10-M4402.indd 38310-M4402.indd 383 12/17/07 4:24:34 PM12/17/07 4:24:34 PM

Apago PDF Enhancer

384 Chapter 10 Arrays and ArrayLists

Conceptually, the arraycopy method copies everything from element 1 to the last element into a tempo-

rary array, and then copies it from this temporary array back into the original array starting at element 0.

This eliminates the inner for loop in Figure 10.7. Unfortunately, we also used the inner for loop to

 compute the sum needed for the average. But there’s a trick you can use, and it makes a program like this

more effi cient when the array is very large. If you keep track of the sum of all the elements in the array, each

time you shift the array element values, you can just correct the sum, rather than completely re-computing

it. To correct the sum, subtract the value shifted out and add the value shifted in, like this:

Figure 10.7 Calculation of a moving average

/**
* MovingAverage.java
* Dean & Dean
*
* This program contains an operation that shifts each array
* element to the next lower element and loads a new input
* into the final element.
**/

import java.util.Scanner;

public class MovingAverage
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int[] days = {9400, 9500, 9600, 9700}; // rising market
 double sum;
 int samples;

 System.out.print("Enter number of days to evaluate: ");
 samples = stdIn.nextInt();
 for (int j=0; j<samples; j++)
 {
 // shift down and sum
 sum = 0.0;
 for (int d=0; d<days.length-1; d++)
 {
 days[d] = days[d+1];
 sum += days[d];
 }
 System.out.print("Enter next day's value: ");
 days[days.length-1] = stdIn.nextInt();
 sum += days[days.length-1];
 System.out.printf(
 "Moving average = %5.0f\n", sum / days.length);
 }
 } // end main
} // end class MovingAverage

This shifts in

the latest value.

This accumulates the

already-shifted values.

This shifts to lower-

index positions.

10-M4402.indd 38410-M4402.indd 384 12/17/07 4:24:34 PM12/17/07 4:24:34 PM

Apago PDF Enhancer

Suppose you have three coins. When you fl ip all three, you’re curious how likely it is you’ll get zero

heads, how likely you’ll get one head, how likely you’ll get two heads, and how likely you’ll get three heads.

In other words, you’re curious about the frequency distribution for the number of heads.

You could calculate the frequency distribution mathematically (with the binomial

distribution formula), but, instead, you decide to write a program to simulate the coin

fl ips. If you simulate enough coin fl ips, then the results will approximate the mathemati-

cally calculated result.

In your program, you should simulate fl ipping the three coins a million times. You should print the

simulation results in the form of a histogram. For each of the four cases (zero heads, one head, two heads,

Approximate a
mathematical
solution with
simulation.

Approximate a
mathematical
solution with
simulation.

Figure 10.8 Example histogram

60

50

40

30

20

10

0

USDA-NASS

Regular
Ice Cream

M
il

li
o
n
 g

al
lo

n
s

Lowfat
Ice Cream

Nonfat
Ice Cream

Sherbet Frozen
Yogurt

Frozen Dessert Production
February 2003

2 National Agricultural Statistics Service, Frozen Dessert Production Histogram, on the Internet at http://www.usda.gov/nass/
nasskids/glossary_1.html.

 10.6 Problem Solving with Array Case Studies 385

sum -= days[0];
System.arraycopy(days, 1, days, 0, days.length-1);
System.out.print("Enter next day's value: ");
days[days.length-1] = stdIn.nextInt();
sum += days[days.length-1];

Histograms

In this subsection, we’ll use an array as part of a histogram program. But before we present the program, a

histogram overview is in order. A histogram is a graph that displays quantities for a set of categories. Typi-

cally, it indicates category quantities with bars—shorter bars equate to smaller quantities, longer bars equate

to larger quantities. For example, Figure 10.8’s histogram shows quantities of frozen desserts produced in

the United States in 2003.2 Histograms are a popular way to present statistical data because they provide a

quick and clear representation of the data’s distribution.

10-M4402.indd 38510-M4402.indd 385 12/17/07 4:24:35 PM12/17/07 4:24:35 PM

http://www.usda.gov/nass/

Apago PDF Enhancer

386 Chapter 10 Arrays and ArrayLists

three heads), print a series of *’s where the number of these asterisks is proportional to the number of times

the case occurred. Each series of asterisks represents a histogram bar. That should make more sense by

looking at this sample output:

Number of times each head count occurred:
 0 124960 **************
 1 375127 **
 2 375261 **
 3 124652 **************

Note the fi rst row of asterisks. That’s a horizontal “bar” that pictorially describes the number of times that

the zero-heads case occurred. The zero at the left is the label for the zero-heads case. The 124960 is the spe-

cifi c number of times that the zero-heads case occurred. Or said another way, 124960 is the frequency of the

zero-heads case. Note that the zero-heads and three-heads frequencies (124960 and 124652, respectively)

are nearly the same, and the one-head and two-heads frequencies (375127 and 375261, respectively) are also

nearly the same. Also note that the zero-heads and three-heads frequencies are each approxi-

mately one third of the one-head and two-heads frequencies. It’s always a good idea to use

some kind of independent calculation to predict what a computer’s answer should be like. For

this simple problem, it’s relatively easy to compute an exact answer. Assuming that “T” means

“tails” and “H” means “heads,” here are all the possible fl ipping results:

TTT (0 heads)

TTH (1 head)

THT (1 head)

THH (2 heads)

HTT (1 head)

HTH (2 heads)

HHT (2 heads)

HHH (3 heads)

Note that there is only one way to obtain zero heads and only one way to obtain three heads, but there are

three ways to obtain one head and three ways to obtain two heads. So the zero-head and three-head frequencies

should each be one third of the one-head or two-head frequency. If you look at the numbers and bar lengths in

the above sample output, you’ll see that the computer result does indeed conform to this expectation.

See Figure 10.9’s CoinFlips program. It does what we want. It simulates fl ipping three coins a million

times, and it prints the simulation results in the form of a histogram. It uses a four-element frequency ar-

ray to keep track of the number of times each head-count value occurs. Each element in the frequency array

is called a bin. In general, a bin contains the number of occurrences of an event. For the CoinFlips program,

the frequency[0] element is the fi rst bin, and it holds the number of times none of the three coins lands

heads up. The frequency[1] element is the second bin, and it holds the number of times one of the three

coins lands heads up. After each three-coin-fl ip simulation iteration, the program adds one to the appropriate

bin. For example, if a particular iteration generates one head, the program increments the frequency[1]

bin. And if a particular iteration generates two heads, the program increments the frequency[2] bin.

Let’s now examine how the CoinFlips program prints the histogram asterisk bars. As specifi ed by the

second callout in Figure 10.9, the second large for loop prints the histogram. Each iteration of the for

loop prints the bin label (0, 1, 2, or 3) and then the frequency for that bin. Then it computes the number of

asterisks to print by dividing the frequency in the current bin by the total number of repetitions and multi-

plying by 100. Then it uses an inner for loop to display the computed number of asterisks.

Compare
program
results with
predicted
results.

Compare
program
results with
predicted
results.

10-M4402.indd 38610-M4402.indd 386 12/17/07 4:24:35 PM12/17/07 4:24:35 PM

Apago PDF Enhancer

/***
* CoinFlips.java
* Dean & Dean
*
* This generates a histogram of coin flips.
***/

public class CoinFlips
{
 public static void main(String[] args)
 {
 final int NUM_OF_COINS = 3; // number of coins
 final int NUM_OF_REPS = 1000000; // repetitions

 // The frequency array holds the number of times
 // a particular number of heads occurred.
 int[] frequency = new int[NUM_OF_COINS + 1];
 int heads; // heads in current group of flips
 double fractionOfReps; // head count / repetitions
 int numOfAsterisks; // asterisks in one histogram bar

 for (int rep=0; rep<NUM_OF_REPS; rep++)
 {
 // perform a group of flips
 heads = 0;
 for (int i=0; i<NUM_OF_COINS; i++)
 {
 heads += (int) (Math.random() * 2);
 }
 frequency[heads]++; // update appropriate bin
 } // end for
 System.out.println(
 "Number of times each head count occurred:");
 for (heads=0; heads<=NUM_OF_COINS; heads++)
 {
 System.out.print(
 " " + heads + " " + frequency[heads] + " ");
 fractionOfReps = (float) frequency[heads] / NUM_OF_REPS;
 numOfAsterisks = (int) Math.round(fractionOfReps * 100);

 for (int i=0; i<numOfAsterisks; i++)
 {
 System.out.print("*");
 }
 System.out.println();
 } // end for
 } // end main
} // end class CoinFlips

This loop

prints the

histogram.

Each iteration

prints one

histogram bar.

Figure 10.9 CoinFlips program that generates a histogram for coin-fl ips simulation

This loop fi lls up the

frequency bins. Each

iteration simulates one

group of three coin fl ips.

10.6 Problem Solving with Array Case Studies 387

10-M4402.indd 38710-M4402.indd 387 12/17/07 4:24:35 PM12/17/07 4:24:35 PM

Apago PDF Enhancer

388 Chapter 10 Arrays and ArrayLists

10.7 Searching an Array

In order to use an array, you need to access its individual elements. If you know the location of the element

you’re interested in, then you simply access the element by putting the element’s index inside square brack-

ets. But if you don’t know the location of the element, then you need to search for it. For example, suppose

you’re writing a program that keeps track of student enrollments for the courses at your school. The program

is supposed to be able to add a student, remove a student, view a student’s data, and so on. All of those op-

erations require that you fi rst search for the student within a students array (even the add-a-student operation

requires a search, to ensure that the student isn’t already in the array). In this section, we present two tech-

niques for searching an array.

Sequential Search

If the array is short (has less than about 20 items), the best way to search it is the simplest way: Step

through the array sequentially and compare the value at each array element with the searched-for value.

When you fi nd a match, do something and return. Here’s a pseudocode description of the sequential-search

algorithm:

i ← 0

while i < number of fi lled elements

 if list[i] equals the searched-for value

 <do something and stop the loop>

 increment i

Typically, algorithms are more generic than Java implementations. Part of problem solv-

ing is the process of adapting generic algorithms to specifi c situations. In this case, the

“do something” code will be different for different cases. The findStudent method in

Figure 10.10 illustrates one implementation of the sequential-search algorithm. This partic-

ular method might be part of a Course class that implements an academic course. The Course class stores

a course’s name, an array of student ids for the students enrolled in the course, and the number of students in

the course. The findStudent method searches for a given student id within the student ids array. If the

student id is found, it returns the index of the found id. Otherwise, it returns �1. Note how findStudent’s

code matches the sequential-search algorithm’s logic. In particular, note how findStudent implements

<do something and stop the loop> with a return i statement. The return i implements “do something”

by returning the index of the found student id. It implements “stop the loop” by returning from the method and

terminating the loop simultaneously.

In examining the findStudent method, you might be asking yourself “What is the practical use for

the returned index?” To do anything with an id in the ids array, you need to know the id’s index. If you

don’t know the id’s index in advance, the findStudent method fi nds the id’s index for you. Later in this

chapter, you’ll see how to call a search method and use the returned index when sorting an array and when

adding a new value to an array. Are you still asking yourself “What is the practical use for the returned �1

when the id is not found?” The �1 can be used by the calling module to check for the case of an invalid

student id.

Figure 10.11 contains a CourseDriver class which drives Figure 10.10’s Course class. The

CourseDriver class is fairly straightforward. It creates an array of student ids, stores the array in a

Course object, prompts the user for a particular student id, and then calls findStudent to see whether

that particular student is taking the course. To keep things simple, we use an initializer to create the ids

Adapt generic
algorithms
to specifi c
situations.

Adapt generic
algorithms
to specifi c
situations.

10-M4402.indd 38810-M4402.indd 388 12/17/07 4:24:36 PM12/17/07 4:24:36 PM

Apago PDF Enhancer

array. For a more general purpose driver, you might want to replace the initializer with a loop that repeat-

edly prompts the user to enter a student id or q to quit. If you choose that option, then you’d need to store the

number of fi lled elements in a filledElements variable and pass the filledElements variable as

the third argument in the Course constructor call. This is what the constructor call would look like:

Course course = new Course("CS101", ids, filledElements);

Figure 10.10 Class with sequential search method (findStudent)

/***
* Course.java
* Dean & Dean
*
* This class represents a particular course in a school.
**/

public class Course
{
 private String courseName; // name of the course
 private int[] ids; // ids for students in the course
 private int filledElements; // number of filled-in elements

 //***

 public Course(String courseName, int[] ids, int filledElements)
 {
 this.courseName = courseName;
 this.ids = ids;
 this.filledElements = filledElements;
 } // end constructor

 //***

 // This method returns index of found id or -1 if not found.

 public int findStudent(int id)
 {
 for (int i=0; i<filledElements; i++)
 {
 if (ids[i] == id)
 {
 return i;
 }
 } // end for

 return -1;
 } // end findStudent
} // end class Course

 10.7 Searching an Array 389

10-M4402.indd 38910-M4402.indd 389 12/17/07 4:24:36 PM12/17/07 4:24:36 PM

Apago PDF Enhancer

390 Chapter 10 Arrays and ArrayLists

Binary Search

If you have an array with a large number of array elements, like 100,000, a sequential search typically takes

quite a long time. If such an array has to be searched many times, it’s often worthwhile to use a binary

search. Binary search gets its name from the way that it bisects a list of values and narrows its search to just

half of the bisected list.

For a binary search to work on an array, the array must be sorted so that everything is in some kind of

alphabetical or numerical order. The next section describes one of the many available sorting methods. This

initial sorting takes more time than a single sequential search, but you have to do it only once.

Figure 10.11 Driver for program illustrating a sequential search

/**
* CourseDriver.java
* Dean & Dean
*
* This class creates a Course object and searches for a student
* id within the newly created Course object.
**/

import java.util.Scanner;

public class CourseDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int[] ids = {4142, 3001, 6020};
 Course course = new Course("CS101", ids, ids.length);
 int id; // ID being searched for
 int index; // index of ID sought or -1 if not found

 System.out.print("Enter 4-digit ID: ");
 id = stdIn.nextInt();
 index = course.findStudent(id);
 if (index >= 0)
 {
 System.out.println("found at index " + index);
 }
 else
 {
 System.out.println("not found");
 }
 } // end main
} // end class CourseDriver

Sample session:

Enter 4-digit ID: 3001
found at index 1

10-M4402.indd 39010-M4402.indd 390 12/17/07 4:24:36 PM12/17/07 4:24:36 PM

Apago PDF Enhancer

After the array has been sorted, you can use a binary search to fi nd values in the array very quickly—

even when the array is extremely long. A sequential search takes an amount of time proportional to the array

length. A binary search takes an amount of time proportional to the logarithm of the array length. When an

array is very long, the difference between linear and logarithmic is huge. For example, suppose the length

is 100,000. It works out that log2(100,000) � 17. Since 17 is about 6,000 times smaller than 100,000, binary

search is approximately 6,000 times faster than sequential search for a 100,000-element array.

Note the binarySearch method in Figure 10.12, and, in particular, note its static modifi er. You

can use either an instance method or a class method to implement searching. In the previous subsection, we

implemented searching with an instance method. This time, we implement searching with a class method,

which is appropriate if you want a method to be used generically. To make it generic (that is, to make

it usable by different programs), you should put the method in a separate class and make the method a

class method. Since it’s a class method, different programs can call the binarySearch method eas-

ily, using binarySearch’s class name, rather than using a calling object. For example, if you put the

 binarySearch method in a Utilities class, you would call binarySearch like this:

Utilities.binarySearch(

 <array-name>, <number-of-fi lled-elements>, <searched-for-value>);

Figure 10.12 Method that performs a binary search of an array already sorted in ascending order

public static int binarySearch(
 int[] array, int filledElements, int value)
{
 int mid; // index of middle element
 int midValue; // value of middle element
 int low = 0; // index of lowest element
 int high = filledElements - 1; // index of highest element

 while (low <= high)
 {
 mid = (low + high) / 2; // next midpoint
 midValue = array[mid]; // and the value there
 if (value == midValue)
 {
 return mid; // found it!
 }
 else if (value < midValue)
 {
 high = mid - 1; // next time, use lower half
 }
 else
 {
 low = mid + 1; // next time, use upper half
 }
 } // end while

 return -1;
} // end binarySearch

 10.7 Searching an Array 391

10-M4402.indd 39110-M4402.indd 391 12/17/07 4:24:37 PM12/17/07 4:24:37 PM

Apago PDF Enhancer

392 Chapter 10 Arrays and ArrayLists

In the binarySearch method call, note the array argument. Being a class method, binarySearch

cannot access instance variables. More specifi cally, it cannot access the searched array as an instance vari-

able. So the searched array must be passed in as an argument. This allows the method to be used from out-

side its class.

Before examining the code details in the binarySearch method, let’s discuss the ba-

sic strategy—divide and conquer. You fi rst identify the middle element in the sorted array.

You then fi gure out whether the searched-for value goes before or after the middle element.

If it belongs before the middle element, you narrow the search range to the lower half of the

array (the half with the smaller-indexed elements). If, on the other hand, the searched-for

value belongs after the middle element, you narrow the search range to the upper half of the array. You then

repeat the process. In other words, within the narrowed-down half of the array, you identify the middle ele-

ment, fi gure out whether the searched-for value belongs before or after the middle element, and narrow the

search range accordingly. Every time you do this, you cut the problem in half, and this enables you to zero

in quickly on the searched-for value—if it’s there at all. Splitting the array in half is the “divide” part of “di-

vide and conquer.” Finding the searched-for value within one of the halves is the “conquer” part.

Now let’s see how the binarySearch method implements the divide-and-conquer algorithm. The

method declares mid, low, and high variables that keep track of the indexes for the middle element and

the two elements at the ends of the array’s search range. For an example, see the left drawing in Figure 10.13.

Using a while loop, the method repeatedly calculates mid (the index of the middle element) and checks

whether the mid element’s value is the searched-for value. If the mid element’s value is the searched-for

value, then the method returns the mid index. Otherwise, the method narrows the search range to the low

half or the high half of the array. For an example of that narrowing process, see Figure 10.13. The method

repeats the loop until either the searched-for value is found or the search range shrinks to the point where

low’s index is greater than high’s index.

Split up a
problem
into smaller
problems.

Split up a
problem
into smaller
problems.

Figure 10.13 Example execution of Figure 10.12’s binarySearch method

array

0

1 -2

2 4

3 18

4 21

5 22

6

99

30

mid

high

low -6

array

0

1 -2

2 4

3 18

4 21

5 22

6

99

30

mid

high

low -6

array

0

1 -2

2 4

3 18

4 21

5 22

6

99

30

mid

high

low

-6

7

filledElements

value

4

10-M4402.indd 39210-M4402.indd 392 12/17/07 4:24:37 PM12/17/07 4:24:37 PM

Apago PDF Enhancer

10.8 Sorting an Array

Computers are particularly good at storing large quantities of data and accessing that data quickly. As

you learned in the previous section, binary search is an effective technique for fi nding and accessing data

quickly. In order to prepare the data for binary search, the data must be sorted. Sorting data is done not only

for binary search purposes. Computers also sort data so that it’s easier to display in a user-friendly fashion. If

you look at the e-mails in your inbox, aren’t they normally sorted by date with the most recent e-mail fi rst?

Most e-mail organizers allow you to sort your e-mails using other criteria as well, such as using the “from”

person or using the size of the e-mail. In this section, we describe the basics of how sorting is performed.

We fi rst present a sorting algorithm, and we then present its implementation in the form of a program that

sorts the values in an array.

Selection Sort

There are many different sorting algorithms with varying degrees of complexity and effi ciency. Frequently,

the best way to solve a problem on a computer is the way a human would naturally solve the problem by

hand. To illustrate this idea, we’ll show you how to convert one of the common human card-sorting algo-

rithms to a Java sorting program.

If you’re sorting cards in a card game, you probably use the Selection Sort algorithm. Assume that

you’re sorting smallest cards fi rst. You search for and select the smallest card and move it to the small-card

side of the card group. The small-card side of the card group is where you keep the cards that have been

sorted already. You then search for the next smallest card, but in so doing, you look only at cards that are in

the unsorted portion of the card group. You move the found card to the second position on the small-card

side of the card group. You repeat the search-and-move process until there are no more cards left in the un-

sorted portion of the card group.

As a fi rst step in implementing the selection sort logic, let’s examine a pseudocode solution. Above,

we said to “repeat the search-and-move process.” Whenever there’s a repetition, you should think about

using a loop. The following algorithm uses a loop for repeating the search-and-move process. Note how i

keeps track of where the search starts. The fi rst time through the loop, the search starts at the fi rst element

(at index 0). The next time, the search starts at the second position. Each time through the loop, you fi nd

the smallest value and move it to the sorted portion of the list (the i tells you where in the list you want the

smallest value to go).

for (i ← 0; i < list’s length; i��)

 fi nd the smallest value in the list from list[i] to the end of the list

 swap the found value with list[i]

A picture is worth a thousand words, so we provide a fi gure (10.14) that shows the Selection Sort algorithm

in action. The fi ve pictures show the different stages of a list being sorted using the Selection Sort algorithm.

The list’s white portions are unsorted. The original list at the left is all white, indicating that it is entirely

unsorted. The list’s shaded portions are sorted. The list at the right is all shaded, indicating that it is entirely

sorted. The bidirectional arrows show what happens after a smallest value is found. The smallest value (at

the bottom of the bidirectional arrow) gets swapped up to the top of the unsorted portion of the list. For ex-

ample, in going from the fi rst picture to the second picture, the smallest value, �3, gets swapped up to 5’s

position at the top of the unsorted portion of the list.

Now let’s implement a Java version of the Selection Sort algorithm. You can use either an instance

method or a class method. In the previous section, we implemented binary search with a class method. For

additional practice, we’ll do the same here for selection sort. By implementing selection sort with a class

 10.8 Sorting an Array 393

10-M4402.indd 39310-M4402.indd 393 12/17/07 4:24:37 PM12/17/07 4:24:37 PM

Apago PDF Enhancer

394 Chapter 10 Arrays and ArrayLists

method, you can easily call it from any program that needs to sort a list of numbers—just prefi x the method

call with class name dot.

See the Sort class in Figure 10.15. Note how the sort method body mimics the pseudocode very

closely because the sort method uses top-down design. Rather than include the search-for-the-smallest-value

code within the sort method, the sort method calls the indexOfNextSmallest helper method.

Rather than include the element-swapping code within the sort method, the sort method calls the swap

helper method. The only substantive difference between the sort method and the sort algorithm is that the

sort method’s for loop stops iterating one element before the bottom of the array. That’s because there’s

no need to perform a search when you’re at the last element (you already know that the last element is the

minimum value for the remainder of the list). We didn’t worry about such effi ciency details with the algo-

rithm because algorithms are more about basic logic rather than off-by-one details.

Passing Arrays as Arguments

Figure 10.16 contains a driver for Figure 10.15’s Sort class. Most of the code is fairly straightforward,

but please take note of the studentIds argument in the Sort.sort method call. That’s an example

of passing an array to a method. An array is an object, and as such, studentIds is a reference to an

array object. As you may recall from the “Passing References as Arguments” section in Chapter 7, a refer-

ence argument (in a method call) and its corresponding reference parameter (in a method heading) point

to the same object. So if you update the reference parameter’s object from within the method, you simul-

taneously update the reference argument’s object in the calling module. Applying that thinking to the Sort

program, when you pass the studentIds reference to the sort method and sort the array there, there’s

no need to return the updated (sorted) array with a return statement. That’s because the studentIds

reference points to the same array object that is sorted within the sort method. Thus, we do not include a

return statement in the sort method, and the method works just fi ne.

Sorting with a Java API Method

When an array has more than about 20 elements, it’s better to use an algorithm that’s more

effi cient than the relatively simple Selection Sort algorithm just described. And sure enough,

the Java API has a sorting method that uses a more effi cient sorting algorithm. It’s the sort

method in the Arrays class.

Check for
effi cient API
methods.

Check for
effi cient API
methods.

Figure 10.14 Example execution of the Selection Sort algorithm

0

1

2

3

4

10

5

20

2

2

5

20

10

-3

2

5

10

20

list

(sorted)

2

5

20

10

list

(original)

5

10

-3

20

2

-3-3-3

10-M4402.indd 39410-M4402.indd 394 12/17/07 4:24:38 PM12/17/07 4:24:38 PM

Apago PDF Enhancer

Figure 10.15 Sort class containing a method that sorts an array of integers in ascending order

/***
* Sort.java
* Dean & Dean
*
* This class uses a selection sort to sort a single array.
***/

public class Sort
{
 public static void sort(int[] list)
 {
 int j; // index of smallest value

 for (int i=0; i<list.length-1; i++)
 {
 j = indexOfNextSmallest(list, i);
 swap(list, i, j);
 }
 } // end sort

 //**

 private static int indexOfNextSmallest(
 int[] list, int startIndex)
 {
 int minIndex = startIndex; // index of smallest value

 for (int i=startIndex+1; i<list.length; i++)
 {
 if (list[i] < list[minIndex])
 {
 minIndex = i;
 }
 } // end for
 return minIndex;
 } // end indexOfNextSmallest

 //**

 private static void swap(int[] list, int i, int j)
 {
 int temp; // temporary holder for number

 temp = list[i];
 list[i] = list[j];
 list[j] = temp;
 } // end swap
} // end Sort

 10.8 Sorting an Array 395

10-M4402.indd 39510-M4402.indd 395 12/17/07 4:24:38 PM12/17/07 4:24:38 PM

Apago PDF Enhancer

396 Chapter 10 Arrays and ArrayLists

Figure 10.16 Driver that exercises the sort method in Figure 10.15

/***
* SortDriver.java
* Dean & Dean
*
* This exercises selection sort in class Sort.
***/

public class SortDriver
{
 public static void main(String[] args)
 {
 int[] studentIds = {3333, 1234, 2222, 1000};

 Sort.sort(studentIds);
 for (int i=0; i<studentIds.length; i++)
 {
 System.out.print(studentIds[i] + " ");
 }
 } // end main
} // end SortDriver

calling

the sort

method

Here’s skeleton code for how you might use the Arrays class’s sort method:

import java.util.Arrays;
. . .
 int[] studentIds = {. . .};
 . . .
 Arrays.sort(studentIds);

We recommend that you use this API method for heavy-duty sorting. It’s an overloaded method, so it also

works for arrays of other types of primitive variables.

10.9 Two-Dimensional Arrays

Arrays are good for grouping related data together. Up to this point, we’ve grouped the data together using

standard one-dimensional arrays. If the related data is organized in a table format, consider using a two-

 dimensional array. In this section, we describe two-dimensional arrays.

Two-Dimensional Array Syntax

Two-dimensional arrays use the same basic syntax as one-dimensional arrays except for a second pair of

square brackets ([]). Each pair of square brackets contains one index. According to standard programming

practice, the fi rst index identifi es the row and the second index identifi es the column position within a row.

10-M4402.indd 39610-M4402.indd 396 12/17/07 4:24:39 PM12/17/07 4:24:39 PM

Apago PDF Enhancer

For example, here’s a two-row by three-column array named x:

x how to access each element

0 1 2

0 8 -2 4 x[0][0] x[0][1] x[0][2]

1 1 0 5 x[1][0] x[1][1] x[1][2]

The items at the right, under the “how to access” column heading, show how to access each of the six ele-

ments in the array. So to access the value 5, at row index 1 and column index 2, you specify x[1][2].

As with one-dimensional arrays, there are two ways to assign values into a two-dimensional array’s ele-

ments. You can use an array initializer, where the element assignment is part of the array’s declaration. Or

you can use standard assignment statements, where the assignment statements are separate from the array’s

declaration and creation. We’ll describe the array initializer technique fi rst. Here’s how you can declare the

above two-dimensional x array and assign values into its elements, using an array initializer:

int[][] x = {{8, -2, 4}, {1, 0, 5}};

Note that the array initializer contains two inner groups, where each inner group represents one row. {8,
 -2, 4} represents the fi rst row. {1, 0, 5} represents the second row. Note that elements and groups are

separated with commas, and each inner group and the entire set of inner groups are surrounded by braces.

You can use the array initializer technique only if you know the assigned values when you fi rst declare

the array. Otherwise, you need to provide array element assignment statements that are separate from the

array’s declaration and creation. For example, Figure 10.17’s code fragment declares and creates the x array

in one statement, and assigns values to x’s elements in a separate statement, inside nested for loops.

column

indexes

column

indexes

row

indexes

row

indexes

initializer for a 2-row by 3-column array

Figure 10.17 Assigning values into a two-dimensional array using nested for loops and the length property

int[][] x = new int[2][3];
for (int i=0; i<x.length; i++)
{
 for (int j=0; j<x[0].length; j++)
 {
 System.out.print("Enter value for row " + i + ", col " + j + ”: ”);
 x[i][j] = stdIn.nextInt();
 } // end for j
} // end for i

Assign a value to the

element at row i, column j.

Declare and create a 2-row

by 3-column array.

10.9 Two-Dimensional Arrays 397

When working with two-dimensional arrays, it’s very common to use nested for loops. In Figure 10.17,

note the outer for loop with index variable i and the inner for loop with index variable j. The outer for
loop iterates through each row, and the inner for loop iterates through each element within a particular row.

Figure 10.17’s fi rst line declares x to be a 2-row by 3-column array with 6 total elements. So you

might expect the fi rst for loop’s x.length property to hold a 6. Not so. Even though it’s normal

(and useful) to think of x as a rectangular box that holds 6 int elements, x is actually a reference to a

10-M4402.indd 39710-M4402.indd 397 12/17/07 4:24:39 PM12/17/07 4:24:39 PM

Apago PDF Enhancer

398 Chapter 10 Arrays and ArrayLists

2-element array and each of the two elements is a reference to its own 3-element array of ints. This picture

illustrates what were talking about:

normal way to think of x actual x

x[0]

x[1]

Since x is actually a reference to a 2-element array, x.length holds the value 2. Or thinking about x
in the “normal” way (above left picture), x.length holds the number of rows in x. As you can see above,

x[0] is a reference to a 3-element array. Thus, x[0].length holds the value 3. Or thinking about x in the

“normal” way (above left picture), x[0].length holds the number of columns in x. The point of all this

is that the length property can be used for iterating through the elements in a two-dimensional array. In

Figure 10.17, note how the fi rst loop uses x.length to iterate through each row in x, and note how the

second loop uses x[0].length to iterate through each column in x.

Example

Let’s put these two-dimensional array concepts into practice by using a two-dimensional array in the con-

text of a complete program. The program, built for a Kansas and Missouri airline company, tells customers

when airplanes are expected to arrive at various Kansas and Missouri airports. It uses a two-dimensional

array to store fl ight times between cities, and it displays output like this:

 Wch Top KC Col StL
 Wch 0 22 30 42 55
 Top 23 0 14 25 37
 KC 31 9 0 11 28
 Col 44 27 12 0 12
 StL 59 41 30 14 0

Different rows correspond to different cities of origin. Different columns correspond to different cities of

destination. The labels are abbreviations for city names: “Wch” stands for Wichita, Kansas. “Top” stands for

Topeka, Kansas. “KC” stands for Kansas City, Missouri. “Col” stands for Columbia, Missouri. “StL” stands

for St. Louis, Missouri. Thus, for example, it takes 25 minutes to fl y from Topeka to Columbia. How long

does it take to go the other way, from Columbia to Topeka? 27 minutes. Columbia to Topeka takes longer

because the trip goes east to west, and airplanes have to contend with head winds from North America’s

west-to-east jet stream.

Let’s analyze the program by starting with Figure 10.18’s FlightTimesDriver class. Note how

the main method declares and creates a flightTimes table with a two-dimensional array initializer.

And note how the initializer puts each table row on a line by itself. That’s not required by the compiler,

but it makes for elegant, self-documenting code. It is self-documenting because readers can easily iden-

tify each row of table data by looking at a single row of code. After initializing the flightTimes table,

main initializes a one- dimensional array of city names and then calls the FlightTimes constructor, the

displayFlightTimesTable method, and the promptFor FlightTime method. We’ll discuss the

constructor and those two methods next.

It takes 25 minutes

to fl y from Topeka

to Columbia.

x[0].length is 3

x[1].length is 3

x.length is 2

10-M4402.indd 39810-M4402.indd 398 12/17/07 4:24:40 PM12/17/07 4:24:40 PM

Apago PDF Enhancer

Figure 10.18 Driver of FlightTimes class in Figures 10.19a and 10.19b

/***
* FlightTimesDriver.java
* Dean & Dean
*
* This manages a table of intercity flight times.
***/

public class FlightTimesDriver
{
 public static void main(String[] args)
 {
 int[][] flightTimes =
 {
 {0, 22, 30, 42, 55},
 {23, 0, 14, 25, 37},
 {31, 9, 0, 11, 28},
 {44, 27, 12, 0, 12},
 {59, 41, 30, 14, 0}
 };
 String[] cities = {"Wch", "Top", "KC", "Col", "StL"};
 FlightTimes ft = new FlightTimes(flightTimes, cities);

 System.out.println("\nFlight times for KansMo Airlines:\n");
 ft.displayFlightTimesTable();
 System.out.println();
 ft.promptForFlightTime();
 } // end main
} // end class FlightTimesDriver

Sample session:

Flight times for KansMo Airlines:

 Wch Top KC Col StL
 Wch 0 22 30 42 55
 Top 23 0 14 25 37
 KC 31 9 0 11 28
 Col 44 27 12 0 12
 StL 59 41 30 14 0

1 = Wch
2 = Top
3 = KC
4 = Col
5 = StL
Enter departure city's number: 5
Enter destination city's number: 1
Flight time = 59 minutes.

 10.9 Two-Dimensional Arrays 399

10-M4402.indd 39910-M4402.indd 399 12/17/07 4:24:40 PM12/17/07 4:24:40 PM

Apago PDF Enhancer

400 Chapter 10 Arrays and ArrayLists

Figure 10.19a FlightTimes class that displays intercity fl ight times—part A

/***
* FlightTimes.java
* Dean & Dean
*
* This manages a table of intercity flight times.
**/

import java.util.Scanner;

public class FlightTimes
{
 private int[][] flightTimes; // table of flight times
 private String[] cities; // cities in flightTimes table

 //***

 public FlightTimes(int[][] ft, String[] c)
 {
 flightTimes = ft;
 cities = c;
 }

 //***

 // Prompt user for cities and print associated flight time.

 public void promptForFlightTime()
 {
 Scanner stdIn = new Scanner(System.in);
 int departure; // index for departure city
 int destination; // index for destination city

 for (int i=0; i<cities.length; i++)
 {
 System.out.println(i+1 + " = " + cities[i]);
 }
 System.out.print("Enter departure city's number: ");
 departure = stdIn.nextInt() - 1;
 System.out.print("Enter destination city's number: ");
 destination = stdIn.nextInt() - 1;
 System.out.println("Flight time = " +
 flightTimes[departure][destination] + " minutes.");
 } // end promptForFlightTime

⎫
⎪
⎬
⎪
⎭

Print the number-city

legend.

Figures 10.19a and 10.19b contain the heart of the program—the FlightTimes class. In Figure

10.19a, the constructor initializes the flightTimes and cities instance variable arrays with the data

10-M4402.indd 40010-M4402.indd 400 12/17/07 4:24:40 PM12/17/07 4:24:40 PM

Apago PDF Enhancer

Figure 10.19b FlightTimes class that displays intercity fl ight times—part B

 //***

 // This method prints a table of all flight times.

 public void displayFlightTimesTable()
 {
 final String CITY_FMT_STR = "%5s";
 final String TIME_FMT_STR = "%5d";

 System.out.printf(CITY_FMT_STR, ""); // empty top-left corner
 for (int col=0; col<cities.length; col++)
 {
 System.out.printf(CITY_FMT_STR, cities[col]);
 }
 System.out.println();

 for (int row=0; row<flightTimes.length; row++)
 {
 System.out.printf(CITY_FMT_STR, cities[row]);
 for (int col=0; col<flightTimes[0].length; col++)
 {
 System.out.printf(TIME_FMT_STR, flightTimes[row][col]);
 }
 System.out.println();
 } // end for
 } // end displayFlightTimesTable
} // end class FlightTimes

format strings
⎫
⎬
⎭

passed to it by the driver’s constructor call. Note that it assigns the passed-in ft and c array references to

the instance variables using the = operator. Previously, you learned to use a for loop, not the = operator, to

make a copy of an array. Why is the = operator acceptable here? Because there’s no need to make a second

copy of these arrays. After the constructor’s fi rst assignment operation, the flightTimes instance vari-

able array reference and the ft parameter array reference point to the same array object. And that’s appro-

priate. Likewise, after the constructor’s second assignment operation, the cities instance variable array

reference and the c parameter array reference point to the same array object.

Figure 10.19a’s promptForFlightTime method prompts the user for a departure city and a destina-

tion city and prints the fl ight time for that fl ight. More specifi cally, it prints a legend of numbers and their

associated city names (1 = Wichita, 2 = Topeka, and so on), it prompts the user to enter numbers for the

departure and destination cities, and it prints the fl ight time between the specifi ed cities. Note how user-

entered city numbers start with 1 rather than 0 (1 = Wichita). That makes the program more user-friendly

because people usually prefer to start counting at one rather than zero. Internally, the program stores city

names in an array. Since all arrays start with a 0 index, the program has to translate between user-entered

city numbers (which start at 1) and city array indexes (which start at 0). Note how that’s done with +1 and

-1 in the promptForFlightTime method.

10.9 Two-Dimensional Arrays 401

10-M4402.indd 40110-M4402.indd 401 12/17/07 4:24:41 PM12/17/07 4:24:41 PM

Apago PDF Enhancer

402 Chapter 10 Arrays and ArrayLists

Figure 10.19b’s displayFlightTimesTable method displays the fl ight times table. In doing so,

it employs an interesting formatting technique. First look at the two local named constants, which are sepa-

rately defi ned format strings. You have been using literal format strings embedded in strings of text for some

time now in the arguments of printf method calls. But instead of embedding literal format strings, some-

times it’s easier to understand if you declare them separately as named constants. If you go back and count

the spaces in the six-column table of fl ight times, you’ll see that each column is exactly5 spaces wide. So

the labels at the top of the columns and the numbers in the columns must both be formatted to use exactly

5 spaces. Thus, the format string for the labels (CITY_FMT_STR) should be "%5s", and the format string

for the integer entries (TIME_FMT_STR) should be "%5d". Using named constants for format strings al-

lows each format string to be used in many places, and it makes it easy and safe to alter them at any later

time—just change the values assigned to the named constants at the beginning of the method.

In the displayFlightTimesTable method, note the three for loop headers. They all use the

length property for their termination condition. Since length holds 5, the program would run correctly if

you replaced the length termination conditions with hardcoded 5’s. But don’t do it. Using the length prop-

erty makes the implementation more scalable. Scalable means it’s easy to change the amount of data that the

program uses. For example, in the FlightTimes program, using a cities.length loop termination con-

dition means that if you change the number of cities in the program, the program will still work properly.

Multi-Dimensional Arrays

Arrays may have more than two dimensions. Arrays with three or more dimensions use the same basic

 syntax except they have additional [] ’s. The fi rst pair of brackets corresponds to the largest scale, and

each subsequent pair of brackets nests within the previous pair, at progressively smaller levels of scale. For

 example, suppose the Missouri-Kansas airline company decides to go “green” and expands its fl eet with

new solar-powered airplanes and wind-powered airplanes that burn hydrogen. The new airplanes have dif-

ferent fl ight times than the original jet-fuel airplanes. Thus, they need their own fl ight-times tables. The

solution is to create a three-dimensional array where the fi rst dimension specifi es the airplane type—0 for

the jet-fuel airplanes, 1 for the solar- powered airplanes, and 2 for the wind-powered airplanes. Here’s how to

declare the new three- dimensional flightTimes array instance variable:

private int[][][] flightTimes;

10.10 Arrays of Objects

You learned in the previous section that a two-dimensional array is actually an array of references where

each reference points to an array object. Now let’s look at a related scenario. Let’s look at an array of refer-

ences where each reference points to a programmer-defi ned object. For example, suppose you’d like to store

total sales for each sales clerk in a department store. If sales clerk Amanda sells two items for $55.45 and

$22.01, then you’d like to store 77.46 for her total-sales value. You can store the sales clerk data in an array,

clerks, where each element holds a reference to a SalesClerk object. Each SalesClerk object holds

a sales clerk’s name and the total sales for that sales clerk. See Figure 10.20 for an illustration of what we’re

talking about.

The clerks array is an array of references. But most folks in industry would refer to it as an array of

objects, and that’s what we’ll do as well. An array of objects isn’t that much different from an array of primi-

tives. In both cases, you access each array element with square brackets (e.g., clerks[0], clerks[1]).

But there are some differences that you should be aware of, and those differences are the main focus of this

section.

10-M4402.indd 40210-M4402.indd 402 12/17/07 4:24:41 PM12/17/07 4:24:41 PM

Apago PDF Enhancer

Need to Instantiate Array of Objects and the Objects in That Array

With an array of primitives, you perform one instantiation—you instantiate the array object and that’s it. But

with an array of objects, you have to instantiate the array object, and you must also instantiate each element

object that’s stored in the array. It’s easy to forget the second step, the instantiation of individual element

objects. If you do forget, then the elements contain default values of null, as illustrated by clerks[3]

in Figure 10.20. For the empty part of a partially fi lled array, null is fi ne, but for the part of an array that’s

supposed to be fi lled, you need to overlay null with a reference to an object. The following is an example

of how to create an array of objects—more specifi cally, how to create the clerks array of objects shown

in Figure 10.20. Note the separate instantiations, with the new operator, for the clerks array and for each

SalesClerk object.

SalesClerk[] clerks = new SalesClerk[4];
clerks[0] = new SalesClerk("Daniel", 6.25);
clerks[1] = new SalesClerk("Josh", 58.12);
clerks[2] = new SalesClerk("Amanda", 77.46);

Can’t Access Array Data Directly

With an array of primitives, you can access the array’s data, the primitives, directly. For example, the fol-

lowing code fragment shows how you can assign and print the fi rst rainfall value in a rainfall array.

Note how the value is directly accessed with rainfall[0].

double[] rainfall = new double[365];
rainfall[0] = .8;
System.out.println(rainfall[0]);

On the contrary, with an array of objects, you normally cannot access the array’s data, the variables inside

the objects, directly. Since the variables inside the objects are normally private, you normally have to

call a constructor or method to access them. For example, the following code fragment shows how you can

use a constructor to assign Daniel and 6.25 to the fi rst object in the clerks array. It also shows how you

can use accessor methods to print the fi rst object’s name and sales data.

SalesClerk[] clerks = new SalesClerk[4];
clerks[0] = new SalesClerk("Daniel", 6.25);
System.out.println(
 clerks[0].getName() + ", " + clerks[0].getSales());

Figure 10.20 An array of objects that stores sales-clerk sales data

clerks

clerks[0]

clerks[1]

clerks[2]

clerks[3] null

Daniel, 6.25

Josh, 58.12

Amanda, 77.46

 10.10 Arrays of Objects 403

10-M4402.indd 40310-M4402.indd 403 12/17/07 4:24:42 PM12/17/07 4:24:42 PM

Apago PDF Enhancer

404 Chapter 10 Arrays and ArrayLists

Sales Clerks Program

Let’s now implement a complete program that adds sales and prints sales for a group

of sales clerks in a department store. As is customary, we’ll fi rst get a big-picture view

of things by presenting a UML class diagram. Figure 10.21’s class diagram shows two

classes. The SalesClerks class represents sales data for the entire department store,

and the SalesClerk class represents total sales for one particular sales clerk.

The SalesClerks class contains two instance variables—clerks and filledElements.

clerks is an array of SalesClerk objects. filledElements stores the number of elements that

have been fi lled so far in the clerks array. For a filledElements example, see Figure 10.20, where

 filledElements would be 3. The SalesClerks’s constructor instantiates the clerks array, using

the constructor’s initialSize parameter for the array’s size.

The SalesClerks class contains four methods—dumpData, addSale, findClerk, and

 doubleLength. The dumpData method is the most straightforward of the four. It prints all the data

in the clerks array. The term dump is a computer term which refers to a simple (unformatted) display

of a program’s data. See the dumpData method in Figure 10.22b and verify that it prints the data in the

clerks array.

The addSale method processes a sale for a particular sales clerk. More specifi cally, the addSale

method fi nds the sales clerk specifi ed by its name parameter and updates that sales clerk’s total sales

with the value specifi ed by its amount parameter. To fi nd the sales clerk, the addSale method calls the

 findClerk helper method. The findClerk method performs a sequential search through the clerks

array, and returns the index of the found sales clerk or �1 if the sales clerk is not found. If the sales clerk is

not found, addSale adds a new SalesClerk object to the clerks array in order to store the new sale

transaction in it. In adding a new SalesClerk object to the clerks array, addSale checks to make

sure that there is available space in the clerks array for the new SalesClerk object. If the clerks ar-

ray is all full (that is, filledElements equals clerks.length), then addSale must do something

to provide for more elements. That’s where the doubleLength helper method comes to the rescue.

The doubleLength method, as its name suggests, doubles the size of the clerks array. To do that,

it instantiates a new array, clerks2, whose length is twice the length of the original clerks arrays. Then

it copies all the data from the clerks array into the lowest-numbered elements in the clerks2 array.

Finally, it assigns the clerks2 array to the clerks array so the clerks array points to the new longer

array. See the addSale, findClerk, and doubleLength methods in Figures 10.22a and 10.22b and

verify that they do what they’re supposed to do.

The SalesClerk class, shown on the right side of Figure 10.21, is fairly straightforward. It contains

two instance variables, name and sales, for the sales clerk’s name and the sales clerk’s total sales. It

Start with a UML
class diagram to
get a big-picture
understanding.

Start with a UML
class diagram to
get a big-picture
understanding.

SalesClerks

-clerks : SalesClerk[]
-filledElements : int= 0

+SalesClerks(initialSize : int)

+dumpData() : void

+addSale(name : String, amount : double) : void

-findClerk(name : String) : int

-doubleLength() : void

SalesClerk

-name : String
-sales : double = 0

+SalesClerk(name : String)

+getName() : String

+getSales() : double

+adjustSales(amount : double) : void

Figure 10.21 UML class diagram for the SalesClerks program

10-M4402.indd 40410-M4402.indd 404 12/17/07 4:24:42 PM12/17/07 4:24:42 PM

Apago PDF Enhancer

Figure 10.22a SalesClerks class—part A.

/***
* SalesClerks.java
* Dean & Dean
*
* This class stores names and sales for sales clerks.
***/

class SalesClerks
{
 private SalesClerk[] clerks; // contains names and sales
 private int filledElements = 0; // number of elements filled

 //***

 public SalesClerks(int initialSize)
 {
 clerks = new SalesClerk[initialSize];
 } // end SalesClerks constructor

 //***

 // Process a sale for the clerk whose name is passed in.
 // If the name is not already in the clerks array,
 // create a new object and insert a reference to it in the
 // next array element, doubling array length if necessary.

 public void addSale(String name, double amount)
 {
 int clerkIndex = findClerk(name);

 if (clerkIndex == -1) // add a new clerk
 {
 if (filledElements == clerks.length)
 {
 doubleLength();
 }
 clerkIndex = filledElements;
 clerks[clerkIndex] = new SalesClerk(name);
 filledElements++;
 } // end if

 clerks[clerkIndex].adjustSales(amount);
 } // end addSale

 10.10 Arrays of Objects 405

10-M4402.indd 40510-M4402.indd 405 12/17/07 4:24:43 PM12/17/07 4:24:43 PM

Apago PDF Enhancer

406 Chapter 10 Arrays and ArrayLists

Figure 10.22b SalesClerks class—part B

 //***

 // Print all the data - sales clerk names and sales.

 public void dumpData()
 {
 for (int i=0; i<filledElements; i++)
 {
 System.out.printf("%s: %6.2f\n",
 clerks[i].getName(), clerks[i].getSales());
 }
 } // end dumpData

 //***

 // Search for the given name. If found, return the index.
 // Otherwise, return -1.

 private int findClerk(String name)
 {
 for (int i=0; i<filledElements; i++)
 {
 if (clerks[i].getName().equals(name))
 {
 return i;
 }
 } // end for
 return -1;
 } // end findClerk

 //***

 // Double the length of the array.

 private void doubleLength()
 {
 SalesClerk[] clerks2 = new SalesClerk[2 * clerks.length];
 System.arraycopy(clerks, 0, clerks2, 0, clerks.length);
 clerks = clerks2;
 } // end doubleLength
} // end class SalesClerks

10-M4402.indd 40610-M4402.indd 406 12/17/07 4:24:43 PM12/17/07 4:24:43 PM

Apago PDF Enhancer

 contains two accessor methods, getName and getSales. It contains an adjustSales method that

updates the sales clerk’s total sales value by adding the passed-in amount to the sales instance variable.

See the SalesClerk class in Figure 10.23 and verify that it does what it’s supposed to do.

Now look at the main method in the Figure 10.24’s SalesClerksDriver class. In a declaration,

it instantiates a SalesClerks object, passing an initial array-length value of 2 to the SalesClerks

Figure 10.23 SalesClerk class

/**
* SalesClerk.java
* Dean & Dean
*
* This class stores and retrieves a sales clerk's data.
***/

public class SalesClerk
{
 private String name; // sales clerk's name
 private double sales = 0.0; // total sales for clerk

 //***

 public SalesClerk(String name)
 {
 this.name = name;
 }

 //***

 public String getName()
 {
 return name;
 }

 public double getSales()
 {
 return sales;
 }

 //***

 // Adjust clerk's total sales by adding the passed-in sale.

 public void adjustSales(double amount)
 {
 sales += amount;
 }
} // end class SalesClerk

 10.10 Arrays of Objects 407

10-M4402.indd 40710-M4402.indd 407 12/17/07 4:24:43 PM12/17/07 4:24:43 PM

Apago PDF Enhancer

408 Chapter 10 Arrays and ArrayLists

Figure 10.24 Driver for the SalesClerks program in Figures 10.22a, 10.22b, and 10.23

/***
* SalesClerksDriver.java
* Dean & Dean
*
* This drives the SalesClerks class.
***/

import java.util.Scanner;

public class SalesClerksDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 SalesClerks clerks = new SalesClerks(2);
 String name;

 System.out.print("Enter clerk's name (q to quit): ");
 name = stdIn.nextLine();
 while (!name.equals("q"))
 {
 System.out.print("Enter sale amount: ");
 clerks.addSale(name, stdIn.nextDouble());
 stdIn.nextLine(); // flush newline
 System.out.print("Enter clerk's name (q to quit): ");
 name = stdIn.nextLine();
 } // end while
 clerks.dumpData();
 } // end main
} // end SalesClerksDriver

Sample session:

Enter clerk's name (q to quit): Daniel
Enter sale amount: 6.25
Enter clerk's name (q to quit): Josh
Enter sale amount: 58.12
Enter clerk's name (q to quit): Amanda
Enter sale amount: 40
Enter clerk's name (q to quit): Daniel
Enter sale amount: -6.25
Enter clerk's name (q to quit): Josh
Enter sale amount: 12.88
Enter clerk's name (q to quit): q
Daniel: 0.00
Josh: 71.00
Amanda: 40.00

10-M4402.indd 40810-M4402.indd 408 12/17/07 4:24:43 PM12/17/07 4:24:43 PM

Apago PDF Enhancer

3 It’s legal to omit <element-type> when you use ArrayLists. If you omit it, then the ArrayList can store different types of ele-
ments. That may sound exciting, but it’s not needed all that often. And there are drawbacks to omitting <element-type>:

a) It forces the programmer to use the cast operator when assigning an extracted element into a variable.

b) It eliminates type checking for assigning values into the ArrayList (since then it’s legal to assign any type).

 constructor. Then it repeatedly prompts the user for a sales clerk name and sales value and calls the

addSale method to insert the input data into the SalesClerks object. The looping stops when the user

enters a q for the next name. Then main calls dumpData to display the accumulated sales data.

10.11 The ArrayList Class

As you’ve learned throughout this chapter, arrays allow you to work with an ordered list of related data. Ar-

rays work great for many lists, but if you have a list where the number of elements is hard to predict, they

don’t work so well. If you don’t know the number of elements, you have to either (1) start with an array size

that’s large enough to accommodate the possibility of a very large number of elements or (2) create a new

larger array whenever the array becomes full and you need more room for more elements. The fi rst solution

is wasteful of computer memory as it requires allocating space for a large array where most of the elements

are unused. The second solution is what we did in the SalesClerks program’s doubleLength method. It

works OK in terms of saving memory, but it requires the programmer to do extra work (writing the code that

creates a larger array).

To help with lists where the number of elements is hard to predict, the folks at Sun came up with the

ArrayList class. The ArrayList class is built using an array, but the array is hidden in the background,

so you can’t access it directly. With an array in the background, the ArrayList class is able to provide

the basic functionality that comes with a standard array. With its methods, the ArrayList class is able to

provide additional functionality that helps when you don’t know the number of elements. In this section, we

discuss how to create an ArrayList and how to use its methods.

How to Create an ArrayList
The ArrayList class is defi ned in the Java API’s java.util package, so to use the class, you should

provide an import statement, like this:

import java.util.ArrayList;

To initialize an ArrayList reference variable, use this syntax:

ArrayList<element-type> reference-variable = new ArrayList<element-type>();3

Note the angled brackets around element-type and reference-variable. The angled brackets are part of the

required syntax. As indicated by the italics, element-type and reference-variable are descriptions. Nor-

mally, we use angled brackets around such descriptions, but we’ll refrain from doing so when describing

ArrayList syntax because description angled brackets might get confused with the ArrayList’s re-

quired angled brackets. You should replace element-type with the type for the ArrayList’s elements.

You should replace reference-variable with an actual reference variable. For example, suppose you’ve de-

fi ned a Student class, and you want an ArrayList of Student objects. Here’s how to create such an

ArrayList, named students:

ArrayList<Student> students = new ArrayList<Student>();

Angled brackets are required.

10.11 The ArrayList Class 409

10-M4402.indd 40910-M4402.indd 409 12/17/07 4:24:43 PM12/17/07 4:24:43 PM

Apago PDF Enhancer

410 Chapter 10 Arrays and ArrayLists

Besides the angled brackets, there are two additional noteworthy items in the above example. First,

there is no size specifi cation. That’s because ArrayList objects start out with no elements and they au-

tomatically expand to accommodate however many elements are added to them. Second, the element type,

Student, is a class name. For ArrayLists, you must specify a class name, not a primitive type, for the

element type. Specifying a class name means that ArrayLists can hold only references to objects. They

cannot hold primitives, like int or double. That’s technically true, but there’s an easy way to mimic stor-

ing primitives in an ArrayList. We’ll discuss how to do that in the next section.

Adding Elements to an ArrayList
To convert an instantiated empty ArrayList into something useful, you need to add elements to it. To add

an element to the end of an ArrayList, use this syntax:

ArrayList-reference-variable.add(item);

The item that’s added must be the same type as the element type specifi ed in the ArrayList’s declaration.

Perhaps the simplest type of element object is a string, so let’s start with an ArrayList of strings. Suppose

you want to write a code fragment that creates this ArrayList object:

colors

0 “red”

1 “green”

2 “blue”

Try writing the code on your own before proceeding. When you’re done, compare your answer to this:

import java.util.ArrayList;
. . .
ArrayList<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("blue");

The order in which you add elements determines the elements’ positions. Since we added “red” fi rst, it’s at

index position 0. Since we added “green” next, it’s at index position 1. Likewise, “blue” is at index position 2.

API Headings

In describing the ArrayList class, we’ll use API headings to present the ArrayList class’s methods.

As you may recall from Chapter 5, API stands for application programming interface, and API headings

are the source code headings for the methods and constructors in Sun’s library of pre-built Java classes. The

API headings tell you how to use the methods and constructors by showing you their parameters and return

types. For example, here’s the API heading for the Math class’s pow method:

public static double pow(double num, double power)

The above line tells you everything you need to know to use the pow method. To call the pow method,

pass in two double arguments: one argument for the base and one argument for the power. The static

modifi er tells you to preface the call with the class name and then a dot. The double return value tells you

10-M4402.indd 41010-M4402.indd 410 12/17/07 4:24:44 PM12/17/07 4:24:44 PM

Apago PDF Enhancer

to embed the method call in a place that can use a double value. Here’s an example that calculates the

volume of a sphere:

double volume = 1.333333333 * Math.PI * Math.pow(radius, 3)

How to Access Elements in an ArrayList
With standard arrays, you use square brackets to read and update an element. But with an ArrayList you

don’t use square brackets. Instead, you use a get method to read an element’s value and a set method to

update an element’s value.

Here’s the API heading for the ArrayList’s get method:

public E get(int index)

The index parameter specifi es the position of the desired element within the ArrayList calling object.

For example, the following method call retrieves the second element in a colors ArrayList:

colors.get(1);

If the index parameter refers to a nonexistent element, then a runtime error occurs. For example, if

colors contains three elements, then this generates a runtime error:

colors.get(3);

In the get method’s API heading, note the E return type:

public E get(int index)

The E stands for “element.” It represents the data type of the ArrayList’s elements, whatever that data

type happens to be. So if an ArrayList is declared to have string elements, then the get method returns

a string value, and if an ArrayList is declared to have Student elements, then the get method returns

a Student value. The E in the get method’s heading is a generic name for an element type. Using a ge-

neric name for a type is an important concept that will come up again with other methods. It’s important

enough to justify a pedagogical analogy.

Using a generic return type is like saying you’re going to the grocery store to get “food.” It’s better to

use a generic term like food rather than a specifi c term like broccoli. Why? Because you might end up get-

ting Princess Fruit Chews at the store instead of broccoli. By specifying generic food as your “return type,”

you’re free to get Princess Fruit Chews rather than broccoli, as your preschooler sees fi t.4

Using a generic name for a type is possible with ArrayLists because the ArrayList class is de-

fi ned to be a generic class, by using <E> in its class heading:

public class ArrayList<E>

You don’t need to understand generic class details in order to use ArrayLists, but if you want such de-

tails, visit http://java.sun.com/docs/books/tutorial/java/generics/index.html.

How to Update an ArrayList Element

Now for the get method’s partner, the set method. The set method allows you to assign a value to an

ArrayList element. Here is the API heading for ArrayList’s set method:

public E set(int index, E elem)

4 This analogy is taken from the real-life adventures of preschooler Jordan Dean.

 10.11 The ArrayList Class 411

10-M4402.indd 41110-M4402.indd 411 12/17/07 4:24:44 PM12/17/07 4:24:44 PM

http://java.sun.com/docs/books/tutorial/java/generics/index.html

Apago PDF Enhancer

412 Chapter 10 Arrays and ArrayLists

In the set method’s API heading, the index parameter specifi es the position of the element you’re

interested in. If index refers to a nonexistent element, then a runtime error occurs. If index is valid, then

set assigns the elem parameter to the specifi ed element. Note that elem is declared with E for its type. As

with the set method, the E represents the data type of the ArrayList’s elements. So elem is the same

type as the type of ArrayList’s elements. This example illustrates what we’re talking about:

String mixedColor;
ArrayList<String> colors = new ArrayList<String>();

colors.add("red");
colors.add("green");
colors.add("blue");
mixedColor = colors.get(0) + colors.get(1);
colors.set(2, mixedColor);

Note that mixedColor is declared to be a string and colors is declared to be an ArrayList of strings.

So in the last statement when we use mixedColor as the second argument in the set method call, the

argument is indeed the same type as the type of color’s elements.

Can you determine what the colors ArrayList looks like after the code fragment executes? Draw

a picture of the colors ArrayList on your own before proceeding. When you’re done, compare your

answer to this:

colors

0 “red”

1 “green”

2 “redgreen”

In the set method’s API heading, note the return type, E. Most mutator/set methods simply assign a

value and that’s it. In addition to assigning a value, the ArrayList’s set method also returns a value—the

value of the specifi ed element prior to the element being updated. Usually, there’s no need to do anything with

the original value, so you just call set and the returned value dies. That’s what happens in the above code

fragment. But if you want to do something with the original value, it’s easy to get it because set returns it.

Additional ArrayList Methods

We’ve now explained the most important methods for the ArrayList class. There are quite a few more

methods, and Figure 10.25 provides API headings and brief descriptions for fi ve of them. As you read

through the fi gure, we hope that you’ll fi nd most of the methods to be straightforward. But some items may

need clarifi cation. In searching an ArrayList for the fi rst occurrence of a passed-in elem parameter,

the indexOf method declares elem’s type to be Object. The Object type means the parameter may

be any kind of object. Naturally, if the parameter’s actual type is different from the type of elements in

the ArrayList, then indexOf’s search comes up empty and it returns �1 to indicate that elem was

not found. By the way, we’ll have lots more to say about the Object type (it’s actually an Object class)

in Chapter 13. Previously, we covered a one-parameter add method that adds an element at the end of the

 ArrayList. Figure 10.25’s overloaded two-parameter add method adds an element at a specifi ed position

within the ArrayList.

10-M4402.indd 41210-M4402.indd 412 12/17/07 4:24:44 PM12/17/07 4:24:44 PM

Apago PDF Enhancer

Survivor Example

To reinforce what you’ve learned so far, let’s take a look at how an ArrayList class is used in a complete

working program. See the Survivor5 program in Figure 10.26. It creates a list of survivor tribesmen by in-

stantiating an ArrayList object and calling add to append tribesmen to the list. It then randomly chooses

one of the tribesmen and removes that tribe member from the list. It prints a sorry message for the removed

tribe member and a remaining message for the remaining tribesmen.

Note the format of the tribesmen in Figure 10.26’s bottom output line—square brackets surround-

ing a comma-separated list. Can you fi nd the Survivor code that prints that list? If you’re looking for

square brackets and a loop, forget it, they’re not there. So how in the world does the square-bracketed list

get printed? In the fi nal println statement at the bottom of the program, the tribe ArrayList gets

 concatenated to a string. That causes the JVM to do some work behind the scenes. If you attempt to concat-

enate an ArrayList with a string or print an ArrayList, the ArrayList returns a comma-separated

list of ArrayList elements surrounded by square brackets ([]). And that’s exactly what happens when

Figure 10.26’s last statement executes.

Figure 10.25 API headings and descriptions for some additional ArrayList methods

public void add(int index, E elem)
Starting with the specifi ed index position, the add method shifts the original elements at and
above the index position to next-higher-indexed positions. It then inserts the elem parameter at the
specifi ed index position.

public int indexOf(Object elem)
Searches for the fi rst occurrence of the elem parameter within the list and returns the index position
of the found element. If the element is not found, the indexOf method returns -1.

public boolean isEmpty()
Returns true if the ArrayList contains no elements.

public int lastIndexOf(Object elem)
Searches for the last occurrence of the elem parameter within the list and returns the index position
of the found element. If the element is not found, the indexOf method returns -1.

public E remove(int index)
Removes and returns the element at the specifi ed index position. To handle the removed element’s
absence, the remove method shifts all higher-indexed elements by one position to lower-indexed
positions.

public int size()
Returns the number of elements currently in the ArrayList.

5 Survivor is a trademark of CBS Broadcasting Inc.

 10.11 The ArrayList Class 413

10-M4402.indd 41310-M4402.indd 413 12/17/07 4:24:45 PM12/17/07 4:24:45 PM

Apago PDF Enhancer

414 Chapter 10 Arrays and ArrayLists

10.12 Storing Primitives in an ArrayList

As mentioned earlier, ArrayLists store references. For example, in the Survivor program, tribe is

an ArrayList of strings, and strings are references. If you need to store primitives in an ArrayList,

you can’t do it directly, but if the primitives are wrapped up in wrapper classes,6 you can store the resulting

wrapped objects in an ArrayList. In this section, we show you how to do that.

Figure 10.26 Survivor program

/**
* Survivor.java
* Dean & Dean
*
* This class creates an ArrayList of survivors.
* It randomly chooses one tribe member and removes him/her.
**/

import java.util.ArrayList;

public class Survivor
{
 public static void main(String[] args)
 {
 int loserIndex;
 String loser;
 ArrayList<String> tribe = new ArrayList<String>();

 tribe.add("Richard");
 tribe.add("Jerri");
 tribe.add("Colby");
 tribe.add("Amber");
 tribe.add("Rupert");
 loserIndex = (int) (Math.random() * tribe.size());
 loser = tribe.remove(loserIndex);
 System.out.println("Sorry, " + loser +
 ". The tribe has spoken. You must leave immediately.");
 System.out.println("Remaining: " + tribe);
 } // end main
} // end Survivor

Typical Output:

Sorry, Colby. The tribe has spoken. You must leave immediately.
Remaining: [Richard, Jerri, Amber, Rupert]

6 If you need a refresher on wrapper classes, see Chapter 5.

10-M4402.indd 41410-M4402.indd 414 12/17/07 4:24:45 PM12/17/07 4:24:45 PM

Apago PDF Enhancer

Stock Average Example

The StockAverage program in Figure 10.27 reads weighted stock values and stores them in an ArrayList.

In simplifi ed terms, a weighted stock value is the market price of one stock share times a number that scales

that price up or down to refl ect the importance of the stock’s company in the overall marketplace. After

the StockAverage program stores the weighted stock values in an ArrayList, the program calculates

the average of all the entered weighted stock values. Why is an ArrayList appropriate for calculating

a stock average? An ArrayList’s size grows as necessary. That works well for stock averages because

there are lots of stock averages (also called stock indexes), and they use different numbers of stocks in their

calculations. For example, the Dow Jones Industrial Average uses stock values from 30 companies while the

Russell 3000 Index uses stock values from 3,000 companies. Because it uses an ArrayList, the StockAv-

erage program works well for both situations.

The StockAverage program stores stock values in an ArrayList named stocks. The stock values

originate from user input in the form of doubles, like 25.6, 36.0, and so on. As you know, ArrayLists

can’t store primitives; they can store references only. So the StockAverage program wraps up the doubles

into Double wrapper objects just prior to storing them in the stocks ArrayList. As you might imag-

ine, a wrapper object is an instance of a wrapper class, and each wrapper object stores one “wrapped up”

primitive value. You don’t have to worry very much about wrapper objects for ArrayLists. For the most

part, you can pretend that ArrayLists can hold primitives. Case in point: The following line from the

StockAverage program appears to add a primitive (stock) to the stocks ArrayList:

stocks.add(stock);

What actually happens behind the scenes is that the stock primitive gets automatically converted to a

wrapper object prior to its being added to the stocks ArrayList. Really, there is just one thing you have

to worry about when working with primitives in an ArrayList. When you create an ArrayList object

to hold primitive values, the type you specify in the angled brackets must be the wrapped version of the

primitive type, that is, Double instead of double, Integer instead of int, and so on. This line from

the StockAverage program illustrates what we’re talking about:

ArrayList<Double> stocks = new ArrayList<Double>();

Autoboxing and Unboxing

In most places, it’s legal to use primitive values and wrapper objects interchangeably. The way it works is

that the JVM automatically wraps primitive values and unwraps wrapper objects when it’s appropriate to do

so. For example, if the JVM sees an int value on the right of an assignment statement and an Integer

variable at the left, it thinks to itself, hmmm, to make this work, I need to convert the int value to an

 Integer wrapper object. It then gets out its Styrofoam packing peanuts and duct tape and wraps up the

int value into an Integer wrapper object. That process is called autoboxing. On the other hand, if the

JVM sees an Integer wrapper object on the right of an assignment statement and an int variable at

the left, it thinks to itself, hmmm, to make this work, I need to extract the int value from the Integer

 wrapper object. It then proceeds to tear off the Integer wrapper object’s covering, and it gets the int

value that’s inside. That process is called unboxing.

More formally, autoboxing is the process of automatically wrapping a primitive value in an appropriate

wrapper class whenever there’s an attempt to use a primitive value in a place that expects a reference. Refer

to the stocks.add(stock); statement in Figure 10.27. That statement causes autoboxing to occur.

The stocks.add method call expects a reference argument. Specifi cally, it expects the argument to be

 10.12 Storing Primitives in an ArrayList 415

10-M4402.indd 41510-M4402.indd 415 12/17/07 4:24:45 PM12/17/07 4:24:45 PM

Apago PDF Enhancer

416 Chapter 10 Arrays and ArrayLists

Figure 10.27 StockAverage program illustrating ArrayList of Double objects

/**
* StockAverage.java
* Dean & Dean
*
* This program uses an ArrayList to store user-entered stock
* values. It prints the average stock value.
**/

import java.util.Scanner;
import java.util.ArrayList;

public class StockAverage
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 ArrayList<Double> stocks = new ArrayList<Double>();
 double stock; // a stock value
 double stockSum = 0; // sum of stock values

 System.out.print("Enter a stock value (-1 to quit): ");
 stock = stdIn.nextDouble();

 while (stock >= 0)
 {
 stocks.add(stock);
 System.out.print("Enter a stock value (-1 to quit): ");
 stock = stdIn.nextDouble();
 } // end while

 for (int i=0; i<stocks.size(); i++)
 {
 stock = stocks.get(i);
 stockSum += stock;
 }

 if (stocks.size() != 0)
 {
 System.out.printf("\nAverage stock value = $%.2f\n",
 stockSum / stocks.size());
 }
 } // end main
} // end class StockAverage

This must be a wrapper

class, not a primitive type!

Autoboxing takes place here.

Unboxing takes place here.

10-M4402.indd 41610-M4402.indd 416 12/17/07 4:24:46 PM12/17/07 4:24:46 PM

Apago PDF Enhancer

a reference to a Double wrapper object (since stocks is declared to be an ArrayList of Double ref-

erences). When the JVM sees a primitive value argument (stock), it automatically wraps the argument in

a Double wrapper class.

More formally, unboxing is the process of automatically extracting a primitive value from a wrapper

object whenever there’s an attempt to use a wrapper object in a place that expects a primitive. Refer to the

stock = stocks.get(i); statement in Figure 10.27. That statement causes unboxing to occur. Since

stock is a primitive variable, the JVM expects a primitive value to be assigned into it. When the JVM sees

a wrapper object on the right of the assignment statement (stocks holds Double wrapper objects and

get(i) retrieves the ith such wrapper object), it automatically extracts the primitive value from the wrapper

object.

Autoboxing and unboxing take place automatically behind the scenes. That makes the programmer’s

job easier. Yeah!

10.13 ArrayList Example Using Anonymous Objects
and the For-Each Loop

Anonymous objects and for-each loops are programming constructs that are particularly useful when used

in conjunction with ArrayLists. In this section, we present for-each loop details and anonymous object

details by showing how they’re used in the context of an ArrayList program. But before we get to the

program, we provide brief introductions for the two new constructs.

Usually, when you create an object, you immediately store the object’s reference in a reference variable.

That way, you can refer to the object later on by using the reference variable’s name. If you create an object

and don’t immediately assign the object’s reference to a reference variable, you’ve created an anonymous

object. It’s called anonymous because it doesn’t have a name.

A for-each loop is a modifi ed version of the traditional for loop. It can be used whenever there’s a need

to iterate through all of the elements in a collection of data. An ArrayList is a collection of data, and, as

such, for-each loops can be used to iterate through all of the elements in an ArrayList.

A Bear-Store Example

Suppose you want to model a store which sells customized toy bears. You need a Bear class to represent

each bear, a BearStore class to represent the store, and a BearStoreDriver class to “drive” the pro-

gram. Let’s start by examining the Bear class in Figure 10.28. The Bear class defi nes two instance named

constants which represent two permanent properties of a particular bear: (1) MAKER, the bear’s manufac-

turer, such as Gund, and (2) TYPE, the bear’s type, such as “pooh bear” or “angry campground bear.” A

constructor initializes these two instance constants, and a display method displays them.

Now let’s examine the fi rst part of the BearStore class, shown in Figure 10.29a. The BearStore

class has one instance variable, bears, which is declared to be an ArrayList of Bear references. It

holds the store’s collection of toy bears. The BearStore class’s addStdBears method fi lls the bears

ArrayList with a specifi ed number of standard teddy bears. Here’s the statement that adds one standard

teddy bear to the ArrayList:

bears.add(new Bear("Acme", "brown teddy"));

The statement instantiates a Bear object and passes the Bear object’s reference to the bears.
add method call. The statement does not assign the Bear object’s reference to a Bear reference vari-

 10.13 ArrayList Example Using Anonymous Objects and the For-Each Loop 417

10-M4402.indd 41710-M4402.indd 417 12/17/07 4:24:46 PM12/17/07 4:24:46 PM

Apago PDF Enhancer

418 Chapter 10 Arrays and ArrayLists

able. Since there’s no assignment to a Bear reference variable, that’s an example of an anonymous ob-

ject. As an alternative, the statement could have been written with a Bear reference variable like

this:

Bear stdBear = new Bear("Acme", "brown teddy");
bears.add(stdBear);

But why bother with using two statements instead of one? The new bear’s reference gets stored in the

bears ArrayList and that’s where it’s processed. There’s no need to store it in a second place (e.g., in

the stdBear reference variable), so in the interest of code compactness, don’t.

Now let’s examine the bottom part of the BearStore class, shown in Figure 10.29b. The BearStore

class’s getUserSpecifiedBear method prompts the user for a customized bear’s maker and type and

returns the newly created bear. Here’s the return statement:

return new Bear(maker, type);

Note that there’s no reference variable for the new bear. Thus, the new bear is considered to be an anon-

ymous object. The return statement returns the new bear to the addUserSpecifiedBears method,

where it gets added to the bears ArrayList.

Figure 10.28 Class that represents a toy bear

/***
* Bear.java
* Dean & Dean
*
* This class models a toy bear.
**/

public class Bear
{
 private final String MAKER; // bear's manufacturer
 private final String TYPE; // type of bear

 //***

 public Bear(String maker, String type)
 {
 MAKER = maker;
 TYPE = type;
 }

 //***

 public void display()
 {
 System.out.println(MAKER + " " + TYPE);
 }
} // end Bear class

10-M4402.indd 41810-M4402.indd 418 12/17/07 4:24:46 PM12/17/07 4:24:46 PM

Apago PDF Enhancer

Figure 10.29a Class that implements a toy-bear store—part A

/***
* BearStore.java
* Dean & Dean
*
* This class implements a store that sells toy bears.
***/

import java.util.Scanner;
import java.util.ArrayList;

public class BearStore
{
 ArrayList<Bear> bears = new ArrayList<Bear>();

 //**

 // Fill store with specified number of standard teddy bears.

 public void addStdBears(int num)
 {
 for (int i=0; i<num; i++)
 {
 bears.add(new Bear("Acme", "brown teddy"));
 }
 } // end addStdBears

 //**

 // Fill store with specified number of customized bears.

 public void addUserSpecifiedBears(int num)
 {
 for (int i=0; i<num; i++)
 {
 bears.add(getUserSpecifiedBear());
 }
 } // end addUserSpecifiedBears

When to Use an Anonymous Object

The bear-store program contains several specifi c examples of using anonymous objects. In general, you’ll

see anonymous objects being used in two circumstances:

 1. When passing a newly created object into a method or constructor. For example:

bears.add(new Bear("Gund", "Teddy"));

 2. When returning a newly created object from a method. For example:

return new Bear(maker, type);

anonymous object

as argument

Returned anonymous

object becomes argument

in this method call.

10.13 ArrayList Example Using Anonymous Objects and the For-Each Loop 419

10-M4402.indd 41910-M4402.indd 419 12/17/07 4:24:47 PM12/17/07 4:24:47 PM

Apago PDF Enhancer

420 Chapter 10 Arrays and ArrayLists

Embedded Driver

At the bottom of the BearStore class, we’ve embedded the program’s driver, main. It instantiates a

BearStore object, adds three standard bears to the bear store, adds two user-specifi ed bears to the bear

store, and then displays the store’s inventory of bears by calling displayInventory. In displaying the

store’s inventory, the displayInventory method accesses each bear in the bears ArrayList with

the help of a for-each loop. In the next subsection, you’ll learn about for-each loop details.

Figure 10.29b Class that implements a toy-bear store—part B

 //***

 // Prompt user for bear's maker and type and return bear.

 private Bear getUserSpecifiedBear()
 {
 Scanner stdIn = new Scanner(System.in);
 String maker, type;

 System.out.print("Enter bear's maker: ");
 maker = stdIn.nextLine();
 System.out.print("Enter bear's type: ");
 type = stdIn.nextLine();
 return new Bear(maker, type);
 } // end getUserSpecifiedBear

 //***

 // Print all the bears in the store.

 public void displayInventory()
 {
 for (Bear bear : bears)
 {
 bear.display();
 }
 } // end displayInventory

 //***

 public static void main(String[] args)
 {
 BearStore store = new BearStore();
 store.addStdBears(3);
 store.addUserSpecifiedBears(2);
 store.displayInventory();
 } // end main
} // end BearStore class

anonymous object as return value

⎫
⎪
⎬
⎪
⎭

for-each loop

10-M4402.indd 42010-M4402.indd 420 12/17/07 4:24:47 PM12/17/07 4:24:47 PM

Apago PDF Enhancer

For-Each Loop

As mentioned earlier, a for-each loop can be used whenever there’s a need to iterate through all the elements

in a collection of data. Here is the for-each loop syntax for an ArrayList:

for (<element-type> <element-name> : <ArrayList-reference-variable>)

{

 . . .

}

And here is an example for-each loop from Figure 10.29b’s displayInventory method:

for (Bear bear : bears)

{

 bear.display();

}

Note how the for-each loop header matches the above syntax: bears is an ArrayList reference variable,

bear is the name of an element in the bears ArrayList, and Bear is the type for each element. It’s

legal to choose any name for the element, but, as always, you should choose a descriptive name, like bear

in this example. With each iteration of the for-each loop, you use the element’s name to refer to the current

element. For example, bear.display() calls the display method for the current bear element.

Are you wondering why the for-each loop is called a for-each loop even though there’s no “each” in the

syntax? It’s because most people say “for each” to themselves when reading a for-each loop’s header. For

example, in reading displayInventory’s for-each loop, most people would say “For each bear in the

bears collection, do the following.”

Note that, as an alternative, you could implement the displayInventory method using a tradi-

tional for loop rather than a for-each loop. Here’s an implementation with a traditional for loop:

for (int i=0; i<bears.size(); i++)
{
 bears.get(i).display();
}

The for-each loop implementation is preferred because it is simpler. There’s no need to declare an index

variable, and there’s no need to calculate and specify the ArrayList’s fi rst and last index values.

Be aware that you can use the for-each loop for more than just ArrayLists. You can use them for

iterating through any collection of elements. More specifi cally, you can use them for arrays and for any of

Java’s collection classes. ArrayList is a collection class, and to learn about the other collection classes,

see http://java.sun.com/javase/6/docs/technotes/guides/collections/.

The following code fragment illustrates how to use a for-each loop with a standard array. It prints the

numbers in a primes array.

int[] primes = {1, 2, 3, 5, 7, 11};
for (int p : primes)
{
 System.out.println(p);
}

 10.13 ArrayList Example Using Anonymous Objects and the For-Each Loop 421

10-M4402.indd 42110-M4402.indd 421 12/17/07 4:24:47 PM12/17/07 4:24:47 PM

http://java.sun.com/javase/6/docs/technotes/guides/collections/

Apago PDF Enhancer

422 Chapter 10 Arrays and ArrayLists

The for-each loop is great, but you should be aware of several issues when using it. (1) It was introduced

in Java 5.0, so it won’t work with older compilers. (2) The for-each loop doesn’t use an index variable to loop

through its elements. That can be a benefi t in that it leads to less cluttered code. But it’s a drawback if there’s

a need for an index within the loop. For example, suppose you’re given a primes array, like above, and you

want to print this:

primes[0] = 1
primes[1] = 2
...
primes[5] = 11

The numbers inside the square brackets are index values. So if you implemented a solution with a for-each

loop, you’d have to add an index variable to your code and increment it each time through the loop. On the

other hand, if you implemented a solution with a traditional for loop, you’d already have an incrementing

index variable built in.

10.14 ArrayLists Versus Standard Arrays

There’s a lot of overlap in the functionality of an ArrayList and a standard array. So how can you tell

which one to use? Your answer will be different for different situations. When deciding on an implementa-

tion, consider this table:

Benefi ts of an ArrayList Over a Standard Array Benefi ts of a Standard Array Over an ArrayList

1. It’s easy to increase the size of an ArrayList—

just call add.

1. A standard array uses []’s to access array elements

(which is easier than using get and set methods).

2. It’s easy for a programmer to insert or remove

an element to or from the interior of an

ArrayList—just call add or remove and

specify the element’s index position.

2. A standard array is more effi cient when storing

primitive values.

In looking at the table’s fi rst ArrayList benefi t, easy to increase the size of an ArrayList, think about

how much work is required to increase the size of a standard array. For a standard array, the programmer

needs to instantiate a larger array and then copy the old array’s contents to the new larger array. On the

other hand, for an ArrayList, the programmer simply needs to call the add method. Note that behind

the scenes, the JVM has to put forth some effort in implementing the add method, but the effort is kept

to a minimum. ArrayLists are implemented with the help of an underlying standard array. Usually, the

underlying array has a greater number of elements than the ArrayList, so adding another element to the

 ArrayList is easy—the JVM just borrows an unused element from the underlying array. As a program-

mer, you don’t have to worry about or code those details; the “borrowing” takes place automatically.

The table’s second ArrayList benefi t, easy for a programmer to insert or remove an element to or

from the interior of an ArrayList, is true, but just because it’s easy for programmers doesn’t mean it’s

easy for the JVM. Actually, the JVM has to do quite a bit of work when it adds or removes from the inte-

rior of an ArrayList. To insert an element, the JVM has to adjust its underlying array by shifting higher

indexed elements to make room for the new element. And to remove an element, the JVM has to adjust its

underlying array by shifting higher indexed elements to overlay the removed element.

10-M4402.indd 42210-M4402.indd 422 12/17/07 4:24:48 PM12/17/07 4:24:48 PM

Apago PDF Enhancer

Since ArrayLists and standard arrays are both ineffi cient when it comes to inserting or removing an

element to or from the interior of a list, if you’re doing a lot of inserting and removing, you should consider

a different structure—a linked list. A linked list is a sequence of elements, where each element contains a

data item plus a reference (a “link”) that points to the next element. You can create a linked list using ex-

actly the same procedures you used to create an ArrayList. Just replace the ArrayList class with the

LinkedList class. If you’re interested in LinkedList details, look up the LinkedList collection

class on Sun’s Java API Web site.

The above table says that a standard array is more effi cient than an ArrayList when it comes to storing

primitive values. Why is that? Remember that before an ArrayList stores a primitive value, it must wrap

the primitive in a wrapper object. That wrapping process takes time, and that’s the cause of the ineffi ciency.

Summary

Arrays facilitate the representation and manipulation of collections of similar data. You access array

elements with <array-name>[index], where index is a nonnegative integer, starting at zero.

You can create and completely initialize an array in one statement, like this:

<element-type>[] <array-name> = {element0, element1, ...};
Usually, however, it’s more useful to defer element initialization and use new to create an array of un-

initialized elements, like this:

<element-type>[] <array-name> = new <element-type>[array-size];
You can read or write directly to an array element by inserting an appropriate index value in square

brackets after the array name at any time after the array has been created.

Every array automatically includes a public property called length, which you can access directly

with the array name. The highest index value is <array-name>.length - 1.

To copy an array, you copy each of its elements individually, or you can use the System.arraycopy

method to copy any subset of elements in one array to any location in another array.

A histogram is an array of elements in which each element’s value is the number of occurrences of

some event.

A sequential search is a good way to search for a match in an array whose length is less than about 20,

but for long arrays, you should fi rst sort the array with the Arrays.sort method and then use a bi-

nary search.

A two-dimensional array is an array of arrays, declared with two sets of square brackets after the

 element-type identifi cation. You can instantiate it with an initializer or with new followed by element

type and two array-size specifi cations in square brackets.

In creating an array of objects, multiple instantiations are required. After instantiating the array, you

also need to instantiate the individual element objects within the array.

If you need to repeatedly insert or delete elements within an array, you should consider using an

 ArrayList rather than a standard array. When you declare or instantiate an ArrayList for a group

of Car elements, you should include the type of elements it will contain in angled brackets, like this:

ArrayList<Car> car = new ArrayList<Car>();
An ArrayList stores objects only. Java automatically makes necessary conversions between primi-

tives and wrapped primitives, so you don’t have to worry about that, but if you want an ArrayList of

primitives like int, you must declare it with the wrapped type, like this:

ArrayList<Integer> num = new ArrayList<Integer>();
You can pass objects to and from methods anonymously.

Use a for-each loop to iterate through a collection of data items.

•

•

•

•

•

•

•

•

•

•

•

•

•
•

 Summary 423

10-M4402.indd 42310-M4402.indd 423 12/17/07 4:24:48 PM12/17/07 4:24:48 PM

Apago PDF Enhancer

424 Chapter 10 Arrays and ArrayLists

Review Questions

§10.2 Array Basics

 1. It’s legal to store ints and also doubles in a single standard array. (T / F)
 2. Given an array that’s named myArray, you access the fi rst element in the array using myArray[0]. (T / F)

§10.3 Array Declaration and Creation

 3. Provide a declaration for an array of strings called names.
 4. Consider the heading for any main method:

public static void main(String[] args)

 What kind of a thing is args?
 5. Suppose you create an array with the statement:

char[] choices = new char[4];

 What is the default value in a typical element of this array? Is it garbage or something in particular?

§10.4 Array length Property and Partially Filled Arrays

 6. The value of an array’s length equals the value of the array’s largest acceptable index. (T / F)

§10.5 Copying an Array

 7. Given

String letters = "abcdefghijklmnopqrstuvwxyz";
char alphabet[] = new char[26];

 Write a for loop that initializes alphabet with the characters in letters.
 8. Write a single statement that copies all the elements in

char arr1[] = {'x', 'y', 'z'};

 to the last three elements of

char arr2[] = new char[26];

§10.6 Problem Solving with Array Case Studies

 9. In Figure 10.7’s MovingAverage program, suppose you want to shift in the other direction. How would you
write the inner for loop header, and how would you write the array assignment statement in the inner for
loop?

 10. What kind of value does a typical histogram “bin” contain?

§10.7 Searching an Array

 11. It’s possible to search array ids for an element equal to id with nothing more than this:

int i;
for (i=0; i<ids.length && id != ids[i]; i++)
{ }
if (<boolean-expression>)
{
 return i;
}

 What is the <boolean-expression> that indicates that i has been found?

10-M4402.indd 42410-M4402.indd 424 12/17/07 4:24:48 PM12/17/07 4:24:48 PM

Apago PDF Enhancer

§10.8 Sorting an Array

 12. We elected to use class methods to implement our sort algorithm. What is an advantage of that?
 13. Java’s API sort method is in what class?

§10.9 Two-Dimensional Arrays

 14. We have said that a two-dimensional array is an array of arrays. Consider the following declaration:

double[][] myArray = new double[5][8];

 In the context of the expression, array of arrays, what does myArray[3]mean?

§10.10 Arrays of Objects

 15. In creating an array of objects, you have to instantiate the array object, and you must also instantiate each
element object that’s stored in the array. (T / F)

§10.11 The ArrayList Class

 16. How is an ArrayList more versatile than an array?
 17. To avoid runtime errors, you must always specify the size of an ArrayList when you declare it. (T / F)
 18. What is the return type of the ArrayList class’s get method?
 19. If you call the ArrayList method, add(i, x), what happens to the element originally at position i?

§10.12 Storing Primitives in an ArrayList
 20. Specifi cally, under what circumstances does autoboxing take place?
 21. Write one statement that appends the double value, 56.85, to the end of an existing ArrayList called

prices.
 22. Write one statement that displays all of the values in an ArrayList of Doubles called prices. Put the

complete list in square brackets and use a comma and a space to separate different values in the list.

§10.13 ArrayList Example Using Anonymous Objects and the For-Each Loop

 23. What is an anonymous object?
 24. You must use a for-each loop, and not a traditional for loop, whenever you need to iterate through a

collection of elements. (T / F)

§10.14 ArrayLists Versus Standard Arrays

 25. Given:

You have a WeatherDay class that stores weather information for a single day.
You’d like to store WeatherDay objects for a whole year.
The primary task of your program is sorting WeatherDay objects (e.g., sort by temperature, sort by
wind speed, and so on).

 How should you store your WeatherDay objects—in an ArrayList or in a standard array? Provide a
rationale for your answer.

Exercises

 1. [after §10.2] The index number of the last element in an array of length 100 is .

 2. [after §10.3] Declare an array named scores that holds double values.

 3. [after §10.3] Provide a single initialization statement that initializes myList to all 1’s. myList is a
5-element array of int’s.

•
•
•

 Exercises 425

10-M4402.indd 42510-M4402.indd 425 12/17/07 4:24:49 PM12/17/07 4:24:49 PM

Apago PDF Enhancer

426 Chapter 10 Arrays and ArrayLists

 4. [after §10.4] Zoo Animals Program:

 As part of your internship at Parkville’s new zoo, you’ve been asked to write a program that keeps track
of the zoo animals. You want to make the program general purpose so that when you’re done, you can sell
your program to zoos worldwide and make millions. Thus, you decide to create a generic Zoo class.

 Write a Zoo class. Your class does not have to do very much—it simply handles the creation and printing of
Zoo objects. To give you a better idea of the Zoo class’s functionality, we provide a main method:

public static void main(String[] args)
{
 Zoo zoo1 = new Zoo();
 String[] animals = {"pig", "possum", "squirrel", "Chihuahua"};
 Zoo zoo2 = new Zoo(animals, "Parkville");
 animals[0] = "white tiger";
 Zoo zoo3 = new Zoo(animals, "San Diego");
 zoo1.display();
 zoo2.display();
 zoo3.display();
}

 When run, the main method should print this:

The zoo is vacant.
Parkville zoo: pig, possum, squirrel, Chihuahua
San Diego zoo: white tiger, possum, squirrel, Chihuahua

 Although it’s not required, you’re encouraged to write a complete program in order to test your Zoo class.

 5. [after §10.5] Assume that this code fragment compiles and runs. What is its output? Be precise when
showing your output.

char[] a = new char[3];
char[] b;
for (int i=0; i<a.length; i++)
{
 a[i] = 'a';
}
b = a;
b[2] = 'b';
System.out.println("a[1]=" + a[1] + ", a[2]=" + a[2]);
System.out.println("b[1]=" + b[1] + ", b[2]=" + b[2]);

 6. [after §10.5] What needs to be added to the following code fragment so that all values except the fi rst two
values (100000.0 and 110000.0) are copied from allSalaries to workerSalaries?

double[] allSalaries = {100000.0, 110000.0, 25000.0, 18000.0,
 30000.0, 9000.0, 12000.0};
double[] workerSalaries;

 7. [after §10.5] The following program is supposed to reverse the order of the elements in the simpsons
array. It compiles and runs, but it doesn’t work properly.

public class Reverse
{
 public static void main(String[] args)
 {
 String[] simpsons = {"Homer", "Flanders", "Apu"};

10-M4402.indd 42610-M4402.indd 426 12/17/07 4:24:49 PM12/17/07 4:24:49 PM

Apago PDF Enhancer

 reverse(simpsons);
 System.out.println(
 simpsons[0] + " " + simpsons[1] + " " + simpsons[2]);
 } // end main

 public static void reverse(String[] list)
 {
 String[] temp = new String[list.length];

 for (int i=0; i<list.length; i++)
 {
 temp[i] = list[list.length-i-1];
 }
 list = temp;
 } // end reverse
} // end class Reverse

 a) What does the program print?
 b) Fix the program by providing one or more lines of alternative code for the list = temp; line. You

are not allowed to change any other code, just provide alternative code for that one line.

 8. [after §10.6] Write a program that implements the example described at the beginning of Section 10.6. Your
program should shift the array’s elements from position x to position x � 1 as described in that section.
(Move the value at position 1 to position 0; move the value at position 2 to position 1, and so on).

 Start by creating two arrays, double[] initialHours and double[] hours. In its
declaration initialize initialHours with the values {8, 8, 6, 4, 7, 0, 0, 5}, but don’t
initialize hours when you declare and instantiate it with its 31 elements. Instead, initialize hours after its
creation by using System.arraycopy to copy all the values in initialHours into the fi rst elements
in hours. Then perform one down-shift operation, and load zero into the (new) highest element.

 9. [after §10.7] Write a class method named allPositive that receives an array named arr of double
values and returns true if all the element values are positive and returns false otherwise. Use
appropriate access modifi ers. Make the method accessible from outside of its class.

 10. [after §10.7] Assume that you have already successfully written a class named Students that handles
student records for the Registrar’s offi ce. Assume that the Students class:

Contains a studentIds instance variable—an array of ints that contains student ID numbers.
Contains a 1-parameter constructor that initializes the studentIds instance variable.
Contains this main method:

public static void main(String[] args)
{
 Students s1 = new Students(new int[] {123, 456, 789});
 Students s2 = new Students(new int[] {123, 456, 789, 555});
 Students s3 = new Students(new int[] {123, 456, 789});
 if (s1.equals(s2))
 {
 System.out.println("s1 == s2");
 }
 if (s1.equals(s3))
 {
 System.out.println("s1 == s3");
 }
} // end main

•
•
•

 Exercises 427

10-M4402.indd 42710-M4402.indd 427 12/17/07 4:24:49 PM12/17/07 4:24:49 PM

Apago PDF Enhancer

428 Chapter 10 Arrays and ArrayLists

 Write a public method named equals for your Students class that tests whether two Students
objects are equal. Your equals method should be written such that the above main method would
produce this output:

s1 == s3

 Only provide code for the asked-for equals method; do not provide code for the entire Students class.

 11. [after §10.8] Given the following list array, use the Selection Sort algorithm to sort the array. Show each
step of the selection sort process. Do not provide code; just show pictures of the list array after each
element swap.

list

(original)

list

(sorted)

0 12 0 �4

1 2 1 0

2 �4 2 2

3 0 3 9

4 9 4 12

 12. [after §10.8] The Insertion Sort algorithm provides an alternative to the Selection Sort algorithm for sorting
small numbers of items (of order 20 or less). It’s not quite as effi cient as Selection Sort for arrays, but it is
slightly more effi cient for other kinds of data collections. The following code implements the Insertion Sort
algorithm:

10 public static void insertionSort(int[] list)
11 {
12 int temp;
13 int j;
14
15 for (int i=1; i<list.length; i++)
16 {
17 temp = list[i];
18 for (j=i; j>0 && temp<list[j-1]; j--)
19 {
20 list[j] = list[j-1];
21 }
22 list[j] = temp;
23 } // end for
24 } // end insertionSort

 Note that the scope of the j count variable extends beyond the scope of the for loop in which it’s used.
Assume that an array of int has been instantiated and the insertionSort method has been called with
a reference to this array passed in as a parameter. Trace the execution of this method, using the following
header and initial entries:

Sort <arrays>

line#

insertionSort arr1

(list) i j temp length 0 1 2 3

4 3333 1234 2222 1000

10 arr1

10-M4402.indd 42810-M4402.indd 428 12/17/07 4:24:49 PM12/17/07 4:24:49 PM

Apago PDF Enhancer

 13. [after §10.8] Trace the following code and show the exact output.

 1 public class ModifyArray
 2 {
 3 public static void main(String[] args)
 4 {
 5 int sum = 0;
 6 int[] list = new int[3];
 7
 8 for (int i=0; i<3; i++)
 9 {
10 list[i] = i + 100;
11 }
12 modify(list, sum);
13 for (int i=0; i<3; i++)
14 {
15 System.out.print(list[i] + " ");
16 }
17 System.out.println("\nsum = " + sum);
18 }
19
20 public static void modify(int[] list, int sum)
21 {
22 int temp = list[0];
23
24 list[0] = list[list.length - 1];
25 list[list.length - 1] = temp;
26 for (int i=0; i<3; i++)
27 {
28 sum += list[i];
29 }
30 }
31 } // end ModifyArray

 Use the following trace header:

ModifyArray <arrays>

line#

main modify arr1

i sum list (list) (sum) temp i length 0 1 2 output

 14. [after §10.9] Specify a single statement that initializes an array of int’s named myTable to all 1’s. The
array should be a two-dimensional array with 2 rows and 3 columns.

 15. [after §10.9] Write a method named getMask that receives a single parameter named table which is
a two-dimensional array of int’s. The getMask method should create and return an array mask for
the passed-in table array. The programming term mask refers to an array that is built from another array
and it contains all 0’s and 1’s. For each element in the mask array, if the original array’s corresponding
element contains a positive number, the mask array’s element should contain a 1. And if the original array’s
corresponding element contains a zero or negative number, the mask array’s element should contain a 0.
Note this example:

 Exercises 429

10-M4402.indd 42910-M4402.indd 429 12/17/07 4:24:50 PM12/17/07 4:24:50 PM

Apago PDF Enhancer

430 Chapter 10 Arrays and ArrayLists

table parameter returned array

5 �2 3 1 1 0 1 1

0 14 0 6 0 1 0 1

3 6 �1 4 1 1 0 1

 Note:

Your method should not change the content of the passed-in table array.
Your method should work with any sized table, not just the 3-row, 4-column table shown in the
example.
Use appropriate access modifi ers. Assume that the method should be accessible from outside of its
class. In deciding whether the method should be a class method or an instance method, note that the
method does not access any instance variables (it only accesses a parameter).

 16. [after §10.10] Assume you have the following City class:

public class City
{
 private String name;
 private double north; // north latitude in degrees
 private double west; // west longitude in degrees

 //**

 public City(String name, double latitude, double longitude)
 {
 this.name = name;
 this.north = latitude;
 this.west = longitude;
 } // end constructor

 //**

 public void display()
 {
 System.out.printf("%12s%6.1f%6.1f\n", name, north, west);
 }
} // end class City

 Write a code fragment that creates an array of City objects that contains the name, latitude, and longitude
of the following four cities and displays the contents of those arrays like this:

 New York 41.0 74.0
 Miami 26.0 80.0
 Chicago 42.0 88.0
 Houston 30.0 96.0

 17. [after §10.11] What does the ArrayList’s remove method do?

 18. [after §10.12] Provide a single statement (an initialization statement) that declares an ArrayList named
evenNumbers and assigns a newly instantiated ArrayList to it. The instantiated ArrayList should
be able to store integers.

 19. [after §10.12] Using the evenNumbers ArrayList created in the previous exercise, provide a code
fragment that stores the fi rst 10 even numbers in the evenNumbers ArrayList. In other words, put 0

•
•

•

10-M4402.indd 43010-M4402.indd 430 12/17/07 4:24:50 PM12/17/07 4:24:50 PM

Apago PDF Enhancer

in the fi rst evenNumbers element, put 2 in the second evenNumbers element, . . . , put 18 in the tenth
evenNumbers element. You must use a standard for loop for your code fragment.

 20. [after §10.13] Provide a more elegant (but functionally equivalent) version of this code fragment:

ArrayList<Car> cars = new ArrayList<Car>();
Car car1 = new Car("Mustang", 2006, "tiger-striped");
cars.add(car1);
Car car2 = new Car("MiniCooper", 2006, "lime green");
cars.add(car2);

 21. [after §10.13] Suppose you have an ArrayList of street addresses that’s been initialized and fi lled as
follows:

ArrayList<String> addressList = new ArrayList<String>();
addressList.add("1600 Pennsylvania Avenue");
addressList.add("221B Baker Street");
...
addressList.add("8700 N.W. River Park Drive");

 Provide a for-each loop (not a standard for loop) that prints the addressList’s addresses, one address
per line.

 22. [after §10.14] Suppose you wanted to maintain a list of cities described by the City class defi ned in
Exercise 16. And suppose you wanted to be able to insert or remove cities at any place in the list to
maintain a certain ordering as you added or removed elements. Should you use an array or an ArrayList,
and why?

Review Question Solutions

 1. False. The types of the data elements in a particular array must be the same.

 2. True.

 3. Declaration for an array of strings called names:

String[] names;

 4. The args parameter in main is an array of strings.

 5. The elements of an array are like the instance variables in an object. Array-element default values are not
garbage. The default value of a char[] element is a special character whose underlying numeric value is 0.

 6. False. The largest acceptable index value is one less than the array’s length.

 7. This code fragment initializes the character array, alphabet:

for (int i=0; i<26; i++)
{
 alphabet[i] = letters.charAt(i);
}

 8. You can copy:

arr1[] = {'x', 'y', 'z'}

 to the end of:

arr2[] = new char[26]

 Review Question Solutions 431

10-M4402.indd 43110-M4402.indd 431 12/17/07 4:24:50 PM12/17/07 4:24:50 PM

Apago PDF Enhancer

432 Chapter 10 Arrays and ArrayLists

 with the following statement:

System.arraycopy(arr1, 0, arr2, 23, 3);

 9. In the MovingAverage program, to shift in the other direction, the inner for loop header is:

for (int d=days.length-1; d>0; d--)

 The array element assignment statement in this loop is:

days[d] = days[d-1];

 10. A histogram “bin” contains the number of occurrences of an event.

 11. The Boolean expression that indicates that i has been found is:

(ids.length != 0 && i != ids.length)

 12. The advantage of using class methods is that the sort method can be used with any passed-in array, not just
on a specifi c instance variable array.

 13. Java’s API sort method is in the Arrays class.

 14. myArray[3] refers to the fourth row, which happens to be an array of eight double values.

 15. True.

 16. With an ArrayList, you can insert and delete elements anywhere in the sequence, and the list length
grows and shrinks dynamically.

 17. False. Normally, you specify no size for an ArrayList when you declare it.

 18. The get method’s return type is E, which refers to the type of each element in the ArrayList.

 19. The element that is originally at position i shifts to the next higher index position.

 20. Autoboxing takes place when a primitive is being used in a place that expects a reference.

 21. prices.add(56.85);

 22. System.out.println(prices);

 23. An anonymous object is an object that’s instantiated but it’s not stored in a variable.

 24. False. You can use a traditional for loop (or a for-each loop) to iterate through a collection of elements.

 25. You should store your WeatherDay objects in a standard array.
 Rationale:

There’s no need for the array to grow or shrink since the size is fi xed at 365 (and standard arrays have a
fi xed size).
With sorting, you’ll need to access the objects quite often (and access is easier with standard arrays).

•

•

10-M4402.indd 43210-M4402.indd 432 12/17/07 4:24:51 PM12/17/07 4:24:51 PM

Apago PDF Enhancer

433

C H A P T E R

Type Details and Alternate

Coding Mechanisms

Objectives

Improve your understanding of relationships and differences among primitive data types and your

appreciation for their individual limitations.

Understand how numerical codes identify characters.

Learn the rules for automatic type conversions and the risks in explicit type casting.

Understand embedded postfi x and prefi x increment and decrement operators.

Understand embedded assignment expressions.

Learn where and how conditional operator expressions can shorten code.

See how short-circuit evaluation helps avoid troublesome operations.

See how empty statement works.

Learn how to use break statements in loops.

Optionally, use Unicode characters in GUI applications.

Outline

 11.1 Introduction

 11.2 Integer Types and Floating-Point Types

 11.3 char Type and the ASCII Character Set

 11.4 Type Conversions

 11.5 Prefi x/Postfi x Modes for Increment/Decrement Operators

 11.6 Embedded Assignments

 11.7 Conditional Operator Expressions

 11.8 Expression Evaluation Review

 11.9 Short-Circuit Evaluation

 11.10 Empty Statement

 11.11 break Statement within a Loop

 11.12 for Loop Header Details

 11.13 GUI Track: Unicode (Optional)

•

•
•
•
•
•
•
•
•
•

11

11-M4402.indd 43311-M4402.indd 433 12/17/07 4:25:18 PM12/17/07 4:25:18 PM

Apago PDF Enhancer

434 Chapter 11 Type Details and Alternate Coding Mechanisms

11.1 Introduction

In Chapters 3 and 4, you learned Java language basics. Among other things, you learned about data types,

type conversions, and control statements. This chapter describes some additional data types and additional

type conversions. It also describes some alternative control statement coding mechanisms.

Chapter 3 introduced you to some of Java’s integer and fl oating-point types of numbers, and Chapter 5

showed you how to fi nd the limits of their ranges. In this chapter, you’ll see two more integer types, and for

all of the numerical types you’ll learn the amount of storage needed, the precision provided, and how to use

range limits. Chapter 3 introduced you to the use of the character type, char. In this chapter, you’ll see that

each character has an underlying numeric value, and you’ll learn how to use those values. Chapter 3 intro-

duced you to type conversion with the cast operator. In this chapter, you’ll learn more about type conver-

sions. Chapter 3 introduced you to the increment and decrement operators. In this chapter, you’ll discover

that you can move the positions of these operators (before or after the variable) to control when they act.

Chapter 3 introduced you to assignment operators. In this chapter, you’ll see how you can embed assign-

ments within expressions to make code more compact.

Chapter 4 introduced you to several kinds of conditional evaluations. In this chapter you’ll learn about

the conditional operator that can take on either of two possible values depending on a boolean condition.

You’ll also learn about short-circuit evaluation which can prevent errors by stopping a “dangerous” condi-

tional evaluation in certain situations. In addition, you’ll learn more about loops. Specifi cally, you’ll see

empty-bodied loops and loops that terminate from within the loop’s body. And you’ll see alternative coding

techniques for for loop headers.

The material in this chapter will improve your understanding of several Java nuances and subtleties.

This will help you avoid problems in the fi rst place, and it will help you create code that is more effi cient and

easier to maintain. It will also help you debug code that has problems. It might be your code, or it might be

someone else’s code. As a real-world programmer, you’ll have to work with other people’s code, and you’ll

need to understand what that code is doing.

Much of the material in this chapter could have been inserted at various places earlier in the text.

However, it was not necessary for anything we did up until now, and we deferred it until now to keep

from encumbering earlier presentations. The assembly of these details into one chapter at this point

in the book provides an excellent opportunity for review. As you go through this chapter, integrate

this new material into what you learned before and see how it enriches your understanding of those

topics.

11.2 Integer Types and Floating-Point Types

This section supplements the numeric data types material you studied in Chapter 3, Section 3.13.

Integer Types

Integer types hold whole numbers (whole numbers are numbers without a decimal point). Figure 11.1 shows

the four integer types. The types are ordered in terms of increasing memory storage requirements. Type

byte variables require only 8 bits, so they take up the least amount of storage. If you have a program that’s

taking too much space in memory, you can use smaller types for variables that hold small values. Using

smaller types means less storage is needed in memory. Now that memory has become relatively cheap,

types byte and short are not used very often.

11-M4402.indd 43411-M4402.indd 434 12/17/07 4:25:19 PM12/17/07 4:25:19 PM

Apago PDF Enhancer

To access an integer’s minimum and maximum values, use the MIN_VALUE and MAX_VALUE named

constants that come with the integer’s wrapper class. As you learned in Chapter 5, Integer and Long are

the wrapper classes for the int and long data types. And as you might expect, Byte and Short are the

wrapper classes for the byte and short data types. So here’s how to print the maximum byte value:

System.out.println("Largest byte = " + Byte.MAX_VALUE);

The default type for an integer constant is int. But you might have a need for an integer constant that is too

big for an int. In that case, you can explicitly force an integer constant to be a long by adding an l or L

suffi x to the integer constant. For example, suppose you’re writing a solar system program, and you want to

store the age of the earth in a variable named ageOfPlanet. The earth is 4.54 billion years old and 4.54

billion is larger than Integer.MAX_VALUE’s 2,147,483,647. This generates a compilation error:

long ageOfPlanet = 4540000000;

But this, with the L suffi x, works just fi ne:

long ageOfPlanet = 4540000000L;

When you declare a numeric variable, be sure that the type you select is large enough to handle the largest

value that your program might put into it. If a value can’t fi t in the memory space provided, that’s called

overfl ow. Overfl ow errors are dramatic, as the ByteOverfl owDemo program in Figure 11.2 illustrates.

Integer overfl ow reverses the sign, so the ByteOverfl owDemo program prints negative 128 rather than

the correct result, positive 128. In this example, the magnitude of the error is approximately twice as big as

the magnitude of the largest allowable value! Overfl ow also causes sign reversal for types short, int, and

long. In such cases, the compiler does not fi nd the problem, and the Java Virtual Machine (JVM) does not

fi nd it either. Java runs the program with no complaints and happily generates a massive error. In the end, it’s

up to you. Whenever there is any doubt, use a larger type!

Floating-Point Types

As you know, fl oating-point numbers are real numbers—numbers that allow for non-zero digits to the right

of a decimal point. This means you can use fl oating-point numbers to hold fractional values—values that are

smaller than one. Figure 11.3 shows the two fl oating-point types—float and double.

 11.2 Integer Types and Floating-Point Types 435

Figure 11.1 Properties of Java integer data types

Type Storage

Wrapper
Class’s

MIN_VALUE

Wrapper
Class’s

MAX_VALUE

byte 8 bits �128 127

short 16 bits �32,768 32767

int 32 bits �2,147,483,648 2,147,483,647

long 64 bits � -9*1018 � 9*1018

11-M4402.indd 43511-M4402.indd 435 12/17/07 4:25:20 PM12/17/07 4:25:20 PM

Apago PDF Enhancer

436 Chapter 11 Type Details and Alternate Coding Mechanisms

Note Figure 11.3’s precision column. Precision refers to the approximate number of digits the type can

represent accurately. For example, since float types have 6 digits of precision, if you attempt to store

1.2345678 in a float variable, you would actually store a rounded version—a number like 1.234568.

The fi rst six digits (1.23456) are precise, but the rest of the number is imprecise. double values have 15

digits of precision—quite a bit better than float values with their 6 digits of precision. The relatively low

precision of a float can lead to signifi cant round-off errors when you subtract two numbers that are close

in value. If the numbers are close enough, then the difference is a very small number where the rightmost

Figure 11.2 ByteOverfl owDemo program illustrates the overfl ow problem

/***
* ByteOverflowDemo.java
* Dean & Dean
*
* This demonstrates integer overflow.
***/

public class ByteOverflowDemo
{
 public static void main(String[] args)
 {
 byte value = 64;

 System.out.println("Initial byte value = " + value);
 System.out.println("Byte maximum = " + Byte.MAX_VALUE);
 value += value;
 System.out.println("Twice initial byte value = " + value);
 } // end main
} // end ByteOverflowDemo class

Output:

Initial byte value = 64
Byte maximum = 127
Twice initial byte value = -128 A very large error!

Figure 11.3 Properties of Java fl oating-point data types

Type Storage Precision

Wrapper
Class’s

MIN_NORMAL

Wrapper
Class’s

MAX_VALUE

float 32 bits 6 digits � 1.2 * 10�38 � 3.4*1038

double 64 bits 15 digits � 2.2 * 10�308 � 1.8*10308

11-M4402.indd 43611-M4402.indd 436 12/17/07 4:25:20 PM12/17/07 4:25:20 PM

Apago PDF Enhancer

digits are merely approximations. This round-off error is compounded when you have repetitive calcula-

tions. Since memory is now relatively inexpensive, you should consider float to be an archaic data type,

and you should usually avoid it. An exception is when you specify color. Several methods in the Java API

Color class employ float type parameters and/or return values.

Be aware that fl oating-point numbers do worse than integer numbers when it comes to precision. For

example, when comparing the 32-bit float type and the 32-bit int type, the fl oating-point type has less

precision. float numbers have 6 digits of precision, whereas int numbers have 9 digits of precision.

Likewise, when comparing the 64-bit double type and the 64-bit long type, the fl oating-point type has

less precision. double numbers have 15 digits of precision, whereas long numbers have 19 digits of preci-

sion. Why do fl oating-point numbers lose out on precision? Some of the bits in fl oating-point numbers are

used to specify the exponent that allows these numbers to take on much greater ranges in magnitude than

integer numbers can take on. This reduces the bits available to supply precision.

As you learned in Chapter 5, Float and Double are the wrapper classes for the float and double
data types. To access a fl oating-point data type’s minimum and maximum values, use the Float and

Double classes’ MIN_NORMAL and MAX_VALUE named constants. MAX_VALUE is a fl oating-point data

type’s largest positive value, and MIN_NORMAL is a fl oating-point data type’s smallest full-precision positive

value. A fl oating-point’s MIN_NORMAL is qualitatively different from an integer’s MIN_VALUE. Instead of

being a large negative value, a fl oating-point MIN_NORMAL is a tiny positive fraction. So what are the limits

of negative fl oating-point numbers? The largest-magnitude negative number a fl oating-point variable can

hold is -MAX_VALUE. The smallest-magnitude negative number a fl oating-point variable can hold safely is

-MIN_NORMAL, a tiny negative fraction.

Actually, it’s possible for a fl oating-point variable to hold a number whose magnitude is smaller than

MIN_NORMAL. It can hold a value as small as a fl oating-point MIN_VALUE, which is approximately

1.4 * 10�45 for float and approximately 4.9 * 10�324 for double. But the MIN_VALUE of a fl oating-point

number has only one bit of precision, and that could produce a signifi cant error in a computed result—with-

out any explicit indication that an error is present. This is an example of the worst kind of bug, because it

can go unrecognized for a long time. Therefore, with fl oating-point numbers, always use MIN_NORMAL

instead of MIN_VALUE.

The default fl oating-point constant type is double. If you declare a variable to be a float, you must

append an f or F suffi x to all fl oating-point constants that go into it, like this:

float gpa1 = 3.22f;
float gpa2 = 2.75F;
float gpa3 = 4.0;

Because of the f and F suffi xes, 3.22f and 2.75F are 32-bit float values, so it’s legal to assign them into

the 32-bit gpa1 and gpa2 float variables. But 4.0 is a 64-bit double value, and attempting to assign it

into the 32-bit gpa3 float variable generates a compilation error.

To write a fl oating-point number in scientifi c notation, put e or E before the base-10 exponent value.

If the exponent is negative, insert a minus sign between the e or E and the exponent value. If the exponent

is positive, you may use a plus sign after the e or E, but it’s not standard practice. In any event, there must

never be any whitespace within the number specifi cation. For example:

double x = -3.4e4;
double y = 5.6E-4;

compilation error, because 4.0 is a double

equivalent to �34000.0

equivalent to 0.00056

11.2 Integer Types and Floating-Point Types 437

11-M4402.indd 43711-M4402.indd 437 12/17/07 4:25:21 PM12/17/07 4:25:21 PM

Apago PDF Enhancer

438 Chapter 11 Type Details and Alternate Coding Mechanisms

11.3 char Type and the ASCII Character Set

This section supplements the char type material you studied in Chapter 3, Section 3.20.

Underlying Numeric Values

For most programming languages, including Java, each character has an underlying numeric value. For ex-

ample, the character ‘A’ has the underlying value of 65 and the character ‘B’ has the underlying value of 66.

Most programming languages, including Java, get character numeric values from the American Standard
Code for Information Interchange (ASCII, pronounced “askee”) character set. See the ASCII character set

in Figure 11.4’s ASCII table and confi rm that the character ‘A’ has an underlying value of 65.

So what’s the point of having underlying numeric values for characters? With underlying numeric val-

ues, it makes it easier for the JVM to determine the ordering of characters. For example, since ‘A’ has the

value 65 and ‘B’ has the value 66, the JVM can easily determine that ‘A’ comes before ‘B’. And knowing

the order of characters is necessary for string sort operations. For example, suppose a sort method is given

the strings “peach”, “pineapple”, and “apple.” The sort method compares the words’ fi rst characters ‘p’, ‘p’,

and ‘a’, and in doing so, the JVM looks up the characters in the ASCII table. Since ‘p’ has the value 112 and

‘a’ has the value 97, “apple” goes fi rst. Then the sort method compares the second characters in “peach” and

“pineapple.” Since e has the value 101 and i has the value 105, “peach” goes before “pineapple.”

Most characters in the ASCII character set represent printable symbols. For example, the ‘f’ character

represents the printable letter f. But the fi rst 32 characters and the last character in the ASCII character

set are different—they are control characters. Control characters perform non-printing operations. For ex-

ample, the start-of-heading character (ASCII numeric value 1) helps with data being sent from one computer

device to another. More specifi cally, it signals the beginning of transmitted data. When you print a control

character, you might be surprised by what appears on the screen. The bell character (ASCII numeric value 7)

normally generates a sound and displays nothing, which makes sense, but the start-of-heading character

displays something less intuitive. When you print the start-of-heading character, you’ll get different results

in different environments. For example, in a console window 1 in a Windows environment, a smiley face is

displayed. In other environments, a blank square is displayed. Note the following code fragment, with as-

sociated output from a console window in a Windows environment:

char ch;
for (int code=1; code<=6; code++)
{
 ch = (char) code;
 System.out.print(ch + " ");
}

Output:

☺ ☻ ♥ ♦ ♣ ♠

In the above code fragment, the (char) cast operator uses the ASCII table to return the character

 associated with code’s numeric value. So if code has the value 1, then (char) code returns the start-of-

heading character.

1 See Chapter 1’s “First Program—Hello World” section for a description of how to run a program in a console window.

11-M4402.indd 43811-M4402.indd 438 12/17/07 4:25:21 PM12/17/07 4:25:21 PM

Apago PDF Enhancer

numeric
value

numeric
value character

char-
acter

numeric
value

char-
acter

numeric
value

char-
acter

0 null 32 space 64 @ 96 `

1 start of heading 33 ! 65 A 97 a

2 start of text 34 " 66 B 98 b

3 end of text 35 # 67 C 99 c

4 end of transmission 36 $ 68 D 100 d

5 enquiry 37 % 69 E 101 e

6 acknowledge 38 & 70 F 102 f

7 audible bell 39 ' 71 G 103 g

8 backspace 40 (72 H 104 h

9 horizontal tab 41) 73 I 105 i

10 line feed 42 * 74 J 106 j

11 vertical tab 43 + 75 K 107 k

12 form feed 44 , 76 L 108 l

13 carriage return 45 - 77 M 109 m

14 shift out 46 . 78 N 110 n

15 shift in 47 / 79 O 111 o

16 data link escape 48 0 80 P 112 p

17 device control 1 49 1 81 Q 113 q

18 device control 2 50 2 82 R 114 r

19 device control 3 51 3 83 S 115 s

20 device control 4 52 4 84 T 116 t

21 negative acknowledge 53 5 85 U 117 u

22 synchronous idle 54 6 86 V 118 v

23 end transmission block 55 7 87 W 119 w

24 cancel 56 8 88 X 120 x

25 end of medium 57 9 89 Y 121 y

26 substitute 58 : 90 Z 122 z

27 escape 59 ; 91 [123 {

28 file separator 60 < 92 \ 124 |

29 group separator 61 = 93] 125 }

30 record separator 62 > 94 ^ 126 ~

31 unit separator 63 ? 95 _ 127 delete

Figure 11.4 ASCII Table

These characters and their code values are the same as the fi rst 128 characters in Unicode, which is discussed in

Section 11.13.

 11.3 char Type and the ASCII Character Set 439

11-M4402.indd 43911-M4402.indd 439 12/17/07 4:25:22 PM12/17/07 4:25:22 PM

Apago PDF Enhancer

440 Chapter 11 Type Details and Alternate Coding Mechanisms

The ASCII character set served well in the early years of computer programming, but it’s no longer

suffi cient. Sometimes you’ll need characters and symbols that are outside of the ASCII character set. For ex-

ample, suppose you want to display a check mark (√) or the pi symbol (π). Those two characters don’t appear

in Figure 11.4. Those characters are part of a newer coding scheme called Unicode, which is a superset of

ASCII. You can learn about Unicode in the optional section at the end of this chapter (Section 11.13). In that

section, we show you how to access the check mark and pi symbols and the many other characters enumer-

ated in the Unicode standard.

Using the + Operator with chars

Remember how you can use the + operator to concatenate two strings together? You can also use the + op-

erator to concatenate a char to a string. Note this example:

char first = 'J’;
char last = 'D';
System.out.println("Hello, " + first + last + '!');

Output:

Hello, JD!

When the JVM sees a string next to a � sign, it concatenates by fi rst converting the operand on the other

side of the � sign to a string. So in the above example, the JVM converts the first variable to a string and

then concatenates the resulting “J” to the end of “Hello, ” to form “Hello, J”. The JVM does the same thing

with each of the next two characters it sees, last’s stored character and ‘!’. It converts each one to a string

and concatenates each one to the string at its left.

Be aware that if you apply the + operator to two characters, the + operator does not perform concatena-

tion; instead, it performs mathematical addition using the characters’ underlying ASCII values. Note this

example:

char first = 'J';
char last = 'D';
System.out.println(first + last + ", What's up?");

Output:

142, What’s up?

The intended output is: JD, What’s up? Why does the code fragment print 142 instead of JD? The JVM

evaluates + operators (and most other operators as well) left to right, so in evaluating println’s argument,

it fi rst evaluates first + last. Since both first and last are char variables, the JVM performs

mathematical addition using the characters’ underlying ASCII values. first holds ‘J’ and J’s value is 74.

last holds ‘D’ and D’s value is 68. So first + last evaluates to 142.

There are two ways to fi x the above code. You can change the fi rst two lines to string initializations like

this:

String first = "J";

String last = "D";

Or you can insert an empty string at the left of println’s argument like this:

System.out.println("" + first + last + ", What’s up?");

11-M4402.indd 44011-M4402.indd 440 12/17/07 4:25:22 PM12/17/07 4:25:22 PM

Apago PDF Enhancer

Promotion

There are two kinds of type conversion—promotion (automatic type conversion) and type casting (forced

type conversion). You’ve already seen type casting. We’ll revisit it shortly, but let’s fi rst discuss promotion.

A promotion is an implicit conversion. It’s when an operand’s type is automatically converted without

having to use a cast operator. It occurs when there’s an attempt to use a narrower type in a place that expects a

wider type; that is, it occurs when you’re going with the fl ow of the arrows in Figure 11.5. Promotion often oc-

curs in assignment statements. If the expression on the right of an assignment statement evaluates to a type that

is narrower than the type of the variable on the left of the assignment statement, then during the assignment

the narrower type on the right gets promoted to the wider type on the left. Note these promotion examples:

long x = 44;
float y = x;

In the fi rst statement, 44 is an int. The int 44 is narrower than the long x, so the JVM promotes 44 to a

long, and then performs the assignment. In the second assignment statement, x is a long. The long x is

narrower than the float y, so the JVM promotes x to a float, and then performs the assignment.

Note these additional promotion examples:

double z = 3 + 4.5;
int num = 'f' + 5;

The expressions on the right are mixed expressions. A mixed expression is an expression that contains

 operands of different data types. Within a mixed expression, the narrower operand automatically promotes

narrower wider

byte short int long float double
 char

 8 bits 16 bits 32 bits 64 bits 32 bits 64 bits

Figure 11.5 Type conversion ordering scheme

mixed expressions

11.4 Type Conversions 441

11.4 Type Conversions

This section supplements the type casting material you studied in Chapter 3, Section 3.19.

Java is a strongly typed language, so each variable and each value within a program is defi ned to have a

particular data type. As with all strongly typed languages, you need to be careful when working with more

than one data type. In this section, you learn how some, but not all, data types convert to other data types.

Java makes some type conversions automatically, and it allows you to force some other type conversions.

Either way, be careful. Inappropriate type conversions can cause problems.

To fi gure out what’s allowed in terms of type conversions, learn the ordering scheme in Figure 11.5.

Crudely speaking, this picture shows what types can “fi t inside” other types. For example, a byte value

with 8 bits can fi t inside a short variable that holds 16 bits because an 8-bit entity is “narrower” than a 16-

bit entity. We like the terms “narrower” and “wider” to describe type sizes, but be aware that those are not

formal terms; other people do not use those terms. Notice that the boolean type does not appear in this

picture. You cannot convert between numeric types and the boolean type.

11-M4402.indd 44111-M4402.indd 441 12/17/07 4:25:22 PM12/17/07 4:25:22 PM

Apago PDF Enhancer

442 Chapter 11 Type Details and Alternate Coding Mechanisms

/***
* MethodPromotion.java
* Dean & Dean
*
* Promote type in method call
***/

public class MethodPromotion
{
 public static void main(String[] args)
 {
 float x = 4.5f;

 printSquare(x);
 printSquare(3);
 }

 private static void printSquare(double num)
 {
 System.out.println(num * num);
 }
} // end class MethodPromotion

Output:

20.25
9.0

Type Casting

Type casting is an explicit type conversion. It occurs when you use a cast operator to convert an expression’s

type. Here’s the syntax for using a cast operator:

(type) expression

Figure 11.6 Program that demonstrates type promotion in method call

automatic promotion

to the type of the wider operand. In the fi rst statement above, the int 3 is narrower than the double
4.5, so the JVM promotes 3 to a double, before adding it to 4.5. In the second statement above, do you

know which operand, ‘f’ or 5, gets promoted to match the other one? ‘f’ is a char and 5 is an int, and Fig-

ure 11.5 shows that char is narrower than int. Thus, the JVM promotes ‘f’ to an int. More specifi cally,

since f’s underlying numeric value is 102 (see Figure 11.4), the JVM promotes ‘f’ to 102. Then the JVM

adds 102 to 5 and assigns the resulting 107 to num.

Promotions typically occur as part of assignment statements, mixed expressions, and method calls.

You’ve already seen examples with assignment statements and mixed expressions; now let’s examine pro-

motions with method calls. As mentioned above, conversions take place any time there’s an attempt to use a

narrower type in a place that expects a wider type. So if you pass an argument to a method and the method’s

parameter is defi ned to be a wider type than the argument’s type, the argument’s type promotes to match

the parameter’s type. Figure 11.6’s program provides an example of this behavior. Can you determine what

promotion takes place within the program? The x argument is a float and it promotes to a double. The

3 argument is an int and it promotes to a double as well.

11-M4402.indd 44211-M4402.indd 442 12/17/07 4:25:23 PM12/17/07 4:25:23 PM

Apago PDF Enhancer

It’s legal to use a cast operator to convert any numeric type to any other numeric type; that is, the con-

version can go in either direction in Figure 11.5’s ordering-scheme diagram. For example, the following

code fragment casts the double x to the int y.

double x = 12345.6;
int y = (int) x;
System.out.println("x = " + x + "\ny = " + y);

What happens if you omit the (int) cast operator? You’d get a compilation error because you’d be directly

assigning a double into an int and that’s forbidden (in Figure 11.5’s ordering-scheme diagram, there’s no

arrow going from the double type to the int type). Why is it illegal to directly assign a fl oating-point num-

ber into an int? Because fl oating-pointing numbers can have fractions and ints can’t handle fractions.

Do you know what the above code fragment prints? x remains unchanged (even though (int) was

applied to it), and y gets the whole-number portion of x with x’s fraction truncated, not rounded. So here’s

the output:

x = 12345.6
y = 12345

The program in Figure 11.7 further illustrates the use of cast operators. It prompts the user to enter an

ASCII value (an integer between 0 and 127). Then it prints the character associated with that ASCII value

and also the next character in the ASCII table. In the program, what do the two cast operators do? The fi rst

one returns the char version of asciiValue, an int variable. The second one returns the char ver-

sion of asciiValue + 1. The cast operations are needed to print ch and nextCh as characters, rather

than integers. What would happen if you omitted the cast operators? You’d get compile-time errors because

you’d be assigning an int directly into a char, and that’s forbidden according to the ordering scheme in

Figure 11.5.

Why is it illegal to assign a number directly into a char? You’d think it would be safe to assign a small

whole number, like a byte with 8 bits, into a char with 16 bits. It’s illegal to assign a number directly into

a char because numbers can be negative and a char can’t handle negativity (a char’s underlying value is

a positive number between 0 and 65535).

11.5 Prefi x/Postfi x Modes for Increment/Decrement Operators

This section supplements material you studied in the fi rst part of Chapter 3, Section 3.17 (Increment and

Decrement Operators), and it uses techniques you studied in Chapter 3, Section 3.18 (Tracing).

The increment operator has two different modes—the prefi x mode and the postfi x mode. The prefi x

mode is when you put the ++ before the variable that is to be incremented. Using the prefi x mode causes the

variable to be incremented before the variable’s value is used. For example:

y = ++x is equivalent to x = x + 1;

 y = x;

The postfi x mode is when you put the ++ after the variable that is to be incremented. Using the postfi x

mode causes the variable to be incremented after the variable’s value is used. For example:

y = x++ is equivalent to y = x;

 x = x + 1;

 11.5 Prefi x/Postfi x Modes for Increment/Decrement Operators 443

11-M4402.indd 44311-M4402.indd 443 12/17/07 4:25:23 PM12/17/07 4:25:23 PM

Apago PDF Enhancer

444 Chapter 11 Type Details and Alternate Coding Mechanisms

To get a better feeling for how this works, trace this code fragment:

1 int x, y;
2
3 x = 4;
4 y = ++x;
5 System.out.println(x + " " + y);
6 x = 4;
7 y = x++;
8 System.out.println(x + " " + y);

Here is the trace:

Figure 11.7 Program illustrating use of cast to convert character codes into characters

/***
* PrintCharFromAscii.java
* Dean & Dean
*
* This illustrates manipulation of ASCII code values.
***/

import java.util.*;

public class PrintCharFromAscii
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int asciiValue; // user entered ASCII value
 char ch; // the asciiValue’s associated character
 char nextCh; // the character after ch in the ASCII table

 System.out.print("Enter an integer between 0 and 127: ");
 asciiValue = stdIn.nextInt();
 ch = (char) asciiValue;
 nextCh = (char) (asciiValue + 1);
 System.out.println("Entered number: " + asciiValue);
 System.out.println("Associated character: " + ch);
 System.out.println("Next character: " + nextCh);
 } // end main
} // end class PrintCharFromAscii

Sample session:

Enter an integer between 0 and 127: 67
Entered number: 67
Associated character: C
Next character: D

⎫
⎬
⎭

Note the (char) cast operators.

11-M4402.indd 44411-M4402.indd 444 12/17/07 4:25:23 PM12/17/07 4:25:23 PM

Apago PDF Enhancer

line# x y output

1 ? ?

3 4

4 5

4 5

5 5 5

6 4

7 4

7 5

8 5 4

Here’s a review question to help with your debugging skills. What would the outputs have

been if the println arguments had been (x + ' ' + y)? Instead of specifying the

string version of a space, this would have specifi ed the character version of a space, and

it would make the computer consider the argument to be a mathematical expression rather than a string con-

catenation. Since x and y are integers, it would promote the space character to its underlying numeric value,

which is 32 (see Figure 11.4). The fi rst print statement would add (5 � 32 � 5) and print 42. The second

statement would add (5 � 32 � 4) and print 41.

The decrement operator’s prefi x and postfi x modes work the same as for the increment operator, but

they subtract one instead of add one. To get a feeling for how they work, trace this code fragment:

1 int a, b, c;
2
3 a = 8;
4 b = --a;
5 c = b-- + --a;
6 System.out.println(a + " " + b + " " + c);

line# a b c output

1 ? ? ?

3 8

4 7

4 7

5 6

5 13

5 6

6 6 6 13

Let’s examine line 5 in more depth:

c = b-- + --a;

Pay attention to
the quotes.

 11.5 Prefi x/Postfi x Modes for Increment/Decrement Operators 445

11-M4402.indd 44511-M4402.indd 445 12/17/07 4:25:24 PM12/17/07 4:25:24 PM

Apago PDF Enhancer

446 Chapter 11 Type Details and Alternate Coding Mechanisms

As you might have guessed, in executing this statement, the JVM fi rst decrements a. This should make

sense when you look at Appendix 2’s operator precedence table and confi rm that the decrement operator has

very high precedence. The JVM also executes b’s decrement operator early on, but its execution consists

of using b’s original value and incrementing b afterwards. The operator precedence table shows that the +
operator has higher precedence than the = operator, so the JVM next adds b’s original value to a’s decre-

mented value. Finally, the JVM assigns the sum to c.

For many people, line 5 is particularly confusing. We showed you this example because you might see

this kind of thing in someone else’s code, but if you want your code to be understandable, we recommend

that you not do this yourself. That is, don’t embed ++ or -- expressions within other expressions. Instead of

trying to do everything line 5 does in one statement, it would be more understandable to partition line 5 into

three separate statements, like this:

5a a--;
5b c = b + a;
5c b--;

The JVM performs the evaluation in separate steps anyway, so writing it out does not incur any performance

penalty. It takes more space on the page, but most people will agree that it’s easier to read.

When writing code, how do you decide which mode to use, prefi x or postfi x? It depends on the rest of

your code. Usually, to minimize confusion, you’ll put increment and decrement operations on separate lines.

Then it doesn’t matter which mode you use, but postfi x is more common.

11.6 Embedded Assignments

This section supplements material you learned in Chapters 3 and 4. Specifi cally, it supplements the assign-

ment statements material in Chapter 3, Section 3.11 and the while loop material in Chapter 4, Section 4.8.

Embedding an Assignment within Another Assignment

Assignments are sometimes embedded as expressions in larger statements. When that happens, remember

that (1) an assignment expression evaluates to the assigned value, and (2) assignment operators exhibit right-

to-left associativity. To see these concepts in action, consider this code fragment:

1 int a, b = 8, c = 5;
2
3 a = b = c;
4 System.out.println(a + " " + b + " " + c);

Line 3 shows an assignment expression embedded inside a larger assignment statement. Which of the two

assignment operators does the JVM execute fi rst? Since assignment operators exhibit right-to-left associa-

tivity, the JVM executes the right assignment operation fi rst. What does the b = c expression evaluate

to? It evaluates to 5 because the assigned value, c, is 5. In evaluating line 3, replace the b = c part of the

statement with 5 to reduce the statement to:

a = 5.

Here’s what the code fragment’s trace looks like:

same as: a = (b = c);same as: a = (b = c);

11-M4402.indd 44611-M4402.indd 446 12/17/07 4:25:24 PM12/17/07 4:25:24 PM

Apago PDF Enhancer

line# a b c output

1 ? 8 5

3 5

3 5

4 5 5 5

Embedding an Assignment within a Loop Condition

Except for a pure multiple assignment like a = b = c; it’s best to avoid embedding multiple assign-

ments as expressions in other statements, because that makes code hard to understand. Nevertheless, it’s

fairly common to embed a single assignment as an expression in a loop condition. For example, Figure 11.8

contains a program that averages a set of input scores. Note the (score = stdIn.nextDouble())

Figure 11.8 AverageScore program that demonstrates use of embedded assignments

/***
* AverageScore.java
* Dean & Dean
*
* This program averages input scores.
***/

import java.util.Scanner;

public class AverageScore
{
 public static void main(String[] args)
 {
 double score;
 double count = 0;
 double totalScore = 0;
 Scanner stdIn = new Scanner(System.in);

 System.out.print("Enter a score (or -1 to quit): ");
 while ((score = stdIn.nextDouble()) != -1)
 {
 count++;
 totalScore += score;
 System.out.print("Enter a score (or -1 to quit): ");
 }
 if (count > 0)
 {
 System.out.println("Average score = " + totalScore / count);
 }
 } // end main
} // end AverageScore class

embedded assignment

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

11.6 Embedded Assignments 447

11-M4402.indd 44711-M4402.indd 447 12/17/07 4:25:25 PM12/17/07 4:25:25 PM

Apago PDF Enhancer

448 Chapter 11 Type Details and Alternate Coding Mechanisms

assignment inside the while condition. If, for example, the user responds to the prompt by entering 80,

score gets the value 80, the assignment expression within the parentheses evaluates to 80, and the while

loop header becomes:

while (80 != -1)

Since the condition is true, the JVM executes the body of the loop. If the assignment expression were not

embedded in the while loop condition, it would have to appear twice—once above the loop header and

again at the bottom of the loop. Embedding the assignment in the condition improves the loop’s structure.

You will sometimes also see embedded assignments in method arguments and array indices. This

makes code more compact. Compactness is often a good thing in that it can lead to code that is less clut-

tered and therefore easier to understand. But don’t go too far in trying to make your code compact because

compactness can sometimes lead to code that is harder to understand (i.e., it can lead to code that is more

cryptic). Some programmers get a kick out of making “clever” programs that are as compact as possible. If

that’s you, try to redirect your efforts to making programs as understandable as possible. You can still use

compact code, but do so in a manner that helps, not hinders, understandability.

11.7 Conditional Operator Expressions

This section supplements the material in Chapter 4, Section 4.3 (if Statements).

Syntax and Semantics

When you want a logical condition to determine which of two alternate values applies, instead of using the

“if, else” form of the if statement, you can use a conditional operator expression. The conditional operator

is Java’s only ternary operator. Ternary means three. The conditional relates three operands with the two

symbols, ? and :. The ? goes between the fi rst and second operands, and the : goes between the second

and third operands.

Here’s the syntax:

<condition> ? <expression1> : <expression2>

If the condition is true, the conditional operator expression evaluates to the value of expression1, and it

ignores expression2. If the condition is false, the conditional operator expression evaluates to the value

of expression2, and it ignores expression1. Think of expression1 as the true part of an “if, else” statement.

Think of expression2 as the false part of an “if, else” statement.

For example, consider this expression:

(x>y) ? x : y

The parentheses around the condition are not required, because > has higher precedence than the ?: pair,

but we recommend using them because they improve readability. What does the JVM do when it sees this

expression?

It compares x with y.

If x is greater, it evaluates the expression to x.

If x is not greater, it evaluates the expression to y.

Do you know what general functionality the expression implements? It fi nds the maximum between two

numbers. You can prove this to yourself by plugging in sample numbers. Suppose x � 2 and y � 5. Here’s

how the expression evaluates to the maximum, 5:

•

•

•

11-M4402.indd 44811-M4402.indd 448 12/17/07 4:25:25 PM12/17/07 4:25:25 PM

Apago PDF Enhancer

(2>5) ? 2 : 5 ⇒
(false) ? 2 : 5 ⇒
5

Using the Conditional Operator

A conditional operator expression cannot appear on a line by itself because it is not a complete statement. It

is just part of a statement—an expression. The following code fragment includes two examples of embedded

conditional operator expressions:

int score = 58;
boolean extraCredit = true;

score += (extraCredit ? 2 : 0);
System.out.println(
 "grade = " + ((score>=60) ? "pass" : "fail"));

How does it work? Since extraCredit is true, the fi rst conditional operator evaluates to 2. score then

increments by 2 from its initial value of 58 to 60. Since (score>=60) evaluates to true, the second con-

ditional operator evaluates to “pass”. The println statement then prints:

grade = pass

In the above code fragment, we like the parentheses the way they are shown, but in the interest of honing

your debugging skills, let’s examine what happens if you omit each of the pairs of parentheses. As shown in

Appendix 2’s operator precedence table, the conditional operator has higher precedence than the += opera-

tor. Therefore, it would be legal to omit the parentheses in the += assignment statement. In the println

statement, the conditional operator has lower precedence than the + operator, so you must keep the paren-

theses that surround the conditional operator expression. Since the >= operator has higher precedence than

the conditional operator, it would be legal to omit the parentheses that surround the score>=60 condition.

Note how we omit spaces in the score>=60 condition but include spaces around the ? and : that separate

the three components of the conditional operator expression. This style improves readability.

You can use the conditional operator to avoid if statements. Conditional operator code might look

more effi cient than if statement code because the source code is shorter, but the generated bytecode is typi-

cally longer. This is another example of something you might see in someone else’s code, but because it’s

relatively hard to understand, we recommend that you use it with restraint in your own code. For example,

the score += (extraCredit ? 2 : 0); statement in the above code fragment is rather cryptic. It

would be better style to increment the score variable like this:

if (extraCredit)
{
 score += 2;
}

11.8 Expression Evaluation Review

So far in this chapter, you’ve learned quite a few type details and operator details. Learn-

ing such details will help you debug code that has problems, and it will help you avoid

problems in the fi rst place. To make sure that you really understand the details, let’s do

some expression evaluation practice problems.

Hand calculation
helps you
understand.

Hand calculation
helps you
understand.

 11.8 Expression Evaluation Review 449

11-M4402.indd 44911-M4402.indd 449 12/17/07 4:25:26 PM12/17/07 4:25:26 PM

Apago PDF Enhancer

450 Chapter 11 Type Details and Alternate Coding Mechanisms

Expression Evaluation Practice with Characters and String Concatenation

Note the following three expressions. Try to evaluate them on your own prior to looking at the subsequent an-

swers. While performing the evaluations, remember that if you have two or more operators with the same pre-

cedence, use left-to-right associativity (i.e., perform the operation at the left fi rst). So in the fi rst expression,

you should perform the � operation in '1' + '2' before attempting to perform the second + operation.

 1. '1' + '2' + "3" + '4' + '5'
 2. 1 + 2 + "3" + 4 + 5
 3. 1 + '2'

Here are the answers:

'1' + '2' + "3" + '4' + '5' ⇒

49 + 50 + "3" + '4' + '5' ⇒

99 + "3" + '4' + '5' ⇒

"993" + '4' + '5' ⇒

"9934" + '5' ⇒

"99345"

1.
When adding two chars, use their

underlying ASCII numeric values.

When the JVM sees a string next

to a + sign, it concatenates by fi rst

converting the operand on the other

side of the + sign to a string.

1 + 2 + "3" + 4 + 5 ⇒

3 + "3" + 4 + 5 ⇒

"33" + 4 + 5 ⇒

"334" + 5 ⇒

"3345"

2.

Left-to-right associativity dictates

adding the two numbers at the left.

1 + '2' ⇒

1 + 50 ⇒

51

Mixed expression—the char gets

promoted to an int, using the

underlying ASCII numeric value for ‘2.’

3.

Expression Evaluation Practice with Type Conversions and Various Operators

Assume:

int a = 5, b = 2;
double c = 3.0;

11-M4402.indd 45011-M4402.indd 450 12/17/07 4:25:27 PM12/17/07 4:25:27 PM

Apago PDF Enhancer

Try to evaluate the following expressions on your own prior to looking at the subsequent answers.

 1. (c + a / b) / 10 * 5
 2. a + b++
 3. 4 + --c

 4. c = b = a % 2

Here are the answers:

(c + a / b) / 10 * 5 ⇒

(3.0 + 5 / 2) / 10 * 5 ⇒

(3.0 + 2) / 10 * 5 ⇒

5.0 / 10 * 5 ⇒

0.5 * 5 ⇒

2.5

1.

Mixed expression—the int

gets promoted to a double.

/ and * have same precedence.

Perform left operation fi rst.

a + b++ ⇒

5 + 2 ⇒

7

2.

Use b’s original value of 2 in the expression.

Afterwards, b’s value increments to 3.

4 + --c ⇒

4 + 2.0 ⇒

6.0

3.

c’s value decrements to 2.0

before using it in the expression.

c = b = a % 2 ⇒

c = b = 5 % 2 ⇒

c = b = 1 ⇒

c = 1 ⇒

1.0

4.

Don’t plug in values for variables

that are at the left of assignments.

The b = 1 assignment

evaluates to 1.

11.8 Expression Evaluation Review 451

c is a double, so the

result is a double.

11-M4402.indd 45111-M4402.indd 451 12/17/07 4:25:28 PM12/17/07 4:25:28 PM

Apago PDF Enhancer

452 Chapter 11 Type Details and Alternate Coding Mechanisms

More Expression Evaluation Practice

Assume:

int a = 5, b = 2;
double c = 6.6;

Try to evaluate the following expressions on your own prior to looking at the subsequent answers.

 1. (int) c + c
 2. b = 2.7
 3. ('a' < 'B') && ('a' == 97) ? "yes" : "no"
 4. (a >2) && (c = 6.6)

Here are the answers:

(int) c + c ⇒

6 + 6.6 ⇒

12.6

1.

(int) c evaluates to 6, which is the

truncated version of 6.6, but c itself doesn’t

change, so the second c remains 6.6.

b = 2.7

2.

Compilation error. The double value won’t fi t into the

narrower int variable without a cast operator.

('a' < 'B') && ('a' == 97) ? "yes" : "no" ⇒
false && true ? "yes" : "no" ⇒
false ? "yes" : "no" ⇒
"no"

3.

Look up underlying numeric

values in ASCII table.

Mixed types, so char 'a' converts

to int 97 before comparison.

(a > 2) && (c = 6.6) ⇒
(true) && ...

4.

c = 6.6 is an assignment, not an equality condition.

Thus, c = 6.6 evaluates to the double value, 6.6,

and a double doesn’t work with the && operator, so

this generates a compilation error. Probably, the second

operand should be (c == 6.6).

11-M4402.indd 45211-M4402.indd 452 12/17/07 4:25:29 PM12/17/07 4:25:29 PM

Apago PDF Enhancer

11.9 Short-Circuit Evaluation

This section supplements the && logical operator material you studied in Chapter 4, Section 4.4 and the ||
logical operator material you studied in Chapter 4, Section 4.5.

Consider the program in Figure 11.9. It calculates a basketball player’s shooting percentage and prints

an associated message. Note the if statement’s heading, repeated here for your convenience. In particular,

note the division operation with attempted in the denominator.

Figure 11.9 Program that illustrates short-circuit evaluation

/**
* ShootingPercentage.java
* Dean & Dean
*
* This program processes a basketball player’s shooting percentage.
**/

import java.util.Scanner;

public class ShootingPercentage
{
 public static void main(String[] args)
 {
 int attempted; // number of shots attempted
 int made; // number of shots made
 Scanner stdIn = new Scanner(System.in);
 System.out.print("Number of shots attempted: ");
 attempted = stdIn.nextInt();
 System.out.print("Number of shots made: ");
 made = stdIn.nextInt();

 if ((attempted > 0) && ((double) made / attempted) >= .5)
 {
 System.out.printf("Excellent shooting percentage - %.1f%%\n",
 100.0 * made / attempted);
 }
 else
 {
 System.out.println("Practice your shot more.");
 }
 } // end main
} // end class ShootingPercentage

Sample session:

Number of shots attempted: 0
Number of shots made: 0
Practice your shot more.

Second sample session:

Number of shots attempted: 12
Number of shots made: 7
Excellent shooting percentage - 58.3%

If attempted is

zero, division by zero

does not occur.

Use %% to print

a percent sign.

11.9 Short-Circuit Evaluation 453

11-M4402.indd 45311-M4402.indd 453 12/17/07 4:25:29 PM12/17/07 4:25:29 PM

Apago PDF Enhancer

454 Chapter 11 Type Details and Alternate Coding Mechanisms

if ((attempted > 0) && ((double) made / attempted) >= .5)

With division, you should always think about, and try to avoid, division by zero. If attempted equals

zero, will the JVM attempt to divide by zero? Nope! Short-circuit evaluation saves the day.

Short-circuit evaluation means that the JVM stops evaluating an expression whenever the expression’s

outcome becomes certain. More specifi cally, if the left side of an && expression evaluates to false, then

the expression’s outcome is certain (false && anything evaluates to false) and the right side is skipped.

Likewise, if the left side of an || expression evaluates to true, then the expression’s outcome is certain

(true || anything evaluates to true) and the right side is skipped. So in Figure 11.9’s if statement con-

dition, if attempted equals zero, the left side of the && operator evaluates to false and the right side is

skipped, thus avoiding division by zero.

So what’s the benefi t of short-circuit evaluation?

1. Error avoidance: It can help to prevent problems by enabling you to avoid an illegal op-

eration on the right side of an expression.

2. Performance: Since the result is already known, the computer doesn’t have to waste time

calculating the rest of the expression.

As an aside, note the %% in Figure 11.9’s printf statement. It’s a conversion specifi er for the printf
method. Unlike the other conversion specifi ers, it is a standalone entity; it doesn’t have an argument that

plugs into it. It simply prints the percent character. Note the printed % at the end of Figure 11.9’s second

sample session.

11.10 Empty Statement

This section supplements the loop material you studied in Chapter 4.

It’s sometimes possible to put all of a loop’s functionality inside of its header. For example:

for (int i=0; i<1000000000; i++)
{ }

The Java compiler requires that you include a statement for the for loop’s body, even if the statement

doesn’t do anything. The above empty braces ({ }) form a compound statement2 and satisfy that require-

ment. In this section, you learn about an alternative way to satisfy that requirement. You learn about the

empty statement.

Using the Empty Statement

The empty statement consists of a semicolon by itself. Use the empty statement in places where the compiler

requires a statement, but there is no need to do anything. For example, the below for loop can be used as a

“quick and dirty” way to add a delay to your program:

monster.display();
for (int i=0; i<1000000000; i++)
 ;
monster.erase();

Utilize built-in
behavior.
Utilize built-in
behavior.

2 The compound statement, defi ned in Chapter 4, is a group of zero or more statements surrounded by braces.

Coding convention:

Put the empty statement on a

line by itself and indent it.

11-M4402.indd 45411-M4402.indd 454 12/17/07 4:25:30 PM12/17/07 4:25:30 PM

Apago PDF Enhancer

Note how the empty statement is appropriate here because all the work is done in the for loop header,

where i counts up to one billion. All that counting takes time. Depending on your computer’s speed, it

might take anywhere from a fraction of a second to fi ve seconds.

So why would you want to add a delay to your program? Suppose you’re writing a game program that

needs to have a monster appear for only a certain time interval. To implement that functionality, print the

monster, execute the delay loop, and then erase the monster.

You might want to use the above code fragment as part of a fi rst-cut attempt at implementing the delay,

but don’t use it for your fi nal implementation. Why? Because it introduces delay that is dependent on the

speed of the computer that runs the program. With varied delay, slow computers would have monsters that

linger too long and fast computers would have monsters that disappear too quickly. In a fi nal implementa-

tion, you should use the Thread class’s sleep method to implement the delay. The sleep method allows

you to precisely specify the amount of delay in milliseconds. To use the sleep method, you need to under-

stand exception handling, and we discuss exception handling in Chapter 14.3

In the above code fragment, note the coding-convention callout. Can you think of why it’s a good idea

to put the empty statement on a line by itself? If you put the empty statement on a line by itself and indent it,

readers will see it. On the other hand, if you put the empty statement at the end of the previous statement’s

line, readers probably won’t see it. Seeing the code is an important part of making the code understandable.

And making code understandable makes it easier to maintain.

Avoid Accidental Misuse of the Empty Statement

It’s fairly common for programmers to accidentally create unintended empty statements. Because you enter

a semicolon at the end of most lines of Java code, it’s easy to get into the habit of hitting the semicolon key at

the end of every line of code you write. If you do that at the end of a loop header, it generates an empty state-

ment. Your code might compile and run without a reported error, but it would produce mysterious results.

Here is an example:

System.out.print("Do you want to play a game (y/n)? ");
while (stdIn.next().equals("y"));
{
 <The code to play the game goes here.>
 System.out.print("Play another game (y/n)? ");
}

Does the semicolon at the end of the while loop header generate a compilation error? No—the semi-

colon acts as the lone statement (an empty statement) that’s inside the while loop. The subsequent braces

form a compound statement. The compound statement is not part of the while loop; it executes after the

while loop has fi nished.

So what does the code do? First, suppose the user enters n. In the while loop header, the JVM com-

pares the entered n value to “y.” The loop condition is false, so the JVM skips the while loop’s body,

the empty statement. The JVM then executes the compound statement and attempts to play a game. That’s a

logic error: The JVM attempts to play a game even though the user entered n.

Now suppose the user enters y. In the while loop header, the JVM compares the entered y value to

“y”. The loop condition is true, so the JVM executes the while loop’s body, the empty statement. The

3 This adds a delay of 1000 milliseconds (which equals 1 second):
try {Thread.sleep(1000);}
catch (InterruptedException e) { }

This semicolon creates

an empty statement.

11.10 Empty Statement 455

11-M4402.indd 45511-M4402.indd 455 12/17/07 4:25:31 PM12/17/07 4:25:31 PM

Apago PDF Enhancer

456 Chapter 11 Type Details and Alternate Coding Mechanisms

JVM then returns to the loop header and executes the stdIn.next() method call again. The JVM waits

for the user to enter another value. But the user won’t know he/she is supposed to enter anything because

there’s no prompt. That’s a particularly nasty logic error because the program produces no erroneous output

and no error message. That means no help in determining what to do.

You can produce these same types of logic errors by putting semicolons after “if,” “else if,” or “else”

headings. Such semicolons effectively create empty statements, and they’re often introduced accidentally

during program development or debugging. Be on the alert for empty statements, and when-

ever you see one, be suspicious and check it out! Better yet, minimize confusion at the end

by maximizing care at the beginning.

11.11 break Statement within a Loop

This section supplements the loop material you studied in Chapter 4.

In Chapter 4 we introduced you to the use of the break statement inside a switch statement. It termi-

nates the switch statement and transfers control to the next statement after the switch statement. In addi-

tion, you can use the break statement inside a while, do, or for loop. It does the same thing as when it’s

in a switch statement. The break terminates the immediately enclosing loop and transfers control to the

next statement after the bottom of the loop. We say “immediately enclosing” because you can have a break

that’s nested inside multiple loops. The break gets associated with the loop that immediately surrounds it.

The DayTrader program in Figure 11.10 illustrates what’s called “day trading.” It’s a form of gambling in

which people buy and sell stock on the stock market every day in hopes of making money off short-term stock

movements. This program keeps track of a day trader’s stock balance over a three-month period (for day � 1

to 90). The original balance is $1,000. In our simple model, at the beginning of each day, the day trader retains

half the initial balance in savings and invests the other half in the stock market. The money returned at the end

of the day equals the investment times a random number between 0 and 2. Thus, the money returned ranges

anywhere from zero to double the original investment. Each day, the day trader adds the money returned to

the balance in savings. If the balance ever goes below $1 or above $5,000, the day trader quits.

Before examining the break statement in Figure 11.10, look at the (day - 1) argument in the fi nal

printf statement. This is after the for loop, so the scope of day needs to be bigger than the scope of the

for loop. That’s why we declared it before the for loop with the other local variables. But why did we sub-

tract 1 in the printf statement? Because the day++ operation in the third compartment of the for loop

header increments day one extra time, after the transaction that drives the balance to a terminating value. If

we had forgotten to subtract 1 in the printf statement, that would be an off-by-one error.

Now look at the DayTrader program’s break statement. If the balance ever gets outside the $1 to

$5,000 range, program control jumps immediately to the next statement below the for loop. If you run the

program several times, you’ll see that sometimes this causes the loop to terminate before day reaches 90.

You’ll get a different result each time you run the program because this program uses Math.random to

generate a random number in the range between 0.0 and 1.0.

Be aware that you never really have to use a break statement to implement this premature loop-

 termination capability. For example, you can eliminate the DayTrader program’s if and break statements

by changing the for loop header to this:

for (day=1; day<=90 && !(balance < 1.0 || balance > 5000.0); day ++)

Don’t fall into the trap of using the break statement too often. Usually, someone reading your program will

look only at the loop header to fi gure out how the loop terminates. In using a break statement, you force

Haste makes
waste.
Haste makes
waste.

11-M4402.indd 45611-M4402.indd 456 12/17/07 4:25:31 PM12/17/07 4:25:31 PM

Apago PDF Enhancer

the reader to look inside of the loop for loop termination conditions. And that makes your program harder

to understand. Nonetheless, in certain situations, the break statement improves readability rather than

hinders it. The DayTrader program’s break statement is an example where the break statement improves

readability.

11.12 for Loop Header Details

This section supplements the for loop material you studied in Chapter 4, Section 4.10.

Omitting One or More of the for Loop Header Components

It’s legal, although not all that common, to omit the fi rst and/or third components in the for loop header.

For example, to print a countdown from a user-entered number, you could do this:

Figure 11.10 DayTrader program that illustrates use of the break statement

/***
* DayTrader.java
* Dean & Dean
*
* This simulates stock market day trading.
***/

public class DayTrader
{
 public static void main(String[] args)
 {
 double balance = 1000.00; // money that’s retained
 double moneyInvested; // money that’s invested
 double moneyReturned; // money that’s earned at end of day
 int day; // current day, ranges from 1 to 90

 for (day=1; day<=90; day++)
 {
 if (balance < 1.0 || balance > 5000.0)
 {
 break;
 }
 balance = moneyInvested = balance / 2.0;
 moneyReturned = moneyInvested * (Math.random() * 2.0);
 balance += moneyReturned;
 } // end for

 System.out.printf("final balance on day %d: $%4.2f\n",
 (day - 1), balance);
 } // end main
} // end DayTrader

 11.12 for Loop Header Details 457

11-M4402.indd 45711-M4402.indd 457 12/17/07 4:25:32 PM12/17/07 4:25:32 PM

Apago PDF Enhancer

458 Chapter 11 Type Details and Alternate Coding Mechanisms

System.out.print("Enter countdown starting number: ");
count = stdIn.nextInt();
for (; count>0; count--)
{
 System.out.print(count + " ");
}
System.out.println("Liftoff!");

Actually, it’s legal to omit any of the three for loop header components, as long as the two semicolons still

appear within the parentheses. For example, you can even write a for loop header like this:

for (;;)

When a for loop header’s condition component (the second component) is omitted, the condition is consid-

ered true for every iteration of the loop. With a permanently true condition, such a loop is often an infi nite

loop and a logic error. But that’s not always the case. You can terminate it by using a break statement like

this:

for (;;)

{

 ...

 if (<condition>)

 {

 break;

 }

}

You should understand the above example in case you see similar code in someone else’s program. But it’s

rather cryptic, and, as such, you should avoid writing your own code that way.

Multiple Initialization and Update Components

For most for loops, one index variable is all that’s needed. But every now and then, two or more index vari-

ables are needed. To accommodate that need, you can include a list of comma-separated initializations in a

for loop header. The caveat for the initializations is that their index variables must be the same type. Work-

ing in concert with the comma-separated initializations, you can also include a list of comma-separated

updates in a for loop header. The following code fragment and associated output show what we’re talking

about. In the for loop header, note the two index variables, up and down, and their comma-separated ini-

tialization and update components.

System.out.printf("%3s%5s\n", "Up", "Down");
for (int up=1,down=5; up<=5; up++,down--)
{
 System.out.printf("%3d%5d\n", up, down);
}

no initialization component

11-M4402.indd 45811-M4402.indd 458 12/17/07 4:25:32 PM12/17/07 4:25:32 PM

Apago PDF Enhancer

Output:

Up Down
 1 5
 2 4
 3 3
 4 2
 5 1

As with many of the techniques presented in this chapter, using multiple initialization and update compo-

nents in a for loop is a bit of an art. It leads to more compact code, which can be a good thing or a bad

thing. If the compact code is more understandable, use it. If the compact code is more cryptic, don’t use it.

11.13 GUI Track: Unicode (Optional)

Earlier, you learned that characters get their underlying numeric values from the ASCII character set. That’s

true for the 128 characters shown in Figure 11.4, but be aware that there are way more than 128 characters in

the world. The ASCII character set contains the characters in the Latin alphabet—A through Z—but it does

not contain the characters in other alphabets. For example, it does not contain the characters in the Greek,

Cyrillic, and Hebrew alphabets. The designers of the Java language wanted Java to be general purpose, so

they wanted to be able to produce text output for many different languages using many different alphabets.

To handle the additional characters, the Java designers had to use a bigger character set than the ASCII

character set. Thus, they adopted the Unicode standard. The Unicode standard defi nes underlying numeric

values for a huge set of 65,536 characters.

Why are there 65,536 characters in the Unicode standard? Because the people who designed the Uni-

code standard (the Unicode Consortium) decided that 16 bits would be suffi cient to represent all the char-

acters needed in a computer program.4 And 16 bits can represent 65,536 characters. Here are the binary

representations for the fi rst four characters and the last character:

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

. . .

1111 1111 1111 1111

Notice that each row is a different permutation of 0’s and 1’s. If you wrote all such permutations, you’d see

65,536 rows. Thus, with 16 bits, you can represent 65,536 characters. The formula for determining the num-

ber of permutations (and consequently the number of rows and the number of characters) is 2 raised to the

power of the number of bits. In other words, 216 � 65,536.

You can apply that same reasoning in determining why there are 128 characters in the ASCII character

set. Way back in 1963 (when dinosaurs roamed the earth), the people who designed the ASCII character set

4 We’re focusing on the original Unicode standard, which is a subset of the current Unicode standard. The original Unicode standard
is good enough for almost all Java programming. The original Unicode standard uses 16 bits for all characters. The current Unicode
standard uses additional bits for additional characters that can’t fi t in the original Unicode set of 65,536 values. For additional details,
see http://www.unicode.org/.

 11.13 GUI Track: Unicode (Optional) 459

11-M4402.indd 45911-M4402.indd 459 12/17/07 4:25:33 PM12/17/07 4:25:33 PM

http://www.unicode.org/

Apago PDF Enhancer

460 Chapter 11 Type Details and Alternate Coding Mechanisms

decided that 7 bits would be suffi cient to represent all the characters needed in a computer program. 27 �
128, so 7 bits can represent 128 unique values.

Since the ASCII table was and is such a popular standard with many programming languages, the

Unicode designers decided to use the ASCII character set as a subset of the Unicode character set. They

inserted the ASCII character set’s characters in the fi rst 128 slots of the Unicode character set. That means

programmers can fi nd those characters’ numeric values by referring to a simple ASCII table; they don’t have

to wade through the enormous Unicode character set.

Hexadecimal Numbers

Normal numbers are expressed as powers of 10, but since computers are binary and 16 is a simple power of

two (16 � 24), it’s common practice to express computer quantities in base 16 (using powers of 16), rather

than base 10 (using powers of 10). Base 10 numbers are called decimal numbers. Base 16 numbers are called

hexadecimal numbers. The places in decimal numbers are called digits. The places in hexadecimal numbers

are sometimes called hexits, but more often, they’re simply called hexadecimal digits. Base 10 numbers use

10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Base 16 numbers use the 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b,

c, d, e, and f (uppercase letters A through F are considered to be equivalent to a through f). Thus, hexadeci-

mal numbers frequently include one or more of the fi rst six alphabetic characters as well as one or more of

the normal numerical characters.

In Java, any integer can be written in either decimal or hexadecimal. If you want a number to be in-

terpreted as hexadecimal, you must prefi x it with the character pair, 0x. So, if you see something like

0x263A, for example, you can recognize it as a hexadecimal number. For most of us, hexadecimal numbers

are not very intuitive. It’s pretty easy to make conversions, however. Just use Integer’s two-parameter

toString method:

Integer.toString(<starting-number>, <desired-base>)

For example, if you want to see the decimal equivalent of 0x263A, write this:

System.out.println(Integer.toString(0x263A, 10));

This generates an output of 9786. Conversely, if you want to see the hexadecimal equivalent of 9786, write

this:

System.out.println(Integer.toString(9786, 16));

This generates an output of 263a. Notice that this method’s output does not include the 0x prefi x, and it

uses lowercase letters for the alphabetic hexadecimal digits.

Unicode Escape Sequence

Whenever you write an integer, you can write it in either decimal format or hexadecimal format. Likewise,

you can specify a character by writing its numeric value in either decimal format or hexadecimal format and

then casting it with the (char) cast operator. Java also provides another way to specify a character. You

can use the Unicode escape sequence. The Unicode escape sequence is \u followed immediately by the

hexadecimal digits of a hexadecimal number. Here’s what we’re talking about:

'\u####'

Each # stands for one hexadecimal digit. We elected to show this in single quotes, not double quotes, to

emphasize that the 6-element escape sequence is just a single character, not a string. It’s just like any other

This is a single character.

11-M4402.indd 46011-M4402.indd 460 12/17/07 4:25:33 PM12/17/07 4:25:33 PM

Apago PDF Enhancer

escape sequence, however, so you can embed the \u#### anywhere in a string. The u must be lowercase,

and there must be exactly four hexadecimal digits.5

Using Unicode in Java Programs

If you want to print characters using Unicode escape sequences, you can use System.out.println in a

text-based environment for the fi rst 128 characters, but for the other characters, System.out.println

in a text-based environment doesn’t work consistently. That’s because text-based environments recognize

just the ASCII portion of the Unicode table; that is, the fi rst 128 characters. To print all the characters in the

Unicode table, you need to use graphical user interface (GUI) commands in a GUI environment.

The program in Figure 11.11 provides a GUI window and uses it to illustrate a small sampling of the

many characters that are available. The codes array contains int code values for the Unicode escape

sequences for the fi rst characters in blocks of characters that we choose to display. These Unicode escape se-

quences automatically promote from type char to type int in the initializing assignment. The array called

descriptions contains a simple String description for each block of characters.

For the window, we use an instance of the Java API JFrame class, which is in the javax.swing

package. We set the window size at 600 pixels wide and 285 pixels high. We include in the window a single

JTextArea object called area, and we enable its line-wrap capability. We use JTextArea’s append

method to add each new string or character to whatever is already there.

Before looping, we display some general font information. The outer for loop displays the value of the

fi rst code number in one of the chosen blocks of characters and then a description of that block. The inner

for loop displays the fi rst 73 characters in that block. In the append method’s argument, notice how we

add the loop count, j , to the initial Unicode value to get each individual Unicode value as an int. Then we

cast that int into a char. Then the concatenated " " converts that char into a String, which matches

the append method’s parameter type.

Figure 11.12 shows the GUI output this program generates. The characters in the codes array in

Figure 11.11 are the Unicode escape sequences for the fi rst character in each block of characters shown in

Figure 11.12. The hollow squares indicate code numbers that don’t have symbols assigned to them or sym-

bols that are not present in the current computer’s software library. Notice that both the Greek and Cyrillic

blocks include both upper and lower case characters, and they include some additional characters beyond

the normal fi nal values of � (�) and Я (я), respectively. These (and other) additional characters are needed

for some of the individual languages in the families of languages using these alphabets. Of course, the char-

acters shown in Figure 11.12 are just a tiny sampling of all the characters in Unicode.

Notice that the different characters shown in Figure 11.12 have generally different widths. To get

 constant-width characters, you’d have to change the font type to something like Courier New. You could do

that—and also change the style to bold and size to 10 points—by inserting a statement like this:

area.setFont(new Font("Courier New", Font.BOLD, 10));

Suppose you want the Unicode value for ≈. That’s the last mathematical operator displayed in Figure 11.12.

As indicated by the third codes value in the UnicodeDisplay program, the fi rst mathematical operator has

5 The supplementary Unicode characters have numeric values that require more than 4 hexadecimal digits. To specify one of these
supplementary characters, use a decimal or hexadecimal int representation of the character, or prefi x the \u-representation of
the 4 least-signifi cant hexadecimal digits with an appropriate u-representation in the range, \uD800 through \uDFFF. The pre-
fi x, called a surrogate, has no independent character association. (See documentation on Java’s Character class and http://www
.unicode.org/Public/UNIDATA/Blocks.txt.) There’s also another surrogate scheme which represents characters with an 8-bit base
value and multiple 8-bit surrogates. This latter scheme is used in communications.

 11.13 GUI Track: Unicode (Optional) 461

11-M4402.indd 46111-M4402.indd 461 12/17/07 4:25:34 PM12/17/07 4:25:34 PM

http://www

Apago PDF Enhancer

462 Chapter 11 Type Details and Alternate Coding Mechanisms

Figure 11.11 Program that uses GUI to display a sampling of Unicode characters

/**
* UnicodeDisplay.java
* Dean & Dean
*
* This prints unicode characters.
**/

import javax.swing.*;
import java.awt.Font;

public class UnicodeDisplay
{
 public static void main(String[] args)
 {
 int[] codes = {'\u0391',
 '\u0410',
 '\u2200',
 '\u2500',
 '\u2700'};
 String[] descriptions = {"Greek",
 "Cyrillic (Russian)",
 "mathematical operators",
 "box drawing",
 "dingbats"};
 JFrame window = new JFrame("Some Unicode Characters");
 JTextArea area = new JTextArea();
 Font font = area.getFont();

 window.setSize(600,285); // pixel width, height
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.add(area);
 area.setLineWrap(true);
 area.append("Font type, style, and size: " +
 font.getFontName() + ", " + font.getSize() + "\n");
 for (int i=0; i<codes.length; i++)
 {
 area.append("0x" + Integer.toString(codes[i], 16) +
 " " + descriptions[i] + ":\n");
 for (int j=0; j<=72; j++)
 {
 area.append((char) (codes[i] + j) + " ");
 }
 area.append("\n");
 }
 window.setVisible(true);
 } // end main
} // end UnicodeDisplay

11-M4402.indd 46211-M4402.indd 462 12/17/07 4:25:34 PM12/17/07 4:25:34 PM

Apago PDF Enhancer

a unicode hexadecimal value of 0x2200. The maximum value of the inner for loop in Figure 11.11 is 72.

The hexadecimal value of 72 is 4 � 16 � 8 � 0x0048. Thus, the Unicode hexadecimal value of the last

mathematical operator displayed in Figure 11.12 is 0x2200 � 0x0048 � 0x2248. Sometimes you can use a

word processor to help you fi nd the Unicode value of the special symbol you want. For example, in Micro-

soft Word, select Insert / Symbol / Mathematical Operators, and then select �. Then read the Unicode

hex value for the selected symbol from the “Character code” fi eld near the bottom of the Symbol window.

You’ll fi nd this also says the Unicode hexadecimal value for the � character is 0x2248.

You can fi nd everything that Unicode has to offer by browsing through the http://www

.unicode.org Web site. If you go there, look for a Code Charts link, and click on it. That should

take you to a page that lets you explore the various sub-tables within the huge Unicode table. Try to fi nd the

Basic Latin link. That takes you to the Basic Latin sub-table, which is equivalent to the ASCII table. The

sub-table is referred to as Latin because it contains the Latin alphabet—a, b, c, and so on. Visit a few of the

other sub-tables to get an idea of what’s available. In every sub-table, you’ll see a set of characters, and for

each character, you’ll see its equivalent Unicode value.

There are also several other standards for assigning numbers to characters. Computer applications some-

times include translation tables to make conversions between their own character-coding schemes and Uni-

code. Be warned however. The translations don’t always work as you might like, and special characters may

change in surprising ways when you transfer text with special characters from one application to another.

Summary

Numerical overfl ow creates dramatic errors. Whenever there is any doubt about a particular type’s abil-

ity to hold a value that might be assigned to it, change to a larger type.

Floating point numbers have a greater range than integers, but for a given amount of memory, they pro-

vide less precision.

The ASCII character set provides numerical values for the symbols on a standard keyboard.

Since characters are represented as numbers, ch1 � ch2 evaluates to the sum of the ASCII values for

the char variables, ch1 and ch2.

•

•

•
•

Look it up.Look it up.

Figure 11.12 Output produced by the program in Figure 11.11

 Summary 463

11-M4402.indd 46311-M4402.indd 463 12/17/07 4:25:34 PM12/17/07 4:25:34 PM

http://www

Apago PDF Enhancer

464 Chapter 11 Type Details and Alternate Coding Mechanisms

Type casting allows you to put a numeric value into a numeric variable of a different type, but be care-

ful that you don’t get overfl ow or undesired truncation when you do it.

When used as a prefi x, an increment (++) or decrement (--) operator changes the variable value before

that variable participates in other expression operations. When used as a postfi x, an increment or decre-

ment operator changes the variable value after it participates in other expression operations.

If a statement contains multiple assignment operators, the rightmost assignment evaluates fi rst.

It’s sometimes helpful to embed an assignment within a condition, but you should avoid excessive use of

embedded increment, decrement and assignment operations.

A conditional operator expression provides a compact conditional evaluation. If what’s before the ? is

true, use what’s after the ?. Otherwise, use what’s after the :.

Short-circuit evaluation means that the JVM stops evaluating an expression whenever the expression’s

outcome becomes certain. Use this feature to avoid illegal operations.

Use a break statement sparingly to terminate loops prematurely.

In its extended form, Unicode provides numerical codes for up to a million different characters. You

can specify them as decimal or hexadecimal integers or with a Unicode escape sequence. To see the

Unicode characters for codes above 127, you must display them in a GUI window.

Review Questions

§11.2 Integer Types and Floating-Point Types

 1. For each integer data type, how many bits of storage are used?
 2. How would you write the decimal constant, 1.602 � 10�19, as a double?
 3. What is the approximate precision (number of accurate decimal digits) of each of the fl oating-point types?

§11.3 char Type and the ASCII Character Set

 4. How many distinct characters are identifi ed by the basic ASCII character set?
 5. What number can you add to an uppercase letter char variable to convert it to lowercase?

§11.4 Type Conversions

 6. Assume the declaration:

public final double C = 3.0E10; // speed of light in cm/sec

 Write a Java print statement that uses a cast operator to display the value of C in this format:

30000000000

 7. Will this statement be OK or will it generate a compile-time error? (OK / error)

float price = 66;

 8. Will this statement be OK or will it generate a compile-time error? (OK / error)

boolean done = (boolean) 0;

 9. Will this statement be OK or will it generate a compile-time error? (OK / error)

float price = 98.1;

§11.5 Prefi x/Postfi x Modes for Increment/Decrement Operators

 10. What is the value of z after these statements execute?

 int z, x = 3;
 z = --x;
 z += x--;

•

•

•
•

•

•

•
•

11-M4402.indd 46411-M4402.indd 464 12/17/07 4:25:35 PM12/17/07 4:25:35 PM

Apago PDF Enhancer

§11.6 Embedded Assignments

 11. Write one Java statement that makes w, x, and y all equal to the current value of z.

§11.7 Conditional Operator Expressions

 12. Suppose x equals 0.43. Given the following switch statement heading, what does the switch heading’s
controlling expression evaluate to?

switch (x>0.67 ? 'H' : (x>0.33 ? 'M' : 'L'))

§11.8 Expression Evaluation Review

 13. Assume this:

int a = 2;
int b = 6;
float x = 8.0f;

 Evaluate each of the following expressions, using these guidelines:

As shown in Section 11.8, put each evaluation step on a separate line and use the ⇒ symbol between
steps.
Evaluate each expression independently of the other expressions; in other words, use the above
assumed values for each expression evaluation.
Expression evaluation problems can be tricky. We encourage you to check your work by running test
code on a computer.
If there would be a compilation error, specify “compilation error.”

 a) a � 25 / (x � 2)
 b) 7 � a * --b / 2
 c) a * --b / 6
 d) a � b��
 e) a - (b � 4) % 7
 f) b � x � 23

§11.9 Short-Circuit Evaluation

 14. Assume expr1 and expr2 are expressions that evaluate to boolean values. Assume that expr1
evaluates to true. When the computer evaluates each of the following expressions, will it evaluate
expr2? If yes, just say “yes.” If no, explain why, and use the term “short-circuit evaluation” in your
explanation.

 a) expr1 || expr2
 b) expr1 && expr2

 15. Assume this:

int a = 2;
boolean flag = true;

 Evaluate the following expression:

 a < 3 || flag && !flag

§11.10 Empty Statement

 16. Assume that the following code fragment is inside of a program that compiles successfully. What does the
code fragment print? Hint: This is a trick question. Study the code carefully.

•

•

•

•

 Review Questions 465

11-M4402.indd 46511-M4402.indd 465 12/17/07 4:25:35 PM12/17/07 4:25:35 PM

Apago PDF Enhancer

466 Chapter 11 Type Details and Alternate Coding Mechanisms

int x = 1;
while (x < 4);
{
 System.out.println(x);
 x++;
}

§11.11 break Statement within a Loop

 17. Usually, you should avoid using break except in switch statements because using break statements
forces readers to look for termination conditions inside loop bodies. (T / F)

§11.12 for Loop Header Details

 18. Assume that the following code fragment is inside of a program that compiles successfully. What does the
code fragment print?

for (int i=0,j=0; ; i++,j++)
{
 System.out.print(i + j + " ");
}

§11.13 GUI Track: Unicode (Optional)

 19. What is the hexadecimal symbol for the decimal number 13?
 20. The Unicode values for characters are the same as the ASCII values in the range 0x00 to 0xFF. (T / F)

Exercises

 1. [after §11.2] If an integer overfl ows, what type of error is produced—compile-time error, runtime error, or
logic error?

 2. [after §11.4] How many bits are used to store a char value?

 3. [after §11.4] What does this print? System.out.println('A' + 2);

 4. [after §11.6] Assume a and b are boolean variables. What are their values after this statement executes?

a =!((b=4<=5) && (a=4>=5));

 Hint: First rewrite the statement to make it more readable.

 5. [after §11.7] Assume this:

int a = 2;
float x = 8.0f;
boolean flag = true;

 Evaluate:

(flag) ? (a = (int) (x + .6)) : a

 6. [after §11.8] Assume this:

int a = 10;
int b = 2;
double x = 6.0;

 Evaluate each of the following expressions. Follow these guidelines:

11-M4402.indd 46611-M4402.indd 466 12/17/07 4:25:35 PM12/17/07 4:25:35 PM

Apago PDF Enhancer

As shown in Section 11.8, put each evaluation step on a separate line and use the ⇒ symbol between
steps.
Evaluate each expression independently of the other expressions; in other words, use the above as-
sumed values for each expression evaluation.
Expression evaluation problems can be tricky. We encourage you to check your work by running test
code on a computer.
If there would be a compilation error, specify “compilation error.”

 a) a - 7 / (x - 4)
 b) 8 + a * ++b / 20
 c) a + b--
 d) a + (b = 5) % 9
 e) a = x = -12

 7. [after §11.8] Assume this:

String s = "hi";
int num = 3;
char ch = 'm';

 Evaluate each of the following expressions. Follow these guidelines:

As shown in Section 11.8, put each evaluation step on a separate line and use the ⇒ symbol between
steps.
Evaluate each expression independently of the other expressions; in other words, use the above as-
sumed values for each expression evaluation.
Expression evaluation problems can be tricky. We encourage you to check your work by running test
code on a computer.
If there would be a compilation error, specify “compilation error.”

 a) s + (num + 4)
 b) s + num + 4
 c) s + '!' + "\""
 d) num + ch
 e) '8' + 9

 8. [after §11.9] Consider the following code fragment. Line numbers are at the left.

1 int a = 2;
2 boolean b = false;
3 boolean c;
4 c = b && ++a == 2;
5 b = a++ == 2;
6 b = !b;
7 System.out.println(a + " " + b + " " + c);

 Trace the code using this trace setup:

line# a b c output

 9. [after §11.9] Assume:

boolean a = false;
boolean b;
double c = 2.5;

•

•

•

•

•

•

•

•

 Exercises 467

11-M4402.indd 46711-M4402.indd 467 12/17/07 4:25:35 PM12/17/07 4:25:35 PM

Apago PDF Enhancer

468 Chapter 11 Type Details and Alternate Coding Mechanisms

 Determine the output of the following code fragment:

b = a && (++c == 3.5);
a = true || (++c == 3.5);
System.out.println(a + " " + b + " " + c);

 10. [after §11.10] In the Fibonacci sequence, each successive element is the sum of the two previous elements.
Starting with 0 and 1, the next element is 0 � 1 � 1.The element after that is 1 � 1 � 2. The element after
that is 1 � 2 � 3, and the one after that is 2 � 3 � 5, and so on. Given this declaration:

int p, q;

 Provide a for loop that prints this part of the Fibonacci sequence:

1 2 3 5 8

 Your solution should consist of just a for loop header and then an empty statement—nothing else. By the
way, we recommend that you avoid code like this for your real programs. This exercise is just for fun (fun
for a hacker, anyway ☺).

 11. [after §11.10] A common error is to accidentally add a semicolon at the end of a loop header. Run the
following main method on a computer. What is the output?

public static void main(String[] args)
{
 int i;
 int factorial = 1;

 for (i=2; i<=4; i++);
 {
 factorial *= i;
 }
 System.out.println("i = " + i + ", factorial = " + factorial);
} // end main

 12. [after §11.12] Note the following program. Provide a for loop that is functionally equivalent to the given
do loop.

import java.util.Scanner;

public class Test
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String entry;

 do
 {
 System.out.println("Enter 'q' to quit: ");
 entry = stdIn.nextLine();
 } while (!entry.equals("q"));
 } // end main
} // end class Test

 13. [after §11.13] What is the Unicode hexadecimal value for the “�” (infi nity) symbol? Show or explain how
you got your answer.

11-M4402.indd 46811-M4402.indd 468 12/17/07 4:25:36 PM12/17/07 4:25:36 PM

Apago PDF Enhancer

Review Question Solutions

 1. byte � 8 bits, short � 16 bits, int � 32 bits, long � 64 bits

 2. 1.602E-19 or 1.602e-19

 3. float precision � 6 digits, double precision � 15 digits

 4. The basic ASCII character set describes 128 different characters.

 5. To convert uppercase to lowercase, add 32. To go the other way, subtract 32.

 6. System.out.println((long) C); // (int) isn’t big enough!

 7. This statement is OK:

float price = 66;

 8. This statement generates a compile-time error because it’s illegal to convert between numeric values and
boolean values:

boolean done = (boolean) 0;

 9. This statement generates a compile-time error because fl oating point constants are double by default:

float price = 98.1;

 10. z’s value is 4. The fi rst decrement uses prefi x mode so x is fi rst decremented to 2, then 2 is assigned into z.
The second decrement uses postfi x mode so x is decremented after its value of 2 is added to z.

 11. w = x = y = z; or any other sequence that has z on the right.

 12. The switch controlling expression evaluates to 'M'

 13. Expression-evaluation practice:

 a) a + 25 / (x + 2) ⇒
 (2 + 25 / (8.0 + 2) ⇒
 2 + 25 / 10.0 ⇒
 2 + 2.5 ⇒
 4.5

 b) 7 + a * --b / 2 ⇒
 7 + 2 * --6 / 2 ⇒
 7 + 2 * 5 / 2 ⇒
 7 + 10 / 2 ⇒
 7 + 5 ⇒
 12

 c) a * --b / 6 ⇒
 2 * --6 / 6 ⇒
 2 * 5 / 6 ⇒
 10 / 6 ⇒
 1
 d) a + b++ ⇒
 2 + 6 (b is updated to 7 after its value is accessed) ⇒
 8

 Review Question Solutions 469

11-M4402.indd 46911-M4402.indd 469 12/17/07 4:25:36 PM12/17/07 4:25:36 PM

Apago PDF Enhancer

470 Chapter 11 Type Details and Alternate Coding Mechanisms

 e) a - (b = 4) % 7 ⇒
 2 - 4 % 7 ⇒

 2 - 4 ⇒

 -2

 f) b = x = 23 ⇒
b = 23.0 ⇒
compilation error (because the float 23.0 cannot be assigned to the int b without a cast operator)

 14. Will it evaluate expr2?
 a) No. Since the left side of the || operator is true, short-circuit evaluation will cause the right side of

the || operator (expr2) to be ignored (since the result of the entire expression will evaluate to true
regardless of expr2’s value).

 b) Yes.

 15. Assuming:

int a = 2;
boolean flag = true;

a < 3 || flag && !flag ⇒
2 < 3 || true && !true ⇒
2 < 3 || true && false ⇒
true || true && false ⇒
true (short circuit evaluation dictates “true or anything” evaluates to true)

 16. It prints nothing because, due to the empty statement, the while loop header executes repeatedly in an
infi nite loop.

 17. True. Normally, you should avoid using break other than in switch statements.

 18. The code fragment generates an infi nite loop because the for loop header’s missing second component is
true by default. The output is:

0 2 4 6 ...

 19. The hexadecimal symbol for the decimal number 13 is either d or D.

 20. False. They are the same only in the range from 0x00 to 0x7F.

11-M4402.indd 47011-M4402.indd 470 12/17/07 4:25:36 PM12/17/07 4:25:36 PM

Apago PDF Enhancer

0.0 Last A-Head 471

C H A P T E R

471

Aggregation, Composition,

and Inheritance

Objectives

Understand how things are naturally organized in aggregations and compositions.

Implement aggregation and composition relationships within a program.

Understand how inheritance can be used to refi ne an existing class.

Implement an inheritance hierarchy within a program.

Learn how to write constructors for derived classes.

Learn how to override an inherited method.

Learn how to prevent overriding.

Learn how to use a class to represent an association.

Outline

12.1 Introduction

12.2 Composition and Aggregation

12.3 Inheritance Overview

12.4 Implementation of Person/Employee/FullTime Hierarchy

12.5 Constructors in a Subclass

12.6 Method Overriding

12.7 Using the Person/Employee/FullTime Hierarchy

12.8 The final Access Modifi er

12.9 Using Inheritance with Aggregation and Composition

12.10 Design Practice with Card Game Example

12.11 Problem Solving with Association Classes (Optional)

•
•
•
•
•
•
•
•

12

12-M4402.indd 47112-M4402.indd 471 12/17/07 4:25:48 PM12/17/07 4:25:48 PM

Apago PDF Enhancer

472 Chapter 12 Aggregation, Composition, and Inheritance

12.1 Introduction

Prior to this chapter, the programs you’ve created have been relatively simple in terms of their object ori-

entation, so you’ve been able to describe all the objects in a program with just a single class. But for more

complex programs, you should consider implementing multiple classes, one for each different type of ob-

ject within a program. In this chapter you’ll do just that, and you’ll focus on the different ways to organize

classes in a multiple-class program. First, you’ll learn how to organize classes that are parts of a larger

containing class. When classes are related like that, where one class is the whole and the other classes are

parts of the whole, the classes form an aggregation. Then you’ll learn how to organize classes where one

class, the base class, defi nes common features for a group of objects, and the other classes defi ne special-

ized features for each of the different types of objects in the group. When classes are related like that, the

classes form an inheritance hierarchy. It’s called an inheritance hierarchy because the specialized classes

inherit features from the base class.

In describing inheritance, we present various techniques for working with an inheritance hierarchy’s

classes. Specifi cally, we present method overriding, which allows you to redefi ne a method in a specialized

class that’s already been defi ned in the base class. We also present the final modifi er, which allows you to

prevent a specialized class from overriding a method defi ned in the base class.

As a follow-up to the initial presentation of aggregation and inheritance concepts, we describe how the

two design strategies can work together. It’s sometimes diffi cult to decide which is the best strategy to use.

To give you practice with those decisions, we guide you part way through a program design activity and de-

velop the skeleton for what could be a sophisticated card game program. In a fi nal optional section, we show

you how to improve organization by creating an association class, which defi nes a set of characteristics that

belong to a particular relationship between classes.

By showing you how to organize multiple classes, this chapter provides you with important tools neces-

sary to tackle real-world problems. After all, most real-world programming projects are large and involve

multiple types of objects. When you organize objects correctly, it makes programs easier to understand and

maintain. And that’s good for everyone!

12.2 Composition and Aggregation

There are two primary forms of aggregation. As described above, standard aggregation is when one class

is the whole and other classes are parts of the whole. The other form of aggregation also defi nes one class

as the whole and other classes as parts of the whole. But it has an additional constraint that says the whole

class is the exclusive owner of the parts classes. “Exclusive ownership” means that the parts classes cannot

be owned by another class while they are being owned by the whole class. This exclusive-ownership form

of aggregation is called composition. With composition, the whole class is called the composite, the parts

classes are called components, and the composite contains the components. Composition is considered to be

a strong form of aggregation since the composite-component connections are strong (due to each component

having only one owner, the composite).

Composition and Aggregation in the Real World

The concept of composition was not created for computer programming; it’s frequently used for complex

objects in the real world. Every living creature and most manufactured products are made up of parts. Of-

ten, each part is a subsystem that is itself made up of its own set of subparts. Together, the whole system

forms a composition hierarchy.

12-M4402.indd 47212-M4402.indd 472 12/17/07 4:25:49 PM12/17/07 4:25:49 PM

Apago PDF Enhancer

Figure 12.1 shows a composition hierarchy for a human body. At the top of this particular composition

hierarchy is a whole body. A human body is composed of several organs—brain, heart, stomach, bones,

muscles, and so on. Each of these organs is in turn composed of many cells. Each of these cells is composed

of many organelles, like the nucleus (a cell’s “brain”), and the mitochondria, (a cell’s “muscles”). Each or-

ganelle is composed of many molecules. And fi nally, each organic molecule is typically composed of many

atoms.

In a composition hierarchy (as well as in an aggregation hierarchy), the relationship between a contain-

ing class and one of its part classes is known as a has-a relationship. For example, each human body has a

brain and has a heart. Remember that with a composition relationship, a component part is limited to just

one owner at a time. For example, a heart can be in only one body at a time. Although the ownership is ex-

clusive, it’s possible for the ownership to change. With a heart transplant, a heart can switch to a new owner,

but it still has just one owner at a time.

Note the diamonds in Figure 12.1. In the Universal Modeling Language (UML), solid diamonds denote

a composition relationship. They indicate that a whole has exclusive ownership of a part.

Now let’s think about an aggregation example where the parts are not exclusively owned by the whole.

You can implement a school as an aggregation by creating a whole class for the school and part classes for

the different types of people who work and study at the school. The people aren’t exclusively owned by the

school because a person can be part of more than one aggregation. For example, a person can attend classes

at two different schools and be part of two school aggregations. The same person might even be part of a

third aggregation, of a different type, like a household aggregation.

human body

brain bones

molecules

cells

nucleus

atoms

mitochondria

musclesheart stomach

Figure 12.1 Partial representation of a composition hierarchy for a human body

 12.2 Composition and Aggregation 473

12-M4402.indd 47312-M4402.indd 473 12/17/07 4:25:49 PM12/17/07 4:25:49 PM

Apago PDF Enhancer

474 Chapter 12 Aggregation, Composition, and Inheritance

Composition and Aggregation in a Java Program

Let’s look at an example that uses both class relationships—composition (where exclusive ownership is re-

quired) and standard aggregation (where exclusive ownership is not required). Suppose you’re trying to model

a car dealership with a computer program. Since the car dealership is made from several distinct non-trivial

parts, it’s a good candidate for being implemented as an aggregation. The “whole” (the top of the aggregation

hierarchy) is the dealership. Typically, a business has two kinds of “parts”– people and property. For simplicity,

suppose the only types of people at the car dealership are management and sales people, and suppose the only

type of property is cars. The control the dealership has over the people is limited. They may also have other

jobs, and they may have family obligations. The dealership does not own its employees exclusively. Therefore,

the relationship between the dealership and its employees is just aggregation. But the dealership does own

its cars exclusively. So that relationship is composition. Note that the dealership can transfer ownership of its

cars to its customers. That’s OK because composition permits ownership to be transferred. Using a bottom-up

design methodology, you should defi ne three classes—Car, Manager, and SalesPerson—for the three

types of component objects. Then, you should defi ne a Dealership class for the container object.

Before you see the Dealership program’s code, let’s focus on the big-picture concepts using a UML class

diagram. Figure 12.2’s UML class diagram shows the Dealership program’s four classes and the relationships

among them. Since we’re now focusing on just the relationships among classes, in each representation of a

class, we include just the class name and omit variables and methods. That’s OK—UML is very fl exible, and

such omissions are allowed by the UML standards. UML indicates class relationships with connecting lines

that run from one class to another. Formally, each connecting line is called an association line.

In Figure 12.2, note the diamonds on the association lines. Solid diamonds (like the one on the

Dealership-Car line) indicate composition relationships, and hollow diamonds (like the ones on the

Dealership-Manager and Dealership-SalesPerson lines) indicate aggregation relationships.

The diamonds always go next to the containing class, so Figure 12.2’s class diagram indicates that

Dealership is the containing class.

Notice the numbers and asterisks written beside the association lines. These are multiplicity values that

UML uses to specify the number of objects that participate in associations. The two 1’s on the line between

Dealership and Manager indicate a one-to-one association. That means there’s one manager for each

car dealership. If there were a 2 multiplicity value for the manager class, that would indicate two managers

for each car dealership. The combination of 1 and * on the other two association lines indicates one-to-many

associations, where “many” implies an indefi nite number. That means you can have lots of cars (or none)

and lots of sales people (or none) for one car dealership.

It’s now time to move from the conceptual phase, with emphasis on the dealership’s UML class dia-

gram, to the implementation phase, with emphasis on the Dealership program code. Note the Dealership
class in Figure 12.3, and in particular, note the manager, people, and cars instance variables declared

Figure 12.2 Class diagram for Dealership program

1 1

1*

1

*

Manager SalesPersonCar

Dealership

aggregation

relationships

containing

class

composition

relationship

12-M4402.indd 47412-M4402.indd 474 12/17/07 4:25:50 PM12/17/07 4:25:50 PM

Apago PDF Enhancer

Figure 12.3 Dealership class for Dealership program

/**
* Dealership.java
* Dean & Dean
*
* This represents an auto retail sales organization.
**/

import java.util.ArrayList;

public class Dealership
{
 private String company;
 private Manager manager;
 private ArrayList<SalesPerson> people =
 new ArrayList<SalesPerson>();
 private ArrayList<Car> cars = new ArrayList<Car>();

 //***

 public Dealership(String company, Manager manager)
 {
 this.company = company;
 this.manager = manager;
 }

 //***

 public void addCar(Car car)
 {
 cars.add(car);
 }

 public void addPerson(SalesPerson person)
 {
 people.add(person);
 }

 //***

 public void printStatus()
 {
 System.out.println(company + "\t" + manager.getName());
 for (SalesPerson person : people)
 System.out.println(person.getName());
 for (Car car : cars)
 System.out.println(car.getMake());
 } // end printStatus
} // end Dealership class

Containership

implemented

here.

⎫
⎬
⎪
⎭

12.2 Composition and Aggregation 475

12-M4402.indd 47512-M4402.indd 475 12/17/07 4:25:51 PM12/17/07 4:25:51 PM

Apago PDF Enhancer

476 Chapter 12 Aggregation, Composition, and Inheritance

inside of the Dealership class. Those instance variable declarations implement the concept of the dealer-

ship class containing the other three classes. The general rule is that whenever you have a class that contains

another class, declare an instance variable inside the containing class such that the instance variable holds a

reference to one or more of the contained class’s objects.

Also in the Dealership class, note the use of ArrayLists for the people and cars instance

variables. Typically, if you have a class in a UML class diagram with a * multiplicity value, you should use

an ArrayList to implement the reference to the asterisked class. ArrayLists are good for implement-

ing * multiplicity values because they can expand to accommodate any number of elements.

Peruse the Car, Manager, and SalesPerson classes in Figures 12.4, 12.5, and 12.6. They simply

store and retrieve data. Note the SalesPerson’s sales instance variable—it keeps track of the total

sales for a sales person for the current year. There are no methods for accessing or updating the sales in-

stance variable. We omitted those methods to avoid code clutter and to maintain focus on the matter at hand,

aggregation and composition. In an actual car dealership program, you’d need to provide those methods.

Figure 12.4 Car class for Dealership program

/********************************
* Car.java
* Dean & Dean
*
* This class implements a car.
********************************/

public class Car
{
 private String make;

 //****************************

 public Car(String make)
 {
 this.make = make;
 }

 //****************************

 public String getMake()
 {
 return make;
 }
} // end Car class

See the car dealership program’s driver class in Figure 12.7. Most of the code is straightforward. The

main method instantiates a Manager object, two SalesPerson objects, and a Dealership object.

Then main adds salesPerson and Car objects to the Dealership object. The part of main that mer-

its further attention is the use of local variables for the Manager and SalesPerson objects and the use of

anonymous objects for the Car objects. Why the discrepancy? Because Manager and SalesPerson relate

to the Dealership class with aggregation, and Car relates to the Dealership class with composition.

12-M4402.indd 47612-M4402.indd 476 12/17/07 4:25:51 PM12/17/07 4:25:51 PM

Apago PDF Enhancer
Figure 12.5 Manager class for Dealership program

/***
* Manager.java
* Dean & Dean
*
* This class implements a car dealership sales manager.
***/

public class Manager
{
 private String name;

 //**

 public Manager(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return name;
 }
} // end Manager class

Figure 12.6 SalesPerson class for Dealership program

/***
* SalesPerson.java
* Dean & Dean
*
* This class implements a car sales person.
***/

public class SalesPerson
{
 private String name;
 private double sales = 0.0; // sales to date

 //**

 public SalesPerson(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return name;
 }
} // end SalesPerson class

 12.2 Composition and Aggregation 477

12-M4402.indd 47712-M4402.indd 477 12/17/07 4:25:51 PM12/17/07 4:25:51 PM

Apago PDF Enhancer

478 Chapter 12 Aggregation, Composition, and Inheritance

Here’s the general rule for implementing aggregation relationships. Whenever two classes have an ag-

gregation relationship, you should save the contained class’s object in a reference variable in the containing

class, and you should also save it in another reference variable outside of the containing class. That way, the

object can be added to another aggregation and have two different “owners” (having two different owners is

allowed by aggregation). Putting this in the context of the Dealership program, DealershipDriver uses

local variables when it instantiates Manager and SalesPerson objects. That enables Manager and

SalesPerson objects to exist independently from the dealership, and that mirrors the real world.

Now let’s look at the general rule for implementing composition relationships. Whenever two classes

have a composition relationship, you should save the contained class’s object in a reference variable in the

containing class, and you should not save it elsewhere. That way, the object can have only one “owner”

(having just one owner is required by composition). Putting this in the context of the Dealership program,

Figure 12.7 Driver for Dealership program

/***
* DealershipDriver.java
* Dean & Dean
*
* This class demonstrates car dealership composition.
***/

public class DealershipDriver
{
 public static void main(String[] args)
 {
 Manager ryne = new Manager("Ryne Mendez");
 SalesPerson nicole = new SalesPerson("Nicole Betz");
 SalesPerson vince = new SalesPerson("Vince Sola");
 Dealership dealership =
 new Dealership("OK Used Cars", ryne);

 dealership.addPerson(nicole);
 dealership.addPerson(vince);
 dealership.addCar(new Car("GMC"));
 dealership.addCar(new Car("Yugo"));
 dealership.addCar(new Car("Dodge"));
 dealership.printStatus();
 } // end main
} // end DealershipDriver class

Output:

OK Used Cars Ryne Mendez
Nicole Betz
Vince Sola
GMC
Yugo
Dodge

⎫
⎪
⎬
⎪
⎭

⎫
⎬
⎭

For aggregations,

pass in copies of

references.

For compositions,

create anonymous

objects.

12-M4402.indd 47812-M4402.indd 478 12/17/07 4:25:51 PM12/17/07 4:25:51 PM

Apago PDF Enhancer

DealershipDriver creates anonymous objects when it instantiates cars. That gives the dealership ex-

clusive ownership and complete control over the cars, and that mirrors the real world.

12.3 Inheritance Overview

So far in this chapter, we’ve focused on aggregation and composition hierarchies, where one class is the

whole and other classes are parts of the whole. Now we turn to inheritance hierarchies, which are quali-

tatively different from composition hierarchies. Whereas a composition hierarchy describes a nesting of

things, an inheritance hierarchy describes an elaboration of concepts. The concept at the top is the most

general/generic, and the concepts at the bottom are the most specifi c.

Real-World Inheritance Hierarchies

Before looking at inheritance hierarchy code, let’s think about a real-world inheritance hierarchy example.

Figure 12.8 describes a few of the many possible characteristics of organisms living on the earth today,

with the most general characteristics at the top of the diagram and the most specifi c characteristics at the

bottom of the diagram. Although this chart includes only characteristics of current living organisms, it’s

helpful to recognize that there was a natural time sequence in the development of these characteristics. The

 characteristics at the top developed fi rst, and the characteristics at the bottom developed last. The earliest

types of life—bacteria—appeared on earth almost 4 billion years ago as single-celled organisms with no

internal partitions. About 2.3 billion years ago a nucleus and other components appeared inside cells, creat-

ing more sophisticated single-celled organisms called Eukaryotes (true-celled organisms). About 1.3 billion

years ago the fi rst animals appeared. They had more than one cell, and they were vascular (had contain-

ers and conveyors like arteries and veins). About 510 million years ago some of the animals (vertebrates)

developed backbones and braincases. About 325 million years ago, the fi rst reptiles appeared. Then, about

245 million years ago, the fi rst mammals appeared.

Recognizing the natural time sequence in the biological inheritance hierarchy that describes current life

is useful for two reasons: (1) We’re talking about “inheritance” here. What’s at the bottom of the chart “inher-

its” from what’s above it, and in real life descendants inherit from their ancestors. (2) The natural develop-

ment of life from simple (at the top of the chart) to complex (at the bottom of the chart) provides an excellent

model for the engineered development of an object-oriented computer program. It’s good de-

sign practice to start with a relatively simple and generic implementation and add specializa-

tions and complexity in subsequent design cycles. You’ll see some examples of this later on.

With composition, certain classes contain other classes, but with inheritance, there’s no such container-

ship. For example, in Figure 12.8, Animal is above Mammal, but an animal does not contain a mammal.

Rather, an animal is a generic type, and a mammal is a specialized version of an animal.

Each descendant type of organism inherits some characteristics from its ancestors and adds some new

characteristics of its own. In an inheritance hierarchy, the characteristics associated with a type high in the

hierarchy are not supposed to be all of the characteristics possessed by any individual living organism. Ide-

ally, the characteristics associated with each type high in the hierarchy should be just those characteristics

that are “conserved”—actually inherited by all types descended from that type. Thus, ideally, any type at

the bottom of the hierarchy inherits all of the characteristics associated with all types above it. For example,

mammals have mammary glands and hair. And, since mammals are vertebrates, they inherit the vertebrate

characteristics of having a backbone and a braincase. And, since mammals are also animals, they also in-

herit the animal characteristics of having more than one cell and being vascular. And, since mammals are

also eukaryotes, they also inherit the eukaryote characteristic of having a nucleus in each cell.

Start generic.Start generic.

 12.3 Inheritance Overview 479

12-M4402.indd 47912-M4402.indd 479 12/17/07 4:25:52 PM12/17/07 4:25:52 PM

Apago PDF Enhancer

480 Chapter 12 Aggregation, Composition, and Inheritance

The types at the very bottom of a real-life biological inheritance hierarchy do not appear in Figure 12.8,

because the complete hierarchy is too big to display in one fi gure. What’s actually at the bottom are species,

like Homo sapiens (human beings). In nature, reproduction is possible only among members of the same spe-

cies. Similarly, in an ideal OOP computer program, the only realizable (instantiable) types are

the types at the very bottom of inheritance hierarchies. Organizing an inheritance hierarchy

so that all realizable (instantiable) types appear only at the lowest level (the leaves of a hierar-

chical tree) minimizes duplication, and it minimizes maintenance and enhancement labor.

UML Class Diagrams for Inheritance Hierarchies

Figure 12.9 shows a UML class diagram for an inheritance hierarchy that keeps track of people associated

with a department store. The top class, Person, is generic. It contains data and methods that are common

to all classes in the hierarchy. Classes below the top class are more specifi c. For example, the Customer

and Employee classes describe specifi c types of people in the department store. Since there are two

 distinct types of store employees, the Employee class has two subordinate classes for the two types—the

 FullTime class for full-time employees and the PartTime class for part-time employees.

Within an inheritance hierarchy, lower classes inherit upper classes’ members. Thus, the Employee

and Customer classes inherit name from the Person class. Likewise, the FullTime and PartTime

Plan to
instantiate
leaves only.

Plan to
instantiate
leaves only.

Organism
Is alive.

Prokaryote
Has one cell with no nucleus.

Bacteria
Normal

Eukaryote
Each cell has nucleus.

Archaea
Extreme Has more than one cell.

Is photosynthetic.

Plant
Has more than one cell.
Is vascular.

Animal

Has exoskeleton.
Is segmented.

Arthropod
Has backbone.
Has braincase.

Vertebrate

Has mammary glands.
Has hair.

Mammal
Lays eggs.
Has scales.

Reptile

Figure 12.8 Biological example of an inheritance hierarchy

12-M4402.indd 48012-M4402.indd 480 12/17/07 4:25:52 PM12/17/07 4:25:52 PM

Apago PDF Enhancer

classes inherit id from the Employee class. Inheritance travels all the way down the inheritance hierarchy

tree, so in addition to inheriting id from the Employee class, the FullTime and PartTime classes also

inherit name from the Person class.

Within an inheritance hierarchy, classes are linked in pairs. Can you identify the linked pairs in

Figure 12.9? The four pairs of linked classes are Person-Customer, Person-Employee, Employee-

FullTime, and Employee-PartTime. For each pair of linked classes, the more general class is consid-

ered to be the superclass and the more specifi c one is considered to be the subclass.
Inheriting a superclass’s variables and methods enables a subclass to be a clone of its superclass. But

making a subclass that’s just a clone would be silly, because you could just use the superclass instead. You

always want a subclass to be a more specifi c version of its superclass. That’s achieved by establishing addi-

tional variables and/or methods inside the subclass’s defi nition. For example, in Figure 12.9, the Customer

class defi nes an address instance variable. That means Customer objects have a name (inherited from the

Person class) plus an address. Customer addresses are important in that they enable department stores to

mail monthly “Everything-Must-Go Liquidation Sale!” advertisements to their customers.

UML class diagrams usually show superclasses above subclasses. However, that’s not always the case.

With large projects, you’ll have lots of classes and several different types of relationships among the classes.

With all that going on, it’s sometimes impossible to draw a “clean” class hierarchy picture and preserve the

traditional superclass-above-subclass layout. Thus, subclasses sometimes appear at the left, at the right, or

even above their superclasses. So how can you tell which is the subclass and which is the superclass? UML

Person

-name : String

+Person()

+Person(name : String)

+getName() : String

Employee

-id : int

+Employee()

+Employee(name : String, id : int)

+display() : void

FullTime

-salary : double

+FullTime()
+FullTime(name : String, id : int, salary : double)
+display() : void

Customer

-address : String

+setAddress(address : String) : void
+getAddress() : String

PartTime

-hourlyWage : double

Figure 12.9 UML class diagram for a Person class inheritance hierarchy

 12.3 Inheritance Overview 481

12-M4402.indd 48112-M4402.indd 481 12/17/07 4:25:53 PM12/17/07 4:25:53 PM

Apago PDF Enhancer

482 Chapter 12 Aggregation, Composition, and Inheritance

class diagrams use a solid line and a hollow arrow for inheritance relationships, with the arrow pointing to

the superclass. In Figure 12.9, note how the arrows do indeed point to the superclasses.

Inheritance Terminology

Unfortunately, the terms superclass and subclass can be misleading. The “super” in superclass seems to

imply that superclasses have more capability, and the “sub” in subclass seems to imply that subclasses have

less capability. Actually, it’s the other way around—subclasses have more capability. Subclasses can do ev-

erything that superclasses can do, plus more.

For the most part, we’ll stick with the terms superclass and subclass since those are the formal terms used

by Sun, but be aware that there is alternative terminology. Programmers often use the terms parent class or

base class when referring to a superclass. And they often use the terms child class or derived class when re-

ferring to a subclass. The parent-child relationship between classes is important because it determines inheri-

tance. With a human parent-child relationship, the child normally inherits money from the parent.1 The class

parent-child relationship parallels the human parent-child relationship. But with a class parent-child relation-

ship, the child doesn’t inherit money; instead it inherits the variables and methods defi ned in the superclass.

There are two more inheritance-related terms that you should be aware of. An ancestor class refers to

any of the classes above a particular class in an inheritance hierarchy. For example, in Figure 12.9’s inheri-

tance hierarchy, Employee and Person are the ancestors of FullTime. A descendant class refers to any

of the classes below a particular class in an inheritance hierarchy. For example, in Figure 12.9’s inheritance

hierarchy, Employee, Customer, FullTime, and PartTime are descendants of Person.

Benefi ts of Inheritance

Long before reading this chapter, you were already convinced of the benefi t of modeling your programs with

classes, right? (In case you need to be reminded why you love classes so much, it’s because classes allow

you to encapsulate things.) So you should be able to see the benefi t of having a Customer class and also an

Employee class for a department store program. OK, having separate Customer and Employee classes

is good, but why stir up trouble and give them a superclass? If there’s no superclass for the Customer and

Employee classes, then the things common to customers and employees would have to be defi ned in both

classes. For example, you’d need a name instance variable and a getName method in both classes. But

redundant code is almost always a bad idea. Why? With redundant code, debugging and upgrading chores

are more tedious. After fi xing or improving the code in one place, the programmer must remember to fi x or

improve the code in the other place as well.

In Figure 12.9, notice that classes at different levels in the hierarchy contain different instance vari-

ables, and they have different methods (although Employee and FullTime both have a display

method, the methods are different; that is, they behave differently). There is no functional duplication, and

there is maximal code reusability. Code reusability is when you have code that provides functionality for

more than one part of a program. Putting common code from two classes into a superclass is one example of

code reusability. Code reusability can also take place when you want to add a signifi cant chunk of function-

ality to an existing class. You might want to implement the functionality by adding code directly to the ex-

isting class. But suppose the class works perfectly, and you’re scared to touch it for fear of

messing it up. Or maybe your know-it-all co-worker wrote the class, and you don’t want to

risk getting him/her riled up over code modifi cations. No problem. Extend the class (that

is, create a subclass) and implement the new functionality in the extended class.

Don’t try to
teach old dogs
new tricks.

Don’t try to
teach old dogs
new tricks.

1 Author John hopes that author/father Ray shares this sentence’s sentiment.

12-M4402.indd 48212-M4402.indd 482 12/17/07 4:25:53 PM12/17/07 4:25:53 PM

Apago PDF Enhancer

You’ve seen that inheritance gives rise to code reusability, and you should now be properly convinced

of the benefi ts of code reusability. Another benefi t of inheritance is that it gives rise to smaller modules

(because classes are split into superclasses and subclasses). In general, smaller modules are good because

there’s less code to wade through when searching for bugs or making upgrades.

12.4 Implementation of Person/Employee/
FullTime Hierarchy

To explain how to implement inheritance, we’ll implement the Person/Employee/FullTime hierar-

chy shown in Figure 12.9. We’ll implement the Person and Employee classes in this section and the

 FullTime class in Section 12.6.

The Person class

Figure 12.10 contains an implementation of the Person class. It will be a superclass, but there’s no special

code in the Person class that indicates it will be a superclass. The special code comes later when we defi ne

Person’s subclasses. That’s where we indicate that Person is a superclass for those subclasses.

Figure 12.10 Person class, superclass for the Employee class

/***
* Person.java
* Dean & Dean
*
* The is a base class for an inheritance hierarchy.
***/

public class Person
{
 private String name = "";

 //**

 public Person()
 { }

 public Person(String name)
 {
 this.name = name;
 }

 //**

 public String getName()
 {
 return this.name;
 }
} // end Person class

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

Remember: Once you write

your own constructor, the

automatic zero-parameter

default constructor

disappears, and if you want

one, you must write it explicitly.

12.4 Implementation of Person/Employee/FullTime Hierarchy 483

12-M4402.indd 48312-M4402.indd 483 12/17/07 4:25:54 PM12/17/07 4:25:54 PM

Apago PDF Enhancer

484 Chapter 12 Aggregation, Composition, and Inheritance

The Person class doesn’t do much. It just stores a name and allows the name to be retrieved with a

getName accessor method. The Person class contains one item worth examining—the zero-parameter

constructor. Normally, when a driver instantiates a Person class, the driver will assign the person’s name by

passing a name argument to the one-parameter constructor. But suppose you want to test your program with a

Person object, and you don’t want to hassle with storing a name in the Person object. The zero- parameter

constructor allows you to do that. Do you know what name will be given to a Person object created by the

zero-parameter constructor? name is a string instance variable, and the default value for a string instance

variable is null. To avoid the ugly null default, note how name is initialized to the empty string.

Quick quiz: Can you achieve the same functionality by omitting the zero-parameter constructor since

the compiler automatically provides a default zero-parameter constructor? Nope—remember that once you

write any constructor, the compiler no longer provides a default zero-parameter constructor.

The Employee Class

Figure 12.11 contains an implementation of the derived Employee class, which provides an id. Note

the extends clause in the Employee class’s heading. To enable inheritance, extends <superclass>
must appear at the right of the subclass’s heading. Thus, extends Person appears at the right of the

Figure 12.11 Employee class, derived from the Person class

/**
* Employee.java
* Dean & Dean
*
* The describes an employee.
**/

public class Employee extends Person
{
 private int id = 0;

 //***

 public Employee()
 { }

 public Employee(String name, int id)
 {
 super(name);
 this.id = id;
 }

 //***

 public void display()
 {
 System.out.println("name: " + getName());
 System.out.println("id: " + id);
 }
} // end Employee class

⎫⎪⎪⎪⎬⎪⎪⎪⎭
This means the Employee

class is derived from the

Person superclass.

This calls the one-parameter

Person constructor.

Since name is in a different

class and is private, we

must use an accessor to

get it. Since getName is

inherited, we don’t need a

referencing prefi x for it.

12-M4402.indd 48412-M4402.indd 484 12/17/07 4:25:54 PM12/17/07 4:25:54 PM

Apago PDF Enhancer

Employee class’s heading. Note that the Employee class defi nes just one instance variable, id. Does

that mean that an Employee object has no name? No. Employee objects do have names because the Em-
ployee class inherits the name instance variable from the Person superclass. Now you’ll learn how to

access name from within the Employee class.

The Employee class’s display method is in charge of printing an employee’s information—name

and id. Printing the id is easy because id is declared within the Employee class. Printing name requires

a bit more work. Since name is a private instance variable in the Person superclass, the Employee

class cannot access name directly (that’s the same interpretation of private that we’ve always had). But

the Employee class can access name by calling the Person class’s public getName accessor method.

Here’s the relevant code from the display method:

System.out.println("name: " + getName());

As you might recall, in an instance method, if you call a method that’s in the same class as the class you’re

currently in, the reference variable dot prefi x is unnecessary. Likewise, in an instance method, if you call a

method that’s in the superclass of the class you’re currently in, the reference variable dot prefi x is unneces-

sary. Thus, there’s no reference variable dot prefi x in the above call to getName.

12.5 Constructors in a Subclass

Let’s now examine Figure 12.11’s two-parameter Employee constructor. The goal is to assign the passed-

in name and id values to the associated instance variables in the instantiated Employee object. Assigning

to the id instance variable is easy because id is declared within the Employee class. But assigning to the

name instance variable is harder because name is a private instance variable in the Person superclass.

There’s no setName mutator method in Person, so how does name get set? Read on. . . .

Using super to Call a Superclass Constructor

Employee objects inherit the name instance variable from Person. It follows that Employee objects

should use the Person constructor to initialize their inherited name instance variables. But how can an

Employee object call a Person constructor? It’s easy—once you know how. To call a superclass con-

structor, use the reserved word super followed by parentheses and a comma-separated list of arguments

that you want to pass to the constructor. For example, here’s how Figure 12.11’s Employee constructor

calls the one-parameter Person constructor:

super(name);

Calls to super are allowed only in one particular place. They’re allowed only from within a constructor,

and they must be the fi rst line within a constructor. That should sound familiar. In Chapter 7, you learned

another usage for the keyword this, a usage that is distinct from using this dot to specify an instance

member. The syntax for this other usage of this is:

this(<arguments>);

This kind of this usage calls another (overloaded) constructor from within a constructor in the same class.

And recall that you must make such a call on the fi rst line of your constructor.

By the way, would it be legal to have a this constructor call and a super constructor call within the

same constructor? No, because with both constructor calls in the same constructor, that means only one of

the constructor calls can be in the fi rst line. The other one would violate the rule that constructor calls must

be in the fi rst line.

 12.5 Constructors in a Subclass 485

12-M4402.indd 48512-M4402.indd 485 12/17/07 4:25:55 PM12/17/07 4:25:55 PM

Apago PDF Enhancer

486 Chapter 12 Aggregation, Composition, and Inheritance

Default Call to Superclass Constructor

The Java designers at Sun are fond of calling superclass constructors since doing so promotes software re-

use. If you write a subclass constructor and don’t include a call to another constructor (with this or with

super), the Java compiler sneaks in and inserts a superclass zero-parameter constructor call by default.

Thus, although Figure 12.11’s Employee zero-parameter constructor has an empty body, the Java compiler

automatically inserts super(); in it. So these two constructors are functionally equivalent:

public Employee()
{ }

public Employee()
{
 super();
}

The explicit super(); call makes it clear what’s going on. Feel free to include it if you wish, to make your

code more self-documenting.

Whenever a constructor is called, the JVM automatically runs up the hierarchical tree to the greatest

grandparent’s constructor, and it executes that greatest grandparent’s constructor fi rst. Then it executes the

code in the constructor below it, and so on, and fi nally it executes the rest of the code in the originally called

constructor.2

12.6 Method Overriding

From Chapter 7, you know about method overloading—that’s when a single class contains two or more

methods with the same name but a different sequence of parameter types. Now for a related concept—

method overriding. That’s when a subclass has a method with the same name, the same sequence of param-

eter types, and the same return type as a method in a superclass. The term “overriding” should make sense

when you realize that an overriding method overrides/supersedes its associated superclass method. That

means, by default, an object of the subclass uses the subclass’s overriding method and not the superclass’s

overridden method.

The concept of a subclass object using the subclass’s method rather than the superclass’s method falls

in line with this general principle of programming: Local stuff takes precedence over global stuff. Can you

think of where else this rule applies? If a local variable and an instance variable have the same name, the lo-

cal variable takes precedence when you’re inside the local variable’s method. The same reasoning applies to

parameters taking precedence over instance variables when you’re inside the parameter’s method.

Method Overriding Example

To explain method overriding, we’ll continue with the implementation of the Person/Employee/FullTime

program. We implemented the Person and Employee classes in Section 12.4. We implement the

 FullTime class in Figure 12.12. Note FullTime’s display method. It has the same sequence of pa-

rameter types as the display method in the Employee class of Figure 12.11. Since the FullTime class

2 This sequence is the same as the sequence that occurs naturally in the embryonic development of a living creature. The characteris-
tics that develop fi rst are the most ancient ones.

12-M4402.indd 48612-M4402.indd 486 12/17/07 4:25:55 PM12/17/07 4:25:55 PM

Apago PDF Enhancer

extends the Employee class, the FullTime class’s display method overrides the Employee class’s

display method.

Using super to Call an Overridden Method

Sometimes, an object of the subclass might need to call the superclass’s overridden method. To perform

such a call, you need to prefi x the method call with super and then a dot. For example, in Figure 12.12’s

FullTime subclass, note how the display method calls the superclass’s display method with

super.display();.

Now look again at that super.display() method call in Figure 12.12’s FullTime class. What

do you suppose would happen if you forgot to prefi x that method call with super dot? Without the pre-

fi x, display(); would call the display method in the current class, FullTime, not the display
method in the superclass. In executing the FullTime class’s display method, the JVM would call the

FullTime class’s display method again. This process would repeat in an infi nite loop.

Figure 12.12 FullTime class, which illustrates method overriding

/***
* FullTime.java
* Dean & Dean
*
* The describes a full-time employee.
***/

public class FullTime extends Employee
{
 private double salary = 0.0;

 //**

 public FullTime()
 { }

 public FullTime(String name, int id, double salary)
 {
 super(name, id);
 this.salary = salary;
 }

 //**

 public void display()
 {
 super.display();
 System.out.printf(
 "salary: $%,.0f\n", salary);
 }
} // end FullTime class

This calls the two-parameter

Employee constructor.

This method overrides the display

method defi ned in the Employee class.

12.6 Method Overriding 487

This calls the display method defi ned

in the Employee class.

12-M4402.indd 48712-M4402.indd 487 12/17/07 4:25:55 PM12/17/07 4:25:55 PM

Apago PDF Enhancer

488 Chapter 12 Aggregation, Composition, and Inheritance

By the way, you can have a series of overriding methods; that is, you can override an overriding method.

But it’s illegal to have a series of super dot prefi xes chained together. In other words, in the Person/

Employee/FullTime inheritance hierarchy, suppose the Person class contains a display method

that’s overridden by the Employee and FullTime classes. In the FullTime class, it would be illegal to

call the Person class’s display method like this:

super.super.display();

To call the Person class’s display method from the FullTime class, you’d have to call the Employee
class’s display method, and rely on the Employee class’s display method to call the Person class’s

display method.

Have you noticed that super has two different purposes? You can use super dot to call an overrid-

den method, and you can also use super with parentheses (e.g., super(name);) to call a superclass’s

constructor.

Return Types Must Be the Same

An overriding method must have the same return type as the method that it’s overriding. If it has a different

return type, the compiler generates an error. Said another way, if a subclass and a superclass have methods

with the same name, the same sequence of parameter types, and different return types, the compiler gener-

ates an error.

This error doesn’t occur all that often because if you’ve got methods with the same names and sequences

of parameter types, you’ll usually also want the same return types. But you’ll see the error crop up every now

and then when you’re debugging, so be aware of it. By the way, if a subclass and a superclass have methods

with the same name and different sequences of parameter types, it doesn’t matter if the return types are the

same. Why? Because such methods are not in an overriding relationship. They are different methods entirely.

12.7 Using the Person/Employee/FullTime Hierarchy

Now let’s reinforce what you’ve learned about inheritance by looking at what happens when you instanti-

ate an object of the lowest-level derived type and use that object to call overridden methods and inherited

methods. Figure 12.13 contains a driver for the FullTime class, and the subsequent output shows what

it does. This driver instantiates a fullTimer object from the FullTime class. Then the fullTimer
object calls its display method. As shown in Figure 12.12, this display method uses super to call the

Employee class’s display method, which prints the fullTimer’s name and id. Then fullTimer’s

display method prints the fullTimer’s salary.

In the fi nal statement in Figure 12.13, the fullTimer object calls its getName method and prints

fullTimer’s name. But wait a minute! The FullTime class does not have a getName method, and its

superclass, Employee, does not have one either. The code seems to be calling a non-existent method. What’s

going on here? What’s going on is inheritance—produced by those wonderful little extends clauses. Be-

cause there is no explicitly defi ned getName method in its own FullTime class, the fullTimer object

goes up its inheritance hierarchy until it fi nds a getName method, and then it uses that method. In this

case, the fi rst getName method found is in the Person class, so that’s the method the fullTimer object

inherits and uses. There is no need to use super dot to access the getName method (but using super dot

would work, in case you’re curious). If a method is not in the current class, the JVM automatically goes up

the inheritance hierarchy and uses the fi rst defi nition of that method it fi nds.

Notice that our driver did not instantiate any Employee or Person objects. It just instantiated an

object from a class at the bottom of the inheritance hierarchy only. This is the way a good inheritance

compilation error

12-M4402.indd 48812-M4402.indd 488 12/17/07 4:25:56 PM12/17/07 4:25:56 PM

Apago PDF Enhancer

 hierarchy should be used. Ideally, you should just instantiate objects from classes at the bottom of the hierar-

chy. Ideally, all the classes above the bottom classes are there to make the bottom classes simple. In real life,

we often do use classes above the bottom, but using bottom classes only is the ideal situation.

12.8 The final Access Modifi er

You’ve used the final access modifi er for quite a while now to turn a variable into a named constant. In

this section, you’ll learn how to use final to modify a method and modify a class.

If you use the final modifi er in a method heading, you’ll prevent the method from being overridden

with a new defi nition in a subclass. You might want to do this if you think that your method is perfect and

you don’t want its original meaning to “drift.” You might also want to consider using final to help speed

things up a bit. Methods that use the final modifi er should run faster since the compiler can generate more

effi cient code for them. The code effi ciency comes from the compiler not having to prepare for the possibil-

ity of inheritance. However, the speed improvement is miniscule for adding final to a single method, and

you probably won’t notice it unless you have a large programming project with lots of subclasses and you

use final a lot.

If you use the final access modifer in a class heading, you prevent the class from having any sub-

classes. You might want to do this if you have a class that’s good and reliable, and you want to preserve its

quality and protect it from future “feature creep.” By the way, if a class is declared to be a final class,

there’s no point in specifying final for any of its methods. A final class cannot be extended, so overrid-

ing methods cannot exist.

Figure 12.13 Driver of constructors and methods in an inheritance hierarchy

/***
* FullTimeDriver.java
* Dean & Dean
*
* The describes a full-time employee.
***/

public class FullTimeDriver
{
 public static void main(String[] args)
 {
 FullTime fullTimer = new FullTime("Shreya", 5733, 80000);

 fullTimer.display();
 System.out.println(fullTimer.getName());
 }
} // end FullTimeDriver class

Output:

name: Shreya
id: 5733
salary: $80,000
Shreya

 12.8 The final Access Modifi er 489

12-M4402.indd 48912-M4402.indd 489 12/17/07 4:25:56 PM12/17/07 4:25:56 PM

Apago PDF Enhancer

490 Chapter 12 Aggregation, Composition, and Inheritance

Even though it may be diffi cult to see palpable benefi ts from the use of final, go ahead and use it

when appropriate. And even if you don’t use it for your own programs, you’ll need to understand it because

you’ll see it quite often in the Java API library classes. For example, the Math class is defi ned with the

 final access modifi er, so it’s illegal to extend the Math class and override any of its methods.

12.9 Using Inheritance with Aggregation and Composition

We have described several ways classes can be related—with aggregation, composition, and inheritance.

Now let’s consider using all three relationships together.

Aggregation, Composition, and Inheritance Compared

Aggregation and composition both implement a has-a relationship. We call aggregation and composition

relationships has-a relationships because one class, the container class, has a component class inside of it.

For example, in Section 12.2’s Dealership program, a dealership has a sales manager, with non-exclusive

ownership rights, and that’s why the Dealership program implements the Dealership-SalesManager

relationship with aggregation. Also, a dealership has an inventory of cars, with exclusive ownership rights,

and that’s why the Dealership program implements the Dealership-Car relationship with composition.

Inheritance implements an is-a relationship. We call an inheritance relationship an is-a relationship be-

cause one class, a subclass, is a more detailed version of another class. For example, in the Person/ Employee/

FullTime program, a full-time employee is an employee, and that’s why the program implements the Full-
Time-Employee relationship with inheritance. Also, an employee is a person, and that’s why the program

implements the Employee-Person relationship with inheritance as well.

It’s important to keep in mind that these are not alternative ways to represent the same relationship.

They are ways to represent different relationships. The aggregation and composition relationships are when

one class is a whole made up of non-trivial constituent parts defi ned in other classes. The inheritance rela-

tionship is when one class is a more detailed version of another class. More formally, inheritance is when

one class, a subclass, inherits variables and methods from another class, a superclass, and then supplements

those with additional variables and methods. Since composition and inheritance deal with different aspects

of a problem, many programming solutions include a mixture of both paradigms.

Aggregation, Composition, and Inheritance Combined

In the real world, it’s fairly common to have aggregation, composition, and inheritance relationships to-

gether in the same program. Let’s look at an example that uses all three class relationships. Section 12.2’s

Dealership program uses aggregation and composition, as illustrated by this UML class diagram:

1 1

1*

1

*

Manager SalesPersonCar

Dealership

12-M4402.indd 49012-M4402.indd 490 12/17/07 4:25:57 PM12/17/07 4:25:57 PM

Apago PDF Enhancer

What sort of inheritance relationship could/should be added to the Dealership program? If you look

back at Figures 12.5 (Manager class) and 12.6 (SalesPerson class), you’ll see that Manager and

SalesPerson both declare the same instance variable, name, and they both defi ne the same instance

method, getName. That’s an example of undesirable duplication, and we can use inheri-

tance to eliminate that duplication. Introducing inheritance into that program does not al-

ter the original whole-parts structure. It just introduces a complementary mechanism that

eliminates duplication.

Figure 12.14 shows an improved and expanded UML class diagram for a new Dealership2 program. If

you compare this with the previous UML class diagram, you’ll see that each class is fl eshed out to include

Factor out the
common code.
Factor out the
common code.

12.9 Using Inheritance with Aggregation and Composition 491

Figure 12.14 Class diagram for revised car dealership program—Dealership2

1

1

11

*

*

+Dealership2(company : String, manager : Manager2)
+addPerson(person : SalesPerson2) : void

+addCar(car : Car) : void
+printStatus() : void

-company : String

-manager : Manager2

-people : ArrayList<SalesPerson2>

-cars : ArrayList<Car>

Dealership2

Manager2

+Manager2(name : String)

SalesPerson2

-sales : double = 0.0

+SalesPerson2(name : String)

Car

-make : String

+Car(make : String)

Person

-name : String

+Person()

+Person(name : String)

+getName() : String

+getMake() : String

⎫
⎪
⎬
⎪
⎭

⎫
⎬
⎭

composition

relationship

⎫
⎪
⎬
⎪
⎭

inheritance

relationships

aggregation

relationships

top of

composition

hierarchy

top of

inheritance

hierarchy

12-M4402.indd 49112-M4402.indd 491 12/17/07 4:25:57 PM12/17/07 4:25:57 PM

Apago PDF Enhancer

492 Chapter 12 Aggregation, Composition, and Inheritance

instance variables and methods. Figure 12.14’s diagram also includes a Person class. Our previ-

ous Manager and SalesPerson classes now inherit a variable, two constructors and a method from

this Person class. The inheritance reduces the Manager and SalesPerson classes to the simpler

 Manager2 and SalesPerson2 classes. These simpler classes do not need explicit declaration of name

and explicit defi nition of getName because they inherit these members from Person. Read through the

code for the shortened Manager2 and SalesPerson2 classes in Figures 12.15 and 12.16.

Figure 12.15 Manager2 class for Dealership2 program

/**
* Manager2.java
* Dean & Dean
*
* This represents car dealership manager
**/

public class Manager2 extends Person
{
 public Manager2(String name)
 {
 super(name);
 }
} // end Manager2 class

Figure 12.16 SalesPerson2 class for Dealership2 program

/***
* SalesPerson2.java
* Dean & Dean
*
* This represents car sales person
***/

public class SalesPerson2 extends Person
{
 private double sales = 0; // sales to date

 //**

 public SalesPerson2(String name)
 {
 super(name);
 }
} // end SalesPerson2 class

The Car class is unchanged from the original Dealership program; if you want to see its code,

look back at Figure 12.4. The Dealership2 and Dealership2Driver classes are the same as the

12-M4402.indd 49212-M4402.indd 492 12/17/07 4:25:58 PM12/17/07 4:25:58 PM

Apago PDF Enhancer

 Dealership and DealershipDriver classes defi ned in Figures 12.3 and 12.7, respectively, except

Dealership is changed to Dealership2, Manager is changed to Manager2, and SalesPerson is

changed to SalesPerson2.

In Figure 12.14, the addition of the Person class makes it look like we made the Dealership2 program

bigger by adding another class. But the additional Person class was already defi ned in another program,

the Person/Employee/FullTime program. In borrowing the Person class from that program, we got some-

thing for nothing. The borrowed Person class enabled us to shorten two other classes. Being able to bor-

row classes that have already been written and then inheriting from them in other contexts is an important

benefi t of OOP. If you look at the prewritten classes in the Java API, you’ll see that they do a lot of inheriting

from one to another, and in many cases, you have the option of inheriting from them into your own pro-

grams, as well.

12.10 Design Practice with Card Game Example

In the previous section, you learned how to use different types of class relationships together in a single pro-

gram. The way you learned was by adding inheritance to an existing program. In this section, you’ll once

again use different types of class relationships, but this time you’ll design the program

from the ground up. And you’ll be doing most of the work, rather than just understanding

how it’s done by someone else.

Your Mission (Should You Choose to Accept It)

Your mission is to design and implement a generic card game program. In carrying out this mission, follow

these guidelines:

Assume it’s a game like war or gin rummy where you have a deck of cards and two players.

Decide on appropriate classes. For each class, draw a UML class diagram and write in the class name.

Look for composition relationships between classes. For each pair of classes related by composition,

draw a compositional association line with appropriate multiplicity values.

For each class, decide on appropriate instance variables.

For each class, decide on appropriate public methods.

Look for common instance variables and methods. If two or more classes contain a set of common

instance variables and methods, provide a superclass and move the common instance variables and

methods to the superclass. The classes originally containing common members now become subclasses

of the superclass. For each subclass-superclass pair, draw an association line with an inheritance arrow

from the subclass to the superclass to indicate an inheritance relationship.

Now go ahead and use the above guidelines to draw a UML class diagram for a generic card game pro-

gram. Since this is a non-trivial exercise, you may be tempted to look at our solution before trying to come

up with a solution on your own. Please resist that temptation! By implementing your own solution, you’ll

learn more and make yourself aware of potential problems.

Defi ning the Classes and the Relationships Between Them

Have you fi nished your class diagram? If so, then you may continue. . . .

In coming up with a class diagram, the fi rst thing to do is to decide on the classes themselves. Unfortu-

nately, that’s a bit of an art. The easy classes are the ones that directly correspond to something you can see.

•

•

•

•

•

•

Learn by doing.Learn by doing.

 12.10 Design Practice with Card Game Example 493

12-M4402.indd 49312-M4402.indd 493 12/17/07 4:25:59 PM12/17/07 4:25:59 PM

Apago PDF Enhancer

494 Chapter 12 Aggregation, Composition, and Inheritance

In visualizing a card game, can you see two people holding cards and taking additional cards from a deck

that sits between them? You should be able to see a deck, two hands, individual cards, and two people. For

the deck, use a Deck class. For the two hands, use a Hand class. For the individual cards, use a Card class.

You may or may not wish to represent the people. If you’re implementing an elaborate card game where

players have personalities, use a Person class. Otherwise, there’s no need for a Person class. Let’s keep

things simple and not implement a Person class.

In thinking about the big picture, you should ask yourself, “What is a game?” A game is a composition

of several parts, so defi ne Game as a whole class and defi ne other classes as the parts of the game. A Game is

composed of three components/parts—a deck and two hands. Thus, Deck and Hand are parts classes within

the Game composition class. In Figure 12.17’s class diagram, note the association line connecting Game to

Deck. The association line has a solid diamond, which indicates composition, and it has 1-to-1 multiplicity

values, which indicate each game has one deck. The Game to Hand association line also has a solid diamond

for composition, but it has 1-to-2 multiplicity values, which indicate each game has two hands.

Coming up with the idea of using a Game class is probably more diffi cult than coming up with the ideas

for using Deck, Hand, and Card classes. Why? A game is non-tactile (that is, you can’t touch it), so it’s hard

to see it as a class. Why bother with having a Game class? If you omit the Game class, you could still imple-

ment a card game. Instead of declaring the deck and hand objects inside the Game class, you could declare

them inside the main method. But it’s more elegant to put them inside a Game class. Why? By putting them

inside a Game class, it furthers the goal of encapsulation. Also, it enables main to be streamlined. As you’ll

2

1

*1

1

1

GroupOfCards

-cards : Card[]

-currentSize : int

+addCard(card : Card) : void

+display() : void

Card

-num : int

-suit : int

+display() : void

Deck

+shuffle() : void

+dealCard() : Card

Hand

+sort() : void

+playACard() : Card

Game

-deck : Deck

-player1 : Hand

-player2 : Hand

+playAGame() : void

Figure 12.17 Preliminary class diagram for Card Game program

12-M4402.indd 49412-M4402.indd 494 12/17/07 4:25:59 PM12/17/07 4:25:59 PM

Apago PDF Enhancer

see later on, if you have defi ned a Game class, the driver’s main method just needs to instantiate a Game ob-

ject and then call playAGame and that’s it. You can’t get much more streamlined (and elegant) than that.

For each class in the Card Game program, what are its members (that is, instance variables and meth-

ods)? Let’s tackle the easy classes fi rst—Game and Card. The Game class needs three instance variables—

one for the deck and two for the two hands. It needs a method for playing a game. The Card class needs two

instance variables—one for a number (two through ace) and one for a suit (clubs through spades). It needs a

method to display the card’s number and suit values. As a sanity check, verify that Figure 12.17’s Game and

Card members match what we’ve described.

The Deck class needs an instance variable for an array of cards such that each card is a Card object.

The Deck class also needs an instance variable to keep track of the current size of the deck. The Deck

class needs methods for shuffl ing and dealing. To help with debugging, you should probably also include a

method to display all the cards in the deck.

The Hand class needs instance variables for an array of cards and for a current-size value. It needs

methods for displaying all the cards, adding a card to the hand, and playing a card from the hand. For most

card games, you’d also want a method to sort the hand. Different card games would use different and/or ad-

ditional Hand methods. We’ll keep things simple and not worry about them.

The next step is to try to identify common members and move them to a superclass. The Deck and Hand

classes have three common members—a cards array variable, a currentSize variable, and a display

method. In moving those members to a superclass, what would be a good name for such a class? It should

be something generic that can be used as the superclass for both Deck and Hand. GroupOfCards or just

plain Cards both sound pretty good. Let’s use GroupOfCards. In Figure 12.17’s class diagram, note the

inheritance association lines connecting Deck to GroupOfCards and Hand to GroupOfCards.

We’ve now examined the members in all fi ve classes in the Card Game program, and we’ve examined the

relationships between four of the classes—Game, Deck, Hand, and GroupOfCards. The last piece of the

UML-class-diagram puzzle is the relationship between GroupOfCards and Card. Is it an is-a relationship

or a has-a relationship? It’s not an is-a relationship because it doesn’t make sense to say that a group of cards

is a card or a card is a group of cards. Instead, it’s a has-a relationship because a group of cards has a card (a

group of cards usually has more than one card, but that doesn’t negate the has-a relationship). In Figure 12.17,

note the has-a composition association line connecting GroupOfCards to Card. Figure 12.17 suggests

implementing the composition as an array called cards, but it could be an ArrrayList

Note that Figure 12.17’s label says “preliminary” class diagram. It’s preliminary because for a decent-

sized application, it’s nearly impossible to get the class diagram 100% right on your fi rst-cut attempt. When

you’re done coding and testing(!) your prototype program, you should go back and update

your class diagram appropriately. The class diagram serves two purposes. Early in the design

process, it helps organize ideas and it keeps everybody on the same page. In the post-imple-

mentation phase, it serves as documentation so interested parties can quickly get a handle on

the application’s organization.

Inheritance Versus Composition

When deciding on the relationship between two classes, it’s usually pretty clear whether to use inheritance

or composition. For example, in the Dealership program, a Manager is a Person, so inheritance is used.

In the Card Game program, a Game has a Deck, so composition is used.

However, sometimes it’s not so clear-cut. For example, you could make the claim that a Deck is a

GroupOfCards, and you could also make the claim that a Deck has a GroupOfCards. As a rule of

thumb, in cases like this where the inheritance is-a relationship exists and the composition has-a relationship

also exists, you’re better off going with the inheritance relationship. To see why, we’ll compare code for each

Design is
an iterative
process.

Design is
an iterative
process.

 12.10 Design Practice with Card Game Example 495

12-M4402.indd 49512-M4402.indd 495 12/17/07 4:25:59 PM12/17/07 4:25:59 PM

Apago PDF Enhancer

496 Chapter 12 Aggregation, Composition, and Inheritance

of the two relationships. See Figure 12.18’s Deck class, which implements the Deck-GroupOfCards re-

lationship with inheritance.

Figure 12.18 Inheritance implementation for the Deck class

public class Deck extends GroupOfCards
{
 public static final int TOTAL_CARDS = 52;

 public Deck()
 {
 for (int i=0; i<TOTAL_CARDS; i++)
 {
 addCard(new Card((2 + i%13), i/13));
 }
 } // end constructor
 ...

} // end class Deck

With inheritance, there’s

no need to prefi x the

method call with an

object reference.

This implements

inheritance.

Figure 12.19 Composition implementation for the Deck class

public class Deck
{
 public static final int TOTAL_CARDS = 52;
 private GroupOfCards groupOfCards;

 public Deck()
 {
 groupOfCards = new GroupOfCards();

 for (int i=0; i<TOTAL_CARDS; i++)
 {
 groupOfCards.addCard(new Card((2 + i%13), i/13));
 }
 } // end constructor
 ...

} // end class Deck

With composition,

declaring a

GroupOfCards variable

and instantiating it are

required.

With composition, you must

prefi x the method call with an

object reference.

Also see Figure 12.19’s alternative Deck class, which implements the Deck-GroupOfCards
r elationship with composition. We feel that Figure 12.18’s inheritance code is more elegant than Fig-

ure 12.19’s composition code. It has one less line, which is a good thing, but more importantly, it isn’t

cluttered with references to a groupOfCards variable. In the composition code, you’re required to

(1) declare a groupOfCards variable, (2) instantiate the groupOfCards variable, and (3) prefi x the

12-M4402.indd 49612-M4402.indd 496 12/17/07 4:26:00 PM12/17/07 4:26:00 PM

Apago PDF Enhancer

call to addCard with the groupOfCards calling object. Isn’t the inheritance code nicer where you don’t

have to worry about all that? In particular, you can call addCard directly (no groupOfCards calling

object required), and that results in more readable code. By the way, the addCard method is defi ned in

the GroupOfCards class. With inheritance, the fact that it’s in a separate class from Deck is transparent.

In other words, you call it from the Deck constructor the same way that you would call any other Deck

method—without a calling object.

For some class pairs (like Deck and GroupOfCards), it’s legal to use either an inheritance or a

composition relationship. But it’s never OK to use both inheritance and composition for the same feature.

What would happen if Deck declared a GroupOfCards local variable and Deck also inherited from a

 GroupOfCards class? Deck objects would then contain two separate groups of cards and that’s wrong!

At this point, you might want to go back to Figure 12.17’s preliminary UML class diagram and add

some more detail. We didn’t bother with constants or constructors in Figure 12.17’s class diagram. In

 working with the Deck class skeleton (see Figure 12.18), it’s now clear that there’s a need to (1) add a

 TOTAL_CARDS constant to the Deck class, (2) add a constructor to the Deck class, and (3) add a construc-

tor to the Card class. For practice we encourage you to update Figure 12.17’s class diagram with these

changes in mind. If you don’t feel like it, that’s OK; our main point here is to make you aware of the iterative

nature of the program design process. Try to organize your thoughts as clearly as

possible up front, but be prepared to adjust those thoughts later on.

Code to Get You Started

Once you’ve fi nished with the card game’s class diagram, normally the next step would be to implement the

classes with Java code. We won’t bother to show class implementation details, but we would like to show

you how the suggested classes might be driven by a main method. Having followed proper OOP design

guidelines, it’s easy to produce an elegant main method—see Figure 12.20. Note how short and under-

standable the main method is. Yeah!

Another example will further illustrate how the fi nished classes might be used by the rest of the pro-

gram. See main’s call to playAGame in Figure 12.20. Figure 12.21 shows a partial implementation for the

Designing is a
gradual process.
Designing is a
gradual process.

Figure 12.20 Card Game program’s main method

public static void main(String[] args)
{
 Scanner stdIn = new Scanner(System.in);
 String again;
 Game game;

 do
 {
 game = new Game();
 game.playAGame();
 System.out.print("Play another game (y/n)?: ");
 again = stdIn.nextLine();
 } while (again.equals("y"));
} // end main

 12.10 Design Practice with Card Game Example 497

12-M4402.indd 49712-M4402.indd 497 12/17/07 4:26:00 PM12/17/07 4:26:00 PM

Apago PDF Enhancer

498 Chapter 12 Aggregation, Composition, and Inheritance

We’ll leave it to you to fi nish this program. Two end-of-chapter exercises and a project suggest various

elaborations.

12.11 Problem Solving with Association Classes (Optional)

Aggregation, composition, and inheritance implement some of the most common kinds of associations

among classes and objects—a has-a association for aggregation and composition, and an is-a association for

inheritance. Be aware that there are many other possible kinds of associations, which you can conjure up

easily by rattling off a few verb phrases, like: “be next to. . . ,” “get. . .from. . . ,” “set. . .in. . . ,” “make. . .

with. . . ,” run. . .toward. . . ,” “sell. . .to. . . ,” and so on. Typically, these other kinds of associations are

more complicated than is-a or has-a associations. This section describes a powerful way to model other

associations.

As you have seen, you can implement simple aggregation and composition associations by giving the

container object a reference to each component object. This reference allows container object code to invoke

component object methods. But for other kinds of associations, you may need multiple references and addi-

tional variables and methods. In other words, you may need a separate class just to describe the association.

Such a class is called an association class. An association class defi nes an association object that represents

a relationship among other objects. An association object is like an aggregation/composition container, in

that it has instance variables that refer to other objects. But it’s different in that the objects it refers to also re-

fer to it, and each cannot contain the other. An association object typically receives references to the objects

it associates when it is constructed. Whereas an aggregation/composition container contains its component

objects, an association object just “knows about” the objects it associates.

Now let’s see how this might apply to our previous Dealership program. What we’ve done so far with

that program isn’t much to brag about. We created a company with a sales manager, some sales people, and

some cars. But what about customers? What about sales? Suppose we add a customer class to our Dealership

Figure 12.21 Partial implementation for Game class’s playAGame method

public void playAGame()
{
 deck.shuffle();

 // Deal all the cards to the two players.
 while (deck.getCurrentSize() > 0)
 {
 player1.addCard(deck.dealCard());
 player2.addCard(deck.dealCard());
 }
 ...

} // end playAGame

playAGame method. To shuffl e the deck, call deck.shuffle(). To deal a card to the fi rst player, call

player1.addCard(deck.dealCard()). How’s that for straightforward?

12-M4402.indd 49812-M4402.indd 498 12/17/07 4:26:01 PM12/17/07 4:26:01 PM

Apago PDF Enhancer

1

*

1

*

1

*1

1

Manager2 SalesPerson2

Car

Dealership3

Customer

Person

Sale

However, a sale is not a physical entity, like an organism or car is. It’s a process—or event—that associ-

ates a group of entities. So the Sale class needs to be an association class. What types of objects partici-

pate in a Sale association? There’s a Car, there’s a SalesPerson2, and there’s a Customer. Notice

how the UML class diagram in Figure 12.22 uses simple solid association lines to interconnect all normal

classes that participate in an association. The UML standard suggests ways to decorate these association

lines with additional symbols and nomenclature, but just the lines shown convey the message—the idea

of an association among objects of the Car, SalesPerson2, and Customer classes. The dashed line

that connects the Sale class to the solid association lines graphically identifi es the Sale class as an as-

sociation class describing the related association. The code fragment in Figure 12.23 illustrates the Sale

constructor.

Figure 12.22 Class diagram for another car dealership program with customers and a

salesperson-car-customer association

12.11 Problem Solving with Association Classes (Optional) 499

program. Then suppose some eager salesperson fi nally makes a sale to that fi rst customer. The next question

is, where should we put the information about that sale? In the Dealership class? In the SalesPerson
class (as we seem to be doing in Figure 12.6)? In the Car class? In the Customer class? Technically, we

could put that information in any one of these classes, and then put references to that class in whatever

classes need access to that information. We could also scatter the information around among the participat-

ing classes in some way. No matter which of these alternatives we picked, however, from some points of

view, what we did would seem inappropriate.

A more elegant solution is to encapsulate all of the sale information into one association class, and give

that class a name that describes the association. That’s what we portray in Figure 12.22, which shows an ab-

breviated class diagram of another version of our previous Dealership program. First, look at the Customer
class. Since a customer is a person, just like the sales manager and sales people, we can use inheritance to

reduce code and avoid redundancy in the Customer class by making the Customer class extend the

Person class. Second, look at the Sale class. The Sale class appears as just another component in the

Dealership class diagram. The one-to-many multiplicity suggests that its objects are elements of an

ArrayList, perhaps named sales, which is instantiated in an enhanced version of the Dealership
constructor. As far as the dealership is concerned, a Sale would be just another type of aggregation or

composition component, like a SalesPerson2 or a Car.

Sale is an

association class.

12-M4402.indd 49912-M4402.indd 499 12/17/07 4:26:01 PM12/17/07 4:26:01 PM

Apago PDF Enhancer

500 Chapter 12 Aggregation, Composition, and Inheritance

Caveat—Don’t Try to Inherit from an Association Participant

You might be tempted to try to use inheritance to create an association class, because you might think

that would give you “free access” to at least one of the participants in the association. Don’t try to do that.

All you’d get would be the ability to make an enhanced clone of one of the objects you want to associate,

and you’d have to copy all the details between the clone and the real thing—a waste of effort. Treat an

association like an aggregation, with references to the participating objects passed into the association

constructor.

Summary

Object-oriented languages help you organize things and concepts into two basic kinds of hierarchies—a

has-a hierarchy for components in an aggregation or composition, and an is-a hierarchy for types in an

inheritance.

An aggregation or composition hierarchy exists when one large object contains several smaller (compo-

nent) objects.

For a given whole-part class relationship, if the container contains the only reference to a component,

the component association is composition. Otherwise, it’s aggregation.

In an inheritance hierarchy, subclasses inherit all the variables and methods of the superclasses above

them, and they typically add more variables and methods to what they inherit.

•

•

•

•

Figure 12.23 Partial implementation of Sale class shown in Figure 12.22

// This class associates SalesPerson2, Car, and Customer classes

public class Sale
{
 private Car car;
 private SalesPerson2 salesperson;
 private Customer customer;
 private double price;
 ...

 //***

 public Sale(Car car, SalesPerson2 person,
 Customer customer, double price)
 {
 this.car = car;
 this.salesperson = person;
 this.customer = customer;
 this.price = price;
 ...
 } // end constructor
 ...

⎫
⎬
⎭

references to classes

being associated

⎫
⎬
⎭

references passed

into constructor

12-M4402.indd 50012-M4402.indd 500 12/17/07 4:26:02 PM12/17/07 4:26:02 PM

Apago PDF Enhancer

To minimize descriptive duplication, organize your ideas so that only the concepts at the very bottom

of an inheritance hierarchy (the leaves of the upside-down tree) are specifi c enough to represent real

objects.

To enable class B to inherit all the variables and methods in class A and all of class A’s ancestors, ap-

pend extends A to the end of class B’s heading.

A constructor should initialize the variables it inherits by immediately calling its superclass’s construc-

tor with the statement: super(<arguments>);
You can override an inherited method by writing a different version of the inherited method in the de-

rived class. Overriding occurs automatically if you use the same method name and the same sequence

of parameter types, but if you do this, you must also use the same return type.

You can access an overridden method by prefi xing the common method name with super and then

a dot.

A final access modifi er on a method keeps that method from being overridden. A final access

modifi er on a class keeps that class from being extended.

Programmers frequently use combinations of aggregation, composition, and inheritance to deal with

different aspects of an overall programming problem. In a UML class diagram, both relationships are

represented by solid lines between related classes, and these lines are called associations. In a composition/

aggregation association, there is a solid/hollow diamond at the container end of each association line. In a

hierarchical association, there is a hollow arrowhead at the superclass end of the association line.

Inheritance allows you to re-use code that was written for another context.

When you have a complicated association among objects, it may help to gather references to those ob-

jects together into a common association class.

Review Questions

§12.2 Composition and Aggregation

 1. In a UML diagram, what does an asterisk (*) indicate?
 2. In a UML diagram, what does a solid diamond indicate?

§12.3 Inheritance Overview

 3. Explain how using an inheritance hierarchy can lead to code reusability.
 4. What are two synonyms for a superclass?
 5. What are two synonyms for a subclass?

§12.4 Implementation of Person/Employee/FullTime Hierarchy

 6. How do you tell the compiler that a particular class is derived from another class?
 7. Based on the UML diagram in Figure 12.9, an instance of the PartTime class includes the following

instance variables: name and id. (T / F)

§12.5 Constructors in a Subclass

 8. In a subclass’s constructor, what do you have to do if you want to begin the constructor with a call to the
superclass’s zero-parameter constructor?

§12.6 Method Overriding

 9. If a superclass and a subclass defi ne methods having the same name and the same sequence of parameter
types, and an object of the subclass calls the method without specifying which version, Java generates a
runtime error. (T / F).

•

•

•

•

•

•

•

•
•

 Review Questions 501

12-M4402.indd 50112-M4402.indd 501 12/17/07 4:26:03 PM12/17/07 4:26:03 PM

Apago PDF Enhancer

502 Chapter 12 Aggregation, Composition, and Inheritance

 10. If a subclass method overrides a method in the superclass, is it still possible to call the method in the
superclass from the subclass?

 11. If a superclass declares a variable to be private, can you access it directly from a subclass?

§12.7 Using the Person/Employee/FullTime Hierarchy

 12. If you wish to call a superclass method, you must always prefi x the method name with super. (T / F)

§12.8 The final Access Modifi er

 13. A final method is called “fi nal” because it’s allowed to contain only named constants, not regular
variables. (T / F)

§12.9 Using Inheritance with Aggregation and Composition

 14. Composition and inheritance are alternative programming techniques for representing what is essentially
the same kind of real-world relationship. (T / F).

§12.10 Design Practice with Card Game Example

 15. A Deck is a group of cards and a Deck has a group of cards. In our example, it’s better to choose the
is-a relationship and implement inheritance. In this case, why is inheritance a better choice than
composition?

§12.11 Problem Solving with Association Classes (Optional)

 16. It’s possible to support an association with references, variables, and methods in existing classes. What’s the
advantage of using an association class instead?

Exercises

 1. [after §12.2] (This exercise should be used in combination with Exercises 2 and 3.) Write a defi nition for a
Point class. Provide two double instance variables, x and y. Provide a two-parameter constructor that
initializes x and y. Provide a shiftRight method that shifts the point in the x direction by the value of
the method’s double parameter, shiftAmount. Provide a shiftUp method that shifts the point in the
y direction by the value of the method’s double parameter, shiftAmount. Make each of these methods
return values that enable chaining. Provide accessor methods to retrieve the values of the two instance
variables.

 2. [after §12.2] (This exercise should be used in conjunction with Exercise 1 and 3.) Write a defi nition for
a Rectangle class. Provide two Point instance variables, topLeft and bottomRight, which
establish the top left and bottom right corners of the rectangle, respectively. Provide a two-parameter
constructor that initializes topLeft and bottomRight. Provide a shiftRight method that shifts
the rectangle in the x direction by the value of the method’s double parameter, shiftAmount. Provide
a shiftUp method that shifts the rectangle in the y direction by the value of the method’s double
parameter, shiftAmount. Make each of these methods return values that enable chaining. Provide a
printCenter method that displays the x and y values of the center of the rectangle.

 3. [after §12.2] (This exercise should be used in conjunction with Exercise 1 and 2.) Write a defi nition
for a RectangleDriver class with a main method to do the following: Instantiate a Point called
topLeft at x � �3.0 and y � 1.0. Instantiate a Point called bottomRight at x � 3.0 and y � �1.0.
Instantiate a Rectangle called rectangle using topLeft and bottomRight as arguments. Call
rectangle’s printCenter method. Use a single chained statement to shift the rectangle right by one
and then up by one. Call rectangle’s printCenter method again. The output should be:

x = 0.0 y = 0.0
x = 1.0 y = 1.0

12-M4402.indd 50212-M4402.indd 502 12/17/07 4:26:03 PM12/17/07 4:26:03 PM

Apago PDF Enhancer

 4. [after §12.3] Suppose you have three classes—Shape (which defi nes a shape’s position in a coordinate
system), Square (which defi nes a square’s position in a coordinate system plus the square’s width), and
Circle (which defi nes a circle’s position in a coordinate system plus the circle’s radius). Assume that the
three classes form an appropriate inheritance hierarchy with two inheritance relationships. For each of the
two inheritance relationships, specify the superclass and subclass.

 5. [after §12.3] Suppose you want to create a computer description of various kinds of energy sources,
including the four classes: Electrical, EnergySource, Heat, Mechanical, and the six variables:
firstCost, fuelUsed, maxRevolutionsPerMinute, maxTemperature, powerOutput,
volts. Decide which class should get each variable, establish inheritance relationships, and draw a UML
class diagram with class names, variable names, and inheritance arrows. (You may omit type specifi cations
and methods.)

 6. [after §12.4] Ellipse program:
 Java’s API classes make extensive use of inheritance. For example, Sun’s Java API documentation shows

that the java.awt.geom.Ellipse2D package has a class named Double that has these instance
variables:3

double height

 The overall height of the Ellipse2D.

double width

 The overall width of this Ellipse2D.

double x

 The x coordinate of the upper left corner of this Ellipse2D.

double Y

 The y coordinate of the upper left corner of this Ellipse2D.

 And it has these constructors:

Double()

 Constructs a new Ellipse2D, initialized to location (0, 0) and size (0, 0).

Double (double x, double y, double w, double h)

 Constructs and initializes an Ellipse2D from the specifi ed coordinates.

 It has accessors for the instance variables, and an initializing method, but that’s about all. Fortunately, this
class extends a class called Ellipse2D, which has several other useful methods, including:

boolean contains (double x, double y)

 Tests if a specifi ed point is inside the boundary of this Ellipse2D.

boolean contains (double x, double y, double w, double h)

 Tests if the interior of this Ellipse2D entirely contains the specifi ed

rectangular area.

boolean intersects (double x, double y, double w, double h)

 Tests if the interior of this Ellipse2D intersects the interior of a specifi ed

rectangular area.

3 These boxed descriptions were copied from Sun’s Java API Web site (http://java.sun.com/javase/6/docs/api/).

 Exercises 503

12-M4402.indd 50312-M4402.indd 503 12/17/07 4:26:04 PM12/17/07 4:26:04 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

504 Chapter 12 Aggregation, Composition, and Inheritance

 Write a short program in a class called EllipseDriver:

 Import java.awt.geom.Ellipse2D.Double, and write a main method that calls the
4- parameter Double constructor to instantiate an ellipse like that shown in the picture below.4 Then,
in println statements, call the superclass’s 2-parameter contains method to show whether the points
x�3.5, y�2.5 and x�4.0, y�3.0 are contained within the specified ellipse.

3.0

3.5

2.5 3.0 2.0

4.0

5.0

4.0

 Output:

contains x=3.5, y=2.5? false
contains x=4.0, y=3.0? true

 7. [after §12.5] Defi ne a class named Circle that is derived from this API superclass:

java.awt.geom.Ellipse2D.Double

 See Exercise 6 for a brief description of this Double superclass. Your subclass should declare the
two private instance variables, xCtr and yCtr, initialized to 0.0. These variables are the x- and
y-coordinates of the circle’s center. Your class should include a zero-parameter constructor, and it should
also include a 3-parameter constructor whose parameters are the x- and y-distances to the circle’s center
and the circle’s diameter. This 3-parameter constructor should not only initialize the new instance variables
but also use the 4-parameter constructor of the superclass to initialize the four instance variables in the
superclass. Your class should also provide the following accessor methods: getXCtr, getYCtr, and
getRadius, where the radius is half the height of the superclass shape. Verify the code you write by
compiling it and running it with representative values for x-center, y-center, and diameter.

 8. [after §12.6] Suppose you have two classes related by inheritance that both contain a zero-parameter
method named doIt. Here’s the subclass’s version of doIt:

public void doIt()
{
 System.out.println("In subclass's doIt method.");
 doIt();
} // end doIt

4 The program does not actually draw the ellipse, but the ...Ellipse2D.Double class has a mathematical understanding of it.

12-M4402.indd 50412-M4402.indd 504 12/17/07 4:26:04 PM12/17/07 4:26:04 PM

Apago PDF Enhancer

 The doIt(); call is an attempt to call the superclass’s version of doIt.

 a) Describe the problem that occurs when another method calls the above doIt method and the doIt
method executes.

 b) How should you fix the problem?

 9. [after §12.8] What does it mean when you use the final modifi er for a method?

 10. [after §12.8] What does it mean when you use the final modifi er for a class?

 11. [after §12.9] Fill in the blanks:

 If thing A “has a” thing B and “has a” thing C, there is a(n) association, and A’s class defi nition will
contain declarations for variables. If A “is a” special form of B, there is
a(n) association, and the right side of A’s class heading will contain the words .

 12. [after §12.9] Identifi cation of type of association:

 Given the following list of word pairs, for each word pair, identify the association between the two words.
More specifi cally, identify whether the two words are related by composition or inheritance. To get you
started, we’ve provided the answers to the fi rst two word pairs. Bicycle and front wheel are related by
composition because a bicycle “has a” front wheel. Bicycle and mountain bike are related by inheritance
because a mountain bike “is a” bicycle.

 inheritance or composition?

 bicycle front wheel composition
 bicycle mountain bike inheritance
 structural member beam
 building fl oor
 company fi xed assets
 employee salesperson
 forest tree
 bird robin
 class method
 neurosis paranoia

 13. [after §12.10] Shuffl ing:

 Suppose you are developing the Card Game program suggested by Figure 12.17 in the text. The following
partial UML class diagram shows where you are in the developmental process:

Deck

+Deck()
+shuffle() : void

+TOTAL_CARDS : int=52

DeckDriver

+main(args : String[]) : void

1 *

Card

-num : int
-suit : int

+Card(num : int, suit : int)
+display() : void

-cards : Card[]
-currentSize : int=0

+GroupOfCards(num : int)
+getCurrentSize() : int
+addCard(card : Card) : void
+removeCard(index : int) : Card
+display() : void

GroupOfCards

 Exercises 505

12-M4402.indd 50512-M4402.indd 505 12/17/07 4:26:04 PM12/17/07 4:26:04 PM

Apago PDF Enhancer

506 Chapter 12 Aggregation, Composition, and Inheritance

 Assume you have written methods for a Card class and a GroupOfCards class. Assume that the
addCard method increments currentSize after adding the input card to the end of the currently fi lled
part of the cards array. Assume that the removeCard method retrieves a reference to the card at index
in the cards array, decrements the currentSize of the cards array, shifts all array elements above
index down by one place, and returns the reference to the card originally at index.

 To shuffl e the deck, use a for loop that starts with unshuffled = getCurrentSize()
 and steps down to one. In each iteration, use Math.random to pick an index in the unshuffl ed range,

remove the card at that index, and then add it to the high end of the array. Include all that functionality in a
Deck.shuffle method.

 Extra credit:
 Write Java code that tests your shuffle method. To do that, you’ll need to implement all of the classes

and methods in the above UML class diagram. Your main method should instantiate a deck, display it,
shuffl e it, and display it again.

 14. [after §12.10] First part of Game class for game of Hearts:

 The Game class introduced in the text contained a deck and exactly two players. Improve that Game class
by including an array of type Trick[] and a numberOfTricks variable that keeps track of the number
of tricks played so far. Include a final instance variable called PLAYERS, that will be initialized in a
constructor whose parameter value is the number of players participating in the game. Replace the indi-
vidual player1 and player2 instance variables by instances in an array of type Hand[]. Include two
boolean instance variables, hearts and queenOfSpades, whose values switch from false to true
whenever the first heart or the queen of spades is played.

 Write Java code that defi nes that part of the Game class that includes the class heading, the instance
variable declarations, and the one-parameter custom constructor whose parameter is the number of players.
This constructor should instantiate a Hand array with a length equal to the number of players. It should
instantiate individual Hand objects for each player, using a two-parameter Hand constructor. The fi rst
parameter is the player number, starting with 0. The second parameter is the maximum number of cards the
player will receive, which depends on the total number of cards in the deck and the number of players. The
game constructor should also instantiate a Trick array, but not populate it with any individual tricks.

Review Question Solutions

 1. A * on a UML diagram means the multiplicity can be “any number.”

 2. In a UML diagram, a solid diamond is placed on an association line next to a containing class in a
composition association. It indicates that the containing class exclusively contains the class that’s at the
other end of the association line.

 3. Putting common code from two classes into a superclass is one example of code reusability. Code
reusability can also take place when you want to add a signifi cant chunk of functionality to an existing
class, and you implement the solution with a new subclass.

 4. Two synonyms for a superclass—parent class, base class.

 5. Two synonyms for a subclass—child class, derived class.

 6. To tell the compiler that a class is derived from another class, you write extends <other-class> at the
end of your new class’s heading line.

 7. True. An instance of a subclass includes that class’s instance variables and its ancestors’ instance variables.

12-M4402.indd 50612-M4402.indd 506 12/17/07 4:26:05 PM12/17/07 4:26:05 PM

Apago PDF Enhancer

 8. Nothing. This happens automatically. You can, however, preempt this by writing super(); as the fi rst
line in your derived constructor.

 9. False. There is no problem. The JVM selects the method in the subclass.

 10. Yes. In the call statement, preface the common method name with super.

 11. No. If a superclass’s instance variable is private, you cannot access it directly from a subclass. You can
access it by calling an accessor method (assuming the accessor is public). In calling the superclass’s
method, there’s no need to prefi x the method call with a reference dot.

 12. False. The super. prefi x is only necessary when you want to call a superclass method that has been
overridden.

 13. False. A final method is allowed to contain regular variables. It’s called “fi nal” because it’s illegal to
create an overriding version of the method in a subclass.

 14. False. Composition and inheritance are completely different class relationships. Composition is when a
class is comprised of non-trivial constituent parts and the parts are defi ned to be classes. Inheritance is
when one class is a more detailed version of another class. More formally, inheritance is when one class, a
subclass, inherits variables and methods from another class, a superclass.

 15. Because with this example, there’s a second class that is also a group of cards. Since there are two classes
that share some of the same properties, you should put those common properties in a shared superclass,
GroupOfCards. Doing this promotes software reuse and avoids code redundancy.

 16. You can make a complicated association easier to recognize and understand by organizing the references to
all association participants and other association information and methods in a single class that represents
the association only.

 Review Question Solutions 507

12-M4402.indd 50712-M4402.indd 507 12/17/07 4:26:05 PM12/17/07 4:26:05 PM

Apago PDF Enhancer

508 Chapter 13 Inheritance and Polymorphism

C H A P T E R

508

Inheritance and Polymorphism

Objectives

Understand the role of the Object class.

Learn why you need to redefi ne the equals and toString methods.

Learn how polymorphism and dynamic binding improve program versatility.

Understand what the compiler checks and what the JVM does when a reference variable is associated

with a method name.

Understand the constraints affecting assignment of an object of one class to a reference variable of

another class.

See how to use an array of ancestor reference variables to implement polymorphism among descendant

methods.

See how an abstract method declaration in an abstract superclass eliminates the need for a

dummy method defi nition in the superclass.

See how you can use an interface to specify common method headings, store common constants, and

implement multiple polymorphisms.

Learn where to use protected member access.

Optionally, learn how to draw a three-dimensional object.

Outline

13.1 Introduction

13.2 The Object Class and Automatic Type Promotion

13.3 The equals Method

13.4 The toString Method

13.5 Polymorphism and Dynamic Binding

13.6 Assignments Between Objects in a Class Hierarchy

13.7 Polymorphism with Arrays

13.8 Abstract Methods and Classes

13.9 Interfaces

•
•
•
•

•

•

•

•

•
•

13

13-M4402.indd 50813-M4402.indd 508 12/17/07 4:26:20 PM12/17/07 4:26:20 PM

Apago PDF Enhancer

 13.10 The protected Access Modifi er

 13.11 GUI Track: Three-Dimensional Graphics (Optional)

13.1 Introduction

This is the second of two chapters on inheritance. The previous chapter applied a broad brush stroke to

fundamental inheritance concepts. In this chapter, we narrow the focus and describe several inheritance-

 related topics in depth. We start with the Object class, which is the provided-by-Sun superclass of all other

classes. We then discuss one of the cornerstones of object-oriented programming (OOP)—polymorphism.

Polymorphism is the ability for a particular method call to perform different operations at different times. It

occurs when you have a reference variable that refers to different types of objects during the course of a pro-

gram’s execution. When the reference variable calls the polymorphic method, the reference variable’s object

type determines which method is called at that time. Pretty cool, eh? Polymorphism provides programs with

a great deal of power and versatility.

After introducing polymorphism, we describe its partner, dynamic binding. Dynamic binding is the

mechanism used by Java to implement polymorphism. We then provide alternative implementations of

polymorphism, using abstract classes and interfaces to make coding cleaner and even more versatile.

We then describe the protected modifi er, which simplifi es access to inherited code. Finally, in an

 optional section, we present a three-dimensional graphics problem that illustrates polymorphism with the

Java API.

The material in this chapter is relatively diffi cult, but once you get it, you’ll truly understand what OOP

is about, and you’ll know how to craft elegantly structured programs.

13.2 The Object Class and Automatic Type Promotion

The Object class is the ancestor of all other classes. It is the primordial ancestor—the root of the inheri-

tance hierarchy. Any class that explicitly extends a superclass uses extends in its defi nition. Whenever

anyone creates a new class that does not explicitly extend some other class, the compiler automatically

makes it extend the Object class. Therefore, all classes eventually descend from the Object class. The

Object class doesn’t have many methods, but the ones it has are signifi cant, because they are always inher-

ited by all other classes. In the next two sections you’ll see the Object class’s two most important methods,

equals and toString. Since any class you write automatically includes these two methods, you need to

be aware of what happens when these methods are called.

Before diving into the details of these two methods, however, we want to make you aware of a Java pro-

cess that’s very similar to the numerical type promotion you studied in Chapter 3 and Chapter 11. There you

saw that in the course of making an assignment or copying an argument into a parameter, the Java Virtual

Machine (JVM) automatically promotes a numerical type—provided that the change conforms to a certain

numerical hierarchy. For example, when an int value is assigned into a double variable, the JVM auto-

matically promotes the int value to a double value.

An analogous automatic promotion also occurs with other types. When an assignment or argument

passing operation involves different reference types, the JVM automatically promotes the source reference

type to the target reference type if the target reference type is above the source reference type in the inheri-

tance hierarchy. In particular, since the Object class is an ancestor of every other class, when the need

arises, Java automatically promotes any class type to the Object type. The next section describes a situa-

tion that stimulates this kind of type promotion.

 13.2 The Object Class and Automatic Type Promotion 509

13-M4402.indd 50913-M4402.indd 509 12/17/07 4:26:21 PM12/17/07 4:26:21 PM

Apago PDF Enhancer

510 Chapter 13 Inheritance and Polymorphism

13.3 The equals Method

Syntax

The Object class’s equals method—which is inherited automatically by all other classes—has this pub-

lic interface:

public boolean equals(Object obj)

Because all classes automatically inherit this method, unless a similarly defi ned method takes precedence,

any object, objectA, can invoke this method to compare itself with any other object, objectB, with a

method call like this:

objectA.equals(objectB)

This method call returns a boolean value of either true or false. Notice that we did not specify the

type of either objectA or objectB. In general, they can be instantiations of any class, and they do not

need to be objects of the same class. The only constraint is that objectA must be a non-null reference.

For example, if Cat and Dog classes exist, this code works correctly:

Cat cat = new Cat();
Dog dog = new Dog();

System.out.println(cat.equals(dog));

Output:

false

The equals method that is called here is the equals method which the Cat class automatically

inherits from the Object class. The parameter in this inherited method is of type Object, as specifi ed in

the method’s public interface above. But the dog argument we pass to this method is not of type Object. It

is of type Dog. So what’s happening? When we pass the dog reference into the inherited equals method,

the reference type automatically promotes from type Dog to type Object. Then the inherited equals

method performs an internal test to see if the passed in dog is the same as the calling cat. Of course it is

not, so the output is false, as you can see.

Semantics

Notice that we just said, “performs an internal test.” Now let’s focus on that mysterious “internal test.” How

can you tell if two objects are the same or “equal”? When you say “objectA equals objectB,” you could

mean this:

 1. objectA is just an alias for objectB, and both objectA and objectB refer to exactly the same

object.

Or you could mean this:

 2. objectA and objectB are two separate objects which have the same attributes.

The equals method that all classes inherit from the Object class implements the narrowest possible

meaning of the word “equals.” That is, this method returns true if and only if objectA and objectB

refer to exactly the same object (defi nition 1. above). This meaning of “equals” is exactly the same as the

13-M4402.indd 51013-M4402.indd 510 12/17/07 4:26:21 PM12/17/07 4:26:21 PM

Apago PDF Enhancer

meaning associated with the == operator when it is employed to test the equality of two reference variables.

That operator also returns true if and only if both references refer to exactly the same object.

Suppose you have a Car class with three instance variables, make, year, and color, and you have a

constructor that initializes these instance variables with corresponding argument values. Suppose this Car
class does not defi ne an equals method itself, and the only equals method it inherits is the one it inher-

its automatically from the Object class. The following code illustrates that the equals method inherited

from the Object class does exactly the same thing as the == operator does.

Car car1 = new Car("Honda", 2008, "red");
Car car2 = car1;
Car car3 = new Car("Honda", 2008, "red");

System.out.println(car2 == car1);
System.out.println(car2.equals(car1));
System.out.println(car3 == car1);
System.out.println(car3.equals(car1));

Output:

true
true
false
false

This narrow sense of the word “equals” is not always what you want. For example, suppose your spouse

decides to buy a new car and goes to a particular auto dealer and orders a red 2008 Honda as suggested by

the above car1 instantiation. When you see the brochures your spouse brings home, you’re impressed and

decide you would like a new car for yourself too. You’d like it to be just like your spouse’s car except for the

color, which you want to be blue. So you go to the same dealer and say “I want the same car my spouse just

ordered, but I want the color to be blue.” A month later the dealer calls both you and your spouse at your

separate places of work and says to each of you separately, “Your car is ready. Please come in to pick it up

at 5:30 pm this afternoon.” You both show up as requested, and the dealer takes you outside and proudly

exclaims, “Here it is. How do you like it?” You say “Great, it’s just like I wanted!” Then your spouse says,

“But where is my car?” And the dealer replies, “But I thought you were to be joint owners of the same car,

and your spouse told me to change the color of that car to blue.” Oops, somebody made a mistake. . . .

The mistake occurred in the communication between you and the dealer when you said, “the same car.”

You meant the second meaning above: objectA and objectB are two separate objects which have the

same attributes. But the dealer heard the fi rst meaning above: objectA is just another name for objectB,

and both objectA and objectB refer to exactly the same object.

Defi ning Your Own equals Method

Now let’s see how you can implement the second meaning. To do so, include in your class an explicit version

of an equals method that tests for equal attributes. Then, when your program runs, and an instance of your

class calls the equals method, your equals method takes precedence over Object’s equals method,

and the JVM utilizes the equals method you defi ned. The equals method in Figure 13.1’s Car class tests

for equal attributes by comparing the values of all three instance variables, that is, the object’s attributes.

It returns true only if all three instance variables have the same values, and it returns false otherwise.

Notice that this equals method includes two subordinate equals method calls—one made by the make

different names for

same object

⎫
⎬
⎭

different names for

same object

⎫
⎬
⎭

different objects

with same attributes

⎫
⎬
⎭

different objects

with same attributes

⎫
⎬
⎭

13.3 The equals Method 511

13-M4402.indd 51113-M4402.indd 511 12/17/07 4:26:21 PM12/17/07 4:26:21 PM

Apago PDF Enhancer

512 Chapter 13 Inheritance and Polymorphism

Figure 13.1 Car class which defi nes equals to mean same instance variable values

/**
* Car.java
* Dean & Dean
*
* This defines and compares cars.
**/

public class Car
{
 private String make; // car's make
 private int year; // car's listed year
 private String color; // car's color

 //***

 public Car(String make, int year, String color)
 {
 this.make = make;
 this.year = year;
 this.color = color;
 } // end Car constructor

 //***

 public boolean equals(Car otherCar)
 {
 return otherCar != null &&
 make.equals(otherCar.make) &&
 year == otherCar.year &&
 color.equals(otherCar.color);
 } // end equals
} // end class Car

This overrides

the Object

class’s equals

method.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

instance variable and the other made by the color instance variable. As explained in Chapter 3, these calls

to String’s equals method check to see if two different strings have the same character sequence.

In the equal method’s return expression, notice the otherCar != null subexpression. If

this evaluates to false (indicating that otherCar is null), Java’s short-circuit evaluation keeps the

computer from trying to use a null reference to access the other car’s make and color reference vari-

ables. Such short-circuit evaluation prevents runtime errors. You should always strive to make your code

robust. In this case, that means you should consider the possibility of someone passing in a null value for

otherCar. If null gets passed in and there’s no test for null, the JVM generates a runtime error when

it sees otherCar.make. This is a fairly common error—attempting to access a member from a null
reference variable—and you can avoid it easily. Just test for null prior to accessing the member. For our

equals method, if otherCar is null, then the otherCar != null subexpression is false, and

13-M4402.indd 51213-M4402.indd 512 12/17/07 4:26:22 PM12/17/07 4:26:22 PM

Apago PDF Enhancer

the return statement returns false. Returning false is appropriate because a null otherCar is

clearly not the same as the calling object Car.

Get in the habit of writing equals methods for most of your programmer-defi ned classes. Writing

equals methods is usually straightforward since they tend to look the same. Feel free to use the Car

class’s equals method as a template.

Remember that any reference variable can call the equals method. even if the reference variable’s

class doesn’t defi ne an equals method. You know what happens in that case, right? When the JVM real-

izes that there’s no local equals method, it looks for the equals method in an ancestor class. If it doesn’t

fi nd an equals method prior to reaching the Object class at the top of the tree, it uses the Object class’s

equals method. This default operation often appears as a bug. To fi x the bug, make sure that your classes

implement their own equals methods.

equals Methods in API Classes

Note that equals methods are built into many API classes.1 For example, the String class and the wrap-

per classes implement equals methods. As you’d expect, these equals methods test whether two refer-

ences point to data that is identical (not whether two references point to the same object).

You’ve seen the String class’s equals method before, so the following example should be fairly

straightforward. It illustrates the difference between the == operator and the String class’s equals

method. What does this code fragment print?

String s1 = "hello";
String s2 = "he";

s2 += "llo";
if (s1 == s2)
{
 System.out.println("same object");
}
if (s1.equals(s2))
{
 System.out.println("same contents");
}

The above code fragment prints “same contents.” Let’s make sure you understand why. The == operator

returns true only if the two reference variables being compared refer to the same object. In the fi rst if

statement, s1 == s2 returns false since s1 and s2 do not refer to the same object. In the second if

statement, s1.equals(s2) returns true since the characters in the two compared strings are the same.

Actually, there’s another twist to the String class. To minimize storage requirements, the Java com-

piler makes String references refer to the same String object whenever an assignment refers to a duplicate

string literal, That’s called string pooling. For example, suppose the above code included a third declaration

that looked like this:

String s3 = "hello";

Then, if the if condition were (s1 == s3), the output would say “same object,” because s1 and s3

would refer to the same “hello” string object.

 13.3 The equals Method 513

1 To get an idea of how common equals methods are, go to Sun’s Java API Web site (http://java.sun.com/javase/6/docs/api/) and
search for all occurrences of equals.

13-M4402.indd 51313-M4402.indd 513 12/17/07 4:26:22 PM12/17/07 4:26:22 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

514 Chapter 13 Inheritance and Polymorphism

13.4 The toString Method

The Object Class’s toString Method

Let’s now consider another important method that all classes inherit from the Object class. The Object
class’s toString method returns a string that’s a concatenation of the calling object’s full class name, an

@ sign, and a sequence of digits and letters. For example, consider this code fragment:

Object obj = new Object();
Car car = new Car();

System.out.println(obj.toString());
System.out.println(car.toString());

When executed, the code fragment produces this:

java.lang.Object@601BB1
Car@1BA34F2

Note how obj.toString() generates java.lang.Object for the full class name. The full class

name consists of the class name prefi xed by the package that the class is part of. The Object class is in

the java.lang package, so its full class name is java.lang.Object. Note how car.toString()
generates Car for the full class name. Since the Car class is not part of a package, its full class name is

simply Car.

Note how obj.toString() generates 601BB1 for its hashcode value. You can think of an object’s

hashcode value as its location in memory, but it’s really a bit more complicated than that. The JVM trans-

lates an object’s hashcode value to one or more other values and the last value in the translation chain

specifi es the object’s actual location in memory. In Java, hashcode values, like 601BB1, are written as hexa-

decimal numbers. We described the hexadecimal number system in the optional Unicode section at the end

of Chapter 11. What follows is a review.

Hexadecimal Numbers

Hexadecimal numbers use digits that can have one of sixteen values—0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

D, E, and F (lowercase letters a through f are also acceptable). The A through F values represent the num-

bers 10 through 15. With 16 unique digits, hexadecimal numbers form what is known as a base-16 num-

ber system. With the number system that you are used to, base-10 for decimal numbers, suppose you’re

counting up and you get to the largest digit, 9. To form the next number, 10, you need two digits—a 1

at the left and a 0 at the right and the result is 10. Likewise, suppose you’re counting up with hexadeci-

mal numbers and you get to the largest digit, F for 15. To form the next number, 16, you need two dig-

its—a 1 at the left and a zero at the right and the result is 10. In other words, 10 is how you write 16 in

hexadecimal. For additional help with hexadecimal counting, see Appendix 1. In it, you’ll see a sequence

of hexadecimal numbers and their associated decimal numbers, in the context of the Unicode/ASCII

character set.

You know that the hexadecimal number A is equivalent to the decimal number 10. What about the

601BB1 value generated by the previous code fragment—what is its equivalent decimal number? Convert-

ing large hexadecimal numbers to their decimal equivalents can be done mathematically, but we’ll present

a shortcut. If you’re on a Windows-based computer, select Start / Programs / Accessories / Calculator. In

These digits and letters form a hashcode.full class name

13-M4402.indd 51413-M4402.indd 514 12/17/07 4:26:23 PM12/17/07 4:26:23 PM

Apago PDF Enhancer

the calculator window, click the Hex button, enter 601BB1, and then click the Dec button. The calculator

displays 6298545, which is the decimal number equivalent to 601BB1. Thus, in the previous code fragment,

when obj.toString() returns a string with 601BB1 at the right of the @ sign, it means the obj object’s

location in memory can be found by going to the 6,298,545th position in the object hash table. The object

hash table is the entity in change of translating hashcode values into actual locations in memory.

Overriding the toString Method

Retrieving the class name, an @ sign, and a hashcode is usually worthless, so you’ll almost always want to

avoid calling the Object class’s toString method and instead call an overriding toString method.

The reason we’re discussing the Object class’s toString method is because it’s easy to call it acciden-

tally, and when that happens, we want you to understand what’s going on.

Since the Object class defi nes a toString method, every class has a toString method, even

if it does not defi ne one or inherit one through some other class it explicitly extends. Many Java API

classes defi ne overriding toString methods. For example, the String class’s toString method trivi-

ally returns the string that’s stored in the String object. As described in Chapter 10, the ArrayList

class’s toString method (inherited from the AbstractCollection class) returns a square-bracketed

comma-delimited list of strings that represent the individual array elements. The Date class’s toString

method returns a Date object’s month, day, year, hour, and second values as a single concatenated string. In

general, toString methods should return a string that describes the calling object’s contents.

Since retrieving the contents of an object is such a common need, you should get in the habit of pro-

viding an explicit toString method for most of your programmer-defi ned classes. Typically, your

toString methods should simply concatenate the calling object’s stored data and return the resulting

string. Your toString methods should not print the concatenated string value; they should just return it.

We’re mentioning this point because novice programmers have a tendency to put print statements in their

toString methods, and that’s wrong. A method should do only what it’s supposed to do and nothing more.

The toString method is supposed to return a string value, and that’s it!

For example, look at the toString method in the Car2 program in Figure 13.2. It returns a string that

describes the calling object’s contents.

Implicit toString Method Calls

In the Car2 program, the main method has no explicit toString method call. So how does this pro-

gram illustrate use of the toString method? Whenever a reference appears alone inside a print state-

ment (System.out.print or system.out.println), the JVM automatically calls the referenced

object’s toString method. In Figure 13.2, this statement generates a call to the toString method in the

Car2 class:

System.out.println(car);

Let’s look at another example that uses the toString method. See the Counter program in

Figure 13.3. Once again, there’s a toString method and no explicit call to it. So how does it get called?

When you concatenate a reference variable and a string (with the � operator), the JVM automatically calls

the reference’s toString method. Thus, in Figure 13.3, this statement’s counter reference generates a

call to the Counter class’s toString method:

String message = "Current count = " + counter;

 13.4 The toString Method 515

13-M4402.indd 51513-M4402.indd 515 12/17/07 4:26:23 PM12/17/07 4:26:23 PM

Apago PDF Enhancer

516 Chapter 13 Inheritance and Polymorphism

Note that you’ll often see the toString method explicitly called with the standard call syntax even

when it’s not necessary. For example, in the Counter program’s main method, we might have used this al-

ternative implementation for the message assignment statement:

String message = "Current count = " + counter.toString();

Some programmers would claim that this alternative implementation is better because the code is more self-

documenting. Some programmers would claim that the original implementation is better because the code is

more compact. We don’t have a preference as to which implementation is better—either way is fi ne.

Figure 13.2 Car2 program that illustrates overriding toString method

/**
* Car2.java
* Dean & Dean
*
* This instantiates a car and displays its properties.
**/

public class Car2
{
 private String make; // car's make
 private int year; // car's listed year
 private String color; // car's color

 //***

 public Car2(String make, int year, String color)
 {
 this.make = make;
 this.year = year;
 this.color = color;
 } // end Car2 constructor

 //***

 public String toString()
 {
 return "make = " + make + ", year = " + year +
 ", color = " + color;
 } // end toString

 //***

 public static void main(String[] args)
 {
 Car2 car = new Car2("Honda", 1998, "silver");
 System.out.println(car);
 } // end main
} // end class Car2

This overrides

the Object

class’s

toString

method.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

13-M4402.indd 51613-M4402.indd 516 12/17/07 4:26:24 PM12/17/07 4:26:24 PM

Apago PDF Enhancer

Counter Program’s toString Method—A Detailed Analysis

Let’s revisit the toString method in Figure 13.3’s Counter program. Since the Counter class contains

only one piece of data, count, there’s no need for concatenation code as part of the toString implemen-

tation. Just return count’s value and that’s it. So this might have been your fi rst-cut implementation for

toString:

public int toString()
{
 return count;
}

13.4 The toString Method 517

Figure 13.3 Counter program that illustrates implicitly calling the toString method

/**
* Counter.java
* Dean & Dean
*
* This creates a counter and displays its count value.
**/

public class Counter
{
 private int count;

 //***

 public Counter(int count)
 {
 this.count = count;
 } // end constructor

 //***

 public String toString()
 {
 return Integer.toString(count);
 } // end toString

 //***

 public static void main(String[] args)
 {
 Counter counter = new Counter(100);
 String message = "Current count = " + counter;
 System.out.println(message);
 } // end main
} // end class Counter

This overrides the Object

class’s toString method.

⎫
⎪
⎬
⎪
⎭

13-M4402.indd 51713-M4402.indd 517 12/17/07 4:26:24 PM12/17/07 4:26:24 PM

Apago PDF Enhancer

518 Chapter 13 Inheritance and Polymorphism

But this produces a compile-time error. Do you know why? An overriding method must have the same re-

turn type as the method it’s overriding. Since the Counter class’s toString method is an overriding im-

plementation of the Object class’s toString method, the two methods must have the same return type.

Since the Object class’s return type is a String, the above int return type generates an error. With that

in mind, this might have been your second-cut implementation for toString:

public String toString()
{
 return count;
}

But this also produces an error. Why? Incompatible types. The returned value, count, is an int, and the

return type is defi ned to be a String. The solution is to convert count explicitly to a String before

returning it, like this:

public String toString()
{
 return Integer.toString(count);
}

Do you understand the Integer.toString code? In Chapter 5, you learned that all primitive types

have a corresponding wrapper class. Integer is one such class—it wraps up the int primitive. The

Integer class’s toString method returns a string representation of its passed-in int argument. So if

count is 23, then Integer.toString(count) returns the string “23.”

Quick quiz: Is the Integer class’s toString method a class method or an instance method? Look

at the method call’s prefi x. The method call, Integer.toString, uses a class name for the prefi x. When

a method call uses a class name for a prefi x instead of a reference variable, you know the method is a class

method. Thus, Integer’s toString is a class method.

Note that all the wrapper classes have toString methods. They all do the same thing—they return a

string representation of their passed-in argument. Here are some examples:

Double.toString(123.45) : evaluates to string "123.45"
Character.toString('G') : evaluates to string "G"

String’s valueOf Method

There’s another way to convert primitive variables to strings. Use the String class’s valueOf method.

This takes a primitive value, and returns a string. Like the wrapper toString methods described above,

it’s a class method, so you must use its class name, String, as a prefi x. Thus, instead of the previous

method calls, you could use these method calls:

String.valueOf(123.45) : evaluates to string "123.45"
String.valueOf('G') : evaluates to string "G"

The valueOf method is useful if you don’t know the data type ahead of time. It works with different

data types because it’s an overloaded method, and the JVM automatically selects that particular method

whose parameter type matches the type of the data provided.

In addition to converting primitives to strings, the valueOf method can also be used to convert an ar-

ray of vowel characters to a string. This code fragment prints the string “aeiou”:

Char[] vowels = {'a','e', 'i', 'o', 'u'};
System.out.print{String.valueOf(vowels));

13-M4402.indd 51813-M4402.indd 518 12/17/07 4:26:25 PM12/17/07 4:26:25 PM

Apago PDF Enhancer

13.5 Polymorphism and Dynamic Binding

Polymorphism Overview

If you ask an object-oriented programming (OOP) afi cionado to name the three most important characteris-

tics of OOP, he or she will probably answer “encapsulation, inheritance, and polymorphism.” The previous

chapter discussed encapsulation and inheritance. Now it’s time to discuss polymorphism. The word poly-

morphism comes from the Greek for “having many forms.” In chemistry and mineralogy, polymorphism

is when a substance can crystallize in two or more alternative forms. In zoology, polymorphism is when a

species has two or more different forms, like the different castes of bees spawned by the same queen to per-

form different functions in a beehive. In computer science, polymorphism is when different types of objects

respond differently to the same method call.

Here’s how it works. You declare a general type of reference variable that is able to refer to objects of

different types. What is the most general type of reference variable? It’s an Object reference variable, de-

clared, for example, like this:

Object obj;

Once you have declared a reference variable of type Object, you can use it to refer to any type of ob-

ject. For example, suppose you defi ne a class named Dog, as in Figure 13.4, and another class named

Cat, as in Figure 13.5. Each of the two derived classes contains a toString method that overrides

the toString method in the Object class. Notice that the two toString methods shown override

Object’s toString method in different ways. One returns what a dog says, “Woof! Woof!”, and the

other returns what a cat says, “Meow! Meow!”

The different toString method defi nitions in the Dog and Cat classes enable the toString

method to be polymorphic. If you call toString with a reference to a Dog object, it responds the way a

dog would respond, but if you call toString with a reference to a Cat object, it responds the way a cat

would respond. The driver in Figure 13.6 demonstrates this effect. Notice how the obj reference variable

can contain a reference to either a Dog object or a Cat object, and that object determines which toString

method is called.

 13.5 Polymorphism and Dynamic Binding 519

Figure 13.4 Dog class for Pets program driven by code in Figure 13.6

/***************************************
* Dog.java
* Dean & Dean
*
* This class implements a dog.
***************************************/

public class Dog
{
 public String toString()
 {
 return "Woof! Woof!";
 }
} // end Dog class

13-M4402.indd 51913-M4402.indd 519 12/17/07 4:26:25 PM12/17/07 4:26:25 PM

Apago PDF Enhancer

520 Chapter 13 Inheritance and Polymorphism

Why does the program print “Woof! Woof!” twice? There are two print statements. The fi rst one ex-

plicitly calls a toString method. The second one uses an implicit call to a toString method—when a

reference variable appears alone in a String context, the compiler automatically appends .toString()

to the bare reference variable. So the last two statements in the Pets class are equivalent.

Dynamic Binding

The terms polymorphism and dynamic binding are intimately related, but they’re not the same. It’s helpful

to know the difference. Polymorphism is a form of behavior. Dynamic binding is the mechanism for that

behavior—how it’s implemented. Specifi cally, polymorphism is when different types of objects respond

differently to the exact same method call. Dynamic binding is what the JVM does in order to match up a

polymorphic method call with a particular method.

Just before the JVM executes a method call, it determines the type of the method call’s actual calling

object. If the actual calling object is from class X, the JVM binds class X’s method to the method call. If

the actual calling object is from class Y, the JVM binds class Y’s method to the method call. After the JVM

binds the appropriate method to the method call, the JVM executes the bound method. For example, note

the obj.toString method call in the following statement near the bottom of Figure 13.6:

System.out.println(obj.toString());

Depending on which type of object is referred to by obj, the JVM binds either Dog’s toString method

or Cat’s toString method to the obj.toString method call. After binding takes place, the JVM ex-

ecutes the bound method and prints either “Woof! Woof!” or “Meow! Meow!”

Dynamic binding is referred to as “dynamic” because the JVM performs the binding operation while

the program is running. The binding takes place at the latest possible moment, right before the method is

executed. That’s why dynamic binding is often referred to as late binding. By the way, some programming

languages bind method calls at compile time rather than at runtime. That type of binding is called static
binding. Java’s designers decided to go with dynamic binding rather than static binding because dynamic

binding facilitates polymorphism.

Figure 13.5 Cat class for Pets program driven by code in Figure 13.6

/**************************************
* Cat.java
* Dean & Dean
*
* This class implements a cat.
**************************************/

public class Cat
{
 public String toString()
 {
 return "Meow! Meow!";
 }
} // end Cat class

13-M4402.indd 52013-M4402.indd 520 12/17/07 4:26:25 PM12/17/07 4:26:25 PM

Apago PDF Enhancer

Compilation Details

In the a Pets program, we illustrated polymorphic behavior by calling Dog and Cat versions of the

toString method. Could we have done the same thing with Dog and Cat versions of a display
method? In other words, if Dog implemented a display method that prints “I’m a dog,” would the following

code work?

Object obj = new Dog();
obj.display());

13.5 Polymorphism and Dynamic Binding 521

Figure 13.6 Driver for Pets program that includes classes in Figures 13.4 and 13.5

/**
* Pets.java
* Dean & Dean
*
* This illustrates simple polymorphism.
**/

import java.util.Scanner;

public class Pets
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Object obj;

 System.out.print("Which type of pet do you prefer?\n" +
 "Enter d for dogs or c for cats: ");
 if (stdIn.next().equals("d"))
 {
 obj = new Dog();
 }
 else
 {
 obj = new Cat();
 }
 System.out.println(obj.toString());
 System.out.println(obj);
 } // end main
} // end Pets class

Sample session:

Which type of pet do you prefer?
Enter d for dogs or c for cats: d
Woof! Woof!
Woof! Woof!

The obj reference variable can contain a

reference to either a Dog object or a Cat object.

That object determines which version of

the toString method is called here.

These two statements

are equivalent.

⎫
⎬
⎭

13-M4402.indd 52113-M4402.indd 521 12/17/07 4:26:26 PM12/17/07 4:26:26 PM

Apago PDF Enhancer

522 Chapter 13 Inheritance and Polymorphism

According to our dynamic binding discussion, the code would work just fi ne. The JVM would see a

Dog object in the obj reference variable and bind the Dog’s display method to the obj.display
method call. But it doesn’t matter that the code works fi ne in terms of dynamic binding. The code won’t

compile successfully because the compiler senses there might be a problem.

When the compiler sees a method call, <reference-variable>.<method-name>(), it checks to see if

the reference variable’s class contains a method defi nition for the called method. Note the obj.toString
and obj.display method calls in the examples below. In the left example, the compiler checks to see

if obj’s class, Object, contains a toString method. The Object class does contain a toString
method, so the code compiles successfully. In the right example, the compiler checks to see if obj’s class,

Object, contains a display method. The Object class does not contain a display method, so the

code produces a compile-time error.

Object obj = new Dog(); Object obj = new Dog();
System.out.println(obj.toString()); obj.display();

Wait a second! Does this mean that polymorphism works only for the methods defi ned in the Object class?

Fortunately, that’s not the case. Later in this chapter, you’ll learn how to make polymorphism work for any

method.

The instanceof Operator

As you’ve seen, whenever a generic reference calls a polymorphic method, the JVM uses the type of the ref-

erenced object to decide which method to call. You might want to do a similar thing explicitly in your code.

In particular, you might want to see if a referenced object is an instance of some particular class. You can do

this with a special operator called the instanceof operator (note that the “o” in instanceof is lower-

case). Using the Pets example again, suppose you want to print “Wags tail” if obj’s object is an instance of

class Dog or any class descended from class Dog. You can do that with the if statement at the bottom of

the main method in Figure 13.8. Thus, the instanceof operator provides a simple and direct way to sort

out the various object types that might be referred to a by a generic reference variable.

13.6 Assignments Between Classes in a Class Hierarchy

Let’s now look at something that’s quite common with polymorphic programs—assigning an object to a

reference where the object’s class and the reference’s class are different. In the following code fragment, as-

sume that Student is a subclass of Person. What does this code fragment do?

Person p = new Student();
Student s = new Person();

The fi rst line assigns a Student object (actually a reference to a Student object) to a Person reference

variable. It’s assigning a subclass object to a superclass reference variable. That’s a legal assignment because

a Student “is a” Person. It’s going up the inheritance hierarchy—the direction in which automatic type

promotion occurs. The second line tries to assign a Person object to a Student reference variable. It’s

trying to assign a superclass object to a subclass reference variable. That’s illegal because a Person is not

necessarily a Student. The second line generates a compile-time error.

legal compile-time error

This generates a compile-time error.

13-M4402.indd 52213-M4402.indd 522 12/17/07 4:26:26 PM12/17/07 4:26:26 PM

Apago PDF Enhancer

The “is a” mnemonic can help you remember the rule, but if you’re a Curious George,2 you probably

want more. You probably want to understand the true rationale behind the rule. So here goes. It’s OK to as-

sign a descendant-class object into an ancestor-class reference variable because all the compiler cares about

is whether the assigned-in descendant-class object has all the members that any object of the reference vari-

able’s class should have. And if you assign a descendant-class object to a ancestor-class reference variable, it

does. Why? Because descendant-class objects always inherit all ancestor-class members!

13.6 Assignments Between Classes in a Class Hierarchy 523

Figure 13.7 Demonstration of instanceof operator

/**
* Pets2.java
* Dean & Dean
*
* This illustrates use of instanceof operator.
**/

import java.util.Scanner;

public class Pets2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Object obj;

 System.out.print("Which type of pet do you prefer?\n" +
 "Enter d for dogs or c for cats: ");
 if (stdIn.next().equals("d"))
 {
 obj = new Dog();
 }
 else
 {
 obj = new Cat();
 }
 if (obj instanceof Dog)
 {
 System.out.println("Wag tail");
 }
 } // end main
} // end Pets2 class

Sample session:

Which type of pet do you prefer?
Enter d for dogs or c for cats: d
Wag tail

This condition evaluates to true

if the object referred to is an

instance of the Dog class or a class

descended from the Dog class.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

2 Curious George is the main character in a series of books written by Margret and H. A. Rey. George is a curious monkey. Author
John’s toddler, Caiden, is a Curious-George wannabe.

13-M4402.indd 52313-M4402.indd 523 12/17/07 4:26:27 PM12/17/07 4:26:27 PM

Apago PDF Enhancer

524 Chapter 13 Inheritance and Polymorphism

As with primitives, if there is compatibility, you can go the other way by using a cast. In other words,

you can use a cast to force an object referred to by a more generic reference variable into a more specifi c

type—a type that’s below it in the same inheritance hierarchy. For example, if p is a Person reference

variable, and Student inherits from Person, the compiler will accept this:

Student s = (Student) p;

Although the compiler will accept this statement, that does not necessarily mean the program will run suc-

cessfully. For successful execution, when dynamic binding occurs, the object actually referred to by the p
reference variable must be at least as specifi c as a Student. That is, the referenced object must be either an

instance of the Student class or an instance of a descendant of the Student class. Why? Because after

the assignment of the reference to a Student reference variable, the object will be expected to have all of

the members that a Student has, which is generally more than all the members a Person has.

13.7 Polymorphism with Arrays

So far, you’ve seen polymorphism in the context of code fragments and a simple Pets program. Those ex-

amples served their purpose—they illustrated the basics. But they didn’t illustrate the real usefulness of

polymorphism. The real usefulness of polymorphism comes when you have an array or ArrayList of

generic reference variables and assign different types of objects to different elements. That allows you to

step through the array or ArrayList and call a polymorphic method for each element. At runtime, the

JVM uses dynamic binding to pick out the particular method that applies to each type of object found.

Polymorphism in an Explicit Inheritance Hierarchy

The Pets program used polymorphic toString methods for the Dog and Cat classes. The compiler ac-

cepted the Object reference variable with the toString method calls because the Object class defi nes

its own toString method. Recall that polymorphism did not work for Dog and Cat display methods

because the Object classs does not defi ne its own display method. Suppose the method you want to

make polymorphic is not defi ned in the Object classs. How can you have polymorphism and still satisfy

the compiler? Actually, there are several related ways. One way is to create a superclass for the classes that

defi ne the different versions of the polymorphic method, and defi ne the method within the superclass. Then

use that superclass name when declaring the polymorphic reference variable(s). Another way to satisfy the

compiler is to declare the method (specify the method heading only) in an abstract ancestor class and

then use that ancestor class name for the reference variable type. Still another way to satisfy the compiler

is to implement an interface that declares the method and then use that interface name for the reference

variable type. We’ll illustrate the fi rst way in this section and the other two ways in subsequent sections.

Payroll Example

To illustrate polymorphism in an explicit inheritance hierarchy, we’ll develop a payroll program that uses

dynamic binding to select the appropriate method for calculating an employee’s pay. Employees that happen

to be salaried get dynamically bound to a Salaried class’s getPay method. Employees that happen to be

hourly get dynamically bound to an Hourly class’s getPay method.

Let’s start with the UML class diagram in Figure 13.8. It describes the Payroll program’s class struc-

ture. As you can see, Employee is a superclass and Salaried and Hourly are subclasses. The fourth

class, Payroll, is the program driver. Its main method drives the Salaried and Hourly classes by

instantiating them and then calling their methods. What is the association between Payroll and the

13-M4402.indd 52413-M4402.indd 524 12/17/07 4:26:27 PM12/17/07 4:26:27 PM

Apago PDF Enhancer

other classes—inheritance or composition/aggregation? The UML class diagram’s diamonds indicate a

 composition/aggregation association between the Payroll container and the Salaried and Hourly

components. That should make sense when you realize that the Payroll class “has a” heterogeneous array

of Salaried and Hourly objects. Assuming the Payroll class has exclusive control over these objects,

its association with them is a composition, and the diamonds should be solid.

Suppose Anna and Donovan are hourly employees paid at $25 per hour and $20 per hour, respectively,

Simon is a salaried employee paid at $4,000 per month, and all three start work at the beginning of the

month, which is a Tuesday. When the program runs, it should output the date of the month, the employee

name, and the amount paid on the indicated date, like this:

Output:

 4 Anna: 800.00
 4 Donovan: 640.00
11 Anna: 1000.00
11 Donovan: 800.00
15 Simon: 2000.00

Let’s begin implementation with the main method in the driver in Figure 13.9. Note main’s local variable,

employees. It’s declared to be a 100-element array of Employee objects. That’s what it’s declared as, but

that’s not exactly what it holds. As you can see from the assignment statements, the fi rst three employees

elements are an Hourly, a Salaried, and another Hourly. This is a heterogeneous array. All of the

elements in the array are instances of classes derived from the array’s class, and none of them is an instance

 13.7 Polymorphism with Arrays 525

Figure 13.8 Class diagram for Payroll program

Payroll

+main() : void main :

employees : Employee[]

Employee

-name : String

+Employee(name : String)

+getPay() : double
+printPay(date : int) : void

Hourly

+Hourly(name : String, rate : double)
+getPay() : double
+addHours(hours : double) : void

-hourlyRate : double
-hours : double = 0.0

Salaried

+Salaried(name : String, salary : double)

+getPay() : double

-salary : double

13-M4402.indd 52513-M4402.indd 525 12/17/07 4:26:27 PM12/17/07 4:26:27 PM

Apago PDF Enhancer

526 Chapter 13 Inheritance and Polymorphism

of the Employee class itself. Even though there may be no instances of the array’s class in the array, the

array’s type is the right type to use because it is able to accommodate instances of all classes descended

from the array’s class.

Continuing with the main method, the outer for loop steps through 30 days, keeping track of two

variables. Notice how the fi rst compartment in the for loop header declares more than one variable of the

specifi ed type. The date variable represents the date of the month. It determines when salaried employees

Figure 13.9 Driver for simple Payroll program

/***
* Payroll.java
* Dean & Dean
*
* This class hires and pays employees.
***/

public class Payroll
{
 public static void main(String[] args)
 {
 Employee[] employees = new Employee[100];
 Hourly hourly;
 employees[0] = new Hourly("Anna", 25.0);
 employees[1] = new Salaried("Simon", 48000);
 employees[2] = new Hourly("Donovan", 20.0);

 // This arbitrarily assumes that the payroll's month
 // starts on a Tuesday (day = 2), and it contains 30 days.
 for (int date=1,day=2; date<=15; date++,day++,day%=7)
 {
 for (int i=0;
 i<employees.length && employees[i] != null; i++)
 {
 if (day > 0 && day < 6
 && employees[i] instanceof Hourly)
 {
 hourly = (Hourly) employees[i];
 hourly.addHours(8);
 }
 if ((day == 5 && employees[i] instanceof Hourly) ||
 (date%15 == 0 && employees[i] instanceof Salaried))
 {
 employees[i].printPay(date);
 }
 } // end for i
 } // end for date
 } // end main
} // end class Payroll

This casts elements

into their native class.

This selects the appropriate time

to print each different type.

⎫
⎪
⎬
⎪
⎭

This selects appropriate elements.

13-M4402.indd 52613-M4402.indd 526 12/17/07 4:26:28 PM12/17/07 4:26:28 PM

Apago PDF Enhancer

 13.7 Polymorphism with Arrays 527

3 Here’s an example of how the last day in the current month can be found:

 int lastDayInCurrentMonth =
 Calendar.getInstance().getActualMaximum(Calendar.DAY_OF_MONTH);

are paid. For simplicity, this program assumes 30 days per month. If you want to learn how to get the actual

number of days in each month, go to Sun’s Java API Web site and read up on the Calendar class.3 The

day variable represents the day of the week. It determines when hourly employees are paid. Assuming that

day 1 is a Monday, since the initial value of day is 2, the program’s month starts on a Tuesday. Notice how

the third compartment of the for loop header executes more than one operation. It increments both date

and day and then uses day%=7 to make the day variable roll over to 0 whenever it reaches 7.

The inner for loop steps through the heterogeneous array of employees. The for loop header’s second

component employs a compound continuation condition. The i<employees.length condition alone

would allow looping through all 100 elements of the employees array. What’s the point of the for loop

header’s employees[i] != null condition? The program instantiates only three objects for this array,

and 97 elements still contain the default value of null. If the program tries to call a method with a null

reference, it crashes. More specifi cally, it generates a NullPointerException error the fi rst time it

tries to use the null reference. The employees[i] != null condition avoids that by stopping the

loop when it gets to the fi rst null element.

Inside the inner for loop, the fi rst if statement accumulates hours for hourly workers. It checks to see

if day is a week day (not 0 or 6). It also checks to see if the object referenced by the current array element is

an instance of the Hourly class. This enables the program to accumulate hours only during working days

of the week and only for hourly workers. Once we know that the actual object is an instance of the Hourly

class, it’s safe to cast the generic reference into an Hourly reference. So we proceed to cast that reference

into type Hourly, assign it to an Hourly reference variable, then use that specifi c type of reference vari-

able to call the addHours method. Why did we jump through those hoops? Suppose we tried to call the

addHours method with our generic reference in a statement like this:

employees[i].addHours(8);

The compiler would generate the error message:

cannot find symbol
symbol : method addHours(int)

Because there is no addHours method in the Employee class, but there is one in the Hourly class, we

must cast the array element explicitly into an Hourly type of reference and use that reference to call the

method we need.

Now look at the second if statement in the inner for loop. Instead of accumulating hours, its purpose is

generating output for a payroll report. This if statement executes if either of two or’d conditions is true. The

fi rst condition is true if it’s Friday (day � 5) and if the calling object is an instance of the Hourly class.

The second condition is true if it’s the middle of the month and if the calling object is not an instance of the

Hourly class. If either of these conditions is satisfi ed, the raw array element calls the method, like this:

employees[i].printPay(date);

This strategy wouldn’t have worked with the addHours method in the fi rst if statement, but it does work

with the printPay method in the second if statement. Why? Look at the UML specifi cation of the

 Employee class in Figure 13.8. This time, the method being called, printPay, is supposed to be defi ned

in the array’s class.

13-M4402.indd 52713-M4402.indd 527 12/17/07 4:26:28 PM12/17/07 4:26:28 PM

Apago PDF Enhancer

528 Chapter 13 Inheritance and Polymorphism

Now let’s work on implementation of that printPay method in the Employee class. In Figure 13.10

note how printPay prints the date and the employee’s name and then calls getPay. The getPay method

is supposed to calculate an employee’s pay. But the Employee class’s getPay method simply returns 0.0.

What’s up with that? Are employees really paid nothing? Certainly not! The Employee class’s getPay

method is simply a dummy method that’s never executed. The “real” getPay methods (i.e., the ones that

are executed) are the overriding defi nitions in the Salaried and Hourly subclasses. These overriding

defi nitions make the getPay method polymorphic! How does the JVM know to use those methods and

not the dummy method in the Employee class? When it performs dynamic binding, the JVM looks at the

method’s calling object. For the getPay case, the calling object is an instance of either the Salaried

class or the Hourly class. Can you see why?

Figure 13.10 Employee class

/**
* Employee.java
* Dean & Dean
*
* This is a generic description of an employee.
**/

public class Employee
{
 private String name;

 //***

 public Employee(String name)
 {
 this.name = name;
 }

 //***

 public void printPay(int date)
 {
 System.out.printf("%2d %10s: %8.2f\n",
 date, name, getPay());
 } // end printPay

 //***

 // This dummy method satisfies the compiler.

 public double getPay()
 {
 System.out.println("error! in dummy");
 return 0.0;
 } // end getPay
} // end class Employee

13-M4402.indd 52813-M4402.indd 528 12/17/07 4:26:29 PM12/17/07 4:26:29 PM

Apago PDF Enhancer

Go back to Figure 13.9’s main method and note the assignment of an Hourly object into

 employees[0]. When employees[i].printPay() gets called with i equal to 0, the calling object

is an Hourly object. Within the printPay method, when getPay is called, the calling object is still an

Hourly object. Therefore, the JVM uses the Hourly class’s getPay method. And that’s what we want—

the employees[0] object is an Hourly, so it uses the Hourly class’s getPay method. The same argu-

ment can be applied to the employees[1] object. Since it’s a Salaried object, it uses the Salaried

class’s getPay method. Thanks to polymorphism and dynamic binding, life is good.

The really cool thing about polymorphism and dynamic binding is being able to program generically.

In the main method, we can call printPay for all the objects in the array and not worry about whether

the object is an Hourly or a Salaried. We just assume that printPay works appropriately for each

employee. This ability to program generically enables programmers to think about the big picture without

getting bogged down in details.

In the Employee class, were you bothered by the dummy getPay method? Were you thinking “Why

include a getPay method in the Employee class even though it’s never executed?” It’s needed because

if there were no getPay method in the Employee class, the compiler would generate an error. Why?

Because when the compiler sees a method call with no dot prefi x, it checks to make sure that the method can

be found within the current class. The getPay() method call (within the printPay method) has no dot

prefi x, so the compiler requires the Employee class to have a getPay method.

Now it’s time to implement the “real” getPay methods. See Figures 13.11 and 13.12. The methods

 13.7 Polymorphism with Arrays 529

Figure 13.11 Salaried class

/**
* Salaried.java
* Dean & Dean
*
* This class implements a salaried employee.
**/

public class Salaried extends Employee
{
 private double salary; // per year

 //***

 public Salaried(String name, double salary)
 {
 super(name);
 this.salary = salary;
 } // end constructor

 //***

 public double getPay()
 {
 return this.salary / 24; // per half month
 } // end getPay
} // end class Salaried

13-M4402.indd 52913-M4402.indd 529 12/17/07 4:26:29 PM12/17/07 4:26:29 PM

Apago PDF Enhancer

530 Chapter 13 Inheritance and Polymorphism

in these two classes are both simple, but they are different. To keep the JVM from selecting the dummy

getPay method in the base class during dynamic binding, all derived classes should override that method.

13.8 abstract Methods and Classes

The dummy getPay method in Figure 13.10 is an example of a kludge (pronounced “klooj”). Kludgy code

is ugly inelegant code that provides a workaround for a problem. Usually, inelegant code is hard to under-

stand. And hard-to-understand code is hard to maintain. So try to avoid kludges. Sometimes that’s not pos-

sible, but in this case we can indeed avoid the dummy-method kludge. Here’s how. . . .

Figure 13.12 Hourly class

/**
* Hourly.java
* Dean & Dean
*
* This class implements an employee paid by the hour.
**/

public class Hourly extends Employee
{
 private double hourlyRate;
 private double hours = 0.0;

 //***

 public Hourly(String name, double rate)
 {
 super(name);
 hourlyRate = rate;
 } // end constructor

 //***

 public double getPay()
 {
 double pay = hourlyRate * hours;
 hours = 0.0;
 return pay;
 } // end getPay

 //***

 public void addHours(double hours)
 {
 this.hours += hours;
 } // end addHours
} // end class Hourly

13-M4402.indd 53013-M4402.indd 530 12/17/07 4:26:29 PM12/17/07 4:26:29 PM

Apago PDF Enhancer

If you fi nd yourself writing a dummy method that will be overridden by methods defi ned in all instan-

tiable descendant classes, stop and reconsider. There’s a better way. Use an abstract class to

tell the compiler what you’re trying to do ahead of time. In the abstract class, declare those

methods that are inappropriate for the reference variable’s class but will be defi ned by de-

scendant classes that instantiate objects. To declare a method, just write the method head-

ing with the additional modifi er abstract, and terminate this modifi ed method heading with a semicolon.

For example, note the abstract modifi er in the Employee2 class heading in Figure 13.13.

An abstract declaration doesn’t contain enough information to defi ne the method. It just specifi es

its outside-world interface and says that defi nition(s) will exist somewhere else. Where? In all instantiable

descendant classes! Using an abstract method avoids the inelegant dummy method defi nition, and it’s a

better way to implement polymorphism.

The abstract modifi er is well named. Something is abstract if it is general in nature, not detailed

in nature. An abstract method declaration is general in nature. It doesn’t provide method details. It

just serves notice that the method exists and that it must be fl eshed out by “real” method defi nitions in all

instantiable descendant classes. Have we followed this rule for our program? In other words, do we have

An abstract
class outlines
future work.

An abstract
class outlines
future work.

13.8 abstract Methods and Classes 531

Figure 13.13 Employee2 class, using the abstract modifi er to replace a dummy method defi nition with

simpler method declaration

/**
* Employee2.java
* Dean & Dean
*
* This abstract class describes employees.
**/

public abstract class Employee2
{
 public abstract double getPay();
 private String name;

 //***************************************

 public Employee2(String name)
 {
 this.name = name;
 }

 //***************************************

 public void printPay(int date)
 {
 System.out.printf("%2d %10s: %8.2f\n",
 date, name, getPay());
 } // end printPay
} // end class Employee2

abstract method

declaration replaces

dummy method defi nition.

If there’s an abstract method,

the class is abstract, too.

13-M4402.indd 53113-M4402.indd 531 12/17/07 4:26:29 PM12/17/07 4:26:29 PM

Apago PDF Enhancer

532 Chapter 13 Inheritance and Polymorphism

defi nitions of the getPay method in all of the Employee2 descendant classes? Yes, the Salaried and

Hourly classes in Figures 13.11 and 13.12 already contain the required getPay method defi nitions. How-

ever, we need to revise the Salaried, Hourly, and Payroll classes by making these replacements:

Employee → Employee2
Salaried → Salaried2
Hourly → Hourly2
Payroll → Payroll2

Then the Salaried2, Hourly2, and Payroll2 classes will start out looking like this:

public class Salaried2 extends Employee2
{
 ...

public class Hourly2 extends Employee2
{
 ...

public class Payroll2
{
 public static void main(String[] args)
 {
 Employee2[] employees = new Employee2[100];
 ...

Here’s another thing to note when declaring an abstract method. Since an abstract method dec-

laration does not provide a defi nition for that method, the class defi nition is incomplete. Since the class

defi nition is incomplete, it can’t be used to construct objects. The compiler recognizes this and complains

if you don’t recognize it in your code. To satisfy the compiler, you must add an abstract modifi er to the

class heading whenever you have a class that contains one or more abstract methods. For example, note

the abstract modifi er in the Employee2 class heading in Figure 13.13.

Adding an abstract modifi er to a class heading makes it impossible to instantiate an object from

that class. If a program attempts to instantiate an abstract class, the compiler generates an error. For

example, since Employee2 is an abstract class, we’d get a compilation error if we had a main method

like this:

public static void main(String[] args)
{
 Employee2 emp = new Employee2("Benji");
}

Sometimes you don’t want a child class to defi ne a method that was declared to be abstract in its

parent. Instead you want to defer the method defi nition to the next generation. It’s easy to do this. In the

child class, just ignore that method and declare the child class abstract also (since at least that method

is still undefi ned). You can defer method defi nitions like this as far as you want, provided you ultimately

defi ne them all in any non-abstract descendant class you use to instantiate objects.

We have said that if any method in a class is abstract, that class must be abstract. But this

does not mean all methods in an abstract class must be abstract. It’s frequently useful to include

Because Employee2 is

abstract, this generates

a compilation error.

Because Employee2 is

abstract, this generates

a compilation error.

13-M4402.indd 53213-M4402.indd 532 12/17/07 4:26:30 PM12/17/07 4:26:30 PM

Apago PDF Enhancer

one or more non-abstract method defi nitions in an abstract class. Thus, classes descended from an

abstract class can inherit non-abstract methods from that class and are not required to redefi ne those

non-abstract methods.

Illegal to Use private or final with abstract
An abstract method declaration cannot be private, and the defi nitions of the method that appear in

descendant classes cannot be private either. Why? An abstract method declaration provides a mini-

mum kludge-free way for the compiler to accept a polymorphic method call. If a method is polymorphic,

versions of it appear in more than one class, so at least one of the polymorphic methods is inevitably outside

the class that calls it. You can’t access an outside method that’s private, and since all defi nitions of a

polymorphic method must have identical outside-world interfaces, none of the polymorphic defi nitions can

be private. Since the abstract declaration in the abstract ancestor class is supposed to describe

correctly what the method is like to the outside world (and to the compiler), the access modifi er that appears

in the abstract declaration cannot be private either.

An abstract class or method cannot be final. The final modifi er keeps a class from being ex-

tended and keeps a method from being overridden. But an abstract class is supposed to be extended and

an abstract method is supposed to be overridden, so it’s illegal to use final with abstract.

13.9 Interfaces

Java interfaces can do lots of different things, and one of those things is help implement polymorphism. But

before we get into that, we’d like to mention a couple of other uses of a Java interface.

Using Interfaces to Standardize Inter-Class Communication

The most obvious use of a Java interface is what its name implies—to specify the headings for a set of meth-

ods that a class must implement. A Java interface is a contract between a program de-

signer and program implementers that standardizes communication among different

classes. This use of interfaces is essential to the success of large programming projects.

Suppose, for example, that you are designing an accounting system, and you’re cur-

rently focusing on “asset” accounts, which keep track of the value of things the company owns or has rights

to. Typical asset accounts are: Cash, Accounts Receivable, Inventory, Furniture, Manufacturing Equipment,

Vehicles, Buildings, and Land. These things are different from each other, so it would not be natural for

classes representing them to be in a single inheritance hierarchy. Some of these accounts (Furniture, Manu-

facturing Equipment, Vehicles, and Buildings) describe long-term or “fi xed” assets whose values depreciate

gradually over time. Each year, an accountant prepares a set of fi nancial statements, like the Balance Sheet

and a Profi t and Loss Statement. This preparation requires access to the objects representing the depreciat-

ing assets to get information like original cost, date of acquisition, and depreciation rate.

To facilitate this access, it would be nice to have references to these objects in a common array or

ArrayList. Then a program could step through that array or ArrayList and call identically named

polymorphic “get” methods to retrieve values of the originalCost, acquisitionDate, and

 depreciationRate instance variables in each object that represents a depreciating asset. Suppose that

different programmers are writing the classes for different accounts. The best way to assure that all pro-

grammers are “reading from the same page” is to require that all the classes that access a certain set of data

Establish
communication
protocols early.

Establish
communication
protocols early.

 13.9 Interfaces 533

13-M4402.indd 53313-M4402.indd 533 12/17/07 4:26:31 PM12/17/07 4:26:31 PM

Apago PDF Enhancer

534 Chapter 13 Inheritance and Polymorphism

implement the same Java interface. In our accounting system example, the interface for the “get” methods

that access originalCost, acquisitionDate, and depreciationRate instance variables might

be called the AssetAging interface. The AssetAging interface would contain declarations/headings

for its methods, but not defi nitions.

If a particular class includes a defi nition of all of the methods declared in some interface (like

 AssetAging), you can tell the world (and the Java compiler) that that class provides such defi nitions by

appending an implements clause to its class heading, like this:

public <class-name> implements <interface-name>
{

 ...

For multiple interfaces, separate their names with commas, like this:

public <class-name> implements <interface-name1>, <interface-name2>, ...
{

 ...

For inheritance and an interface, do it like this:

public <class-name> extends <parent-class-name> implements <interface-name>
{

 ...

A given class can extend only one superclass, but it can implement any number of interfaces. A Java

interface is like a “pure” abstract class. It’s pure in that it never defi nes any methods. It’s less versatile

than an abstract class, however. It can’t declare any static methods, it can’t declare any variables,

and it can’t declare any instance constants. In other words, it provides only public static final

named constants and only public abstract method declarations. Here’s the syntax for an interface

defi nition:

interface <interface-name>
{

 <type> <CONSTANT_NAME> = <value>;
 ...
 <return-type> <method-name>(<type> <parameter-name> ...);
 ...
}

You begin the defi nition of an interface with the keyword, interface, just like you begin the defi -

nition of a class with the keyword, class. You defi ne named constants in an interface the same way you

defi ne named constants in a class, and you declare methods in an interface by appending a semicolon to the

method headings. Note that the keyword public does not appear anywhere in our syntax template. You

may include the public modifi er, but it’s not necessary, and it’s standard practice to omit it, since it simply

does not make sense for an interface or any of its components to be anything but public. Also note that

the keyword abstract does not appear anywhere in our syntax template. You may include an abstract

modifi er in any method declaration, and you may include the abstract modifi er in the interface head-

ing, but again, it’s not necessary, and it’s standard practice to omit it, since it simply does not make sense to

have an interface that is not completely abstract. Also note that the keyword static does not appear

anywhere in our syntax template. It’s understood that any constant is static, and it’s understood that any

13-M4402.indd 53413-M4402.indd 534 12/17/07 4:26:31 PM12/17/07 4:26:31 PM

Apago PDF Enhancer

method is not static. Finally, note that the keyword final does not appear in our syntax template. It’s

understood that all constants are final, and since no methods are defi ned, it’s understood that any method

declaration is not final.

Using an Interface to Store Universal Constants

In addition to telling the world that your class defi nes a certain minimum set of methods, implementing an

interface also gives your class free access to all the named constants which that interface defi nes. Putting

common named constants into an interface and then giving multiple classes access to those named constants

by having them implement that interface is a handy way to provide easy access to a large set of common

physical constants and/or empirical factors or constants. You avoid duplicate defi nitions of those constants,

and you don’t have to use a class-name dot prefi x to access those constants. In principle, you could use an

inheritance hierarchy to provide direct access to common constants, but that would be bad practice, because

it would waste your one inheritance opportunity on nothing more than a bunch of constants. If you use an

interface to do this, you’re still free to use inheritance and/or additional interfaces for other purposes.

Using Interfaces to Implement Additional Polymorphisms

Now suppose you have already created an inheritance hierarchy, and you are already using it to implement

some particular polymorphism, as we did in our Payroll program. Then suppose you want to add another

polymorphism that doesn’t fi t the structure of the original inheritance hierarchy. For example, you might

want a method to be polymorphic among only some of the classes in the original hierarchy, and/or you

might want a polymorphism to include classes that are outside that hierarchy. A Java class cannot participate

in more than one inheritance—it can extend only one other class. Thus, you cannot use ab-
stract classes to support polymorphisms that span more than one inheritance hierarchy.

But as the previous accounting system example suggests, you can span more than one inher-

itance hierarchy with a Java interface. And one of the principle reasons to use Java interfaces

is to implement multiple polymorphisms.

To illustrate this, we’ll enhance the previous Payroll program by adding two classes

of commissioned employees.4 One of those classes gets a “straight” commission. The other class gets a

salary plus a commission. In either case, the commission is based on a common fi xed percentage of sales.

Figure 13.14 contains the code for an interface that defi nes this fi xed percentage as a named constant and

declares a method that must be defi ned in all classes that implement the interface.

Figure 13.15 shows the code for a Commissioned class, which describes a class of employees

who work on a straight commission. The Commissioned class extends Figure 13.13’s Employee2

class. Employee2 is an abstract class, and as such, the Commissioned subclass must defi ne all of

Employee2’s abstract methods. The only abstract method in the Employee2 class is the getPay

class, so the Comissioned class must defi ne the getPay method, and yes, it does. This increases the total

number of polymorphic getPay methods to three. In the commissioned class’s heading, note the clause,

implements interface Commission. This provides direct access to the COMMISSION_RATE named

constant, which the Commissioned class’s getPay method uses to do its job. When it implements the

 Commission interface, the Commissioned class also takes on an obligation. It must defi ne all the meth-

ods declared in that interface. The only method declared in the Commission interface is the addSales

method, and yes, the Commissioned class defi nes this method, too.

Make it
polymorphic
without
distorting
inheritance.

Make it
polymorphic
without
distorting
inheritance.

 13.9 Interfaces 535

4 See Appendix 7 for a complete UML diagram of the enhanced Payroll program developed in this subsection.

13-M4402.indd 53513-M4402.indd 535 12/17/07 4:26:32 PM12/17/07 4:26:32 PM

Apago PDF Enhancer

536 Chapter 13 Inheritance and Polymorphism

Figure 13.14 An interface for use with an enhanced version of the Payroll program

/**
* Commission.java
* Dean & Dean
*
* This inteface specifies a common attribute
* and declares common behavior of commissioned employees.
**/

interface Commission
{
 double COMMISSION_RATE = 0.10;

 void addSales(double sales);
} // end interface Commission

Figure 13.15 Class defi ning straight-commission employees in enhanced Payroll program

/**
* Commissioned.java
* Dean & Dean
*
* This class represents employees on straight commission.
**/

public class Commissioned extends Employee2 implements Commission
{
 private double sales = 0.0;

 //***

 public Commissioned(String name)
 {
 super(name);
 this.sales = sales;
 } // end constructor

 //***

 public void addSales(double sales)
 {
 this.sales += sales;
 } // end addSales

 //***

 public double getPay()
 {
 double pay = COMMISSION_RATE * sales;

 sales = 0.0;
 return pay;
 } // end getPay
} // end class Commissioned

The interface

supplies this

constant value.

Inheritance from an

abstract class

requires this method

defi nition.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

The interface requires

this method defi nition.

⎫
⎪
⎬
⎪
⎭

13-M4402.indd 53613-M4402.indd 536 12/17/07 4:26:32 PM12/17/07 4:26:32 PM

Apago PDF Enhancer

13.9 Interfaces 537

Figure 13.16 Class defi ning salary-and-commission employees in enhanced Payroll program

/**
* SalariedAndCommissioned.java
* Dean & Dean
*
* This class represents salaried and commissioned employees.
**/

public class SalariedAndCommissioned
 extends Salaried2 implements Commission
{
 private double sales;

 //***

 public SalariedAndCommissioned(String name, double salary)
 {
 super(name, salary);
 } // end constructor

 //***

 public void addSales(double sales)
 {
 this.sales += sales;
 } // end addSales

 //***

 public double getPay()
 {
 double pay =
 super.getPay() + COMMISSION_RATE * sales;

 sales = 0.0; // reset for next pay period
 return pay;
 } // end getPay
} // end class SalariedAndCommissioned

The interface supplies

this constant value. This method

overrides

the method

defi ned in the

parent class.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

The interface requires

this method defi nition.

⎫
⎪
⎬
⎪
⎭

Figure 13.16 shows the code for a SalariedAndCommissioned class. This class extends the

Salaried2 class. The Salaried2 class is like the Salaried class in Figure 13.11, except for one

difference: whereas the Salaried class extends Employees, the Salaried2 class extends
Employee2. The SalariedAndCommissioned class describes a class of employees that earn a salary

and a commission. The Salaried2’s class defi nes a getPay method, so the compiler does not insist that

the SalariedAndCommissioned class also defi ne a getPay method, but logically we need to over-

ride Salaried2 getPay method. Notice how the overriding method uses the super prefi x to call the

method it overrides. This additional getPay method defi nition increases the total number of polymorphic

getPay methods to four.

The SalariedAndCommissioned class also implements the Commission interface. This pro-

vides direct access to the COMMISSION_RATE named constant, which the getPay method uses to do its

job. Because it implements the Commission interface, the SalariedAndCommissioned class must

defi ne all methods declared in that interface, and yes, it does defi ne the addSales method.

13-M4402.indd 53713-M4402.indd 537 12/17/07 4:26:33 PM12/17/07 4:26:33 PM

Apago PDF Enhancer

538 Chapter 13 Inheritance and Polymorphism

Figure 13.17 Driver for third version of Payroll program

/**
* Payroll3.java
* Dean & Dean
*
* This class hires and pays four different types of employees.
**/

public class Payroll3
{
 public static void main(String[] args)
 {
 Employee2[] employees = new Employee2[100];
 Hourly2 hourly;
 employees[0] = new Hourly2("Anna", 25.0);
 employees[1] = new Salaried2("Simon", 48000);
 employees[2] = new Hourly2("Donovan", 20.0);
 employees[3] = new Commissioned("Glen");
 employees[4] = new SalariedAndCommissioned("Carol", 24000);

 ((Commission) employees[3]).addSales(15000);
 ((Commission) employees[4]).addSales(15000);

 // This arbitrarily assumes that the payroll's month
 // starts on a Tuesday (day = 2), and it contains 30 days.
 for (int date=1,day=2; date<=15; date++,day++,day%=7)
 {
 for (int i=0;
 i<employees.length && employees[i] != null; i++)
 {
 if (day > 0 && day < 6
 && employees[i] instanceof Hourly2)
 {
 hourly = (Hourly2) employees[i];
 hourly.addHours(8);
 }
 if ((day == 5 && employees[i] instanceof Hourly2) ||
 (date%15 == 0 &&
 (employees[i] instanceof Salaried2 ||
 employees[i] instanceof Commissioned)))
 {
 employees[i].printPay(date);
 }
 } // end for i
 } // end for date
 } // end main
} // end class Payroll3

To execute these additional classes, we need a Payroll3 class like that shown in Figure 13.17.

The Payroll3 class adds two more objects (Glen and Carol) to the array. Then it uses those objects

to call the addSales methods in the new classes. To make these method calls, we cast the array elements

into the interface type. The compiler requires a cast because the addSales method does not appear in the

13-M4402.indd 53813-M4402.indd 538 12/17/07 4:26:33 PM12/17/07 4:26:33 PM

Apago PDF Enhancer

 13.10 The protected Access Modifi er 539

 Employee2 class. Note that we need an extra set of parentheses surrounding the (Commission) cast op-

erator and the calling object. We could have used more specifi c casts like this:

((Commissioned) employees[3]).addSales(15000);
((SalariedAndCommissioned) employees[4]).addSales(15000);

But it’s more elegant to cast into the more generic Commission interface type and let the JVM select

among the polymorphic alternatives as it does its dynamic binding. Using either type of casting, here’s what

the Payroll3 driver generates:

Output:

4 Anna: 800.00
4 Donovan: 640.00
11 Anna: 1000.00
11 Donovan: 800.00
15 Simon: 2000.00
15 Glen: 1500.00
15 Carol: 2500.00

In our coded examples, notice the similarity between the use of an interface name and the use of a

class name! It’s not possible to instantiate an interface because it’s inherently abstract, but you can

use it like any ordinary class to specify type. For example, you can declare an array of elements whose

type is an interface name, you can populate that array with instances of classes that implement that inter-

face, and then you can pull objects out of that array and cast them into any type (class or interface) that

those objects conform to. The Payroll4 driver in Figure 13.18 and the subsequent output illustrate these

possibilities.

The trick is to think about what the compiler needs and what the JVM does. For example, you can cre-

ate an array of interface references because the elements in the array are just references, not instantiated

objects. The compiler lets you populate that array with references to objects from classes that implement

that interface because it knows those objects can call any method the interface declares. In a method call,

the compiler lets you cast a reference into the type of any class that declares or defi nes any version of that

method because it knows the JVM can fi nd at least one method to bind. At runtime, the JVM selects the

most appropriate method to bind.

13.10 The protected Access Modifi er

So far, we’ve discussed only two modes of accessibility for a class’s members—public and private;

public members can be accessed from anywhere; private members can be accessed only from inside

the members’ class. There is another access modifi er that is a limited form of the public access modi-

fi er—the protected access modifi er. It specifi es an accessibility that’s between public and private.

Members that are protected can be accessed only from within the same package5 or from within the

member’s subtree. What’s a subtree? It’s a class hierarchy that consists of a class plus all of its descendant

classes.

5 If you want to learn more about packages and how to group your classes into a programmer-defi ned package, see Appendix 4.

13-M4402.indd 53913-M4402.indd 539 12/17/07 4:26:33 PM12/17/07 4:26:33 PM

Apago PDF Enhancer

540 Chapter 13 Inheritance and Polymorphism

When should you use the protected modifi er? The general rule is that you should use it when you

want easy access to a member, but you don’t want to advertise it to the general public. In other words,

you want it to have more exposure than a private member, but less exposure than a public member.6

Hmmm . . . that’s still kind of vague. Let’s elaborate with an example.

Payroll Program with a protected Method

Suppose you want to enhance the Payroll program so that it includes calculation of FICA taxes (FICA

stands for Federal Insurance Contribution Act, and it funds America’s Social Security program). This tax

calculation is best done in a separate method. Where should that method go? The only time this calculation

will be done is when employees are paid. So, logically, it’s a helper method called by the getpay method.

Figure 13.18 Demonstration of class-like properties of an interface

/**
* Payroll4.java
* Dean & Dean
*
* This class hires and pays employees some kind of commission.
**/

public class Payroll4
{
 public static void main(String[] args)
 {
 Commission[] people = new Commission[100];

 people[0] = new Commissioned("Glen");
 people[1] = new SalariedAndCommissioned("Carol", 24000);

 people[0].addSales(15000);
 people[1].addSales(15000);
 for (int i=0; i<people.length && people[i] != null; i++)
 {
 ((Employee2) people[i]).printPay(15);
 }
 } // end main
} // end class Payroll4

Output:

15 Glen: 1500.00
15 Carol: 2500.00

Although you can’t

instantiate an interface

itself, you can declare

interface references.

The compiler accepts this cast because

Employee2 defi nes a printPay method,

but the JVM binds the objects to methods

in classes descended from Employee2.

6 Because a protected member can be accessed from any class descended from the class that defi nes the protected mem-
ber, anyone could extend the class that defi nes the protected member and thereby gain direct access to it. In other words, the
protected modifi er doesn’t actuallyprovide much protection. If you’re an outsider, stay away from someone else’s protected
members. Consider them to be non-standard products that are not guaranteed.

13-M4402.indd 54013-M4402.indd 540 12/17/07 4:26:34 PM12/17/07 4:26:34 PM

Apago PDF Enhancer

Where is the getPay method? It’s a polymorphic method that apperars in all classes that di-

rectly and indirectly extend the Employee class—Commissioned, Salaried, Hourly, and

SalariedAndCommissioned. But hey! This set of classes together with the Employee class itself is

the Employee subtree. So instead of repeating the defi nition of the FICA calculation in all classes that have

a getPay method, it’s more logical and more effi cient to put this common calculation in the subtree’s root

class Employee and make it protected.

To avoid trampling on previous versions of the program, we use new class names in our new

FICA enhanced Payroll program. See Figure 13.19. It shows the program’s UML diagram with the

new class names—Payroll5, Employee3, Commissioned2, Salaried3, Hourly3, and

SalariedAndCommissioned2.

 13.10 The protected Access Modifi er 541

Figure 13.19 Abbreviated class diagram for an enhanced Payroll program

Employee3

Payroll5

Hourly3Salaried3Commissioned2

SalariedAndCommissioned2

Figure 13.20 shows the defi nition of Employee3, which includes this additional common helper

method, getFICA. Employee3 also includes some named constants used in the FICA calculation. The

details of this calculation are not relevant to the present discussion, so to save space, we implement it in a

fairly cryptic form using the conditional operator. What this little getFICA method does is a reasonable

representation of what actually happens to people’s paychecks. So if you’re curious, you might want to ex-

pand the cryptic code into a more readable form. (An end-of-chapter exercise asks you to do this.)

Each of the polymorphic getPay methods includes a call to this new getFICA method. The code

for this call is essentially the same in each of the getPay methods, so we’ll show it just once, in the

 Salaried3 class in Figure 13.21.

For the most part, the SalariedAndCommissioned2 class that extends the Salaried3 class is

like what’s shown in Figure 13.16, with appropriate changes in the version numbers at the ends of the class

names. However, in the getPay method we cannot use super.getPay() to access salary in the

Salaried3 class, because the FICA tax makes the value returned by Salaried3’s getPay method

different from the value of salary.

With the FICA tax, there must be another way to access salary. Although Salaried3 could in-

clude a getSalary accessor method, the code would be simpler if salary were public. But would

you want everybody’s salary to be public? The most appropriate thing to do here is to elevate the ac-

cessibility of the salary variable in the Salaried3 class from private to protected. This gives

descendant classes direct access to the salary variable, but it does not expose it as much as a public

modifi er would. Because the SalariedAndCommissioned2 class extends Salaried3, if there is

13-M4402.indd 54113-M4402.indd 541 12/17/07 4:26:34 PM12/17/07 4:26:34 PM

Apago PDF Enhancer

542 Chapter 13 Inheritance and Polymorphism

Figure 13.20 Employee3 class which includes protected getFICA method

/***
* Employee3.java
* Dean & Dean
*
* This abstract class describes employees and it includes
* social-security tax calculation.
***/

public abstract class Employee3
{
 public abstract double getPay();
 private String name;
 private final static double FICA_TAX_RATE = 0.08; // fraction
 private final static double FICA_MAX = 90000; // dollars
 private double ytdIncome; // total year-to-date income

 //**

 public Employee3(String name)
 {
 this.name = name;
 }

 //**

 public void printPay(int date)
 {
 System.out.printf("%2d %10s: %8.2f\n",
 date, name, getPay());
 } // end printPay

 //**

 protected double getFICA(double pay)
 {
 double increment, tax;

 ytdIncome += pay;
 increment = FICA_MAX - ytdIncome;
 tax = FICA_TAX_RATE *
 (pay < increment ? pay : (increment > 0 ? increment : 0));
 return tax;
 } // end getFICA
} // end class Employee3

This limits accessibility to classes

in subtree or in same package.

13-M4402.indd 54213-M4402.indd 542 12/17/07 4:26:35 PM12/17/07 4:26:35 PM

Apago PDF Enhancer

13.10 The protected Access Modifi er 543

a protected modifi er on the salary variable in Salaried3, you can defi ne the getPay method in

the SalariedAndCommissioned2 class like this:

public double getPay()
{
 double pay = salary + COMMISSION_RATE * sales;

 pay -= getFICA(pay);
 sales = 0.0; // reset for next pay period
 return pay;
} // end getPay

So there you have it. Polymorphism enables you to put heterogeneous objects into generic arrays whose

type is either a class the objects’ classes descend from or an interface the objects’ classes implement. Then

you can cast array elements into subclass or interface types, so the array elements can make method calls

that are specifi c to their subclass or interface. The JVM fi nds the method that best matches the calling

Figure 13.21 Enhanced version of Salaried class that includes tax deduction

/***
* Salaried3.java
* Dean & Dean
*
* This class represents salaried employees.
***/

public class Salaried3 extends Employee3
{
 protected double salary;

 //**

 public Salaried3(String name, double salary)
 {
 super(name);
 this.salary = salary;
 } // end constructor

 //**

 public double getPay()
 {
 double pay = salary;

 pay -= getFICA(pay);
 return pay;
 } // end getPay
} // end class Salaried3

This allows direct access

from descendant classes.

This calls protected

method at top of subtree.

protected in Salaried3

protected in Employee3

13-M4402.indd 54313-M4402.indd 543 12/17/07 4:26:35 PM12/17/07 4:26:35 PM

Apago PDF Enhancer

544 Chapter 13 Inheritance and Polymorphism

object and executes that method. The protected modifi er allows direct access to variables and methods

from anywhere in the protected member’s subtree.

13.11 GUI Track: Three-Dimensional Graphics (Optional)

Now that you know how inheritance and interface-based polymorphism work, you should be able to fol-

low some of the subtleties that make graphical painting work. This section provides a typical illustration of

polymorphism in Java API usage.

The Java API provides several classes which together enable you to draw and color many two-

 dimensional shapes. In addition, the Graphics2D class includes two methods (draw3DRect and

 fill3DRect) that enable you to portray a simple three-dimensional shape. They draw a rectangle with

shading that makes it look like the rectangle is either raised slightly above the page or depressed slightly

below the page. In Chapters 16 and 17 we’ll show you how you can use these two methods to simulate an

un-pressed or pressed button. But that’s about the extent of the help you can get from the Java API in the

creation of what appear to be three-dimensional images.

Portraying a general three-dimensional image in Java requires consideration of geometry and trigono-

metric calculations. In this section we’ll give you a taste of this by portraying an arbitrarily oriented solid

cylinder. Figure 13.22 shows a driver for a class that displays such an object. In the declarations section, the

JFrame constructor instantiates a window called frame. The subsequent method calls, setSize and

setDefaultCloseOperation, establish that window’s size in pixels and what should happen when

the user clicks the x box in its upper-right corner.

Now look at the two user prompts. This program uses a spherical coordinate system. In this kind of co-

ordinate system, elevation is an angle that’s like latitude. A zero elevation input says the cylinder should lie

fl at, with its axis pointing at the equator. A plus or minus 90 degree elevation input says the cylinder should

stand up, with its axis pointing at either the north pole or the south pole. Azimuth is an angle that’s like east

longitude. With elevation at zero, a zero azimuth input says the cylinder axis should point right at the viewer.

A positive azimuth input says it should point to the right, and a negative azimuth input says it should point

to the left. The Cylinder constructor call instantiates the Cylinder object, and the subsequent add

method call puts that object in the window. The setVisible method call makes the window’s contents

visible. Figure 13.23 shows the resulting display for the input �15� elevation and �60� azimuth angles.

The class that defi nes this shape and describes how to paint it appears in Figures 13.24a, 13.24b, and

13.24c. In Figure 13.24a, notice that our Cylinder class extends the JPanel class, which is imported

from the Java API. The instance variables include the basic attributes of the object—its height (cylH) and

diameter (cylD). These are pixel values, which are inherently integers, but we declare them to be double.

Why do we use double instead of int? Three-dimensional graphics typically involves a considerable

amount of calculation. Declaring variables to be double forces automatic promotion of any int factors

that might appear in expressions. This keeps track of fractional information and provides the best possible

visual display.

The other instance variables describe attributes of the displayed image—its orientation angles and its il-

lumination extremes. For simplicity, the program uses “white” illumination, which contains identical values

for red, green, and blue components. The c1 and c2 variables represent the intensity of these components

for shaded and directly illuminated surfaces, respectively. The program declares these variables to be of type

float because that’s the type of the parameters in the Java API Color constructor. Zero corresponds to

pitch black, and unity corresponds to pure white, so the specifi ed c1 and c2 values correspond to two differ-

ent shades of gray—the darkest and lightest shades seen on the curved sides of the cylinder in Figure 13.23.

13-M4402.indd 54413-M4402.indd 544 12/17/07 4:26:36 PM12/17/07 4:26:36 PM

Apago PDF Enhancer

 13.11 GUI Track: Three-Dimensional Graphics (Optional) 545

Note the Cylinder constructor in Figure 13.24a. This transforms the input elevation and azimuth

angles from degrees to radians, and it also constrains the magnitudes of the input angles to less than 90

degrees. This avoids spurious results. It lets the user see only one end of the cylinder, but since the other end

is the same, the program still portrays everything of interest.

Now look at Figure 13.24b. This contains the fi rst part of a large paintComponent method. The

JVM automatically calls the paintComponent method when the program fi rst runs and whenever a user

does something to alter the contents of the program’s window. (For example, if a user maximizes a window,

the JVM calls the program’s paintComponent method.) The paintComponent method defi ned here

overrides a paintComponent method defi ned in the JComponent class, which is the superclass of the

JPanel class and therefore an ancestor of the Cylinder class. To ensure that graphical components

Figure 13.22 Driver for Cylinder class in Figures 13.24a, 13.24b, and 13.24c

/**
* CylinderDriver.java
* Dean & Dean
*
* This drives the Cylinder class.
**/

import java.util.Scanner;
import javax.swing.*; // for JFrame and JPanel

public class CylinderDriver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 JFrame frame = new JFrame("Three-Dimensional Cylinder");
 Cylinder cylinder;
 double elev; // cylinder axis elevation angle in degrees
 double azmuth; // cylinder axis azmuth angle in degrees

 frame.setSize(600, 600);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 System.out.print("Enter axis elevation (-90 to +90): ");
 elev = stdIn.nextDouble();
 System.out.print("Enter axis azmuth (-90 to +90): ");
 azmuth = stdIn.nextDouble();
 cylinder = new Cylinder(elev, azmuth);
 frame.add(cylinder);
 frame.setVisible(true);
 } // end main
} // end CylinderDriver class

Sample session:

Enter axis elevation (-90 to +90): -15
Enter axis azmuth (-90 to +90): 60

13-M4402.indd 54513-M4402.indd 545 12/17/07 4:26:36 PM12/17/07 4:26:36 PM

Apago PDF Enhancer

546 Chapter 13 Inheritance and Polymorphism

get painted properly, if you ever implement an overriding paintComponent method, you should always

call the paintComponent method the superclass defi nes or inherits as the fi rst line in your overriding

paintComponent method. Here’s the relevant code from Figure 13.24b:

super.paintComponent(g);

By defi nition, when a method overrides another method, the two methods must have the exact same

signature (same name and same sequence of parameter types). Since the PaintComponent method in

JComponent declares a Graphics object parameter, the PaintComponent method in Cylinder

also declares a Graphics object parameter, named g. Even though g is declared as a Graphics object,

the JVM actually passes a Graphics2D argument to the g parameter. That’s a good thing because the

Cylinder class relies on the g parameter to perform sophisticated graphics operations found only in the

Graphics2D class. The Graphics2D class is a subclass of Graphics. As you may recall from ear-

Figure 13.23 Three-dimensional portrayal of a solid cylinder

13-M4402.indd 54613-M4402.indd 546 12/17/07 4:26:36 PM12/17/07 4:26:36 PM

Apago PDF Enhancer

13.11 GUI Track: Three-Dimensional Graphics (Optional) 547

Figure 13.24a Cylinder class—part A

/**
* Cylinder.java
* Dean & Dean
*
* This displays a cylinder illuminated from viewing direction.
**/

import javax.swing.JPanel;
import java.awt.*; // for Graphics, Graphics2D, Color
import java.awt.Rectangle;
import java.awt.geom.*; // for Ellipse2D and GeneralPath
import java.awt.GradientPaint;

public class Cylinder extends JPanel
{
 private double cylElev; // cylinder axis elevation radians
 private double cylAzm; // cylinder axis azimuth radians
 private double cylH = 400; // cylinder height in pixels
 private double cylD = 200; // cylinder diameter in pixels
 private float c1 = 0.3f; // minimum illumination brightness
 private float c2 = 0.7f; // maximum illumination brightness

 //***

 public Cylinder(double elev, double azimuth)
 {
 cylElev = Math.toRadians(elev);
 if (Math.abs(cylElev) >= Math.PI / 2.0)
 {
 cylElev = Math.signum(cylElev) * Math.PI / 2.0001;
 }
 cylAzm = Math.toRadians(azimuth);
 if (Math.abs(cylAzm) >= Math.PI / 2.0)
 {
 cylAzm = Math.signum(cylAzm) * Math.PI / 2.0001;
 }
 }

inheritance from the

API JPanel class

lier in the chapter, it’s always legal to pass a descendant-class argument into a ancestor-class parameter.

Also you may recall that to call descendant-class methods with the ancestor-class parameter, fi rst you

need to assign the ancestor-class parameter into a descendant-class variable. Here’s the relevant code from

Figure 13.24b:

Graphics2D g2d = (Graphics2D) g;

Notice that everything in Figure 13.24b is some kind of declaration. As before, the program uses double
for the MIDX and MIDY pixel positions to preserve fractional information. For use later, it casts the incoming

13-M4402.indd 54713-M4402.indd 547 12/17/07 4:26:36 PM12/17/07 4:26:36 PM

Apago PDF Enhancer

548 Chapter 13 Inheritance and Polymorphism

Figure 13.24b Cylinder class—part B

 //***
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 final double MIDX = 0.5 * getWidth();
 final double MIDY = 0.5 * getHeight();
 Graphics2D g2d = (Graphics2D) g;
 double imageRotAngle; // image rotation angle
 GeneralPath shape; // curved cylinder side
 float c; // current color level

 // Apparent tipping of cylinder
 double tipCosine = Math.cos(cylAzm) * Math.cos(cylElev);
 double tipSine = Math.sqrt(1.0 - tipCosine * tipCosine);
 double frontEndAngle =
 Math.acos(tipCosine) * 2.0 / Math.PI;

 // Minor diameter of end ovals & apparent cylinder height
 double minorD = cylD * tipCosine;
 double apparentH = cylH * tipSine;

 // Shapes of curved sides and oval ends
 Rectangle rectangle = new Rectangle(
 (int) Math.round(MIDX - cylD / 2),
 (int) Math.round(MIDY - apparentH / 2),
 (int) Math.round(cylD),
 (int) Math.round(apparentH));
 Ellipse2D.Double frontEllipse = new Ellipse2D.Double(
 (int) Math.round(MIDX - cylD / 2),
 (int) Math.round(MIDY - apparentH / 2 - minorD / 2),
 (int) Math.round(cylD),
 (int) Math.round(minorD));
 Ellipse2D.Double backEllipse = new Ellipse2D.Double(
 (int) Math.round(MIDX - cylD / 2),
 (int) Math.round(MIDY + apparentH / 2 - minorD / 2),
 (int) Math.round(cylD),
 (int) Math.round(minorD));

 // Color for sides of cylinder
 GradientPaint gradientPaint = new GradientPaint(
 (float) (MIDX - cylD / 2), 0.0f, new Color(c1, c1, c1),
 (float) (MIDX), 0.0f, new Color(c2, c2, c2), true);

Passed in object’s class must

be in Graphics2D subtree.

Graphics parameter into a more specifi c Graphics2D reference. After declaring the working variables,

imageRotAngle, shape, and c, it begins a sequence of initialized declarations. These declarations ac-

tually implement most of the method’s calculations. Using declarations to implement sequential steps in a

calculation provides self-documentation. It makes a long tedious calculation easier to understand by giving

intermediate variables understandable names.

13-M4402.indd 54813-M4402.indd 548 12/17/07 4:26:37 PM12/17/07 4:26:37 PM

Apago PDF Enhancer

13.11 GUI Track: Three-Dimensional Graphics (Optional) 549

You can use your understanding of geometry and trigonometry to verify the calculation of the apparent

angle, apparent cylinder height, and minor diameter of the elliptical ends of a cylinder that’s oriented as the

input specifi es. The declarations under “// Shapes of curved sides and oval ends” use these values to defi ne a

rectangle and two ellipses. The rectangle and backEllipse objects will help confi gure the cylinder’s

sides in a GeneralPath object called shape, and the frontEllipse object will enable the program

to paint the cylinder’s visible end.

The last declaration in Figure 13.24b instantiates a GradientPaint object. This establishes a color

gradation that makes the sides of the cylinder appear to be round. In the range between x � (MIDX � clyD / 2)

and x � (MIDX), this creates 16 narrow vertical stripes with color varying linearly from an intensity given

by c1 on the left to an intensity given by c2 on the right. The true argument makes the method ramp the

shading back down again in the range between x � (MIDX) and x � (MIDX � clyD / 2).

Notice that the rectangle and both ellipses are defi ned in a vertical orientation, but the cylinder in Fig-

ure 13.23 is not vertical! It is oriented at an angle sloping down and to the right. This requires a rotation.

Now look at Figure 13.24c. The subordinate statement in the else part of the if statement computes the

amount of rotation. The call to Graphics2D’s rotate method after the else clause tells the computer

Figure 13.24c Cylinder class—part C

 // Rotate image from vertical around center
 if (cylElev == 0.0)
 {
 imageRotAngle =
 Math.signum(Math.sin(cylAzm)) * Math.PI / 2.0;
 }
 else
 {
 imageRotAngle =
 Math.atan(Math.sin(cylAzm) / Math.tan(cylElev));
 if (Math.tan(cylElev) < 0)
 {
 imageRotAngle += Math.PI;
 }
 }
 g2d.rotate(imageRotAngle, MIDX, MIDY);

 // Define and paint curved sides of cylinder
 shape = new GeneralPath(rectangle);
 shape.append(backEllipse, false);
 g2d.setPaint(gradientPaint);
 g2d.fill(shape);

 // Paint visible end of cylinder
 c = c2 - (float) ((c2 - c1) * frontEndAngle);
 g2d.setColor(new Color(c, c, c));
 g2d.fill(frontEllipse);
 } // end paint
} // end Cylinder class

Parameter type is

interface Shape,

which Rectangle

implements.

Parameter type is interface

Paint, which GradientPaint

implements.

13-M4402.indd 54913-M4402.indd 549 12/17/07 4:26:37 PM12/17/07 4:26:37 PM

Apago PDF Enhancer

550 Chapter 13 Inheritance and Polymorphism

how to perform this rotation around the window’s midpoint. But the rotation doesn’t actually occur until

after the object is painted.

The next step is instantiating a GeneralPath object and assigning it to the reference variable called

shape. Initially this shape is nothing more than our previously defi ned rectangle. Then shape’s

 append method adds the backEllipse component, so that shape now includes everything in either the

rectangle or the back-side ellipse.

Before it actually paints, the program must specify the coloring scheme with a setPaint method call.

The setPaint parameter must be a reference to an object that implements the Paint interface. If you look

up the API documentation for the GradientPaint class, you’ll see that, yes, it implements the Paint

interface. Since our gradientPaint object is an instance of the GradientPaint class, and since the

GradientPaint class implements the Paint interface, the program can call setPaint with a reference

to the gradientPaint object as the argument. At this point, the program is ready to paint the sides of the

cylinder with the fill(shape) method call. This tells the computer to perform the previously specifi ed

method of painting in the previously specifi ed shape, and then rotate the result as previously specifi ed.

The last three statements in the program paint the visible end of the cylinder. The fi rst statement cal-

culates intensity based on the angle of the visible end—using a lighter shade when we’re looking directly at

the end and a darker shade when we see it at a grazing angle. The setColor method call changes the paint

mode from the previously established gradient painting to a fl at gray having the just-computed intensity.

The fi nal fill(frontEllipse) method call tells the computer to paint the front ellipse shape and then

rotate the result as previously specifi ed.

Figure 13.24c contains several examples where API input parameter types are interfaces rather than

classes. The GeneralPath constructor’s parameter is of type Shape, where Shape is an interface. The

object called rectangle conforms to this because its class, Rectangle, implements the Shape

interface. The fi rst parameter in GeneralPath’s append method and the parameter in Grahpics2D’s

fill method are also of type Shape. The objects called backEllipse, shape and frontEllipse

all conform because their classes, Ellipse2D and GeneralPath, both implement the Shape interface,

too. Graphics2D’s setPaint method receives a parameter of type Paint, where Paint is another in-

terface. The object called gradientPaint conforms to this because its class, GradientPaint, imple-

ments the Paint interface. These are all polymorphic references!

Summary

The Object class is the ancestor of all other classes.

To avoid using the Object class’s equals method, for each of your classes, you should defi ne an

equals method that compares instance variable values.

To avoid the Object class’s mysterious response to a toString method call, for each of your classes,

you should defi ne a toString method that outputs a string concatenation of instance variable values.

At compile time, the compiler confi rms that a reference variable’s class is able to handle each of the

reference variable’s method calls in some way. At runtime, the JVM looks at the particular type of the

object referred to by the reference variable to determine which one of several alternative polymorphic

methods should actually be called, and it binds the object to that method.

The instanceof operator enables you to determine explicitly whether the object referred to by a

reference variable is an instance of a particular class or descended from that class.

You can always assign an object to a more generic reference variable, because the object’s methods in-

clude methods inherited from the reference variable’s class.

•
•

•

•

•

•

13-M4402.indd 55013-M4402.indd 550 12/17/07 4:26:37 PM12/17/07 4:26:37 PM

Apago PDF Enhancer

You can safely cast a more generic reference into a more specifi c type only if you know the actual ob-

ject referred to will be as specifi c as or more specifi c than the cast.

You can implement polymorphism in an array of heterogeneous objects by declaring the array elements

to be instances of a common inheritance ancestor. To satisfy the compiler, you can write a dummy

method in that ancestor class and override it in all classes instantiated in the array. Or you can de-

clare the method in an abstract ancestor class and then defi ne overriding methods in all descendant

classes instantiated in the array. Or you can declare the method in an interface and implement that in-

terface in all classes instantiated in the array.

A class can extend one inherited superclass and/or implement any number of interfaces.

An interface provides simple access to common constants.

The protected access modifi er provides direct access to members of classes in the same package or

in the inheritance subtree whose root is the class in which the protected member is declared.

With the aid of explicit trigonometric calculations, you can use Java API classes to draw what appear to

be three-dimensional objects.

Review Questions

§13.2 The Object Class and Automatic Type Promotion

 1. If you want a class you defi ne to inherit methods from the Object class, you must append the suffi x,
extends Object, to your class’s heading. (T / F)

§13.3 The equals Method

 2. When used to compare reference variables, the == operator works the same as the Object class’s equals
method. (T / F)

 3. What does the equals method defi ned in the String class compare?

§13.4 The toString Method

 4. What is returned by the Object class’s toString method?
 5. What’s wrong with replacing the println statement in Figure 13.2’s main method with these two

statements?

String description = car.toString();
System.out.println(description);

 6. The return type of an overriding method must be the same as the return type of the overridden method.
(T / F)

§13.5 Polymorphism and Dynamic Binding

 7. In Java, polymorphic method calls are bound to method defi nitions at compile time (not runtime). (T / F)

§13.6 Assignments Between Objects in a Class Hierarchy

 8. Assume one reference variable’s class is descended from another reference variable’s class. To be able to
assign one reference variable to the other one (without using a cast operator), the left-side variable’s class
must be a(n) of the right-side reference variable’s class.

§13.7 Polymorphism with Arrays

 9. A given array may contain elements of varying type. (T / F)

•

•

•
•
•

•

 Review Questions 551

13-M4402.indd 55113-M4402.indd 551 12/17/07 4:26:38 PM12/17/07 4:26:38 PM

Apago PDF Enhancer

552 Chapter 13 Inheritance and Polymorphism

§13.8 abstract Methods and Classes

 10. What are the syntax features of an abstract method?
 11. Any class that contains an abstract method must be declared to be an abstract class. (T / F)
 12. You cannot instantiate an abstract class. (T / F)

§13.9 Interfaces

 13. You can use an interface to provide direct access to a common set of constants from many different classes.
(T/F)

 14. You can declare reference variables to have an interface type and use them just like you would use reference
variables declared to be the type of a class in an inheritance hierarchy. (T / F)

§13.10 The protected Access Modifi er

 15. Describe the access provided by the protected modifi er.
 16. It’s illegal to use private for any method that overrides an abstract method. (T/F)

Exercises

 1. [after §13.3] Write a sameColorAs method for the Car class in Figure 13.1. It should return true if the
compared cars’ colors are the same, regardless of their other attributes.

 2. [after §13.4] Write the output produced by the program in Figure 13.2.

 3. [after §13.4] What does the following program output? For each dog’s output, describe how the output is
generated (be specifi c).

public class Animal
{
 public static void main(String[] args)
 {
 Animal sparky = new Dog();
 Animal lassie = new Animal();

 System.out.println(
 "sparky = " + sparky + "\tlassie = " + lassie);
 } // end main
} // end Animal

class Dog extends Animal
{
 public String toString()
 {
 return "bark, bark";
 }
} // end class Dog

 4 [after §13.4] What happens if you add an object of a class that does not defi ne a toString method to an
ArrayList, and then you try to print the ArrayList? (Assume the object’s class is a programmer-
defi ned class that does not have an extends phrase in its heading.)

 5. [after §13.5] Why is dynamic binding often called late binding?

 6. [after §13.6] Given: Animal � superclass, Dog � subclass.

13-M4402.indd 55213-M4402.indd 552 12/17/07 4:26:38 PM12/17/07 4:26:38 PM

Apago PDF Enhancer

 Identify all compilation errors in this code fragment. Provide a compilation error message if you like, but
it’s not required.

Animal animal;
Dog fido, sparky = new Dog();
animal = sparky;
fido = new Animal();

 7. [after §13.6] Suppose you have an object called thing, but you are not sure what type it is, and you would
like to have your program print that type out. The Object class (and therefore any class!) has another
method, getClass, that returns a special object of type Class that contains information about the class
of the object calling the getClass method. The Class class has a method called getName which returns
the name of the class described by its calling object. Write a statement that prints the name of thing’s class.

 8. [after §13.7] Given: Animal � superclass, Dog � subclass, Cat � subclass.

 In the following code fragment, the bottom two lines generate compile-time errors. Provide corrected
versions of those two lines. Preserve the spirit of the original code. For example, the bottom line should
assign the second animals element into the fluffy variable.

Animal[] animals = new Animal[20];
animals[0] = new Dog();
animals[1] = new Cat();
Dog lassie = animals[0];
Cat fluffy = animals[1];

 9. [after §13.8] Each abstract method in a superclass must be overridden by a corresponding method in
every non-abstract class descended from it. (T/F).

 10. [after §13.8] Given the Pets3 program below, write an abstract Animal2 class that contains just
one item—an abstract declaration for a speak method. Write Dog2 and Cat2 classes that extend
Animal2, so that when you run the Pets3 program and input either a ‘c’ or a ‘d,’ the program prints either
“Meow! Meow!” or “Woof! Woof.”

import java.util.Scanner;

public class Pets3
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Animal2 animal;

 System.out.print("Which type of pet do you prefer?\n" +
 "Enter c for cats or d for dogs: ");
 if (stdIn.nextLine().charAt(0) == 'c')
 {
 animal = new Cat2();
 }
 else
 {
 animal = new Dog2();
 }
 animal.speak();
 } // end main
} // end Pets3 class

 Exercises 553

13-M4402.indd 55313-M4402.indd 553 12/17/07 4:26:38 PM12/17/07 4:26:38 PM

Apago PDF Enhancer

554 Chapter 13 Inheritance and Polymorphism

 11. [after §13.9] Rewrite the Commission interface shown in Figure 13.14 to explicitly show the abstract,
public, static, and final modifi ers in every place where they apply. (Your elaborated interface
defi nition should compile.)

 12. [after §13.9] Change the Pets3 class in Exercise 10, above, as follows: Replace all instances of Pets3
by Pets4, and replace Animal2 by Animal3. Then, write an Animal3 interface and Dog3 and Cat3
classes that implement Animal3, so that when you run the Pets4 program and input either a ‘c’ or a ‘d,’
the program prints either “Meow! Meow!” or “Woof! Woof.”

 13. [after §13.10] Expand the cryptic code in the getFICA method of the Employee3 class in Figure 13.20
into “if else” statements so that the algorithm is easier to understand.

Review Question Solutions

 1. False. Every class is a descendant of the Object class, so specifying extends Object is not necessary.
In fact it is undesirable, because it prevents extension of some other class.

 2. True.

 3. The equals method defi ned in the String class compares a string’s characters.

 4. The Object class’s toString method returns a string concatenation of these three text components:
full classname
@ character
a hexadecimal hashcode value

 5. Nothing. It’s just a matter of style—whether you want more compactness or more self-documentation.

 6. True.

 7. False. At runtime. The JVM determines which method is called.

 8. To be able to assign one reference variable to the other one (without using a cast operator), the left-side
variable’s class must be a(n) superclass/ancestor of the right-side reference variable’s class.

 9. True, if each element’s type is either the type defi ned in the array declaration or a descendant of that type
(or conforms to the interface that defi nes the array’s type—see Section 13.9).

 10. The syntax features of an abstract method are:
The method heading contains the abstract modifi er.
There is a semicolon at the end of the heading.
There is no method body.

 11. True.

 12. True.

 13. True

 14. True.

 15. It is legal to access a protected member:
from within the same class as the protected member
from within a class descended from the protected member
from within the same package

 16. True. An abstract method must be public or protected (it cannot be private). An overriding
method must be no more restrictive than its overridden method. Therefore, if a method overrides an
abstract method, it cannot be private.

•
•
•

•
•
•

•
•
•

13-M4402.indd 55413-M4402.indd 554 12/17/07 4:26:39 PM12/17/07 4:26:39 PM

Apago PDF Enhancer

0.0 Last A-Head 555

C H A P T E R

555

Exception Handling

Objectives

Understand what an exception is.

Use try and catch blocks for numeric input validation.

Understand how catch blocks catch an exception.

Explain the difference between checked and unchecked exceptions.

Look up exception details on Sun’s Java API Web site.

Catch exceptions with the generic Exception class.

Use the getMessage method.

Catch exceptions with multiple catch blocks.

Understand exception messages.

Propagate exceptions back to the calling module with the help of a throws clause.

Outline

 14.1 Introduction

 14.2 Overview of Exceptions and Exception Messages

 14.3 Using try and catch Blocks to Handle “Dangerous” Method Calls

 14.4 Line Plot Example

 14.5 try Block Details

 14.6 Two Categories of Exceptions—Checked and Unchecked

 14.7 Unchecked Exceptions

 14.8 Checked Exceptions

 14.9 The Exception Class and Its getMessage Method

 14.10 Multiple catch Blocks

 14.11 Understanding Exception Messages

 14.12 Using throws <exception-type> to Postpone the catch

 14.13 GUI Track and Problem Solving: Line Plot Example Revisited (Optional)

•
•
•
•
•
•
•
•
•
•

14

14-M4402.indd 55514-M4402.indd 555 12/17/07 4:26:51 PM12/17/07 4:26:51 PM

Apago PDF Enhancer

556 Chapter 14 Exception Handling

14.1 Introduction

As you know, programs sometimes generate errors. Compile-time errors deal with incorrect syntax, like

forgetting parentheses around an if statement condition. Runtime errors deal with code that behaves inap-

propriately, like trying to divide by zero. In previous chapters, we fi xed compile-time errors by correcting

the erroneous syntax, and we fi xed runtime errors by making code more robust. In this chapter, we deal

with errors using a different technique—exception handling. We’ll describe exceptions more formally later

on, but for now, think of an exception as an error, or simply something that goes wrong with a program.

 Exception handling is an elegant way to deal with such problems.

We start this chapter by looking at a common problem—making sure that users enter a valid number

when they are asked for a numeric input. You’ll learn how to implement such input validation using try
and catch blocks, two of the key exception handling constructs. There are different types of exceptions,

and you’ll learn how to deal with the different types appropriately. In the chapter’s fi nal section, you’ll use

exception handling as part of a GUI line-plot program.

To understand this chapter, you need to be familiar with object-oriented programming, arrays, and

inheritance basics. As such, you need to have read up through Chapter 12. This chapter does not depend on

material covered in Chapter 13.

We realize that readers may want to read different amounts of this chapter (Exception Handling) and

the next chapter (Files). If you plan to read the next chapter, then you’ll need to read this chapter in its en-

tirety since the topic addressed in the next chapter, fi le manipulation, relies heavily on exception handling.

On the other hand, if you plan to skip the next chapter and go directly to Chapters 16 and 17 (GUI program-

ming), then you’ll need to read only the fi rst part of this chapter, Sections 14.1 through 14.7.

14.2 Overview of Exceptions and Exception Messages

As defi ned by Sun,1 an exception is an event that disrupts the normal fl ow of instructions during the execu-

tion of a program. Exception handling is a technique for handling such exceptions gracefully.

The fi rst exceptions we’ll look at deal with invalid user input. Have you ever crashed a program (made

it terminate ungracefully) due to invalid input? If a program calls the Scanner class’s nextInt method

and a user enters a non-integer, the Java Virtual Machine (JVM) generates an exception, displays a big,

ugly error message, and terminates the program. Here’s a sample session that illustrates what we’re talking

about:

Enter an integer: 45.6
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:819)
 at java.util.Scanner.next(Scanner.java:1431)
 at java.util.Scanner.nextInt(Scanner.java:2040)
 at java.util.Scanner.nextInt(Scanner.java:2000)
 at Test.main(Test.java:11)

user input
an exception

exception

message

⎫
⎪
⎪
⎬
⎪
⎪
⎭

user input
an exception

exception

message

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1 Sun Microsystems, “The Java Tutorial, Handling Errors with Exceptions,” which can be found on the Internet at
http://java.sun.com/docs/books/tutorial/essential/exceptions/.

14-M4402.indd 55614-M4402.indd 556 12/17/07 4:26:52 PM12/17/07 4:26:52 PM

http://java.sun.com/docs/books/tutorial/essential/exceptions/

Apago PDF Enhancer

14.3 Using try and catch Blocks to Handle “Dangerous” Method Calls 557

Note the InputMismatchException above. That’s the type of exception that’s generated when a user

enters a non-integer in response to a nextInt method call. Note the exception message. Exception mes-

sages can be annoying, but they serve a useful purpose. They provide information about what’s gone wrong.

Toward the end of this chapter, we cover exception message details. But fi rst a more important issue—how

to avoid getting ugly exception messages in the fi rst place. Let us begin.

14.3 Using try and catch Blocks to Handle “Dangerous”
Method Calls

Some method calls, like nextInt, are dangerous in that they can lead to exceptions, and exceptions can

lead to program crashes. By the way, “dangerous” is not a standard exception handling term, but we’ll use

it because it helps with explanations. In this section, we describe how to use try and catch blocks to

fend off exception messages and program crashes. Use a try block to “try” out one or more dangerous

method calls. If there’s a problem with the dangerous method call(s), the JVM jumps to a catch block

and the JVM executes the catch block’s enclosed statements. Drawing an analogy, a try block is like a

circus trapeze act. A trapeze act contains one or more dangerous stunts (e.g., a triple fl ip, a triple twist). The

dangerous stunts are like dangerous method calls. If something goes wrong with one of the stunts and an

acrobat falls, there’s a net to catch the acrobat. Likewise, if something goes wrong with one of the danger-

ous method calls, control passes to a catch block. If nothing goes wrong with the trapeze stunts, the net

isn’t used at all. Likewise, if nothing goes wrong with the dangerous method calls, the catch block isn’t

used at all.

Syntax and Semantics

Here’s the syntax for try and catch blocks:

try

{
 <statement(s)>
}
catch (<exception-class> <parameter>)
{
 <error-handling-code>
}

As shown above, a try block and its associated catch block (or multiple catch blocks, which we’ll ad-

dress later) must be contiguous. You can put other statements before the try block or after the (last) catch

block, but not between them. Note the parameter in the catch block’s heading. We’ll explain catch block

parameters in the context of the following example program.

See Figure 14.1’s LuckyNumber program. Note how the try and catch blocks follow the syntax

pattern shown above. Within the try block, the nextInt method call tries to convert a user entry to an

integer. For the conversion to work, the user entry must contain only digits and an optional preceding minus

sign. If the user entry conforms to that format, the JVM assigns the user entry to the num variable, skips

the catch block, and continues with the code below the catch block. If the user entry does not con-

form to that format, an exception occurs. If an exception occurs, the JVM immediately exits from the try

block and instantiates an exception object—an object that contains information about the exception event.

Normally, one or more of these statements will be

a “dangerous” API method call or constructor call.

The exception class should match the type of

exception that the try block might throw.

Normally, one or more of these statements will be

a “dangerous” API method call or constructor call.

The exception class should match the type of

exception that the try block might throw.

14-M4402.indd 55714-M4402.indd 557 12/17/07 4:26:52 PM12/17/07 4:26:52 PM

Apago PDF Enhancer

558 Chapter 14 Exception Handling

In this example, the JVM instantiates an InputMismatchException object. The JVM then passes the

InputMismatchException object to the catch block heading’s e parameter. Since e is declared to

be an InputMismatchException and InputMismatchException is not part of the core Java lan-

guage, at the top of the program we need to include:

import java.util.InputMismatchException;

Import InputMismatchException

for use below.

Figure 14.1 LuckyNumber program that uses try and catch blocks for numeric user entry

/***
* LuckyNumber.java
* Dean & Dean
*
* This program reads the user's lucky number as an int.
***/

import java.util.Scanner;
import java.util.InputMismatchException;

public class LuckyNumber
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int num; // lucky number
 try
 {
 System.out.print("Enter your lucky number (an integer): ");
 num = stdIn.nextInt();
 }
 catch (InputMismatchException e)
 {
 System.out.println(
 "Invalid entry. You'll be given a random lucky number.");
 num = (int) (Math.random() * 10) + 1; // between 1-10
 }
 System.out.println("Your lucky number is " + num + ".");
 } // end main
} // end LuckyNumber class

Sample session 1:

Enter your lucky number (an integer): 27
Your lucky number is 27.

Sample session 2:

Enter your lucky number (an integer): 33.42
Invalid entry. You'll be given a random lucky number.
Your lucky number is 8.

The e parameter receives an

InputMismatchException

object.

14-M4402.indd 55814-M4402.indd 558 12/17/07 4:26:53 PM12/17/07 4:26:53 PM

Apago PDF Enhancer

After passing the exception object to the catch block, the JVM executes the catch block’s body. In this

example, the catch block prints an “Invalid entry . . .” message and assigns a random number to the num

variable. Then execution continues with the code below the catch block.

Throwing an Exception

When the JVM instantiates an exception object, we say that the JVM throws an exception. We’d prefer to

say “throws an exception object” rather than “throws an exception” since the thing that’s being thrown is an

exception object. But most programmers don’t worry about the difference between an exception, which is

an event, and an exception object. No big deal. We’ll go with the fl ow and use the standard terminology—

throwing an exception.

When the JVM throws an exception, the JVM looks for a matching catch block. If it fi nds a match-

ing catch block, it executes it. If it does not fi nd a matching catch block, the JVM prints the excep-

tion object’s exception message and terminates the program. What is a “matching catch block”? A

catch block is “matching” if the catch heading’s parameter type is the same as the type of the thrown

exception.2 For example, in the LuckyNumber program, the InputMismatchException param-

eter matches the InputMismatchException object thrown by the nextInt method call. So the

 InputMismatchException parameter’s catch block is a matching catch block if and when the

nextInt method call throws an InputMismatchException.

An exception object contains information about the error, including the error’s type and a list of the

method calls that led to the error. We’ll use some of the exception object’s information later on, but for now,

all we need the exception object for is its ability to match up with the proper catch block.

14.4 Line Plot Example

Now let’s see how try and catch are used in the context of a more complicated program. We start by pre-

senting a program without try and catch blocks. Then we analyze the program and determine how it can

be improved by adding try and catch blocks.

First-Cut LinePlot Program

The program in Figure 14.2 plots a line by reading in coordinate positions for a series of points. The best

way to get a handle on what the LinePlot program does is to show a sample session. Below, the user chooses

to plot a line that goes from the origin (the default starting point) to point (3,1) to point (5,2):

Sample session:

Enter x & y coordinates (q to quit): 3 1
New segment = (0,0)-(3,1)
Enter x & y coordinates (q to quit): 5 2
New segment = (3,1)-(5,2)
Enter x & y coordinates (q to quit): q

2 Actually, as you’ll see in Section 14.9, a catch block is also considered matching if the catch heading’s parameter type is a
superclass of the thrown exception’s class.

 14.4 Line Plot Example 559

14-M4402.indd 55914-M4402.indd 559 12/17/07 4:26:54 PM12/17/07 4:26:54 PM

Apago PDF Enhancer

560 Chapter 14 Exception Handling

Figure 14.2 LinePlot program that plots a line—fi rst draft

/***
* LinePlot.java
* Dean & Dean
*
* This program plots a line as a series of user-specified
* line segments.
***/

import java.util.Scanner;

public class LinePlot
{
 private int oldX = 0; // oldX and oldY save previous point
 private int oldY = 0; // starting point is the origin (0,0)

 //**

 // This method prints description of a line segment from the
 // previous point to the current point.

 public void plotSegment(int x, int y)
 {
 System.out.println("New segment = (" + oldX + "," + oldY +
 ")-(" + x + "," + y + ")");
 oldX = x;
 oldY = y;
 } // end plotSegment

 //**

 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 LinePlot line = new LinePlot();
 String xStr, yStr; // coordinates for point in String form
 int x, y; // coordinates for point

 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 while (!xStr.equalsIgnoreCase("q"))
 {
 yStr = stdIn.next();
 x = Integer.parseInt(xStr);
 y = Integer.parseInt(yStr);
 line.plotSegment(x, y);
 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 } // end while
 } // end main
} // end class LinePlot

⎫
⎬
⎭

These could generate

runtime errors.

14-M4402.indd 56014-M4402.indd 560 12/17/07 4:26:54 PM12/17/07 4:26:54 PM

Apago PDF Enhancer

As you can see, the program’s display is very primitive—it uses text to represent each line segment. In a real

line-plotting program, you’d use Java’s lineDraw method to display the line. That’s what we do in the GUI

section at the end of this chapter. But for now, we’ll keep it simple and use a text-based display rather than a

GUI-based display. That way, we can maintain focus on this chapter’s primary topic, exception handling.

Using “q” as a Sentinel Value

In the past, when you entered numbers inside a loop, you often terminated the loop with a numeric sentinel

value. This program employs a more elegant solution because it allows a non-numeric “q” as the sentinel

value. How can you read in numbers and the string “q” with the same input statement? Use strings for both

types of input—for the “q” and also for the numbers. For each number input, the program converts the num-

ber string to a number by calling the Integer class’s parseInt method.

We described the Integer class’s parseInt method back in Chapter 5. The parseInt method at-

tempts to convert a given string to an integer. That should sound familiar; in the LuckyNumber program, we

used the Scanner class’s nextInt method to convert a given string to an integer. The difference is that

the nextInt method gets its string from a user and the parseInt method gets its string from a passed-in

parameter. If the passed-in parameter does not contain digits and an optional minus sign, the JVM throws

a NumberFormatException . NumberFormatException is in the java.lang package. Since

the JVM automatically imports the java.lang package, your program doesn’t need an explicit import to

refer to a NumberFormatException.

Input Validation

Note how the LinePlot program calls stdIn.next to read x coordinate and y coordinate values into

xStr and yStr, respectively. Then the program attempts to convert xStr and yStr to integers by calling

Integer.parseInt. The conversions work fi ne as long as xStr and yStr contain digits and an op-

tional minus sign. But what happens if the user enters a non-integer for xStr or yStr? With invalid input,

the program crashes, like this:

Sample session:

Enter x & y coordinates (q to quit): 3 1.25
Exception in thread "main" java.lang.NumberFormatException: For
input string: "1.25"
...

To deal with this possibility, let’s rewrite the while loop in the main method of Figure 14.2 so that it in-

cludes input validation using a try-catch mechanism. The fi rst step is to identify the dan-

gerous code. Can you fi nd the dangerous code? The two parseInt method calls are dangerous

in that they might throw a NumberFormatException. So let’s put those two statements

into a try block and add a matching catch block, as shown in Figure 14.3.

Do you see any logic errors in Figure 14.3’s while loop? What happens if there’s invalid input? A

NumberFormatException object is thrown and caught, and then an error message is printed. Then

line.plotSegment executes. But you wouldn’t want to print the line segment if the input values were

messed up. To avoid that possibility, move the line.plotSegment(x, y); line to the last line in the

try block. This way, it gets executed only if the two parseInt method calls work properly. Figure 14.4

shows the fi nal version of the LinePlot program’s while loop.

Look for
potential
problems.

Look for
potential
problems.

 14.4 Line Plot Example 561

14-M4402.indd 56114-M4402.indd 561 12/17/07 4:26:54 PM12/17/07 4:26:54 PM

Apago PDF Enhancer

562 Chapter 14 Exception Handling

Figure 14.3 First attempt at improving the LinePlot program’s while loop

 while (!xStr.equalsIgnoreCase("q"))
 {
 yStr = stdIn.next();
 try
 {
 x = Integer.parseInt(xStr);
 y = Integer.parseInt(yStr);
 }
 catch (NumberFormatException nfe)
 {
 System.out.println("Invalid entry: " + xStr + " " + yStr
 + "\nMust enter integer space integer.");
 }

 line.plotSegment(x, y);
 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 } // end while

⎫
⎬
⎭

These statements should

be inside a try block.

Figure 14.4 Final version of the LinePlot program’s while loop

 while (!xStr.equalsIgnoreCase("q"))
 {
 yStr = stdIn.next();
 try
 {
 x = Integer.parseInt(xStr);
 y = Integer.parseInt(yStr);
 line.plotSegment(x, y);
 }
 catch (NumberFormatException nfe)
 {
 System.out.println("Invalid entry: " + xStr + " " + yStr
 + "\nMust enter integer space integer.");
 }
 System.out.print("Enter x & y coordinates (q to quit): ");
 xStr = stdIn.next();
 } // end while

This statement should be

inside the try block, not after

the try-catch structure.

14-M4402.indd 56214-M4402.indd 562 12/17/07 4:26:55 PM12/17/07 4:26:55 PM

Apago PDF Enhancer

14.5 try Block Details

Now that you know the basic idea behind try blocks, it’s time to fl esh out some subtle try block details.

try Block Size

Deciding on the size of your try blocks is a bit of an art. Sometimes it’s better to use small try blocks,

and sometimes it’s better to use larger try blocks. It’s legal to surround an entire method body with a try

block, but that’s usually counterproductive because then dangerous code is harder to identify. In general,

you should make your try blocks small enough so that your dangerous code is easily identifi ed.

On the other hand, if you need to execute several related dangerous statements in succession, you should

consider surrounding the statements with one inclusive try block rather than surrounding each statement

with its own small try block. Multiple small try blocks can lead to cluttered code. One inclusive try

block can lead to improved readability. The improved LinePlot program includes both parseInt state-

ments in a single try block because they are conceptually related and physically close together. That im-

proves readability.

Assume That try Block Statements Are Skipped

If an exception is thrown, the JVM immediately jumps out of the current try block. The immediacy of

the jump means that if there are statements in the try block after the exception-throwing statement, those

statements get skipped. The compiler is a pessimist. It knows that statements inside a try block might

possibly be skipped, and it assumes the worst; that is, it assumes that all statements inside a try block get

skipped. Consequently, if there’s a try block that contains an assignment to x, the compiler assumes that

the assignment is skipped. If there’s no assignment to x outside of the try block and x’s value is needed

outside of the try block, you’ll get this compile-time error:

variable x might not have been initialized

If you get that error, usually you can fi x it by initializing the variable prior to the try block. Let’s look at an

example. . . .

Your goal is to implement a getIntFromUser method that performs robust input for an int value.

Your method should prompt the user for an integer, read the entered value as a string, and then convert the

string to an int. If the conversion fails, your method should reprompt the user for an integer. If the user

eventually enters a valid integer value, getIntFromUser should return it to the calling module.

Figure 14.5 is a fi rst-cut attempt at implementing the getIntFromUser method. It does a good job

with the logic, but it contains compile-time errors that are due to the initializations inside the try block.

We’ll fi x the try block’s errors soon enough, but let’s fi rst explain the try block’s logic.

The try block contains these three lines:

valid = false;
x = Integer.parseInt(xStr);
valid = true;

Note how the three-line code fragment assigns valid to false and then turns around and assigns it back

to true. Strange, eh? Actually, it’s a fairly common strategy to assume one thing, try it out,

and then change the assumption if it’s proven wrong. And that’s what’s happening here. This

code starts by assuming that the user entry is invalid. It calls parseInt to test whether

it’s actually valid; that is, it checks to see if the user entry is an integer. If it is valid, the

next statement executes, and valid gets set to true. But what happens if the parseInt

Assume one
thing, then
change as
required.

Assume one
thing, then
change as
required.

 14.5 try Block Details 563

14-M4402.indd 56314-M4402.indd 563 12/17/07 4:26:55 PM12/17/07 4:26:55 PM

Apago PDF Enhancer

564 Chapter 14 Exception Handling

conversion fails? The valid variable never gets set to true because an exception is thrown and the JVM

immediately jumps out of the try block. So this code seems reasonable. Unfortunately, “seems reasonable”

isn’t good enough this time.

Can you fi gure out the compile-time errors? If not, don’t feel bad; we didn’t see them until after the

compiler helped us. As shown by the callouts in Figure 14.5, the compiler complains that the valid and x
variables might not have been initialized. Why all the fuss? Can’t the compiler see that valid and x are as-

signed values in the try block? Yes, the compiler can see the assignments, but remember that the compiler

is a pessimist. It assumes that all statements inside a try block are skipped. Even though we know that the

valid = false; statement is in no actual danger of being skipped (it’s a simple assignment, and it’s the

fi rst line in the try block), the compiler still assumes that it gets skipped.

What’s the solution? (1) Move the valid = false; assignment up to valid’s declaration line.

(2) Initialize x to 0 as part of x’s declaration line. Figure 14.6 contains the corrected implementation.

14.6 Two Categories of Exceptions—Checked and Unchecked

Exceptions fall into two categories—checked and unchecked. Checked exceptions must be checked with a

try-catch mechanism. Unchecked exceptions can optionally be checked with a try-catch mechanism,

but it’s not a requirement.

Figure 14.5 A method that illustrates the problem with initializing inside a try block

public static int getIntFromUser()
{
 Scanner stdIn = new Scanner(System.in);
 String xStr; // user entry
 boolean valid; // is user entry a valid integer?
 int x; // integer form of user entry

 System.out.print("Enter an integer: ");
 xStr = stdIn.next();

 do
 {
 try
 {
 valid = false;
 x = Integer.parseInt(xStr);
 valid = true;
 }
 catch (NumberFormatException nfe)
 {
 System.out.print("Invalid entry. Enter an integer: ");
 xStr = stdIn.next();
 }
 } while (!valid);

 return x;
} // end getIntFromUser

compile-time error: valid might not have been initialized

compile-time error: x might not have been initialized

14-M4402.indd 56414-M4402.indd 564 12/17/07 4:26:56 PM12/17/07 4:26:56 PM

Apago PDF Enhancer

Identifying an Exception’s Category

How can you tell whether a particular exception is classifi ed as checked or unchecked? An exception is an

object, and as such, it is associated with a particular class. To fi nd out if a particular exception is checked

or unchecked, look up its associated class on Sun’s Java API Web site.3 Once you fi nd the class, look at its

 ancestors. If you fi nd that it’s a descendant of the RuntimeExeption class, then it’s an unchecked excep-

tion. Otherwise, it’s a checked exception.

For example, if you look up NumberFormatException on Sun’s Java API Web site, you’ll see this:

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 java.lang.RuntimeException
 java.lang.IllegalArgumentException
 java.lang.NumberFormatException

This shows that the NumberFormatException class is a descendant of the RuntimeException
class, so the NumberFormatException class is an unchecked exception.

If you see this class

in the hierarchy, the

exception is unchecked.

If you see this class

in the hierarchy, the

exception is unchecked.

3 http://java.sun.com/javase/6/docs/api/

14.6 Two Categories of Exceptions—Checked and Unchecked 565

Figure 14.6 Corrected version of the getIntFromUser method

public static int getIntFromUser()
{
 Scanner stdIn = new Scanner(System.in);
 String xStr; // user entry
 boolean valid = false; // is user entry a valid integer?
 int x = 0; // integer form of user entry

 System.out.print("Enter an integer: ");
 xStr = stdIn.next();

 do
 {
 try
 {
 x = Integer.parseInt(xStr);
 valid = true;
 }
 catch (NumberFormatException nfe)
 {
 System.out.print("Invalid entry. Enter an integer: ");
 xStr = stdIn.next();
 }
 } while (!valid);

 return x;
} // end getIntFromUser

These initializations before

the try block meet the

compiler’s demands.

14-M4402.indd 56514-M4402.indd 565 12/17/07 4:26:56 PM12/17/07 4:26:56 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

566 Chapter 14 Exception Handling

Figure 14.7 shows the class hierarchy for all exceptions. It reiterates the point that unchecked exceptions

are descendants of the RuntimeException class. It also shows that some unchecked exceptions are de-

scendants of the Error class. In the interest of keeping things simple, we didn’t mention the Error class

above. You probably won’t encounter its exceptions.

Programmer-Defi ned Exception Classes

It’s possible for programmers to defi ne their own exception classes. Such programmer-defi ned exception

classes must be derived from the Exception class or from a subclass of the Exception class. Generally

speaking, you should limit yourself to predefi ned exception classes, because programmer-defi ned exception

classes tend to fragment error-handling activities, and that makes programs harder to understand.

14.7 Unchecked Exceptions

As you learned in the previous section, unchecked exceptions need not be checked with a try-catch

mechanism. However, at runtime, if the JVM throws an unchecked exception and there’s no catch block to

catch it, the program will crash.

Strategies for Handling Unchecked Exceptions

If your program contains code that might throw an unchecked exception, there are two alternate strategies

for dealing with it:

 1. Use a try-catch structure.

 or

 2. Don’t attempt to catch the exception, but write the code carefully so as to avoid the possibility of the

exception being thrown.

In the getIntFromUser method in Figure 14.6, we employed the fi rst strategy—we used a try-

catch structure to handle the dangerous parseInt method call. Normally, you should use a try-catch

structure for parse method calls (parseInt, parseLong, parseDouble, and so on) because that leads

Throwable

checked exceptions
(e.g., IOException)

unchecked exceptions
(e.g., InputMismatchException,

NumberFormatException)

unchecked exceptions for
 system error (e.g.,

VirtualMachineError)

Error Exception

RuntimeException

Class Hierarchy for Exception Classes

Figure 14.7 Exception class hierarchy

14-M4402.indd 56614-M4402.indd 566 12/17/07 4:26:57 PM12/17/07 4:26:57 PM

Apago PDF Enhancer

to cleaner solutions. In the next example, the preferred strategy isn’t so clear cut. We’ll use both strategies

and compare the results.

StudentList Example

Figure 14.8 presents a StudentList class that manages a list of student names. The class stores stu-

dent names in an ArrayList named students. The class contains a constructor for initializing the

students list, a display method for printing the students list, and a removeStudent method

that removes a specifi ed student from the students list. We’ll focus on the removeStudent method.

Figure 14.8 First draft of StudentList class which maintains a list of students

/**
* StudentList.java
* Dean & Dean
*
* This class manages an ArrayList of students.
**/

import java.util.ArrayList;

public class StudentList
{
 ArrayList<String> students = new ArrayList<String>();

 //***

 public StudentList(String[] names)
 {
 for (int i=0; i<names.length; i++)
 {
 students.add(names[i]);
 }
 } // end constructor

 //***

 public void display()
 {
 for (int i=0; i<students.size(); i++)
 {
 System.out.print(students.get(i) + " ");
 }
 System.out.println();
 } // end display

 //***

 public void removeStudent(int index)
 {
 students.remove(index);
 } // end removeStudent
} // end StudentList

This is a dangerous method call.

14.7 Unchecked Exceptions 567

14-M4402.indd 56714-M4402.indd 567 12/17/07 4:26:57 PM12/17/07 4:26:57 PM

Apago PDF Enhancer

568 Chapter 14 Exception Handling

Improve the removeStudent Method

Let’s now make the removeStudent method more robust by gracefully handling the case

where it’s called with an invalid index. Figures 14.10a and 14.10b show two different robust

implementations for the removeStudent method. The fi rst implementation uses a try-

catch mechanism and the second implementation uses careful code. These are the two strate-

gies mentioned earlier for handling unchecked exceptions.

Make
programs
robust.

Make
programs
robust.

Figure 14.9 Driver of StudentList class

/***
* StudentListDriver.java
* Dean & Dean
*
* This is the driver for the StudentList class.
***/

public class StudentListDriver
{
 public static void main(String[] args)
 {
 String[] names = {"Caleb", "Izumi", "Mary", "Usha"};
 StudentList studentList = new StudentList(names);

 studentList.display();
 studentList.removeStudent(6);
 studentList.display();
 } // end main
} // end StudentListDriver

Output:

Caleb Izumi Mary Usha
Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 6,
Size: 4
 at java.util.ArrayList.RangeCheck(ArrayList.java:547)
 at java.util.ArrayList.remove(ArrayList.java:390)
 at StudentList.removeStudent(StudentList.java:43)
 at StudentListDriver.main(StudentListDriver.java:17)

This argument value generates

a runtime error.

The students.remove method call is dangerous because it might throw an unchecked exception,

IndexOutOfBoundsException. If its index argument holds the index of one of the students’ ele-

ments, then that element is removed from the students ArrayList. But if its index argument holds

an invalid index, then an IndexOutOfBoundsException is thrown. This occurs, for example, if we use

Figure 14.9’s StudentListDriver class as the driver. Note how the StudentListDriver class uses

an index value of 6 even though there are only four students in the student list. The StudentListDriver
and StudentList classes compile just fi ne, but when run, the students.remove method call throws

an exception and the JVM terminates the program and prints the error message shown at the bottom of

Figure 14.9.

14-M4402.indd 56814-M4402.indd 568 12/17/07 4:26:58 PM12/17/07 4:26:58 PM

Apago PDF Enhancer

Which solution is better—a try-catch mechanism or careful code? The solutions are about the same

in terms of readability. With things being equal in terms of readability, go with the careful-code implemen-

tation because it’s more effi cient. Exception handling code is less effi cient because it requires the JVM to

instantiate an exception object and fi nd a matching catch block.

14.8 Checked Exceptions

Let’s now look at checked exceptions. If a code fragment has the potential of throwing a checked exception,

the compiler forces you to associate that code fragment with a try-catch mechanism. If there is no as-

sociated try-catch mechanism, the compiler generates an error. With unchecked exceptions, you have a

choice of how to handle them—a try-catch mechanism or careful code. With checked exceptions, there’s

no choice—you must use a try-catch mechanism.

Figure 14.10a Using a try-catch structure for the removeStudent method

public void removeStudent(int index)
{
 try
 {
 students.remove(index);
 }
 catch (IndexOutOfBoundsException e)
 {
 System.out.println("Can't remove student because " +
 index + " is an invalid index position.");
 }
} // end removeStudent

Figure 14.10b Using a careful-code strategy for the removeStudent method

public void removeStudent(int index)
{
 if (index >= 0 && index < students.size())
 {
 students.remove(index);
 }
 else
 {
 System.out.println("Can't remove student because " +
 index + " is an invalid index position.");
 }
} // end removeStudent

 14.8 Checked Exceptions 569

14-M4402.indd 56914-M4402.indd 569 12/17/07 4:26:58 PM12/17/07 4:26:58 PM

Apago PDF Enhancer

570 Chapter 14 Exception Handling

CreateNewFile Program

In Figure 14.11, the CreateNewFile program attempts to create an empty fi le with a user-specifi ed name.

We cover fi les in detail in the next chapter. Since this example views fi les only “from the outside,” at this

point you don’t need to understand fi le details. So why did we decide to use a fi le example prior to the fi les

chapter? Because we wanted a good checked exception example and fi le programs provide for that. It would

make more sense to use previously covered material for our checked exception example, but that wasn’t re-

ally an option. Our previously covered commands don’t throw checked exceptions.

The CreateNewFile program prompts the user for the name of a fi le that is to be created. If the fi le exists

already, the program prints a “Sorry, fi le already exists.” message. If the fi le does not exist, it creates the fi le.

In doing all that, the program uses the File class and its application programming interface (API). More

Figure 14.11 Draft of CreateNewFile program which is supposed to create a new fi le

/***
* CreateNewFile.java
* Dean & Dean
*
* This creates a new file.
***/

import java.util.Scanner;
import java.io.File;
import java.io.IOException;

public class CreateNewFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // user-specified file name
 File file;

 System.out.print("Enter file to be created: ");
 fileName = stdIn.nextLine();
 file = new File(fileName);

 if (file.exists())
 {
 System.out.println("Sorry, file already exists.");
 }
 else
 {
 file.createNewFile();
 System.out.println(fileName + " created.");
 }
 } // end main
} // end CreateNewFile class

API constructor call

API method call

API method call

14-M4402.indd 57014-M4402.indd 570 12/17/07 4:26:58 PM12/17/07 4:26:58 PM

Apago PDF Enhancer

specifi cally, the program calls a File constructor, it calls File’s exists method, and it calls File’s

createFile method. As with many fi le-related API calls, those calls all have the potential of throwing an

exception. So how should you deal with that? Read on. . . .

Using API Documentation When Writing Exception Handling Code

Whenever you want to use a method or constructor from one of the API classes and you’re not sure about it,

you should look it up in the API documentation so you know whether to add exception handling code. On

the API documentation page for the method or constructor of interest, look for a “throws” section, which

identifi es specifi c types of exceptions that might be thrown. To handle the exceptions, you need to under-

stand them. To understand a particular exception, click on its link in the throws section. That should take

you to the API documentation for the exception’s class.

On the exception class’s API page, scroll down a bit and read the exception class’s description. Then

scroll back up and look at the class’s class hierarchy. As mentioned previously, if RuntimeException is

an ancestor, the exception is an unchecked exception. Otherwise, it’s a checked exception.

Back to the CreateNewFile Program

If you apply the above API-lookup strategy to the CreateNewFile program, you’ll fi nd that:

The File constructor call throws a NullPointerException if its argument is null. The

NullPointerException class is derived from the RuntimeException class, so it’s an un-

checked exception. The code is written so that there’s no danger of the File constructor’s argument

being null, so there’s no need to add any code for the File constructor call.

The exists method call throws a SecurityException if a security manager exists. The

 SecurityException class is derived from the RuntimeException class, so it’s an unchecked

exception. If you don’t have a security manager, there’s no need to add any code for the exists method

call.

The createNewFile method call throws an IOException if there’s an I/O problem like a corrupt

hard disk or an invalid directory name. The IOException class is derived from the Exception

class but not from the RuntimeException class, so it is a checked exception. Thus, we’re required

to add try-catch code to handle this exception.

Because of the createNewFile method call, Figure 14.11’s CreateNewFile program doesn’t compile suc-

cessfully. What’s the solution? Suppose you simply surround the createNewFile method call with a

try block like this:

else
{
 try
 {
 file.createNewFile();
 }
 catch (IOException ioe)
 {
 System.out.println("File I/O error");
 }
 System.out.println(fileName + " created.");
}

•

•

•

 14.8 Checked Exceptions 571

14-M4402.indd 57114-M4402.indd 571 12/17/07 4:26:59 PM12/17/07 4:26:59 PM

Apago PDF Enhancer

572 Chapter 14 Exception Handling

That results in a program that compiles successfully and runs. But is it a good program? Novice program-

mers often solve problems by trying something out without thoroughly thinking it through,

and if it leads to reasonable results, they quickly move on. Try to resist that urge. Although

the above code compiles and runs, it doesn’t behave appropriately when an IOException
is thrown. Can you identify the inappropriate behavior? If an IOException is thrown,

the catch block prints its "File I/O error" message. But then it also prints the

fileName + " created." message, even though no fi le was created. Remember—just because a pro-

gram runs, that doesn’t mean it’s right.

Here’s the preferred solution:

else
{
 try
 {
 file.createNewFile();
 System.out.println(fileName + " created.");
 }
 catch (IOException ioe)
 {
 System.out.println("File I/O error");
 }
}

Now the program prints the “created” message only if the fi le is actually created. Yeah!

14.9 The Exception Class and Its getMessage Method

So far, our examples have been relatively simple. Each try block has thrown only one type of exception.

In that case, the catch logic is straightforward—catch the type of exception that’s being thrown. For cases

where you have a try block that might throw more than one type of exception, the catch logic can be a

bit more complicated. You have to choose between these two techniques: (1) provide a generic catch block

that handles every type of exception that might be thrown, or (2) provide a sequence of specifi c catch

blocks, one for each type of exception that might be thrown. In this section, we describe the generic-catch-

block technique, and in the next section we describe the sequence-of-catch-blocks technique.

Generic catch Block

To provide a generic catch block, defi ne a catch block with an Exception type parameter. Then, in-

side the catch block, call the Exception class’s getMessage method, like this:

catch (Exception e)
{
 System.out.println(e.getMessage());
}

If a catch block uses an Exception parameter, it will match all thrown exceptions. Why? Because

when an exception is thrown, it looks for a catch parameter that’s either identical to the thrown exception

or a superclass of the thrown exception. The Exception class is the superclass of all thrown exceptions,

so all thrown exceptions consider an Exception catch parameter to be a match.

Don’t move
on until
you’re sure of
your solution.

Don’t move
on until
you’re sure of
your solution.

This

statement

is now in

a better

location.

14-M4402.indd 57214-M4402.indd 572 12/17/07 4:26:59 PM12/17/07 4:26:59 PM

Apago PDF Enhancer

The Exception class’s getMessage method returns a text description of the thrown exception. For

example, if you attempt to open a fi le using a new FileReader(String <fi lename>) constructor call

and you pass in a fi lename for a fi le that doesn’t exist, the JVM throws an exception and the getMessage

call returns this:

<fi lename> (The system cannot find the file specified)

The message displays the specifi ed fi lename where it says <fi lename>. This message is helpful, but be aware

that sometimes getMessage returns messages that are not particularly helpful.

PrintLineFromFile Example

Now let’s look at a complete program example. Figure 14.12’s PrintLineFromFile program opens a user-

specifi ed fi le and prints the fi le’s fi rst line. The FileReader and BufferedReader constructor calls

work in conjunction to open the user-specifi ed fi le. The BufferedReader’s readLine method reads

the fi rst line from the fi le. The program then prints the line.

Both the FileReader constructor and the readLine method throw checked exceptions, so if we

had not put them in a try block, the compiler would have complained and identifi ed the checked excep-

tions that needed to be caught. In particular, if the user inputs a fi lename for a fi le that doesn’t exist, the

FileReader constructor throws a FileNotFoundException. If the fi le is corrupted and unreadable,

the readLine method throws an IOException. Our generic catch block catches either of these ex-

ceptions, and we use the getMessage method to print a description of the thrown exception.

In the fi rst sample session in Figure 14.12, the user enters input that tells the program to read the

PrintLineFromFile.java source fi le. Since the program’s fi rst line is a line of *’s, the program prints

a line of *’s.

In the second sample session in Figure 14.12, the user specifi es a nonexistent fi le. The bad fi le-

name causes the FileReader constructor to throw a FileNotFoundException object, and the

 get Message call generates the error message shown.

Now you’ve seen an example of the FileReader constructor throwing an exception, but you haven’t

seen an example of the readLine method throwing an exception. That’s because it’s harder to produce an

exception with the readLine method call. It occurs only if you have a corrupted fi le that can be opened,

but not read, and we can’t generate such a fi le intentionally. Even though the readLine method call rarely

throws an exception, you must put it inside of a try-catch structure because the compiler knows it might

throw a checked exception.

14.10 Multiple catch Blocks

When you have a try block that throws more than one type of exception, you can provide a generic catch

block or you can provide a sequence of specifi c catch blocks—one for each type of exception that might

be thrown. Now let’s look at the sequence-of-catch-blocks technique.

PrintLineFromFile Example Revisited

Figure 14.13 shows PrintLineFromFile2, a modifi ed version of the previous PrintLineFromFile program.

Instead of using one generic catch block, PrintLineFromFile2 uses a sequence of catch blocks, one

catch block for the FileNotFoundException and one catch block for the IOException. Note

that because this new program specifi cally names the types of exceptions that might be thrown, it must im-

port their classes. If you run the program with a valid fi lename for input, you get a printout of the fi rst line

 14.10 Multiple catch Blocks 573

14-M4402.indd 57314-M4402.indd 573 12/17/07 4:27:00 PM12/17/07 4:27:00 PM

Apago PDF Enhancer

574 Chapter 14 Exception Handling

Figure 14.12 PrintLineFromFile program—a simple fi le-reader

/***
* PrintLineFromFile.java
* Dean & Dean
*
* This opens existing text file and prints a line from it.
***/

import java.util.Scanner;
import java.io.BufferedReader;
import java.io.FileReader;

public class PrintLineFromFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // name of target file
 BufferedReader fileIn; // target file
 String line; // first line from fileIn

 System.out.print("Enter a filename: ");
 fileName = stdIn.nextLine();

 try
 {
 fileIn = new BufferedReader(new FileReader(fileName));
 line = fileIn.readLine();
 System.out.println("Line 1:\n" + line);
 } // end try

 catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 } // end main
} // end PrintLineFromFile class

Sample session #1:

Enter a file name: PrintLineFromFile.java
Line 1:
/***

Sample session #2:

Enter a filename: garbage
garbage (The system cannot find the file specified)

14-M4402.indd 57414-M4402.indd 574 12/17/07 4:27:00 PM12/17/07 4:27:00 PM

Apago PDF Enhancer

Figure 14.13 PrintLineFromFile2 program—an improved fi le-reader

/**
* PrintLineFromFile2.java
* Dean & Dean
*
* This opens an existing text file and prints a line from it.
**/

import java.util.Scanner;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

public class PrintLineFromFile2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String fileName; // name of target file
 BufferedReader fileIn; // target file
 String line; // first line from fileIn

 System.out.print("Enter a filename: ");
 fileName = stdIn.nextLine();

 try
 {
 fileIn = new BufferedReader(new FileReader(fileName));
 line = fileIn.readLine();
 System.out.println("Line 1:\n" + line);
 } // end try

 catch (FileNotFoundException e)
 {
 System.out.println("Invalid filename: " + fileName);
 }
 catch (IOException e)
 {
 System.out.println("Error reading from file: " + fileName);
 }
 } // end main
} // end PrintLineFromFile2 class

Sample session with input of an invalid fi lename:

Enter a filename: garbage
Invalid filename: garbage

Sequence of catch blocks

14.10 Multiple catch Blocks 575

14-M4402.indd 57514-M4402.indd 575 12/17/07 4:27:00 PM12/17/07 4:27:00 PM

Apago PDF Enhancer

576 Chapter 14 Exception Handling

of that fi le, just as before. But if you supply an invalid fi lename for input, you get something like the sample

session at the bottom of Figure 14.13.

catch Block Ordering—The Order Matters

If there are multiple catch blocks, the fi rst catch block that matches the type of the exception thrown is

the one that’s executed. Then the other catch blocks are skipped. This behavior is similar to the behavior

of a switch statement. But there is a slight difference. With a switch statement, after a matching case

block is found and executed, control continues to the next case unless there happens to be a break state-

ment. With catch blocks, after a matching catch block is found and executed, the subsequent catch

blocks are automatically skipped.

Whenever you use more than one catch block after a given try block, and one catch block’s excep-

tion class is derived from another catch block’s exception class, you must arrange the catch blocks with the

more general exception classes at the bottom. For example, if you look up the FileNotFound Exception

on Sun’s Java API Web site, you’ll see this hierarchy:

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 java.io.IOException
 java.io.FileNotFoundException

If you choose to have a FileNotFoundException catch block and an IOException catch

block in the same catch-block sequence, then you must put the IOException catch block at the bot-

tom because the IOException class is a more general version of the FileNotFoundException

class. If you put the IOException catch block fi rst, it would match both types of exceptions, and the

 FileNotFoundException catch block would always be skipped. And that’s not good. As long as

you understand this principle, there’s no need to memorize the hierarchical relationships among all types of

exceptions, because the compiler will tell you in a compile-time error if you arrange multiple catch blocks

in the wrong order.

Generic catch Block Versus Multiple catch Blocks

In the previous section, we looked at the generic-catch-block technique. In this section we looked at the

sequence-of-catch-blocks technique. Which one is better? The generic-catch-block technique is slightly

easier to code, so if you’re interested in simplicity, use that technique. The sequence-of-catch-blocks tech-

nique allows you to handle different exceptions differently, so if you’re interested in having more control

over your exception handling and more control over your error messages, use that technique.

14.11 Understanding Exception Messages

Unless you’re incredibly careful, you’ve probably written programs that have generated runtime error mes-

sages. But prior to this chapter, you weren’t properly prepared to thoroughly understand those error mes-

sages. Now you are. In this section, we describe exception messages by showing exception message details

in the context of a complete program.

14-M4402.indd 57614-M4402.indd 576 12/17/07 4:27:00 PM12/17/07 4:27:00 PM

Apago PDF Enhancer

User Enters a Non-Integer

In the readNumbers method, note the parseInt call. If the user enters a q, the while loop termi-

nates and parseInt is not called. But if the user enters something other than q, parseInt is called. If

 parseInt is called with a non-integer argument, then parseInt throws a NumberFormat Exception.

And since there’s no try-catch structure the JVM prints a detailed error message and then terminates

the program. For example, if the user enters hi, the JVM prints a detailed error message and terminates the

program, like this: 4

Sample session:

Enter a whole number (q to quit): hi
Exception in thread "main" java.lang.NumberFormatException:
For input string: "hi"
 at java.lang.NumberFormatException.forInputString(
 NumberFormatException.java:48)
 at java.lang.Integer.parseInt(Integer.java:447)
 at java.lang.Integer.parseInt(Integer.java:497)
 at NumberList.readNumbers(NumberList.java:28)
 at NumberListDriver.main(NumberListDriver.java:13)

call

stack

trace

thrown exception

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

call

stack

trace

thrown exception

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

Figure 14.14a NumberList program driver that drives class in Figure 14.14b

/**
* NumberListDriver.java
* Dean & Dean
*
* This is the driver for the NumberList class.
**/

public class NumberListDriver
{
 public static void main(String[] args)
 {
 NumberList list = new NumberList();
 list.readNumbers();
 System.out.println("Mean = " + list.getMean());
 } // end main
} // end class NumberListDriver

14.11 Understanding Exception Messages 577

4 The formatting of the error message may be slightly different, but the information will be similar.

NumberList Program

The program in Figures 14.14a and 14.14b reads in a list of numbers and calculates the mean.

The program compiles and runs successfully most of the time, but it’s not very robust. There

are three types of entries that make the program crash. We’ll describe those three entry

types, but before you read about them, fi rst try to determine them on your own.

Identify
possible
input errors.

Identify
possible
input errors.

14-M4402.indd 57714-M4402.indd 577 12/17/07 4:27:01 PM12/17/07 4:27:01 PM

Apago PDF Enhancer

578 Chapter 14 Exception Handling

Figure 14.14b NumberList class that computes mean of input numbers

/**
* NumberList.java
* Dean & Dean
*
* This inputs numbers and calculates their mean value.
**/

import java.util.Scanner;

public class NumberList
{
 private int[] numList = new int[100]; // array of numbers
 private int size = 0; // number of numbers

 //***

 public void readNumbers()
 {
 Scanner stdIn = new Scanner(System.in);
 String xStr; // user-entered number (String form)
 int x; // user-entered number

 System.out.print("Enter a whole number (q to quit): ");
 xStr = stdIn.next();

 while (!xStr.equalsIgnoreCase("q"))
 {
 x = Integer.parseInt(xStr);
 numList[size] = x;
 size++;
 System.out.print("Enter a whole number (q to quit): ");
 xStr = stdIn.next();
 } // end while
 } // end readNumbers

 //***

 public double getMean()
 {
 int sum = 0;

 for (int i=0; i<size; i++)
 {
 sum += numList[i];
 }
 return sum / size;
 } // end getMean
} // end class NumberList

14-M4402.indd 57814-M4402.indd 578 12/17/07 4:27:02 PM12/17/07 4:27:02 PM

Apago PDF Enhancer

Let’s analyze the error message. First the JVM prints the exception that was thrown,

 NumberFormat Exception. Then it prints a call stack trace. A call stack trace is a listing of the meth-

ods that were called prior to the crash, in reverse order. What methods were called? First main, then

readNumbers, then parseInt. Note the numbers at the right side of the call stack trace. They are the

line numbers in the source code for where the methods are called. For example, the 13 in the bottom line

says that main’s 13th line is a call to the readNumbers method.

User Immediately Enters q to Quit

At the bottom of the getMean method, note the division operation. Whenever you perform integer divi-

sion, you should always be sure to avoid division by zero. In the NumberList program, it’s not avoided.

The size instance variable is initialized to zero, and if the user immediately enters q to quit, size

stays at zero and getMean performs division by zero. Integer division by zero causes the JVM to throw

an ArithmeticException. Since there’s no try-catch mechanism, the JVM prints a detailed error

message and terminates the program, like this:

Sample session:

Enter a whole number (q to quit): q
Exception in thread "main"
 java.lang.ArithmeticException: / by zero
 at NumberList.getMean(NumberList.java:47)
 at NumberListDriver.main(NumberListDriver.java:14)

Note that if you perform fl oating-point division with a denominator of zero, there is no exception. If the

numerator is a positive number, division by 0.0 returns the value Infinity. If the numerator is a negative

number, division by 0.0 returns the value -Infinity. If the numerator is also 0.0, division by 0.0 returns

the value NaN (for not a number).

User Enters More Than 100 Numbers

In the NumberList program’s instance-variable declarations, note that numList is a 100 element array. In the

readNumbers method, note how this statement assigns user-entered numbers into the numList array:

numList[size] = x;

If the user enters 101 numbers, then the size variable increments to 100. That’s bigger than the maximum

index (99) in the instantiated array. If you access an array element with an index that’s greater than the

maximum index or less than zero, the operation throws an ArrayIndexOutOfBoundsException.

Since there are no try and catch blocks, the JVM prints a detailed error message and then terminates the

program, like this:

Sample session:

...
Enter a whole number (q to quit): 32
Enter a whole number (q to quit): 49
Enter a whole number (q to quit): 51
Exception in thread "main"
 java.lang.ArrayIndexOutOfBoundsException: 100
 at NumberList.readNumbers(NumberList.java:29)
 at NumberListDriver.main(NumberListDriver.java:13)

 14.11 Understanding Exception Messages 579

14-M4402.indd 57914-M4402.indd 579 12/17/07 4:27:02 PM12/17/07 4:27:02 PM

Apago PDF Enhancer

580 Chapter 14 Exception Handling

We’ve now fi nished our description of the NumberList program’s three runtime errors. Normally, when

you see such errors, you should fi x your code so as to avoid the runtime errors in the future. So for the

Number List program, you should add fi xes for the three runtime errors. One of the chapter exercises asks

you to do just that.

14.12 Using throws <exception-type> to Postpone the catch

In all of the examples so far, we’ve handled thrown exceptions locally; that is, we’ve put the try and catch

blocks in the method that contains the dangerous statement. But sometimes that’s not feasible.

Moving try and catch Blocks Back to the Calling Method

When it’s not feasible to use local try and catch blocks, you can move the try and catch blocks out

of the dangerous statement’s method and back to the calling method. If you do that and the dangerous state-

ment throws an exception, the JVM immediately jumps out of the dangerous statement’s method and passes

the exception back to the try and catch blocks in the calling method.5

So when should you put try and catch blocks in the calling method as opposed to in the danger-

ous statement’s method? Most of the time, you should put your try and catch blocks in the dangerous

statement’s method because that promotes modularization, which is a good thing. But sometimes it’s hard

to come up with an appropriate catch block when you’re inside the dangerous statement’s method. For

example, suppose you’ve written a utility method that’s called from lots of different places, and the method

sometimes throws an exception. When an exception is thrown, you’d like to have an error message that’s

customized to the calling method. It’s hard to do that if the catch block is in the utility method. The solu-

tion is to move the try and catch blocks to the calling methods.

Consider another example. Suppose you’ve written a method with a non-void return type that some-

times throws an exception. With a non-void return type, the compiler expects the method to return a value.

But when an exception is thrown, you normally don’t want to return a value because there’s no appropriate

value to return. So how can you have a non-void method and not return a value? Move the try and catch

blocks to the calling method. Then when an exception is thrown, the JVM returns to the calling method

without returning a value. The calling method’s try and catch blocks handle the thrown exception, most

likely with an error message. Let’s see how this works in a Java program.

StudentList Program Revisited

Figure 14.15 contains a modifi ed version of Figure 14.8’s StudentList class. The main difference is that

the removeStudent method now returns the name of the student it removes. This enables the calling

method to do something with the removed element.

In the removeStudent method, note the return statement. The students.remove method call

attempts to remove the element at the position indicated by index. If index is less than zero or greater

than the index of the last element, then the JVM throws an IndexOutOfBoundsException. In our

previous StudentList class, we handled the exception locally, within the removeStudent method.

5 Actually, the jump to the calling method is not immediate if there’s a finally block below the try block(s). In that case, the JVM
jumps to the finally block prior to jumping to the calling method. We describe the finally block at the end of this section.

14-M4402.indd 58014-M4402.indd 580 12/17/07 4:27:02 PM12/17/07 4:27:02 PM

Apago PDF Enhancer

Figure 14.15 StudentList2 class which is driven by the class in Figure 14.16

/**
* StudentList2.java
* Dean & Dean
*
* This program manages an ArrayList of students.
**/

import java.util.ArrayList;

public class StudentList2
{
 private ArrayList<String> students = new ArrayList<String>();

 //***

 public StudentList2(String[] names)
 {
 for (int i=0; i<names.length; i++)
 {
 students.add(names[i]);
 }
 } // end constructor

 //***

 public void display()
 {
 for (int i=0; i<students.size(); i++)
 {
 System.out.print(students.get(i) + " ");
 }
 System.out.println();
 } // end display

 //**

 public String removeStudent(int index)
 throws IndexOutOfBoundsException
 {
 return students.remove(index);
 } // end removeStudent
} // end StudentList2

Throw the error-

handling job to the

calling method.

14.12 Using throws <exception-type> to Postpone the catch 581

14-M4402.indd 58114-M4402.indd 581 12/17/07 4:27:02 PM12/17/07 4:27:02 PM

Apago PDF Enhancer

582 Chapter 14 Exception Handling

This time, since we’re returning a value, it’s more convenient to transfer the exception handling work back

to the calling method. We do that by putting try and catch blocks in the calling method and by put-

ting a throws clause in the removeStudent method’s heading. Here’s the heading:

public String removeStudent(int index)
 throws IndexOutOfBoundsException

Adding the throws clause reminds the compiler that the method might throw an unhandled exception. The

throws clause is required if the unhandled exception is a checked exception, and it’s just recommended

if the unhandled exception is an unchecked exception. Since the IndexOutOfBoundsException is

an unchecked exception, it’s legal to omit the above throws clause. But it’s good style to include it be-

cause it provides valuable self-documentation. If a programmer later on wants to use the remove Student

method, the throws clause warns the programmer to provide a “remote” try-catch mechanism to han-

dle the IndexOutOfBoundsException when calling removeStudent.

To see how to implement this “remote” try-catch mechanism, look at the StudentList2Driver

class in Figure 14.16. It displays a list of students, asks the user which student should be removed, and at-

tempts to remove that student. If the removeStudent method call fails, the catch block handles the

thrown exception, and the program asks the user again which student should be removed.

The finally Block

In implementing an exception handler, you’ll sometimes want to provide “cleanup code” that’s executed

regardless of whether an exception is thrown. Suppose you open a fi le and attempt to write to it. The write

operation may or may not throw an exception. Either way, you should close the fi le when you’re done. If you

forget to close the fi le, then system resources remain tied up servicing the open fi le, and that causes system

performance to degrade. Closing a fi le is an example of cleanup code. If you handle the cleanup locally

(e.g., the write and close operations are in the same method), then the cleanup is straightforward. Just place

the cleanup code below the try and catch blocks, and the JVM executes it regardless of whether an ex-

ception is thrown. But if you transfer the exception handling work with a throws clause, the cleanup is

slightly more involved.

If you handle an exception with a throws clause, and you need to provide clean-up code regardless of

whether an exception is thrown, use a finally block. A finally block is associated with a particular

try block and, as such, it should be placed immediately after a try block.6 If the JVM throws an exception

within the try block, the JVM immediately jumps to the finally block, executes it, and then throws the

exception back to the calling module. If the JVM does not throw an exception within the try block, the

JVM fi nishes the try block and then executes the finally block.

The writeToFile method in Figure 14.17 illustrates the finally block. The method opens a fi le

and writes a test message to the fi le. Specifi cally, the PrintWriter constructor call opens a fi le named

testFile.txt. The fileOut.printf call writes “This is a test.” to the opened fi le. Then the fi le is

closed by fileOut.close. Since the fileOut.close call is within a finally block, it executes

regardless of whether an exception is thrown.

6 It’s legal to insert a catch block(s) between the try and finally blocks, but that can lead to confusing code. We recommend
that you keep things simple. Use a try block with a catch block(s) or try block with a finally block, but not all three together.

14-M4402.indd 58214-M4402.indd 582 12/17/07 4:27:03 PM12/17/07 4:27:03 PM

Apago PDF Enhancer

Figure 14.16 Driver for StudentList2 class

/***
* StudentList2Driver.java
* Dean & Dean
*
* This drives StudentList2 class.
***/

import java.util.Scanner;

public class StudentList2Driver
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String[] names = {"Caleb", "Izumi", "Mary", "Usha"};
 StudentList2 studentList = new StudentList2(names);
 int index;
 boolean reenter;

 studentList.display();

 do
 {
 System.out.print("Enter index of student to remove: ");
 index = stdIn.nextInt();
 try
 {
 System.out.println(
 "removed " + studentList.removeStudent(index));
 reenter = false;
 }
 catch (IndexOutOfBoundsException e)
 {
 System.out.print("Invalid entry. ");
 reenter = true;
 }
 } while (reenter);

 studentList.display();
 } // end main
} // end StudentList2Driver

Sample session:

Caleb Izumi Mary Usha
Enter index of student to remove: 6
Invalid entry. Enter index of student to remove: 1
removed Izumi
Caleb Mary Usha

If there is no error, this method

returns name of student removed.

If exception is thrown

in removeStudent

method, this catch

block catches it.

14.12 Using throws <exception-type> to Postpone the catch 583

14-M4402.indd 58314-M4402.indd 583 12/17/07 4:27:03 PM12/17/07 4:27:03 PM

Apago PDF Enhancer

584 Chapter 14 Exception Handling

14.13 GUI Track and Problem Solving:
Line Plot Example Revisited (Optional)

Problem Description

Earlier in the chapter, we implemented a LinePlot program that plotted a line defi ned by a sequence of user-

specifi ed points. The line plot’s display was less than ideal. It “displayed” the line as a text description of

line segments. For example, this is what the program produces for a fi ve-segment line that goes from point

(0,0) to (1,3) to (2,1) to (3,2) to (4,2) to (5,1):

(0,0)–(1,3), (1,3)–(2,1), (2,1)–(3,2), (3,2)–(4,2), (4,2)–(5,1)

Figure 14.18 shows how LinePlotGUI, an improved version of the LinePlot program, displays the above

(0,0) to (1,3) to … to (5,1) line. In the interest of simplicity, there are no interval hash marks on the x and y

axes. As you can perhaps guess, the shown x axis has six implied hash marks for the values 0, 1, 2, 3, 4, and

5. And the shown y axis has four implied hash marks for the values 0, 1, 2, and 3.

Pre-Written Software and the drawPolyLine Method

In solving problems, it’s fairly common to take a top-down approach: Write the driver method

fi rst (main), then write the public methods that provide an interface to the outside world,

then write the private helping methods. That approach frequently works fi ne, but it can

sometimes lead to reinventing the wheel. If you used a pure top-down approach to imple-

ment the LinePlotGUI program, you’d probably implement the line display as a sequence of

drawLine method calls, one for each segment of the line (for a discussion of the drawLine method, see

Chapter 5). Using drawLine would work, but it would require a loop and probably some debugging effort.

The better approach is to dust off your Java API tome (http://java.sun.com/javase/6/docs/api/) and search for

alternative line-drawing methods.

Lo and behold, there’s a line drawing method that does exactly what you want. The draw Polyline

method draws a line by connecting a sequence of points. More specifi cally, the Graphic class’s

 drawPolyline method receives three parameters—xPixels, yPixels, and numOfPoints. The

 numOfPoints parameter holds the number of points in the line. The xPixels parameter holds an array

Consider
using
bottom-up
design.

Consider
using
bottom-up
design.

Figure 14.17 Method that uses a finally block to close an output fi le

public void writeToFile() throws IOException
{
 PrintWriter fileOut = new PrintWriter("testFile.txt");
 try
 {
 fileOut.printf("%s", "This is a test.");
 }
 finally
 {
 fileOut.close();
 }
} // end writeToFile

14-M4402.indd 58414-M4402.indd 584 12/17/07 4:27:04 PM12/17/07 4:27:04 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

Algorithm Development

Once you learn about the drawPolyline method, the LinePlotGUI program’s basic algorithm becomes

clear: Fill up the xPixels and yPixels arrays with pixel values for a sequence of points. Then use those

arrays to call drawPolyline.

Before fl eshing out that basic algorithm with more details, you need to be aware of an important as-

sumption. The plotted line’s points are evenly spaced along the x axis. More specifi cally, the points occur

at positions x�0, x�1, x�2, and so on. So when the program prompts the user for a point, only a y value is

needed, not an x value (because x’s value is already known: x�0, x�1, x�2, and so on).

x direction

y

direction

Figure 14.18 Sample output for the LinePlotGUI program

50 100

50

100

150

public void paintComponent(Graphics g)
{
 int[] xPixels = {50, 50, 100, 100};
 int[] yPixels = {140, 40, 140, 40};
 g.drawPolyline(xPixels, yPixels, 4);
} // end paintComponent

Figure 14.19 An example drawPolyline method call that displays a line in the shape of an N

 14.13 GUI Track and Problem Solving: Line Plot Example Revisited (Optional) 585

of the horizontal pixel positions for each of the points. The yPixels parameter holds an array of the vertical

pixel positions for each of the points. For example, xPixels[0] and yPixels[0] hold pixel positions

for the fi rst point, xPixels[1] and yPixels[1] hold pixel positions for the second point, and so on.

Figure 14.19’s drawPolyline method call displays a line that connects four points in the shape of an N.

14-M4402.indd 58514-M4402.indd 585 12/17/07 4:27:04 PM12/17/07 4:27:04 PM

Apago PDF Enhancer

586 Chapter 14 Exception Handling

Here’s a high-level description of the algorithm:

1. Prompt the user for the number of points and the maximum y value (maxY).

2. For each point, prompt the user for a y coordinate value and store the value in
yCoords.

3. Determine the number of horizontal pixels between adjacent points (pixelInterval).

 4. Fill up the xPixels array:

xPixels[i] ← i * pixelInterval

 5. Fill up the yPixels array by scaling the values in the yCoords array:

yPixels[i] ← (yCoords[i]/maxY) * height in pixels of plotted line’s border

 6. Call drawRect to display a border for the plotted line.

 7. Call drawPolyline to display the plotted line.

Program Structure

Now that you have a high-level description of the algorithm, you might be tempted to immediately translate

it into source code. First, you should determine where the different parts of the program should go. As is

customary for a non-trivial program like this one, you should implement the solution with two classes—a

LinePlotGUI class for driving the program and a LinePlotPanel class for drawing the pictures.

Clearly, the drawRect and drawPolyline method calls should go in the LinePlotPanel class.,

since they involve drawing. But what about the code that prompts the user for y coordinate values, and what

about the code that calculates the xPixels and yPixels values? It’s important to have the code in the

right class to ensure that each class has a clearly defi ned role. That helps with program development, read-

ability, and maintainability. The LinePlotGUI class drives the program and input plays a big role in that

effort. Therefore, you should put the user-prompt code in the LinePlotGUI class. The LinePlotPanel

class draws the pictures, and calculations play a big role in that effort. Therefore, you should put the drawing-

calculations code in the LinePlotPanel class.

Modularity

Now it’s time to look at the LinePlotGUI program’s source code. Note the modular nature of the

 LinePlotGUI class in Figures 14.20a, 14.20b, and 14.20c. The JFrame calls (setSize, setTitle,

setDefaultCloseOperation) are in their own module, the LinePlotGUI constructor. The user-

prompt code is in its own module, the readYCoordinates method. The readYCoordinates method

prompts the user for the number of points. It also prompts the user for the maximum value on the y axis.

The two inputs both need to undergo the same type of input validation. To avoid redundant code, the input

validation code is in a common helping method, getIntFromUser. The readYCoordinates method

also prompts the user for the y value of each point, which can be anywhere in the range between zero and

the maximum y value.

Note the paintComponent method in Figure 14.21b. The paintComponent method is called

automatically by the JVM when the program starts up and whenever a user does something to alter the

program’s window (e.g., when the user resizes the window, or moves another window off of the window).

The paintComponent method is in charge of drawing the window’s pictures. You could put the drawing-

calculations code and the drawing graphics code together in the paintComponent method, but as shown

in Figures 14.21a and 14.21b, the drawing-calculations code is in its own module, the LinePlotPanel

Organize
your
thoughts as
an algorithm.

Organize
your
thoughts as
an algorithm.

14-M4402.indd 58614-M4402.indd 586 12/17/07 4:27:04 PM12/17/07 4:27:04 PM

Apago PDF Enhancer

Figure 14.20a LinePlotGUI class—part A

/**
* LinePlotGUI.java
* Dean & Dean
*
* This program plots a line as a sequence of connected,
* user-specified points.
**/

import javax.swing.*; // for JFrame, JOptionPane

public class LinePlotGUI extends JFrame
{
 private static final int FRAME_WIDTH = 400;
 private static final int FRAME_HEIGHT = 250;
 private static final int MARGIN = 20; // space between frame
 // and line plot

 int numOfPoints // points go from N=0 to N=numOfPoints-1
 int maxY; // y coordinate values go from y=0 to y=maxY
 double[] yCoords; // y coordinate values for all the points

 //***

 public LinePlotGUI()
 {
 setSize(FRAME_WIDTH, FRAME_HEIGHT);
 setTitle("Line Plot");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 } // end LinePlotGUI

 //***

 int getMargin()
 {
 return MARGIN;
 }

 int getMaxY()
 {
 return maxY;
 }

 double[] getYCoords()
 {
 return yCoords;
 }

 14.13 GUI Track and Problem Solving: Line Plot Example Revisited (Optional) 587

14-M4402.indd 58714-M4402.indd 587 12/17/07 4:27:05 PM12/17/07 4:27:05 PM

Apago PDF Enhancer

588 Chapter 14 Exception Handling

constructor. That’s a good idea for several reasons. One, it furthers the goal of modularization in that

 separate tasks are performed in separate modules. Two, it improves program speed. The LinePlotPanel
constructor executes only one time, when the LinePlotPanel object is instantiated in main. The

paintComponent method executes every time the user does something to alter the program’s win-

dow. There’s no need to redo the drawing calculations every time that happens, so moving that code to the

LinePlotPanel constructor works well.

For a line plot with a small number of points it would be no big deal if we’d made the mistake of put-

ting all the drawing calculations code in the paintComponent method. But if there are many points, the

Figure 14.20b LinePlotGUI class—part B

 //***

 // This method prompts the user for y coordinates for points
 // at positions x=0, x=1, etc.

 public void readYCoordinates()
 {
 String yStr; // user's entry for a point's y coordinate
 numOfPoints = getIntFromUser("Enter number of points: ");
 maxY = getIntFromUser("Enter maximum point value: ");
 yCoords = new double[numOfpoints];

 for (int i=0; i<=maxX; i++)
 {
 yStr = JOptionPane.showInputDialog(
 "At x = " + i + ", what is y's value?\n" +
 "Enter an integer between 0 and " +
 maxY + " inclusive:");
 try
 {
 yCoords[i] = Integer.parseInt(yStr);
 if (yCoords[i] < 0 || yCoords[i] > maxY)
 {
 JOptionPane.showMessageDialog(null,
 "Invalid entry. Value must be between 0 and " + maxY);
 i--;
 }
 }
 catch (NumberFormatException e)
 {
 JOptionPane.showMessageDialog(null,
 "Invalid entry. Must enter an integer.");
 i--;
 }
 } // end for
 } // end readYCoordinates

⎫
⎬
⎭

These initializations use a

helper method.

14-M4402.indd 58814-M4402.indd 588 12/17/07 4:27:05 PM12/17/07 4:27:05 PM

Apago PDF Enhancer

Figure 14.20c LinePlotGUI class—part C

 //***

 // This method prompts the user for an integer, performs input
 // validation, and returns the entered integer.

 private static int getIntFromUser(String prompt)
 {
 String entry; // user entry
 boolean valid = false; // is user entry a valid integer?
 int entryInt = 0; // integer form of user entry

 entry = JOptionPane.showInputDialog(prompt);
 do
 {
 try
 {
 entryInt = Integer.parseInt(entry);
 valid = true;
 }
 catch (NumberFormatException e)
 {
 entry = JOptionPane.showInputDialog(
 "Invalid entry. Enter an integer:");
 }
 } while (!valid);

 return entryInt;
 } // end getIntFromUser

 //***

 public static void main(String[] args)
 {
 LinePlotGUI linePlotGUI = new LinePlotGUI();
 linePlotGUI.readYCoordinates();
 LinePlotPanel linePlotPanel = new LinePlotPanel(linePlotGUI);
 linePlotGUI.add(linePlotPanel);
 linePlotGUI.setVisible(true);
 } // end main
} // end class LinePlotGUI

helper method

14.13 GUI Track and Problem Solving: Line Plot Example Revisited (Optional) 589

14-M4402.indd 58914-M4402.indd 589 12/17/07 4:27:06 PM12/17/07 4:27:06 PM

Apago PDF Enhancer

590 Chapter 14 Exception Handling

Figure 14.21a LinePlotPanel class—part A

/***
* LinePlotPanel.java
* Dean & Dean
*
* This class displays a line as a sequence of connected points.
***/

import javax.swing.*; // for JPanel
import java.awt.*; // for Graphics

public class LinePlotPanel extends JPanel
{
 private int[] xPixels; // holds x value for each plotted point
 private int[] yPixels; // holds y value for each plotted point

 // Line plot is surrounded by a rectangle with these specs:
 private int topLeftX, topLeftY;
 private int rectWidth, rectHeight;

 //**

 // Calculate dimensions for the line-plot rectangle, using the
 // passed-in frame, which contains the frame's dimensions and
 // coordinate values. Fill in xPixels and yPixels arrays.

 public LinePlotPanel(LinePlotGUI frame)
 {
 int numOfPoints = frame.getYCoords().length;
 int pixelInterval; // distance between adjacent points

 topLeftX = topLeftY = frame.getMargin();

 // getInsets works only if setVisible is called first
 frame.setVisible(true);
 rectWidth =
 frame.getWidth() - (2 * topLeftX +
 frame.getInsets().left + frame.getInsets().right);
 rectHeight =
 frame.getHeight() - (2 * topLeftY +
 frame.getInsets().top + frame.getInsets().bottom);

window-resizing slowdown might be noticeable. Slow is acceptable for some things, like initially loading a

program, but not for graphical user interface things, like resizing a window. Users are an impatient bunch.

Have you ever thumped your mouse in a fi t of haste?

14-M4402.indd 59014-M4402.indd 590 12/17/07 4:27:06 PM12/17/07 4:27:06 PM

Apago PDF Enhancer

Figure 14.21b LinePlotPanel class—part B

 // Calculate integer pixel interval between adjacent points
 pixelInterval = rectWidth / (numOfPoints - 1);

 // Make rectangle's actual width = multiple of pixelInterval
 rectwidth = (numOfPoints - 1) * pixelInterval;

 xPixels = new int[numOfPoints];
 yPixels = new int[numOfPoints];

 for (int i=0; i<numOfPoints; i++)
 {
 xPixels[i] = topLeftX + (i * pixelInterval);
 yPixels[i] = topLeftY + rectHeight - (int) Math.round(
 (frame.getYCoords()[i] / frame.getMaxY()) * rectHeight);
 }
 } // end LinePlotPanel constructor

 //**

 // This class displays line as sequence of connected points.

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 g.drawRect(topLeftX, topLeftY, rectWidth, rectHeight);
 g.drawPolyline(xPixels, yPixels, xPixels.length);
 } // end paintComponent
} // end class LinePlotPanel

⎫
⎬
⎭

precomputed parameters

Scalability

A program is scalable if it’s able to support larger or smaller amounts of data and more or fewer users. The

support for more data and more users might require changes to the software, but the changes should be cost-

effective incremental add-ons, not massive rewrites.

A professional-grade line-plotting program should be able to handle large quantities of data and differ-

ent types of data. Our LinePlotGUI program may not achieve that level of scalability (it handles only one

type of data, and all the data must fi t in one window), but it’s not too bad, considering that we needed to keep

it reasonably short to fi t in an introductory textbook. The LinePlotGUI program is scalable in that its scope

is constrained primarily by user input and a few named constants, not by hard-to-change coding constructs.

Case in point: The user specifi es the number of points and the maximum y value for each point; named con-

stants specify the window size and the window margin.

14.13 GUI Track and Problem Solving: Line Plot Example Revisited (Optional) 591

14-M4402.indd 59114-M4402.indd 591 12/17/07 4:27:06 PM12/17/07 4:27:06 PM

Apago PDF Enhancer

592 Chapter 14 Exception Handling

Robustness and the getInsets Method

In the LinePlotPanel constructor in Figure 14.21a, note how frame (the program’s output window)

calls the getInsets method. The getInsets method returns a window’s Insets object. The Insets

object stores the thicknesses of the window’s four borders. For example, frame.getInsets().left

returns the width (in pixels) of the frame window’s left border and frame.getInsets().top returns

the height (in pixels) of the frame window’s top border. The top border includes the height of the title bar.

If you don’t want to bother with the getInsets method, you might be tempted to use hard-coded

guesses for the border sizes. Don’t do it. Different Java platforms (e.g., Windows, UNIX, and Macintosh

platforms) have different window border sizes. So even if you guess right for your current Java platform,

your guesses won’t necessarily work for alternative Java platforms. Moral of the story: Be robust and use

getInsets. Don’t use hard-coded guesses.

Summary

An exception is an event that occurs during the execution of a program that disrupts the normal fl ow of

instructions during the execution of a program.

Exception handling is a technique for handling exceptions gracefully.

Use a try block to “try” out one or more dangerous method calls. If there’s a problem with the danger-

ous method calls, the JVM throws an exception and looks for a “matching” catch block.

A catch block is matching if the catch heading’s parameter type is the same as or an ancestor of the

type of the thrown exception.

If an exception is thrown, the JVM immediately jumps out of the current try block. That means that

if there are statements in the try block after the exception-throwing statement, those statements get

skipped.

Checked exceptions must be checked with a try-catch mechanism.

Unchecked exceptions may optionally be checked with a try-catch mechanism, but it’s not a

requirement.

Unchecked exceptions are descendants of the RuntimeException class.

To implement a simple, general-purpose exception handler, defi ne a catch block with an Exception

type parameter, and inside the catch block, call the Exception class’s getMessage method.

To defi ne an exception handler with more specifi city, defi ne a sequence of catch blocks. Arrange the

catch blocks with the more general exception classes at the bottom.

If a program crashes, the JVM prints a call stack trace. A call stack trace is a listing of the methods that

were called prior to the crash, in reverse order.

Use a throws clause to propagate an exception back to the calling module.

If you handle an exception with a throws clause, and you need to provide clean up code regardless of

whether an exception is thrown, use a finally block.

Review Questions

§14.3 Using try and catch Blocks to Handle “Dangerous” Method Calls

 1. If your program contains an API method call, you should put it inside a try block. To be fully compliant
with proper coding practice, you should apply this rule for all your API method calls. (T / F)

•

•
•

•

•

•
•

•
•

•

•

•
•

14-M4402.indd 59214-M4402.indd 592 12/17/07 4:27:07 PM12/17/07 4:27:07 PM

Apago PDF Enhancer

 2. A try block and its associated catch block(s) must be contiguous. (T / F)

§14.5 try Block Details

 3. Usually, you should try to aggregate related dangerous statements in the same try block to minimize
clutter. (T / F)

 4. Where should you put safe statements that use the results of dangerous operations?
 5. If an exception is thrown, the JVM jumps to a matching catch block, and after executing the catch

block, it returns to the try block at the point where the exception was thrown. (T / F)
 6. In checking for compile-time errors, the compiler takes into account that all statements inside a try block

might get skipped. (T / F)

§14.6 Two Categories of Exceptions—Checked and Unchecked

 7. If an exception is derived from the RuntimeException class it is a(n) exception.
 8. Checked exceptions are exceptions that are in or derived from the class, but not in or

derived from the class.

§14.7 Unchecked Exceptions

 9. In the following list, indicate whether each option is a viable option for an unchecked exception that you
know your program might throw:
 a) Ignore it.
 b) Rewrite the code so that the exception never occurs.
 c) Put it in a try block, and catch it in a following catch block.

§14.8 Checked Exceptions

 10. When a statement might throw a checked exception, you can keep the compiler from complaining if you put
that statement in a try block and follow the try block with a catch block whose parameter type is the
same as the exception type. (T / F)

 11. You can determine whether a particular statement contains a checked exception and the type of that
exception by attempting to compile with no try-catch mechanism. (T / F)

§14.9 The Exception Class and Its getMessage Method

 12. Is it OK to include code that can throw both unchecked and checked exceptions in the same try block?
 13. What type of exception matches all checked exceptions and all unchecked exceptions except those derived

from the Error class?
 14. What does the getMessage method return?

§14.10 Multiple Catch Blocks

 15. For each distinct type of exception that might be thrown, there must be a separate catch block. (T / F)
 16. The compiler automatically checks for out-of-order catch blocks. (T / F)

§14.11 Understanding Exception Messages

 17. What are the two types of information displayed by the JVM when it encounters a runtime error that
terminates execution?

§14.12 Using throws <exception-type> to Postpone the catch
 18. Suppose you want to postpone catching of a NumberFormatException. What should you append to the

heading of a method to alert the compiler and a potential user that something in the method might throw
that type of exception?

 Review Questions 593

14-M4402.indd 59314-M4402.indd 593 12/17/07 4:27:07 PM12/17/07 4:27:07 PM

Apago PDF Enhancer

594 Chapter 14 Exception Handling

 19. Given a non-void method that contains no try and catch blocks. If the method throws an exception,
we know that the JVM transfers the thrown exception back to the calling method. But does the JVM return
a value (with a return statement) to the calling module?

Exercises

 1. [after §14.3] Given the below program, what is the output if the user enters “one” in response to the prompt?

/***
* FantasyFootball.java
* Dean & Dean
*
* This prints out names of football players.
***/

import java.util.Scanner;
import java.util.ArrayList;

public class FantasyFootball
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 ArrayList<String> players = new ArrayList<String>();
 String indexStr;
 int index = 0;

 players.add("Peyton Manning");
 players.add("Ladanian Tomlinson");
 players.add("Reggie Bush");
 System.out.print("Enter a number between 1 and 3: ");
 indexStr = stdIn.nextLine();
 try
 {
 index = Integer.parseInt(indexStr);
 System.out.println("Entered index OK.");
 }
 catch (NumberFormatException e)
 {
 System.out.println("Entered index wasn't an integer");
 }
 try
 {
 System.out.println(players.get(index - 1));
 }
 catch (IndexOutOfBoundsException e)
 {
 System.out.println(
 "Can't access players[" + (index - 1) + "]");
 }

14-M4402.indd 59414-M4402.indd 594 12/17/07 4:27:07 PM12/17/07 4:27:07 PM

Apago PDF Enhancer

 System.out.println("done");
 } // end main
} // end class FantasyFootball

 2. Given the above program. What is the output if the user enters 1 in response to the prompt?

 3. [after §14.4] Add a try-catch structure to the following program to make it compile and execute
correctly, even when the divisor is zero. Note that division by zero throws an ArithmeticException.

import java.util.Scanner;

public class Division
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 int n, d, q;

 System.out.print("Enter numerator: ");
 n = stdIn.nextInt();
 System.out.print("Enter divisor: ");
 d = stdIn.nextInt();
 q = n / d;
 System.out.println(q);
 } // end main
} // end Division class

 To help you out, we’ve provided the catch block, below:

catch (ArithmeticException e)
{
 System.out.println("Error, but keep going anyway.");
}

 There’s no need to check for correct input; you may assume that the user enters two properly formatted int
values for input.

 4. [after §14.5] Program Improvement:

 The following program performs division and does not throw an exception when you input a zero for the
denominator. It also does not detect input number format exceptions. Minimize the total lines of code
required to meet the requirements.

/***
* Division2.java
* Dean & Dean
*
* This attempts to prevent division by zero.
***/

import java.util.Scanner;

public class Division2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);

 Exercises 595

14-M4402.indd 59514-M4402.indd 595 12/17/07 4:27:07 PM12/17/07 4:27:07 PM

Apago PDF Enhancer

596 Chapter 14 Exception Handling

 double n;
 int d;

 System.out.print("Enter numerator: ");
 n = stdIn.nextDouble();
 System.out.print("Enter divisor: ");
 d = stdIn.nextInt();
 System.out.println(n / d);
 } // end main
} // end Division2 class

 a) First, rewrite the program so that it still employs a double numerator and int denominator, but if the
value input for the denominator is zero, it refuses to perform the division operation, and keeps asking
for the denominator until the user supplies something other than zero.

 b) Next, rewrite the program of part a so that if the user inputs an improper format for either numerator
or denominator, the entire input query repeats until both formats are OK. Hint: Put try and catch
blocks in a loop that executes while (OK == false), and set OK = true after all of the criti-
cal operations in the try block have succeeded. Note: If the scanned format is bad, you’ll get infinite
looping unless you re-instantiate stdIn in each iteration, or use a two-step operation for each input
(input a string and then parse it).

 5. [after §14.7] What happens if an unchecked exception is thrown and never caught?

 6. [after §14.9] WebPageReader program:

 In addition to testing your exception handling prowess, this exercise also tests your ability to use online
help and/or reference books. The following program attempts to read in a Web address and print the
contents of the Web page at that address.
 In the given program:
 For each class that’s used, add an import statement for it, if it’s necessary.

 For each method call and constructor call:
 If it throws an unchecked exception, ignore it.
 If it throws a checked exception:
 Specify the specific exception in a throws clause.
 Within a catch block in main, catch the exception and print the exception’s

message using its getMessage method.

 Assume that the following code works except for the items mentioned above.

/***
* WebPageReader.java
* Dean & Dean
*
* This reads a Web page.
***/

import java.util.Scanner;

public class WebPageReader
{
 BufferedReader reader;

 public WebPageReader(String webAddress)
 {

14-M4402.indd 59614-M4402.indd 596 12/17/07 4:27:08 PM12/17/07 4:27:08 PM

Apago PDF Enhancer

 URL url = new URL(webAddress);
 URLConnection connection = url.openConnection();
 InputStream in = connection.getInputStream();

 reader = new BufferedReader(new InputStreamReader(in));
 } // end constructor

 //**

 public String readLine()
 {
 return reader.readLine();
 } // end readLine

 //**

 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String url, line;

 System.out.print("Enter a full URL address: ");
 url = stdIn.nextLine();
 WebPageReader wpr = new WebPageReader(url);

 while ((line = wpr.readLine()) != null)
 {
 System.out.println(line);
 }
 } // end main
} // end WebPageReader

 Be aware that your program might be correct, but it might not be able to access Web pages successfully.
To access Web pages, your computer needs to have Internet access capabilities. If your fi rewall asks if it’s
OK for Java to access the Internet, click “yes” and continue. Here are three sample sessions:

First sample session:

Enter a full URL address: htp://www.park.edu
unknown protocol: htp

Second sample session:

Enter a full URL address: http:/www.park.edu
Connection refused: connect

Third sample session:

Enter a full URL address: http://www.park.edu

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Park University Home Page</title>
<meta name="TITLE" content="Park University Home Page:
Bachelor's, Master's and Online Degree Programs" />

 Exercises 597

14-M4402.indd 59714-M4402.indd 597 12/17/07 4:27:08 PM12/17/07 4:27:08 PM

htp://www.park.edu
http://www.park.edu
http://www.park.edu
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Apago PDF Enhancer

598 Chapter 14 Exception Handling

<meta name="ROBOTS" content="INDEX,FOLLOW" />
<meta name="Description" content="Park University offers
undergraduate, graduate, and online degree programs at campuses
nationwide. Park is accredited by the Higher Learning Commission
of the North Central Association of Colleges and Schools." />
...

 7. [after §14.10] Multiple catch Blocks:

 Suppose the code in a try block might throw any of the following exceptions:
 a) Exception
 b) IllegalArgumentException
 c) IOException
 d) NumberFormatException
 e) RuntimeException

 Identify an acceptable sequence for multiple catch blocks of these types.

 8. [after §14.11] Correcting Problems:

 Fix the problems in the NumberList program without making any changes to the NumberListDriver
class.

 If a user immediately enters “q” to quit, print “NaN” by making a small program correction that utilizes
double’s NaN value, and avoid using the try-catch mechanism to catch the int arithmetic exception.

Sample session:

Enter a whole number (q to quit): q
Mean = NaN

 If the entry is not a “q,” and if it is not a legal integer, catch the exception, and in the catch block use
the getClass method inherited from the Object class to print the name of the exception class followed
by the error message with the statement:

System.out.println(e.getClass() + " " + e.getMessage());

 Avoid the possibility of an ArrayIndexOutOfBoundsException by adding to the while condition
size < numList.length, and perform the query and entry at the end of the while loop only if
size < numList.length.

 9. [after §14.12] TestExceptions:

 What does this program output? Since this program converts between string and numeric values, use quotes
to denote string values.

/***
* TestExceptions.java
* Dean & Dean
*
* This looks up the value at a calculated index.
***/

public class TestExceptions
{
 private double[] value =
 new double[] {1.0, 0.97, 0.87, 0.7, 0.47, 0.17};
 private int num;

14-M4402.indd 59814-M4402.indd 598 12/17/07 4:27:08 PM12/17/07 4:27:08 PM

Apago PDF Enhancer

 //**

 public double eval(String n1, String n2)
 throws IndexOutOfBoundsException
 {
 try
 {
 num = Integer.parseInt(n1) / Integer.parseInt(n2);
 }
 catch (NumberFormatException nfe)
 {
 num++;
 System.out.println("in first catch");
 }
 catch (ArithmeticException ae)
 {
 num++;
 System.out.println("in second catch");
 }
 return value[num];
 }

 //**

 public static void main(String[] args)
 {
 TestExceptions te = new TestExceptions();
 try
 {
 System.out.println(te.eval("5.0", "4"));
 System.out.println(te.eval("5", "0"));
 System.out.println(te.eval("22", "5"));
 System.out.println(te.eval("33", "5"));
 }
 catch (Exception e)
 {
 System.out.println("in main's catch");
 }
 System.out.println("Bye");
 } // end main
} // end TestExceptions class

Review Question Solutions

 1. False. Many API method calls are safe, and there’s no need to put those method calls inside a try block.

 2. True. You cannot put any statements between associated try and catch blocks.

 3. True.

 4. Put safe statements that use the results of dangerous operations inside the try block and after those
dangerous operations.

 Review Question Solutions 599

14-M4402.indd 59914-M4402.indd 599 12/17/07 4:27:08 PM12/17/07 4:27:08 PM

Apago PDF Enhancer

600 Chapter 14 Exception Handling

 5. False. After executing the catch block, the JVM continues downward; it does not jump back to the try
block. Consequently, try-block statements get skipped if they follow an exception-throwing statement.

 6. True.

 7. If an exception is derived from the RuntimeException class, it is an unchecked exception.

 8. Checked exceptions are exceptions that are in or derived from the Exception class, but not in or derived
from the RuntimeException class.

 9. Viable options for an unchecked exception that you know might be thrown:
 a) Not viable! You don’t want your program to crash at runtime.
 b) Viable.
 c) Viable.

 10. True.

 11. True. If the statement contains a checked exception, the compiler will say so and identify the exception
type.

 12. Yes.

 13. The Exception exception.

 14. The Exception class’s getMessage method returns a text description of the thrown exception.

 15. False. You can use a generic catch block to catch different kinds of exceptions.

 16. True. The compiler complains if an earlier more generic catch block preempts a later more specifi c
catch block.

 17. The two types of information displayed by the JVM when it encounters a runtime error are:
 a) Identification of the particular exception thrown.
 b) A call-stack trace, which is a reverse-order listing of the methods called just prior to the crash, along

with the line numbers where the error occurred in each method.

 18. You must append throws NumberFormatException to the end of the method heading.

 19. No. When an exception is thrown back to the calling method, the JVM does not return a value (with a
return statement) to the calling module.

14-M4402.indd 60014-M4402.indd 600 12/17/07 4:27:08 PM12/17/07 4:27:08 PM

Apago PDF Enhancer

601

C H A P T E R 15
Files

Objectives

Become acquainted with classes in the java.io package.

Learn how to write text and data to a text fi le.

Learn how to read text and data from a text fi le.

Use text fi le I/O in a data translation activity.

Understand the differences between text and binary fi le formats.

Learn how to write and read primitive values to and from binary fi les.

Learn the use of a data fi le header.

Learn how to write and read objects to and from Java object fi les.

Use the API File class to gather information about a specifi ed fi le.

Implement GUI fi le chooser functionality with the API JFileChooser class.

Outline

 15.1 Introduction

 15.2 Java API Classes You Need to Import

 15.3 Text-File Output

 15.4 Text-File Input

 15.5 HTML File Generator

 15.6 Text File Data Format Versus Binary File Data Format

 15.7 Binary File I/O

 15.8 Object File I/O

 15.9 The File Class

 15.10 GUI Track: The JFileChooser Class (Optional)

15.1 Introduction

Up until now, all program input has come from the keyboard and all output has gone to the computer screen.

But that type of input/output (I/O) is temporary. When you send output to the computer screen, it’s not

saved. A day later, if you want to display it again, you have to run the program again. Likewise, when you

•
•
•
•
•
•
•
•
•
•

15-M4402.indd 60115-M4402.indd 601 12/17/07 4:27:21 PM12/17/07 4:27:21 PM

Apago PDF Enhancer

602 Chapter 15 Files

enter input from the keyboard, the input is not saved. A day later, if you want to use the same input, you have

to enter it again.

For permanent or re-usable I/O, you can store input or output data in a fi le. A fi le is a group of related

data that is typically stored in a contiguous block on a non-volatile storage device (such as a hard disk). Data

fi les are fundamentally the same as the .java and .class program fi les that you have been using all

along to hold your java programs. But instead of holding programs, data fi les hold data that programs read

from for input or write to for output. To keep from confusing yourself or your computer, for your data fi les,

you should name them with an extension that identifi es them as data, like .txt or .data.

In this chapter you’ll learn how to write code that creates output data fi les and stores data in those fi les,

and you’ll learn how to write code that reads data from pre-existing input fi les. You’ll learn how to do these

things with simple text fi les, which hold their data as text characters. You’ll learn how to do these things

more effi ciently with binary fi les, which hold data in native format—the format your computer uses when it

processes data during program execution. And you’ll learn how to store complete objects in object fi les.

15.2 Java API Classes You Need to Import

In programs that manipulate fi les, you will use several of Java’s pre-built classes. To access these classes,

you need to import the packages that contain them. Figure 15.1 shows the subset of Java API classes we’ll

discuss in this chapter. You’ll recognize the Scanner class because you’ve been using it to get input from a

keyboard. In this chapter, you’ll learn how to use it to get input from a fi le, too. As you know, you can import

it with this statement:

import java.util.Scanner;

All the rest of the classes in Figure 15.1 are in the java.io package. Usually, you’ll need more than one of

them, and you can import any combination with this wildcard statement:

import java.io.*;

The three groupings that appear in Figure 15.1, that is, “text,” “binary,” and “object,” identify three dif-

ferent I/O strategies. Each has its place. Text I/O is a handy way to store primitive data types. It’s relatively

easy to read or write text fi les in Java, and you can use almost any other kind of computer program (like

word processors and spreadsheets) to read or write text fi les. Binary fi les hold data more effi ciently than

either text fi les or object fi les. When the data to be stored is complex—involves objects or a combination

of objects and primitives—object fi les are easiest to use. Be aware that it’s hard to inspect a binary fi le or

object fi le because you can’t read such fi les with text processing programs. To read a binary fi le, you must

know how it’s organized. To read an object fi le, you must know the types of objects it holds, but you can

ignore their internal structure because structural information inserted by the JVM when you write an object

fi le tells the JVM how the fi le is organized when you read it.

In addition to the classes that appear in Figure 15.1, there are also many other classes that deal with fi le

I/O, and their operations overlap. In other words, some classes handle the same sort of fi le operation as other

classes do. Why are there so many classes? Each class has different features, so certain classes work bet-

ter in certain situations. There’s also an historical reason. File I/O classes were added to the Java language

incrementally. Whenever the Java designers realized that the fi le I/O classes were defi cient in some way,

they didn’t want to modify the existing classes because that would mess up existing code that depended on

those classes. So they added new classes. Unfortunately, the result is that there are many fi le I/O classes,

and it’s hard to remember what they all do. We’ll discuss only those that are the most useful and most

straightforward.

15-M4402.indd 60215-M4402.indd 602 12/17/07 4:27:22 PM12/17/07 4:27:22 PM

Apago PDF Enhancer

The simplest way to store text and/or text representations of numbers is in text fi les. In text fi les,

 everything is represented in terms of ASCII characters, which we described in Chapter 11. As shown in

Figure 11.4, each ASCII character is coded in an eight-bit sequence of 0’s and 1’s. We’ll discuss this coding

scheme in more depth later in this chapter, in Section 15.6. To write text to a text fi le, we recommend that

you use the PrintWriter class, which has println, print, and printf, methods. Those methods

parallel the same-named methods that you’ve called from System.out for quite a while. The System.
out methods print to the computer monitor. The PrintWriter methods print to a fi le. To read text from

a text fi le, we recommend that you use the Scanner class, which has the nextLine, next, nextInt,

 nextLong, nextFloat, and nextDouble methods that you’ve used for quite a while. But now you’ll

use those methods to get input from a fi le rather than from a keyboard. The Scanner class works in con-

junction with the FileReader class. You instantiate the Scanner constructor with a FileReader

Figure 15.1 Classes we recommend using for fi le I/O

The Scanner class is in the java.util package. The others are in the java.io package.

Text fi le I/O. For primitive data. Easy to understand.
Computer transforms primitive data from native format into readable text format for fi les.

You can create or view text fi les with almost any text editor.

for output to a text fi le:
 PrintWriter
 FileWriter
for input from a text fi le:
 Scanner
 FileReader

Binary fi le I/O. For primitive data. Effi cient.
Files get primitive data in native format.

You cannot create or view binary fi les with a text editor, but binary fi les are very compact.

for output to a binary fi le:
 DataOutputStream
 FileOutputStream
for input from a binary fi le:
 DataInputStream
 FileInputStream

Object fi le I/O. For complete objects. Easy to use.
Computer decomposes objects into primitive data for fi les, which also get descriptive headers.

You cannot create or view object fi les with a text editor, but your coding is minimized.

for output to an object fi le:
 ObjectOutputStream
 FileOutputStream <same as for binary output>
for input from an object fi le:
 ObjectInputStream
 FileInputStream <same as for binary input>

 15.2 Java API Classes You Need to Import 603

15-M4402.indd 60315-M4402.indd 603 12/17/07 4:27:22 PM12/17/07 4:27:22 PM

Apago PDF Enhancer

604 Chapter 15 Files

 argument. We present text-fi le examples that use PrintWriter, Scanner, and FileReader in

Sections 15.3 and 15.4.

The most effi cient way to store homogeneous arrays of primitive data is in binary fi les. To write primi-

tive data to a binary fi le, you instantiate an object of the DataOutputStream class with an argument

that refers to an object of the FileOutputStream class. (A stream is a sequential fl ow of data.) To read

primitive data from a binary fi le, you instantiate an object of the DataInputStream class with an argu-

ment that refers to an object of the FileInputStream class. We illustrate use of DataOutputStream,

FileOutputStream, DataInputStream, and FileInputStream in Section 15.7.

If you have a substantial amount of data in object form that you need to transfer to other Java pro-

grams, you’ll want to use object fi les. To write objects (and any combination of primitives) to an object fi le,

you instantiate an object of the ObjectOutputStream class with an argument that refers to an object

of the FileOutputStream class. To read objects from an object fi le, you instantiate an object of the

 ObjectInputStream class with an argument that refers to an object of the FileInputStream class.

We present examples that use ObjectOutputStream, FileOutputStream, ObjectInputStream,

and FileInputStream in Section 15.8.

If you’re interested in the alternative Java API fi le I/O classes, see Sun’s Java API Web site at http://java

.sun.com/javase/6/docs/api/.

15.3 Text-File Output

Readers who want to use fi le I/O early have the option of reading this section and the next section after

completing Chapter 3, Section 3.23. If you elect to jump from Chapter 3 to here, you should be aware that

some of the material in Sections 15.3 and 15.4 won’t make sense. But if you treat Figure 15.2’s program as a

recipe, it will show you how to output to a fi le anything you can output to the computer screen. Likewise, if

you treat Figure 15.5’s program as a recipe, it will show you how to input from a fi le anything you can input

from the keyboard.

In this section, we show you how to use a PrintWriter object to output text to a fi le. In Section 15.4,

we show you how to use a Scanner object to input text from a fi le. For all fi le I/O, there are three basic

steps:

Open the fi le by instantiating the appropriate class(es).

Write to or read from the fi le by calling the appropriate method.

Close the fi le by calling the close method.

Let’s now consider these three steps in relation to the PrintWriter class.

Opening a Text File for Output

To open a text fi le for output, instantiate the PrintWriter class like this:

PrintWriter <reference-variable>;

...

<reference-variable> = new PrintWriter(<fi lename>);

Note that there is no explicit “open” command in this statement. You just instantiate a PrintWriter ob-

ject and that automatically opens the fi le specifi ed by the PrintWriter constructor’s fi lename argument.

If the fi lename is invalid, the JVM throws a FileNotFoundException. There are several ways for the

fi lename to be invalid: (1) The fi lename might contain an invalid fi lename character, like an asterisk, (2) The

•

•

•

15-M4402.indd 60415-M4402.indd 604 12/17/07 4:27:23 PM12/17/07 4:27:23 PM

http://java

Apago PDF Enhancer

fi lename might specify a directory rather than a fi le, (3) The fi lename might specify a nonexistent direc-

tory followed by a fi lename (e.g., javaFiiles/Mouse.java). The FileNotFoundException is a

checked exception, so the PrintWriter constructor call must be in a try block, and the corresponding

catch block’s parameter must match the FileNotFoundException.

To open a fi le for text output, all you need to do is write the statement specifi ed above. You don’t have to

know how it works. But if you’re curious, here’s an explanation: Whenever you instantiate a PrintWriter

object, you also automatically get a FileWriter object. That FileWriter object uses one of the write

methods it inherits from its parent, OutputStreamWriter, to transform a stream (or sequence) of Uni-

code characters into a stream of bytes—the fi le’s natural data format. In addition, FileWriter provides a

buffer for that fi nal stream of bytes. A buffer is a variable-length array that absorbs data-fl ow variations, so

that the fl ow of data out of the processor (where the program is) does not have to be perfectly synchronized

with the fl ow of data into memory (where the fi le is). Suppose the hardware that services memory is busy.

If there were no buffer, the program would have to stop and wait until that hardware became available. But

with a buffer, the processor can simply put the data into the buffer and let it pile up there. Then when the

memory-servicing hardware becomes free, it can scoop up everything that has accumulated in the buffer

and transfer it into memory in a relatively large chunk. Because of its ability to absorb variations in data

fl ow rates, a buffer is a great performance enhancer—it makes a program run faster. So you can see that

opening a fi le is a big operation. It builds a substantial “infrastructure” to carry data from the processor to

the fi le whenever needed.

Example Program

See the WriteTextFile program in Figure 15.2. It illustrates how to use the PrintWriter class for text-

fi le output. The PrintWriter constructor call causes the JVM to open the user-specifi ed fi le as just de-

scribed. If the specifi ed fi le does not exist, the program creates a new one. If the specifi ed fi le exists already,

the program clears the contents of that fi le before writing the new data.

Because the PrintWriter constructor throws a checked exception, the WriteTextFile program

embeds the PrintWriter constructor call in a try block, and it provides a corresponding

 FileNotFoundException catch block.1 The catch block calls e.getMessage, which returns the

exception’s automatically generated error message.

To write to the opened text fi le, the program calls PrintWriter’s println method. As indi-

cated earlier, it works like System.out.println, which automatically appends a line terminator. The

PrintWriter class also has print and printf methods, which work like System.out’s print

and printf methods. These latter two methods do not supply line terminators automatically, so if you

want new lines with them, be sure to supply explicit \n characters. All these methods accept String ar-

guments and convert those strings into streams of characters. The FileWriter object in the background

transforms the streams of characters into streams of bytes for the fi le.

To close the opened text fi le, the program calls PrintWriter’s close method using this format:

<PrintWriter-reference-variable>.close();

This fl ushes out any partially fi lled streams and disassembles the outputting “infrastructure.” Remember to

close a fi le after you’re done. If you write to a PrintWriter fi le and forget to close the fi le, all the data in

1 As indicated in the previous chapter, it’s possible to remove try and catch blocks from a method by adding a throws clause to
the method header. But we recommend against this practice, because it unnecessarily separates exception handling from the point
where the exception occurs, and that makes programs harder to understand and debug.

 15.3 Text-File Output 605

15-M4402.indd 60515-M4402.indd 605 12/17/07 4:27:23 PM12/17/07 4:27:23 PM

Apago PDF Enhancer

606 Chapter 15 Files

the fi le’s write operation(s) might not be saved to the fi le. Also, if you forget to close a fi le, system resources

remain allocated to the open fi le, and that causes system performance to degrade.

Appending Data to an Existing File

Suppose you already have data in an existing fi le and you would like to add data to it. To append new data

to an existing fi le, you call a PrintWriter constructor, as before, but you have to get some help from a

FileWriter object. Specifi cally, you have to pass a FileWriter object to the PrintWriter con-

structor. To see what we’re talking about, examine the PrintWriter instantiation code in Figure 15.3.

To open a fi le for text output in append mode, all you need to do is write the fileOut = statement

shown in Figure 15.3. You don’t have to know why it is the way it is. But if you’re curious, here’s an ex-

planation: None of the various overloaded PrintWriter constructors includes an append parameter,

Figure 15.2 WriteTextFile program for writing text to a new fi le or overwriting an old fi le

/**
* WriteTextFile.java
* Dean & Dean
*
* This writes a string to a text file.
**/

import java.util.Scanner;
import java.io.*;

public class WriteTextFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 PrintWriter fileOut;
 String text = "Hello, world!";

 try
 {
 System.out.print("Enter filename: ");
 fileOut = new PrintWriter(stdIn.nextLine());
 fileOut.println(text);
 fileOut.close();
 }
 catch (FileNotFoundException e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 } // end main
} // end WriteTextFile class

Write to the fi le.

Close the fi le.

for PrintWriter constructor call

Open the fi le.

15-M4402.indd 60615-M4402.indd 606 12/17/07 4:27:24 PM12/17/07 4:27:24 PM

Apago PDF Enhancer

but there is a FileWriter constructor that does. So instead of using the PrintWriter constructor

which automatically instantiates a FileWriter object that never appends, you can explicitly construct a

 FileWriter object that can append. Then you can pass it to an overloaded PrintWriter constructor

which has a Writer parameter type. Since the FileWriter class is a descendant of the Writer class,

this other PrintWriter constructor accepts a FileWriter object as its argument.

The second parameter in the FileWriter constructor is a boolean which tells the computer

whether you want to append or not. Using true says you want to append. If you wanted, you could use

this more elaborate fi le opening statement to create a new fi le or completely overwrite an existing out-

put fi le by using false for the second argument in the FileWriter constructor. Note that this alter-

nate way of opening a text fi le for output requires a more generic catch to catch either PrintWriter’s

 FileNotFoundException or an IOException thrown by the FileWriter constructor. (The

PrintWriter constructor used in Figure 15.2 catches FileWriter’s IOException internally.)

Figure 15.3 WriteTextFile2 program for appending text to an existing fi le

/**
* WriteTextFile2.java
* Dean & Dean
*
* This appends data to an existing text file.
**/

import java.util.Scanner;
import java.io.*;

public class WriteTextFile2
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 PrintWriter fileOut;
 String text = "Hello, world!";

 try
 {
 System.out.print("Enter filename: ");
 fileOut =
 new PrintWriter(new FileWriter(stdIn.nextLine(), true));
 fileOut.println(text);
 fileOut.close();
 }
 catch (IOException e)
 {
 System.out.println("IO: " + e.getMessage());
 }
 } // end main
} // end WriteTextFile2 class

value passed to

boolean append

parameter

IOException needed for FileWriter

also catches FileNotFoundException.

15.3 Text-File Output 607

15-M4402.indd 60715-M4402.indd 607 12/17/07 4:27:24 PM12/17/07 4:27:24 PM

Apago PDF Enhancer

608 Chapter 15 Files

 Figure 15.3’s explicit FileWriter performs the same basic streaming activity that Figure 15.2’s implicit

FileWriter performs. In either case, here’s what the text output process looks like:2

PrintWriter FileWriter Buffer File

stream of characters stream of bytes

string

There’s one additional item worth mentioning in Figure 15.3. Notice the fileOut assignment, repeated

here for your convenience:

fileOut = new PrintWriter(new FileWriter(stdIn.nextLine(), true));

The new FileWriter code, embedded in PrintWriter’s constructor call, is an example of an anony-

mous object. Anonymous objects are very common when working with fi les because fi le constructors often

use other fi le objects as arguments. In those cases, there’s no need to save the newly instantiated argument

fi le in a separate variable. Just use it anonymously.

15.4 Text-File Input

Suppose you have a large amount of input data that you need to use more than once. Instead of entering it

directly from the keyboard repeatedly, it’s more effi cient and more reliable to enter it into a fi le just once.

You can create a Java-readable text fi le with almost any text editor or word processor, provided you save it

as “Plain Text.” Then read the data from the fi le each time you need it. In this section, we show you how to

read input from a text fi le.

Opening a Text File for Input

It’s possible to open a fi le for input using an instance of the FileReader class with a fi lename argument.

That enables you to read in one character at a time. Sometimes that’s what you want to do. But usually you

would rather read a whole line, a whole word, or some type of number. Scanner has methods that per-

form these other operations. So, to open a text fi le for string input, we recommend that you instantiate the

FileReader and Scanner classes together in a single statement, as shown below:

Scanner <reference-variable>;

...

<reference-variable> = new Scanner(new FileReader(<fi lename>));

If the fi le specifi ed by the FileReader constructor’s fi lename argument is invalid, the JVM throws

a FileNotFoundException. That should sound familiar—we said the same thing about the

 PrintWriter constructor for text-fi le output. But there is an important difference. The PrintWriter

constructor allows the fi lename argument to specify a non-existent fi le. The FileReader constructor

anonymous object

2 Optionally, you can speed up execution by inserting a BufferedWriter object between the PrintWriter and FileWriter
objects.

15-M4402.indd 60815-M4402.indd 608 12/17/07 4:27:25 PM12/17/07 4:27:25 PM

Apago PDF Enhancer

requires the fi lename argument to specify an existing fi le. The FileNotFoundException is a checked ex-

ception, so unless you want to use a throws clause, you must put the FileReader constructor call in a try

block, and the corresponding catch block’s parameter must match the FileNotFoundException.

To open a fi le for text input, all you need to do is use new Scanner(new FileReader(<fi lename>))

as shown above. You don’t have to know why it is the way it is. But if you’re curious, here’s an explanation:

None of the various Scanner constructors accepts a fi lename argument like the PrintWriter construc-

tor in Figure 15.2 does.3 So if you want to use Scanner, you must use it in combination with another class

that does accept a fi lename argument and also matches the parameter type in one of the available Scanner

constructors. One of Scanner constructors has a Readable parameter type. Since the FileReader

class implements the Readable interface, you can instantiate a FileReader object and supply it as an

argument in this Scanner constructor.

The FileReader object buffers input from the fi le and transforms the fi le’s bytes into characters.

The Scanner object converts the stream of characters into strings and numbers. Here’s what the text input

process looks like:4

Scanner Buffer File

stream of characters stream of bytesstring
or

number

FileReader

Example Program

Let’s now see how text-fi le input works in the context of a complete program. Suppose you have a text fi le

named markAntony.txt that contains the quotation from Shakespeare’s play Julius Caesar shown in

Figure 15.4a. Also, suppose you have a text fi le named randomNumbers.txt that contains the list of

random numbers shown Figure 15.4b.

3 The Scanner constructor with a String parameter reads a plain old string, not a fi le.
4 Optionally, you can speed up execution by inserting a BufferedReader object between the Scanner and FileReader
objects.

 15.4 Text-File Input 609

Figure 15.4a Contents of markAntony.txt text fi le

Friends, Romans, countrymen,
Lend me your ears;
I come to bury Caesar,
not to praise him.

Figure 15.4b Contents of randomNumbers.txt text fi le

0.9709900750891582 0.3874009922012617 0.1262329780823327
0.7782696919307651 0.15480236215303655 0.9756100238518657

15-M4402.indd 60915-M4402.indd 609 12/17/07 4:27:25 PM12/17/07 4:27:25 PM

Apago PDF Enhancer

610 Chapter 15 Files

Figure 15.5 ReadTextFile program that reads text from the keyboard and also from a text fi le

/**
* ReadTextFile.java
* Dean & Dean
*
* This reads data from a text file.
**/
import java.util.Scanner;
import java.io.*;

public class ReadTextFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Scanner fileIn;
 String line;

 try
 {
 System.out.print("Enter filename: ");
 fileIn = new Scanner(new FileReader(stdIn.nextLine()));
 while (fileIn.hasNextLine())
 {
 line = fileIn.nextLine();
 System.out.println(line);
 }
 fileIn.close();
 }
 catch (FileNotFoundException e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 } // end main
} // end ReadTextFile class

Open the fi le.

⎫
⎬
⎭

Close the fi le.

Read a line from the

fi le and print it.

Figure 15.5 contains a ReadTextFile program that can read the data in either of those fi les. Be aware

that the numbers appearing in Figure 15.4b do not go into the program as numbers. They go into the pro-

gram as string representations of numbers. The ReadTextFile program prompts the user for a fi lename (such

as markAntony.txt or randomNumbers.txt), reads the specifi ed fi le, and prints the fi le’s contents.

Most of the program’s code is straightforward, but some of it deserves attention. . . .

You’ve used the Scanner class for keyboard input for quite a while now. When using the Scanner
class for fi le input, you can still use your old friends, nextInt, nextDouble, nextLine, and so on

the same way that you did for keyboard input. But with fi le input, you should be aware of several addi-

tional Scanner methods. When you’re done reading from the Scanner fi le, call its close method. See

fileIn.close() in Figure 15.5. Also, when reading a series of lines from a fi le, you’ll often want to use

Scanner’s hasNextLine method in a while loop header, as we do in Figure 15.5.

15-M4402.indd 61015-M4402.indd 610 12/17/07 4:27:25 PM12/17/07 4:27:25 PM

Apago PDF Enhancer

Scanner’s hasNextLine method provides a convenient loop-termination signal when you’re read-

ing data with Scanner’s nextLine method. Looping stops automatically at the end of the fi le when there

are no more lines to read. You can use the program in Figure 15.5 to read either the text in Figure 15.4a or

the numbers in Figure 15.4b. It works for the numbers as well as the text because the program just prints

the numbers and spaces between them as it reads them—as sequences of characters—without bothering to

interpret the meanings of those sequences of characters.

Instead of reading a full line at a time, you could use Scanner’s hasNext method as a loop termina-

tion signal and then read data with Scanner’s next method. The next method reads one token at a time.

A token is a sequence of characters separated from preceding and subsequent sequences by whitespace.

Said another way, a token is an isolated word or number. Whether you read a line at a time or a token at a

time, it’s hard to fail at reading pure text!

It’s a different story, however, if the program needs to know the numerical values of numbers in a text

fi le. If the text fi le has whitespace between adjacent numbers, the computer can read those numbers and si-

multaneously parse them (determine their numerical values) by using Scanner methods like nextInt or

nextDouble. These methods throw unchecked exceptions if parsing errors occur. If you want to enhance

the program in Figure 15.5 to include numerical parsing, you might want to catch the unchecked exceptions

thrown by parsing errors.

Reading Formatted Data in a Text File

If you want to use Scanner’s nextInt or nextDouble to parse numerical data as it

is input, you must use whitespace to make each number a separate token. It is not abso-

lutely necessary, however, to use whitespace to separate items in a text fi le. Instead, you

can keep track of the character position of the start and end of each item. That’s what was done in the days

of old. For example, suppose each line in the fi le is formatted into three fi elds, like this:

columns 0–20 hold a String that might contain more than one word

columns 21–28 hold the text representation of an int

columns 30–42 hold the text representation of a double.

To read the three fi elds, you should declare these three variables:

String text;
int iNum;
double dNum;

Read each line in as pure text, and then parse it, like this:

...
line = in.nextLine();
text = line.substring(0,21);
iNum = Integer.parseInt(line.substring(21,29).trim());
dNum = Double.parseDouble(line.substring(30,43).trim());

As you might recall, substring’s second argument is one greater than the index of the last character

in the substring that is to be extracted. So in the above code fragment’s third statement, 29 is one greater

than the int fi eld’s last column.

Use knowledge
of format.
Use knowledge
of format.

 15.4 Text-File Input 611

15-M4402.indd 61115-M4402.indd 611 12/17/07 4:27:26 PM12/17/07 4:27:26 PM

Apago PDF Enhancer

612 Chapter 15 Files

15.5 HTML File Generator

Now let’s look at an example that illustrates both input from a text fi le and output to a text fi le. The program

in Figures 15.6a and 15.6b reads the contents of a user-specifi ed text fi le. It translates that data into a Web

page format. Then, it outputs the translation to a newly generated HTML fi le.

Figure 15.6a HTMLGenerator program—part A

/***
* HTMLGenerator.java
* Dean & Dean
*
* This program copies the contents of a user-specified
* file and pastes it into a newly generated HTML file.
***/

import java.util.Scanner;
import java.io.*;

public class HTMLGenerator
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 String filenameIn; // original file's name
 Scanner fileIn; // input file connection
 int dotIndex; // position of dot in filename
 String filenameOut; // HTML file's name
 PrintWriter fileOut; // HTML file connection
 String line; // a line from the input file

 System.out.print("Enter file's name: ");
 filenameIn = stdIn.nextLine();

 try
 {
 fileIn = new Scanner(new FileReader(filenameIn));

 // Compose the new filename
 dotIndex = filenameIn.lastIndexOf(".");
 if (dotIndex == -1) // no dot found
 {
 filenameOut = filenameIn + ".html";
 }
 else // dot found
 {
 filenameOut =
 filenameIn.substring(0, dotIndex) + ".html";
 }
 fileOut = new PrintWriter(filenameOut);

This opens a fi le for input.

This opens a

fi le for output.

15-M4402.indd 61215-M4402.indd 612 12/17/07 4:27:26 PM12/17/07 4:27:26 PM

Apago PDF Enhancer

In Figure 15.6a, the program starts by reading a user-specifi ed fi lename into the filenameIn vari-

able. Then it uses the entered fi lename to open the input fi le and create a Scanner object named fileIn

to manage fi le reading operations.

The name of the output fi le should be the same as the name of the input fi le except for the extension,

which should be .html. To compose the name of the output fi le, the String method lastIndexOf

fi nds the index of the last dot in filenameIn. If there is no dot, the lastIndexOf method returns a

value of -1, and the program simply appends .html to the original fi lename. If there is a dot, String’s

substring method returns the part of the string up to the character immediately before the dot, and the

program adds .html to that. This process replaces the original fi lename’s extension with a .html exten-

sion, and it assigns the result to filenameOut.

Before examining the rest of the program, let’s digress by providing a brief overview of HTML (the

computer language used to create Internet Web pages). This book is not about HTML, but the following

overview will help you understand the HTMLGenerator program. Also, it’s worth learning a little about

HTML because Internet Web pages are what got the Java language going.

HTML overview:

HTML tags are surrounded by angled brackets, and they describe the purpose of their associated text.

Tags without slashes (like <html>, <head>, and <title> tags) are called start tags. Tags with

slashes (like </title>, </head>, and </html> tags) are called end tags.
<html> and </html> tags surround the entire Web page.

The content between <head> and </head> tags is the heading for an HTML page. The heading con-

tains information that describes the HTML page. This information is used by the browser and by search

engines, but it is not visible on the HTML page.

<title> and </title> tags surround the text that appears in a Web page’s title bar. Internet search

engines use the <title> content to fi nd Web pages.

The content between <body> and </body> tags is the body for the HTML page. The body contains

the text that’s displayed on the HTML page.

<h1> and </h1> tags surround the text that appears as a heading within a Web page. Web browsers

use large fonts to display text that’s surrounded by <h1> tags.

<p> tags indicate the beginning of a new paragraph. Web browsers generate a blank line for each <p>

tag, and this helps set paragraphs apart.

Now let’s analyze Figure 15.6b, the second half of the HTMLGenerator program. The code starts by check-

ing for an empty input fi le. If it’s empty, it prints a warning message. Otherwise, it does the following. It

prints <html> and <head> tags to the output fi le. It prints the input fi le’s fi rst line to the output fi le, sur-

rounded by <title> and </title> tags. Then it ends the Web page’s head section by printing </head>

to the output fi le, and it begins the Web page’s body section by printing <body> to the output fi le. Then it

re-uses the input fi le’s fi rst line and prints it to the output fi le, surrounded by <h1> and </h1> tags. Then it

loops through the subsequent lines in the input fi le. For each blank line, it prints a <p> tag to the output fi le,

indicating a new paragraph. It prints each line that’s not blank to the output fi le as is.

To see how the HTMLGenerator program works when applied to an actual input fi le, study the input fi le

and resulting output fi le in Figure 15.7. If you’d like to verify that the HTMLGenerator program generates

a working Web page, create Figure 15.7’s family.txt fi le, and then run the HTMLGenerator program

with family.txt as input. That should generate Figure 15.7’s family.html fi le. Open a browser win-

dow, and within that browser window, open the family.html fi le. For example, open a Microsoft Inter-

net Explorer browser window and perform a File / Open command. Voila—you should see the family.
html displayed as a Web page!

•

•

•

•

•

•

•

•

 15.5 HTML File Generator 613

15-M4402.indd 61315-M4402.indd 613 12/17/07 4:27:27 PM12/17/07 4:27:27 PM

Apago PDF Enhancer

614 Chapter 15 Files

Figure 15.6b HTMLGenerator program—part B

 // First line used for title and header elements
 line = fileIn.nextLine();
 if (line == null)
 {
 System.out.println(filenameIn + " is empty.");
 }
 else
 {
 // Write the top of the HTML page.
 fileOut.println("<html>");
 fileOut.println("<head>");
 fileOut.println("<title>" + line + "</title>");
 fileOut.println("</head>");
 fileOut.println("<body>");
 fileOut.println("<h1>" + line + "</h1>");

 while (fileIn.hasNextLine())
 {
 line = fileIn.nextLine();

 // Blank lines generate p tags.
 if (line.isEmpty())
 {
 fileOut.println("<p>");
 } // end if
 else
 {
 fileOut.println(line);
 }
 } // end while

 // Write ending HTML code.
 fileOut.println("</body>");
 fileOut.println("</html>");
 } // end else
 fileIn.close();
 fileOut.close();
 } // end try

 catch (FileNotFoundException e)
 {
 System.out.println("Error: " + e.getMessage());
 } // end catch
 } // end main
} // end class HTMLGenerator

15-M4402.indd 61415-M4402.indd 614 12/17/07 4:27:27 PM12/17/07 4:27:27 PM

Apago PDF Enhancer

Note Figure 15.7’s second callout. To conform to strict HTML standards, you should insert a </p> tag

at the end of each paragraph. However, many current Web pages conform only to loose HTML standards,

not to strict HTML standards. Current browsers handle both strict and loose Web pages, but future browsers

will probably handle only strict Web pages. An end-of-chapter exercise asks you to improve the HTMLGen-

erator program so that it generates </p> end tags at the end of every paragraph.

15.6 Text File Data Format Versus Binary File Data Format

This section compares the text format used in text fi les with the native binary format used in binary fi les and

object fi les.

Text Format

Text fi le data is stored using eight-bit American Standard Code for Information Interchange (ASCII) values.

Since the ASCII character set is a universal standard, ASCII characters can be read by almost any text edi-

tor5 or word processor, and they can be read by programs written in any language, not just Java.

5 Exception: Microsoft Notepad recognizes only \r\n as a line terminator. Thus if Notepad tries to read a Java text fi le that uses \n
for line termination, it displays each \n as an unrecognized character (�) and does not generate a new line.

15.6 Text File Data Format Versus Binary File Data Format 615

Figure 15.7 Example input fi le for the HTMLGenerator program and its resulting output fi le

Example input fi le, family.txt:

Our Family

We have a dog, Barkley. Barkley is a good dog. She sleeps a lot
and digs up the grass. We feed her twice a day.

We have two kids, Jordan and Caiden. They're girls. They like to
eat, cry, and play. We like them a lot.

Resulting output fi le, family.html:

<html>
<head>
<title>Our Family</title>
</head>
<body>
<h1>Our Family</h1>
<p>
We have a dog, Barkley. Barkley is a good dog. She sleeps a lot
and digs up the grass. We feed her twice a day.
<p>
We have two kids, Jordan and Caiden. They're girls. They like to
eat, cry, and play. We like them a lot.
</body>
</html>

This works, but to conform to strict HTML standards, Web

pages should have a </p> at the end of each paragraph.

First line of input fi le appears

twice in output fi le.

15-M4402.indd 61515-M4402.indd 615 12/17/07 4:27:27 PM12/17/07 4:27:27 PM

Apago PDF Enhancer

616 Chapter 15 Files

Now let’s analyze the actual storage for characters in this text fi le. The ASCII code value for ‘B’ is

decimal 66. (B’s value, along with all the other ASCII code values can be found in Figure 11.4.) To fi nd the

equivalent binary value, identify the powers of two that add up to 66. 26 and 21 are the powers of two that

add up to 66 (26 � 64, 21 � 2, and 64 � 2 � 66). For each identifi ed power of two, use its exponent as a

place marker for a 1 in the equivalent binary value. For the 66 example, the powers of two, 26 and 21, have 6

and 1 exponents, so the 6 and 1 bit positions are 1 in the following binary representation of 66. Note that bit

positions start at 0 from the right side.

01000010

Here’s the mathematical explanation of why decimal 66 is equivalent to binary 01000010:

66 � (64 � 2) � (26 � 21) � (0*27 � 1*26 � 0*25 � 0*24 � 0*23 � 0*22 � 1*21 � 0*20)

� (01000010)

The ASCII code value for a space character is decimal 32. The binary value is:

32 � (25) � (0*27 � 0*26 � 1*25 � 0*24 � 0*23 � 0*22 � 0*21 � 0*20) � (00100000)

The ASCII code value for ‘2’ is decimal 50. The binary value is:

50 � (32 � 16 � 2) � (25 � 24 � 21) �

(0*27 � 0*26 � 1*25 � 1*24 � 0*23 � 0*22 � 1*21 � 0*20) � (00110010)

The ASCII code value for the new line character is decimal 10. The binary value is:

10 � (8 � 2) � (23 � 21) � (0*27 � 0*26 � 0*25 � 0*24 � 1*23 � 0*22 � 1*21 � 0*20) � (00001010)

B o b 2 2 2 2 \n P

01000010 01101111 01100010 00100000 00110010 00110010 00110010 00110010 00001010 01010000

a u l 5 5 5 5 \n

01100001 01110101 01101100 00110101 00110101 00110101 00110101 00001010

Figure 15.8 Raw form of text format

ASCII characters are shown in blue above each byte. Each logical line is terminated by the \n character, but

in a fi le everything is strung together in one continuous sequence. Here the sequence wraps around so that

everything fi ts within the available page width.

bit position 1

bit position 6

Text fi les are line oriented. When writing to a text fi le, PrintWriter’s println method automati-

cally inserts an end-of-line symbol at the end of the line. In Microsoft Windows, it inserts \r\n. (\r is the

carriage return symbol, and \n is the new line symbol.) In UNIX , it inserts \n only. When reading from

a text fi le, Scanner’s nextLine method reads an entire line of characters, and it accepts either \r\n or

\n by itself as a line terminator, but it does not include the terminator in the retrieved string. Since \n by

itself is simpler, we’ll use it in our illustrations. Now let’s see what a text fi le looks like. Suppose you have

this data:

Bob 2222
Paul5555

Figure 15.8 shows how it’s stored in a text fi le.

15-M4402.indd 61615-M4402.indd 616 12/17/07 4:27:28 PM12/17/07 4:27:28 PM

Apago PDF Enhancer

Characters in a Java program use the 16-bit Unicode storage scheme. Therefore, a ‘B’ is usually stored

in a binary fi le using the 16-bit Unicode storage scheme. In this scheme, the fi rst byte has eight 0’s, and the

second byte’s bit sequence matches the ASCII value for ‘B’ shown in Figure 15.8. The left eight bits for ‘B’,

‘o’, and ‘b’ are all zeros and that doesn’t provide any useful information. So why are these extra eight bits

there? As described in Chapter 11, they’re there to handle Unicode characters that are not in the ASCII char-

acter set. Those other characters need the extra eight bits on the left to hold their full code values.

How is the 2147483647 stored? If it were a text fi le, the digits would be stored as 10 separate ASCII

characters, which would take 10 bytes. But with a binary fi le, 2147483647 is stored as a single int

number. Since an int takes 32 bits, binary fi les use 32 bits to store int’s, and that takes only 4 bytes. The

most signifi cant bit indicates the sign of the number. A 0 in the most signifi cant position says the number

is positive. A 1 in the most signifi cant position says the number is negative. The number 2147483647

6 Here’s an int example (where bits � 32): If binaryValue � (10000000000000000000000000000000) � 231 � 2147483648, then
value � 2147483648 � 4294967296 � �2147483648. For a more extensive explanation of 2’s complement, see http://en.wikipedia
.org/wiki/Two’s_complement.

B o b 2147483647

00000000 01000010 00000000 01101111 00000000 01100010 01111111 11111111 11111111 11111111

Figure 15.9 Raw form of binary format

Unicode characters and int number are shown in blue above 16-bit character and 32-bit number sequences.

 15.6 Text File Data Format Versus Binary File Data Format 617

Note that a new line character does not put the data on a separate “line” in a fi le. Bob 2222 and Paul5555

print on separate lines, but within a fi le the data is stored sequentially—one byte after another.

Binary Format

When writing primitive values to a binary fi le or an object fi le, Java uses each data type’s native storage

format. We don’t like the name “binary fi le” because it implies that binary fi les use binary numbers and text

fi les do not. Actually, all computer fi le information is “binary” in the sense that everything on a computer

is represented with 1’s and 0’s. We’d prefer that “binary fi les” be called “native storage fi les,” but alas, “bi-

nary” is the term everyone uses. So when we talk about a binary format, we mean the native storage format

recognized by the processor. For example, in a binary fi le, a char uses 16-bit Unicode, an int uses 32-bit
2’s complement, a double uses the standard 64-bit IEEE fl oating-point, and so on. See Chapter 11 for a

discussion of Unicode. 2’s complement means:6 if (binaryValue >� 2bits-1) then value � binaryValue � 2bits.

IEEE stands for Institute of Electrical and Electronic Engineers.

Binary fi les are not line oriented. Binary fi le read methods do not recognize end-of-line characters as

having any special function. These characters may be present—just like any other characters—but they do

not affect the extent of what’s read, and methods that write to binary fi les never append end-of-line charac-

ters automatically. Therefore, programs that access primitive data in binary fi les do not read or write whole

lines. That is, they do not use nextLine and println methods to read a line or print a line. Instead, they

use methods like readChar, writeChar, readInt, writeInt, readDouble, writeDouble, and

so on to read and write individual primitive variable values.

For example, suppose you have this data:

Bob2147483647

Figure 15.9 shows how it’s stored in a binary or object fi le.

15-M4402.indd 61715-M4402.indd 617 12/17/07 4:27:28 PM12/17/07 4:27:28 PM

http://en.wikipedia

Apago PDF Enhancer

618 Chapter 15 Files

happens to be the largest positive number an int can hold. Since it’s a positive number, the most signifi cant

bit must be 0. Since it’s the largest positive number, all the other bits are 1. Sure enough, if you punch it out

on your hand calculator, you’ll fi nd that:

(01111111 11111111 11111111 11111111) �

(0*231 � 1*230 � 1*229 � 1*228 � 1*227 � 1*226 � 1*225 � 1*224 �

 1*223 � 1*222 � 1*221 � 1*220 � 1*219 � 1*218 � 1*217 � 1*216 �

 1*215 � 1*214 � 1*213 � 1*212 � 1*211 � 1*210 � 1*29 � 1*28 �

 1*27 � 1*26 � 1*25 � 1*24 � 1*23 � 1*22 � 1*21 � 1*20) �

2147483647

Trade-Offs

Benefi ts of text fi les:

Independent creation—using UNIX vi, Microsoft Notepad, Wordpad, Word Text File, and so on.

Independent viewing—using almost any word processor or other computer language.

Benefi ts of binary fi les or object fi les:

Can handle all Unicode characters

More effi cient number storage

Can store complex objects

15.7 Binary File I/O

In Java it’s straightforward to store primitive data in binary fi les. From a hardware perspective, it’s the most

effi cient storage strategy.

Output

To open a binary fi le for primitive data output, instantiate a FileOutputStream object. This sends a

stream of bytes to the fi le. To transform primitive data types into bytes, instantiate a DataOutputStream

object. The FileOutputStream class descends from the OutputStream class, and the only

 DataOutputStream constructor has an OutputStream type of parameter, so you can pass the new

FileOutputStream object directly into the DataOutputStream constructor as an argument like

this:7

DataOutputStream fileOut;
...
fileOut =
 new DataOutputStream(new FileOutputStream(stdIn.nextLine(), true));
...

•

•

•

•

•

7 Optionally, you can speed up execution by inserting a BufferedOutputStream object between the DataOutputStream and
FileOutputStream objects.

15-M4402.indd 61815-M4402.indd 618 12/17/07 4:27:29 PM12/17/07 4:27:29 PM

Apago PDF Enhancer

This looks rather like the fileOut = statement in Figure 15.3. The FileOutputStream instantiation

here is like the FileWriter instantiation in Figure 15.3 in that it opens the fi le and implements a buffer.

As in Figure 15.3, the second argument says whether to append or overwrite an existing fi le. This object is

different from FileWriter object in that it does not perform any fundamental data-type transformation.

It just receives raw bytes or an array of raw bytes, and it passes those bytes on to the fi le unchanged. The

data transformation is done by the DataOutputStream object, which uses one of its write methods

to convert primitive data or a string into an appropriate sequence of char’s. To write an individual char,

int, double, or String to a fi le, you could use one of these DataOutputStream methods:

void writeChar(int ch)
void writeInt(int i)
void writeDouble(double x)
void writeChars(String s)

For example, suppose you had an array of double values called doubleValues. In a try block

after the above fi le-opening statement, you could write these values to the binary fi le using code like this:

for (int i=0; i<doubleValues.length; i++)
{
 fileOut.writeDouble(doubleValues[i]);
}

The writeChars method writes a string “as is”—it does not append any line-termination character(s).

However, the original String object could include any number of ‘\n’ characters at any places. Thus, you

could refer to a multi-line document with just one String variable, and you could write that whole docu-

ment to a binary fi le with a single for loop that contains just one writeChars statement.

Input

To open a binary fi le for primitive data input, instantiate a FileInputStream and a DataInputStream

like this:8

DataInputStream fileIn;
...
fileIn =
 new DataInputStream(new FileInputStream(stdIn.nextLine()));
...

This looks rather like the fileIn = statement in Figure 15.5. The FileInputStream instantiation

here is like the FileReader instantiation in Figure 15.5 in that it opens the fi le and provides a buffer.

FileInputStream is different from FileReader object, however, in that it does not perform a data-

type transformation. It just receives raw bytes from the fi le and passes them on. All data transformation is

done by the DataInputStream object, which uses one of its read methods to convert the bytes it re-

ceives into primitive variables. To read an individual char, int, or double to a fi le, you could use one of

these DataInputStream methods:

8 Optionally, you can speed up execution by inserting a BufferedInputStream object between the DataInputStream and
FileInputStream objects.

 15.7 Binary File I/O 619

15-M4402.indd 61915-M4402.indd 619 12/17/07 4:27:29 PM12/17/07 4:27:29 PM

Apago PDF Enhancer

620 Chapter 15 Files

char readChar()
int readInt()
double readDouble()

For example, suppose you had declared an array of double values called doubleData. In a try

block after the above fi le-opening statement, you could fi ll this array with data from the binary fi le using

code like this:

for (int i=0; i<doubleData.length; i++)
{
 doubleData[i] = fileIn.readDouble();
}

Common Properties

The FileOutputStream and FileInputStream constructors throw FileNot FoundExceptions,

and the methods in the DataOutputStream and DataInputStream classes throw IOExceptions.

So you can use an IOException catch block to catch them all. Of course, you should close each fi le

when you’re fi nished with it, and you can use close methods inherited by the DataOutputStream and

DataInputStream classes to perform this operation. It’s easiest to include the close statement with the

opening and transfer statements in the same try block.

The DataInputStream class does not include a viable line-input method. Although such a method

does exist,9 it’s often better to read through '\n' characters and accumulate text input in larger chunks than

lines. To do this, use the two-byte null character whose code value is zero to terminate a string-reading

operation. You can append this character to your string when writing to a binary fi le with this statement:

fileOut.writeChar(0);

Then in your fi le-reading program, you can check each character as it comes in to see whether its code value

equals zero. When it does, you’re at the end of the string.

Structured Binary Files

Binary fi le I/O is easiest when fi le data is all one type. With some work, however, you can mix data types

and put structure into a binary fi le. Doing this gives you a sense of what Java’s built-in code does in the next

section’s object I/O. So let’s look at a simple example of a structured binary fi le. Suppose you have a binary

fi le that contains some entries from a database table. To read this information, you need to know how that

fi le is structured. Let’s say you know it has this relatively simple organization:

 1. The fi rst data block is for a text title and/or description. It is composed of an unspecifi ed number of

2-byte char’s. This text block is terminated by the null character, whose code value is a sequence of

two zero bytes.

 2. The second data block is a single 4-byte int. It gives the number of sub-blocks in the third block.

 3. The third block contains a number of identical sub-blocks. Each of these sub-blocks has two fi elds:

 a) The fi rst fi eld is a 4-byte int.

 b) The second fi eld is an 8-byte double.

In your fi le-reading program, suppose you want to put the two values in each sub-block into the two

instance variables of a new object of type Record. And suppose Record has a two-parameter constructor

that initializes these two variables.

9 If your binary fi le contains only text, instead of a DataInputStream, it’s better to use a BufferedReader, and the
 BufferedReader class includes a readLine method.

15-M4402.indd 62015-M4402.indd 620 12/17/07 4:27:30 PM12/17/07 4:27:30 PM

Apago PDF Enhancer

The following code fragment shows what you might see in a program that reads data from a binary fi le

having the above organization. After opening the fi le for binary input, the code stores the fi rst block’s char-

acters into a StringBuffer called table. (The API StringBuffer class implements a fl exible kind

of String.) Notice how the while loop condition looks for a null character that signals the end of the

incoming stream of characters. After the character-reading operation terminates, the code reads the second

block’s integer and stores it in an int called numRecords. Finally, the code instantiates Record objects

to hold the pairs of values in the sub-blocks, and it adds those objects to an ArrayList called table.

Scanner stdIn = new Scanner(System.in);
DataInputStream fileIn;
char ch = 0;
int numRecords = 0;
ArrayList<Record> table = new ArrayList<Record>();
StringBuffer tableName = new StringBuffer();

System.out.print("Enter filename: ");
try
{
 fileIn = new DataInputStream(new FileInputStream(
 stdIn.nextLine()));
 while((ch = fileIn.readChar()) != 0)
 {
 tableName = tableName.append(ch);
 }
 numRecords = fileIn.readInt();
 for (int i=0; i<numRecords; i++)
 {
 table.add(new Record(
 fileIn.readInt(), fileIn.readDouble()));
 }
 fileIn.close();
} // end try
...

A StringBuffer is more fl exible than a String because it has append and insert methods

that append to the end or insert anywhere in the middle. The above code uses the append method to ac-

cumulate characters as they stream in from the fi le. Of course, StringBuffer also has a toString
method which allows you to convert a StringBuffer into a String at any later time.

The argument of the Record constructor in the table.add method call near the end of this example

tells how each object’s instance-variable values are arranged in the fi le. They are lined up in a sequence, one

after another. Notice that our fi le-reading code had to know the basic fi le-formatting scheme ahead of time,

but some of the fi le-format detail—the number of records the fi le contained—is embedded in the fi le itself.

The fi le-reading code determines this formatting detail at the very last instant, as the data streams in. This

combination of a standard protocol (formal agreement on how something should be done) plus an embed-

ded variation is typical of formatting in real-world binary fi les. The difference is that real-world protocols

and their embedded variations are a hundred times more complicated than our simple example. Program-

mers often employ some kind of pre-written software to perform the data transformations needed for binary

fi le I/O.

Accumulate objects in an ArrayList.

Accumulate characters

in a StringBuffer.

a fl exible “string”

a fl exible “array”

15.7 Binary File I/O 621

15-M4402.indd 62115-M4402.indd 621 12/17/07 4:27:30 PM12/17/07 4:27:30 PM

Apago PDF Enhancer

622 Chapter 15 Files

15.8 Object File I/O

When you can remain within a Java programming environment, that is, use Java programs for all fi le writ-

ing and all fi le reading, you have an advantage. You can use software that’s built into the Java language to

perform the structural conversion between program objects and primitive data streams. This section ex-

plains how to use that built-in software.

Enabling Java Objects to be Stored in a File

The java language has built-in software that serializes each object’s data as it goes into a fi le and unserial-
izes that data as it comes out of a fi le and goes back into object form. Whenever a program writes serialized

data into a fi le, it also writes the recipe it used to serialize that data. That recipe includes the type of the

object, the type of each data item, and the sequence in which the data items are stored. When another pro-

gram reads serialized data from a fi le, it also reads the recipe to learn how to reconstruct the object from the

serialized data. To enable a class to use Java’s built-in serializing software you must append the following

clause to that class’s heading:

implements Serializable

This makes it look like your class is implementing an interface. But this interface doesn’t defi ne any named

constants, and it doesn’t require that the class implement any particular methods. It just tags (identifi es) the

class’s objects as objects needing serialization services. For example, look at the TestObject class in

Figure 15.10. Notice that this class implements the Serializable interface.

Writing a Serializable Object to a File

Figure 15.11 contains a simple program that writes a TestObject object to a user-specifi ed fi le. The fi rst

try block statement uses ObjectOutputStream and FileOutputStream instantiations to open the

fi le. Notice that the FileOutputStream constructor has only one parameter. This constructor either

creates a new fi le or over-writes an existing fi le. There is no append option. (One of this chapter’s projects

shows how to append objects to data already in an existing object fi le.) The second try block statement

writes an object to the opened fi le. The object written is an instance of the class in Figure 15.10. The third

statement closes the fi le.

The catch parameter is an IOException because the ObjectOutputStream constructor and

ObjectOutputStream’s writeObject and close methods all throw an IOException. As indi-

cated earlier, the FileOutputStream constructor throws a FileNotFoundException, but this ex-

ception is derived from IOException. Therefore, using IOException as the catch parameter enables

the catch block to catch all of the exceptions that might be thrown from the try block.

Reading a Serializable Object from a File

Figure 15.12’s ReadObject program tries to read data for two objects of the TestObject class from a

user-specifi ed fi le. The program’s code should look familiar since it parallels Figure 15.11’s WriteObject

program. However, instead of using FileOutputStream and ObjectOutputStream constructors

and the writeObject method, it uses FileInputStream and ObjectInputStream constructors

and the readObject method. The only tricky thing is you must include a cast like (TestObject) to

convert the reference returned by the readObject method to the specifi c type that defi nes the methods

you want to use. That cast might throw a ClassNotFoundException, so we include an extra catch

block for that exception.

15-M4402.indd 62215-M4402.indd 622 12/17/07 4:27:30 PM12/17/07 4:27:30 PM

Apago PDF Enhancer

Notice the second output in Figure 15.12’s sample session. Can you fi gure out what happened? The

WriteObject program outputs only one object to the objectFile.data fi le, but the ReadObject pro-

gram tries to read two objects from that fi le. Since it cannot fi nd a second object, the JVM throws an

IOException, which generates the print statement in the last output line.

If a class is Serializable, all classes derived from it are automatically Serializable, too. Sup-

pose your Serializable class has instance variables that refer to other objects. Those objects’ classes

also must be Serializable. This must be true through all levels in a composition hierarchy. Does this

sound like a pain? It’s not, really. Just be sure to include implements Serializable in the defi nition

of all classes that defi ne objects you’d like to store as objects. The alternative would be a pain, though. If you

couldn’t store a whole object, you’d have to provide explicit code to write and read each primitive data item

Figure 15.10 Typical defi nition of a Serializable object

/**
* TestObject.java
* Dean & Dean
*
* This is a typical heterogeneous object.
**/

import java.io.*;

public class TestObject implements Serializable
{
 private int id;
 private String text;
 public double number;

 //***

 public TestObject(int id, String text, double number)
 {
 this.id = id;
 this.text = text;
 this.number = number;
 } // end constructor

 //***

 public void display()
 {
 System.out.print(this.id + "\t");
 System.out.print(this.text + "\t");
 System.out.println(this.number);
 } // end display
} // end TestObject class

To be writable to and readable from a fi le,

an object must be an instance of a class

that implements this interface.

⎫⎪⎪⎬⎪⎪⎭

15.8 Object File I/O 623

15-M4402.indd 62315-M4402.indd 623 12/17/07 4:27:31 PM12/17/07 4:27:31 PM

Apago PDF Enhancer

624 Chapter 15 Files

in the container object, and each primitive data item in all component objects in that container object, and

so on, down the composition tree to all the primitive leaves.

Outputting an Updated Version of a Previously Output Object

If you ask ObjectOutputStream’s writeObject method to output exactly the same object again

while the fi le is still open, the serializing software recognizes the repetition and outputs just a reference to

the previously output object. This is like what happens when you instantiate a new String that is exactly

Figure 15.11 WriteObject program that writes a Serializable object to a fi le

/***
* WriteObject.java
* Dean & Dean
*
* This writes an object to a binary file.
***/

import java.io.*;
import java.util.Scanner;

public class WriteObject
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 ObjectOutputStream fileOut;
 TestObject testObject = new TestObject(1, "test", 2.0);
 String filename;

 System.out.print("Enter filename: ");
 filename = stdIn.nextLine();
 try
 {
 fileOut = new ObjectOutputStream(
 new FileOutputStream(filename));
 fileOut.writeObject(testObject);
 fileOut.close();
 } // end try
 catch (IOException e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 } // end main
} // end WriteObject class

Sample session:

Enter filename: objectFile.data

⎫
⎬
⎭

Open the fi le.

Write an object

to the fi le.

Close the fi le.

15-M4402.indd 62415-M4402.indd 624 12/17/07 4:27:31 PM12/17/07 4:27:31 PM

Apago PDF Enhancer

Figure 15.12 ReadObject program that tries to read two objects from a fi le

/**
* ReadObject.java
* Dean & Dean
*
* This reads two objects from a binary file.
**/

import java.io.*;
import java.util.Scanner;

public class ReadObject
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 ObjectInputStream fileIn = null;
 TestObject testObject;

 System.out.print("Enter filename: ");
 try
 {
 fileIn = new ObjectInputStream(
 new FileInputStream(stdIn.nextLine()));
 testObject = (TestObject) fileIn.readObject();
 testObject.display();
 testObject = (TestObject) fileIn.readObject();
 testObject.display();
 fileIn.close();
 }
 catch (IOException e)
 {
 System.out.println("IO Error: " + e.getMessage());
 }
 catch (ClassNotFoundException e)
 {
 System.out.println("ClassNotFound " + e.getMessage());
 }
 } // end main
} // end ReadObject class

Sample session:

Enter filename: objectFile.data
1 test 2.0
IO Error: null

⎫
⎬
⎭

Read objects

from the fi le.

Close the fi le.

Open the fi le.

15.8 Object File I/O 625

15-M4402.indd 62515-M4402.indd 625 12/17/07 4:27:32 PM12/17/07 4:27:32 PM

Apago PDF Enhancer

626 Chapter 15 Files

the same as a previously instantiated String. This is a nice space-saving feature, but it can be a problem

if you’re simulating the behavior of a particular object, and you want a fi le to accumulate a record of that

object’s changing state as the simulation progresses. To see this problem, replace the writeObject state-

ment in Figure 15.11’s WriteObject program with these three statements:

fileOut.writeObject(testObject);
testObject.number *= 1.1;
fileOut.writeObject(testObject);

Then execute the revised WriteObject program and the ReadObject program, and this is what you’ll get:

Enter filename: objectFile.data
1 test 2.0
1 test 2.0

The second record of the object’s state is just a copy of the fi rst record. It doesn’t refl ect the change in

the value of the number variable. To make Java store the latest state of an object instead of just a reference

to the original state, you need to invoke ObjectOutputStream’s reset method sometime before you

output the updated version of the object. To see how this works, replace the above three statements with

these four statements:

fileOut.writeObject(testObject);
fileOut.reset();
testObject.number *= 1.1;
fileOut.writeObject(testObject);

Then execute the revised WriteObject program and the ReadObject program, and you’ll get the result you

want:

Enter filename: objectFile.data
1 test 2.0
1 test 2.2

15.9 The File Class

This section describes the File class. It’s different from the other classes in this chapter in that it doesn’t

deal with a fi le’s contents. It deals with the fi le itself, and it describes the fi le’s environment—where the fi le

is in the computer.

Instantiating a File Object

To use the File class, you fi rst need to instantiate an object that represents a fi le. Here’s the API heading

for the File constructor:

public File(String filename)

For example, to instantiate a File object for a fi le named dalaiLamaEssay.doc, do this:

File paper = new File("daliLamaEssay.doc");

This allows an updated version

of the same object to be output.

15-M4402.indd 62615-M4402.indd 626 12/17/07 4:27:32 PM12/17/07 4:27:32 PM

Apago PDF Enhancer

A File object is not a fi le itself. It is just a container for information about a fi le. If you want to see whether

a fi le with a particular name actually exists, you need to instantiate a fi le object with the fi lename you care

about and then use that object to call File’s exists method, like this:

File paper = new File("daliLamaEssay.doc");
if (paper.exists())
{
 System.out.println("Yes it exists.");
}

The paper object above represents a fi le in the current directory. The current directory is the direc-

tory where the currently running program resides. To specify a fi le in a directory that’s different from the

current directory, include the fi le’s path as part of the filename argument. A path is the location of a fi le

within the computer’s directory structure. More specifi cally, a path is a series of one or more forward-slash-

 separated directory names that lead to a particular fi le. Optionally, you may use backslashes on Windows

machines, but backslashes are messier than forward slashes because in Java a backslash is the escape char-

acter, and you’d need to have two backslashes wherever you meant to have just one. So we recommend that

you use forward slashes in your pathnames. There are two types of path—relative path and absolute path.

A relative path goes from the current directory to the specifi ed fi le. An absolute path goes from the root

directory to the specifi ed fi le. The root directory is the directory at the top of the computer’s directory struc-

ture. An initial slash represents the root directory.

Suppose that a dalaiLamaEssay.doc fi le is in a re101 directory and the re101 directory is in

the root directory. To instantiate a File object for the dalaiLamaEssay.doc fi le, use an absolute path

like this:

File paper = new File("/re101/daliLamaEssay.doc");

Suppose that a checkers.class fi le is in a checkers subdirectory of the current directory. To

instantiate a File object for the checkers.class, use a relative path like this:

File paper = new File("checkers/checkers.class");

File Methods

Once you have a reference to a File object, you can use it to call any of the File class’s several useful

methods. As indicated above, the boolean exists method returns true if the calling object’s fi le is

present. The boolean isfile method returns true if the calling object’s fi le is a normal fi le. The

boolean isDirectory method returns true if the calling object’s fi le is a directory. (A directory is

considered to be a fi le, albeit a special kind of fi le.) The boolean delete method deletes the calling

object’s fi le. The boolean mkdir method creates a new directory and gives it the name specifi ed by the

argument you give it. The boolean renameTo method changes the name to the pathname specifi ed by

the argument you give it. The delete, mkdir, and renameTo methods return true if they succeed.

When you want to transfer data to and from fi les, it’s often helpful to see what fi les already exist, and it’s

sometimes helpful to see how big they are. The program in Figure 15.13 displays this kind of information.

In the FileSizes program, note the “.” argument in the File constructor call. The dot is a special sym-

bol that represents the computer’s current directory. So new File(".") instantiates a File object for

the current directory. Similarly, new File("..") instantiates a File object for the parent directory.

Note this statement in the FileSizes program:

File[] files = currentDirectory.listFiles();

 15.9 The File Class 627

15-M4402.indd 62715-M4402.indd 627 12/17/07 4:27:32 PM12/17/07 4:27:32 PM

Apago PDF Enhancer

628 Chapter 15 Files

The currentDirectory.listFiles call returns an array of File objects, with one File object for

each fi le in the current directory. Also note this statement:

System.out.printf("%-25s%6d bytes\n",
 files[i].getName(), files[i].length());

The format string says to print a left-aligned string in 25 spaces and then print a (right-aligned) fl oating

point number in 6 spaces. The files[i] variable identifi es fi le i in the current directory. The getName

call returns the name of fi le i. The length call returns the size of fi le i in bytes.

Figure 15.13 FileSizes program with sample output

/***
* FileSizes.java
* Dean & Dean
*
* This program displays the names and sizes of
* files in the current directory.
***/

import java.io.*;

public class FileSizes
{
 public static void main(String[] args)
 {
 File currentDirectory = new File(".");
 File[] files = currentDirectory.listFiles();

 for (int i=0; i<files.length; i++)
 {
 System.out.printf("%-25s%6d bytes\n",
 files[i].getName(), files[i].length());
 }
 } // end main
} // end FileSizes class

Sample output:

.classpath 226 bytes

.project 384 bytes
FileSizes.class 1135 bytes
FileSizes.java 645 bytes
FileSizesGUI.class 2058 bytes
FileSizesGUI.java 2185 bytes
HTMLGenerator.class 2182 bytes
HTMLGenerator.java 2659 bytes

15-M4402.indd 62815-M4402.indd 628 12/17/07 4:27:32 PM12/17/07 4:27:32 PM

Apago PDF Enhancer

15.10 GUI Track: The JFileChooser Class (Optional)

In the previous section’s FileSizes program, we displayed the fi lenames and fi le sizes for all the fi les in the

current directory. But suppose what you’re looking for is in another directory. Wouldn’t it be nice to display

fi lenames and fi le sizes for any directory, not just the current directory? This section presents a program

that does just that. It uses a GUI format to display fi lenames and fi le sizes for a user-specifi ed directory. The

program gets the user’s directory selection with the help of the JFileChooser dialog box. Before looking

at the program, let’s consider the JFileChooser dialog box defi ned in the Java API.

User Interface

A fi le-chooser dialog box allows the user to select a fi le or a directory from a graphical, interactive direc-

tory structure. File choosers are ubiquitous in modern software. For example, a word processor employs a

fi le chooser whenever the user selects Open from the File menu. Figure 15.14 shows how a user selects a fi le

with the help of a JFileChooser dialog box.

JFileChooser Usage

The JFileChooser class is defi ned in the javax.swing package, so you must import that package

to access this class. To create a JFileChooser dialog box, call the JFileChooser constructor like

this:

JFileChooser chooser = new JFileChooser(<current-directory>);

The current-directory argument specifi es the name of the directory that initially appears at the top of the

fi le-chooser dialog box. That’s the fi le chooser’s current directory. This statement shows how we created

Figure 15.14’s fi le chooser:

JFileChooser chooser = new JFileChooser(".");

As mentioned previously, the "." argument represents the computer’s current directory. Be aware that the

fi le chooser’s current directory and the computer’s current directory aren’t always the same. If you called the

JFileChooser constructor with a "C:/spreadsheets" argument, fi le chooser’s current directory

would be C:/spreadsheets, but the computer’s current directory would be unaffected.

The JFileChooser class has many methods. We’ll look at just three of them—the

 setFileSelectionMode, showOpenDialog, and getSelectedFile methods. Here are their

API headings and descriptions:

public void setFileSelectionMode(int mode)

 Specifi es the type of fi le the user can choose—a fi le, a directory, or either one.

public int showOpenDialog(null)

 Displays a fi le-chooser dialog box. Returns a named constant, which indicates whether the user

selected Open or Cancel.

public File getSelectedFile()

 Returns the selected fi le or directory.

 15.10 GUI Track: The JFileChooser Class (Optional) 629

15-M4402.indd 62915-M4402.indd 629 12/17/07 4:27:33 PM12/17/07 4:27:33 PM

Apago PDF Enhancer

630 Chapter 15 Files

Figure 15.14 Selecting a fi le with a JFileChooser component

Initial display when the fi le chooser’s current directory is filePgms:

Display that appears after user selects the FileSizes.java fi le:

fi le chooser’s current directory

The user selects a fi le here.

Then this box gets fi lled in

automatically.

This is what’s inside the

filePgms directory.

15-M4402.indd 63015-M4402.indd 630 12/17/07 4:27:33 PM12/17/07 4:27:33 PM

Apago PDF Enhancer

When you call setFileSelectionMode, you pass in a mode argument to specify the type of fi le

the user can choose. If the mode is JFileChooser.FILES_ONLY, the user is allowed to choose only a

fi le. If the mode is JFileChooser.DIRECTORIES_ONLY, the user is allowed to choose only a direc-

tory. If the mode is JFileChooser.FILES_AND_DIRECTORIES, the user is allowed to choose either

a fi le or a directory.

You call showOpenDialog to display a fi le-chooser dialog box. After the dialog box displays,

if the user clicks the fi le chooser’s Open button, the showOpenDialog method call returns the

JFileChooser.APPROVE_OPTION named constant. If the user clicks the fi le chooser’s Cancel button,

the showOpenDialog method call returns the JFileChooser.CANCEL_OPTION named constant.

After a user selects a fi le with the JFileChooser dialog box, the program calls getSelectedFile

to retrieve the selected fi le or directory. At that point, the program will probably want to do something with

the fi le or directory. But before it does, it should use File’s exists method to determine if the user’s

entry is valid, and it should use File’s isFile or isDirectory method to determine the selected

fi le’s type.

JOptionPane Usage

You may need to use some of the methods of the JOptionPane class also. This class is also in the javax.
swing package, so if you imported this package for the JFileChooser class, you’ll have access to the

JOptionPane class too. The JOptionPane class provides many useful class methods, which you can

access directly with the class name. We’ll look at just two of them—the showConfirmDialog method

and the showMessageDialog method. Here are the API headings and descriptions:

public static int showConfirmDialog(Component parentComponent,
 Object message, String title, int optionType)
 This brings up a dialog box in which the number of choices is determined by optionType.

public static void showMessageDialog(Component parentComponent,
 Object message, String title, int messageType)
 This brings up a dialog box that displays a message.

When you call showConfirmDialog, you can use a reference to another frame within which you

want the box displayed, or you can use just a null to position it relative to the whole screen. In addition, you

may supply a text message, and you must supply a text title. For the optionType parameter, enter either

 JOptionPane.YES_NO_OPTION or JOptionPane.YES_NO_CANCEL_OPTION. The value returned

is the option selected by the user, like JOptionPane.YES_OPTION or JOptionPane.NO_OPTION.

When you call showMessageDialog, you can use a reference to another frame within which you

want the box displayed, or you can use just a null to position it relative to the whole screen. In addition, you

may supply a text message, and you must supply a text title. For the messageType parameter, enter either

JOptionPane.ERROR_MESSAGE, JOptionPane.INFORMATION_MESSAGE, JOptionPane.
WARNING_MESSAGE, JOptionPane.QUESTION_MESSAGE, or JOptionPane.PLAIN_MESSAGE.

FileSizesGUI Program

We’re now ready to incorporate these ideas in that improved FileSizes program we mentioned earlier. Our

FileSizesGUI program uses a JFileChooser dialog box to retrieve a user-specifi ed fi le or directory.

If the user selects a fi le, the program displays the fi le’s name and size. If the user selects a directory, the

program displays the fi lenames and sizes for all of the fi les in the directory. To get a better idea of how the

program will operate, see the sample session in Figure 15.15. The program itself is in Figure 15.16.

 15.10 GUI Track: The JFileChooser Class (Optional) 631

15-M4402.indd 63115-M4402.indd 631 12/17/07 4:27:34 PM12/17/07 4:27:34 PM

Apago PDF Enhancer

632 Chapter 15 Files

Figure 15.15 Sample session for the FileSizesGUI program

When you run the program, a JOptionPane.showConfirmDialog method call displays this:

 Clicking Yes causes a call to JFileChooser’s showOpenDialog method to display another

window, and after you select fi lePgms, it looks like this:

Clicking Open causes a call to JOptionPane’s showMessageDialog method to display this:

And clicking OK terminates the program.

15-M4402.indd 63215-M4402.indd 632 12/17/07 4:27:35 PM12/17/07 4:27:35 PM

Apago PDF Enhancer

 15.10 GUI Track: The JFileChooser Class (Optional) 633

Figure 15.16 FileSizesGUI program

import java.io.File;
import javax.swing.*; // for JFileChooser and JOptionPane;

public class FileSizesGUI
{
 public static void main(String[] args)
 {
 File fileDir; // user-specified file or directory
 int response; // user's response to GUI prompts
 File[] files; // array of files in specified directory
 String output = ""; // list of filenames and sizes
 JFileChooser chooser = new JFileChooser(".");

 response = JOptionPane.showConfirmDialog(null,
 "This program displays the filenames and file sizes of" +
 " specified files.\nWould you like to run the program?",
 "File Sizes", JOptionPane.YES_NO_OPTION);
 if (response == JOptionPane.YES_OPTION)
 {
 chooser.setFileSelectionMode(
 JFileChooser.FILES_AND_DIRECTORIES);
 response = chooser.showOpenDialog(null);
 if (response == JFileChooser.APPROVE_OPTION)
 {
 fileDir = chooser.getSelectedFile();
 if (fileDir.isFile())
 {
 output += String.format("%-25s%12s%n",
 fileDir.getName(), fileDir.length() + " bytes");
 }
 else if (fileDir.isDirectory())
 {
 files = fileDir.listFiles();
 for (int i=0; i<files.length; i++)
 {
 output += String.format("%-25s%12s%n",
 files[i].getName(), files[i].length() + " bytes");
 } // end for
 } // end else
 else
 {
 output = "Invalid entry. Not a file or directory.";
 }
 JOptionPane.showMessageDialog(null, output,
 "File Sizes", JOptionPane.INFORMATION_MESSAGE);
 } // end if
 } // end if
 } // end main
} // end FileSizesGUI class

15-M4402.indd 63315-M4402.indd 633 12/17/07 4:27:35 PM12/17/07 4:27:35 PM

Apago PDF Enhancer

634 Chapter 15 Files

In Figure 15.16, look for each of the following operations:

A JFileChooser constructor call.

A call to JOptionPane’s showConfirmDialog method, and use of the value returned.

A call to JFileChooser’s setFileSelectionMode method.

A call to JFileChooser’s showOpenDialog method, and use of the value returned.

A call to JFileChooser’s getSelectedFile method, and use of the value returned.

A call to JOptionPane’s showMessageDialog method.

After calling getSelectedFile, the program needs to determine the type of the user’s selection—fi le

or directory. The isFile and isDirectory calls take care of that. Within the directory-processing

code, note how fileDir, a File object, calls listFiles. The listFiles method returns the fi les

and directories that are in the fileDir directory. The returned fi les and directories are stored as File ob-

jects in an array named files. After fi lling the files array, the program loops through each of its File

elements. For each element, it prints fi lename and fi le size by calling getName and length, respectively.

In the FileSizesGUI program, note the String.format method calls. The String.format

method works the same as the printf method except that instead of printing a formatted value, it returns

a formatted value. We use the String.format method calls in an attempt to display values with uniform

widths. Specifi cally, we want to display the fi lenames and fi le sizes with uniform widths, so that the fi le-size

values display in an aligned fashion. But the bottom dialog box in Figure 15.15 shows that the fi le-size val-

ues are not aligned. The problem is that with GUI output, different characters print with different widths.

For example, you can see that the “HTML” in HTMLGenerator.class is wider than the “File” in

 FileSizesGUI.java. Thus, the HTMLGenerator.class line is longer. Having dif-

ferent characters print with different widths is stylish most of the time, but in our

 FileSizesGUI program, it’s annoying. To fi x this problem, you could embed a JTextArea

component into the JOptionPane dialog box and set the JTextArea component’s font

to a monospaced font (with a monospaced font, every character prints with the same width).

You’ll learn about the JTextArea component in Chapter 17.

Summary

You can fi nd most of the fi le-transfer classes you’ll need in the java.io package.

To output text to a new fi le, open the fi le by instantiating a PrintWriter object with a String fi le-

name as the constructor argument. Write to the fi le by calling PrintWriter’s println, print, or

printf method, and close the fi le by calling PrintWriter’s close method.

To append text to an existing fi le, open the fi le by instantiating a PrintWriter object with an anon-

ymous FileOutputStream object as the constructor argument. Use fi lename and true for the

 FileOutputStream constructor arguments.

To input text from a fi le, open the fi le by instantiating a Scanner object with an anonymous

FileReader object as the constructor argument. Use the fi lename for the FileReader construc-

tor argument. Read from the fi le by calling one of Scanner’s methods, and close the fi le by using

Scanner’s close method.

You can use text fi le I/O to translate plain-text information into HTML format for a Web page.

The data in a text fi le appears as a sequence of bytes, where each byte corresponds to one character, and

lines are delimited by \r\n or \n symbols. You can use a text editor or word processor with Plain Text

•

•

•

•

•

•

•
•

•

•

•
•

Use
monospaced
font to align
text.

Use
monospaced
font to align
text.

15-M4402.indd 63415-M4402.indd 634 12/17/07 4:27:35 PM12/17/07 4:27:35 PM

Apago PDF Enhancer

storage to create a text fi le that a Java program can read. You can use a word processor to read any text

fi le written by a Java program.

The data in a binary fi le appears as a sequence of data items, each encoded in the computer’s native

format for that type of data. You cannot create or read binary fi les with text editors or word processors.

However, binary fi les can store a much greater variety of characters, and they can store high-precision

numbers more effi ciently.

To output (or input) primitives to (or from) a binary fi le, open the fi le by instantiating a

 DataOutputStream (or DataInputStream) object with an anonymous FileOutputStream

(or FileInputStream) object as the constructor argument. Use the fi lename for the

 FileOutputStream (or FileInputStream) argument. Then use methods like writeInt or

readInt to write or read primitive values.

You can store whole objects in a fi le in binary format, provided those objects and all their component

objects implement the Serializable interface.

To output (or input) objects to a fi le, open the fi le by instantiating an ObjectOutputStream (or

ObjectInputStream) object with an anonymous FileOutputStream (or FileInputStream)

object as the constructor argument. Use the fi lename for the FileOutputStream (or

 FileInputStream) constructor argument. Then use writeObject and readObject methods

to transfer complete objects to and from the fi le.

The File class manipulates whole fi les and describes their environments.

Optionally, with Java’s JFileChooser class, you can enable a user of one of your programs to fi nd

any fi le in his or her computer by interacting with a familiar graphical user interface.

Review Questions

§15.2 Java API Classes You Need to Import

 1. You can create or view the contents of binary or object fi les with many text editors. (T / F)
 2. Write an import statement that provides access to any of the classes in the java.io package.

§15.3 Text-File Output

 3. What are the three basic steps to performing fi le I/O?
 4. Using a PrintWriter method, write a Java statement that outputs a String called name followed by a

space and an int called id, so that a later fi le-input nextLine operation will recognize the combination
as a distinct string.

 5. Write a single statement that opens an existing text fi le called mydata.txt for output, such that new
output data is appended to the data already in the fi le.

§15.4 Text-File Input

 6. Assuming fileName is a String that correctly identifi es a text fi le in the current directory, what’s
wrong with this fi le-opening statement?

Scanner fileReader = new Scanner(fileName);

 7. Assume you have a text fi le with these two lines of data:

55.6 hi
there

•

•

•

•

•
•

 Review Questions 635

15-M4402.indd 63515-M4402.indd 635 12/17/07 4:27:36 PM12/17/07 4:27:36 PM

Apago PDF Enhancer

636 Chapter 15 Files

 Assume you have successfully opened this text fi le for input and given the connection the name fileIn.
Assume the next lines of code are:

double num = fileIn.nextDouble();
String name = fileIn.nextLine();

 What is the length of the fi nal string in name? Explain.

 8. Given this array:

int[] number = new int[] {2, 3, 4};

 Suppose you use the following code to write the three elements of the number array into a text fi le:

for (i=0; i<3; i++)
{
 fileOut.print(Integer.toString(number[i]));
}

 Then, if you used the ReadTextFile program modifi ed to read int values, what value would number[0]
have?

§15.5 HTML File Generator

 9. Assuming the object that manages output will be called writer, write a statement that opens a text fi le
called dogs.html for output by println statements.

 10. Where do the <h1> and </h1> tags go in an HTML fi le?
 11. Write a statement that breaks a fi le-output connection called writer.

§15.6 Text File Data Format Versus Binary File Data Format

 12. In a text fi le, each character consumes only one byte (8 bits) of memory. (T / F)
 13. In a binary fi le, each character normally consumes two bytes (16 bits) of memory. (T / F)

§15.7 Binary File I/O

 14. Write a statement that opens a new binary fi le for output and assigns a reference to the connection to
binaryOut. Put the fi le in the current directory, with the name windSpeed.data.

§15.8 Object File I/O

 15. Write a statement that opens a fi le for input of objects and assigns a reference to the connection to
objectIn. Assume the fi le is in the current directory, with the name automobiles.data.

§15.9 The File Class

 16. Write a code fragment that lists all the fi les in the directory that contains the currently executing program.

Exercises

 1. [after §15.2] What is the principal advantage of each of the three types of fi le I/O—text, binary, and object?

 2. [after §15.3] If you forget to close an input fi le, it may cause your computer’s system performance to
degrade. (T / F)

15-M4402.indd 63615-M4402.indd 636 12/17/07 4:27:36 PM12/17/07 4:27:36 PM

Apago PDF Enhancer

 3. [after §15.3] Provide the missing code fragments in the following Java program so that it successfully writes
the indicated churchill string to a fi le called elAlamein.txt. Create fileOut so that the new data
overwrites any previous data in an existing fi le having the specifi ed name.

/***
* TextWriter.java
* Dean & Dean
*
* This writes two lines of text to a text file.
***/

<fragment>

public class TextWriter
{
 public static void main(String[] args)
 {
 String[] churchill =
 {"Before Alamein we never had a victory.",
 "After Alamein we never had a defeat."};
 PrintWriter fileOut;

 try
 {
 <fragment>
 for (String line : churchill)
 {
 <fragment>
 }
 <fragment>
 }
 catch (FileNotFoundException e)
 {
 System.out.println(e.getMessage());
 }
 } // end main
} // end TextWriter class

 4. [after §15.3] Modify the code in the previous exercise so that it appends to the text already in the
elAlamein.txt fi le the year in which the battle took place, 1942. In the program, create this additional
piece of information as an integer, like this:

int year = 1942;

 In the fi le, put this additional piece of information on the next line, after the previous text.

 5. [after §15.4] The program below is supposed to open a fi le whose full pathname is provided by the user in a
keyboard entry. Then it is supposed to count the number of words in the fi le, where any kind of whitespace
is a word delimiter. The program is complete except for a code fragment of several lines in the try block.
Provide the missing code fragment. Use an anonymous File object as the Scanner argument when you
instantiate the fileIn object. Of course, you can use the same Scanner-class hasNext and next

 Exercises 637

15-M4402.indd 63715-M4402.indd 637 12/17/07 4:27:36 PM12/17/07 4:27:36 PM

Apago PDF Enhancer

638 Chapter 15 Files

methods for the fileIn object that you used before with the stdIn object when reading from the
keyboard.

/***
* WordsInFile.java
* Dean & Dean
*
* This counts the words in a text file.
***/
import java.io.*;
import java.util.*;

public class WordsInFile
{
 public static void main(String[] args)
 {
 Scanner stdIn = new Scanner(System.in);
 Scanner fileIn;
 int numWords = 0;

 try
 {
 <fragment>
 } // end try
 catch (FileNotFoundException e)
 {
 System.out.println("Invalid filename.");
 }
 catch (Exception e)
 {
 System.out.println("Error reading from the file.");
 }
 } // end main
} // end WordsInFile class

 If the fi le is the family.txt fi le displayed in the following exercise, you should get something like this:

Sample session:

Enter full pathname of file:
e:/myJava/problems/chapter15/family.txt
Number of words = 63

 6. [after §15.5] As explained in the text, strict HTML standards require all p start tags (<p>) to have an
accompanying p end tag (</p>). Edit the HTMLGenerator.java program given in the text so that p
end tags (</p>) are inserted properly in the generated HTML fi le. The p end tags should be inserted at the
bottom of each paragraph.

 Note:
In the family.txt fi le below, assume that there is a newline character at the end of each line.
Do not allow a p end tag to be generated when there’s no accompanying p start tag (start and end tags
must always be partnered).

•
•

15-M4402.indd 63815-M4402.indd 638 12/17/07 4:27:36 PM12/17/07 4:27:36 PM

Apago PDF Enhancer

Your program should be robust (that is, handle the weird cases). In particular, it should handle the case
where there’s only a title and no paragraphs at all.

family.txt (the input fi le):

Our Family

We are Stacy and John and we live in a camper
down by the river.

We have a dog, Barkley.
Barkley is a good dog.
She sleeps a lot and digs up the grass.
We feed her twice a day.

We have two kids, Jordan and Caiden.
They're girls. They like to eat, cry, and play.
We like them a lot.

family.html (the output fi le):

<html>
<head>
<title>Our Family</title>
</head>
<body>
<h1>Our Family</h1>
<p>
We are Stacy and John and we live in a camper
down by the river.
</p>
<p>
We have a dog, Barkley.
Barkley is a good dog.
She sleeps a lot and digs up the grass.
We feed her twice a day.
</p>
<p>
We have two kids, Jordan and Caiden.
They're girls. They like to eat, cry, and play.
We like them a lot.
</p>
</body>
</html>

 7. [after §15.6] Assume that each of the following two lines (records) consists of 9 viewable characters each.
Assuming they are written to a text fi le by println statements by a Windows computer, show the bit
pattern for this data in a fi le.

Nik: x88
Josh: x24

 8. [after §15.6] In Windows the text new-line symbol is . In UNIX the text new-line symbol
is .

•

 Exercises 639

15-M4402.indd 63915-M4402.indd 639 12/17/07 4:27:36 PM12/17/07 4:27:36 PM

Apago PDF Enhancer

640 Chapter 15 Files

 9. [after §15.7] In a binary fi le, carriage-return and new-line characters have no special function in reading or
writing operations—they are just like any other characters. (T / F).

 10. [after §15.8] Grocery Store Inventory:

 Enhance the grocery-store Inventory program created in a Chapter 13 project by providing a
FileHandler class that contains write and read methods to write an object to a fi le in the local directory
or read an object from a fi le in the local directory. Complete the following skeleton by providing the
needed code fragments. You don’t actually need the Chapter 13 grocery store Inventory program to do this
exercise. You can test this new class with any appropriately instantiated object. The class that defi nes that
object must, however, include a certain special feature. How would you modify the Inventory class to
incorporate that special feature?

/***
* FileHandler.java
* Dean & Dean
*
* This stores and retrieves an object.
***/

import java.util.*;
import java.io.*;

public class FileHandler
{
 public static void write(Object object, String filename)
 {
 ObjectOutputStream fileOut;

 try
 {
 <provide code fragment here>
 }
 catch (IOException e)
 {
 System.out.println(e.getMessage());
 }
 } // end write

 //**

 public static Object read(String filename)
 {
 ObjectInputStream fileIn;
 Object object;

 try
 {
 <provide code fragment here>
 }

15-M4402.indd 64015-M4402.indd 640 12/17/07 4:27:37 PM12/17/07 4:27:37 PM

Apago PDF Enhancer

 catch (Exception e)
 {
 System.out.println(e.getMessage());
 return new Object(); // to satisfy compiler
 }
 } // end read
} // end FileHandler class

 Now, with the FileHandler class added to the slightly modifi ed grocery-store Inventory program,
the following driver shows how you can wipe out unwanted modifi cations by restoring previously saved data:

/***
* InventoryDriver2.java
* Dean & Dean
*
* This demonstrates filing of grocery inventory.
***/

public class InventoryDriver2
{
 public static void main(String[] args)
 {
 Inventory store = new Inventory("groceries");

 store.newItem("bread", 15, 9.99);
 store.newItem("SunnyDale", "milk", 2, 2.00);
 store.newItem("eggs", 3, 1.50);
 store.newItem("bread", 2, 1.25); // warning: in stock
 store.stockReport();
 FileHandler.write(store, "Inventory.data");

 store.update("SunnyDale", "milk", .25); // raise price 25%
 store.update("eggs", -1); // lower quantity by 1
 store.update("beer", 3); // warning: not stocked
 store.newItem("BrookSide", "milk", 4, 1.95);
 store.stockReport();

 store = (Inventory) FileHandler.read("Inventory.data");
 store.stockReport();
 } // end main
} // end InventoryDriver2 class

Output:

Item already exists - bread
bread - in stock: 15, price: $9.99
SunnyDale milk - in stock: 2, price: $2.00
eggs - in stock: 3, price: $1.50
Total value: $158.35

Cannot find specified item - beer
bread - in stock: 15, price: $9.99

 Exercises 641

15-M4402.indd 64115-M4402.indd 641 12/17/07 4:27:37 PM12/17/07 4:27:37 PM

Apago PDF Enhancer

642 Chapter 15 Files

SunnyDale milk - in stock: 2, price: $2.50
eggs - in stock: 2, price: $1.50
BrookSide milk - in stock: 4, price: $1.95
Total value: $165.65

bread - in stock: 15, price: $9.99
SunnyDale milk - in stock: 2, price: $2.00
eggs - in stock: 3, price: $1.50
Total value: $158.35

 11. [after §15.9] Suppose you used a program like Microsoft’s Notepad or UNIX’s vi to create a text fi le,
alphabet.txt, that contains this single line of text: “abcdefg.” Provide the missing code fragments in
the following Java program so that it successfully reads and displays the data in that fi le.

/***
* TextReader.java
* Dean & Dean
*
* This reads a line of text from a text file.
***/

<fragment>

public class TextReader
{
 public static void main(String[] args)
 {
 File file = <fragment>;
 Scanner fileIn;

 try
 {
 fileIn = <fragment>;
 System.out.println(fileIn.nextLine());
 <fragment> // close the file
 }
 catch (FileNotFoundException e)
 {
 System.out.println(e.getMessage());
 }
 } // end main
} // end TextReader class

 12. [after §15.9] Suppose a text fi le called myDates.txt contains this line of text:

1999 2000 2001 2002

 Modify the program in the previous exercise so that it reads the data from this fi le as integers and
immediately prints them out onto the screen, like this:

Output:

1999
2000

15-M4402.indd 64215-M4402.indd 642 12/17/07 4:27:37 PM12/17/07 4:27:37 PM

Apago PDF Enhancer

2001
2002

 13. [after §15.9] Look at the text example in Figure 15.13 and Sun’s Java documentation for the File class, and
explain what the following constructor and methods do:
 a) File(".")
 b) getAbsoluteFile()
 c) getParentFile()
 d) list()

Review Question Solutions

 1. False. You cannot view the contents of binary or object fi les with text editors.

 2. import java.io.*;

 3. (1) Open the fi le. (2) Make the transfer and transform the data format. (3) Close the fi le.

 4. Use the println method to put the distinct string on a separate line, like this:

fileOut.println(name + " " + id);

 5. fileOut = new PrintWriter(
 new FileOutputStream("mydata.txt", true));

 6. The String-parameter Scanner constructor operates on the input string itself, not on the fi le it
identifi es.

 7. The fi nal value of name.length() = 3. The nextDouble method reads everything up through the
last numerical digit. The nextLine method reads the following space plus the two characters in “hi.”

 8. number[0] equals 234 Writing integers without a following space combines the separately output
numbers into what looks like one number in the fi le, and a subsequent read interprets the combination as
one number.

 9. writer = new PrintWriter("dogs.html");

 10. The <h1> and </h1> tags enclose the visible Web page header.

 11. writer.close;

 12. True. In a text fi le, each character consumes only one byte of memory.

 13. True. In a binary fi le, each character normally consumes two bytes (16 bits) of memory.

 14. DataOutputStream binaryOut = new DataOutputStream(
 new FileOutputStream("windSpeed.data"));

 15. ObjectInputStream objectIn = new ObjectInputStream(
 new FileInputStream("automobiles.data"));

 16. This lists all the fi les in the currently executing program’s current directory:

String[] listing =
 (new File(".")).getAbsoluteFile().getParentFile().list();
for (int i=0; i<listing.length; i++)
{
 System.out.println(listing[i]);
}

 Review Question Solutions 643

15-M4402.indd 64315-M4402.indd 643 12/17/07 4:27:37 PM12/17/07 4:27:37 PM

Apago PDF Enhancer

644 Chapter 16 GUI Programming Basics

C H A P T E R

644

GUI Programming Basics

Objectives

Understand the event-driven programming paradigm. In particular, understand what it means to fi re an

event, and understand the terms listener and event handler.

Use the JFrame class to implement window functionality.

Create and use JLabel, JTextField, and JButton components.

Implement a listener for the JTextField and JButton components.

Understand what an interface is and implement the ActionListener interface.

Understand what an inner class is and implement a listener as an inner class.

Know the difference between an anonymous inner class and a standard inner class.

Create and use JOptionPane dialog boxes.

Be able to distinguish between multiple events.

Describe the primary GUI packages.

Describe the difference between lightweight and heavyweight components.

Outline

 16.1 Introduction

 16.2 Event-Driven Programming Basics

 16.3 A Simple Window Program

 16.4 JFrame Class

 16.5 Java Components

 16.6 JLabel Component

 16.7 JTextField Component

 16.8 Greeting Program

 16.9 Component Listeners

 16.10 Inner Classes

 16.11 Anonymous Inner Classes

 16.12 JButton Component

 16.13 Dialog Boxes and the JOptionPane Class

•

•
•
•
•
•
•
•
•
•
•

16

16-M4402.indd 64416-M4402.indd 644 12/17/07 4:27:51 PM12/17/07 4:27:51 PM

Apago PDF Enhancer

 16.14 Distinguishing Between Multiple Events

 16.15 Using getActionCommand to Distinguish Between Multiple Events

 16.16 Color

 16.17 How GUI Classes Are Grouped Together

 16.18 Mouse Listeners and Images (Optional)

16.1 Introduction

Hopefully, you’ve been on the edge of your seat in reading the prior chapters. If not, be prepared to be on the

edge of your seat now. It’s time for the really good stuff, graphical user interface (GUI) programming.

You’ve probably heard the term GUI, and you probably know that it’s pronounced “gooey.” But do

GUI’s three words, Graphical User Interface, make sense? “Graphical” refers to pictures, “user” refers to

a person, and “interface” refers to communication. Thus, GUI programming employs pictures—like win-

dows, text boxes, buttons, and so on—to communicate with users. For example, Figure 16.1 shows a window

with a text box and a button. We’ll describe windows, text boxes, and buttons in detail later on.

Figure 16.1 Example window that uses a text box and a button

text box

button

16.1 Introduction 645

In the old days, program interfaces consisted of just text. Programs would prompt the user with a text

question, and users would respond with a text answer. That’s what we’ve been using for all of our programs

so far. Text input/output (I/O) works well in many situations, but you can’t get around the fact that some

people consider text display to be boring. Many of today’s users expect programs to be livelier. They expect

windows, buttons, colors, and so on for input and output. They expect GUI.

Although companies still write many text-based programs for internal use, they normally write GUI-

based programs for programs that are to be used externally. It’s important for external programs to be

GUI based because external programs go to customers, and customers typically won’t buy programs un-

less they are GUI based. So if you want to write programs that people will buy, you’d better learn GUI

programming.

We start this chapter with an overview of basic GUI concepts and terminology. We then move on to

a bare-bones program where we introduce basic GUI syntax. We next cover listeners, inner classes, and

several rudimentary GUI components, which are objects that sit inside a window, including JLabel,

JTextField, and JButton. Finally, we cover the JOptionPane class (for generating a dialog box)

and the Color class (for generating a color).

You may have noticed optional GUI-track sections at the end of about half of the prior chapters. The GUI

material in this chapter and the next is different from the GUI material in the earlier chapters, and it does not

depend on the earlier chapters’ GUI material. So if you skipped the earlier GUI material, no worries.

16-M4402.indd 64516-M4402.indd 645 12/17/07 4:27:52 PM12/17/07 4:27:52 PM

Apago PDF Enhancer

646 Chapter 16 GUI Programming Basics

To understand this chapter, you need to be familiar with object-oriented programming, arrays, inheri-

tance, and exception handling. As such, you need to have read up through Chapter 14. This chapter does not

depend on material covered in Chapter 15.

16.2 Event-Driven Programming Basics

GUI programs usually use event-driven programming techniques. The basic idea behind event-driven pro-

gramming is that the program waits for events to occur and the program responds to events if and when they

occur.

Terminology

So what is an event? An event is a message that tells the program that something has happened. For ex-

ample, if the user clicks a button, then an event is generated, and it tells the program that a particular button

was clicked. More formally, when the user clicks a button, we say that the button object fi res an event. Note

these additional event examples:

User Action What Happens

Pressing the Enter key while the cursor is inside

a text box.

The text box object fi res an event, and it tells the

program that the Enter key was pressed within the

text box.

Clicking a menu item. The menu item object fi res an event, and it tells the

program that the menu item was selected.

Closing a window (clicking on the window’s

top-right corner “X” button).

The window object fi res an event, and it tells the

program that the window’s close button was clicked.

If an event is fi red, and you want your program to handle the fi red event, then you need to create a lis-
tener for the event. For example, if you want your program to do something when the user clicks a particular

button, you need to create a listener for the button. For now, think of a listener as an ear. If an event is fi red

and there’s no ear listening to it, then the fi red event is never “heard” and there’s no response to it. On the

other hand, if there is an ear listening to a fi red event, then the ear “hears” the event and the program then

responds to the fi red event. The way the program responds is by executing a chunk of code known as an

event handler. See Figure 16.2. It depicts a button being pressed (see the mouse pointer), an event being fi red

(see the sound waves), a listener hearing the event (see the ear), and an event handler being executed (see the

arrow going down the event-handler code). This system of using listeners for event handling is known as the

event-delegation model—event handling is “delegated” to a particular listener.

The Event-Driven Programming Framework

Based on the above description, event-driven programming may feel like an altogether new type of program-

ming. Particularly the part about fi ring an event and listening for a fi red event. Many people are fi ne with the

idea of event-driven programming being a new type of programming. But the truth of the matter is that it’s

really just object-oriented programming with window dressing. Make that lots of window dressing. Sun pro-

vides an extensive collection of GUI classes that, together, form a framework on which to build GUI applica-

tions. And that framework is comprised of classes, methods, inheritance, and so on; that is, it’s comprised

of OOP components. As a programmer, you don’t have to understand all the details of how the framework

16-M4402.indd 64616-M4402.indd 646 12/17/07 4:27:53 PM12/17/07 4:27:53 PM

Apago PDF Enhancer

Why did Sun bother to provide the event-driven programming framework? It satisfi es the goal of get-

ting maximum benefi t from minimum code. With the help of the framework, Java programmers can get a

GUI program up and running with a relatively small amount of effort. Initially, the effort might not seem

so small, but when you consider all that the GUI program does (automatic event fi ring, listening for fi red

events, and so on), you’ll fi nd that your return on investment is quite good.

16.3 A Simple Window Program

OK. Enough talk about concepts. Time to roll up your sleeves and get your hands dirty with some code. To

get a feel for the big picture, let’s start with a simple GUI program and discuss the GUI commands at a high

level. Later, we’ll cover the GUI commands in greater detail.

In Figure 16.4, we present a SimpleWindow program that displays a line of text inside a window. Note

the two import statements at the top of the program. They import the javax.swing and java.awt

packages. In writing GUI programs, you’ll use many of Java’s pre-built GUI classes from Sun’s API library.

OK

user
action

fired
event

listener

event
handler

Figure 16.2 What happens when a button is pressed

Framework

= developer’s code (event handlers, etc.)

Figure 16.3 Event-driven programming framework

 16.3 A Simple Window Program 647

works; you just have to understand it well enough to use it. For example, you have to know how to plug in your

event handlers properly. Figure 16.3 provides a high-level, graphic illustration of what we’re talking about.

16-M4402.indd 64716-M4402.indd 647 12/17/07 4:27:53 PM12/17/07 4:27:53 PM

Apago PDF Enhancer

648 Chapter 16 GUI Programming Basics

/***
* SimpleWindow.java
* Dean & Dean
*
* This program displays a label in a window.
***/

import javax.swing.*; // for JFrame, JLabel
import java.awt.*; // for FlowLayout

public class SimpleWindow extends JFrame
{
 private static final int WIDTH = 250;
 private static final int HEIGHT = 100;

 //**

 public SimpleWindow()
 {
 setTitle("Simple Window");
 setSize(WIDTH, HEIGHT);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end SimpleWindow constructor

 //**

 private void createContents()
 {
 JLabel label = new JLabel("Hi! I'm Larry the label!");
 add(label);
 } // end createContents

 //**

 public static void main(String[] args)
 {
 new SimpleWindow();
 } // end main
} // end class SimpleWindow

This adds the label to the window.

This instantiates an

anonymous window object.

Figure 16.4 SimpleWindow program and its output

16-M4402.indd 64816-M4402.indd 648 12/17/07 4:27:54 PM12/17/07 4:27:54 PM

Apago PDF Enhancer

To use the pre-built GUI classes, you’ll need to import them into your GUI programs. You could import the

classes individually, but there’s a better way. Recall that a package is a collection of pre-built classes. Since

most of the critical pre-built GUI classes come from the javax.swing and java.awt packages, import

those two packages and you’ll import most of the critical pre-built GUI classes. Get used to importing those

two packages in every one of your GUI programs. Recall that to import a package, you need to use an as-

terisk; that is, import javax.swing.*;. The * is a wildcard, and it allows you to import all the classes

within a particular package.

In SimpleWindow’s class heading, note the extends JFrame clause. The JFrame class is part

of the GUI framework mentioned above. The JFrame class provides standard Windows features such as a

title bar, a minimize button, and so on. Below the class heading, note the WIDTH and HEIGHT named con-

stants. They’re used by the setSize method call to specify the dimensions of the window.

Let’s now examine the main method. GUI programs typically create a window with GUI components,

and then they just sit around waiting for the user to do something like click a button, select a menu option,

and so on. Thus, main is very short—it just instantiates the window and that’s it. In this simple example, we

don’t even bother to assign the instantiated window object to a reference variable. Review: What do you call

an object that isn’t stored in a reference variable? An anonymous object.

In performing the anonymous-object instantiation, main calls the SimpleWindow constructor.

The SimpleWindow constructor (1) calls setTitle to assign the window’s title, (2) calls setSize

to assign the window’s size, (3) calls setLayout to assign the window’s layout scheme, and (4) calls

 setDefaultCloseOperation to enable the close-window button (the “X” in the top-right corner) to

work properly.

In the interest of modularization, the SimpleWindow constructor then calls a helper method,

 createContents, to create the components that go inside the window. The createContents method

contains only two lines. With only two lines, there’s really no need for a helper method, but we want you to

form good habits. For this trivial example, there’s only one component and there’s no event handler for the

component. Thus, two lines are all that’s needed. But normal GUI programs have multiple components and

multiple event handlers. For that, quite a few lines are needed. If you stick those lines in the constructor,

you’d have a long constructor. Better to break things up and stick them in a helper method.

The createContents method instantiates a JLabel component and then calls the add method to

add the JLabel component to the window. A JLabel component is the simplest type of GUI component.

It’s a piece of text that the user can read but cannot change.

After executing createContents, the JVM returns to the SimpleWindow constructor. The

 SimpleWindow constructor then calls setVisible to make the window visible.

16.4 JFrame Class

In the previous section, we introduced you to the JFrame class. In this section, we describe the JFrame

class in more depth. More specifi cally, we cover its characteristics and its methods.

JFrame Basics

These days, most purchasable software is windows-based. When you load such software, you’ll see a win-

dow and that window will have a title bar, a border, a minimize button, a close-window button, the ability to

resize the window, and so on. You could implement all those features from scratch in your own classes, but

why “reinvent the wheel”? The JFrame class implements the standard windows features that you’ve come

to know and love. To get all that cool windows functionality for free, just implement your classes by extend-

ing the JFrame class. What a deal!

 16.4 JFrame Class 649

16-M4402.indd 64916-M4402.indd 649 12/17/07 4:27:54 PM12/17/07 4:27:54 PM

Apago PDF Enhancer

650 Chapter 16 GUI Programming Basics

The JFrame class should be the superclass for most of your GUI application windows, so a pro-

grammer-defi ned window will normally have extends JFrame in its class heading. For the extends
JFrame to work, you must import the JFrame class or import JFrame’s package, javax.swing. As

explained above, it’s common to import the javax.swing package for all GUI programs.

The JFrame class is called a container because it contains components (like labels, buttons, menus,

and so on). It inherits the ability to contain components from its superclass, the Container class.

JFrame Methods

By extending the JFrame class, you automatically get the standard windows functionality mentioned above.

In addition, you inherit a host of windows-related methods. In the SimpleWindow program, we use these

inherited methods—setTitle, setSize, setLayout, setDefaultCloseOperation, add, and

setVisible. The setLayout and setDefaultCloseOperation methods come directly from the

JFrame class. The other methods come from ancestors of the JFrame class—setTitle from the Frame

class, add from the Container class, setSize and setVisible from the Component class.

The setTitle method displays a specifi ed string in the current window’s title bar. If setTitle is

not called, then the window’s title bar is empty.

The setSize method assigns the width and height of the current window. See Figure 16.4 and note

how the SimpleWindow program assigns the width to 300 and the height to 200. The width and height val-

ues are specifi ed in terms of pixels. A pixel is a computer monitor’s smallest displayable unit, and it displays

as a dot on the screen. If you call setSize with a width of 300 and a height of 200, then your window will

consist of 200 rows where each row contains 300 pixels. Each pixel displays with a certain color. The pixels

form a picture by having different colors for the different pixels. For example, the window depicted in Fig-

ure 16.4 might contain blue pixels on the perimeter (for the window’s border), and black pixels in the center

(for the window’s message).

To give you perspective on how big a 300-by-200 pixel window is, you need to know the dimensions,

in pixels, of an entire computer screen. The dimensions of a computer screen are referred to as the screen’s

resolution. Resolution settings are adjustable. Two common resolution settings are 800-by-600 and 1024-

by-768. The 800-by-600 setting displays 600 rows where each row contains 800 pixels.

If you forget to call the setSize method, your window will be really small. It will display only the

beginning of the title and the three standard window-adjustment buttons—minimize, maximize, and close-

window. It won’t display the window’s contents unless you manually resize the window. Here’s what the

SimpleWindow program displays if you omit the setSize method call:

The setLayout method assigns a specifi ed layout manager to the current window. The layout man-

ager is pre-built software from Sun that determines the positioning of components. In the SimpleWindow

program’s setLayout call, we specify the FlowLayout manager, and the FlowLayout man-

ager causes components to be positioned in the top-center position. The FlowLayout class is defi ned

in the java.awt package, so don’t forget to import that package. In the next chapter, we describe the

FlowLayout manager and other layout managers in more detail. We’re using the FlowLayout manager

(as opposed to other layout managers) in this chapter because the FlowLayout manager is the easiest to

use, and we’re trying to keep things simple for now.

16-M4402.indd 65016-M4402.indd 650 12/17/07 4:27:55 PM12/17/07 4:27:55 PM

Apago PDF Enhancer

By default, a program’s close-window button (the X in the top-right corner) doesn’t work very nicely.

When the user clicks it, the window closes, but the program still runs in the background. To remedy this

situation, call setDefaultCloseOperation(EXIT_ON_CLOSE). Then when the user clicks the

close-window button, the window closes and the program terminates. Having a closed program run in the

background is usually unnoticeable, and that’s why many programmers have a hard time remembering to

call setDefaultCloseOperation(EXIT_ON_CLOSE). Nonetheless, you should try to remember to

call it. If you forget to call it, and a user’s computer has limited memory and there are many programs run-

ning in the background, the computer’s performance will degrade.

The add method adds a specifi ed component to the current window. Once the component is added, it

stays with the window for the life of the program. We mention this so that you’re comfortable using a local

variable declaration for a component. In the following example, even though label is defi ned locally within

createContents, the instantiated JLabel component stays with the window after createContents

fi nishes:

private void createContents()
{
 JLabel label = new JLabel("Hi! I'm Larry the label!");
 add(label);
} // end createContents

Windows are invisible by default. To make a window and its contents visible, add the components

to the window and then call setVisible(true). Do it in that order—add components fi rst, then

call setVisible. Otherwise, the added components won’t display. To make a window invisible, call

setVisible(false).

The JFrame class contains many additional methods, too many to mention here. If you’ve got some

time on your hands, we encourage you to fi nd out what’s available by looking up the JFrame class on Sun’s

Java API Web site—http://java.sun.com/javase/6/docs/api/.

16.5 Java Components

Now let’s consider the objects that sit inside a window—the components. Here are some examples of Java

components:

JLabel, JTextField, JButton,

JTextArea, JCheckBox, JRadioButton, JComboBox
JMenuBar, JMenu, JMenuItem

These aren’t all of the Java components, just some of the more commonly used ones. We’ll describe the fi rst

three components in this chapter and the other components in the next chapter.

All of the above component classes are in the javax.swing package, so you must import that pack-

age to use them. But remember that you’re already importing the javax.swing package to access the

JFrame class. There’s no need to import it twice.

Component classes typically are derived from the JComponent class, which supports many useful

inheritable features. Along with many other methods, the JComponent class contains methods that handle

these component features:

foreground and background colors

text font

•

•

•

•

•

 16.5 Java Components 651

16-M4402.indd 65116-M4402.indd 651 12/17/07 4:27:55 PM12/17/07 4:27:55 PM

http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

652 Chapter 16 GUI Programming Basics

border appearance

tool tips

focus

For detailed information on the above features, look up the JComponent class on Sun’s Java API

Web site.

16.6 JLabel Component

User Interface

The JLabel component doesn’t do much. It simply displays a specifi ed single line of text. It’s considered to

be a read-only component because the user can read it, but the user cannot interact with it.

Normally, the JLabel component displays a single line of text, not multiple lines. If you want to dis-

play multiple lines, use the JTextArea component, which is covered in the next chapter.

Implementation

To create a JLabel object, call the JLabel constructor like this:

JLabel <JLabel-reference> = new JLabel(<label-text>);

The label-text is the text that appears in the JLabel component. If the label-text argument contains a new-

line character, \n, it’s ignored (remember, the JLabel component only displays a single line of text). If the

label-text argument is omitted, then the JLabel component displays nothing. Why instantiate an empty

label? So you can fi ll it in later on with text that’s dependent on some condition.

To add a JLabel object to your JFrame window, use this syntax:

add(<JLabel-reference>);

The JLabel class needs the javax.swing package, but that should be available already, since it’s

needed for the JFrame class.

Methods

The JLabel class, like all the GUI component classes, has quite a few methods. We’ll just mention two

of them—the getText and setText accessor and mutator methods. Here are their API headings and

descriptions:

public String getText()

 Returns the label’s text.

public void setText(String text)

 Assigns the label’s text. Note that the programmer can update the label’s text even though the user

cannot.

•

•

•

optionaloptional

JLabel-reference comes from the above initialization statementJLabel-reference comes from the above initialization statement

16-M4402.indd 65216-M4402.indd 652 12/17/07 4:27:56 PM12/17/07 4:27:56 PM

Apago PDF Enhancer

16.7 JTextField Component

User Interface

The JTextField component displays a rectangle and allows the user to enter text into the rectangle.

Here’s an example:

Implementation

To create a JTextField object, call the JTextField constructor like this:

JTextField <JTextField-reference> = new JTextField(<default-text>, <width>);

The default-text is the text that appears in the text box by default. The width is the number of characters that

can display in the text box at one time. If the user enters more characters than can display at one time, then

the leftmost characters scroll off the display. If the default-text argument is omitted, then the empty string is

used as the default. If the width argument is omitted, then the box’s width is slightly greater than the width

of the default text.

To add a JTextField object to your JFrame window, use this syntax:

add(<JTextField-reference>);

The JTextField class needs the javax.swing package, but that should be available already, since

it’s needed for the JFrame class.

Methods

The JTextField class has quite a few methods. Here are API headings and descriptions for some of the

more useful ones:

public String getText()

 Returns the text box’s contents.

public void setText(String text)

 Assigns the text box’s contents.

public void setEditable(boolean flag)

 Makes the text box editable or non-editable.

public void setVisible(boolean flag)

 Makes the text box visible or invisible.

text boxtext box

optionaloptional

16.7 JTextField Component 653

16-M4402.indd 65316-M4402.indd 653 12/17/07 4:27:56 PM12/17/07 4:27:56 PM

Apago PDF Enhancer

654 Chapter 16 GUI Programming Basics

public void addActionListener(ActionListener listener)

 Adds a listener to the text box.

Text boxes are editable by default, which means that users can type inside them. If you want to pre-

vent users from editing a text box, call setEditable with an argument value of false. Calling

setEditable(false) prevents users from updating a text box, but it does not prevent programmers

from updating a text box. Programmers can call the setText method regardless of whether the text box is

editable or non-editable.

Components are visible by default, but there are some instances where you might want to call

setVisible(false) and make a component disappear. After you calculate a result, you might want

just the result to appear without the clutter of other components. When a component is made to disappear, its

space is automatically reclaimed by the window so other components can use it.

When a JTextField component calls addActionListener, the JVM attaches a listener object

to the text box, and that enables the program to respond to the user pressing Enter within the text box. We’ll

cover listeners in more detail soon enough, but fi rst we’re going to step through an example program that

puts into practice what you’ve learned so far. . . .

16.8 Greeting Program

In Figures 16.5a and 16.5b, we present a Greeting program that displays a personalized greeting. It reads

the user’s name from a text box (a JTextField component) and displays the entered name in a label (a

JLabel component).

Most of the code in the Greeting program should look familiar since it closely parallels the code

in the SimpleWindow program. For example, note the short main method with the anonymous ob-

ject instantiation. Note the constructor that contains calls to setTitle, setSize, setLayout,

setDefaultCloseOperation, and setVisible. Finally, note the createContents helper

method that creates the components and adds them to the window. Now let’s focus on what’s new about the

Greeting program—a text box and an event handler.

The Greeting program uses a text box, nameBox, to store the user’s name. Note how the

 createContents method instantiates nameBox with a width of 15. Note how the createContents

method calls the add method to add nameBox to the window. That code is straightforward. But something

that’s not so straightforward is nameBox’s declaration. It’s declared as an instance variable at the top of

the class. Why an instance variable instead of a createContents local variable? Aren’t local variables

preferred? Yes, but in this case, we need to access nameBox not only in createContents, but also in

the actionPerformed event handler (which we’ll get to next). It’s possible to use a local variable within

 createContents and still access it from the event handler, but that’s a bit of a pain.1 For now, we’ll keep

things simple and declare nameBox as an instance variable. The same rationale applies to the greeting

label. We need to access it in createContents and also in the actionPerformed event handler, so

we make it an instance variable.

The Greeting program’s actionPerformed event handler specifi es what happens when the user

presses Enter within the text box. Note that the actionPerformed method is inside our Listener

class. We cover listeners and event-handler mechanics in the next section.

1 If you declare a variable locally within createContents, you can retrieve it from an event handler by calling getSource. The
getSource method is covered in Section 16.14.

16-M4402.indd 65416-M4402.indd 654 12/17/07 4:27:57 PM12/17/07 4:27:57 PM

Apago PDF Enhancer

Figure 16.5a Greeting program—part A

/***
* Greeting.java
* Dean & Dean
*
* This program demonstrates text boxes and labels.
* When the user presses Enter after typing something into the
* text box, the text box value displays in the label below.
***/

import javax.swing.*; // for JFrame, JLabel, JTextField
import java.awt.*; // for FlowLayout
import java.awt.event.*; // for ActionListener, ActionEvent

public class Greeting extends JFrame
{
 private static final int WIDTH = 325;
 private static final int HEIGHT = 100;
 private JTextField nameBox; // holds user's name
 private JLabel greeting; // personalized greeting

 //**

 public Greeting()
 {
 setTitle("Greeting");
 setSize(WIDTH, HEIGHT);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end constructor

 //**

 // Create components and add them to window.
 private void createContents()
 {
 JLabel namePrompt = new JLabel("What's your name?");
 nameBox = new JTextField(15);
 greeting = new JLabel();
 add(namePrompt);
 add(nameBox);
 add(greeting);
 nameBox.addActionListener(new Listener());
 } // end createContents

4. Import this package

for event handling.

3. Register a listener.

16.8 Greeting Program 655

16-M4402.indd 65516-M4402.indd 655 12/17/07 4:27:57 PM12/17/07 4:27:57 PM

Apago PDF Enhancer

656 Chapter 16 GUI Programming Basics

Figure 16.5b Greeting program—part B, and its associated output

 //**

 // Inner class for event handling.

 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 String message; // the personalized greeting
 message = "Glad to meet you, " + nameBox.getText()+ "!";
 nameBox.setText("");
 greeting.setText(message);
 } // end actionPerformed
 } // end class Listener

 //**

 public static void main(String[] args)
 {
 new Greeting();
 } // end main
} // end class Greeting

After pressing Enter in the text box:

1. listener class heading

2. event handler

16-M4402.indd 65616-M4402.indd 656 12/17/07 4:27:58 PM12/17/07 4:27:58 PM

Apago PDF Enhancer

16.9 Component Listeners

When the user interacts with a component (e.g., when the user clicks a button or presses Enter while in

a text box), the component fi res an event. If the component has a listener attached to it, the fi red event is

“heard” by the listener. Consequently, the listener handles the event by executing its actionPerformed

method. In this section, you’ll learn how to make all that work by creating a listener and an associated

 actionPerformed method.

How to Implement a Listener

Below, we show the steps needed to implement a listener for a text box. These steps correspond to the num-

bered callouts in Figures 16.5a and 16.5b:

 1. Defi ne a class with an implements ActionListener clause appended to the right of the class’s

heading. To see an example, look at callout 1 in Figure 16.5b. The implements ActionListener

clause means that the class is an implementation of the ActionListener interface. We discuss in-

terfaces in the next subsection.

 2. Include an actionPerformed event handler method in your listener’s class. Here’s a skeleton of an

actionPerformed method inside a listener class:

private class Listener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 <do-something>
 }
}

 Even if your actionPerformed method doesn’t use the ActionEvent parameter (e, above), you

still must include that parameter in the method heading to make your method conform to the require-

ments of a listener.

 To see an example of a complete actionPerformed method, look at callout 2 in Figure 16.5b.

It refers to a listener class that’s named Listener. Listener is not a reserved word—it’s just a good

descriptive name we picked for the listener class in the Greeting program.

 3. Register your listener class. More specifi cally, that means adding your listener class to a text box com-

ponent by calling the addActionListener method. Here’s the syntax:

<text-box-component>.addActionListener(new <listener-class>());

 To see an example, look at callout 3 in Figure 16.5a.

 The point of the registration process is so your text box can fi nd a listener when an enter event is

fi red. An enter event is fi red whenever the user presses Enter from within the text box.

 Registering a listener is like registering your car. When you register your car, nothing much hap-

pens at that point. But later, when some event occurs, your car registration comes into play. What

event would cause your car registration to be used? If you get caught speeding, the police can use your

 registration number as part of a traffi c citation. If you get into a wreck, your insurance company can use

your registration number to raise your insurance rates.

 16.9 Component Listeners 657

16-M4402.indd 65716-M4402.indd 657 12/17/07 4:27:58 PM12/17/07 4:27:58 PM

Apago PDF Enhancer

658 Chapter 16 GUI Programming Basics

 4. Import the java.awt.event package. Event handling requires the use of the ActionListener

interface and the ActionEvent class. Those entities are in the java.awt.event package, so that

package must be imported for event handling to work. To see the import statements within a complete

program, look at callout 4 in Figure 16.5a.

The ActionListener Interface

In the Greeting program, we specifi ed implements ActionListener in the listener’s class heading.

ActionListener is an interface. You might recall interfaces from Chapter 13. An interface is somewhat

like a class in that it contains variables and methods. But unlike a class, its variables must be constants

(i.e., final variables), and its methods must be empty (i.e., method headings). If a programmer uses an

interface to derive a new class, the compiler requires the new class to implement methods for all of the

interface’s method headings.

So what’s the point of having an interface with all empty methods? The answer is that it can be used

as a template or pattern when creating a class that falls into a certain category. More specifi cally, what’s

the point of the ActionListener interface? Since all action-event listeners must implement it, it means

that all action-event listeners will be similar and therefore understandable. It means that all action-event

listeners will implement the ActionListener’s one method, the actionPerformed method. And in

implementing that method, they’ll be forced to use this prescribed heading:

public void actionPerformed(ActionEvent e)

By using the prescribed heading, it ensures that fi red action events will be received properly by the listener.

16.10 Inner Classes

Here’s a reprint of the Greeting program, in skeleton form:

public class Greeting extends JFrame
{
 ...
 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 String message; // the personalized greeting
 message = "Glad to meet you, " + nameBox.getText();
 nameBox.setText("");
 greeting.setText(message);
 } // end actionPerformed
 } // end class Listener
 ...
} // end class Greeting

Do you notice anything odd about the position of the Listener class in the Greeting program? See

how the Listener class is indented and how its closing brace is before the Greeting class’s closing

brace? The Listener class is inside of the Greeting class!

16-M4402.indd 65816-M4402.indd 658 12/17/07 4:27:59 PM12/17/07 4:27:59 PM

Apago PDF Enhancer

If a class is limited in its scope such that it is needed by only one other class, you should defi ne the class

as an inner class (a class inside of another class). Since a listener is usually limited to listening to just one

class, listeners are usually implemented as inner classes.

It’s not required by the compiler, but inner classes should normally be private. Why? Because the

main point of using an inner class is to further the goal of encapsulation and using private means the

outside world won’t be able to access the inner class. Note the private modifi er in the above Listener

class heading.

Besides furthering the goal of encapsulation, there’s another reason to use an inner class as opposed to

a top-level class (top-level class is the formal term for a regular class—a class not defi ned inside of another

class). An inner class can directly access its enclosing class’s instance variables. Since listeners normally

need to access their enclosing class’s instance variables, this is an important benefi t.

16.11 Anonymous Inner Classes

Take a look at the GreetingAnonymous program in Figures 16.6a and 16.6b. It’s virtually identical to the

previous Greeting program. Can you identify the difference between the GreetingAnonymous program and

the Greeting program?

 16.11 Anonymous Inner Classes 659

Figure 16.6a GreetingAnonymous program that has an anonymous inner class—part A

/***
* GreetingAnonymous.java
* Dean & Dean
*
* This program demonstrates an anonymous inner class.
***/

import javax.swing.*; // for JFrame, JLabel, JTextField
import java.awt.*; // for FlowLayout
import java.awt.event.*; // for ActionListener, ActionEvent

public class GreetingAnonymous extends JFrame
{
 private static final int WIDTH = 325;
 private static final int HEIGHT = 100;
 private JTextField nameBox; // holds user's name
 private JLabel greeting; // personalized greeting

 //**

 public GreetingAnonymous()
 {
 setTitle("Greeting Anonymous");
 setSize(WIDTH, HEIGHT);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end constructor

16-M4402.indd 65916-M4402.indd 659 12/17/07 4:27:59 PM12/17/07 4:27:59 PM

Apago PDF Enhancer

660 Chapter 16 GUI Programming Basics

In the Greeting program, we implemented a listener class named Listener, using this code:

private class Listener implements ActionListener
{

That code is omitted in the GreetingAnonymous program—there’s no class named Listener. But we still

need a listener object so that the text box’s enter event is detected and acted upon. This time, instead of de-

claring a listener class with a name (e.g., Listener), we implement a listener class anonymously (without

a name).

We’ve discussed anonymous objects previously. That’s where you instantiate an object without storing

its reference in a variable. In our previous Greeting program, we instantiated an anonymous Listener

object with this line:

nameBox.addActionListener(new Listener());

Figure 16.6b GreetingAnonymous program that has an anonymous inner class—part B

 //***

 // Create components and add them to window.

 private void createContents()
 {
 JLabel namePrompt = new JLabel("What's your name?");
 nameBox = new JTextField(15);
 greeting = new JLabel();
 add(namePrompt);
 add(nameBox);
 add(greeting);
 nameBox.addActionListener(

 // anonymous inner class for event handling
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String message; // the personalized greeting
 message = "Glad to meet you, " + nameBox.getText();
 nameBox.setText("");
 greeting.setText(message);
 } // end actionPerformed
 } // end anonymous inner class
); // end addActionListener call
 } // end createContents

 //***

 public static void main(String[] args)
 {
 new GreetingAnonymous();
 } // end main
} // end class GreetingAnonymous

16-M4402.indd 66016-M4402.indd 660 12/17/07 4:27:59 PM12/17/07 4:27:59 PM

Apago PDF Enhancer

The point of using an anonymous object is to avoid cluttering the code with a variable name when an object

needs to be used only one time. The same idea can be applied to classes. The point of using an anonymous
inner class is to avoid cluttering up the code with a class name when a class needs to be used only one time.

For example, if a particular listener class listens to just one object, then the listener class needs to be used

only one time as part of an addActionListener method call. Therefore, to unclutter your code, you

may want to use an anonymous inner class for the listener.

Using an anonymous inner class is not a compiler requirement. It’s an elegance issue. In industry, you’ll

fi nd some people who say anonymous inner classes are elegant and you’ll fi nd other people who say anony-

mous inner classes are confusing. Do as you see fi t. Better yet, do as your teacher sees fi t.

Below, we show the syntax for an anonymous inner class. Naturally, there’s no class name. But there

is an interface name. So anonymous inner classes aren’t built from scratch; they’re built with the help of an

interface.2 Note the new operator. Formally speaking, the new operator isn’t part of the anonymous inner

class. But practically speaking, since there’s no point in having an anonymous inner class without instantiat-

ing it, you can think of the new operator as being part of the anonymous inner class syntax.

new <interface-name> ()
{

 <class-body>

}

Here’s an example of an anonymous inner class, taken from the GreetingAnonymous program:

nameBox.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 ...
 } // end actionPerformed
 } // end inner-class constructor
);

For comparison purposes, here’s an example of a named (non-anonymous) inner class. It’s taken from the

Greeting program:

private void createContents()
{
 ...
 nameBox.addActionListener(new Listener());
} // end createContents

private class Listener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 ...
 } // end actionPerformed
} // end class Listener

ActionListener is an interfaceActionListener is an interface

16.11 Anonymous Inner Classes 661

2 As an alternative, it’s legal to defi ne an anonymous class with a superclass instead of an interface. Details are beyond the scope of
this textbook.

16-M4402.indd 66116-M4402.indd 661 12/17/07 4:27:59 PM12/17/07 4:27:59 PM

Apago PDF Enhancer

662 Chapter 16 GUI Programming Basics

There are only two syntactic differences between the two code fragments—the addActionListener

call and the listener class heading. There are no semantic differences between the two code fragments, so

the Greeting program and the GreetingAnonymous program behave the same.

16.12 JButton Component

It’s now time to learn another GUI component—a button component.

User Interface

If you press a button on an electronic device, something usually happens. For example, if you press the

power button on a television, the television turns on or off. Likewise, if you press/click a GUI button com-

ponent, something usually happens. For example, in Figure 16.1’s TrustyCredit window, if you click the OK

button, then the entered credit card numbers get processed by the TrustyCredit company.

Implementation

To create a button component, call the JButton constructor like this:

JButton helloButton = new JButton("Press me");

When this button is displayed, it says “Press me” in the center of the button. The label argument is optional.

If it’s omitted, the label gets the empty string by default and the button displays with a blank face (no writing

or icons on it).

After you have created the helloButton, add it to your window, like this:

add(helloButton);

To make the button useful, you’ll need to implement a listener. As with the text box listeners, button listen-

ers must implement the ActionListener interface. The ActionListener interface dictates that you

must have an actionPerformed event handler method. The code skeleton looks like this:

private class Listener implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 <do-something>

 }

}

We’re using private instead of public for the listener class because a listener normally is implemented

as an inner class, and inner classes are normally private. We’re using a named inner class instead of an

anonymous inner class because named inner classes are slightly more fl exible. They allow you to create a

listener that’s used on more than one component. We’ll provide an example in an upcoming program.

To register the above listener with our helloButton component, do this:

helloButton.addActionListener(new Listener());

button label’s textbutton label’s text

16-M4402.indd 66216-M4402.indd 662 12/17/07 4:28:00 PM12/17/07 4:28:00 PM

Apago PDF Enhancer

The JButton class needs the javax.swing package, but that should be available already, since it’s

needed for the JFrame class. The ActionListener interface and the ActionEvent class need the

java.awt.event package, so import that package.

Methods

Here are API headings and descriptions for some of the more useful JButton methods:

public String getText()

 Returns the button’s label.

public void setText(String text)

 Assigns the button’s label.

public void setVisible(boolean flag)

 Makes the button visible or invisible.

public void addActionListener(ActionListener listener)

 Adds a listener to the button. The listener “listens” for the button being clicked.

FactorialButton Program

It’s time to put all this JButton syntax into practice by showing you how it’s used within a complete pro-

gram. We’ve written a FactorialButton program that uses a JButton component to calculate the factorial

for a user-entered number.3 To give you a better idea of how the program operates, see the sample session in

Figure 16.7.

Figures 16.8a and 16.8b contain the FactorialButton program listing. Most of the code should already

make sense since the program’s structure parallels the structure in our previous GUI programs. We’ll skip

the more familiar code and focus on the more diffi cult code.

We declare most of our GUI variables locally within createContents, but we declare the two text

box components as instance variables at the top of the program. Why the difference? As discussed earlier,

normally you should declare components as local variables to help with encapsulation. But if a component

is needed in createContents and also in an event handler, it’s fi ne to declare it as an instance variable

where it can be shared more easily. In the FactorialButton program, we declare the two text boxes as in-

stance variables because we need to use them in createContents and also in the actionPerformed

event handler.

Note this line from the createContents method:

xfBox.setEditable(false);

This causes the factorial text box, xfBox, to be non-editable (i.e., the user won’t be able to update the text

box). That should make sense since xfBox holds the factorial, and it’s up to the program (not the user) to

generate the factorial. Note in Figure 16.7 that the factorial text box is grayed out. You get that visual cue

free of charge whenever you call setEditable(false) from a text box component. Cool!

3 The factorial of a number is the product of all positive integers less than or equal to the number. The factorial of n is written as n!
Example: The factorial of 4 is written as 4!, and 4! is equal to 24 because 1 times 2 times 3 times 4 equals 24.

 16.12 JButton Component 663

16-M4402.indd 66316-M4402.indd 663 12/17/07 4:28:00 PM12/17/07 4:28:00 PM

Apago PDF Enhancer

664 Chapter 16 GUI Programming Basics

Again from the createContents method:

Listener listener = new Listener();
...
xBox.addActionListener(listener);
btn.addActionListener(listener);

Note that we’re registering the same listener with two different components. By doing this, we give the user

two ways to trigger a response. The user can press Enter when the cursor is in the input text box (xBox) or

the user can click on the button (btn). Either way causes the listener to react. Whenever you register the

same listener with two different components, you need to have a name for the listener. That’s why we use a

named inner class for this program (an anonymous inner class wouldn’t work).

Figure 16.8b’s actionPerformed method is chock full of interesting code. Of greatest importance

is the Integer.parseInt method call. If you ever need to read numbers or display numbers in a GUI

program, you have to use string versions of the numbers. Thus, to read a number from the input text box, we

fi rst read it in as a string, and then we convert the string to a number. To accomplish this, we read the string

using xBox.getText(), and we convert it to a number using Integer.parseInt.

Ideally, you should always check user input to make sure it’s valid. In the actionPerformed method,

we check for two types of invalid input—a non-integer input and a negative number input. Those inputs

are invalid because the factorial is mathematically undefi ned for those cases. The negative number case is

easier, so we’ll start with it. Note this code in the middle of the ActionPerformed method:

if (x < 0)
{
 xfBox.setText("undefined");
}

Figure 16.7 Sample session for the FactorialButton program

After pressing Enter in the x box or clicking the Factorial button:

16-M4402.indd 66416-M4402.indd 664 12/17/07 4:28:01 PM12/17/07 4:28:01 PM

Apago PDF Enhancer

Figure 16.8a FactorialButton program—part A

/**
* FactorialButton.java
* Dean & Dean
*
* When user clicks button or presses Enter in input text box,
* entered number's factorial displays in the output text box.
**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FactorialButton extends JFrame
{
 private static final int WIDTH = 300;
 private static final int HEIGHT = 100;
 private JTextField xBox; // holds user entry
 private JTextField xfBox; // holds generated factorial

 //***

 public FactorialButton()
 {
 setTitle("Factorial Calculator");
 setSize(WIDTH, HEIGHT);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end FactorialButton constructor

 //***

 private void createContents()
 {
 JLabel xLabel = new JLabel("x:");
 JLabel xfLabel = new JLabel("x!:");
 JButton btn = new JButton("Factorial");
 Listener listener = new Listener();

 xBox = new JTextField(2);
 xfBox = new JTextField(10);
 xfBox.setEditable(false);
 add(xLabel);
 add(xBox);
 add(xfLabel);
 add(xfBox);
 add(btn);
 xBox.addActionListener(listener);
 btn.addActionListener(listener);
 } // end createContents

Here we register the

same listener with two

different components.

16.12 JButton Component 665

16-M4402.indd 66516-M4402.indd 665 12/17/07 4:28:01 PM12/17/07 4:28:01 PM

Apago PDF Enhancer

666 Chapter 16 GUI Programming Basics

Figure 16.8b FactorialButton program—part B

 //**

 // Inner class for event handling.

 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 int x; // numeric value for user-entered x
 int xf; // x factorial

 try
 {
 x = Integer.parseInt(xBox.getText());
 }
 catch (NumberFormatException nfe)
 {
 x = -1; // indicates an invalid x
 }

 if (x < 0)
 {
 xfBox.setText("undefined");
 }
 else
 {
 if (x == 0 || x == 1)
 {
 xf = 1;
 }
 else
 {
 xf = 1;
 for (int i=2; i<=x; i++)
 {
 xf *= i;
 }
 } // end else

 xfBox.setText(Integer.toString(xf));
 } // end else
 } // end actionPerformed
 } // end class Listener

 //**

 public static void main(String[] args)
 {
 new FactorialButton();
 } // end main
} // end class FactorialButton

Convert user-entered

number from a string

to a number.

16-M4402.indd 66616-M4402.indd 666 12/17/07 4:28:01 PM12/17/07 4:28:01 PM

Apago PDF Enhancer

x is the user’s entry after it’s been converted to an integer. If x is negative, the program displays undefined

in the xfBox component.

Now for the non-integer input case. Note this code near the top of the ActionPerformed method:

try
{
 x = Integer.parseInt(xBox.getText());
}
catch (NumberFormatException nfe)
{
 x = -1; // indicates an invalid x
}

The Integer.parseInt method attempts to convert xBox’s user-entered value to an integer. If xBox’s

user-entered value is a non-integer, then parseInt throws a NumberFormatException. To handle

that possibility, we put the Integer.parseInt method call inside a try block, and we include an as-

sociated catch block. If parseInt throws an exception, we want to display undefined in the xfBox

component. To do that, we could call xfBox.setText("undefined") in the catch block, but then

we’d have redundant code—xfBox.setText("undefined") in the catch block and also in the sub-

sequent if statement. To avoid code redundancy and its inherent maintenance problems, we assign �1 to x

in the catch block. That causes the subsequent if statement to be true and that in turn causes xfBox.
setText("undefined") to be called.

After validating the input, the actionPerformed method calculates the factorial. It fi rst takes care

of the special case when x equals 0 or 1. It then takes care of the x � 2 case by using a for loop. Study the

code. It works fi ne, but do you see a way to make it more compact? You can omit the block of

code that starts with if (x == 0 || x == 1) because that case is handled by the else

block. More specifi cally, you can delete the six lines above the second xf = 1; line.

16.13 Dialog Boxes and the JOptionPane Class

A dialog box—often referred to simply as a dialog—is a specialized type of window. The primary differ-

ence between a dialog box and a standard window is that a dialog box is more constrained in terms of what

it can do. While a standard window usually remains on the user’s screen for quite a while (often for the

duration of the program) and performs many tasks, a dialog box remains on the screen only long enough to

perform one specifi c task. While a standard window is highly customizable, a dialog box typically is locked

into one particular format.

User Interface

There are three types of JOptionPane dialogs—a message dialog, an input dialog, and a confi rmation

dialog. Each type performs one specifi c task. The message dialog displays output. The input dialog displays

a question and an input fi eld. The confi rmation dialog displays a yes/no question and yes/no/cancel button

options. See what the different types look like in Figure 16.9. In this chapter, we’ll focus on just one of the

three dialogs—the message dialog. If you want to learn about the input dialog, see the GUI track section in

Chapter 3. If you want to learn about the confi rmation dialog, refer to Sun’s Java API Web site.

Write
compact
code.

Write
compact
code.

 16.13 Dialog Boxes and the JOptionPane Class 667

16-M4402.indd 66716-M4402.indd 667 12/17/07 4:28:02 PM12/17/07 4:28:02 PM

Apago PDF Enhancer

668 Chapter 16 GUI Programming Basics

Implementation

To create a message dialog box, call the showMessageDialog method like this:

JOptionPane.showMessageDialog(<container >, <message>);

You need to prefi x the showMessageDialog call with “JOptionPane dot” because

showMessageDialog is a class method in the JOptionPane class. Remember—call instance methods

using “<reference-variable> dot” syntax, and call class methods using “<class-name> dot” syntax.

In the above showMessageDialog call, the message argument specifi es the text that appears in the

dialog box. The container argument specifi es the container that surrounds the dialog box. The dialog box

displays in the center of that container.

Note the showMessageDialog call in Figure 16.10’s HelloWithAFrame program. We use

 helloFrame for showMessageDialog’s container argument. What type of container is it? As

you can see from the code, helloFrame is an instance of the HelloWithAFrame class, and the
 HelloWithAFrame class extends the JFrame container. Therefore, by inheritance, helloFrame is a

JFrame container. And consequently, the dialog box displays in the center of the program’s JFrame con-

tainer. Verify this by looking at Figure 16.10’s output.

Figure 16.9 Three types of JOptionPane dialog boxes

A message dialog box:

An input dialog box:

A confi rmation dialog box:

16-M4402.indd 66816-M4402.indd 668 12/17/07 4:28:02 PM12/17/07 4:28:02 PM

Apago PDF Enhancer

Suppose you don’t want to bother with centering the dialog box within a particular container. In that

case, use null for showMessageDialog’s container argument. That causes the dialog box to display in

the center of the screen. For example, this code fragment generates a screen-centered dialog box:

JOptionPane.showMessageDialog(
 null, "Before starting the installation,\n" +
 "shut down all applications.");

By the way, it’s very common to use null for showMessageDialog’s container argument, probably

more common than using a non-null value.

The JOptionPane class needs the javax.swing package. If you’ve imported the javax.swing

package for the JFrame class already, there’s no need to import it again.

Figure 16.10 HelloWithAFrame program and its output

import javax.swing.*;
public class HelloWithAFrame extends JFrame
{
 public HelloWithAFrame()
 {
 setTitle("Hello");
 setSize(400, 200);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 } // end HelloWithAFrame constructor

 //***

 public static void main(String[] args)
 {
 HelloWithAFrame helloFrame = new HelloWithAFrame();
 JOptionPane.showMessageDialog(helloFrame, "Hello, world!");
 } // end main
} // end class HelloWithAFrame

 16.13 Dialog Boxes and the JOptionPane Class 669

16-M4402.indd 66916-M4402.indd 669 12/17/07 4:28:03 PM12/17/07 4:28:03 PM

Apago PDF Enhancer

670 Chapter 16 GUI Programming Basics

Method Details

In Figure 16.10, note the message dialog box’s title-bar message—it’s “Message.” Kinda boring, eh? To liven

things up, add a third argument to the showMessageDialog call that specifi es the dialog box’s title. Also

in Figure 16.10, note the message dialog box’s icon—it’s an i inside a circle. That’s the default icon. To ex-

plicitly specify an icon, add a fourth argument to the showMessageDialog call that specifi es one of the

named constants in Figure 16.11.

Icon When to Use

INFORMATION_MESSAGE For a dialog box that provides informational text.

WARNING_ MESSAGE
For a dialog box that warns the user about a

problem.

ERROR_MESSAGE

For a dialog box that warns the user about an

error. Normally, an error is considered to be more

serious than a warning.

QUESTION_MESSAGE

For a dialog box that asks the user a question.

Normally, the question-mark icon is used with a

confirm dialog box or an input dialog box. But it

is legal to use it with a message dialog box as well.

PLAIN_MESSAGE no icon
For a plain-looking dialog box. The dialog box

contains a message, but no icon.

JOptionPane
Named Constants

(for Specifying a

Dialog Box's Icon)

Figure 16.11 Icon options within a JOptionPane dialog box

Here’s how to call the four-parameter version of showMessageDialog:

JOptionPane.showMessageDialog(

 <null-or-container >, <message>, <title>, <icon_constant>);

Here’s an example four-argument showMessageDialog call and the resulting dialog box:

JOptionPane.showMessageDialog(null, "A virus has been detected.", "Warning",
 JOptionPane.WARNING_MESSAGE);

16-M4402.indd 67016-M4402.indd 670 12/17/07 4:28:03 PM12/17/07 4:28:03 PM

Apago PDF Enhancer

16.14 Distinguishing Between Multiple Events

Now that you understand the basic building blocks of GUI programming (JFrame and JOptionPane

windows; JLabel, JTextField, and JButton components), you’re prepared to consider more complex

situations that GUI programmers encounter. In this section, you’ll learn how to use a single listener to dis-

tinguish between two different component events.

The getSource Method

Suppose you register a listener with two components. When the listener hears an event, you’ll probably want

to determine which component fi red the event. That way, you can customize your event handling: Do one

thing if component X fi red the event, and do another thing if component Y fi red the event.

From within a listener, how can you determine the source of an event? In other words, how can you

identify the component that fi red an event? Call getSource, of course! More specifi cally, within the

 actionPerformed method, use the actionPerformed method’s ActionEvent parameter to call

getSource. The getSource method returns a reference to the component whose event was fi red. To

see which component that was, use == to compare the returned value with the components in question.

For example, in the below code fragment, we compare the returned value to a button component named

okButton.

public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == okButton)
 {
 ...

Improved FactorialButton Program

Remember the FactorialButton program from Figure 16.8? It calculated the factorial of a user-entered num-

ber. The calculations were triggered by the user clicking the factorial button or the user pressing Enter in

the input text box. With our simple fi rst-cut FactorialButton program, we didn’t bother to distinguish be-

tween the button-click event and the text-box-enter event. Let’s now improve the program by having the dif-

ferent events trigger different results. The button click will still display the factorial, but the text box enter

will display this dialog-box message:

See Figure 16.12. It shows the Listener class for our new and improved FactorialButton program.

We’re only showing the Listener class because the rest of the program hasn’t changed. If you want

to see the rest of the program, refer back to Figure 16.8. In our new Listener class, note how we call

 getSource and compare its returned value to xBox. xBox is the text box component that holds the user’s

entry for x. If getSource returns xBox, we call showMessageDialog and display the above dialog-

box message.

 16.14 Distinguishing Between Multiple Events 671

16-M4402.indd 67116-M4402.indd 671 12/17/07 4:28:03 PM12/17/07 4:28:03 PM

Apago PDF Enhancer

672 Chapter 16 GUI Programming Basics

Figure 16.12 Modifi ed Listener class for the FactorialButton program

 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 int x; // numeric value for user entered x
 int xf; // x factorial

 if (e.getSource() == xBox)
 {
 JOptionPane.showMessageDialog(null,
 "Click factorial button to perform calculation.");
 }

 else // the button must have been clicked
 {
 try
 {
 x = Integer.parseInt(xBox.getText());
 }
 catch (NumberFormatException nfe)
 {
 x = -1; // indicates an invalid x
 }

 if (x < 0)
 {
 xfBox.setText("undefined");
 }
 else
 {
 if (x == 0 || x == 1)
 {
 xf = 1;
 }
 else
 {
 xf = 1;
 for (int i=2; i<=x; i++)
 {
 xf *= i;
 }
 } // end else

 xfBox.setText(Integer.toString(xf));
 } // end else
 } // end else button was clicked
 } // end actionPerformed
 } // end class Listener

This is the input text box.

16-M4402.indd 67216-M4402.indd 672 12/17/07 4:28:03 PM12/17/07 4:28:03 PM

Apago PDF Enhancer

16.15 Using getActionCommand to Distinguish Between
Multiple Events

In this section, we continue our discussion of distinguishing between multiple events. But instead of calling

getSource, this time we call getActionCommand.

getSource Is Somewhat Limited

In Figure 16.12’s Listener class, we call getSource to identify the component whose event was fi red.

That works fi ne most of the time, but not always. Note the following cases where calling getSource is

inadequate:

 1. If the event-fi ring components are in a different class from the listener class.

 The listener class’s getSource method can successfully retrieve the component responsible for the

fi red event, but there is no way to identify the type of the returned component because that requires

comparing the returned component with the original components (using ==). If the original components

are in a different class and private, using them in the listener class generates a compile-time error.

 2. If there’s a need to have a modal component.

 A modal component is a component with more than one state or status. For example, suppose there’s a

button whose label toggles between “Show Details” and “Hide Details.” The two labels correspond to

two different modes of operation—in one mode details are shown, and in another mode details are hid-

den. If a modal button is clicked, getSource can retrieve the button, but it cannot retrieve the button’s

mode. In the show details/hide details example, getSource cannot directly determine whether the

button’s mode is show details or hide details.

getActionCommand to the Rescue

If you need to identify an event from within a listener and getSource is inadequate, try

 getActionCommand. The getActionCommand method returns the “action command” associated

with the component whose event was fi red. Typically, the action command is the component’s label. For

example, the default action command for a button is the button’s label.

Let’s revisit the case where a button’s label toggles between “Show Details” and “Hide Details.” In the

following code fragment, assume that instructions is a label component, detailedInstructions

and briefInstructions are string local variables, and btn is the “Show Details/Hide Details” button.

Note how getActionCommand determines the button’s mode by retrieving the button’s label.

public void actionPerformed(ActionEvent e)
{
 if (e.getActionCommand().equals("Show Details"))
 {
 instructions.setText(detailedInstructions);
 btn.setText("HideDetails");
 }
 else
 {

 16.15 Using getActionCommand to Distinguish Between Multiple Events 673

16-M4402.indd 67316-M4402.indd 673 12/17/07 4:28:04 PM12/17/07 4:28:04 PM

Apago PDF Enhancer

674 Chapter 16 GUI Programming Basics

 instructions.setText(briefInstructions);
 btn.setText("ShowDetails");
 }
} // end actionPerformed

16.16 Color

So far in this chapter, all of our components have been simple in terms of color—black text on white back-

ground or black text on light-gray background. It’s time to add some color. You should get used to adding

color to most of your GUI applications. After all, color can enhance a user’s experience with a program by

providing visual cues and visual appeal. Remember, color is fun!

Color Methods

Most GUI components are composed of two colors. The foreground color is the color of the text, and the

background color is the color of the area behind the text. Let’s jump right into an example that shows you

how to set the colors. This code fragment creates a blue button with white text:

JButton btn = new JButton("Click Me");
btn.setBackground(Color.BLUE);
btn.setForeground(Color.WHITE);

And here’s what the blue-white button looks like:

The setBackground and setForeground methods are mutator methods. Here are the API head-

ings and descriptions for their associated accessor methods:

public Color getBackground()

 Returns the component’s background color.

public Color getForeground()

 Returns the component’s foreground color.

Here’s an example that uses the getBackground and getForeground methods with a text box:

JTextField nameBox = new JTextField();
Color originalBackground = nameBox.getBackground();
Color originalForeground = nameBox.getForeground();

Why might you want to save a text box’s original colors? As a visual cue, you might want to change a text

box’s colors when the user enters something invalid. And when the user fi xes the entry, you’d change back

to the original colors. In order to do that, you need to retrieve and save the original colors when the window

is fi rst loaded.

You’ve now seen color examples with a button and a text box. Color works the same way for most other

components. An exception is the JLabel component. Its background is transparent by default, so if you ap-

ply color to it, you won’t see the color. To change a label’s background color, you fi rst have to make it opaque

by calling label.setOpaque(true). After that, if you call setBackground(<color>), you’ll see

the specifi ed color.

16-M4402.indd 67416-M4402.indd 674 12/17/07 4:28:04 PM12/17/07 4:28:04 PM

Apago PDF Enhancer

Color Named Constants

Let’s now talk about color values. You can specify color values with named constants or with instantiated

Color objects. We’ll start with named constants.

The Color class defi nes this set of named constants:

Color.BLACK Color.GREEN Color.RED
Color.BLUE Color.LIGHT_GRAY Color.WHITE
Color.CYAN Color.MAGENTA Color.YELLOW
Color.DARK_GRAY Color.ORANGE
Color.GRAY Color.PINK

As is customary, the named constants are class members. As with all class members, they are accessed us-

ing <class name> dot syntax. In other words, they are accessed with a “Color.” prefi x.

The Color class is in the java.awt package, so don’t forget to import that package when working

with colors.

Color Objects

To obtain a color that is not in the Color class’s list of named constant colors, instantiate a Color object

with a specifi ed mixture of red, green, and blue. Here’s the Color constructor call syntax:

new Color(<red 0–255>, <green 0–255>, <blue 0–255>)

Each of the three Color constructor arguments is an int value between 0 and 255. The int value repre-

sents an amount of color, with 0 indicating no color and 255 indicating the maximum amount of color. For

example, this line sets a button’s background color to a dark magenta:

button.setBackground(new Color(128, 0, 128));

The instantiated Color object uses half the maximum for red (128), no green (0), and half the maximum

for blue (128). In the brightest magenta, increase the red and blue values from 128 to 255.

White light is the combination of all colors,4 so new Color(255, 255, 255) produces white.

Black is the absence of all colors, so new Color(0, 0, 0) produces black.

This technique of creating a color by mixing specifi ed amounts of red, green, and blue is used by many

programming languages. The red, green, blue 3-tuple is commonly referred to as an RGB value. When com-

ing up with RGB values for your programs, it’s perfectly acceptable to use trial and error, but to save time, you

may want to visit an RGB color table online. For example—http://www.pitt.edu/~nisg/cis/web/cgi/rgb.html.

JFrame Background Color

Setting the background color for a JFrame window is slightly trickier than setting it for a component.

First you have to get the JFrame’s content pane, and then you have to apply the background color to it. As

shown below, the content pane is the inner part of the JFrame.

content panecontent pane

4 In 1666, Isaac Newton discovered that white light is composed of all of the colors of the color spectrum. He showed that when white
light is passed through a triangular prism, it separates into different colors. And when the resulting colors are passed through a sec-
ond triangular prism, they are brought back together to form the original white light.

16.16 Color 675

16-M4402.indd 67516-M4402.indd 675 12/17/07 4:28:05 PM12/17/07 4:28:05 PM

http://www.pitt.edu/~nisg/cis/web/cgi/rgb.html

Apago PDF Enhancer

676 Chapter 16 GUI Programming Basics

While the JFrame class handles perimeter features such as window dimensions, the title bar, and the

close-out button, the content pane handles interior features such as components, layout, and background

color. So when you add components, set the layout, and set the background color, you do it to the content

pane, not the JFrame. These three statements illustrate what we’re talking about:

getContentPane().add(btn);
getContentPane().setLayout(new FlowLayout());
getContentPane().setBackground(Color.YELLOW);

In versions of Java prior to Java 5.0, JFrame’s getContentPane method was required for all three

tasks—adding a component, setting the layout, and setting the window’s background color. With the advent

of Java 5.0, the folks at Sun made things easier for the fi rst two tasks. Now, if you want to add a component

or set the layout, you may optionally omit the call to getContentPane. In other words, this works:

add(btn);
setLayout(new FlowLayout());

The reason that code works is that with the current version of Java, JFrame’s add and setLayout methods

automatically get the content pane behind the scenes. And the retrieved content pane is used for the ensuing

add and setLayout operations. So which is better—add(btn) or getContentPane().add(btn)?

They are functionally equivalent, but the fi rst one is generally preferred since it’s less cluttered. Ditto for the

setLayout method call.

For setting the window’s background color, the current version of Java still requires that you call

 getContentPane before calling setBackground. If you call setBackground without calling

getContentPane, it sets the JFrame’s background color, not the content pane’s background color. And

since the content pane sits on top of the JFrame, the JFrame’s color is covered up and not seen.

Now you know that setting a window’s background color requires getContentPane. Similarly, get-

ting a window’s background color requires getContentPane. For example:

Color saveColor = getContentPane().getBackground();

ColorChooser Program

Let’s put what you’ve learned about color into practice by using it within a complete program. In our Color-

Chooser program, we implement light gray and light blue buttons that set the window’s background color to

gray or blue, respectively. See Figure 16.13 to get an idea of what we’re talking about.

See the ColorChooser program listing in Figures 16.14a and 16.14b. Most of the code should already

make sense since its structure mirrors the structure in our previous GUI programs. We’ll focus on the new

code—the color code.

Note the difference between the setBackground calls in the createContents method and the

setBackground calls in the actionPerformed method. In createContents, we’re dealing with

the gray and blue button components, so it is not necessary to call getContentPane prior to calling

 setBackground. In actionPerformed, we’re dealing with the JFrame window, so it is necessary to

call getContentPane prior to calling setBackground.

Note the following line from the createContents method. It sets the blue button color to light blue:

blueButton.setBackground(new Color(135, 206, 250));

There is no named constant for light blue so we have to instantiate a light-blue Color object by using an

RGB value. We use almost the maximum amount of blue (250) as well as a substantial amount of red (135)

and green (206). Are you curious why we’re using so much red and green? To achieve a light shade, you

16-M4402.indd 67616-M4402.indd 676 12/17/07 4:28:05 PM12/17/07 4:28:05 PM

Apago PDF Enhancer
need to use a substantial amount of all three color values. That should make sense when you realize that

white is Color(255, 255, 255).

 16.16 Color 677

Figure 16.14a ColorChooser program—part A

/**
* ColorChooser.java
* Dean & Dean
*
* This program's buttons allow the user to set the window's
* background color to gray or blue.
**/

import javax.swing.*; // for JFrame & JButton
import java.awt.*; // for FlowLayout, Color, & Container
import java.awt.event.*; // for ActionListener & ActionEvent

public class ColorChooser extends JFrame
{
 private static final int WIDTH = 300;
 private static final int HEIGHT = 100;

 private JButton grayButton; // changes background to gray
 private JButton blueButton; // changes background to blue

Figure 16.13 Sample session for the ColorChooser program

Initial display:

After clicking the Gray button:

After clicking the Blue button:

16-M4402.indd 67716-M4402.indd 677 12/17/07 4:28:06 PM12/17/07 4:28:06 PM

Apago PDF Enhancer

678 Chapter 16 GUI Programming Basics

Figure 16.14b ColorChooser program—part B

 //***

 public ColorChooser()
 {
 setTitle("Background Color Chooser");
 setSize(WIDTH, HEIGHT);
 setLayout(new FlowLayout());
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end ColorChooser constructor

 //***

 private void createContents()
 {
 grayButton = new JButton("Gray");
 grayButton.setBackground(Color.LIGHT_GRAY);
 grayButton.addActionListener(new ButtonListener());
 add(grayButton);

 blueButton = new JButton("Blue");
 blueButton.setBackground(new Color(135,206,250));
 blueButton.addActionListener(new ButtonListener());
 add(blueButton);
 } // end createContents

 //***

 // Inner class for event handling.

 private class ButtonListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 Container contentPane = getContentPane();
 if (e.getSource() == grayButton)
 {
 // Change the window background color to gray.
 contentPane.setBackground(Color.GRAY);
 }
 else
 {
 // Change the window background color to blue.
 contentPane.setBackground(Color.BLUE);
 }
 } // end actionPerformed
 } // end class ButtonListener

This sets the Gray

button’s color.

This sets the Blue

button’s color.

These lines change the window’s background color.

16-M4402.indd 67816-M4402.indd 678 12/17/07 4:28:06 PM12/17/07 4:28:06 PM

Apago PDF Enhancer

16.17 How GUI Classes Are Grouped Together

Throughout this chapter, you’ve used Java’s pre-built GUI classes from Sun’s API library. For example, you

used the JFrame class for creating a window, the JButton class for creating a button, and the Color

class for creating a color. In this section, we describe how Sun’s pre-built GUI classes are grouped and

organized.

Subpackages

The Java API is a huge class library that adds functionality to the core Java language. To simplify things,

the classes are organized into a hierarchy of packages where each package contains a group of classes. To

avoid having too many classes in one package, packages are often split into subpackages. A subpackage

is a group of classes from within a larger group of classes. For example, rather than putting all the GUI

classes (and there are lots of them!) within the java.awt package, the folks at Sun split off the GUI event-

 handling classes and put them in their own subpackage, java.awt.event. To import all the classes in the

java.awt package and the java.awt.event subpackage, do this:

import java.awt.*;
import java.awt.event.*;

Since the java.awt.event subpackage contains java.awt in its name, is it OK to omit the

java.awt.event import statement and do just the following?

import java.awt.*;

No, you must import java.awt and java.awt.event separately. Think of the java.awt package

and the java.awt.event subpackage as completely separate entities. The fact that they share the com-

mon name “java.awt” is irrelevant as far as the compiler is concerned. The compiler treats them as separate

packages. So then why the shared name? The shared name helps programmers remember that the classes in

java.awt.event are conceptually related to the classes in java.awt.

We’ve been referring to java.awt.event as a “subpackage.” It’s just as common to refer to it as a

“package.” We’ll use both terms since both are valid.

The AWT and Swing Libraries

In Sun’s fi rst Java compiler, all GUI classes were bundled into one library known as the Abstract Window-

ing Toolkit (AWT). The AWT’s GUI commands generate GUI components that look different on different

platforms. In other words, if your program instantiates an AWT button component, the button will have a

This imports classes in the java.awt package only.This imports classes in the java.awt package only.

 //***

 public static void main(String[] args)
 {
 new ColorChooser();
 }
} // end class ColorChooser

Figure 16.14c ColorChooser program—part C

16.17 How GUI Classes Are Grouped Together 679

16-M4402.indd 67916-M4402.indd 679 12/17/07 4:28:06 PM12/17/07 4:28:06 PM

Apago PDF Enhancer

680 Chapter 16 GUI Programming Basics

Macintosh look and feel if the program is run on a Macintosh computer, but a Windows look and feel if the

program is run on a Windows computer.5 That leads to portability issues. Your programs are still portable

in the sense that they’ll run on different platforms. But they’ll run differently on different platforms. If you

have a persnickety customer who demands one precise appearance on all platforms, then AWT components

probably won’t be satisfactory.

One of Java’s strongest selling points was (and is) its portability, so soon after Java’s initial release, the

folks at Sun set out to develop a set of more portable GUI components. They put their new, more-portable

components in a brand new library named Swing. To make the relationship clear between the new Swing

components and the AWT components, they used the same component names except that they prefaced

the new Swing components with a “J.” For example, the AWT has a Button component, so Swing has a

JButton component.

The AWT GUI components are known as heavyweight components, while the Swing GUI components

are known as lightweight components. The AWT components are heavyweight because they are built with

graphics commands that are part of the computer’s platform. Being part of the computer’s platform, they’re

too “heavy” to move to other platforms. Swing components are lightweight because they’re built with Java

code. Being built with Java code means that they’re “light” enough to move to different platforms.

The Swing library includes quite a bit more than just GUI component classes. It adds lots of functional-

ity to the AWT, but it does not replace the AWT entirely. Today, Java GUI application programmers use both

libraries—the AWT and Swing.6 The primary AWT packages are java.awt and java.awt.event.

The primary Swing package is javax.swing. The “x” in javax stands for “extension” because the

 javax packages (javax.swing is one of several javax packages) are considered to be a major exten-

sion to the core Java platform.

16.18 Mouse Listeners and Images (Optional)

Sun provides several different types of listeners. Earlier in this chapter, you learned about the most common

listener—the ActionListener. You should use the ActionListener for events where the user does

something to a component, such as clicking a button or pressing Enter within a text box. In this section,

you’ll learn about mouse listeners. As the name implies, you should use mouse listeners for events where the

user does something with the mouse. Also in this section, you’ll learn about images (pictures). You’ll learn

how to display an image and drag an image with your mouse.

Mouse Listeners

In creating a mouse listener, you use the same basic steps that you use for the ActionListener—you

defi ne a listener class, you defi ne an event handler method(s) within the listener class, and you register your

listener class with a component. Although the same basic steps are used, mouse listeners are slightly more

complicated than the ActionListener. There are several different types of mouse listeners, and each

type of mouse listener handles multiple types of mouse events.

We describe two mouse listener types, and they are defi ned by their two interfaces— MouseListener

and MouseMotionListener. Figure 16.15 shows the API headings and descriptions for the methods

5 Look and feel is a standard GUI term, and it refers to the appearance of something and the way in which the user interacts with it.
6 Java applet programmers typically use the AWT only, even for GUI components, and do not use the Swing library at all. Why?
 Because applets rely on browsers and, sadly, many of today’s browsers use old versions of Java, versions that don’t include Swing.

16-M4402.indd 68016-M4402.indd 680 12/17/07 4:28:07 PM12/17/07 4:28:07 PM

Apago PDF Enhancer

 defi ned by the two interfaces. Read through the API headings and descriptions to get an idea of what’s pos-

sible in terms of mouse event handling.

As a programmer, you don’t have to worry about calling the mouse event handler methods. They’re

called automatically when their associated mouse events occur. For example, if the user presses the mouse

button while the mouse cursor is on a MouseListener-registered component, the JVM automatically

calls the mousePressed event handler.

In the upcoming program, the goal is to enable a user to drag an image across a window using the

mouse. To do that, you need to detect the mouse being pressed and moved (i.e., dragged) while the mouse

cursor is on the image. And to do that, you need to register a mouse listener. But you can register a mouse

listener only with a component, not with an image. So what’s the solution? You’re already familiar with

some components—JLabel, JTextField, and JButton components. Those classes are component

MouseListener Interface Event Handlers

public void mouseClicked(MouseEvent event)

 Called when the user presses and releases the mouse button while the mouse cursor is stationary on

a MouseListener-registered component.

public void mouseEntered(MouseEvent event)

 Called when the mouse cursor enters the bounds of a MouseListener-registered component.

public void mouseExited(MouseEvent event)

 Called when the mouse cursor exits from the bounds of a MouseListener-registered

component.

public void mousePressed(MouseEvent event)

 Called when the user presses the mouse button while the mouse cursor is on a MouseListener-

registered component.

public void mouseReleased(MouseEvent event)

 Called when the user releases the mouse button, but only if the prior mouse press was

on a MouseListener-registered component.

MouseMotionListener Interface Event Handlers

public void mouseDragged(MouseEvent event)

 Called when the user holds the mouse button down while moving the mouse cursor, but

only if the initial mouse press was on a MouseMotionListener-registered component.

public void mouseMoved(MouseEvent event)

 Called when the user moves the mouse while the mouse cursor is on a MouseMotionListener-

registered component.

Figure 16.15 API headings and descriptions for the methods in the MouseListener and

MouseMotionListener interfaces

 16.18 Mouse Listeners and Images (Optional) 681

16-M4402.indd 68116-M4402.indd 681 12/17/07 4:28:07 PM12/17/07 4:28:07 PM

Apago PDF Enhancer

682 Chapter 16 GUI Programming Basics

classes because they are descendants of the Component class. There’s another component class that’s a bit

different. It doesn’t feel like a component in the normal sense of the word, but it’s a Java component none-

theless (because it’s a descendant of the Component class), and it works great for handling mouse events.

So what is the mystery component? JPanel!

Think of a JPanel object as a generic storage area for other objects. More formally, the JPanel class

is a descendant of the Container class, and as such, it’s a container and you can add objects to it. In the

next chapter, you’ll add Swing components (JLabel, JTextField, and so on) to JPanel containers. In

the upcoming program example, you add an image object to a JPanel container. By surrounding the im-

age with a JPanel container, you provide a platform that mouse listeners can attach to. In the upcoming

program example, the JPanel listeners allow you to detect mouse events on the image object.

The DragSmiley Program

See Figure 16.16. It contains a driver class and a sample session for a DragSmiley program. As indicated in

the sample session, the program initially displays a smiley face in the top-left corner of the program’s win-

dow. If the user presses the mouse button, the smiley image changes to a scared image (presumably because

the smiley is apprehensive of what the user might do to it). When the user releases the mouse button, the

scared image changes back to the smiley image. If the mouse cursor resides on the image and the user drags

the mouse, the image follows the mouse cursor.

Study Figure 16.16’s DragSmiley constructor. In it, the following two statements instantiate a

JPanel container named smileyPanel and add the JPanel container to DragSmiley’s window.

smileyPanel = new SmileyPanel();
add(smileyPanel);

See the SmileyPanel class in Figures 16.17a and 16.17b. The SmileyPanel class is where the bulk

of the program’s logic is. We’ll describe the SmileyPanel class by fi rst focusing on the listeners. Note

how the SmileyPanel constructor creates the mouse listeners and adds them to the JPanel container.

Note the mouse listener class headings, repeated here for your convenience:

private class ClickListener extends MouseAdapter
private class DragListener extends MouseMotionAdapter

The extends clauses indicate inheritance from the MouseAdapter and MouseMotionAdapter classes.

For each event handling interface with more than one method, Sun provides an associated class that already

implements the interface’s methods for you. Those classes are called adapter classes. The MouseAdapter

class implements the MouseListener interface’s methods, and the MouseMotionAdapter class im-

plements the MouseMotionListener interface’s methods. Adapter classes don’t do much. They simply

implement their associated interface’s methods as dummy methods, like this:

public void mousePressed(MouseEvent event)
{ }

To implement a listener that detects the mouse being pressed, you extend the MouseAdapter class and

provide an overriding mousePressed method. For an example, see Figure 16.17a. As an alternative, you

can implement a listener using an interface rather than an adapter. But remember that an interface is a con-

tract, and when you implement an interface, you’re required to provide methods for all of the interface’s

methods. So if you wanted to replace the SmileyPanel class’s adapters with interfaces, you’d have to

provide dummy methods for the methods that you don’t use.

16-M4402.indd 68216-M4402.indd 682 12/17/07 4:28:08 PM12/17/07 4:28:08 PM

Apago PDF Enhancer

Figure 16.16 Driver class and sample output for the DragSmiley program

/**
* DragSmiley.java
* Dean & Dean
*
* This program displays a smiley face image.
* When the user presses the mouse, the image changes to a
* scared image. The user can drag the image.
**/

import javax.swing.*;

public class DragSmiley extends JFrame
{
 private static final int WIDTH = 250;
 private static final int HEIGHT = 250;
 private SmileyPanel smileyPanel; // drawing panel

 //***

 public DragSmiley()
 {
 setTitle("Drag Smiley");
 setSize(WIDTH, HEIGHT);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 smileyPanel = new SmileyPanel();
 add(smileyPanel);
 setVisible(true);
 } // end DragSmiley constructor

 //**************************************

 public static void main(String[] args)
 {
 new DragSmiley();
 }
} // end class DragSmiley

Initial display: While dragging smiley: After releasing mouse button:

 16.18 Mouse Listeners and Images (Optional) 683

16-M4402.indd 68316-M4402.indd 683 12/17/07 4:28:08 PM12/17/07 4:28:08 PM

Apago PDF Enhancer

684 Chapter 16 GUI Programming Basics

Figure 16.17a The DragSmiley program’s SmileyPanel class—part A

/***
* SmileyPanel.java
* Dean & Dean
*
* This class contains a smiley image and listeners
* that enable image dragging and image swapping.
***/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SmileyPanel extends JPanel
{
 private final ImageIcon SMILEY = new ImageIcon("smiley.gif");
 private final ImageIcon SCARED = new ImageIcon("scared.gif");
 private final int WIDTH = SMILEY.getIconWidth();
 private final int HEIGHT = SMILEY.getIconHeight();

 private Point imageCorner; // image's top-left corner location
 private Point prevPt; // mouse location for previous event
 private ImageIcon image; // toggles between smiley and scared

 //**

 public SmileyPanel()
 {
 image = SMILEY;
 imageCorner = new Point(0, 0); // image starts at top left
 ClickListener clickListener = new ClickListener();
 DragListener dragListener = new DragListener();
 this.addMouseListener(clickListener);
 this.addMouseMotionListener(dragListener);
 } // end SmileyComponent constructor

 //**

 private class ClickListener extends MouseAdapter
 {
 // When mouse pressed, change to scared image.

 public void mousePressed(MouseEvent e)
 {
 image = SCARED;
 prevPt = e.getPoint(); // save current position
 repaint();
 } // end mousePressed

Add mouse

listeners to the

JPanel container.

⎫
⎬
⎭

16-M4402.indd 68416-M4402.indd 684 12/17/07 4:28:08 PM12/17/07 4:28:08 PM

Apago PDF Enhancer

Figure 16.17b The DragSmiley program’s SmileyPanel class—part B

 // When mouse released, return to smiley image.

 public void mouseReleased(MouseEvent e)
 {
 image = SMILEY;
 repaint();
 } // end mouseReleased
 } // end class ClickListener

 //***

 private class DragListener extends MouseMotionAdapter
 {
 // Enable image to be dragged by mouse.

 public void mouseDragged(MouseEvent e)
 {
 Point currentPt = e.getPoint(); // current position

 // Make sure mouse was pressed within the image.
 if (currentPt.getX() >= imageCorner.getX() &&
 currentPt.getX() <= imageCorner.getX() + WIDTH &&
 currentPt.getY() >= imageCorner.getY() &&
 currentPt.getY() <= imageCorner.getY() + HEIGHT)
 {
 imageCorner.translate(
 (int) (currentPt.getX() - prevPt.getX()),
 (int) (currentPt.getY() - prevPt.getY()));
 prevPt = currentPt; // save current position
 repaint();
 }
 } // end mouseDragged
 } // end class DragListener

 //***

 // Draw the window, including the updated image.

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 image.paintIcon(this, g,
 (int) imageCorner.getX(), (int) imageCorner.getY());
 } // end paintComponent
} // end class SmileyPanel

Call paintIcon to

display the image.

⎫
⎬
⎭

16.18 Mouse Listeners and Images (Optional) 685

16-M4402.indd 68516-M4402.indd 685 12/17/07 4:28:08 PM12/17/07 4:28:08 PM

Apago PDF Enhancer

686 Chapter 16 GUI Programming Basics

Displaying an Image

It’s now time to see how the SmileyPanel class draws its images. At the top of the class, the SMILEY

and SCARED named constants are initialized as follows:

final private ImageIcon SMILEY = new ImageIcon("smiley.gif");
final private ImageIcon SCARED = new ImageIcon("scared.gif");

The ImageIcon constructor creates an image object from its passed-in fi lename parameter. So in the

above code fragment, two image objects are created from the smiley.gif and scared.gif fi les,

respectively.7

In the SmileyPanel constructor, the mousePressed event handler, and the mouseReleased

event handler, note how SMILEY and SCARED get assigned into the image instance variable. Those as-

signments are what cause the image to change when the user presses the mouse button and releases it.

The JPanel class has a paintComponent method that’s in charge of drawing Swing components

(e.g., text boxes and buttons) within the JPanel container. But it doesn’t handle drawing lines, shapes, or

images. To draw those things, you need to provide an overriding paintComponent method with calls to

graphics methods. For example, here is SmileyPanel’s overriding paintComponent method:

public void paintComponent(Graphics g)
{
 super.paintComponent(g);
 image.paintIcon(this, g,
 (int) imageCorner.getX(), (int) imageCorner.getY());
} // end paintComponent

Note the paintComponent method’s g parameter. It’s a Graphics object, and it’s used to call graph-

ics methods within the paintComponent method. For example, the image.paintIcon method call

draws image (a smiley face or a scared face), and it requires a Graphics object, g, for its second argu-

ment. In calling the paintIcon method, you provide three arguments in addition to the Graphics argu-

ment: (1) the window in which the image is displayed (in the above example, the this reference refers to

the JPanel’s window, (2) the x coordinate of the image’s top-left corner, and (3) the y coordinate of the

image’s top-left corner. Note the super.paintComponent(g) method call. You should always include

that call as the fi rst statement within an overriding paintComponent method. Without it, the background

for paintComponent’s associated object might be displayed improperly.

Notice that there’s no explicit call to the DragSmiley program’s paintComponent method. You

should never call the paintComponent method directly. Instead, you should call the repaint method

and let the repaint method call the paintComponent method for you. The repaint method waits

until the program’s window is properly prepared to handle the paintComponent method. Note in the

 SmileyPanel class how repaint is called at the bottom of the three event handlers. That’s where there’s

a need to redraw the image. By the way, in addition to calling paintComponent whenever repaint is

called, the JVM calls paintComponent automatically when the program starts up and whenever a user

does something to alter the program’s window (e.g., when the user resizes the window, or moves another

window off of the window).

7 gif stands for Graphics Interchange Format. It’s used for an exact representation of a simple drawn image.

16-M4402.indd 68616-M4402.indd 686 12/17/07 4:28:09 PM12/17/07 4:28:09 PM

Apago PDF Enhancer

Summary

The JFrame class should be used as the superclass for most of your GUI application windows.

The JFrame class implements all the standard window features such as a border, a title bar, a

minimize button, a close-window button (the “X”), the ability to resize the window, and so on.

JLabel is a read-only component; the user simply reads the label’s message.

The JTextField component allows the user to enter text into a text box.

When the user interacts with a component (e.g., when the user clicks a button or presses enter while in a

text box), the component fi res an event.

If a component has a listener attached to it, the fi red event is “heard” by the listener and consequently

handled by the listener.

A listener handles an event by executing its actionPerformed event-handler method.

Listeners often are implemented with the ActionListener interface. An interface is a class-like en-

tity whose methods are all empty. If a programmer uses an interface to derive a new class, the compiler

requires the new class to implement methods for all of the interface’s methods.

If a class is limited in its scope such that it is only needed by one other class, then you should defi ne the

class as an inner class (a class inside of another class).

An anonymous inner class is an inner class without a name.

To display a simple window with a message, call JOptionPane’s showMessageDialog method.

To identify the component whose event was fi red, use the actionPerformed method’s

 ActionEvent parameter to call getSource or getActionCommand.

To adjust a GUI component’s text color, call setForeground. To adjust the color behind the text,

call setBackground.

To adjust a window’s background color, call the content pane’s setBackground method.

To detect and handle mouse events, use the MouseAdapter and MouseMotionAdapter classes,

which implement the MouseListener and MouseMotionListener interfaces, respectively.

Review Questions

§16.2 Event-Driven Programming Basics

 1. What is a listener?
 2. What is an event handler?

§16.3 A Simple Window Program

 3. Write a statement that adds functionality to a program’s close-window button such that when the close-
window button is clicked, it causes the program to terminate.

§16.4 JFrame Class

 4. What is the name of the superclass for classes that contain components?

§16.5 Java Components

 5. What package are JButton and many other J-prefi xed components defi ned in?

§16.6 JLabel Component

 6. Provide an initialization statement that declares a JLabel reference variable named hello and assigns
“Hello World” to the reference variable.

•
•

•
•
•

•

•
•

•

•
•
•

•

•
•

 Review Questions 687

16-M4402.indd 68716-M4402.indd 687 12/17/07 4:28:09 PM12/17/07 4:28:09 PM

Apago PDF Enhancer

688 Chapter 16 GUI Programming Basics

§16.7 JTextField Component

 7. Provide an initialization statement that instantiates a 10-character-wide text box object. As part of the
initialization, assign the text box object to a reference variable named input.

§16.9 Component Listeners

 8. Write a statement that registers a listener reference variable named responder with a component named
component.

 9. If you want a class to handle an event, what clause must be added to the right side of the class’s heading?
 10. What is the heading of the one method specifi ed by the ActionListener interface?

§16.10 Inner Classes

 11. If a class is limited in scope such that it is only needed internally within another class, you should defi ne the
class to be an .

§16.11 Anonymous Inner Classes

 12. If you want to implement an event handler with an anonymous inner class, what argument do you give to
the addActionListener method to register the listener?

§16.12 JButton Component

 13. In the createContents method of the FactorialButton program in Figure 16.8a, what type of object
calls the add methods?

 14. In the FactorialButton program in Figures 16.8a and 16.8b, what component fi res the event that the listener
handles?

§16.13 Dialog Boxes and the JOptionPane Class

 15. What package contains the JOptionPane class?
 16. Write a statement that displays a dialog box in the center of the screen. The dialog box should display “This

is only a test.” in the message area, “TEST” in the title area, and no icon.

§16.14 Distinguishing Between Multiple Events

 17. Suppose you have several components registered with the same listener, and the components and listener
are defi ned within the same class. Within the listener, what ActionEvent method should you call to
determine which component fi res an event?

§16.15 Using getActionCommand to Distinguish Between Multiple Events

 18. Assume there’s a listener that’s been registered for several different buttons. Assume the listener uses an
actionPerformed method with an ActionEvent parameter named action. Assume that the user
clicks one of the registered buttons. Provide a statement that retrieves the text label from the clicked button
and assigns the retrieved label to a String variable named buttonLabel.

§16.16 Color

 19. Write a statement that sets the text color to blue for a JButton object named button1.
 20. How do you get a reference to the container that surrounds all of the components in a JFrame object?

§16.17 How GUI Classes Are Grouped Together

 21. If your program needs the java.awt.event subpackage, you can implicitly import it by importing the
java.awt package. (T / F)

16-M4402.indd 68816-M4402.indd 688 12/17/07 4:28:09 PM12/17/07 4:28:09 PM

Apago PDF Enhancer

Exercises

 1. [after §16.2] Give three examples of how a user might cause an event to be fi red.

 2. [after §16.3] For each of the following, what Java API package must you import?
 a) JFrame and JLabel
 b) FlowLayout

 3. [after §16.4] For our previous GUI programs, we’ve done set-up work (setting the title, adding components,
and so on) within a constructor. That’s generally preferred, but it’s not a compiler requirement. For practice
purposes, write a minimal, but fully functional, program that displays this:

 Your program should not include a constructor. It should include only one method—a main method with
only fi ve statements (or four statements if you fi nd a shortcut for setting the frame’s title).

 4. [after §16.6] Provide a complete program that displays this Hello World message:

 Note these label characteristics: (1) raised bevel border, (2) italics, (3) large font size (30 points), (4) tool tip
that says “Life is Great!” Use this program skeleton as a starting point:

import javax.swing.*;
import java.awt.*;

//**

public class BigHello extends JFrame
{
 public BigHello()
 {
 JLabel label = <instantiation> ;
 setSize(200, <height>);
 setLayout(new FlowLayout());
 add(label);

 <3-statement code fragment>

 setVisible(true);
 } // end constructor

 //**

 public static void main(String[] args)

 Exercises 689

16-M4402.indd 68916-M4402.indd 689 12/17/07 4:28:10 PM12/17/07 4:28:10 PM

Apago PDF Enhancer

690 Chapter 16 GUI Programming Basics

 {
 BigHello hello = new BigHello();
 } // end main
} // end BigHello class

 To fi gure out how to do this, in Java’s API, look up the setFont, setBorder, and setToolTipText
methods that JLabel inherits from JContainer. For the setFont argument, use JContainer’s
getFont to get the default font, and then alter it by using Font’s two-parameter deriveFont method
in which the fi rst parameter specifi es an italic font style and the second parameter specifi es a 30-point size.
Use JContainer’s setBorder method, and for its Border argument use the appropriate class method
from the BorderFactory class.

 5. [after §16.7] The width parameter in the JTextField constructor specifi es the width of the text box in
pixels. (T / F)

 6. [after §16.7] What can you do to prevent users from updating a JTextField component?

 7. [after §16.9] Write the heading for the method you must defi ne in a class that implements an
ActionListener.

 8. [after §16.9] The ActionListener interface and the ActionEvent class are in what Java API
package?

 9. [after §16.9] An interface is a class-like thing whose methods are all empty. If an interface is applied to a
class, then the interface acts like a template that the class must conform to. (T / F)

 10. [after §16.10] An inner class can directly access its enclosing class’s instance variables. (T / F)

 11. [after §16.12] It’s appropriate to use an anonymous inner class if you are going to use the class only once. In
the Factorial program in Figures 16.8a and 16.8b, we use the listener object twice, so that listener
object needed to have a name. However, we used that object’s class only once, to instantiate that one object.
Therefore, that object’s class did not need to have a name, and we could have used an anonymous class
to create our listener object. For this exercise, modify the Factorial program to use an anonymous
ActionListener class instead of the named Listener class. [Hint: The program is already set up to
facilitate this change—it’s mostly cut-and-paste.]

 12. [after §16.13] Do you have to create a JFrame window to use a JOptionPane dialog box?

 13. [after §16.13] To answer this question, you may need to look up JOptionPane’s showInputDialog
and showConfirmDialog methods on Sun’s Java API Web site. What does this program do?

import javax.swing.JOptionPane;
public class UncertainHello
{
 public static void main(String[] args)
 {
 String name;
 int response;
 do
 {
 name = JOptionPane.showInputDialog("What's your name? ");
 response = JOptionPane.showConfirmDialog(null, "Are you sure?");
 if (response == JOptionPane.NO_OPTION)
 {
 name = "there";

16-M4402.indd 69016-M4402.indd 690 12/17/07 4:28:10 PM12/17/07 4:28:10 PM

Apago PDF Enhancer

 break;
 }
 } while (response == JOptionPane.CANCEL_OPTION);

 System.out.println("Hello " + name);
 } // end main
} // end class UncertainHello

 14. [after §16.14] By calling setEnabled(false), you can disable a button and give it a muted appearance
and make its listener unresponsive to clicks on it. Modify Figure 16.12’s program so that the factorial
button is initially disabled. Enable it only after the user enters a character in the xBox text box. To enable
it, create a key listener for the xBox text box, and have the key listener’s keyTyped event handler call
setEnabled(true). Use the following key listener code skeleton:

private class KeyListener extends KeyAdapter
{
 public void keyTyped(KeyEvent e)
 {
 ...
 }
} // end class KeyListener

 Note extends KeyAdapter in the above class heading. An adapter class implements an interface by
providing an empty-bodied method for each method in the interface. In this case, the KeyAdapter API
class implements the KeyListener API interface.

 15. [after §16.16] To set a JFrame’s background color, what method should you call right before calling
setBackground?

 16. [after §16.17] What do the letters in “awt” stand for?

Review Question Solutions

 1. A listener is an object that waits for events to occur.

 2. An event handler is a method that responds to an event.

 3. setDefaultCloseOperation(EXIT_ON_CLOSE);

 4. The superclass for objects that contain other objects is the Container class.

 5. Many J-prefi xed components are defi ned in the javax.swing package.

 6. JLabel hello = new JLabel("Hello World!");

 7. JTextField input = new JTextField(10);

 8. component.addActionListener(responder);

 9. For a class to handle an event, add this to the right side of the class’s heading:
implements ActionListener

 10. The heading of the method specifi ed by the ActionListener interface is:
public void actionPerformed(ActionEvent e)

 Review Question Solutions 691

16-M4402.indd 69116-M4402.indd 691 12/17/07 4:28:10 PM12/17/07 4:28:10 PM

Apago PDF Enhancer

692 Chapter 16 GUI Programming Basics

 11. If a class is limited in scope such that it is only needed internally within another class, you should defi ne the
class to be an inner class.

 12. The argument to give to the addActionListener method to register an anonymous listener class is:

new ActionListener()
{
 <implementation-of-ActionListener-interface>

}

 13. The object that calls the add methods is a JFrame object.

 14. It's ambiguous. It could be either xBox or btn.

 15. The package that contains the JOptionPane class is the javax.swing package.

 16. This code generates the asked-for dialog box:

JOptionPane.showMessageDialog(null,
 "This is only a test.", "TEST", JOptionPane.PLAIN_MESSAGE);

 17. To identify the fi ring component, call the getSource method.

 18. buttonLabel = action.getActionCommand();

 19. button1.setForeground(Color.BLUE);

 20. Call JFrame’s getContentPane method.

 21. False. The java.awt and java.awt.event packages contain separate classes. To import classes from
java.awt.event, you must import that package explicitly like this:

import java.awt.event.*;

16-M4402.indd 69216-M4402.indd 692 12/17/07 4:28:10 PM12/17/07 4:28:10 PM

Apago PDF Enhancer

0.0 Last A-Head 693

C H A P T E R

693

GUI Programming—Component

Layout, Additional GUI Components

Objectives

Know GUI design basics.

Know the benefi ts of using layout managers.

Understand FlowLayout manager details.

Understand BorderLayout manager details.

Be able to use the SwingConstants interface.

Understand GridLayout manager details.

Use embedded layout managers and JPanels for windows that have a substantial number of

components.

Implement JTextArea components for text that spans more than one line.

Implement a JCheckBox component for yes/no user input.

Implement JRadioButton and JComboBox components when the user needs to choose a value

from among a list of predefi ned values.

Become familiar with additional Swing components such as menus, scroll panes, and sliders.

Outline

 17.1 Introduction

 17.2 GUI Design and Layout Managers

 17.3 FlowLayout Manager

 17.4 BorderLayout Manager

 17.5 GridLayout Manager

 17.6 Tic-Tac-Toe Example

 17.7 Problem Solving: Winning at Tic-Tac-Toe (Optional)

 17.8 Embedded Layout Managers

 17.9 JPanel Class

 17.10 MathCalculator Program

•
•
•
•
•
•
•

•
•
•

•

17

17-M4402.indd 69317-M4402.indd 693 12/17/07 4:28:27 PM12/17/07 4:28:27 PM

Apago PDF Enhancer

694 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

 17.11 JTextArea Component

 17.12 JCheckBox Component

 17.13 JRadioButton Component

 17.14 JComboBox Component

 17.15 Job Application Example

 17.16 More Swing Components

17.1 Introduction

This is the second chapter in our two-chapter sequence on GUI programming. In the previous chapter,

you learned GUI basics. You learned about windows, components, and listeners. Almost all GUI programs

need those things. In this chapter, you’ll learn how to make your GUI programs more functional and more

visually appealing. You’ll improve the functionality by implementing some additional GUI components—

JTextArea, JCheckBox, JRadioButton, and JComboBox. You’ll improve the visual appeal by ap-

plying various layout techniques to your windows’ components. More specifi cally, you’ll learn how to apply

these layout managers—FlowLayout, BorderLayout, and GridLayout. And you’ll learn how to

apply different layout managers to different areas of your windows.

For an example of what you’ll be learning, see Figure 17.1. Note the combo box, radio button, and check

box components. Also, note how the radio buttons are grouped in the center, the check buttons are grouped

at the right, and the Next and Cancel buttons are grouped at the bottom center. In this chapter, you’ll learn

how to make such groupings, and you’ll learn how to position them appropriately.

17.2 GUI Design and Layout Managers

With text-based programs, it’s relatively easy to tell users what to do. As a programmer, you just provide text

instructions and the user enters input when prompted to do so. With GUI programs, it’s more diffi cult to tell

users what to do. As a programmer, you display a window with various components, set up listeners, and

then wait for the user to do something. It’s important that your display be easy to understand; otherwise your

users won’t know what to do. To make your display easy to understand, follow these guidelines:

Figure 17.1 Example window that uses radio buttons, check boxes, and a combo box

combo box radio buttons check boxes

17-M4402.indd 69417-M4402.indd 694 12/17/07 4:28:28 PM12/17/07 4:28:28 PM

Apago PDF Enhancer

Choose the right components.

Be consistent.

Position components appropriately.

GUI Design Basics

In Figure 17.1, note the small circles next to Visa, MasterCard, and Other. Those circles are radio button

components (we describe radio buttons in section 17.13). Using radio buttons for the credit card options is an

example of choosing the right component. Radio buttons provide implicit instructions to the user about how

to proceed. Most users recognize small circles as radio buttons, and when they see them, they know to click

one of them with their mouse.

In Figure 17.1, note the Next and Cancel buttons at the bottom center of the window. Assume

that the window is one of several windows in a purchasing application. Assume that other windows in

the application also display Next and Cancel buttons in the bottom center position. Placing Next and

Cancel buttons in the same position is an example of being consistent. Consistency is important because

users are more comfortable with things they’ve seen before. As another example, be consistent with color

schemes. In a given application, if you choose red for a warning message, use red for all your warning

messages.

In Figure 17.1, note how the three radio button components (Visa, MasterCard, and Other) and the

“Credit card:” label component are positioned together as a group. More specifi cally, they’re aligned in a

vertical column and they’re physically close together. That’s an example of positioning components appro-

priately. Positioning them together as a group provides a visual cue that they’re logically related. As another

example of appropriate positioning, note that there are sizable gaps separating the left, center, and right

component groups. Finally, note how the “Shipping destination:”, “Credit card:”, and “Additional services:”

labels are aligned in the same row. That alignment, the aforementioned gaps, and the aforementioned com-

ponent groupings all lead to a more appealing and understandable display.

Layout Managers

As you now know, positioning components appropriately is an important part of GUI design. In the old

days, positioning components was a tedious, manual process. Programmers would spend hours calculating

the space needed for each component and the pixel coordinate positions for each component. Today, pro-

grammers are freed from that tedium by having layout managers do those calculations for them. As you may

recall from the previous chapter, a layout manager is an object that controls the positioning of components

within a container. In general, the layout manager’s goal is to arrange components neatly. Usually, the neat-

ness goal equates to making sure components are aligned and making sure components are appropriately

spaced within the layout manager’s container. For example, in Figure 17.1, layout managers are responsible

for aligning the left components, aligning the middle components, aligning the right components, and spac-

ing the three component groups across the width of the window.

If a user adjusts a window’s size, the Java Virtual Machine (JVM) consults with the layout manager

and the layout manager then recalculates the pixel coordinate positions for each component. All this takes

place automatically without any intervention on the programmer’s part. How convenient! Hail to the layout

manager!

There are different types of layout managers and they have different strategies for positioning compo-

nents within a container. See the table in Figure 17.2. It describes several layout managers from Sun’s API

library.

•

•

•

 17.2 GUI Design and Layout Managers 695

17-M4402.indd 69517-M4402.indd 695 12/17/07 4:28:28 PM12/17/07 4:28:28 PM

Apago PDF Enhancer

696 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

In the previous chapter, we used the simplest type of layout manager—the FlowLayout manager. The

FlowLayout manager is useful for some situations, but we’ll often need alternative layout managers for

other situations. In this chapter, we’ll describe the FlowLayout manager in more detail, and we’ll also

describe the BorderLayout and GridLayout managers. Those are the three most popular layout man-

agers, so you should know them well.

Assigning a Layout Manager

To assign a particular layout manager to a JFrame window from within a class that extends JFrame, call

the setLayout method as follows:

setLayout(new <layout-manager-class>());

In this code template, replace <layout-manager-class> by one of the layout manager classes

(e.g., FlowLayout, BorderLayout, GridLayout). If setLayout is not called, then the

 BorderLayout manager is used, because that’s the default layout manager for a JFrame window.

Layout manager classes are in the java.awt package, so that package must be imported. Of course, if

you’ve already imported it for something else, then there’s no need to import it again.

17.3 FlowLayout Manager

In the previous chapter, we wanted to present GUI basics without getting bogged down in layout manager

details. So we chose a simple layout manger, FlowLayout, that didn’t require much explanation. We just

used it and didn’t dwell on particulars. Now it’s time to explain the particulars, so you can take advantage of

its functionality more fully.

Layout Mechanism

The FlowLayout class implements a simple one-compartment layout scheme that allows multiple compo-

nents to be inserted into the compartment. When a component is added to the compartment, it is placed to

the right of any components that were previously added to the compartment. If there is not enough room to

add a component to the right of the previously added components, the new component is placed on the next

line (i.e., it “fl ows” to the next line). Note the following example.

Layout Manager Description

BorderLayout Splits container into fi ve regions—north, south, east, west, and center.

Allows one component per region.

BoxLayout Allows components to be arranged in either a single column or a

single row.

FlowLayout Allows components to be added left to right, fl owing to next row as

necessary.

GridLayout Splits container into a rectangular grid of equal-sized cells. Allows one

component per grid cell.

GridBagLayout A more fl exible and complex version of GridLayout. Allows grid cells to

vary in size.

Figure 17.2 Several of the more popular layout managers

17-M4402.indd 69617-M4402.indd 696 12/17/07 4:28:29 PM12/17/07 4:28:29 PM

Apago PDF Enhancer

Assume you’ve implemented a program that prompts the user to enter his/her name and prints a person-

alized greeting after the user presses enter. We’ll show you a sample session that starts with a wide window

and a short name. Here’s what the program displays after the user types Tom:

And here’s what the program displays after the user presses enter:

If the user enters a longer name, like Fidelis Kiungua, the greeting label can’t fi t on the fi rst line, so it wraps

to the next line:

If the user manually resizes the window to make it narrower, the text box can no longer fi t on the fi rst line,

so it wraps to the next line:

Alignment

By default, the FlowLayout manager positions its components using center alignment. For example, in

the above window, note how the “What’s your name” label is centered between the left and right borders.

If you’d like to change the FlowLayout manager’s alignment, insert one of the FlowLayout alignment

constants (FlowLayout.LEFT, FlowLayout.CENTER, FlowLayout.RIGHT) in the FlowLayout

constructor call. For example, here’s how to specify left alignment:

setLayout(new FlowLayout(FlowLayout.LEFT));

Here’s what our Greeting program displays when left alignment is used:

 17.3 FlowLayout Manager 697

17-M4402.indd 69717-M4402.indd 697 12/17/07 4:28:29 PM12/17/07 4:28:29 PM

Apago PDF Enhancer

698 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Layout Changes

Normally, setLayout is called just once in a program—when the program initially lays out its compo-

nents. But if there’s a need to dynamically adjust the layout scheme, call setLayout again. For example, if

you want the user to be able to adjust text alignment, add Align Left, Align Center, and Align Right buttons.

Add a listener to each button. In each listener, call setLayout. This would be the listener for the Align

Left button:

private class Listener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 setLayout(new FlowLayout(FlowLayout.LEFT));
 validate();
 } // end actionPerformed
} // end class Listener

Note the validate method in the above code fragment. It causes the layout manager to regenerate the

component layout. If your window is visible (i.e., you’ve called setVisible(true)), and you attempt to

change its layout in some way, you’ll need to call validate to make the change take effect. These method

calls attempt to change the layout:

setLayout—Change the window’s layout manager.

add—Add a component to the window.

setSize—Change the window’s size.

If your window is already visible and you call one of those methods, don’t forget to call validate after-

wards. If you have a series of such calls, there’s no need to have separate validate method calls. Putting

one validate method call at the end works fi ne.

17.4 BorderLayout Manager

The FlowLayout manager is popular because it’s easy to use. Just add components to its container and

that’s it. Sometimes all you need is something simple. But be aware that the FlowLayout manager doesn’t

provide much control over where components are positioned. Using a FlowLayout manager, you can

position components horizontally (left, right, or center), but you can’t position components vertically. If you

•

•

•

17-M4402.indd 69817-M4402.indd 698 12/17/07 4:28:30 PM12/17/07 4:28:30 PM

Apago PDF Enhancer

need to position components along both dimensions (horizontal and vertical), you need to use one of the

other layout managers. In this section, we discuss the BorderLayout manager, which does allow you to

position components along both dimensions.

BorderLayout Regions

The BorderLayout manager is particularly useful for windows that need components near their edges.

It’s common to put a title near the top edge of a window. It’s common to put a menu near the left edge of

a window. It’s common to put buttons near the bottom edge of a window. The BorderLayout manager

accommodates all those situations by splitting up its container into fi ve regions, or compartments. Four of

the regions are near the edges and one is in the center. You access the four edge regions with geographical

names—north, south, east, and west. Note the regions’ positions in Figure 17.3.

Figure 17.3 BorderLayout regions

horizontal gap

vertical gap

north

south

west eastcenter

17.4 BorderLayout Manager 699

Assume that you’re inside a container class. To assign a BorderLayout manager to the container,

call the setLayout method like this:

setLayout(new BorderLayout(<horizontal-gap>, <vertical-gap>));

The horizontal-gap argument specifi es the number of pixels of blank space that separate the west, center,

and east regions. Figure 17.3 illustrates this. The vertical-gap argument specifi es the number of pixels of

blank space that separate the north region from the other regions and the south region from the other re-

gions. Once again, Figure 17.3 illustrates this. If you omit the gap arguments, the gap values are zero by

default. In other words, if you call the BorderLayout constructor with no arguments, there will be no

gaps between the regions.

The sizes of the fi ve regions are determined at runtime, and they’re based on the contents of each re-

gion. Thus, if the west region contains a long label, the layout manager attempts to widen the west region.

Likewise, if the west region contains a short label, the layout manager attempts to narrow the west region.

If an outer region is empty, it collapses so that it does not take up any space. But what exactly happens

during the collapse? Each outer region controls only one dividing line, so only one dividing line moves for

each collapsed region. Figure 17.4 shows you that the west region’s dividing line is the boundary between west

and center, the north region’s dividing line is the boundary between north and below, and so on. So if the north

region is empty, the north dividing line moves all the way up to the top border, and the west, center, and east

regions all expand upward. What happens if the east and south regions are both empty? The east region being

17-M4402.indd 69917-M4402.indd 699 12/17/07 4:28:30 PM12/17/07 4:28:30 PM

Apago PDF Enhancer

700 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

empty causes the east dividing line to move all the way to the right border. The south region being empty

causes the south dividing line to move all the way down to the bottom border. Here’s the resulting layout:

north

west center

What happens if the center region is empty? The center region doesn’t control any of the dividing lines, so

nothing happens.

Adding Components

Suppose you have a container class that uses a BorderLayout manager. To add a component to one of the

container’s BorderLayout regions, call the container’s add method like this:

add(<component>, <region>);

Replace <component> by a component (a JLabel object, a JButton object, and so on) and replace <region>
by one of these named constants: BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout
.WEST, BorderLayout.EAST, or BorderLayout.CENTER. For example, here’s how to add a

 Tunisia button to the north region:

add(new JButton("Tunisia"), BorderLayout.NORTH);

If you call the add method with no region argument, the center region is used by default. Thus, to add a

Central African Republic button to the center region, you can use either of these two statements:

Figure 17.4 BorderLayout regions

north

south

west eastcenter

North’s contents

determine this

divider’s position.

South’s contents

determine this

divider’s position.

West’s contents

determine this

divider’s position.

East’s contents

determine this

divider’s position.

17-M4402.indd 70017-M4402.indd 700 12/17/07 4:28:30 PM12/17/07 4:28:30 PM

Apago PDF Enhancer

add(new JButton("Central African Republic"), BorderLayout.CENTER);
add(new JButton("Central African Republic"));

Which statement is better? We prefer the fi rst statement because it makes the code easier to understand.

More formally, we say that the fi rst statement is self-documenting.

With a FlowLayout container, you can add as many components as you like. With a BorderLayout

container, you can add only fi ve components total, one for each of the fi ve regions. If you add a component

to a region that already has a component, then the new component overlays the old component. Thus, in ex-

ecuting the following lines, the Somalia button overlays the Djibouti button:

add(new JButton("Djibouti"), BorderLayout.EAST);
add(new JButton("Somalia ", BorderLayout.EAST));

If you need to add more than one component to a region, it’s easy to make the mistake of calling add twice

for the same region. After all, there’s no compile-time error to warn you of your misdeed. But what you re-

ally need to do is add a JPanel component. We’ll discuss the JPanel component later in the chapter. It

allows you to store multiple components in a place where only one component is allowed.

AfricanCountries Program with Buttons

Let’s put this BorderLayout material into practice by using it within a complete program. In our

 AfricanCountries program, we add African-country buttons to the fi ve regions of a BorderLayout win-

dow. See the program’s output window at the bottom of Figure 17.5. The fi ve rectangles you see are the

fi ve regions, but they’re also the fi ve buttons. The buttons are the same size as the regions because, with a

 BorderLayout manager, components automatically expand to fi ll their entire region. Note how the outer

four regions’ sizes conform nicely to their contents. In other words, the west region is wide enough to show

“Western Sahara,” the south region is tall enough to show “South Africa,” and so on. In contrast, note how

the center region is unable to display its full “Central African Republic” content. This is because the outer

regions control the dividing lines. The center region gets whatever room is left over.

Skim through the AfricanCountries program listing in Figure 17.5. Most of the code is straightforward.

But this statement is rather quirky:

add(new JButton("<html>South
Africa</html>"), BorderLayout.SOUTH);

Let’s review briefl y what those angled-bracket commands are that you see—<html>,
, and </html>. As

you may recall from the HTMLGenerator program in Chapter 15, the angled bracket elements are called

tags. The <html> tag indicates the start of an HTML fi le, the
 tag indicates a line break (i.e., a new

line), and the </html> tag indicates the end of an HTML fi le. Normally, you insert tags into an HTML fi le.

But here we’re inserting them into component text in order to produce a new line. When used in JLabel

and JButton text, the <html> and </html> tags tell the Java compiler that the enclosed text (the text

between the <html> and </html> tags) should be interpreted as HTML text. And the
 tag tells the

Java compiler to insert a newline character in the text.1

We’d like to mention one additional item in the AfricanCountries program. The setLayout method

call can be omitted. As we said previously, the BorderLayout is the default layout manager for JFrame

windows. Therefore, if you omit the setLayout method call, the program works just fi ne. But we prefer to

keep the setLayout call because it makes the program easier to understand.

1 It may have occurred to you to insert the newline character, \n, into the component’s text. Unfortunately, that doesn’t work for
JButton and Jlabel components. However, it does work for the JtextArea component. We’ll describe the JtextArea com-
ponent later in the chapter.

 17.4 BorderLayout Manager 701

17-M4402.indd 70117-M4402.indd 701 12/17/07 4:28:31 PM12/17/07 4:28:31 PM

Apago PDF Enhancer

702 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Figure 17.5 AfricanCountries program and its output

/**
* AfricanCountries
* Dean & Dean
*
* This program shows component layout for BorderLayout manager.
**/

import javax.swing.*;
import java.awt.*;

public class AfricanCountries extends JFrame
{
 private static final int WIDTH = 325;
 private static final int HEIGHT = 200;

 public AfricanCountries()
 {
 setTitle("African Countries");
 setSize(WIDTH, HEIGHT);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setLayout(new BorderLayout());
 add(new JButton("Tunisia"), BorderLayout.NORTH);
 add(new JButton("<html>South
Africa</html>"),
 BorderLayout.SOUTH);
 add(new JButton("Western Sahara"), BorderLayout.WEST);
 add(new JButton("Central African Republic"),
 BorderLayout.CENTER);
 add(new JButton("Somalia"), BorderLayout.EAST);
 setVisible(true);
 } // end AfricanCountries constructor

 //***

 public static void main(String[] args)
 {
 new AfricanCountries();
 } // end main
} // end class AfricanCountries

17-M4402.indd 70217-M4402.indd 702 12/17/07 4:28:31 PM12/17/07 4:28:31 PM

Apago PDF Enhancer

AfricanCountries Program with Labels

You might have noticed the dividing lines in Figure 17.5’s output window. Those come from the buttons’

borders, not from the BorderLayout manager. If we used label components instead of button compo-

nents, you would see no dividing lines. Likewise in Figure 17.5, the margins around the words come from

the button components. If we used label components instead of button components, you would see no mar-

gins around the words. Below, we show what the AfricanCountries program displays when the button com-

ponents are replaced with label components. Be aware that the dashed lines don’t appear on the actual

window. We’ve drawn them in to show you the region boundaries.

The regions are much the same as before except that the west and east regions are narrower. That’s be-

cause there are no margins around the words. Narrower west and east regions means there’s more room for

the center region. Thus, the center region displays its entire “Central African Republic” text.

Note that the African-country labels are left aligned. That’s the default for a label in a BorderLayout

region. If you want a different alignment than the default, instantiate the label with an alignment constant

like this:

new JLabel(<label’s-text>, <alignment-constant>)

Replace <alignment-constant> by one of these named constants: SwingConstants.LEFT, Swing-
Constants.CENTER, or SwingConstants.RIGHT. Here’s an example that adds a center-aligned la-

bel to a BorderLayout north region:

add(new JLabel("Tunisia", SwingConstants.CENTER), BorderLayout.NORTH);

If we apply that line of code to our AfricanCountries program and we apply similar center-alignment code

to our center and south regions, the program displays this:

 17.4 BorderLayout Manager 703

17-M4402.indd 70317-M4402.indd 703 12/17/07 4:28:32 PM12/17/07 4:28:32 PM

Apago PDF Enhancer

704 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Once again, the dashed lines don’t appear on the actual window. We’ve drawn them to show you the

region boundaries. There’s no point in applying center alignment to the west and east labels. For these la-

bels, the alignment is irrelevant because the west and east labels have no room to move. As evidenced by the

dashed lines, they’re already aligned with both their left and right boundaries.

Now back to the alignment constants—SwingConstants.LEFT, SwingConstants.CENTER,

SwingConstants.RIGHT. You might think that SwingConstants is a class since its fi rst letter is

capitalized. If it were a class, then it would describe an object. But it doesn’t describe an object, and it’s not

a class. Actually, SwingConstants is an interface, defi ned in the javax.swing package. Sun provides

the SwingConstants interface as a repository for various GUI-related named constants. To access a

named constant in the SwingConstants interface, preface the named constant with the interface name.

For example, to access the LEFT alignment constant, use SwingConstants.LEFT. If you want addi-

tional details about interfaces, see Chapter 13, Section 13.9.

It’s easy to get confused between label alignment for a BorderLayout container and label align-

ment for a FlowLayout container. With a BorderLayout container, if you want to specify a label’s

alignment, you need to specify a SwingConstants value as part of the label’s instantiation. If you do

that with a FlowLayout container, the code will compile, but it won’t impact the label’s alignment. With

a FlowLayout container, individual component alignment is irrelevant. What matters is the container’s

alignment. If the container uses left alignment, then all of its components are left aligned; if the container

uses center alignment, then all of its components are center aligned; and so on. To set the container’s

alignment, insert one of the FlowLayout alignment constants (FlowLayout.LEFT, FlowLayout
.CENTER, FlowLayout.RIGHT) in the FlowLayout constructor call. Here’s how to specify left align-

ment for all the components in a FlowLayout container:

setLayout(new FlowLayout(FlowLayout.LEFT));

17.5 GridLayout Manager

The BorderLayout manager’s partitioning scheme (north, south, east, west, center) works well for many

situations, but not for all situations. Often, you’ll need to display information using a table format; that is,

you’ll need to display information that’s organized by rows and columns. The BorderLayout manager

doesn’t work well for table formats, but the GridLayout manager works great!

GridLayout Cells

The GridLayout manager lays out a container’s components in a rectangular grid. The grid is divided

into equal-sized cells. Each cell can hold only one component.

Assume that you’re inside a container class. To assign a GridLayout manager to the container, call

the setLayout method like this:

setLayout(new GridLayout(<number-of-rows>, <number-of-columns>,
 <horizontal-gap>, <vertical-gap>));

The <number-of-rows> and <number-of-columns> arguments specify the number of rows and number of

columns, respectively, in the rectangular grid. The <horizontal- gap> argument specifi es the number of pix-

els of blank space that appear between each column in the grid. The <vertical-gap> argument specifi es the

number of pixels of blank space that appear between each row in the grid. If you omit the gap arguments,

the gap values are zero by default. In other words, if you call the GridLayout constructor with only two

arguments, there will be no gaps between the cells.

17-M4402.indd 70417-M4402.indd 704 12/17/07 4:28:32 PM12/17/07 4:28:32 PM

Apago PDF Enhancer

Adding Components

Assume that you’re inside a GridLayout container class. To add a component to one of the container’s

cells, call the add method like this:

add(<component>);

Note the simplicity of the add method call. In particular, note that there’s no mention of the cell that the

component plugs into. So how does the GridLayout manager know which cell to plug the component

into? The GridLayout manager positions components within the container using left-to-right, top-to-

 bottom order. The fi rst added component goes in the top-left-corner cell, the next added component goes in

the cell to the right of the fi rst component, and so on.

The code fragment below generates a two-row, three-column table with six buttons. The code fragment

specifi es gaps of 5 pixels between the rows and columns.

setLayout(new GridLayout(2, 3, 5, 5));
add(new JButton("1"));
add(new JButton("2"));
add(new JButton("3"));
add(new JButton("4"));
add(new JButton("5"));
add(new JButton("6"));

Assume the above code fragment is part of a complete, working program. Here’s what the program displays:

The six rectangles you see are the six cells, but they’re also the six buttons. The buttons are the same size as

the cells because, with a GridLayout manager, components expand to fi ll their cells. That should sound

familiar; BorderLayout components do the same thing.

Specifying Number of Rows and Number of Columns

When creating a GridLayout manager, you call the GridLayout constructor with a number-of-rows

argument and a number-of-columns argument. Those two arguments require some explanation. To help with

the explanation, consider three different cases.

Case one:

If you know the number of rows and columns in your table and the table will be completely fi lled in

(i.e., there are no empty cells), call the GridLayout constructor with the actual number of rows and the

vertical gap = 5 pixels

horizontal gap = 5 pixels

vertical gap = 5 pixels

horizontal gap = 5 pixels

17.5 GridLayout Manager 705

17-M4402.indd 70517-M4402.indd 705 12/17/07 4:28:32 PM12/17/07 4:28:32 PM

Apago PDF Enhancer

706 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

actual number of columns. That’s what we did in our previous example. We knew we wanted a 2-row by

3-column table with six buttons, so we specifi ed 2 for the rows argument and 3 for the columns

argument.

Case two:

Sometimes, you might want a row-oriented display. In other words, you want a certain number of rows

displayed, and you don’t care about or aren’t sure about the number of columns. If that’s the case, call the

GridLayout constructor with the actual number of rows for the rows argument and 0 for the columns

argument. A 0 for the columns argument indicates that you’re leaving it up to the GridLayout manager to

determine the number of columns.

The code fragment below generates a two-row GridLayout with fi ve buttons. Since the setLayout

call does not specify gap values, the GridLayout displays no gaps between the buttons.

setLayout(new GridLayout(2, 0));
add(new JButton("1"));
add(new JButton("2"));
add(new JButton("3"));
add(new JButton("4"));
add(new JButton("5"));

Assume the above code fragment is part of a complete, working program. Here’s what the program

displays:

Case three:

Sometimes, you might want a column-oriented display. In other words, you want a certain number of col-

umns displayed, and you don’t care about or aren’t sure about the number of rows. If this is the case, call the

GridLayout constructor with the actual number of columns for the columns argument and 0 for the rows

argument. A 0 for the rows argument indicates that you’re leaving it up to the GridLayout manager to

determine the number of rows.

The code fragment below generates a four-column GridLayout with fi ve buttons.

setLayout(new GridLayout(0, 4));
add(new JButton("1"));
add(new JButton("2"));
add(new JButton("3"));
add(new JButton("4"));
add(new JButton("5"));

Assume the above code fragment is part of a complete, working program. Here’s what the program

displays:

17-M4402.indd 70617-M4402.indd 706 12/17/07 4:28:33 PM12/17/07 4:28:33 PM

Apago PDF Enhancer

Now for a couple of things to watch out for. As you know, there’s special signifi cance when you call the

GridLayout constructor with rows = 0 or columns = 0. It puts the GridLayout manager in charge of

choosing the number of rows or the number of columns. But it only works if you have one 0-value argument,

not two. If you call the GridLayout constructor with two 0-value arguments, you’ll get a compile-time

error.

What about the opposite case—when you call the GridLayout constructor with two non-0 values for

the rows and columns arguments. That’s fi ne as long as your table is completely fi lled. If it’s not completely

fi lled, you might get unexpected results. For example, the above four-column window is not completely

fi lled. Suppose you accidentally specify a value for the rows argument:

setLayout(new GridLayout(2, 4));

Here’s what the program displays:

Now that’s strange! There are three columns even though we specifi ed four. Moral of the story: Call the

GridLayout constructor with two non-0 values only if your table is completely fi lled.2

17.6 Tic-Tac-Toe Example

In this section, we present a simple tic-tac-toe program. We’ve chosen tic-tac-toe because we wanted to

illustrate GridLayout details. And tic-tac-toe, with its three-row by three-column board, provides the

perfect opportunity for that.

User Interface

The program initially displays a three-row, three-column grid of blank buttons. Two users, player X and

player O, take turns clicking blank buttons. Player X goes fi rst. When player X clicks a button, the button’s

label changes from blank to X. When player O clicks a button, the button’s label changes from blank to O.

2 Here’s the inside skinny. If you call the GridLayout constructor with two non-0 values for the rows and columns arguments, the
columns argument is ignored and the GridLayout manager determines the number of columns on its own. For the case where you
have two non-0 values and the table is completely fi lled, the GridLayout manager still determines the number of columns on its
own. But the determined number of columns works out perfectly (that is, the determined number of columns matches the specifi ed
number of columns).

 17.6 Tic-Tac-Toe Example 707

17-M4402.indd 70717-M4402.indd 707 12/17/07 4:28:33 PM12/17/07 4:28:33 PM

Apago PDF Enhancer

708 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Player X wins by getting three X’s in a row, 3 X’s in a column, or 3 X’s in a diagonal. Player O wins in the

same manner except that O’s are looked at instead of X’s. To get a better handle on all this, see the sample

session in Figure 17.6.

Program Details

See the TicTacToe program listing in Figures 17.7a and 17.7b. Most of the code should make sense already

since its structure parallels the structure in our previous GUI programs. We’ll skip the familiar code and

focus on the more diffi cult code.

Note the setLayout method call in Figure 17.7a. It contains a GridLayout constructor call that

specifi es three rows and three columns. The constructor call does not include horizontal-gap and vertical-

gap arguments, so the tic-tac-toe buttons display with no gaps between them.

Now let’s take a look at the Listener class in Figure 17.7b. In particular, note the statement where we

get the clicked button and save it in a local variable:

JButton btn = (JButton) e.getSource();

The (JButton) cast operator is used because if there were no cast operator, the compiler would generate

an error. Why? Because the compiler would see an Object at the right being assigned into a JButton at

the left (it sees an Object at the right because getSource is defi ned with an Object return type). In

this case, since getSource really returns a JButton, it’s legal to cast its returned value to JButton,

and that satisfi es the compiler and eliminates the error.

Let’s examine the Listener class’s if statement:

if (btn.getText().isEmpty())
{
 btn.setText(xTurn ? "X" : "O");
 xTurn = !xTurn;
}

We fi rst check to ensure that the button is a blank button. We then reassign the button’s label by using

a conditional operator. If xTurn holds true, then X is assigned to the button label. Otherwise, O is as-

signed to the button label. We then change the value of xTurn by assigning its negated value into it. More

Figure 17.6 Sample session for the TicTacToe program

Initial display: After 2 moves: After the fi nal move:

17-M4402.indd 70817-M4402.indd 708 12/17/07 4:28:34 PM12/17/07 4:28:34 PM

Apago PDF Enhancer

Figure 17.7a TicTacToe program—part A

/**
* TicTacToe.java
* Dean & Dean
*
* This program implements the game of tic-tac-toe.
* When the first blank button is clicked, its label changes
* to an X. Subsequent clicked blank buttons change their labels
* to O and X in alternating sequence.
**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TicTacToe extends JFrame
{
 private boolean xTurn = true; // keeps track of whether
 // it's X's turn or O's turn

 //***

 public TicTacToe()
 {
 setTitle("Tic-Tac-Toe");
 setSize(200, 220);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end TicTacToe constructor

 //***

 // Create components and add to window.

 private void createContents()
 {
 JButton button; // re-instantiate this button and use
 // to fill entire board
 setLayout(new GridLayout(3, 3));

 for (int i=0; i<3; i++)
 {
 for (int j=0; j<3; j++)
 {
 button = new JButton();
 button.addActionListener(new Listener());
 add(button);
 } // end for j
 } // end for i
 } // end createContents

 17.6 Tic-Tac-Toe Example 709

17-M4402.indd 70917-M4402.indd 709 12/17/07 4:28:34 PM12/17/07 4:28:34 PM

Apago PDF Enhancer

710 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

specifi cally, if xTurn is false, we assign true into xTurn. And if xTurn is true, we assign false

into xTurn.

17.7 Problem Solving: Winning at Tic-Tac-Toe (Optional)

As you might have noticed, the previous section’s TicTacToe program doesn’t check for a winning move. As

a problem-solving exercise, let’s now discuss how to add that functionality. Rather than provide you with a

Java solution, we’ll provide you with the thought process for coming up with a solution. We’ll

codify the thought process using pseudocode. One of chapter’s projects asks you to fi nish the

job by implementing a complete Java program solution.

To check for a win (i.e., to check for three in a row, three in a column, or three in a diagonal), the

listener needs to access multiple buttons. As it stands now, the TicTacToe listener can access only one

 button—the button that was clicked. It gets that button by calling getSource. So how should you change

the program so the listener can access multiple buttons?

To access multiple buttons, you need to declare multiple buttons. You could declare nine separate but-

tons, but the more elegant solution is to declare a three-row, three-column, two-dimensional array of but-

tons. The next question is, where should you declare the array? Do you declare it as a local variable inside

the listener or as an instance variable at the top of the program? In general, local variables are preferred, but

in this case, a local variable won’t work. Local variables don’t persist. You need to be able to update a button

Iterate to
enhance.
Iterate to
enhance.

Figure 17.7b TicTacToe program—part B

 //***

 // If user clicks a button, change its label to "X" or "O".

 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 JButton btn = (JButton) e.getSource();
 if (btn.getText().isEmpty())
 {
 btn.setText(xTurn ? "X" : "O");
 xTurn = !xTurn;
 }
 } // end actionPerformed
 } // end class Listener

 //***

 public static void main(String[] args)
 {
 new TicTacToe();
 }
} // end class TicTacToe

17-M4402.indd 71017-M4402.indd 710 12/17/07 4:28:34 PM12/17/07 4:28:34 PM

Apago PDF Enhancer

from within the listener and have that update be remembered the next time the listener is called. Thus, you

need to declare the buttons array as an instance variable.

You need to check for a win only when the user clicks a button. So add check-for-a-win code to

the actionPerformed method inside the button’s listener. In adding the code, use top-down de-

sign. In other words, don’t worry about the low-level details; just assume they work. Here’s the updated

actionPerformed method. The added code is in pseudocode:

public void actionPerformed(ActionEvent e)
{
 JButton btn = (JButton) e.getSource();
 if (btn.getText().isEmpty())
 {
 btn.setText(xTurn ? "X" : "O");
 if win()
 {
 print winning player
 prepare for new game
 }
 else
 {
 xTurn = !xTurn;
 }
 }
} // end actionPerformed

The pseudocode contains three tasks—checking for a win, printing the winner, and preparing for a new

game. Checking for a win requires the most thought, so we’ll postpone that task for now. Let’s discuss the

other two tasks fi rst.

Printing the winner should be straightforward. Just call JOptionPane.showMessageDialog
with a congratulatory message. The message should include the player’s name, X or O, which can be ob-

tained by re-using the conditional operator code, xTurn ? "X" : "O".

Preparing for a new game should be straightforward as well. Just assign the empty string to the board’s

button labels and assign true to the xTurn variable (X always goes fi rst).

Feel free to implement the print-winning-player and prepare-for-new-game tasks as embedded code

inside the if statement or as separate helper methods. Either way is fi ne. But the checking-for-a-win task

should defi nitely be implemented as a separate helper method. Why? Note how cleanly win is called in the

above pseudocode. You can retain that clean look in the fi nal Java code only if you implement the checking-

for-a-win task as a method, not as embedded code.

In implementing the win method, you need to check the two-dimensional buttons array for three in a

row, three in a column, or three in a diagonal. Normally, when you access a group of elements in an array, you

should use a for loop. So you might want to use a for loop to access the elements in the fi rst row, use an-

other for loop to access the elements in the second row, and so on. But that would require eight for loops:

for loop for first row
for loop for second row
...
for loop for second diagonal

⎫
⎪
⎪
⎬
⎪
⎪
⎭

pseudocode

⎫
⎪
⎪
⎬
⎪
⎪
⎭

pseudocode

17.7 Problem Solving: Winning at Tic-Tac-Toe (Optional) 711

17-M4402.indd 71117-M4402.indd 711 12/17/07 4:28:35 PM12/17/07 4:28:35 PM

Apago PDF Enhancer

712 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Yikes! That’s a lot of for loops! Is there a better way? How about taking the opposite approach and us-

ing no for loops? Use one big if statement like this:

if (btns[0][0] = X && btns[0][1] = X && btns[0][2] = X) ||
 (btns[1][0] = X && btns[1][1] = X && btns[1][2] = X) ||
 ...
 (btns[0][2] = X && btns[1][1] = X && btns[2][0] = X)
 return true
else
 return false
end-if

That works fi ne, but if you’re bothered by the length of the if condition (eight lines long), you might want

to try the following. Use one for loop for all the rows, one for loop for all the columns, and one if state-

ment for the two diagonals:

for (i=0; i<3; i++)
 if (btns[i][0] = X && btns[i][1] = X && btns[i][2] = X)
 return true
 end-if
end-for

for (j=0; j<3; j++)
 if (btns[0][j] = X && btns[1][j] = X && btns[2][j] = X)
 return true
 end-if
end-for

if (btns[0][0] = X && btns[1][1] = X && btns[2][2] = X) ||
 (btns[0][2] = X && btns[1][1] = X && btns[2][0] = X)
 return true
end-if

return false

Of the three solutions, we prefer the last one because we feel its code is the most understandable.

To make the tic-tac-toe program more “real world,” you’d probably want to provide additional function-

ality. In particular, you’d want to check for a “cat’s game,” which is when the board is fi lled and no one has

won. You’re asked to implement that functionality in one of the chapter’s projects.

17.8 Embedded Layout Managers

Suppose you’d like to implement this math-calculator window:

17-M4402.indd 71217-M4402.indd 712 12/17/07 4:28:35 PM12/17/07 4:28:35 PM

Apago PDF Enhancer

What type of layout scheme should you use? Coming up with a good layout scheme often requires cre-

ativity. We’ll walk you through the creative process for this math-calculator example.

Trying Out the Different Layout Managers

The math-calculator window appears to have two rows and four columns. So is a two-row by four-column

Gridlayout scheme appropriate? The GridLayout manager is usually adequate for positioning com-

ponents in an organized tabular fashion, but it’s limited by one factor—each of its cells must be the same

size. If we use a two-row by four-column GridLayout scheme for the math-calculator window, then we’ll

have eight same-sized cells. That’s fi ne for most of the cells, but not for the top-left cell. The top left cell

would hold the x: label. With such a small label, we would want a relatively small cell for it. But with a

GridLayout scheme, a “relatively small cell” is not an option.

Since the GridLayout manager is less than ideal, you might want to think about the FlowLayout

manager. That could sort of work if you use right-aligned components. But then you’d be at the mercy of the

user to not resize the window. If the user widens the window, then the log10 x button would fl ow up to the

top line, and you don’t want that. So the FlowLayout manager is also less than ideal. The BorderLay-
out manager isn’t even close. So what’s the solution?

Using an Embedded Layout Scheme

In coming up with layouts for more complex windows, the key is often to embed layout managers

inside other layout managers. Let’s fi rst tackle the outer layout manager. For the math- calculator

window, we want the input at the left and the output at the right. Those two entities are approximately the

same width, so it makes sense to consider using a two-column GridLayout for them. The left column

would contain the input components—the x label and the input text box. The right column would contain the

output components—the square root’s button and output text box and the logarithm’s button and output text

box. We’d like to organize the output components so that the square root’s items are above the logarithm’s

items. That means using two rows for our GridLayout. See the two-row by two-column GridLayout

scheme in Figure 17.8.

Delegate.Delegate.

Figure 17.8 GridLayout with embedded FlowLayout panels in three of the cells

dummy component

16 4.00000

1.20412

sqrt x

log10 x

x:

These panels use right-

aligned FlowLayout.

2-row by 2-column

GridLayout
This panel uses center-

aligned FlowLayout.

17.8 Embedded Layout Managers 713

As you know, GridLayout managers only allow one component per cell. But Figure 17.8 shows two

components in the top-left cell and two components in the top-right cell. To implement that organization

scheme, you’ll need to group each of the two-component pairs into their own separate containers. And to

achieve the proper layout, you’ll need to apply layout managers to each of those containers. The top-left

17-M4402.indd 71317-M4402.indd 713 12/17/07 4:28:35 PM12/17/07 4:28:35 PM

Apago PDF Enhancer

714 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

cell’s container uses a center-aligned FlowLayout manager. The right cells’ containers use right-aligned

FlowLayout managers. Voila, layout managers inside a layout manager. Pretty cool, eh?

When you have a non-trivial window, it’s very common to have embedded layout managers. And when

that happens, it can take a considerable amount of tweaking to get your windows to look right. Despite the

tweaking, using embedded layout managers is still a lot easier than having to manually position components

with pixel values like in the old days. The next section provides details on the containers for the embedded

layout managers.

17.9 JPanel class

Before continuing with the implementation of the math-calculator program, we need to discuss the JPanel

class. A JPanel container object is a generic storage area for components. If you have a complicated

window with many components, you might want to compartmentalize the components by putting groups

of components in JPanel containers. JPanel containers are particularly useful with GridLayout and

BorderLayout windows because each compartment in those layouts can store only one component. If

you need a compartment to store more than one component, let that one component be a JPanel container,

and put multiple components into the JPanel container.

Implementation

As you may recall, GUI classes that begin with J come from the javax.swing package. So that’s where

the JPanel container class comes from, and you need to import the javax.swing package in order to

use Jpanel.

To instantiate a JPanel container, use this syntax:

JPanel <JPanel-reference> = new JPanel(<layout-manager >);

The layout-manager argument is optional. If it’s omitted, then the default is to have a center-aligned

 FlowLayout manager.

So the JPanel container’s default layout manager is FlowLayout. Quick quiz: Do you remember the

JFrame container’s default layout manager? It’s BorderLayout. That should make sense when you real-

ize that JFrame containers are designed to handle the window as a whole. For the window as a whole, the

default BorderLayout scheme works well because its report-oriented regions (north for a header, south

for a footer, center for a main body) match the needs of many program windows. On the other hand, JPanel

containers are designed to handle compartments within a window. For such compartments, the default

FlowLayout scheme works well because its free-form fl ow matches the needs for many compartments.

Adding Components to a JPanel
After instantiating a JPanel, you’ll want to add components to it. Adding components to a JPanel

is the same as adding components to a JFrame. Call the add method. As you know, the add method

works differently for the different layout managers. If your JPanel uses a FlowLayout manager or a

 GridLayout manager, call the add method like this:

<JPanel-reference>.add(<component>);

If your JPanel uses a BorderLayout manager, you should add a second argument to specify the com-

ponent’s region:

17-M4402.indd 71417-M4402.indd 714 12/17/07 4:28:36 PM12/17/07 4:28:36 PM

Apago PDF Enhancer

<JPanel-reference>.add(<component>, <BorderLayout-region>);

Adding JPanel to a Window

After adding components to a JPanel, you’ll need to add the JPanel to a window. If your window uses a

FlowLayout manager or a GridLayout manager, call the add method like this:

add(<JPanel-reference>);

If your window uses a BorderLayout manager, you’ll want to add a second argument to specify the

component’s region:

add(<JPanel-reference>, <BorderLayout-region>);

In the next section, we return to the math-calculator program. That will give us an opportunity to see how

JPanel works in the context of a complete program.

17.10 MathCalculator Program

See the MathCalculator program listing in Figures 17.9a, 17.9b, and 17.9c. You should peruse the entire pro-

gram on your own, but we’ll focus primarily on the panel-related code.

From the MathCalculator program’s createContents method, here’s the code that creates the top-

left cell’s panel:

xPanel = new JPanel(new FlowLayout(FlowLayout.CENTER));
xPanel.add(xLabel);
xPanel.add(xBox);

The fi rst statement instantiates the JPanel container. Since the JPanel constructor uses a center-aligned

FlowLayout by default, you can write the fi rst statement like this and get the same result:

xPanel = new JPanel();

But we prefer the original statement since it’s self-documenting. The second and third statements add the x:
label and the input text box to the panel.

Further down in the createContents method, here’s the code that adds the panels to the window:

add(xPanel);
add(xSqrtPanel);
add(new JLabel()); // dummy component
add(xLogPanel);

The fi rst, second, and fourth statements add the three panels to the window’s top-left, top-right, and bottom-

right cells, respectively. The third statement adds a dummy component (a blank label) to the bottom-left cell.

The dummy component is necessary because without it, the xLogPanel would go into the bottom-left

cell, and that’s not what you want.

There’s one additional item worth mentioning in this program. Note the String.format method

call in Figure 17.9c’s actionPerformed method. The String.format method works the same as

the printf method except that instead of printing a formatted value, it returns a formatted value. In the

actionPerformed method, we call String.format to retrieve a formatted version of the calculated

 17.10 MathCalculator Program 715

17-M4402.indd 71517-M4402.indd 715 12/17/07 4:28:36 PM12/17/07 4:28:36 PM

Apago PDF Enhancer

716 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

/**
* MathCalculator.java
* Dean & Dean
*
* This program uses embedded layout managers to display
* the square root and logarithm of a user-entered number.
**/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class MathCalculator extends JFrame
{
 private static final int WIDTH = 380;
 private static final int HEIGHT = 110;

 private JTextField xBox; // user's input value
 private JTextField xSqrtBox; // generated square root
 private JTextField xLogBox; // generated logarithm

 //***

 public MathCalculator()
 {
 setTitle("Math Calculator");
 setSize(WIDTH, HEIGHT);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end MathCalculator constructor

 //***

 // Create components and add to window.

 private void createContents()
 {
 JPanel xPanel; // holds x label and its text box
 JPanel xSqrtPanel; // holds "sqrt x" label and its text box
 JPanel xLogPanel; // holds "log x" label and its text box
 JLabel xLabel;
 JButton xSqrtButton;
 JButton xLogButton;
 Listener listener;

 setLayout(new GridLayout(2, 2));

Figure 17.9a MathCalculator program—part A

17-M4402.indd 71617-M4402.indd 716 12/17/07 4:28:37 PM12/17/07 4:28:37 PM

Apago PDF Enhancer

 // Create the x panel:
 xLabel = new JLabel("x:");
 xBox = new JTextField(8);
 xPanel = new JPanel(new FlowLayout(FlowLayout.CENTER));
 xPanel.add(xLabel);
 xPanel.add(xBox);

 // Create the square-root panel:
 xSqrtButton = new JButton("sqrt x");
 xSqrtBox = new JTextField(8);
 xSqrtBox.setEditable(false);
 xSqrtPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 xSqrtPanel.add(xSqrtButton);
 xSqrtPanel.add(xSqrtBox);

 // Create the logarithm panel:
 xLogButton = new JButton("log10 x");
 xLogBox = new JTextField(8);
 xLogBox.setEditable(false);
 xLogPanel = new JPanel(new FlowLayout(FlowLayout.RIGHT));
 xLogPanel.add(xLogButton);
 xLogPanel.add(xLogBox);

 // Add panels to the window:
 add(xPanel);
 add(xSqrtPanel);
 add(new JLabel()); // dummy component
 add(xLogPanel);

 listener = new Listener();
 xSqrtButton.addActionListener(listener);
 xLogButton.addActionListener(listener);
 } // end createContents

 //***

 // Inner class for math calculations.

 private class Listener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 double x; // numeric value for user entered x
 double result; // calculated value

Figure 17.9b MathCalculator program—part B

Add dummy component

so bottom-left cell gets

fi lled in.

17.10 MathCalculator Program 717

17-M4402.indd 71717-M4402.indd 717 12/17/07 4:28:37 PM12/17/07 4:28:37 PM

Apago PDF Enhancer

718 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

 try
 {
 x = Double.parseDouble(xBox.getText());
 }
 catch (NumberFormatException nfe)
 {
 x = -1; // indicates an invalid x
 }

 if (e.getActionCommand().equals("sqrt x"))
 {
 if (x < 0)
 {
 xSqrtBox.setText("undefined");
 }
 else
 {
 result = Math.sqrt(x);
 xSqrtBox.setText(String.format("%7.5f", result));
 }
 } // end if

 else // calculate logarithm
 {
 if (x < 0)
 {
 xLogBox.setText("undefined");
 }
 else
 {
 result = Math.log10(x);
 xLogBox.setText(String.format("%7.5f", result));
 }
 } // end else
 } // end actionPerformed
 } // end class Listener

 //**

 public static void main(String[] args)
 {
 new MathCalculator();
 } // end main
} // end class MathCalculator

Figure 17.9c MathCalculator program—part C

17-M4402.indd 71817-M4402.indd 718 12/17/07 4:28:37 PM12/17/07 4:28:37 PM

Apago PDF Enhancer

logarithm value. Specifi cally, the %7.5f conversion specifi er returns a fl oating-point value with 5 decimal

places and 7 total characters.

17.11 JtextArea Component

In the previous chapter, we introduced you to a few GUI components—JLabel, JTextField, JButton,

and JOptionPane—that provide basic input/output functionality. Now we’ll introduce you to a few more

GUI components—JTextArea, JCheckBox, JRadioButton, and JComboBox—that provide more

advanced input/output functionality. We’ll start with the JTextArea component.

User Interface

The JLabel component works great for displaying a single line of text. As described in Chapter 16, you

can use a JLabel component to display multiple lines of text, but achieving multiple lines requires clutter-

ing up your code with HTML
 line-break tags. The preferred technique for displaying multiple lines

of text is to use a JTextArea component. The large white area in Figure 17.10 is a JTextArea compo-

nent. By the way, the small shaded area at the bottom of Figure 17.10 is a JCheckBox component. We’ll

describe JCheckBox components in the next section.

Figure 17.10 A window with a JTextArea component and a JCheckBox component

⎫
⎬
⎭

JCheckBox

component

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

JTextArea

component

17.11 JtextArea Component 719

Implementation

To create a JTextArea component, call the JTextArea constructor like this:

JTextArea <JTextArea-reference> = new JTextArea(<display-text>);

The display-text is the text that appears in the JTextArea component. If the display-text argument is

omitted, then the JTextArea component displays nothing.

Methods

The JTextArea class, like all the GUI component classes, has quite a few methods. Here are the API

headings and descriptions for the more popular JTextArea methods:

public String getText()

 Returns the text area’s text.

17-M4402.indd 71917-M4402.indd 719 12/17/07 4:28:37 PM12/17/07 4:28:37 PM

Apago PDF Enhancer

720 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

public void setText(String text)

 Assigns the text area’s text.

public void setEditable(boolean flag)

 Makes the text box editable or non-editable.

public void setLineWrap(boolean flag)

 Turns line wrap on or off.

public void setWrapStyleWord(boolean flag)

 Specifi es whether word boundaries are used for line wrapping.

JTextArea components are editable by default, which means users are allowed to type inside them. If

you want to prevent users from editing a JTextArea component, call setEditable with an argument

value of false. Doing so prevents users from updating the text area, but it does not prevent programmers

from updating the text area. Programmers can call the setText method regardless of whether the text area

is editable or non-editable.

JTextArea components have line wrap turned off by default. Normally, you’ll want to turn line wrap

on by calling setLineWrap(true). That way, long lines automatically wrap to the next row, instead of

disappearing when they reach the text area’s right boundary.

For JTextArea components with line wrap turned on, the default is to perform line wrap at the point

where the text meets the text area’s right boundary, regardless of whether that point is in the middle of a

word. Normally, you’ll want to avoid that draconian3 default behavior and have line wrap occur only at word

boundaries. To change to a word-boundary line-wrap policy, call setWrapStyleWord(true).

License-Agreement Example

Look back at the license-agreement JText Area component in Figure 7.10. Figure 17.11 contains

the code associated with that component. Let’s now examine Figure 17.11’s code. Note the \n\n in

the JTextArea constructor call. As you might recall, \n’s are ignored inside JLabel text. But they

work fi ne inside JTextArea text. Note the setEditable(false), setLineWrap(true), and

setWrapStyleWord(true) calls. Those calls are common for JTextArea components.

Take a look at the background color for the license-agreement JTextArea component in Figure 17.10.

It’s white. That’s in contrast to the rest of the window. If you want your text area to stand out, then the white

background color is appropriate, but if you want it to blend in, then it’s inappropriate. How can

you change its background color so that it blends in? More specifi cally, how can you change the

code so that the window looks like Figure 17.12? The solution requires the use of a few methods

not mentioned in the above API method list. But we’ve used the methods in the past for other

GUI needs. Try to fi gure this out on your own before reading on.

To change a component’s background color, call setBackground(<color>). For our license-agree-

ment component, we want its color to match the window’s color, so we need to call setBackground

with a color value equal to the window’s background color. To get the window’s background color, call

getContentPane().getBackground(). Here’s the solution:

license.setBackground(getContentPane().getBackground());

Fine
tune with
other API
methods.

Fine
tune with
other API
methods.

3 A draconian policy is a policy that is harsh or severe. Draconion comes from Draco, a 7th century B.C. government offi cial from
Athens who was in charge of codifying local law. Draco’s laws were exceedingly severe. For example, even minor offenses were
punishable by the death penalty.

17-M4402.indd 72017-M4402.indd 720 12/17/07 4:28:38 PM12/17/07 4:28:38 PM

Apago PDF Enhancer

private void createContents()
{
 JTextArea license;
 JCheckBox confirmBox;

 setLayout(new BorderLayout());
 license = new JTextArea(
 "SOFTWARE END-USER LICENSE AGREEMENT\n\n" +
 "READ CAREFULLY: This Software End-User License Agreement" +
 " is a legal agreement between us, the software provider," +
 " and you, the end user of a software product legitimately" +
 " purchased from us. You must accept this agreement to" +
 " complete the sale of the software license. If you do not" +
 " accept this agreement, you forfeit all rights to your" +
 " current and future property and progeny.");
 license.setEditable(false);
 license.setLineWrap(true);
 license.setWrapStyleWord(true);
 confirmBox = new JCheckBox(
 "I accept the terms of this agreement.", true);

 add(license, BorderLayout.CENTER);
 add(confirmBox, BorderLayout.SOUTH);
} // end createContents

Figure 17.11 The code that created fi gure 17.10’s display

Figure 17.12 Modifi ed background color for license-agreement JTextArea component

17.12 JcheckBox Component

User Interface

Look at the check box component at the bottom of Figure 17.12. Use a check box component if you want to

present an option. A check box component displays a small square with a label to its right. When the square

is blank, the check box is unselected. When the square contains a check mark, the check box is selected. Us-

ers click on the check box in order to toggle between selected and unselected.

 17.12 JcheckBox Component 721

17-M4402.indd 72117-M4402.indd 721 12/17/07 4:28:38 PM12/17/07 4:28:38 PM

Apago PDF Enhancer

722 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Implementation

To create a check box component, call the JCheckBox constructor like this:

JCheckBox <JCheckBox-reference> = new JCheckBox(<label>, <selected>);

The label argument specifi es the text that appears at the right of the check box’s square. If the label argu-

ment is omitted, then no text appears at the right of the check box’s square. The selected argument specifi es

whether the check box is selected initially—true means selected, false means unselected. If the selected

argument is omitted, then the check box is initially unselected.

Here’s how the check box was created in the license-agreement window:

confirmBox = new JCheckBox("I accept the terms of this agreement.", true);

Methods

Here are the API headings and descriptions for the more popular JCheckBox methods:

public boolean isSelected()

 Returns true if the check box is selected and false otherwise.

public void setVisible(boolean flag)

 Makes the check box visible or invisible.

public void setSelected(boolean flag)

 Makes the check box selected or unselected.

public void setEnabled(boolean flag)

 Makes the check box enabled or disabled.

public void addActionListener(ActionListener listener)

 Adds a listener to the check box.

The isSelected and setVisible methods are straightforward, but the other three methods need

 further explanation. Let’s start with setSelected. Why might you want to call setSelected and ad-

just the selection status of a check box? Because you might want one user input to impact another user input.

For example, in Figure 17.13, the user’s selection of standard versus custom4 should impact the check box

selections. More specifi cally, if the user selects the Standard option, the check box selections should go to

their “standard” settings. As you can see in Figure 17.13’s left window, the standard settings for the check

boxes are the top two selected and the bottom two unselected. To have your program select the top two

check boxes, those two check boxes should call setSelected(true). To have your program unselect

the bottom two check boxes, those two check boxes should call setSelected(false).

To have your program disable a check box, the checkbox should call setEnabled(false). Why

might you want to call setEnabled(false) and disable a check box? Because you might want to keep

the user from modifying that box’s value. For example, if the user selects the Standard option as shown in

Figure 17.13’s left window, the check box selections should be set to their standard settings (as explained

above), and then each check box should call setEnabled(false). That way, the user cannot make

4 The Standard and Custom circles at the top of Figure 17.13 are called radio buttons. We’ll describe JradioButton components
in the next section.

17-M4402.indd 72217-M4402.indd 722 12/17/07 4:28:39 PM12/17/07 4:28:39 PM

Apago PDF Enhancer

changes to the standard-confi guration check box values. In Figure 17.13’s left window, note that the check

boxes are gray. We say that they’re grayed out. That’s the standard GUI way of telling the user that some-

thing is disabled.

Check Box Listeners

With a JButton component you’ll almost always want an associated listener. But with a JCheckBox

component, you may or may not want an associated listener. If you have a check box with no listener, then

the check box simply serves as an input entity. If that’s the case, then the check box’s value (checked or

unchecked) would typically get read and processed when the user clicks a button. On the other hand, if you

want something to happen immediately, right when the user selects a check box, then add a listener to the

check box component. Suppose you have a Green Background check box. If you want the window’s back-

ground color to change to green right when the user clicks the check box, add a listener to the check box.

The syntax for adding a listener to a JCheckBox component is the same as the syntax for adding a listener

to a JButton component. Provide a listener that implements the ActionListener interface and then

add the listener to the JCheckBox component by calling addActionListener.

Be aware that Sun provides an alternative listener interface for the JCheckBox component—the

ItemListener interface. An ActionListener listens for the user clicking on a check box. An

 ItemListener listens for a state change; that is, it listens for a check box changing from selected

to unselected or vice versa. A check box state change is triggered when a user clicks the check box or

when a program calls setSelected with a value that’s different from the current value. Since the

 ActionListener interface is the preferred interface for most situations, we’ll stick with it when imple-

menting JCheckBox listeners. When we get to the JRadioButton and JComboBox components in the

next sections, we’ll continue to use the ActionListener interface, not the ItemListener interface.

Installation-Options Example

It’s now time to put these check box concepts into practice by showing you some code. Look back at the

installation-options windows in Figure 17.13. In Figure 17.14, we provide the listener code associ-

ated with those windows. Let’s walk through the code. In the if statement’s condition, we check

Figure 17.13 Example that illustrates JCheckBox’s setSelected and setEnabled methods

 17.12 JcheckBox Component 723

17-M4402.indd 72317-M4402.indd 723 12/17/07 4:28:39 PM12/17/07 4:28:39 PM

Apago PDF Enhancer

724 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

to see whether the standard option was selected. If that’s the case, we disable the check boxes by call-

ing setEnabled(false) for each check box. We then assign the check boxes to their standard set-

tings by calling setSelected(true) or setSelected(false) for each check box. In the else

block, we handle the custom option being selected. We enable the check boxes by having each box call

setEnabled(true). This enables the user to control whether the box is selected or not.

17.13 JradioButton Component

User Interface

Look at the circles in the windows in Figure 17.13. They’re called radio buttons. A JRadioButton com-

ponent displays a small circle with a label to its right. When the circle is blank, the radio button is un-

selected. When the circle contains a large dot, the radio button is selected.

According to the description so far, radio buttons sound a lot like check boxes. They display a shape

and a label, and they keep track of whether something is on or off. The key difference between radio but-

tons and check boxes is that radio buttons almost always come in groups. And within a radio button group,

only one radio button can be selected at a time. If a user clicks an unselected radio button, the clicked but-

ton becomes selected, and the previously selected button in the group becomes unselected. If a user clicks a

private class Listener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == standard) // standard option chosen
 {
 prior.setEnabled(false);
 diskSpace.setEnabled(false);
 updates.setEnabled(false);
 spyware.setEnabled(false);
 prior.setSelected(true);
 diskSpace.setSelected(true);
 updates.setSelected(false);
 spyware.setSelected(false);
 }
 else // custom option chosen
 {
 prior.setEnabled(true);
 diskSpace.setEnabled(true);
 updates.setEnabled(true);
 spyware.setEnabled(true);
 }
 } // end actionPerformed
} // end Listener

Figure 17.14 Listener code for fi gure 17.13’s installation-options windows

17-M4402.indd 72417-M4402.indd 724 12/17/07 4:28:39 PM12/17/07 4:28:39 PM

Apago PDF Enhancer

selected radio button, no change occurs (i.e., the clicked button remains selected). In contrast, if a user clicks

a selected check box, the check box changes its state from selected to unselected.

Implementation

To create a JRadioButton component, call the JRadioButton constructor like this:

JRadioButton <JRadioButton-reference> =
 new JRadioButton(<label>, <selected>);

The label argument specifi es the text that appears at the right of the radio button’s circle. If the label argu-

ment is omitted, then no text appears at the right of the radio button’s circle. The selected argument speci-

fi es whether the radio button is initially selected—true means selected, false means unselected. If the

selected argument is omitted, then the radio button is initially unselected.

This example shows how we created the standard and custom radio buttons in the installation-

 options program:

standard = new JRadioButton("Standard (recommended)", true);
custom = new JRadioButton("Custom");

To enable the only-one-button-selected-at-a-time functionality of a radio button group, create a

 ButtonGroup object and add individual radio button components to it. Here’s how:

ButtonGroup <ButtonGroup-reference> = new ButtonGroup();
< ButtonGroup-reference>.add(<fi rst-button-in-group>);
...
< ButtonGroup-reference>.add(<last-button-in-group>);

The following example shows how we created the radio button group for the standard and custom

radio buttons in the installation-options program:

ButtonGroup rbGroup = new ButtonGroup();
rbGroup.add(standard);
rbGroup.add(custom);

After adding radio buttons to a radio button group, you still have to add them to a container. Radio buttons

work the same as other components in terms of adding them to a container. Call the container’s add method

like this:

add(<fi rst-button-in-group>);
...
add(<last-button-in-group>);

That’s a lot of adding. You need to add each radio button twice—once to a radio button group and once to

a container. If you like shortcuts, you might be thinking, Why does Java make you add the individual radio

buttons to the container? Why are they not added automatically when the radio button group is added? Add-

ing the buttons separately from the button group gives you freedom in positioning the buttons. If you wanted

to, you could even put them in different panels.

Since the JRadioButton class begins with a J, you can correctly assume that it’s defi ned in the

 javax.swing package. But what about the ButtonGroup class? Even though it doesn’t begin with a J,
it’s also defi ned in the javax.swing package.

 17.13 JradioButton Component 725

17-M4402.indd 72517-M4402.indd 725 12/17/07 4:28:39 PM12/17/07 4:28:39 PM

Apago PDF Enhancer

726 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Methods

Here are the API headings and descriptions for the more popular JRadioButton methods:

public boolean isSelected()

 Returns true if radio button is selected and false otherwise.

public void setSelected(boolean flag)

 Makes radio button selected if argument is true. Does nothing if argument is false.

public void setEnabled(boolean flag)

 Makes radio button enabled or disabled. If enabled, it responds to mouse clicks.

public void addActionListener(ActionListener listener)

 Adds a listener to the radio button.

We described these same methods in the JCheckBox section. Only one of them needs further attention—

the setSelected method. To understand how setSelected works, you fi rst need to understand fully

how a user interacts with a radio button group. To select a radio button, a user clicks it. That causes the radio

button to become selected and all other radio buttons in the group to become unselected. To programmati-

cally select a radio button, you have the radio button call setSelected(true). That causes the radio

button to become selected and all other radio buttons in the group to become unselected. As mentioned

above, there is no way for a user to unselect a button. Likewise, there is no way for a program to unselect

a button. That’s why calling setSelected(false) doesn’t do anything. It compiles and runs, but it

doesn’t cause any buttons to change their selected status.

17.14 JcomboBox Component

User Interface

A combo box allows a user to select an item from a list of items. Combo boxes are sometimes called drop-
down lists because if a user clicks a combo box’s down arrow, a list of selection items drops down from the

original display. Then, if a user clicks a selection from the drop-down list, the list disappears and only the

selected item remains displayed. To get a better idea of what we’re talking about, see the select-a-day combo

box in Figure 17.15.

Combo boxes and radio button groups are similar in that they both allow the user to select one item

from a list of items. But a combo box takes up less space on the window. So if you have a long list of items to

choose from, and you want to save space, use a combo box rather than a group of radio buttons.

Implementation

Creating a combo box component is a two-step process. First, instantiate an array of list options. Then, use

the array as part of a JComboBox instantiation. Here’s the syntax for a JComboBox instantiation:

JComboBox <JComboBox-reference> = new JComboBox(<array-of-list-options>);

The following example shows how we created the combo box in Figure 17.15:

String[] days =
 {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"};
daysBox = new JComboBox(days);

17-M4402.indd 72617-M4402.indd 726 12/17/07 4:28:40 PM12/17/07 4:28:40 PM

Apago PDF Enhancer

When a combo box fi rst displays, the fi rst item in its array is selected. So in the above example, Monday is

selected when the combo box fi rst displays.

Methods

Here are the API headings and descriptions for the more popular JComboBox methods:

public void setVisible(boolean flag)

 Makes the combo box visible or invisible.

public void setEditable(boolean flag)

 Makes the combo box’s top portion editable or non-editable.

public Object getSelectedItem()

 Returns the item that is currently selected.

public void setSelectedItem(Object item)

 Changes the currently selected item to the item that’s passed in.

public int getSelectedIndex()

 Returns the index of the item that is currently selected.

Figure 17.15 Select-a-day combo box example

Initial display:

After a user clicks the down arrow:

After a user clicks Thursday:

down arrow

17.14 JcomboBox Component 727

17-M4402.indd 72717-M4402.indd 727 12/17/07 4:28:40 PM12/17/07 4:28:40 PM

Apago PDF Enhancer

728 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

public void setSelectedIndex(int index)

 Changes the currently selected item to the item at the given index position.

public void addActionListener(ActionListener listener)

 Adds a listener to the combo box.

The setVisible and addActionListener methods should look familiar by now. The other

methods are new and require further explanation. Let’s start with setEditable. If a combo box calls

setEditable(true), the combo box’s top portion becomes editable. That means that a user can enter

text into it the same as if it were a text box component. Additionally, the user still can use the pull-down

portion of the combo box the same as always. Combo boxes are named “combo” for “combination” because

they are capable of implementing a mixture of components—part pull-down list, part text box. But most

programmers don’t bother with the combo box’s text-box capability. They usually stick with the default be-

havior, where the top portion of the combo box is not editable.

The getSelectedItem method returns the currently selected item. For example, here’s how you can

retrieve the currently selected daysBox item and store it in a favoriteDay variable:

String favoriteDay = (String) daysBox.getSelectedItem();

What’s the point of the (String) cast operator? The getSelectedItem method is defi ned to have a

return type of Object. Therefore, if there were no cast operator, the compiler would see an Object at the

right being assigned into a String at the left, and that would generate a compile-time error. But there is a

cast operator, so the compiler sees a String at the right being assigned into a String at the left. And that

makes the compiler happy.

If you’d like to programmatically select an option from a combo box, call setSelectedItem and pass

in the item that you want to select. For example, to select Friday from the daysBox component, do this:

daysBox.setSelectedItem("Friday");

Normally, you’ll call setSelectedItem with an argument that matches one of the combo box’s items.

But that’s not always the case. If you’d like to clear a combo box so that no options are selected, call

setSelectedItem(null). If you call setSelectedItem with a different item (not null and not a

combo box item), then nothing happens. Well, actually, nothing happens if it’s a standard combo box. But if

it’s an editable combo box, then the passed-in item gets put into the editable top portion of the combo box.

There are two ways to access items in a combo box—use item names or use item indexes. The

 getSelectedItem and setSelectedItem methods use item names. The getSelectedIndex

and setSelectedIndex methods use item indexes. For example, note how this code fragment calls

setSelectedIndex with an index value of 2:

String[] days =
 {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"};
daysBox = new JComboBox(days);
daysBox.setSelectedIndex(2);

Since combo boxes store their items in arrays, combo box item indexes are 0-based. Therefore, in the above

code fragment, Monday is 0, Tuesday is 1, and Wednesday is 2. Thus, daysBox. setSelectedIndex(2)

changes the selected item to Wednesday.

Now for a short brain-teaser. Given the above code fragment, how can you change the cur-

rently selected day to the next day? Do arithmetic with the index, like this:

daysBox.setSelectedIndex(daysBox.getSelectedIndex() + 1);

Indexing
helps you
process
data.

Indexing
helps you
process
data.

17-M4402.indd 72817-M4402.indd 728 12/17/07 4:28:41 PM12/17/07 4:28:41 PM

Apago PDF Enhancer

17.15 Job Application Example

In this section, we put into practice what you’ve learned in the previous three sections. We present a com-

plete program that uses check boxes, radio buttons, and a combo box. The program implements a job ap-

plication form. If the user enters values that are indicative of a good employee, the program displays an

encouraging message (“Thank you for your application submission. We’ll contact you after we process your

information.”). Study the sample session in Figure 17.16 to get a better idea of what we’re talking about.

See the JobApplication program listing in Figures 17.17a, 17.17b, and 17.17c. You should peruse the en-

tire program on your own, particularly the listener code, but we’ll focus only on the most diffi cult part—the

layout design.

We spent quite a bit of time on the JobApplication’s layout in order to get things to look right. Ini-

tially, we thought a simple one-column GridLayout manager would work. We added one component per

cell, and we added three fi ller components (empty JLabels) to create gaps between the four different input

areas. We thought that plan would yield the layout shown in Figure 17.18’s left picture. Unfortu-

nately, when we entered the code, the actual program yielded the layout shown in Figure 17.18’s

right picture. There are three problems with the actual layout—the Submit button is too wide,

the top two gaps are missing, and the components are touching the left boundary. We’ll now

discuss how to fi x those problems.

Problem 1: Submit Button is Too Wide

As you may recall from earlier in the chapter, buttons expand if they’re added directly to a GridLayout cell.

That explains the wide Submit button. You can fi x the problem by embedding a FlowLayout

panel into the Submit button’s area, and then adding the Submit button to the FlowLayout

panel. With a FlowLayout manager, buttons don’t expand; they keep their natural size.

Problem 2: Top Two Gaps are Missing

In our fi rst cut of the program, we used this code to implement the fi ller components:

JLabel filler = new JLabel();
...
add(filler);
...
add(filler);
...
add(filler);

We instantiated only one label and reused it three times. You like to reuse, right? Well, the layout manager

doesn’t. The layout manager sees only one object and so it makes only one cell. It does not

make cells for the fi rst two add(filler) calls; it only makes a cell for the last

add(filler) call. You can fi x the problem by using three anonymous JLabel objects

like this:

add(new JLabel());
...
add(new JLabel());
...
add(new JLabel());

If at fi rst
you don’t
succeed,
try again.

If at fi rst
you don’t
succeed,
try again.

Embed
another
manager.

Embed
another
manager.

Use separate
objects.
Use separate
objects.

 17.15 Job Application Example 729

17-M4402.indd 72917-M4402.indd 729 12/17/07 4:28:41 PM12/17/07 4:28:41 PM

Apago PDF Enhancer

730 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Figure 17.16 Sample session for the JobApplication program

1. Initial display: 2. After the user enters good values:

3. After the user clicks Submit:

4. After the user enters not-so-good values: 5. After the user clicks Submit:

17-M4402.indd 73017-M4402.indd 730 12/17/07 4:28:42 PM12/17/07 4:28:42 PM

Apago PDF Enhancer

Figure 17.17a JobApplication program—part A

/***
* JobApplication.java
* Dean & Dean
*
* This program implements job application questions
* with check boxes, radio buttons, and a combo box.
***/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*; // for EmptyBorder

public class JobApplication extends JFrame
{
 private static final int WIDTH = 250;
 private static final int HEIGHT = 300;

 private JCheckBox java; // Java Sun certified?
 private JCheckBox helpDesk; // help-desk experience?
 private JCheckBox coffee; // good coffee maker?
 private JRadioButton goodCitizen, criminal;
 private JComboBox salary;
 private String[] salaryOptions =
 {"$20,000-$59,000", "$60,000-$100,000", "above $100,000"};
 private JButton submit; // submit the application

 //**

 public JobApplication()
 {
 setTitle("Job Application Form");
 setSize(WIDTH, HEIGHT);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end JobApplication constructor

 //**

 // Create components and add to window.

Problem 3: Components Are Touching Left Boundary

By default, containers have no margins. So if a container has left-aligned components, those components

touch the container’s left boundary. That explains the left-boundary ugliness in Figure 17.18’s right picture.

You can add a margin by calling setBorder like this:

<container >.setBorder(new EmptyBorder(<top>, <left>, <bottom>, <right>));

In calling setBorder, you’ll need to pass a border object as an argument. There are several different types

of border classes. You should use the EmptyBorder class because an empty border produces a margin,

 17.15 Job Application Example 731

17-M4402.indd 73117-M4402.indd 731 12/17/07 4:28:42 PM12/17/07 4:28:42 PM

Apago PDF Enhancer

732 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Figure 17.17b JobApplication program—part B

 private void createContents()
 {
 ButtonGroup radioGroup;

 // Note:
 // The most straightforward implementation is to use a
 // GridLayout manager for the JFrame and add all components
 // to its cells. That doesn't work well because:
 // 1) Can't apply a margin to JFrame.
 // 2) The button panel is taller than the other components.

 // Need windowPanel for south-panel separation & outer margin
 JPanel windowPanel = new JPanel(new BorderLayout(0, 10));
 windowPanel.setBorder(new EmptyBorder(10, 10, 10, 10));

 // centerPanel holds all components except button
 JPanel centerPanel = new JPanel(new GridLayout(11, 1));

 // Need a panel for button so it can be center aligned
 JPanel southPanel = new JPanel(new FlowLayout());

 java = new JCheckBox("Java Sun certified");
 helpDesk = new JCheckBox("help-desk experience");
 coffee = new JCheckBox("able to make good coffee");
 goodCitizen = new JRadioButton("law-abiding citizen");
 criminal = new JRadioButton("violent criminal");
 radioGroup = new ButtonGroup();
 radioGroup.add(goodCitizen);
 radioGroup.add(criminal);
 salary = new JComboBox(salaryOptions);
 submit = new JButton("Submit");
 submit.addActionListener(new ButtonListener());

 centerPanel.add(new JLabel("Skills (check all that apply):"));
 centerPanel.add(java);
 centerPanel.add(helpDesk);
 centerPanel.add(coffee);
 centerPanel.add(new JLabel()); // filler
 centerPanel.add(new JLabel("Community standing:"));
 centerPanel.add(goodCitizen);
 centerPanel.add(criminal);
 centerPanel.add(new JLabel()); // filler
 centerPanel.add(new JLabel("Salary requirements:"));
 centerPanel.add(salary);

 windowPanel.add(centerPanel, BorderLayout.CENTER);
 southPanel.add(submit);
 windowPanel.add(southPanel, BorderLayout.SOUTH);
 add(windowPanel);
 } // end createContents

17-M4402.indd 73217-M4402.indd 732 12/17/07 4:28:42 PM12/17/07 4:28:42 PM

Apago PDF Enhancer

Figure 17.17c JobApplication program—part C

 //**

 // Read entered values and display an appropriate message.

 private class ButtonListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e)
 {
 if (
 (java.isSelected() || helpDesk.isSelected()
 || coffee.isSelected()) &&

 (goodCitizen.isSelected()) &&
 (!salary.getSelectedItem().equals("above $100,000")))
 {
 JOptionPane.showMessageDialog(null,
 "Thank you for your application submission.\n" +
 "We'll contact you after we process your information.");
 }
 else
 {
 JOptionPane.showMessageDialog(null,
 "Sorry, no jobs at this time.");
 }
 } // end actionPerformed
 } // end class ButtonListener

 //**

 public static void main(String[] args)
 {
 new JobApplication();
 }
} // end class JobApplication

which is what you want. In calling the EmptyBorder constructor, you’ll need to pass in pixel values for

the widths of the border’s top, left, bottom, and right sides. For example, this constructor call passes in

10-pixel values for all four of the border’s sides:

windowPanel.setBorder(new EmptyBorder(10, 10, 10, 10));

Be aware that the EmptyBorder class is in the javax.swing.border package. So import that pack-

age if you want to create an empty border.

You might think that the setBorder method works for all containers. Not so. It works for the JPanel

container, but not the JFrame container. Therefore, you need to add a JPanel container to

the JobApplication JFrame window and call setBorder from the JPanel

container.

What type of layout manager is appropriate for the new JPanel container? If you use a GridLayout

manager, that works OK, but not great. With a GridLayout, all rows are the same height. In Figure 17.16,

Use a panel.Use a panel.

 17.15 Job Application Example 733

17-M4402.indd 73317-M4402.indd 733 12/17/07 4:28:43 PM12/17/07 4:28:43 PM

Apago PDF Enhancer

734 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

note how the Submit button is slightly taller than the other components. The Submit button’s added height

provides a visual cue for the button’s importance. To accommodate the button being taller than the other

components, use a BorderLayout manager. Add the button panel to the south region and add all the

other components to the center region. Actually, since the center region allows for only one component, you

need to add the components to a GridLayout panel and then add the GridLayout panel to the center

region.

Document Diffi cult Code

The JobApplication program’s layout design is rather complicated and somewhat non-intuitive. If you ever

write complicated and non-intuitive code, you should document it with detailed comments. If you don’t,

then someone (maybe you) might waste time later in trying to fi gure it out. See all the comments for the

panel declarations in Figure 17.17b. Those comments help to clarify the layout-design code.

17.16 More Swing Components

In this chapter and the previous chapter, you’ve learned quite a bit about the Swing library. Enough to get up

and running for most basic GUI needs. If you decide you want to know more, refer to Sun’s Java API Web

site. In particular, refer to this Web page within Sun’s Java API Web site:

http://java.sun.com/docs/books/tutorial/uiswing/components/componentlist.html

Figure 17.18 Intended versus actual layouts with 13-row by 1-column GridLayout scheme

Intended layout: Actual layout:

Skills (check all that apply):

Community standing:

Salary requirements:

$20,000-$59,000

law-abiding citizen

violent criminal

help-desk experience

able to make good coffee

Submit

Skills (check all that apply):

Community standing:

Salary requirements:

$20,000-$59,000

law-abiding citizen

violent criminal

help-desk experience

Java Sun certified Java Sun certified

able to make good coffee

Submit

17-M4402.indd 73417-M4402.indd 734 12/17/07 4:28:43 PM12/17/07 4:28:43 PM

http://java.sun.com/docs/books/tutorial/uiswing/components/componentlist.html

Apago PDF Enhancer

It contains picture examples of all the standard Swing components and links to more detailed information.

By perusing that Web page now, you’ll know what’s available.

Menus and Scroll Panes

As a fi rst attempt at learning Swing components on your own, we recommend that you look up the

JMenuBar, JMenu, and JMenuItem classes on Sun’s Web site. Those classes allow you to add a menu
bar and menus to the top of a window. Also look up the JScrollPane class. It allows you to create a

scrollable container. See Figure 17.19. It shows a window with a menu bar and a scroll bar. The menu bar

contains two menus—one allows the user to adjust the brightness of the window’s background color and one

Figure 17.19 A reader program that uses a menu bar and a scroll bar to adjust the view

After clicking on the Size menu:

menu bar

(JMenuBar

component)

scroll bar (from

JScrollPane

container)

menu item

(JMenuItem

component)

menu (JMenu component)

⎫
⎬
⎭

⎫⎬⎭

}

⎧
⎪
⎨
⎪
⎩

17.16 More Swing Components 735

17-M4402.indd 73517-M4402.indd 735 12/17/07 4:28:43 PM12/17/07 4:28:43 PM

Apago PDF Enhancer

736 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

Figure 17.20 Code that creates menu bar, menus, and menu items for Figure 17.19’s program

private JMenuBar mBar; // the menu bar
private JMenu menu1, menu2; // the two menus
private JMenuItem mi1, mi2, mi3, mi4; // the four menu items
�
menu1 = new JMenu("Brightness");
menu2 = new JMenu("Size");

mi1 = new JMenuItem("Lighter background");
mi2 = new JMenuItem("Darker background");
mi3 = new JMenuItem("Larger font");
mi4 = new JMenuItem("Smaller font");

mi1.addActionListener(new BrightnessListener());
mi2.addActionListener(new BrightnessListener());
mi3.addActionListener(new SizeListener());
mi4.addActionListener(new SizeListener());

menu1.add(mi1);
menu1.add(mi2);
menu2.add(mi3);
menu2.add(mi4);

mBar = new JMenuBar();
mBar.add(menu1);
mBar.add(menu2);
setJMenuBar(mBar);

allows the user to adjust the font size of the window’s text. The scroll bar is part of what is known as a scroll
pane. The scroll bar allows the user to scroll up and down and view the contents of the entire window.

If you’d like to see Figure 17.19’s program in its entirety, view the ReaderMenu.java fi le on the

book’s Web site. Figure 17.20 shows a portion of that program—the portion that creates the menu bar,

menus, and menu items. And the following statement shows the portion of the program that creates the

scroll pane. More specifi cally, the following statement creates a scroll pane for a text area component and

then adds the scroll pane to the window.

add(new JScrollPane(textArea));

Sliders

For another learn-on-your-own example, we recommend that you look up the JSlider class on Sun’s

Web site. The JSlider class allows you to add a slider component to a window. A slider allows the user to

select a value from a range of values. To select a value, the user drags a “thumb” along a bar of values. See

Figure 17.21. It mimics a lunar eclipse by covering a white circle (the moon) with a gray circle (the earth’s

shadow). When the user drag’s the slider’s thumb right, the shadow moves right. When the user drag’s the

slider’s thumb left, the shadow moves left. The slider uses an event handler to adjust the shadow’s position.

17-M4402.indd 73617-M4402.indd 736 12/17/07 4:28:44 PM12/17/07 4:28:44 PM

Apago PDF Enhancer

Figure 17.21 Four displays of a window that uses a slider to mimic an eclipse

Summary 737

slider thumb slider

{

The following code from the lunar eclipse program shows how to instantiate a slider, set properties, and

add a listener:

slider = new JSlider(SwingConstants.HORIZONTAL, 0, 100, 0);
slider.setMajorTickSpacing(5);
slider.setPaintTicks(true);
slider.addChangeListener(new Listener());

17-M4402.indd 73717-M4402.indd 737 12/17/07 4:28:44 PM12/17/07 4:28:44 PM

Apago PDF Enhancer

738 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

This adds the slider to the current JFrame:

add(slider, BorderLayout.SOUTH);

If you’d like to see Figure 17.21’s program in its entirety, view the EclipseSlider.java fi le on the

book’s Web site.

Summary

Layout managers automate the positioning of components within containers.

The FlowLayout class implements a simple one-compartment layout scheme that allows multiple

components to be inserted into the compartment.

The BorderLayout manager provides fi ve regions/compartments—north, south, east, west, and

 center—in which to insert components.

The SwingConstants interface stores a set of GUI-related constants that are commonly used by

many different GUI programs.

The GridLayout manager lays out a container’s components in a rectangular grid of equal-sized

cells. Each cell can hold only one component.

If you have a complicated window with many components, you might want to compartmentalize them

by storing groups of components in JPanel containers.

To display multiple lines of text, use a JTextArea component.

A JCheckBox component displays a small square with an identifying label. Users click the check box

in order to toggle it between selected and unselected.

A JRadioButton component displays a small circle with a label to its right. If an unselected but-

ton is clicked, the clicked button becomes selected, and the previously selected button in the group

becomes unselected.

A JComboBox component allows the user to select an item from a list of items. JComboBox compo-

nents are called “combo boxes” because they are a combination of a text box (normally, they look just

like a text box) and a list (when the down arrow is clicked, they look like a list).

Review Questions

§17.2 GUI Design and Layout Managers

 1. Layout managers adapt automatically to changes in the size of a container or one of its components. (T / F)
 2. Which package contains layout managers?

§17.3 FlowLayout Manager

 3. How does the FlowLayout manager arrange components?
 4. Write a single statement that gives the current container a fl ow layout with right alignment.

§17.4 BorderLayout Manager

 5. What are the fi ve regions established by the BorderLayout manager?
 6. The sizes of the fi ve regions in a border layout are determined at runtime based on the contents of the four

outer regions. (T / F)
 7. By default, how many components can you put in any one region of a border layout?
 8. Write a single statement that adds a new JLabel with the text “Stop” to the center region of a

BorderLayout manager. The label should be centered within the center region.

•
•

•

•

•

•

•
•

•

•

17-M4402.indd 73817-M4402.indd 738 12/17/07 4:28:45 PM12/17/07 4:28:45 PM

Apago PDF Enhancer

§17.5 GridLayout Manager

 9. When you instantiate a GridLayout manager, you should always specify both the number of rows and
the number of columns. (T / F)

 10. In a grid layout, all cells are the same size. (T / F)

§17.6 Tic-Tac-Toe Example

 11. What happens to the xTurn variable in the Tic-Tac-Toe program if you click the same cell twice?

§17.9 JPanel Class

 12. Why are JPanel containers particularly useful with GridLayout and BorderLayout windows (as
opposed to FlowLayout windows)?

§17.10 MathCalculator Program

 13. In the MathCalculator program’s createContents method, what’s the purpose of the add(new
JLabel()); statement?

§17.11 JTextArea Component

 14. JTextArea components are editable by default. (T / F).
 15. JTextArea components employ line wrap by default. (T / F).

§17.12 JCheckBox Component

 16. What happens if you click a check box that’s already selected?
 17. Provide a statement that creates a check box named attendance. The check box should be pre-selected,

and it should have an “I will attend” label.

§17.13 JRadioButton Component

 18. What happens if you click a radio button that is already selected?
 19. What happens if you click an initially unselected radio button that is a member of a RadioGroup?

§17.14 JComboBox Component

 20. How are combo boxes and radio button groups similar?
 21. What two methods can be called to determine the current selection for a combo box?

§17.15 Job Application Example

 22. The JobApplication program contains the following code fragment. What happens to the program if the
code fragment is omitted?

radioGroup = new ButtonGroup();
radioGroup.add(goodCitizen);
radioGroup.add(criminal);

 23. Provide a statement that adds a 20-pixel blank margin to a JPanel container named panel.

§17.16 More Swing Components

 24. Provide a JSlider constructor call where the minimum value is 0, the maximum value is 50, and the
initial value is 10. Hint: Look up the answer on Sun’s Java API Web site.

Exercises

 1. [after §17.2] What is the default layout manager for a JFrame window?

 2. [after §17.3] With a FlowLayout manager, a button component expands so that it completely fi lls the size
of the region in which it is placed. (T / F)

 Exercises 739

17-M4402.indd 73917-M4402.indd 739 12/17/07 4:28:45 PM12/17/07 4:28:45 PM

Apago PDF Enhancer

740 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

 3. [after §17.4] Provide a complete program that is a modifi cation of Chapter 16’s Greeting program. Your
new program should use a BorderLayout manager (instead of a FlowLayout manager), and it should
generate the following display after a name has been entered. Make the frame size 300 pixels wide and
80 pixels high.

 4. [after §17.4] With a BorderLayout, what happens if the east region is empty? Said another way, which
region(s), if any, expand(s) if the east region is empty?

 5. [after §17.4] Assume you have this program:

import javax.swing.*;
import java.awt.*;

public class BorderLayoutExercise extends JFrame
{
 public BorderLayoutExercise()
 {
 setTitle("Border Layout Exercise");
 setSize(300, 200);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setLayout(new BorderLayout());
 add(new JLabel("Lisa the label"), BorderLayout.NORTH);
 add(new JLabel("LaToya the label"), BorderLayout.CENTER);
 add(new JLabel("Lemmy the label"), BorderLayout.SOUTH);
 setVisible(true);
 } // end BorderLayoutExercise constructor

 //***

 public static void main(String[] args)
 {
 new BorderLayoutExercise();
 }

} // end class BorderLayoutExercise

 (a) Specify the changes you would make to the above code to produce this output:

17-M4402.indd 74017-M4402.indd 740 12/17/07 4:28:46 PM12/17/07 4:28:46 PM

Apago PDF Enhancer

 (b) Specify the changes you would make to the above code to produce this output:

 6. [after §17.5] If a JButton component is directly added to a GridLayout cell, it expands so that it
completely fi lls the size of its cell. (T / F)

 7. [after §17.5] Given the following code fragment, draw a picture that illustrates the buttons’ positions within
the program’s window.

setLayout(new GridLayout(0, 3));
add(new JButton("1"));
add(new JButton("2"));
add(new JButton("3"));
add(new JButton("4"));
add(new JButton("5"));
add(new JButton("6"));
add(new JButton("7"));

 8. [after §17.9] What kind of container should you put into an individual grid layout cell or an individual
border layout region to allow that cell or region to contain more than one component?

 9. [after §17.11] Suppose you’re given a window with two JTextArea components, named msg1 and msg2,
and a JButton component. When clicked, the button swaps the contents of the two text areas. Provide
the code that performs the swap operation. More specifi cally, provide the code that goes inside the below
actionPerformed method:

private class Listener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 ...
 }
}

 10. [after §17.12] Provide a statement that creates a check box named bold. The check box should be
unselected, and it should have a “boldface type” label.

 11. [after §17.12] How can your code determine whether a check box is selected or not?

 12. [after §17.13] Provide a createContents method for a program that displays this window:

 Exercises 741

17-M4402.indd 74117-M4402.indd 741 12/17/07 4:28:46 PM12/17/07 4:28:46 PM

Apago PDF Enhancer

742 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

 The male and female radio buttons should behave in the normal fashion—when one is selected, the
other is unselected. Note that the male button is selected when the window initially displays. Your
createContents method must work in conjunction with this program skeleton:

import javax.swing.*;
import java.awt.*;

public class MaleFemaleRadioButtons extends JFrame
{
 private JRadioButton male;
 private JRadioButton female;

 public MaleFemaleRadioButtons()
 {
 setTitle("Male-Female Radio Buttons");
 setSize(275, 100);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end MaleFemaleRadioButtons constructor

 <The createContents method goes here.>

 public static void main(String[] args)
 {
 new MaleFemaleRadioButtons();
 }
} // end class MaleFemaleRadioButtons

 13. [after §17.14] The JCheckBox, JRadioButton, and JComboBox components are defi ned in what
package?

 14. [after §17.14] Provide a createContents method for a program that initially displays this window:

 When the user clicks the left combo box, this displays:

 When the user clicks the right combo box, this displays:

17-M4402.indd 74217-M4402.indd 742 12/17/07 4:28:46 PM12/17/07 4:28:46 PM

Apago PDF Enhancer

 Your createContents method must work in conjunction with this program skeleton:

import javax.swing.*;
import java.awt.*;
public class ComboBoxExample extends JFrame
{
 private JComboBox daysBox;
 private JComboBox monthsBox;
 private String[] days =
 {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"};
 private String[] months =
 {"January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November",
 "December"};

 public ComboBoxExample()
 {
 setTitle("Combo Box Example");
 setSize(400, 100);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 createContents();
 setVisible(true);
 } // end ComboBoxExample constructor

 <The createContents method goes here.>

 public static void main(String[] args)
 {
 new ComboBoxExample();
 }
} // end class ComboBoxExample

Review Question Solutions

 1. True.

 2. Layout managers are in the java.awt package.

 3. The FlowLayout manager places components left-to-right in a row until it runs out of space, and then it
goes to the next row and does the same thing, and so on.

 Review Question Solutions 743

17-M4402.indd 74317-M4402.indd 743 12/17/07 4:28:46 PM12/17/07 4:28:46 PM

Apago PDF Enhancer

744 Chapter 17 GUI Programming—Component Layout, Additional GUI Components

 4. setLayout(new FlowLayout(FlowLayout.RIGHT));

 5. The fi ve regions of a border layout are North at the top, South at the bottom, and West, Center, and East in a
row between them.

 6. True.

 7. Zero or one.

 8. add(new JLabel("Stop", SwingConstants.CENTER),
 BorderLayout.CENTER);
 or
 add(new JLabel("Stop", SwingConstants.CENTER));

 9. False. Specify both values, for rows and columns, only if you know the number of rows and columns in
your table and the table is completely fi lled in (i.e., there are no empty cells). Otherwise, specify just one
dimension that you’re sure of and specify zero for the other dimension.

 10. True.

 11. Nothing. It does not change value.

 12. JPanel containers are particularly useful with GridLayout and BorderLayout windows because
each compartment in those layouts can store only one component. If you need a compartment to store more
than one component, let that one component be a JPanel container, and put multiple components into the
JPanel container.

 13. The add(new JLabel()); statement adds a dummy component (a blank label) to the bottom-left cell.
The dummy component is necessary because, without it, the xLogPanel would go into the bottom-left
cell, and that’s inappropriate.

 14. True. JTextArea components are editable by default.

 15. False. JTextArea components do not employ line wrap by default.

 16. If you click a check box that’s already selected, the check box becomes unselected.

 17. The following code creates a check box named attendance. The check box is pre-selected, and it has an
“I will attend” label.

JCheckBox attendance = new JCheckBox("I will attend", true);

 18. Nothing. It stays selected.

 19. The clicked button becomes selected and all other buttons in the group become unselected.

 20. Combo boxes and radio button groups are similar in that they both allow the user to select one item from a
list of items.

 21. To determine the current selection for a combo box, call either getSelectedItem or
getSelectedIndex.

 22. If the radioGroup code is omitted from the JobApplication program, the program still compiles and
runs, but the radio buttons operate independently. In other words, clicking one radio button will not cause
the other one to be unselected.

 23. This statement adds a 20-pixel blank margin to a JPanel container named panel:

panel.setBorder(new EmptyBorder(20, 20, 20, 20));

 24. JSlider constructor call:

new JSlider(0, 50, 10);

17-M4402.indd 74417-M4402.indd 744 12/17/07 4:28:47 PM12/17/07 4:28:47 PM

Apago PDF Enhancer

745

1
Unicode/ASCII Character Set

with Hexadecimal Codes

Java assigns a unique two-byte numerical code value to each character in accordance with the Unicode

 standard. Since two bytes contain a total of 16 bits, this provides a total of 216 � 65,536 different codes.

Chapter 11’s Figure 11.4 describes or shows those characters whose code values lie in the range 0 to decimal

127. In this particular range of code values, Unicode code values coincide exactly with ASCII code values.

(ASCII � American Standard Code for Information Interchange.)

Hexadecimal numbers use digits that can have one of 16 values. The allowed values are 0 through 9 and

A through F. The A through F values represent the numbers 10 through 15. Figure 11.4 used decimal num-

bers to represent Unicode (and ASCII) code values in the range 0 through decimal 127. However, sometimes

in this numerical range, and especially at higher numerical values, it’s more convenient to use hexadecimal

numbers to represent Unicode values as well as memory locations. To give you a better feeling for how

hexadecimal counting works, and to help you fi nd the hexadecimal values for characters in the important

ASCII Character Set, Figure A1.1a displays the ASCII characters with hexadecimal numbers shown along-

side the corresponding decimal numbers.

Notice that the hexadecimal code values for the numerical characters ‘1’ through ‘9’ are hexadecimal

31 through hexadecimal 39. Now look at the rest of the ASCII characters in Figure A1.1b. Notice that the

code value for the fi rst uppercase letter, A, is hexadecimal 41, and the code value for the fi rst lowercase let-

ter, a, is hexadecimal 61. To change case, you can simply add or subtract hexadecimal 20. The people who

assigned these codes were “thinking” in hex!

In the columns under “Unicode,” Figures A1.1a and A1.1b also show the Unicode escape sequence for

each character. These are what you use if you want to embed within a String any character or symbol

that cannot be typed in directly. Each of these Unicode escape sequences puts a \u prefi x on a four-place

hexadecimal version of the code number. (If necessary, we pad the raw hexadecimal number left with zeros

to increase the total number of hexadecimal digits to four.) This format enables the standard Unicode escape

sequence to accommodate up to a total of 164 � 65,536 distinct characters or symbols.

Of course there are many other characters and symbols. For more discussion and information, read the

material in optional Section 11.12, GUI Track: Unicode. Figure 11.12 displays a sampling of some of the

other available characters and symbols. That display was generated by the program in Figure 11.11, and you

can modify that program to display the characters for any other range of codes. For all the details on the

Unicode standard, see:

http://www.unicode.org/

A P P E N D I X

18-M4402-APP.indd 74518-M4402-APP.indd 745 12/17/07 4:29:01 PM12/17/07 4:29:01 PM

http://www.unicode.org/

Apago PDF Enhancer

code value
character

code value
character

dec hex Unicode dec hex Unicode

 0 0 \u0000 null 32 20 \u0020 space

 1 1 \u0001 start of heading 33 21 \u0021 !

 2 2 \u0002 start of text 34 22 \u0022 "

 3 3 \u0003 end of text 35 23 \u0023 #

 4 4 \u0004 end of transmission 36 24 \u0024 $

 5 5 \u0005 enquiry 37 25 \u0025 %

 6 6 \u0006 acknowledge 38 26 \u0026 &

 7 7 \u0007 audible bell 39 27 \u0027 '

 8 8 \u0008 backspace 40 28 \u0028 (

 9 9 \u0009 horizontal tab (\t) 41 29 \u0029)

10 A \U000A line feed (\n) 42 2A \U002A *

11 B \U000B vertical tab 43 2B \U002B +

12 C \U000C form feed 44 2C \U002C ,

13 D \u000D carriage return (\r) 45 2D \u002D -

14 E \u000E shift out 46 2E \u002E .

15 F \u000F shift in 47 2F \u002F /

16 10 \u0010 data link escape 48 30 \u0030 0

17 11 \u0011 device control 1 49 31 \u0031 1

18 12 \u0012 device control 2 50 32 \u0032 2

19 13 \u0013 device control 3 51 33 \u0033 3

20 14 \u0014 device control 4 52 34 \u0034 4

21 15 \u0015 negative acknowledge 53 35 \u0035 5

22 16 \u0016 synchronous idle 54 36 \u0036 6

23 17 \u0017 end transmission block 55 37 \u0037 7

24 18 \u0018 cancel 56 38 \u0038 8

25 19 \u0019 end of medium 57 39 \u0039 9

26 1A \u001A substitute 58 3A \u003A :

27 1B \u001B escape 59 3B \u003B ;

28 1C \u001C fi le separator 60 3C \u003C <

29 1D \u001D group separator 61 3D \u003D =

30 1E \u001E record separator 62 3E \u003E >

31 1F \u001F unit separator 63 3F \u003F ?

Figure A1.1a Unicode/ASCII character codes—part A

746 Appendix 1 Unicode/ASCII Character Set with Hexadecimal Codes

18-M4402-APP.indd 74618-M4402-APP.indd 746 12/17/07 4:29:02 PM12/17/07 4:29:02 PM

Apago PDF Enhancer

 Appendix 1 Unicode/ASCII Character Set with Hexadecimal Codes 747

code value
character

code value
character

dec hex Unicode dec hex Unicode

64 40 \u0040 @ 96 60 \u0060 `

65 41 \u0041 A 97 61 \u0061 a

66 42 \u0042 B 98 62 \u0062 b

67 43 \u0043 C 99 63 \u0063 c

68 44 \u0044 D 100 64 \u0064 d

69 45 \u0045 E 101 65 \u0065 e

70 46 \u0046 F 102 66 \u0066 f

71 47 \u0047 G 103 67 \u0067 g

72 48 \u0048 H 104 68 \u0068 h

73 49 \u0049 I 105 69 \u0069 i

74 4A \U004A J 106 6A \U006A j

75 4B \U004B K 107 6B \U006B k

76 4C \U004C L 108 6C \U006C l

77 4D \u004D M 109 6D \u006D m

78 4E \u004E N 110 6E \u006E n

79 4F \u004F O 111 6F \u006F o

80 50 \u0050 P 112 70 \u0070 p

81 51 \u0051 Q 113 71 \u0071 q

82 52 \u0052 R 114 72 \u0072 r

83 53 \u0053 S 115 73 \u0073 s

84 54 \u0054 T 116 74 \u0074 t

85 55 \u0055 U 117 75 \u0075 u

86 56 \u0056 V 118 76 \u0076 v

87 57 \u0057 W 119 77 \u0077 w

88 58 \u0058 X 120 78 \u0078 x

89 59 \u0059 Y 121 79 \u0079 y

90 5A \u005A Z 122 7A \u007A z

91 5B \u005B [123 7B \u007B {

92 5C \u005C \ 124 7C \u007C |

93 5D \u005D] 125 7D \u007D }

94 5E \u005E ^ 126 7E \u007E ~

95 5F \u005F _ 127 7F \u007F delete

Figure A1.1b Unicode/ASCII character codes—part B

18-M4402-APP.indd 74718-M4402-APP.indd 747 12/17/07 4:29:03 PM12/17/07 4:29:03 PM

Apago PDF Enhancer

This Web site contains two one-page charts that categorize the world’s major alphabets, symbols, and

punctuation. You can select the alphabet or type of symbol you want and obtain pictures and code numbers

for all the characters in that category.

In addition to the \u Unicode escape sequence prefi x, there are two other hexadecimal annotations

you should know. Sometimes you’ll want to use the hexadecimal form of a literal number in a declaration

or mathematical formula, because it might be easier or more self-documenting than the decimal form. To

do this, just apply 0x as a prefi x to the raw hexadecimal number. For example, to tell the compiler you are

writing a hexadecimal number rather than a decimal number, you would write 0x41 to specify the number

whose decimal value is 65. If you want to display the hexadecimal form of an integer constant or variable

using the printf method, use %x for the number’s placeholder in the format string. If what you are repre-

senting is a literal, its form in the data list doesn’t matter. It could be either a decimal or a hexadecimal with

the 0x prefi x. For example, suppose you want an output like this:

Output:

The hexadecimal value for 10 is a

You could generate it with this code:

System.out.printf("The hexadecimal value for 10 is %x\n", 10);

Notice that the hexadecimal output happens to be a lowercase ‘a.’ Case doesn’t matter.

748 Appendix 1 Unicode/ASCII Character Set with Hexadecimal Codes

18-M4402-APP.indd 74818-M4402-APP.indd 748 12/17/07 4:29:04 PM12/17/07 4:29:04 PM

Apago PDF Enhancer

749

A P P E N D I X

Operator Precedence

The operator groups at the top of the table have higher precedence than the operator groups at the bottom

of the table. All operators within a particular precedence group have equal precedence. If an expression has

two or more same-precedence operators, then within that expression, those operators execute from left to

right or right to left as indicated in the group heading.

2

Figure A2.1a Operator precedence—part A

1. grouping and access (left to right):
 (<expression>) expressions

 (<list>) arguments or parameters

 [<expression>] indices

 <type-or-member>.<type-or-member> member access

2. unary operations (right to left):
 x++ post increment

 x-- post decrement

 ++x pre increment

 --x pre decrement

 +x plus

 -x minus

 !x logical inversion

 ~ bit inversion

 new <classname> object instantiation

 (<type>) x cast

3. multiplication and division (left to right):
 x * y multiplication

 x / y division

 x % y remainder

4. addition and subtraction; concatenation (left to right):
 x + y addition

 x - y subtraction

 s1 + s2 string concatenation

5. bit shift operations (left to right):
 x << n arithmetic shift left (*2n)

 x >> n arithmetic shift right (*2-n; same MS bit)

 x >>> n logical shift right (MS bit � 0)

18-M4402-APP.indd 74918-M4402-APP.indd 749 12/17/07 4:29:04 PM12/17/07 4:29:04 PM

Apago PDF Enhancer

Figure A2.1b Operator precedence—part B

 5. range comparisons (left to right):
 x < y less than

 x <= y less than or equal to

 x >= y greater than or equal to

 x > y greater than

 <object> instanceof <class> conforms to

 6. equality comparisons (left to right):
 x == y equal

 x != y not equal

 7. unconditional boolean or bit AND (left to right):
 x & y both

 8. unconditional boolean or bit EXCLUSIVE OR (left to right):
 x ^ y either but not both

 9. unconditional boolean or bit OR (left to right):
 x | y either or both

 10. conditional boolean AND (left to right):
 x && y both (if not resolved)

 11. conditional boolean OR (left to right):
 x || y either or both (if not resolved)

 12. terniary conditional evaluation (right to left):
 x ? y : z if x is true, y, else z

 13. assignment (right to left):
 y = x y ← x
 y += x y ← y + x
 y -= x y ← y - x
 y *= x y ← y * x
 y /= x y ← y / x
 y %= x y ← y % x
 y <<= n y ← y << n
 y >>= n y ← y >> n
 y >>>= n y ← y >>> n
 y &= x y ← y & x
 y ^= x y ← y ^ x
 y |= x y ← y | x

750 Appendix 2 Operator Precedence

18-M4402-APP.indd 75018-M4402-APP.indd 750 12/17/07 4:29:05 PM12/17/07 4:29:05 PM

Apago PDF Enhancer

751

A P P E N D I X

Java Reserved Words

Java reserved words are words you cannot use for the name of anything you defi ne because they already

have special meanings. Most of these words are keywords—they play particular roles in a Java program. An

asterisk indicates that the word in question is not used in the body of this text.

Figure A3.1a Reserved words—part A

abstract—not realizable. This is a modifi er for classes and methods and an implied modifi er for interfaces.

An abstract method is not defi ned. An abstract class contains one or more abstract methods. All

of an interface’s methods are abstract. You cannot instantiate an interface or abstract class.

assert*—claim something is true. Anywhere in a program, you can insert statements saying assert
<boolean-expression>; Then if you run the program with the option, enableassertions, the JVM

throws an AssertionError exception when it encounters an assert that evaluates to false.

boolean—a logical value. This primitive data type evaluates to either true or false.

break—jump out of. This command causes execution in a switch statement or loop to jump forward to the

fi rst statement after the end of that switch statement or loop.

byte—8 bits. This is the smallest primitive integer data type. It is the type stored in binary fi les.

case—a particular alternative. The byte, char, short, or int value immediately following the case

keyword identifi es one of the switch alternatives.

catch—capture. A catch block contains code that is executed when code in a preceding try block

throws an exception, which is a special object that describes an error.

char—a character. This is a primitive data type that contains the integer code number for a text character or

any other symbol defi ned in the Unicode standard.

class—a complex type. This block of Java code defi nes the attributes and behavior of a particular type of

object. Thus, it defi nes a data type that is more complex than a primitive data type.

const*—a constant. This archaic term is superceded by final.

continue*—skip to end. This command causes execution in a loop to skip over the remaining statements in

the loop’s code and go directly to the loop’s continuation condition.

3

18-M4402-APP.indd 75118-M4402-APP.indd 751 12/17/07 4:29:05 PM12/17/07 4:29:05 PM

Apago PDF Enhancer

Figure A3.1b Reserved words—part B

default—otherwise. This is usually the last case in a switch statement. It represents all other cases

(cases not identifi ed in previous case blocks).

do—execute. This is the fi rst keyword in a do-while loop. The continuation condition appears in parentheses

after the while keyword at the end of the loop.

double—twice as much. This primitive fl oating-point data type requires twice as much storage, 8 bytes, as

the older fl oating-point data type, float, which requires only 4 bytes.

else—otherwise. This keyword may be used in a compound if statement as the header (or part of the

header) of a block of code that executes if the previous if condition is not satisfi ed.

enum*—enumeration. This special type of class defi nes a set of named constants, which are implicitly

static and final.

extends—derives from. This class heading extension specifi es that the class being defi ned will inherit all

members of the class named after the extends keyword.

false—no. This is one of the two possible boolean values.

final—last form or value. This modifi er keeps classes and methods from being redefi ned, and it says a

named value is a constant.

finally—last operation. This may be used after try and catch blocks to specify operations that need to

be performed after a catch processes an exception.

float—fl oating point. This is an older fl oating-point data type. It requires 4 bytes.

for—the most versatile type of loop. This keyword introduces a loop whose header specifi es and controls the

range of iteration.

goto*—jump to. This deprecated command specifi es an unconditional branch. Don’t use it.

if—conditional execution. This keyword initiates execution of a block of code if an associated condition is

satisfi ed.

implements—defi nes. This class heading extension specifi es that the class being defi ned will defi ne all

methods declared by the interface named after the implements keyword.

import—bring in. This tells the compiler to make subsequently identifi ed classes available for use in the

current program.

752 Appendix 3 Java Reserved Words

18-M4402-APP.indd 75218-M4402-APP.indd 752 12/17/07 4:29:06 PM12/17/07 4:29:06 PM

Apago PDF Enhancer

Figure A3.1c Reserved words—part C

inner—internal. When followed by the keyword class, this specifi es that the class defi ned in the

subsequent code block be nested inside the current class.

instanceof—conforms to. This boolean operator tests whether the object on the left is an instance of

the class on the right or an ancestor of that class.

int—integer. This is the standard integer data type. It requires 4 bytes.

interface—what an outsider sees. A Java interface declares a set of methods but does not defi ne them.

A class that implements an interface must defi ne all the methods declared in that interface. An

interface can also defi ne static constants. Another kind of interface just conveys a particular message

to the compiler.

long—long integer. This is the longest integer data type. It requires 8 bytes.

native—indigenous. Native code is code that has been compiled into the (low-level) language of the local

processor. Sometimes called machine code.

new—fresh instance of. This Java command calls a class constructor to create a new object at runtime.

null—nothing. This is the value in a reference variable that does not refer to anything.

package—an associated group. In Java, this is a container for a group of related classes that a programmer

can import.

private—locally controlled. This modifi er of methods and variables makes them accessible only from

within the class in which they are declared.

protected—kept from public exposure. This is a modifi er for methods and variables that makes them

accessible only from within the class in which they are declared, descendants of that class, or other classes in

the same package.

public—accessible to everyone. This modifi er of classes, methods, and variables makes them accessible

from anywhere. A Java interface is implicitly public.

return—go and perhaps send back to. This command causes program control to leave the current method

and go back to the point that immediately follows the point from which the current method was called.

A value or reference may be sent back too.

short—small integer. This integer data type requires only 2 bytes.

static—always present. This modifi er for methods and variables gives them class scope and continuous

existence.

 Appendix 3 Java Reserved Words 753

18-M4402-APP.indd 75318-M4402-APP.indd 753 12/17/07 4:29:06 PM12/17/07 4:29:06 PM

Apago PDF Enhancer

Figure A3.1d Reserved words—part D

strictfp*—strict fl oating point. This modifi er for a class or method restricts fl oating-point precision to

the Java specifi cation and keeps calculations from using extra bits of precision that the local processor might

provide.

super—parent or progenitor. This is a reference to a constructor or method that would be inherited by the

object’s class if it were not overridden by a new defi nition in that class.

switch—select an alternative. This causes program control to jump forward to the code following the case

that matches the condition supplied immediately after the switch keyword.

synchronized*—This modifi er for methods prevents simultaneous execution of a particular method by

different threads. It avoids corruption of shared data in a multithreading operation.

this—the current object’s. The this dot reference distinguishes an instance variable from a local variable

or parameter, or it says the object calling another method is the same as the object that called the method in

which the calling code resides, or it yields initiation of object construction to another (overloaded) constructor

in the same class.

throw*—generate an exception. This command followed by the name of an exception type causes an

exception to be thrown. It enables a program to throw an exception explicitly.

throws—might throw an exception. This keyword followed by the name of a particular type of exception

may be appended to a method heading to transfer the catch responsibility to the method that called the

current method.

transient*—may be abandoned. This variable modifi er tells Java serializing software that the value in the

modifi ed variable should not be saved to an object fi le.

true—yes. This is one of the two boolean values.

try—attempt. A try block contains code that might throw an exception plus code that would be skipped if

an exception were thrown.

void—nothing. This describes the type of a method that does not return anything.

volatile*—erratic. This keyword keeps the compiler from trying to optimize a variable that might be

asynchronously altered.

while—as long as. This keyword plus a boolean condition heads a while loop, or it terminates a do-

while loop.

754 Appendix 3 Java Reserved Words

18-M4402-APP.indd 75418-M4402-APP.indd 754 12/17/07 4:29:06 PM12/17/07 4:29:06 PM

Apago PDF Enhancer

755

A P P E N D I X 4
Packages

As you may recall, a package is a group of related classes. In this appendix, we describe the packages Sun

created for organizing its library of Java API classes. We then show you how to create your own packages

for programmer-defi ned classes. Finally, we introduce you to some nifty advanced options.

Java API Packages

When you download a version of Java from Sun, you get the API package hierarchies as part of the Java 2

Software Development Kit (SDK). Installation of that “kit” automatically makes the Java API packages part

of your Java environment.

Java API classes are organized in package hierarchies. Figure A4.1 shows part of these Java API pack-

age hierarchies. Notice that this shows two hierarchies, one with the java package at its root, and another

Figure A4.1 Abbreviated Java API package hierarchies

java

java.applet java.awt java.io java.lang java.text java.util

java.awt.geomjava.awt.imagejava.awt.event

javax

javax.swingjavax.imageio

javax.swing.border javax.swing.event javax.swing.filechooser

18-M4402-APP.indd 75518-M4402-APP.indd 755 12/17/07 4:29:06 PM12/17/07 4:29:06 PM

Apago PDF Enhancer

with the javax package at its root. This picture includes all of the API packages we import at some point

in this book, but the packages shown in Figure A4.1 are only a small fraction of all the packages in the API

package hierarchies.

This hierarchical organization helps people locate particular classes they need to use. It’s OK for sev-

eral different classes to have the same class name if they are all in different packages. So encapsulating

small groups of classes into individual packages allows a given class name to be reused in different contexts.

Also, each package protects the protected members of the classes it includes from access from outside

that package.

To make the classes in a particular package available to a program you are writing, you import that

package, as in these statements, which import the java.util and java.awt packages:

import java.util.*;
import java.awt.*;

Figure A4.1 includes some packages at a third level down from the top. Consider, for example, the java.
awt.event package under java.awt in the java tree. When we import the java.awt package in the

statement above, this provides access to all classes in the java.awt package itself, but it does not also pro-

vide access to packages under it. In other words it does not also import the java.awt.event package.

If you also need access to classes in the java.awt.event package, you also must import that package

explicitly by adding this third import statement:

import java.awt.event.*;

Custom Packages

The Java language permits you to create your own packages for organizing programmer-defi ned classes into

package hierarchies. This involves the following steps:

First, design a package structure that makes sense for the program you are creating. Then create a di-

rectory structure that corresponds exactly to that package structure. (Later, we’ll show how to create this

 directory structure automatically, but the manual process we’re describing now is easier to understand.)

Figure A4.2a shows part of a package structure that could be used for this book’s examples. Figure A4.2b

shows the corresponding directory structure. Note “IPWJ” at the top of both fi gures. IPWJ is an acronym

for our book’s title, Introduction to Programming with Java.
Whenever you compile a class you want to be in a package, insert this line at the top of the class, above

all statements, even the import statements:

package <package-path>

The package path is a sub-directory path, except it uses a dot (.) instead of a slash (/ or \). The fi rst name

in the package path should be the name of the root of the package hierarchy and the name of the highest di-

rectory in the part of the directory structure that corresponds to it. The last name in the package path should

be the name of the directory that will contain the class being defi ned. So, for example, if you are defi ning

a Car class and you intend for the Car.class bytecode fi le to be in the IPWJ.chapter13.things

package shown in Figure A4.2a, the fi rst statement in your Car.java fi le should be:

package IPWJ.chapter13.things;

When you compile your Car.java source code, by default the generated Car.class bytecode goes into

the current directory, and the package statement above does not by itself change that. Thus, if you choose to

write your source code in the ...IPWJ/chapter13/things directory, the Car.class fi le goes im-

mediately into this directory also. If you want this directory to include both source code and bytecode, you’re

756 Appendix 4 Packages

18-M4402-APP.indd 75618-M4402-APP.indd 756 12/17/07 4:29:07 PM12/17/07 4:29:07 PM

Apago PDF Enhancer

done. If you want source code and bytecode to be in separate directories, you’ll probably decide to write your

source code in a separate source-code directory and then move the generated bytecode to the directory that

matches its specifi ed package. (Later, we’ll show how you can ask the compiler to move it for you.)

For the Java compiler to import a class that’s in a separate package, that class must be accessible through

a class path that has been established previously in your operating system’s environment. There may be

more than one class path. On a Windows machine, you can see all registered CLASSPATH’s by opening

a command prompt window and entering the command, set. (In UNIX, the command is env.) After

CLASSPATH, you’ll see a list of several class path specifi cations, with semicolons between them. (In UNIX

the separators are colons.) Typically, the fi rst class path in the list is a single dot. That means “current di-

rectory.” Suppose myJava is a root directory in the C: drive, and suppose the IPWJ directory shown in

Figure A4.2b above is in the myJava directory. To make classes in the IPWJ package hierarchy accessible

to the Java compiler, your computer’s CLASSPATH must include the following path:

C:/myJava.

Thus, the full pathname of the Car.class fi le in the things directory shown in Figure A4.2b would be:

C:/myJava/IPWJ/chapter13/things/Car.class

Figure A4.2a A typical programmer-defi ned package structure

IPWJ.chapter13

IPWJ

IPWJ.chapter13.things IPWJ.chapter13.creatures IPWJ.chapter13.labor

.

IPWJ

. . .

things

creatures

labor

chapter13

Figure A4.2b Directory structure that corresponds to package structure in Figure A4.2a

 Appendix 4 Packages 757

18-M4402-APP.indd 75718-M4402-APP.indd 757 12/17/07 4:29:08 PM12/17/07 4:29:08 PM

Apago PDF Enhancer

In a Windows environment, the appropriate way to add a class path to the operating system’s environment

is to go to the Control Panel icon and click System. Then under the Advanced tab click Environment
 Variables. . . .Then select CLASSPATH and click Edit. . . .Add a semicolon to the end of the list, and then

enter your desired new class path, for example, C:/myJava. In UNIX, use the setenv command, like

this:

setenv classpath .:/myJava

Some Advanced Options

Optionally, you can ask the Java compiler to put the compiled .class fi le into your desired destination di-

rectory automatically. To do this, invoke the compiler from a command prompt with the -d option, like this:

javac -d <class-path> <source-code>

For our Car example, this would be:

javac -d E:/myjava Car.java

The full pathname of the directory that gets the compiled code is <class-path>/<package-path>. If the

destination directory exists already, the generated .class fi le goes into that directory. If it does not exist,

the compiler automatically creates the required directory and then inserts the generated .class fi le into it.

Thus, if you plan to use this option, you do not need to create the directory structure in Figure A4.2b explic-

itly. You can let the compiler do it for you as you go along. Typical IDE’s also provide ways to do this.

If you are developing a Java application for use by others, you’ll probably want to organize your appli-

cation’s classes into a package structure and store the .class fi les in a corresponding directory structure,

as previously described. When you have fi nished developing your application, it’s straightforward to use a

program like WinZip to compress all your application’s fi les into a single fi le, perhaps called IPWJ.zip.

After downloading this .zip fi le, your customer can insert this .zip fi le anywhere in his or her directory

structure and then establish a class path to that .zip fi le which includes the name of the .zip fi le itself as

the fi nal element in the class path. For example, if the IPWJ.zip fi le is in your customer’s C:/myJava

directory, your customer’s CLASSPATH should include this class path:

C:/myJava/IPWJ.zip

This enables your customer’s Java compiler to access all of your package classes while they are still in their

compressed form. Notice that the class path to a .zip fi le should include the .zip fi le itself, but if you

unzip the fi le, the class path should go only to the containing directory.

Of course, this also works the other way. If you acquire a Java application developed by someone else, it

will probably have its classes pre-packaged and compressed into a .zip fi le (or some other type of archive).

In that case, you may be able to put that compressed .zip fi le wherever you want in your computer’s direc-

tory structure, and then just add a class path to that .zip fi le, with the .zip fi lename as the fi nal element

in that class path.

758 Appendix 4 Packages

18-M4402-APP.indd 75818-M4402-APP.indd 758 12/17/07 4:29:08 PM12/17/07 4:29:08 PM

Apago PDF Enhancer

759

A P P E N D I X 5
Java Coding-Style Conventions

This appendix describes Java coding-style conventions. Most of these guidelines are widely accepted. How-

ever, alternative guidelines do exist in certain areas. The coding conventions presented in this document are

for the most part a simplifi ed subset of the coding conventions presented on Sun’s Java Code Conventions

Web page:

http://java.sun.com/docs/codeconv/

If you have a style question that is not addressed in this document, refer to Sun’s Web page.

While reading the following sections, refer to the example program in the last section. You can mimic

the style in that example.

Prologue

 1. Put this prologue section at the top of the fi le:

 /***
 * <filename>
 * <programmer's name>
 *
 * <file description>
 ***/

 2. Include a blank line below the prologue section.

Section Delimiting

 1. After state variable defi nitions and between constructor and method defi nitions, enter a line of stars,

like this:

 //***

 Leave a blank line above and below this line of stars.

 2. Within a large constructor or method, insert blank lines between logical sections of code. For example,

unless the loops are small and intimately related, enter a blank line between the end of one loop and the

beginning of another loop.

18-M4402-APP.indd 75918-M4402-APP.indd 759 12/17/07 4:29:08 PM12/17/07 4:29:08 PM

http://java.sun.com/docs/codeconv/

Apago PDF Enhancer

Embedded Comments

 1. Provide comments for code that might be confusing to someone reading your program for the fi rst time.

Assume the reader understands Java syntax.

 2. Do not comment code that is obvious. For example, this comment is unnecessary and therefore exhibits

poor style:

for (int i=0; i<10; i++) // for loop header

 3. Write your programs with clear, self-documenting code in order to reduce the need for comments. For

example, use mnemonic (descriptive) identifi er names.

 4. Always include a single space between the // and the comment text.

 5. The comment’s length determines its format.

If the comment will occupy more than one line, use complete lines, like this:

 // This is a block comment. Use it for comments that
 // occupy more than one line. Note the alignment for /'s
 // and words.

If a comment is to reside on a line by itself, position it above the line of code it describes. Indent

the // the same as the described line of code. Include a blank line above the comment line.

Here’s an example:

 // Display error if invalid file name.
 if (fileName == null || filename.getName().equals(""))
 {
 JOptionPane.showMessageDialog(this, fileErrorMsg);
 }

Many comments are small enough to fi t in space to the right of the code they describe. Whenever

possible, all such comments should start in the same column, as far to the right as possible. The

following example demonstrates proper positioning for short comments.

 float testScores = new float[80]; // index is student number
 int student;

 ...
 while (testScores[student] >= 0) // negative index quits
 {
 testScores[student] = score;
 ...

 6. Provide an end comment for each closing brace that is a signifi cant number of lines (fi ve or more?) down

from its matching opening brace. For example, note the // end for row and // end getSum

comments below:

•

•

•

This comment

just adds clutter.

760 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 76018-M4402-APP.indd 760 12/17/07 4:29:09 PM12/17/07 4:29:09 PM

Apago PDF Enhancer

 public double getSum(float table[][], int rows, int cols)
 {
 double sum = 0.0;

 for (int row=0; row<rows; row++)
 {
 for (int col=0; col<cols; col++)
 {
 sum += table[row][col];
 } // end for col
 } // end for row

 return sum;
 } // end getSum

Variable Declarations

 1. Normally, you should declare only one variable per line. For example:

float avgScore; // average score on the test
int numOfStudents; // number of students in the class

 Exception:

 If several variables are intimately related, it is acceptable to declare them together on one line. For

example:

int x, y, z; // coordinates for a point

 2. Normally, you should include a comment for each variable declaration line.

 Exception:

 Don’t include a comment for names that are obvious (i.e., studentId) or standard (i.e., i for a for

loop index variable, ch for a character variable).

Braces That Surround One Statement

 1. For if, else, for, while, and do constructs that execute only one statement, it’s good practice to

treat that one statement as though it were a compound statement and enclose it in braces, like this:

 for (int i=0; i<scores.length; i++)
 {
 sumOfSquares += scores[i] * scores[i];
 }

 2. Exception:

 If it would be illogical to add another statement to the construct at a later time, you may omit the

curly braces when the omission improves readability. For example, this is acceptable for an experienced

programmer:

 for (; num>=2; num--)
 factorial *= num;

 Appendix 5 Java Coding-Style Conventions 761

18-M4402-APP.indd 76118-M4402-APP.indd 761 12/17/07 4:29:09 PM12/17/07 4:29:09 PM

Apago PDF Enhancer

Placement of Braces

 1. Place opening and closing braces on lines by themselves such that the braces are aligned with the line

above the opening brace. For do loops, put the while condition on the same line as the closing brace.

 2. Examples:

 public class Counter
 {
 <fi eld-and-method-declarations>
 }

 if (...)
 {
 <statements>
 }
 else if (...)
 {
 <statements>
 }
 else
 {
 <statements>
 }

 for/while (...)
 {
 <statements>
 }

 do
 {
 <statements>
 } while (...);

 switch (...)
 {
 case ... :
 <statements>
 break;
 case ... :
 <statements>
 break;
 ...
 default:
 <statements>
 }

762 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 76218-M4402-APP.indd 762 12/17/07 4:29:09 PM12/17/07 4:29:09 PM

Apago PDF Enhancer

 int doIt()
 {
 <statements>
 }

 3. Brace alignment is a contentious issue. Sun’s Java Code Conventions Web site recommends putting the

opening curly brace at the end of the previous line. This is one place where this document’s conventions

diverge from Sun’s conventions. We recommend that you put the opening curly brace on its own line

because that helps make compound statements stand out.

 4. For empty-bodied constructors, place the opening and closing braces on the same line and separate

them with a space, like this:

 public Counter()
 { }

The else if Construct

 1. If the body of an else is just another if, form an else if construct (put the else and the if on

the same line). See the above brace placement section for an example of a proper else if construct.

Alignment and Indentation

 1. Align all code that is logically at the same level. See the above brace placement section for examples of

proper alignment.

 2. Indent all code that is logically inside other code. That is, for nested logic, use nested indentation. For

example:

 for (...)
 {
 while (...)
 {
 <statements>
 }
 }

 3. You may use an indentation width of two to fi ve spaces. Once you choose an indentation width, you

should stick with it. Use the same indentation width throughout your program.

 4. When a statement is too long to fi t on one line, write it on multiple lines such that the continuation lines

are indented appropriately. If the long statement is followed by a single statement that is logically inside

of the long statement, use braces to enclose the single statement. Use either of the following techniques

to indent continuation lines:

Indent to a column position such that similar entities are aligned. In the example below, the entities

that are aligned are the three method calls:

while (bucklingTest(expectedLoad, testWidth, height) &&
 stressTest(expectedLoad, testWidth) &&
 slendernessTest(testWidth, height))
{
 numOfSafeColumns++;
}

•

 Appendix 5 Java Coding-Style Conventions 763

18-M4402-APP.indd 76318-M4402-APP.indd 763 12/17/07 4:29:09 PM12/17/07 4:29:09 PM

Apago PDF Enhancer

Indent the same number of spaces as all other indents. For example:

while (bucklingTest(expectedLoad, testWidth, height) &&
 stressTest(expectedLoad, testWidth) &&
 slendernessTest(testWidth, height))
{
 numOfSafeColumns++;
}

Multiple Statements on One Line

 1. Normally, each statement should be put on a separate line.

 Exception:

 If statements are intimately related and very short, it is acceptable (but not required) to put them to-

gether on one line. For example:

a++; b++; c++;

 2. For assignment statements that are intimately related and use the same assigned value, it is acceptable

(but not required) to combine them into one assignment statement. For example:

x = y = z = 0;

Spaces within a Line of Code

 1. Never put a space at the left of a semicolon.

 2. Parentheses:

Never enter a space on the inside of enclosing parentheses.

If the entity to the left of a left parenthesis is an operator or a construct keyword (if, switch, etc.),

then precede the parenthesis with a space.

If the entity to the left of a left parenthesis is a method name, then do not precede the parenthesis

with a space.

For example:

if ((a == 10) && (b == 10))
{
 printIt(x);
}

 3. Operators:

Normally, an operator should be surrounded by spaces. For example:

if (response == "avg")
{
 y = (a + b) / 2;
}

•

•

•

•

•

764 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 76418-M4402-APP.indd 764 12/17/07 4:29:10 PM12/17/07 4:29:10 PM

Apago PDF Enhancer

Special cases:

Complex expressions:

— Within an inner component of a complex expression, do not surround the inner component’s

operators with spaces.

— Two common occurrences of complex expressions are conditional expressions and for loop

headers. See the examples below.

Dot operator—no spaces at its left or right.

Comma operator—no space at its left.

Unary operators—no space between unary operator and its associated operand.

For example:

if (zeroMinimum)
{
 x = (x<0 ? 0 : x);
}

while (list1.row != list2.row)
{
 <statements>
}

for (int i=0,j=0; i<=bigI; i++,j++)
{
 <statements>
}

Shortcut Operators

 1. Use increment and decrement operators instead of their equivalent longer forms. For example:

 Do not use Use this

x = x + 1 x++ or ++x (depending on the context)

x = x - 1 x-- or --x (depending on the context)

 2. Use compound assignments instead of their equivalent longer forms. For example:

 Do not use Use this

x = x + 5 x += 5
x = x * (3 + y) x *= 3 + y

Naming Conventions

 1. Use meaningful names for your identifi ers.

 2. For named constants, use all uppercase letters. If there are multiple words, use underscores to separate

the words. For example:

public static final int SECONDS_IN_DAY = 86400;
private final int ARRAY_SIZE;

•

�

�

�

�

 Appendix 5 Java Coding-Style Conventions 765

18-M4402-APP.indd 76518-M4402-APP.indd 765 12/17/07 4:29:10 PM12/17/07 4:29:10 PM

Apago PDF Enhancer

 3. For class names (and their associated constructors), use uppercase for the fi rst letter and lowercase for

all other letters. If there are multiple words in the class name, use uppercase for the fi rst letter of all

words. For example:

public class InnerCircle
{
 public InnerCircle(radius)
 {
 <constructor-body>
 }

 4. For all identifi ers other than constants and constructors, use all lowercase letters. If there are multiple

words in the identifi er, use uppercase for the fi rst letter of all words that follow the fi rst word. For

example:

float avgScore; // average score on the test
int numOfStudents; // number of students in the class

Methods and Constructor Organization

 1. Normally, each method defi nition should be preceded by a prologue section. The method prologue

contains:

a blank line

a line of *’s

a blank line

a description of the purpose of the method

a blank line

parameter descriptions (for non-obvious parameters)

a blank line

 Ideally, all method parameters should use descriptive enough names so that the purpose of each param-

eter is inherently obvious. However, if this is not the case, then include a list of parameters and their

descriptions in a method prologue above the method heading. For example, in a tic-tac-toe program, a

method that handles a player’s move would be relatively complicated and would require a method pro-

logue like this:

 //***

 // This method prompts the user to enter a move, validates the
 // entry, and then assigns that move to the board. It also checks
 // whether that move is a winning move.
 //
 // Parameters: board - the tic-tac-toe board/array
 // player - holds the current player ('X' or 'O')

 public void handleMove(char[][] board, char player)
 {

 Assuming you describe instance and class variables when you declare them, you should not provide

prologues for “trivial” accessors, mutators, and constructors that just read or write instance and class

•

•

•

•

•

•

•

766 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 76618-M4402-APP.indd 766 12/17/07 4:29:10 PM12/17/07 4:29:10 PM

Apago PDF Enhancer

variables. On the other hand, if a mutator performs validation on a parameter prior to assigning it to its

associated instance variable, then it is not trivial, and you should include a prologue with it. The same

reasoning applies to a constructor. A simple-assignment constructor should not have a prologue. A vali-

dation constructor should have a prologue.

 2. In the interest of grouping similar things together, you should omit asterisk lines between trivial con-

structors, and you should omit asterisk lines between mutators and accessors.

 Assume that a class contains two trivial constructors, several mutator and accessor methods, and two

other simple methods. Here’s the framework for such a class:

 <class-heading>

 {
 <instance-variable-declarations>

 //***

 <trivial-constructor-defi nition>

 <trivial-constructor-defi nition>

 //***

 <mutator-defi nition>

 <mutator-defi nition>

 <accessor-defi nition>

 <accessor-defi nition>

 //***

 <simple-method-defi nition>

 //***

 <simple-method-defi nition>
 }

 In the above framework, note that there are no descriptions for trivial constructors, accessors, or muta-

tors, or for simple methods. Note also that there is a line of asterisks above the fi rst mutator, but not

above the subsequent mutator and accessors. Those omissions help to make a program more readable

by grouping similar things together. Also note that there are no comments above each of the two simple

methods at the bottom of the class, but there are lines of asterisks.

 3. Place local variable declarations immediately below the method heading. Do not place local variable

declarations within the executable code.

 Exception: Declare a for loop index variable within its for loop header.

 Appendix 5 Java Coding-Style Conventions 767

18-M4402-APP.indd 76718-M4402-APP.indd 767 12/17/07 4:29:10 PM12/17/07 4:29:10 PM

Apago PDF Enhancer

Class Organization

 1. Each of your classes may contain the following items (in the following order):

 a) class prologue section

 b) import statements

 c) constant class variables

 d) non-constant class variables

 e) instance variables

 f) abstract methods

 g) constructors

 h) instance methods

 i) class methods

 2. Normally you should place a main method and any of its helper methods in its own separate driver

class. But it’s sometimes appropriate to include a short main method within the class it drives as an

embedded testing tool. Put such a method at the end of the class defi nition.

Sample Java Program

/***
* Student.java
* Dean & Dean
*
* This class handles processing of a student's name.
***/

import java.util.Scanner;

public class Student
{
 private String first = ""; // student's first name
 private String last = ""; // student's last name

 //**

 public Student()
 { }

 // This constructor verifies that each passed-in name starts
 // with an uppercase letter and follows with lowercase letters.

 public Student(String first, String last)
 {
 setFirst(first);
 setLast(last);
 }

Figure A5.1a Student class, used to illustrate coding conventions—part A

768 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 76818-M4402-APP.indd 768 12/17/07 4:29:10 PM12/17/07 4:29:10 PM

Apago PDF Enhancer

Figure A5.1b Student class, used to illustrate coding conventions—part B

 //**

 // This method verifies that first starts with an uppercase
 // letter and contains lowercase letters thereafter.

 public void setFirst(String first)
 {
 // [A-Z][a-z]* is a regular expression. See API Pattern class.
 if (first.matches("[A-Z][a-z]*"))
 {
 this.first = first;
 }
 else
 {
 System.out.println(first + " is an invalid name.\n" +
 "Names must start with an uppercase letter and have" +
 " lowercase letters thereafter.");
 }
 } // end setFirst

 //**

 // This method verifies that last starts with an uppercase
 // letter and contains lowercase letters thereafter.

 public void setLast(String last)
 {
 // [A-Z][a-z]* is a regular expression. See API Pattern class.
 if (last.matches("[A-Z][a-z]*"))
 {
 this.last = last;
 }
 else
 {
 System.out.println(last + " is an invalid name.\n" +
 "Names must start with an uppercase letter and have" +
 " lowercase letters thereafter.");
 }
 } // end setLast

 //**

 // Print the student's first and last names.

 public void printFullName()
 {
 System.out.println(first + " " + last);
 } // end printFullName
} // end class Student

 Appendix 5 Java Coding-Style Conventions 769

18-M4402-APP.indd 76918-M4402-APP.indd 769 12/17/07 4:29:11 PM12/17/07 4:29:11 PM

Apago PDF EnhancerFigure A5.2 StudentDriver class, used with the Student class in Figures A5.1a and A5.1b.

/***
* StudentDriver.java
* Dean & Dean
*
* This class acts as a driver for the Student class.
***/

public class StudentDriver
{
 public static void main(String[] args)
 {
 Student s1; // first student
 Student s2; // second student

 s1 = new Student();
 s1.setFirst("Adeeb");
 s1.setLast("Jarrah");
 s2 = new Student("Heejoo", "Chun");
 s2.printFullName();
 } // end main
} // end class StudentDriver

770 Appendix 5 Java Coding-Style Conventions

18-M4402-APP.indd 77018-M4402-APP.indd 770 12/17/07 4:29:11 PM12/17/07 4:29:11 PM

Apago PDF Enhancer

771

A P P E N D I X

Javadoc

Appendix 5 describes a programming style that’s optimized for code presentation in an introductory text-

book and students writing relatively simple programs. Most of the suggestions there carry over to profes-

sional programming practice. But there are some notable exceptions. In professional programming you need

to provide interface information about already-compiled classes like the documentation Sun provides for its

Java API classes. This appendix shows how to embed interface information in your Java source code so that

a special program called javadoc can extract it, convert it into HTML, and display it like Sun displays its

description of the Java API.

The javadoc executable comes in the same directory as the javac and java executables, so if you

can run javac and java, you can run javadoc also. To run javadoc, at a command prompt, enter this

command:

javadoc -d <output-directory> <source-fi les>

The -d <output-directory> option (“d” means “destination”) causes the output to go to another directory.

If you omit this -d option, by default the output goes to the current directory, but that’s not a good idea,

because javadoc creates many fi les that would clutter up the current directory. You can put documenta-

tion for more than one class in the same directory. Use spaces to separate multiple source-fi le names with

spaces.1

Suppose you want to generate interface documentation on the Student class whose source code is

presented in Figure A5.1 in Appendix 5. Assuming you are currently in the directory that contains the

source code, and assuming that you want javadoc’s output to go to a subdirectory called docs, here’s

what the command would look like:

javadoc -d docs Student.java

To see the output, open a Web browser like Windows Explorer, navigate to the docs fi le, and click on

index.html. Figures A6.1 shows the top part of the interface document that javadoc creates—the

“Summary” information. This interface document contains an impressive amount of information—but not

quite everything we need. For example, it doesn’t include the comment in the last line of the prologue that

describes the class in general, it doesn’t include the comment that describes the two-parameter constructor,

and it doesn’t include the comments that describe the three methods.

To enable javadoc to extract this other information from source code, we need for all interface in-

formation to be located immediately above the heading of whatever it is describing. Also, we need for this

1 To see other options and other argument possibilities, enter javadoc by itself.

6

18-M4402-APP.indd 77118-M4402-APP.indd 771 12/17/07 4:29:11 PM12/17/07 4:29:11 PM

Apago PDF Enhancer

information to be enclosed in a javadoc block comment that begins with a single forward slash followed

by two asterisks and ends with a single asterisk followed by a single forward slash, like this:

/** <extractable-information> */

Since Figure A5.1 has an import statement between the general prologue and the class heading, we must

move our general comment out of the general prologue and put it into a javadoc block comment located

just above the class heading. Similarly, we must put individual constructor and method interface informa-

tion into javadoc block comments located just above their respective headings. There is some fl exibility.

The extractable information in one of these javadoc block comments does not need to be on just one line.

Also, if you wish, you may put the opening /** and the closing */ on lines above and below the text, as

shown in Figure A6.2.

Figure A6.1 Top part of javadoc output for Student class defi ned in Figure A5.1

772 Appendix 6 Javadoc

18-M4402-APP.indd 77218-M4402-APP.indd 772 12/17/07 4:29:12 PM12/17/07 4:29:12 PM

Apago PDF Enhancer

With these changes implemented in the Student.java code, Figure A6.3 shows the top part of what

javadoc generates. If you compare this with Figure A6.1, you’ll see that Figure A6.3 includes the general

comment for the whole class and the special comment for the two-parameter constructor. We also changed

the rest of the code so that Student_jd has /** ... */ javadoc block comments above the method

headings too. Therefore, the javadoc output also includes special comments for each method. The con-

structor and method comments also appear in the “Detail” parts of the output display, which is below what

you see in Figures A6.1 and A6.3.

Within a /** ... */ javadoc comment block, javadoc also recognizes several special tags,
which enable it to extract other kinds of information. For a complete description, see:

http://java.sun.com/j2se/javadoc/

Figure A6.4 contains an abbreviated list of javadoc tags.

The most important tags are the @param and the @return tags. Figure A6.5 shows a class originally

defi ned in Figure 13.11 but with its comments modifi ed for javadoc. The functionality of this class is

Figure A6.2 Top part of Figure A5.1’s Student class, modifi ed to accommodate javadoc

/***
* Student_jd.java
* Dean & Dean
***/

import java.util.Scanner;

/** This class handles processing of a student's name. */

public class Student_jd
{
 private String first = ""; // student's first name
 private String last = ""; // student's last name

 //**

 public Student_jd()
 { }

 /**
 This constructor verifies that each passed-in name starts with
 an uppercase letter and follows with lowercase letters.
 */

 public Student_jd(String first, String last)
 {
 setFirst(first);
 setLast(last);
 }

single-line javadoc comment

multiple-line javadoc comment

Appendix 6 Javadoc 773

18-M4402-APP.indd 77318-M4402-APP.indd 773 12/17/07 4:29:12 PM12/17/07 4:29:12 PM

http://java.sun.com/j2se/javadoc/

Apago PDF Enhancer

Figure A6.4 Abbreviated list of javadoc tags

Description of a constructor or method parameter:

 @param <parameter-name> <explanation>

Description of a return value:

 @return <explanation>

Description of an exception that might be thrown:

 @throws <exception_type> <explanation>

Hyperlink reference to another documented item:

 @see <package-name>.<class-name>
 @see <package-name>.<class-name>#<method-name>(<type1>,...)
 @see <package-name>.<class-name>#<variable-name>

774 Appendix 6 Javadoc

Figure A6.3 Top part of javadoc output for modifi ed Student class

general comment

comment

comment

comments

18-M4402-APP.indd 77418-M4402-APP.indd 774 12/17/07 4:29:13 PM12/17/07 4:29:13 PM

Apago PDF Enhancer

exactly the same as that defi ned in Figure 13.11. But this version enables several javadoc features. Notice

how the general class description has been moved from the prologue into a separate javadoc comment

block immediately above the class heading. In the javadoc comment block above the constructor there

are two tagged parameter descriptions. In the javadoc comment block above the method there is a tagged

return value description.

Suppose that the current directory contains source code for the Employee class copied from

Figure 13.10, and it also contains the source code for the Salaried_jd class shown in A6.5. Then sup-

pose we open a Command Prompt window and enter the following command:

javadoc -d docs Employee.java Salaried_jd.java

Figure A6.5 Salaried class from Figure 13.11 modifi ed to enable javadoc

tagged comments

moved from prologue

/***
* Salaried_jd.java
* Dean & Dean
***/

/**
This class implements a salaried employee.
It has same functionality as the Salaried class in Chapter 13.
*/

public class Salaried_jd extends Employee
{
 private double salary;

 //**

 /**
 @param name person's name
 @param salary annual salary in dollars
 */

 public Salaried_jd(String name, double salary)
 {
 super(name);
 this.salary = salary;
 } // end constructor

 //**

 /** @return half month's pay in dollars */

 public double getPay()
 {
 return this.salary / 24;
 } // end getPay
} // end class Salaried_jd

tagged comment

⎫
⎬
⎭

Appendix 6 Javadoc 775

18-M4402-APP.indd 77518-M4402-APP.indd 775 12/17/07 4:29:14 PM12/17/07 4:29:14 PM

Apago PDF Enhancer

In the right panel, near the top, you can see the documentation of Salaried_jd’s inheritance from

Employee. In the Salaried_jd documentation, Employee is colored and underlined in several places.

These are links, and if you click on any of them, the display switches immediately to the Employee class’s

documentation. In Figure A6.5, our general comment had two sentences, and both of these sentences appear

in the general comment in Figure A6.6a. Notice that the constructor and method summary blocks do not

contain any comments. The @param and @return tags do not produce any summary-block output. If we

had included text in the javadoc comment block above the constructor or method heading in Figure A6.5,

only the fi rst sentence of that text (the “summary” sentence) would appear in the corresponding summary

block in Figure A6.6a.

776 Appendix 6 Javadoc

Figure A6.6a javadoc output for javadoc-commented Salaried class—part A

link to superclass

everything in general comment

This creates interface documentation for both classes and outputs that combined documentation to the docs
subdirectory. Figure A6.6a shows what you’ll see if you open a web browser, navigate to the docs direc-

tory, click on index.html, and select Salaried_jd in the left panel under “All Classes.”

18-M4402-APP.indd 77618-M4402-APP.indd 776 12/17/07 4:29:14 PM12/17/07 4:29:14 PM

Apago PDF Enhancer

Figure A6.6b javadoc output for javadoc-commented Salaried class—part B

 Appendix 6 Javadoc 777

Now suppose you use the scroll bar on the right to scroll down. This displays what you see in

Figure A6.6b. Notice that the “Detail” blocks do display the tagged parameter and return information

supplied in javadoc comment blocks above the constructor and method headings in Figure A6.5. If you

had included text in a javadoc comment block preceding the constructor or method heading in Figure

A6.5, all of this text would appear in the corresponding “Detail” block in Figure A6.6b. Finally, notice that

javadoc also tells us that the getPay method defi ned in Salaried_id overrides a getPay method

defi ned in Employee.

18-M4402-APP.indd 77718-M4402-APP.indd 777 12/17/07 4:29:15 PM12/17/07 4:29:15 PM

Apago PDF Enhancer

778 Chapter 15 Files

A P P E N D I X

778

7
UML Diagrams

The Unifi ed Modeling Language (UML) is a descriptive language that helps program designers organize the

subject matter of a prospective object-oriented program, and it provides high-level documentation of both

structure and behavior. It’s independent of any particular programming language, and it doesn’t compile

into an executable program. It’s just an organizational tool. It was developed by the “Three Amigos”—

Grady Booch, James Rumbaugh, and Ivar Jacobson, at Rational Software Corp, which is now part of IBM.

Currently it is maintained by the non-profi t Object Management Group (OMG) consortium.

UML specifi es many different kinds of visualizing diagrams.1 In this appendix, we’ll focus on just two

of them—activity diagrams (which depict behavior) and class diagrams (which depict structure). When

UML describes behavior, arrows point to what happens next. When UML describes structure, arrows point

to what provides support, and this is opposite to the direction of “information fl ow.” So in the following

discussion, be prepared for a switch in arrow directionality as we move from activity diagrams to class

diagrams.

UML Activity Diagrams

Activity diagrams are UML’s version of the fl owcharts we introduced in Chapter 2. They portray an algo-

rithm’s fl ow of control. Figure A7.1 shows an example of a UML activity diagram for the Happy Birthday

algorithm presented as a fl owchart in Figure 2.9. The solid black circle is an initial state, and the black dot

in a white circle is a fi nal state. The oval boxes represent action states or activities. They contain informal

descriptions of coherent actions. The arrows are transitions. The labels in square brackets next to some of

the transitions are boolean conditions called guards—a particular transition occurs if and only if the ad-

jacent guard value is true. The actions or activities shown in Figure A7.1 represent low-level or primitive

operations.

At a higher level of scale, the activity described in a single oval could represent a whole set of actions.

For example, you could use a single activity symbol to represent the whole looping operation shown in

 Figure A7.1, like this:

print “Happy birthday!”

100 times

1 The full UML specifi cation is a thousand pages long. For a simple 20-page introduction to the UML specifi cation, see:
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/intro_rdn.pdf. For a more complete description, see: Sinan Si
Alhir, UML In a Nutshell, O’Reilly, 1998. Also see: Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unifi ed Software De-
velopment Process, Addison-Welsey, 2005.

18-M4402-APP.indd 77818-M4402-APP.indd 778 12/17/07 4:29:15 PM12/17/07 4:29:15 PM

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/intro_rdn.pdf

Apago PDF EnhancerOr you could use a single activity symbol to represent all the actions performed by a complete method. An

activity symbol is not supposed to represent code itself. It’s supposed to represent the code’s “activity.” Thus,

it’s appropriate to repeat an activity symbol that represents a complete method when you call that method

more than once.

When there is more than one class and perhaps several objects, UML suggests that you organize the

activities into columns, such that all the activities for any one class or object are in a single column dedi-

cated to that class or object. UML calls these separate columns swimlanes. Vertical dashed lines separate

adjacent swimlanes. At the top of the diagram over appropriate swimlane(s), write the class name for the

lane or lanes below. Precede each class name with a colon and put it into a separate rectangular box. When

you mean to instantiate an object, write that object’s name followed by a colon and its class name. Underline

it and put it into a separate rectangular box located just after the activity that creates it.

Figure A7.2 shows the UML activity diagram for the Mouse2 program defi ned in Figures 6.14 and 6.15.

Notice how each activity (oval) is aligned under its own class and (if applicable) its own object. Activities

for the lowest-level objects typically represent complete methods. Activities for higher level objects typically

represent code fragments. Solid black arrows represent control fl ow. They always go from one activity to

another activity. Notice how the control fl ow moves continuously downward.

Dashed black arrows represent data fl ow associated with each activity. They go from an activity to an

object or from an object to an activity but never from one activity to another activity. These dashed lines are

often omitted to reduce clutter, but you can see how they help to show what the activities do. For example,

notice how the dashed line from the “mickey : Mouse2” object to the “print mickey’s attributes” activity

helps explain what happens and allows us to suppress the two “get” method calls embedded in the print

statement:

System.out.printf("Age = %d, weight = %.3f\n",
 mickey.getAge(), mickey.getWeight());

Figure A7.1 UML activity diagram for Happy Birthday algorithm in Figure 2.9

[count < = 100]

[count > 100]

set count to 1

set count to count + 1

print “Happy birthday!

transition

activity

guard

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

Appendix 7 UML Diagrams 779

18-M4402-APP.indd 77918-M4402-APP.indd 779 12/17/07 4:29:16 PM12/17/07 4:29:16 PM

Apago PDF Enhancer

The introduction of constructors in Chapter 7 makes it possible to include the “set growth rate” activity

within the “create mouse” activity. This would replace the top two swimlane-crossing transitions with a

single transition from the “create mouse” activity to the “input days” activity in the same left-side swimlane.

Minimizing swimlane crossings is a good design goal.

UML Class and Object Diagrams

Starting in Chapter 6 we gradually introduced you to various features of UML class diagrams. UML object

diagrams are similar, except the title (object name followed by a colon followed by class name) is under-

lined—as in the UML activity diagram in A7.2. An object block does not include a methods compartment,

and only those variables of current interest should be listed in the attribute compartment. Object diagrams

are context-dependent snapshots, with attribute values being current values rather than initial values. Class

diagrams have more general application, and from now on we’ll restrict our attention to them.

We’ll use a comprehensive example to summarize most of the features of UML class diagrams pre-

sented throughout the main part of the book. The example we’ll use is the Payroll3 program described in

Section 13.9. Figure A7.3 portrays a fi rst-cut class diagram in which each class is represented by a simple

one-compartment rectangle that contains nothing more than the class name. The solid lines drawn between

related classes are simple association lines. A simple (unadorned) association line implies bi-directional

knowledge—the class at each end knows about the class at the other end. Thus a simple line says dependen-

cies are mutual, but it says nothing else about the nature of the relationship between connected classes.

As you progress in your design thinking, you’ll fl esh out class descriptions, perhaps deciding to make

some of the classes abstract or converting them to interfaces. In addition, you’ll modify many of the

Figure A7.2 UML activity diagram for Mouse2 program in Figures 6.14 and 6.15

Ovals are activities. Rectangles are classes or objects—objects are underlined. Dashed gray vertical lines

separate adjacent swimlanes, with one lane for each class or object. Solid black arrows represent control fl ow.

Dashed black arrows represent data fl ow.

: Mouse2Driver

grow (days)

set growth rate

create mouse

: Mouse2

mickey : Mouse2

print mickey's attributes

input days

classes
object

control fl ow

data fl ow

780 Appendix 7 UML Diagrams

18-M4402-APP.indd 78018-M4402-APP.indd 780 12/17/07 4:29:17 PM12/17/07 4:29:17 PM

Apago PDF Enhancer

association lines by adding special symbols that describe particular types of relationships. In addition, you

might add barbed arrowheads to convert associations from bi-directional to unidirectional and make depen-

dencies go just one way. Unidirectional dependencies are preferable to bi-directional dependencies because

they simplify software management—software changes to one class are less likely to require changes to

other classes.

Figure A7.4 contains a fl eshed-out and modifi ed version of the fi rst-cut UML class diagram in

Figure A7.3. Notice that we italicize the Commission and Employee2 class names. That means they

have at least one abstract method and cannot be instantiated. We also italicize all the abstract meth-

ods they contain. Next, look at the hollow arrowheads, which indicate inheritance. Inheritance arrowheads

on solid lines indicate extension of a class. Inheritance arrowheads on dashed lines indicate implementation

of an interface. The arrowheads point in the direction of generalization—toward the more general entity.

The more specifi c entities know about the more general entities and depend on them. Because of this depen-

dency, changes to ancestor classes or interfaces can force changes to descendant or implementing classes.

On the other hand, since an ancestral class or interface does not know about its descendants, changes in

descendants or implementations never force changes in ancestors or interfaces. Inheritance is automatically

a unidirectional association.

Now look at the composition indicators.2 We chose to show them as (solid diamond) compositions rather

than (hollow diamond) aggregations because the class that instantiates the components (Payroll3) in-

serts anonymous components into its containing array. All the composition lines have multiplicities. These

indicate that there is always exactly one payroll and there could be any number of employees of any of

the four types. Since Hourly2, Salaried2, Commissioned, and SalariedAndCommissioned

all descend from the Employee2 class, we can put instances of all four of these classes into a common

 Employees2 array, as we do in the Payroll3 class defi nition in Figure 13.17.

Finally, look at the barbed arrowheads we have added to the composition association lines. As we said,

all association lines are bidirectional by default, and one design objective is to convert bidirectional associa-

tions into unidirectional associations. The barbed arrowheads on the non-diamond ends of the four compo-

sition lines do that. They say the composition’s components have no knowledge of their container. That’s

appropriate in this case, because this container is just a driver, and many drivers are ephemeral—here today

and gone tomorrow.

Figure A7.4 also includes a dashed association line with a barbed arrow that points to the abstract

class, Employee2. This acknowledges that the local variable called employees “depends on” the

 Employee2 class because the type of its elements is Employees2. The barbed arrow at the Employees2

Figure A7.3 First-cut UML class diagram for Payroll3 program in Section 13.9

Commission Employee2

Commissioned Salaried2 Hourly2

SalariedAndCommissioned Payroll3

2 Notice how the association line between Payroll3 and Commissioned arcs over the association line between
 SalariedAndCommissioned and Salaried2. This UML detail helps distinguish a cross-over from a junction.

 Appendix 7 UML Diagrams 781

18-M4402-APP.indd 78118-M4402-APP.indd 781 12/17/07 4:29:18 PM12/17/07 4:29:18 PM

Apago PDF Enhancer

end of this dashed association line indicates that the association is unidirectional. Payroll3 knows about

Employees2, but Employees2 does not know about Payroll3. Thus, changes to Employees2 might

require changes to Payroll3, but changes to Payroll3 would never require changes to Employees2.

UML uses dashed association lines for parameter and local variable dependencies, and it uses solid associa-

tion lines for instance and class variable dependencies.

As described in the optional section at the end of Chapter 12, UML also uses dashed association lines

to connect an association class to an association between or among other classes. Figure 12.22 shows an as-

sociation line connecting the three classes, SalesPerson2, Customer, and Car. Although we did not

discuss this detail in Chapter 12, the fact that this association line is solid and has no barbed arrowheads at

its ends suggests that each of these three classes has instance variables that refer to particular instances of

the other two classes.

The association class called Sales makes these additional references unnecessary, because the Sales

class can hold all these references itself—in one place. Thus, this extra association class reduces the number

of reference variables. More importantly, it eliminates the need to alter the defi nition of the SalesPerson2

and Car classes when we add a Customer class and a Sale association to the program. To refl ect the fact

that the SalesPerson2, Car, and Customer classes do not need any references to instances of other

Figure A7.4 UML Class diagram for the Payroll3 program

This shows inheritance from classes and implementation of an interface. It also shows composition. Since every

association line in this fi gure has some kind of arrowhead, all its associations are unidirectional. The dashed

association between Payroll3 and Employee2 is a simple dependence. That means the Employee2 type

appears in the declaration of a parameter or local variable somewhere in Payroll3’s code.

* 1

1

**

1

Payroll3

*

1

Employee2

Hourly2

+Hourly(name:String,

 rate : double)

+getPay() : double

+addHours

 (hours : double) : void

+Salaried(name : String,

 salary : double)

+getPay() : double

-salary : double

SalariedAndCommissioned

-hourlyRate : double

-hours : double = 0.0

Salaried2

+main() : void

Commission

+addSales(sales : double) : void

+COMMISSION_RATE: double = 0.10

+Employee(name:String)

+getPay() : double
+printPay(date : int) : void

-name : String

-salary : double

+Salaried(name : String,

 salary : double)

+getPay() : double

Commissioned

+Salaried(name : String,salary : double)

+getPay() : double

-salary : double

782 Appendix 7 UML Diagrams

18-M4402-APP.indd 78218-M4402-APP.indd 782 12/17/07 4:29:19 PM12/17/07 4:29:19 PM

Apago PDF Enhancer

classes in the common association, we put barbed arrowheads on the three ends of the association line that

connects them. This changes Figure 12.22 to what appears in Figure A7.5.3

Notice that Figure A7.5 also includes a composition association between Dealership3 and Sale.

The barbed arrowheads at the Sale and Car ends of their respective composition lines and at the

SalesPerson2 end of its aggregation line say that Dealership3 depends on these other classes. In

other words, Dealership3 has references to instances of the Sale, Car and SalesPerson2 classes,

but not vice versa. In contrast, the aggregation association between Dealership3 and Manager2 does

not have any arrowheads. This says each has a reference to the other.

3 Notice the small diamond at the intersection of the Sale association lines. This UML detail helps distinguish a junction from a
cross-over.

1

*

1

*

1

*1

1

Car

Dealership3

Customer

Person

Sale

Manager2 SalesPerson2

Sale is an

association class.

Barbed arrowheads

on the association

line say all

references are in the

Sale class.

Figure A7.5 Improved version of class diagram in Figure 12.22

An arrowhead on an association line means the adjacent class does not have references to the other classes in

that association.

Appendix 7 UML Diagrams 783

18-M4402-APP.indd 78318-M4402-APP.indd 783 12/17/07 4:29:19 PM12/17/07 4:29:19 PM

Apago PDF Enhancer

784 Chapter 15 Files

A P P E N D I X

784

8
Recursion

To understand this appendix, you need to be familiar with object-oriented programming and arrays. As

such, you need to have read up through Chapter 10.

Recursion is when a method calls itself. What follows is a general approach to solving a task with a

recursive implementation.

First, identify a way to make the problem progressively simpler, and identify a condition, called the

“stopping condition,” that is associated with the simplest version of the problem. Use an if statement to

check for the stopping condition. The if body should contain the solution to the simplest version of the

problem. The else body should contain a call(s) to the same method with an argument value(s) that makes

the problem progressively simpler. Once the method is called, it automatically continues to call itself with

progressively simpler conditions, until its stopping condition is satisfi ed.

When the stopping condition is satisfi ed, the method solves the simplest version of the problem. Then it

returns the simplest problem’s solution to the previous method execution at the next higher level of diffi culty.

That method execution generates the solution to its version of the problem. This process of returning simpler

solutions to previous method executions continues back up to the original method execution, which gener-

ates the solution to the original problem.

Recursion does not add unique functionality—all recursive algorithms can be converted to loop pro-

grams that don’t use recursion. So why use recursion? Because with some problems, a recursive solution is

more straightforward than a looping solution. For example, some mathematical concepts, like the factorial

of a number and the Fibonacci sequence, are defi ned recursively, and they lend themselves well to program-

matic solutions that use recursion. And some games, like the towers of Hanoi and maze traversals, can be

solved best with recursive thinking, and they also lend themselves well to programmatic solutions that use

recursion.

Be aware that there is a downside to recursion. Recursive programs tend to be slow because they gener-

ate lots of function calls and function calls have lots of overhead. Overhead is work that the computer has

to do. For each function call, the computer has to: (1) save the calling module’s local variables, (2) fi nd the

method, (3) make copies of call-by-value arguments, (4) pass the arguments, (5) execute the method, (6) fi nd

the calling module, and (7) restore the calling module’s local variables. Whew! All that work takes time.

That’s why some recursive implementations can be prohibitively slow. For such cases, you should consider

rewriting the solution with a loop implementation.

Find the Factorial of a Number

The factorial of a number n is n! � n * (n-1) * (n-2) * . . . * 2 * 1. This is an easy problem, and we were able

to solve it entirely within the header of an empty for loop in Figure 11.9. So, it’s not really a good candidate

for recursion in practice. But because it is easy, it provides a nice introductory illustration of how recursion

18-M4402-APP.indd 78418-M4402-APP.indd 784 12/17/07 4:29:20 PM12/17/07 4:29:20 PM

Apago PDF Enhancer

works. The way to make this problem simpler is to reduce the value of n, and the stopping condition is when

n � 1. At that point, n! � 1. For any other value of n, we have the relationship:

n! = n * (n-1)!

This formula is the recursive relationship in the calculation of a factorial.

Figure A8.1 contains a Java implementation of the recursive calculation of a factorial. The recursive

method, factorial, is an “if-else” statement. The if condition is the stopping condition, and the else
body includes a recursive method call, in which the method calls itself. When factorial is fi rst called

from main, its parameter value is 5, so the stopping condition is not satisfi ed, and the method calls itself

from within the else body with the argument value 5 minus 1, which equals 4. This recursive method

calling continues until the method parameter equals 1. At that point, the method returns 1 to the previous

 1 /***
 2 * Factorial.java
 3 * Dean & Dean
 4 *
 5 * This program computes the factorial of an integer.
 6 ***/
 7
 8 public class Factorial
 9 {
10 public static void main(String[] args)
11 {
12 System.out.println(factorial(5));
13 } // end main
14
15 //**
16
17 private static int factorial(int n)
18 {
19 int nF; // n factorial
20
21 if (n == 1) // stopping condition
22 {
23 nF = 1;
24 }
25 else
26 {
27 nF = n * factorial(n-1);
28 }
29 return nF;
30 } // end factorial
40 } // end Factorial class

Output:

120

Figure A8.1 Use of recursion to calculate the factorial of an integer

work on returned value

recursive method call

Appendix 8 Recursion 785

18-M4402-APP.indd 78518-M4402-APP.indd 785 12/17/07 4:29:21 PM12/17/07 4:29:21 PM

Apago PDF Enhancer
method execution, where the parameter value was 2. That method execution returns 2 * 1 � 2 to the previ-

ous method execution, where the parameter value was 3, etc., until it gets back to the original method execu-

tion, which returns 5 * 24 � 120, as the value for the argument in the println method called in main.

Figure A8.2 shows a trace of the execution of the program in Figure A8.1. The fi rst call to the

 factorial method is on line 12 in the main method with an argument of 5. The next four calls to the

factorial method is from within the factorial method on line 27 with arguments of 4, 3, 2, and 1. When

the parameter equals one, the stopping condition is satisfi ed, and nF gets assigned the value 1 on line 23. Then,

the returning process commences. The 1 from the fi fth factorial call returns to the fourth factorial

call, which on line 27 multiplies it by 2 and returns 2. This value returns to the third factorial call,

which on line 27 multiplies it by 3 and returns 6. This value returns to the second factorial call, which

on line 27 multiplies it by 4 and returns 24. This value returns to the fi rst factorial call, which on line

27 multiplies it by 5 and returns 120. This value returns to the argument of the println statement in the

main method on line 12, and this statement prints out the computed value. In this problem, all the useful

work is done in the return sequence, after the stopping condition is reached.

We included the local variable nF in the program in Figure A8.1 just to give this trace some substance.

Hopefully, it helps you visualize the recursive calling that drills down to the simplest case and the subse-

quent result accumulation as the nested methods return. In practice, however, experienced programmers

would not include the local nF variable. Instead, they would probably write the factorial method like

that shown in Figure A8.3.

Notice that Figure A8.3’s implementation extends the stopping condition to n == 0 to include the case

of 0!, which is also equal to unity.

Factorial

line#

factorial factorial factorial factorial factorial

n nF n nF n nF n nF n nF output

5

?

12

27 4 ?

27 3 ?

27 2 ?

27 1 ?

23 1

27 2

27 6

27 24

27 120

12 120

Figure A8.2 Trace of Factorial program in Figure A8.1

786 Appendix 8 Recursion

18-M4402-APP.indd 78618-M4402-APP.indd 786 12/17/07 4:29:21 PM12/17/07 4:29:21 PM

Apago PDF Enhancer

Binary Search of an Ordered Array

Now let’s look at another example that is a little harder to implement with loops and makes a better case for

recursion. In this case, you’ll see that all the useful work is done while the algorithm is drilling down to the

stopping condition and the returns just pass the answer back.

Here’s the problem: Suppose you want to fi nd the location of a particular value in an array. This is a

common database operation. If the array is not sorted, the best you can do is use a sequential search and

look at each item, individually. If the array is very short, a sequential search is also the fastest way to search,

because a sequential search is very simple. If the array is long, however, and if it’s relatively stable, it’s often

faster to sort the array and then use a binary search. (Chapter 10 describes sorting algorithms.)

Why is a binary search faster than a sequential search? The number of steps required for a sequen-

tial search equals <array>.length, but the number of steps required in a binary search equals only

log2(<array>.length). For example, if there are one million items in the array, that’s one million steps for

a sequential search but only about 20 steps for a binary search. Even if a typical binary-search step is more

complicated than a typical sequential-search step, the binary search will still be signifi cantly faster when the

array is very long.

It’s appropriate to use recursion to implement a binary search. The way to make the problem simpler is

to divide the array into two nearly equally sized arrays, and continue dividing until each half contains no

more than one element, which is the stopping condition. Figure A8.4 shows our implementation of this al-

gorithm. We have included shaded print statements at appropriate places in the code to show what the code

is doing when it executes. After debugging the program, you would want to remove all of these shaded print

statements.

Figure A8.5 shows a driver that demonstrates the binary search algorithm implemented in Figure A8.4.

In the output section, the shaded areas are outputs generated by the shaded print statements in Figure A8.4. In

this recursion the real work is done while the process is drilling down to the stopping condition. Notice how the

first and last values converge on the match or the place where the match would be if it were there.

The answer is generated at the point when the stopping condition is reached. The nested returns just pass

this answer back. When you remove the shaded print statements from Figure A8.4, the only output you will

see is the un-shaded parts of the output.

private static int factorial(int n)
{
 if (n == 0) // stopping condition
 {
 return 1;
 }
 else
 {
 return n * factorial(n-1);
 }
} // end factorial

Figure A8.3 Cleaner implementation of factorial method

 Appendix 8 Recursion 787

18-M4402-APP.indd 78718-M4402-APP.indd 787 12/17/07 4:29:22 PM12/17/07 4:29:22 PM

Apago PDF Enhancer

/***
* BinarySearch.java
* Dean & Dean
*
* This uses recursion to find the index of a target value in
* an ascending sorted array. If not found, the result is -1.
***/

public class BinarySearch
{
 public static int binarySearch(
 int[] arr, int first, int last, int target)
 {
 int mid;
 int index;

 System.out.printf("first=%d, last=%d\n", first, last);
 if (first == last) // stopping condition
 {
 if (arr[first] == target)
 {
 index = first;
 System.out.println("found");
 }
 else
 {
 index = -1;
 System.out.println("not found");
 }
 }
 else // continue recursion
 {
 mid = (last + first) / 2;
 if (target > arr[mid])
 {
 first = mid + 1;
 }
 else
 {
 last = mid;
 }
 index = binarySearch(arr, first, last, target);
 System.out.println("returnedValue=" + index);
 }
 return index;
 } // end binarySearch
} // end BinarySearch class

Figure A8.4 Implementation of binary search algorithm

Do some work.

Then drill down.

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

788 Appendix 8 Recursion

18-M4402-APP.indd 78818-M4402-APP.indd 788 12/17/07 4:29:22 PM12/17/07 4:29:22 PM

Apago PDF Enhancer

/***
* BinarySearchDriver.java
* Dean & Dean
*
* This drives the BinarySearch class.
***/

public class BinarySearchDriver
{
 public static void main(String[] args)
 {
 int[] array = new int[] {-7, 3, 5, 8, 12, 16, 23, 33, 55};

 System.out.println(BinarySearch.binarySearch(
 array, 0, (array.length - 1), 23));
 System.out.println(BinarySearch.binarySearch(
 array, 0, (array.length - 1), 4));
 } // end main
} // end BinarySearchDriver class

Output:

first=0, last=8

first=5, last=8
first=5, last=6

first=6, last=6

found

returnedValue=6

returnedValue=6

returnedValue=6
6
first=0, last=8

first=0, last=4

first=0, last=2

first=2, last=2

not found

returnedValue=-1

returnedValue=-1

returnedValue=-1
-1

Figure A8.5 Driver for BinarySearch class in Figure A8.4

Reduce range

and drill down.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

Just return

the answer.

⎫
⎬
⎭

Appendix 8 Recursion 789

18-M4402-APP.indd 78918-M4402-APP.indd 789 12/17/07 4:29:23 PM12/17/07 4:29:23 PM

Apago PDF Enhancer

Your monks are to move the tower of disks from location A to location C, always obeying these rules:

Move only one disk at a time.

Never place any disk on top of a smaller disk.

Your task is to come up with a simple algorithm for how to solve this problem. If you had to do it with loops,

it would be a mess. But if you use recursion, it’s reasonably simple. Whenever you want to make a move,

you have a source location, s, you have a destination location, d, and you have a temporary location, t. For

our overall goal, s is A, d is C, and t is B. As you progress toward the fi nal solution, you’ll have subordinate

goals, with different locations for s, d, and t. Here is the general algorithm. It applies to any subset of disks

from disk n down to disk 1, where n is any number from the maximum number of disks down to 1:

Move the group of disks above disk n from s to t.

Move disk n to d.

Move the group of disks previously above disk n from t to d.

Figure A8.7 shows an example of this algorithm in action. (This particular example happens to be the last

few steps in the fi nal solution.) The confi guration on the left is a condition that exists shortly before the goal

is attained. The confi guration on the right is the fi nal condition. The dashed arrows indicate each of the

three operations described above for the simplest non-trivial case where there is only one disk above disk 2.

The trivial case is the stopping condition. It’s when you move the top disk, disk 1, from a source location to a

destination location. An example of this appears as the last step in Figure A8.7. This happens to be the fi nal

stopping condition, but as you’ll see, a program that solves the Towers of Hanoi problem will hit the stop-

ping condition and automatically re-start many times during its execution.

•

•

•

•

•

Figure A8.6 Setup for Towers of Hanoi problem

A

4

B C

3

2

1

disk

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

locations

790 Appendix 8 Recursion

Towers of Hanoi Problem

Now it’s time for a problem that would be very hard to solve with loops—where recursion is unquestionably

the best way to go. Imagine you are a medieval lord who oversees a group of bored monks. To keep them

busy on rainy days, you have them solve the Towers of Hanoi problem. There are three locations “A,” “B,”

and “C.” Initially, there is a stack of disks at location “A.” The smallest disk is on the top, and disk diam-

eter increases as you go down toward the base of the “tower.” Locations “B” and “C” are initially empty.

Figure A8.6 shows what it looks like when the 4-disk-high tower sits at location “A”:

18-M4402-APP.indd 79018-M4402-APP.indd 790 12/17/07 4:29:23 PM12/17/07 4:29:23 PM

Apago PDF Enhancer

last step −2 last step −1 last step

4

1 3

412

3

41

2

3

4

1

2

3

A CB A CB A CB A CB

2

Figure A8.7 Illustration of Towers of Hanoi algorithm in action

 Appendix 8 Recursion 791

Assume the evaluation process is currently in the left frame of Figure A8.7. The next operation calls the

following move method with arguments (2, ‘A’, ‘C’, ‘B’). Within this method, the else clause’s fi rst subordi-

nate move method call uses arguments (1, ‘A’, ‘B’, ‘C’) to implement Figure A8.7’s “last step-2.” The sub-

sequent printf statement implements Figure A8.7’s “last step�1.” The else clause’s second subordinate

move method call uses arguments (1, ‘B’, ‘C’, ‘A’) to implement Figure A8.7’s “last step.”

private static void move(int n, char s, char d, char t)
{
 if (n == 1) // recursive stopping condition
 {
 System.out.printf("move %d from %s to %s\n", n, s, d);
 }
 else
 {
 move(n-1, s, t, d); // source to temporary
 System.out.printf("move %d from %s to %s\n", n, s, d);
 move(n-1, t, d, s); // temporary to destination
 }
}

The initial call to the recursive method should establish the overall goal, which is to move the entire

tower from location A to location C. To get the largest disk to the new location fi rst, you should start with the

maximum possible n. The algorithm says you can do this by moving the subordinate set of disks, 1, 2, and

3 from the source location, A, to the temporary location, B. Then you move disk 4 from the source location,

A, to the destination location C. Then you move the subordinate set of disks 1, 2, and 3 from the temporary

location, B, to the destination location, C, thereby putting them on top of the largest disk, 4. The problem

with this is that the rules don’t permit moving more than one disk at a time. So, to move the subordinate set

of disks, 1, 2, and 3, you must call the same method recursively to move just disks 1 and 2. To do that, you

must call the same method recursively again to move just disk 1.

Of course, the fi rst disk to move is disk 1, but it’s hard to know where to put it. Should you move it to

location B or to location C? The purpose of the program is to tell you exactly how to proceed. The program

is displayed in Figure A8.8. The shaded print statements are not part of the solution, and they should be

omitted from a fi nished product. We inserted them just to help you trace the torturous recursive activity—if

you want to. For each method invocation, they print right after the method is called and just before it returns

to show you the details of what’s happening.

18-M4402-APP.indd 79118-M4402-APP.indd 791 12/17/07 4:29:24 PM12/17/07 4:29:24 PM

Apago PDF Enhancer

792 Appendix 8 Recursion

/***
* Towers.java
* Dean & Dean
*
* This uses a recursive algorithm for Towers of Hanoi problem.
***/

public class Towers
{
 public static void main(String[] args)
 {
 move(4, 'A', 'C', 'B');
 }

 // Move n disks from source s to destination d using temporary t.
 private static void move(int n, char s, char d, char t)
 {
 System.out.printf(
 "call n=%d, s=%s, d=%s, t=%s\n", n, s, d, t);
 if (n == 1) // recursive stopping condition
 {
 System.out.printf("move %d from %s to %s\n", n, s, d);
 }
 else
 {
 move(n-1, s, t, d); // source to temporary
 System.out.printf("move %d from %s to %s\n", n, s, d);
 move(n-1, t, d, s); // temporary to destination
 }
 System.out.println("return n=" + n);
 }
} // end class Towers

Figure A8.8 Solution to Towers of Hanoi problem

Shaded statements are for diagnostic tracing. Remove them for fi nal implementation.

two return

points

Figure A8.9 displays the output. The shaded lines are lines printed by the shaded print statements in

Figure A8.8. As we said, they are just to help you see what happened and are not part of the solution. The

solution is given by the un-shaded outputs. The most diffi cult part of tracing a recursive algorithm like this is

keeping track of the place from which a call was made and therefore where execution resumes after a return.

As our note in Figure A8.8 indicates, sometimes the call is made from the “source to temporary” statement,

and sometimes the call is made from the “temporary to destination” statement. Fortunately, if you defi ne a

recursive algorithm correctly, you can ignore the details of how it plays out during program execution.

We recommend that you cut out four little paper disks of different sizes, number them 1 through 4 from

smallest to largest, and build a tower at location “A” on your left. Then move the disks one at a time as the

un-shaded outputs in Figure A8.9 say. You’ll see that the tower does in fact get moved from location “A”

to location “C” in precise conformity with the specifi ed rules. This works because the eventual moves are

informed by goal information in earlier method calls.

18-M4402-APP.indd 79218-M4402-APP.indd 792 12/17/07 4:29:24 PM12/17/07 4:29:24 PM

Apago PDF Enhancer

 Appendix 8 Recursion 793

Output:

call n=4, s=A, d=C, t=B

call n=3, s=A, d=B, t=C

call n=2, s=A, d=C, t=B

call n=1, s=A, d=B, t=C
move 1 from A to B
return n=1
move 2 from A to C
call n=1, s=B, d=C, t=A
move 1 from B to C
return n=1

return n=2
move 3 from A to B
call n=2, s=C, d=B, t=A

call n=1, s=C, d=A, t=B
move 1 from C to A
return n=1
move 2 from C to B
call n=1, s=A, d=B, t=C
move 1 from A to B
return n=1

return n=2

return n=3
move 4 from A to C
call n=3, s=B, d=C, t=A

call n=2, s=B, d=A, t=C

call n=1, s=B, d=C, t=A
move 1 from B to C
return n=1
move 2 from B to A
call n=1, s=C, d=A, t=B
move 1 from C to A
return n=1

return n=2
move 3 from B to C
call n=2, s=A, d=C, t=B

call n=1, s=A, d=B, t=C
move 1 from A to B
return n=1
move 2 from A to C
call n=1, s=B, d=C, t=A
move 1 from B to C
return n=1

return n=2

return n=3

return n=4

Figure A8.9 Output from program in Figure A8.8.

Unshaded statements are the solution. Shaded ones provide a trace.

18-M4402-APP.indd 79318-M4402-APP.indd 793 12/17/07 4:29:25 PM12/17/07 4:29:25 PM

Apago PDF Enhancer

794 Chapter 15 Files

A P P E N D I X

794

9
Multithreading

To understand this appendix, you need to be familiar with object-oriented programming, inheritance, ex-

ception handling, and fi les. As such, you need to have read up through Chapter 15.

This appendix introduces a feature, multithreading, that helps Java programs take advantage of the

parallel processing capabilities contained in many modern computers. By taking advantage of parallel pro-

cessing capabilities, multithreading can lead to faster programs. And that in turn leads to more user-friendly

programs.

Threads

A thread is a “lightweight process.” 1 Think of it as a coherent code fragment. Ideally, once it has a certain

minimum amount of initial information, a thread can run all the way to completion without any more infor-

mation from the outside world. Ideally, different threads are independent.

A thread is an object derived from a class that extends the predefi ned Thread class, and you must

override the Thread class’s run method to specify what you want your thread to do. You can call an

object’s run method only once, and you must do it indirectly by calling the public void start()
method, which your class inherits from the Thread class. The start method asks the JVM to call your

run method.2

This operation makes the newly started thread run in parallel with the software that called it. After thus

starting one thread, your software could start another thread, and you would have three chunks of code run-

ning in parallel. You could continue like this to obtain as many parallel operations as you might want. Your

computer automatically takes advantage of these relatively independent chunks of code to keep its various

parallel hardware components as busy as possible. The driver in Figure A9.1 shows how easy it is to launch

new threads.

1 A “lightweight process” has its own “program counter” and its own “stack,” but otherwise it has normal access to the rest of the
program in which it exists. A thread’s program counter keeps track of where the execution is, and the stack remembers how to return
from function calls. Whenever a thread temporarily stops, the computer takes a snapshot of that thread’s program counter and stack,
and this enables the execution to re-start exactly where it left off when the thread starts running again.
2 If your class already implements some other class, you can make it work like a thread by also implementing the Runnable in-
terface. To start the run method of a class that implements Runnable but does not extend Thread, your class should also
include a start method that does this:

 public void start()
 {
 new Thread(this).start();
 }

For simplicity, we restrict our discussion to classes that implement the Thread class.

18-M4402-APP.indd 79418-M4402-APP.indd 794 12/17/07 4:29:25 PM12/17/07 4:29:25 PM

Apago PDF Enhancer

The class in Figure A9.1 is the top level of a program that describes the interaction of a predator like a

fox and prey like a group of fi eld mice. In this example, the prey gets its food continuously from ever-present

vegetation, while the predator gets its food intermittently by eating prey when predator and prey happen to

meet. The prey is one thread. The predator is another thread. Notice how this driver starts both prey and

predator threads. These threads represent the parallel lives of these creatures in their ecosystem.

The prey and predator threads are objects. There is also another object, called encounter. This

object represents an ongoing intermittent relationship between the predator and the prey. In this relation-

ship, some of the prey come into the presence of the predator, and the predator eats them. Presumably the

predator eats only part of the prey in each particular encounter, and in the interim the prey continuously

replenish by reproducing and eating vegetation. In the encounter relationship, the prey provides food, and

the predator consumes food. So computer folks like us might say the prey thread is a producer thread, and

the predator thread is a consumer thread. Of course, the prey also “consume” vegetation, so if our model

included a relationship between the fi eld mice and the vegetation they eat, in that context we could call our

prey thread a “consumer” thread. So the terms “producer” and “consumer” should not be associated abso-

lutely to any one thread.

Any relationship between threads violates the ideal of “thread independence.” It complicates the lives

of real creatures, and it complicates a program that simulates them.

Figure A9.2 shows the class that describes prey threads. Notice that it does extend the Thread class.

There is just one instance variable, a reference to the encounter relationship—fi eld mice are undoubtedly

aware of their unpleasant relationship with a fox. The zero-parameter constructor assigns a default name to all

/**
* Ecosystem.java
* Dean & Dean
*
* Driver for a simple predator/prey (consumer/producer) system.
* The predator and prey objects are separate threads, and
* encounter is an object that describes their relationship.
**/

public class Ecosystem
{
 public static void main(String[] args)
 {
 Prey prey = new Prey(); // producer thread
 Predator predator = new Predator(); // consumer thread
 Encounter encounter = new Encounter(prey, predator);

 // start threads
 prey.start();
 predator.start();
 } // end main
} // end Ecosystem class

Figure A9.1 Top level of a program that simulates a simple ecosystem

This class drives the classes in Figures A9.2, A9.3, and (A9.4 or A9.5a and A9.5b).

 Appendix 9 Multithreading 795

18-M4402-APP.indd 79518-M4402-APP.indd 795 12/17/07 4:29:26 PM12/17/07 4:29:26 PM

Apago PDF Enhancer

objects of the class. That’s suffi cient for our example, because our driver creates only one such object, but you

could also provide a one-parameter constructor to assign different names to different thread instances. The

public setEncounter method allows the outside world to set the encounter reference at any time

after Prey thread instantiation. The run method is the heart of a thread’s defi nition. In this case, it’s pretty

simple. What prey want is to “be apart,” so the run method calls the relationship’s beApart method.

/***
* Prey.java
* Dean & Dean
*
* This models prey (producers), who avoid encounters.
***/

public class Prey extends Thread
{
 private Encounter encounter;

 //**

 public Prey()
 {
 super ("prey");
 } // end constructor

 //**

 public void setEncounter(Encounter encounter)
 {
 this.encounter = encounter;
 } // end setEncounter

 //**

 public void run()
 {
 int number;

 do
 {
 number = encounter.beApart();
 } while (number < encounter.EVENTS - 1);
 System.out.println(getName() + " run finished. ");
 } // end run
} // end Prey class

Figure A9.2 Class describing prey (producers) who want to escape from predators
This is driven by the class in Figure A9.1.

796 Appendix 9 Multithreading

18-M4402-APP.indd 79618-M4402-APP.indd 796 12/17/07 4:29:26 PM12/17/07 4:29:26 PM

Apago PDF Enhancer

 Appendix 9 Multithreading 797

Figure A9.3 shows the class that describes Predator threads. It also extends the Thread class. It also

has an instance variable that refers to the encounter relationship—a fox is certainly aware of its pleas-

ant relationship with fi eld mice. It also has a zero-parameter constructor, and it also has a setEncounter

method.

Notice that Predator also declares an array of delay times. With appropriate cross referencing, we

could have put this program’s time-delay information in any of the classes. But because the predator is

the primary “cause” of encounters, we elected to put it in Predator’s defi nition and implement it in the

Predator’s run method. This time-delay implementation makes Predator’s run method more com-

plicated than Prey’s run method. We implement each delay by passing an integer number to the pre-

 written sleep method, which is in the Thread class in the always-available java.lang package:

public static void sleep(long millis)
 throws InterruptedException

What does this sleep method do? It makes the currently executing thread cease its execution for a number

of milliseconds equal to the parameter value. In our example, the fi rst element in the DELAY array is 2347,

so when you run the program, you will experience a pause of 2.347 seconds between the fi rst and second

screen outputs.

Notice that the sleep method can throw an InterruptedException. If you look up

 InterruptedException, you’ll fi nd that it’s derived directly from the Exception class, so

it is a checked exception. Therefore, the method call that might throw this exception must be in a try

block, and that’s where we put it. Our program never does anything that might cause this exception to be

thrown,3 so we use an empty catch block. For better debugging feedback, you could put something like

e.printStackTrace() in the catch block.

Now let’s look at a fi rst crude attempt to implement the Encounter class, which appears in

Figure A9.4. In the lives of a single predator and a group of its prey (our chosen threads), encounters occur

several times. We might have written our Encounter class so that each encounter object represented

one discrete event, but it’s easier to keep track of time and space relationships if you group related events

together. Thus, one of our encounter objects represents a complete sequence of encounters between our

 predator thread and our prey thread. In simulation programming, this kind of on-going relationship is

usually called a process.
The instance variables in the encounter object keep track of the total number of events, the se-

quence number of the current event, and references to the prey and predator threads. If you look back at

Figure A9.1, you’ll see that we call the Encounter constructor after we call the Prey and Predator

constructors. This calling sequence enables us to pass predator and prey references to the encounter

object when we instantiate it. Then, in the Encounter constructor we reciprocate by sending an

 encounter reference to the to the predator and prey objects.

Now look at the beApart and beTogether methods. These represent the two phases of the ongoing

encounter relationship. The beApart method describes a long quiescent period in which the predator rests

and hunts. It’s called by the Prey class in Figure A9.2. The beTogether method describes a short violent

period in which the predator fi nds prey, attacks, and eats part of the prey. It’s called by the Predator class

in Figure A9.3.

As they appear in Figure A9.4, these two methods don’t do very much. The beApart method updates

the cycle number. Then it prints the name of the thread that called it and the cycle number’s current value.

3 An InterruptedException is thrown when the current thread is sleeping and another thread prematurely wakes it by calling
its interrupt method, but our program never uses the interrupt method.

18-M4402-APP.indd 79718-M4402-APP.indd 797 12/17/07 4:29:26 PM12/17/07 4:29:26 PM

Apago PDF Enhancer

798 Appendix 9 Multithreading

/***
* Predator.java
* Dean & Dean
*
* This models predators (consumers), who desire encounters.
***/

public class Predator extends Thread
{
 // delay times in milliseconds
 public final long[] DELAY = {2347, 1325, 1266, 3534};
 private Encounter encounter;

 //**

 public Predator ()
 {
 super ("predator");
 } // end constructor

 //**

 public void setEncounter(Encounter encounter)
 {
 this.encounter = encounter;
 } // end setEncounter

 //**

 public void run()
 {
 int i;

 for (i=0; i<DELAY.length; i++)
 {
 try
 {
 Thread.sleep(DELAY[i]); // rest & hunt
 }
 catch (Exception e) { }
 encounter.beTogether(); // eat prey
 }
 System.out.println(getName() + " run finished.");
 } // end run
} // end Predator class

Figure A9.3 Class describing a predator (consumer) which seeks prey

This is driven by the class in Figure A9.1.

18-M4402-APP.indd 79818-M4402-APP.indd 798 12/17/07 4:29:26 PM12/17/07 4:29:26 PM

Apago PDF Enhancer

/***
* Encounter.java
* Dean & Dean
*
* This describes predator/prey (consumer/producer) interaction.
***/

public class Encounter
{
 public final int EVENTS;
 private int number = -1;
 private Prey prey;
 private Predator predator;

 //**

 public Encounter(Prey prey, Predator predator)
 {
 this.prey = prey;
 this.predator = predator;
 prey.setEncounter(this);
 predator.setEncounter(this);
 EVENTS = predator.DELAY.length;
 } // end constructor

 //**

 public int beApart()
 {
 // prey has access, so go apart
 number++;
 System.out.println(Thread.currentThread().getName() +
 " start beApart " + number);
 return number;
 } // end beApart

 //**

 public int beTogether()
 {
 // predator has access, so come together
 System.out.println(Thread.currentThread().getName() +
 " finish beTogether " + number);
 return number;
 } // end beTogether
} // end Encounter class

Figure A9.4 Inadequate implementation of Encounter class

Because the prey and predator threads run in parallel but only the predator thread contains delays, they do

not interleave properly. The prey thread fi nishes quickly, whereas even the fi rst output of the predator method is

delayed until much later.

WARNING!

This implementation

does not work!

Appendix 9 Multithreading 799

18-M4402-APP.indd 79918-M4402-APP.indd 799 12/17/07 4:29:27 PM12/17/07 4:29:27 PM

Apago PDF Enhancer

The beTogether method prints the name of the thread that called it and the cycle number’s current value.

In a more complete model, the beTogether method would also call Predator and Prey methods

to change the masses of these objects for the time they were apart. Then it would calculate the change in

weights in the violent together period.

If you run the program in Figures A9.1, A9.2, A9.3, and A9.4, this is what you’ll get:

Output:

prey start beApart 0
prey start beApart 1
prey start beApart 2
prey start beApart 3
prey run finished.
predator finish beTogether 3
predator finish beTogether 3
predator finish beTogether 3
predator finish beTogether 3
predator run finished.

Is this what you want? No! Because the prey and predator threads run in parallel but only the predator

thread contains delays, they do not interleave properly. The prey thread fi nishes quickly, whereas even the

fi rst output of the predator thread does not occur until much later.

Synchronization

When different threads access a common object, they should be synchronized. We synchronize them rela-

tive to the common object by including the synchronized modifi er in the heading of any common- object

method that might be called by a thread that must be synchronized. In addition, we use a semaphore to give

access to only one thread at a time—and block (temporarily stop) all other threads.

Figure A9.5a contains a corrected version of the fi rst part of the Encounter class of Figure A9.4. In

this part of the corrected class defi nition, the only thing different is the addition of another instance vari-

able, a boolean semaphore that indicates which thread currently has access to the common object. This

additional declaration appears in bold-face type.

Figure A9.5b contains a corrected version of the second part of the Encounter class of Figure A9.4.

All the new code appears in bold-face type. This shows what you do to synchronize multiple threads. First,

include the synchronized modifi er in the heading of those methods you want to synchronize. Then, at

the start of each of those methods, put a while loop with a try block that contains the simple statement:

wait();

This statement blocks access to the rest of that method, so you should make the while condition true

when you want to block access. Finally, insert a pair of special statements right before the return. The fi rst

of these special statements should set the phase of the semaphore to make the preceding while condition

true. The second of these statements should be:

notifyAll();

In both cases the while loop’s condition is the phase of the semaphore that blocks the calling thread.

If this condition is true when an external thread calls the method, fl ow goes immediately to the wait

800 Appendix 9 Multithreading

18-M4402-APP.indd 80018-M4402-APP.indd 800 12/17/07 4:29:27 PM12/17/07 4:29:27 PM

Apago PDF Enhancer

statement4, and this blocks the execution of the calling thread at that point in its execution. That thread stays

in this blocked state until it receives a “wake-up” system call initiated by another thread’s execution of the

 notifyAll method, at which time it starts running again—from the place where it was blocked. If the

program is written correctly, the condition in the while loop of exactly one of the synchronized methods is

false. When this particular method is called, fl ow jumps over the while loop to the subsequent execut-

able code.

For example, when in Figure A9.2 the prey thread fi rst calls encounter.beApart, Figure A9.5a’s

predatorHasAccess semaphore is false. So in the beApart method in Figure A9.5b, prey thread

execution jumps over the while loop and prints the output:

prey start beApart 0

Then the execution changes the predatorHasAccess semaphore to true, calls notifyAll, and re-

turns. The next time the prey thread calls encounter.beApart, the true value of the while condi-

tion causes execution of the wait statement, and this blocks the prey thread at that point.

/***
* Encounter.java
* Dean & Dean
*
* This describes predator/prey (consumer/producer) interaction.
***/

public class Encounter
{
 public final int EVENTS;
 private int number = -1;
 private Prey prey;
 private Predator predator;
 private boolean predatorHasAccess = false; // access semaphore

 //**

 public Encounter(Prey prey, Predator predator)
 {
 this.prey = prey;
 this.predator = predator;
 prey.setEncounter(this);
 predator.setEncounter(this);
 EVENTS = predator.DELAY.length;
 } // end constructor

Figure A9.5a Corrected version of the Encounter class—Part A

4 The wait method is inherited by all objects from the Object class, and it throws an InterruptedException (just like
the sleep method) if the waiting thread is interrupted while it’s waiting. We must put the wait call in a try block because (as
indicated previously) the exception it might throw is a checked exception, even though we never create the condition that throws that
exception.

 Appendix 9 Multithreading 801

18-M4402-APP.indd 80118-M4402-APP.indd 801 12/17/07 4:29:27 PM12/17/07 4:29:27 PM

Apago PDF Enhancer

 //**

 public synchronized int beApart()
 {
 while (predatorHasAccess)
 {
 try
 {
 wait(); // Prey thread waits here until notified
 }
 catch (Exception e) { }
 }
 // prey has access, so go apart
 number++;
 System.out.println(Thread.currentThread().getName() +
 " start beApart " + number);
 predatorHasAccess = true;
 notifyAll();
 return number;
 } // end beApart

 //**

 public synchronized int beTogether()
 {
 while (!predatorHasAccess)
 {
 try
 {
 wait(); // Predator thread waits here until notified
 }
 catch (Exception e) { }
 }
 // predator has access, so come together
 System.out.println(Thread.currentThread().getName() +
 " finish beTogether " + number);
 predatorHasAccess = false;
 notifyAll();
 return number;
 } // end beTogether
} // end Encounter class

Figure A9.5b Corrected version of the Encounter class—Part B

802 Appendix 9 Multithreading

Meanwhile (as soon as it is started), the predator thread begins running in parallel with the prey

thread. When in Figure A9.3 the predator thread fi rst calls its sleep method, it stops execution for

2.347 seconds. During most of this time delay, both threads are blocked, and neither is executing. When

the 2.347-second time delay expires, the predator thread automatically wakes up, jumps over the

catch, and calls encounter.beTogether. Long before this time, the prey thread changed the

18-M4402-APP.indd 80218-M4402-APP.indd 802 12/17/07 4:29:28 PM12/17/07 4:29:28 PM

Apago PDF Enhancer

 predatorHasAccess semaphore in Figure A9.5a to true, so in Figure A9.5b the predator thread

execution jumps over beTogether’s while loop and prints the output:

predator finish beTogether 0

Then the execution changes the predatorHasAccess semaphore to false, calls notifyAll, and

returns. Back in the run method of Figure A9.3, the predator thread enters the second iteration of the

for loop and goes to sleep again in its second time delay.

Meanwhile, the previous predator thread’s notifyAll call re-activates the waiting prey thread

and allows it to continue with the while loop in the beApart method in Figure A9.5b. This time, when

execution returns to the while condition, it fi nds that the predatorHasAccess semaphore value is

false. This allows it to escape from the while loop and print the output:

prey start beApart 1

Then, as before, it changes the predatorHasAccess semaphore to true, calls notifyAll, and

returns.

This alternation between being apart and being together continues until (in the run method of

Figure A9.2) number == encounter.EVENTS - 1, which terminates the prey thread. A little later

(in the run method of Figure A9.3) i == DELAY.length, which terminates the predator thread.

Using the corrected version of the Encounter class that appears in Figures A9.5a and A9.5b, the program

output looks like this:

Output:

prey start beApart 0
predator finish beTogether 0
prey start beApart 1
predator finish beTogether 1
prey start beApart 2
predator finish beTogether 2
prey start beApart 3
prey run finished.
predator finish beTogether 3
predator run finished.

We encourage you to run this program yourself to get a physical sense of the interaction between the time-

delay and wait operations.

 Appendix 9 Multithreading 803

18-M4402-APP.indd 80318-M4402-APP.indd 803 12/17/07 4:29:28 PM12/17/07 4:29:28 PM

Apago PDF Enhancer

804

Index

SYMBOLS
! (not) operator, 118
!= operator, 108
'' (double quotes), 26, 62
% (modulus) operator, 75
% symbol, with format specifi er, 174
%% conversion specifi er, 454
%= operator, 80
&& (and) operator, 111– 15, 453– 54
() (parentheses). See Parentheses
* (asterisk)

lines of, 59, 759, 767
as multiplication operator, 28
as multiplicity value, 474
to set off block comments, 58– 59
as wildcard character, 154– 55

*= operator, 80
+ (plus sign)

as addition operator, 28
for concatenation, 63, 66, 83, 440
in formal pseudocode, 47
in UML diagrams, 216

++ (increment) operator, 79, 443– 45
+= operator, 79, 87, 124
- (hyphen)

as formatting fl ag, 175
as subtraction operator, 11, 28
in UML diagrams, 216

— (decrement) operator, 79, 445– 46
–= operator, 79
/ (slash)

in compound assignment operator, 80
as division operator, 11, 28
to set off comments, 58– 59

/= operator, 80
0x prefi x, 460, 748
; (semicolon)

in do loops, 126
for empty statements, 454– 56
required for Java statements, 11, 62, 65

< operator, 108
<= operator, 108
<> (angled brackets)

in ArrayList syntax, 409
in HTML tags, 613
for required descriptions, 32

= (equals sign), 66, 108, 401
== operator

avoiding for string comparisons, 116– 17,
254– 55

equals method and, 511, 513
purpose, 108, 252– 53

> operator, 108
>= operator, 108

[] (square brackets)
in array declarations, 373
in arrays with two or more dimensions,

396– 97, 402
purpose, 61, 174

\ (backslash) character, 83– 84, 627
{} (braces)

in formal pseudocode, 47
positioning, 61– 62, 761– 63
in switch statements, 120

|| (or) operator, 116– 18, 453– 54

A
Abbreviations, 64
abs method, 156
Absolute paths, 627
abstract methods and classes, 530– 33
abstract modifi er, 534, 751
Abstract Windowing Toolkit, 679– 80
Abstractions, 198
Access modifi ers, defi ned, 60. See also spe-

cifi c modifi ers
Access time, 6
Accessing object data, 197, 224– 25
Accessor methods, 224– 25, 304– 5
acos method, 158, 160
Action states in UML diagrams, 778
ActionListener interface, 658, 662,

680
actionPerformed methods, 657– 58,

664– 67, 711
Activity diagrams, 778– 80
Adapter classes, 682
add method, 651, 714– 15
addActionListener method
JButton, 663
JCheckBox, 722
JComboBox, 728
JRadioButton, 726
JTextField, 654

Addition
in precedence of operations, 76, 77
symbol for, 28

AfricanCountries program, 701– 4
Aggregations

defi ned, 472
with inheritance, 490– 93
using, 472– 79

Algorithms
binary search, 392
defi ned, 10, 26
formats for, 26
growth modeling, 232– 34
if statements, 31– 35

inputs, 29
LinePlotGUI program, 585– 86
linked lists, 359
looping structures in, 36– 42
output design, 26– 27
pseudocode varieties, 46– 48
sequential search, 388
sorting, 393– 94
for swapping values, 257– 59
Towers of Hanoi, 790
tracing, 42– 46
variables, operators, and assignment in,

27– 29
Aliasing, 248
Alignment

of BorderLayout region labels, 703– 4
in coding conventions, 763– 64
with FlowLayout manager, 697, 704

al-Khwarizmi, Muhammad ibn Musa, 26n
American Standard Code for Information

Interchange (ASCII). See ASCII values
Ancestor classes, 482
“And” operator, 111– 15
Angled brackets

in ArrayList syntax, 409
in HTML tags, 613
for required descriptions, 32

Anonymous inner classes, 659– 62
Anonymous objects
ArrayLists using, 417– 19
defi ned, 417
JLabel, 729
listeners as, 660– 61
in PrintWriter constructor calls,

608
API headings
ArrayList methods in, 410– 12
basic features, 156, 157

API library
Arrays.sort method, 394– 96
Calendar class, 329– 31
collection classes, 364
equals methods in, 513
exception handling with, 571
fi le manipulation classes, 602– 4
GUI classes in, 647– 49, 679– 80
line-drawing methods, 584
overview, 153– 55
package hierarchies, 755– 56
shape-drawing classes, 544
use in bottom-up design, 322

Apollo project, 325
append method, 621
Appending data to fi les, 606– 8, 621

19-M4402-IX.indd 80419-M4402-IX.indd 804 12/17/07 4:29:39 PM12/17/07 4:29:39 PM

Apago PDF Enhancer

 Index 805

Applets
applications versus, 188
calling graphics methods from, 182–

88
defi ned, 15

Application Programming Interface class
library. See API library

Arguments
indexes as, 88
for instance variables, 202
in main method, 61
need to understand, 155
passing arrays as, 394
passing in OOP, 222– 23, 224
passing references as, 257– 59

Arithmetic operators. See also Operators
common types in algorithms, 28
for numeric data, 74– 75
precedence of, 28, 75– 78

ArithmeticException errors, 579
arraycopy method, 381– 82, 383– 85
ArrayCopy program, 381
ArrayIndexOutOfBounds Exception

errors, 372, 579
ArrayLists

for * multiplicity values, 476
creating and using, 409– 13
purpose, 154
standard arrays versus, 422– 23
storing primitives in, 414– 17, 423

Arrays
ArrayList class, 409– 13
ArrayLists versus, 422– 23
basic principles, 371– 73
copying, 379– 82
declaring and creating, 373
defi ned, 61, 139, 371
with histograms, 385– 86
length property, 377– 79
of objects, 402– 9
partially fi lled, 379
polymorphism with, 524– 30
runtime errors with, 579
searching, 388– 92, 787, 788– 89
shifting element values in, 382– 85
sorting, 390, 393– 96
two-dimensional, 396– 402

Arrays class, 154
Arrays.sort method, 394– 96
Arrowheads, in UML diagrams, 781– 82
ASCII values

listed, 439, 746– 47
overview, 438– 40
for text data fi les, 615– 17
as Unicode starting point, 459– 60, 745

Ashtrays, 321
asin method, 158, 160
assert reserved word, 751
Asset management algorithm, 48– 50
Assignment

compound, 79– 80
between data types, 70, 74– 75
directionality of, 29
embedded, 446– 48
equality versus, 108

polymorphism and, 522– 24
in try blocks, 563– 64

Assignment statements
for arrays, 375, 397
basic coding conventions, 66– 67
combining, 764
detailed analysis, 247, 248– 52
embedded, 446– 48
promotion in, 441, 522
for reference variables, 205– 6, 247,

248– 52
tracing, 44, 67– 68
in try blocks, 563– 64

Association, 140
Association classes, 498– 500, 782– 83
Association lines, 474, 781– 82
Asterisk

in compound assignment operator, 80
lines of, 59, 759, 767
as multiplication operator, 28, 66
as multiplicity value, 474
to set off block comments, 58– 59, 203
as wildcard character, 154– 55

atan method, 158, 160
Attributes, diagramming for UML classes,

200
Autoboxing, 415– 17
Automatically imported classes, 155
Auxiliary memory, 6– 7
Averages, calculating, 40
AverageScore program, 447
Azimuth, 544

B
Backdoors, 164
Background colors, 674, 675– 76, 720
Backslash character, 83– 84, 627
Base classes, 472, 482
Base-16 number systems, 460, 514
Basic identities in Boolean algebra, 139– 42
Basic Latin sub-table, 463
BearStore program, 417– 22
Beck, Kent, 331
Behaviors of objects, 197
Biggest-number algorithms, 41– 42
Binary I/O

advantages, 602, 603, 604
overview, 618– 21

Binary number format, 5– 6, 615– 18
Binary searches, 390– 92, 787, 788– 89
Binding, 520
Bins, 386
Biological inheritance hierarchies, 479– 80
Bits, 5– 6
Blank lines

between code chunks, 66, 203, 300, 759
between declaration statements, 297
escape sequence for, 84
excessive, 303
between loops, 127
for readability, 59

Blank spaces, 303– 4, 765
Block comments
javadoc, 772, 775, 776– 77
syntax, 58– 59

Blocks, 109, 216, 302
Body of loops, 37
Boolean logic, 139– 42
Boolean methods, 226– 27, 627
Boolean values, 107– 8
boolean variables

default value, 209
defi ned, 751
for input validation, 138– 39
when to use, 135– 38

BorderLayout manager
as JFrame default, 696, 701, 714
overview, 698– 704

Borders of containers, 699– 700, 731– 33
Borders of windows, 592
Bottom-up design, 321– 23
Boundary tests, 311
Braces

in formal pseudocode, 47
positioning, 61– 62, 300, 301– 2, 761– 63
for subordinate statements, 108– 9, 302
in switch statements, 120

break statements
defi ned, 751
in looping structures, 456– 57, 458
in switch statements, 119– 20, 121

Breaking points for long statements, 301
BridalRegistry program, 124, 125
BudgetReport program, 175– 76, 177
Buffers, 605
Bugs, 42– 46. See also Tracing
Buttons

container regions as, 701
creating with JButton, 662– 67
design principles, 695
GridLayout cells as, 705

byte variables, 434, 751
Bytecode, 13, 64
ByteOverfl owDemo program, 435, 436

C
Calculator (Windows), 514– 15
Calculator division, 74
Calendar class, 154, 329– 31
Call stack traces, 579
Calling objects

defi ned, 152
identifying, 206– 9, 263

camelCase, 28
Capital letters

in class names, 60, 64, 65, 766
converting to, 165– 66, 171– 72
identifi er coding conventions, 64
ignoring in string comparisons, 90
for named constants, 270, 765
in variable names, 27– 28

Car class, 476, 512
Car2 class, 254– 56
Car2 program, 516
Car2Driver class, 254– 56
Car3 class, 261
Car3Driver class, 260
Car4 class, 267
Car4Driver class, 268
Card Game program, 493– 98

19-M4402-IX.indd 80519-M4402-IX.indd 805 12/17/07 4:29:40 PM12/17/07 4:29:40 PM

Apago PDF Enhancer

806 Index

case constants, 119, 301
Case conversion, 171– 72
case reserved word, 751
Case sensitivity, 60
Case-based design, 323
Cast operators, 81– 83, 442– 43, 444, 524
Cat class, 520
catch blocks

generic, 572– 73
in input validation, 561
multiple, 573– 76
overview, 557– 59, 751
postponing, 580– 82

CDs, 6
Cells (GridLayout), 704– 7
Central processing units, 3– 4, 8
CEO salary algorithm, 34– 35
Cerberean rat’s nest, 255
Chained method calls, 124, 246, 260– 62
char data type

ASCII values, 438– 40
assigning integers to, 443
concatenating, 440, 450
overview, 83, 751
as primitive type, 85

Character class, 165– 66
Characters

determining position in strings, 170
permitted in identifi ers, 64
underlying numeric values, 438– 40

charAt method, 88– 89, 117
Check box components, 721– 24
Checked exceptions, 564– 66, 569– 72
Child classes, 482
Chips, 4
Class constants, 159, 352– 53
Class diagrams, 780– 83
.class extension, 64
Class headings, 60
Class methods
Character class, 165
identifying, 518
instance methods with, 350– 51, 354– 56
overview, 152, 349– 52
searches with, 391– 92

Class named constants, 352
Class paths, 757– 58
class reserved word, 60, 751
Class variables, 198– 99, 346– 48
Classes. See also Hierarchies

association, 498– 500
defi ned, 60, 198
inner, 658– 62
naming rules, 64, 65, 300
organizing within programs, 472,

493– 98, 768
relation to objects, 152, 198– 99
selecting in top-down design, 312

Cleanup code, 582
Client view, 48
Clients, 305
Clock speed, 4
Close-window buttons, 21, 649, 651
Closing braces, 62. See also Braces
Code reusability, 482
Coding-style conventions, 296– 305, 759– 68
CoinFlips program, 385– 86, 387

col variables, 66
Collection classes, 364, 421
Collections API, 364
Collections class, 154
Colons, 120
ColorChooser program, 676– 79
Colors

creating gradients of, 549– 50
GUI controls overview, 674– 79
setColor method, 185
for “white” illumination, 544

Columns
GridLayout, 704, 705– 7
in UML class diagrams, 779

Combo boxes, 726– 28
Command prompt windows, 18– 19
Commas

as fl ag characters, 175
omitting from long numbers, 67
separating variables with, 65

Comments
aligning, 66
for blocks and obscure statements, 302– 3
coding conventions for, 760– 61
forms of, 58– 59, 297
for methods in OOP code, 203
recommended for variables, 65, 301, 761

Commissioned class, 535, 536
Communication objects, 310
Commutation, 140
Compact discs, 6, 7
compareTo method, 166
Comparison operators, 108. See also

Operators
Compilation, 12, 18– 20, 63– 64
Compilers, 18
Compile-time errors

with abstract classes, 532
defi ned, 70, 118, 556
expressions producing, 452
with GridLayout constructor, 707
with overriding methods, 518

Complex expressions, spacing of, 765
Components

adding to BorderLayout containers,
700– 701

adding to GridLayout containers,
705

in composition, 472
as GUI elements, 645, 650
JPanel objects, 681– 82, 714– 15

Composites, 472
Composition

defi ned, 472
with inheritance, 490– 93
inheritance versus, 495– 97
UML indicators, 781
using, 472– 79

Compound assignment operators, 79– 80,
765

Compound conditions, 111– 18
Compound statements, 109
Computer hardware, 2– 8
Computer improvements, 8
Computer programs. See also Program

design
compiling into object code, 12

defi ned, 1– 2, 7
portability, 12– 14
source code, 10– 12
steps in creating, 9– 10

Concatenation
of char and string, 83, 440, 450
evaluating expressions, 450
of strings, 66, 87

Condition component of for loop, 129
Conditional operator expressions, 448–

49
Conditional structures, 30, 220. See also

if statements
Conditions

defi ned, 31
in if statements, 107– 8
in looping statements, 124, 126

Confi rmation dialogs, 667, 668
Consistency in GUI design, 695
Console windows, 95, 99
const reserved word, 751
Constants

basic types, 71– 72
in interfaces, 534– 35
in Math class, 159– 60
using, 73– 74
wrapper class, 162

Constant-width characters, 461
Constructors

accessing class variables from, 351
with arrays of objects, 403
benefi ts of, 265– 66
coding conventions for, 766– 67
default, 267– 70, 484, 486
defi ned, 180, 266
elegance of, 272
grouping in code, 304– 5
instance constants with, 270
overloaded, 272– 75, 485
in super- and subclasses, 485– 86

Consumer threads, 795
Containers
BorderLayout, 699– 704
defi ned, 650
for dialog boxes, 668– 69
GridLayout, 704– 7
JPanel, 682, 714– 15, 733
layout manager role in, 695

Continuation lines, 301, 763– 64
continue reserved word, 751
continue variables, 39
Continuous exponential distributions, 178,

179
Continuous testing, 311– 12
Continuous uniform distributions, 176,

178
Control characters, 84, 438
Control statements

Boolean logic, 139– 42
boolean variables in, 135– 38
conditions in, 107– 8
do loops in, 126– 27
for loops in, 127– 31
if statements in, 108– 11
input validation, 138– 39
logical operators in, 111– 18
loop structure selection, 132– 33

19-M4402-IX.indd 80619-M4402-IX.indd 806 12/17/07 4:29:41 PM12/17/07 4:29:41 PM

Apago PDF Enhancer

 Index 807

nested loops in, 133– 35
purpose, 107
switch, 119– 23
while loops in, 123– 26

Controller class (Garage Door pro-
gram), 280

Controlling expressions in switch state-
ments, 120

Conversion
evaluating, 450– 51
primitive types to objects, 161– 64
by promotion, 74– 75, 441– 42
of read-in strings, 98– 99
of upper- and lowercase characters,

165– 66
using cast operator, 81– 83, 442– 43,

444
Conversion characters, 174
Coordinate systems, 544
Copying arrays, 379– 82
cos method, 158, 160
count variables

basic function, 36– 37
terminating loops with, 36– 37, 38– 39,

40– 41
Countdowns, 127, 129– 30, 457– 58
Counter program, 517– 18
CourseDriver class, 388– 89, 390
CPUs (central processing units), 3– 4, 8
Crashes, 89. See also Error messages; Ex-

ception handling
CRC cards, 331– 35
createContents method, 663– 64
CreateNewFile program, 570– 72
Cryptic code, 448
Cunningham, Ward, 331
Curly braces. See Braces
Current directory, 19, 627
Custom packages, 756– 58
Customer class, 499
Customer requirements, 9, 26
Cylinders, 544– 50

D
-d option, 771
Data fi les. See Files
Data in objects, 197, 198
Data types. See also Return types

for constants, 71
converting, 81– 83, 161– 64
in declaration statements, 65
ignoring in pseudocode, 28
in initialization statements, 68– 69
numeric, 69– 70, 434– 37
in overloaded methods, 262
as return values, 218– 20
specifying in class diagrams, 200

DataInputStream class, 604, 619
DataOutputStream class, 604, 618– 19
DayTrader program, 456– 57
Dealership program, 474– 79, 498– 500
Dealership2 program, 491– 93
Debuggers, 46, 214– 15. See also Tracing
Debugging with temporary print state-

ments, 225
Decimal points, 69
Deck class, 496

Declaration statements
analysis, 247
arrays, 373– 75
basic syntax, 65
class constants, 353– 54
class variables, 346
coding conventions for, 297, 301
preferred sequence, 354
for sequential steps, 548

Decrement operator, 79, 445– 46, 765
Default constructors, 267– 70, 484, 486
default reserved word, 752
Default values

array elements, 376
class variables, 348
graphical text boxes, 653
instance variables, 209– 10
reference variables, 209, 247

Delays, creating with empty statements,
454– 55

delete method, 627
Delimiters, 759
DeMorgan’s theorem, 140
Derived classes, 482
Descendant classes, 482
Design. See Program design
Design philosophy, 310– 12
Development environments, 15– 16
Dialog boxes. See also Graphical user inter-

faces (GUIs)
defi ned, 16, 95
displaying, 95– 99
fi le-chooser example, 629– 34
message dialog implementation, 667–

70
Diamonds in fl owcharts, 30, 107
Directories, 16– 18, 19, 627
Discrete events, 797
Discrete triangular distributions, 178,

179
Discrete uniform distributions, 176– 79
Disk drives, 7
Diskettes, 7
Distribution, 140
Division

fl oating-point, 74– 75, 82– 83
in precedence of operations, 76, 77
by zero, 40– 41, 273, 579

do loops
overview, 126– 27
when to use, 132– 33
while condition placement, 762

do reserved word, 752
Documentation

defi ned, 9, 325
for diffi cult code, 734
self-documenting code, 64

Dog class, 519
DOS operating system, 323
Dot prefi xes, 263–65, 307, 350
double constants, 71
double data type

converting to strings, 162
default value, 209, 437
defi ned, 752
dialog input, 98
for factorials, 130

as primitive type, 85
when to use, 69– 70, 436– 37

Double quotes, 26, 62, 166
Dow Jones Industrial Average, 383, 415
DragSmiley program, 682– 85
drawImage method, 184, 185
drawLine method, 185, 584
drawPolyLine method, 584– 85
drawRect method, 184, 185
drawString method, 185
Driven classes, 275– 84, 326– 27
Driver classes, 203– 6
Drives, 7
Drop-down lists, 726– 28
Dummy constructors, 270
Dummy methods, 529, 530– 31
Dumps, 404
Duplicate code, avoiding, 273
Duplicate names. See also Naming rules

in overloaded methods, 262– 65
using inheritance to eliminate, 491
for variables in separate blocks, 223

DVDs, 6
Dynamic allocation, 346
Dynamic binding, 509, 520, 522

E
E constant, 159
E return type, 411
Echo printing, 121
Editing text, 15– 16. See also

setEditable method
Elegant code

basic features, 118
with constructors, 272
for loops, 132, 138

Elements. See also Arrays
accessing in arrays, 371– 72
in array declarations, 373
ArrayList handling, 409– 12
defi ned, 371
generic names for types, 411
initializing, 375– 76
with shifting values, 382– 85

Ellipses, 185
else if construct, 763
else reserved word, 752
Embedded assignments, 446– 48
Embedded layout managers, 712– 14,

729
Employee class, 484– 85, 528
Employee program, 268, 269
Employee2 class, 531
Employee2 program, 269, 270
Employee3 class, 271, 541, 542
Empty statements, 220– 21, 454– 56
Empty strings, 89, 166– 69
EmptyBorder class, 731– 33
Encapsulation

basic principles, 197
of helper methods, 305– 6
implementation techniques, 308– 10
variable names and, 223

End comments, 760– 61
End tags, 613
End user needs, 9, 26
End-of-line symbols, 616

19-M4402-IX.indd 80719-M4402-IX.indd 807 12/17/07 4:29:41 PM12/17/07 4:29:41 PM

Apago PDF Enhancer

808 Index

Enter events, 657
enum reserved word, 752
Enum types, 120n
Equality

assignment versus, 108
testing objects for, 252– 57, 510– 11

equals method
implementing, 253– 57
programmer-defi ned, 511– 13
purpose, 89– 90, 117, 253
syntax and semantics, 510– 11

Equals sign, 66, 108, 401
equalsIgnoreCase method, 90, 117,

256– 57
Error messages. See also Exception

handling
analyzing, 576– 80
compilation, 20
dialog box icon for, 670
information in, 89
non-static method, 350– 51

Escape sequences
basic features, 83– 85
Unicode, 460– 61, 745, 746– 47

Euler’s number, 159
Evaluating expressions, 75– 78
Event handlers, 646, 681
Event-delegation model, 646
Event-driven programming, 646– 47
Events, 646
Evolution, 479
Exception class getMessage method,

572– 73
Exception handling

approaches for checked exceptions,
569– 72

approaches for unchecked exceptions,
566– 69

exception categories, 564– 66
with generic catch blocks, 572– 73
with multiple catch blocks, 573– 76
overview, 556– 57
postponing catch, 580– 82
try and catch block advantages,

559– 61
try and catch block overview, 557– 59
try block details, 563– 64
understanding error messages, 576– 80

Exception objects, 557
Exceptions

categories of, 564– 66
defi ned, 372, 556

Exclamation point, 118
exists method, 627
Exponential growth, 227, 228
Exponents, 437
Expressions

casting, 82
defi ned, 74
evaluating, 75– 78, 449– 52

extends clauses, 488, 752

F
F suffi x, 71
FactorialButton program, 663– 67, 671, 672
Factorials

fi nding with recursion, 784– 86
using for loops for, 128– 29, 130, 131

false reserved word, 752
FICA tax calculation, 540– 44
File class, 626– 28
File-chooser dialog boxes, 629– 34
FileInputStream class, 604, 619
Filenames, invalid, 604– 5
FileNotFoundException class, 576
FileNotFoundException errors,

604– 5, 608– 9
FileOutputStream class, 604, 618– 19
FileReader constructor calls, 608– 9
Files

binary input/output, 618– 21
defi ned, 7, 602
displaying in GUI format, 629– 34
File class, 626– 28
HTMLGenerator example, 612– 15
input/output approaches for, 602– 4,

622– 26
text versus binary, 615– 18
text-based input, 608– 11
text-based output, 604– 8

FileSizes program, 627– 28
FileSizesGUI program, 631– 34
FileWriter constructor calls, 607– 8
Filler components, 729
fillOval method, 184, 185
Filters, 225– 26
final modifi er

with methods and classes, 472, 489– 90,
752

with named constants, 72, 270, 752
optional for interfaces, 535
prohibited with abstract methods,

533
Final states, in UML diagrams, 778
finally blocks, 582, 584, 752
FindHypotenuse program, 158, 159
findStudent method, 388, 389
Firing an event, 646
First-cut UML diagrams, 278
Fixed seeds, 180– 81
Flags, 175– 76
Flash drives, 6– 7
FlightTimes class, 400– 402
FlightTimesDriver class, 398, 399
float data type

default value, 209
as primitive type, 85, 752
when to use, 69– 70, 436– 37

Floating-point casts, 82– 83
Floating-point constants, 71
Floating-point numbers

division of, 74– 75, 82– 83
initializing, 209
when to use, 69– 70, 435– 37

FloorSpace program, 127, 128
Floppy disks, 8
Flow of control, 30– 31. See also Control

statements
Flowcharts

defi ned, 26
with if statements, 34– 35
to illustrate fl ow of control, 30– 31

FlowLayout manager
embedded containers using, 713– 14, 729
as JPanel default, 714
overview, 650, 696– 98

Folders, 16– 18
Fonts, 461, 634
for loops

creating delays with, 454– 55
for-each loops versus, 421
headers, 457– 59
index variables, 130, 131, 134, 216– 17
nested with two-dimensional arrays, 397
overview, 127– 31, 752
tic-tac-toe application, 712
when to use, 132– 33

For-each loops, 417, 420– 22
Foreground colors, 674
Formal pseudocode, 47, 257– 58
Format specifi ers, 173– 74
Format strings, 173, 402
Formatting characters, 15– 16
Formatting output, 172– 76
Forward branching statements, 123
Fraction class, 274, 276
Fractional digits, 175
FractionDriver class, 273, 276
Free software, 323
Free Software Foundation, 323n
Free space in memory, 252
FreeFries program, 115
Freezing random number sequences,

180– 81
Frequency distributions, 385– 86
FriendlyHello program, 92
FullTime class, 486– 88
Functions, mathematical, 60– 61, 155– 56
FundRaiser program, 358– 64

G
Gap arguments, 699, 704
Garage Door program, 276– 84
GarageDoor program, 136– 38
GarageDoorSystem class, 282– 83
Garbage collection, 252
Garbage values, 80, 218, 247
Gemini project, 325
General-purpose swapping algorithm,

257– 59
Generic catch blocks, 572– 73
Generic classes, 411
Generic return types, 411
get methods
ArrayList, 411
Calendar class, 329– 31
Color, 674
defi ned, 224– 25
JButton, 663
JComboBox, 727
JLabel, 652
JTextArea, 719
JTextField, 653

getActionCommand method, 673– 74
getBackground method, 674
getContentPane method, 676
getFICA method, 541
getForeground method, 674

19-M4402-IX.indd 80819-M4402-IX.indd 808 12/17/07 4:29:42 PM12/17/07 4:29:42 PM

Apago PDF Enhancer

 Index 809

getImage method, 185– 86
getInsets method, 592
getInstance method, 329
getIntFromUser method, 564, 565
getMessage method, 572– 73
getSelectedFile method, 629, 631
getSelectedIndex method, 727, 728
getSelectedItem method, 727, 728
getSource method, 671, 673
getText methods
JButton, 663
JLabel, 652
JTextArea, 719
JTextField, 653

.gif fi les, 182, 686
Gigabytes, 5
Gigahertz, 4
GM, 8
Gosling, James, 252
goto reserved word, 752
Graceful failures, 130
Grade school division, 75
GradientPaint objects, 549– 50
Graphical user interfaces (GUIs)

basic input/output implementations,
94– 99

basic window component overview,
651– 52

BorderLayout manager features,
698– 704

class groupings for, 679– 80
color controls, 185, 544, 549– 50, 674– 79
CRC cards program, 331– 35
design and layout manager overview,

694– 96
displaying images and graphics, 182– 88,

686
distinguishing multiple events, 671– 74
embedded layout managers, 712– 14
event-driven programming techniques,

646– 47
FlowLayout manager features, 650,

696– 98
GridLayout manager features, 704– 7
implementing JLabel components,

652
implementing JTextField compo-

nents, 653– 54
inner classes in, 658– 62
JButton component overview, 662– 67
JCheckBox components, 721– 24
JComboBox components, 726– 28
JFileChooser class implementation,

629– 34
JFrame class features, 649
job application example, 728– 34
JRadioButton components, 724– 26
JTextArea components, 719– 20, 721
line plots in, 584– 92
listener implementation, 657– 58
menus, scroll bars, and sliders, 734– 38
message display in, 20– 21
mouse listeners, 680– 82, 683– 85
overview, 645
polymorphism application, 544– 50
string-based outputs, 161

tic-tac-toe application, 707– 12
Unicode characters, 459– 63

Graphics class, 182– 88
Graphics2D class, 544, 546– 47
GraphicsDemo applet, 185– 86, 187
Graying out, 723
Green Project, 14
Greeting Anonymous program, 659– 62
Greeting program, 654, 655– 56, 660
GridLayout manager

limitations of, 707, 713, 729
overview, 704– 7
tic-tac-toe application, 707– 12

Grouping constructors, mutators, and acces-
sors, 304– 5

Growth, modeling, 227– 34
Growth class, 229, 230
Guards, in UML class diagrams, 778
GUI components, 645, 681– 82
GUI programs, 21. See also Graphical user

interfaces (GUIs)
GUI windows, 95

H
Happy Birthday algorithm, 36– 37, 38
Hard disks, 7
Hard-coded constants, 71, 72, 73– 74
Hardware, 2– 8
Harvard Mark II, 42
“Has-a” relationships, 473, 490
Hash marks, 584
Hash table, 515
Hashcode values, 514, 515
Headings

for API methods, 155, 156, 157
class, 60
for loops, 457– 59
HTML, 613
main method, 60– 61
return value types in, 220

Heavyweight components, 680
Height class, 264
HeightDriver class, 265
Hello World program, 16– 20, 26
HelloGUI.java, 21
Hello.java, 16– 20
HelloWithAFrame program, 668– 70
Helper methods

implementing in top-down design, 317– 18
of main method, 351– 52
overview, 305– 7, 308

Hexadecimal numbers
for ASCII characters, 746– 47
for hashcode values, 514– 15
overview, 460, 745

Hidden characters, 15– 16
Hierarchies

assignment between classes, 522– 24
combining approaches, 490– 98
composition and aggregation, 472– 79
exception class, 566
inheritance examples, 483– 89
inheritance overview, 479– 83
in Java API library, 755– 56
polymorphism with, 524– 30

High-level pseudocode, 47– 48

Histograms, 385– 86
Home-appliance software, 14
Horizontal-gap arguments, 699, 704
Horton’s Law, 156
Hot swapping, 6
Hourly class, 530
HTML programs, calling applets from, 188
HTML tags, 613, 615, 701
HTMLGenerator program, 612– 15
Human body, 473
Hyphens

as fl ag characters, 175
as subtraction operator, 11, 28
in UML diagrams, 216

I
i icons, 21, 95, 670
Icons

for information dialogs, 21, 95
JOptionPane dialog options, 670

Identifi er naming rules, 64– 65, 66
Identifi erChecker program, 166, 167
“if, else” form, 33, 109, 110
“if, else if” form, 33– 34, 109, 110, 122– 23
if statements

basic forms, 31– 35, 109, 110
braces with, 302
conditional operator code versus, 449
equals methods in, 254, 255
overview, 108– 11, 752
shortened, 227
for stopping conditions, 784
switch statements versus, 122– 23
tic-tac-toe application, 712

Image fi les, 182, 686
ImageInfo program, 183
Immutability of string objects, 171
Implementation

of computer programs, 47, 48
defi ned, 9
of interfaces, 534

implements clauses, 534, 752
Implicit method calls, 515– 16, 517
import statements
ArrayList class, 409
defi ned, 752
for JOptionPane class, 96
for Scanner class, 91
for subpackages, 679
wildcards in, 154– 55, 329

Inaccessible objects, 252
Increment operator, 79, 443– 45, 765
Indentation

with braces, 109, 300– 301
coding conventions for, 763– 64
with line breaks, 301
in pseudocode, 32

Index positions, 88, 169– 70
Index variables

defi ned, 130
multiple, 458– 59
in nested for loops, 134
scope of, 131, 216– 17

Indexes (array)
basic principles, 372– 73
for combo boxes, 728

19-M4402-IX.indd 80919-M4402-IX.indd 809 12/17/07 4:29:42 PM12/17/07 4:29:42 PM

Apago PDF Enhancer

810 Index

Indexes (array) (continued)
defi ned, 371
invalid, 568– 69, 580– 82
with two-dimensional arrays, 396– 97

indexOf methods, 170
IndexOutOfBounds Exception, 568,

580– 82
Infi nite loops, 37, 46, 125– 26
Information dialog boxes, 21, 95, 96
Inheritance

with aggregation and composition,
490– 93

assignment between classes and, 522– 24
association versus, 500
composition versus, 495– 97
defi ned, 472
equals method, 510– 13
overview, 479– 83
polymorphism with, 524– 30
sample implementations, 483– 89
spanning hierarchies with interfaces,

535– 39
toString method, 514– 18

Initial states, in UML diagrams, 778
Initialization

array elements, 375– 76, 397
assigning values during, 40, 42, 80
combining with instantiation, 266
of named constants, 270
in try blocks, 563– 64

Initialization component of for loop, 129
Initialization statements

basic syntax, 68– 69
blank lines between, 297
garbage values in, 80
for instance variables, 202, 206
in try blocks, 563– 64

Inner classes
anonymous, 659– 62
basic features, 658– 59
defi ned, 753

inner reserved word, 753
Input devices, 2
Input dialogs, 97– 99, 667, 668
input statements, 44
Input validation, 138– 39, 561. See also Ex-

ception handling
InputMismatchException objects,

558– 59
Input/output classes, 602– 4
Input/output operations

binary, 618– 21
HTMLGenerator example, 612– 15
major approaches, 602– 4
object-based, 622– 26
text-based input, 608– 11
text-based output, 604– 8

Inputs
into algorithms, 29
invalid entries, 556– 57
Scanner class features, 90– 94
testing, 311, 326
text-based, 608– 11

Insertions into strings, 172
insets objects, 592

InstallationDialog program, 96
Installation-options windows, 723– 24
Instance constants, 270, 352
Instance methods

calling, 206– 9
with class methods, 350– 51, 354– 56
defi ned, 152, 198– 99

Instance named constants, 352
Instance variables

accessing without this reference,
327– 29

in containing classes, 476
copying, 249
declaring, 200– 203
default values and persistence, 209– 10,

247
defi ned, 198– 99
encapsulation with, 309– 10
initial diagramming, 495
local variables versus, 217
text box components as, 654, 663

instanceOf operator, 522, 523, 753
Instances, objects as, 198
Instantiation

arrays, 375, 403
combining with initialization, 266
defi ned, 205, 247
File objects, 626– 27
objects with same instance variables, 249
temporary objects, 249– 52

Instruction sets, 13n
int cast operator, 82, 158
int constants, 71
int data type

converting strings to, 162, 561
default value, 209
defi ned, 753
dialog input, 98
as primitive type, 85
when to use, 69, 434

Integers
assigning to characters, 443
dialog input, 98
division of, 75, 82
initializing, 209
when to use, 69, 434– 35

Integrated development environments, 15,
214– 15

Intelligent appliances, 14
interface reserved word, 753
Interfaces

with anonymous inner classes, 661
defi ned, 305, 658
main uses, 533– 39
SwingConstants, 704

InterruptedExceptions, 797
Invalid input, 93
IOException error, 571, 572, 622
is keyword, 226
“Is-a” relationships, 490
isDigit method, 165
isDirectory method, 627
isEmpty method, 169
isFile method, 627
isSelected method, 722, 726

Italics, 32
ItemListener interface, 723
Iterations

confi rming number of, 38– 39
defi ned, 37
using for-each loops, 421– 22
using for loops, 127– 31

Iterative enhancement, 324– 26

J
Java API Web site, 153– 54, 322
Java Development Kit, installing, 18
.java extension, 64
Java programming language, 14– 20
Java Virtual Machine, 13– 14, 18, 74– 75
java.awt package, 649, 679, 680
java.awt.event package, 658
javac command, 19
javadoc tool, 296, 771– 77
java.io package, 602
java.lang package, 155
JavaServer Pages, 15
java.util package, 154
javax.swing package, 629, 649, 651,

680, 725
javax.swing.border package, 733
JButton component, 662– 67
JCheckBox components, 721– 24
JComboBox components, 726– 28
JComponent class, 651– 52
JFileChooser class, 629– 34
JFrame class, 461, 649– 51
JFrame windows, 675– 76
JLabel components, 649, 652, 729
Job application form, 729– 34
JOptionPane class, 95– 99, 631, 667– 70
JPanel components, 682, 701, 714– 15,

733
.jpg fi les, 182, 183, 185– 86
JRadioButton components, 724– 26
JSlider class, 736– 38
JTextArea components, 719– 20, 721
JTextField components, 653– 54

K
Keywords, 60
Kludges, 530

L
Labels

check box, 722
on container regions, 703– 4
JLabel, 649, 652
radio button, 725

Largest-number algorithms, 41– 42
Late binding, 520
Layout managers
BorderLayout features, 698– 704
defi ned, 650
embedded, 712– 14, 729
FlowLayout features, 650, 696– 98
GridLayout features, 704– 7
overview, 695– 96
tic-tac-toe application, 707– 12

Leading whitespace, 92, 93

19-M4402-IX.indd 81019-M4402-IX.indd 810 12/17/07 4:29:43 PM12/17/07 4:29:43 PM

Apago PDF Enhancer

 Index 811

Left-pointing arrow, 47
length method, 89, 377
length property, 377– 79, 398, 402
Lexicographical ordering of strings, 166
License-agreement example, 719, 720, 721
Lightweight components, 680
Limited-resource devices, 15
Line breaks, 301
Line drawing, 185, 561
Line numbers, 44, 46
Line plotting, 561, 562, 584– 92
Line wrapping, 719– 20
lineDraw method, 561
LinePlot program, 559– 61, 562
LinePlotGUI program, 584– 92
Linked classes, 481– 82
Linked lists, 358– 64, 423
LinkedList class, 154, 364
Listeners

as anonymous objects, 660– 62
for button components, 663, 664
defi ned, 646
to distinguish multiple events, 671, 672
implementing, 657– 58
as inner classes, 658– 59
JCheckBox, 723
mouse, 680– 82, 683– 85

Lists. See also ArrayLists; Arrays
drop-down, 726– 28
linked, 358– 64, 423

Literals, 71, 83
Local main methods, 327
Local named constants, 270, 352
Local variables

basic features, 216– 17, 247
defi ned, 211, 216
encapsulation with, 309– 10
parameters versus, 223
persistence, 218
temporary, 258, 259
using, 217– 18
when to declare, 767

Logic errors, 117, 118
Logical chunks of code, separating, 66
Logical operators. See also Operators

“and” operator, 111– 15
in Boolean algebra, 139– 42
“not” operator, 118
“or” operator, 116– 18

Logistic equation, 228
long data type

default value, 209
defi ned, 753
as primitive type, 85
when to use, 69, 435

Long-form tracing, 44, 45
Looping structures

algorithm forms, 36– 38
assignment statements in, 447– 48
braces with, 302
break statement within, 456– 57, 458
choosing, 132– 33
creating delays with, 454– 55
do loops, 126– 27
fl ow of control in, 30, 123

for loops, 127– 31, 457– 59
nested, 41– 42, 133– 35
return statements in, 221– 22
in sorting algorithms, 393
termination techniques, 38– 41
while loops, 123– 26

Lottery program, 163– 64
Lowercase letters

converting to, 171– 72
in variable names, 27
when to use, 766

LuckyNumber program, 558
Lunar eclipse program, 736– 38

M
Machine code, 12
Main memory, 4– 6
main methods

absence from applets, 188
as class methods, 351– 52
in driven classes, 326– 27
headings, 60– 61
placing variable declarations in, 65

main reserved word, 60– 61
Maintenance, 9, 221–22, 325– 26
makeCopy method, 249, 250
Mammals, 479
Manager class, 477
Manager2 class, 492
Margins, creating, 731– 33
markAntony.txt, 609
Matching catch blocks, 559
Math class, 155– 60
MathCalculator program, 715– 19
Math-calculator window, 712– 14
Mathematical functions, 60– 61, 155– 56
Math.random method, 176– 79
Maturation, modeling, 228– 29
Maximum values

expression for fi nding, 448– 49
named constants for, 435, 437
for random number generation, 176

Meaningful names, 300
Megabytes, 6
Members, 200
Memory (computer), 4– 7, 252, 346
Memory leaks, 252
Menu bars, 735
Menus, 735
Mercury project, 325
Message dialogs, 96– 97, 667– 70
Method body, 202
Method overloading, 246
Method overriding

defi ned, 472
implementing, 486– 88
toString methods, 515, 516, 518

Method signatures, 262
Method-call chaining, 246, 260– 62
Methods

basic math, 156– 58
Character class, 165– 66
class versus instance types, 152, 198– 99
coding conventions for, 766– 67
defi ned, 31, 60– 61

description format, 298
naming, 64, 300
overloaded, 262– 65
promotion in calls, 442
recursion, 784– 92
relation to objects, 152, 197, 198
string, 87– 90, 166– 72
trigonometric, 158, 160
wrapper class, 161– 62

Micro Edition applications, 15
Microprocessors, 3– 4, 8
Microsoft, 8
Microsoft Windows operating system, 323
MIN_NORMAL constant, 437
MIN_VALUE constant, 437
Minimum values

named constants for, 435, 437
for random number generation, 176

Minus sign
as subtraction operator, 11, 28
as unary negation operator, 77

Misuse of empty statement, 455– 56
Mixed expressions

defi ned, 74, 441
evaluating, 450, 451, 452
promotion in, 74– 75, 441– 42

mkdir method, 627
Modal components, 673
Modifi ers, 72
Modules, 305– 6
Modulus operator, 75
Monospaced fonts, 27, 461, 634
Moon missions, 325
Motherboards, 4
Mouse class, 201, 212, 347
Mouse listeners, 680– 82, 683– 85
Mouse2 class, 218, 219
Mouse2Driver class, 217– 18
MouseDriver class, 204
MouseDriver2 class, 211
MouseListener interface, 680– 81
MouseMotionListener interface,

680– 81
MouseShortcut class, 328
Moving averages, 383– 85
Multidimensional arrays, 402
Multiple statements on a line, 764
Multiplication

in precedence of operations, 76, 77
symbol, 28, 77

Multiplicity values, 474
Multithreading, 794– 803
Mutator methods, 225– 26, 304– 5

N
Named constants

basic features, 72, 765
for color values, 675
for format strings, 402
hard-coded constants versus, 72, 73– 74
initializing, 270
in interfaces, 534– 35
levels of, 352– 54
in Math class, 159– 60
wrapper class, 162, 435, 437

19-M4402-IX.indd 81119-M4402-IX.indd 811 12/17/07 4:29:43 PM12/17/07 4:29:43 PM

Apago PDF Enhancer

812 Index

Naming rules
for classes, 64, 65, 300
for constructors, 266
for methods, 64, 300
overview, 64– 65
for variables, 27– 28, 66, 300
for variables in overloaded methods, 262
for variables in separate blocks, 223

NASA space program, 325
native reserved word, 753
Nested looping structures, 41– 42, 133– 35,

397
NestedLoopRectangle program, 133– 35
Netscape, 14
New line character, 616– 17, 701
new operator

in array instantiation, 375
basic purpose, 205– 6, 753
in constructor calls, 180, 274

Newline character, 84
next method, 92, 93, 95
nextBoolean method, 180
nextDouble method, 92, 94, 180
nextFloat method, 92
nextGaussian method, 180
nextInt method

basic actions of, 92, 94
parseInt method versus, 561
Random class, 180
source code heading, 155

nextLine method, 93– 94
nextLong method, 92
Non-static method error messages, 350– 51
Non-void return types, 580
Nonvolatile memory, 6
Not equal to sign, in formal pseudocode, 47
“Not” operator, 118
Notepad, 16– 18
null values

defi ned, 753
terminating loops at, 527
testing for, 512– 13

NullPointerException error, 527,
571

NumberFormatException errors,
577– 79

NumberList program, 577– 80
Numeric data

basic types, 69– 70, 434– 37
converting, 443
operators for, 74– 75

numOfPoints parameter, 584

O
Oak, 14
Object class
equals method, 510– 11, 513
overview, 509
toString method, 514, 515

Object code, 12– 13
Object diagrams, 780
Object I/O

advantages, 602, 603, 604
implementing, 622– 26

ObjectInputStream class, 604

Object-oriented programming. See also In-
heritance; Program design

argument passing, 222– 23, 224
array basics, 402– 9
calling object identifi cation, 206– 9
constructor overview, 265– 72
driver classes, 203– 6
instance variable default values and per-

sistence, 209– 10
local variables overview, 216– 18
method-call chaining, 260– 62
modeling and implementing classes,

199– 203
multiple driven classes, 275– 84
object creation details, 246– 47
overloaded constructors, 272– 75
overloaded methods, 262– 65
overview, 152, 196– 99, 215– 16
passing references as arguments, 257– 59
simulation techniques in, 227– 34
specialized methods in, 224– 27
testing objects for equality, 252– 57
tracing, 210– 15

ObjectOutputStream class, 604
Objects

anonymous, 417
arrays of, 402– 9
basic features, 196– 97
Color, 675
creating, 246– 47
defi ned, 86, 152
reference variables versus, 204, 205
temporary, 249– 52
testing for equality, 252– 57

Off-by-one errors, 37, 456
Offset continuous uniform distributions,

176, 178
OK buttons, 21
One-line comments, 58
Opening braces, 61. See also Braces
Opening text fi les, 604– 5, 608– 9
Operands, 28, 74
Operating systems, 16
Operations, diagramming for UML classes,

200
Operators

cast, 81– 83
common types in algorithms, 28
comparison, 108
compound assignment, 79– 80
increment and decrement, 79
logical, 111– 18
for numeric data, 74– 75
precedence of, 28, 75– 78, 113– 14, 749–

50
shortcut, 765
spacing of, 764– 65

“Or” operator, 116– 18
Output devices, 2– 3
Output formatting, 172– 76
Output operations

binary, 618– 19
object-based, 622
text-based, 604– 8

Ovals, 185

Overfl ow errors, 435, 436
Overhead, 784
Overloaded constructors, 272– 75, 485
Overloaded methods, 262– 65
Overriding methods. See Method overriding

P
Package paths, 756
package reserved word, 753
Packages

custom, 756– 58
defi ned, 153
GUI groupings, 679– 80
hierarchical organization, 755– 56

paint method, 185
paintComponent methods, 545– 46, 586,

588, 686
Parameters

defi ned, 202
local variables versus, 223, 309
in overloaded constructors, 272– 75
in overloaded methods, 262– 63

Parent classes, 482
Parentheses

with calculated variables, 33
with cast operators, 81– 82, 83
coding conventions for, 764
for control statement conditions, 108
as fl ag characters, 175
with logical operators, 113– 14
in method calls, 89, 377
optional with return statements, 227
in switch statements, 120
when to use, 28, 66, 67, 377– 79

parseDouble method, 162
parseInt method

basic purpose, 162, 664
potential errors with, 561, 577, 667

Parsing, 611
Parsing errors, 611
Partially fi lled arrays, 379
Pass-by-value, 223, 224
Passed-in references, 257
Paths

directory, 19, 627
package, 756, 757– 58

Payroll program, 524– 30, 535– 39, 540– 44
Payroll3 program, 538– 39, 780– 83
Payroll4 class, 540
PennyJar class, 355– 56, 357, 358
Pentagon ashtrays, 321
Percent symbol

in compound assignment operator, 80
as conversion specifi er, 454
with format specifi er, 174
as modulus operator, 75

Peripherals, 8
Persistence, 210, 218
Person class, 257– 59, 483– 84, 493
Person/Employee/FullTime hierar-

chy, 483– 89
Pets program, 521– 22
phoneList array, 371– 72
Photographs, 182, 183, 185– 86
PI constant, 159

19-M4402-IX.indd 81219-M4402-IX.indd 812 12/17/07 4:29:44 PM12/17/07 4:29:44 PM

Apago PDF Enhancer

 Index 813

Pixels, 182, 183, 650
Plain text editors, 15– 16
PLAIN_MESSAGE constant, 670
Plus sign

as addition operator, 28, 77
for concatenation, 63, 66, 83, 440
in formal pseudocode, 47
as prefi x in UML diagrams, 216
as unary operator, 77

Polymorphism
abstract methods and classes, 530– 33
with arrays, 524– 30
assignment between classes and, 522– 24
GUI applications, 544– 50
with interfaces, 535– 39
overview, 509, 519– 20

Portability, 12– 14, 680
Position determination of string characters,

170
Postfi x mode, 443– 46
pow method, 156, 410
Pre-built methods. See also API library

API library overview, 153– 55
Character class, 165– 66
Math class, 155– 60
printf, 172– 76
random number generation, 176– 81
string, 166– 72
use in bottom-up design, 322
wrapper classes, 161– 64

Precedence of operations
basic, 28, 75– 78
in Boolean algebra, 139– 40
with logical operators, 113– 14
summary list, 749– 50

Precision, 175, 437
Predator-prey interactions, 795– 803
Prefi x mode, 443– 46
Preliminary class diagrams, 493– 95
Primitive data types. See also Data types

storing in ArrayLists, 414– 17, 423
wrapper classes, 161– 64

Primitive variables, 85– 86
print method, 134
print statements

avoiding in toString methods, 515
tracing, 44
unneeded, 225

Print statements (pseudocode), 26, 27,
32– 33

PrintCharFromAscii program, 444
printf method, 172– 76
PrintInitials program, 95
PrintLineFromFile program, 573, 574
PrintLineFromFile2 program, 573– 76
println method
charAt method versus, 88– 89
in nested loops, 134
purpose, 62
to write text, 605

PrintPO program, 94
PrintPOGUI program, 98
PrintUtilities class, 354, 355
PrintWriter class, 603, 604, 605– 6
PrintWriter constructor calls, 606– 8

private access modifi er
for class constants, 353
for class variables, 346
defi ned, 753
for helper methods, 305
for inner classes, 659
for instance variables, 202
prohibited with abstract methods, 533

Procedural programming, 196
Processes, 797
Processors, 3– 4, 8, 14
Producer threads, 795
Program design. See also Object-oriented

programming
basic principles, 310– 12
bottom-up approach, 321– 23
case-based approach, 323
iterative enhancement in, 324– 26
overview, 9, 10
selecting class relationships, 493– 98
top-down approach, 312– 21

Programmer view, 48
Programmer-defi ned exception classes, 566
Programming languages, 11
Programs, 1– 2, 7. See also Computer

programs
Prologues

coding conventions for, 759, 766– 67
overview, 297
syntax, 59

Promotion of operands, 74– 75, 441– 42, 523
Prompts, 19, 29
protected access modifi er, 539– 44, 753
Protocols, 621
Prototyping, 324
Pseudocode

converting to source code, 11
defi ned, 10, 26
indentation in, 32
proceeding without, 11– 12
programming code versus, 57
varieties of, 46– 48

public access modifi er
for class constants, 353
defi ned, 60, 61, 753
for instance variables, 202
optional for interfaces, 534

public methods, 312, 314, 315– 16

Q
Queries

with do versus while loops, 127
in nested loops, 41– 42
terminating loops with, 38, 39

Question mark icon, 97, 670
Quotation marks, 26, 62, 83, 84

R
Radio buttons, 695, 724– 26
Random access memory (RAM), 6, 8
Random class, 154, 179– 81
random method, 158, 163– 64
Random numbers, 176– 81
randomNumbers.txt, 609
RandomTest program, 181

Readability, 59, 64– 65, 67
ReaderMenu.java fi le, 736
readLine method calls, 573
ReadObject program, 622– 23, 625
Read-only memory, 6
ReadTextFile program, 610
Realizable types, 480
Rectangle algorithm, 27, 28– 29
Rectangles

drawing, 184, 185
in fl owcharts, 30

Recursion, 784– 92
Redundancy, avoiding

with helper methods, 306
with looping structures, 36
with super- and subclasses, 482

Reference types, 86, 509, 522
Reference variables

anonymous objects versus, 417, 418
ArrayList initialization, 409
assigning values to, 205– 6, 247, 248– 52
charAt and println methods, 88
copying, 248
declaring, 205
default value, 209, 247
instantiating, 205, 247
null, 512– 13
objects versus, 204, 205
omitting dot prefi xes with, 307
overview, 86, 203– 4
passing as arguments, 257– 59
two in one method call, 254

Regions, 699. See also BorderLayout
manager

Registering listeners, 657
Relational operators, 136– 38
Relative paths, 627
removeStudent method, 568– 69
renameTo method, 627
repaint method, 686
Repetitive tasks, 123, 393
replaceAll method, 171
replaceFirst method, 171
Replacement of text, 171
Requirements analysis, 9
Reserved words, 60, 61, 751– 54
reset method, 626
Resolution (screen), 650
return i statements, 388
return statement, 218– 22, 227, 753
return this statement, 260– 61
Return types. See also Data types

matching to method headings, 218– 20
omitting from constructor headings, 266
for overriding methods, 488

Return values
Boolean, 226, 254
defi ned, 155
return statement overview, 218– 22

RGB values, 675. See also Colors
Robustness of algorithms, 41
ROM, 6
Root directories, 627
Rotation of graphic images, 549– 50
round method, 152, 158, 160

19-M4402-IX.indd 81319-M4402-IX.indd 813 12/17/07 4:29:44 PM12/17/07 4:29:44 PM

Apago PDF Enhancer

814 Index

Round-off errors, 436– 37
row variables, 66
Rows (GridLayout), 704, 705– 7
Run commands, 12
Run dialog box, 18– 19
Runtime errors

analyzing, 576– 80
defi ned, 89, 118, 556

Russell 3000 Index, 415

S
Salaried class, 529
Salaried3 class, 543
SalariedAndCommissioned class, 537
SalariedAndCommissioned2 class,

541
Sale class, 499, 500
SalesClerks program, 404– 9
SalesPerson class, 477
SalesPerson2 class, 492
Save As dialog box, 16– 18
Saving fi les, 16, 64
Scalability, 402, 591
Scanner class, 91– 94, 153, 603
Scanner constructor calls, 609
Scanner methods, 610– 11
Scientifi c notation, 437
Scope, 216– 17, 348
Screen resolution, 650
Screen shots, 9
Scroll panes, 736
Scrollable containers, 735– 36
Searching in arrays, 388– 92
Section delimiters, 759
SecurityException class, 571
Seeds, 180– 81
Selection sorts, 393– 94
Self-documenting code, 64
Semantics, 109
Semaphores, 800– 803
Semicolons

in do loops, 126
for empty statements, 454– 56
required for Java statements, 11, 62, 65

SentenceTester program, 111, 112
Sentinel values
boolean variables as, 138
in nested loops, 41– 42
“q” as, 561
terminating loops with, 38, 39– 41

Sequential searches, 388– 89, 390, 787
Sequential steps, 548
Sequential structures, 30, 57
Sequential-execution programs, 57, 107
Serialization, 622– 24
Server view, 48
Servers, 305
Servlets, 15
set methods
ArrayList, 411– 12
Color, 674
defi ned, 225
JButton, 663
JCheckBox, 722
JComboBox, 727
JLabel, 652

JRadioButton, 726
JTextArea, 720
JTextField, 653

Set statements, print command in, 32– 33
setBackground method, 674, 676, 720
SetBorder method, 731– 33
setColor method, 185, 550
setDefaultCloseOperation method,

649, 651
setEditable method
JButton, 663
JComboBox, 727, 728
JTextArea, 720
JTextField, 653, 654

setEnabled method, 722– 23, 726
setFileSelectionMode method, 629,

631
setForeground method, 674
setLayout method

to assign BorderLayout to contain-
ers, 699

to assign GridLayout to containers,
704

for dynamic layout adjustments, 698
for layout manager assignments, 650,

696
setLineWrap method, 720
setPaint method calls, 550
setSelected method, 722, 726
setSelectedIndex method, 728
setSelectedItem method, 727, 728
setSize method, 650
setText methods
JButton, 663
JLabel, 652
JTextArea, 720
JTextField, 653

setTitle method, 650
setVisible method
JButton, 663
JCheckBox, 722
JComboBox, 727
JTextField, 653, 654

setWrapStyleWord method, 720
Shape algorithm, 32– 33
Shared values, class variables for, 347
Shifting array element values, 382– 85
Shirt class, 307, 308
ShirtDriver class, 306
short reserved word, 753
Short-circuit evaluation, 453– 54, 512
Shortcut operators, 765
Short-form tracing, 43– 44
showConfirmDialog method, 631
showInputDialog method, 98– 99
showMessageDialog method, 96– 97,

631, 668– 70
showOpenDialog method, 629, 631
Signatures, 262
Signifi cant digits, 70
SimpleWindow program, 647– 49
Simulations, 227– 34, 385– 86, 387
sin method, 158, 160
Single quotes, 83, 84, 121
16-bit characters, 459
16-bit instructions, 12

Slashes. See also Division
in compound assignment operator, 80
as division operator, 11, 28
to set off comments, 58– 59

sleep method, 455, 797
Sliders, 736– 38
Software development tools, 46, 214– 15
Software engineering, 296
Sort class, 394, 395
Sorting arrays, 390, 393– 96
Sorting characters, 438
Source code, 10– 12
Space program example, 325
Spaces, 27, 764– 65
Spaghetti code, 30
Specifi cations, 322
SpeedDialList program, 374
SpeedDialList2 program, 378
Spherical coordinate systems, 544
Splitting string literals, 63
Square brackets

in array declarations, 373
in arrays with two or more dimensions,

396– 97, 402
purpose, 61, 174

Square class, 315, 316, 319– 20
SquareDriver class, 314
Standard coding conventions, 60
Standard Edition applications, 15
Standard windows. See Windows (GUI)
Start tags, 613
Statements

braces with, 761– 63
defi ned, 11
fl ow of control, 30– 31
line breaks in, 301
multiple, 764
pseudocode, 26

States
implementing in top-down design,

313– 14
of objects, defi ned, 197
tracking with boolean variables, 135
tracking with ItemListener, 723

Static allocation, 346
Static binding, 520
static modifi er

basic purpose, 61, 753
for class variables, 346
with Math methods, 156
optional for interfaces, 534– 35
in UML class diagrams, 216

stdIn variable, 91
Stepping over method calls, 215
Stepwise refi nement, 312– 13
Step-with-midpoint algorithm, 232– 34
StockAverage program, 415– 17
Stopping conditions, 784
Storage devices, 6– 7
Streams, 604
strictfp reserved word, 754
String concatenation, 66, 83, 87
String literals, 26, 62– 63
String methods, 87– 90, 166– 72
String pooling, 513
String variables, 86, 98, 124

19-M4402-IX.indd 81419-M4402-IX.indd 814 12/17/07 4:29:45 PM12/17/07 4:29:45 PM

Apago PDF Enhancer

 Index 815

String class, 61, 65, 86
String[] arguments, 61
StringBuffer class, 621
String.format method, 634, 715– 19
StringMethodDemo program, 169
Strings

adding to graphics, 185
char type versus, 83
comparing, 116– 17, 254– 55
concatenating, 66, 87, 450
converting to primitive types, 98– 99,

161– 62, 561
declaration syntax, 65
defi ned, 26, 61
escape sequences in, 84– 85
Java features for manipulating, 86– 90
parsing, 664

Strongly typed languages, 68, 441
Structured programming, 30
Stubs, 312, 316– 17
Student class, 298, 299
StudentDriver class, 297
StudentList class, 567– 69
StudentList2 class, 580– 83
StudentListDriver class, 568
Style conventions, 296– 305
Subclasses, 481– 88
Subordinate statements, 32, 33, 108– 9
Subpackages, 679
Subscripting, 373
substring method, 169– 70
Substring retrieval, 169– 70
Subtraction, 11, 28, 77
Subtrees, 539
Sun Java API Web site, 153– 54, 322
Sun Microsystems, 14
super keyword, 485, 487– 88, 754
Superclasses

basic features, 481– 82
constructors in, 485– 86
implementing, 483– 85
initial diagramming, 495
JFrame as, 650
method overriding and, 486– 88

Survivor program, 413, 414
Swapping algorithm, 257– 59
Swimlanes, 779
Swing library, 680, 734– 35
SwingConstants interface, 704
Switch class (Garage Door program), 281
switch statements, 119– 23, 754
Synchronization, 800– 803
synchronized reserved word, 754
Syntax

anonymous inner classes, 661
arrays and ArrayLists, 373, 375, 409,

410
cast operators, 442
charAt and println methods, 88– 89
class constants, 353
class methods, 349– 50
class variables, 346
comment, 58– 59, 297
conditional operator expressions, 448– 49
declaration statements, 65
defi ned, 10

equals method, 510
format specifi er, 174
importance to programming, 11
instance constants, 270
instance method calls, 206
interface defi nitions, 534
Java versus pseudocode, 57
looping structures, 108– 9, 119– 20,

123– 24, 126, 129
overloaded constructors, 275
pre-built method calls, 152, 155
string– primitive conversions, 161
try and catch block, 557

Syntax errors, 20
System class, 155
System.arraycopy method, 381– 82,

383– 85
System.out.print statement, 91
System.out.println statement,

62– 63, 91

T
Tab character, 84
Table formats, 704– 7
Tagging objects for serialization, 622
Tags (HTML), 613, 615, 701
Tags (javadoc), 773– 75
tan method, 158, 160
TemperatureConverter program example,

73– 74
Temporary objects, 249– 52
Temporary print statements, 225
Temporary variables, 258, 259
Terminate abnormally, 89
Termination of loops

basic principles, 37
with boolean variables, 138
common techniques, 38– 41
do loops, 127
length property for, 402
with return statements, 221– 22

Ternary operators, 448
TestExpressions program, 76
Testing. See also Tracing

defi ned, 9
freezing random numbers for, 181
local main methods for, 327
overview, 311– 12
standard data banks for, 326

TestObject class, 622, 623
TestOperators program, 81
Text boxes, 653– 54, 657– 58
Text editors, 15– 16
Text format, 615– 18
Text I/O

advantages, 602, 603
HTMLGenerator example, 612– 15
input implementations, 608– 11
output implementations, 604– 8

Text replacement, 171
TextEdit, 16
this constructor calls, 275
this reference

as calling object identifi er, 186, 208– 9,
263

defi ned, 754

as instance variable identifi er, 202, 208
omitting, 327– 29

Threads, 794– 803
Three-dimensional graphics, 544– 50
throw reserved word, 754
Throwing an exception, 559
throws clauses, 580– 82, 754
Tic-tac-toe example, 707– 12
Time class, 326
Times and dates, 329– 31
Title bars, 21, 650
Tokens, 93, 611
toLowerCase method, 171– 72
Top-down design, 312– 21
Top-level classes, 659
toString methods, 162, 514– 18
toUpperCase method, 171– 72
Towers of Hanoi, 790– 92
Tracing. See also Testing

with constructors, 275
object-oriented programs, 210– 15
of operations, 80
in pseudocode, 42– 46
setup for, 67– 68, 130–31, 368

transient reserved word, 754
Transitions in UML diagrams, 778
Trigonometric math methods, 158, 160
trim method, 171– 72
true reserved word, 754
TruthTable program, 140, 141
try blocks

details in implementing, 563– 64
in input validation, 561
overview, 557– 59, 754

try-catch structures
for checked exceptions, 569– 72
with generic catch blocks, 572– 73
in input validation, 561
moving to calling methods, 580– 82
with multiple catch blocks, 573– 76
overview, 557– 59
for unchecked exceptions, 566– 67,

568– 69
Two-dimensional arrays, 396– 402
Type casting, 442– 43
Types. See Data types

U
UML class diagrams

for arrays of objects, 404
basic features, 199– 200, 215– 16, 778– 83
composition and aggregation in, 473,

474, 525
Garage Door program, 278
inheritance hierarchies, 480– 82
use in top-down design, 314, 318

Unary operators, 77
Unboxing, 415– 17
Unchecked exceptions, 564– 69
Underlining in UML diagrams, 216
Unicode characters

ASCII values versus, 439
for binary data fi les, 617
need for, 440
overview, 459– 63, 745– 48
Web site, 745

19-M4402-IX.indd 81519-M4402-IX.indd 815 12/17/07 4:29:46 PM12/17/07 4:29:46 PM

Apago PDF Enhancer

816 Index

UnicodeDisplay program, 462
Unintended empty statements, 455– 56
Universal constants, 535
Universal serial bus, 6– 7
Unserialization, 622
Update component of for loop, 129
Uppercase letters. See Capital letters
Urban legends, 8
USB fl ash drives, 6– 7
User, 29
User queries. See Queries
User-friendliness of boolean variables,

138
Utility methods, 352, 354

V
validate method, 698
valueOf method, 518
Variables

arrays as, 373
assignment syntax, 66– 68
Boolean, 135– 39
class versus instance types, 198– 99
as constants, 72
converting data type, 81– 82
declaration syntax, 65– 66, 761
defi ned, 27
garbage values, 80
index, 130, 131, 134, 216– 17
initialization syntax, 68– 69
local, 211, 216– 18
naming, 27– 28, 223, 262, 300
numeric data types for, 69– 70
primitive versus reference, 85– 86, 203– 4,

205
random number generation, 176– 81
scope of, 131
temporary, 258, 259

Vertical-gap arguments, 699, 704
vi text editor, 16
void modifi er, 61, 218, 220, 754
Volatile memory, 6
volatile reserved word, 754

W
WARNING_MESSAGE icon, 670
Web sites

Java API, 153– 54, 322
Java documentation, 87
JDK installation instructions, 18
Swing library, 734– 35
Unicode, 463, 745– 48
Webopedia, 2

while loops
assignment statements in, 448
for input validation, 138– 39
overview, 123– 26
when to use, 132– 33

While loops (pseudocode), 37– 38, 39
while reserved word, 754
while statements, 126
White illumination, 544, 675, 677
Whitespace

above comments, 303
defi ned, 92
to format text data, 611
nextLine method and, 93
removing, 171– 72

Width and height parameters, 184
Wildcards, 154– 55, 329
Windows (GUI). See also Graphical user

interfaces (GUIs)
basic component overview, 651– 52
border sizes, 592
BorderLayout manager features,

698– 704
design and layout manager overview,

694– 96
dialog boxes versus, 667
FlowLayout manager features, 650,

696– 98
GridLayout manager features, 704– 7
inner classes for, 658– 62
JButton component overview, 662– 67
JCheckBox components, 721– 24
JComboBox components, 726– 28
JFrame class features, 649– 51

JLabel components, 652
JRadioButton components, 724– 26
JTextArea components, 719– 20, 721
JTextField components, 653– 54
listener implementation, 657– 58
menus, scroll bars, and sliders, 734– 38

Windows operating system, 323
Word processors, 15– 16
World Wide Web, 14– 15. See also Web sites
Wrapper classes

with ArrayLists, 414– 17, 423
basic features, 161– 64
Character class, 165– 66
for fl oating-point numbers, 161, 437
for integers, 161, 435
toString methods, 518

Wrapper objects, 415
writeChars method, 619
WriteObject program, 622, 624, 626
WriteTextFile program, 605, 606
WriteTextFile2 program, 607
writeToFile method, 582, 584

X
xPixels parameter, 584– 85
x-y coordinates, 182– 84

Y
yPixels parameter, 585

Z
Zero

division by, 40– 41, 273, 579
as fl ag character, 175
starting counts at, 38, 372

Zero-parameter constructors, 267– 70, 484,
486

0x prefi x, 460, 748
ZIP Codes, 120– 22
.zip fi les, 758

19-M4402-IX.indd 81619-M4402-IX.indd 816 12/17/07 4:29:47 PM12/17/07 4:29:47 PM

Apago PDF Enhancer

	Cover Page

	Title Page
	Copyright Page

	Dedication

	About the Authors

	Preface
	Project Summary
	Contents
	CHAPTER 1: Introduction to Computers and Programming
	1.1. Introduction
	1.2. Hardware Terminology
	1.3. Program Development
	1.4. Source Code
	1.5. Compiling Source Code into Object Code
	1.6. Portability
	1.7. Emergence of Java
	1.8. First Program—Hello World
	1.9. GUI Track: Hello World (Optional)

	CHAPTER 2: Algorithms and Design
	2.1. Introduction
	2.2. Output
	2.3. Variables
	2.4. Operators and Assignment Statements
	2.5. Input
	2.6. Flow of Control and Flowcharts
	2.7. if Statements
	2.8. Loops
	2.9. Loop Termination Techniques
	2.10. Nested Looping
	2.11. Tracing
	2.12. Other Pseudocode Formats and Applications
	2.13. Problem Solving: Asset Management (Optional)

	CHAPTER 3: Java Basics
	3.1. Introduction
	3.2. “I Have a Dream” Program
	3.3. Comments and Readability
	3.4. The Class Heading
	3.5. The main Method’s Heading
	3.6. Braces
	3.7. System.out.println
	3.8. Compilation and Execution
	3.9. Identifiers
	3.10. Variables
	3.11. Assignment Statements
	3.12. Initialization Statements
	3.13. Numeric Data Types—int, long, float, double
	3.14. Constants
	3.15. Arithmetic Operators
	3.16. Expression Evaluation and Operator Precedence
	3.17. More Operators: Increment, Decrement, and Compound Assignment
	3.18. Tracing
	3.19. Type Casting
	3.20. char Type and Escape Sequences
	3.21. Primitive Variables Versus Reference Variables
	3.22. Strings
	3.23. Input—the Scanner Class
	3.24. GUI Track: Input and Output with JOptionPane (Optional)

	CHAPTER 4: Control Statements
	4.1. Introduction
	4.2. Conditions and Boolean Values
	4.3. if Statements
	4.4. && Logical Operator
	4.5. || Logical Operator
	4.6. ! Logical Operator
	4.7. switch Statement
	4.8. while Loop
	4.9. do Loop
	4.10. for Loop
	4.11. Solving the Problem of Which Loop to Use
	4.12. Nested Loops
	4.13. boolean Variables
	4.14. Input Validation
	4.15. Problem Solving with Boolean Logic (Optional)

	CHAPTER 5: Using Pre-Built Methods
	5.1. Introduction
	5.2. The API Library
	5.3. Math Class
	5.4. Wrapper Classes for Primitive Types
	5.5. Character Class
	5.6. String Methods
	5.7. Formatted Output with the printf Method
	5.8. Problem Solving with Random Numbers (Optional)
	5.9. GUI Track: Drawing Images, Lines, Rectangles, and Ovals in Java Applets (Optional)

	CHAPTER 6: Object-Oriented Programming
	6.1. Introduction
	6.2. Object-Oriented Programming Overview
	6.3. First OOP Class
	6.4. Driver Class
	6.5. Calling Object, this Reference
	6.6. Instance Variables
	6.7. Tracing an OOP Program
	6.8. UML Class Diagrams
	6.9. Local Variables
	6.10. The return Statement
	6.11. Argument Passing
	6.12. Specialized Methods—Accessors, Mutators, Boolean Methods
	6.13. Problem Solving with Simulation (Optional)

	CHAPTER 7: Object-Oriented Programming—Additional Details
	7.1. Introduction
	7.2. Object Creation—A Detailed Analysis
	7.3. Assigning a Reference
	7.4. Testing Objects for Equality
	7.5. Passing References as Arguments
	7.6. Method-Call Chaining
	7.7. Overloaded Methods
	7.8. Constructors
	7.9. Overloaded Constructors
	7.10. Problem Solving with Multiple Driven Classes

	CHAPTER 8: Software Engineering
	8.1. Introduction
	8.2. Coding-Style Conventions
	8.3. Helper Methods
	8.4. Encapsulation (With Instance Variables and Local Variables)
	8.5. Design Philosophy
	8.6. Top-Down Design
	8.7. Bottom-Up Design
	8.8. Case-Based Design
	8.9. Iterative Enhancement
	8.10. Merging Driver Method into Driven Class
	8.11. Accessing Instance Variables without Using this
	8.12. Problem Solving with the API Calendar Class (Optional)
	8.13. GUI Track: Problem Solving with CRC Cards (Optional)

	CHAPTER 9: Classes with Class Members
	9.1. Introduction
	9.2. Class Variables
	9.3. Class Methods
	9.4. Named Constants
	9.5. Writing Your Own Utility Class
	9.6. Using Class Members in Conjunction with Instance Members
	9.7. Problem Solving with Class Members and Instance Members in a Linked List Class (Optional)

	CHAPTER 10: Arrays and ArrayLists
	10.1. Introduction
	10.2. Array Basics
	10.3. Array Declaration and Creation
	10.4. Array length Property and Partially Filled Arrays
	10.5. Copying an Array
	10.6. Problem Solving with Array Case Studies
	10.7. Searching an Array
	10.8. Sorting an Array
	10.9. Two-Dimensional Arrays
	10.10. Arrays of Objects
	10.11. The ArrayList Class
	10.12. Storing Primitives in an ArrayList
	10.13. ArrayList Example Using Anonymous Objects and the For-Each Loop
	10.14. ArrayLists Versus Standard Arrays

	CHAPTER 11: Type Details and Alternate Coding Mechanisms
	11.1. Introduction
	11.2. Integer Types and Floating-Point Types
	11.3. char Type and the ASCII Character Set
	11.4. Type Conversions
	11.5. Prefix/Postfix Modes for Increment/Decrement Operators
	11.6. Embedded Assignments
	11.7. Conditional Operator Expressions
	11.8. Expression Evaluation Review
	11.9. Short-Circuit Evaluation
	11.10. Empty Statement
	11.11. break Statement within a Loop
	11.12. for Loop Header Details
	11.13. GUI Track: Unicode (Optional)

	CHAPTER 12: Aggregation, Composition, and Inheritance
	12.1. Introduction
	12.2. Composition and Aggregation
	12.3. Inheritance Overview
	12.4. Implementation of Person/Employee/FullTime Hierarchy
	12.5. Constructors in a Subclass
	12.6. Method Overriding
	12.7. Using the Person/Employee/FullTime Hierarchy
	12.8. The final Access Modifier
	12.9. Using Inheritance with Aggregation and Composition
	12.10. Design Practice with Card Game Example
	12.11. Problem Solving with Association Classes (Optional)

	CHAPTER 13: Inheritance and Polymorphism
	13.1. Introduction
	13.2. The Object Class and Automatic Type Promotion
	13.3. The equals Method
	13.4. The toString Method
	13.5. Polymorphism and Dynamic Binding
	13.6. Assignments Between Classes in a Class Hierarchy
	13.7. Polymorphism with Arrays
	13.8. Abstract Methods and Classes
	13.9. Interfaces
	13.10. The protected Access Modifier
	13.11. GUI Track: Three-Dimensional Graphics (Optional)

	CHAPTER 14: Exception Handling
	14.1. Introduction
	14.2. Overview of Exceptions and Exception Messages
	14.3. Using try and catch Blocks to Handle “Dangerous” Method Calls
	14.4. Line Plot Example
	14.5. try Block Details
	14.6. Two Categories of Exceptions—Checked and Unchecked
	14.7. Unchecked Exceptions
	14.8. Checked Exceptions
	14.9. The Exception Class and Its getMessage Method
	14.10. Multiple catch Blocks
	14.11. Understanding Exception Messages
	14.12. Using throws <exception-type> to Postpone the catch
	14.13. GUI Track and Problem Solving: Line Plot Example Revisited (Optional)

	CHAPTER 15: Files
	15.1. Introduction
	15.2. Java API Classes You Need to Import
	15.3. Text-File Output
	15.4. Text-File Input
	15.5. HTML File Generator
	15.6. Text File Data Format Versus Binary File Data Format
	15.7. Binary File I/O
	15.8. Object File I/O
	15.9. The File Class
	15.10. GUI Track: The JFileChooser Class (Optional)

	CHAPTER 16: GUI Programming Basics
	16.1. Introduction
	16.2. Event-Driven Programming Basics
	16.3. A Simple Window Program
	16.4. JFrame Class
	16.5. Java Components
	16.6. JLabel Component
	16.7. JTextField Component
	16.8. Greeting Program
	16.9. Component Listeners
	16.10. Inner Classes
	16.11. Anonymous Inner Classes
	16.12. JButton Component
	16.13. Dialog Boxes and the JOptionPane Class
	16.14. Distinguishing Between Multiple Events
	16.15. Using getActionCommand to Distinguish Between Multiple Events
	16.16. Color
	16.17. How GUI Classes Are Grouped Together
	16.18. Mouse Listeners and Images (Optional)

	CHAPTER 17: GUI Programming—Component Layout, Additional GUI Components
	17.1. Introduction
	17.2. GUI Design and Layout Managers
	17.3. FlowLayout Manager
	17.4. BorderLayout Manager
	17.5. GridLayout Manager
	17.6. Tic-Tac-Toe Example
	17.7. Problem Solving: Winning at Tic-Tac-Toe (Optional)
	17.8. Embedded Layout Managers
	17.9. JPanel class
	17.10. MathCalculator Program
	17.11. JtextArea Component
	17.12. JcheckBox Component
	17.13. JradioButton Component
	17.14. JcomboBox Component
	17.15. Job Application Example
	17.16. More Swing Components

	Appendix 1 Unicode/ASCII Character Set with Hexadecimal Codes
	Appendix 2 Operator Precedence
	Appendix 3 Java Reserved Words
	Appendix 4 Packages
	Appendix 5 Java Coding-Style Conventions
	Appendix 6 Javadoc
	Appendix 7 UML Diagrams
	Appendix 8 Recursion
	Appendix 9 Multithreading

