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Preface
Hadoop MapReduce Cookbook helps readers learn to process large and complex datasets. 

The book starts in a simple manner, but still provides in-depth knowledge of Hadoop. It is a 

simple one-stop guide on how to get things done. It has 90 recipes, presented in a simple and 

straightforward manner, with step-by-step instructions and real world examples.

This product includes software developed at The Apache Software Foundation  

(http://www.apache.org/).

What this book covers
Chapter 1, Getting Hadoop Up and Running in a Cluster, explains how to install and run 

Hadoop both as a single node as well as a cluster.

Chapter 2, Advanced HDFS, introduces a set of advanced HDFS operations that would be 

useful when performing large-scale data processing with Hadoop MapReduce as well as  

with non-MapReduce use cases.

Chapter 3, Advanced Hadoop MapReduce Administration, explains how to change 

conigurations and security of a Hadoop installation and how to debug.

Chapter 4, Developing Complex Hadoop MapReduce Applications, introduces you to several 

advanced Hadoop MapReduce features that will help you to develop highly customized, 

eficient MapReduce applications.

Chapter 5, Hadoop Ecosystem, introduces the other projects related to Hadoop such HBase, 

Hive, and Pig.

Chapter 6, Analytics, explains how to calculate basic analytics using Hadoop.

Chapter 7, Searching and Indexing, introduces you to several tools and techniques that you 

can use with Apache Hadoop to perform large-scale searching and indexing.
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Chapter 8, Classiications, Recommendations, and Finding Relationships, explains how 

to implement complex algorithms such as classiications, recommendations, and inding 
relationships using Hadoop.

Chapter 9, Mass Text Data Processing, explains how to use Hadoop and Mahout to  

process large text datasets, and how to perform data preprocessing and loading  

operations using Hadoop.

Chapter 10, Cloud Deployments: Using Hadoop on Clouds, explains how to use Amazon Elastic 

MapReduce (EMR) and Apache Whirr to deploy and execute Hadoop MapReduce, Pig, Hive, 

and HBase computations on cloud infrastructures.

What you need for this book
All you need is access to a computer running Linux Operating system, and Internet. Also, Java 

knowledge is required.

Who this book is for
For big data enthusiasts and would be Hadoop programmers. The books for Java 

programmers who either have not worked with Hadoop at all, or who knows Hadoop and 

MapReduce but want to try out things and get into details. It is also a one-stop reference  

for most of your Hadoop tasks.

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "From this point onward, we shall call the unpacked 

Hadoop directory HADOOP_HOME."

A block of code is set as follows:

public void map(Object key, Text value, Context context)   

  throws IOException, InterruptedException

  {

    StringTokenizer itr = new StringTokenizer(value.toString());

    while (itr.hasMoreTokens())

    {

      word.set(itr.nextToken());

      context.write(word, new IntWritable(1));

     }

  }
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Any command-line input or output is written as follows:

>tar -zxvf hadoop-1.x.x.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, in 

menus or dialog boxes for example, appear in the text like this: "Create a S3 bucket to upload 

the input data by clicking on Create Bucket".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  

book—what you liked or may have disliked. Reader feedback is important for us to  

develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 

mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 

contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 

get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can 

visit http://www.PacktPub.com/support and register to have the iles e-mailed directly 
to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 

and help us improve subsequent versions of this book. If you ind any errata, please report them 
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata 

submission form link, and entering the details of your errata. Once your errata are veriied, your 
submission will be accepted and the errata will be uploaded on our website, or added to any 

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by 

selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 

we take the protection of our copyright and licenses very seriously. If you come across any 

illegal copies of our works, in any form, on the Internet, please provide us with the location 

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  

pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 

aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com


1
Getting Hadoop Up and 

Running in a Cluster

In this chapter, we will cover:

 f Setting up Hadoop on your machine

 f Writing the WordCount MapReduce sample, bundling it, and running it using 

standalone Hadoop

 f Adding the combiner step to the WordCount MapReduce program

 f Setting up HDFS

 f Using the HDFS monitoring UI

 f HDFS basic command-line ile operations

 f Setting Hadoop in a distributed cluster environment

 f Running the WordCount program in a distributed cluster environment

 f Using the MapReduce monitoring UI

Introduction
For many years, users who want to store and analyze data would store the data in a database 

and process it via SQL queries. The Web has changed most of the assumptions of this era. On 

the Web, the data is unstructured and large, and the databases can neither capture the data 

into a schema nor scale it to store and process it.

Google was one of the irst organizations to face the problem, where they wanted to download 
the whole of the Internet and index it to support search queries. They built a framework for 

large-scale data processing borrowing from the "map" and "reduce" functions of the functional 

programming paradigm. They called the paradigm MapReduce.
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Hadoop is the most widely known and widely used implementation of the MapReduce 

paradigm. This chapter introduces Hadoop, describes how to install Hadoop, and shows  

you how to run your irst MapReduce job with Hadoop.

Hadoop installation consists of four types of nodes—a NameNode, DataNodes, a JobTracker, 

and TaskTracker HDFS nodes (NameNode and DataNodes) provide a distributed ilesystem 
where the JobTracker manages the jobs and TaskTrackers run tasks that perform parts of the 

job. Users submit MapReduce jobs to the JobTracker, which runs each of the Map and Reduce 

parts of the initial job in TaskTrackers, collects results, and inally emits the results. 

Hadoop provides three installation choices:

 f Local mode: This is an unzip and run mode to get you started right away where all 

parts of Hadoop run within the same JVM

 f Pseudo distributed mode: This mode will be run on different parts of Hadoop as 

different Java processors, but within a single machine

 f Distributed mode: This is the real setup that spans multiple machines

We will discuss the local mode in the irst three recipes, and Pseudo distributed and 
distributed modes in the last three recipes.

Setting up Hadoop on your machine
This recipe describes how to run Hadoop in the local mode.

Getting ready
Download and install Java 1.6 or higher version from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

How to do it...

Now let us do the Hadoop installation:

1. Download the most recent Hadoop 1.0 branch distribution from  

http://hadoop.apache.org/.

2. Unzip the Hadoop distribution using the following command. You will have to change 

the x.x in the ilename with the actual release you have downloaded. If you are using 
Windows, you should use your favorite archive program such as WinZip or WinRAR 

for extracting the distribution. From this point onward, we shall call the unpacked 

Hadoop directory HADOOP_HOME.

>tar -zxvf hadoop-1.x.x.tar.gz
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3. You can use Hadoop local mode after unzipping the distribution. Your installation is 

done. Now, you can run Hadoop jobs through bin/hadoop command, and we will 

elaborate that further in the next recipe.

How it works...

Hadoop local mode does not start any servers but does all the work within the same JVM. 

When you submit a job to Hadoop in the local mode, that job starts a JVM to run the job,  

and that JVM carries out the job. The output and the behavior of the job is the same as a 

distributed Hadoop job, except for the fact that the job can only use the current node for 

running tasks. In the next recipe, we will discover how to run a MapReduce program using  

the unzipped Hadoop distribution.

Downloading the example code

You can download the example code iles for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

Writing a WordCount MapReduce sample, 
bundling it, and running it using standalone 
Hadoop

This recipe explains how to write a simple MapReduce program and how to execute it.

Run

Map

Run

Map

Run

Map

Merge

and Sort

by

Keys

Run Reduce

with all (k1,*)

Run Reduce

with all (k2,*)

Run Reduce

with all (k3,*)

Input Data Final Result

(k,v)

(k,v)

(k,v)

www.allitebooks.com
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http://www.packtpub.com/support
http://www.allitebooks.org
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To run a MapReduce job, users should furnish a map function, a reduce function, input data, 

and an output data location. When executed, Hadoop carries out the following steps:

1. Hadoop breaks the input data into multiple data items by new lines and runs the map 

function once for each data item, giving the item as the input for the function. When 

executed, the map function outputs one or more key-value pairs.

2. Hadoop collects all the key-value pairs generated from the map function, sorts them 

by the key, and groups together the values with the same key.

3. For each distinct key, Hadoop runs the reduce function once while passing the key 

and list of values for that key as input.

4. The reduce function may output one or more key-value pairs, and Hadoop writes 

them to a ile as the inal result.

Getting ready
From the source code available with this book, select the source code for the irst chapter, 
chapter1_src.zip. Then, set it up with your favorite Java Integrated Development 

Environment (IDE); for example, Eclipse. You need to add the hadoop-core JAR ile in 
HADOOP_HOME and all other JAR iles in the HADOOP_HOME/lib directory to the classpath  

of the IDE.

Download and install Apache Ant from http://ant.apache.org/.

How to do it...

Now let us write our irst Hadoop MapReduce program.

1. The WordCount sample uses MapReduce to count the number of word  

occurrences within a set of input documents. Locate the sample code from  

src/chapter1/Wordcount.java. The code has three parts—mapper,  

reducer, and the main program.

2. The mapper extends from the org.apache.hadoop.mapreduce.Mapper 

interface. When Hadoop runs, it receives each new line in the input iles as an  
input to the mapper. The map function breaks each line into substrings using 

whitespace characters such as the separator, and for each token (word) emits 

(word,1) as the output.

public void map(Object key, Text value, Context context

                    ) throws IOException, InterruptedException 

{

      StringTokenizer itr = new StringTokenizer(value.toString());

       while (itr.hasMoreTokens()) 
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       {

          word.set(itr.nextToken());

          context.write(word, new IntWritable(1));

        }

}

3. The reduce function receives all the values that have the same key as the input, and 

it outputs the key and the number of occurrences of the key as the output.

public void reduce(Text key, Iterable<IntWritable> values, 

                       Context context

                       ) throws IOException, InterruptedException 
{

      int sum = 0;

      for (IntWritable val : values) 

      {

         sum += val.get();

      }

      result.set(sum);

      context.write(key, result);

}

4. The main program puts the coniguration together and submits the job to Hadoop.
Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, args).
getRemainingArgs();

if (otherArgs.length != 2) {

System.err.println("Usage: wordcount <in><out>");

System.exit(2);

}

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

//Uncomment this to 

//job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);
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5. You can compile the sample by running the following command, which uses Apache 

Ant, from the root directory of the sample code:

>ant build

If you have not done this already, you should install Apache Ant by following the 

instructions given at http://ant.apache.org/manual/install.html. 

Alternatively, you can use the compiled JAR ile included with the source code.

6. Change the directory to HADOOP_HOME, and copy the hadoop-cookbook-
chapter1.jar ile to the HADOOP_HOME directory. To be used as the input, create 

a directory called input under HADOOP_HOME and copy the README.txt ile to the 
directory. Alternatively, you can copy any text ile to the input directory.

7. Run the sample using the following command. Here, chapter1.WordCount is the 

name of the main class we need to run. When you have run the command, you will 

see the following terminal output:

>bin/hadoop jar hadoop-cookbook-chapter1.jar chapter1.WordCount 
input output

12/04/11 08:12:44 INFO input.FileInputFormat: Total input paths to 
process : 16

12/04/11 08:12:45 INFO mapred.JobClient: Running job: job_
local_0001

12/04/11 08:12:45 INFO mapred.Task: Task:attempt_
local_0001_m_000000_0 is done. And is in the process of commiting

...........

.....

12/04/11 08:13:37 INFO mapred.JobClient: Job complete: job_
local_0001

.....

8. The output directory will have a ile named like part-r-XXXXX, which will have the 

count of each word in the document. Congratulations! You have successfully run your 

irst MapReduce program.

How it works...

In the preceding sample, MapReduce worked in the local mode without starting any servers 

and using the local ilesystem as the storage system for inputs, outputs, and working data. 

The following diagram shows what happened in the WordCount program under the covers:
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The worklow is as follows:

1. Hadoop reads the input, breaks it by new line characters as the separator and then 

runs the map function passing each line as an argument.

2. The map function tokenizes the line, and for each token (word), emits a key value  

pair (word, 1). 

3. Hadoop collects all the (word,1) pairs, sorts them by the word, groups all the 

values emitted against each unique key, and invokes the reduce once for each 

unique key passing the key and values for that key as an argument. 

4. The reduce function counts the number of occurrences of each word using the values 

and emits it as a key-value pair.

5. Hadoop writes the inal output to the output directory. 

There's more...

As an optional step, copy the input directory to the top level of the IDE-based project 

(Eclipse project) that you created for samples. Now you can run the WordCount class directly 

from your IDE passing input output as arguments. This will run the sample the same as 

before. Running MapReduce jobs from IDE in this manner is very useful for debugging your 

MapReduce jobs.

Although you ran the sample with Hadoop installed in your local machine, you can run it 

using distributed Hadoop cluster setup with a HDFS-distributed ilesystem. The recipes of this 
chapter, Setting up HDFS and Setting Hadoop in a distributed cluster environment will discuss 

how to run this sample in a distributed setup.
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Adding the combiner step to the WordCount 
MapReduce program

After running the map function, if there are many key-value pairs with the same key, Hadoop 

has to move all those values to the reduce function. This can incur a signiicant overhead. 
To optimize such scenarios, Hadoop supports a special function called combiner. If provided, 

Hadoop will call the combiner from the same node as the map node before invoking the 

reducer and after running the mapper. This can signiicantly reduce the amount of data 
transferred to the reduce step.

This recipe explains how to use the combiner with the WordCount sample introduced in the 

previous recipe.

How to do it...

Now let us run the MapReduce job adding the combiner:

1. Combiner must have the same interface as the reduce function. For the WordCount 

sample, we will reuse the reduce function as the combiner.

2. To ask the MapReduce job to use the combiner, let us uncomment the line  

//job.setCombinerClass(IntSumReducer.class); in the sample and 

recompile the code.

3. Copy the hadoop-cookbook-chapter1.jar ile to the HADOOP_HOME directory 

and run the WordCount as done in the earlier recipe. Make sure to delete the old 

output directory before running the job. 

4. Final results will be available from the output directory.

How it works...

To activate a combiner, users should provide a mapper, a reducer, and a combiner as  

input to the MapReduce job. In that setting, Hadoop executes the combiner in the same node 

as the mapper function just after running the mapper. With this method, the combiner can 

pre-process the data generated by the mapper before sending it to the reducer, thus reducing 

the amount of data that is getting transferred.

For example, with the WordCount, combiner receives (word,1) pairs from the map  

step as input and outputs a single (word, N) pair. For example, if an input document  

has 10,000 occurrences of word "the", the mapper will generate 10,000 (the,1) pairs,  

while the combiner will generate one (the,10,000) thus reducing the amount of data 

transferred to the reduce task.
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However, the combiner only works with commutative and associative functions. For example, 

the same idea does not work when calculating mean. As mean is not communicative and 

associative, a combiner in that case will yield a wrong result.

There's more...

Although in the sample we reused the reduce function implementation as the combiner 

function, you may write your own combiner function just like we did for the map and reduce 

functions in the previous recipe. However, the signature of the combiner function must be 

identical to that of the reduce function.

In a local setup, using a combiner will not yield signiicant gains. However, in the distributed 
setups as described in Setting Hadoop in a distributed cluster environment recipe, combiner 

can give signiicant gains.

Setting up HDFS
HDFS is the distributed ilesystem that is available with Hadoop. MapReduce tasks use HDFS to 
read and write data. HDFS deployment includes a single NameNode and multiple DataNodes.

DateNode 1

config

NameNode

configslaves

DateNode 2

config

DateNode 3

config

For the HDFS setup, we need to conigure NameNodes and DataNodes, and then specify  
the DataNodes in the slaves ile. When we start the NameNode, startup script will start  
the DataNodes.
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Getting ready
You may follow this recipe either using a single machine or multiple machines. If you are using 

multiple machines, you should choose one machine as the master node where you will run 

the HDFS NameNode. If you are using a single machine, use it as both the NameNode as well 

as the DataNode.

1. Install Java in all machines that will be used to set up the HDFS cluster.

2. If you are using Windows machines, install Cygwin and SSH server in each machine. 

The link http://pigtail.net/LRP/printsrv/cygwin-sshd.html provides 

step-by-step instructions.

How to do it...

Now let us set up HDFS in the distributed mode.

1. Enable SSH from master nodes to slave nodes. Check that you can login to the 

localhost and all other nodes using SSH without a passphrase by running one of the 

following commands:

 � >ssh localhost

 � >ssh IPaddress

2. If the above command returns an error or asks for a password, create SSH keys by 

executing the following command:

>ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

Move the ~/.ssh/id_dsa.pub ile to the all the nodes in the cluster. Then add 
the SSH keys to the ~/.ssh/authorized_keys ile in each node by running the 
following command (if the authorized_keys ile does not exist, run the following 
command. Else, skip to the cat command):

>touch ~/.ssh/authorized_keys && chmod 600 ~/.ssh/authorized_keys

Now with permissions set, add your key to the ~/.ssh/authorized_keys ile.
>cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Then you can log in with the following command:

>ssh localhost

This command creates an SSH key pair in the .ssh/directory of the home directory, 

and registers the generated public key with SSH as a trusted key.
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3. In each machine, create a directory for storing HDFS data. Let's call that directory 

HADOOP_DATA_DIR. Now let us create two sub directories, HADOOP_DATA_DIR/
data and HADOOP_DATA_DIR/name. Change the directory permissions to 755 by 

running the following command for each directory:

>chmod 755 <name of dir>

4. In the NameNode, change directory to the unzipped HADOOP_HOME directory. Then 

place the IP address of all slave nodes in the HADOOP_HOME/conf/slaves ile, 
each on a separate line. When we start the NameNode, it will use the slaves ile to 
start the DataNodes.

5. In all machines, edit the HADOOP_HOME/conf/hadoop-env.sh ile by 
uncommenting the JAVA_HOME line and pointing it to your local Java installation.  

For example, if Java is in /opt/jdk1.6, change the JAVA_HOME line to export 
JAVA_HOME=/opt/jdk1.6.

6. Inside each node's HADOOP_HOME/conf directory, add the following code to the 

core-site.xml and hdfs-site.xml iles. Before adding the conigurations, 
replace the MASTER_NODE strings with the IP address of the master node and 

HADOOP_DATA_DIR with the directory you created in the irst step.
HADOOP_HOME/conf/core-site.xml

<configuration>

<property>

<name>fs.default.name</name>

<!-- URL of MasterNode/NameNode -->

<value>hdfs://MASTER_NODE:9000/</value>

</property>

</configuration>

HADOOP_HOME/conf/hdfs-site.xml

<configuration>

<property>

<name>dfs.name.dir</name>

<!-- Path to store namespace and transaction logs -->

<value>HADOOP_DATA_DIR/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<!-- Path to store data blocks in datanode -->

<value>HADOOP_DATA_DIR/data</value>

</property>

</configuration>
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7. From the NameNode, run the following command to format a new ilesystem:
>bin/hadoop namenode –format

12/04/09 08:44:50 INFO namenode.NameNode: STARTUP_MSG: 

/************************************************************ 

…

12/04/09 08:44:51 INFO common.Storage: Storage directory /Users/
srinath/playground/hadoop-book/hadoop-temp/dfs/name has been 
successfully formatted.

12/04/09 08:44:51 INFO namenode.NameNode: SHUTDOWN_MSG: 

/************************************************************

SHUTDOWN_MSG: Shutting down NameNode at Srinath-s-MacBook-Pro.
local/172.16.91.1

************************************************************/

8. Start the HDFS setup with the following command:

>bin/start-dfs.sh

This command will irst start a NameNode. It will then look at the HADOOP_HOME/
conf/slaves ile and start the DataNodes. It will print a message like the following 
to the console. 

starting namenode, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-namenode-node7.beta.out

209.126.198.72: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node7.
beta.out

209.126.198.71: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node6.
beta.out

209.126.198.72: starting secondarynamenode, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
secondarynamenode-node7.beta.out

Hadoop uses a centralized architecture for metadata. In this design, the NameNode 

holds the information of all the iles and where the data blocks for each ile are 
located. The NameNode is a single point of failure, and on failure it will stop all 

the operations of the HDFS cluster. To avoid this, Hadoop supports a secondary 

NameNode that will hold a copy of all data in NameNode. If the NameNode fails, the 

secondary NameNode takes its place.
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9. Access the link http://MASTER_NODE:50070/ and verify that you can see the 

HDFS startup page. Here, replace MASTER_NODE with the IP address of the master 

node running the HDFS NameNode.

10. Finally, shut down the HDFS cluster using the following command:

>bin/stop-dfs.sh

How it works...

When started, the NameNode will read the HADOOP_HOME/conf/slaves iles, ind the 
DataNodes that need to be started, start them, and set up the HDFS cluster. In the HDFS 

basic command line ile operations recipe, we will explore how to use HDFS to store and 

manage iles.

HDFS setup is only a part of the Hadoop installation. The Setting Hadoop in a distributed 

cluster environment recipe describes how to set up the rest of the Hadoop.

Using HDFS monitoring UI 
HDFS comes with a monitoring web console to verify the installation and monitor the HDFS 

cluster. It also lets users explore the content of the HDFS ilesystem. In this recipe, we will look 
at how we can access the HDFS monitoring UI and verify the installation.

Getting ready
Start the HDFS cluster as described in the previous recipe.

How to do it...

Let us access the HDFS web console.

1. Access the link http://MASTER_NODE:50070/ using your browser, and verify that 

you can see the HDFS startup page. Here, replace MASTER_NODE with the IP address 

of the master node running the HDFS NameNode.

www.allitebooks.com

http://www.allitebooks.org
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2. The following screenshot shows the current status of the HDFS installation including 

the number of nodes, total storage, storage taken by each node. It also allows users 

to browse the HDFS ilesystem.

HDFS basic command-line ile operations
HDFS is a distributed ilesystem, and just like a Unix ilesystem, it allows users to manipulate 
the ilesystem using shell commands. This recipe explains how to use the HDFS basic 
command line to execute those commands.

It is worth noting that HDFS commands have a one-to-one correspondence with Unix 

commands. For example, consider the following command:

>hadoop dfs –cat /data/foo.txt 

The command reads the /data/foo.txt ile and prints it to the screen, just like the cat 

command in Unix system.

Getting ready
Start the HDFS server by following the Setting up HDFS recipe.
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How to do it...

1. Change the directory to HADOOP_HOME.

2. Run the following command to create a new directory called /test:

>bin/hadoop dfs -mkdir /test

3. HDFS ilesystem has / as the root directory just like the Unix ilesystem. Run the 
following command to list the content of the HDFS root directory:

>bin/hadoop dfs -ls /

4. Run the following command to copy the local readme ile to /test
>bin/hadoop dfs -put README.txt /test

5. Run the following command to list the /test directory:

>bin/hadoop dfs -ls /test

Found 1 items

-rw-r--r--   1 srinath supergroup       1366 2012-04-10 07:06 /
test/README.txt

6. Run the following command to copy the /test/README.txt to local directory:

>bin/hadoop dfs -get /test/README.txt README-NEW.txt

How it works...

When a command is issued, the client will talk to the HDFS NameNode on the user's behalf 

and carry out the operation. Generally, we refer to a ile or a folder using the path starting with 
/; for example, /data, and the client will pick up the NameNode from conigurations in the 
HADOOP_HOME/conf directory. 

However, if needed, we can use a fully qualiied path to force the client to talk to a speciic 
NameNode. For example, hdfs://bar.foo.com:9000/data will ask the client to talk to 

NameNode running on bar.foo.com at the port 9000.

There's more...

HDFS supports most of the Unix commands such as cp, mv, and chown, and they follow the 

same pattern as the commands discussed above. The document http://hadoop.apache.
org/docs/r1.0.3/file_system_shell.html provides a list of all commands. We will 

use these commands throughout, in the recipes of the book.
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Setting Hadoop in a distributed cluster 
environment 

Hadoop deployment includes a HDFS deployment, a single job tracker, and multiple 

TaskTrackers. In the preceding recipe, Setting up HDFS, we discussed the HDFS deployment. 

For the Hadoop setup, we need to conigure JobTrackers and TaskTrackers and then specify 
the TaskTrackers in the HADOOP_HOME/conf/slaves ile. When we start the JobTracker, it 
will start the TaskTracker nodes. The following diagram illustrates a Hadoop deployment:

Job Tracker

NameNode

config

config

slaves

slaves

DateNode 1 Task Tracker 1

config config

DateNode 2 Task Tracker 2

config config

DateNode 3 Task Tracker 3

config config

Getting ready
You may follow this recipe either using a single machine or multiple machines. If you are using 

multiple machines, you should choose one machine as the master node where you will run 

the HDFS NameNode and the JobTracker. If you are using a single machine, use it as both the 

master node as well as a slave node.

1. Install Java in all machines that will be used to set up Hadoop.

2. If you are using Windows machines, irst install Cygwin and SSH server in each 
machine. The link http://pigtail.net/LRP/printsrv/cygwin-sshd.html 

provides step-by-step instructions.
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How to do it...

Let us set up Hadoop by setting up the JobTracker and TaskTrackers.

1. In each machine, create a directory for Hadoop data. Let's call this directory HADOOP_
DATA_DIR. Then create three directories, HADOOP_DATA_DIR/data, HADOOP_
DATA_DIR/local, and HADOOP_DATA_DIR/name.

2. Set up SSH keys to all machines so that we can log in to all from the master node. 

The Setting up HDFS recipe describes the SSH setup in detail.

3. Unzip the Hadoop distribution at the same location in all machines using the >tar 
-zxvf hadoop-1.x.x.tar.gz command. You can use any of the Hadoop 1.0 

branch distributions.

4. In all machines, edit the HADOOP_HOME/conf/hadoop-env.sh ile by 
uncommenting the JAVA_HOME line and point it to your local Java installation.  

For example, if Java is in /opt/jdk1.6, change the JAVA_HOME line to export 
JAVA_HOME=/opt/jdk1.6.

5. Place the IP address of the node used as the master (for running JobTracker and 

NameNode) in HADOOP_HOME/conf/masters in a single line. If you are doing a 

single-node deployment, leave the current value, localhost, as it is.

209.126.198.72

6. Place the IP addresses of all slave nodes in the HADOOP_HOME/conf/slaves ile, 
each in a separate line. 

209.126.198.72

209.126.198.71

7. Inside each node's HADOOP_HOME/conf directory, add the following to the  

core-site.xml, hdfs-site.xml and mapred-site.xml. Before adding  

the conigurations, replace the MASTER_NODE with the IP of the master node  

and HADOOP_DATA_DIR with the directory you created in the irst step.

Add URL of the NameNode to HADOOP_HOME/conf/core-site.xml.

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://MASTER_NODE:9000/</value>

</property>

</configuration>

Add locations to store metadata (names) and data within HADOOP_HOME/conf/
hdfs-site.xml to submit jobs:

<configuration>

<property>
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<name>dfs.name.dir</name>

<value>HADOOP_DATA_DIR/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>HADOOP_DATA_DIR/data</value>

</property>

</configuration>

Map reduce local directory is the location used by Hadoop to store temporary iles 
used. Add JobTracker location to HADOOP_HOME/conf/mapred-site.xml. Hadoop 

will use this for the jobs. The inal property sets the maximum map tasks per node, 
set it the same as the amount of cores (CPU).

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>MASTER_NODE:9001</value>

</property>

<property>

<name>mapred.local.dir</name>

<value>HADOOP_DATA_DIR/local</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>8</value>

</property>

</configuration>

8. To format a new HDFS ilesystem, run the following command from the Hadoop 
NameNode (master node). If you have done this as part of the HDFS installation  

in earlier recipe, you can skip this step.

>bin/hadoop namenode –format

...

/Users/srinath/playground/hadoop-book/hadoop-temp/dfs/name has 
been successfully formatted.

12/04/09 08:44:51 INFO namenode.NameNode: SHUTDOWN_MSG: 

/************************************************************

SHUTDOWN_MSG: Shutting down NameNode at Srinath-s-MacBook-Pro.
local/172.16.91.1

************************************************************/
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9. In the master node, change the directory to HADOOP_HOME and run the  

following commands:

>bin/start-dfs.sh 

starting namenode, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-namenode-node7.beta.out

209.126.198.72: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node7.
beta.out

209.126.198.71: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node6.
beta.out

209.126.198.72: starting secondarynamenode, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
secondarynamenode-node7.beta.out

>bin/start-mapred.sh 

starting jobtracker, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-jobtracker-node7.beta.out

209.126.198.72: starting tasktracker, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
tasktracker-node7.beta.out

209.126.198.71: starting tasktracker, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
tasktracker-node6.beta.out

10. Verify the installation by listing the processes through the ps | grep java command 

(if you are using Linux) or via Task Manager (if you are in Windows), in the master 

node and slave nodes. Master node will list four processes—NameNode, DataNode, 

JobTracker, and TaskTracker and slaves will have a DataNode and TaskTracker.

11. Browse the web-based monitoring pages for namenode and JobTracker:

 � NameNode: http://MASTER_NODE:50070/.

 � JobTracker: http://MASTER_NODE:50030/.

12. You can ind the logiles under ${HADOOP_HOME}/logs.

13. Make sure HDFS setup is OK by listing the iles using HDFS command line.
bin/hadoop dfs -ls /

Found 2 items

drwxr-xr-x   - srinath supergroup    0 2012-04-09 08:47 /Users

drwxr-xr-x   - srinath supergroup    0 2012-04-09 08:47 /tmp
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How it works...

As described in the introduction to the chapter, Hadoop installation consists of HDFS nodes, 

a JobTracker and worker nodes. When we start the NameNode, it inds the slaves through the 
HADOOP_HOME/slaves ile and uses SSH to start the DataNodes in the remote server at the 
startup. Also when we start the JobTracker, it inds the slaves through the HADOOP_HOME/
slaves ile and starts the TaskTrackers.

There's more...

In the next recipe, we will discuss how to run the aforementioned WordCount program using 

the distributed setup. The following recipes will discuss how to use MapReduce monitoring UI 

to monitor the distributed Hadoop setup.

Running the WordCount program in a 
distributed cluster environment 

This recipe describes how to run a job in a distributed cluster.

Getting ready
Start the Hadoop cluster.

How to do it...

Now let us run the WordCount sample in the distributed Hadoop setup.

1. To use as inputs to the WordCount MapReduce sample that we wrote in the earlier 

recipe, copy the README.txt ile in your Hadoop distribution to the HDFS ilesystem 
at the location /data/input1.

>bin/hadoop dfs -mkdir /data/

>bin/hadoop dfs -mkdir /data/input1

>bin/hadoop dfs -put README.txt /data/input1/README.txt

>bin/hadoop dfs -ls /data/input1

Found 1 items

-rw-r--r--   1 srinath supergroup       1366 2012-04-09 08:59 /
data/input1/README.txt
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2. Now, let's run the WordCount example from the HADOOP_HOME directory.

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount /data/input1 /
data/output1

12/04/09 09:04:25 INFO input.FileInputFormat: Total input paths to 
process : 1

12/04/09 09:04:26 INFO mapred.JobClient: Running job: 
job_201204090847_0001

12/04/09 09:04:27 INFO mapred.JobClient:  map 0% reduce 0%

12/04/09 09:04:42 INFO mapred.JobClient:  map 100% reduce 0%

12/04/09 09:04:54 INFO mapred.JobClient:  map 100% reduce 100%

12/04/09 09:04:59 INFO mapred.JobClient: Job complete: 
job_201204090847_0001

.....

3. Run the following commands to list the output directory and then look at the results.

>bin/hadoop dfs -ls /data/output1

Found 3 items

-rw-r--r--   1 srinath supergroup          0 2012-04-09 09:04 /
data/output1/_SUCCESS

drwxr-xr-x   - srinath supergroup          0 2012-04-09 09:04 /
data/output1/_logs

-rw-r--r--   1 srinath supergroup       1306 2012-04-09 09:04 /
data/output1/part-r-00000

>bin/hadoop dfs -cat /data/output1/*

(BIS),  1

(ECCN)   1

(TSU)  1

(see  1

5D002.C.1,  1

740.13)  1
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How it works...

Job submission to the distributed Hadoop works in a similar way to the job submissions to local 

Hadoop installation, as described in the Writing a WordCount MapReduce sample, bundling it 
and running it using standalone Hadoop recipe. However, there are two main differences.

First, Hadoop stores both the inputs for the jobs and output generated by the job in HDFS 

ilesystem. Therefore, we use step 1 to store the inputs in the HDFS ilesystem and we use 
step 3 read outputs from the HDFS ilesystem.

Secondly, when job is submitted, local Hadoop installation runs the job as a local JVM 

execution. However, the distributed cluster submits it to the JobTracker, and it executes  

the job using nodes in the distributed Hadoop cluster.

There's more...

You can see the results of the WordCount application also through the HDFS monitoring UI, as 

described in the Using HDFS monitoring UI recipe, and also you can see the statistics about 

the WordCount job as explained in the next recipe, Using MapReduce Monitoring UI.

Using MapReduce monitoring UI
This recipe describes how to use the Hadoop monitoring web console to verify Hadoop 

installation, and to monitor the allocations and uses of each part of the Hadoop cluster.

How to do it...

Now let us visit the Hadoop monitoring web console.

1. Access http://MASTER_NODE:50030/ using the browser where MASTER_NODE is 

the IP address of the master node.

2. The web page shows the current status of the MapReduce installation, including 

running and completed jobs.
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How it works...

Hadoop monitoring UI lets users access the JobTracker of the Hadoop installation and ind 
different nodes in the installation, their conigurations, and usage. For example, users can  
use the UI to see current running jobs and logs associated with the jobs.

www.allitebooks.com

http://www.allitebooks.org
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Advanced HDFS

In this chapter, we will cover:

 f Benchmarking HDFS

 f Adding a new DataNode

 f Decommissioning DataNodes

 f Using multiple disks/volumes and limiting HDFS disk usage

 f Setting HDFS block size

 f Setting the ile replication factor

 f Using HDFS Java API

 f Using HDFS C API (libhdfs)

 f Mounting HDFS (Fuse-DFS)

 f Merging iles in HDFS

Introduction
Hadoop Distributed File System (HDFS) is a block-structured, distributed ilesystem that is 
designed to run on a low-cost commodity hardware. HDFS supports storing massive amounts 

of data and provides high-throughput access to the data. HDFS stores ile data across multiple 
nodes with redundancy to ensure fault-tolerance and high aggregate bandwidth.

HDFS is the default distributed ilesystem used by the Hadoop MapReduce computations. 
Hadoop supports data locality aware processing of the data stored in HDFS. However, HDFS 

can be used as a general purpose distributed ilesystem as well. HDFS architecture consists 
mainly of a centralized NameNode that handles the ilesystem metadata and DataNodes that 
store the real data blocks. HDFS data blocks are typically coarser grained and perform better 

with large data products.
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Setting up HDFS and other related recipes in Chapter 1, Getting Hadoop Up and Running in 

a Cluster, show how to deploy HDFS and give an overview of the basic operation of HDFS. In 

this chapter, you will be introduced to a selected set of advanced HDFS operations that would 

be useful when performing large-scale data processing with Hadoop MapReduce, as well as 

when using HDFS as a standalone distributed ilesystem for non-MapReduce use cases.

Benchmarking HDFS
Running benchmarks is a good way to verify whether your HDFS cluster is set up properly and 

performs as expected. DFSIO is a benchmark test that comes with Hadoop, which can be 

used to analyze the I/O performance of a HDFS cluster. This recipe shows how to use DFSIO to 
benchmark the read and write performance of a HDFS cluster.

Getting ready
You must set up and deploy HDFS and Hadoop MapReduce prior to running these 

benchmarks. Export the HADOOP_HOME environment variable to point to your Hadoop 

installation root directory:

>export HADOOP_HOME=/../hadoop-1.0.4

The benchmark programs are in the $HADOOP_HOME/hadoop-*test.jar ile.

How to do it...

The following steps show you how to run the write performance benchmark:

1. To run the write performance benchmark, execute the following command in the 

$HADOOP_HOME directory. The –nrFiles parameter speciies the number of iles 
and the -fileSize parameter speciies the ile size in MB.
>bin/hadoop jar $HADOOP_HOME/hadoop-test-*.jar TestDFSIO -write 
-nrFiles 5 –fileSize 100

2. The benchmark writes to the console, as well as appends to a ile named 
TestDFSIO_results.log. You can provide your own result ile name using  
the –resFile parameter.

The following steps show you how to run the read performance benchmark:

1. The read performance benchmark uses the iles written by the write benchmark in 
step 1. Hence, the write benchmark should be executed before running the read 

benchmark and the iles written by the write benchmark should exist in the HDFS for 
the read benchmark to work.
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2. Execute the following command to run the read benchmark. Benchmark writes  

the results to the console and appends the results to a logile similarly to the  
write benchmark.

>bin/hadoop jar $HADOOP_HOME/hadoop-test-*.jar TestDFSIO -read 
-nrFiles5 –fileSize 100

To clean the iles generated by these benchmarks, use the following command:

>bin/hadoop jar $HADOOP_HOME hadoop-test-*.jar TestDFSIO -clean

How it works...

DFSIO executes a MapReduce job where the map tasks write and read the iles in parallel, 
while the reduce tasks are used to collect and summarize the performance numbers.

There's more...

Running these tests together with monitoring systems can help you identify the bottlenecks 

much more easily.

See also
 f The Running benchmarks to verify the Hadoop installation recipe in Chapter 3, 

Advanced Hadoop MapReduce Administration.

Adding a new DataNode
This recipe shows how to add new nodes to an existing HDFS cluster without restarting the 

whole cluster, and how to force HDFS to rebalance after the addition of new nodes.

Getting ready
To get started, follow these steps:

1. Install Hadoop on the new node and replicate the coniguration iles of your existing 
Hadoop cluster. You can use rsync to copy the Hadoop coniguration from another 
node. For example:

>rsync -a <master_node_ip>:hadoop-1.0.x/conf $HADOOP_HOME/conf

2. Ensure that the master node of your Hadoop/HDFS cluster can perform password-less 
SSH to the new node. Password-less SSH setup is optional, if you are not planning on 

using the bin/*.sh scripts from the master node to start/stop the cluster.



Advanced HDFS

32

How to do it...

The following steps will show you how to add a new DataNode to an existing HDFS cluster:

1. Add the IP or the DNS of the new node to the $HADOOP_HOME/conf/slaves ile in 
the master node.

2. Start the DataNode in the newly added slave node by using the following command.

>bin/hadoop-deamon.sh start datanode

You can also use the $HADOOP_HOME/bin/start-dfs.sh 

script from the master node to start the DataNode daemons in the 

newly added nodes. This is helpful if you are adding more than one 

new DataNodes to the cluster.

3. Check the $HADOOP_HOME/logs/hadoop-*-datanode-*.log in the new slave 

node for any errors.

The preceding steps apply both to adding a new node as well as re-joining a node that has 

been crashed and restarted.

There's more...

Similarly, you can add a new node to the Hadoop MapReduce cluster as well.

1. Start the TaskTracker in the new node using the following command:

>bin/hadoop-deamon.sh start tasktracker

2. Check the $HADOOP_HOME/logs/hadoop-*-tasktracker-*.log in the new 

slave node for any errors.

Rebalancing HDFS
When you add new nodes, HDFS will not rebalance automatically. However, HDFS provides a 

rebalancer tool that can be invoked manually. This tool will balance the data blocks across 

cluster up to an optional threshold percentage. Rebalancing would be very helpful if you are 

having space issues in the other existing nodes.

1. Execute the following command. The optional –threshold parameter speciies the 
percentage of disk capacity leeway to consider when identifying a node as under- or 

over-utilized. An under-utilized data node is a node whose utilization is less than 

average utilization – threshold. An over-utilized data node is a node whose utilization 

is greater than average utilization + threshold. Smaller threshold values will achieve 

more evenly balanced nodes, but would take more time for the rebalancing. Default 

threshold value is 10 percent.

>bin/start-balancer.sh –threshold 15
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2. Rebalancing can be stopped by executing the bin/stop-balancer.sh command.

3. A summary of the rebalancing will be available at the $HADOOP_HOME/logs/
hadoop-*-balancer*.out ile.

See also
 f The Decommissioning data nodes recipe in this chapter.

Decommissioning DataNodes
There can be multiple situations where you want to decommission one or more data nodes 

from an HDFS cluster. This recipe shows how to gracefully decommission the DataNodes 

without incurring data loss and without having to restart the cluster.

How to do it...

The following steps show you how to decommission data nodes gracefully:

1. If your cluster doesn't have it, add an exclude ile to the cluster. Create an empty ile 
in the NameNode and point to it from the conf/hdfs-site.xml ile by adding the 
following property.

<property>

  <name>dfs.hosts.exclude</name>

  <value>[FULL_PATH_TO_THE_EXCLUDE_FILE]</value>

  <description>Names a file that contains a list of hosts thatare 
not permitted to connect to the namenode.  The full pathname of 
the file must be specified.  If the value is empty, no hosts are 
excluded.</description>

</property>

2. Add the hostnames of the nodes that are to be decommissioned to the exclude ile.

3. Run the following command to reload the NameNode coniguration. This will start  
the decommissioning process. The decommissioning process can take a signiicant 
time, as it requires replication of data blocks without overwhelming the other tasks  

of the cluster.

>bin/hadoop dfsadmin -refreshNodes



Advanced HDFS

34

4. The decommissioning progress is shown in the HDFS UI under the Decommissioning 

Nodes page. The decommissioning progress can be monitored using the following 

command as well. Do not shut down the nodes until the decommissioning is 

complete.

>bin/hadoop dfsadmin -report

.....

.....

Name: myhost:50010

Decommission Status : Decommission in progress

Configured Capacity: ....

.....

5. You can remove the nodes from the exclude ile and execute the bin/hadoop 
dfsadmin –refreshNodes command when you want to add the nodes back  

in to the cluster.

6. The decommissioning process can be stopped by removing the node's name  

from the exclude ile and then executing the bin/hadoop dfsadmin  
–refreshNodes command.

How it works...

When a node is in the decommissioning process, HDFS replicates the blocks in that 

node to the other nodes in the cluster. Decommissioning can be a slow process as HDFS 

purposely does it slowly to avoid overwhelming the cluster. Shutting down nodes without 

decommissioning may result in data loss.

After the decommissioning is completed, the nodes mentioned in the exclude ile are not 
allowed to communicate with the NameNode.

See also
 f The Rebalancing HDFS section of the Adding a new node recipe in this chapter.

Using multiple disks/volumes and limiting 
HDFS disk usage

Hadoop supports specifying multiple directories for DataNode data directory. This feature 

allows us to utilize multiple disks/volumes to store the data blocks in DataNodes. Hadoop 
will try to store equal amounts of data in each directory. Hadoop also supports limiting the 

amount of disk space used by HDFS.
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How to do it...

The following steps will show you how to add multiple disk volumes:

1. Create HDFS data storage directories in each volume.

2. In the $HADOOP_HOME/conf/hdfs-site.xml, provide a comma-separated list 

of directories corresponding to the data storage locations in each volume under the 

dfs.data.dir directory.

<property>
  <name>dfs.data.dir</name>
  <value>/u1/hadoop/data,/u2/hadoop/data</value>
</property>

3. To limit the HDFS disk usage, add the following property to $HADOOP_HOME/conf/
hdfs-site.xml to reserve space for non-DFS usage. The value speciies the 
number of bytes that HDFS cannot use per volume.

<property>

  <name>dfs.datanode.du.reserved</name>

  <value>6000000000</value>

  <description>Reserved space in bytes per volume. Always leave 
this much space free for non dfs use.

  </description>

</property>

Setting HDFS block size
HDFS stores iles across the cluster by breaking them down in to coarser grained, ixed-size 
blocks. The default HDFS block size is 64 MB. The block size of a data product can affect the 

performance of the ilesystem operations where larger block sizes would be more effective, if 
you are storing and processing very large iles. The block size of a data product can affect the 
performance of MapReduce computations, as the default behavior of Hadoop is to create one 

map task for each data block of the input iles.

How to do it...

1. To use the NameNode coniguration ile to set the HDFS block size, add or modify the 
following in the $HADOOP_HOME/conf/hdfs-site.xml. Block size is provided using 

the number of bytes. This change would not change the block size of the iles that are 
already in the HDFS. Only the iles copied after the change will have the new block size.
<property>

  <name>dfs.block.size</name>

  <value>134217728</value>

</property>
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2. To specify the HDFS block size for speciic ile paths, you can specify the block size 
when uploading the ile from the command line as follows:
>bin/hadoop fs -Ddfs.blocksize=134217728 -put data.in /user/foo

There's more...

You can also specify the block size when creating iles using the HDFS Java API as well.

public FSDataOutputStream create(Path f,boolean overwrite, int 
bufferSize, short replication,long blockSize)

You can use the fsck command to ind the block size and block locations of a particular ile 
path in the HDFS. You can ind this information by browsing the ilesystem from the HDFS 
monitoring console as well.

>bin/hadoop fsck /user/foo/data.in -blocks -files -locations

......

/user/foo/data.in 215227246 bytes, 2 block(s): ....

0. blk_6981535920477261584_1059len=134217728 repl=1 [hostname:50010]

1. blk_-8238102374790373371_1059 len=81009518 repl=1 [hostname:50010]

......

See also
 f The Setting ile replication factor recipe in this chapter.

Setting the ile replication factor
HDFS stores iles across the cluster by breaking them down in to coarser grained ixed-size 
blocks. These coarser grained data blocks are replicated in different DataNodes mainly for 

the fault-tolerance purposes. Data block replication also has the ability to increase the data 

locality of the MapReduce computations and to increase the total data access bandwidth as 

well. Reducing the replication factor helps save the storage space in HDFS.

HDFS replication factor is a ile-level property that can be set per ile basis. This recipe shows 
how to change the default replication factor of a HDFS deployment affecting the new iles 
that would be created afterwards, how to specify a custom replication factor at the time of ile 
creation in HDFS, and how to change the replication factor of the existing iles in HDFS.
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How to do it...

1. To set the ile replication factor using the NameNode coniguration, add or modify 
the dfs.replication property in $HADOOP_HOME/conf/hdfs-site.xml. This 

change would not change the replication factor of the iles that are already in the 
HDFS. Only the iles copied after the change will have the new replication factor.
<property>

  <name>dfs.replication</name>

  <value>2</value>

</property>

2. To set the ile replication factor when uploading the iles, you can specify the 
replication factor from the command line, as follows:

>bin/hadoop fs -D dfs.replication=1 -copyFromLocal non-critical-
file.txt /user/foo

3. The setrep command can be used to change the replication factor of iles or ile 
paths that are already in the HDFS.

> bin/hadoop fs -setrep 2 non-critical-file.txt 

Replication 3 set: hdfs://myhost:9000/user/foo/non-critical-file.
txt

How it works...

The setrep command syntax is as follows:

hadoop fs -setrep [-R] <path>

The <path> parameter of the setrep command speciies the HDFS path where the 
replication factor has to be changed. The –R option recursively sets the replication  

factor for iles and directories within a directory.

There's more...

The replication factor of a ile is displayed when listing the iles using the ls command.

>bin/hadoop fs -ls

Found 1 item

-rw-r--r--2foo supergroup ... /user/foo/non-critical-file.txt

The replication factor of iles is displayed when browsing iles in the HDFS monitoring UI.

www.allitebooks.com

http://www.allitebooks.org
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See also
 f The Setting HDFS block size recipe in this chapter.

Using HDFS Java API
HDFS Java API can be used to interact with HDFS from any Java program. This API gives us 

the ability to utilize the data stored in HDFS from other Java programs as well as to process 

that data with other non-Hadoop computational frameworks. Occasionally you may also 

come across a use case where you want to access HDFS directly from inside a MapReduce 

application. However, if you are writing or modifying iles in HDFS directly from a Map or 
Reduce task, be aware that you are violating the side effect free nature of MapReduce that 

might lead to data consistency issues based on your use case.

Getting ready
Set the HADOOP_HOME environment variable to point to your Hadoop installation root directory.

How to do it...

The following steps show you how to use the HDFS Java API to perform ilesystem operations 
on a HDFS installation using a Java program:

1. The following sample program creates a new ile in HDFS, writes some text to the 
newly created ile, and reads the ile back from the HDFS:
importjava.io.IOException;

importorg.apache.hadoop.conf.Configuration;

importorg.apache.hadoop.fs.FSDataInputStream;

importorg.apache.hadoop.fs.FSDataOutputStream;

importorg.apache.hadoop.fs.FileSystem;

importorg.apache.hadoop.fs.Path;

public class HDFSJavaAPIDemo {

  public static void main(String[] args) throws IOException {

    Configuration conf = new Configuration();

    FileSystem fs = FileSystem.get(conf);

    System.out.println(fs.getUri());

    Path file = new Path("demo.txt");

    if (fs.exists(file)) {
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      System.out.println("File exists.");

    } else {

      // Writing to file

      FSDataOutputStream outStream = fs.create(file);

      outStream.writeUTF("Welcome to HDFS Java API!!!");

      outStream.close();

    }

    // Reading from file

    FSDataInputStream inStream = fs.open(file);

    String data = inStream.readUTF();

    System.out.println(data);

    inStream.close();

    fs.close();

  }

2. Compile and package the above program in to a JAR package. Unzip the source 

package for this chapter, go to the HDFS_Java_API folder and run the Ant build.  

The HDFSJavaAPI.jar ile will be created in the build folder.

>cd HDFS_java_API

>ant

You can use the following Ant build ile to compile the above sample program:
<project name="HDFSJavaAPI" default="compile" basedir=".">

  <property name="build" location="build"/>

  <property environment="env"/>

  <path id="hadoop-classpath">

    <fileset dir="${env.HADOOP_HOME}/lib">

      <include name="**/*.jar"/>

    </fileset>

    <fileset dir="${env.HADOOP_HOME}">

      <include name="**/*.jar"/>

    </fileset>

  </path>

  <target name="compile">

    <mkdir dir="${build}"/>

    <javac srcdir="src" destdir="${build}">

      <classpath refid="hadoop-classpath"/>

    </javac>

    <jar jarfile="HDFSJavaAPI.jar" basedir="${build}"/>



Advanced HDFS

40

  </target>    

  <target name="clean">

    <delete dir="${build}"/>

  </target>

</project>

3. You can execute the above sample with Hadoop using the following command. 

Running samples using the hadoop script ensures that it uses the currently 

conigured HDFS and the necessary dependencies from the Hadoop classpath.
>bin/hadoop jar HDFSJavaAPI.jar HDFSJavaAPIDemo

hdfs://yourhost:9000

Welcome to HDFS Java API!!!

4. Use the ls command to list the newly created ile:
>/bin/hadoop fs -ls

Found 1 items

-rw-r--r--   3 foosupergroup         20 2012-04-27 16:57 /user/
foo/demo.txt

How it works...

In order to interact with the HDFS programmatically, we irst obtain a handle to the currently 
conigured ilesystem. Instantiating a Coniguration object and obtaining a FileSystem 

handle within a Hadoop environment will point it to the HDFS NameNode of that environment. 

Several alternative methods to conigure a FileSystem object are discussed in the 

Coniguring the FileSystem object section.

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);

The FileSystem.create(filePath) method creates a new ile in the given 
path and provides us with a FSDataOutputStream object to the newly created ile. 
FSDataOutputStream wraps the java.io.DataOutputStream and allows the program 

to write primitive Java data types to the ile. The FileSystem.Create() method overrides 

if the ile exists. In this example, the ile will be created relative to the users' home directory in 
the HDFS, which would result in a path similar to /user/<user_name>/demo.txt.

Path file = new Path("demo.txt");

FSDataOutputStream outStream = fs.create(file);

outStream.writeUTF("Welcome to HDFS Java API!!!");

outStream.close();
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FileSystem.open(filepath) opens a FSDataInputStream to the given ile. 
FSDataInputStream wraps the java.io.DataInputStream and allows the program to 

read primitive Java data types from the ile.

FSDataInputStream inStream = fs.open(file);

String data = inStream.readUTF();

System.out.println(data);

inStream.close();

There's more...

HDFS Java API supports many more ilesystem operations than we have used in the above 
sample. The full API documentation can be found at http://hadoop.apache.org/
common/docs/current/api/org/apache/hadoop/fs/FileSystem.html.

Coniguring the FileSystem object
We can use the HDFS Java API from outside the Hadoop environment as well. When doing so, 

we have to explicitly conigure the HDFS NameNode and the port. The following are a couple 
of ways to perform that coniguration:

 f You can load the coniguration iles to the Configuration object before retrieving 

the FileSystem object as follows. Make sure to add all the Hadoop and dependency 

libraries to the classpath.

Configuration conf = new Configuration();

conf.addResource(new Path("…/hadoop/conf/core-site.xml"));

conf.addResource(new Path("…/hadoop/conf/hdfs-site.xml"));

FileSystem fileSystem = FileSystem.get(conf);

 f You can also specify the NameNode and the port as follows. Replace the  

NAMENODE_HOSTNAME and PORT with the hostname and the port of the  

NameNode of your HDFS installation.

Configuration conf = new Configuration();

conf.set("fs.default.name", "hdfs://NAMENODE_HOSTNAME:PORT");

FileSystem fileSystem = FileSystem.get(conf);

HDFS ilesystem API is an abstraction that supports several ilesystems. In case the above 
program could not ind a valid HDFS coniguration, it will point to the local ilesystem instead 
of the HDFS. You can identify the current ilesystem of the FileSystem object using the 

getUri() function as follows. It would result in hdfs://your_namenode:port in the case 

it's using a properly conigured HDFS and file:/// in the case it is using the local ilesystem.

fileSystem.getUri();
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Retrieving the list of data blocks of a ile
The getFileBlockLocations() function of the FileSystem object allows you to  

retrieve the list of data blocks of a ile stored in HDFS, together with hostnames where  
the blocks are stored and the block offsets. This information would be very useful if you  

are planning for performing any data local operations on the ile's data using a framework 
other than Hadoop MapReduce.

FileStatus fileStatus = fs.getFileStatus(file);

BlockLocation[] blocks = fs.getFileBlockLocations(

        fileStatus, 0, fileStatus.getLen());

See also
 f The Using HDFS C API recipe in this chapter.

Using HDFS C API (libhdfs)
libhdfs—a native shared library—provides a C API that enables non-Java programs to interact 

with HDFS. libhdfs uses JNI to interact with HDFS through Java.

Getting ready
Current Hadoop distributions contain the pre-compiled libhdfs libraries for 32-bit and 64-bit 

Linux operating systems. You may have to download the Hadoop standard distribution and 

compile the libhdfs library from the source code, if your operating system is not compatible 

with the pre-compiled libraries. Refer to the Mounting HDFS (Fuse-DFS) recipe for information 

on compiling the libhdfs library.

How to do it...

The following steps show you how to perform operations on a HDFS installation using a  

HDFS C API:

1. The following sample program creates a new ile in HDFS, writes some text to the 
newly created ile and reads the ile back from the HDFS. Replace NAMENODE_
HOSTNAME and PORT with the relevant values corresponding to the NameNode of 

your HDFS cluster. The hdfs_cpp_demo.c source ile is provided in the HDFS_C_
API directory of the source code bundle for this folder.

#include "hdfs.h"

int main(intargc, char **argv) {

hdfsFS fs =hdfsConnect( "NAMENODE_HOSTNAME,PORT);
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if (!fs) {

        fprintf(stderr, "Cannot connect to HDFS.\n");

        exit(-1);

    }

char* fileName = "demo_c.txt";

char* message = "Welcome to HDFS C API!!!";

int size = strlen(message);

int exists = hdfsExists(fs, fileName);

if (exists > -1) {

    fprintf(stdout, "File %s exists!\n", fileName);

}else{

  // Create and open file for writing

  hdfsFile outFile = hdfsOpenFile(fs, fileName, O_WRONLY|O_CREAT, 
0, 0, 0);

if (!outFile) {

  fprintf(stderr, "Failed to open %s for writing!\n", fileName);

            exit(-2);

    }

    // write to file

hdfsWrite(fs, outFile, (void*)message, size);

    hdfsCloseFile(fs, outFile);

    }

    // Open file for reading

hdfsFile inFile = hdfsOpenFile(fs, fileName, O_RDONLY, 0, 0, 0);

    if (!inFile) {

fprintf(stderr, "Failed to open %s for reading!\n", fileName);

        exit(-2);

    }

    char* data = malloc(sizeof(char) * size);

    // Read from file.

tSize readSize = hdfsRead(fs, inFile, (void*)data, size);

fprintf(stdout, "%s\n", data);

    free(data);

hdfsCloseFile(fs, inFile);

hdfsDisconnect(fs);

    return 0;

}
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2. Compile the above program by using gcc as follows. When compiling you have to 

link with the libhdfs and the JVM libraries. You also have to include the JNI header 

iles of your Java installation. An example compiling command would look like the 
following. Replace the ARCH and the architecture dependent paths with the paths 

relevant for your system.

>gcc hdfs_cpp_demo.c \

-I $HADOOP_HOME/src/c++/libhdfs \

-I $JAVA_HOME/include \

-I $JAVA_HOME/include/linux/ \

-L $HADOOP_HOME/c++/ARCH/lib/ \

-L $JAVA_HOME/jre/lib/ARCH/server\

-l hdfs -ljvm -o hdfs_cpp_demo

3. Export an environment variable named CLASSPATH with the Hadoop dependencies. 

A safe approach is to include all the jar iles in $HADOOP_HOME and in the $HADOOP_
HOME/lib.

export CLASSPATH=$HADOOP_HOME/hadoop-core-xx.jar:....

Ant build script to generate the classpath

Add the following Ant target to the build file given in step 2 of the HDFS 

Java API recipe. The modified build.xml script is provided in the HDFS_C_
API folder of the source package for this chapter.

<target name="print-cp">

    <property name="classpath"  
      refid="hadoop-classpath"/>

    <echo message="classpath= ${classpath}"/>

  </target>

Execute the Ant build using ant print-cp to generate a string with all the 

jars in $HADOOP_HOME and $HADOOP_HOME/lib. Copy and export this 

string as the CLASSPATH environmental variable.

4. Execute the program.

>LD_LIBRARY_PATH=$HADOOP_HOME/c++/ARCH/lib:$JAVA_HOME/jre/lib/
ARCH/server ./hdfs_cpp_demo

Welcome to HDFS C API!!!
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How it works...

First we connect to a HDFS cluster using the hdfsConnect command by providing 

the hostname (or the IP address) and port of the NameNode of the HDFS cluster. The 

hdfsConnectAsUser command can be used to connect to a HDFS cluster as a speciic user.

hdfsFS fs =hdfsConnect("NAMENODE_HOSTNAME",PORT);

We create new ile and obtain a handle to the newly created ile using the hdfsOpenFile 

command. The O_WRONLY|O_CREAT lags create a new ile or override the existing ile and 
open it in write only mode. Other supported lags are O_RDONLY and O_APPEND. The fourth, 

ifth, and sixth parameters of the hdfsOpenFile command are the buffer size for read/write 
operations, block replication factor and block size for the newly created ile. Specify 0 if you 

want to use the default values for these three parameters.

hdfsFile outFile = hdfsOpenFile(fs, fileName,flags, 0, 0, 0);

The hdfsWrite command writes the provided data in to the ile speciied by the outFile 

handle. Data size needs to be speciied using the number of bytes.

hdfsWrite(fs, outFile, (void*)message, size);

The hdfsRead command reads data from the ile speciied by the inFile. The size of the 

buffer in bytes needs to be provided as the fourth parameter. The hdfsRead command 

returns the actual number of bytes read from the ile that might be less than the buffer size.  
If you want to ensure certain amounts of bytes that are read from the ile, it is advisable to  
use the hdfsRead command from inside a loop until the speciied number of bytes are read.

char* data = malloc(sizeof(char) * size);

tSize readSize = hdfsRead(fs, inFile, (void*)data, size);

There's more...

HDFS C API (libhdfs) supports many more ilesystem operations than the functions we have 
used in the preceding sample. Refer to the $HADOOP_HOME/src/c++/libhdfs/hdfs.h 

header ile for more information.

Coniguring using HDFS coniguration iles
You can also use the HDFS coniguration iles to point libhdfs to your HDFS NameNode, instead 
of specifying the NameNode hostname and the port number in the hdfsConnect command.

1. Change the NameNode hostname and the port of the hdfsConnect command to 

'default' and 0. (Setting the host as NULL would make libhdfs to use the local 

ilesystem).
hdfsFS fs = hdfsConnect("default",0);
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2. Add the conf directory of your HDFS installation to the CLASSPATH  

environmental variable.

export CLASSPATH=$HADOOP_HOME/hadoop-core-xx.jar:....:$HADOOP_
HOME/conf

See also
 f The HDFS Java API and Mounting HDFS recipes in this chapter.

Mounting HDFS (Fuse-DFS)
The Fuse-DFS project allows us to mount HDFS on Linux (supports many other lavors of Unix 
as well) as a standard ilesystem. This allows any program or user to access and interact with 
HDFS similar to a traditional ilesystem.

Getting ready
You must have the following software installed in your system.

 f Apache Ant (http://ant.apache.org/).

 f Fuse and fuse development packages. Fuse development iles can be found in fuse-
devel RPM for Redhat/Fedora and in libfuse-dev package for Debian/Ubuntu.

JAVA_HOME must be set to point to a JDK, not to a JRE.

You must have the root privileges for the node in which you are planning to mount the  

HDFS ilesystem.

The following recipe assumes you already have pre-built libhdfs libraries. Hadoop contains 

pre-built libhdfs libraries for the Linux x86_64/i386 platforms. If you are using some other 
platform, irst follow the Building libhdfs sub section in the more info section to build the 

libhdfs libraries.

How to do it...

The following steps show you how to mount an HDFS ilesystem as a standard ile system  
on Linux:

1. Go to $HADOOP_HOME and create a new directory named build.

>cd $HADOOP_HOME

>mkdir build
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2. Create a symbolic link to the libhdfs libraries inside the build directory.

>ln -s c++/Linux-amd64-64/lib/ build/libhdfs

3. Copy the c++ directory to the build folder.

>cp -R c++/ build/

4. Build fuse-dfs by executing the following command in $HADOOP_HOME. This 

command will generate the fuse_dfs and fuse_dfs_wrapper.sh iles in the 
build/contrib/fuse-dfs/ directory.

> ant compile-contrib -Dlibhdfs=1 -Dfusedfs=1

If the build fails with messages similar to undefined reference 
to 'fuse_get_context', then append the following to the end of 

the src/contrib/fuse-dfs/src/Makefile.am file:

fuse_dfs_LDADD=-lfuse -lhdfs -ljvm -lm

5. Verify the paths in fuse_dfs_wrapper.sh and correct them. You may have to 

change the libhdfs path in the following line as follows:

export LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/$OS_ARCH/server:$HADOOP_
HOME/build/libhdfs/:/usr/local/lib

6. If it exists, uncomment the user_allow_other in /etc/fuse.conf.

7. Create a directory as the mount point:

>mkdir /u/hdfs

8. Execute the following command from the build/contrib/fuse-dfs/ directory. 

You have to execute this command with root privileges. Make sure that the 

HADOOP_HOME and JAVA_HOME environmental variables are set properly in the root 

environment as well. The optional –d parameter enables the debug mode. It would be 

helpful to run the following command in the debug mode to identify any error when 

you run it for the irst time. The rw parameter mounts the ilesystem read-write (ro 

for read-only). –oserver must point to the NameNode hostname. –oport should 

provide the NameNode port number.

>chmod a+x fuse_dfs_wrapper.sh

>./fuse_dfs_wrapper.sh rw -oserver=localhost -oport=9000  /u/hdfs/  
-d

www.allitebooks.com
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How it works...

Fuse-DFS is based on the ilesystem in user space. The FUSE project (http://fuse.
sourceforge.net/) makes it possible to implement ilesystems in the user space.  
Fuse-DFS interacts with HDFS ilesystem using the libhdfs C API. libhdfs uses JNI to  
spawn a JVM that communicates with the conigured HDFS NameNode.

There's more...

Many instances of HDFS can be mounted on to different directories using the Fuse-DFS as 

mentioned in the preceding sections.

Building libhdfs
In order to build libhdfs, you must have the following software installed in your system:

 f The ant-nodeps and ant-trax packages

 f The automake package

 f The Libtool package

 f The zlib-devel package

 f JDK 1.5—needed in the compile time for Apache Forrest

 f Apache Forrest (http://forrest.apache.org/)—use the 0.8 release

Compile libhdfs by executing the following command in $HADOOP_HOME:

>ant compile-c++-libhdfs -Dislibhdfs=1

Package the distribution together with libhdfs by executing the following command. Provide 

the path to JDK 1.5 using the -Djava5.home property. Provide the path to the Apache 

Forrest installation using the -Dforrest.home property.

>ant package -Djava5.home=/u/jdk1.5 -Dforrest.home=/u/apache-forrest-0.8

Check whether the build/libhdfs directory contains the libhdfs.* iles. If it doesn't, 
copy those iles to build/libhdfs from the build/c++/<your_architecture>/lib 

directory.

>cp -R build/c++/<Your_OS_Architecture/lib>/ build/libhdfs

See also
 f The HDFS C API recipe in this chapter.
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Merging iles in HDFS
This recipe shows how to merge iles in HDFS to create a single ile. This is useful when 
retrieving the output of a MapReduce computation with multiple reducers where each  

reducer produces a part of the output.

How to do it...

1. The HDFS getMerge command can copy the iles in a given path in HDFS to a single 
concatenated ile in the local ilesystem.
>bin/hadoop fs -getmerge /user/foo/demofiles merged.txt

How it works...

The getmerge command has the following syntax:

hadoopfs -getmerge <src> <localdst> [addnl]

The getmerge command has three parameters. The irst parameter, <src files> is the 

HDFS path to the directory that contains the iles to be concatenated. <dist file> is the 

local ilename of the merged ile. addnl is an optional parameter that adds a new line in the 

result ile, after the data from each merged ile.
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MapReduce 

Administration

In this chapter, we will cover:

 f Tuning Hadoop conigurations for cluster deployments

 f Running benchmarks to verify the Hadoop installation

 f Reusing Java VMs to improve the performance

 f Fault tolerance and speculative execution

 f Debug scripts – analyzing task failures

 f Setting failure percentages and skipping bad records

 f Shared-user Hadoop clusters – using fair and other schedulers

 f Hadoop security – integrating with Kerberos

 f Using the Hadoop Tool interface

Introduction
This chapter describes how to perform advanced administration steps for your Hadoop 

Cluster. This chapter assumes that you have followed Chapter 1, Getting Hadoop Up and 

Running in a Cluster, and have installed Hadoop in a clustered or pseudo-distributed setup.
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Tuning Hadoop conigurations for cluster 
deployments

Getting ready
Shut down the Hadoop cluster if it is already running, by executing the bin/stop-dfs.sh 

and bin/stop-mapred.sh commands from HADOOP_HOME.

How to do it...

We can control Hadoop conigurations through the following three coniguration iles:

 f conf/core-site.xml: This contains the conigurations common to whole Hadoop 
distribution

 f conf/hdfs-site.xml: This contains conigurations for HDFS

 f conf/mapred-site.xml: This contains conigurations for MapReduce

Each coniguration ile has name-value pairs expressed in an XML format, and they deine 
the workings of different aspects of Hadoop. The following code snippet shows an example 

of a property in the coniguration ile. Here, the <configuration> tag is the top-level XML 
container, and the <property> tags that deine individual properties go as child elements of 
the <configuration> tag.

<configuration>

<property>

<name>mapred.reduce.parallel.copies</name>

<value>20</value>

</property>

...

</configuration>

The following instructions show how to change the directory to which we write Hadoop logs 

and conigure the maximum number of map and reduce tasks:

1. Create a directory to store the logiles. For example, /root/hadoop_logs.

2. Uncomment the line that includes HADOOP_LOG_DIR in HADOOP_HOME/conf/
hadoop-env.sh and point it to the new directory.

3. Add the following lines to the HADOOP_HOME/conf/mapred-site.xml ile:
<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>2 </value>

</property>

<property>
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<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>2 </value>

</property>

4. Restart the Hadoop cluster by running the bin/stop-mapred.sh and  

bin/start-mapred.sh commands from the HADOOP_HOME directory.

5. You can verify the number of processes created using OS process monitoring tools. 

If you are in Linux, run the watch ps –ef|grep hadoop command. If you are in 

Windows or MacOS use the Task Manager.

How it works...

HADOOP_LOG_DIR redeines the location to which Hadoop writes its logs. The mapred.
tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.
maximum properties deine the maximum number of map and reduce tasks that can run 
within a single TaskTracker at a given moment.

These and other server-side parameters are deined in the HADOOP_HOME/conf/*-site.
xml iles. Hadoop reloads these conigurations after a restart.

There's more...

There are many similar coniguration properties deined in Hadoop. You can see some of them 
in the following tables.

The coniguration properties for conf/core-site.xml are listed in the following table:

Name Default 

value

Description

fs.inmemory.size.mb 100 This is the amount of memory allocated to the 

in-memory filesystem that is used to merge 

map outputs at reducers in MBs.

io.sort.factor 100 This is the maximum number of streams 

merged while sorting files.

io.file.buffer.size 131072 This is the size of the read/write buffer used 
by sequence files.
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The coniguration properties for conf/mapred-site.xml are listed in the following table:

Name Default value Description

mapred.reduce.
parallel.copies

5 This is the maximum number of parallel 

copies the reduce step will execute to 

fetch output from many parallel jobs.

mapred.map.child.java.
opts

-Xmx200M This is for passing Java options into the 

map JVM.

mapred.reduce.child.
java.opts

-Xmx200M This is for passing Java options into the 

reduce JVM.

io.sort.mb 200 The memory limit while sorting data in 

MBs.

The coniguration properties for conf/hdfs-site.xml are listed in the following table:

Name Default 

value

Description 

dfs.block.size 67108864 This is the HDFS block size.

dfs.namenode.handler.
count

40 This is the number of server threads to 

handle RPC calls in the NameNode.

Running benchmarks to verify the Hadoop 
installation

The Hadoop distribution comes with several benchmarks. We can use them to verify our 

Hadoop installation and measure Hadoop's performance. This recipe introduces these 

benchmarks and explains how to run them.

Getting ready
Start the Hadoop cluster. You can run these benchmarks either on a cluster setup or on a 

pseudo-distributed setup.

How to do it...

Let us run the sort benchmark. The sort benchmark consists of two jobs. First, we generate 

some random data using the randomwriter Hadoop job and then sort them using the  

sort sample.

1. Change the directory to HADOOP_HOME.
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2. Run the randomwriter Hadoop job using the following command:

>bin/hadoop jar hadoop-examples-1.0.0.jarrandomwriter

-Dtest.randomwrite.bytes_per_map=100 

-Dtest.randomwriter.maps_per_host=10 /data/unsorted-data

Here the two parameters, test.randomwrite.bytes_per_map and test.
randomwriter.maps_per_host specify the size of data generated by a map  

and the number of maps respectively.

3. Run the sort program:

>bin/hadoop jar hadoop-examples-1.0.0.jar sort /data/unsorted-data 
/data/sorted-data

4. Verify the inal results by running the following command:
>bin/hadoop jar hadoop-test-1.0.0.jar testmapredsort -sortInput /
data/unsorted-data -sortOutput  /data/sorted-data

Finally, when everything is successful, the following message will be displayed:

The job took 66 seconds.

SUCCESS! Validated the MapReduce framework's 'sort' successfully.

How it works...

First, the randomwriter application runs a Hadoop job to generate random data that can 

be used by the second sort program. Then, we verify the results through testmapredsort 

job. If your computer has more capacity, you may run the initial randomwriter step with 

increased output sizes.

There's more...

Hadoop includes several other benchmarks.

 f TestDFSIO: This tests the input output (I/O) performance of HDFS

 f nnbench: This checks the NameNode hardware

 f mrbench: This runs many small jobs

 f TeraSort: This sorts a one terabyte of data

More information about these benchmarks can be found at http://www.michael-
noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-
cluster-with-terasort-testdfsio-nnbench-mrbench/.

http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
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Reusing Java VMs to improve the 
performance

In its default coniguration, Hadoop starts a new JVM for each map or reduce task. However, 
running multiple tasks from the same JVM can sometimes signiicantly speed up the 
execution. This recipe explains how to control this behavior.

How to do it...

1. Run the WordCount sample by passing the following option as an argument:

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount –Dmapred.job.
reuse.jvm.num.tasks=-1 /data/input1 /data/output1

2. Monitor the number of processes created by Hadoop (through ps –ef|grephadoop 

command in Unix or task manager in Windows). Hadoop starts only a single JVM per 

task slot and then reuses it for an unlimited number of tasks in the job.

However, passing arguments through the –D option only works if the job implements 

the org.apache.hadoop.util.Tools interface. Otherwise, you should set the 

option through the JobConf.setNumTasksToExecutePerJvm(-1) method.

How it works...

By setting the job coniguration property through mapred.job.reuse.jvm.num.tasks, 

we can control the number of tasks for the JVM run by Hadoop. When the value is set to -1, 

Hadoop runs the tasks in the same JVM.

Fault tolerance and speculative execution
The primary advantage of using Hadoop is its support for fault tolerance. When you run a job, 

especially a large job, parts of the execution can fail due to external causes such as network 

failures, disk failures, and node failures.

When a job has been started, Hadoop JobTracker monitors the TaskTrackers to which it has 

submitted the tasks of the job. If any TaskTrackers are not responsive, Hadoop will resubmit 

the tasks handled by unresponsive TaskTracker to a new TaskTracker.

Generally, a Hadoop system may be compose of heterogeneous nodes, and as a result there 

can be very slow nodes as well as fast nodes. Potentially, a few slow nodes can slow down an 

execution signiicantly.
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To avoid this, Hadoop supports speculative executions. This means if most of the map tasks 

have completed and Hadoop is waiting for a few more map tasks, Hadoop JobTracker will start 

these pending jobs also in a new node. The tracker will use the results from the irst task that 
inishes and stop any other identical tasks.

However, the above model is feasible only if the map tasks are side-effects free. If such 

parallel executions are undesirable, Hadoop lets users turn off speculative executions.

How to do it...

Run the WordCount sample by passing the following option as an argument to turn off the 

speculative executions:

bin/hadoop jar hadoop-examples-1.0.0.jar wordcount–Dmapred.map.tasks.
speculative.execution=false –D mapred.reduce.tasks.speculative.
execution=true /data/input1 /data/output1

However, this only works if the job implements the org.apache.hadoop.util.Tools 

interface. Otherwise, you should set the parameter through JobConf.set(name, value).

How it works...

When the option is speciied and set to false, Hadoop will turn off the speculative 

executions. Otherwise, it will perform speculative executions by default.

Debug scripts – analyzing task failures
A Hadoop job may consist of many map tasks and reduce tasks. Therefore, debugging a 

Hadoop job is often a complicated process. It is a good practice to irst test a Hadoop job 
using unit tests by running it with a subset of the data.

However, sometimes it is necessary to debug a Hadoop job in a distributed mode. To support 

such cases, Hadoop provides a mechanism called debug scripts. This recipe explains how to 

use debug scripts.

Getting ready
Start the Hadoop cluster. Refer to the Setting Hadoop in a distributed cluster environment 

recipe from Chapter 1, Getting Hadoop Up and Running in a Cluster.
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How to do it...

A debug script is a shell script, and Hadoop executes the script whenever a task encounters 

an error. The script will have access to the $script, $stdout, $stderr, $syslog, and 

$jobconf properties, as environment variables populated by Hadoop. You can ind a 
sample script from resources/chapter3/debugscript. We can use the debug scripts 

to copy all the logiles to a single location, e-mail them to a single e-mail account, or perform 
some analysis.

LOG_FILE=HADOOP_HOME/error.log

echo "Run the script" >> $LOG_FILE

echo $script >> $LOG_FILE

echo $stdout>> $LOG_FILE

echo $stderr>> $LOG_FILE

echo $syslog >> $LOG_FILE

echo $jobconf>> $LOG_FILE

1. Write your own debug script using the above example. In the above example, edit 

HADOOP_HOME to point to your HADOOP_HOME directory.

src/chapter3/WordcountWithDebugScript.java extends the WordCount 

sample to use debug scripts. The following listing shows the code.

The following code uploads the job scripts to HDFS and conigures the job to use 
these scripts. Also, it sets up the distributed cache.

private static final String scriptFileLocation = 

"resources/chapter3/debugscript";

public static void setupFailedTaskScript(JobConfconf) 

throws Exception {

// create a directory on HDFS where we'll upload the fail 

   //scripts

FileSystemfs = FileSystem.get(conf);

Path debugDir = new Path("/debug");

// who knows what's already in this directory; let's just 

   //clear it.

if (fs.exists(debugDir)) {

fs.delete(debugDir, true);

}

// ...and then make sure it exists again

fs.mkdirs(debugDir);
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// upload the local scripts into HDFS

fs.copyFromLocalFile(new Path(scriptFileLocation), 

new Path("/debug/fail-script"));

conf.setMapDebugScript("./fail-script");

conf.setReduceDebugScript("./fail-script");

DistributedCache.createSymlink(conf);

URI fsUri = fs.getUri();

String mapUriStr = fsUri.toString()

+ "/debug/fail-script#fail-script"; 

URI mapUri = new URI(mapUriStr);

DistributedCache.addCacheFile(mapUri, conf);

}

The following code runs the Hadoop job as we described in Chapter 1, Getting 

Hadoop Up and Running in a Cluster. The only difference is that here, we have  

called the preceding method to conigure failed task scripts.
public static void main(String[] args) throws Exception 

{

  JobConfconf = new JobConf();

  setupFailedTaskScript(conf); 

  Job job = new Job(conf, "word count");

  job.setJarByClass(FaultyWordCount.class);

  job.setMapperClass(FaultyWordCount.TokenizerMapper.class);

  job.setReducerClass(FaultyWordCount.IntSumReducer.class);

  job.setOutputKeyClass(Text.class);

  job.setOutputValueClass(IntWritable.class);

  FileInputFormat.addInputPath(job, new Path(args[0]));

  FileOutputFormat.setOutputPath(job, new Path(args[1]));

  job.waitForCompletion(true);

}

2. Compile the code base by running Ant from home directory of the source code. Copy 

the build/lib/hadoop-cookbook-chapter3.jar to HADOOP_HOME.
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3. Then run the job by running the following command:

>bin/hadoopjarhadoop-cookbook-chapter3.jarchapter3.
WordcountWithDebugScript /data/input /data/output1

The job will run the FaultyWordCount task that will always fail. Then Hadoop 

will execute the debug script, and you can ind the results of the debug script from 
HADOOP_HOME.

How it works...

We conigured the debug script through conf.setMapDebugScript("./fail-script"). 

However, the input value is not the ile location, but the command that needs to be run on 
the machine when an error occurs. If you have a speciic ile that is present in all machines 
that you want to run when an error occurs, you can just add that path through the conf.
setMapDebugScript("./fail-script") method.

But, Hadoop runs the mappers in multiple nodes, and often in a machine different than the 

machine running the job's client. Therefore, for the debug script to work, we need to get the 

script to all the nodes running the mapper.

We do this using the distributed cache. As described in the Using Distributed cache to distribute 

resources recipe in Chapter 4, Developing Complex Hadoop MapReduce Applications, users can 

add iles that are in the HDFS ilesystem to distribute cache. Then, Hadoop automatically copies 

those iles to each node by running map tasks. However, distributed cache copies the iles to 
mapred.local.dir of the MapReduce setup, but it runs the job from a different location. 

Therefore, we link the cache directory to the working directory by creating a symlink using the 

DistributedCache.createSymlink(conf) command.

Then Hadoop copies the script iles to each mapper node and symlinks it to the working 
directory of the job. When an error occurs, Hadoop will run the ./fail-script command, 

which will run the script ile that has been copied to the node through distributed cache. The 
debug script will carry out the tasks you have programmed when an error occurs.

Setting failure percentages and skipping 
bad records

When processing a large amount of data, there may be cases where a small amount of map 

tasks will fail, but still the inal results make sense without the failed map tasks. This could 
happen due to a number of reasons such as:

 f Bugs in the map task

 f Small percentage of data records are not well formed

 f Bugs in third-party libraries
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In the irst case, it is best to debug, ind the cause for failures, and ix it. However, in the 
second and third cases, such errors may be unavoidable. It is possible to tell Hadoop that  

the job should succeed even if some small percentage of map tasks have failed.

This can be done in two ways:

 f Setting the failure percentages 

 f Asking Hadoop to skip bad records

This recipe explains how to conigure this behavior.

Getting ready
Start the Hadoop setup. Refer to the Setting Hadoop in a distributed cluster environment 

recipe from the Chapter 1, Getting Hadoop Up and Running in a Cluster.

How to do it...

Run the WordCount sample by passing the following options:

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount

-Dmapred.skip.map.max.skip.records=1 

-Dmapred.skip.reduce.max.skip.groups=1 /data/input1 /data/output1

However, this only works if the job implements the org.apache.hadoop.util.Tools 

interface. Otherwise, you should set it through JobConf.set(name, value).

How it works...

Hadoop does not support skipping bad records by default. We can turn on bad record skipping 

by setting the following parameters to positive values:

 f mapred.skip.map.max.skip.records: This sets the number of records to skip 

near a bad record, including the bad record

 f mapred.skip.reduce.max.skip.groups: This sets the number of acceptable 

skip groups surrounding a bad group

There's more...

You can also limit the percentage of failures in map or reduce tasks by setting the JobConf.
setMaxMapTaskFailuresPercent(percent) and JobConf.setMaxReduceTaskFail
uresPercent(percent) options.
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Also, Hadoop repeats the tasks in case of a failure. You can control that through JobConf.
setMaxMapAttempts(5).

Shared-user Hadoop clusters – using fair and 
other schedulers

When a user submits a job to Hadoop, this job needs to be assigned a resource  

(a computer/host) before execution. This process is called scheduling, and a  

scheduler decides when resources are assigned to a given job.

Hadoop is by default conigured with a First in First out (FIFO) scheduler, which executes 

jobs in the same order as they arrive. However, for a deployment that is running many 

MapReduce jobs and shared by many users, more complex scheduling policies are needed.

The good news is that Hadoop scheduler is pluggable, and it comes with two other schedulers. 

Therefore, if required, it is possible to write your own scheduler as well.

 f Fair scheduler: This deines pools and over time; each pool gets around the same 
amount of resources.

 f Capacity scheduler: This deines queues, and each queue has a guaranteed 
capacity. The capacity scheduler shares computer resources allocated to a queue 

with other queues if those resources are not in use.

This recipe describes how to change the scheduler in Hadoop.

Getting ready
For this recipe, you need a working Hadoop deployment. Set up Hadoop using the Setting 

Hadoop in a distributed cluster environment recipe from Chapter 1, Getting Hadoop Up and 

Running in a Cluster.

How to do it...

1. Shut down the Hadoop cluster.

2. You need hadoop-fairscheduler-1.0.0.jar in the HADOOP_HOME/lib. 

However, from Hadoop 1.0.0 and higher releases, this JAR ile is in the right place in 
the Hadoop distribution.

3. Add the following code to the HADOOP_HOME/conf/mapred-site.xml:

<property>

<name>mapred.jobtracker.taskScheduler</name>

<value>org.apache.hadoop.mapred.FairScheduler</value>

</property>
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4. Restart Hadoop.

5. Verify that the new scheduler has been applied by going to http://<job-
tracker-host>:50030/scheduler in your installation. If the scheduler has been 

properly applied, the page will have the heading "Fair Scheduler Administration".

How it works...

When you follow the preceding steps, Hadoop will load the new scheduler settings when it is 

started. The fair scheduler shares equal amount of resources between users unless it has 

been conigured otherwise.

The fair scheduler supports users to conigure it through two ways. There are several 
parameters of the mapred.fairscheduler.* form, and we can conigure these 
parameters via HADOOP_HOME/conf/mapred-site.xml. Also additional parameters  

can be conigured via HADOOP_HOME/conf/fair-scheduler.xml. More details  

about fair scheduler can be found from HADOOP_HOME/docs/fair_scheduler.html.

There's more...

Hadoop also includes another scheduler called capacity scheduler that provides more  

ine-grained control than the fair scheduler. More details about the capacity scheduler  
can be found from HADOOP_HOME/docs/capacity_scheduler.html.

Hadoop security – integrating with Kerberos
Hadoop by default runs without security. However, it also supports Kerberos-based setup, 

which provides full security. This recipe describes how to conigure Hadoop with Kerberos  
for security.
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Kerberos setups will include a Hadoop cluster—NameNode, DataNodes, JobTracker, and 

TaskTrackers—and a Kerberos server. We will deine users as principals in the Kerberos 

server. Users can obtain a ticket from the Kerberos server, and use that ticket to log in to any 

server in Hadoop. We will map each Kerberos principal with a Unix user. Once logged in, the 

authorization is performed based on the Unix user and group permissions associated with 

each user.

Getting ready
Set up Hadoop by following Chapter 1, Getting Hadoop Up and Running in a Cluster either 

using pseudo-distributed or clustered setup.

We need a machine to use as the Kerberos node for which you have root access. Furthermore, 

the machine should have the domain name already conigured (we will assume DNS name is 
hadoop.kbrelam.com, but you can replace it with another domain). If you want to try this 

out in a single machine only, you can set up the DNS name through adding your IP address 

hadoop.kbrelam.com to your /etc/hosts ile.

How to do it...

1. Install Kerberos on your machine. Refer to http://web.mit.edu/Kerberos/
krb5-1.8/krb5-1.8.6/doc/krb5-install.html for further instructions on 

setting up Kerberos.

Provide hadoop.kbrelam.com as the realm and the administrative server when 

installation asks for it. Then run the following command to create a realm:

>sudo krb5_newrealm

2. In Kerberos, we call users "principals". Create a new principal by running  

following commands:

>kadmin.local

>kadmin.local: add principal srinath/admin

3. Edit /etc/krb5kdc/kadm5.acl to include the line srinath/admin@hadoop.
kbrelam.com * to grant all the permissions.

4. Restart the Kerberos server by running the following command:

>sudo /etc/init.d/krb5-admin-server restart.

5. You can test the new principal by running following commands:

>kinitsrinath/admin

>klist
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6. Kerberos will use Unix users in Hadoop machines as Kerberos principals and use 

local Unix-level user permissions to do authorization. Create the following users and 

groups with permissions in all the machines on which you plan to run MapReduce.

We will have three users—hdfs to run HDFS server, mapred to run MapReduce 

server, and bob to submit jobs.

>groupaddhadoop

>useraddhdfs

>useraddmapred

>usermod -g hadoophdfs

>usermod -g hadoopmapred

>useradd -G mapred bob

>usermod -a -G hadoop bob

7. Now let us create Kerberos principals for these users.

>kadmin.local

>kadmin.local:  addprinc -randkey

hdfs/hadoop.kbrelam.com

>kadmin.local:  addprinc –randkey

mapred/hadoop.kbrelam.com

>kadmin.local:  addprinc -randkey

host/hadoop.kbrelam.com

>kadmin.local:  addprinc -randkey

bob/hadoop.kbrelam.com

8. Now, we will create a key tab ile that contains credentials for Kerberos principals. We 
will use these credentials to avoid entering the passwords at Hadoop startup.

>kadmin: xst -norandkey -k hdfs.keytab hdfs/hadoop.kbrelam.com 
host/hadoop.kbrelam.com

>kadmin:  xst -norandkey -k mapred.keytab mapred/hadoop.kbrelam.
com host/hadoop.kbrelam.com

>kadmin.local:  xst -norandkey -k bob.keytab bob/hadoop.kbrelam.
com

>kadmin.local:  exit

9. Deploy key tab iles by moving them in to the HADOOP_HOME/conf directory. Change 

the directory to HADOOP_HOME and run following commands to set the permissions 

for key tab iles:
>chownhdfs:hadoopconf/hdfs.keytab

>chownmapred:hadoopconf/mapred.keytab
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10. Now, set permissions in the ilesystem and Hadoop. Change the directory to  
HADOOP_HOME and run the following commands:

>chownhdfs:hadoop /opt/hadoop-work/name/

>chownhdfs:hadoop /opt/hadoop-work/data

>chownmapred:hadoop /opt/hadoop-work/local/

>bin/hadoopfs -chownhdfs:hadoop /

>bin/hadoopfs -chmod 755 /

>bin/hadoopfs -mkdir  /mapred

>bin/hadoopfs -mkdir  /mapred/system/

>bin/hadoopfs -chownmapred:hadoop /mapred/system

>bin/hadoopfs -chmod -R 700 /mapred/system

>bin/hadoopfs -chmod 777 /tmp

11. Install Unlimited Strength Java Cryptography Extension (JCE) Policy Files by 

downloading the policy iles from http://www.oracle.com/technetwork/
java/javase/downloads/index.htmland copying the JAR iles in the 
distribution to JAVA_HOME/jre/lib/security.

12. Conigure Hadoop properties by adding following properties to the associated 
coniguration iles. Replace the HADOOP_HOME value with the corresponding location. 

Here, Hadoop will replace the _HOST with the localhost name. The following code 

snippet adds properties to core-site.xml:

<property>

<name>hadoop.security.authentication</name>

<value>kerberos</value>

</property>

<property>

<name>hadoop.security.authorization</name>

<value>true</value>

</property>

13. Copy the coniguration parameters deined in resources/chapter3/kerberos-
hdfs-site.xml of the source code for this chapter to the HADOOP_HOME/conf/
hdfs-site.xml. Replace the HADOOP_HOME value with the corresponding location. 

Here Hadoop will replace the _HOST with the localhost name.

14. Start the NameNode by running the following commands from HADOOP_HOME:

>sudo -u hdfs bin/hadoopnamenode &
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15. Test HDFS setup by doing some metadata operations.

>kinit hdfs/hadoop.kbrelam.com -k -t conf/hdfs.keytab

>klist

>kinit –R

In the irst command, we specify the name of the principal (for example, hdfs/
hadoop.kbrelam.com) to apply operations to that principal. The irst two 
commands are theoretically suficient. However, there is a bug that stops Hadoop 
from reading the credentials. We can work around this by the last command that 

rewrites the key in more readable format. Now let's run hdfs commands.

>bin/hadoopfs -ls /

16. Start the DataNode (this must be done as the root) by running following command:

>su - root

>cd /opt/hadoop-1.0.3/

>export HADOOP_SECURE_DN_USER=hdfs

>export HADOOP_DATANODE_USER=hdfs

>bin/hadoopdatanode &

>exit

17. Conigure mapred by adding the following code to conf/map-red.xml. Replace 

HADOOP_HOME with the corresponding location.

<property>

<name>mapreduce.jobtracker.kerberos.principal</name>

<value>mapred/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.jobtracker.kerberos.https.principal</
name><value>host/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.jobtracker.keytab.file</name>

<value>HADOOP_HOME/conf/mapred.keytab</value><!-- path to the 
MapReducekeytab -->

</property><!-- TaskTracker security configs -->

<property>

<name>mapreduce.tasktracker.kerberos.principal</name>

<value>mapred/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.tasktracker.kerberos.https.principal</name>

<value>host/_HOST@hadoop.kbrelam.com</value>
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</property>

<property>

<name>mapreduce.tasktracker.keytab.file</name>

<value>HADOOP_HOME/conf/mapred.keytab</value><!-- path to the 
MapReducekeytab -->

</property><!-- TaskController settings -->

<property>

<name>mapred.task.tracker.task-controller</name><value>org.apache.
hadoop.mapred.LinuxTaskController</value>

</property>

<property>

<name>mapreduce.tasktracker.group</name>

<value>mapred</value>

</property>

18. Conigure the Linux task controller, which must be used for Kerberos setup.

>mkdir /etc/hadoop

>cpconf/taskcontroller.cfg /etc/hadoop/taskcontroller.cfg

>chmod 755 /etc/hadoop/taskcontroller.cfg

19. Add the following code to /etc/hadoop/taskcontroller.cfg:

mapred.local.dir=/opt/hadoop-work/local/

hadoop.log.dir=HADOOP_HOME/logs

mapreduce.tasktracker.group=mapred

banned.users=mapred,hdfs,bin

min.user.id=1000

Set up the permissions by running the following command from HADOOP_HOME, 

and verify that the inal permissions of bin/task-controller are rwsr-x---. 

Otherwise, the jobs will fail to execute.

>chmod 4750 bin/task-controller

>ls -l bin/task-controller

>-rwsr-x--- 1 root mapred 63374 May  9 02:05 bin/task-controller

20. Start the JobTracker and TaskTracker:

>sudo -u mapred bin/hadoopjobtracker

Wait for the JobTracker to start up and then run the following command:

>sudo -u mapred bin/hadooptasktracker
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21. Run the job by running following commands from HADOOP_HOME. If all commands run 

successfully, you will see the WordCount output as described in Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

>su bob

>kinit bob/hadoop.kbrelam.com -k -t conf/bob.keytab

>kinit –R

>bin/hadoopfs -mkdir /data

>bin/hadoopfs -mkdir /data/job1

>bin/hadoopfs -mkdir /data/job1/input

>bin/hadoopfs -put README.txt /data/job1/input

>bin/hadoop jar hadoop-examples-1.0.3.jar wordcount /data/job1 /
data/output

How it works...

By running the kinit command, the client would obtain a Kerberos ticket and store it in the 

ilesystem. When we run the command, the client uses the Kerberos ticket to get access to 
the Hadoop nodes and submit jobs. Hadoop resolves the permission based on the user and 

group permissions of the Linux users that matches the Kerberos principal.

Hadoop Kerberos security settings have many pitfalls. The two tools that might be useful are 

as follows:

 f You can enable debugging by adding the environment variable HADOOP_
OPTS="$HADOOP_CLIENT_OPTS -Dsun.security.krb5.debug=true"

 f There is a very useful resource that has descriptions for all error codes:

https://ccp.cloudera.com/display/CDHDOC/Appendix+E+-+Task-
controller+Error+Codes

Also, when you change something, make sure you restart all the processes irst by 
killing all the running processes.

Using the Hadoop Tool interface
Often Hadoop jobs are executed through a command line. Therefore, each Hadoop job has to 

support reading, parsing, and processing command-line arguments. To avoid each developer 

having to rewrite this code, Hadoop provides a org.apache.hadoop.util.Tool interface.
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How to do it...

1. In the source code for this chapter, the src/chapter3/WordcountWithTools.
java class extends the WordCount example with support for the Tool interface.

public class WordcountWithTools extends  

   Configured implements Tool

{

  public int run(String[] args) throws Exception

  {

    if (args.length< 2)

    {

      System.out.println("chapter3.WordCountWithTools 

      WordCount<inDir><outDir>");

      ToolRunner.printGenericCommandUsage(System.out);

      System.out.println("");

      return -1;

    }

   Job job = new Job(getConf(), "word count");

   job.setJarByClass(WordCount.class);

   job.setMapperClass(TokenizerMapper.class);

   job.setReducerClass(IntSumReducer.class);

   job.setOutputKeyClass(Text.class);

   job.setOutputValueClass(IntWritable.class);

   FileInputFormat.addInputPath(job, new Path(args[0]));

   FileOutputFormat.setOutputPath(job, new Path(args[1]));

   job.waitForCompletion(true);

   return 0;

 }

  public static void main(String[] args)

    throws Exception

  {

    int res = ToolRunner.run(

       new Configuration(), new WordcountWithTools(), args);

    System.exit(res);

  }

2. Set up a input folder in HDFS with /data/input/README.txt if it doesn't already 

exist. It can be done through following commands:

bin/hadoopfs -mkdir /data/output

bin/hadoopfs -mkdir /data/input

bin/hadoopfs -put README.txt /data/input
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3. Try to run the WordCount without any options, and it will list the available options.

bin/hadoop jar hadoop-cookbook-chapter3.jar chapter3.
WordcountWithToolsWordcount <inDir><outDir>

Generic options supported are

-conf<configuration file>     specify an application configuration 
file

-D <property=value>            use value for given property

-fs<local|namenode:port>      specify a namenode

-jt<local|jobtracker:port>    specify a job tracker

-files<comma separated list of files>    specify comma separated 
files to be copied to the map reduce cluster

-libjars<comma separated list of jars>    specify comma separated 
jar files to include in the classpath.

-archives<comma separated list of archives>    specify comma 
separated archives to be unarchived on the compute machines.

The general command line syntax is

bin/hadoop command [genericOptions] [commandOptions]

4. Run the WordCount sample with the mapred.job.reuse.jvm.num.tasks option 

to limit the number of JVMs created by the job, as we learned in an earlier recipe.

bin/hadoop jar hadoop-cookbook-chapter3.jar

chapter3.WordcountWithTools

-D mapred.job.reuse.jvm.num.tasks=1  /data/input /data/output

How it works...

When a job extends from the Tool interface, Hadoop will intercept the command-line 

arguments, parse the options,  and conigure the JobConf object accordingly. Therefore,  

the job will support standard generic options.
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In this chapter, we will cover:

 f Choosing appropriate Hadoop data types

 f Implementing a custom Hadoop Writable data type

 f Implementing a custom Hadoop key type

 f Emitting data of different value types from a mapper

 f Choosing a suitable Hadoop InputFormat for your input data format

 f Adding support for new input data formats – implementing a custom InputFormat

 f Formatting the results of MapReduce computations – using Hadoop 

OutputFormats

 f Hadoop intermediate (map to reduce) data partitioning

 f Broadcasting and distributing shared resources to tasks in a MapReduce job : 

Hadoop DistributedCache

 f Using Hadoop with legacy applications – Hadoop Streaming

 f Adding dependencies between MapReduce jobs

 f Hadoop counters for reporting custom metrics
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Introduction
This chapter introduces you to several advanced Hadoop MapReduce features that will help 

you to develop highly customized, eficient MapReduce applications.

In this chapter, we will explore the different data types provided by Hadoop and the steps to 

implement custom data types for Hadoop MapReduce computations. We will also explore 

the different data input and output formats provided by Hadoop. This chapter will provide you 

with the basic understanding of how to add support for new data formats in Hadoop. We will 

also be discussing other advanced Hadoop features such as using DistributedCache for 

distribute data, using Hadoop Streaming for quick prototyping of Hadoop computations, and 

using Hadoop counters to report custom metrics for your computation as well as adding job 

dependencies to manage simple DAG-based worklows of Hadoop MapReduce computations.

Choosing appropriate Hadoop data types
Hadoop uses the Writable interface based classes as the data types for the MapReduce 

computations. These data types are used throughout the MapReduce computational low, 
starting with reading the input data, transferring intermediate data between Map and Reduce 

tasks, and inally, when writing the output data. Choosing the appropriate Writable data 

types for your input, intermediate, and output data can have a large effect on the performance 

and the programmability of your MapReduce programs.

In order to be used as a value data type of a MapReduce computation, a data type must 

implement the org.apache.hadoop.io.Writable interface. The Writable interface 

deines how Hadoop should serialize and de-serialize the values when transmitting and storing 
the data. In order to be used as a key data type of a MapReduce computation, a data type must 

implement the org.apache.hadoop.io.WritableComparable<T> interface. In addition 

to the functionality of the Writable interface, the WritableComparable interface further 

deines how to compare the keys of this type with each other for sorting purposes.

Hadoop's Writable versus Java's Serializable

Hadoop's Writable-based serialization framework provides a more eficient 
and customized serialization and representation of the data for MapReduce 

programs than using the general-purpose Java's native serialization 

framework. As opposed to Java's serialization, Hadoop's Writable framework 

does not write the type name with each object expecting all the clients of the 

serialized data to be aware of the types used in the serialized data. Omitting 

the type names makes the serialization process faster and results in compact, 

random accessible serialized data formats that can be easily interpreted by 

non-Java clients. Hadoop's Writable-based serialization also has the ability to 

reduce the object-creation overhead by reusing the Writable objects, which 

is not possible with the Java's native serialization framework.
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How to do it...

The following steps show you how to conigure the input and output data types of your Hadoop 
MapReduce application:

1. Specify the data types for the input (key: LongWritable, value: Text) and  

output (key: Text, value: IntWritable) key-value pairs of your mapper  

using the generic-type variables.

public class SampleMapper extends Mapper<LongWritable, Text, Text, 
IntWritable> {    

public void map(LongWritable key, Text value, 

    Context context) … {

……  }

}

2. Specify the data types for the input (key: Text, value: IntWritable) and  

output (key: Text, value: IntWritable) key-value pairs of your reducer using  

the generic-type variables. The reducer's input key-value pair data types should 

match the mapper's output key-value pairs.

public class Reduce extends Reducer<Text, IntWritable, Text, 
IntWritable> {

public void reduce(Text key, 

    Iterable<IntWritable> values, Context context) {

  ……  }

}

3. Specify the output data types of the MapReduce computation using the Job object as 

shown in the following code snippet. These data types will serve as the output types 

for both, the reducer and the mapper, unless you speciically conigure the mapper 
output types as done in step 4.

Job job = new Job(..);

….  

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

4. Optionally, you can conigure the different data types for the mapper's output  
key-value pairs using the following steps, when your mapper and reducer have 

different data types for the output key-value pairs.

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);
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There's more...

Hadoop provides several primitive data types such as IntWritable, LongWritable, 

BooleanWritable, FloatWritable, and ByteWritable, which are the Writable versions 

of their respective Java primitive data types. We can use these types as both, the key types 

as well as the value types.

The following are several more Hadoop built-in data types that we can use as both, the key as 

well as the value types:

 f Text: This stores a UTF8 text

 f BytesWritable: This stores a sequence of bytes

 f VIntWritable and VLongWritable: These store variable length integer  

and long values

 f NullWritable: This is a zero-length Writable type that can be used when you 

don't want to use a key or value type

The following Hadoop build-in collection data types can only be used as value types.

 f ArrayWritable: This stores an array of values belonging to a Writable type.  

To use ArrayWritable type as the value type of a reducer's input, you need to 

create a subclass of ArrayWritable to specify the type of the Writable values 

stored in it.

public class LongArrayWritable extends ArrayWritable { 

  public LongArrayWritable() { 

  super(LongWritable.class); 

  }

}

 f TwoDArrayWritable: This stores a matrix of values belonging to the same 

Writable type. To use the TwoDArrayWritable type as the value type of a 

reducer's input, you need to specify the type of the stored values by creating a 

subclass of  the TwoDArrayWritable type similar to the ArrayWritable type.

 f MapWritable: This stores a map of key-value pairs. Keys and values should be of 

the Writable data types.

 f SortedMapWritable: This stores a sorted map of key-value pairs. Keys should 

implement the WritableComparable interface.

See also
 f Implementing a custom Hadoop Writable data type

 f Implementing a custom Hadoop key type
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Implementing a custom Hadoop Writable 
data type

There can be use cases where none of the built-in data types matches your requirements or a 

custom data type optimized for your use case may perform better than a Hadoop built-in data 

type. In such scenarios, we can easily write a custom Writable data type by implementing 

the org.apache.hadoop.io.Writable interface to deine the serialization format of 
your data type. The Writable interface-based types can be used as value types in Hadoop 

MapReduce computations.

In this recipe, we implement a sample Hadoop Writable data type for HTTP server log 

entries. For the purpose of this sample, we consider that a log entry consists of the ive  
ields—request host, timestamp, request URL, response size, and the http status code.  
The following is a sample log entry:

192.168.0.2 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ 
HTTP/1.0" 200 6245

You can download a sample HTTP server log data set from ftp://ita.ee.lbl.gov/
traces/NASA_access_log_Jul95.gz.

How to do it...

The following are the steps to implement a custom Hadoop Writable data type for the HTTP 

server log entries:

1. Write a new LogWritable class implementing the org.apache.hadoop.
io.Writable interface.

public class LogWritable implements Writable{

  private Text userIP, timestamp, request;  

  privateIntWritableresponseSize, status;  

  public LogWritable() {

    this.userIP = new Text();

    this.timestamp=  new Text();

    this.request = new Text();

    this.responseSize = new IntWritable();

    this.status = new IntWritable();    

  }

  public void readFields(DataInput in) throws IOException {

    userIP.readFields(in);

    timestamp.readFields(in);

    request.readFields(in);
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    responseSize.readFields(in);

    status.readFields(in);

  }

  public void write(DataOutput out) throws IOException {

    userIP.write(out);

    timestamp.write(out);

    request.write(out);

    responseSize.write(out);

    status.write(out);

  }

……… // getters and setters for the fields

}

2. Use the new LogWritable type as a value type in your MapReduce computation. 

In the following example, we use the LogWritable type as the Map output value 

type.

public class LogProcessorMap extends Mapper<LongWritable, 

Text, Text, LogWritable> {    

….

}

public class LogProcessorReduce extends Reducer<Text, 

LogWritable, Text, IntWritable> {

public void reduce(Text key, 

Iterable<LogWritable> values, Context context) {

     ……  }

}

3. Conigure the output types of the job accordingly.
Job job = new Job(..);

….  

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);job.
setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(LogWritable.class);
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How it works...

The Writable interface consists of the two methods, readFields() and write(). Inside 

the readFields() method, we de-serialize the input data and populate the ields of the 
Writable object.

  public void readFields(DataInput in) throws IOException {

    userIP.readFields(in);

    timestamp.readFields(in);

    request.readFields(in);

    responseSize.readFields(in);

    status.readFields(in);

  }

In the preceding example, we use the Writable types as the ields of our custom Writable 

type and use the readFields() method of the ields for de-serializing the data from the 
DataInput object. It is also possible to use java primitive data types as the ields of the 
Writable type and to use the corresponding read methods of the DataInput object to  

read the values from the underlying stream, as shown in the following code snippet:

int responseSize = in.readInt();

String userIP = in.readUTF();

Inside the write() method, we write the ields of the Writable object  to the  

underlying stream.

  public void write(DataOutput out) throws IOException {

    userIP.write(out);

    timestamp.write(out);

    request.write(out);

    responseSize.write(out);

    status.write(out);

  }

In case you are using Java primitive data types as the ields of the Writable object, you can 

use the corresponding write methods of the DataOutput object to write the values to the 

underlying stream as below.

out.writeInt(responseSize);

out.writeUTF(userIP);

There's more...

Be cautious about the following issues when implementing your custom Writable data type:

 f In case you are adding a custom constructor to your custom Writable class, make 

sure to retain the default empty constructor.
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 f TextOutputFormat uses the toString() method to serialize the key and 

value types. In case you are using the TextOutputFormat to serialize instances 

of your custom Writable type, make sure to have a meaningful toString() 

implementation for your custom Writable data type. 

 f While reading the input data, Hadoop may reuse an instance of the Writable class 

repeatedly. You should not rely on the existing state of the object when populating it 

inside the readFields() method.

See also
 f Implementing a custom Hadoop key type

Implementing a custom Hadoop key type
The instances of Hadoop MapReduce key types should have the ability to compare against 

each other for sorting purposes. In order to be used as a key type in a MapReduce a 

computation, a Hadoop Writable data type should implement the org.apache.hadoop.
io.WritableComparable<T> interface. The WritableComparable interface extends 

the org.apache.hadoop.io.Writable interface and adds the compareTo() method to 

perform the comparisons.

In this recipe, we modify the LogWritable data type of the Writing a custom Hadoop 

Writable data type recipe to implement the WritableComparable interface.

How to do it...

The following are the steps to implement a custom Hadoop WritableComparable  

data type for the HTTP server log entries, which uses the request host name and  

timestamp for comparison.

1. Modify the LogWritable class to implement the org.apache.hadoop.
io.WritableComparable interface.

public class LogWritable implements 

     WritableComparable<LogWritable> {

  private Text userIP, timestamp, request;

  private IntWritable responseSize, status;

  public LogWritable() {

    this.userIP = new Text();

    this.timestamp=  new Text();
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    this.request = new Text();

    this.responseSize = new IntWritable();

    this.status = new IntWritable();    

  }

  public void readFields(DataInput in) throws IOException {

    userIP.readFields(in);

    timestamp.readFields(in);

    request.readFields(in);

    responseSize.readFields(in);

    status.readFields(in);

  }

  public void write(DataOutput out) throws IOException {

    userIP.write(out);

    timestamp.write(out);

    request.write(out);

    responseSize.write(out);

    status.write(out);

  }

  public int compareTo(LogWritable o) {

    if (userIP.compareTo(o.userIP)==0){    

         return (timestamp.compareTo(o.timestamp));

    }else return (userIP.compareTo(o.userIP);

  }

  public boolean equals(Object o) {

    if (o instanceof LogWritable) {

         LogWritable other = (LogWritable) o;

         return userIP.equals(other.userIP)  
                   && timestamp.equals(other.timestamp);

    }

    return false;

  }

  public int hashCode()

  {  

    return userIP.hashCode();

  }

   ……… // getters and setters for the fields

}
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2. You can use the LogWritable type as either a key type or a value type in your 

MapReduce computation. In the following example, we use the LogWritable type 

as the Map output key type.

public class LogProcessorMap extends Mapper<LongWritable, 

Text, LogWritable,IntWritable> {    

…

}

public class LogProcessorReduce extends Reducer<LogWritable, 

IntWritable, Text, IntWritable> {

public void reduce(LogWritablekey, 

Iterable<IntWritable> values, Context context) {

     ……  }

}

3. Conigure the output types of the job accordingly.
Job job = new Job(..);

…

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class); 
job.setMapOutputKeyClass(LogWritable.class);

job.setMapOutputValueClass(IntWritable.class);

How it works...

The WritableComparable interface introduces the comapreTo() method in addition to 

the readFields() and write() methods of the Writable interface. The compareTo() 

method should return a negative integer, zero, or a positive integer, if this object is less than, 

equal to, or greater than the object being compared to respectively. In the LogWritable 

implementation, we consider the objects equal if both the user's IP address and the 

timestamp are the same. If the objects are not equal, we decide the sort order irst based  
on the user IP address and then based on the timestamp.

  public int compareTo(LogWritable o) {

    if (userIP.compareTo(o.userIP)==0){      

        return (timestamp.compareTo(o.timestamp));

    }else return (userIP.compareTo(o.userIP);

  }
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Hadoop uses HashPartitioner as the default Partitioner implementation to calculate 

the distribution of the intermediate data to the reducers. HashPartitioner requires the 

hashCode() method of the key objects to satisfy the following two properties:

 f Provide the same hash value across different JVM instances

 f Provide a uniform distribution of hash values

Hence, you must implement a stable hashCode() method for your custom Hadoop key types 

satisfying the above mentioned two requirements. In the LogWritable implementation, 

we use the hash code of the request hostname/IP address as the hash code of the 
LogWritable instance. This ensures that the intermediate LogWritable data will be 

partitioned based on the request hostname/IP address.

  public int hashCode()

  {    

    return userIP.hashCode();

  }

See also
 f Implementing a custom Hadoop Writable data type

Emitting data of different value types from a 
mapper

Emitting data products belonging to multiple value types from a mapper is useful when 

performing reducer-side joins as well as when we need to avoid the complexity of having 

multiple MapReduce computations to summarize different types of properties in a data set. 

However, Hadoop reducers do not allow multiple input value types. In these scenarios, we can 

use the GenericWritable class to wrap multiple value instances belonging to different 

data types.

In this recipe, we reuse the HTTP server log entry analyzing sample of the Implementing a 

custom Hadoop Writable data type recipe. However, instead of using a custom data type, in 

the current recipe we output multiple value types from the mapper. This sample aggregates 

the total number of bytes served from the web server to a particular host and also outputs a 

tab-separated list of URLs requested by the particular host. We use IntWritable to output 

the number of bytes from the mapper and Text to output the request URL.
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How to do it...

The following steps show how to implement a Hadoop GenericWritable data type that can 

wrap instances of either IntWritable or Text data types.

1. Write a class extending the org.apache.hadoop.io.GenericWritable class. 

Implement the getTypes() method to return an array of the Writable classes 

that you will be using. If you are adding a custom constructor, make sure to add a 

parameter-less default constructor as well.

public class MultiValueWritable extends GenericWritable {

  private static Class[] CLASSES =  new Class[]{

    IntWritable.class,

    Text.class

  };

  

  public MultiValueWritable(){    

  }

  

  public MultiValueWritable(Writable value){

    set(value);

  }

  

  protected Class[] getTypes() {

    return CLASSES;

  }

}

2. Set MultiValueWritable as the output value type of the mapper. Wrap the output  

Writable values of the mapper with instances of the MultiValueWritable class.

public class LogProcessorMap extends

    Mapper<Object, Text, Text, MultiValueWritable> {

  private Text userHostText = new Text();

  private Text requestText = new Text();

  private IntWritableresponseSize = new IntWritable();

  public void map(Object key, Text value, 

                              Context context)…{

    ……// parse the value (log entry) using a regex.

    userHostText.set(userHost); 
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    requestText.set(request);  

    bytesWritable.set(responseSize);

    context.write(userHostText,

      newMultiValueWritable(requestText));

    context.write(userHostText,   

      newMultiValueWritable(responseSize));

  }

}

3. Set the reducer input value type as MultiValueWritable. Implement the 

reduce() method to handle multiple value types.

public class LogProcessorReduce extends

    Reducer<Text,MultiValueWritable,Text,Text> {

  private Text result = new Text();

    public void reduce(Text key,Iterable<MultiValueWritable>     
             values, Context context)…{

    int sum = 0;

    StringBuilder requests = new StringBuilder();

    for (MultiValueWritable multiValueWritable : values) {

    Writable writable = multiValueWritable.get();

    if (writable instanceof IntWritable){

      sum += ((IntWritable)writable).get();

    }else{

      requests.append(((Text)writable).toString());

      requests.append("\t");

    }

  }     

result.set(sum + "\t"+requests);

context.write(key, result);

   }

}

4. Set MultiValueWritable as the Map output value class of this computation.

    Configuration conf = new Configuration();

    Job job = new Job(conf, "log-analysis");

    …

    job.setMapOutputValueClass(MultiValueWritable.class);
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How it works...

The GenericWritable implementations should extend org.apache.hadoop.
io.GenericWritable and should specify a set of the Writable value types to wrap,  

by returning an array of CLASSES from the getTypes() method. The GenericWritable 

implementations serialize and de-serialize the data using the index to this array of classes.

  private static Class[] CLASSES =  new Class[]{

    IntWritable.class,

    Text.class

  };

  protected Class[] getTypes() {

    return CLASSES;

  }

In the mapper, you wrap each of your values with instances of the GenericWritable 

implementation.

private Text requestText = new Text();

context.write(userHostText, 
new MultiValueWritable(requestText));

The reducer implementation has to take care of the different value types manually.

if (writable instanceof IntWritable){

  sum += ((IntWritable)writable).get();

}else{

  requests.append(((Text)writable).toString());

  requests.append("\t");

}

There's more...

org.apache.hadoop.io.ObjectWritable is another class which can be used to  

achieve the same objective as GenericWritable. The ObjectWritable class can  

handle Java primitive types, strings, and arrays without the need of a Writable wrapper. 

However, Hadoop serializes the ObjectWritable instances by writing the class name  

of the instance with each serialized entry, making it ineficient compared to a 
GenericWritable class-based implementation.

See also
 f Implementing a custom Hadoop Writable data type
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Choosing a suitable Hadoop InputFormat for 
your input data format

Hadoop supports processing of many different formats and types of data through 

InputFormat. The InputFormat of a Hadoop MapReduce computation generates 

the key-value pair inputs for the mappers by parsing the input data. InputFormat also 

performs the splitting of the input data into logical partitions, essentially determining the 

number of Map tasks of a MapReduce computation and indirectly deciding the execution 

location of the Map tasks. Hadoop generates a map task for each logical data partition and 

invokes the respective mappers with the key-value pairs of the logical splits as the input.

How to do it...

The following steps show you how to use FileInputFormat based 

KeyValueTextInputFormat as InputFormat for a Hadoop MapReduce computation.

1. In this example, we are going to specify the KeyValueTextInputFormat  

as InputFormat for a Hadoop MapReduce computation using the Job  

object as follows:

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.SetInputFormat(KeyValueTextInputFormat.class)

2. Set the input paths to the job.

FileInputFormat.setInputPaths(job, new Path(inputPath));

How it works...

KeyValueTextInputFormat is an input format for plain text iles, which generates a key-
value record for each line of the input text iles. Each line of the input data is broken into a 
key (text) and value (text) pair using a delimiter character. The default delimiter is the tab 

character. If a line does not contain the delimiter, the whole line will be treated as the key and 

the value will be empty. We can specify a custom delimiter by setting a property in the job's 

coniguration object as follows, where we use the comma character as the delimiter between 
the key and value.

conf.set("key.value.separator.in.input.line", ",");
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KeyValueTextInputFormat is based on FileInputFormat, which is the base class for 

the ile-based InputFormats. Hence, we specify the input path to the MapReduce computation 
using the setInputPaths() method of the FileInputFormat class. We have to perform 

this step when using any InputFormat that is based on the FileInputFormat class.

FileInputFormat.setInputPaths(job, new Path(inputPath));

We can provide multiple HDFS input paths to a MapReduce computation by providing a 

comma-separated list of paths. You can also use the addInputPath() static method  

of the FileInputFormat class to add additional input paths to a computation.

public static void setInputPaths(JobConfconf,Path... inputPaths)

public static void addInputPath(JobConfconf, Path path)

There's more...

Make sure that your mapper input data types match the data types generated by 

InputFormat used by the MapReduce computation.

The following are some of the InputFormat implementations that Hadoop provide to support 

several common data formats.

 f TextInputFormat: This is used for plain text iles. TextInputFormat  

generates a key-value record for each line of the input text iles. For each line,  
the key (LongWritable) is the byte offset of the line in the ile and the value  
(Text) is the line of text. TextInputFormat is the default InputFormat  

of Hadoop.

 f NLineInputFormat: This is used for plain text iles. NLineInputFormat 

splits the input iles into logical splits of ixed number of lines. We can use the 

NLineInputFormat when we want our map tasks to receive a ixed number 
of lines as the input. The key (LongWritable) and value (Text) records are 

generated for each line in the split similar to the TextInputFormat. By default, 

NLineInputFormat creates a logical split (and a Map task) per line. The number 

of lines per split (or key-value records per Map task) can be speciied as follows. 
NLineInputFormat generates a key-value record for each line of the input text iles.
NLineInputFormat.setNumLinesPerSplit(job,50);

 f SequenceFileInputFormat: For Hadoop Sequence ile input data. Hadoop 
Sequence iles store the data as binary key-value pairs and support data 
compression. SequenceFileInputFormat is useful when using the result of 

a previous MapReduce computation in Sequence ile format as the input of a 
MapReduce computation.

 � SequenceFileAsBinaryInputFormat: This is a subclass of the 

SequenceInputFormat that presents the key (BytesWritable) and the 

value (BytesWritable) pairs in raw binary format
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 � SequenceFileAsTextInputFormat: This is a subclass of the 

SequenceInputFormat that presents the key (Text) and the value (Text) 

pairs as strings

 f DBInputFormat: This supports reading the input data for MapReduce 

computation from a SQL table. DBInputFormat uses the record number as the key 

(LongWritable) and the query result record as the value (DBWritable).

Using multiple input data types and multiple mapper 
implementations in a single MapReduce application
We can use the MultipleInputs feature of Hadoop to run a MapReduce job with multiple 

input paths, while specifying a different InputFormat and (optionally) a mapper for each path. 

Hadoop will route the outputs of the different mappers to the instances of the single reducer 

implementation of the MapReduce computation. Multiple inputs with different InputFormat 

implementations is useful when we want to process multiple data sets with the same meaning 

but are in different input formats (comma-delimited data set and tab-delimited data set). 

We can use the following addInputPath static method of the MutlipleInputs class to 

add the input paths and the respective input formats to the MapReduce computation.

Public static void addInputPath(Job job, Path path,  
           Class<?extendsInputFormat>inputFormatClass)

The following is an example usage of the preceding method.

MultipleInputs.addInputPath(job, path1, CSVInputFormat.class);

MultipleInputs.addInputPath(job, path1, TabInputFormat.class);

The multiple inputs feature with both different mappers and InputFormat is useful when 

performing a reduce-side join of two or more data sets.

public static void addInputPath(JobConfconf,Path path,

     Class<?extendsInputFormat>inputFormatClass,

     Class<?extends Mapper>mapperClass)

The following is an example of using multiple inputs with different input formats and different 

mapper implementations.

MultipleInputs.addInputPath(job, accessLogPath, 
     TextInputFormat.class, AccessLogMapper.class);

MultipleInputs.addInputPath(job, userDataPath, 
     TextInputFormat.class, UserDataMapper.class);

See also
 f Adding support for new input data formats–  implementing a custom InputFormat



Developing Complex Hadoop MapReduce Applications

90

Adding support for new input data formats – 
implementing a custom InputFormat

Hadoop enables us to implement and specify custom InputFormat implementations for our 

MapReduce computations. We can implement custom InputFormat implementations to 

gain more control over the input data as well as to support proprietary or application-speciic 
input data ile formats as inputs to Hadoop MapReduce computations. A InputFormat 

implementation should extend the org.apache.hadoop.mapreduce.InputFormat<K,V> 

abstract class overriding the createRecordReader() and getSplits() methods.

In this recipe, we implement a InputFormat and a RecordReader for the HTTP log iles. 
This InputFormat will generate LongWritable instances as keys and LogWritable 

instances as the values.

How to do it...

The following are the steps to implement a custom InputFormat for the HTTP server log iles 
based on the FileInputFormat.

1. LogFileInputFormat operates on the data in HDFS iles. Hence, we implement 
the LogFileInputFormat extending the FileInputFormat.

public class LogFileInputFormat extends     
      FileInputFormat<LongWritable, LogWritable>{

  public RecordReader<LongWritable, LogWritable> 
                  createRecordReader(InputSplit arg0, 
                  TaskAttemptContext arg1) throws …… {

    return new LogFileRecordReader();

  }

}

2. Implement the LogFileRecordReader class.

public class LogFileRecordReader extends  
    RecordReader<LongWritable, LogWritable>{

  LineRecordReader lineReader;

  LogWritable value;

  

  public void initialize(InputSplitinputSplit,  
                         TaskAttemptContext attempt)…{

    lineReader = new LineRecordReader();
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    lineReader.initialize(inputSplit, attempt);

  }

  public boolean nextKeyValue() throws IOException, ..{

    if (!lineReader.nextKeyValue())

      return false;

    

    String line = lineReader.getCurrentValue().toString();

    ……………//Extract the fields from 'line'using a regex

    

    value = new LogWritable(userIP, timestamp, request,

        status, bytes);

    return true;

  }

  

  public LongWritable getCurrentKey() throws..{

    return lineReader.getCurrentKey();

  }

  public LogWritable getCurrentValue() throws ..{

    return value;

  }

  public float getProgress() throws IOException, ..{

    return lineReader.getProgress();

  }

  

  public void close() throws IOException {

    lineReader.close();    

  }

}

3. Specify LogFileInputFormat as InputFormat for the MapReduce computation 

using the Job object as follows. Specify the input paths for the computations using 

the underlying FileInputFormat.

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.setInputFormatClass(LogFileInputFormat.class);  

FileInputFormat.setInputPaths(job, new Path(inputPath));



Developing Complex Hadoop MapReduce Applications

92

4. Make sure the mappers of the computation use LongWritable as the input key 

type and LogWritable as the input value type.

public class LogProcessorMap extends 
Mapper<LongWritable, LogWritable, Text, IntWritable>{ 
 
    public void map(LongWritablekey, 
            LogWritable value, Context context) throws ……{

    ………}

}

How it works...

LogFileInputFormat extends the FileInputFormat, which provides a generic splitting 

mechanism for HDFS-ile based InputFormat. We override the createRecordReader() 

method in the LogFileInputFormat to provide an instance of our custom RecordReader 

implementation, LogFileRecordReader. Optionally, we can also override the 

isSplitable() method of the FileInputFormat to control whether the input iles are 
split-up into logical partitions or used as whole iles.

public RecordReader<LongWritable, LogWritable> 
       createRecordReader(InputSplit arg0, 
       TaskAttemptContext arg1) throws …… {
    return new LogFileRecordReader();
}

The LogFileRecordReader class extends the org.apache.hadoop.mapreduce.
RecordReader<K,V> abstract class and uses LineRecordReader internally to  

perform the basic parsing of the input data. LineRecordReader reads lines of text  

from the input data.

    lineReader = new LineRecordReader();

    lineReader.initialize(inputSplit, attempt);    

We perform the custom parsing of the log entries of the input data in the nextKeyValue() 

method. We use a regular expression to extract the ields out of the HTTP service log entry and 
populate an instance of the LogWritable class using those ields.

  public boolean nextKeyValue() throws IOException, ..{
    if (!lineReader.nextKeyValue())
      return false;
    
    String line = lineReader.getCurrentValue().toString();
    ……………//Extract the fields from 'line' using a regex
    
    value = new LogWritable(userIP, timestamp, request, 
        status, bytes);
    return true;
  }
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There's more...

We can perform custom splitting of input data by overriding the getSplits() method of 

the InputFormat class. The getSplits() method should return a list of InputSplit 

objects. A InputSplit object represents a logical partition of the input data and will be 

assigned to a single Map task.InputSplit classes extend the InputSplit abstract 

class and should override the getLocations() and getLength() methods. The 

getLength() method should provide the length of the split and the getLocations() 

method should provide a list of nodes where the data represented by this split is physically 

stored. Hadoop uses a list of data local nodes for Map task scheduling. FileInputFormat 

we use in the above example uses the org.apache.hadoop.mapreduce.lib.input.
FileSplit as the InputSplit implementation.

You can write InputFormat implementations for none HDFS data as well. The org.apache.
hadoop.mapreduce.lib.db.DBInputFormat is one example of  InputFormat.
DBInputFormat supports reading the input data from a SQL table.

See also
 f Choosing a suitable Hadoop InputFormat for your input data format

Formatting the results of MapReduce 
computations – using Hadoop 
OutputFormats

Often times the output of your MapReduce computation will be consumed by other applications. 

Hence, it is important to store the result of a MapReduce computation in a format that can be 

consumed eficiently by the target application. It is also important to store and organize the 
data in a location that is eficiently accessible by your target application. We can use Hadoop 

OutputFormat interface to deine the data storage format, data storage location and the 
organization of the output data of a MapReduce computation. A OutputFormat prepares 

the output location and provides a RecordWriter implementation to perform the actual 

serialization and storage of the data.

Hadoop uses the org.apache.hadoop.mapreduce.lib.output.
TextOutputFormat<K,V> as the default OutputFormat for the MapReduce computations. 

TextOutputFormat writes the records of the output data to plain text iles in HDFS using a 
separate line for each record. TextOutputFormat uses the tab character to delimit between 

the key and the value of a record. TextOutputFormat extends FileOutputFormat, which 

is the base class for all ile-based output formats.
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How to do it...

The following steps show you how to use the FileOutputFormat based 

SequenceFileOutputFormat as the OutputFormat for a Hadoop MapReduce computation.

1. In this example, we are going to specify the org.apache.hadoop.mapreduce.
lib.output.SequenceFileOutputFormat<K,V> as the OutputFormat for a 

Hadoop MapReduce computation using the Job object as follows:

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.setOutputFormat(SequenceFileOutputFormat.class)

2. Set the output paths to the job.

FileOutputFormat.setOutputPath(job, new Path(outputPath));

How it works...

SequenceFileOutputFormat serializes the data to Hadoop Sequence iles. Hadoop 
Sequence iles store the data as binary key-value pairs and supports data compression. 
Sequence iles are eficient specially for storing non-text data. We can use the Sequence iles 
to store the result of a MapReduce computation, if the output of the MapReduce computation 

going to be the input of another Hadoop MapReduce computation.

SequenceFileOutputFormat is based on the FileOutputFormat, which is the base 

class for the ile-based OutputFormat. Hence, we specify the output path to the MapReduce 

computation using the setOutputPath() method of the FileOutputFormat. We have to 

perform this step when using any OutputFormat that is based on the FileOutputFormat.

FileOutputFormat.setOutputPath(job, new Path(outputPath));

There's more...

You can implement custom OutputFormat classes to write the output of your MapReduce 

computations in a proprietary or custom data format and/or to store the result in storage other 
than HDFS by extending the org.apache.hadoop.mapreduce.OutputFormat<K,V> 

abstract class. In case your OutputFormat implementation stores the data in a ilesystem, you 
can extend from the FileOutputFormat class to make your life easier.
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Hadoop intermediate (map to reduce) data 
partitioning

Hadoop partitions the intermediate data generated from the Map tasks across the reduce 

tasks of the computations. A proper partitioning function ensuring balanced load for each 

reduce task is crucial to the performance of MapReduce computations. Partitioning can also 

be used to group together related set of records to speciic reduce tasks, where you want the 
certain outputs to be processed or grouped together.

Hadoop partitions the intermediate data based on the key space of the intermediate data 

and decides which reduce task will receive which intermediate record. The sorted set of 

keys and their values of a partition would be the input for a reduce task. In Hadoop, the total 

number of partitions should be equal to the number of reduce tasks for the MapReduce 

computation. Hadoop Partitioners should extend the org.apache.hadoop.mapreduce.
Partitioner<KEY,VALUE> abstract class. Hadoop uses org.apache.hadoop.
mapreduce.lib.partition.HashPartitioner as the default Partitioner for the 

MapReduce computations. HashPartitioner partitions the keys based on their hashcode(), 

using the formula key.hashcode() mod r, where r is the number of reduce tasks. The following 

diagram illustrates HashPartitioner for a computation with two reduce tasks:
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Hash(key)mod2

There can be scenarios where our computations logic would require or can be better 

implemented using an application's speciic data-partitioning schema. In this recipe,  
we implement a custom Partitioner for our HTTP log processing application, which 

partitions the keys (IP addresses) based on their geographic regions.
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How to do it...

The following steps show you how to implement a custom Partitioner that partitions the 

intermediate data based on the location of the request IP address or the hostname.

1. Implement the IPBasedPartitioner extending the Partitioner abstract class.

public class IPBasedPartitioner extends Partitioner<Text,  
    IntWritable>{

  public int getPartition(Text ipAddress, 

             IntWritable value, int numPartitions) {

  String region = getGeoLocation(ipAddress);

  if (region!=null){

              return ((region.hashCode() & 
               Integer.MAX_VALUE) % numPartitions);

   }

  return 0;

  }

}  

2. Set the Partitioner class parameter in the Job object.

Job job = new Job(getConf(), "log-analysis");

……

job.setPartitionerClass(IPBasedPartitioner.class);

How it works...

In the above example, we perform the partitioning of the intermediate data, such that the 

requests from the same geographic region will be sent to the same reducer instance. The 

getGeoLocation() method returns the geographic location of the given IP address. We 

omit the implementation details of the getGeoLocation() method as it's not essential 

for the understanding of this example. We then obtain the hashCode() of the geographic 

location and perform a modulo operation to choose the reducer bucket for the request.

public int getPartition(Text ipAddress,  
    IntWritable value, int numPartitions) {

  String region = getGeoLocation(ipAddress);

  if (region!= null && !region.isEmpty())){

      return ((region.hashCode() & 
            Integer.MAX_VALUE) % numPartitions);

  }

  return 0;

}
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There's more...

TotalOrderPartitioner and KeyFieldPartitioner are two of the several built-in 

Partitioner implementations provided by Hadoop.

TotalOrderPartitioner
TotalOrderPartitioner extends org.apache.hadoop.mapreduce.lib.partition.
TotalOrderPartitioner<K,V>. The set of input records to a reducer are in a sorted 

order ensuring proper ordering within an input partition. However, the Hadoop default 

partitioning strategy (HashPartitioner) does not enforce an ordering when partitioning the 

intermediate data and scatters the keys among the partitions. In use cases where we want 

to ensure a global order, we can use the TotalOrderPartitioner to enforce a total order 

to the reduce input records across the reducer task. TotalOrderPartitioner requires a 

partition ile as the input deining the ranges of the partitions.org.apache.hadoop.
mapreduce.lib.partition.InputSampler utility allows us to generate a partition ile 
for the TotalOrderPartitioner by sampling the input data. TotalOrderPartitioner 
is used in the Hadoop TeraSort benchmark.

Job job = new Job(getConf(), "Sort");

……

job.setPartitionerClass(TotalOrderPartitioner.class);

TotalOrderPartitioner.setPartitionFile(jobConf,partitionFile);

KeyFieldBasedPartitioner
org.apache.hadoop.mapreduce.lib.partition.KeyFieldBasedPartitioner<K,V> 

can be used to partition the intermediate data based on parts of the key. A key can be split into 

a set of ields by using a separator string. We can specify the indexes of the set of ields to be 
considered when partitioning. We can also specify the index of the characters within ields as well.

Broadcasting and distributing shared 
resources to tasks in a MapReduce 
job – Hadoop DistributedCache

We can use the Hadoop DistributedCache to distribute read-only ile based resources to the 
Map and Reduce tasks. These resources can be simple data iles, archives or JAR iles that 
are needed for the computations performed by the mappers or the reducers.
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How to do it...

The following steps show you how to add a ile to the Hadoop DistributedCache and how 

to retrieve it from the Map and Reduce tasks.

1. Copy the resource to the HDFS. You can also use iles that are already in the  
HDFS as well.

> bin/hadoop fs –copyFromLocal ip2loc.dat ip2loc.dat

2. Add the resource to the DistributedCache from your driver program.

Job job = new Job(getConf(), "log-analysis");
……
DistributedCache.addCacheFile(new  
     URI("ip2loc.dat#ip2location"),job.getConfiguration());

3. Retrieve the resource in the setup() method of your mapper or reducer and use the 

data in the Map() or Reduce() function.

public class LogProcessorMap extends  
        Mapper<Object, LogWritable, Text, IntWritable> {
  private IPLookup lookupTable;
  
  public void setup(Context context) throws IOException{
        
      File lookupDb = new File("ip2location");
      // Load the IP lookup table to memory
      lookupTable = IPLookup.LoadData(lookupDb);
  }

  public void map(…) {
     String country =     
                lookupTable.getCountry(value.ipAddress);
   ……
  }
}

How it works...

Hadoop copies the iles added to the DistributedCache to all the worker nodes before the 

execution of any task of the job. DistributedCache copies these iles only once per the 
job. Hadoop also supports creating symlinks to the DistributedCache iles in the working 
directory of the computation by adding a fragment with the desired symlink name to the URI. 

In the following example, we are using ip2location as the symlink to the ip2loc.dat ile 
in the DistributedCache.

DistributedCache.addCacheFile(new   
         URI("/data/ip2loc.dat#ip2location"), 
         job.getConfiguration());
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We parse and load the data from the DistributedCache in the setup() method of the 

mapper or the reducer. Files with symlinks are accessible from the working directory using  

the provided symlink's name.

private IPLookup lookup;

public void setup(Context context) throws IOException{

        

  File lookupDb = new File("ip2location");

  // Load the IP lookup table to memory

  lookup = IPLookup.LoadData(lookupDb);   

} 

public void map(…) {

  String location =lookup.getGeoLocation(value.ipAddress);

   ……

}   

We can also access the data in the DistributedCache directly using the 

getLocalCacheFiles() method, without using the symlink.

Path[] cacheFiles = DistributedCache.getLocalCacheFiles(conf);

DistributedCache do not work in the Hadoop 

local mode.

There's more...

The following sections show you how to distribute the compressed archives using 

DistributedCache, how to add resources to the DistributedCache using the 

|command line and how to use the DistributedCache to add resources to the  

classpath of the mapper and the reducer.

Distributing archives using the DistributedCache
We can use the DistributedCache to distribute archives as well. Hadoop extracts the 

archives in the worker nodes. You also can provide symlinks to the archives using the 

URI fragments. In the following example, we use the ip2locationdb symlink for the 

ip2locationdb.tar.gz archive.

Consider the following MapReduce driver program:

Job job = new Job(getConf(), "log-analysis");  

DistributedCache.addCacheArchive( 
       new URI("/data/ip2locationdb.tar.gz#ip2locationdb"), 
       job.getConfiguration());
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The extracted directory of the archive can be accessible from the working directory of the 

mapper or the reducer using the above provided symlink.

Consider the following mapper program:

  public void setup(Context context) throws IOException{

    Configuration conf = context.getConfiguration();

        

    File lookupDbDir = new File("ip2locationdb");

    String[] children = lookupDbDir.list();

    

    …

  }

You can also access the non-extracted DistributedCache archived iles directly using the 
following method in the mapper or reducer implementation:

Path[] cachePath;

public void setup(Context context) throws IOException{

  Configuration conf = context.getConfiguration();

  cachePath = DistributedCache.getLocalCacheArchives(conf);

    ….

}

Adding resources to the DistributedCache from the command line
Hadoop supports adding iles or archives to the DistributedCache using the command 

line, provided that your MapReduce driver programs implement the org.apache.hadoop.
util.Tool interface or utilize the org.apache.hadoop.util.GenericOptionsParser. 

Files can be added to the DistributedCache using the –files command-line option, while 

archives can be added using the –archives command-line option. Files or archives can be 

in any ilesystem accessible for Hadoop, including your local ilesystem. These options support 
a comma-separated list of paths and the creation of symlinks using the URI fragments.

> bin/hadoop jar C4LogProcessor.jar LogProcessor 
     -files ip2location.dat#ip2location  indir outdir

> bin/hadoop jar C4LogProcessor.jar LogProcessor 
     -archives ip2locationdb.tar.gz#ip2locationdb indir outdir
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Adding resources to the classpath using DistributedCache
You can use DistributedCache to distribute JAR iles and other dependent libraries to the 
mapper or reducer. You can use the following methods in your driver program to add the JAR 

iles to the classpath of the JVM running the mapper or the reducer.

public static void addFileToClassPath( 
               Path file,Configuration conf,FileSystem fs)

public static void addArchiveToClassPath( 
               Path archive,Configuration conf, FileSystem fs)

Similar to the –files and –archives command-line options we describe in Adding 

resources to the DistributedCache from the command line subsection, we can also add 

the JAR iles to the classpath of our MapReduce computations by using the –libjars 

command-line option as well. In order for the –libjars command-line option to work, 

MapReduce driver programs should implement the Tool interface or should utilize the 

GenericOptionsParser.

> bin/hadoop jar C4LogProcessor.jar LogProcessor 
    -libjars ip2LocationResolver.jar  indir outdir

See also
 f The Debug scripts – analyzing task failures recipe in Chapter 3, Advanced Hadoop 

MapReduce Administration.

Using Hadoop with legacy  
applications – Hadoop Streaming

Hadoop Streaming feature allows us to use any executable or a script as the mapper or 

the reducer of a Hadoop MapReduce job. Hadoop Streaming enables us to perform rapid 

prototyping of the MapReduce computations using Linux shell utility programs or using 

scripting languages. Hadoop Streaming also allows the users with some or no Java  

knowledge to utilize Hadoop to process data stored in HDFS.

In this recipe, we implement a mapper for our HTTP log processing application using Python 

and use a Hadoop aggregate package based reducer.
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How to do it...

The following are the steps to use a Python program as the mapper to process the HTTP 

server log iles.

1. Write the logProcessor.py python script.

#!/usr/bin/python

import sys;

import re;

def main(argv):

  regex =re.compile('<regex to parse log entries>');

  line = sys.stdin.readline();

  try:

    while line:

      fields = regex.match(line);

      if(fields!=None):

        print"LongValueSum:"+fields.group(1)+

                                "\t"+fields.group(7);

      line = sys.stdin.readline();

  except "end of file":

    return None

if __name__ =="__main__":

  main(sys.argv)

2. Use the following command from the Hadoop installation directory to execute the 

Streaming MapReduce computation.

> bin/hadoop jar \ 
   contrib/streaming/hadoop-streaming-1.0.2.jar \ 
   -input indir \ 
   -output outdir \ 
   -mapper logProcessor.py \ 
   -reducer aggregate \ 
   -file logProcessor.py

How it works...

Each Map task launches the Hadoop Streaming executable as a separate process in the 

worker nodes. The input records (the entries or lines of the log ile, not broken in to key 
value pairs) to the Mapper are provided as lines to the standard input of that process. The 

executable should read and process the records from the standard input until the end of the 

ile is reached.

line = sys.stdin.readline();

  try:
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    while line:

      ………

      line =sys.stdin.readline();

  except "end of file":

    return None

Hadoop Streaming collects the outputs of the executable from the standard output of the 

process. Hadoop Streaming converts each line of the standard output to a key-value pair, 

where the text up to the irst tab character is considered the key and the rest of the line as  
the value. The logProcessor.py python script outputs the key-value pairs, according to  

this convention, as follows:

If (fields!=None):

      print "LongValueSum:"+fields.group(1)+ "\t"+fields.group(7);

In our example, we use the Hadoop Aggregate package for the reduction part of our 

computation. Hadoop aggregate package provides reducer and combiner implementations for 

simple aggregate operations such as sum, max, unique value count, and histogram. 

When used with the Hadoop Streaming, the mapper outputs must specify the type of 

aggregation operation of the current computation as a preix to the output key, which is the 
LongValueSum in our example.

Hadoop Streaming also supports the distribution of iles to the worker nodes using  
the –file option. We can use this option to distribute executable iles, scripts or any  
other auxiliary ile needed for the Streaming computation. We can specify multiple –file 

options for a computation.

> bin/hadoop jar …… \ 
   -mapper logProcessor.py \ 
   -reducer aggregate \ 
   -file logProcessor.py

There's more...

We can specify Java classes as the mapper and/or reducer and/or combiner programs of 
Hadoop Streaming computations. We can also specify InputFormat and other options to a 

Hadoop Streaming computation.

Hadoop Streaming also allows us to use Linux shell utility programs as mapper and reducer  

as well. The following example shows the usage of grep as the mapper of a Hadoop 

Streaming computation.

> bin/hadoop jar  
   contrib/streaming/hadoop-streaming-1.0.2.jar \ 
   –input indir \ 
   -output outdir \  
   -mapper 'grep "wiki"'
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Hadoop streaming provides the reducer input records of the each key group line by line to the 

standard input of the process that is executing the executable. However, Hadoop Streaming 

does not have a mechanism to distinguish when it starts to feed records of a new key to the 

process. Hence, the scripts or the executables for reducer programs should keep track of the 

last seen key of the input records to demarcate between key groups.

Extensive documentation on Hadoop Streaming is available at http://hadoop.apache.
org/mapreduce/docs/current/streaming.html.

See also
 f The Data extract, cleaning, and format conversion using Hadoop streaming and 

python and Data de-duplication using Hadoop streaming recipes in Chapter 7,  

Mass Data Processing.

Adding dependencies between MapReduce 
jobs

Often times we require multiple MapReduce applications to be executed in a worklow-like 
manner to achieve our objective. Hadoop ControlledJob and JobControl classes provide 

a mechanism to execute a simple worklow graph of MapReduce jobs by specifying the 
dependencies between them.

In this recipe, we execute the log-grep MapReduce computation followed by the  

log-analysis MapReduce computation on a HTTP server log data set. The log-grep 

computation ilters the input data based on a regular expression. The log-analysis 

computation analyses the iltered data. Hence, the log-analysis computation is dependent 

on the log-grep computation. We use the ControlledJob to express this dependency and 

use the JobControl to execute the two related MapReduce computations.

How to do it...

The following steps show you how to add a MapReduce computation as a dependency of 

another MapReduce computation.

1. Create the Configuration and the Job objects for the irst MapReduce job and 
populate them with the other needed conigurations.
Job job1 = new Job(getConf(), "log-grep");
job1.setJarByClass(RegexMapper.class);
job1.setMapperClass(RegexMapper.class);  
FileInputFormat.setInputPaths(job1, new Path(inputPath));
FileOutputFormat.setOutputPath(job1, new   
                               Path(intermedPath));
……  
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2. Create the Configuration and Job objects for the second MapReduce job and 

populate them with the necessary conigurations.
Job job2 = new Job(getConf(), "log-analysis");

job2.setJarByClass(LogProcessorMap.class);

job2.setMapperClass(LogProcessorMap.class);

job2.setReducerClass(LogProcessorReduce.class);  

FileOutputFormat.setOutputPath(job2, new Path(outputPath));    

………

3. Set the output directory of the irst job as the input directory of the second job.
FileInputFormat.setInputPaths 
      (job2, new Path(intermedPath +"/part*"));

4. Create ControlledJob objects using the above-created Job objects.

ControlledJob controlledJob1 =  
       new ControlledJob(job1.getConfiguration());

ControlledJob controlledJob2 =  
       new ControlledJob(job2.getConfiguration());

5. Add the irst job as a dependency to the second job.
controlledJob2.addDependingJob(controlledJob1);

6. Create the JobControl object for this group of jobs and add the ControlledJob 

created in step 4 to the newly created JobControl object.

JobControl jobControl = new   
           JobControl("JobControlDemoGroup");

jobControl.addJob(controlledJob1);

jobControl.addJob(controlledJob2);

7. Create a new thread to run the group of jobs added to the JobControl object. Start 

the thread and wait for the completion.

Thread jobControlThread = new Thread(jobControl);

jobControlThread.start();    

while (!jobControl.allFinished()){

  Thread.sleep(500);

}

jobControl.stop();

How it works...

The ControlledJob class encapsulates MapReduce job and provides the functionality  

to track the dependencies for the job. A ControlledJob class with depending jobs  

becomes ready for submission only when all of its depending jobs are completed  

successfully. A ControlledJob fails if any of the depending jobs fail.
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The JobControl class encapsulates a set of ControlledJobs and their dependencies. 

JobControl tracks the status of the encapsulated ControlledJobs and contains a thread 

that submits the jobs that are in the READY state. 

If you want to use the output of a MapReduce job as the input of a dependent job, the input 

paths to the dependent job has to be set manually. By default, Hadoop generates an output 

folder per reduce task name with the part preix. We can specify all the part preixed 
subdirectories as input to the dependent job using wildcards.

FileInputFormat.setInputPaths 
       (job2, new Path(job1OutPath +"/part*"));

There's more...

We can use the JobControl class to execute and track a group of non-dependent tasks  

as well.

Apache Oozie is a worklow system for Hadoop MapReduce computations. You can use Oozie 
to execute Directed Acyclic Graphs (DAG) of MapReduce computations. You can ind more 
information on Oozie from the project's home page at http://oozie.apache.org/.

The ChainMapper class, available in the older version of Hadoop MapReduce API, allowed us 

to execute a pipeline of mapper classes inside a single Map task computation in a pipeline. 

ChainReducer provided the similar support for reduce tasks.

Hadoop counters for reporting custom 
metrics

Hadoop uses a set of counters to aggregate the metrics for MapReduce computations. 

Hadoop counters are helpful to understand the behavior of our MapReduce programs and to 

track the progress of the MapReduce computations. We can deine custom counters to track 
the application speciic metrics in MapReduce computations.

How to do it...

The following steps show you how to deine a custom counter to count the number of bad or 
corrupted records in our log processing application.

1. Deine the list of custom counters using an enum.
  public static num LOG_PROCESSOR_COUNTER {

     BAD_RECORDS

    };
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2. Increment the counter in your mapper or reducer:

context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS). 
    increment(1);

3. Add the following to your driver program to access the counters:

Job job = new Job(getConf(), "log-analysis");

……    

Counters counters = job.getCounters();

Counter badRecordsCounter = counters.findCounter( 
    LOG_PROCESSOR_COUNTER.BAD_RECORDS);

System.out.println("# of Bad Records:"+  
                            badRecordsCounter.getValue());

4. Execute your Hadoop MapReduce computation. You can also view the counter values 

in the admin console or in the command line.

> bin/hadoop jar C4LogProcessor.jar \ 
               demo.LogProcessor in out 1

………

12/07/29 23:59:01 INFO mapred.JobClient: Job complete: 
job_201207271742_0020

12/07/29 23:59:01 INFO mapred.JobClient: Counters: 30

12/07/29 23:59:01 INFO mapred.JobClient:   demo. 
    LogProcessorMap$LOG_PROCESSOR_COUNTER

12/07/29 23:59:01 INFO mapred.JobClient:   BAD_RECORDS=1406

12/07/29 23:59:01 INFO mapred.JobClient:   Job Counters 

………

12/07/29 23:59:01 INFO mapred.JobClient:     Map output 
records=112349

# of Bad Records :1406

How it works...

You have to deine your custom counters using enums. The set of counters in an enum will 

form a group of counters. The JobTracker aggregates the counter values reported by the 

mappers and the reducers.





5
Hadoop Ecosystem

In this chapter, we will cover:

 f Installing HBase

 f Data random access using Java client APIs

 f Running MapReduce jobs on HBase (table input/output)

 f Installing Pig

 f Running your irst Pig command

 f Set operations (join, union) and sorting with Pig

 f Installing Hive

 f Running a SQL-style queries with Hive

 f Performing a join with Hive

 f Installing Mahout

 f Running K-means with Mahout

 f Visualizing K-means results

Introduction
Hadoop has a family of projects that are either built on top of Hadoop or work very closely 

with Hadoop. These projects have given rise to an ecosystem that focuses on large-scale data 

processing, and often users can use several of these projects in combination to handle their 

use cases. This chapter introduces several key projects in the Hadoop ecosystem and shows 

how to get started with each project.
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We will focus on the following four projects:

 f HBase: This is a NoSQL-style highly scalable data storage

 f Pig: This is a datalow-style data processing language for Hadoop jobs

 f Hive: This is a SQL-style data processing language for Hadoop

 f Mahout: This is a toolkit of machine-learning and data-mining tools

Installing HBase
HBase is a highly scalable NoSQL data store that supports columnar-style data storage. As we 

will see in the next recipe, it works very closely with Hadoop.

The preceding screenshot depicts the HBase data model. As shown, HBase includes several 

tables. Each table has zero or more rows where a row consists of a single row ID and multiple 

name-value pairs. For an example, the irst row has the row ID Foundation, and several 

name-value pairs such as author with value asimov. Although the data model has some 

similarities with the relational data model, unlike the relational data model, different rows in 

HBase data model may have different columns. For instance, the second row may contain 

completely different name-value pairs from the irst one. You can ind more details about the 
data model from Google's Bigtable paper http://research.google.com/archive/
bigtable.html.



Chapter 5

111

Hadoop by default loads data from lat iles, and it is a responsibility of the MapReduce job 
to read and parse the data through data formatters. However, often there are use cases 

where the data is already in a structured form. Although it is possible to export this data into 

lat iles, parsing and processing the use cases using conventional MapReduce jobs leads to 
several disadvantages:

 f Processing needs extra steps to convert and export the data

 f Exporting the data needs additional storage

 f Exporting and parsing takes more computing power

 f There arises a need to write speciic code to export and parse the data

HBase addresses these concerns by enabling users to read data directly from HBase and 

write results directly to HBase without having to convert them to lat iles.

How to do it...

This section demonstrates how to install HBase.

1. Download HBase 0.94.2 from http://hbase.apache.org/.

2. Unzip the distribution by running the following command. We will call the resulting 

directory HBASE_HOME.

>tarxfz hbase-0.94.2-SNAPSHOT.tar.gz

3. Create a data directory to be used by HBase:

>cd $HBASE_HOME

>mkdirhbase-data

4. Add the following to the HBASE_HOME/conf/hbase-site.xml ile.
<configuration>

<property>

<name>hbase.rootdir</name>

<value>file:///Users/srinath/playground/hadoop-book/hbase-0.94.2/
hbase-data

</value>

</property>

</configuration>

5. Start the HBase server by running the following command from HBASE_HOME:

>./bin/start-hbase.sh
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6. Verify the HBase installation by running the shell commands from HBASE_HOME:

>bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.1, r1298924, Fri Mar  9 16:58:34 UTC 2012

7. Create a test table and list its content using the following commands:

hbase(main):001:0> create 'test', 'cf'

0 row(s) in 1.8630 seconds

hbase(main):002:0> list 'test'

TABLE

test

1 row(s) in 0.0180 seconds

8. Store a value, row1, for row ID, column name test, and value val1 to the test 

table using the following commands:

hbase(main):004:0> put 'test', 'row1', 'cf:a', 'val1'

0 row(s) in 0.0680 seconds

9. Scan the table using the following command. It prints all the data in the table:

hbase(main):005:0> scan 'test'

ROW      COLUMN+CELL                                                                            

row1column=cf:a, timestamp=1338485017447, value=val1                                       

1 row(s) in 0.0320 seconds

10. Get the value from the table using the following command by giving row1 as row ID 

and test as the column ID:

hbase(main):006:0> get 'test', 'row1'

COLUMN    CELL                                                                                   

cf:atimestamp=1338485017447, value=val1                                                    

1 row(s) in 0.0130 seconds

hbase(main):007:0> exit

11. The preceding commands verify the HBase installation.

12. When done, inally shut down the HBase by running the following command from the 
HBASE_HOME:

> ./bin/stop-hbase.sh

stoppinghbase..............
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How it works...

The preceding steps conigure and run the HBase in the local mode. The server start command 

starts the HBase server, and HBase shell connects to the server and issues the commands.

There's more...

The preceding commands show how to run HBase in the local mode. The link  

http://hbase.apache.org/book/standalone_dist.html#distributed  

explains how to run HBase in the distributed mode.

Data random access using Java client APIs
The earlier recipe introduced the command-line interface for HBase. This recipe demonstrates 

how we can talk to HBase using the Java API.

Getting ready
Install and start HBase as described in the Installing HBase recipe.

To compile and run the sample, you would need to have Apache Ant installed in your machine. 

If Apache Ant has not been installed already, install it by following the instructions given in 

http://ant.apache.org/manual/install.html.

How to do it...

The following steps explain how to connect to HBase via a Java client, store, and retrieve data 

from the client.

1. Unzip the sample code for this chapter. We will call the new directory SAMPLE5_
DIR. You can ind the Java HBase sample from SAMPLE5_DIR/src/chapter5/
HBaseClient.java. The client would look like the following. Here, 60000 is the 

port of HBase and the localhost is the host where HBase master is running. If you 

connect from a different machine or are running HBase on a different port, you 

should change these values accordingly.

Configuration conf = HBaseConfiguration.create();

conf.set("hbase.master","localhost:60000");

HTable table = new HTable(conf, "test");

2. Store the data in HBase:

Put put = new Put("row1".getBytes());

put.add("cf".getBytes(), "b".getBytes(), "val2".getBytes());

table.put(put);
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3. Search for data by doing a scan.

Scan s = new Scan();

s.addFamily(Bytes.toBytes("cf")); 

ResultScanner results = table.getScanner(s);

4. Then let us print the results:

try 

{

  for(Result result: results)

  {

    KeyValue[] keyValuePairs = result.raw(); 

    System.out.println(new String(result.getRow()));

    for(KeyValuekeyValue: keyValuePairs)

    {

      System.out.println( 

        new String(keyValue.getFamily()) + " "

        + new String(keyValue.getQualifier()) + "=" 

        + new String(keyValue.getValue()));

     }

   }

} finally

{

results.close();

}

5. Edit the value for the hbase.home property in SAMPLE5_DIR/build.xml.

6. Compile the Sample by running the following command from SAMPLE5_DIR.

>ant hbase-build

7. Run the sample by running the following command from SAMPLE5_DIR.

>ant hbase-run-javaclient

If all works well, this will print the content of the HBase table to the console.

How it works...

When you run the commands, Ant will run the Java HBase client we had written. It will connect 

to the HBase server and issue commands to store and search data in HBase storage.
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Running MapReduce jobs on HBase (table 
input/output)

This recipe explains how to run a MapReduce job that reads and writes data directly to and 

from an HBase storage.

HBase provides abstract mapper and reducer implementations that users can extend to 

read and write directly from HBase. This recipe explains how to write a sample MapReduce 

application using these mappers and reducers.

We will use the World Bank's Human Development Report (HDR) data by country that 

shows Gross National Income (GNI) per capita, by countries. The dataset can be found from 

http://hdr.undp.org/en/statistics/data/. Using MapReduce, we will calculate 

average value for GNI per capita, by countries.

Getting ready
Install and start HBase as described in the Installing HBase recipe.

To compile and run the sample, you will need to have Apache Ant installed in your machine. 

If Apache Ant has not been installed already, install it by following the instructions given at 

http://ant.apache.org/manual/install.html.

How to do it...

This section demonstrates how to run a MapReduce job on data stored in HBase.

1. Unzip the sample code for this chapter. We will call the new directory SAMPLE5_DIR.

2. Edit the hbase.home value of SAMPLE5_DIR/build.xml to point to  

HBASE_HOME of your HBase installation. We will call the Hadoop installation  

directory as HADOOP_HOME.

3. You can ind the Java HBase MapReduce sample from SAMPLE5_DIR/src/
chapter5/AverageGINByCountryCalcualtor.java. The client-side  

code would look like following:

public class AverageGINByCountryCalculator

{

  static class Mapper extends 

  TableMapper<ImmutableBytesWritable, 

    DoubleWritable>

  {

    privateintnumRecords = 0;

    public void map(ImmutableBytesWritable row,
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      Result values, 

      Context context) throws IOException {

    byte[] results = values.getValue(

      "ByCountry".getBytes(), 

      "gnip".getBytes());

    ImmutableBytesWritableuserKey = new 

    ImmutableBytesWritable("ginp".getBytes());

    try

    {

      context.write(userKey, new 

        DoubleWritable(Bytes.toDouble(results)));

    }

    catch (InterruptedException e)

    {

    throw new IOException(e);

    }

    numRecords++;

    if ((numRecords % 50) == 0)

    {

      context.setStatus("mapper processed " + 

      numRecords + " records so far");

    }

  }

}

HBase provides two classes TableInputFormat and TableOutputFormat that 

take off most of the work of reading and writing from an HBase storage. To be used 

by these classes, the mapper and reducer must extend the TableMapper and 

TableReducer classes. When executed, mapper will receive each HBase row  

as an input.

4. The reducer will use the Put construct of the HBase Java API to store the results 

back to the HBase.

public static class Reducer extends 

  TableReducer<ImmutableBytesWritable, 

  DoubleWritable, ImmutableBytesWritable> 

{

  public void reduce(ImmutableBytesWritable key, 

    Iterable<DoubleWritable> values, Context context)

    throwsIOException, InterruptedException

  {

    double sum = 0;

    int count = 0;

    for (DoubleWritableval : values)

    {
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      sum += val.get();

      count++;

    }

   Put put = new Put(key.get());

   put.add(Bytes.toBytes("data"), 

   Bytes.toBytes("average"), 

   Bytes.toBytes(sum / count));

   System.out.println("Processed "+ count + 

     " values and avergae =" + sum / count);

   context.write(key, put);

  }

}

When running an HBase-based MapReduce job, users should conigure 
from where to read data in HBase and how to write information into HBase 

via the TableMapReduceUtilinitTableMapperJob(...) and 

initTableReducerJob(..) methods.

public static void main(String[] args) throws Exception

  {

    Configuration conf = HBaseConfiguration.create();

    Job job = new Job(conf, 

      "AverageGINByCountryCalcualtor");

    job.setJarByClass(AverageGINByCountryCalcualtor.class);

    Scan scan = new Scan();

    scan.addFamily("ByCountry".getBytes());

    scan.setFilter(new FirstKeyOnlyFilter());

    TableMapReduceUtil.initTableMapperJob("HDI", scan, 

      Mapper.class, ImmutableBytesWritable.class,

      DoubleWritable.class, job);

    TableMapReduceUtil.initTableReducerJob("HDIResult", 

    Reducer.class, job);

    System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

Here, initTableMapperJob(..) instructs Hadoop to read information from 

the HDI table and initTableReducerJob(..) instructs Hadoop to write the 

information to the HBase HDIResult table.
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5. Run the following command to compile the MapReduce job:

>anthbase-build

6. Run the following command to upload the data to HBase. (This will use the 

HDIDataUploader to upload the data):

>ant hbase-sample1-upload

7. Copy the JAR ile to HADOOP_HOME.

8. Run the MapReduce job by running the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter5.jarchapter5.
AverageGINByCountryCalcualtor

9. View the results in HBase by running the following command from the HBase shell. 

You can start the HBase shell by running bin/hbaseshell from HBASE_HOME.

hbase(main):009:0> scan 'HDIResult'

ROW    COLUMN+CELL                                                                             

ginpcolumn=data:average, timestamp=1338785279029, value=@\xC8\xF7\
x1Ba2\xA7\x04             

1 row(s) in 0.6820 seconds

How it works...

When we run the MapReduce job, the TableMapper and TableReducer classes receive the 

control. The TableMapper class connects to the HBase, reads the data as speciied through 
initTableMapperJob(…), and passes the data directly to the HBase-based mapper that 

we have written. Here, the Scan object we passed into initTableMapperJob(…) speciies 
the search criteria to be used by the mapper when it reads the input data from the HBase.

Similarly, the TableReducer lets users emit the data directly to the HBase.

By doing that, TableMapper and TableReducer build a new programming model based on 

HBase APIs. With the new programming model, users do not have to worry about parsing and 

formatting data like with normal MapReduce jobs. The table mapper and reducer map the 

HBase data to Hadoop name-value pairs and vice versa.

Installing Pig
As we described in the earlier chapters, you can use Hadoop MapReduce interface to program 

most of the applications. However, if we are writing an application that includes many 

MapReduce steps, programming them with MapReduce is complicated.
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There are several higher-level programming interfaces such as Pig and Hive to program 

parallel applications built on top of MapReduce. We will discuss these two interfaces in the 

following recipes.

How to do it...

This section demonstrates how to install Pig.

1. Download Pig 0.10.0 from http://pig.apache.org/releases.html.

2. Unzip Pig distribution by running the following command. We will call it PIG_HOME.

> tar xvf pig-0.10.0.tar.gz

3. To run Pig commands, change the directory to PIG_HOME and run the pig command. 

It starts the grunt shell.

>cd PIG_HOME

>bin/pig --help

>bin/pig-x local

grunt>

You can issue the Pig commands from the grunt shell.

How it works...

The preceding instructions set up Pig in the local mode, and you can use the grunt> shell to 

execute the Pig commands.

There's more...

The preceding commands explain how to run Pig in the local mode. The link http://pig.
apache.org/docs/r0.10.0/start.html#Running+the+Pig+Scripts+in+Mapredu
ce+Mode explains how to run HBase in the distributed mode.

Running your irst Pig command
This recipe runs a basic Pig script. As the sample dataset, we will use Human Development 

Report (HDR) data by country. It shows the Gross National Income (GNI) per capita by 

country. The dataset can be found from http://hdr.undp.org/en/statistics/data/. 

This recipe will use Pig to process the dataset and create a list of countries that have more 

than 2000$ of gross national income per capita (GNI) sorted by the GNI value.
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How to do it...

This section describes how to use Pig Latin script to ind countries with 2000$ GNI sorted by 
the same criterion from the HDR dataset.

1. From the sample code, copy the dataset from resources/chapter5/hdi-data.
csv to PIG_HOME/bin directory.

2. From the sample code, copy the Pig script resources/chapter5/
countryFilter.pig to PIG_HOME/bin.

3. Open the Pig script through your favorite editor. It will look like the following:

A = load 'hdi-data.csv' using PigStorage(',')  AS (id:int, 
country:chararray, hdi:float, lifeex:int, mysch:int, eysch:int, 
gni:int);

B = FILTER A BY gni> 2000;

C = ORDER B BY gni;

dump C;

The irst line instructs Pig to load the CSV (comma-separated values) ile into the 
variable A. The PigStorage(',') portion tells Pig to load the data using ',' as 

the separator and assign them to the ields described in the AS clause.

After loading the data, you can process the data using Pig commands. Each 

Pig command manipulates the data and creates a pipeline of data-processing 

commands. As each step processes the data and all dependencies are deined as 
data dependencies, we call Pig a Datalow language.

Finally the dump command prints the results to the screen. 

4. Run the Pig script by running the following command from PIG_HOME directory:

>bin/pig-x local bin/countryFilter.pig

When executed, the above script will print the following results. As expressed in the 

script, it will print names of countries that have a GNI value greater than 2000$, 

sorted by GNI.

(126,Kyrgyzstan,0.615,67,9,12,2036)

(156,Nigeria,0.459,51,5,8,2069)

(154,Yemen,0.462,65,2,8,2213)

(138,Lao People's Democratic Republic,0.524,67,4,9,2242)

(153,Papua New Guinea,0.466,62,4,5,2271)

(165,Djibouti,0.43,57,3,5,2335)

(129,Nicaragua,0.589,74,5,10,2430)
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(145,Pakistan,0.504,65,4,6,2550)

(114,Occupied Palestinian Territory,0.641,72,8,12,2656)

(128,Viet Nam,0.593,75,5,10,2805)

…

How it works...

When we run the Pig script, Pig internally compiles Pig commands to MapReduce jobs in 

an optimized form and runs it in a MapReduce cluster. Chaining MapReduce jobs using the 

MapReduce interface is cumbersome, as users will have to write code to pass the output from 

one job to the other and detect failures. Pig translates such chaining to single-line command 

and handles the details internally. For complex jobs, the resulting Pig script is easier to write 

and manage than MapReduce commands that do the same thing.

Set operations (join, union) and sorting with 
Pig

This recipe explains how to carry out join and sort operations with Pig.

This sample will use two datasets. The irst dataset has the Gross National Income (GNI) per 

capita by country, and the second dataset has the exports of the country as a percentage of 

its gross domestic product.

This recipe will use Pig to process the dataset and create a list of countries that have more 

than 2000$ of gross national income per capita sorted by the GNI value, and then join them 

with the export dataset.

Getting ready
This recipe needs a working Pig installation. If you have not done it already, follow the earlier 

recipe and install Pig.

How to do it...

This section will describe how to use Pig to join two datasets.

1. Change the directory to PIG_HOME.

2. Copy resources/chapter5/hdi-data.csv and resources/chapter5/ /
export-data.csv to PIG_HOME/bin.

3. Copy the resources/chapter5/countryJoin.pig script to PIG_HOME/bin.
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4. Load the script countryJoin.pig with your favorite editor. The script 

countryJoin.pig joins the HDI data and export data together. Pig calls  

its script "Pig Latin scripts".

A = load 'hdi-data.csv' using PigStorage(',')  AS (id:int, 
country:chararray, hdi:float, lifeex:int, mysch:int, eysch:int, 
gni:int);

B = FILTER A BY gni> 2000;

C = ORDER B BY gni;

D = load 'export-data.csv' using PigStorage(',')  AS 
(country:chararray, expct:float);

E = JOIN C BY country, D by country;

dump E;

The irst and forth lines load the data from CSV iles. As described in the earlier 
recipe, PigStorage(',') asks pig to use ',' as the separator and assigns the 

values to the described ields in the command.

Then the ifth line joins the two datasets together.

5. Run the Pig Latin script by running the following command from the  

PIG_HOME directory.

>.bin/pig -x local bin/countryJoin.pig

(51,Cuba,0.776,79,9,17,5416,Cuba,19.613546)

(100,Fiji,0.688,69,10,13,4145,Fiji,52.537148)

(132,Iraq,0.573,69,5,9,3177,Iraq,)

(89,Oman,0.705,73,5,11,22841,Oman,)

(80,Peru,0.725,74,8,12,8389,Peru,25.108027)

(44,Chile,0.805,79,9,14,13329,Chile,38.71985)

(101,China,0.687,73,7,11,7476,China,29.571701)

(106,Gabon,0.674,62,7,13,12249,Gabon,61.610462)

(134,India,0.547,65,4,10,3468,India,21.537624)

...

How it works...

When we run the Pig script, Pig will convert the pig script to MapReduce jobs and execute 

them. As described with the Pig Latin script, Pig will load the data from the CSV iles, run 
transformation commands, and inally join the two data sets.
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There's more...

Pig supports many other operations and built-in functions. You can ind details about the 
operations from http://pig.apache.org/docs/r0.10.0/basic.html and details 

about built-in functions from http://pig.apache.org/docs/r0.10.0/func.html.

Installing Hive
Just like with Pig, Hive also provides an alternative programming model to write data 

processing jobs. It allows users to map their data into a relational model and process them 

through SQL-like commands.

Due to its SQL-style language, Hive is very natural for users who were doing data warehousing 

using relational databases. Therefore, it is often used as a data warehousing tool.

Getting ready
You need a machine that has Java JDK 1.6 or later version installed.

How to do it...

This section describes how to install Hive.

1. Download Hive 0.9.0 from http://hive.apache.org/releases.html.

2. Unzip the distribution by running the following commands.

> tar xvf hive-0.9.0.tar.gz 

3. Download Hadoop 1.0.0 distribution from http://hadoop.apache.org/common/
releases.html

4. Unzip the Hadoop distribution with the following command. 

> tar xvfhadoop-1.0.0.tar.gz

5. Deine the environment variables pointing to Hadoop and Hive distributions.
>export HIVE_HOME=<hive distribution>

>export HADOOP_HOME=<hadoopdistribution>

6. Conigure Hive by adding the following section to the conf/hive-site.xml ile.
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>local</value>
</property>
</configuration>

http://hive.apache.org/releases.html
http://hadoop.apache.org/common/releases.html
http://hadoop.apache.org/common/releases.html
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7. Delete the HADOOP_HOME/build folder to avoid a bug that will cause Hive to fail.

8. Start Hive by running the following commands from HIVE_HOME:

> cd hive-0.9.0

> bin/hive

WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. 
Please use org.apache.hadoop.log.metrics.EventCounter in all the 
log4j.properties files.

Logging initialized using configuration in jar:file:/Users/
srinath/playground/hadoop-book/hive-0.9.0/lib/hive-common-
0.9.0.jar!/hive-log4j.properties

Hive history file=/tmp/srinath/hive_job_log_
srinath_201206072032_139699150.txt

How it works...

The preceding commands will set up Hive, and it will run using the Hadoop distribution as 

conigured in the HADOOP_HOME.

Running a SQL-style query with Hive
This recipe explains how you can use Hive to perform data processing operations using its 

SQL-style language.

In this recipe, we will use a data set that includes Human Development Report (HDR) by 

country. HDR describes different countries based on several human development measures. 

You can ind the dataset from http://hdr.undp.org/en/statistics/data/.

Getting ready
For this recipe, you need a working Hive installation. If you have not done it already, please 

follow the previous recipe to install Hive.

How to do it...

This section depicts how to use Hive for iltering and sorting. 

1. Copy the resources/chapter5/hdi-data.csv ile to HIVE_HOME directory.

2. Start Hive by changing the directory to HIVE_HOME and running the  

following command:

>bin/hive
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3. Let's irst deine a table to be used to read data, by running the following  
Hive command.

The table definition only creates the table layout; it does 

not put any data into the table.

hive> CREATE TABLE HDI(id INT, country STRING, hdi FLOAT, lifeex 
INT, mysch INT, eysch INT, gni INT) ROW FORMAT DELIMITED FIELDS 
TERMINATED BY ',' STORED AS TEXTFILE;

OK

Time taken: 11.719 seconds

4. Let's use the LOAD command to load the data to the table. It is worth noting that the 

LOAD command copies the ile without any alteration to the storage location of the 
table as deined by the table deinition. Then, it uses the formats deined in the table 
deinition to parse the data and load it to the table. For example, the table deinition 
in step 3 deines a table HDI that stores the data as a text ile terminated with ',' 

(CSV format). The input we provide for the LOAD command must follow the CSV 

format as per table deinition.
hive> LOAD DATA LOCAL INPATH 'hdi-data.csv' INTO TABLE HDI;

Copying data from file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/hdi-data.csv

Copying file: file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/hdi-data.csv

Loading data to table default.hdi

OK

Time taken: 1.447 seconds

5. Now we can run the query on the deined table using the Hive SQL-like syntax:

hive> SELECT country, gni from HDI WHERE gni> 2000;

If the command is successful, Hive will print the following information and inally print 
the results to the screen.

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is set to 0 since there's no reduce 
operator

Starting Job = job_201206062316_0007, Tracking URL = http://
localhost:50030/jobdetails.jsp?jobid=job_201206062316_0007
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Kill Command = /Users/srinath/playground/hadoop-book/hadoop-1.0.0/
libexec/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 
-kill job_201206062316_0007

Hadoop job information for Stage-1: number of mappers: 1; number 
of reducers: 0

2012-06-07 20:45:32,638 Stage-1 map = 0%,  reduce = 0%

2012-06-07 20:45:38,705 Stage-1 map = 100%,  reduce = 0%

2012-06-07 20:45:44,751 Stage-1 map = 100%,  reduce = 100%

Ended Job = job_201206062316_0007

MapReduce Jobs Launched:

Job 0: Map: 1   HDFS Read: 9401 HDFS Write: 2435 SUCCESS

Total MapReduce CPU Time Spent: 0 msec

OK

The inal results will look like following:

Norway     47557

Australia     34431

Netherlands     36402

United States     43017

New Zealand     23737

Canada     35166

...

How it works...

When we run the Hive, we irst deine a table and load the data from a ile into the table. It is 
worth noting that the table deinition must match the input data ile formats, and the LOAD 

command copies the iles into the table's storage location without any change and then tries 
to parse the ile according to the table deinitions.

Once the data is loaded, we can use Hive commands to process the data using SQL-like 

syntax. For example, the following command selects rows from the table that have a GNI value 

that is more than 2000:

SELECT country, gni from HDI WHERE gni> 2000;
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Performing a join with Hive
This recipe will show how to use Hive to perform joins across two datasets.

The irst dataset is the Human Development Report by country. HDR describes different 

countries based on several human development measures. You can ind this dataset at 
http://hdr.undp.org/en/statistics/data/.

This recipe will use Hive to process the dataset and create a list of countries that has more 

than 2000$ of gross national income per capita, and then join them with export dataset.

Getting ready
This recipe assumes that the earlier recipe has been performed. Install Hive and follow the 

earlier recipe if you have not done so already.

How to do it...

This section demonstrates how to perform a join using Hive.

1. From the sample directory, copy the resources/chapter5/export-data.csv to 

the HIVE_HOME directory.

2. Start Hive by changing the directory to HIVE_HOME and running the following command:

>bin/hive

3. We will create a second table to join with the table we loaded in the earlier recipe.

hive>  CREATE TABLE EXPO(country STRING, expct FLOAT) ROW FORMAT 
DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;

OK

Time taken: 0.758 seconds

4. We will load the data into the new table by running the following command with Hive. 

As explained in the earlier recipe, this will move the data to the storage location for 

the table and parse the data according to the table deinition.
hive> LOAD DATA LOCAL INPATH 'export-data.csv' INTO TABLE EXPO;

Copying data from file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/export-data.csv

Copying file: file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/export-data.csv

Loading data to table default.expo

OK

Time taken: 0.391 seconds
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Now we can join the two tables using Hive's SQL-like join command. 

hive> SELECT h.country, gni, expct FROM HDI h JOIN EXPO e ON 
(h.country = e.country) WHERE gni> 2000;

If successful it will print the following and print the results to the console:

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data 
size: 1

In order to change the average load for a reducer (in bytes):

...

2012-06-07 21:19:04,978 Stage-1 map = 0%,  reduce = 0%

2012-06-07 21:19:23,169 Stage-1 map = 50%,  reduce = 0%

..

MapReduce Jobs Launched: 

Job 0: Map: 2  Reduce: 1   HDFS Read: 13809 HDFS Write: 2955 
SUCCESS

Total MapReduce CPU Time Spent: 0 msec

OK

The inal result would look like the following:
Albania 7803 29.77231

Algeria 7658 30.830406

Andorra 36095 NULL

Angola 4874 56.835884

Antigua and Barbuda 15521 44.08267

Argentina 14527 21.706469

Armenia 5188 20.58361

Australia 34431 19.780243

Austria 35719 53.971355

...

Time taken: 64.856 seconds

How it works...

When executed, Hive commands irst deine and load the second table and data. Then it 
converts the join command into MapReduce job and carries out the join by running the 

MapReduce job.
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There's more...

Hive supports most SQL commands such as GROUP BY and ORDER BY, with the same 

semantics as SQL. You can ind more details about Hive commands from https://cwiki.
apache.org/confluence/display/Hive/Tutorial.

Installing Mahout
Hadoop provides a framework for implementing large-scale data processing applications. 

Often, the users implement their applications on MapReduce from scratch or write their 

applications using a higher-level programming model such as Pig or Hive.

However, implementing some of the algorithms using MapReduce can be very complex. For 

example, algorithms such as collaborative iltering, clustering, and recommendations need 
complex code. This is further agitated by the need to maximize parallel executions.

Mahout is an effort to implement well-known machine learning and data mining algorithms 

using MapReduce framework, so that the users can reuse them in their data processing 

without having to rewrite them from the scratch. This recipe explains how to install Mahout.

How to do it...

This section demonstrates how to install Mahout.

1. Download Mahout from https://cwiki.apache.org/confluence/display/
MAHOUT/Downloads.

2. Unzip the mahout distribution by running the following command. We will call this 

folder MAHOUT_HOME.

>tar xvf mahout-distribution-0.6.tar.gz

You can run and verify the Mahout installation by carrying out the following steps:

1. Download the input data from http://archive.ics.uci.edu/ml/databases/
synthetic_control/synthetic_control.data and copy it to MAHOUT_HOME/
testdata.

2. Run the K-mean sample by running the following command:

>bin/mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.
Job

If all goes well, it will process and print out the clusters:

12/06/19 21:18:15 INFO kmeans.Job: Running with default arguments

12/06/19 21:18:15 INFO kmeans.Job: Preparing Input
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12/06/19 21:18:15 WARN mapred.JobClient: Use GenericOptionsParser 
for parsing the arguments. Applications should implement Tool for 
the same.

.....

2/06/19 21:19:38 INFO clustering.ClusterDumper: Wrote 6 clusters

12/06/19 21:19:38 INFO driver.MahoutDriver: Program took 83559 ms 
(Minutes: 1.39265)

How it works...

Mahout is a collection of MapReduce jobs and you can run them using the mahout command. 

The preceding instructions installed and veriied Mahout by running a K-means sample that 

comes with the Mahout distribution.

Running K-means with Mahout
K-means is a clustering algorithm. A clustering algorithm takes data points deined in an 
N-dimensional space, and groups them into multiple clusters considering the distance 

between those data points. A cluster is a set of data points such that the distance between 

the data points inside the cluster is much less than the distance from data points within the 

cluster to data points outside the cluster. More details about the K-means clustering can be 

found from the lecture 4 (http://www.youtube.com/watch?v=1ZDybXl212Q) of the 

Cluster computing and MapReduce lecture series by Google.

In this recipe, we will use a data set that includes Human Development Report (HDR) by 

country. HDR describes different countries based on several human development measures. 

You can ind the data set from http://hdr.undp.org/en/statistics/data/.

This recipe will use K-means to cluster countries based on the HDR dimensions.

Getting ready
This recipe needs a Mahout installation. Follow the previous recipe if you have not already 

done so earlier.

How to do it...

This section demonstrates how to use Mahout K-means algorithm to process with a dataset.

1. Unzip the sample code distribution. We will call this SAMPLE5_DIR.

2. Add the MAHOUT_HOME to the mahout.home property of build.xml ile in the  
sample distribution.

http://www.youtube.com/watch?v=1ZDybXl212Q
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3. The chapter5.KMeanSample.java class shows a sample code for running the 

K-means algorithm using our own dataset.

public final class KMean extends AbstractJob {

The following code initializes the K-means algorithm with right values

public static void main(String[] args) throws Exception

{

  Path output = new Path("output");

  Configuration conf = new Configuration();

  HadoopUtil.delete(conf, output);

  run(conf, new Path("testdata"), output, 

    newEuclideanDistanceMeasure(), 6, 0.5, 10);

}

The following code shows how to set up K-means from Java code:

public static void run(Configuration conf, Path input, 

Path output,DistanceMeasure measure, int k, double 
convergenceDelta, intmaxIterations)

throws Exception{

    Path directoryContainingConvertedInput = new Path(output,

        DIRECTORY_CONTAINING_CONVERTED_INPUT);

log.info("Preparing Input");

InputDriver.runJob(input, 

directoryContainingConvertedInput,

        "org.apache.mahout.math.RandomAccessSparseVector");

log.info("Running random seed to get initial clusters");

    Path clusters = new Path(output, 

Cluster.INITIAL_CLUSTERS_DIR);

clusters = RandomSeedGenerator.buildRandom(conf,

directoryContainingConvertedInput, clusters, 

k, measure);

log.info("Running KMeans");

KMeansDriver.run(conf, directoryContainingConvertedInput, 

clusters, output,

measure, convergenceDelta, maxIterations, true, false);

    // run ClusterDumper

ClusterDumperclusterDumper = new ClusterDumper(

finalClusterPath(conf,

 output, maxIterations), 

new Path(output, "clusteredPoints"));

clusterDumper.printClusters(null);

  }

  ...

}
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4. Compile the sample by running the following command:

>ant mahout-build

5. From samples, copy the ile resources/chapter5/countries4Kmean.data to 

the MAHOUT_HOME/testdata directory.

6. Run the sample by running the following command. 

>ant kmeans-run 

How it works...

The preceding sample shows how you can conigure and use K-means implementation from 

Java. When we run the code, it initializes the K-means MapReduce job and executes it using 

the MapReduce framework.

Visualizing K-means results
This recipe explains how you can visualize the results of a K-means run.

Getting ready
This recipe assumes that you have followed the earlier recipe, have run K-means, and have 

access to the output of the K-means algorithm. If you have not already done so, follow the 

previous recipe to run K-means.

How to do it...

This section demonstrates how to convert output of the K-means execution to GraphML  

and visualize it. 

1. Running the following command will print the results into GraphML format, which is a 

standard representation of graphs. Here, replace the <k-means-output-dir> with 

the output directory of the k-mean execution.

>bin/mahout clusterdump --seqFileDir<k-means-output-dir>/
clusters-10-final/ --pointsDir<k-means-output-dir>/clusteredPoints 
--outputFormat GRAPH_ML -o clusters.graphml

2. Download and install Gephi graph visualization toolkit from http://gephi.org/.

3. Open the MAHOUT_HOME/clusters.graphml ile using File->Open menu  

of the Gephi.

4. From the layout window at the lower-left corner of the screen, use YufanHu's 

multilevel as the layout method, and click on Run.

http://gephi.org/
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5. Gephi will show a visualization of the graph that looks like the following:

How it works...

K-means output is written as a sequence ile. We can use the clusterdump command of 

the Mahout to write them as a GraphML ile, which is a standard representation of the graph. 
Then, we used Gephi graph visualization software to visualize the resulting GraphML ile.





6
Analytics

In this chapter, we will cover:

 f Simple analytics using MapReduce

 f Performing Group-By using MapReduce

 f Calculating frequency distributions and sorting using MapReduce

 f Plotting the Hadoop results using GNU Plot

 f Calculating histograms using MapReduce

 f Calculating scatter Plots using MapReduce

 f Parsing a complex dataset with Hadoop

 f Joining two datasets using MapReduce

Introduction
This chapter discusses how we can process a dataset and understand its basic 

characteristics. We will cover more complex methods like data mining, classiication,  
and so on, in later chapters.

Following are a few instances of basic analytics:

 f Calculating Minimum, Maximum, Mean, Median, Standard deviation, and so on of 

a dataset. Given a dataset, generally there are multiple dimensions (for example, 

while processing HTTP access logs, names of the web page, the size of the web page, 

access time, and so on). We can measure the mentioned analytics using one or more 

dimensions. For example, we can group the data into multiple groups and calculate 

the mean value in each case.

 f Histograms used in inding out how many occurrences happen within different value 
ranges (for example, how many hits happen within each 6-hour period).



Analytics

136

 f Frequency distributions used in inding out how many occurrences of a value 
happened (for example, how many hits were received by each web page in a site).

 f Finding a correlation between two dimensions (for example, correlation between 

access count and the ile size of web accesses).

 f Hypothesis testing, that is, trying to verify or disprove a hypothesis using a  

given dataset.

This chapter will show how you can calculate basic analytics using a given dataset. For recipes 

in this chapter, we will use two datasets:

 f NASA weblog dataset available from http://ita.ee.lbl.gov/html/contrib/
NASA-HTTP.html is a real-life dataset collected using the requests received by 

NASA web servers.

 f Apache tomcat developer list e-mail archives available from http://mail-
archives.apache.org/mod_mbox/tomcat-users/, which is in MBOX format.

Simple analytics using MapReduce
Aggregative values (for example, Mean, Max, Min, standard deviation, and so on) provide  

the basic analytics about a dataset. You may perform these calculations, either for the  

whole dataset or a part of the dataset.

In this recipe, we will use Hadoop to calculate the minimum, maximum, and average size of a 

ile downloaded from the NASA servers, by processing the NASA weblog dataset. The following 
igure shows a summary of the execution:

As shown in the igure, mapper task will emit all message sizes under the key msgSize, and 

they are all sent to a one-reducer job. Then the reducer will walk through all of the data and 

will calculate the aggregate values.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://mail-archives.apache.org/mod_mbox/tomcat-users/
http://mail-archives.apache.org/mod_mbox/tomcat-users/
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Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed 

Hadoop. We will use HADOOP_HOME to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

How to do it...

The following steps describe how to use MapReduce to calculate simple analytics about the 

weblog dataset:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We call the extracted folder as DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME.  

If /data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

> bin/hadoopdfs -mkdir /data/input1

> bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that  

folder CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point 
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC 

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar to your HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WebLogMessageSizeAggregator/data/input1 /data/output1

8. Read the results by running the following command:

$bin/hadoopdfs -cat /data/output1/*

You will see that it will print the results as following:

Mean    1150

Max     6823936

Min     0

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
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How it works...

You can ind the source for the recipe from src/chapter6/
WebLogMessageSizeAggregator.java.

HTTP logs follow a standard pattern where each log looks like the following. Here the last 

token includes the size of the web page retrieved:

205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/
countdown.html HTTP/1.0" 200 3985

We will use the Java regular expressions' support to parse the log lines, and the Pattern.
compile() method in the top of the class deines the regular expression. Since most  
Hadoop jobs involve text processing, regular expressions are a very useful tool while  

writing Hadoop Jobs:

private final static IntWritable one = new IntWritable(1);

public void map(Object key, Text value, 

  Context context) throws 

  IOException, InterruptedException

{

  Matcher matcher = httplogPattern.matcher(value.

    toString());

    if (matcher.matches())

    {

      int size = Integer.parseInt(matcher.group(5));

      context.write(new Text("msgSize"),one);

    }

}

The map task receives each line in the log ile as a different key-value pair. It parses the lines 
using regular expressions and emits the ile size against the key msgSize.

Then, Hadoop collects all values for the key and invokes the reducer. Reducer walks through all 

the values and calculates the minimum, maximum, and mean ile size of the ile downloaded 

from the web server. It is worth noting that by making the values available as an iterator, 

Hadoop gives the programmer a chance to process the data without storing them in memory. 

You should therefore try to process values without storing them in memory whenever possible.

public static class AReducer

  extends Reducer<Text, IntWritable, Text, IntWritable>

  {

  public void reduce(Text key, Iterable<IntWritable> values, 

  Context context) throws IOException,InterruptedException

  {

    double tot = 0;

    int count = 0;
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    int min = Integer.MAX_VALUE;

    int max = 0;

    Iterator<IntWritable> iterator = values.iterator();

    while (iterator.hasNext())

    {

      int value = iterator.next().get();

      tot = tot + value;

      count++;

      if (value < min)

      {

        min = value;

       }

      if (value > max)

      {

       max = value;

       }

     }

    context.write(new Text("Mean"), 

    new IntWritable((int) tot / count));

    context.write(new Text("Max"), 

      new IntWritable(max));

    context.write(new Text("Min"), 

      new IntWritable(min));

   }

}

The main() method of the job looks similar to the WordCount example, except for  

the highlighted lines that has been changed to accommodate the input and output  

datatype changes:

Job job = new Job(conf, "LogProcessingMessageSizeAggregation");

job.setJarByClass(WebLogMessageSizeAggregator.class);

job.setMapperClass(AMapper.class);

job.setReducerClass(AReducer.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

There's more...

You can learn more about Java regular expressions from the Java tutorial, http://docs.
oracle.com/javase/tutorial/essential/regex/.

http://docs.oracle.com/javase/tutorial/essential/regex/
http://docs.oracle.com/javase/tutorial/essential/regex/
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Performing Group-By using MapReduce
This recipe shows how we can use MapReduce to group data into simple groups and calculate 

the analytics for each group. We will use the same HTTP log dataset. The following igure 
shows a summary of the execution:

As shown in the igure, the mapper task groups the occurrence of each link under different 
keys. Then, Hadoop sorts the keys and provides all values for a given key to a reducer,  

who will count the number of occurrences.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed 

Hadoop. We will use the HADOOP_HOME to refer to the Hadoop installation folder.

 f Start Hadoop following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.
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How to do it...

The following steps show how we can group weblog data and calculate analytics.

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If 

/data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that  

folder CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point 
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC 

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar to HADOOP_HOME.

7. Run the MapReduce job using the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogHitsByLinkProcessor/data/input1 /data/output2

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output2/*

You will see that it will print the results as following:

/base-ops/procurement/procurement.html  28

/biomed/                                1

/biomed/bibliography/biblio.html        7

/biomed/climate/airqual.html            4

/biomed/climate/climate.html            5

/biomed/climate/gif/f16pcfinmed.gif     4

/biomed/climate/gif/f22pcfinmed.gif     3

/biomed/climate/gif/f23pcfinmed.gif     3

/biomed/climate/gif/ozonehrlyfin.gif    3

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz


Analytics

142

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogHitsByLinkProcessor.java.

As described in the earlier recipe, we will use regular expressions to parse HTTP logs. In the 

following sample the log line /shuttle/countdown/countdown.html shows the link 

(URL) being retrieved.

205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/
countdown.html HTTP/1.0" 200 3985

The following code segment shows the mapper:

public void map(Object key, Text value, 

  Context context) throws IOException, 

  InterruptedException

{

  Matcher matcher = httplogPattern.matcher(value.toString());

  if(matcher.matches())

  {

    String linkUrl = matcher.group(4);

    word.set(linkUrl);

    context.write(word, one);

   }

}

Map task receives each line in the log ile as a different key-value pair. It parses the lines 
using regular expressions and emits the link as the key, and number one as the value.

Then, Hadoop collects all values for different keys (link) and invokes the reducer once for each 

link. Then each Reducer counts the number of hits for each link.

public void reduce(Text key, Iterable<IntWritable> values, 

  Context context) throws IOException, InterruptedException

{

  int sum = 0;

  for (IntWritableval : values)

  {

    sum += val.get();

  }

  result.set(sum);

  context.write(key, result);

}

The main() method of the job works similar to the earlier recipe.



Chapter 6

143

Calculating frequency distributions and 
sorting using MapReduce

Frequency distribution is the number of hits received by each URL sorted in the ascending 

order, by the number hits received by a URL. We have already calculated the number of hits in 

the earlier recipe. This recipe will sort the list.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed 

Hadoop. We will use the HADOOP_HOME to refer to Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

 f This recipe will use the results from the recipe Performing Group-By using 

MapReduce of this chapter. Follow it if you have not done so already.

How to do it...

The following steps show how to calculate frequency distribution using MapReduce:

1. We will use the data from the previous recipe here. So follow the recipe if you have 

not already done so.

2. Run the MapReduce job using the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogFrequencyDistributionProcessor/data/output2 /data/output3

3. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output3/*

You will see that it will print the results as following:

/cgi-bin/imagemap/countdown?91,175      12

/cgi-bin/imagemap/countdown?105,143     13

/cgi-bin/imagemap/countdown70?177,284   14
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How it works...

The second recipe of this chapter calculated the number of hits received by each link, and the 

frequency distribution as a sorted list of those results in that recipe. Therefore, let us sort the 

results of the second recipe.

MapReduce always sorts the key-value pairs emitted by the mappers by their keys before 

delivering them to the reducers. We will use this to sort the results.

You can ind the source for the recipe from src/chapter6/
WeblogFrequencyDistributionProcessor.java.

Map task for the job will look like the following:

public static class AMapper extends Mapper<Object, 
  Text, IntWritable, Text>
{
  public void map(Object key, Text value, Context context) throws 
    IOException, InterruptedException
  {
  String[] tokens = value.toString().split("\\s");
  context.write(
    new IntWritable(Integer.parseInt(tokens[1])), 
    new Text(tokens[0]));
  }
}

Map task receives each line in the log ile as a different key-value pair. It parses the lines 
using regular expressions and emits the number of hits as the key and the URL name as the 

value. Hadoop sorts the key-value pairs emitted by the mapper before calling the reducers, 

and therefore the reducer will receive the pairs in sorted order. Hence, it just has to emit them 

as they arrive.

public static class AReducer extends   
  Reducer<IntWritable, Text, Text, IntWritable>
{
  public void reduce(IntWritable key, Iterable<Text> values, 
    Context context) throws IOException, InterruptedException
  { 
    Iterator<Text> iterator = values.iterator();
    if (iterator.hasNext())
    {
      context.write(iterator.next(), key);
    }
  }
}

The main() method of the job will work similar to the one in the earlier recipe.
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Plotting the Hadoop results using GNU Plot
Although Hadoop jobs can generate interesting analytics, making sense of those results and 

getting a detailed understanding about the data often require us to see the overall trends in 

the data. We often do that by plotting the data.

The human eye is remarkably good at detecting patterns, and plotting the data often yields us 

a deeper understanding of the data. Therefore, we often plot the results of Hadoop jobs using 

some plotting program.

This recipe explains how to use GNU Plot, which is a free and powerful plotting program, to 

plot Hadoop results.

Getting ready
 f This recipe assumes that you have followed the previous recipe, Calculating 

frequency distributions and sorting using MapReduce. If you have not done so, 

please follow the recipe.

 f We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Install the GNU Plot plotting program by following the instructions in  

http://www.gnuplot.info/.

How to do it...

The following steps show how to plot Hadoop job results using GNU Plot.

1. Download the results of the last recipe to a local computer by running the following 

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output3/part-r-00000 2.data

2. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

3. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot httpfreqdist.plot

http://www.gnuplot.info/
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4. It will generate a ile called freqdist.png, which will look like the following:

The preceding plot is plotted in log-log scale, and the irst part of the distribution follows the 
zipf (power law) distribution, which is a common distribution seen in the web. The last few 

most popular links have much higher rates than expected from a zipf distribution.

Discussion about more details on this distribution is out of scope of this book. However, this 

plot demonstrates the kind of insights we can get by plotting the analytical results. In most of 

the future recipes, we will use the GNU plot to plot and to analyze the results.
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How it works...

The following steps describe how plotting with GNU plot works:

1. You can ind the source for the GNU plot ile from src/chapter6/resources/
httpfreqdist.plot. The source for the plot will look like the following:

set terminal png

set output "freqdist.png"

set title "Frequnecy Distribution of Hits by Url";

set ylabel "Number of Hits";

set xlabel "Urls (Sorted by hits)";

set key left top

set log y

set log x

plot"2.data" using 2 title "Frequency" with linespoints

2. Here the irst two lines deine the output format. This example uses PNG, but GNU 
plot supports many other terminals like SCREEN, PDF, EPS, and so on.

3. Next four lines deine the axis labels and the title.

4. Next two lines deine the scale of each axis, and this plot uses log scale for both.

5. Last line deines the plot. Here it is asking GNU plot to read the data from the 
2.data ile, and use the data in the second column of the ile via using 2 and to 

plot it using lines. Columns must be separated by whitespaces.

6. Here if you want to plot one column against other, for example, data from column 1 

against column 2, you should write using 1:2 instead of using 2.

There's more...

You can learn more about GNU plot from http://www.gnuplot.info/.

Calculating histograms using MapReduce
Another interesting view into a dataset is a histogram. Histogram makes sense only under 

a continuous dimension (for example, access time and ile size). It groups the number of 
occurrences of some event into several groups in the dimension. For example, in this recipe, 

if we take the access time from weblogs as the dimension, then we will group the access time 

by the hour.

http://www.gnuplot.info/
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The following igure shows a summary of the execution. Here the mapper calculates the  
hour of the day and emits the "hour of the day" and 1 as the key and value respectively.  

Then each reducer receives all the occurrences of one hour of a day, and calculates  

the number of occurrences:

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed Hadoop. 

We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

How to do it...

The following steps show how to calculate and plot a Histogram:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME.  

If /data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
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3. Unzip the source code of this chapter (chapter6.zip). We will call that folder 

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point 
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC 

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogTimeOfDayHistogramCreator/data/input1 /data/output4

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output4/*

9. Download the results of the last recipe to a local computer by running the following 

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output4/part-r-00000 3.data

10. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

11. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot httphistbyhour.plot

12. It will generate a ile called hitsbyHour.png, which will look like following:
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As you can see from the igure, most of the access to NASA is at night, whereas there 

noontime. Also, two peaks roughly follow the tea times.

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogTimeOfDayHistogramCreator.java. As explained in the irst recipe of this chapter, 
we will use regular expressions to parse the log ile and extract the access time from the log iles.

The following code segment shows the mapper function:

public void map(Object key, Text value, 
  Context context) throws IOException, InterruptedException
{
  Matcher matcher = httplogPattern.matcher(value.toString());
  if (matcher.matches())
  {
    String timeAsStr = matcher.group(2);
    Date time = dateFormatter.parse(timeAsStr);
    Calendar calendar = GregorianCalendar.getInstance();
    calendar.setTime(time);
    int hours = calendar.get(Calendar.HOUR_OF_DAY);
    context.write(new IntWritable(hours), one); 
  }
}

Map task receives each line in the log ile as a different key-value pair. It parses the lines 
using regular expressions and extracts the access time for each web page access. Then, the 

mapper function extracts the hour of the day from the access time and emits the hour of the 

day and one as output of the mapper function.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for 

each key. Each reducer walks through the values and calculates the count of page accesses 

for each hour.

public void reduce(IntWritable key,
  Iterable<IntWritable> values,
  Context context) throws IOException, InterruptedException
  {
    int sum = 0;
    for (IntWritableval : values) 
    {
      sum += val.get();
    }
    context.write(key, new IntWritable(sum));
  }

The main() method of the job looks similar to the WordCount example as described in the 

earlier recipe.
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Calculating scatter plots using MapReduce
Another useful tool while analyzing data is a Scatter plot. We use Scatter plot to ind the 
relationship between two measurements (dimensions). It plots the two dimensions against 

each other.

For an example, this recipe analyzes the data to ind the relationship between the size of the 
web pages and the number of hits received by the web page.

The following igure shows a summary of the execution. Here, the mapper calculates and 
emits the message size (rounded to 1024 bytes) as the key and one as the value. Then the 

reducer calculates the number of occurrences for each message size:

Getting ready
 f This recipe assumes that you have followed the irst chapter and have  

installed Hadoop. We will use the HADOOP_HOME variable to refer to the  

Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.
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How to do it...

The following steps show how to use MapReduce to calculate the correlation between  

two datasets:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If /
data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that folder 

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point 
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC 

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to your  
HADOOP_HOME.

7. Run the MapReduce job through following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogMessagesizevsHitsProcessor/data/input1 /data/output5

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output5/*

9. Download the results of the last recipe to the local computer by running the following 

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output5/part-r-00000 5.data

10. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

11. Generate the plot by running the following command from HADOOP_HOME.

>gnuplot httphitsvsmsgsize.plot

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
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12. It will generate a ile called hitsbymsgSize.png, which will look like  

following screenshot:

The plot shows a negative correlation between the number of hits and the size of the 

messages in the log scales, which also suggest a power law distribution.

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogMessagesizevsHitsProcessor.java.

The following code segment shows the code for the mapper. Just like earlier recipes, we will 

use regular expressions to parse the log entries from log iles:

public void map(Object key, Text value,

  Context context) throws IOException, InterruptedException

{

  Matcher matcher = httplogPattern.matcher(value.toString());

  if (matcher.matches())
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  {

  int size = Integer.parseInt(matcher.group(5));

  context.write(new IntWritable(size / 1024), one);

  }

}

Map task receives each line in the log ile as a different key-value pair. It parses the lines 
using regular expressions and emits the ile size as 1024-byte blocks as the key and one as 

the value.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for 

each key. Each reducer walks through the values and calculates the count of page accesses 

for each ile size.

public void reduce(IntWritable key, Iterable<IntWritable> values,

  Context context) throws IOException, InterruptedException

{

  int sum = 0;

  for (IntWritableval : values)

  {

    sum += val.get();

  }

  context.write(key, new IntWritable(sum));

}

The main() method of the job looks similar to the earlier recipes.

Parsing a complex dataset with Hadoop
Datasets we parsed so far were simple, where each data item was contained in a single line. 

Therefore, we were able to use Hadoop default parsing support to parse those datasets. 

However, some datasets have much complex formats.

In this recipe, we will analyze Tomcat developer mailing list archives. In the archive, each 

e-mail is composed of by multiple lines in the log ile. Therefore, we will write a Hadoop input 
formatter to process the e-mail archive.

This recipe parses the complex e-mail list archives, and inds the owner (person who started 
the thread) and the number of replies received by each e-mail thread.
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The following igure shows a summary of the execution. Here the mapper emits the subject of 
the mail as key and the sender's e-mail address and date as the value. Then Hadoop groups 

data by the e-mail subject and sends all the data related to that thread to the same reducer.

Then, the reducer calculates the owner of the thread it received, and the number of replies 

received by the thread.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have  

installed Hadoop. We will use the HADOOP_HOME variable to refer to the  

Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

How to do it...

The following steps describe how to parse the Tomcat e-mail list dataset that has complex 

data format using Hadoop by writing an input formatter:

1. Download the Apache Tomcat developer list e-mail archives for the year 2012 

available from http://mail-archives.apache.org/mod_mbox/tomcat-
users/. We call the destination folder as DATA_DIR.

http://mail-archives.apache.org/mod_mbox/tomcat-users/
http://mail-archives.apache.org/mod_mbox/tomcat-users/
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2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If 

/data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input2

>bin/hadoopdfs -put <DATA_DIR>/*.mbox /data/input2

3. Unzip the source code for this chapter (chapter6.zip). We will call that folder 

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point 
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC 

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLReceiveReplyProcessor/data/input2 /data/output6

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output6/*

How it works...

As explained before, this dataset has data items that span multiple lines. Therefore, we 

have to write a custom data formatter to parse the data. You can ind the source for the 
recipe from src/chapter6/WebLogMessageSizeAggregator.java,src/chapter6/
MboxFileFormat.java,src/chapter6/MBoxFileReader.java.

When the Hadoop job starts, it invokes the formatter to parse the input iles. We add a new 
formatter via the main() method as highlighted in the following code snippet:

Job job = new Job(conf, "LogProcessingHitsByLink");

job.setJarByClass(MLReceiveReplyProcessor.class);

job.setMapperClass(AMapper.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

job.setReducerClass(AReducer.class);

job.setInputFormatClass(MboxFileFormat.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);
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As shown by the following code, the new formatter creates a record reader, which is used by 

Hadoop to read input keys and values:

public class MboxFileFormat extends 

  FileInputFormat<Text, Text>

{

  private MBoxFileReaderboxFileReader = null;

  public RecordReader<Text, Text>createRecordReader(

    InputSplitinputSplit, TaskAttemptContext attempt)

    throws IOException, InterruptedException

    {

      boxFileReader = new MBoxFileReader();

      boxFileReader.initialize(inputSplit, attempt);

      return boxFileReader;

    }

}

The following code snippet shows the record reader:

public class MBoxFileReader extends 

  RecordReader<Text, Text>

{

  public void initialize(InputSplitinputSplit,

    TaskAttemptContext attempt) throws IOException, 
InterruptedException

  {

    Path path = ((FileSplit) inputSplit).getPath();

    FileSystem fs = FileSystem.get(attempt.getConfiguration());

    FSDataInputStream fsStream = fs.open(path);

    reader = new BufferedReader(

    new InputStreamReader(fsStream));

  }

}

The initialize() method reads the ile from HDFS:

public Boolean nextKeyValue() throws IOException, 

InterruptedException

{

  if (email == null) 

  {

    return false;

  }

  count++;

  while ((line = reader.readLine()) != null)

  {
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    Matcher matcher = pattern1.matcher(line);

    if (!matcher.matches())

    {

      email.append(line).append("\n");

    }

    else

    {

      parseEmail(email.toString());

      email = new StringBuffer();

      email.append(line).append("\n");

      return true;

    }

  }

  parseEmail(email.toString());

  email = null; return true;

}

Finally, the nextKeyValue() method parses the ile, and gives users access to the key and 
values for this dataset. Value has the from, subject, and date of each e-mail separated by a #.

The following code snippet shows the map task source code:

public void map(Object key, Text value,

  Context context) throws IOException, InterruptedException

{

  String[] tokens = value.toString().split("#");

  String from = tokens[0];

  String subject = tokens[1];

  String date = tokens[2].replaceAll(",", "");

  subject = subject.replaceAll("Re:", "");

  context.write(new Text(subject), new Text(date + "#" + from));

}

The map task receives each line in the log ile as a different key-value pair. It parses the lines 
by breaking it by the #, and emits the subject as the key, and date and from as the value.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for 

each key. Since we use the e-mail subject as the key, each reducer will receive all the information 

about each e-mail thread. Then, each reducer walks through all the e-mails and inds out who 
sent the irst e-mail and how many replies have been received by each e-mail thread.

public void reduce(Text key, Iterable<Text> values, Context context)

  throws IOException, InterruptedException

{
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  TreeMap<Long, String>replyData = new TreeMap<Long, String>();

  for (Text val : values)

  {

    String[] tokens = val.toString().split("#");

    if(tokens.length != 2)

    {

      throw new IOException("Unexpected token "+ val.toString());

    }

   String from = tokens[1];

   Date date = dateFormatter.parse(tokens[0]);

   replyData.put(date.getTime(), from);

   }

  String owner = replyData.get(replyData.firstKey());

  intreplyCount = replyData.size();

  intselfReplies = 0;

  for(String from: replyData.values())

  {

    if(owner.equals(from))

    {

      selfReplies++;

    }

  }

replyCount = replyCount - selfReplies;

context.write(new Text(owner),new Text(replyCount+"#" + selfReplies));

}

Joining two datasets using MapReduce
As we have observed already, Hadoop is very good at reading through a dataset and 

calculating the analytics. However, often we will have to merge two datasets for analyzing  

the data. This recipe will explain how to join two datasets using Hadoop.

As an example, this recipe will use the Tomcat developer archives dataset. A common 

belief among the open source community is that, the more a developer is involved with the 

community (for example, by replying to threads and helping others and so on), the more 

quickly he will receive a response to his queries. In this recipe we will test this hypothesis 

using the Tomcat developer mailing list.
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To test this hypothesis, we will run the MapReduce jobs as explained in the following igure:

We would start with e-mail archives in the MBOX format, and we will read the mail using 

the MBOX format class explained in the earlier recipe. Then, the Hadoop job will receive the 
sender of the e-mail (from), e-mail subject, and the date the e-mail was sent, as inputs.

1. In the irst job, mapper will emit the subject as key, and the sender's e-mail address 
and date as the value. Then, the reducer step will receive all values with the same 

subject and it will output the subject as the key, and the owner and reply count as the 

value. We have executed this job in the earlier recipe.

2. In the second job, the mapper step emits the sender's e-mail address as the key and 

one as the value. Then, the reducer step will receive all the e-mails sent from the same 

address to the same reducer. Using this data, each reducer will emit the e-mail address 

as the key and the number of e-mails sent from that e-mail address as the value.

3. Finally, the third job reads both the output from earlier jobs, joins the results, and 

emits the number of replies sent by each e-mail address and the number of replies 

received by each e-mail address as the output.
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Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed Hadoop. 

We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have 

not already done so, you should follow the recipe Writing a WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting 

Hadoop Up and Running in a Cluster.

How to do it...

The following steps show how to use MapReduce to join two datasets:

1. If you have not already done so, run the previous recipe, which will set up the 

environment and run the irst job as explained in the igure.

2. Run the second MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLSendReplyProcessor/data/input2 /data/output7

3. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output7/*

4. Create a new folder input3 and copy both results from earlier jobs to that folder  

in HDFS:

> bin/hadoopdfs -mkdir /data/input3

> bin/hadoopdfs  -cp /data/output6/part-r-00000 /data/input3/1.
data

> bin/hadoopdfs -cp /data/output7/part-r-00000 /data/input3/2.data

5. Run the third MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLJoinSendReceiveReplies /data/input3 /data/output8

6. Download the results of the last recipe to the local computer by running the following 

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output8/part-r-00000 8.data

7. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

8. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot sendvsreceive.plot
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9. It will generate a ile called sendreceive.png, which will look like following:

The graph conirms our hypothesis, and like before, the data approximately follows a power 
law distribution.

How it works...

You can ind the source for the recipe from src/chapter6/MLSendReplyProcessor.
java and src/chapter6/MLJoinSendReceiveReplies.java. We have already 

discussed the working of the irst job in the earlier recipe.

The following code snippet shows the map() function for the second job. It receives the 

sender's e-mail, subject, and date separated by # as input, which parses the input and 

outputs the sender's e-mail as the key and the date the e-mail was sent, as the value:

public void map(Object key, Text value, Context context) 
  throws IOException, InterruptedException
{
String[] tokens = value.toString().split("#");
String from = tokens[0]; String date = tokens[2];
context.write(new Text(from), new Text(date));
}
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The following code snippet shows the reduce() function for the second job. Each reduce() 

function receives the time of all the e-mails sent by one sender. The reducer counts the 

number of replies sent by each sender, and outputs the sender's name as the key and the 

replies sent, as the value:

public void reduce(Text key, Iterable<Text> values,

  Context context ) throws IOException, InterruptedException

{

  int sum = 0;

  for (Text val : values)

  {

    sum = sum +1;

  }

  context.write(key, new IntWritable(sum));

}

The following code snippet shows the map() function for the third job. It reads the outputs of 

the irst and second jobs and writes them as the key-value pairs:

public void map(Object key, Text value, Context context) throws 
IOException, InterruptedException {

String[] tokens = value.toString().split("\\s");

    String from = tokens[0];

    String replyData = tokens[1];

context.write(new Text(from), new Text(replyData));

}

The following code snippet shows the reduce() function for the third job. Since, both 

the output of the irst and the second job has the same key, the sent replies and received 
replies for a given user are sent to the same reducer. The reducer does some adjustments to 

remove self-replies, and outputs the sent replies and received replies as the key and value 

respectively of the reducer, thus joining the two datasets:

public void reduce(Text key, Iterable<Text> values, Context context)

  throws IOException, InterruptedException

{

  StringBuffer buf = new StringBuffer("[");

  try

  {

    int sendReplyCount = 0;

    int receiveReplyCount = 0;

    for (Text val : values)

    {

      String strVal = val.toString();

      if(strVal.contains("#"))

      {
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        String[] tokens = strVal.split("#");

        Int repliesOnThisThread = Integer.parseInt(tokens[0]);

        Int selfRepliesOnThisThread = Integer.parseInt(tokens[1]);

        receiveReplyCount = receiveReplyCount + repliesOnThisThread;

        sendReplyCount = sendReplyCount - selfRepliesOnThisThread;

       }

       else

       {

        sendReplyCount = sendReplyCount + Integer.parseInt(strVal);

       }

     }

     context.write(new IntWritable(sendReplyCount), 

       new IntWritable(receiveReplyCount)); buf.append("]");

   }

  catch (NumberFormatException e) 

  {

    System.out.println("ERROR "+ e.getMessage()); 

  }

}

Here the inal job is an example of using the MapReduce to join two datasets. The idea is to 

send all the values that need to be joined under the same key to the same reducer, and join 

the data there.



7
Searching and Indexing

In this chapter, we will cover:

 f Generating an inverted index using Hadoop MapReduce

 f Intra-domain web crawling using Apache Nutch

 f Indexing and searching web documents using Apache Solr

 f Coniguring Apache HBase as the backend data store for Apache Nutch

 f Deploying Apache HBase on a Hadoop cluster

 f Whole web crawling with Apache Nutch using a Hadoop/HBase cluster

 f ElasticSearch for indexing and searching 

 f Generating the in-links graph for crawled web pages

Introduction
MapReduce frameworks are well suited for large-scale search and indexing applications.  

In fact, Google came up with the original MapReduce framework speciically to facilitate  
the various operations involved with web searching. The Apache Hadoop project was  

started as a support project for the Apache Nutch search engine, before spawning off  

as a separate top-level project.

Web searching consists of fetching, indexing, ranking, and retrieval. Given the size of  

the data, all these operations need to be scalable. In addition, the retrieval also should 

ensure real-time access. Typically, fetching is performed through web crawling, where the 

crawlers fetch a set of pages in the fetch queue, extract links from the fetched pages, add the 

extracted links back to the fetch queue, and repeat this process many times. Indexing parses, 

organizes, and stores the fetched data in manner that is fast and eficient for querying and 
retrieval. Search engines perform ofline ranking of the documents based on algorithms such 
as PageRank and real-time ranking of the results based on the query.
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In this chapter, we will introduce you to several tools that can be used with Apache Hadoop to 

perform large-scale searching and indexing.

Generating an inverted index using Hadoop 
MapReduce

Most of the text searching systems rely on inverted index to look up the set of documents that 

contains a given word or a term. In this recipe, we are going to build a simple inverted index 

that computes a list of terms in the documents, the set of documents that contains each 

term, and the term frequency in each of the documents. Retrieval of results from an inverted 

index can be as simple as returning the set of documents that contains the given terms or can 

involve much more complex operations such as returning the set of documents ordered based 

on a particular ranking.

Getting ready
You must have Apache Hadoop (preferably version 1.0.x) conigured and installed to follow 
this recipe. Apache Ant for the compiling and building the source code.

How to do it...

In the following steps, we will use a MapReduce program to build an inverted index for a  

text dataset.

1. Export the $HADOOP_HOME environmental variable pointing to the root of your local 

Apache Hadoop installation.

2. Create a directory in HDFS and upload a text data set. This data set should consist of 

one or more text iles.
> bin/hadoop dfs -mkdir input

> bin/hadoop dfs -put *.txt input

You can download the text versions of Project Gutenberg books by 

following the instructions given at the following link. Make sure to 

provide the filetypes query parameter of the download request 

as txt. Unzip the downloaded files. You can use the unzipped text 

files as the text data set for this recipe. http://www.gutenberg.
org/wiki/Gutenberg:Information_About_Robot_
Access_to_our_Pages

3. Unzip the resources bundle for this chapter and change to that directory.
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4. Compile the source by running ant build command from the unzipped directory.

5. Copy the resulting build/c7-samples.jar to your Hadoop home directory.

6. Run the inverted indexing MapReduce job using the following command from the 

Hadoop home directory. Provide the HDFS directory where you uploaded the input 

data in step 2 as the irst argument and provide a path to store the output as the 
second argument.

>  bin/hadoop jar c7-samples.jar chapter7.TextOutInvertedIndexer 
input output

7. Check the output directory for the results by running the following command.  

The output will consist of the term followed by a comma-separated list of  

ilename and frequency.
>  bin/hadoop dfs -cat output/*

ARE three.txt:1,one.txt:1,four.txt:1,two.txt:1,

AS three.txt:2,one.txt:2,four.txt:2,two.txt:2,

AUGUSTA three.txt:1,

About three.txt:1,two.txt:1,

Abroad three.txt:2,

……

8. We used the text outputting invert indexing MapReduce program in step 6 for the 

clarity of understanding the algorithm. The src/chapter9/InvertIndexer.
java program uses the Hadoop Sequence Files and Map Writable to output an index, 

which is more friendly for machine processing and more eficient for storage. You 
can run this version of the program by substituting the command in step 6 with the 

following command:

>  bin/hadoop jar c7-samples.jar chapter7.InvertedIndexer input 
output

How it works...

Map function receives a chunk of an input document as the input and outputs the term 

and <docid, 1> pair for each word. In the Map function, we irst replace all the non-
alphanumeric characters from the input text value before tokenizing it.

public void map(Object key, Text value, ……… {

    String valString = value.toString().replaceAll("[^a-zA-Z0-9]+"," 
");

    StringTokenizer itr = new StringTokenizer(valString);

     StringTokenizer(value.toString());

    FileSplit fileSplit = (FileSplit) context.getInputSplit();
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    String fileName = fileSplit.getPath().getName();

    while (itr.hasMoreTokens()) {

        term.set(itr.nextToken());

        docFrequency.set(fileName, 1);

        context.write(term, docFrequency);

    }

}

We use the getInputSplit() method of the MapContext to obtain a reference to 

InputSplit of assigned to the current Map task. The InputSplits for this computation 

are instances of FileSplit due to the usage of FileInputFormat based InputFormat. 

Then we use the getPath() method of FileSplit to obtain the path of the ile containing 
the current split and extract the ilename from it. We use this extracted ilename as the 
document ID when constructing the inverted index.

The reduce function receives IDs and frequencies of all the documents that contain the term 

(key) as the input. The reduce function outputs the term and a list of document IDs and the 

number of occurrences of the term in each document as the output:

public void reduce(Text key, Iterable<TermFrequencyWritable> 
values,Context context) …………{

    HashMap<Text, IntWritable> map = new HashMap<Text, IntWritable>();

    for (TermFrequencyWritable val : values) {

        Text docID = new Text(val.getDocumentID());

        int freq = val.getFreq().get();

        if (map.get(docID) != null) {

            map.put(docID, new IntWritable(map.get(docID).get() + 
freq));

        } else {

            map.put(docID, new IntWritable(freq));

        }

    }

    MapWritable outputMap = new MapWritable();

    outputMap.putAll(map);

    context.write(key, outputMap);

}

In the preceding model, we output a record for each word, generating a large amount of  

Map task to Reduce task intermediate data. We use the following combiner to aggregate 

the terms emitted by the Map tasks, reducing the size and amount of Map to Reduce 

intermediate data transfer.

public void reduce(Text key, Iterable<TermFrequencyWritable> values …… 
{

    int count = 0;
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    String id = "";

  for (TermFrequencyWritable val : values) {

    count++;

    if (count == 1) {

      id = val.getDocumentID().toString();

    }

  }

  TermFrequencyWritable writable = new TermFrequencyWritable();

  writable.set(id, count);

  context.write(key, writable);

}

In the driver program, we set the Mapper, Reducer, and the combiner classes. Also we specify 

both output value and the map output value properties as we use different value types for the 

Map tasks and the Reduce tasks.

Job job = new Job(conf, "Inverted Indexer");

…

job.setMapperClass(IndexingMapper.class);

job.setReducerClass(IndexingReducer.class);

job.setCombinerClass(IndexingCombiner.class);

…

job.setMapOutputValueClass(TermFrequencyWritable.class);

job.setOutputValueClass(MapWritable.class);

job.setOutputFormatClass(SequenceFileOutputFormat.class);

There's more...

The older MapReduce API of Apache Hadoop (org.apache.hadoop.mapred.*) supports 

a ile format called MapFile that can be used to store an index in to the data stored in 

SequenceFiles. MapFile is very useful when we need to random access records stored 

in a large SequenceFile. We can utilize the MapFiles to store a secondary index in to our 

inverted index. You can use MapFileOutputFormat to output MapFiles, which would 

consist of a SequenceFile containing the actual data and another ile containing the index 
to the SequenceFile.

We can improve this indexing program by performing optimizations into such as iltering-stop 
words, substituting words with word stems, and storing more information about the context 

of the word, making the indexing a much more complex problem. Luckily, there exist several 

open source indexing frameworks that we can use for the indexing purposes. In this chapter 

we'll be using Apache Lucene-based Apache Solr and ElasticIndex for indexing purposes.
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See also
The Creating TF and TF-IDF vectors for the text data recipe of Chapter 9, Mass Text  

Data Processing.

Intra-domain web crawling using Apache 
Nutch

Web crawling is the process of visiting and downloading all or a subset of web pages on the 

Internet. Although the concept of crawling and implementing a simple crawler sounds simple, 

building a full-ledged crawler takes great deal of work. A full-ledged crawler that needs to be 
distributed has to obey the best practices such as not overloading servers, follow robots.
txt, performing periodic crawls, prioritizing the pages to crawl, and identifying many formats 

of documents. Apache Nutch is an open source search engine that provides a highly scalable 

crawler. Apache Nutch offers features such as politeness, robustness, and scalability.

In this recipe, we are going to use Apache Nutch in the standalone mode for small-scale, 

intra-domain web crawling. Almost all the Nutch commands are implemented as Hadoop 

MapReduce applications, as you would notice when executing the steps 10 to 18 of this 

recipe. Nutch standalone executes these applications using the Hadoop the local mode.

Getting ready
Set the JAVA_HOME environmental variable. Install Apache Ant and add it to the PATH 

environmental variable.

How to do it...

The following steps show you how to use Apache Nutch in standalone mode for small scale 

web crawling.

1. Apache Nutch standalone mode uses the HyperSQL database as the default data 

storage. Download HyperSQL from the http://sourceforge.net/projects/
hsqldb/. Unzip the distribution and go to the data directory.

> cd hsqldb-2.2.9/hsqldb

2. Start a HyperSQL database using the following command. The following database 

uses data/nutchdb.* as the database iles and uses nutchdb as the database 

alias name. We'll be using this database alias name in the gora.sqlstore.jdbc.
url property in the step 7.

> java -cp lib/hsqldb.jar org.hsqldb.server.Server --database.0 
file:data/nutchdb --dbname.0 nutchdb

......
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[Server@79616c7]: Database [index=0, id=0, db=file:data/nutchdb, 
alias=nutchdb] opened sucessfully in 523 ms.

......

3. Download Apache Nutch 2.X from http://nutch.apache.org/ and extract it.

4. Go to the extracted directory, which we will refer to as NUTCH_HOME, and build 

Apache Nutch using the following command:

> ant runtime

5. Go to the runtime/local directory and run the bin/nutch command to verify 

the Nutch installation. A successful installation would print out the list of Nutch 

commands, shown as follows:

> cd runtime/local

> bin/nutch 

Usage: nutch COMMAND

where COMMAND is one of:…..

6. Add the following to NUTCH_HOME/runtime/local/conf/nutch-site.xml. You 

can give any name to the value of http.agent.name.

<configuration>

<property>

 <name>http.agent.name</name>

 <value>NutchCrawler</value>

</property>

<property>

  <name>http.robots.agents</name>

  <value>NutchCrawler,*</value>

</property>

</configuration>

7. You can restrict the domain names you wish to crawl by editing the NUTCH_HOME/
runtime/local/conf/regex-urlfiler.txt ile. For an example, in order to 
restrict the domain to http://apache.org, 

Replace the following in the NUTCH_HOME/runtime/local/conf/regex-
urlfilter.txt ile:
# accept anything else

+.

Use the following regular expression:

+^http://([a-z0-9]*\.)*apache.org/
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8. Ensure that you have the following in the NUTCH_HOME/runtime/local/conf/
gora.properties ile. Provide the database alias named used in step 2.
###############################

# Default SqlStore properties #

###############################

gora.sqlstore.jdbc.driver=org.hsqldb.jdbc.JDBCDriver

gora.sqlstore.jdbc.url=jdbc:hsqldb:hsql://localhost/nutchdb

gora.sqlstore.jdbc.user=sa

9. Create a directory named urls and create a ile named seed.txt inside that 

directory. Add your seed URLs to this ile. Seed URLs are used to start the crawling 
and would be pages that are crawled irst. We use http://apache.org as the 

seed URL in the following example:

> mkdir urls

> echo http://apache.org/ > urls/seed.txt

10. Inject the seed URLs in to the Nutch database using the following command:

> bin/nutch inject urls/

InjectorJob: starting

InjectorJob: urlDir: urls

InjectorJob: finished

11. Use the following command to verify the injection of the seeds to the Nutch database. 

TOTAL urls printed by this command should match the number of URLs you had 

in your seed.txt ile. You can use this command in the later cycles as well to get an 
idea about the number of web page entries in your database.

> bin/nutch readdb  -stats

WebTable statistics start

Statistics for WebTable: 

min score:  1.0

....

TOTAL urls:  1

12. Use the following command to generate a fetch list from the injected seed URLs. 

This will prepare list of web pages to be fetched in the irst cycle of the crawling. 
Generation will assign a batch ID to the current generated fetch list, which can be 

used in the subsequent commands.

> bin/nutch generate

GeneratorJob: Selecting best-scoring urls due for fetch.

GeneratorJob: starting
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GeneratorJob: filtering: true

GeneratorJob: done

GeneratorJob: generated batch id: 1350617353-1356796157

13. Use the following command to fetch the list of pages prepared in step 12. This step 

performs the actual fetching of the web pages. The –all parameter is used to inform 

Nutch to fetch all the generated batches.

> bin/nutch fetch -all

FetcherJob: starting

FetcherJob: fetching all

FetcherJob: threads: 10

......

fetching http://apache.org/

......

-activeThreads=0

FetcherJob: done

14. Use the following command to parse and to extract the useful data from fetched web 

pages, such as the text content of the pages, metadata of the pages, and the set of 

pages linked from the fetched pages. We call the set of pages linked from a fetched 

page as the out-links of that particular fetched page. The out-links data will be used 

to discover new pages to fetch as well as to rank pages using link analysis algorithms 

such as PageRank.

> bin/nutch parse -all

ParserJob: starting

......

ParserJob: success

15. Execute the following command to update the Nutch database with the data 

extracted in the preceding step. This step includes updating the contents of the 

fetched pages as well as adding new entries of the pages discovered through the 

links contained in the fetched pages.

> bin/nutch updatedb

DbUpdaterJob: starting

……

DbUpdaterJob: done
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16. Execute the following command to generate a new fetch list using the information 

from the previously fetched data. The topN parameter limits the number of URLs 

generated for the next fetch cycle.

> bin/nutch generate -topN 100

GeneratorJob: Selecting best-scoring urls due for fetch.

GeneratorJob: starting

......

GeneratorJob: done

GeneratorJob: generated batch id: 1350618261-1660124671

17. Fetch the new list, parse it, and update the database.

> bin/nutch fetch –all

......

> bin/nutch parse -all 

......

> bin/nutch updatedb

......

18. Repeat the steps 16 and 17 till you get the desired number of pages or the depth.

See also
The Whole web crawling with Apache Nutch using a Hadoop/HBase cluster and Indexing and 

searching web documents using Apache Solr recipes of this chapter.

Refer to http://www.hsqldb.org/doc/2.0/guide/index.html for more information 

on using HyperSQL.

Indexing and searching web documents 
using Apache Solr

Apache Solr is an open source search platform that is part of the Apache Lucene project. 

It supports powerful full-text search, hit highlighting, faceted search, dynamic clustering, 

database integration, rich document handling (for example, Word and PDF), and geospatial 

search. In this recipe, we are going to index the web pages crawled by Apache Nutch for use 

by Apache Solr and use Apache Solr to search through those web pages.
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Getting Ready
Crawl a set of web pages using Apache Nutch by following the Intra-domain crawling using 

Apache Nutch recipe.

How to do it

The following steps show you how to index and search your crawled web pages dataset:

1. Download and extract Apache Solr from http://lucene.apache.org/solr/. 

We use Apache Solr 4.0 for the examples in this chapter. From here on, we call the 

extracted directory $SOLR_HOME.

2. Replace the $SOLR_HOME/examples/solr/collection1/conf/schema.xml 

ile using the $NUTCH_HOME/runtime/local/conf/schema.solr4.xml ile.
> cp $NUTCH_HOME/conf/schema-solr4.xml \ 
       $SOLR_HOME/example/solr/collection1/conf/schema.xml

3. Open the example/solr/collection1/conf/solrconfig.xml ile and 
comment the following tag.

<updateLog>

<str name="dir">${solr.data.dir:}</str>

</updateLog>

4. Start Solr by executing the  following command from the $SOLR_HOME/example 

directory.

> java -jar start.jar

5. Go to the URL http://localhost:8983/solr to verify the Apache Solr 

installation.

6. Index the data fetched using Apache Nutch in to Apache Solr by issuing the following 

command from the $NUTCH_HOME/runtime/local directory. This command 

pushes the data crawled by Nutch in to Solr through the Solr web service interface.

  > bin/nutch solrindex http://127.0.0.1:8983/solr/ -reindex 

http://lucene.apache.org/solr/
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7. Go to Apache Solr search UI at http://localhost:8983/solr/#/
collection1/query. Enter a search term in the q textbox and click on  

Execute Query.

8. You can also issue your search queries directly using the HTTP GET requests. Paste 

the following to your browser address bar:

http://localhost:8983/solr/collection1/select?q=hadoop&start=5&
rows=5&wt=xml
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How it works

Apache Solr is built using the Apache Lucene text search library. Apache Solr adds many 

features on top of Apache Lucene and provides a text search web application that works out 

of the box. The preceding steps deploy Apache Solr and import the data crawled by Nutch in to 

the deployed Solr instance.

The metadata about the documents we plan to index and search using Solr needs to be 

speciied through the Solr schema.xml ile. The Solr schema ile should deine the data ields 
in our documents and how these data ields should be processed by Solr. We use the schema 
ile provided with Nutch  ($NUTCH_HOME/conf/schema-solr4.xml), which deines the 
schema for the web pages crawled by Nutch, as the Solr schema ile for this recipe. More 
information about the Solr schema ile can be found from http://wiki.apache.org/
solr/SchemaXml.

See also
 f The ElasticSearch for Indexing and searching recipe of this chapter.

 f Follow the tutorial at http://lucene.apache.org/solr/tutorial.html for 

more information on using Apache Solr.

Coniguring Apache HBase as the backend 
data store for Apache Nutch

Apache Nutch integrates Apache Gora to add support for different backend data stores. In 

this recipe, we are going to conigure Apache HBase as the backend data storage for Apache 
Nutch. Similarly, it is possible to plug in data stores such as RDBMS databases, Cassandra 

and others through Gora.

Getting ready
Set the JAVA_HOME environmental variable.

Install Apache Ant and add it to the PATH environmental variable.

How to do it

The following steps show you how to conigure Apache HBase local mode as the backend data 

store for Apache Nutch to store the crawled data.

1. Download and install Apache HBase. Apache Nutch 4.1 and Apache Gora 0.2 

recommend HBase 0.90.4 or the later versions of the 0.90.x branch.
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2. Create two directories to store the HDFS data and Zookeeper data. Add the following 

to the $HBASE_HOME/conf/hbase-site.xml ile, replacing the values with the 
paths to the two directories:

<configuration>

<property>

    <name>hbase.rootdir</name>

    <value>file:///u/software/hbase-0.90.6/hbase-data</value>

  </property>

<property>

    <name>hbase.zookeeper.property.dataDir</name>

    <value>file:///u/software/hbase-0.90.6/zookeeper-data</value>

  </property>

</configuration>

Refer to the Installing HBase recipe in Chapter 5, Hadoop Ecosystem, for more 

information on how to install HBase in the local mode. Test your HBase installation 

using the HBase shell before proceeding (step 6 of the Installing HBase recipe.)

3. In case you have not downloaded Apache Nutch for the earlier recipes in this chapter, 

download Nutch from the http://nutch.apache.org and extract it.

4. Add the following to the $NUTCH_HOME/conf/nutch-site.xml ile.
<property>

 <name>storage.data.store.class</name>

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

5. Uncomment the following in the $NUTCH_HOME/ivy/ivy.xml ile.
<dependency org="org.apache.gora" name="gora-hbase" rev="0.2" 
conf="*->default" />

6. Add the following to the $NUTCH_HOME/conf/gora.properties ile to set the 
HBase storage as the default Gora data store.

gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

7. Execute the following commands in the $NUTCH_HOME to build Apache Nutch with 

HBase as the back end data storage.

> ant clean

> ant runtime

8. Follow steps 4 to 17 of the Intra-domain web crawling using Apache Nutch recipe.
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9. Start the Hbase shell and issue the following commands to view the fetched data.

> bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.90.6, r1295128, Wed Feb 29 14:29:21 UTC 2012

hbase(main):001:0> list

TABLE                                                                                                

webpage                                                                                              

1 row(s) in 0.4970 seconds

hbase(main):002:0> count 'webpage'

Current count: 1000, row: org.apache.bval:http/release-management.
html                               

Current count: 2000, row: org.apache.james:http/jspf/index.html                                      

Current count: 3000, row: org.apache.sqoop:http/team-list.html                                       

Current count: 4000, row: org.onesocialweb:http/                                                     

4065 row(s) in 1.2870 seconds

hbase(main):005:0> scan 'webpage',{STARTROW => 'org.apache.
nutch:http/', LIMIT=>10}

ROW                                   COLUMN+CELL                                                                                                  

 org.apache.nutch:http/               column=f:bas, 
timestamp=1350800142780, value=http://nutch.apache.org/                                        

 org.apache.nutch:http/               column=f:cnt, 
timestamp=1350800142780, value=<....

......

10 row(s) in 0.5160 seconds

10. Follow the steps in the Indexing and searching web documents using Apache Solr to 

index recipe and search the fetched data using Apache Solr.

How it works...

The preceding steps conigure and run Apache Nutch using Apache HBase as the storage 

backend. When conigured, Nutch stores the fetched web page data and other metadata 
in HBase tables. In this recipe we use a standalone HBase deployment. However, as shown 

in the Whole web crawling with Apache Nutch using a Hadoop/HBase cluster recipe of this 

chapter, Nutch can be used with a distributed HBase deployment as well. Usage of HBase as 

the backend data store provides more scalability and performance for Nutch crawling.
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See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem, and the Deploying 

HBase on a Hadoop cluster recipe of this chapter.

Deploying Apache HBase on a Hadoop 
cluster

In this recipe, we are going to deploy Apache HBase 0.90.x on top of an Apache Hadoop 1.0.x 

cluster. This is required for using Apache Nutch with a Hadoop MapReduce cluster.

Getting ready
We assume you already have your Hadoop cluster (version 1.0.x) deployed. If not, refer to the 

Setting Hadoop in a distributed cluster environment recipe of Chapter 1, Getting Hadoop up 

and running in a Cluster, to conigure and deploy a Hadoop cluster.

How to do it

The following steps show you how to deploy a distributed Apache HBase cluster on top of an 

Apache Hadoop cluster:

1. Download and install Apache HBase from http://hbase.apache.org/. Apache 

Nutch 4.1 and Apache Gora 0.2 recommend HBase 0.90.4 or the later versions of 

the 0.90.x branch.

2. Remove the hadoop-core-*.jar in the $HBASE_HOME/lib. Copy the  

hadoop-core-*.jar and the commons-configuration*.jar from  

your Hadoop deployment to the $HBASE_HOME/lib folder.

> rm lib/hadoop-core-<version>.jar

> cp ~/Software/hadoop-1.0.4/hadoop-core-1.0.4.jar ../lib/

> cp ~/Software/hadoop-1.0.4/lib/commons-configuration-1.6.jar ../
lib/

3. Conigure the $HBASE_HOME/conf/hbase-site.xml.

<configuration>

  <property>

    <name>hbase.rootdir</name>

    <value>hdfs://xxx.xx.xx.xxx:9000/hbase</value>

  </property>

  <property>

    <name>hbase.cluster.distributed</name>
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    <value>true</value>

  </property>

  <property>

    <name>hbase.zookeeper.quorum</name>

    <value>localhost</value>

  </property>

</configuration>

4. Go to the $HBASE_HOME and start HBase.

> bin/start-hbase.sh

5. Open the HBase UI at http://localhost:60010 and monitor the HBase 

installation.

6. Start the HBase shell and execute the following commands to test the HBase 

deployment. If the preceding command fails, check the logs in the $HBASE_HOME/
logs directory to identify the exact issue.

> bin/hbase shell

hbase(main):001:0> create 'test', 'cf'

0 row(s) in 1.8630 seconds

hbase(main):002:0> list 'test'

TABLE                                                                                                                  

test                                                                                                                   

1 row(s) in 0.0180 seconds

Hbase is very sensitive to the contents of the /etc/hosts 

ile. Fixing the /etc/host ile would solve most of the HBase 
deployment errors.

How it works...

The preceding steps conigure and run the Apache HBase in the distributed mode. HBase 
distributed mode stores the actual data of the HBase tables in the HDFS, taking advantage of 

the distributed and fault tolerant nature of HDFS.

In order to run HBase in the distributed mode, we have to conigure the HDFS NameNode and 
the path to store the HBase data using the hbase.rootdir property in the hbase-site.xml.

  <property>

    <name>hbase.rootdir</name>

    <value>hdfs://<namenode>:<port>/<path></value>

  </property>
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We also have to set the hbase.cluster.distributed property to true.

  <property>

    <name>hbase.cluster.distributed</name>

    <value>true</value>

  </property>

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem.

Whole web crawling with Apache Nutch 
using a Hadoop/HBase cluster

Crawling large amount of web documents can be done eficiently by utilizing the power of a 
MapReduce cluster.

Getting ready
We assume you already have your Hadoop (version 1.0.x) and HBase (version 0.90.x) cluster 

deployed. If not, refer to the Deploying HBase on a Hadoop cluster recipe of this chapter to 

conigure and deploy an HBase cluster on a Hadoop cluster.

How to do it

The following steps show you how to use Apache Nutch with a Hadoop MapReduce cluster 

and a HBase data store to perform large-scale web crawling.

1. Add the $HADOOP_HOME/bin directory to the PATH environment variable of  

your machine.

> export PATH=$PATH:$HADOOP_HOME/bin/

2. If you have already followed the Indexing and searching web documents using 

Apache Solr recipe, skip to the next step. If not, follow steps 2 to 6 of the recipe 3. 

3. In case you have not downloaded Apache Nutch for the earlier recipes in this chapter, 

download Nutch from http://nutch.apache.org and extract it.

4. Add the following to the nutch-site.xml in the $NUTCH_HOME/conf. You can give 

any name to the value of the http.agent.name property, but that name should be 

given in the http.robots.agents property as well.

<configuration>

<property>

 <name>storage.data.store.class</name>
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 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

<property>

 <name>http.agent.name</name>

 <value>NutchCrawler</value>

</property>

<property>

  <name>http.robots.agents</name>

  <value>NutchCrawler,*</value>

</property>

</configuration>

5. Uncomment the following in the $NUTCH_HOME/ivy/ivy.xml file:

<dependency org="org.apache.gora" name="gora-hbase" rev="0.2" 
conf="*->default" />

6. Add the following to the $NUTCH_HOME/conf/gora.properties ile to set the 
HBase storage as the default Gora data store:

gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

You can restrict the domain names you wish to crawl by editing the 

following line in the conf/regex-urlfiler.txt ile. Leave it 
unchanged for whole web crawling.

# accept anything else

+.

7. Execute the following commands in $NUTCH_HOME to build Nutch with HBase as the 

backend data storage:

> ant clean

> ant runtime

8. Create a directory in HDFS to upload the seed urls.

> bin/hadoop dfs -mkdir urls

9. Create a text ile with the seed URLs for the crawl. Upload the seed URLs ile to the 
directory created in the above step.

> bin/hadoop dfs -put seed.txt urls
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You can use the Open Directory project RDF dump (http://rdf.dmoz.
org/) to create your seed URLs. Nutch provides a utility class to select a 

subset of URLs from the extracted DMOZ RDF data:

bin/nutch org.apache.nutch.tools.DmozParser content.
rdf.u8 -subset 5000 > dmoz/urls

10. Copy the $NUTCH_HOME/runtime/deploy directory to the JobTracker node of the 

Hadoop cluster.

11. Issue the following command from inside the copied deploy directory in the 

JobTracker node to inject the seed URLs to the Nutch database and to generate the 

initial fetch list.

> bin/nutch inject urls

> bin/nutch generate

12. Issue the following commands from inside the copied deploy directory in the 

JobTracker node:

> bin/nutch fetch -all

12/10/22 03:56:39 INFO fetcher.FetcherJob: FetcherJob: starting

12/10/22 03:56:39 INFO fetcher.FetcherJob: FetcherJob: fetching 
all

......

> bin/nutch parse -all

12/10/22 03:48:51 INFO parse.ParserJob: ParserJob: starting

......

12/10/22 03:50:44 INFO parse.ParserJob: ParserJob: success

> bin/nutch updatedb

12/10/22 03:53:10 INFO crawl.DbUpdaterJob: DbUpdaterJob: starting

....

12/10/22 03:53:50 INFO crawl.DbUpdaterJob: DbUpdaterJob: done

> bin/nutch generate -topN 10
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12/10/22 03:51:09 INFO crawl.GeneratorJob: GeneratorJob: Selecting 
best-scoring urls due for fetch.

12/10/22 03:51:09 INFO crawl.GeneratorJob: GeneratorJob: starting

....

12/10/22 03:51:46 INFO crawl.GeneratorJob: GeneratorJob: done

12/10/22 03:51:46 INFO crawl.GeneratorJob: GeneratorJob: generated 
batch id: 1350892269-603479705

13. Repeat the commands in step 12 as many times as needed to crawl the desired 

number of pages or the desired depth.

14. Follow the Indexing and searching fetched web documents using Apache Solr recipe 

to index the fetched data using Apache Solr.

How it works

All the Nutch operations we used in this recipe, including fetching and parsing, are 

implemented as MapReduce programs. These MapReduce programs utilize the Hadoop 

cluster to perform the Nutch operations in a distributed manner and use the HBase to store 

the data across the HDFS cluster. You can monitor these MapReduce computations through 

the monitoring UI (http://jobtracker_ip:50030) of your Hadoop cluster.

Apache Nutch Ant build creates a Hadoop job ile containing all the dependencies in the 
$NUTCH_HOME/runtime/deploy folder. The bin/nutch script uses this job ile to submit 
the MapReduce computations to Hadoop.

See also
The Intra-domain crawling using Apache Nutch recipe of this chapter.

ElasticSearch for indexing and searching
ElasticSearch (http://www.elasticsearch.org/) is an Apache 2.0 licensed open source 

search solution built on top of Apache Lucene. ElasticSearch is a distributed, multi-tenant, 

and document-oriented search engine. ElasticSearch supports distributed deployments, by 

breaking down an index in to shards and by distributing the shards across the nodes in the 

cluster. While both ElasticSearch and Apach Solr use Apache Lucene as the core search 

engine, ElasticSearch aims to provide a more scalable and a distributed solution that is better 

suited for the cloud environments than Apache Solr.
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Getting ready
Install Apache Nutch and crawl some web pages as per the Whole web crawling with Apache 

Nutch using an existing Hadoop/HBase cluster recipe or the Coniguring Apache HBase local 
mode as the backend data store for Apache Nutch recipe. Make sure the backend Hbase  

(or HyperSQL) data store for Nutch is still available.

How to do it

The following steps show you how to index and search the data crawled by Nutch using 

ElasticSearch.

1. Download and extract ElasticSearch from http://www.elasticsearch.org/
download/.

2. Go to the extracted ElasticSearch directory and execute the following command to 

start the ElasticSearch server in the foreground.

> bin/elasticsearch -f

3. Run the following command in a new console to verify your installation.

> curl localhost:9200

{

  "ok" : true,

  "status" : 200,

  "name" : "Outlaw",

  "version" : {

    "number" : "0.19.11",

    "snapshot_build" : false

  },

  "tagline" : "You Know, for Search"

4. Go to the $NUTCH_HOME/runtime/deploy (or $NUTCH_HOME/runtime/local 

in case you are running Nutch in the local mode) directory. Execute the following 

command to index the data crawled by Nutch in to the ElasticSearch server.

> bin/nutch  elasticindex elasticsearch -all  

12/11/01 06:11:07 INFO elastic.ElasticIndexerJob: Starting

…...

5. Issue the following command to perform a search:

> curl -XGET 'http://localhost:9200/_search?q=hadoop'

....

http://www.elasticsearch.org/download/
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{"took":3,"timed_out":false, 
  "_shards":{"total":5,"successful":5,"failed":0}, 
  "hits":{"total":36,"max_score":0.44754887, 
    "hits":[{"_index":"index","_type":"doc","_id": 100 30551  100   
       30551 "org.apache.hadoop:http/","_score":0.44754887,  
....

How it works

Similar to Apache Solr, ElasticSearch too is built using the Apache Lucene text search library. 

In the preceding steps we export the data crawled by Nutch in to an instance of ElasticSearch 

for indexing and searching purposes.

We add the –f switch to force the ElasticSearch to run in the foreground to make the 

development and testing process easier.

bin/elasticsearch –f

You can also install ElasticSearch as a service as well. Refer to http://www.
elasticsearch.org/guide/reference/setup/installation.html for more details 

on installing ElasticSearch as a service.

We use the ElasticIndex job of Nutch to import the data crawled by Nutch into the 

ElasticSearch server. The usage of the elasticindex command is as follows:

bin/nutch  elasticindex  <elastic cluster name> \ 
     (<batchId> | -all | -reindex) [-crawlId <id>]

The elastic cluster name defaults to elasticsearch. You can change the cluster name by 

editing the cluster.name property in the config/elasticsearch.yml ile. The cluster 
name is used for auto-discovery purposes and should be unique for each ElasticSearch 

deployment in a single network.

See also
 f The Indexing and searching web documents using Apache Solr recipe of this chapter.

Generating the in-links graph for crawled 
web pages

The number of links to a particular web page from other pages, the number of in-links, is 

widely considered a good metric to measure the popularity or the importance of a web page. 

In fact, the number of in-links to a web page and the importance of the sources of those links 

have become integral components of most of the popular link analysis algorithms such as 

PageRank introduced by Google.
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In this recipe, we are going to extract the in-links information from a set of web pages fetched by 

Apache Nutch and stored in Apache HBase backend data store. In our MapReduce program, we 

irst retrieve the out-links information for the set of web pages stored in the Nutch HBase data 
store and then use that information to calculate the in-links graph for this set of web pages. The 

calculated in-link graph will contain only the link information from the fetched subset of the web 

graph only.

Getting ready
Follow the Whole web crawling with Apache Nutch using an existing Hadoop/HBase cluster or 

the Coniguring Apache HBase local mode as the backend data store for Apache Nutch recipe 

and crawl a set of web pages using Apache Nutch to the backend HBase data store.

This recipe requires Apache Ant for building the source code.

How to do it

The following steps show you how to extract an out-links graph from the web pages stored  

in Nutch HBase data store and how to calculate the in-links graph using that extracted  

out-links graph.

1. Go to $HBASE_HOME and start the HBase shell.

> bin/hbase shell

2. Create an HBase table with the name linkdata and a column family named il. Exit 

the HBase shell.

hbase(main):002:0> create 'linkdata','il'

0 row(s) in 1.8360 seconds

hbase(main):002:0> quit

3. Unzip the source package for this chapter and compile it by executing ant build 

from the Chapter 7 source directory.

4. Copy the c7-samples.jar ile to $HADOOP_HOME. Copy the $HBASE_HOME/
hbase-*.jar and $HBASE_HOME/lib/zookeeper-*.jar to  
$HADOOP_HOME/lib.

5. Run the Hadoop program by issuing the following command from $HADOOP_HOME.

> bin/hadoop jar c7-samples.jar chapter7.InLinkGraphExtractor
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6. Start the HBase shell and scan the linkdata table using the following command to 

check the output of the MapReduce program:

> bin/hbase shell

hbase(main):005:0> scan 'linkdata',{COLUMNS=>'il',LIMIT=>10}

ROW                            COLUMN+CELL                     

....

How it works

As we are going to use HBase to read input as well as to write the output, we will use the 

HBase TableMapper and TableReducer helper classes to implement our MapReduce 

application. We will conigure the TableMapper and the TableReducer using the utility methods 
given in the TableMapReduceUtil class. The Scan object is used to specify the criteria to be 

used by the mapper when reading the input data from the HBase data store.

Configuration conf = HBaseConfiguration.create();

Job job = new Job(conf, "InLinkGraphExtractor");

job.setJarByClass(InLinkGraphExtractor.class);

Scan scan = new Scan();

scan.addFamily("ol".getBytes());

TableMapReduceUtil.initTableMapperJob("webpage", scan, ……);

TableMapReduceUtil.initTableReducerJob("linkdata",……);

The map implementation receives the HBase rows as the input records. In our implementation, 

each of the rows corresponds to a fetched web page. The input key to the Map function 

consists of the web page's URL and the value consists of the web pages linked from this 

particular web page. Map function emits a record for each of the linked web pages, where the 

key of a Map output record is the URL of the linked page and the value of a Map output record 

is the input key to the Map function (the URL of the current processing web page).

public void map(ImmutableBytesWritable sourceWebPage, Result 
values,……){

  List<KeyValue> results = values.list();      

  for (KeyValue keyValue : results) {

    ImmutableBytesWritable outLink = new      
        ImmutableBytesWritable(keyValue.getQualifier());

    try {

      context.write(outLink, sourceWebPage);

    } catch (InterruptedException e) {

      throw new IOException(e);

    }

  }      

}
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The reduce implementation receives a web page URL as the key and a list of web pages that 

contain links to that web page (provided in the key) as the values. The reduce function stores 

these data in to an HBase table.

public void reduce(ImmutableBytesWritable key,

  Iterable<ImmutableBytesWritable> values, ……{

  

Put put = new Put(key.get());

  for (ImmutableBytesWritable immutableBytesWritable :values)   {

put.add(Bytes.toBytes("il"),immutableBytesWritable.get(), 

                                              Bytes.toBytes("link"));

  }

  context.write(key, put);

}

See also
 f The Running MapReduce jobs on HBase(table input/output) recipe of Chapter 5, 

Hadoop Ecosystem.
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Classiications, 

Recommendations, and 
Finding Relationships

In this chapter, we will cover:

 f Content-based recommendations

 f Hierarchical clustering 

 f Clustering a Amazon sales dataset

 f Collaborative iltering-based recommendations 
 f Classiication using Naive Bayes Classiier 
 f Assigning advertisements to keywords using the Adwords balance algorithm

Introduction
This chapter discusses how we can use Hadoop for more complex use cases such as 

classifying a dataset, making recommendations, or inding relationships between items.

A few instances of such scenarios are as follows:

 f Recommending products to users either based on the similarities between the 

products (for example, if a user liked a book about history, he might like another  

book on the same subject) or based on the user behaviour patterns (for example,  

if two users are similar, they might like books that each to the other has read).

 f Clustering a data set to identify similar entities. For example, identifying users with 

similar interests.

 f Classifying data into several groups learning from the historical data.
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In this recipe, we will apply these and other techniques using MapReduce. For recipes in this 

chapter, we will use the Amazon product co-purchasing network metadata dataset available 

from http://snap.stanford.edu/data/amazon-meta.html.

Content-based recommendations
Recommendations are to make suggestions to someone about things that might be of interest 

to him. For example, we would recommend a good book to a friend who has similar interests. 

We often ind use cases for recommendations in online retail. For example, when you browse 
for a product, Amazon would suggest other products that were also bought by users who 

bought this item.

For example, online retail sites such as Amazon have a very large collection of items. Although 

books are found classiied into several categories, often each category has too many to 
browse one after the other. Recommendations make the user's life easy by helping them ind 
the best products for their tastes. As recommendations make a change of a high sale, online 

retailers are very much interested about recommendation algorithms.

There are many ways to do recommendations:

 f Content-based recommendations: One could use information about the product to 

identify similar products. For example, you could use categories, content similarities, 

and so on to identify products that are similar and recommend them to the users who 

have already brought one.

 f Collaborative iltering: The other option is to use user's behavior to identify 

similarities between products. For example, if the same user gave a high rating to the 

two products, we can argue that there is some similarity between those two products. 

We will look at an instance of this in the next recipe.

This recipe uses dataset collected from Amazon about products to make content-based 

recommendations. In the dataset, each product has a list of similar items provided  

pre-calculated by Amazon. In this recipe, we will use that data to make recommendations.

Getting ready
The following steps depict how to prepare for this recipe.

1. This recipe assumes that you have followed Chapter 1, Getting Hadoop up and 

running in a Cluster, and have installed Hadoop. We will use the HADOOP_HOME to 

refer to the Hadoop installation directory.

2. Start Hadoop by following the instructions in Chapter 1, Getting Hadoop up and 

running in a Cluster.
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3. This recipe assumes you are aware of how Hadoop processing works. If you have not 

already done so, you should follow the Writing the WordCount MapReduce sample, 
bundling it and running it using standalone Hadoop recipe in Chapter 1, Getting 

Hadoop up and running in a Cluster.

4. We will use HADOOP_HOME to refer to the Hadoop installation directory.

How to do it...

The following steps describe how to run the content-based recommendation recipe.

1. Download the dataset from Amazon product co-purchasing network metadata 

available at http://snap.stanford.edu/data/amazon-meta.html and unzip 

it. We call this directory as DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If the 

/data directory already exists, clean it up.

$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1

3. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder as 

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point 
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the CHAPTER_8_SRC 

directory.

6. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the irst Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
MostFrequentUserFinder/data/input1 /data/output1

8. Read the results by running the following command:

$ bin/hadoopdfs -cat /data/output1/*

9. You will see that the MapReduce job has extracted the purchase data from each 

customer, and the results will look like following: 

customerID=A1002VY75YRZYF,review=ASIN=0375812253#title=Really 
Useful Engines (Railway Series)#salesrank=623218#group=Book #ratin
g=4#similar=0434804622|0434804614|0434804630|0679894780|0375827439
|,review=ASIN=B000002BMD#title=EverythingMustGo#salesrank=77939#gr
oup=Music#rating=4#similar=B00000J5ZX|B000024J5H|B00005AWNW|B00002
5KKX|B000008I2Z
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10. Run the second Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
ContentBasedRecommendation/data/output1 /data/output2

11. Read the results by running the following command: 

$ bin/hadoopdfs -cat /data/output2/*

You will see that it will print the results as follows. Each line of the result contains the 

customer ID and list of product recommendations for that customer.

A10003PM9DTGHQ  [0446611867, 0446613436, 0446608955, 0446606812, 
0446691798, 0446611867, 0446613436, 0446608955, 0446606812, 
0446691798]

How it works...

The following listing shows an entry for one product from the dataset. Here, each data entry 

includes an ID, title, categorization, similar items to this item, and information about users 

who has brought the item.

Id:   13

ASIN: 0313230269

title: Clockwork Worlds : Mechanized Environments in SF (Contributions 
to the Study of Science Fiction and Fantasy)

group: Book

salesrank: 2895088

similar: 2  1559360968  1559361247

categories: 3

   |Books[283155]|Subjects[1000]|Literature & Fiction[17]|History & 
Criticism[10204]|Criticism & Theory[10207]|General[10213]

   |Books[283155]|Subjects[1000]|Science Fiction & Fantasy[25]|Fantasy
[16190]|History & Criticism[16203]

   |Books[283155]|Subjects[1000]|Science Fiction & Fantasy[25]|Science 
Fiction[16272]|History & Criticism[16288]

reviews: total: 2  downloaded: 2  avg rating: 5

    2002-8-5  customer: A14OJS0VWMOSWO  rating: 5  votes:   2  
helpful:   1

    2003-3-21  customer:  A2C27IQUH9N1Z  rating: 5  votes:   4  
helpful:   4

We have written a new Hadoop data format to read and parse the Amazon product data, 

and the data format works similar to the format we have written in the Simple Analytics 

using MapReduce recipe in Chapter 6, Analytics. The source iles src/chapter8/
AmazonDataReader.java and src/chapter8/AmazonDataFormat.java  

contain the code for the Amazon data formatter.
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Amazon data formatter will parse the dataset and emit the data about each Amazon product 

as key-value pairs to the map function. The data about each Amazon product is represented 

as string and the class AmazonCustomer.java class includes code to parse and write out 

the data about the Amazon customer.

This recipe includes two MapReduce tasks. The source for those tasks can be found 

from src/chapter8/MostFrequentUserFinder.java and src/chapter8/
ContentBasedRecommendation.java.

public void map(Object key, Text value, Context context) 

  throws IOException, InterruptedException

{

  List<AmazonCustomer>customerList = 

    AmazonCustomer. parseAItemLine(value.toString());

    for(AmazonCustomer customer:

    customerList){ context.write(new Text(customer.customerID),

      new Text(customer.toString()));

}
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The map task of the irst MapReduce job receives data about each product in the logile as a 
different key-value pair. When the map task receives the product data, it emits the customer 

ID as the key and the product information as the value for each customer who has bought  

the product.

Hadoop collects all values for the key, and invokes the reducer once for each key. There will 

be a reducer task for each customer, and each reducer task will receive all products that have 

been brought by a customer. The reducer emits the list of items brought by each customer, 

thus building a customer proile. For limiting the size of the dataset, the reducer will not emit 
any customer who has brought less than ive products.

public void reduce(Text key, Iterable<Text> values, Context context)

  throws IOException, InterruptedException

  {

    AmazonCustomer customer = new AmazonCustomer();

    customer.customerID = key.toString();

    for(Text value: values)

    {

      Set<ItemData>itemsBrought = newAmazonCustomer(

        value.toString()).itemsBrought;

      for(ItemDataitemData: itemsBrought)

      {

        customer.itemsBrought.add(itemData);

      }

    }

    if(customer.itemsBrought.size() > 5)

    {

      context.write( newIntWritable(customer.itemsBrought.size()),

        new Text(customer.toString()));

    }

}

The second MapReduce job uses the data generated from the irst MapReduce tasks to make 
recommendations for each customer. The map task receives data about each customer as 

the input, and the MapReduce tasks make recommendations using the following three steps:

1. Each product (item) data from Amazon includes similar items to that item. Given 

a customer, irst the map task creates a list of all similar items for each item that 
customer has brought.

2. Then the map task removes any item from the list of similar items that has already 

brought by the same customer.
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3. Then map task selects ten items as recommendations.

Here reducer only prints out the results.

public void map(Object key, Text value, Context context)

  throwsIOException, InterruptedException

{

  AmazonCustomeramazonCustomer = newAmazonCustomer(

    value.toString() .replaceAll("[0-9]+\\s+", ""));

  List<String>recemndations = new ArrayList<String>();

  for (ItemDataitemData : amazonCustomer.itemsBrought)

  {

    recemndations.addAll(itemData.similarItems);

  }

  for (ItemDataitemData : amazonCustomer.itemsBrought)

  {

  recemndations.remove(itemData.itemID);

  }

  ArrayList<String>finalRecemndations = newArrayList<String>();

  for (inti = 0; i<Math.min(10, recemndations.size());  i++) 

  {

    finalRecemndations.add(recemndations.get(i)); 

  }

  context.write(new Text(amazonCustomer.customerID), 

    new Text(finalRecemndations.toString()));

  }

public void reduce(Text key, Iterable<Text> values, Context 
context)

  throws IOException, InterruptedException 

{

  for(Text value: values)

  {

    context.write(key, value);

  }

}

There's more...

You can learn more about content-based recommendations in Chapter 9, Recommendation 

Systems, of Mining of Massive Datasets, Anand Rajaraman and Jeffrey D. Ullman. This book 

can be found from http://infolab.stanford.edu/~ullman/mmds.html.
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Hierarchical clustering
Many operations such as recommendations and inding relationships use clustering as 
an integral component. Clustering groups a dataset into several groups using one or more 

measurements such that the items in the same cluster are rather similar and items in 

different clusters are more different. For example, given a set of living addresses of patients, 

clustering can group them into several groups where members of each group are close to 

each other so that doctors can visit them in most optimal manner.

There are many clustering algorithms; each has different costs and accuracy. Hierarchical 

clustering is one of the most basic and most accurate algorithms. It works as follows:

1. First, hierarchical clustering assigns each data point to its own cluster.

2. It calculates the distance between all cluster pairs and merges the two clusters that 

are closest to each other.

3. It repeats the process until only one cluster is left. At each repetition, the algorithm 

records each cluster pair it has merged. This merging history provides a tree that 

combines the clusters into larger and larger groups close to the root. Users may take 

a cut at some place in the tree based on the number of clusters they need.

However, hierarchical clustering has the complexity of O(n2log(n)). In other words, the 

algorithm would take about Cn2log(n) time for input of size n and a constant C. Hence,  

often it is too complex to be used with a large dataset. However, it often serves as the  

basis for many other clustering algorithms.

In this recipe, we will use hierarchical clustering to cluster a sample drawn from the Amazon 

dataset. It is worth noting that it is not a MapReduce algorithm, but we will use its results in 

the MapReduce algorithm in the next recipe.

Getting ready
This recipe assumes that you have followed the irst recipe and extracted the Amazon  
product data.

How to do it...

The following steps describe how to run the hierarchical clustering sample:

1. Copy the results of the irst MapReduce job of the last recipe to the local machine.
$ bin/hadoopdfs -get /data/output1/ product-sales.data
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2. Run the following command to do hierarchical clustering:

$ java –cphadoop-cookbook-chapter8.jar chapter8.
HirachicalClusterProcessor product-sales.data

3. The algorithm will generate a ile called clusters.data that includes clusters.

4. You can ind the information about clusters from the clusters.data ile created 
in the local directory, which will have the centroid of each cluster. Furthermore, the 

clusters-raw.data ile includes all the points assigned to each cluster.

How it works...

You can ind the source for the recipe from src/chapter8/
HirachicalClusterProcessor.java.

When executed, the code would read through the input data ile and load data for 1000 
Amazon customers randomly selected from the input ile and perform hierarchical clustering 
on those customers. 

Hierarchical clustering starts by placing each customer in its own cluster. Then it inds the two 
clusters that are close to each other and merges them into one cluster. Then it recalculates 

the distance between the new cluster and the old clusters, and repeats the process until it is 

left with a single cluster.

The getDistance() method of the AmazonCustomer.java class under src/chapter8 

shows how the distance between two Amazon clusters is calculated. It uses a variation of 

Jaccard distance. With the Jaccard distance, if two customers have brought the same item 

and have given similar reviews to those items, then Jaccard distance will be small. On the 

other hand, if they have given different reviews, the distance between them will be high.

public double getDistance(ClusterablePoint other)

{

  double distance = 5;

  AmazonCustomer customer1 = (AmazonCustomer)this;

  AmazonCustomer customer2 = (AmazonCustomer)other;

  for(ItemData item1:customer1.itemsBrought)

  {

    for(ItemData item2:customer2.itemsBrought)

    {

      if(item1.equals(item2))

      {

        doubleratingDiff = Math.abs(item1.rating - item2.rating);

        if(ratingDiff< 5)

        {

        distance = distance - (5 - ratingDiff)/5;

        }
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        else

        {

          distance = distance + (5 - ratingDiff)/5;

         }

       }

     }

  }

returnMath.min(10,Math.max(0.5, distance));

}

A naive implementation of the algorithm will recalculate all distances between clusters 

every time two clusters are merged, and resulting algorithm will have O(n3) computational 

complexity. In other words, the algorithm will take Cn3 amount of time to run with input of 

size n for some constant C. However, by remembering distances between clusters and only 

calculating distance from new clusters, the resulting implementation will have O(n2log(n)) 

complexity. The following code listing shows the implementation of the algorithm.

public List<Cluster>doHirachicalClustering(List<ClusterablePoint>

  points)

{

  List<Cluster> clusters = 

    new ArrayList<HirachicalClusterProcessor.Cluster>();

  for(ClusterablePointpoint:points)

  {

    clusters.add(new Cluster(point));

  }

  for(inti =0;i<clusters.size();i++)

  {

    for(int j =(i+1);j<clusters.size();j++)

      {

        ClusterPairclusterPair = newClusterPair(clusters.get(i), 

        clusters.get(j));

        addNewPairs(clusterPair);

       }

     }

    while(clusters.size() > 1)

    {

      ClusterPairnextPair = null;

      doubleminDist = Double.MAX_VALUE;

      for(ClusterPair pair:

      pairsSortedByDistance)

      {

      if(pair.distance<minDist)

        {

          nextPair = pair;



Chapter 8

201

          minDist = pair.distance;

        }

      }

     ClusterPair pair = nextPair;

    }

    removePairs(pair);

    Cluster newCluster = pair.merge();

    clusters.remove(pair.cluster1);

    clusters.remove(pair.cluster2);

    //recalcualte pairs for new cluster

    for(Cluster cluster: clusters)

    {

     ClusterPairnewclusterPair = newClusterPair(cluster, newCluster);

     addNewPairs(newclusterPair);

     }

    clusters.add(newCluster);

   }

  return clusters;

}

Finally, the program will output the centroid for each cluster. The centroid is the point within 

the cluster that has the minimal value of the sum of distances to all other points in the cluster.

There's more...

Among other alternative distance measures are Cosine distance, Edit distance, and Hamming 

distance. Chapter 7, Clustering, of the book Mining of Massive Datasets, Anand Rajaraman 

and Jeffrey D. Ullman, explains these distances in detail. Also you can learn more about 

hierarchical clustering from the same book. The book can be found from http://infolab.
stanford.edu/~ullman/mmds.html.

Clustering an Amazon sales dataset
As explained in the earlier recipe, although very accurate, hierarchical clustering has a time 

complexity of O(n2log(n)), and therefore is not applicable to large datasets. For example, 

the Amazon data set we will use has about 0.2 million entries and it will need about 10 tera 

calculations (about 1013).

This recipe describes how to apply the GRGPFClustering algorithm to Amazon sales  

dataset. We can ind the distance between any two data points (products) using items  
they have co-purchased, but we do not know how to place those data points in some  

multi-dimensional space (2D or 3D space) with orthogonal axes. Therefore, we say  

that the data in a non-Euclidian space.
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GRGPFClustering algorithm is a highly scalable algorithm applicable to a non-Euclidian space. 

It works by irst taking a small random sample of the data and clustering it using an algorithm 

such as hierarchical clustering, and then using those clusters to cluster a large dataset 

without keeping all the data in memory.

Getting ready
The following steps describe how to ready to cluster the Amazon dataset.

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in 

a Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to the 

Hadoop installation directory.

2. Start Hadoop following the instructions in Chapter 1, Getting Hadoop up and running 

in a Cluster.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not 

already done so, you should follow the Writing the WordCount MapReduce sample, 
bundling it and running it using standalone Hadoop recipe in Chapter 1, Getting 

Hadoop up and running in a Cluster.

4. This assumes that you have followed the Content-based recommendations recipe of 

this chapter and have extracted the Amazon product data.

How to do it...

The following steps describe how to get cluster the Amazon dataset.

1. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder 

CHAPTER_8_SRC.

2. Change the hadoop.home property in the build.xml ile under CHAPTER_8_SRC 

to point to your Hadoop installation directory.

3. Compile the source by running the ant build command from the CHAPTER_8_SRC 

directory.

4. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

5. Run the MapReduce job using the following command from HADOOP_HOME. It will use 

the output generated by the irst MapReduce task of the irst recipe.
$bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
GRGPFClustering /data/output1 /data/output3

6. Read the results by running the following command. 

$bin/hadoopdfs -cat /data/output3/*
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You will see that it will print the results as following. Here the key indicates the cluster ID and 

the rest of the results show customer details of the customers assigned to the cluster.

customerID=A3S764AIU7PCLT,clusterID=0,

review=ASIN=0140296468#title=The New New Thing: A Silicon Valley Story 
..

How it works...

As the igure depicts, this tasks has a MapReduce task. You can ind the source for the recipe 
from src/chapter8/GRGPFClustering.java.

When initialized, the MapReduce job will load the information about the clusters calculated in 

the earlier recipe and use those clusters to assign the rest of the dataset to clusters.

public void map(Object key, Text value, Context context) 

  throws IOException, InterruptedException

{

  AmazonCustomeramazonCustomer = 
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    new AmazonCustomer(value.toString() .replaceAll("[0-9]+\\s+", 
""));

  doublemindistance = Double.MAX_VALUE;

  AmazonCustomerclosestCluster = null;

  for (AmazonCustomercentriod : clusterCentrodis)

  {

  double distance = amazonCustomer.getDistance(centriod);

  if (distance <mindistance)

  {

    mindistance = distance;

    closestCluster = centriod;

  }

  amazonCustomer.clusterID = closestCluster.clusterID;

  }

  context.write(new Text(closestCluster.clusterID), 

    new Text(amazonCustomer.toString()));

}

The Map task receives each line in the logile that contains information about Amazon 
customer as a different key-value pair. Then, the map task compares the information about 

the customer against each of the cluster's centroids, and assigns each customer to the 

cluster that is closest to that customer. Then, it emits the name of the cluster as the key and 

information about the customer as the value.

Then, Hadoop collects all values for the different keys (clusters) and invokes the reducer once 

for each cluster. Then each reducer emits the members of each cluster.

public void reduce(Text key, Iterable<Text> values,

  Context context) throws IOException, InterruptedException

{

  for (Text value : values)

  {

    context.write(key, value);

  }

}

The main method of the job works similar to the earlier recipes.

There's more...

It is possible to improve the results by recalculating the cluster centroids in the reducer, 

splitting any clusters that have customers that are too far apart from each others, and 

rerunning the GRGPF algorithm with new clusters. More information about this can be found 

from Chapter 7, Clustering, of the book Mining of Massive Datasets, Anand Rajaraman 

and Jeffrey D. Ullman. The book can be found from http://infolab.stanford.
edu/~ullman/mmds.html.
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Collaborative iltering-based 
recommendations

This recipe will use collaborative iltering to make recommendations for customers in 
the Amazon dataset. As described in the introduction, collaborative iltering uses sales 
activities about a given user that is common with other users to deduce the best product 

recommendations for the irst user.

To implement collaborative iltering, we will cluster the users based on their behavior, and 
use items brought by members of a cluster to ind recommendations of each member of the 
cluster. We will use the clusters calculated in the earlier recipe.

Getting ready
The following steps show how to prepare to run the collaborative iltering example:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in a 

Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to Hadoop 

installation directory.

2. Start Hadoop by following the instructions in the irst chapter. 

3. This recipe assumes you are aware of how Hadoop processing works. If you have not 

already done so, you should follow the Writing a WordCount MapReduce Sample, 
Bundling it and running it using standalone Hadoop recipe from the irst chapter. 

4. This will use the results from the previous recipe of this chapter. Follow it if you have 

not done so already.

How to do it...

The following steps show how to prepare to run the collaborative iltering example:

1. Run the MapReduce job using the following command from HADOOP_HOME:

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
ClusterBasedRecommendation/data/output3 /data/output4

2. Read the results by running the following command. 

$bin/hadoopdfs -cat /data/output4/*

You will see that it will print the results as following. Here the key is the customer ID and the 

value is the list of recommendations for that customer.

A1JDFNG3KI9D1V  [ASIN=6300215539#title=The War of the Worlds#salesrank
=1#group=Video#rating=4#, ..]
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How it works...

Collaborative iltering uses the behavior of the users to decide on the best recommendations 

for each user. For that process, the recipe will use the following steps:

1. Group customers into several groups such that similar customers are in the same 

group and different customers are in different groups.

2. For making recommendations for each customer, we have looked at the other 

members in the same group and used the items bought by those members assuming 

that similar users would like to buy similar products.

3. When there are many recommendations, we have used the Amazon sales rank to 

select the recommendations.

For grouping the customers, we can use clustering techniques used in the earlier recipes. As a 

measure of the distance between customers we have used the distance measure introduced 

in the second recipe of this chapter that uses customer co-purchase information to decide on 

the similarity between customers.
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We have already clustered the customers to different groups in the earlier recipe. We would 

use those results to make recommendations.

You can ind the source for the recipe from src/chapter8/
ClusterBasedRecommendation.java. The map task for the job will look like the following:

public void map(Object key, Text value, Context context)

  throws IOException, InterruptedException {

{

  AmazonCustomeramazonCustomer = 

    newAmazonCustomer(value.toString() .replaceAll("[0-9]+\\s+", ""));

  context.write(new Text(amazonCustomer.clusterID),

    new Text(amazonCustomer.toString()));

}

The map task receives each line in the logile as a different key-value pair. It parses the  
lines using regular expressions and emits cluster ID as the key and the customer information 

as the value.

Hadoop will group different customer information emitted against the same customer ID and 

call the reducer once for each customer ID. Then, the reducer walks through the customers 

assigned to this cluster and creates a list of items as potential recommendations sorted by 

Amazon sales rank. Then it makes inal recommendations for a given user by removing any 
items that he has already brought.

public void reduce(Text key, Iterable<Text> values, Context context)  
  throws IOException, InterruptedException

{

  List<AmazonCustomer>customerList = 

     newArrayList<AmazonCustomer>();

  TreeSet<AmazonCustomer.SortableItemData> highestRated1000Items = 

    newTreeSet<AmazonCustomer.SortableItemData>();

  for (Text value : values) 

  {

    AmazonCustomer customer = 

      newAmazonCustomer(value.toString());

    for (ItemDataitemData : customer.itemsBrought) 

    {

      highestRated1000Items.add(

        customer.newSortableItemData(itemData));

      if (highestRated1000Items.size() > 1000) 
      {

        highestRated1000Items.remove(highestRated1000Items.last());

      }

    }

    customerList.add(customer);
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    }

    for (AmazonCustomeramazonCustomer : customerList)

    {

      List<ItemData>recemndationList = 

        newArrayList<AmazonCustomer.ItemData>();

      for (SortableItemDatasortableItemData : highestRated1000Items) 

      {

        if (!amazonCustomer.itemsBrought 
         .contains(sortableItemData.itemData))

        {

          recemndationList.add(sortableItemData.itemData);

        }

      }

      ArrayList<ItemData>finalRecomendations =  
        newArrayList<ItemData>();

      for (inti = 0; i< 10; i++) 

      {

        finalRecomendations.add(recemndationList.get(i));

      }

      context.write(new Text(amazonCustomer.customerID),  
        new Text(finalRecomendations.toString()));

    }

}

The main method of the job will work similar to the earlier recipes.

Classiication using Naive Bayes Classiier
A classiier assigns inputs into one of the N classes based on some properties (features)  

of inputs. Classiiers have widespread applications such as e-mail spam iltering, inding  
most promising products, selecting customers for closer interactions, and taking decisions  

in machine learning situations, and so on. Let us explore how to implement a classiier  
using a large dataset. For instance, a spam ilter will assign each e-mail to one of the  
two clusters—spam mail or not a spam mail.

There are many classiication algorithms. One of the simplest, but effective algorithms is 
Naive Bayesian classiier that uses the Bayes theorem. You can ind more information about 
Bayesian classiier from http://en.wikipedia.org/wiki/Naive_Bayes_classifier 

and Bayes theorem from http://betterexplained.com/articles/an-intuitive-
and-short-explanation-of-bayes-theorem/.
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For this recipe, we will also focus on the Amazon purchase dataset as before. We will look 

at several features about a product such as number of reviews received, amount of positive 

ratings, and number of known similar items to identify a product as potential to be within the 

irst 10,000 sales rank. We will use the Naive Bayesian classiier for classiications.

Getting ready
The following steps describe how to prepare to run Naive Bayesian example:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in a 

Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to Hadoop 

installation directory.

2. Start Hadoop by following the instructions in the irst chapter. 

3. This recipe assumes you are aware of how Hadoop processing works. If you have not 

already done so, you should follow the Writing the WordCount MapReduce sample, 
bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting 

Hadoop up and running in a Cluster.

How to do it...

The following steps describe how to run Naive Bayesian example. 

1. Download the dataset from Amazon product co-purchasing network metadata, 

http://snap.stanford.edu/data/amazon-meta.html and unzip it. We will 

call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If 

the /data directory is already there, clean it up.

$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1 

3. Unzip the source code for chapter 8 (chapter8.zip). We will call that folder 

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point 
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the CHAPTER_8_SRC 

directory.

6. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
NavieBayesProductClassifer/data/input1 /data/output5
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8. Read the results by running the following command. 

$ bin/hadoopdfs -cat /data/output5/*

9. You will see that it will print the results as following. You can use these values with 

Bayesian classiier to classify the inputs. 
postiveReviews>30       0.635593220338983

reviewCount>60  0.62890625

similarItemCount>150    0.5720620842572062

10. Verify the classiier using the following command. 
$ bin/hadoop-cp hadoop-cookbook-chapter8.jar chapter8.
NavieBayesProductClassifer

How it works...

The goal of this recipe is to look at some properties of a product and predict whether it will 

fall under the irst 10,000 products at Amazon by the sales rank. We call these properties 
features, and for this sample we will focus on the following three properties:

 f The number of review counts for a given a product (p.reviewCount)

 f The number of positive reviews for a given a product (p.positiveReviews)

 f The number of similar items for a given a product (p.similarItemCount)

In the following discussion, we will write P(p.salesrank<1000) to mean that the probability 

that the given item p is within irst 10,000 products and similar for other properties as well.

In this recipe, given a new product p, we want to ind P(p.salesrank< 1000) based on 

statistical distribution features in the products. Furthermore, we need to use MapReduce  

for the calculations.

The irst step is to understanding the equation for Naive Bayes Classiier. If A
p
, B

p
, and C

p
 are 

any three independent events (for example, A means p.reviewCount> 60) about a product p, 

and the following three a, b, and c are deined as follows, then we can write the equation for 
Naive Bayes Classiier.

a = P(Ap/ p.salesrank< 1000)

b = P(Bp/ p.salesrank< 1000)

c = P(Cp/ p.salesrank< 1000)

Here the slash suggests the conditional probability. For example, we read the irst line as a is 

the probability of event Ap occurring given that p.salesrank< 1000 has already occurred.
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Then using Bayes theorem we can write the following. The following equation provides the 

probability that the product will have a sales rank less than 1000 given three independent 

events A
p
, B

p
, and C

p
.

P(p.salesrank< 1000/ A
p
 and B

p
 and C

p
) = abc/(abc –(1-a).(1-b).(1-c)). 

Now let us focus on the real calculation. As A
p
, B

p
, C

p
, we will use following. 

 f A
p
: This is the probability that given item has more than 60 reviews

 f B
p
: This is the probability that given item has more than 30 positive reviews

 f C
p
: This is the probability that given item has more than 150 similar items. 

Then, we irst run the MapReduce task to calculate the probabilities—a=P(Ap/p.

salesrank<1000), b=P(Bp/p.salesrank<1000), and c=P(Cp/p.salesrank<1000). Then we 

will use those with above formula to classify a given product. You can ind the source for the 
classiier from src/chapter8/NavieBayesProductClassifer.java. The mapper 

function looks like the following:

private static final Text TOTAL = new Text("total");

private static final Text RCOUNT_GT_60 = 

  new Text("reviewCount>60");

private static final Text PREIVEWS_GT_30 = 

  new Text("postiveReviews>30");

private static final Text SIMILAR_ITEMS_GT_150 = 

  new Text("similarItemCount>150");

public void map(Object key, Text value, Context context)  
  throwsIOException, InterruptedException

  {

    List<AmazonCustomer>customerList =  
      AmazonCustomer.parseAItemLine(value.toString());

    intsalesRank = -1;

    intreviewCount = 0;

    intpostiveReviews = 0;

    intsimilarItemCount = 0;

    for (AmazonCustomer customer : customerList)

    {

      ItemDataitemData = customer.itemsBrought.iterator().next();

      reviewCount++;

      if (itemData.rating> 3) 

      {

        postiveReviews++;

      }

      similarItemCount = similarItemCount + 
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       itemData.similarItems.size();

    if (salesRank == -1) 

    {

      salesRank = itemData.salesrank;

    }

  }

  boolean isInFirst10k = (salesRank<= 10000);

  context.write(TOTAL, new BooleanWritable(isInFirst10k));

  if (reviewCount> 60) 

  {

    context.write(RCOUNT_GT_60, 

      newBooleanWritable(isInFirst10k));

  }

  if (postiveReviews> 30) 

  {

    context.write(PREIVEWS_GT_30, 

      newBooleanWritable(isInFirst10k));

  }

  if (similarItemCount> 150) 

  {

    context.write(SIMILAR_ITEMS_GT_150, 

      newBooleanWritable(isInFirst10k));

  }

}

The mapper function walks thorugh each product and for each, it evaluates the features. If 

the feature evaluates to be true, it emits the feature name as the key and notiies whether the 
product is within the irst 10,000 products as the value.

MapReduce invokes the reducer once for each feature. Then each reduce job receives all 

values for which the feature is true, and it calculates the probability that given the feature is 

true, the product is within the irst 10,000 products in the sales rank.

public void reduce(Text key, Iterable<BooleanWritable> values,  
  Context context) throws IOException, InterruptedException 

{

  int total = 0;

  int matches = 0;

  for (BooleanWritable value : values) 

  {

    total++;

    if (value.get())  
    {

      matches++;
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    }

  }

  context.write(new Text(key), 

    newDoubleWritable((double) matches / total));

}

Given a product, we will examine and decide following:

 f Does it have more than 60 reviews?

 f Does it have more than 30 positive reviews?

 f Does it have more than 150 positive items?

We would use the above to decide what are the events A, B, C and we can calculate a, b, and 

c accordingly using P1, P2, and P3 calculated using MapReduce task. The following code 

implements this logic:

public static booleanclassifyItem(intsimilarItemCount,  
  intreviewCount, intpostiveReviews)

{

  double reviewCountGT60 = 0.8; 

  double postiveReviewsGT30 = 0.9; 

  double similarItemCountGT150 = 0.7; 

  double a , b, c; 

  if (reviewCount> 60) 

  {

    a = reviewCountGT60; 

  }

  else

  {

    a= 1 - reviewCountGT60; 

  }

  if (postiveReviews> 30) 

  {

    b = postiveReviewsGT30; 

  }

  else

  {

  b = 1- postiveReviewsGT30;

  }

  if (similarItemCount> 150) 

    {

      c = similarItemCountGT150; 

    }

    else
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    {

      c = 1- similarItemCountGT150;

    }

    double p = a*b*c/ (a*b*c + (1-a)*(1-b)*(1-c)); 

    return p > 0.5; 

}

When you run the classiier testing the logic, it will load the data generated by the MapReduce 
job and classify 1000 randomly selected products.

Assigning advertisements to keywords using 
the Adwords balance algorithm

Advertisements have become a major medium of revenue for the Web. It is a billion-dollar 

business, and the source of the most Google revenue. Further, it has made it possible for 

companies such as Google to run their main services free of cost, while collecting their 

revenue through advertisements.

Let us explore how we can implement a simple "Adwords" style algorithm using MapReduce.

Adwords lets people bid for keywords. For example, the advertiser "A" can bid for keywords 

"Hadoop Support" for 2$ and provided a maximum budget of 100$, and the advertiser "B" 

would bid for keywords "Hadoop Support" for 1.50$ and provided a maximum budget of 200$. 

When a user searches for a document with given keywords, the system will choose one or 

more advertisements among the bids for these keywords. Advertisers will pay only if a user 

clicks on the advertisement.

Adwords problem is to show advertisements such that it will maximize revenue. There are 

several factors in the play while designing such a solution:

 f Only user clicks, not showing the advertisement, will get us money. Hence, we want 

to show advertisements that are more likely to be clicked often. We measure this as 

fraction of time an advertisement was clicked as oppose to how many times it was 

shown. We call this "click-through rate" for a keyword.

 f We want to show people with large budgets, as those are likely be ones that are hard 

to spend as opposed to smaller budgets.

In this recipe, we will implement a simpliied version of the Adwords balance algorithm that 
can be used in such situations. For simplicity, we will assume that advertisers only bid on 

single words. Also, as we cannot ind a real bid dataset, we will generate a sample bid dataset.
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Assume that you are to support a keyword-based advertisement using the Amazon dataset. 

The recipe will work as follows:

 f The irst MapReduce task will approximate the click-through rate of the keyword using 
Amazon sales index. Here, we assume that the keywords that are found in the title of 

the products with higher sales rank will have a better click-through rate.

 f Then we will run a Java task to generate a bid dataset.

 f Then the second MapReduce task will group bids for the same product together 

and create an output that is appropriate to be used by advertisement assignment 

program.

 f Finally, we will use an advertisement assignment program to assign keywords to 

advertisers. We would use Adword balance algorithm, which uses the following 

formula. The following formula assigns priority based on the fraction of unspent 

budget owned by each advertiser, bid value, and click-through rate.

Measure = bid value * click-through rate * (1-e^(-1*current budget/ initial budget))
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Getting ready
The following steps describe how to prepare to run the Adwords sample:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in 

a Cluster and have installed Hadoop. We will use HADOOP_HOME to refer to Hadoop 

installation directory.

2. Start Hadoop by following the instructions in Chapter 1, Getting Hadoop up and 

running in a Cluster.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not 

already done so, you should follow the Writing the WordCount MapReduce sample, 
bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting 

Hadoop up and running in a Cluster.

How to do it...

The following steps describe how to run the Adwords sample:

1. Download the dataset from Amazon product co-purchasing network metadata, 

http://snap.stanford.edu/data/amazon-meta.html and unzip it. We call 

this DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If the 

/data directory is already there, clean it up. This dataset is large, and might take a 

long time if you try to run it with a single computer. You might want to only upload the 

irst 50,000 lines or so of the dataset if you need the sample to run quickly.
$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1 

3. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder 

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point 
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the  

CHAPTER_8_SRC directory.

6. Copy the build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.adwords.
ClickRateApproximator/data/input1 /data/output6
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8. Download the results to your computer by running the following command:

$ bin/hadoopdfs -get /data/output6/part-r-00000clickrate.data

9. You will see that ile contains the results as following. You can use these values with 
Bayes classiier to classify the inputs. 
keyword:(Annals 74

keyword:(Audio  153

keyword:(BET    95

keyword:(Beat   98

keyword:(Beginners)     429

keyword:(Beginning      110

10. Generate a bid dataset by running the following command from HADOOP_HOME.  

You can ind the results in a biddata.data ile.
$ java -cp build/lib/hadoop-cookbook-chapter8.jar chapter8.
adwords.AdwordsBidGenerator clickrate.data

11. Create a directory called /data/input2 and upload the bid dataset and results 

from the earlier MapReduce task to the /data/input2 directory of HDFS.

$ bin/hadoopdfs -put clickrate.data /data/input2

$ bin/hadoopdfs -put biddata.data /data/input2

12. Generate the data to be used by Adwords dataset by running the second  

MapReduce job.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.adwords.
AdwordsBalanceAlgorithmDataGenerator/data/input2 /data/output7

13. Download the results to your computer by running the following command:

$ bin/hadoopdfs -get /data/output7/part-r-00000adwords.data

14. You will see that it will print the results as follows:

(Animated       client23,773.0,5.0,97.0|

(Animated)      client33,310.0,8.0,90.0|

(Annals         client76,443.0,13.0,74.0|

client51,1951.0,4.0,74.0|

(Beginners)     client86,210.0,6.0,429.0|

client6,236.0,5.0,429.0|

(Beginning      client31,23.0,10.0,110.0|
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15. Perform the matches for a random set of keywords by running the following command:

$ javajar hadoop-cookbook-chapter8.jar chapter8.adwords.
AdwordsAssigneradwords.data

How it works...

As we discussed in the How to do it... section, the recipe consists of two MapReduce tasks. 

You can ind the source code for the irst MapReduce task from src/chapter8/adwords/
ClickRateApproximator.java.

The mapper function looks like the following. It parses the Amazon dataset using the Amazon 

data format, and for each word in each product title, it emits the word and the sales ranks of 

that product.

public void map(Object key, Text value, Context context) 

{

  ItemDataitemData = null; 

  List<AmazonCustomer>customerList = 

    AmazonCustomer.parseAItemLine(value.toString());

  if(customerList.size() == 0)

  {

    return;

  }

  for (AmazonCustomer customer : customerList) 

  {

    itemData = customer.itemsBrought.iterator().next();

    break;

  }

  String[] tokens = itemData.title.split("\\s");

  for(String token: tokens)

  {

    if(token.length() > 3)

    {

      context.write(new Text(token),  
        new IntWritable(itemData.salesrank));

    }

  }

}



Chapter 8

219

Then, Hadoop sorts the emitted key-value pairs by keys and invokes the reducer once for each 

key passing the values emitted against that key. As shown in the following code, the reducer 

calculates an approximation for the click rate using sales ranks emitted against the key.

public void reduce(Text key, Iterable<IntWritable> values,  
  Context context) throws IOException, InterruptedException 

{

  doubleclickrate = 0; 

  for(IntWritableval: values)

  {

    if(val.get() > 1)

    {

      clickrate = clickrate + 1000/Math.log(val.get());

    }

    else

    {

      clickrate = clickrate + 1000;

    }

  }

  context.write(new Text("keyword:" +key.toString()), 

    newIntWritable((int)clickrate)); 

}

There is no publicly available bid dataset. Therefore, we will generate a random bid data set 

for our recipe using AdwordsBidGenerator. It would read the keywords generated by the earlier 

recipe and generate a random bid dataset.

Then we will use the second MapReduce task to merge the bid data set with click-through 

rate and generate a dataset that has bids' information sorted against the keyword. You 

can ind the source for the second MapReduce task from src/chapter8/adwords/
AdwordsBalanceAlgorithmDataGenerator.java. The mapper function looks  

like the following:

public void map(Object key, Text value, Context context)  
  throws IOException, InterruptedException 

{

  String[] keyVal = value.toString().split("\\s");

  if (keyVal[0].startsWith("keyword:")) 

  {

    context.write(

      new Text(keyVal[0].replace("keyword:", "")), 

      new Text(keyVal[1]));

  }

  else if (keyVal[0].startsWith("client")) 

  {

    List<String[]> bids = new ArrayList<String[]>();
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    double budget = 0;

    String clientid = keyVal[0];

    String[] tokens = keyVal[1].split(",");

    for (String token : tokens) 

    {

      String[] kp = token.split("=");

      if (kp[0].equals("budget")) 

      {

        budget = Double.parseDouble(kp[1]);

      }

      else if (kp[0].equals("bid")) 

      {

        String[] bidData = kp[1].split("\\|");

        bids.add(bidData);

      }

    }

    for (String[] bid : bids) 

    {

      String keyword = bid[0];

      String bidValue = bid[1];

      context.write(new Text(keyword), 

        new Text(new StringBuffer()

        .append(clientid).append(",")

      .append(budget).append(",")

      .append(bidValue).toString()));

    }

  }

}

The mapper function reads both the bid data set and click-through rate datasets and emits 

both types of data against the keyword. Then, each reducer receives all bids and associated 

click-through data for each keyword. Then the reducer merges the data and emits a list of bids 

against each keyword.

public void reduce(Text key, Iterable<Text> values, 

  Context context) throws IOException, InterruptedException 

{

  String clientid = null;

  String budget = null;
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  String bid = null;

  String clickRate = null;

  List<String>bids = new ArrayList<String>();

  for (Text val : values) 

  {

    if (val.toString().indexOf(",") > 0) 

    {

      bids.add(val.toString());

    }

    else

      {

        clickRate = val.toString();

      }

    }

    StringBufferbuf = new StringBuffer();

    for (String bidData : bids) 

    {

      String[] vals = bidData.split(",");

      clientid = vals[0];

      budget = vals[1];

      bid = vals[2];

      buf.append(clientid).append(",")

       .append(budget).append(",")

       .append(Double.valueOf(bid)).append(",")

       .append(Math.max(1, Double.valueOf(clickRate)));

      buf.append("|");

    }

    if (bids.size() > 0) 

    {

      context.write(key, new Text(buf.toString()));

    }

}

Finally, the Adwords assigner loads the bids data and stores them against the keywords in the 

memory. Given a keyword, the Adwords assigner inds the bid that has maximum value for the 
following equation and selects a bid among all the bids for advertisement:

Measure = bid value * click-through rate * (1-e^(-1*current budget/ initial budget))
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There's more...

The preceding recipe assumes that Adwords assigner can load all the data in the memory to 

make advertisements assignment decisions. However, if the dataset is big, we can partition 

the dataset among multiple computers by keywords (for example, assign keywords that start 

with "A-D" to the irst computer and so on). 

This recipe assumes that users only bid for single words. However, to support multiple 

keyword bids, we would need to combine the click-through rates, and the rest of the  

algorithm can proceed as before.

More information about online advertisement can be found from the book, Mining of  

Massive Datasets, by Anand Rajaraman and Jeffrey D. Ullman. This book can be found  

at http://infolab.stanford.edu/~ullman/mmds.html.
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Mass Text Data 

Processing

In this chapter, we will cover:

 f Data preprocessing (extract, clean, and format conversion) using Hadoop Streaming 

and Python

 f Data de-duplication using Hadoop Streaming

 f Loading large datasets to an Apache HBase data store using importtsv and 

bulkload tools

 f Creating TF and TF-IDF vectors for the text data

 f Clustering the text data

 f Topic discovery using Latent Dirichlet Allocation (LDA)

 f Document classiication using Mahout Naive Bayes classiier

Introduction
Hadoop MapReduce together with the supportive set of projects makes for a good framework 

choice to process large text datasets and to perform ETL-type operations.

In this chapter, we'll be exploring how to use Hadoop Streaming to perform data preprocessing 

operations such as data extraction, format conversion, and de-duplication. We'll also use HBase 

as the data store to load the data and will explore mechanisms to perform large data loads to 

HBase with minimal overhead. Towards the end of the chapter, we'll look in at performing text 

analytics operations using the Apache Mahout algorithms.
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Data preprocessing (extract, clean, and 
format conversion) using Hadoop Streaming 
and Python

Data preprocessing is an important and often required component in data analytics. Data 

preprocessing becomes even more important when consuming unstructured text data 

generated from multiple sources. Data preprocessing steps include operations such as 

cleaning the data, extracting important features from data, removing duplicate items from  

the datasets, converting data formats, and many more.

Hadoop MapReduce provides an ideal environment to perform these tasks in parallel with 

massive datasets. Apart from the ability to implement Java MapReduce programs, Pig, and 

Hive scripts to preprocess these data, Hadoop also provides several useful tools and features 

that we can utilize to perform these data preprocessing operations. One such feature is the 

support of different InputFormat classes, providing us with the ability to support proprietary 

data formats by implementing custom InputFormat classes. Another feature is the Hadoop 

Streaming feature, which allows us to use our favorite scripting languages to perform the 

actual data cleansing and extraction, while Hadoop parallelizes the computation to hundreds 

of compute and storage resources.

In this recipe, we are going to use Hadoop Streaming with a Python script-based mapper to 

perform data extraction and format conversion.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it...

The following steps show you how to clean and extract data from the 20news dataset and 

store the data as a tab-separated value (TSV) ile:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS. In order to preserve the compute time and 

resources, you can use only a subset of the dataset; use the following command to 

upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/Hadoop fs –put  <extracted_folder> 20news-all
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3. Extract the resource package for this chapter and copy the MailPreProcessor.py 

Python script to $HADOOP_HOME.

4. Run the following Hadoop Streaming command:

>bin/hadoop jar \

  ../contrib/streaming/hadoop-streaming-VERSION.jar \

  -input 20news-all\

  -output 20news-cleaned\

  -mapper MailPreProcessor.py \

  -file MailPreProcessor.py

5. Inspect the results by using the following command:

>bin/hadoopd fs –cat 20news-cleaned/part-00000

How it works...

Hadoop uses the default TextInputFormat class as the input speciication for the 
preceding computation. Usage of the TextInputFormat class generates a map task 

for each ile in the input dataset and generates a map input record for each line. Hadoop 
Streaming provides the input to the map application through the standard input.

line =  sys.stdin.readline();

while line:

….

  if (doneHeaders):

    list.append( line )

  elif line.find( "Message-ID:" ) != -1:

    messageID = line[ len("Message-ID:"):]

  ….

  elif line == "":

    doneHeaders = True

line = sys.stdin.readline();

The previous Python code reads the input lines from the standard input until the end of ile 
is reached. We parse the headers of the news group ile till we encounter the empty line 
demarcating the headers from the message contents. The message content will be read  

into a list line by line.

value = ' '.join( list )

value = fromAddress + "\t" ……"\t" + value

print '%s\t%s' % (messageID, value)
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The preceding code segment merges the message content to a single string and constructs 

the output value of the Streaming application as a tab-delimited set of selected headers 

followed by the message content. The output key value is the Message-ID header extracted 

from the input ile. The output is written to the standard output by using a tab to delimit the 
key and the value.

There's more...

We can generate the output of the preceding computation in the Hadoop SequenceFile 

format by specifying SequenceFileOutputFormat as the OutputFormat class of the 

Streaming computations.

>bin/hadoop jar \

  ../contrib/streaming/hadoop-streaming-1.0.4.jar\

  -input 20news-all \

  -output 20news-seq \

  -mapper MailPreProcessor.py \

  -outputformat \

  org.apache.hadoop.mapred.SequenceFileOutputFormat \

  -file MailPreProcessor.py

It is a good practice to store the data as SequenceFiles after the irst pass of the  
input data, as SequenceFiles take less space and support compression. You can  

use bin/hadoopdfs -text <path to sequencefile> to dump the contents  

of a SequenceFile format to text.

>bin/hadoop dfs –text 20news-seq/part-00000

However, for the preceding command to work, any writable classes that are used in the 

SequenceFile format should be available in the Hadoop classpath.

See also
 f Using Hadoop with legacy applications – Hadoop Streaming in Chapter 4, Developing 

Complex Hadoop MapReduce Applications.

 f Adding support for new input data formats – implementing a custom InputFormat in 

Chapter 4, Developing Complex Hadoop MapReduce Applications.

 f More information on Hadoop Streaming can be found at http://hadoop.apache.
org/docs/r1.0.4/streaming.html.
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Data de-duplication using Hadoop Streaming
Often, the datasets contain duplicate items that need to be eliminated to ensure the  

accuracy of the results. In this recipe, we use Hadoop to remove the duplicate mail records 

in the 20news dataset. These duplicate records are due to the user's cross-posting the same 

message to multiple news boards.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it...

The following steps show how to remove duplicate mails, due to cross-posting across the lists, 

from the 20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS. In order to preserve the compute time and 

resources, you may use only a subset of the dataset:

>bin/hadoop fs -mkdir 20news-all

>bin/hadoop fs –put  <extracted_folder> 20news-all

3. We are going to use the MailPreProcessor.py Python script from the previous 

recipe, Data extract, cleaning and format conversion using Hadoop Streaming 

as the mapper. Extract the resource package for this chapter and copy the 

MailPreProcessor.py and the MailPreProcessorReduce.py Python  

scripts to the $HADOOP_HOME folder.

4. Execute the following command:

>bin/hadoop jar \

  ../contrib/streaming/hadoop-streaming-1.0.4.jar \

  -input 20news-all\

  -output 20news-dedup\

  -mapper MailPreProcessor.py \

  -reducer MailPreProcessorReduce.py \

  -file MailPreProcessor.py\

  -file MailPreProcessorReduce.py
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5. Inspect the results using the following command:

>bin/hadoop dfs –cat 20news-dedup/part-00000

How it works...

Mapper Python script outputs the message ID as the key. We use the message ID to identify 

the duplicated messages that are a result of cross-posting across different newsgroups.

Hadoop Streaming provides the Reducer input records of the each key group line by line to 

the Streaming reducer application through the standard input. However, Hadoop Streaming 

does not have a mechanism to distinguish when it starts to feed records of a new key to the 

process. The Streaming reducer applications need to keep track of the input key to identify 

new groups. Since we output the mapper results using the MessageID header as the key, 

the Reducer input gets grouped by MessageID. Any group with more than one value (that is, 

message) per MessageID contains duplicates. 

#!/usr/bin/env python

import sys;

currentKey = ""

for line in sys.stdin:

  line = line.strip()

  key, value = line.split('\t',1)

  if currentKey == key :

    continue

  print '%s\t%s' % (key, value)

In the previous script, we use only the irst value (message) of the record group and discard 
the others, which are the duplicate

See also
 f Using Hadoop with legacy applications – Hadoop Streaming from Chapter 4, 

Developing Complex Hadoop MapReduce Applications.

 f Data extract, cleaning, and format conversion using Hadoop Streaming.

 f More information on Hadoop Streaming can be found at  

http://hadoop.apache.org/docs/r1.0.4/streaming.html.
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Loading large datasets to an Apache  
HBase data store using importtsv and 
bulkload tools

Apache HBase data store is very useful when storing large-scale data in a semi-structured 

manner, so that they can be used for further processing using Hadoop MapReduce programs 

or to provide a random access data storage for client applications. In this recipe, we are going 

to import a large text dataset to HBase using the importtsv and bulkload tools.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Install and deploy Apache HBase in the distributed mode. Refer to the Deploying HBase 

on a Hadoop cluster recipe in this chapter for more information. Export the HBASE_HOME 

environment variable to point to your HBase installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it…

The following steps show you how to load the TSV-converted 20news dataset into an  

HBase table:

1. Follow the Data extract, cleaning, and format conversion using Hadoop Streaming 
and Python recipe to perform the preprocessing of data for this recipe. We assume 

that the output of the following fourth step of that recipe is stored in a HDFS folder 

named 20news-cleaned:

>bin/hadoop jar \

    ../contrib/streaming/hadoop-streaming-VERSION.jar \

    -input 20news-all \

    -output 20news-cleaned \

    -mapper MailPreProcessor.py \

    -file MailPreProcessor.py

2. Go to HBASE_HOME and start the HBase Shell:

>cd $HBASE_HOME

>bin/hbase shell
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3. Create a table named 20news-data by executing the following command in the 

HBase Shell. Older versions of the importtsv (used in the next step) command can 

handle only a single column family. Hence, we are using only a single column family 

when creating the HBase table:

hbase(main):001:0> create '20news-data,'h'

4. Go to HADOOP_HOME and execute the following command to import the preprocessed 

data to the previously created HBase table:

> bin/hadoop jar \

  $HBASE_HOME/hbase-<VERSION>.jar importtsv \

  -Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg \

  20news-data 20news-cleaned

5. Go to the HBASE_HOME. Start the HBase Shell. Use the count and scan commands 

of the HBase Shell to verify contents of the table:

hbase(main):010:0> count '20news-data'            

12xxx row(s) in 0.0250 seconds

hbase(main):010:0> scan '20news-data', {LIMIT => 10}

ROW                                       COLUMN+CELL

<1993Apr29.103624.1383@cronkite.ocis.te column=h:c1, 

timestamp=1354028803355, value= katop@astro.ocis.temple.edu 

(Chris Katopis)>

<1993Apr29.103624.1383@cronkite.ocis.te column=h:c2, 

timestamp=1354028803355, value= sci.electronics

......

The following are the steps to load the 20news dataset to an HBase table using the 

bulkload feature:

1. Follow steps 1 to 3, but create the table with a different name:

hbase(main):001:0> create '20news-bulk','h'
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2. Go to HADOOP_HOME. Use the following command to generate an HBase  

bulkload dataile:
>bin/hadoop jar \

  $HBASE_HOME/hbase-<VERSION>.jar importtsv\

  -Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg \

  -Dimporttsv.bulk.output=hbaseloaddir \

  20news-bulk-source20news-cleaned

3. List the iles to verify that the bulkload datailes are generated:
>bin/hadoop fs -ls 20news-bulk-source

......

drwxr-xr-x   - thilinasupergroup          0 2012-11-27 10:06 /
user/thilina/20news-bulk-source/h

>bin/hadoopfs -ls20news-bulk-source/h

-rw-r--r--   1 thilinasupergroup      19110 2012-11-27 10:06 /
user/thilina/20news-bulk-source/h/4796511868534757870

4. The following command loads the data to the HBase table by moving the output iles 
to the correct location:

>bin/hadoop jar $HBASE_HOME/hbase-<VERSION>.jar \

completebulkload 20news-bulk-source 20news-bulk 
......

12/11/27 10:10:00 INFO mapreduce.LoadIncrementalHFiles: Trying 
to load hfile=hdfs://127.0.0.1:9000/user/thilina/20news-bulk-
source/h/4796511868534757870 first= <1993Apr29.103624.1383@
cronkite.ocis.temple.edu>last= <stephens.736002130@ngis>

......

5. Go to HBASE_HOME. Start the HBase Shell. Use the count and scan commands of 

the HBase Shell to verify the contents of the table:

hbase(main):010:0> count 'datatsvbulk'              

hbase(main):010:0> scan 'datatsvbulk', {LIMIT => 10}
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How it works...

The MailPreProcessor.py Python script extracts a selected set of data ields from the 
news board message and outputs them as a tab-separated dataset.

value = fromAddress + "\t" + newsgroup 

+"\t" + subject +"\t" + value

print '%s\t%s' % (messageID, value)

We import the tab-separated dataset generated by the Streaming MapReduce computations 

to Hbase using the importtsv tool. The importtsv tool requires the data to have no other 

tab characters except for the tab characters separating the data ields. Hence, we remove any 
tab characters in the input data using the following snippet of the Python script:

line = line.strip()

line = re.sub('\t',' ',line)

The importtsv tool supports loading data to HBase directly using the Put operations as well 

as by generating the HBase internal HFiles. The following command loads the data to HBase 

directly using the Put operations. Our generated dataset contains a key and four ields in the 
values. We specify the data ields to table column name mapping for the dataset using the 
-Dimporttsv.columns parameter. This mapping consists of listing the respective table 

column names in the order of the tab-separated data ields in the input dataset:

>bin/hadoop jar \

  $HBASE_HOME/hbase-<VERSION>.jar importtsv \ 
  -Dimporttsv.columns=<data field to table column mappings> \  
  <HBasetablename> <hdfs input directory>

We can use the following command to generate HBase HFiles for the dataset. These HFiles 

can be directly loaded to HBase, without going through the HBase APIs, thereby reducing the 

amount of CPU and network resources needed.

>bin/hadoop jar 

  $HBASE_HOME/hbase-<VERSION>.jar importtsv \

  -Dimporttsv.columns=<filed to column mappings> \ 

  -Dimporttsv.bulk.output=<path for hfile output> \

  <HBasetablename> <hdfs input directory>
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These generated HFiles can be loaded into HBase tables by simply moving the iles to the right 
location. This is done by using the completebulkload command:

>bin/hadoop jar $HBASE_HOME/hbase-<VERSION>.jar \

completebulkload <path for hfiles> <table name>

There's more...

You can use the importtsv tool with datasets with other dataile separator characters  
as well by specifying the -Dimporttsv.separator parameter. The following is an example 

of using a comma as the separator character to import a comma-separated dataset into a 

HBase table.

>bin/hadoop jar \

  $HBASE_HOME/hbase-<VERSION>.jar importtsv \

  '-Dimporttsv.separator=,' \

  -Dimporttsv.columns=<data field to table column mappings> \ 

  <HBasetablename><hdfs input directory>

Look out for Bad Lines in the MapReduce job console output or in the Hadoop monitoring 

console. One reason is having unwanted delimiter characters. In the preceding Python script, 

we remove any extra tabs in the message; here is the message displayed in the job console:

12/11/27 00:38:10 INFO mapred.JobClient: ImportTsv

12/11/27 00:38:10 INFO mapred.JobClient: Bad Lines=2

Data de-duplication using HBase
HBase supports storing multiple versions of column values for each record. When querying, 

HBase returns the latest version of values, unless we specify a speciic time period. This 
feature of HBase can be used to perform automatic de-duplication by making sure we use the 

same RowKey value for duplicate values. In our 20news example, we use MessageID as the 

RowKey value for the records, thus ensuring that duplicate messages will appear as different 

versions of the same data record.

HBase allows us to conigure the maximum or the minimum number of versions per column 
family. Setting maximum number of versions to a low value will reduce the data usage by 

discarding the older versions. Refer to http://hbase.apache.org/book/schema.
versions.html for more information on setting the maximum or minimum number of versions.
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See also
 f Installing HBase in Chapter 5, Hadoop Ecosystem.

 f Running MapReduce jobs on HBASE(table input/output) in Chapter 5,  

Hadoop Ecosystem.

 f Deploying HBase on a Hadoop cluster.

Creating TF and TF-IDF vectors for the text 
data

Most of the text analysis data mining algorithms operate on vector data. We can use a vector 

space model to represent text data as a set of vectors. For an example, we can build a vector 

space model by taking the set of all terms that appear in the dataset and by assigning an 

index to each term in the term set. Number of terms in the term set is the dimensionality 

of the resulting vectors and each dimension of the vector corresponds to a term. For each 

document, the vector contains the number of occurrences of each term at the index location 

assigned to that particular term. This creates vector space model using term frequencies in 

each document, similar to the result of the computation we perform in the Generating an 

inverted index using Hadoop MapReduce recipe of Chapter 7, Searching and Indexing.

The term frequencies and the resulting document vectors
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However, creating vectors using the preceding term count model gives a lot of weight to 

the terms that occur frequently across many documents (for example, the, is, a, are, was, 

who, and so on), although these frequent terms have only a very minimal contribution when 

it comes to deining the meaning of a document. The Term frequency-inverse document 

frequency (TF-IDF) model solves this issue by utilizing the inverted document frequencies 

(IDF) to scale the term frequencies (TF). IDF is typically calculated by irst counting the 
number of documents (DF) the term appears in, inversing it (1/DF), and normalizing it by 
multiplying with the number of documents and using the logarithm of the resultant value as 

shown roughly by the following equation:

TF-IDF
i
=  TF

i
 X log (N/DF

i
)

In this recipe, we'll create TF-IDF vectors from a text dataset using a built-in utility tool of 

Apache Mahout.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point 

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5, 

Hadoop Ecosystem, for more information on installing Mahout.

How to do it…

The following steps show you how to build a vector model of the 20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/Hadoop fs –put  <extracted_folder> 20news-all

3. Go to MAHOUT_HOME. Generate Hadoop sequence iles from the uploaded text data:
>bin/mahout seqdirectory -i 20news-all -o 20news-seq

4. Generate TF and TF-IDF sparse vector models from the text data in the  

sequence iles:
>bin/mahout seq2sparse –i 20news-seq  -o 20news-vector   
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This launches a series of MapReduce computations, as shown in the following 

screenshot; wait for the completion of these computations:

5. Check the output folder by using the following command. The tfidf-vectors  

folder contains the TF-IDF model vectors, the tf-vectors folder contains the  

term count model vectors and the dictionary.file-0 folder contains the term  

to term-index mapping.

>/bin/hadoop dfs -ls 20news-vector

Found 7 items

drwxr-xr-x   - usupergroup          0 2012-11-27 16:53 /user/
u/20news-vector /df-count

-rw-r--r--   1 usupergroup       7627 2012-11-27 16:51 /user/
u/20news-vector/dictionary.file-0

-rw-r--r--   1 usupergroup       8053 2012-11-27 16:53 /user/
u/20news-vector/frequency.file-0

drwxr-xr-x   - usupergroup          0 2012-11-27 16:52 /user/
u/20news-vector/tf-vectors

drwxr-xr-x   - usupergroup          0 2012-11-27 16:54 /user/
u/20news-vector/tfidf-vectors

drwxr-xr-x   - usupergroup          0 2012-11-27 16:50 /user/
u/20news-vector/tokenized-documents

drwxr-xr-x   - usupergroup          0 2012-11-27 16:51 /user/
u/20news-vector/wordcount
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6. Optionally, you can also use the following command to dump the TF-IDF vectors as 

text. The key is the ilename and the contents of the vectors are in the format <term 
index>:<TF-IDF value>:

>bin/mahout seqdumper -i 20news-vector/tfidf-vectors/part-r-00000

……

Key class: class org.apache.hadoop.io.Text Value Class: class org.
apache.mahout.math.VectorWritable

Key: /54492: Value: {225:3.374729871749878,400:1.5389964580535889,
321:1.0,324:2.386294364929199,326:2.386294364929199,315:1.0,144:2.
0986123085021973,11:1.0870113372802734,187:2.652313232421875,134:2
.386294364929199,132:2.0986123085021973,......}

……

How it works…

Hadoop sequence iles store the data as binary key-value pairs and supports data 

compression. Mahout's seqdirectory command converts the text iles into Hadoop 
SequenceFile by using the ilename of the text ile as the key and the contents of the text 
ile as the value. The seqdirectory command stores all the text contents into a single 

SequenceFile. However, it's possible for us to specify a chuck size to control the actual 

storage of the SequenceFile data blocks in the HDFS. Following are a selected set of 

options for the seqdirectory command:

> bin/mahout seqdirectory –i <HDFS path to text files>

   -o <HDFS output directory for sequence file>

   -ow                   If present, overwrite the output directory

   -chunk<chunk size>    In MegaBytes.Defaults to 64mb

   -prefix<keyprefix>    The prefix to be prepended to the key

The seq2sparse command is an Apache Mahout tool that supports the generation of 

sparse vectors from SequenceFiles containing text data. It supports the generation of 

both TF as well as TF-IDF vector models. This command executes as a series of MapReduce 

computations. Following are a selected set of options for the seq2sparse command:

bin/mahout seq2sparse -i <HDFS path to the text sequence file>

  -o <HDFS output directory>

  -wt{tf|tfidf} 

  -chunk <max dictionary chunksize inmb to keep in memory>

  --minSupport<minimum support>

  --minDF<minimum document frequency>

  --maxDFPercent<MAX PERCENTAGE OF DOCS FOR DF
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minSupport is the minimum frequency for the word to be considered as a feature. minDF is 

the minimum number of documents the word needs to be in. maxDFPercent is the maximum 

value of the expression (document frequency of a word/total number of documents) in order 
for that word to be considered as a good feature in the document. This helps remove high 

frequency features such as stop words.

You can use the Mahout seqdumper command to dump the contents of a SequenceFile 

format that uses the Mahout Writable data types as plain text:

bin/mahout seqdumper -i <HDFS path to the sequence file>

   -o <output directory>

   --count             Output only the number of key value pairs.

   --numItems          Max number of key value pairs to output

   --facets            Output the value counts per key.

See also
 f Generating an inverted index using Hadoop MapReduce in Chapter 7,  

Searching and Indexing.

 f Mahout documentation on creating vectors from text data at 
https://cwiki.apache.org/confluence/display/MAHOUT/
Creating+Vectors+from+Text.

Clustering the text data 
Clustering plays an integral role in data mining computations. Clustering groups together 

similar items of a dataset by using one or more features of the data items based on the 

use-case. Document clustering is used in many text mining operations such as document 

organization, topic identiication, information presentation, and so on. Document 
clustering shares many of the mechanisms and algorithms with traditional data clustering 

mechanisms. However, document clustering has its unique challenges when it comes to 

determining the features to use for clustering and when building vector space models to 

represent the text documents.

The Running K-Means with Mahout recipe of Chapter 5, Hadoop Ecosystem, focuses on 

using Mahout K-Means clustering from Java code to cluster a statistics data. The Hierarchical 

clustering and Clustering an Amazon sales dataset recipes of Chapter 8, Classiications, 
Recommendations, and Finding Relationships, focuses on using clustering to identify 

customers with similar interests. These three recipes provide a more in-depth understanding 

of using clustering algorithms in general. This recipe focuses on exploring two of the several 

clustering algorithms available in Apache Mahout for document clustering.
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Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point 

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5, 

Hadoop Ecosystem, for more information on installing Mahout.

How to do it...

The following steps use the Apache Mahout K-Means clustering algorithm to cluster the 

20news dataset:

1. Follow the Creating TF and TF-IDF vectors for the text data recipe in this chapter and 

generate TF-IDF vectors for the 20news dataset. We assume that the TF-IDF vectors 

are in the 20news-vector/tfidf-vectors folder of the HDFS.

2. Go to the MAHOUT_HOME.

3. Execute the following command to execute the K-Means clustering computation:

>bin/mahout kmeans \

  --input 20news-vector/tfidf-vectors \

  --clusters 20news-seed/clusters \

  --output 20news-km-clusters \

  --distanceMeasure \

  org.apache.mahout.common.distance. 
    SquaredEuclideanDistanceMeasure-k 10 --maxIter 20 --clustering 

4. Execute the following command to convert the clusters to text:

>bin/mahout clusterdump \

  -i20news-km-clusters/clusters-*-final\

  -o 20news-clusters-dump \

  -d 20news-vector/dictionary.file-0 \

  -dt sequencefile \

  --pointsDir 20news-km-clusters/clusteredPoints

>cat 20news-clusters-dump
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The following steps use the Apache Mahout MinHash clustering algorithm to cluster the 

20news dataset:

1. Execute the following command to run MinHash clustering on an already vectorised 

20news data:

>bin/mahout minhash \

  --input 20news-vector/tfidf-vectors \

  --output minhashout

2. Go to HADOOP_HOME and execute the following command to inspect the MinHash 

clustering results:

>bin/hadoop dfs -cat minhashout/part*

How it works...

The following is the usage of the Mahout K-Means algorithm:

>bin/mahout kmeans

  --input <tfidf vector input>

  --clusters <seed clusters>

  --output <HDFS path for output>

  --distanceMeasure<distance measure>

  -k <number of clusters>

  --maxIter<maximum number of iterations>

  --clustering

Mahout will generate random seed clusters when an empty HDFS folder path is given to the 

--clusters option. Mahout supports several different distance calculation methods such as 

Euclidean, Cosine, Manhattan, and so on.

Following is the usage of the Mahout clusterdump command:

>bin/mahout clusterdump

  -i <HDFS path to clusters>

  -o <local path for text output>

  -d <dictionary mapping for the vector data points>

  -dt <dictionary file type (sequencefile or text)>

  --pointsDir <directory containing the input vectors to

                  clusters mapping>
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Following is the usage of the Mahout MinHash clustering algorithm:

>bin/mahout minhash

     --input  <tfidf vector input>

     --output <HDFS path for output>

See also
 f Running K-Means with Mahout in Chapter 5, Hadoop Ecosystem.

Topic discovery using Latent Dirichlet 
Allocation (LDA)

We can use Latent Dirichlet Allocation to cluster a given set of words into topics and a set 

of documents to combinations of topics. LDA is useful when identifying the meaning of a 

document or a word based on the context, not solely depending on the number of words 

or the exact words. LDA can be used to identify the intent and to resolve ambiguous words 

in systems such as a search engine. Some other example use-cases of LDA are identifying 

inluential Twitter users for particular topics and Twahpic (http://twahpic.cloudapp.
net) application uses LDA to identify topics used on Twitter.

LDA uses the TF vector space model instead of the TF-IDFmodel, as it needs to consider the 

co-occurrence and correlation of words.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point 

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5, 

Hadoop Ecosystem, for more information on installing Mahout.

How to do it…

The following steps show you how to run Mahout LDA algorithm on a subset of the  

20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.
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2. Upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/hadoop fs –put  <extracted_folder> 20news-all

3. Go to the MAHOUT_HOME. Generate sequence iles from the uploaded text data:
>bin/mahout seqdirectory -i 20news-all -o 20news-seq 

4. Generate sparse vector from the text data in the sequence iles:
> bin/mahout seq2sparse \

   –i 20news-seq  -o 20news-tf \

   –wt tf \

   -a org.apache.lucene.analysis.WhitespaceAnalyzer

5. Convert the TF vectors from SequenceFile<Text, VectorWritable> to 

SequenceFile<IntWritable,Text>:

>bin/mahout rowid -i 20news-tf/tf-vectors -o 20news-tf-int

6. Run the following command to perform the LDA computation:

> bin/mahout cvb \

   -i 20news-tf-int/matrix -o lda-out \

   -k 10  -x 20 \

   -dict 20news-tf/dictionary.file-0 \

   –dt lda-topics \

   –mt lda-topic-model

7. Dump and inspect the results of the LDA computation:

>bin/mahout seqdumper -i lda-topics/part-m-00000

Input Path: lda-topics5/part-m-00000

Key class: class org.apache.hadoop.io.IntWritable Value Class: 
class org.apache.mahout.math.VectorWritable

Key: 0: Value: {0:0.12492744375758073,1:0.03875953927132082,2:0.12
28639250669511,3:0.15074522974495433,4:0.10512715697420276,5:0.101
30565323653766,6:0.061169131590630275,7:0.14501579630233746,8:0.07
872957132697946,9:0.07135655272850545}

.....
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8. Join the output vectors with the dictionary mapping of term to term indexes:

>bin/mahoutvectordump -i lda-topics/part-m-00000 --dictionary 
20news-tf/dictionary.file-0 --vectorSize 10  -dt sequencefile

......

{"Fluxgate:0.12492744375758073,&:0.03875953927132082,(140.220.1.1
):0.1228639250669511,(Babak:0.15074522974495433,(Bill:0.105127156
97420276,(Gerrit:0.10130565323653766,(Michael:0.06116913159063027
5,(Scott:0.14501579630233746,(Usenet:0.07872957132697946,(continu
ed):0.07135655272850545}

{"Fluxgate:0.13130952097888746,&:0.05207587369196414,(140.220.1.1
):0.12533225607394424,(Babak:0.08607740024552457,(Bill:0.20218284
543514245,(Gerrit:0.07318295757631627,(Michael:0.0876688824220103
9,(Scott:0.08858421220476514,(Usenet:0.09201906604666685,(continu
ed):0.06156698532477829}

.......

How it works…

Mahout CVB version of LDA implements the Collapse Variable Bayesian inference algorithm 

using an iterative MapReduce approach:

>bin/mahout cvb -i 20news-tf-int/matrix -o lda-out -k 10  -x 20  -dict 
20news-tf/dictionary.file-0 -dt lda-topics -mt lda-topic-model

The -i parameter provides the input path, while the -o parameter provides the path to store 

the output. -k speciies the number of topics to learn and -x speciies the maximum number 
of iterations for the computation. -dict points to the dictionary containing the mapping of 

terms to term-indexes. Path given in the -dt parameter stores the training topic distribution. 

Path given in -mt is used as a temporary location to store the intermediate models.

All the command-line options of the cvb command can be queried by invoking the help 

option as follows:

> bin/mahout  cvb  --help

Setting the number of topics to a very small value brings out very high-level topics. Large number 

of topics gives more descriptive topics, but takes longer to process. maxDFPercentoption can 

be used to remove common words, thereby speeding up the processing.
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See also
 f Y. W. Teh, D. Newman, and M. Welling's article, A Collapsed Variational  

Bayesian Inference Algorithm for Latent Dirichlet Allocation, in NIPS, volume 19, 

2006 at http://www.gatsby.ucl.ac.uk/~ywteh/research/inference/
nips2006.pdf.

Document classiication using Mahout Naive 
Bayes classiier

Classiication assigns documents or data items to an already known set of classes with 

already known properties. Document classiication or categorization is used when we need 

to assign documents to one or more categories. This is a frequent use-case in information 

retrieval as well as library science.

The Classiication using Naive Bayes classiier recipe in Chapter 8, Classiications, 
Recommendations, and Finding Relationships, provides a more detailed description about 

classiication use-cases and gives you an overview of using the Naive Bayes classiier 
algorithm. The recipe focuses on highlighting the classiication support in Apache Mahout for 
text documents.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment 

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point 

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5, 

Hadoop Ecosystem, for more information on installing Mahout.

How to do it...

The following steps use the Apache Mahout Naive Bayes algorithm to cluster the  

20news dataset:

1. Follow the Creating TF and TF-IDF vectors for the text data recipe in this chapter and 

generate TF-IDF vectors for the 20news dataset. We assume that the TF-IDF vectors 

are in the 20news-vector/tfidf-vectors folder of the HDFS.

2. Go to the MAHOUT_HOME.
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3. Split the data to training and test datasets:

>bin/mahout split \

    -i 20news-vectors/tfidf-vectors \

    --training Output/20news-train-vectors \

    --test Output/20news-test-vectors  \

    --randomSelectionPct 40 --overwrite --sequenceFiles

4. Train the Naive Bayes model:

>bin/mahout trainnb \

-i 20news-train-vectors -el \

   -o  model \

   -li labelindex

5. Test the classiication on the test dataset:
>bin/mahout testnb \

    -i 20news-train-vectors\

    -m model \

    -l labelindex \

-o 20news-testing 

How it works...

The Mahout split command can be used to split a dataset to a training dataset and a 

test dataset. The Mahout split command works with text datasets as well as with Hadoop 

SequenceFile datasets. Following is the usage of the Mahout split command. You can 

use the --help option with the split command to print out all the options:

>bin/mahout split \

  -i <input data directory> \

--trainingOutput<HDFS path to store the training dataset> \

  --testOutput<HDFS path to store the test dataset>  \

 --randomSelectionPct<percentage to be selected as test data> \

--sequenceFiles

The sequenceFiles option speciies that the input dataset is in Hadoop  
SequenceFiles format.
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Following is the usage of the Mahout Naive Bayes classiier training command. The -el option 

informs Mahout to extract the labels from the input dataset:

>bin/mahout trainnb \

-i <HDFS path to the training dataset> \

-el \

  -o <HDFS path to store the trained classifier model> \

-li <Path to store the label index> \

Following is the usage of the Mahout Naive Bayes classiier testing command:

>bin/mahout testnb \

    -i <HDFS path to the test dataset>

    -m <HDFS path to the classifier model>\

    -l <Path to the label index> \

    -o <path to store the test result>

See also
 f Classiication using Naive Bayes classiier in Chapter 8, Classiications, 

Recommendations, and Finding Relationships.

 f The book, Mahout in Action, at http://www.amazon.com/Mahout-Action-
Sean-Owen/dp/1935182684



10
Cloud Deployments: 

Using Hadoop  
on Clouds

In this chapter, we will cover:

 f Running Hadoop MapReduce computations using Amazon Elastic MapReduce (EMR)

 f Saving money using Amazon EC2 Spot Instances to execute EMR job lows

 f Executing a Pig script using EMR

 f Executing a Hive script using EMR

 f Creating an Amazon EMR job low using the Command Line Interface

 f Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR

 f Using EMR Bootstrap actions to conigure VMs for the Amazon EMR jobs

 f Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud environment

 f Using Apache Whirr to deploy an Apache HBase cluster in a cloud environment

Introduction
Computing clouds provide on-demand, horizontal, scalable computing resources with no 

upfront capital investment, making them an ideal environment to perform occasional large 

-scale Hadoop computations. In this chapter, we will explore several mechanisms to deploy 

and execute Hadoop MapReduce and Hadoop-related computations on cloud environments. 
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This chapter discusses how to use Amazon Elastic MapReduce (EMR), the hosted Hadoop 

infrastructure, to execute traditional MapReduce computations as well as Pig and Hive 

computations on the Amazon EC2 cloud infrastructure. This chapter also presents how to 

provision an HBase cluster using Amazon EMR and how to back up and restore the data 

belonging to an EMR HBase cluster. We will also use Apache Whirr, a cloud neutral library for 

deploying services on cloud environments, to provision Apache Hadoop and Apache HBase 

clusters on cloud environments.

Running Hadoop MapReduce computations 
using Amazon Elastic MapReduce (EMR)

Amazon Elastic MapReduce (EMR) provides on-demand managed Hadoop clusters in the 

Amazon Web Services (AWS) cloud to perform your Hadoop MapReduce computations. 

EMR uses Amazon Elastic Compute Cloud (EC2) instances as the compute resources. 

EMR supports reading input data from Amazon Simple Storage Service (S3) and storing 

of the output data in Amazon S3 as well. EMR makes our life easier by taking care of the 

provisioning of cloud instances, coniguring the Hadoop cluster and the execution of our 
MapReduce computational lows.

In this recipe, we are going to run the WordCount MapReduce sample (Refer to the Writing the 

WordCount MapReduce sample, bundling it and running it using standalone Hadoop recipe 

from Chapter 1, Getting Hadoop up and running in a Cluster) in the Amazon EC2 cloud using 

Amazon Elastic MapReduce.

Getting ready
Build the required c10-samples.jar by running the Ant build in the code samples for  

this chapter.

How to do it...

The steps for executing WordCount MapReduce application on Amazon Elastic MapReduce 

are as follows:

1. Sign up for an AWS account by visiting http://aws.amazon.com.

2. Open the Amazon S3 monitoring console at https://console.aws.amazon.
com/s3 and sign in.
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3. Create a S3 bucket to upload the input data by clicking on Create Bucket. Provide a 

unique name for your bucket. Let's assume the name of the bucket as wc-input-
data. You can ind more information on creating a S3 bucket in http://docs.
amazonwebservices.com/AmazonS3/latest/gsg/CreatingABucket.html. 

There exist several third-party desktop clients for the Amazon S3. You can use one of 

those clients to manage your data in S3 as well.

4. Upload your input data to the above-created bucket by selecting the bucket and 

clicking on Upload. The input data for the WordCount sample should be one or  

more text iles.

5. Create a S3 bucket to upload the JAR ile needed for our MapReduce computation. 
Let's assume the name of the bucket as sample-jars. Upload the C10Samples.
jar ile to the newly created bucket.

6. Create a S3 bucket to store the output data of the computation. Let's assume the 

name of this bucket as ws-output-data. Create another S3 bucket to store the 

logs of the computation. Let's assume the name of this bucket as c10-logs.

S3 bucket namespace is shared globally by all users. Hence, using the 

example bucket names given in this recipe might not work for you. In such 

scenarios, you should give your own custom names for the buckets and 

substitute those names in the subsequent steps of this recipe.



Cloud Deployments: Using Hadoop on Clouds

250

7. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select Run your own 

application option under Create a Job Flow. Select the Custom Jar option from the 

drop-down menu below that. Click on Continue.

8. Specify the S3 location of the c10-samples.jar in the Jar Location textbox of 

the next tab (the Specify Parameters tab). You should specify the location of the 

JAR in the format bucket_name/jar_name. In the JAR Arguments textbox, enter 

chapter1.WordCount followed by the bucket location where you uploaded the 

input data and the output path. The output path should not exist and we use a 

directory (wc-output-data/out1) inside the output bucket you created in Step 

6 as the output path. You should specify the locations using the format, s3n://
bucket_name/path. Click on Continue.

9. Leave the default options and click on Continue in the next tab, Conigure EC2 
Instances. The default options use two EC2 m1.small instances for the Hadoop 

slave nodes and one EC2 m1.small instance for the Hadoop master node.
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10. In the Advanced Options tab, enter the path of S3 bucket you created above for the 

logs in the Amazon S3 Log Path textbox. Select Yes for the Enable Debugging. Click 

on Continue.

11.  Click on Continue in the Bootstrap Options. Review your job low in the Review 

tab and click on Create Job Flow to launch instances and to run the MapReduce 

computation.

Amazon will charge you for the compute and storage resources you use 

by clicking on Create Job Flow in step 11. Refer to the Saving money 

using Amazon EC2 Spot Instances for EMR  recipe below to find out how 

you can save money by using Amazon EC2 Spot instances.

12. Click on Refresh in the EMR console to monitor the progress of your MapReduce 

job. Select your job low entry and click on Debug to view the logs and to debug the 

computation. As EMR uploads the logiles periodically, you might have to wait and 
refresh to access the logiles. Check the output of the computation in the output data 
bucket using the AWS S3 console.
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See also
 f Writing the WordCount MapReduce sample, bundling it and running it using 

standalone Hadoop and Running WordCount program in a distributed cluster 

environment recipes from Chapter 1, Getting Hadoop up and running in a Cluster.

Saving money by using Amazon EC2 Spot 
Instances to execute EMR job lows

Amazon EC2 Spot Instances allow us to purchase underutilized EC2 compute resources at a 

signiicant discount. The prices of Spot Instances change depending on the demand. We can 

submit bids for the Spot Instances and we receive the requested compute instances, if our bid 

exceeds the current Spot Instance price. Amazon bills these instances based on the actual 

Spot Instance price, which can be lower than your bid. Amazon will terminate your instances, 

if the Spot Instance price exceeds your bid. However, Amazon do not charged for partial 

spot instance hours if Amazon terminated your instances. You can ind more information on 
Amazon EC2 Spot Instances on http://aws.amazon.com/ec2/spot-instances/.

Amazon EMR supports using Spot Instances both as master as well as worker compute 

instances. Spot Instances are ideal to execute non-time critical computations such as  

batch jobs.

How to do it...

The following steps show you how to use Amazon EC2 Spot Instances with Amazon Elastic 

MapReduce to execute the WordCount MapReduce application.

1. Follow the steps 1 to 8 of the Running  Hadoop MapReduce computations using 

Amazon ElasticMapReduce (EMR) recipe.

2. Conigure your EMR job low to use Spot Instances in the Conigure EC2 Instances 

tab. (See Step 9 of the Running Hadoop MapReduce computations using Amazon 

ElasticMapReduce (EMR) recipe).

3. In the Conigure EC2 Instances tab, select the Request Spot Instances checkboxes 

next to the Instance Type drop-down boxes under Master and Core Instance Group 

and Core Instance Group.

4. Specify your bid price in the Spot Bid Price textboxes. You can ind the Spot  
Instance pricing history in the Spot Requests window of the Amazon EC2  

console (https://console.aws.amazon.com/ec2).
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5. Follow the steps 10 to 12 of the Running Hadoop MapReduce computations using 

Amazon ElasticMapReduce (EMR) recipe.

There's more...

You can also run the EMR computations on a combination of traditional EC2 on-demand 

instances and EC2 Spot instances, safe guarding your computation against possible Spot 

instance terminations. 

As Amazon bills the Spot Instances using the current spot price irrespective of your  

bid price, it is a good practice not to set the Spot Instance price too low to avoid the  

risk of frequent terminations. 

See also
 f The Running Hadoop MapReduce computations using Amazon Elastic MapReduce 

(EMR) recipe from this chapter.

Executing a Pig script using EMR
Amazon EMR supports executing Pig scripts on the data stored in S3. For more details  

on Pig, refer to the Installing Pig and Running your irst Pig command recipes in Chapter 5, 

Hadoop Ecosystem.

In this recipe, we are going to execute the Pig script sample from the Running your irst Pig 
commands recipe using Amazon EMR. This sample will use the Human Development Report 

data (http://hdr.undp.org/en/statistics/data/) to print names of countries that 

have a GNI value greater than 2000 of gross national income per capita (GNI) sorted by GNI.
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How to do it...

The following steps show you how to use a Pig script with Amazon Elastic MapReduce to 

process a dataset stored on Amazon S3.

1. Use the Amazon S3 console to create a bucket in S3 to upload the input data. 

Upload the resources/hdi-data.csv ile in the source package associated with 
this chapter to the newly created bucket. You can also use an existing bucket or a 

directory inside a bucket as well. We assume the S3 path for the uploaded ile as 
c10-input-data/hdi-data.csv.

2. Modify the Pig script from the Running your irst Pig commands recipe of Chapter 5, 

Hadoop Ecosystem, to run it using EMR. Add a STORE command to save the result in 

the ilesystem. Parameterize the LOAD command of the Pig script by adding $INPUT 

as the input ile and the store command by adding $OUTPUT as the output directory. 

The modiied Pig script is available in the resources/countryFilter-EMR.pig 

ile of the resources associated with this chapter:
A = LOAD ''$INPUT'' using PigStorage('','')  AS 

(id:int, country:chararray, hdi:float, lifeex:int,

mysch:int, eysch:int, gni:int);

B = FILTER A BY gni > 2000;

C = ORDER B BY gni;

STORE C into ''$OUTPUT'';

3. Use the Amazon S3 console to create a bucket in S3 to upload the Pig script. Upload 

the resources/countryFilter-EMR.pig script to the newly created bucket. You 

can also use an existing bucket or a directory inside a bucket as well. We assume the 

S3 path for the uploaded ile as c10-resources/countryFilter-EMR.pig.

4. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select Run your own 

application option under Create a Job Flow. Select Pig Program option from the 

drop-down menu below that. Click on Continue.

5. Specify the S3 location of the Pig script in the Script Location textbox of the next 

tab (the Specify Parameters tab). You should specify the location of the script in the 

format bucket_name/file_name. Specify the S3 location of the uploaded input 

data ile In the Input Location textbox. In the Output Location textbox, specify a S3 

location to store the output. The output path should not exist and we use a directory 

(c10-out/out4) inside the output bucket as the output path. You should specify the 

locations using the format, s3n://bucket_name/path. Click on Continue.
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6. Conigure the EC2 instances for the job low and conigure the log paths for the 
MapReduce computations in the next two tabs. Click on Continue on the Bootstrap 

Options screen. Review your job low in the Review tab and click on Create Job Flow 

to launch instances and to execute the Pig script. Refer to the steps 9, 10, and 11 of 

the Running Hadoop MapReduce computations using Amazon ElasticMapReduce 

(EMR) recipe for more details.

Amazon will charge you for the compute and storage resources you use 

by clicking Create Job Flow in the step 11. Refer to the Saving money 

by using EC2 Spot Instances recipe to find out how you can save money 

by using Amazon EC2 Spot instances.

7. Click on Refresh in the EMR console to monitor the progress of your MapReduce 

job. Select your job low entry and click on Debug to view the logs and to debug the 

computation. As EMR uploads the logiles periodically; you might have to wait and 
refresh to access the logiles. Check the output of the computation in the output data 
bucket using the AWS S3 console.

There's more...

Amazon EMR allows to us to use Apache Pig in the interactive mode as well.

Starting a Pig interactive session
Let's look at the steps to start a Pig interactive session:

1.  Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select the Run your own 

application option under Create a Job Flow. Select the Pig Program option from the 

drop-down menu below that. Click on Continue.
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2. In order to start an interactive Pig session, select the Start an Interactive Pig 

Session option of the Specify Parameters tab. Click on Continue.

3. Conigure the EC2 instances for the job low in the Conigure EC2 Instances tab. 

Click on Continue.

4. You must select a key pair from the Amazon EC2 Key Pair drop-down box in the 

Advanced Options tab. In case you do not have a usable Amazon EC2 key pair, log in 

to the Amazon EC2 console and create a new key pair.

5. Click on Continue on the Bootstrap Options screen. Review your job low in the 
Review tab and click on Create Job Flow to launch instances.

6. After the cluster is provisioned, go to the Amazon EMR console (https://console.
aws.amazon.com/elasticmapreduce). Select the current job low to view more 
information about the job low. Retrieve the Master Public DNS Name value from the 

information pane. (If you need more information about this step, please refer to step 6 

of the Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR recipe).

7. Use the master public DNS name and the key ile of the Amazon EC2 key pair you 
speciied in step 4 to SSH in to the master node of the cluster:
> ssh -i <path-to-the-key-file> hadoop@<master-public-DNS>

8. Start the Pig interactive grunt shell in the master node and issue your Pig commands.

See also
 f The Running your irst Pig commands recipe in Chapter 5, Hadoop Ecosystem.

Executing a Hive script using EMR
Amazon EMR supports executing Hive queries on the data stored in S3. For more details on 

Hive, refer to the Installing Hive, Running SQL-style query with Hive and Performing a join with 

Hive recipes in Chapter 5, Hadoop Ecosystem.

In this recipe, we are going to execute the Hive queries from the Running SQL style Query with 
Hive recipe using Amazon EMR. This sample will use the Human Development Report data 

(http://hdr.undp.org/en/statistics/data/) to print names of countries that have a 

GNI value greater than 2000$ of gross national income per capita (GNI) sorted by GNI.
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How to do it...

The following steps show you how to use a Hive script with Amazon Elastic MapReduce to 

query a data set stored on Amazon S3.

1. Use the Amazon S3 console to create a bucket in S3 to upload the input data. 

Upload the resources/hdi-data.csv ile in the source package associate with 
this chapter to the newly created bucket. You can also use an existing bucket or a 

directory inside a bucket as well. We assume the S3 path for the uploaded ile as 
c10-input-data/hdi-data.csv.

2. Create a Hive batch script using the queries in the Running SQL-style query with 
Hive recipe of Chapter 5, Hadoop Ecosystem. Create a Hive table to store the 

result of the Select query. The Hive batch script is available in the resources/
countryFilter-EMR.hive ile of the resources associated with this chapter.
CREATE TABLE HDI(

  id INT, country STRING, hdi FLOAT, lifeex INT, mysch INT, eysch 
INT, gni INT

  ) 

  ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY '','' 

  STORED AS TEXTFILE

  LOCATION ''s3://c10-input-data/hdi-data.csv'';

CREATE EXTERNAL TABLE output_countries(

    country STRING, gni INT

    )    

    ROW FORMAT DELIMITED

    FIELDS TERMINATED BY '',''    

    STORED AS TEXTFILE

    LOCATION ''${OUTPUT}/countries''

  ;

INSERT OVERWRITE TABLE output_countries

  SELECT 

    country, gni 

  FROM 

    HDI 

  WHERE 

    gni > 2000;

3. Use the Amazon S3 console to create a bucket in S3 to upload the Hive script. Upload 

the resources/countryFilter-EMR.hive script to the newly created bucket. 

You can also use an existing bucket or a directory inside a bucket as well. We assume 

the S3 path for the uploaded ile as c10-resources/countryFilter-EMR.hive.
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4. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select the Run your own 

application option under the Create a Job Flow. Select the Hive Program option 

from the drop down menu below that. Click on Continue.

5. Specify the S3 location of the hive script in the Script Location textbox of the next  

tab (Specify Parameters tab). You should specify the location of the script in the 

format bucket_name/file_name. Specify the S3 location of the uploaded input 

data ile In the Input Location textbox. In the Output Location textbox, specify a S3 

location to store the output. The output path should not exist and we use a directory 

(c10-out/hive-out-1) inside the output bucket as the output path. You should 

specify the input and output locations using the format, s3n://bucket_name/
path. Click on Continue.

6. Conigure the EC2 instances for the job low and conigure the log paths for the 
MapReduce computations in the next two tabs. Click on Continue on the Bootstrap 

Options screen. Review your job low in the Review tab and click on Create Job Flow 

to launch instances and to execute the Pig script. Refer to steps 9, 10, and 11 of the 

Running Hadoop MapReduce computations using Amazon ElasticMapReduce (EMR) 

recipe for more details.

Amazon will charge you for the compute and storage resources you 

use by clicking on Create Job Flow in step 11. Refer to the Saving 

money by using EC2 Spot Instances recipe to find out how you can 

save money by using Amazon EC2 Spot Instances.

7. Click on Refresh in the EMR console to monitor the progress of your MapReduce 

job. Select your job low entry and click Debug to view the logs and to debug the 

computation. As EMR uploads the log iles periodically; you might have to wait and 
refresh to access the logiles. Check the output of the computation in the output data 
bucket using the AWS S3 console.
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There's more...

Amazon EMR also allows to us to use Hive in the interactive mode as well.

Starting a Hive interactive session
Let's look at the steps to start a Hive interactive session:

1.  Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select the Run your own 

application option under the Create a Job Flow. Select the Hive Program option 

from the drop-down menu below that. Click on Continue.

2. In order to start an interactive Hive session, select the Start an Interactive Hive 

Session option of the Specify Parameters tab. Click on Continue.

3. Conigure the EC2 instances for the job low in the Conigure EC2 Instances tab. 

Click on Continue.

4. You must select a key pair from the Amazon EC2 Key Pair drop-down box in the 

Advanced Options tab. In case you do not have a usable Amazon EC2 key pair, log in 

to the Amazon EC2 console and create a new key pair.

5. Click on Continue in Bootstrap Options. Review your job low in the Review tab and 

click on Create Job Flow to launch instances.

6. After the cluster is provisioned, go to the Amazon EMR console (https://console.
aws.amazon.com/elasticmapreduce). Select the current job low to view more 
information about the job low. Retrieve the Master Public DNS Name from the 

information pane. (If you need more information about this step, please refer to 

step 6 of the Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR 

recipe).

7. Use the master public DNS name and the key ile of the Amazon EC2 key pair you 
speciied in step 4 to SSH in to the master node of the cluster.
> ssh -i <path-to-the-key-file> hadoop@<master-public-DNS>

8. Start the Hive shell in the master node and issue your Hive queries.

See also
 f The Running SQL style Query with Hive recipe of Chapter 5, Hadoop Ecosystem.
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Creating an Amazon EMR job low using the 
Command Line Interface

Amazon also provides a Ruby-based Command Line Interface (CLI) for EMR. The EMR 

Command Line Interface supports creating job lows with multiple steps as well.

This recipe creates a job low using the EMR CLI to execute the WordCount sample from the 

Running Hadoop MapReduce computations using Amazon ElasticMapReduce (EMR) recipe  

of this chapter.

How to do it...

The following steps show you how to create an EMR job low using the EMR command  
line interface:

1. Install Ruby 1.8 in your machine. You can verify the version of your Ruby installation 

by using the following command:

> ruby –v

ruby 1.8…… 

2. Create a new directory. Download the EMR Ruby CLI from http://aws.amazon.
com/developertools/2264 and unzip it to the newly created directory.

3. Create an Amazon EC2 key pair by logging in to the AWS EC2 console  

(https://console.aws.amazon.com/ec2). To create a key pair, log in to  

the EC2 dashboard, select a region and click on Key Pairs under the Network and 

Security menu. Click on the Create Key Pair button in the Key Pairs window and 

provide a name for the new key pair. Download and save the private key ile (PEM 
format) in a safe location.

Make sure to set the appropriate file access permissions 

for the downloaded private key file.

4. Save the following JSON snippet in to a ile named credentials.json in the 

directory of the extracted EMR CLI. Fill the ields using the credentials of your AWS 
account. A sample credentials.json ile is available in the resources/emr-
cli folder of the resource bundle available for this chapter.

 � You can retrieve your AWS Access Keys from the AWS console  

(http://console.aws.amazon.com) by clicking on Security  

Credentials in the context menu that appears by clicking your AWS 

username in the upper-right corner of the console. You can also retrieve  

the AWS Access Keys by clicking on the Security Credentials web page  

link in the AWS My Account portal as well.

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
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 � Provide the name of your Key Pair (created in step 3) as the value of the key 

pair property.

 � Provide the path of the saved private key file as the value of the key-pair  

file property.

 � Create a S3 bucket to store the logs of the computation. Provide the S3 

bucket name as the value of the log_uri property to store the logging and 

the debugging information. We assume the S3 bucket name for logging as 

c10-logs.

 � You can use either us-east-1, us-west-2, us-west-1, eu-west-1, ap-

northeast-1, ap-southeast-1, or sa-east-1 as the AWS region.

{

"access_id": "[Your AWS Access Key ID]",

"private_key": "[Your AWS Secret Access Key]",

"keypair": "[Your key pair name]",

"key-pair-file": "[The path and name of your PEM file]",

"log_uri": "s3n://c10-logs/",

"region": "us-east-1"

}

You can skip to step 8, if you have completed the steps 2 to 6 of 

the Running Hadoop MapReduce computations using Amazon 

ElasticMapReduce (EMR) recipe on this chapter.

5. Create a bucket to upload the input data by clicking on Create Bucket in the Amazon 

S3 monitoring console (https://console.aws.amazon.com/s3). Provide a 

unique name for your bucket. Upload your input data to the newly-created bucket 

by selecting the bucket and clicking on Upload. The input data for the WordCount 

sample should be one or more text iles.

6. Create a S3 bucket to upload the JAR ile needed for our MapReduce computation. 
Upload the c10-samples.jar to the newly created bucket.

7. Create a S3 bucket to store the output data of the computation.

8. Create a job low by executing the following command inside the directory of the 
unzipped CLI. Replace the paths of the JAR ile, input data location and the output 
data location with the locations you used in steps 5, 6, and 7.

> ./elastic-mapreduce --create --name "Hello EMR CLI" \

--jar s3n://[S3 jar file bucket]/c10-samples.jar \

--arg chapter1.WordCount \

--arg s3n://[S3 input data path] \

--arg s3n://[S3 output data path]
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The preceding commands will create a job low and display the job low ID.
Created job flow x-xxxxxx

9. You can use the following command to view the description of your job low. Replace 
<job-flow-id> using the job low ID displayed in step 8.
>./elastic-mapreduce --describe <job-flow-id>

{

  "JobFlows": [

    {

      "SupportedProducts": [],

………

10. You can use the following command to list and to check the status of your job lows. 
You can also check the status and debug your job low using the Amazon EMR 
Console (https://console.aws.amazon.com/elasticmapreduce) as well.

>./elastic-mapreduce --list

x-xxxxxxx      STARTING                     Hello EMR CLI

   PENDING        Example Jar Step              

……..

11. Once the job low is completed, check the result of the computation in the output 
data location using the S3 console.

>./elastic-mapreduce --list

x-xxxxxx   COMPLETED    ec2-xxx.amazonaws.com     Hello EMR CLI

   COMPLETED      Example Jar Step

There's more...

You can use EC2 spot instances with your job lows to reduce the cost of your computations. 
Add a bid price to your request by adding the following commands to your job low create 

command:

>./elastic-mapreduce --create --name …. \

.........

--instance-group master --instance-type m1.small \

--instance-count 1 --bid-price 0.01 \

--instance-group core   --instance-type m1.small \

--instance-count 2  --bid-price 0.01

Refer to the Saving money by using Amazon EC2 Spot Instances to execute EMR job lows 
recipe in this chapter for more details on Amazon Spot Instances.
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See also
 f The Running Hadoop MapReduce computations using Amazon Elastic MapReduce 

(EMR) recipe of this chapter.

Deploying an Apache HBase Cluster on 
Amazon EC2 cloud using EMR

We can use Amazon Elastic MapReduce to start an Apache HBase cluster on the Amazon 

infrastructure to store large quantities of data in column oriented data store. We can use 

the data stored on Amazon EMR HBase clusters as input and output of EMR MapReduce 

computations as well. We can incrementally back up the data stored in Amazon EMR HBase 

clusters to Amazon S3 for data persistency. We can also start an EMR HBase cluster by 

restoring the data from a previous S3 backup.

In this recipe, we start an Apache HBase cluster on Amazon EC2 cloud using Amazon EMR; 

perform several simple operations on the newly created HBase cluster and backup the HBase 

data in to Amazon S3 before shutting down the cluster. Then we start a new HBase cluster 

restoring the HBase data backups from the original HBase cluster.

Getting ready
You should have the Amazon EMR Command Line Interface (CLI) installed and conigured 
to manually back up HBase data. Refer to the Creating an Amazon EMR job low using 
the Command Line Interface recipe in this chapter for more information on installing and 

coniguring the EMR CLI.

How to do it...

The following steps show how to deploy an Apache HBase cluster on Amazon EC2 using 

Amazon EMR:

1. Create a S3 bucket to store the HBase backups. We assume the S3 bucket for the 

HBase data backups as c10-data.

2. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new 

EMR MapReduce job low. Provide a name for your job low. Select the Run your own 

application option under the Create a Job Flow. Select the HBase option from the 

drop-down menu below that. Click on Continue.
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3. Conigure your Apache HBase cluster in the Specify Parameters tab. Select No for 

the Restore from Backup option. Select Yes for the Schedule Regular Backups and 

Consistent Backup options. Specify Backup Frequency for automatic schedules 

incremental data backups and provide a path inside the Blob we created in step 1  

as the Backup Location. Click on Continue.

4. Select a key pair in the Amazon EC2 Key Pair drop-down box. Make sure you have 

the private key for the selected EC2 key pair downloaded in your computer.

If you do not have a usable key pair, go to the EC2 console 

(https://console.aws.amazon.com/ec2) to create a key 

pair. To create a key pair, log in to the EC2 dashboard, select a region 

and click on Key Pairs under the Network and Security menu. Click 

on the Create Key Pair button in the Key Pairs window and provide 

a name for the new key pair. Download and save the private key ile 
(PEM format) in to a safe location.

5. Conigure the EC2 instances for the job low and conigure the log paths for the 
MapReduce computations in the next two tabs. Note that Amazon EMR does not 

support the use of EC2 Small and Medium instances with HBase clusters.  Click on 

Continue in Bootstrap Options. Review your job low in the Review tab and click on 

Create Job Flow to launch instances and to create your Apache HBase cluster.
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Amazon will charge you for the compute and storage resources you 

use by clicking Create Job Flow in the above step. Refer to the Saving 

money by using EC2 Spot Instances recipe to find out how you can 

save money by using Amazon EC2 Spot Instances.

The following steps show you how to connect to the master node of the deployed HBase 

cluster to start the HBase shell.

1. Go to the Amazon EMR console (https://console.aws.amazon.com/
elasticmapreduce). Select the job low for the HBase cluster to view more 
information about the job low.

2. Retrieve the Master Public DNS Name value from the information pane.

3. Use the Master Public DNS Name and the EC2 PEM-based key (selected in step 4) to 

connect to the master node of the HBase cluster.

> ssh -i ec2.pem hadoop@ec2-184-72-138-2.compute-1.amazonaws.com
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4. Start the HBase shell using the hbase shell command. Create the table named 

test in your HBase installation and insert a sample entry to the table using the put 

command. Use the scan command to view the contents of the table.

> hbase shell

.........

hbase(main):001:0> create ''test'',''cf''

0 row(s) in 2.5800 seconds

hbase(main):002:0> put ''test'',''row1'',''cf:a'',''value1''

0 row(s) in 0.1570 seconds

hbase(main):003:0> scan ''test''

ROW                   COLUMN+CELL                                               

 row1                 column=cf:a, timestamp=1347261400477, 
value=value1        

1 row(s) in 0.0440 seconds

hbase(main):004:0> quit

The following step will back up the data stored in an Amazon EMR HBase cluster.

5. Execute the following command using the Amazon EMR CLI to manually backup the 

data stored in an EMR HBase cluster. Retrieve the job low name (j-FDMXCBZP9P85) 

from the EMR console. Replace <job_flow_name> using the retrieved job low 
name. Change the backup directory path (s3://c10-data/hbase2) according to 

your backup data blob.

> ./elastic-mapreduce --jobflow <job_flow_name> --hbase-backup 
--backup-dir s3://c10-data/hbase-manual

6. Select the job low in the EMR console and click on Terminate.

Now, we will start a new Amazon EMR HBase cluster by restoring data from a backup.

7. Create a new job low by clicking on Create New Job Flow button in the EMR console. 

Provide a name for your job low. Select the Run your own application option under 

Create a Job Flow. Select the HBase option from the drop-down menu below that. 

Click on Continue.
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8. Conigure EMR HBase cluster to restore data from the previous data backup in the 

Specify Parameters tab. Select Yes for the Restore from Backup option and provide 

the backup directory path you used in step 9 in the Backup Location textbox. Select 

Yes for the Schedule Regular Backups and Consistent Backup options. Specify 

Backup Frequency for automatic schedules incremental data backups and provide a 

path inside the Blob we created in step 1 as the Backup Location. Click on Continue.

9. Repeat steps 4, 5, 6, and 7.

10. Start the HBase shell by logging to the master node of the new HBase cluster. Use 

the list command to list the set tables in HBase and the scan test command to 

view the contents of the test table.

> hbase shell

.........

hbase(main):001:0> list

TABLE                                                                           

test                                                                            

1 row(s) in 1.4870 seconds

hbase(main):002:0> scan ''test''

ROW                   COLUMN+CELL                                               

 row1                 column=cf:a, timestamp=1347318118294, 
value=value1        

1 row(s) in 0.2030 seconds
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11. Terminate your job low using the EMR console, by selecting the job low and clicking 
on the Terminate button.

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem and Using  

Apache Whirr to deploy an Apache HBase cluster in a cloud environment  

recipe on this chapter.

Using EMR Bootstrap actions to conigure 
VMs for the Amazon EMR jobs

EMR Bootstrap actions provide us a mechanism to conigure the EC2 instances before 
running our MapReduce computations. The examples of Bootstrap actions include providing 

custom coniguration for Hadoop, installing of any dependent software, distributing a common 
dataset, and so on. Amazon provides a set of predeined Bootstrap actions as well as allows 
us to write our own custom Bootstrap actions as well. EMR runs the Bootstrap actions in each 

instance before the Hadoop is started.

In this recipe, we are going to use a stop words list to ilter out the common words from  
our WordCount sample. We download the stop words list to the workers using a custom 

Bootstrap action.

How to do it...

The following steps show you how to download a ile to all the EC2 instances of an EMR 
computation using a Bootstrap script.

1. Save the following script to a ile named download-stopwords.sh. Upload the ile to 
a Blob container in the Amazon S3. This custom Bootstrap ile downloads a stop words 
list to each instance and copy it to a pre-designated directory inside the instance.

#!/bin/bash

set -e

wget http://www.textfixer.com/resources/common-english-words-  
with-contractions.txt

mkdir –p /home/Hadoop/stopwords

mv common-english-words-with-contractions.txt   /home/Hadoop/
stopwords

2. Complete steps 1 to 10 of the Running Hadoop MapReduce computations using 

Amazon ElasticMapReduce (EMR) recipe in this chapter.
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3. Select the Conigure your Boostrap Actions option in the Bootstrap Options tab. 

Select Custom Action in the Action Type drop-down box. Give a name to your action 

in the Name textbox and provide the S3 path of the location where you uploaded the 

download-stopwords.sh in the Amazon S3 Location textbox. Click on Continue.

4. Review your job low in the Review tab and click on Create Job Flow to launch 

instances and to run the MapReduce computation.

5. Click on Refresh in the EMR console to monitor the progress of your MapReduce  

job. Select your job low entry and click on Debug to view the logs and to debug  

the computation.

There's more...

Amazon provides us with the following predeined Bootstrap actions:

 f configure-daemons: This allows us to set Java Virtual Machine (JVM) options for 

the Hadoop daemons such as the heap size and garbage collections behaviour.

 f configure-hadoop: This allows us to modify the Hadoop coniguration settings. 
We can either upload a Hadoop coniguration XML or we can specify individual 
coniguration options as key-value pairs.
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 f memory-intensive: This conigures the Hadoop cluster for memory-intensive 
workloads.

 f run-if: Run a Bootstrap action based on a property of an instance. This action  

can be used in scenarios where we want to run a command only in the Hadoop 

master node.

You can also create shutdown actions by writing scripts to a designated directory in the 

instance. Shutdown actions are executed after the job low is terminated.

Refer to http://docs.amazonwebservices.com/ElasticMapReduce/latest/
DeveloperGuide/Bootstrap.html for more information.

Using Apache Whirr to deploy an Apache 
Hadoop cluster in a cloud environment 

Apache Whirr provides a set of cloud vendor neutral set of libraries to provision services on 

the cloud resources. Apache Whirr supports provisioning, installing, and coniguring of Hadoop 

clusters in several cloud environments. In addition to Hadoop, Apache Whirr also supports 

provisioning of Apache Cassandra, Apache ZooKeeper, Apache HBase, Valdemort (key-value 

storage), and Apache Hama clusters on the cloud environments.

In this recipe, we are going to start a Hadoop cluster on Amazon EC2 cloud using Apache 

Whirr and run the WordCount MapReduce sample (Writing the WordCount MapReduce 

sample, bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting 

Hadoop up and running in a Cluster) program on that cluster.

How to do it...

The following are the steps to deploy a Hadoop cluster on Amazon EC2 cloud using Apache 

Whirr and to execute the WordCount MapReduce sample on the deployed cluster.

1. Download and unzip the Apache Whirr binary distribution from http://whirr.
apache.org/.

2. Run the following command from the extracted directory to verify your  

Whirr installation.

>bin/whirr version

Apache Whirr 0.8.0

jclouds 1.5.0-beta.10



Chapter 10

271

3. Create a directory in your home directory named .whirr. Copy the conf/
credentials.sample ile in the Whirr directory to the newly created directory.
>mkdir ~/.whirr

>cp conf/credentials.sample ~/.whirr/credentials

4. Add your AWS credentials to the ~/.whirr/credentials ile by editing it as below. 
You can retrieve your AWS Access Keys from the AWS console (http://console.
aws.amazon.com) by clicking on the Security Credentials in the context menu that 

appears by clicking your AWS username in the upper-right corner of the console. 

A sample credentials ile is provide in the resources/whirr folder of the 

resources for this chapter.

# Set cloud provider connection details

PROVIDER=aws-ec2 

IDENTITY=<AWS Access Key ID>

CREDENTIAL=<AWS Secret Access Key>

5. Generate a rsa key pair using the following command. This key pair is not the same 

as your AWS key pair.

>ssh-keygen -t rsa -P ''''

6. Copy the following to a ile named hadoop.properties. If you provided a custom 

name for your key-pair in the preceding step, change the whirr.private-key-
file and the whirr.public-key-file property values to the paths of the 

private key and the public key you generated. A sample hadoop.properties ile is 
provided in the resources/whirr directory of the chapter resources.

whirr.aws-ec2-spot-price is an optional property that allows 

us to use cheaper EC2 Spot Instances. You can delete that property 

to use EC2 traditional on-demand instances.

whirr.cluster-name=whirrhadoopcluster

whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,2 
hadoop-datanode+hadoop-tasktracker 

whirr.provider=aws-ec2

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

whirr.hadoop.version=1.0.2

whirr.aws-ec2-spot-price=0.08

7. Execute the following command in the whirr directory to launch your Hadoop cluster 

on EC2.

>bin/whirr launch-cluster --config hadoop.properties

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
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8. The trafic from the outside to the provisioned EC2 Hadoop cluster is routed through 
the master node. Whirr generates a script that we can use to start this proxy, under 

a subdirectory named after your Hadoop cluster inside the ~/.whirr directory. Run 

this in a new terminal. It will take few minutes for whirr to start the cluster and to 

generate this script.

>cd ~/.whirr/whirrhadoopcluster/

>hadoop-proxy.sh

9. You can open the Hadoop web based monitoring console in your local machine by 

coniguring this proxy in your web browser.

10. Whirr generates a hadoop-site.xml for your cluster in the ~/.whirr/<your 
cluster name> directory. You can use it to issue Hadoop commands from your 

local machine to your Hadoop cluster on EC2. Export the path of the generated 

hadoop-conf.xml ile to an environmental variable named HADOOP_CONF_DIR. To 

execute the Hadoop commands, you should add the $HADOOP_HOME/bin directory 

to your path or you should issue the commands from the $HADOOP_HOME/bin 

directory.

>export HADOOP_CONF_DIR=~/.whirr/whirrhadoopcluster/

>hadoop fs -ls /

11. Create a directory named wc-input-data in HDFS and upload a text data set to 

that directory.

>hadoop fs -mkdir wc-input-data

>hadoop fs -put sample.txt wc-input-data

12. In this step, we run the Hadoop WordCount sample in the Hadoop cluster we started 

in Amazon EC2.

>hadoop jar ~/workspace/HadoopBookChap10/c10-samples.jar chapter1.
WordCount wc-input-data wc-out

13. View the results of the WordCount computation by executing the following commands:

>hadoop fs -ls wc-out

Found 3 items

-rw-r--r--   3 thilina supergroup          0 2012-09-05 15:40 /
user/thilina/wc-out/_SUCCESS

drwxrwxrwx   - thilina supergroup          0 2012-09-05 15:39 /
user/thilina/wc-out/_logs

-rw-r--r--   3 thilina supergroup      19908 2012-09-05 15:40 /
user/thilina/wc-out/part-r-00000

>hadoop fs -cat wc-out/part-* | more
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14. Issue the following command to shut down the Hadoop cluster. Make sure to 

download any important data before shutting down the cluster, as the data will be 

permanently lost after shutting down the cluster.

>bin/whirr destroy-cluster --config hadoop.properties

How it works...

This section describes the properties we used in the hadoop.properties ile.

whirr.cluster-name=whirrhadoopcluster

The preceding property provides a name for the cluster. The instances of the cluster will be 

tagged using this name.

whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,1 hadoop-
datanode+hadoop-tasktracker

The preceding property speciies the number of instances to be used for each set of roles and 
the type of roles for the instances. In the above example, one EC2 small instance is used with 

roles hadoop-jobtracker and the hadoop-namenode. Another two EC2 small instances are 

used with roles hadoop-datanode and hadoop-tasktracker in each instance.

whirr.provider=aws-ec2

We use the Whirr Amazon EC2 provider to provision our cluster.

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

The preceding two properties point to the paths of the private key and the public key you 

provide for the cluster.

whirr.hadoop.version=1.0.2

We specify a custom Hadoop version using the preceding property. By default, Whirr 0.8 

provisions a Hadoop 0.20.x cluster.

whirr.aws-ec2-spot-price=0.08

The preceding property speciies a bid price for the Amazon EC2 Spot Instances. Specifying 
this property triggers Whirr to use EC2 spot instances for the cluster. If the bid price is not 

met, Apache Whirr spot instance requests time out after 20 minutes. Refer to the Saving 

money by using Amazon EC2 Spot Instances to execute EMR job lows recipe for more details.

More details on Whirr coniguration can be found on http://whirr.apache.org/
docs/0.6.0/configuration-guide.html.
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See also
 f The Using Apache Whirr to deploy an Apache HBase cluster in a cloud environment 

and Saving money by using Amazon EC2 Spot Instances to execute EMR job lows 

recipes of this chapter.

Using Apache Whirr to deploy an Apache 
HBase cluster in a cloud environment

Apache Whirr provides a cloud vendor neutral set of libraries to access the cloud resources. In 

this recipe, we deploy an Apache HBase cluster on Amazon EC2 cloud using Apache Whirr.

Getting ready
Follow steps 1 to 5 of the Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud 

environment recipe.

How to do it...

The following are the steps to deploy a HBase cluster on Amazon EC2 cloud using  

Apache Whirr.

1. Copy the following to a ile named hbase.properties. If you provided a customs 

name for your key-pair in step 5 of the Using Apache Whirr to deploy an Apache 

Hadoop cluster in a cloud environment recipe, change the whirr.private-key-
file and the whirr.public-key-file property values to the paths of the private 

key and the public key you generated. A sample hbase.properties ile is provided 
in the resources/whirr directory of the chapter resources.

whirr.cluster-name=whirrhbase

whirr.instance-templates=1 zookeeper+hadoop-namenode+hadoop-  
jobtracker+hbase-master,2 hadoop-datanode+hadoop-  
tasktracker+hbase-regionserver

whirr.provider=aws-ec2

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

2. Execute the following command in the Whirr home directory to launch your HBase 

cluster on EC2. After provisioning the cluster, HBase prints out the commands that 

we can use to log in to the cluster instances. Note them down for the next steps.

>bin/whirr launch-cluster --config hbase.properties

………
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You can log into instances using the following ssh commands:

''ssh -i ~/.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o 
StrictHostKeyChecking=no thilina@174.129.92.98''

''ssh -i ~//.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o 
StrictHostKeyChecking=no thilina@50.16.158.59''

The trafic from outside to the provisioned EC2 HBase cluster needs 
to be routed through the master node. Whirr generates a script 

that we can use to start a proxy for this purpose. The script can be 

found in a subdirectory named after your HBase cluster inside the 

~/.whirr directory. It will take few minutes for Whirr to provision 

the cluster and to generate this script. Execute this script in a new 

terminal to start the proxy.

>cd ~/.whirr/whirrhadoopcluster/

>hbase-proxy.sh

Whirr also generates hbase-site.xml for your cluster in the 

~/.whirr/<your cluster name> directory, which we can 

use in combination with the above proxy to connect to the HBase 

cluster from the local client machine. However, currently a Whirr 

bug (https://issues.apache.org/jira/browse/
WHIRR-383) prevents us from accessing HBase shell from our 

local client machine. Hence in this recipe, we directly log in to the 

master node of the HBase cluster.

3. Log in to an instance of your cluster using a command you note down in step 2.

>ssh -i ~/.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o 
StrictHostKeyChecking=no xxxx@xxx.xxx.xx.xxx

4. Go to the /usr/local/hbase-<your-version> directory in the instance or  

add the /usr/local/hbase-<your-version> /bin to the PATH variable  

of the instance.

>cd /usr/local/hbase-0.90.3

5. Start the HBase shell. Execute the following commands to test your HBase installation.

>bin/hbase shell

HBase Shell; .....

Version 0.90.3, r1100350, Sat May  7 13:31:12 PDT 2011

hbase(main):001:0> create ''test'',''cf''

0 row(s) in 5.9160 seconds

hbase(main):007:0> put ''test'',''row1'',''cf:a'',''value1''
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0 row(s) in 0.6190 seconds

hbase(main):008:0> scan ''test''                      

ROW                          COLUMN+CELL                                                                       

 row1                        column=cf:a, timestamp=1346893759876, 
value=value1                                

1 row(s) in 0.0430 seconds

hbase(main):009:0> quit

6. Issue the following command to shut down the Hadoop cluster. Make sure to 

download any important data before shutting down the cluster, as the data will be 

permanently lost after shutting down the cluster.

>bin/whirr destroy-cluster --config hadoop.properties

How it works...

This section describes the whirr.instance-templates property we used in the hbase.
properties ile. Refer to the Using Apache Whirr to deploy an Apache Hadoop cluster in a 

cloud environment recipe for descriptions of the other properties.

whirr.instance-templates=1 zookeeper+hadoop-namenode+hadoop-  
jobtracker+hbase-master,2 hadoop-datanode+hadoop-  tasktracker+hbase-
regionserver 

This property speciies the number of instances to be used for each set of roles and the type 
of roles for the instances. In the preceding example, one EC2 small instance is used with roles 

hbase-master, zookeeper, hadoop-jobtracker, and the hadoop-namenode. Another 

two EC2 small instances are used with roles hbase-regionserver, hadoop-datanode, 

and hadoop-tasktracker in each instance.

More details on Whirr coniguration can be found on http://whirr.apache.org/
docs/0.6.0/configuration-guide.html.

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem and the Deploying an 

Apache HBase Cluster on Amazon EC2 cloud using EMR and the Using Apache Whirr 

to deploy an Apache Hadoop cluster in a cloud environment recipes in this chapter.
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about  52

coniguration properties  53
conf/hdfs-site.xml
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coniguration properties, conf/core-site.xml
fs.inmemory.size.mb  53

io.ile.buffer.size  53
io.sort.factor  53

coniguration properties, conf/hdfs-site.xml
dfs.block.size  54

dfs.namenode.handler.count  54

coniguration properties, conf/mapred-site.
xml 

io.sort.mb  54

mapred.map.child.java.opts  54

mapred.reduce.child.java.opts  54

mapred.reduce.parallel.copies  54

conf/mapred-site.xml
about  52

coniguration properties  54
content-based recommendations

about  192

implementing  192-194

working  194-197

counters. See  Hadoop counters

createRecordReader() method  92

custom Hadoop key type

implementing  80, 82

custom Hadoop Writable data type

implementing  77-79

custom InputFormat

implementing  90, 91

custom Partitioner

implementing  95

Cygwin  14



279

D

data

emitting, from mapper  83-86

grouping, MapReduce used  140-142

data de-duplication

Hadoop streaming, used  227, 228

HBase, used  233

Datalow language  120
data mining algorithm  129

DataNodes

about  6

adding  31

decommissioning  33, 34

data preprocessing  224

datasets

joining, MapReduce used  159-164

debug scripts

about  57

writing  58

decommissioning process

about  34

working  33

DFSIO

about  30

used, for benchmarking  30

distributed cache  60

DistributedCache. See  Hadoop 

DistributedCache

distributed mode, Hadoop installation  6

document classiication
about  244

Naive Bayes Classiier, used  244, 246

E

EC2 console

URL  264

ElasticSearch

about  185

download link  186

URL  185

used, for indexing and searching data  186, 

187

using  187

working  187

EMR

used, for deploying Apache HBase Cluster on 

Amazon EC2 cloud  263-268

used, for executing Hive script  256-258

used, for executing Pig script  253-255

EMR Bootstrap actions

conigure-daemons  269
conigure-hadoop  269
memory-intensive  270

run-if  270

used, for coniguring VMs for EMR  
jobs  268-270

EMR CLI

used, for creating EMR job low  260-262
EMR job lows

creating, CLI used  260-262

executing, Amazon EC2 Spot Instances  

used  252

exclude ile  33

F

failure percentages

setting  60, 61

fair scheduler  62

fault tolerance  56, 57

FIFO scheduler  62

ile replication factor
setting  36

FileSystem.create(ilePath) method  40
FileSystem.Create() method  40
FileSystem object  42

coniguring  41
frequency distribution

about  143

calculating, MapReduce used  143, 144

Fuse-DFS project

mounting  46, 47

URL  48

working  48

G

getDistance() method  199

getFileBlockLocations() function  42

getGeoLocation() method  96

getInputSplit() method  168



280

getLength() method  93

getLocalCacheFiles() method  99

getmerge command  49

getMerge command  49

getPath() method  168
getSplits() method  93

getTypes() method  84
getUri() function  41

GNU Plot

URL  147

used, for plotting results  145-147

Google  5

Gross National Income (GNI)   119

H

Hadoop

about  6

Adwords balance algorithm  214

Amazon sales dataset clustering  201

collaborative iltering-based  
recommendations  205

content-based recommendations  192

hierarchical clustering  198

MapReduce program, executing  8

MapReduce program, writing  7, 8

setting, in distributed cluster environment  

20-23

setting up  6

URL  6

used, for parsing complex dataset  154-158

Hadoop Aggregate package  103

Hadoop cluster

Apache HBase, deploying on  180, 181

deploying on Amazon E2, Apache Whirr used  

271, 273

deploying on Amazon E2 cloud, Apache Whirr 

used  270

Hadoop conigurations
tuning  52, 53

Hadoop counters

about  106

used, for reporting custom metrics  106

working  107

Hadoop data types

selecting  74-76

Hadoop DistributedCache

about  97

resources, adding from command line  100

used, for adding resources to classpath  101

used, for distributing archives  99

used, for retrieving Map and Reduce tasks  98

working  98

Hadoop Distributed File System. See  HDFS

Hadoop GenericWritable data type  84
Hadoop InputFormat

selecting, for input data format  87

Hadoop installation

DataNodes  6

JobTracker  6

modes  6

NameNode  6

TaskTracker  6

verifying, benchmarks used  54, 55

Hadoop intermediate data partitioning  95

Hadoop Kerberos security

about  63

pitfalls  69

HADOOP_LOG_DIR  53

Hadoop monitoring UI

using  26

working  27

Hadoop OutputFormats

used, for formatting MapReduce 

computations results  93, 94

Hadoop Partitioners  95

Hadoop results

plotting, GNU Plot used  145-147

Hadoop scheduler

changing  62, 63

hadoop script  40

Hadoop security

about  63

Kerberos, integrating with  63-69

Hadoop Streaming

about  101, 104

URL  104

used, for data de-duplication  227, 228

using with Python script-based mapper, for 

data preprocessing  224-226

working  102

Hadoop’s Writable-based serialization 

framework  74



281

Hadoop Tool interface

using  69, 71

hashCode() method  83, 96
HashPartitioner partitions  95

HBase

about  110

data random access, via Java client APIs  113, 

114

downloading  111

installing  110, 112

MapReduce jobs, running  115-118

running, in distributed mode  113

used, for data de-duplication  233
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FloatWritable  76
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