
www.allitebooks.com

http://www.allitebooks.org

Hadoop MapReduce

Cookbook

Recipes for analyzing large and complex datasets with

Hadoop MapReduce

Srinath Perera

Thilina Gunarathne

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Hadoop MapReduce Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies

and products mentioned in this book by the appropriate use of capitals. However, Packt

Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 2250113

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-728-7

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Srinath Perera

Thilina Gunarathne

Reviewers

Masatake Iwasaki

Shinichi Yamashita

Acquisition Editor

Robin de Jongh

Lead Technical Editor

Arun Nadar

Technical Editors

Vrinda Amberkar

Dennis John

Dominic Pereira

Project Coordinator

Amey Sawant

Proofreader

Mario Cecere

Indexer

Hemangini Bari

Graphics

Valentina D'Silva

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Srinath Perera is a Senior Software Architect at WSO2 Inc., where he overlooks the overall

WSO2 platform architecture with the CTO. He also serves as a Research Scientist at Lanka

Software Foundation and teaches as a visiting faculty at Department of Computer Science

and Engineering, University of Moratuwa. He is a co-founder of Apache Axis2 open source

project, and he has been involved with the Apache Web Service project since 2002, and is a

member of Apache Software foundation and Apache Web Service project PMC. Srinath is also

a committer of Apache open source projects Axis, Axis2, and Geronimo.

He received his Ph.D. and M.Sc. in Computer Sciences from Indiana University, Bloomington,

USA and received his Bachelor of Science in Computer Science and Engineering from

University of Moratuwa, Sri Lanka.

Srinath has authored many technical and peer reviewed research articles, and more detail

can be found from his website. He is also a frequent speaker at technical venues.

He has worked with large-scale distributed systems for a long time. He closely works with

Big Data technologies, such as Hadoop and Cassandra daily. He also teaches a parallel

programming graduate class at University of Moratuwa, which is primarily based on Hadoop.

I would like to thank my wife Miyuru and my parents, whose never-ending

support keeps me going. I also like to thanks Sanjiva from WSO2 who

encourage us to make our mark even though project like these are not in

the job description. Finally I would like to thank my colleges at WSO2 for

ideas and companionship that have shaped the book in many ways.

www.allitebooks.com

http://www.allitebooks.org

Thilina Gunarathne is a Ph.D. candidate at the School of Informatics and Computing

of Indiana University. He has extensive experience in using Apache Hadoop and related

technologies for large-scale data intensive computations. His current work focuses on

developing technologies to perform scalable and eficient large-scale data intensive
computations on cloud environments.

Thilina has published many articles and peer reviewed research papers in the areas of

distributed and parallel computing, including several papers on extending MapReduce

model to perform eficient data mining and data analytics computations on clouds.
Thilina is a regular presenter in both academic as well as industry settings.

Thilina has contributed to several open source projects at Apache Software Foundation as

a committer and a PMC member since 2005. Before starting the graduate studies, Thilina

worked as a Senior Software Engineer at WSO2 Inc., focusing on open source middleware

development. Thilina received his B.Sc. in Computer Science and Engineering from University

of Moratuwa, Sri Lanka, in 2006 and received his M.Sc. in Computer Science from Indiana

University, Bloomington, in 2009. Thilina expects to receive his doctorate in the ield of
distributed and parallel computing in 2013.

This book would not have been a success without the direct and indirect

help from many people. Thanks to my wife and my son for putting up with

me for all the missing family times and for providing me with love and

encouragement throughout the writing period. Thanks to my parents,

without whose love, guidance and encouragement, I would not be where I

am today.

Thanks to my advisor Prof. Geoffrey Fox for his excellent guidance and

providing me with the environment to work on Hadoop and related

technologies. Thanks to the HBase, Mahout, Pig, Hive, Nutch, and Lucene

communities for developing great open source products. Thanks to Apache

Software Foundation for fostering vibrant open source communities.

Thanks to the editorial staff at Packt, for providing me the opportunity to

write this book and for providing feedback and guidance throughout the

process. Thanks to the reviewers for reviewing this book, catching my

mistakes, and for the many useful suggestions.

Thanks to all of my past and present mentors and teachers, including

Dr. Sanjiva Weerawarana of WSO2, Prof. Dennis Gannon, Prof. Judy Qiu,

Prof. Beth Plale, all my professors at Indiana University and University of

Moratuwa for all the knowledge and guidance they gave me. Thanks to all

my past and present colleagues for many insightful discussions and the

knowledge they shared with me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Masatake Iwasaki is Software Engineer at NTT DATA Corporation. He provides technical

consultation for Open Source software such as Hadoop, HBase, and PostgreSQL.

Shinichi Yamashita is a Chief Engineer at OSS professional service unit in NTT DATA

Corporation in Japan. He has more than seven years' experience in software and middleware

(Apache, Tomcat, PostgreSQL, and Hadoop eco system) engineering. NTT DATA is your

Innovation Partner anywhere around the world. It provides professional services from

consulting, and system development to business IT outsourcing. In Japan, he has authored

some books on Hadoop.

I thank my co-workers.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub

iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up

for a range of free newsletters and receive exclusive discounts and offers on Packt books

and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access

PacktLib today and view nine entirely free books. Simply use your login credentials for

immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Getting Hadoop Up and Running in a Cluster 5
Introduction 5

Setting up Hadoop on your machine 6

Writing a WordCount MapReduce sample, bundling it, and running

it using standalone Hadoop 7

Adding the combiner step to the WordCount MapReduce program 12

Setting up HDFS 13

Using HDFS monitoring UI 17

HDFS basic command-line ile operations 18
Setting Hadoop in a distributed cluster environment 20

Running the WordCount program in a distributed cluster environment 24

Using MapReduce monitoring UI 26

Chapter 2: Advanced HDFS 29
Introduction 29

Benchmarking HDFS 30

Adding a new DataNode 31

Decommissioning DataNodes 33

Using multiple disks/volumes and limiting HDFS disk usage 34

Setting HDFS block size 35

Setting the ile replication factor 36
Using HDFS Java API 38
Using HDFS C API (libhdfs) 42

Mounting HDFS (Fuse-DFS) 46

Merging iles in HDFS 49

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Advanced Hadoop MapReduce Administration 51
Introduction 51

Tuning Hadoop conigurations for cluster deployments 52
Running benchmarks to verify the Hadoop installation 54

Reusing Java VMs to improve the performance 56

Fault tolerance and speculative execution 56

Debug scripts – analyzing task failures 57

Setting failure percentages and skipping bad records 60

Shared-user Hadoop clusters – using fair and other schedulers 62

Hadoop security – integrating with Kerberos 63

Using the Hadoop Tool interface 69

Chapter 4: Developing Complex Hadoop MapReduce Applications 73
Introduction 74

Choosing appropriate Hadoop data types 74

Implementing a custom Hadoop Writable data type 77

Implementing a custom Hadoop key type 80
Emitting data of different value types from a mapper 83
Choosing a suitable Hadoop InputFormat for your input data format 87
Adding support for new input data formats – implementing a custom

InputFormat 90

Formatting the results of MapReduce computations – using

Hadoop OutputFormats 93

Hadoop intermediate (map to reduce) data partitioning 95

Broadcasting and distributing shared resources to tasks in a MapReduce

job – Hadoop DistributedCache 97

Using Hadoop with legacy applications – Hadoop Streaming 101

Adding dependencies between MapReduce jobs 104

Hadoop counters for reporting custom metrics 106

Chapter 5: Hadoop Ecosystem 109
Introduction 109

Installing HBase 110

Data random access using Java client APIs 113

Running MapReduce jobs on HBase (table input/output) 115

Installing Pig 118
Running your irst Pig command 119
Set operations (join, union) and sorting with Pig 121

Installing Hive 123

Running a SQL-style query with Hive 124

Performing a join with Hive 127

Installing Mahout 129

iii

Table of Contents

Running K-means with Mahout 130

Visualizing K-means results 132

Chapter 6: Analytics 135
Introduction 135

Simple analytics using MapReduce 136

Performing Group-By using MapReduce 140

Calculating frequency distributions and sorting using MapReduce 143

Plotting the Hadoop results using GNU Plot 145

Calculating histograms using MapReduce 147

Calculating scatter plots using MapReduce 151

Parsing a complex dataset with Hadoop 154

Joining two datasets using MapReduce 159

Chapter 7: Searching and Indexing 165
Introduction 165

Generating an inverted index using Hadoop MapReduce 166

Intra-domain web crawling using Apache Nutch 170

Indexing and searching web documents using Apache Solr 174

Coniguring Apache HBase as the backend data store for Apache Nutch 177
Deploying Apache HBase on a Hadoop cluster 180
Whole web crawling with Apache Nutch using a Hadoop/HBase cluster 182
ElasticSearch for indexing and searching 185
Generating the in-links graph for crawled web pages 187

Chapter 8: Classiications, Recommendations, and
Finding Relationships 191

Introduction 191

Content-based recommendations 192

Hierarchical clustering 198
Clustering an Amazon sales dataset 201

Collaborative iltering-based recommendations 205
Classiication using Naive Bayes Classiier 208
Assigning advertisements to keywords using the

Adwords balance algorithm 214

Chapter 9: Mass Text Data Processing 223
Introduction 223

Data preprocessing (extract, clean, and format conversion)

using Hadoop Streaming and Python 224

Data de-duplication using Hadoop Streaming 227

Loading large datasets to an Apache HBase data store using

importtsv and bulkload tools 229

iv

Table of Contents

Creating TF and TF-IDF vectors for the text data 234

Clustering the text data 238
Topic discovery using Latent Dirichlet Allocation (LDA) 241

Document classiication using Mahout Naive Bayes classiier 244

Chapter 10: Cloud Deployments: Using Hadoop on Clouds 247
Introduction 247

Running Hadoop MapReduce computations using Amazon

Elastic MapReduce (EMR) 248
Saving money by using Amazon EC2 Spot Instances to execute

EMR job lows 252
Executing a Pig script using EMR 253

Executing a Hive script using EMR 256

Creating an Amazon EMR job low using the Command Line Interface 260
Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR 263

Using EMR Bootstrap actions to conigure VMs for the Amazon EMR jobs 268
Using Apache Whirr to deploy an Apache Hadoop cluster in a

cloud environment 270

Using Apache Whirr to deploy an Apache HBase cluster in a

cloud environment 274

Index 277

Preface
Hadoop MapReduce Cookbook helps readers learn to process large and complex datasets.

The book starts in a simple manner, but still provides in-depth knowledge of Hadoop. It is a

simple one-stop guide on how to get things done. It has 90 recipes, presented in a simple and

straightforward manner, with step-by-step instructions and real world examples.

This product includes software developed at The Apache Software Foundation

(http://www.apache.org/).

What this book covers
Chapter 1, Getting Hadoop Up and Running in a Cluster, explains how to install and run

Hadoop both as a single node as well as a cluster.

Chapter 2, Advanced HDFS, introduces a set of advanced HDFS operations that would be

useful when performing large-scale data processing with Hadoop MapReduce as well as

with non-MapReduce use cases.

Chapter 3, Advanced Hadoop MapReduce Administration, explains how to change

conigurations and security of a Hadoop installation and how to debug.

Chapter 4, Developing Complex Hadoop MapReduce Applications, introduces you to several

advanced Hadoop MapReduce features that will help you to develop highly customized,

eficient MapReduce applications.

Chapter 5, Hadoop Ecosystem, introduces the other projects related to Hadoop such HBase,

Hive, and Pig.

Chapter 6, Analytics, explains how to calculate basic analytics using Hadoop.

Chapter 7, Searching and Indexing, introduces you to several tools and techniques that you

can use with Apache Hadoop to perform large-scale searching and indexing.

Preface

2

Chapter 8, Classiications, Recommendations, and Finding Relationships, explains how

to implement complex algorithms such as classiications, recommendations, and inding
relationships using Hadoop.

Chapter 9, Mass Text Data Processing, explains how to use Hadoop and Mahout to

process large text datasets, and how to perform data preprocessing and loading

operations using Hadoop.

Chapter 10, Cloud Deployments: Using Hadoop on Clouds, explains how to use Amazon Elastic

MapReduce (EMR) and Apache Whirr to deploy and execute Hadoop MapReduce, Pig, Hive,

and HBase computations on cloud infrastructures.

What you need for this book
All you need is access to a computer running Linux Operating system, and Internet. Also, Java

knowledge is required.

Who this book is for
For big data enthusiasts and would be Hadoop programmers. The books for Java

programmers who either have not worked with Hadoop at all, or who knows Hadoop and

MapReduce but want to try out things and get into details. It is also a one-stop reference

for most of your Hadoop tasks.

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "From this point onward, we shall call the unpacked

Hadoop directory HADOOP_HOME."

A block of code is set as follows:

public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException

 {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

 {

 word.set(itr.nextToken());

 context.write(word, new IntWritable(1));

 }

 }

Preface

3

Any command-line input or output is written as follows:

>tar -zxvf hadoop-1.x.x.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Create a S3 bucket to upload

the input data by clicking on Create Bucket".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this

book—what you liked or may have disliked. Reader feedback is important for us to

develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to

get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can

visit http://www.PacktPub.com/support and register to have the iles e-mailed directly
to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration

and help us improve subsequent versions of this book. If you ind any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata

submission form link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata can be viewed by

selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protection of our copyright and licenses very seriously. If you come across any

illegal copies of our works, in any form, on the Internet, please provide us with the location

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected

pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Getting Hadoop Up and

Running in a Cluster

In this chapter, we will cover:

 f Setting up Hadoop on your machine

 f Writing the WordCount MapReduce sample, bundling it, and running it using

standalone Hadoop

 f Adding the combiner step to the WordCount MapReduce program

 f Setting up HDFS

 f Using the HDFS monitoring UI

 f HDFS basic command-line ile operations

 f Setting Hadoop in a distributed cluster environment

 f Running the WordCount program in a distributed cluster environment

 f Using the MapReduce monitoring UI

Introduction
For many years, users who want to store and analyze data would store the data in a database

and process it via SQL queries. The Web has changed most of the assumptions of this era. On

the Web, the data is unstructured and large, and the databases can neither capture the data

into a schema nor scale it to store and process it.

Google was one of the irst organizations to face the problem, where they wanted to download
the whole of the Internet and index it to support search queries. They built a framework for

large-scale data processing borrowing from the "map" and "reduce" functions of the functional

programming paradigm. They called the paradigm MapReduce.

Getting Hadoop Up and Running in a Cluster

6

Hadoop is the most widely known and widely used implementation of the MapReduce

paradigm. This chapter introduces Hadoop, describes how to install Hadoop, and shows

you how to run your irst MapReduce job with Hadoop.

Hadoop installation consists of four types of nodes—a NameNode, DataNodes, a JobTracker,

and TaskTracker HDFS nodes (NameNode and DataNodes) provide a distributed ilesystem
where the JobTracker manages the jobs and TaskTrackers run tasks that perform parts of the

job. Users submit MapReduce jobs to the JobTracker, which runs each of the Map and Reduce

parts of the initial job in TaskTrackers, collects results, and inally emits the results.

Hadoop provides three installation choices:

 f Local mode: This is an unzip and run mode to get you started right away where all

parts of Hadoop run within the same JVM

 f Pseudo distributed mode: This mode will be run on different parts of Hadoop as

different Java processors, but within a single machine

 f Distributed mode: This is the real setup that spans multiple machines

We will discuss the local mode in the irst three recipes, and Pseudo distributed and
distributed modes in the last three recipes.

Setting up Hadoop on your machine
This recipe describes how to run Hadoop in the local mode.

Getting ready
Download and install Java 1.6 or higher version from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

How to do it...

Now let us do the Hadoop installation:

1. Download the most recent Hadoop 1.0 branch distribution from

http://hadoop.apache.org/.

2. Unzip the Hadoop distribution using the following command. You will have to change

the x.x in the ilename with the actual release you have downloaded. If you are using
Windows, you should use your favorite archive program such as WinZip or WinRAR

for extracting the distribution. From this point onward, we shall call the unpacked

Hadoop directory HADOOP_HOME.

>tar -zxvf hadoop-1.x.x.tar.gz

Chapter 1

7

3. You can use Hadoop local mode after unzipping the distribution. Your installation is

done. Now, you can run Hadoop jobs through bin/hadoop command, and we will

elaborate that further in the next recipe.

How it works...

Hadoop local mode does not start any servers but does all the work within the same JVM.

When you submit a job to Hadoop in the local mode, that job starts a JVM to run the job,

and that JVM carries out the job. The output and the behavior of the job is the same as a

distributed Hadoop job, except for the fact that the job can only use the current node for

running tasks. In the next recipe, we will discover how to run a MapReduce program using

the unzipped Hadoop distribution.

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

Writing a WordCount MapReduce sample,
bundling it, and running it using standalone
Hadoop

This recipe explains how to write a simple MapReduce program and how to execute it.

Run

Map

Run

Map

Run

Map

Merge

and Sort

by

Keys

Run Reduce

with all (k1,*)

Run Reduce

with all (k2,*)

Run Reduce

with all (k3,*)

Input Data Final Result

(k,v)

(k,v)

(k,v)

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Getting Hadoop Up and Running in a Cluster

8

To run a MapReduce job, users should furnish a map function, a reduce function, input data,

and an output data location. When executed, Hadoop carries out the following steps:

1. Hadoop breaks the input data into multiple data items by new lines and runs the map

function once for each data item, giving the item as the input for the function. When

executed, the map function outputs one or more key-value pairs.

2. Hadoop collects all the key-value pairs generated from the map function, sorts them

by the key, and groups together the values with the same key.

3. For each distinct key, Hadoop runs the reduce function once while passing the key

and list of values for that key as input.

4. The reduce function may output one or more key-value pairs, and Hadoop writes

them to a ile as the inal result.

Getting ready
From the source code available with this book, select the source code for the irst chapter,
chapter1_src.zip. Then, set it up with your favorite Java Integrated Development

Environment (IDE); for example, Eclipse. You need to add the hadoop-core JAR ile in
HADOOP_HOME and all other JAR iles in the HADOOP_HOME/lib directory to the classpath

of the IDE.

Download and install Apache Ant from http://ant.apache.org/.

How to do it...

Now let us write our irst Hadoop MapReduce program.

1. The WordCount sample uses MapReduce to count the number of word

occurrences within a set of input documents. Locate the sample code from

src/chapter1/Wordcount.java. The code has three parts—mapper,

reducer, and the main program.

2. The mapper extends from the org.apache.hadoop.mapreduce.Mapper

interface. When Hadoop runs, it receives each new line in the input iles as an
input to the mapper. The map function breaks each line into substrings using

whitespace characters such as the separator, and for each token (word) emits

(word,1) as the output.

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException

{

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

Chapter 1

9

 {

 word.set(itr.nextToken());

 context.write(word, new IntWritable(1));

 }

}

3. The reduce function receives all the values that have the same key as the input, and

it outputs the key and the number of occurrences of the key as the output.

public void reduce(Text key, Iterable<IntWritable> values,

 Context context

) throws IOException, InterruptedException
{

 int sum = 0;

 for (IntWritable val : values)

 {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

}

4. The main program puts the coniguration together and submits the job to Hadoop.
Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, args).
getRemainingArgs();

if (otherArgs.length != 2) {

System.err.println("Usage: wordcount <in><out>");

System.exit(2);

}

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

//Uncomment this to

//job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

Getting Hadoop Up and Running in a Cluster

10

5. You can compile the sample by running the following command, which uses Apache

Ant, from the root directory of the sample code:

>ant build

If you have not done this already, you should install Apache Ant by following the

instructions given at http://ant.apache.org/manual/install.html.

Alternatively, you can use the compiled JAR ile included with the source code.

6. Change the directory to HADOOP_HOME, and copy the hadoop-cookbook-
chapter1.jar ile to the HADOOP_HOME directory. To be used as the input, create

a directory called input under HADOOP_HOME and copy the README.txt ile to the
directory. Alternatively, you can copy any text ile to the input directory.

7. Run the sample using the following command. Here, chapter1.WordCount is the

name of the main class we need to run. When you have run the command, you will

see the following terminal output:

>bin/hadoop jar hadoop-cookbook-chapter1.jar chapter1.WordCount
input output

12/04/11 08:12:44 INFO input.FileInputFormat: Total input paths to
process : 16

12/04/11 08:12:45 INFO mapred.JobClient: Running job: job_
local_0001

12/04/11 08:12:45 INFO mapred.Task: Task:attempt_
local_0001_m_000000_0 is done. And is in the process of commiting

...........

.....

12/04/11 08:13:37 INFO mapred.JobClient: Job complete: job_
local_0001

.....

8. The output directory will have a ile named like part-r-XXXXX, which will have the

count of each word in the document. Congratulations! You have successfully run your

irst MapReduce program.

How it works...

In the preceding sample, MapReduce worked in the local mode without starting any servers

and using the local ilesystem as the storage system for inputs, outputs, and working data.

The following diagram shows what happened in the WordCount program under the covers:

Chapter 1

11

Count

Words

and emit

count

Count

Words

and emit

count

Count

Words

and emit

count

Merge

and Sort

by

Keys

find SUM()

of all (k1,*)

Input Data Final Result

()word,count

()word,count

find SUM()

of all (k2,*)

find SUM()

of all (k2,*)

find SUM()

of all (k3,*)

()word,count

The worklow is as follows:

1. Hadoop reads the input, breaks it by new line characters as the separator and then

runs the map function passing each line as an argument.

2. The map function tokenizes the line, and for each token (word), emits a key value

pair (word, 1).

3. Hadoop collects all the (word,1) pairs, sorts them by the word, groups all the

values emitted against each unique key, and invokes the reduce once for each

unique key passing the key and values for that key as an argument.

4. The reduce function counts the number of occurrences of each word using the values

and emits it as a key-value pair.

5. Hadoop writes the inal output to the output directory.

There's more...

As an optional step, copy the input directory to the top level of the IDE-based project

(Eclipse project) that you created for samples. Now you can run the WordCount class directly

from your IDE passing input output as arguments. This will run the sample the same as

before. Running MapReduce jobs from IDE in this manner is very useful for debugging your

MapReduce jobs.

Although you ran the sample with Hadoop installed in your local machine, you can run it

using distributed Hadoop cluster setup with a HDFS-distributed ilesystem. The recipes of this
chapter, Setting up HDFS and Setting Hadoop in a distributed cluster environment will discuss

how to run this sample in a distributed setup.

Getting Hadoop Up and Running in a Cluster

12

Adding the combiner step to the WordCount
MapReduce program

After running the map function, if there are many key-value pairs with the same key, Hadoop

has to move all those values to the reduce function. This can incur a signiicant overhead.
To optimize such scenarios, Hadoop supports a special function called combiner. If provided,

Hadoop will call the combiner from the same node as the map node before invoking the

reducer and after running the mapper. This can signiicantly reduce the amount of data
transferred to the reduce step.

This recipe explains how to use the combiner with the WordCount sample introduced in the

previous recipe.

How to do it...

Now let us run the MapReduce job adding the combiner:

1. Combiner must have the same interface as the reduce function. For the WordCount

sample, we will reuse the reduce function as the combiner.

2. To ask the MapReduce job to use the combiner, let us uncomment the line

//job.setCombinerClass(IntSumReducer.class); in the sample and

recompile the code.

3. Copy the hadoop-cookbook-chapter1.jar ile to the HADOOP_HOME directory

and run the WordCount as done in the earlier recipe. Make sure to delete the old

output directory before running the job.

4. Final results will be available from the output directory.

How it works...

To activate a combiner, users should provide a mapper, a reducer, and a combiner as

input to the MapReduce job. In that setting, Hadoop executes the combiner in the same node

as the mapper function just after running the mapper. With this method, the combiner can

pre-process the data generated by the mapper before sending it to the reducer, thus reducing

the amount of data that is getting transferred.

For example, with the WordCount, combiner receives (word,1) pairs from the map

step as input and outputs a single (word, N) pair. For example, if an input document

has 10,000 occurrences of word "the", the mapper will generate 10,000 (the,1) pairs,

while the combiner will generate one (the,10,000) thus reducing the amount of data

transferred to the reduce task.

Chapter 1

13

However, the combiner only works with commutative and associative functions. For example,

the same idea does not work when calculating mean. As mean is not communicative and

associative, a combiner in that case will yield a wrong result.

There's more...

Although in the sample we reused the reduce function implementation as the combiner

function, you may write your own combiner function just like we did for the map and reduce

functions in the previous recipe. However, the signature of the combiner function must be

identical to that of the reduce function.

In a local setup, using a combiner will not yield signiicant gains. However, in the distributed
setups as described in Setting Hadoop in a distributed cluster environment recipe, combiner

can give signiicant gains.

Setting up HDFS
HDFS is the distributed ilesystem that is available with Hadoop. MapReduce tasks use HDFS to
read and write data. HDFS deployment includes a single NameNode and multiple DataNodes.

DateNode 1

config

NameNode

configslaves

DateNode 2

config

DateNode 3

config

For the HDFS setup, we need to conigure NameNodes and DataNodes, and then specify
the DataNodes in the slaves ile. When we start the NameNode, startup script will start
the DataNodes.

Getting Hadoop Up and Running in a Cluster

14

Getting ready
You may follow this recipe either using a single machine or multiple machines. If you are using

multiple machines, you should choose one machine as the master node where you will run

the HDFS NameNode. If you are using a single machine, use it as both the NameNode as well

as the DataNode.

1. Install Java in all machines that will be used to set up the HDFS cluster.

2. If you are using Windows machines, install Cygwin and SSH server in each machine.

The link http://pigtail.net/LRP/printsrv/cygwin-sshd.html provides

step-by-step instructions.

How to do it...

Now let us set up HDFS in the distributed mode.

1. Enable SSH from master nodes to slave nodes. Check that you can login to the

localhost and all other nodes using SSH without a passphrase by running one of the

following commands:

 � >ssh localhost

 � >ssh IPaddress

2. If the above command returns an error or asks for a password, create SSH keys by

executing the following command:

>ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

Move the ~/.ssh/id_dsa.pub ile to the all the nodes in the cluster. Then add
the SSH keys to the ~/.ssh/authorized_keys ile in each node by running the
following command (if the authorized_keys ile does not exist, run the following
command. Else, skip to the cat command):

>touch ~/.ssh/authorized_keys && chmod 600 ~/.ssh/authorized_keys

Now with permissions set, add your key to the ~/.ssh/authorized_keys ile.
>cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Then you can log in with the following command:

>ssh localhost

This command creates an SSH key pair in the .ssh/directory of the home directory,

and registers the generated public key with SSH as a trusted key.

Chapter 1

15

3. In each machine, create a directory for storing HDFS data. Let's call that directory

HADOOP_DATA_DIR. Now let us create two sub directories, HADOOP_DATA_DIR/
data and HADOOP_DATA_DIR/name. Change the directory permissions to 755 by

running the following command for each directory:

>chmod 755 <name of dir>

4. In the NameNode, change directory to the unzipped HADOOP_HOME directory. Then

place the IP address of all slave nodes in the HADOOP_HOME/conf/slaves ile,
each on a separate line. When we start the NameNode, it will use the slaves ile to
start the DataNodes.

5. In all machines, edit the HADOOP_HOME/conf/hadoop-env.sh ile by
uncommenting the JAVA_HOME line and pointing it to your local Java installation.

For example, if Java is in /opt/jdk1.6, change the JAVA_HOME line to export
JAVA_HOME=/opt/jdk1.6.

6. Inside each node's HADOOP_HOME/conf directory, add the following code to the

core-site.xml and hdfs-site.xml iles. Before adding the conigurations,
replace the MASTER_NODE strings with the IP address of the master node and

HADOOP_DATA_DIR with the directory you created in the irst step.
HADOOP_HOME/conf/core-site.xml

<configuration>

<property>

<name>fs.default.name</name>

<!-- URL of MasterNode/NameNode -->

<value>hdfs://MASTER_NODE:9000/</value>

</property>

</configuration>

HADOOP_HOME/conf/hdfs-site.xml

<configuration>

<property>

<name>dfs.name.dir</name>

<!-- Path to store namespace and transaction logs -->

<value>HADOOP_DATA_DIR/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<!-- Path to store data blocks in datanode -->

<value>HADOOP_DATA_DIR/data</value>

</property>

</configuration>

Getting Hadoop Up and Running in a Cluster

16

7. From the NameNode, run the following command to format a new ilesystem:
>bin/hadoop namenode –format

12/04/09 08:44:50 INFO namenode.NameNode: STARTUP_MSG:

/**

…

12/04/09 08:44:51 INFO common.Storage: Storage directory /Users/
srinath/playground/hadoop-book/hadoop-temp/dfs/name has been
successfully formatted.

12/04/09 08:44:51 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at Srinath-s-MacBook-Pro.
local/172.16.91.1

**/

8. Start the HDFS setup with the following command:

>bin/start-dfs.sh

This command will irst start a NameNode. It will then look at the HADOOP_HOME/
conf/slaves ile and start the DataNodes. It will print a message like the following
to the console.

starting namenode, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-namenode-node7.beta.out

209.126.198.72: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node7.
beta.out

209.126.198.71: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node6.
beta.out

209.126.198.72: starting secondarynamenode, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
secondarynamenode-node7.beta.out

Hadoop uses a centralized architecture for metadata. In this design, the NameNode

holds the information of all the iles and where the data blocks for each ile are
located. The NameNode is a single point of failure, and on failure it will stop all

the operations of the HDFS cluster. To avoid this, Hadoop supports a secondary

NameNode that will hold a copy of all data in NameNode. If the NameNode fails, the

secondary NameNode takes its place.

Chapter 1

17

9. Access the link http://MASTER_NODE:50070/ and verify that you can see the

HDFS startup page. Here, replace MASTER_NODE with the IP address of the master

node running the HDFS NameNode.

10. Finally, shut down the HDFS cluster using the following command:

>bin/stop-dfs.sh

How it works...

When started, the NameNode will read the HADOOP_HOME/conf/slaves iles, ind the
DataNodes that need to be started, start them, and set up the HDFS cluster. In the HDFS

basic command line ile operations recipe, we will explore how to use HDFS to store and

manage iles.

HDFS setup is only a part of the Hadoop installation. The Setting Hadoop in a distributed

cluster environment recipe describes how to set up the rest of the Hadoop.

Using HDFS monitoring UI
HDFS comes with a monitoring web console to verify the installation and monitor the HDFS

cluster. It also lets users explore the content of the HDFS ilesystem. In this recipe, we will look
at how we can access the HDFS monitoring UI and verify the installation.

Getting ready
Start the HDFS cluster as described in the previous recipe.

How to do it...

Let us access the HDFS web console.

1. Access the link http://MASTER_NODE:50070/ using your browser, and verify that

you can see the HDFS startup page. Here, replace MASTER_NODE with the IP address

of the master node running the HDFS NameNode.

www.allitebooks.com

http://www.allitebooks.org

Getting Hadoop Up and Running in a Cluster

18

2. The following screenshot shows the current status of the HDFS installation including

the number of nodes, total storage, storage taken by each node. It also allows users

to browse the HDFS ilesystem.

HDFS basic command-line ile operations
HDFS is a distributed ilesystem, and just like a Unix ilesystem, it allows users to manipulate
the ilesystem using shell commands. This recipe explains how to use the HDFS basic
command line to execute those commands.

It is worth noting that HDFS commands have a one-to-one correspondence with Unix

commands. For example, consider the following command:

>hadoop dfs –cat /data/foo.txt

The command reads the /data/foo.txt ile and prints it to the screen, just like the cat

command in Unix system.

Getting ready
Start the HDFS server by following the Setting up HDFS recipe.

Chapter 1

19

How to do it...

1. Change the directory to HADOOP_HOME.

2. Run the following command to create a new directory called /test:

>bin/hadoop dfs -mkdir /test

3. HDFS ilesystem has / as the root directory just like the Unix ilesystem. Run the
following command to list the content of the HDFS root directory:

>bin/hadoop dfs -ls /

4. Run the following command to copy the local readme ile to /test
>bin/hadoop dfs -put README.txt /test

5. Run the following command to list the /test directory:

>bin/hadoop dfs -ls /test

Found 1 items

-rw-r--r-- 1 srinath supergroup 1366 2012-04-10 07:06 /
test/README.txt

6. Run the following command to copy the /test/README.txt to local directory:

>bin/hadoop dfs -get /test/README.txt README-NEW.txt

How it works...

When a command is issued, the client will talk to the HDFS NameNode on the user's behalf

and carry out the operation. Generally, we refer to a ile or a folder using the path starting with
/; for example, /data, and the client will pick up the NameNode from conigurations in the
HADOOP_HOME/conf directory.

However, if needed, we can use a fully qualiied path to force the client to talk to a speciic
NameNode. For example, hdfs://bar.foo.com:9000/data will ask the client to talk to

NameNode running on bar.foo.com at the port 9000.

There's more...

HDFS supports most of the Unix commands such as cp, mv, and chown, and they follow the

same pattern as the commands discussed above. The document http://hadoop.apache.
org/docs/r1.0.3/file_system_shell.html provides a list of all commands. We will

use these commands throughout, in the recipes of the book.

Getting Hadoop Up and Running in a Cluster

20

Setting Hadoop in a distributed cluster
environment

Hadoop deployment includes a HDFS deployment, a single job tracker, and multiple

TaskTrackers. In the preceding recipe, Setting up HDFS, we discussed the HDFS deployment.

For the Hadoop setup, we need to conigure JobTrackers and TaskTrackers and then specify
the TaskTrackers in the HADOOP_HOME/conf/slaves ile. When we start the JobTracker, it
will start the TaskTracker nodes. The following diagram illustrates a Hadoop deployment:

Job Tracker

NameNode

config

config

slaves

slaves

DateNode 1 Task Tracker 1

config config

DateNode 2 Task Tracker 2

config config

DateNode 3 Task Tracker 3

config config

Getting ready
You may follow this recipe either using a single machine or multiple machines. If you are using

multiple machines, you should choose one machine as the master node where you will run

the HDFS NameNode and the JobTracker. If you are using a single machine, use it as both the

master node as well as a slave node.

1. Install Java in all machines that will be used to set up Hadoop.

2. If you are using Windows machines, irst install Cygwin and SSH server in each
machine. The link http://pigtail.net/LRP/printsrv/cygwin-sshd.html

provides step-by-step instructions.

Chapter 1

21

How to do it...

Let us set up Hadoop by setting up the JobTracker and TaskTrackers.

1. In each machine, create a directory for Hadoop data. Let's call this directory HADOOP_
DATA_DIR. Then create three directories, HADOOP_DATA_DIR/data, HADOOP_
DATA_DIR/local, and HADOOP_DATA_DIR/name.

2. Set up SSH keys to all machines so that we can log in to all from the master node.

The Setting up HDFS recipe describes the SSH setup in detail.

3. Unzip the Hadoop distribution at the same location in all machines using the >tar
-zxvf hadoop-1.x.x.tar.gz command. You can use any of the Hadoop 1.0

branch distributions.

4. In all machines, edit the HADOOP_HOME/conf/hadoop-env.sh ile by
uncommenting the JAVA_HOME line and point it to your local Java installation.

For example, if Java is in /opt/jdk1.6, change the JAVA_HOME line to export
JAVA_HOME=/opt/jdk1.6.

5. Place the IP address of the node used as the master (for running JobTracker and

NameNode) in HADOOP_HOME/conf/masters in a single line. If you are doing a

single-node deployment, leave the current value, localhost, as it is.

209.126.198.72

6. Place the IP addresses of all slave nodes in the HADOOP_HOME/conf/slaves ile,
each in a separate line.

209.126.198.72

209.126.198.71

7. Inside each node's HADOOP_HOME/conf directory, add the following to the

core-site.xml, hdfs-site.xml and mapred-site.xml. Before adding

the conigurations, replace the MASTER_NODE with the IP of the master node

and HADOOP_DATA_DIR with the directory you created in the irst step.

Add URL of the NameNode to HADOOP_HOME/conf/core-site.xml.

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://MASTER_NODE:9000/</value>

</property>

</configuration>

Add locations to store metadata (names) and data within HADOOP_HOME/conf/
hdfs-site.xml to submit jobs:

<configuration>

<property>

Getting Hadoop Up and Running in a Cluster

22

<name>dfs.name.dir</name>

<value>HADOOP_DATA_DIR/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>HADOOP_DATA_DIR/data</value>

</property>

</configuration>

Map reduce local directory is the location used by Hadoop to store temporary iles
used. Add JobTracker location to HADOOP_HOME/conf/mapred-site.xml. Hadoop

will use this for the jobs. The inal property sets the maximum map tasks per node,
set it the same as the amount of cores (CPU).

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>MASTER_NODE:9001</value>

</property>

<property>

<name>mapred.local.dir</name>

<value>HADOOP_DATA_DIR/local</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>8</value>

</property>

</configuration>

8. To format a new HDFS ilesystem, run the following command from the Hadoop
NameNode (master node). If you have done this as part of the HDFS installation

in earlier recipe, you can skip this step.

>bin/hadoop namenode –format

...

/Users/srinath/playground/hadoop-book/hadoop-temp/dfs/name has
been successfully formatted.

12/04/09 08:44:51 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at Srinath-s-MacBook-Pro.
local/172.16.91.1

**/

Chapter 1

23

9. In the master node, change the directory to HADOOP_HOME and run the

following commands:

>bin/start-dfs.sh

starting namenode, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-namenode-node7.beta.out

209.126.198.72: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node7.
beta.out

209.126.198.71: starting datanode, logging to /root/hadoop-setup-
srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-datanode-node6.
beta.out

209.126.198.72: starting secondarynamenode, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
secondarynamenode-node7.beta.out

>bin/start-mapred.sh

starting jobtracker, logging to /root/hadoop-setup-srinath/
hadoop-1.0.0/libexec/../logs/hadoop-root-jobtracker-node7.beta.out

209.126.198.72: starting tasktracker, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
tasktracker-node7.beta.out

209.126.198.71: starting tasktracker, logging to /root/
hadoop-setup-srinath/hadoop-1.0.0/libexec/../logs/hadoop-root-
tasktracker-node6.beta.out

10. Verify the installation by listing the processes through the ps | grep java command

(if you are using Linux) or via Task Manager (if you are in Windows), in the master

node and slave nodes. Master node will list four processes—NameNode, DataNode,

JobTracker, and TaskTracker and slaves will have a DataNode and TaskTracker.

11. Browse the web-based monitoring pages for namenode and JobTracker:

 � NameNode: http://MASTER_NODE:50070/.

 � JobTracker: http://MASTER_NODE:50030/.

12. You can ind the logiles under ${HADOOP_HOME}/logs.

13. Make sure HDFS setup is OK by listing the iles using HDFS command line.
bin/hadoop dfs -ls /

Found 2 items

drwxr-xr-x - srinath supergroup 0 2012-04-09 08:47 /Users

drwxr-xr-x - srinath supergroup 0 2012-04-09 08:47 /tmp

Getting Hadoop Up and Running in a Cluster

24

How it works...

As described in the introduction to the chapter, Hadoop installation consists of HDFS nodes,

a JobTracker and worker nodes. When we start the NameNode, it inds the slaves through the
HADOOP_HOME/slaves ile and uses SSH to start the DataNodes in the remote server at the
startup. Also when we start the JobTracker, it inds the slaves through the HADOOP_HOME/
slaves ile and starts the TaskTrackers.

There's more...

In the next recipe, we will discuss how to run the aforementioned WordCount program using

the distributed setup. The following recipes will discuss how to use MapReduce monitoring UI

to monitor the distributed Hadoop setup.

Running the WordCount program in a
distributed cluster environment

This recipe describes how to run a job in a distributed cluster.

Getting ready
Start the Hadoop cluster.

How to do it...

Now let us run the WordCount sample in the distributed Hadoop setup.

1. To use as inputs to the WordCount MapReduce sample that we wrote in the earlier

recipe, copy the README.txt ile in your Hadoop distribution to the HDFS ilesystem
at the location /data/input1.

>bin/hadoop dfs -mkdir /data/

>bin/hadoop dfs -mkdir /data/input1

>bin/hadoop dfs -put README.txt /data/input1/README.txt

>bin/hadoop dfs -ls /data/input1

Found 1 items

-rw-r--r-- 1 srinath supergroup 1366 2012-04-09 08:59 /
data/input1/README.txt

Chapter 1

25

2. Now, let's run the WordCount example from the HADOOP_HOME directory.

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount /data/input1 /
data/output1

12/04/09 09:04:25 INFO input.FileInputFormat: Total input paths to
process : 1

12/04/09 09:04:26 INFO mapred.JobClient: Running job:
job_201204090847_0001

12/04/09 09:04:27 INFO mapred.JobClient: map 0% reduce 0%

12/04/09 09:04:42 INFO mapred.JobClient: map 100% reduce 0%

12/04/09 09:04:54 INFO mapred.JobClient: map 100% reduce 100%

12/04/09 09:04:59 INFO mapred.JobClient: Job complete:
job_201204090847_0001

.....

3. Run the following commands to list the output directory and then look at the results.

>bin/hadoop dfs -ls /data/output1

Found 3 items

-rw-r--r-- 1 srinath supergroup 0 2012-04-09 09:04 /
data/output1/_SUCCESS

drwxr-xr-x - srinath supergroup 0 2012-04-09 09:04 /
data/output1/_logs

-rw-r--r-- 1 srinath supergroup 1306 2012-04-09 09:04 /
data/output1/part-r-00000

>bin/hadoop dfs -cat /data/output1/*

(BIS), 1

(ECCN) 1

(TSU) 1

(see 1

5D002.C.1, 1

740.13) 1

Getting Hadoop Up and Running in a Cluster

26

How it works...

Job submission to the distributed Hadoop works in a similar way to the job submissions to local

Hadoop installation, as described in the Writing a WordCount MapReduce sample, bundling it
and running it using standalone Hadoop recipe. However, there are two main differences.

First, Hadoop stores both the inputs for the jobs and output generated by the job in HDFS

ilesystem. Therefore, we use step 1 to store the inputs in the HDFS ilesystem and we use
step 3 read outputs from the HDFS ilesystem.

Secondly, when job is submitted, local Hadoop installation runs the job as a local JVM

execution. However, the distributed cluster submits it to the JobTracker, and it executes

the job using nodes in the distributed Hadoop cluster.

There's more...

You can see the results of the WordCount application also through the HDFS monitoring UI, as

described in the Using HDFS monitoring UI recipe, and also you can see the statistics about

the WordCount job as explained in the next recipe, Using MapReduce Monitoring UI.

Using MapReduce monitoring UI
This recipe describes how to use the Hadoop monitoring web console to verify Hadoop

installation, and to monitor the allocations and uses of each part of the Hadoop cluster.

How to do it...

Now let us visit the Hadoop monitoring web console.

1. Access http://MASTER_NODE:50030/ using the browser where MASTER_NODE is

the IP address of the master node.

2. The web page shows the current status of the MapReduce installation, including

running and completed jobs.

Chapter 1

27

How it works...

Hadoop monitoring UI lets users access the JobTracker of the Hadoop installation and ind
different nodes in the installation, their conigurations, and usage. For example, users can
use the UI to see current running jobs and logs associated with the jobs.

www.allitebooks.com

http://www.allitebooks.org

2
Advanced HDFS

In this chapter, we will cover:

 f Benchmarking HDFS

 f Adding a new DataNode

 f Decommissioning DataNodes

 f Using multiple disks/volumes and limiting HDFS disk usage

 f Setting HDFS block size

 f Setting the ile replication factor

 f Using HDFS Java API

 f Using HDFS C API (libhdfs)

 f Mounting HDFS (Fuse-DFS)

 f Merging iles in HDFS

Introduction
Hadoop Distributed File System (HDFS) is a block-structured, distributed ilesystem that is
designed to run on a low-cost commodity hardware. HDFS supports storing massive amounts

of data and provides high-throughput access to the data. HDFS stores ile data across multiple
nodes with redundancy to ensure fault-tolerance and high aggregate bandwidth.

HDFS is the default distributed ilesystem used by the Hadoop MapReduce computations.
Hadoop supports data locality aware processing of the data stored in HDFS. However, HDFS

can be used as a general purpose distributed ilesystem as well. HDFS architecture consists
mainly of a centralized NameNode that handles the ilesystem metadata and DataNodes that
store the real data blocks. HDFS data blocks are typically coarser grained and perform better

with large data products.

Advanced HDFS

30

Setting up HDFS and other related recipes in Chapter 1, Getting Hadoop Up and Running in

a Cluster, show how to deploy HDFS and give an overview of the basic operation of HDFS. In

this chapter, you will be introduced to a selected set of advanced HDFS operations that would

be useful when performing large-scale data processing with Hadoop MapReduce, as well as

when using HDFS as a standalone distributed ilesystem for non-MapReduce use cases.

Benchmarking HDFS
Running benchmarks is a good way to verify whether your HDFS cluster is set up properly and

performs as expected. DFSIO is a benchmark test that comes with Hadoop, which can be

used to analyze the I/O performance of a HDFS cluster. This recipe shows how to use DFSIO to
benchmark the read and write performance of a HDFS cluster.

Getting ready
You must set up and deploy HDFS and Hadoop MapReduce prior to running these

benchmarks. Export the HADOOP_HOME environment variable to point to your Hadoop

installation root directory:

>export HADOOP_HOME=/../hadoop-1.0.4

The benchmark programs are in the $HADOOP_HOME/hadoop-*test.jar ile.

How to do it...

The following steps show you how to run the write performance benchmark:

1. To run the write performance benchmark, execute the following command in the

$HADOOP_HOME directory. The –nrFiles parameter speciies the number of iles
and the -fileSize parameter speciies the ile size in MB.
>bin/hadoop jar $HADOOP_HOME/hadoop-test-*.jar TestDFSIO -write
-nrFiles 5 –fileSize 100

2. The benchmark writes to the console, as well as appends to a ile named
TestDFSIO_results.log. You can provide your own result ile name using
the –resFile parameter.

The following steps show you how to run the read performance benchmark:

1. The read performance benchmark uses the iles written by the write benchmark in
step 1. Hence, the write benchmark should be executed before running the read

benchmark and the iles written by the write benchmark should exist in the HDFS for
the read benchmark to work.

Chapter 2

31

2. Execute the following command to run the read benchmark. Benchmark writes

the results to the console and appends the results to a logile similarly to the
write benchmark.

>bin/hadoop jar $HADOOP_HOME/hadoop-test-*.jar TestDFSIO -read
-nrFiles5 –fileSize 100

To clean the iles generated by these benchmarks, use the following command:

>bin/hadoop jar $HADOOP_HOME hadoop-test-*.jar TestDFSIO -clean

How it works...

DFSIO executes a MapReduce job where the map tasks write and read the iles in parallel,
while the reduce tasks are used to collect and summarize the performance numbers.

There's more...

Running these tests together with monitoring systems can help you identify the bottlenecks

much more easily.

See also
 f The Running benchmarks to verify the Hadoop installation recipe in Chapter 3,

Advanced Hadoop MapReduce Administration.

Adding a new DataNode
This recipe shows how to add new nodes to an existing HDFS cluster without restarting the

whole cluster, and how to force HDFS to rebalance after the addition of new nodes.

Getting ready
To get started, follow these steps:

1. Install Hadoop on the new node and replicate the coniguration iles of your existing
Hadoop cluster. You can use rsync to copy the Hadoop coniguration from another
node. For example:

>rsync -a <master_node_ip>:hadoop-1.0.x/conf $HADOOP_HOME/conf

2. Ensure that the master node of your Hadoop/HDFS cluster can perform password-less
SSH to the new node. Password-less SSH setup is optional, if you are not planning on

using the bin/*.sh scripts from the master node to start/stop the cluster.

Advanced HDFS

32

How to do it...

The following steps will show you how to add a new DataNode to an existing HDFS cluster:

1. Add the IP or the DNS of the new node to the $HADOOP_HOME/conf/slaves ile in
the master node.

2. Start the DataNode in the newly added slave node by using the following command.

>bin/hadoop-deamon.sh start datanode

You can also use the $HADOOP_HOME/bin/start-dfs.sh

script from the master node to start the DataNode daemons in the

newly added nodes. This is helpful if you are adding more than one

new DataNodes to the cluster.

3. Check the $HADOOP_HOME/logs/hadoop-*-datanode-*.log in the new slave

node for any errors.

The preceding steps apply both to adding a new node as well as re-joining a node that has

been crashed and restarted.

There's more...

Similarly, you can add a new node to the Hadoop MapReduce cluster as well.

1. Start the TaskTracker in the new node using the following command:

>bin/hadoop-deamon.sh start tasktracker

2. Check the $HADOOP_HOME/logs/hadoop-*-tasktracker-*.log in the new

slave node for any errors.

Rebalancing HDFS
When you add new nodes, HDFS will not rebalance automatically. However, HDFS provides a

rebalancer tool that can be invoked manually. This tool will balance the data blocks across

cluster up to an optional threshold percentage. Rebalancing would be very helpful if you are

having space issues in the other existing nodes.

1. Execute the following command. The optional –threshold parameter speciies the
percentage of disk capacity leeway to consider when identifying a node as under- or

over-utilized. An under-utilized data node is a node whose utilization is less than

average utilization – threshold. An over-utilized data node is a node whose utilization

is greater than average utilization + threshold. Smaller threshold values will achieve

more evenly balanced nodes, but would take more time for the rebalancing. Default

threshold value is 10 percent.

>bin/start-balancer.sh –threshold 15

Chapter 2

33

2. Rebalancing can be stopped by executing the bin/stop-balancer.sh command.

3. A summary of the rebalancing will be available at the $HADOOP_HOME/logs/
hadoop-*-balancer*.out ile.

See also
 f The Decommissioning data nodes recipe in this chapter.

Decommissioning DataNodes
There can be multiple situations where you want to decommission one or more data nodes

from an HDFS cluster. This recipe shows how to gracefully decommission the DataNodes

without incurring data loss and without having to restart the cluster.

How to do it...

The following steps show you how to decommission data nodes gracefully:

1. If your cluster doesn't have it, add an exclude ile to the cluster. Create an empty ile
in the NameNode and point to it from the conf/hdfs-site.xml ile by adding the
following property.

<property>

 <name>dfs.hosts.exclude</name>

 <value>[FULL_PATH_TO_THE_EXCLUDE_FILE]</value>

 <description>Names a file that contains a list of hosts thatare
not permitted to connect to the namenode. The full pathname of
the file must be specified. If the value is empty, no hosts are
excluded.</description>

</property>

2. Add the hostnames of the nodes that are to be decommissioned to the exclude ile.

3. Run the following command to reload the NameNode coniguration. This will start
the decommissioning process. The decommissioning process can take a signiicant
time, as it requires replication of data blocks without overwhelming the other tasks

of the cluster.

>bin/hadoop dfsadmin -refreshNodes

Advanced HDFS

34

4. The decommissioning progress is shown in the HDFS UI under the Decommissioning

Nodes page. The decommissioning progress can be monitored using the following

command as well. Do not shut down the nodes until the decommissioning is

complete.

>bin/hadoop dfsadmin -report

.....

.....

Name: myhost:50010

Decommission Status : Decommission in progress

Configured Capacity:

.....

5. You can remove the nodes from the exclude ile and execute the bin/hadoop
dfsadmin –refreshNodes command when you want to add the nodes back

in to the cluster.

6. The decommissioning process can be stopped by removing the node's name

from the exclude ile and then executing the bin/hadoop dfsadmin
–refreshNodes command.

How it works...

When a node is in the decommissioning process, HDFS replicates the blocks in that

node to the other nodes in the cluster. Decommissioning can be a slow process as HDFS

purposely does it slowly to avoid overwhelming the cluster. Shutting down nodes without

decommissioning may result in data loss.

After the decommissioning is completed, the nodes mentioned in the exclude ile are not
allowed to communicate with the NameNode.

See also
 f The Rebalancing HDFS section of the Adding a new node recipe in this chapter.

Using multiple disks/volumes and limiting
HDFS disk usage

Hadoop supports specifying multiple directories for DataNode data directory. This feature

allows us to utilize multiple disks/volumes to store the data blocks in DataNodes. Hadoop
will try to store equal amounts of data in each directory. Hadoop also supports limiting the

amount of disk space used by HDFS.

Chapter 2

35

How to do it...

The following steps will show you how to add multiple disk volumes:

1. Create HDFS data storage directories in each volume.

2. In the $HADOOP_HOME/conf/hdfs-site.xml, provide a comma-separated list

of directories corresponding to the data storage locations in each volume under the

dfs.data.dir directory.

<property>
 <name>dfs.data.dir</name>
 <value>/u1/hadoop/data,/u2/hadoop/data</value>
</property>

3. To limit the HDFS disk usage, add the following property to $HADOOP_HOME/conf/
hdfs-site.xml to reserve space for non-DFS usage. The value speciies the
number of bytes that HDFS cannot use per volume.

<property>

 <name>dfs.datanode.du.reserved</name>

 <value>6000000000</value>

 <description>Reserved space in bytes per volume. Always leave
this much space free for non dfs use.

 </description>

</property>

Setting HDFS block size
HDFS stores iles across the cluster by breaking them down in to coarser grained, ixed-size
blocks. The default HDFS block size is 64 MB. The block size of a data product can affect the

performance of the ilesystem operations where larger block sizes would be more effective, if
you are storing and processing very large iles. The block size of a data product can affect the
performance of MapReduce computations, as the default behavior of Hadoop is to create one

map task for each data block of the input iles.

How to do it...

1. To use the NameNode coniguration ile to set the HDFS block size, add or modify the
following in the $HADOOP_HOME/conf/hdfs-site.xml. Block size is provided using

the number of bytes. This change would not change the block size of the iles that are
already in the HDFS. Only the iles copied after the change will have the new block size.
<property>

 <name>dfs.block.size</name>

 <value>134217728</value>

</property>

Advanced HDFS

36

2. To specify the HDFS block size for speciic ile paths, you can specify the block size
when uploading the ile from the command line as follows:
>bin/hadoop fs -Ddfs.blocksize=134217728 -put data.in /user/foo

There's more...

You can also specify the block size when creating iles using the HDFS Java API as well.

public FSDataOutputStream create(Path f,boolean overwrite, int
bufferSize, short replication,long blockSize)

You can use the fsck command to ind the block size and block locations of a particular ile
path in the HDFS. You can ind this information by browsing the ilesystem from the HDFS
monitoring console as well.

>bin/hadoop fsck /user/foo/data.in -blocks -files -locations

......

/user/foo/data.in 215227246 bytes, 2 block(s):

0. blk_6981535920477261584_1059len=134217728 repl=1 [hostname:50010]

1. blk_-8238102374790373371_1059 len=81009518 repl=1 [hostname:50010]

......

See also
 f The Setting ile replication factor recipe in this chapter.

Setting the ile replication factor
HDFS stores iles across the cluster by breaking them down in to coarser grained ixed-size
blocks. These coarser grained data blocks are replicated in different DataNodes mainly for

the fault-tolerance purposes. Data block replication also has the ability to increase the data

locality of the MapReduce computations and to increase the total data access bandwidth as

well. Reducing the replication factor helps save the storage space in HDFS.

HDFS replication factor is a ile-level property that can be set per ile basis. This recipe shows
how to change the default replication factor of a HDFS deployment affecting the new iles
that would be created afterwards, how to specify a custom replication factor at the time of ile
creation in HDFS, and how to change the replication factor of the existing iles in HDFS.

Chapter 2

37

How to do it...

1. To set the ile replication factor using the NameNode coniguration, add or modify
the dfs.replication property in $HADOOP_HOME/conf/hdfs-site.xml. This

change would not change the replication factor of the iles that are already in the
HDFS. Only the iles copied after the change will have the new replication factor.
<property>

 <name>dfs.replication</name>

 <value>2</value>

</property>

2. To set the ile replication factor when uploading the iles, you can specify the
replication factor from the command line, as follows:

>bin/hadoop fs -D dfs.replication=1 -copyFromLocal non-critical-
file.txt /user/foo

3. The setrep command can be used to change the replication factor of iles or ile
paths that are already in the HDFS.

> bin/hadoop fs -setrep 2 non-critical-file.txt

Replication 3 set: hdfs://myhost:9000/user/foo/non-critical-file.
txt

How it works...

The setrep command syntax is as follows:

hadoop fs -setrep [-R] <path>

The <path> parameter of the setrep command speciies the HDFS path where the
replication factor has to be changed. The –R option recursively sets the replication

factor for iles and directories within a directory.

There's more...

The replication factor of a ile is displayed when listing the iles using the ls command.

>bin/hadoop fs -ls

Found 1 item

-rw-r--r--2foo supergroup ... /user/foo/non-critical-file.txt

The replication factor of iles is displayed when browsing iles in the HDFS monitoring UI.

www.allitebooks.com

http://www.allitebooks.org

Advanced HDFS

38

See also
 f The Setting HDFS block size recipe in this chapter.

Using HDFS Java API
HDFS Java API can be used to interact with HDFS from any Java program. This API gives us

the ability to utilize the data stored in HDFS from other Java programs as well as to process

that data with other non-Hadoop computational frameworks. Occasionally you may also

come across a use case where you want to access HDFS directly from inside a MapReduce

application. However, if you are writing or modifying iles in HDFS directly from a Map or
Reduce task, be aware that you are violating the side effect free nature of MapReduce that

might lead to data consistency issues based on your use case.

Getting ready
Set the HADOOP_HOME environment variable to point to your Hadoop installation root directory.

How to do it...

The following steps show you how to use the HDFS Java API to perform ilesystem operations
on a HDFS installation using a Java program:

1. The following sample program creates a new ile in HDFS, writes some text to the
newly created ile, and reads the ile back from the HDFS:
importjava.io.IOException;

importorg.apache.hadoop.conf.Configuration;

importorg.apache.hadoop.fs.FSDataInputStream;

importorg.apache.hadoop.fs.FSDataOutputStream;

importorg.apache.hadoop.fs.FileSystem;

importorg.apache.hadoop.fs.Path;

public class HDFSJavaAPIDemo {

 public static void main(String[] args) throws IOException {

 Configuration conf = new Configuration();

 FileSystem fs = FileSystem.get(conf);

 System.out.println(fs.getUri());

 Path file = new Path("demo.txt");

 if (fs.exists(file)) {

Chapter 2

39

 System.out.println("File exists.");

 } else {

 // Writing to file

 FSDataOutputStream outStream = fs.create(file);

 outStream.writeUTF("Welcome to HDFS Java API!!!");

 outStream.close();

 }

 // Reading from file

 FSDataInputStream inStream = fs.open(file);

 String data = inStream.readUTF();

 System.out.println(data);

 inStream.close();

 fs.close();

 }

2. Compile and package the above program in to a JAR package. Unzip the source

package for this chapter, go to the HDFS_Java_API folder and run the Ant build.

The HDFSJavaAPI.jar ile will be created in the build folder.

>cd HDFS_java_API

>ant

You can use the following Ant build ile to compile the above sample program:
<project name="HDFSJavaAPI" default="compile" basedir=".">

 <property name="build" location="build"/>

 <property environment="env"/>

 <path id="hadoop-classpath">

 <fileset dir="${env.HADOOP_HOME}/lib">

 <include name="**/*.jar"/>

 </fileset>

 <fileset dir="${env.HADOOP_HOME}">

 <include name="**/*.jar"/>

 </fileset>

 </path>

 <target name="compile">

 <mkdir dir="${build}"/>

 <javac srcdir="src" destdir="${build}">

 <classpath refid="hadoop-classpath"/>

 </javac>

 <jar jarfile="HDFSJavaAPI.jar" basedir="${build}"/>

Advanced HDFS

40

 </target>

 <target name="clean">

 <delete dir="${build}"/>

 </target>

</project>

3. You can execute the above sample with Hadoop using the following command.

Running samples using the hadoop script ensures that it uses the currently

conigured HDFS and the necessary dependencies from the Hadoop classpath.
>bin/hadoop jar HDFSJavaAPI.jar HDFSJavaAPIDemo

hdfs://yourhost:9000

Welcome to HDFS Java API!!!

4. Use the ls command to list the newly created ile:
>/bin/hadoop fs -ls

Found 1 items

-rw-r--r-- 3 foosupergroup 20 2012-04-27 16:57 /user/
foo/demo.txt

How it works...

In order to interact with the HDFS programmatically, we irst obtain a handle to the currently
conigured ilesystem. Instantiating a Coniguration object and obtaining a FileSystem

handle within a Hadoop environment will point it to the HDFS NameNode of that environment.

Several alternative methods to conigure a FileSystem object are discussed in the

Coniguring the FileSystem object section.

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);

The FileSystem.create(filePath) method creates a new ile in the given
path and provides us with a FSDataOutputStream object to the newly created ile.
FSDataOutputStream wraps the java.io.DataOutputStream and allows the program

to write primitive Java data types to the ile. The FileSystem.Create() method overrides

if the ile exists. In this example, the ile will be created relative to the users' home directory in
the HDFS, which would result in a path similar to /user/<user_name>/demo.txt.

Path file = new Path("demo.txt");

FSDataOutputStream outStream = fs.create(file);

outStream.writeUTF("Welcome to HDFS Java API!!!");

outStream.close();

Chapter 2

41

FileSystem.open(filepath) opens a FSDataInputStream to the given ile.
FSDataInputStream wraps the java.io.DataInputStream and allows the program to

read primitive Java data types from the ile.

FSDataInputStream inStream = fs.open(file);

String data = inStream.readUTF();

System.out.println(data);

inStream.close();

There's more...

HDFS Java API supports many more ilesystem operations than we have used in the above
sample. The full API documentation can be found at http://hadoop.apache.org/
common/docs/current/api/org/apache/hadoop/fs/FileSystem.html.

Coniguring the FileSystem object
We can use the HDFS Java API from outside the Hadoop environment as well. When doing so,

we have to explicitly conigure the HDFS NameNode and the port. The following are a couple
of ways to perform that coniguration:

 f You can load the coniguration iles to the Configuration object before retrieving

the FileSystem object as follows. Make sure to add all the Hadoop and dependency

libraries to the classpath.

Configuration conf = new Configuration();

conf.addResource(new Path("…/hadoop/conf/core-site.xml"));

conf.addResource(new Path("…/hadoop/conf/hdfs-site.xml"));

FileSystem fileSystem = FileSystem.get(conf);

 f You can also specify the NameNode and the port as follows. Replace the

NAMENODE_HOSTNAME and PORT with the hostname and the port of the

NameNode of your HDFS installation.

Configuration conf = new Configuration();

conf.set("fs.default.name", "hdfs://NAMENODE_HOSTNAME:PORT");

FileSystem fileSystem = FileSystem.get(conf);

HDFS ilesystem API is an abstraction that supports several ilesystems. In case the above
program could not ind a valid HDFS coniguration, it will point to the local ilesystem instead
of the HDFS. You can identify the current ilesystem of the FileSystem object using the

getUri() function as follows. It would result in hdfs://your_namenode:port in the case

it's using a properly conigured HDFS and file:/// in the case it is using the local ilesystem.

fileSystem.getUri();

Advanced HDFS

42

Retrieving the list of data blocks of a ile
The getFileBlockLocations() function of the FileSystem object allows you to

retrieve the list of data blocks of a ile stored in HDFS, together with hostnames where
the blocks are stored and the block offsets. This information would be very useful if you

are planning for performing any data local operations on the ile's data using a framework
other than Hadoop MapReduce.

FileStatus fileStatus = fs.getFileStatus(file);

BlockLocation[] blocks = fs.getFileBlockLocations(

 fileStatus, 0, fileStatus.getLen());

See also
 f The Using HDFS C API recipe in this chapter.

Using HDFS C API (libhdfs)
libhdfs—a native shared library—provides a C API that enables non-Java programs to interact

with HDFS. libhdfs uses JNI to interact with HDFS through Java.

Getting ready
Current Hadoop distributions contain the pre-compiled libhdfs libraries for 32-bit and 64-bit

Linux operating systems. You may have to download the Hadoop standard distribution and

compile the libhdfs library from the source code, if your operating system is not compatible

with the pre-compiled libraries. Refer to the Mounting HDFS (Fuse-DFS) recipe for information

on compiling the libhdfs library.

How to do it...

The following steps show you how to perform operations on a HDFS installation using a

HDFS C API:

1. The following sample program creates a new ile in HDFS, writes some text to the
newly created ile and reads the ile back from the HDFS. Replace NAMENODE_
HOSTNAME and PORT with the relevant values corresponding to the NameNode of

your HDFS cluster. The hdfs_cpp_demo.c source ile is provided in the HDFS_C_
API directory of the source code bundle for this folder.

#include "hdfs.h"

int main(intargc, char **argv) {

hdfsFS fs =hdfsConnect("NAMENODE_HOSTNAME,PORT);

Chapter 2

43

if (!fs) {

 fprintf(stderr, "Cannot connect to HDFS.\n");

 exit(-1);

 }

char* fileName = "demo_c.txt";

char* message = "Welcome to HDFS C API!!!";

int size = strlen(message);

int exists = hdfsExists(fs, fileName);

if (exists > -1) {

 fprintf(stdout, "File %s exists!\n", fileName);

}else{

 // Create and open file for writing

 hdfsFile outFile = hdfsOpenFile(fs, fileName, O_WRONLY|O_CREAT,
0, 0, 0);

if (!outFile) {

 fprintf(stderr, "Failed to open %s for writing!\n", fileName);

 exit(-2);

 }

 // write to file

hdfsWrite(fs, outFile, (void*)message, size);

 hdfsCloseFile(fs, outFile);

 }

 // Open file for reading

hdfsFile inFile = hdfsOpenFile(fs, fileName, O_RDONLY, 0, 0, 0);

 if (!inFile) {

fprintf(stderr, "Failed to open %s for reading!\n", fileName);

 exit(-2);

 }

 char* data = malloc(sizeof(char) * size);

 // Read from file.

tSize readSize = hdfsRead(fs, inFile, (void*)data, size);

fprintf(stdout, "%s\n", data);

 free(data);

hdfsCloseFile(fs, inFile);

hdfsDisconnect(fs);

 return 0;

}

Advanced HDFS

44

2. Compile the above program by using gcc as follows. When compiling you have to

link with the libhdfs and the JVM libraries. You also have to include the JNI header

iles of your Java installation. An example compiling command would look like the
following. Replace the ARCH and the architecture dependent paths with the paths

relevant for your system.

>gcc hdfs_cpp_demo.c \

-I $HADOOP_HOME/src/c++/libhdfs \

-I $JAVA_HOME/include \

-I $JAVA_HOME/include/linux/ \

-L $HADOOP_HOME/c++/ARCH/lib/ \

-L $JAVA_HOME/jre/lib/ARCH/server\

-l hdfs -ljvm -o hdfs_cpp_demo

3. Export an environment variable named CLASSPATH with the Hadoop dependencies.

A safe approach is to include all the jar iles in $HADOOP_HOME and in the $HADOOP_
HOME/lib.

export CLASSPATH=$HADOOP_HOME/hadoop-core-xx.jar:....

Ant build script to generate the classpath

Add the following Ant target to the build file given in step 2 of the HDFS

Java API recipe. The modified build.xml script is provided in the HDFS_C_
API folder of the source package for this chapter.

<target name="print-cp">

 <property name="classpath"
 refid="hadoop-classpath"/>

 <echo message="classpath= ${classpath}"/>

 </target>

Execute the Ant build using ant print-cp to generate a string with all the

jars in $HADOOP_HOME and $HADOOP_HOME/lib. Copy and export this

string as the CLASSPATH environmental variable.

4. Execute the program.

>LD_LIBRARY_PATH=$HADOOP_HOME/c++/ARCH/lib:$JAVA_HOME/jre/lib/
ARCH/server ./hdfs_cpp_demo

Welcome to HDFS C API!!!

Chapter 2

45

How it works...

First we connect to a HDFS cluster using the hdfsConnect command by providing

the hostname (or the IP address) and port of the NameNode of the HDFS cluster. The

hdfsConnectAsUser command can be used to connect to a HDFS cluster as a speciic user.

hdfsFS fs =hdfsConnect("NAMENODE_HOSTNAME",PORT);

We create new ile and obtain a handle to the newly created ile using the hdfsOpenFile

command. The O_WRONLY|O_CREAT lags create a new ile or override the existing ile and
open it in write only mode. Other supported lags are O_RDONLY and O_APPEND. The fourth,

ifth, and sixth parameters of the hdfsOpenFile command are the buffer size for read/write
operations, block replication factor and block size for the newly created ile. Specify 0 if you

want to use the default values for these three parameters.

hdfsFile outFile = hdfsOpenFile(fs, fileName,flags, 0, 0, 0);

The hdfsWrite command writes the provided data in to the ile speciied by the outFile

handle. Data size needs to be speciied using the number of bytes.

hdfsWrite(fs, outFile, (void*)message, size);

The hdfsRead command reads data from the ile speciied by the inFile. The size of the

buffer in bytes needs to be provided as the fourth parameter. The hdfsRead command

returns the actual number of bytes read from the ile that might be less than the buffer size.
If you want to ensure certain amounts of bytes that are read from the ile, it is advisable to
use the hdfsRead command from inside a loop until the speciied number of bytes are read.

char* data = malloc(sizeof(char) * size);

tSize readSize = hdfsRead(fs, inFile, (void*)data, size);

There's more...

HDFS C API (libhdfs) supports many more ilesystem operations than the functions we have
used in the preceding sample. Refer to the $HADOOP_HOME/src/c++/libhdfs/hdfs.h

header ile for more information.

Coniguring using HDFS coniguration iles
You can also use the HDFS coniguration iles to point libhdfs to your HDFS NameNode, instead
of specifying the NameNode hostname and the port number in the hdfsConnect command.

1. Change the NameNode hostname and the port of the hdfsConnect command to

'default' and 0. (Setting the host as NULL would make libhdfs to use the local

ilesystem).
hdfsFS fs = hdfsConnect("default",0);

Advanced HDFS

46

2. Add the conf directory of your HDFS installation to the CLASSPATH

environmental variable.

export CLASSPATH=$HADOOP_HOME/hadoop-core-xx.jar:....:$HADOOP_
HOME/conf

See also
 f The HDFS Java API and Mounting HDFS recipes in this chapter.

Mounting HDFS (Fuse-DFS)
The Fuse-DFS project allows us to mount HDFS on Linux (supports many other lavors of Unix
as well) as a standard ilesystem. This allows any program or user to access and interact with
HDFS similar to a traditional ilesystem.

Getting ready
You must have the following software installed in your system.

 f Apache Ant (http://ant.apache.org/).

 f Fuse and fuse development packages. Fuse development iles can be found in fuse-
devel RPM for Redhat/Fedora and in libfuse-dev package for Debian/Ubuntu.

JAVA_HOME must be set to point to a JDK, not to a JRE.

You must have the root privileges for the node in which you are planning to mount the

HDFS ilesystem.

The following recipe assumes you already have pre-built libhdfs libraries. Hadoop contains

pre-built libhdfs libraries for the Linux x86_64/i386 platforms. If you are using some other
platform, irst follow the Building libhdfs sub section in the more info section to build the

libhdfs libraries.

How to do it...

The following steps show you how to mount an HDFS ilesystem as a standard ile system
on Linux:

1. Go to $HADOOP_HOME and create a new directory named build.

>cd $HADOOP_HOME

>mkdir build

Chapter 2

47

2. Create a symbolic link to the libhdfs libraries inside the build directory.

>ln -s c++/Linux-amd64-64/lib/ build/libhdfs

3. Copy the c++ directory to the build folder.

>cp -R c++/ build/

4. Build fuse-dfs by executing the following command in $HADOOP_HOME. This

command will generate the fuse_dfs and fuse_dfs_wrapper.sh iles in the
build/contrib/fuse-dfs/ directory.

> ant compile-contrib -Dlibhdfs=1 -Dfusedfs=1

If the build fails with messages similar to undefined reference
to 'fuse_get_context', then append the following to the end of

the src/contrib/fuse-dfs/src/Makefile.am file:

fuse_dfs_LDADD=-lfuse -lhdfs -ljvm -lm

5. Verify the paths in fuse_dfs_wrapper.sh and correct them. You may have to

change the libhdfs path in the following line as follows:

export LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/$OS_ARCH/server:$HADOOP_
HOME/build/libhdfs/:/usr/local/lib

6. If it exists, uncomment the user_allow_other in /etc/fuse.conf.

7. Create a directory as the mount point:

>mkdir /u/hdfs

8. Execute the following command from the build/contrib/fuse-dfs/ directory.

You have to execute this command with root privileges. Make sure that the

HADOOP_HOME and JAVA_HOME environmental variables are set properly in the root

environment as well. The optional –d parameter enables the debug mode. It would be

helpful to run the following command in the debug mode to identify any error when

you run it for the irst time. The rw parameter mounts the ilesystem read-write (ro

for read-only). –oserver must point to the NameNode hostname. –oport should

provide the NameNode port number.

>chmod a+x fuse_dfs_wrapper.sh

>./fuse_dfs_wrapper.sh rw -oserver=localhost -oport=9000 /u/hdfs/
-d

www.allitebooks.com

http://www.allitebooks.org

Advanced HDFS

48

How it works...

Fuse-DFS is based on the ilesystem in user space. The FUSE project (http://fuse.
sourceforge.net/) makes it possible to implement ilesystems in the user space.
Fuse-DFS interacts with HDFS ilesystem using the libhdfs C API. libhdfs uses JNI to
spawn a JVM that communicates with the conigured HDFS NameNode.

There's more...

Many instances of HDFS can be mounted on to different directories using the Fuse-DFS as

mentioned in the preceding sections.

Building libhdfs
In order to build libhdfs, you must have the following software installed in your system:

 f The ant-nodeps and ant-trax packages

 f The automake package

 f The Libtool package

 f The zlib-devel package

 f JDK 1.5—needed in the compile time for Apache Forrest

 f Apache Forrest (http://forrest.apache.org/)—use the 0.8 release

Compile libhdfs by executing the following command in $HADOOP_HOME:

>ant compile-c++-libhdfs -Dislibhdfs=1

Package the distribution together with libhdfs by executing the following command. Provide

the path to JDK 1.5 using the -Djava5.home property. Provide the path to the Apache

Forrest installation using the -Dforrest.home property.

>ant package -Djava5.home=/u/jdk1.5 -Dforrest.home=/u/apache-forrest-0.8

Check whether the build/libhdfs directory contains the libhdfs.* iles. If it doesn't,
copy those iles to build/libhdfs from the build/c++/<your_architecture>/lib

directory.

>cp -R build/c++/<Your_OS_Architecture/lib>/ build/libhdfs

See also
 f The HDFS C API recipe in this chapter.

Chapter 2

49

Merging iles in HDFS
This recipe shows how to merge iles in HDFS to create a single ile. This is useful when
retrieving the output of a MapReduce computation with multiple reducers where each

reducer produces a part of the output.

How to do it...

1. The HDFS getMerge command can copy the iles in a given path in HDFS to a single
concatenated ile in the local ilesystem.
>bin/hadoop fs -getmerge /user/foo/demofiles merged.txt

How it works...

The getmerge command has the following syntax:

hadoopfs -getmerge <src> <localdst> [addnl]

The getmerge command has three parameters. The irst parameter, <src files> is the

HDFS path to the directory that contains the iles to be concatenated. <dist file> is the

local ilename of the merged ile. addnl is an optional parameter that adds a new line in the

result ile, after the data from each merged ile.

3
Advanced Hadoop

MapReduce

Administration

In this chapter, we will cover:

 f Tuning Hadoop conigurations for cluster deployments

 f Running benchmarks to verify the Hadoop installation

 f Reusing Java VMs to improve the performance

 f Fault tolerance and speculative execution

 f Debug scripts – analyzing task failures

 f Setting failure percentages and skipping bad records

 f Shared-user Hadoop clusters – using fair and other schedulers

 f Hadoop security – integrating with Kerberos

 f Using the Hadoop Tool interface

Introduction
This chapter describes how to perform advanced administration steps for your Hadoop

Cluster. This chapter assumes that you have followed Chapter 1, Getting Hadoop Up and

Running in a Cluster, and have installed Hadoop in a clustered or pseudo-distributed setup.

Advanced Hadoop MapReduce Administration

52

Tuning Hadoop conigurations for cluster
deployments

Getting ready
Shut down the Hadoop cluster if it is already running, by executing the bin/stop-dfs.sh

and bin/stop-mapred.sh commands from HADOOP_HOME.

How to do it...

We can control Hadoop conigurations through the following three coniguration iles:

 f conf/core-site.xml: This contains the conigurations common to whole Hadoop
distribution

 f conf/hdfs-site.xml: This contains conigurations for HDFS

 f conf/mapred-site.xml: This contains conigurations for MapReduce

Each coniguration ile has name-value pairs expressed in an XML format, and they deine
the workings of different aspects of Hadoop. The following code snippet shows an example

of a property in the coniguration ile. Here, the <configuration> tag is the top-level XML
container, and the <property> tags that deine individual properties go as child elements of
the <configuration> tag.

<configuration>

<property>

<name>mapred.reduce.parallel.copies</name>

<value>20</value>

</property>

...

</configuration>

The following instructions show how to change the directory to which we write Hadoop logs

and conigure the maximum number of map and reduce tasks:

1. Create a directory to store the logiles. For example, /root/hadoop_logs.

2. Uncomment the line that includes HADOOP_LOG_DIR in HADOOP_HOME/conf/
hadoop-env.sh and point it to the new directory.

3. Add the following lines to the HADOOP_HOME/conf/mapred-site.xml ile:
<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>2 </value>

</property>

<property>

Chapter 3

53

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>2 </value>

</property>

4. Restart the Hadoop cluster by running the bin/stop-mapred.sh and

bin/start-mapred.sh commands from the HADOOP_HOME directory.

5. You can verify the number of processes created using OS process monitoring tools.

If you are in Linux, run the watch ps –ef|grep hadoop command. If you are in

Windows or MacOS use the Task Manager.

How it works...

HADOOP_LOG_DIR redeines the location to which Hadoop writes its logs. The mapred.
tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.
maximum properties deine the maximum number of map and reduce tasks that can run
within a single TaskTracker at a given moment.

These and other server-side parameters are deined in the HADOOP_HOME/conf/*-site.
xml iles. Hadoop reloads these conigurations after a restart.

There's more...

There are many similar coniguration properties deined in Hadoop. You can see some of them
in the following tables.

The coniguration properties for conf/core-site.xml are listed in the following table:

Name Default

value

Description

fs.inmemory.size.mb 100 This is the amount of memory allocated to the

in-memory filesystem that is used to merge

map outputs at reducers in MBs.

io.sort.factor 100 This is the maximum number of streams

merged while sorting files.

io.file.buffer.size 131072 This is the size of the read/write buffer used
by sequence files.

Advanced Hadoop MapReduce Administration

54

The coniguration properties for conf/mapred-site.xml are listed in the following table:

Name Default value Description

mapred.reduce.
parallel.copies

5 This is the maximum number of parallel

copies the reduce step will execute to

fetch output from many parallel jobs.

mapred.map.child.java.
opts

-Xmx200M This is for passing Java options into the

map JVM.

mapred.reduce.child.
java.opts

-Xmx200M This is for passing Java options into the

reduce JVM.

io.sort.mb 200 The memory limit while sorting data in

MBs.

The coniguration properties for conf/hdfs-site.xml are listed in the following table:

Name Default

value

Description

dfs.block.size 67108864 This is the HDFS block size.

dfs.namenode.handler.
count

40 This is the number of server threads to

handle RPC calls in the NameNode.

Running benchmarks to verify the Hadoop
installation

The Hadoop distribution comes with several benchmarks. We can use them to verify our

Hadoop installation and measure Hadoop's performance. This recipe introduces these

benchmarks and explains how to run them.

Getting ready
Start the Hadoop cluster. You can run these benchmarks either on a cluster setup or on a

pseudo-distributed setup.

How to do it...

Let us run the sort benchmark. The sort benchmark consists of two jobs. First, we generate

some random data using the randomwriter Hadoop job and then sort them using the

sort sample.

1. Change the directory to HADOOP_HOME.

Chapter 3

55

2. Run the randomwriter Hadoop job using the following command:

>bin/hadoop jar hadoop-examples-1.0.0.jarrandomwriter

-Dtest.randomwrite.bytes_per_map=100

-Dtest.randomwriter.maps_per_host=10 /data/unsorted-data

Here the two parameters, test.randomwrite.bytes_per_map and test.
randomwriter.maps_per_host specify the size of data generated by a map

and the number of maps respectively.

3. Run the sort program:

>bin/hadoop jar hadoop-examples-1.0.0.jar sort /data/unsorted-data
/data/sorted-data

4. Verify the inal results by running the following command:
>bin/hadoop jar hadoop-test-1.0.0.jar testmapredsort -sortInput /
data/unsorted-data -sortOutput /data/sorted-data

Finally, when everything is successful, the following message will be displayed:

The job took 66 seconds.

SUCCESS! Validated the MapReduce framework's 'sort' successfully.

How it works...

First, the randomwriter application runs a Hadoop job to generate random data that can

be used by the second sort program. Then, we verify the results through testmapredsort

job. If your computer has more capacity, you may run the initial randomwriter step with

increased output sizes.

There's more...

Hadoop includes several other benchmarks.

 f TestDFSIO: This tests the input output (I/O) performance of HDFS

 f nnbench: This checks the NameNode hardware

 f mrbench: This runs many small jobs

 f TeraSort: This sorts a one terabyte of data

More information about these benchmarks can be found at http://www.michael-
noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-
cluster-with-terasort-testdfsio-nnbench-mrbench/.

http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/

Advanced Hadoop MapReduce Administration

56

Reusing Java VMs to improve the
performance

In its default coniguration, Hadoop starts a new JVM for each map or reduce task. However,
running multiple tasks from the same JVM can sometimes signiicantly speed up the
execution. This recipe explains how to control this behavior.

How to do it...

1. Run the WordCount sample by passing the following option as an argument:

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount –Dmapred.job.
reuse.jvm.num.tasks=-1 /data/input1 /data/output1

2. Monitor the number of processes created by Hadoop (through ps –ef|grephadoop

command in Unix or task manager in Windows). Hadoop starts only a single JVM per

task slot and then reuses it for an unlimited number of tasks in the job.

However, passing arguments through the –D option only works if the job implements

the org.apache.hadoop.util.Tools interface. Otherwise, you should set the

option through the JobConf.setNumTasksToExecutePerJvm(-1) method.

How it works...

By setting the job coniguration property through mapred.job.reuse.jvm.num.tasks,

we can control the number of tasks for the JVM run by Hadoop. When the value is set to -1,

Hadoop runs the tasks in the same JVM.

Fault tolerance and speculative execution
The primary advantage of using Hadoop is its support for fault tolerance. When you run a job,

especially a large job, parts of the execution can fail due to external causes such as network

failures, disk failures, and node failures.

When a job has been started, Hadoop JobTracker monitors the TaskTrackers to which it has

submitted the tasks of the job. If any TaskTrackers are not responsive, Hadoop will resubmit

the tasks handled by unresponsive TaskTracker to a new TaskTracker.

Generally, a Hadoop system may be compose of heterogeneous nodes, and as a result there

can be very slow nodes as well as fast nodes. Potentially, a few slow nodes can slow down an

execution signiicantly.

Chapter 3

57

To avoid this, Hadoop supports speculative executions. This means if most of the map tasks

have completed and Hadoop is waiting for a few more map tasks, Hadoop JobTracker will start

these pending jobs also in a new node. The tracker will use the results from the irst task that
inishes and stop any other identical tasks.

However, the above model is feasible only if the map tasks are side-effects free. If such

parallel executions are undesirable, Hadoop lets users turn off speculative executions.

How to do it...

Run the WordCount sample by passing the following option as an argument to turn off the

speculative executions:

bin/hadoop jar hadoop-examples-1.0.0.jar wordcount–Dmapred.map.tasks.
speculative.execution=false –D mapred.reduce.tasks.speculative.
execution=true /data/input1 /data/output1

However, this only works if the job implements the org.apache.hadoop.util.Tools

interface. Otherwise, you should set the parameter through JobConf.set(name, value).

How it works...

When the option is speciied and set to false, Hadoop will turn off the speculative

executions. Otherwise, it will perform speculative executions by default.

Debug scripts – analyzing task failures
A Hadoop job may consist of many map tasks and reduce tasks. Therefore, debugging a

Hadoop job is often a complicated process. It is a good practice to irst test a Hadoop job
using unit tests by running it with a subset of the data.

However, sometimes it is necessary to debug a Hadoop job in a distributed mode. To support

such cases, Hadoop provides a mechanism called debug scripts. This recipe explains how to

use debug scripts.

Getting ready
Start the Hadoop cluster. Refer to the Setting Hadoop in a distributed cluster environment

recipe from Chapter 1, Getting Hadoop Up and Running in a Cluster.

www.allitebooks.com

http://www.allitebooks.org

Advanced Hadoop MapReduce Administration

58

How to do it...

A debug script is a shell script, and Hadoop executes the script whenever a task encounters

an error. The script will have access to the $script, $stdout, $stderr, $syslog, and

$jobconf properties, as environment variables populated by Hadoop. You can ind a
sample script from resources/chapter3/debugscript. We can use the debug scripts

to copy all the logiles to a single location, e-mail them to a single e-mail account, or perform
some analysis.

LOG_FILE=HADOOP_HOME/error.log

echo "Run the script" >> $LOG_FILE

echo $script >> $LOG_FILE

echo $stdout>> $LOG_FILE

echo $stderr>> $LOG_FILE

echo $syslog >> $LOG_FILE

echo $jobconf>> $LOG_FILE

1. Write your own debug script using the above example. In the above example, edit

HADOOP_HOME to point to your HADOOP_HOME directory.

src/chapter3/WordcountWithDebugScript.java extends the WordCount

sample to use debug scripts. The following listing shows the code.

The following code uploads the job scripts to HDFS and conigures the job to use
these scripts. Also, it sets up the distributed cache.

private static final String scriptFileLocation =

"resources/chapter3/debugscript";

public static void setupFailedTaskScript(JobConfconf)

throws Exception {

// create a directory on HDFS where we'll upload the fail

 //scripts

FileSystemfs = FileSystem.get(conf);

Path debugDir = new Path("/debug");

// who knows what's already in this directory; let's just

 //clear it.

if (fs.exists(debugDir)) {

fs.delete(debugDir, true);

}

// ...and then make sure it exists again

fs.mkdirs(debugDir);

Chapter 3

59

// upload the local scripts into HDFS

fs.copyFromLocalFile(new Path(scriptFileLocation),

new Path("/debug/fail-script"));

conf.setMapDebugScript("./fail-script");

conf.setReduceDebugScript("./fail-script");

DistributedCache.createSymlink(conf);

URI fsUri = fs.getUri();

String mapUriStr = fsUri.toString()

+ "/debug/fail-script#fail-script";

URI mapUri = new URI(mapUriStr);

DistributedCache.addCacheFile(mapUri, conf);

}

The following code runs the Hadoop job as we described in Chapter 1, Getting

Hadoop Up and Running in a Cluster. The only difference is that here, we have

called the preceding method to conigure failed task scripts.
public static void main(String[] args) throws Exception

{

 JobConfconf = new JobConf();

 setupFailedTaskScript(conf);

 Job job = new Job(conf, "word count");

 job.setJarByClass(FaultyWordCount.class);

 job.setMapperClass(FaultyWordCount.TokenizerMapper.class);

 job.setReducerClass(FaultyWordCount.IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

}

2. Compile the code base by running Ant from home directory of the source code. Copy

the build/lib/hadoop-cookbook-chapter3.jar to HADOOP_HOME.

Advanced Hadoop MapReduce Administration

60

3. Then run the job by running the following command:

>bin/hadoopjarhadoop-cookbook-chapter3.jarchapter3.
WordcountWithDebugScript /data/input /data/output1

The job will run the FaultyWordCount task that will always fail. Then Hadoop

will execute the debug script, and you can ind the results of the debug script from
HADOOP_HOME.

How it works...

We conigured the debug script through conf.setMapDebugScript("./fail-script").

However, the input value is not the ile location, but the command that needs to be run on
the machine when an error occurs. If you have a speciic ile that is present in all machines
that you want to run when an error occurs, you can just add that path through the conf.
setMapDebugScript("./fail-script") method.

But, Hadoop runs the mappers in multiple nodes, and often in a machine different than the

machine running the job's client. Therefore, for the debug script to work, we need to get the

script to all the nodes running the mapper.

We do this using the distributed cache. As described in the Using Distributed cache to distribute

resources recipe in Chapter 4, Developing Complex Hadoop MapReduce Applications, users can

add iles that are in the HDFS ilesystem to distribute cache. Then, Hadoop automatically copies

those iles to each node by running map tasks. However, distributed cache copies the iles to
mapred.local.dir of the MapReduce setup, but it runs the job from a different location.

Therefore, we link the cache directory to the working directory by creating a symlink using the

DistributedCache.createSymlink(conf) command.

Then Hadoop copies the script iles to each mapper node and symlinks it to the working
directory of the job. When an error occurs, Hadoop will run the ./fail-script command,

which will run the script ile that has been copied to the node through distributed cache. The
debug script will carry out the tasks you have programmed when an error occurs.

Setting failure percentages and skipping
bad records

When processing a large amount of data, there may be cases where a small amount of map

tasks will fail, but still the inal results make sense without the failed map tasks. This could
happen due to a number of reasons such as:

 f Bugs in the map task

 f Small percentage of data records are not well formed

 f Bugs in third-party libraries

Chapter 3

61

In the irst case, it is best to debug, ind the cause for failures, and ix it. However, in the
second and third cases, such errors may be unavoidable. It is possible to tell Hadoop that

the job should succeed even if some small percentage of map tasks have failed.

This can be done in two ways:

 f Setting the failure percentages

 f Asking Hadoop to skip bad records

This recipe explains how to conigure this behavior.

Getting ready
Start the Hadoop setup. Refer to the Setting Hadoop in a distributed cluster environment

recipe from the Chapter 1, Getting Hadoop Up and Running in a Cluster.

How to do it...

Run the WordCount sample by passing the following options:

>bin/hadoop jar hadoop-examples-1.0.0.jar wordcount

-Dmapred.skip.map.max.skip.records=1

-Dmapred.skip.reduce.max.skip.groups=1 /data/input1 /data/output1

However, this only works if the job implements the org.apache.hadoop.util.Tools

interface. Otherwise, you should set it through JobConf.set(name, value).

How it works...

Hadoop does not support skipping bad records by default. We can turn on bad record skipping

by setting the following parameters to positive values:

 f mapred.skip.map.max.skip.records: This sets the number of records to skip

near a bad record, including the bad record

 f mapred.skip.reduce.max.skip.groups: This sets the number of acceptable

skip groups surrounding a bad group

There's more...

You can also limit the percentage of failures in map or reduce tasks by setting the JobConf.
setMaxMapTaskFailuresPercent(percent) and JobConf.setMaxReduceTaskFail
uresPercent(percent) options.

Advanced Hadoop MapReduce Administration

62

Also, Hadoop repeats the tasks in case of a failure. You can control that through JobConf.
setMaxMapAttempts(5).

Shared-user Hadoop clusters – using fair and
other schedulers

When a user submits a job to Hadoop, this job needs to be assigned a resource

(a computer/host) before execution. This process is called scheduling, and a

scheduler decides when resources are assigned to a given job.

Hadoop is by default conigured with a First in First out (FIFO) scheduler, which executes

jobs in the same order as they arrive. However, for a deployment that is running many

MapReduce jobs and shared by many users, more complex scheduling policies are needed.

The good news is that Hadoop scheduler is pluggable, and it comes with two other schedulers.

Therefore, if required, it is possible to write your own scheduler as well.

 f Fair scheduler: This deines pools and over time; each pool gets around the same
amount of resources.

 f Capacity scheduler: This deines queues, and each queue has a guaranteed
capacity. The capacity scheduler shares computer resources allocated to a queue

with other queues if those resources are not in use.

This recipe describes how to change the scheduler in Hadoop.

Getting ready
For this recipe, you need a working Hadoop deployment. Set up Hadoop using the Setting

Hadoop in a distributed cluster environment recipe from Chapter 1, Getting Hadoop Up and

Running in a Cluster.

How to do it...

1. Shut down the Hadoop cluster.

2. You need hadoop-fairscheduler-1.0.0.jar in the HADOOP_HOME/lib.

However, from Hadoop 1.0.0 and higher releases, this JAR ile is in the right place in
the Hadoop distribution.

3. Add the following code to the HADOOP_HOME/conf/mapred-site.xml:

<property>

<name>mapred.jobtracker.taskScheduler</name>

<value>org.apache.hadoop.mapred.FairScheduler</value>

</property>

Chapter 3

63

4. Restart Hadoop.

5. Verify that the new scheduler has been applied by going to http://<job-
tracker-host>:50030/scheduler in your installation. If the scheduler has been

properly applied, the page will have the heading "Fair Scheduler Administration".

How it works...

When you follow the preceding steps, Hadoop will load the new scheduler settings when it is

started. The fair scheduler shares equal amount of resources between users unless it has

been conigured otherwise.

The fair scheduler supports users to conigure it through two ways. There are several
parameters of the mapred.fairscheduler.* form, and we can conigure these
parameters via HADOOP_HOME/conf/mapred-site.xml. Also additional parameters

can be conigured via HADOOP_HOME/conf/fair-scheduler.xml. More details

about fair scheduler can be found from HADOOP_HOME/docs/fair_scheduler.html.

There's more...

Hadoop also includes another scheduler called capacity scheduler that provides more

ine-grained control than the fair scheduler. More details about the capacity scheduler
can be found from HADOOP_HOME/docs/capacity_scheduler.html.

Hadoop security – integrating with Kerberos
Hadoop by default runs without security. However, it also supports Kerberos-based setup,

which provides full security. This recipe describes how to conigure Hadoop with Kerberos
for security.

Advanced Hadoop MapReduce Administration

64

Kerberos setups will include a Hadoop cluster—NameNode, DataNodes, JobTracker, and

TaskTrackers—and a Kerberos server. We will deine users as principals in the Kerberos

server. Users can obtain a ticket from the Kerberos server, and use that ticket to log in to any

server in Hadoop. We will map each Kerberos principal with a Unix user. Once logged in, the

authorization is performed based on the Unix user and group permissions associated with

each user.

Getting ready
Set up Hadoop by following Chapter 1, Getting Hadoop Up and Running in a Cluster either

using pseudo-distributed or clustered setup.

We need a machine to use as the Kerberos node for which you have root access. Furthermore,

the machine should have the domain name already conigured (we will assume DNS name is
hadoop.kbrelam.com, but you can replace it with another domain). If you want to try this

out in a single machine only, you can set up the DNS name through adding your IP address

hadoop.kbrelam.com to your /etc/hosts ile.

How to do it...

1. Install Kerberos on your machine. Refer to http://web.mit.edu/Kerberos/
krb5-1.8/krb5-1.8.6/doc/krb5-install.html for further instructions on

setting up Kerberos.

Provide hadoop.kbrelam.com as the realm and the administrative server when

installation asks for it. Then run the following command to create a realm:

>sudo krb5_newrealm

2. In Kerberos, we call users "principals". Create a new principal by running

following commands:

>kadmin.local

>kadmin.local: add principal srinath/admin

3. Edit /etc/krb5kdc/kadm5.acl to include the line srinath/admin@hadoop.
kbrelam.com * to grant all the permissions.

4. Restart the Kerberos server by running the following command:

>sudo /etc/init.d/krb5-admin-server restart.

5. You can test the new principal by running following commands:

>kinitsrinath/admin

>klist

Chapter 3

65

6. Kerberos will use Unix users in Hadoop machines as Kerberos principals and use

local Unix-level user permissions to do authorization. Create the following users and

groups with permissions in all the machines on which you plan to run MapReduce.

We will have three users—hdfs to run HDFS server, mapred to run MapReduce

server, and bob to submit jobs.

>groupaddhadoop

>useraddhdfs

>useraddmapred

>usermod -g hadoophdfs

>usermod -g hadoopmapred

>useradd -G mapred bob

>usermod -a -G hadoop bob

7. Now let us create Kerberos principals for these users.

>kadmin.local

>kadmin.local: addprinc -randkey

hdfs/hadoop.kbrelam.com

>kadmin.local: addprinc –randkey

mapred/hadoop.kbrelam.com

>kadmin.local: addprinc -randkey

host/hadoop.kbrelam.com

>kadmin.local: addprinc -randkey

bob/hadoop.kbrelam.com

8. Now, we will create a key tab ile that contains credentials for Kerberos principals. We
will use these credentials to avoid entering the passwords at Hadoop startup.

>kadmin: xst -norandkey -k hdfs.keytab hdfs/hadoop.kbrelam.com
host/hadoop.kbrelam.com

>kadmin: xst -norandkey -k mapred.keytab mapred/hadoop.kbrelam.
com host/hadoop.kbrelam.com

>kadmin.local: xst -norandkey -k bob.keytab bob/hadoop.kbrelam.
com

>kadmin.local: exit

9. Deploy key tab iles by moving them in to the HADOOP_HOME/conf directory. Change

the directory to HADOOP_HOME and run following commands to set the permissions

for key tab iles:
>chownhdfs:hadoopconf/hdfs.keytab

>chownmapred:hadoopconf/mapred.keytab

Advanced Hadoop MapReduce Administration

66

10. Now, set permissions in the ilesystem and Hadoop. Change the directory to
HADOOP_HOME and run the following commands:

>chownhdfs:hadoop /opt/hadoop-work/name/

>chownhdfs:hadoop /opt/hadoop-work/data

>chownmapred:hadoop /opt/hadoop-work/local/

>bin/hadoopfs -chownhdfs:hadoop /

>bin/hadoopfs -chmod 755 /

>bin/hadoopfs -mkdir /mapred

>bin/hadoopfs -mkdir /mapred/system/

>bin/hadoopfs -chownmapred:hadoop /mapred/system

>bin/hadoopfs -chmod -R 700 /mapred/system

>bin/hadoopfs -chmod 777 /tmp

11. Install Unlimited Strength Java Cryptography Extension (JCE) Policy Files by

downloading the policy iles from http://www.oracle.com/technetwork/
java/javase/downloads/index.htmland copying the JAR iles in the
distribution to JAVA_HOME/jre/lib/security.

12. Conigure Hadoop properties by adding following properties to the associated
coniguration iles. Replace the HADOOP_HOME value with the corresponding location.

Here, Hadoop will replace the _HOST with the localhost name. The following code

snippet adds properties to core-site.xml:

<property>

<name>hadoop.security.authentication</name>

<value>kerberos</value>

</property>

<property>

<name>hadoop.security.authorization</name>

<value>true</value>

</property>

13. Copy the coniguration parameters deined in resources/chapter3/kerberos-
hdfs-site.xml of the source code for this chapter to the HADOOP_HOME/conf/
hdfs-site.xml. Replace the HADOOP_HOME value with the corresponding location.

Here Hadoop will replace the _HOST with the localhost name.

14. Start the NameNode by running the following commands from HADOOP_HOME:

>sudo -u hdfs bin/hadoopnamenode &

Chapter 3

67

15. Test HDFS setup by doing some metadata operations.

>kinit hdfs/hadoop.kbrelam.com -k -t conf/hdfs.keytab

>klist

>kinit –R

In the irst command, we specify the name of the principal (for example, hdfs/
hadoop.kbrelam.com) to apply operations to that principal. The irst two
commands are theoretically suficient. However, there is a bug that stops Hadoop
from reading the credentials. We can work around this by the last command that

rewrites the key in more readable format. Now let's run hdfs commands.

>bin/hadoopfs -ls /

16. Start the DataNode (this must be done as the root) by running following command:

>su - root

>cd /opt/hadoop-1.0.3/

>export HADOOP_SECURE_DN_USER=hdfs

>export HADOOP_DATANODE_USER=hdfs

>bin/hadoopdatanode &

>exit

17. Conigure mapred by adding the following code to conf/map-red.xml. Replace

HADOOP_HOME with the corresponding location.

<property>

<name>mapreduce.jobtracker.kerberos.principal</name>

<value>mapred/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.jobtracker.kerberos.https.principal</
name><value>host/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.jobtracker.keytab.file</name>

<value>HADOOP_HOME/conf/mapred.keytab</value><!-- path to the
MapReducekeytab -->

</property><!-- TaskTracker security configs -->

<property>

<name>mapreduce.tasktracker.kerberos.principal</name>

<value>mapred/_HOST@hadoop.kbrelam.com</value>

</property>

<property>

<name>mapreduce.tasktracker.kerberos.https.principal</name>

<value>host/_HOST@hadoop.kbrelam.com</value>

Advanced Hadoop MapReduce Administration

68

</property>

<property>

<name>mapreduce.tasktracker.keytab.file</name>

<value>HADOOP_HOME/conf/mapred.keytab</value><!-- path to the
MapReducekeytab -->

</property><!-- TaskController settings -->

<property>

<name>mapred.task.tracker.task-controller</name><value>org.apache.
hadoop.mapred.LinuxTaskController</value>

</property>

<property>

<name>mapreduce.tasktracker.group</name>

<value>mapred</value>

</property>

18. Conigure the Linux task controller, which must be used for Kerberos setup.

>mkdir /etc/hadoop

>cpconf/taskcontroller.cfg /etc/hadoop/taskcontroller.cfg

>chmod 755 /etc/hadoop/taskcontroller.cfg

19. Add the following code to /etc/hadoop/taskcontroller.cfg:

mapred.local.dir=/opt/hadoop-work/local/

hadoop.log.dir=HADOOP_HOME/logs

mapreduce.tasktracker.group=mapred

banned.users=mapred,hdfs,bin

min.user.id=1000

Set up the permissions by running the following command from HADOOP_HOME,

and verify that the inal permissions of bin/task-controller are rwsr-x---.

Otherwise, the jobs will fail to execute.

>chmod 4750 bin/task-controller

>ls -l bin/task-controller

>-rwsr-x--- 1 root mapred 63374 May 9 02:05 bin/task-controller

20. Start the JobTracker and TaskTracker:

>sudo -u mapred bin/hadoopjobtracker

Wait for the JobTracker to start up and then run the following command:

>sudo -u mapred bin/hadooptasktracker

Chapter 3

69

21. Run the job by running following commands from HADOOP_HOME. If all commands run

successfully, you will see the WordCount output as described in Chapter 1, Getting

Hadoop Up and Running in a Cluster.

>su bob

>kinit bob/hadoop.kbrelam.com -k -t conf/bob.keytab

>kinit –R

>bin/hadoopfs -mkdir /data

>bin/hadoopfs -mkdir /data/job1

>bin/hadoopfs -mkdir /data/job1/input

>bin/hadoopfs -put README.txt /data/job1/input

>bin/hadoop jar hadoop-examples-1.0.3.jar wordcount /data/job1 /
data/output

How it works...

By running the kinit command, the client would obtain a Kerberos ticket and store it in the

ilesystem. When we run the command, the client uses the Kerberos ticket to get access to
the Hadoop nodes and submit jobs. Hadoop resolves the permission based on the user and

group permissions of the Linux users that matches the Kerberos principal.

Hadoop Kerberos security settings have many pitfalls. The two tools that might be useful are

as follows:

 f You can enable debugging by adding the environment variable HADOOP_
OPTS="$HADOOP_CLIENT_OPTS -Dsun.security.krb5.debug=true"

 f There is a very useful resource that has descriptions for all error codes:

https://ccp.cloudera.com/display/CDHDOC/Appendix+E+-+Task-
controller+Error+Codes

Also, when you change something, make sure you restart all the processes irst by
killing all the running processes.

Using the Hadoop Tool interface
Often Hadoop jobs are executed through a command line. Therefore, each Hadoop job has to

support reading, parsing, and processing command-line arguments. To avoid each developer

having to rewrite this code, Hadoop provides a org.apache.hadoop.util.Tool interface.

Advanced Hadoop MapReduce Administration

70

How to do it...

1. In the source code for this chapter, the src/chapter3/WordcountWithTools.
java class extends the WordCount example with support for the Tool interface.

public class WordcountWithTools extends

 Configured implements Tool

{

 public int run(String[] args) throws Exception

 {

 if (args.length< 2)

 {

 System.out.println("chapter3.WordCountWithTools

 WordCount<inDir><outDir>");

 ToolRunner.printGenericCommandUsage(System.out);

 System.out.println("");

 return -1;

 }

 Job job = new Job(getConf(), "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 return 0;

 }

 public static void main(String[] args)

 throws Exception

 {

 int res = ToolRunner.run(

 new Configuration(), new WordcountWithTools(), args);

 System.exit(res);

 }

2. Set up a input folder in HDFS with /data/input/README.txt if it doesn't already

exist. It can be done through following commands:

bin/hadoopfs -mkdir /data/output

bin/hadoopfs -mkdir /data/input

bin/hadoopfs -put README.txt /data/input

Chapter 3

71

3. Try to run the WordCount without any options, and it will list the available options.

bin/hadoop jar hadoop-cookbook-chapter3.jar chapter3.
WordcountWithToolsWordcount <inDir><outDir>

Generic options supported are

-conf<configuration file> specify an application configuration
file

-D <property=value> use value for given property

-fs<local|namenode:port> specify a namenode

-jt<local|jobtracker:port> specify a job tracker

-files<comma separated list of files> specify comma separated
files to be copied to the map reduce cluster

-libjars<comma separated list of jars> specify comma separated
jar files to include in the classpath.

-archives<comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

The general command line syntax is

bin/hadoop command [genericOptions] [commandOptions]

4. Run the WordCount sample with the mapred.job.reuse.jvm.num.tasks option

to limit the number of JVMs created by the job, as we learned in an earlier recipe.

bin/hadoop jar hadoop-cookbook-chapter3.jar

chapter3.WordcountWithTools

-D mapred.job.reuse.jvm.num.tasks=1 /data/input /data/output

How it works...

When a job extends from the Tool interface, Hadoop will intercept the command-line

arguments, parse the options, and conigure the JobConf object accordingly. Therefore,

the job will support standard generic options.

4
Developing Complex
Hadoop MapReduce

Applications

In this chapter, we will cover:

 f Choosing appropriate Hadoop data types

 f Implementing a custom Hadoop Writable data type

 f Implementing a custom Hadoop key type

 f Emitting data of different value types from a mapper

 f Choosing a suitable Hadoop InputFormat for your input data format

 f Adding support for new input data formats – implementing a custom InputFormat

 f Formatting the results of MapReduce computations – using Hadoop

OutputFormats

 f Hadoop intermediate (map to reduce) data partitioning

 f Broadcasting and distributing shared resources to tasks in a MapReduce job :

Hadoop DistributedCache

 f Using Hadoop with legacy applications – Hadoop Streaming

 f Adding dependencies between MapReduce jobs

 f Hadoop counters for reporting custom metrics

Developing Complex Hadoop MapReduce Applications

74

Introduction
This chapter introduces you to several advanced Hadoop MapReduce features that will help

you to develop highly customized, eficient MapReduce applications.

In this chapter, we will explore the different data types provided by Hadoop and the steps to

implement custom data types for Hadoop MapReduce computations. We will also explore

the different data input and output formats provided by Hadoop. This chapter will provide you

with the basic understanding of how to add support for new data formats in Hadoop. We will

also be discussing other advanced Hadoop features such as using DistributedCache for

distribute data, using Hadoop Streaming for quick prototyping of Hadoop computations, and

using Hadoop counters to report custom metrics for your computation as well as adding job

dependencies to manage simple DAG-based worklows of Hadoop MapReduce computations.

Choosing appropriate Hadoop data types
Hadoop uses the Writable interface based classes as the data types for the MapReduce

computations. These data types are used throughout the MapReduce computational low,
starting with reading the input data, transferring intermediate data between Map and Reduce

tasks, and inally, when writing the output data. Choosing the appropriate Writable data

types for your input, intermediate, and output data can have a large effect on the performance

and the programmability of your MapReduce programs.

In order to be used as a value data type of a MapReduce computation, a data type must

implement the org.apache.hadoop.io.Writable interface. The Writable interface

deines how Hadoop should serialize and de-serialize the values when transmitting and storing
the data. In order to be used as a key data type of a MapReduce computation, a data type must

implement the org.apache.hadoop.io.WritableComparable<T> interface. In addition

to the functionality of the Writable interface, the WritableComparable interface further

deines how to compare the keys of this type with each other for sorting purposes.

Hadoop's Writable versus Java's Serializable

Hadoop's Writable-based serialization framework provides a more eficient
and customized serialization and representation of the data for MapReduce

programs than using the general-purpose Java's native serialization

framework. As opposed to Java's serialization, Hadoop's Writable framework

does not write the type name with each object expecting all the clients of the

serialized data to be aware of the types used in the serialized data. Omitting

the type names makes the serialization process faster and results in compact,

random accessible serialized data formats that can be easily interpreted by

non-Java clients. Hadoop's Writable-based serialization also has the ability to

reduce the object-creation overhead by reusing the Writable objects, which

is not possible with the Java's native serialization framework.

Chapter 4

75

How to do it...

The following steps show you how to conigure the input and output data types of your Hadoop
MapReduce application:

1. Specify the data types for the input (key: LongWritable, value: Text) and

output (key: Text, value: IntWritable) key-value pairs of your mapper

using the generic-type variables.

public class SampleMapper extends Mapper<LongWritable, Text, Text,
IntWritable> {

public void map(LongWritable key, Text value,

 Context context) … {

…… }

}

2. Specify the data types for the input (key: Text, value: IntWritable) and

output (key: Text, value: IntWritable) key-value pairs of your reducer using

the generic-type variables. The reducer's input key-value pair data types should

match the mapper's output key-value pairs.

public class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key,

 Iterable<IntWritable> values, Context context) {

 …… }

}

3. Specify the output data types of the MapReduce computation using the Job object as

shown in the following code snippet. These data types will serve as the output types

for both, the reducer and the mapper, unless you speciically conigure the mapper
output types as done in step 4.

Job job = new Job(..);

….

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

4. Optionally, you can conigure the different data types for the mapper's output
key-value pairs using the following steps, when your mapper and reducer have

different data types for the output key-value pairs.

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

Developing Complex Hadoop MapReduce Applications

76

There's more...

Hadoop provides several primitive data types such as IntWritable, LongWritable,

BooleanWritable, FloatWritable, and ByteWritable, which are the Writable versions

of their respective Java primitive data types. We can use these types as both, the key types

as well as the value types.

The following are several more Hadoop built-in data types that we can use as both, the key as

well as the value types:

 f Text: This stores a UTF8 text

 f BytesWritable: This stores a sequence of bytes

 f VIntWritable and VLongWritable: These store variable length integer

and long values

 f NullWritable: This is a zero-length Writable type that can be used when you

don't want to use a key or value type

The following Hadoop build-in collection data types can only be used as value types.

 f ArrayWritable: This stores an array of values belonging to a Writable type.

To use ArrayWritable type as the value type of a reducer's input, you need to

create a subclass of ArrayWritable to specify the type of the Writable values

stored in it.

public class LongArrayWritable extends ArrayWritable {

 public LongArrayWritable() {

 super(LongWritable.class);

 }

}

 f TwoDArrayWritable: This stores a matrix of values belonging to the same

Writable type. To use the TwoDArrayWritable type as the value type of a

reducer's input, you need to specify the type of the stored values by creating a

subclass of the TwoDArrayWritable type similar to the ArrayWritable type.

 f MapWritable: This stores a map of key-value pairs. Keys and values should be of

the Writable data types.

 f SortedMapWritable: This stores a sorted map of key-value pairs. Keys should

implement the WritableComparable interface.

See also
 f Implementing a custom Hadoop Writable data type

 f Implementing a custom Hadoop key type

Chapter 4

77

Implementing a custom Hadoop Writable
data type

There can be use cases where none of the built-in data types matches your requirements or a

custom data type optimized for your use case may perform better than a Hadoop built-in data

type. In such scenarios, we can easily write a custom Writable data type by implementing

the org.apache.hadoop.io.Writable interface to deine the serialization format of
your data type. The Writable interface-based types can be used as value types in Hadoop

MapReduce computations.

In this recipe, we implement a sample Hadoop Writable data type for HTTP server log

entries. For the purpose of this sample, we consider that a log entry consists of the ive
ields—request host, timestamp, request URL, response size, and the http status code.
The following is a sample log entry:

192.168.0.2 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/
HTTP/1.0" 200 6245

You can download a sample HTTP server log data set from ftp://ita.ee.lbl.gov/
traces/NASA_access_log_Jul95.gz.

How to do it...

The following are the steps to implement a custom Hadoop Writable data type for the HTTP

server log entries:

1. Write a new LogWritable class implementing the org.apache.hadoop.
io.Writable interface.

public class LogWritable implements Writable{

 private Text userIP, timestamp, request;

 privateIntWritableresponseSize, status;

 public LogWritable() {

 this.userIP = new Text();

 this.timestamp= new Text();

 this.request = new Text();

 this.responseSize = new IntWritable();

 this.status = new IntWritable();

 }

 public void readFields(DataInput in) throws IOException {

 userIP.readFields(in);

 timestamp.readFields(in);

 request.readFields(in);

Developing Complex Hadoop MapReduce Applications

78

 responseSize.readFields(in);

 status.readFields(in);

 }

 public void write(DataOutput out) throws IOException {

 userIP.write(out);

 timestamp.write(out);

 request.write(out);

 responseSize.write(out);

 status.write(out);

 }

……… // getters and setters for the fields

}

2. Use the new LogWritable type as a value type in your MapReduce computation.

In the following example, we use the LogWritable type as the Map output value

type.

public class LogProcessorMap extends Mapper<LongWritable,

Text, Text, LogWritable> {

….

}

public class LogProcessorReduce extends Reducer<Text,

LogWritable, Text, IntWritable> {

public void reduce(Text key,

Iterable<LogWritable> values, Context context) {

 …… }

}

3. Conigure the output types of the job accordingly.
Job job = new Job(..);

….

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);job.
setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(LogWritable.class);

Chapter 4

79

How it works...

The Writable interface consists of the two methods, readFields() and write(). Inside

the readFields() method, we de-serialize the input data and populate the ields of the
Writable object.

 public void readFields(DataInput in) throws IOException {

 userIP.readFields(in);

 timestamp.readFields(in);

 request.readFields(in);

 responseSize.readFields(in);

 status.readFields(in);

 }

In the preceding example, we use the Writable types as the ields of our custom Writable

type and use the readFields() method of the ields for de-serializing the data from the
DataInput object. It is also possible to use java primitive data types as the ields of the
Writable type and to use the corresponding read methods of the DataInput object to

read the values from the underlying stream, as shown in the following code snippet:

int responseSize = in.readInt();

String userIP = in.readUTF();

Inside the write() method, we write the ields of the Writable object to the

underlying stream.

 public void write(DataOutput out) throws IOException {

 userIP.write(out);

 timestamp.write(out);

 request.write(out);

 responseSize.write(out);

 status.write(out);

 }

In case you are using Java primitive data types as the ields of the Writable object, you can

use the corresponding write methods of the DataOutput object to write the values to the

underlying stream as below.

out.writeInt(responseSize);

out.writeUTF(userIP);

There's more...

Be cautious about the following issues when implementing your custom Writable data type:

 f In case you are adding a custom constructor to your custom Writable class, make

sure to retain the default empty constructor.

Developing Complex Hadoop MapReduce Applications

80

 f TextOutputFormat uses the toString() method to serialize the key and

value types. In case you are using the TextOutputFormat to serialize instances

of your custom Writable type, make sure to have a meaningful toString()

implementation for your custom Writable data type.

 f While reading the input data, Hadoop may reuse an instance of the Writable class

repeatedly. You should not rely on the existing state of the object when populating it

inside the readFields() method.

See also
 f Implementing a custom Hadoop key type

Implementing a custom Hadoop key type
The instances of Hadoop MapReduce key types should have the ability to compare against

each other for sorting purposes. In order to be used as a key type in a MapReduce a

computation, a Hadoop Writable data type should implement the org.apache.hadoop.
io.WritableComparable<T> interface. The WritableComparable interface extends

the org.apache.hadoop.io.Writable interface and adds the compareTo() method to

perform the comparisons.

In this recipe, we modify the LogWritable data type of the Writing a custom Hadoop

Writable data type recipe to implement the WritableComparable interface.

How to do it...

The following are the steps to implement a custom Hadoop WritableComparable

data type for the HTTP server log entries, which uses the request host name and

timestamp for comparison.

1. Modify the LogWritable class to implement the org.apache.hadoop.
io.WritableComparable interface.

public class LogWritable implements

 WritableComparable<LogWritable> {

 private Text userIP, timestamp, request;

 private IntWritable responseSize, status;

 public LogWritable() {

 this.userIP = new Text();

 this.timestamp= new Text();

Chapter 4

81

 this.request = new Text();

 this.responseSize = new IntWritable();

 this.status = new IntWritable();

 }

 public void readFields(DataInput in) throws IOException {

 userIP.readFields(in);

 timestamp.readFields(in);

 request.readFields(in);

 responseSize.readFields(in);

 status.readFields(in);

 }

 public void write(DataOutput out) throws IOException {

 userIP.write(out);

 timestamp.write(out);

 request.write(out);

 responseSize.write(out);

 status.write(out);

 }

 public int compareTo(LogWritable o) {

 if (userIP.compareTo(o.userIP)==0){

 return (timestamp.compareTo(o.timestamp));

 }else return (userIP.compareTo(o.userIP);

 }

 public boolean equals(Object o) {

 if (o instanceof LogWritable) {

 LogWritable other = (LogWritable) o;

 return userIP.equals(other.userIP)
 && timestamp.equals(other.timestamp);

 }

 return false;

 }

 public int hashCode()

 {

 return userIP.hashCode();

 }

 ……… // getters and setters for the fields

}

Developing Complex Hadoop MapReduce Applications

82

2. You can use the LogWritable type as either a key type or a value type in your

MapReduce computation. In the following example, we use the LogWritable type

as the Map output key type.

public class LogProcessorMap extends Mapper<LongWritable,

Text, LogWritable,IntWritable> {

…

}

public class LogProcessorReduce extends Reducer<LogWritable,

IntWritable, Text, IntWritable> {

public void reduce(LogWritablekey,

Iterable<IntWritable> values, Context context) {

 …… }

}

3. Conigure the output types of the job accordingly.
Job job = new Job(..);

…

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);
job.setMapOutputKeyClass(LogWritable.class);

job.setMapOutputValueClass(IntWritable.class);

How it works...

The WritableComparable interface introduces the comapreTo() method in addition to

the readFields() and write() methods of the Writable interface. The compareTo()

method should return a negative integer, zero, or a positive integer, if this object is less than,

equal to, or greater than the object being compared to respectively. In the LogWritable

implementation, we consider the objects equal if both the user's IP address and the

timestamp are the same. If the objects are not equal, we decide the sort order irst based
on the user IP address and then based on the timestamp.

 public int compareTo(LogWritable o) {

 if (userIP.compareTo(o.userIP)==0){

 return (timestamp.compareTo(o.timestamp));

 }else return (userIP.compareTo(o.userIP);

 }

Chapter 4

83

Hadoop uses HashPartitioner as the default Partitioner implementation to calculate

the distribution of the intermediate data to the reducers. HashPartitioner requires the

hashCode() method of the key objects to satisfy the following two properties:

 f Provide the same hash value across different JVM instances

 f Provide a uniform distribution of hash values

Hence, you must implement a stable hashCode() method for your custom Hadoop key types

satisfying the above mentioned two requirements. In the LogWritable implementation,

we use the hash code of the request hostname/IP address as the hash code of the
LogWritable instance. This ensures that the intermediate LogWritable data will be

partitioned based on the request hostname/IP address.

 public int hashCode()

 {

 return userIP.hashCode();

 }

See also
 f Implementing a custom Hadoop Writable data type

Emitting data of different value types from a
mapper

Emitting data products belonging to multiple value types from a mapper is useful when

performing reducer-side joins as well as when we need to avoid the complexity of having

multiple MapReduce computations to summarize different types of properties in a data set.

However, Hadoop reducers do not allow multiple input value types. In these scenarios, we can

use the GenericWritable class to wrap multiple value instances belonging to different

data types.

In this recipe, we reuse the HTTP server log entry analyzing sample of the Implementing a

custom Hadoop Writable data type recipe. However, instead of using a custom data type, in

the current recipe we output multiple value types from the mapper. This sample aggregates

the total number of bytes served from the web server to a particular host and also outputs a

tab-separated list of URLs requested by the particular host. We use IntWritable to output

the number of bytes from the mapper and Text to output the request URL.

Developing Complex Hadoop MapReduce Applications

84

How to do it...

The following steps show how to implement a Hadoop GenericWritable data type that can

wrap instances of either IntWritable or Text data types.

1. Write a class extending the org.apache.hadoop.io.GenericWritable class.

Implement the getTypes() method to return an array of the Writable classes

that you will be using. If you are adding a custom constructor, make sure to add a

parameter-less default constructor as well.

public class MultiValueWritable extends GenericWritable {

 private static Class[] CLASSES = new Class[]{

 IntWritable.class,

 Text.class

 };

 public MultiValueWritable(){

 }

 public MultiValueWritable(Writable value){

 set(value);

 }

 protected Class[] getTypes() {

 return CLASSES;

 }

}

2. Set MultiValueWritable as the output value type of the mapper. Wrap the output

Writable values of the mapper with instances of the MultiValueWritable class.

public class LogProcessorMap extends

 Mapper<Object, Text, Text, MultiValueWritable> {

 private Text userHostText = new Text();

 private Text requestText = new Text();

 private IntWritableresponseSize = new IntWritable();

 public void map(Object key, Text value,

 Context context)…{

 ……// parse the value (log entry) using a regex.

 userHostText.set(userHost);

Chapter 4

85

 requestText.set(request);

 bytesWritable.set(responseSize);

 context.write(userHostText,

 newMultiValueWritable(requestText));

 context.write(userHostText,

 newMultiValueWritable(responseSize));

 }

}

3. Set the reducer input value type as MultiValueWritable. Implement the

reduce() method to handle multiple value types.

public class LogProcessorReduce extends

 Reducer<Text,MultiValueWritable,Text,Text> {

 private Text result = new Text();

 public void reduce(Text key,Iterable<MultiValueWritable>
 values, Context context)…{

 int sum = 0;

 StringBuilder requests = new StringBuilder();

 for (MultiValueWritable multiValueWritable : values) {

 Writable writable = multiValueWritable.get();

 if (writable instanceof IntWritable){

 sum += ((IntWritable)writable).get();

 }else{

 requests.append(((Text)writable).toString());

 requests.append("\t");

 }

 }

result.set(sum + "\t"+requests);

context.write(key, result);

 }

}

4. Set MultiValueWritable as the Map output value class of this computation.

 Configuration conf = new Configuration();

 Job job = new Job(conf, "log-analysis");

 …

 job.setMapOutputValueClass(MultiValueWritable.class);

Developing Complex Hadoop MapReduce Applications

86

How it works...

The GenericWritable implementations should extend org.apache.hadoop.
io.GenericWritable and should specify a set of the Writable value types to wrap,

by returning an array of CLASSES from the getTypes() method. The GenericWritable

implementations serialize and de-serialize the data using the index to this array of classes.

 private static Class[] CLASSES = new Class[]{

 IntWritable.class,

 Text.class

 };

 protected Class[] getTypes() {

 return CLASSES;

 }

In the mapper, you wrap each of your values with instances of the GenericWritable

implementation.

private Text requestText = new Text();

context.write(userHostText,
new MultiValueWritable(requestText));

The reducer implementation has to take care of the different value types manually.

if (writable instanceof IntWritable){

 sum += ((IntWritable)writable).get();

}else{

 requests.append(((Text)writable).toString());

 requests.append("\t");

}

There's more...

org.apache.hadoop.io.ObjectWritable is another class which can be used to

achieve the same objective as GenericWritable. The ObjectWritable class can

handle Java primitive types, strings, and arrays without the need of a Writable wrapper.

However, Hadoop serializes the ObjectWritable instances by writing the class name

of the instance with each serialized entry, making it ineficient compared to a
GenericWritable class-based implementation.

See also
 f Implementing a custom Hadoop Writable data type

Chapter 4

87

Choosing a suitable Hadoop InputFormat for
your input data format

Hadoop supports processing of many different formats and types of data through

InputFormat. The InputFormat of a Hadoop MapReduce computation generates

the key-value pair inputs for the mappers by parsing the input data. InputFormat also

performs the splitting of the input data into logical partitions, essentially determining the

number of Map tasks of a MapReduce computation and indirectly deciding the execution

location of the Map tasks. Hadoop generates a map task for each logical data partition and

invokes the respective mappers with the key-value pairs of the logical splits as the input.

How to do it...

The following steps show you how to use FileInputFormat based

KeyValueTextInputFormat as InputFormat for a Hadoop MapReduce computation.

1. In this example, we are going to specify the KeyValueTextInputFormat

as InputFormat for a Hadoop MapReduce computation using the Job

object as follows:

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.SetInputFormat(KeyValueTextInputFormat.class)

2. Set the input paths to the job.

FileInputFormat.setInputPaths(job, new Path(inputPath));

How it works...

KeyValueTextInputFormat is an input format for plain text iles, which generates a key-
value record for each line of the input text iles. Each line of the input data is broken into a
key (text) and value (text) pair using a delimiter character. The default delimiter is the tab

character. If a line does not contain the delimiter, the whole line will be treated as the key and

the value will be empty. We can specify a custom delimiter by setting a property in the job's

coniguration object as follows, where we use the comma character as the delimiter between
the key and value.

conf.set("key.value.separator.in.input.line", ",");

Developing Complex Hadoop MapReduce Applications

88

KeyValueTextInputFormat is based on FileInputFormat, which is the base class for

the ile-based InputFormats. Hence, we specify the input path to the MapReduce computation
using the setInputPaths() method of the FileInputFormat class. We have to perform

this step when using any InputFormat that is based on the FileInputFormat class.

FileInputFormat.setInputPaths(job, new Path(inputPath));

We can provide multiple HDFS input paths to a MapReduce computation by providing a

comma-separated list of paths. You can also use the addInputPath() static method

of the FileInputFormat class to add additional input paths to a computation.

public static void setInputPaths(JobConfconf,Path... inputPaths)

public static void addInputPath(JobConfconf, Path path)

There's more...

Make sure that your mapper input data types match the data types generated by

InputFormat used by the MapReduce computation.

The following are some of the InputFormat implementations that Hadoop provide to support

several common data formats.

 f TextInputFormat: This is used for plain text iles. TextInputFormat

generates a key-value record for each line of the input text iles. For each line,
the key (LongWritable) is the byte offset of the line in the ile and the value
(Text) is the line of text. TextInputFormat is the default InputFormat

of Hadoop.

 f NLineInputFormat: This is used for plain text iles. NLineInputFormat

splits the input iles into logical splits of ixed number of lines. We can use the

NLineInputFormat when we want our map tasks to receive a ixed number
of lines as the input. The key (LongWritable) and value (Text) records are

generated for each line in the split similar to the TextInputFormat. By default,

NLineInputFormat creates a logical split (and a Map task) per line. The number

of lines per split (or key-value records per Map task) can be speciied as follows.
NLineInputFormat generates a key-value record for each line of the input text iles.
NLineInputFormat.setNumLinesPerSplit(job,50);

 f SequenceFileInputFormat: For Hadoop Sequence ile input data. Hadoop
Sequence iles store the data as binary key-value pairs and support data
compression. SequenceFileInputFormat is useful when using the result of

a previous MapReduce computation in Sequence ile format as the input of a
MapReduce computation.

 � SequenceFileAsBinaryInputFormat: This is a subclass of the

SequenceInputFormat that presents the key (BytesWritable) and the

value (BytesWritable) pairs in raw binary format

Chapter 4

89

 � SequenceFileAsTextInputFormat: This is a subclass of the

SequenceInputFormat that presents the key (Text) and the value (Text)

pairs as strings

 f DBInputFormat: This supports reading the input data for MapReduce

computation from a SQL table. DBInputFormat uses the record number as the key

(LongWritable) and the query result record as the value (DBWritable).

Using multiple input data types and multiple mapper
implementations in a single MapReduce application
We can use the MultipleInputs feature of Hadoop to run a MapReduce job with multiple

input paths, while specifying a different InputFormat and (optionally) a mapper for each path.

Hadoop will route the outputs of the different mappers to the instances of the single reducer

implementation of the MapReduce computation. Multiple inputs with different InputFormat

implementations is useful when we want to process multiple data sets with the same meaning

but are in different input formats (comma-delimited data set and tab-delimited data set).

We can use the following addInputPath static method of the MutlipleInputs class to

add the input paths and the respective input formats to the MapReduce computation.

Public static void addInputPath(Job job, Path path,
 Class<?extendsInputFormat>inputFormatClass)

The following is an example usage of the preceding method.

MultipleInputs.addInputPath(job, path1, CSVInputFormat.class);

MultipleInputs.addInputPath(job, path1, TabInputFormat.class);

The multiple inputs feature with both different mappers and InputFormat is useful when

performing a reduce-side join of two or more data sets.

public static void addInputPath(JobConfconf,Path path,

 Class<?extendsInputFormat>inputFormatClass,

 Class<?extends Mapper>mapperClass)

The following is an example of using multiple inputs with different input formats and different

mapper implementations.

MultipleInputs.addInputPath(job, accessLogPath,
 TextInputFormat.class, AccessLogMapper.class);

MultipleInputs.addInputPath(job, userDataPath,
 TextInputFormat.class, UserDataMapper.class);

See also
 f Adding support for new input data formats– implementing a custom InputFormat

Developing Complex Hadoop MapReduce Applications

90

Adding support for new input data formats –
implementing a custom InputFormat

Hadoop enables us to implement and specify custom InputFormat implementations for our

MapReduce computations. We can implement custom InputFormat implementations to

gain more control over the input data as well as to support proprietary or application-speciic
input data ile formats as inputs to Hadoop MapReduce computations. A InputFormat

implementation should extend the org.apache.hadoop.mapreduce.InputFormat<K,V>

abstract class overriding the createRecordReader() and getSplits() methods.

In this recipe, we implement a InputFormat and a RecordReader for the HTTP log iles.
This InputFormat will generate LongWritable instances as keys and LogWritable

instances as the values.

How to do it...

The following are the steps to implement a custom InputFormat for the HTTP server log iles
based on the FileInputFormat.

1. LogFileInputFormat operates on the data in HDFS iles. Hence, we implement
the LogFileInputFormat extending the FileInputFormat.

public class LogFileInputFormat extends
 FileInputFormat<LongWritable, LogWritable>{

 public RecordReader<LongWritable, LogWritable>
 createRecordReader(InputSplit arg0,
 TaskAttemptContext arg1) throws …… {

 return new LogFileRecordReader();

 }

}

2. Implement the LogFileRecordReader class.

public class LogFileRecordReader extends
 RecordReader<LongWritable, LogWritable>{

 LineRecordReader lineReader;

 LogWritable value;

 public void initialize(InputSplitinputSplit,
 TaskAttemptContext attempt)…{

 lineReader = new LineRecordReader();

Chapter 4

91

 lineReader.initialize(inputSplit, attempt);

 }

 public boolean nextKeyValue() throws IOException, ..{

 if (!lineReader.nextKeyValue())

 return false;

 String line = lineReader.getCurrentValue().toString();

 ……………//Extract the fields from 'line'using a regex

 value = new LogWritable(userIP, timestamp, request,

 status, bytes);

 return true;

 }

 public LongWritable getCurrentKey() throws..{

 return lineReader.getCurrentKey();

 }

 public LogWritable getCurrentValue() throws ..{

 return value;

 }

 public float getProgress() throws IOException, ..{

 return lineReader.getProgress();

 }

 public void close() throws IOException {

 lineReader.close();

 }

}

3. Specify LogFileInputFormat as InputFormat for the MapReduce computation

using the Job object as follows. Specify the input paths for the computations using

the underlying FileInputFormat.

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.setInputFormatClass(LogFileInputFormat.class);

FileInputFormat.setInputPaths(job, new Path(inputPath));

Developing Complex Hadoop MapReduce Applications

92

4. Make sure the mappers of the computation use LongWritable as the input key

type and LogWritable as the input value type.

public class LogProcessorMap extends
Mapper<LongWritable, LogWritable, Text, IntWritable>{

 public void map(LongWritablekey,
 LogWritable value, Context context) throws ……{

 ………}

}

How it works...

LogFileInputFormat extends the FileInputFormat, which provides a generic splitting

mechanism for HDFS-ile based InputFormat. We override the createRecordReader()

method in the LogFileInputFormat to provide an instance of our custom RecordReader

implementation, LogFileRecordReader. Optionally, we can also override the

isSplitable() method of the FileInputFormat to control whether the input iles are
split-up into logical partitions or used as whole iles.

public RecordReader<LongWritable, LogWritable>
 createRecordReader(InputSplit arg0,
 TaskAttemptContext arg1) throws …… {
 return new LogFileRecordReader();
}

The LogFileRecordReader class extends the org.apache.hadoop.mapreduce.
RecordReader<K,V> abstract class and uses LineRecordReader internally to

perform the basic parsing of the input data. LineRecordReader reads lines of text

from the input data.

 lineReader = new LineRecordReader();

 lineReader.initialize(inputSplit, attempt);

We perform the custom parsing of the log entries of the input data in the nextKeyValue()

method. We use a regular expression to extract the ields out of the HTTP service log entry and
populate an instance of the LogWritable class using those ields.

 public boolean nextKeyValue() throws IOException, ..{
 if (!lineReader.nextKeyValue())
 return false;

 String line = lineReader.getCurrentValue().toString();
 ……………//Extract the fields from 'line' using a regex

 value = new LogWritable(userIP, timestamp, request,
 status, bytes);
 return true;
 }

Chapter 4

93

There's more...

We can perform custom splitting of input data by overriding the getSplits() method of

the InputFormat class. The getSplits() method should return a list of InputSplit

objects. A InputSplit object represents a logical partition of the input data and will be

assigned to a single Map task.InputSplit classes extend the InputSplit abstract

class and should override the getLocations() and getLength() methods. The

getLength() method should provide the length of the split and the getLocations()

method should provide a list of nodes where the data represented by this split is physically

stored. Hadoop uses a list of data local nodes for Map task scheduling. FileInputFormat

we use in the above example uses the org.apache.hadoop.mapreduce.lib.input.
FileSplit as the InputSplit implementation.

You can write InputFormat implementations for none HDFS data as well. The org.apache.
hadoop.mapreduce.lib.db.DBInputFormat is one example of InputFormat.
DBInputFormat supports reading the input data from a SQL table.

See also
 f Choosing a suitable Hadoop InputFormat for your input data format

Formatting the results of MapReduce
computations – using Hadoop
OutputFormats

Often times the output of your MapReduce computation will be consumed by other applications.

Hence, it is important to store the result of a MapReduce computation in a format that can be

consumed eficiently by the target application. It is also important to store and organize the
data in a location that is eficiently accessible by your target application. We can use Hadoop

OutputFormat interface to deine the data storage format, data storage location and the
organization of the output data of a MapReduce computation. A OutputFormat prepares

the output location and provides a RecordWriter implementation to perform the actual

serialization and storage of the data.

Hadoop uses the org.apache.hadoop.mapreduce.lib.output.
TextOutputFormat<K,V> as the default OutputFormat for the MapReduce computations.

TextOutputFormat writes the records of the output data to plain text iles in HDFS using a
separate line for each record. TextOutputFormat uses the tab character to delimit between

the key and the value of a record. TextOutputFormat extends FileOutputFormat, which

is the base class for all ile-based output formats.

Developing Complex Hadoop MapReduce Applications

94

How to do it...

The following steps show you how to use the FileOutputFormat based

SequenceFileOutputFormat as the OutputFormat for a Hadoop MapReduce computation.

1. In this example, we are going to specify the org.apache.hadoop.mapreduce.
lib.output.SequenceFileOutputFormat<K,V> as the OutputFormat for a

Hadoop MapReduce computation using the Job object as follows:

Configuration conf = new Configuration();

Job job = new Job(conf, "log-analysis");

……

job.setOutputFormat(SequenceFileOutputFormat.class)

2. Set the output paths to the job.

FileOutputFormat.setOutputPath(job, new Path(outputPath));

How it works...

SequenceFileOutputFormat serializes the data to Hadoop Sequence iles. Hadoop
Sequence iles store the data as binary key-value pairs and supports data compression.
Sequence iles are eficient specially for storing non-text data. We can use the Sequence iles
to store the result of a MapReduce computation, if the output of the MapReduce computation

going to be the input of another Hadoop MapReduce computation.

SequenceFileOutputFormat is based on the FileOutputFormat, which is the base

class for the ile-based OutputFormat. Hence, we specify the output path to the MapReduce

computation using the setOutputPath() method of the FileOutputFormat. We have to

perform this step when using any OutputFormat that is based on the FileOutputFormat.

FileOutputFormat.setOutputPath(job, new Path(outputPath));

There's more...

You can implement custom OutputFormat classes to write the output of your MapReduce

computations in a proprietary or custom data format and/or to store the result in storage other
than HDFS by extending the org.apache.hadoop.mapreduce.OutputFormat<K,V>

abstract class. In case your OutputFormat implementation stores the data in a ilesystem, you
can extend from the FileOutputFormat class to make your life easier.

Chapter 4

95

Hadoop intermediate (map to reduce) data
partitioning

Hadoop partitions the intermediate data generated from the Map tasks across the reduce

tasks of the computations. A proper partitioning function ensuring balanced load for each

reduce task is crucial to the performance of MapReduce computations. Partitioning can also

be used to group together related set of records to speciic reduce tasks, where you want the
certain outputs to be processed or grouped together.

Hadoop partitions the intermediate data based on the key space of the intermediate data

and decides which reduce task will receive which intermediate record. The sorted set of

keys and their values of a partition would be the input for a reduce task. In Hadoop, the total

number of partitions should be equal to the number of reduce tasks for the MapReduce

computation. Hadoop Partitioners should extend the org.apache.hadoop.mapreduce.
Partitioner<KEY,VALUE> abstract class. Hadoop uses org.apache.hadoop.
mapreduce.lib.partition.HashPartitioner as the default Partitioner for the

MapReduce computations. HashPartitioner partitions the keys based on their hashcode(),

using the formula key.hashcode() mod r, where r is the number of reduce tasks. The following

diagram illustrates HashPartitioner for a computation with two reduce tasks:

Map

1

<1,a>
<3,b>
<0,c>

Map

1

<1,a>
<3,b>
<0,c>

Map

2

<2,d>
<4,e>
<3,f>

Map

3

<4,g>
<0,h>
<1,i>

Red

1

Red

2

<0,<c,h>>
<2,d>>
<4,<e,g>>

<1,<a,i>>
<3,<b,f>>

Hash(key)mod2

There can be scenarios where our computations logic would require or can be better

implemented using an application's speciic data-partitioning schema. In this recipe,
we implement a custom Partitioner for our HTTP log processing application, which

partitions the keys (IP addresses) based on their geographic regions.

Developing Complex Hadoop MapReduce Applications

96

How to do it...

The following steps show you how to implement a custom Partitioner that partitions the

intermediate data based on the location of the request IP address or the hostname.

1. Implement the IPBasedPartitioner extending the Partitioner abstract class.

public class IPBasedPartitioner extends Partitioner<Text,
 IntWritable>{

 public int getPartition(Text ipAddress,

 IntWritable value, int numPartitions) {

 String region = getGeoLocation(ipAddress);

 if (region!=null){

 return ((region.hashCode() &
 Integer.MAX_VALUE) % numPartitions);

 }

 return 0;

 }

}

2. Set the Partitioner class parameter in the Job object.

Job job = new Job(getConf(), "log-analysis");

……

job.setPartitionerClass(IPBasedPartitioner.class);

How it works...

In the above example, we perform the partitioning of the intermediate data, such that the

requests from the same geographic region will be sent to the same reducer instance. The

getGeoLocation() method returns the geographic location of the given IP address. We

omit the implementation details of the getGeoLocation() method as it's not essential

for the understanding of this example. We then obtain the hashCode() of the geographic

location and perform a modulo operation to choose the reducer bucket for the request.

public int getPartition(Text ipAddress,
 IntWritable value, int numPartitions) {

 String region = getGeoLocation(ipAddress);

 if (region!= null && !region.isEmpty())){

 return ((region.hashCode() &
 Integer.MAX_VALUE) % numPartitions);

 }

 return 0;

}

Chapter 4

97

There's more...

TotalOrderPartitioner and KeyFieldPartitioner are two of the several built-in

Partitioner implementations provided by Hadoop.

TotalOrderPartitioner
TotalOrderPartitioner extends org.apache.hadoop.mapreduce.lib.partition.
TotalOrderPartitioner<K,V>. The set of input records to a reducer are in a sorted

order ensuring proper ordering within an input partition. However, the Hadoop default

partitioning strategy (HashPartitioner) does not enforce an ordering when partitioning the

intermediate data and scatters the keys among the partitions. In use cases where we want

to ensure a global order, we can use the TotalOrderPartitioner to enforce a total order

to the reduce input records across the reducer task. TotalOrderPartitioner requires a

partition ile as the input deining the ranges of the partitions.org.apache.hadoop.
mapreduce.lib.partition.InputSampler utility allows us to generate a partition ile
for the TotalOrderPartitioner by sampling the input data. TotalOrderPartitioner
is used in the Hadoop TeraSort benchmark.

Job job = new Job(getConf(), "Sort");

……

job.setPartitionerClass(TotalOrderPartitioner.class);

TotalOrderPartitioner.setPartitionFile(jobConf,partitionFile);

KeyFieldBasedPartitioner
org.apache.hadoop.mapreduce.lib.partition.KeyFieldBasedPartitioner<K,V>

can be used to partition the intermediate data based on parts of the key. A key can be split into

a set of ields by using a separator string. We can specify the indexes of the set of ields to be
considered when partitioning. We can also specify the index of the characters within ields as well.

Broadcasting and distributing shared
resources to tasks in a MapReduce
job – Hadoop DistributedCache

We can use the Hadoop DistributedCache to distribute read-only ile based resources to the
Map and Reduce tasks. These resources can be simple data iles, archives or JAR iles that
are needed for the computations performed by the mappers or the reducers.

Developing Complex Hadoop MapReduce Applications

98

How to do it...

The following steps show you how to add a ile to the Hadoop DistributedCache and how

to retrieve it from the Map and Reduce tasks.

1. Copy the resource to the HDFS. You can also use iles that are already in the
HDFS as well.

> bin/hadoop fs –copyFromLocal ip2loc.dat ip2loc.dat

2. Add the resource to the DistributedCache from your driver program.

Job job = new Job(getConf(), "log-analysis");
……
DistributedCache.addCacheFile(new
 URI("ip2loc.dat#ip2location"),job.getConfiguration());

3. Retrieve the resource in the setup() method of your mapper or reducer and use the

data in the Map() or Reduce() function.

public class LogProcessorMap extends
 Mapper<Object, LogWritable, Text, IntWritable> {
 private IPLookup lookupTable;

 public void setup(Context context) throws IOException{

 File lookupDb = new File("ip2location");
 // Load the IP lookup table to memory
 lookupTable = IPLookup.LoadData(lookupDb);
 }

 public void map(…) {
 String country =
 lookupTable.getCountry(value.ipAddress);
 ……
 }
}

How it works...

Hadoop copies the iles added to the DistributedCache to all the worker nodes before the

execution of any task of the job. DistributedCache copies these iles only once per the
job. Hadoop also supports creating symlinks to the DistributedCache iles in the working
directory of the computation by adding a fragment with the desired symlink name to the URI.

In the following example, we are using ip2location as the symlink to the ip2loc.dat ile
in the DistributedCache.

DistributedCache.addCacheFile(new
 URI("/data/ip2loc.dat#ip2location"),
 job.getConfiguration());

Chapter 4

99

We parse and load the data from the DistributedCache in the setup() method of the

mapper or the reducer. Files with symlinks are accessible from the working directory using

the provided symlink's name.

private IPLookup lookup;

public void setup(Context context) throws IOException{

 File lookupDb = new File("ip2location");

 // Load the IP lookup table to memory

 lookup = IPLookup.LoadData(lookupDb);

}

public void map(…) {

 String location =lookup.getGeoLocation(value.ipAddress);

 ……

}

We can also access the data in the DistributedCache directly using the

getLocalCacheFiles() method, without using the symlink.

Path[] cacheFiles = DistributedCache.getLocalCacheFiles(conf);

DistributedCache do not work in the Hadoop

local mode.

There's more...

The following sections show you how to distribute the compressed archives using

DistributedCache, how to add resources to the DistributedCache using the

|command line and how to use the DistributedCache to add resources to the

classpath of the mapper and the reducer.

Distributing archives using the DistributedCache
We can use the DistributedCache to distribute archives as well. Hadoop extracts the

archives in the worker nodes. You also can provide symlinks to the archives using the

URI fragments. In the following example, we use the ip2locationdb symlink for the

ip2locationdb.tar.gz archive.

Consider the following MapReduce driver program:

Job job = new Job(getConf(), "log-analysis");

DistributedCache.addCacheArchive(
 new URI("/data/ip2locationdb.tar.gz#ip2locationdb"),
 job.getConfiguration());

Developing Complex Hadoop MapReduce Applications

100

The extracted directory of the archive can be accessible from the working directory of the

mapper or the reducer using the above provided symlink.

Consider the following mapper program:

 public void setup(Context context) throws IOException{

 Configuration conf = context.getConfiguration();

 File lookupDbDir = new File("ip2locationdb");

 String[] children = lookupDbDir.list();

 …

 }

You can also access the non-extracted DistributedCache archived iles directly using the
following method in the mapper or reducer implementation:

Path[] cachePath;

public void setup(Context context) throws IOException{

 Configuration conf = context.getConfiguration();

 cachePath = DistributedCache.getLocalCacheArchives(conf);

 ….

}

Adding resources to the DistributedCache from the command line
Hadoop supports adding iles or archives to the DistributedCache using the command

line, provided that your MapReduce driver programs implement the org.apache.hadoop.
util.Tool interface or utilize the org.apache.hadoop.util.GenericOptionsParser.

Files can be added to the DistributedCache using the –files command-line option, while

archives can be added using the –archives command-line option. Files or archives can be

in any ilesystem accessible for Hadoop, including your local ilesystem. These options support
a comma-separated list of paths and the creation of symlinks using the URI fragments.

> bin/hadoop jar C4LogProcessor.jar LogProcessor
 -files ip2location.dat#ip2location indir outdir

> bin/hadoop jar C4LogProcessor.jar LogProcessor
 -archives ip2locationdb.tar.gz#ip2locationdb indir outdir

Chapter 4

101

Adding resources to the classpath using DistributedCache
You can use DistributedCache to distribute JAR iles and other dependent libraries to the
mapper or reducer. You can use the following methods in your driver program to add the JAR

iles to the classpath of the JVM running the mapper or the reducer.

public static void addFileToClassPath(
 Path file,Configuration conf,FileSystem fs)

public static void addArchiveToClassPath(
 Path archive,Configuration conf, FileSystem fs)

Similar to the –files and –archives command-line options we describe in Adding

resources to the DistributedCache from the command line subsection, we can also add

the JAR iles to the classpath of our MapReduce computations by using the –libjars

command-line option as well. In order for the –libjars command-line option to work,

MapReduce driver programs should implement the Tool interface or should utilize the

GenericOptionsParser.

> bin/hadoop jar C4LogProcessor.jar LogProcessor
 -libjars ip2LocationResolver.jar indir outdir

See also
 f The Debug scripts – analyzing task failures recipe in Chapter 3, Advanced Hadoop

MapReduce Administration.

Using Hadoop with legacy
applications – Hadoop Streaming

Hadoop Streaming feature allows us to use any executable or a script as the mapper or

the reducer of a Hadoop MapReduce job. Hadoop Streaming enables us to perform rapid

prototyping of the MapReduce computations using Linux shell utility programs or using

scripting languages. Hadoop Streaming also allows the users with some or no Java

knowledge to utilize Hadoop to process data stored in HDFS.

In this recipe, we implement a mapper for our HTTP log processing application using Python

and use a Hadoop aggregate package based reducer.

Developing Complex Hadoop MapReduce Applications

102

How to do it...

The following are the steps to use a Python program as the mapper to process the HTTP

server log iles.

1. Write the logProcessor.py python script.

#!/usr/bin/python

import sys;

import re;

def main(argv):

 regex =re.compile('<regex to parse log entries>');

 line = sys.stdin.readline();

 try:

 while line:

 fields = regex.match(line);

 if(fields!=None):

 print"LongValueSum:"+fields.group(1)+

 "\t"+fields.group(7);

 line = sys.stdin.readline();

 except "end of file":

 return None

if __name__ =="__main__":

 main(sys.argv)

2. Use the following command from the Hadoop installation directory to execute the

Streaming MapReduce computation.

> bin/hadoop jar \
 contrib/streaming/hadoop-streaming-1.0.2.jar \
 -input indir \
 -output outdir \
 -mapper logProcessor.py \
 -reducer aggregate \
 -file logProcessor.py

How it works...

Each Map task launches the Hadoop Streaming executable as a separate process in the

worker nodes. The input records (the entries or lines of the log ile, not broken in to key
value pairs) to the Mapper are provided as lines to the standard input of that process. The

executable should read and process the records from the standard input until the end of the

ile is reached.

line = sys.stdin.readline();

 try:

Chapter 4

103

 while line:

 ………

 line =sys.stdin.readline();

 except "end of file":

 return None

Hadoop Streaming collects the outputs of the executable from the standard output of the

process. Hadoop Streaming converts each line of the standard output to a key-value pair,

where the text up to the irst tab character is considered the key and the rest of the line as
the value. The logProcessor.py python script outputs the key-value pairs, according to

this convention, as follows:

If (fields!=None):

 print "LongValueSum:"+fields.group(1)+ "\t"+fields.group(7);

In our example, we use the Hadoop Aggregate package for the reduction part of our

computation. Hadoop aggregate package provides reducer and combiner implementations for

simple aggregate operations such as sum, max, unique value count, and histogram.

When used with the Hadoop Streaming, the mapper outputs must specify the type of

aggregation operation of the current computation as a preix to the output key, which is the
LongValueSum in our example.

Hadoop Streaming also supports the distribution of iles to the worker nodes using
the –file option. We can use this option to distribute executable iles, scripts or any
other auxiliary ile needed for the Streaming computation. We can specify multiple –file

options for a computation.

> bin/hadoop jar …… \
 -mapper logProcessor.py \
 -reducer aggregate \
 -file logProcessor.py

There's more...

We can specify Java classes as the mapper and/or reducer and/or combiner programs of
Hadoop Streaming computations. We can also specify InputFormat and other options to a

Hadoop Streaming computation.

Hadoop Streaming also allows us to use Linux shell utility programs as mapper and reducer

as well. The following example shows the usage of grep as the mapper of a Hadoop

Streaming computation.

> bin/hadoop jar
 contrib/streaming/hadoop-streaming-1.0.2.jar \
 –input indir \
 -output outdir \
 -mapper 'grep "wiki"'

Developing Complex Hadoop MapReduce Applications

104

Hadoop streaming provides the reducer input records of the each key group line by line to the

standard input of the process that is executing the executable. However, Hadoop Streaming

does not have a mechanism to distinguish when it starts to feed records of a new key to the

process. Hence, the scripts or the executables for reducer programs should keep track of the

last seen key of the input records to demarcate between key groups.

Extensive documentation on Hadoop Streaming is available at http://hadoop.apache.
org/mapreduce/docs/current/streaming.html.

See also
 f The Data extract, cleaning, and format conversion using Hadoop streaming and

python and Data de-duplication using Hadoop streaming recipes in Chapter 7,

Mass Data Processing.

Adding dependencies between MapReduce
jobs

Often times we require multiple MapReduce applications to be executed in a worklow-like
manner to achieve our objective. Hadoop ControlledJob and JobControl classes provide

a mechanism to execute a simple worklow graph of MapReduce jobs by specifying the
dependencies between them.

In this recipe, we execute the log-grep MapReduce computation followed by the

log-analysis MapReduce computation on a HTTP server log data set. The log-grep

computation ilters the input data based on a regular expression. The log-analysis

computation analyses the iltered data. Hence, the log-analysis computation is dependent

on the log-grep computation. We use the ControlledJob to express this dependency and

use the JobControl to execute the two related MapReduce computations.

How to do it...

The following steps show you how to add a MapReduce computation as a dependency of

another MapReduce computation.

1. Create the Configuration and the Job objects for the irst MapReduce job and
populate them with the other needed conigurations.
Job job1 = new Job(getConf(), "log-grep");
job1.setJarByClass(RegexMapper.class);
job1.setMapperClass(RegexMapper.class);
FileInputFormat.setInputPaths(job1, new Path(inputPath));
FileOutputFormat.setOutputPath(job1, new
 Path(intermedPath));
……

Chapter 4

105

2. Create the Configuration and Job objects for the second MapReduce job and

populate them with the necessary conigurations.
Job job2 = new Job(getConf(), "log-analysis");

job2.setJarByClass(LogProcessorMap.class);

job2.setMapperClass(LogProcessorMap.class);

job2.setReducerClass(LogProcessorReduce.class);

FileOutputFormat.setOutputPath(job2, new Path(outputPath));

………

3. Set the output directory of the irst job as the input directory of the second job.
FileInputFormat.setInputPaths
 (job2, new Path(intermedPath +"/part*"));

4. Create ControlledJob objects using the above-created Job objects.

ControlledJob controlledJob1 =
 new ControlledJob(job1.getConfiguration());

ControlledJob controlledJob2 =
 new ControlledJob(job2.getConfiguration());

5. Add the irst job as a dependency to the second job.
controlledJob2.addDependingJob(controlledJob1);

6. Create the JobControl object for this group of jobs and add the ControlledJob

created in step 4 to the newly created JobControl object.

JobControl jobControl = new
 JobControl("JobControlDemoGroup");

jobControl.addJob(controlledJob1);

jobControl.addJob(controlledJob2);

7. Create a new thread to run the group of jobs added to the JobControl object. Start

the thread and wait for the completion.

Thread jobControlThread = new Thread(jobControl);

jobControlThread.start();

while (!jobControl.allFinished()){

 Thread.sleep(500);

}

jobControl.stop();

How it works...

The ControlledJob class encapsulates MapReduce job and provides the functionality

to track the dependencies for the job. A ControlledJob class with depending jobs

becomes ready for submission only when all of its depending jobs are completed

successfully. A ControlledJob fails if any of the depending jobs fail.

Developing Complex Hadoop MapReduce Applications

106

The JobControl class encapsulates a set of ControlledJobs and their dependencies.

JobControl tracks the status of the encapsulated ControlledJobs and contains a thread

that submits the jobs that are in the READY state.

If you want to use the output of a MapReduce job as the input of a dependent job, the input

paths to the dependent job has to be set manually. By default, Hadoop generates an output

folder per reduce task name with the part preix. We can specify all the part preixed
subdirectories as input to the dependent job using wildcards.

FileInputFormat.setInputPaths
 (job2, new Path(job1OutPath +"/part*"));

There's more...

We can use the JobControl class to execute and track a group of non-dependent tasks

as well.

Apache Oozie is a worklow system for Hadoop MapReduce computations. You can use Oozie
to execute Directed Acyclic Graphs (DAG) of MapReduce computations. You can ind more
information on Oozie from the project's home page at http://oozie.apache.org/.

The ChainMapper class, available in the older version of Hadoop MapReduce API, allowed us

to execute a pipeline of mapper classes inside a single Map task computation in a pipeline.

ChainReducer provided the similar support for reduce tasks.

Hadoop counters for reporting custom
metrics

Hadoop uses a set of counters to aggregate the metrics for MapReduce computations.

Hadoop counters are helpful to understand the behavior of our MapReduce programs and to

track the progress of the MapReduce computations. We can deine custom counters to track
the application speciic metrics in MapReduce computations.

How to do it...

The following steps show you how to deine a custom counter to count the number of bad or
corrupted records in our log processing application.

1. Deine the list of custom counters using an enum.
 public static num LOG_PROCESSOR_COUNTER {

 BAD_RECORDS

 };

Chapter 4

107

2. Increment the counter in your mapper or reducer:

context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS).
 increment(1);

3. Add the following to your driver program to access the counters:

Job job = new Job(getConf(), "log-analysis");

……

Counters counters = job.getCounters();

Counter badRecordsCounter = counters.findCounter(
 LOG_PROCESSOR_COUNTER.BAD_RECORDS);

System.out.println("# of Bad Records:"+
 badRecordsCounter.getValue());

4. Execute your Hadoop MapReduce computation. You can also view the counter values

in the admin console or in the command line.

> bin/hadoop jar C4LogProcessor.jar \
 demo.LogProcessor in out 1

………

12/07/29 23:59:01 INFO mapred.JobClient: Job complete:
job_201207271742_0020

12/07/29 23:59:01 INFO mapred.JobClient: Counters: 30

12/07/29 23:59:01 INFO mapred.JobClient: demo.
 LogProcessorMap$LOG_PROCESSOR_COUNTER

12/07/29 23:59:01 INFO mapred.JobClient: BAD_RECORDS=1406

12/07/29 23:59:01 INFO mapred.JobClient: Job Counters

………

12/07/29 23:59:01 INFO mapred.JobClient: Map output
records=112349

of Bad Records :1406

How it works...

You have to deine your custom counters using enums. The set of counters in an enum will

form a group of counters. The JobTracker aggregates the counter values reported by the

mappers and the reducers.

5
Hadoop Ecosystem

In this chapter, we will cover:

 f Installing HBase

 f Data random access using Java client APIs

 f Running MapReduce jobs on HBase (table input/output)

 f Installing Pig

 f Running your irst Pig command

 f Set operations (join, union) and sorting with Pig

 f Installing Hive

 f Running a SQL-style queries with Hive

 f Performing a join with Hive

 f Installing Mahout

 f Running K-means with Mahout

 f Visualizing K-means results

Introduction
Hadoop has a family of projects that are either built on top of Hadoop or work very closely

with Hadoop. These projects have given rise to an ecosystem that focuses on large-scale data

processing, and often users can use several of these projects in combination to handle their

use cases. This chapter introduces several key projects in the Hadoop ecosystem and shows

how to get started with each project.

Hadoop Ecosystem

110

We will focus on the following four projects:

 f HBase: This is a NoSQL-style highly scalable data storage

 f Pig: This is a datalow-style data processing language for Hadoop jobs

 f Hive: This is a SQL-style data processing language for Hadoop

 f Mahout: This is a toolkit of machine-learning and data-mining tools

Installing HBase
HBase is a highly scalable NoSQL data store that supports columnar-style data storage. As we

will see in the next recipe, it works very closely with Hadoop.

The preceding screenshot depicts the HBase data model. As shown, HBase includes several

tables. Each table has zero or more rows where a row consists of a single row ID and multiple

name-value pairs. For an example, the irst row has the row ID Foundation, and several

name-value pairs such as author with value asimov. Although the data model has some

similarities with the relational data model, unlike the relational data model, different rows in

HBase data model may have different columns. For instance, the second row may contain

completely different name-value pairs from the irst one. You can ind more details about the
data model from Google's Bigtable paper http://research.google.com/archive/
bigtable.html.

Chapter 5

111

Hadoop by default loads data from lat iles, and it is a responsibility of the MapReduce job
to read and parse the data through data formatters. However, often there are use cases

where the data is already in a structured form. Although it is possible to export this data into

lat iles, parsing and processing the use cases using conventional MapReduce jobs leads to
several disadvantages:

 f Processing needs extra steps to convert and export the data

 f Exporting the data needs additional storage

 f Exporting and parsing takes more computing power

 f There arises a need to write speciic code to export and parse the data

HBase addresses these concerns by enabling users to read data directly from HBase and

write results directly to HBase without having to convert them to lat iles.

How to do it...

This section demonstrates how to install HBase.

1. Download HBase 0.94.2 from http://hbase.apache.org/.

2. Unzip the distribution by running the following command. We will call the resulting

directory HBASE_HOME.

>tarxfz hbase-0.94.2-SNAPSHOT.tar.gz

3. Create a data directory to be used by HBase:

>cd $HBASE_HOME

>mkdirhbase-data

4. Add the following to the HBASE_HOME/conf/hbase-site.xml ile.
<configuration>

<property>

<name>hbase.rootdir</name>

<value>file:///Users/srinath/playground/hadoop-book/hbase-0.94.2/
hbase-data

</value>

</property>

</configuration>

5. Start the HBase server by running the following command from HBASE_HOME:

>./bin/start-hbase.sh

Hadoop Ecosystem

112

6. Verify the HBase installation by running the shell commands from HBASE_HOME:

>bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.1, r1298924, Fri Mar 9 16:58:34 UTC 2012

7. Create a test table and list its content using the following commands:

hbase(main):001:0> create 'test', 'cf'

0 row(s) in 1.8630 seconds

hbase(main):002:0> list 'test'

TABLE

test

1 row(s) in 0.0180 seconds

8. Store a value, row1, for row ID, column name test, and value val1 to the test

table using the following commands:

hbase(main):004:0> put 'test', 'row1', 'cf:a', 'val1'

0 row(s) in 0.0680 seconds

9. Scan the table using the following command. It prints all the data in the table:

hbase(main):005:0> scan 'test'

ROW COLUMN+CELL

row1column=cf:a, timestamp=1338485017447, value=val1

1 row(s) in 0.0320 seconds

10. Get the value from the table using the following command by giving row1 as row ID

and test as the column ID:

hbase(main):006:0> get 'test', 'row1'

COLUMN CELL

cf:atimestamp=1338485017447, value=val1

1 row(s) in 0.0130 seconds

hbase(main):007:0> exit

11. The preceding commands verify the HBase installation.

12. When done, inally shut down the HBase by running the following command from the
HBASE_HOME:

> ./bin/stop-hbase.sh

stoppinghbase..............

Chapter 5

113

How it works...

The preceding steps conigure and run the HBase in the local mode. The server start command

starts the HBase server, and HBase shell connects to the server and issues the commands.

There's more...

The preceding commands show how to run HBase in the local mode. The link

http://hbase.apache.org/book/standalone_dist.html#distributed

explains how to run HBase in the distributed mode.

Data random access using Java client APIs
The earlier recipe introduced the command-line interface for HBase. This recipe demonstrates

how we can talk to HBase using the Java API.

Getting ready
Install and start HBase as described in the Installing HBase recipe.

To compile and run the sample, you would need to have Apache Ant installed in your machine.

If Apache Ant has not been installed already, install it by following the instructions given in

http://ant.apache.org/manual/install.html.

How to do it...

The following steps explain how to connect to HBase via a Java client, store, and retrieve data

from the client.

1. Unzip the sample code for this chapter. We will call the new directory SAMPLE5_
DIR. You can ind the Java HBase sample from SAMPLE5_DIR/src/chapter5/
HBaseClient.java. The client would look like the following. Here, 60000 is the

port of HBase and the localhost is the host where HBase master is running. If you

connect from a different machine or are running HBase on a different port, you

should change these values accordingly.

Configuration conf = HBaseConfiguration.create();

conf.set("hbase.master","localhost:60000");

HTable table = new HTable(conf, "test");

2. Store the data in HBase:

Put put = new Put("row1".getBytes());

put.add("cf".getBytes(), "b".getBytes(), "val2".getBytes());

table.put(put);

Hadoop Ecosystem

114

3. Search for data by doing a scan.

Scan s = new Scan();

s.addFamily(Bytes.toBytes("cf"));

ResultScanner results = table.getScanner(s);

4. Then let us print the results:

try

{

 for(Result result: results)

 {

 KeyValue[] keyValuePairs = result.raw();

 System.out.println(new String(result.getRow()));

 for(KeyValuekeyValue: keyValuePairs)

 {

 System.out.println(

 new String(keyValue.getFamily()) + " "

 + new String(keyValue.getQualifier()) + "="

 + new String(keyValue.getValue()));

 }

 }

} finally

{

results.close();

}

5. Edit the value for the hbase.home property in SAMPLE5_DIR/build.xml.

6. Compile the Sample by running the following command from SAMPLE5_DIR.

>ant hbase-build

7. Run the sample by running the following command from SAMPLE5_DIR.

>ant hbase-run-javaclient

If all works well, this will print the content of the HBase table to the console.

How it works...

When you run the commands, Ant will run the Java HBase client we had written. It will connect

to the HBase server and issue commands to store and search data in HBase storage.

Chapter 5

115

Running MapReduce jobs on HBase (table
input/output)

This recipe explains how to run a MapReduce job that reads and writes data directly to and

from an HBase storage.

HBase provides abstract mapper and reducer implementations that users can extend to

read and write directly from HBase. This recipe explains how to write a sample MapReduce

application using these mappers and reducers.

We will use the World Bank's Human Development Report (HDR) data by country that

shows Gross National Income (GNI) per capita, by countries. The dataset can be found from

http://hdr.undp.org/en/statistics/data/. Using MapReduce, we will calculate

average value for GNI per capita, by countries.

Getting ready
Install and start HBase as described in the Installing HBase recipe.

To compile and run the sample, you will need to have Apache Ant installed in your machine.

If Apache Ant has not been installed already, install it by following the instructions given at

http://ant.apache.org/manual/install.html.

How to do it...

This section demonstrates how to run a MapReduce job on data stored in HBase.

1. Unzip the sample code for this chapter. We will call the new directory SAMPLE5_DIR.

2. Edit the hbase.home value of SAMPLE5_DIR/build.xml to point to

HBASE_HOME of your HBase installation. We will call the Hadoop installation

directory as HADOOP_HOME.

3. You can ind the Java HBase MapReduce sample from SAMPLE5_DIR/src/
chapter5/AverageGINByCountryCalcualtor.java. The client-side

code would look like following:

public class AverageGINByCountryCalculator

{

 static class Mapper extends

 TableMapper<ImmutableBytesWritable,

 DoubleWritable>

 {

 privateintnumRecords = 0;

 public void map(ImmutableBytesWritable row,

Hadoop Ecosystem

116

 Result values,

 Context context) throws IOException {

 byte[] results = values.getValue(

 "ByCountry".getBytes(),

 "gnip".getBytes());

 ImmutableBytesWritableuserKey = new

 ImmutableBytesWritable("ginp".getBytes());

 try

 {

 context.write(userKey, new

 DoubleWritable(Bytes.toDouble(results)));

 }

 catch (InterruptedException e)

 {

 throw new IOException(e);

 }

 numRecords++;

 if ((numRecords % 50) == 0)

 {

 context.setStatus("mapper processed " +

 numRecords + " records so far");

 }

 }

}

HBase provides two classes TableInputFormat and TableOutputFormat that

take off most of the work of reading and writing from an HBase storage. To be used

by these classes, the mapper and reducer must extend the TableMapper and

TableReducer classes. When executed, mapper will receive each HBase row

as an input.

4. The reducer will use the Put construct of the HBase Java API to store the results

back to the HBase.

public static class Reducer extends

 TableReducer<ImmutableBytesWritable,

 DoubleWritable, ImmutableBytesWritable>

{

 public void reduce(ImmutableBytesWritable key,

 Iterable<DoubleWritable> values, Context context)

 throwsIOException, InterruptedException

 {

 double sum = 0;

 int count = 0;

 for (DoubleWritableval : values)

 {

Chapter 5

117

 sum += val.get();

 count++;

 }

 Put put = new Put(key.get());

 put.add(Bytes.toBytes("data"),

 Bytes.toBytes("average"),

 Bytes.toBytes(sum / count));

 System.out.println("Processed "+ count +

 " values and avergae =" + sum / count);

 context.write(key, put);

 }

}

When running an HBase-based MapReduce job, users should conigure
from where to read data in HBase and how to write information into HBase

via the TableMapReduceUtilinitTableMapperJob(...) and

initTableReducerJob(..) methods.

public static void main(String[] args) throws Exception

 {

 Configuration conf = HBaseConfiguration.create();

 Job job = new Job(conf,

 "AverageGINByCountryCalcualtor");

 job.setJarByClass(AverageGINByCountryCalcualtor.class);

 Scan scan = new Scan();

 scan.addFamily("ByCountry".getBytes());

 scan.setFilter(new FirstKeyOnlyFilter());

 TableMapReduceUtil.initTableMapperJob("HDI", scan,

 Mapper.class, ImmutableBytesWritable.class,

 DoubleWritable.class, job);

 TableMapReduceUtil.initTableReducerJob("HDIResult",

 Reducer.class, job);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

Here, initTableMapperJob(..) instructs Hadoop to read information from

the HDI table and initTableReducerJob(..) instructs Hadoop to write the

information to the HBase HDIResult table.

Hadoop Ecosystem

118

5. Run the following command to compile the MapReduce job:

>anthbase-build

6. Run the following command to upload the data to HBase. (This will use the

HDIDataUploader to upload the data):

>ant hbase-sample1-upload

7. Copy the JAR ile to HADOOP_HOME.

8. Run the MapReduce job by running the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter5.jarchapter5.
AverageGINByCountryCalcualtor

9. View the results in HBase by running the following command from the HBase shell.

You can start the HBase shell by running bin/hbaseshell from HBASE_HOME.

hbase(main):009:0> scan 'HDIResult'

ROW COLUMN+CELL

ginpcolumn=data:average, timestamp=1338785279029, value=@\xC8\xF7\
x1Ba2\xA7\x04

1 row(s) in 0.6820 seconds

How it works...

When we run the MapReduce job, the TableMapper and TableReducer classes receive the

control. The TableMapper class connects to the HBase, reads the data as speciied through
initTableMapperJob(…), and passes the data directly to the HBase-based mapper that

we have written. Here, the Scan object we passed into initTableMapperJob(…) speciies
the search criteria to be used by the mapper when it reads the input data from the HBase.

Similarly, the TableReducer lets users emit the data directly to the HBase.

By doing that, TableMapper and TableReducer build a new programming model based on

HBase APIs. With the new programming model, users do not have to worry about parsing and

formatting data like with normal MapReduce jobs. The table mapper and reducer map the

HBase data to Hadoop name-value pairs and vice versa.

Installing Pig
As we described in the earlier chapters, you can use Hadoop MapReduce interface to program

most of the applications. However, if we are writing an application that includes many

MapReduce steps, programming them with MapReduce is complicated.

Chapter 5

119

There are several higher-level programming interfaces such as Pig and Hive to program

parallel applications built on top of MapReduce. We will discuss these two interfaces in the

following recipes.

How to do it...

This section demonstrates how to install Pig.

1. Download Pig 0.10.0 from http://pig.apache.org/releases.html.

2. Unzip Pig distribution by running the following command. We will call it PIG_HOME.

> tar xvf pig-0.10.0.tar.gz

3. To run Pig commands, change the directory to PIG_HOME and run the pig command.

It starts the grunt shell.

>cd PIG_HOME

>bin/pig --help

>bin/pig-x local

grunt>

You can issue the Pig commands from the grunt shell.

How it works...

The preceding instructions set up Pig in the local mode, and you can use the grunt> shell to

execute the Pig commands.

There's more...

The preceding commands explain how to run Pig in the local mode. The link http://pig.
apache.org/docs/r0.10.0/start.html#Running+the+Pig+Scripts+in+Mapredu
ce+Mode explains how to run HBase in the distributed mode.

Running your irst Pig command
This recipe runs a basic Pig script. As the sample dataset, we will use Human Development

Report (HDR) data by country. It shows the Gross National Income (GNI) per capita by

country. The dataset can be found from http://hdr.undp.org/en/statistics/data/.

This recipe will use Pig to process the dataset and create a list of countries that have more

than 2000$ of gross national income per capita (GNI) sorted by the GNI value.

Hadoop Ecosystem

120

How to do it...

This section describes how to use Pig Latin script to ind countries with 2000$ GNI sorted by
the same criterion from the HDR dataset.

1. From the sample code, copy the dataset from resources/chapter5/hdi-data.
csv to PIG_HOME/bin directory.

2. From the sample code, copy the Pig script resources/chapter5/
countryFilter.pig to PIG_HOME/bin.

3. Open the Pig script through your favorite editor. It will look like the following:

A = load 'hdi-data.csv' using PigStorage(',') AS (id:int,
country:chararray, hdi:float, lifeex:int, mysch:int, eysch:int,
gni:int);

B = FILTER A BY gni> 2000;

C = ORDER B BY gni;

dump C;

The irst line instructs Pig to load the CSV (comma-separated values) ile into the
variable A. The PigStorage(',') portion tells Pig to load the data using ',' as

the separator and assign them to the ields described in the AS clause.

After loading the data, you can process the data using Pig commands. Each

Pig command manipulates the data and creates a pipeline of data-processing

commands. As each step processes the data and all dependencies are deined as
data dependencies, we call Pig a Datalow language.

Finally the dump command prints the results to the screen.

4. Run the Pig script by running the following command from PIG_HOME directory:

>bin/pig-x local bin/countryFilter.pig

When executed, the above script will print the following results. As expressed in the

script, it will print names of countries that have a GNI value greater than 2000$,

sorted by GNI.

(126,Kyrgyzstan,0.615,67,9,12,2036)

(156,Nigeria,0.459,51,5,8,2069)

(154,Yemen,0.462,65,2,8,2213)

(138,Lao People's Democratic Republic,0.524,67,4,9,2242)

(153,Papua New Guinea,0.466,62,4,5,2271)

(165,Djibouti,0.43,57,3,5,2335)

(129,Nicaragua,0.589,74,5,10,2430)

Chapter 5

121

(145,Pakistan,0.504,65,4,6,2550)

(114,Occupied Palestinian Territory,0.641,72,8,12,2656)

(128,Viet Nam,0.593,75,5,10,2805)

…

How it works...

When we run the Pig script, Pig internally compiles Pig commands to MapReduce jobs in

an optimized form and runs it in a MapReduce cluster. Chaining MapReduce jobs using the

MapReduce interface is cumbersome, as users will have to write code to pass the output from

one job to the other and detect failures. Pig translates such chaining to single-line command

and handles the details internally. For complex jobs, the resulting Pig script is easier to write

and manage than MapReduce commands that do the same thing.

Set operations (join, union) and sorting with
Pig

This recipe explains how to carry out join and sort operations with Pig.

This sample will use two datasets. The irst dataset has the Gross National Income (GNI) per

capita by country, and the second dataset has the exports of the country as a percentage of

its gross domestic product.

This recipe will use Pig to process the dataset and create a list of countries that have more

than 2000$ of gross national income per capita sorted by the GNI value, and then join them

with the export dataset.

Getting ready
This recipe needs a working Pig installation. If you have not done it already, follow the earlier

recipe and install Pig.

How to do it...

This section will describe how to use Pig to join two datasets.

1. Change the directory to PIG_HOME.

2. Copy resources/chapter5/hdi-data.csv and resources/chapter5/ /
export-data.csv to PIG_HOME/bin.

3. Copy the resources/chapter5/countryJoin.pig script to PIG_HOME/bin.

Hadoop Ecosystem

122

4. Load the script countryJoin.pig with your favorite editor. The script

countryJoin.pig joins the HDI data and export data together. Pig calls

its script "Pig Latin scripts".

A = load 'hdi-data.csv' using PigStorage(',') AS (id:int,
country:chararray, hdi:float, lifeex:int, mysch:int, eysch:int,
gni:int);

B = FILTER A BY gni> 2000;

C = ORDER B BY gni;

D = load 'export-data.csv' using PigStorage(',') AS
(country:chararray, expct:float);

E = JOIN C BY country, D by country;

dump E;

The irst and forth lines load the data from CSV iles. As described in the earlier
recipe, PigStorage(',') asks pig to use ',' as the separator and assigns the

values to the described ields in the command.

Then the ifth line joins the two datasets together.

5. Run the Pig Latin script by running the following command from the

PIG_HOME directory.

>.bin/pig -x local bin/countryJoin.pig

(51,Cuba,0.776,79,9,17,5416,Cuba,19.613546)

(100,Fiji,0.688,69,10,13,4145,Fiji,52.537148)

(132,Iraq,0.573,69,5,9,3177,Iraq,)

(89,Oman,0.705,73,5,11,22841,Oman,)

(80,Peru,0.725,74,8,12,8389,Peru,25.108027)

(44,Chile,0.805,79,9,14,13329,Chile,38.71985)

(101,China,0.687,73,7,11,7476,China,29.571701)

(106,Gabon,0.674,62,7,13,12249,Gabon,61.610462)

(134,India,0.547,65,4,10,3468,India,21.537624)

...

How it works...

When we run the Pig script, Pig will convert the pig script to MapReduce jobs and execute

them. As described with the Pig Latin script, Pig will load the data from the CSV iles, run
transformation commands, and inally join the two data sets.

Chapter 5

123

There's more...

Pig supports many other operations and built-in functions. You can ind details about the
operations from http://pig.apache.org/docs/r0.10.0/basic.html and details

about built-in functions from http://pig.apache.org/docs/r0.10.0/func.html.

Installing Hive
Just like with Pig, Hive also provides an alternative programming model to write data

processing jobs. It allows users to map their data into a relational model and process them

through SQL-like commands.

Due to its SQL-style language, Hive is very natural for users who were doing data warehousing

using relational databases. Therefore, it is often used as a data warehousing tool.

Getting ready
You need a machine that has Java JDK 1.6 or later version installed.

How to do it...

This section describes how to install Hive.

1. Download Hive 0.9.0 from http://hive.apache.org/releases.html.

2. Unzip the distribution by running the following commands.

> tar xvf hive-0.9.0.tar.gz

3. Download Hadoop 1.0.0 distribution from http://hadoop.apache.org/common/
releases.html

4. Unzip the Hadoop distribution with the following command.

> tar xvfhadoop-1.0.0.tar.gz

5. Deine the environment variables pointing to Hadoop and Hive distributions.
>export HIVE_HOME=<hive distribution>

>export HADOOP_HOME=<hadoopdistribution>

6. Conigure Hive by adding the following section to the conf/hive-site.xml ile.
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>local</value>
</property>
</configuration>

http://hive.apache.org/releases.html
http://hadoop.apache.org/common/releases.html
http://hadoop.apache.org/common/releases.html

Hadoop Ecosystem

124

7. Delete the HADOOP_HOME/build folder to avoid a bug that will cause Hive to fail.

8. Start Hive by running the following commands from HIVE_HOME:

> cd hive-0.9.0

> bin/hive

WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated.
Please use org.apache.hadoop.log.metrics.EventCounter in all the
log4j.properties files.

Logging initialized using configuration in jar:file:/Users/
srinath/playground/hadoop-book/hive-0.9.0/lib/hive-common-
0.9.0.jar!/hive-log4j.properties

Hive history file=/tmp/srinath/hive_job_log_
srinath_201206072032_139699150.txt

How it works...

The preceding commands will set up Hive, and it will run using the Hadoop distribution as

conigured in the HADOOP_HOME.

Running a SQL-style query with Hive
This recipe explains how you can use Hive to perform data processing operations using its

SQL-style language.

In this recipe, we will use a data set that includes Human Development Report (HDR) by

country. HDR describes different countries based on several human development measures.

You can ind the dataset from http://hdr.undp.org/en/statistics/data/.

Getting ready
For this recipe, you need a working Hive installation. If you have not done it already, please

follow the previous recipe to install Hive.

How to do it...

This section depicts how to use Hive for iltering and sorting.

1. Copy the resources/chapter5/hdi-data.csv ile to HIVE_HOME directory.

2. Start Hive by changing the directory to HIVE_HOME and running the

following command:

>bin/hive

Chapter 5

125

3. Let's irst deine a table to be used to read data, by running the following
Hive command.

The table definition only creates the table layout; it does

not put any data into the table.

hive> CREATE TABLE HDI(id INT, country STRING, hdi FLOAT, lifeex
INT, mysch INT, eysch INT, gni INT) ROW FORMAT DELIMITED FIELDS
TERMINATED BY ',' STORED AS TEXTFILE;

OK

Time taken: 11.719 seconds

4. Let's use the LOAD command to load the data to the table. It is worth noting that the

LOAD command copies the ile without any alteration to the storage location of the
table as deined by the table deinition. Then, it uses the formats deined in the table
deinition to parse the data and load it to the table. For example, the table deinition
in step 3 deines a table HDI that stores the data as a text ile terminated with ','

(CSV format). The input we provide for the LOAD command must follow the CSV

format as per table deinition.
hive> LOAD DATA LOCAL INPATH 'hdi-data.csv' INTO TABLE HDI;

Copying data from file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/hdi-data.csv

Copying file: file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/hdi-data.csv

Loading data to table default.hdi

OK

Time taken: 1.447 seconds

5. Now we can run the query on the deined table using the Hive SQL-like syntax:

hive> SELECT country, gni from HDI WHERE gni> 2000;

If the command is successful, Hive will print the following information and inally print
the results to the screen.

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is set to 0 since there's no reduce
operator

Starting Job = job_201206062316_0007, Tracking URL = http://
localhost:50030/jobdetails.jsp?jobid=job_201206062316_0007

Hadoop Ecosystem

126

Kill Command = /Users/srinath/playground/hadoop-book/hadoop-1.0.0/
libexec/../bin/hadoop job -Dmapred.job.tracker=localhost:9001
-kill job_201206062316_0007

Hadoop job information for Stage-1: number of mappers: 1; number
of reducers: 0

2012-06-07 20:45:32,638 Stage-1 map = 0%, reduce = 0%

2012-06-07 20:45:38,705 Stage-1 map = 100%, reduce = 0%

2012-06-07 20:45:44,751 Stage-1 map = 100%, reduce = 100%

Ended Job = job_201206062316_0007

MapReduce Jobs Launched:

Job 0: Map: 1 HDFS Read: 9401 HDFS Write: 2435 SUCCESS

Total MapReduce CPU Time Spent: 0 msec

OK

The inal results will look like following:

Norway 47557

Australia 34431

Netherlands 36402

United States 43017

New Zealand 23737

Canada 35166

...

How it works...

When we run the Hive, we irst deine a table and load the data from a ile into the table. It is
worth noting that the table deinition must match the input data ile formats, and the LOAD

command copies the iles into the table's storage location without any change and then tries
to parse the ile according to the table deinitions.

Once the data is loaded, we can use Hive commands to process the data using SQL-like

syntax. For example, the following command selects rows from the table that have a GNI value

that is more than 2000:

SELECT country, gni from HDI WHERE gni> 2000;

Chapter 5

127

Performing a join with Hive
This recipe will show how to use Hive to perform joins across two datasets.

The irst dataset is the Human Development Report by country. HDR describes different

countries based on several human development measures. You can ind this dataset at
http://hdr.undp.org/en/statistics/data/.

This recipe will use Hive to process the dataset and create a list of countries that has more

than 2000$ of gross national income per capita, and then join them with export dataset.

Getting ready
This recipe assumes that the earlier recipe has been performed. Install Hive and follow the

earlier recipe if you have not done so already.

How to do it...

This section demonstrates how to perform a join using Hive.

1. From the sample directory, copy the resources/chapter5/export-data.csv to

the HIVE_HOME directory.

2. Start Hive by changing the directory to HIVE_HOME and running the following command:

>bin/hive

3. We will create a second table to join with the table we loaded in the earlier recipe.

hive> CREATE TABLE EXPO(country STRING, expct FLOAT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;

OK

Time taken: 0.758 seconds

4. We will load the data into the new table by running the following command with Hive.

As explained in the earlier recipe, this will move the data to the storage location for

the table and parse the data according to the table deinition.
hive> LOAD DATA LOCAL INPATH 'export-data.csv' INTO TABLE EXPO;

Copying data from file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/export-data.csv

Copying file: file:/Users/srinath/playground/hadoop-book/hive-
0.9.0/export-data.csv

Loading data to table default.expo

OK

Time taken: 0.391 seconds

Hadoop Ecosystem

128

Now we can join the two tables using Hive's SQL-like join command.

hive> SELECT h.country, gni, expct FROM HDI h JOIN EXPO e ON
(h.country = e.country) WHERE gni> 2000;

If successful it will print the following and print the results to the console:

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data
size: 1

In order to change the average load for a reducer (in bytes):

...

2012-06-07 21:19:04,978 Stage-1 map = 0%, reduce = 0%

2012-06-07 21:19:23,169 Stage-1 map = 50%, reduce = 0%

..

MapReduce Jobs Launched:

Job 0: Map: 2 Reduce: 1 HDFS Read: 13809 HDFS Write: 2955
SUCCESS

Total MapReduce CPU Time Spent: 0 msec

OK

The inal result would look like the following:
Albania 7803 29.77231

Algeria 7658 30.830406

Andorra 36095 NULL

Angola 4874 56.835884

Antigua and Barbuda 15521 44.08267

Argentina 14527 21.706469

Armenia 5188 20.58361

Australia 34431 19.780243

Austria 35719 53.971355

...

Time taken: 64.856 seconds

How it works...

When executed, Hive commands irst deine and load the second table and data. Then it
converts the join command into MapReduce job and carries out the join by running the

MapReduce job.

Chapter 5

129

There's more...

Hive supports most SQL commands such as GROUP BY and ORDER BY, with the same

semantics as SQL. You can ind more details about Hive commands from https://cwiki.
apache.org/confluence/display/Hive/Tutorial.

Installing Mahout
Hadoop provides a framework for implementing large-scale data processing applications.

Often, the users implement their applications on MapReduce from scratch or write their

applications using a higher-level programming model such as Pig or Hive.

However, implementing some of the algorithms using MapReduce can be very complex. For

example, algorithms such as collaborative iltering, clustering, and recommendations need
complex code. This is further agitated by the need to maximize parallel executions.

Mahout is an effort to implement well-known machine learning and data mining algorithms

using MapReduce framework, so that the users can reuse them in their data processing

without having to rewrite them from the scratch. This recipe explains how to install Mahout.

How to do it...

This section demonstrates how to install Mahout.

1. Download Mahout from https://cwiki.apache.org/confluence/display/
MAHOUT/Downloads.

2. Unzip the mahout distribution by running the following command. We will call this

folder MAHOUT_HOME.

>tar xvf mahout-distribution-0.6.tar.gz

You can run and verify the Mahout installation by carrying out the following steps:

1. Download the input data from http://archive.ics.uci.edu/ml/databases/
synthetic_control/synthetic_control.data and copy it to MAHOUT_HOME/
testdata.

2. Run the K-mean sample by running the following command:

>bin/mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.
Job

If all goes well, it will process and print out the clusters:

12/06/19 21:18:15 INFO kmeans.Job: Running with default arguments

12/06/19 21:18:15 INFO kmeans.Job: Preparing Input

Hadoop Ecosystem

130

12/06/19 21:18:15 WARN mapred.JobClient: Use GenericOptionsParser
for parsing the arguments. Applications should implement Tool for
the same.

.....

2/06/19 21:19:38 INFO clustering.ClusterDumper: Wrote 6 clusters

12/06/19 21:19:38 INFO driver.MahoutDriver: Program took 83559 ms
(Minutes: 1.39265)

How it works...

Mahout is a collection of MapReduce jobs and you can run them using the mahout command.

The preceding instructions installed and veriied Mahout by running a K-means sample that

comes with the Mahout distribution.

Running K-means with Mahout
K-means is a clustering algorithm. A clustering algorithm takes data points deined in an
N-dimensional space, and groups them into multiple clusters considering the distance

between those data points. A cluster is a set of data points such that the distance between

the data points inside the cluster is much less than the distance from data points within the

cluster to data points outside the cluster. More details about the K-means clustering can be

found from the lecture 4 (http://www.youtube.com/watch?v=1ZDybXl212Q) of the

Cluster computing and MapReduce lecture series by Google.

In this recipe, we will use a data set that includes Human Development Report (HDR) by

country. HDR describes different countries based on several human development measures.

You can ind the data set from http://hdr.undp.org/en/statistics/data/.

This recipe will use K-means to cluster countries based on the HDR dimensions.

Getting ready
This recipe needs a Mahout installation. Follow the previous recipe if you have not already

done so earlier.

How to do it...

This section demonstrates how to use Mahout K-means algorithm to process with a dataset.

1. Unzip the sample code distribution. We will call this SAMPLE5_DIR.

2. Add the MAHOUT_HOME to the mahout.home property of build.xml ile in the
sample distribution.

http://www.youtube.com/watch?v=1ZDybXl212Q

Chapter 5

131

3. The chapter5.KMeanSample.java class shows a sample code for running the

K-means algorithm using our own dataset.

public final class KMean extends AbstractJob {

The following code initializes the K-means algorithm with right values

public static void main(String[] args) throws Exception

{

 Path output = new Path("output");

 Configuration conf = new Configuration();

 HadoopUtil.delete(conf, output);

 run(conf, new Path("testdata"), output,

 newEuclideanDistanceMeasure(), 6, 0.5, 10);

}

The following code shows how to set up K-means from Java code:

public static void run(Configuration conf, Path input,

Path output,DistanceMeasure measure, int k, double
convergenceDelta, intmaxIterations)

throws Exception{

 Path directoryContainingConvertedInput = new Path(output,

 DIRECTORY_CONTAINING_CONVERTED_INPUT);

log.info("Preparing Input");

InputDriver.runJob(input,

directoryContainingConvertedInput,

 "org.apache.mahout.math.RandomAccessSparseVector");

log.info("Running random seed to get initial clusters");

 Path clusters = new Path(output,

Cluster.INITIAL_CLUSTERS_DIR);

clusters = RandomSeedGenerator.buildRandom(conf,

directoryContainingConvertedInput, clusters,

k, measure);

log.info("Running KMeans");

KMeansDriver.run(conf, directoryContainingConvertedInput,

clusters, output,

measure, convergenceDelta, maxIterations, true, false);

 // run ClusterDumper

ClusterDumperclusterDumper = new ClusterDumper(

finalClusterPath(conf,

 output, maxIterations),

new Path(output, "clusteredPoints"));

clusterDumper.printClusters(null);

 }

 ...

}

Hadoop Ecosystem

132

4. Compile the sample by running the following command:

>ant mahout-build

5. From samples, copy the ile resources/chapter5/countries4Kmean.data to

the MAHOUT_HOME/testdata directory.

6. Run the sample by running the following command.

>ant kmeans-run

How it works...

The preceding sample shows how you can conigure and use K-means implementation from

Java. When we run the code, it initializes the K-means MapReduce job and executes it using

the MapReduce framework.

Visualizing K-means results
This recipe explains how you can visualize the results of a K-means run.

Getting ready
This recipe assumes that you have followed the earlier recipe, have run K-means, and have

access to the output of the K-means algorithm. If you have not already done so, follow the

previous recipe to run K-means.

How to do it...

This section demonstrates how to convert output of the K-means execution to GraphML

and visualize it.

1. Running the following command will print the results into GraphML format, which is a

standard representation of graphs. Here, replace the <k-means-output-dir> with

the output directory of the k-mean execution.

>bin/mahout clusterdump --seqFileDir<k-means-output-dir>/
clusters-10-final/ --pointsDir<k-means-output-dir>/clusteredPoints
--outputFormat GRAPH_ML -o clusters.graphml

2. Download and install Gephi graph visualization toolkit from http://gephi.org/.

3. Open the MAHOUT_HOME/clusters.graphml ile using File->Open menu

of the Gephi.

4. From the layout window at the lower-left corner of the screen, use YufanHu's

multilevel as the layout method, and click on Run.

http://gephi.org/

Chapter 5

133

5. Gephi will show a visualization of the graph that looks like the following:

How it works...

K-means output is written as a sequence ile. We can use the clusterdump command of

the Mahout to write them as a GraphML ile, which is a standard representation of the graph.
Then, we used Gephi graph visualization software to visualize the resulting GraphML ile.

6
Analytics

In this chapter, we will cover:

 f Simple analytics using MapReduce

 f Performing Group-By using MapReduce

 f Calculating frequency distributions and sorting using MapReduce

 f Plotting the Hadoop results using GNU Plot

 f Calculating histograms using MapReduce

 f Calculating scatter Plots using MapReduce

 f Parsing a complex dataset with Hadoop

 f Joining two datasets using MapReduce

Introduction
This chapter discusses how we can process a dataset and understand its basic

characteristics. We will cover more complex methods like data mining, classiication,
and so on, in later chapters.

Following are a few instances of basic analytics:

 f Calculating Minimum, Maximum, Mean, Median, Standard deviation, and so on of

a dataset. Given a dataset, generally there are multiple dimensions (for example,

while processing HTTP access logs, names of the web page, the size of the web page,

access time, and so on). We can measure the mentioned analytics using one or more

dimensions. For example, we can group the data into multiple groups and calculate

the mean value in each case.

 f Histograms used in inding out how many occurrences happen within different value
ranges (for example, how many hits happen within each 6-hour period).

Analytics

136

 f Frequency distributions used in inding out how many occurrences of a value
happened (for example, how many hits were received by each web page in a site).

 f Finding a correlation between two dimensions (for example, correlation between

access count and the ile size of web accesses).

 f Hypothesis testing, that is, trying to verify or disprove a hypothesis using a

given dataset.

This chapter will show how you can calculate basic analytics using a given dataset. For recipes

in this chapter, we will use two datasets:

 f NASA weblog dataset available from http://ita.ee.lbl.gov/html/contrib/
NASA-HTTP.html is a real-life dataset collected using the requests received by

NASA web servers.

 f Apache tomcat developer list e-mail archives available from http://mail-
archives.apache.org/mod_mbox/tomcat-users/, which is in MBOX format.

Simple analytics using MapReduce
Aggregative values (for example, Mean, Max, Min, standard deviation, and so on) provide

the basic analytics about a dataset. You may perform these calculations, either for the

whole dataset or a part of the dataset.

In this recipe, we will use Hadoop to calculate the minimum, maximum, and average size of a

ile downloaded from the NASA servers, by processing the NASA weblog dataset. The following
igure shows a summary of the execution:

As shown in the igure, mapper task will emit all message sizes under the key msgSize, and

they are all sent to a one-reducer job. Then the reducer will walk through all of the data and

will calculate the aggregate values.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://mail-archives.apache.org/mod_mbox/tomcat-users/
http://mail-archives.apache.org/mod_mbox/tomcat-users/

Chapter 6

137

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed

Hadoop. We will use HADOOP_HOME to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

How to do it...

The following steps describe how to use MapReduce to calculate simple analytics about the

weblog dataset:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We call the extracted folder as DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME.

If /data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

> bin/hadoopdfs -mkdir /data/input1

> bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that

folder CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar to your HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WebLogMessageSizeAggregator/data/input1 /data/output1

8. Read the results by running the following command:

$bin/hadoopdfs -cat /data/output1/*

You will see that it will print the results as following:

Mean 1150

Max 6823936

Min 0

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz

Analytics

138

How it works...

You can ind the source for the recipe from src/chapter6/
WebLogMessageSizeAggregator.java.

HTTP logs follow a standard pattern where each log looks like the following. Here the last

token includes the size of the web page retrieved:

205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/
countdown.html HTTP/1.0" 200 3985

We will use the Java regular expressions' support to parse the log lines, and the Pattern.
compile() method in the top of the class deines the regular expression. Since most
Hadoop jobs involve text processing, regular expressions are a very useful tool while

writing Hadoop Jobs:

private final static IntWritable one = new IntWritable(1);

public void map(Object key, Text value,

 Context context) throws

 IOException, InterruptedException

{

 Matcher matcher = httplogPattern.matcher(value.

 toString());

 if (matcher.matches())

 {

 int size = Integer.parseInt(matcher.group(5));

 context.write(new Text("msgSize"),one);

 }

}

The map task receives each line in the log ile as a different key-value pair. It parses the lines
using regular expressions and emits the ile size against the key msgSize.

Then, Hadoop collects all values for the key and invokes the reducer. Reducer walks through all

the values and calculates the minimum, maximum, and mean ile size of the ile downloaded

from the web server. It is worth noting that by making the values available as an iterator,

Hadoop gives the programmer a chance to process the data without storing them in memory.

You should therefore try to process values without storing them in memory whenever possible.

public static class AReducer

 extends Reducer<Text, IntWritable, Text, IntWritable>

 {

 public void reduce(Text key, Iterable<IntWritable> values,

 Context context) throws IOException,InterruptedException

 {

 double tot = 0;

 int count = 0;

Chapter 6

139

 int min = Integer.MAX_VALUE;

 int max = 0;

 Iterator<IntWritable> iterator = values.iterator();

 while (iterator.hasNext())

 {

 int value = iterator.next().get();

 tot = tot + value;

 count++;

 if (value < min)

 {

 min = value;

 }

 if (value > max)

 {

 max = value;

 }

 }

 context.write(new Text("Mean"),

 new IntWritable((int) tot / count));

 context.write(new Text("Max"),

 new IntWritable(max));

 context.write(new Text("Min"),

 new IntWritable(min));

 }

}

The main() method of the job looks similar to the WordCount example, except for

the highlighted lines that has been changed to accommodate the input and output

datatype changes:

Job job = new Job(conf, "LogProcessingMessageSizeAggregation");

job.setJarByClass(WebLogMessageSizeAggregator.class);

job.setMapperClass(AMapper.class);

job.setReducerClass(AReducer.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

There's more...

You can learn more about Java regular expressions from the Java tutorial, http://docs.
oracle.com/javase/tutorial/essential/regex/.

http://docs.oracle.com/javase/tutorial/essential/regex/
http://docs.oracle.com/javase/tutorial/essential/regex/

Analytics

140

Performing Group-By using MapReduce
This recipe shows how we can use MapReduce to group data into simple groups and calculate

the analytics for each group. We will use the same HTTP log dataset. The following igure
shows a summary of the execution:

As shown in the igure, the mapper task groups the occurrence of each link under different
keys. Then, Hadoop sorts the keys and provides all values for a given key to a reducer,

who will count the number of occurrences.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed

Hadoop. We will use the HADOOP_HOME to refer to the Hadoop installation folder.

 f Start Hadoop following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

Chapter 6

141

How to do it...

The following steps show how we can group weblog data and calculate analytics.

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If

/data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that

folder CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar to HADOOP_HOME.

7. Run the MapReduce job using the following command from HADOOP_HOME:

>bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogHitsByLinkProcessor/data/input1 /data/output2

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output2/*

You will see that it will print the results as following:

/base-ops/procurement/procurement.html 28

/biomed/ 1

/biomed/bibliography/biblio.html 7

/biomed/climate/airqual.html 4

/biomed/climate/climate.html 5

/biomed/climate/gif/f16pcfinmed.gif 4

/biomed/climate/gif/f22pcfinmed.gif 3

/biomed/climate/gif/f23pcfinmed.gif 3

/biomed/climate/gif/ozonehrlyfin.gif 3

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz

Analytics

142

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogHitsByLinkProcessor.java.

As described in the earlier recipe, we will use regular expressions to parse HTTP logs. In the

following sample the log line /shuttle/countdown/countdown.html shows the link

(URL) being retrieved.

205.212.115.106 - - [01/Jul/1995:00:00:12 -0400] "GET /shuttle/countdown/
countdown.html HTTP/1.0" 200 3985

The following code segment shows the mapper:

public void map(Object key, Text value,

 Context context) throws IOException,

 InterruptedException

{

 Matcher matcher = httplogPattern.matcher(value.toString());

 if(matcher.matches())

 {

 String linkUrl = matcher.group(4);

 word.set(linkUrl);

 context.write(word, one);

 }

}

Map task receives each line in the log ile as a different key-value pair. It parses the lines
using regular expressions and emits the link as the key, and number one as the value.

Then, Hadoop collects all values for different keys (link) and invokes the reducer once for each

link. Then each Reducer counts the number of hits for each link.

public void reduce(Text key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException

{

 int sum = 0;

 for (IntWritableval : values)

 {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

}

The main() method of the job works similar to the earlier recipe.

Chapter 6

143

Calculating frequency distributions and
sorting using MapReduce

Frequency distribution is the number of hits received by each URL sorted in the ascending

order, by the number hits received by a URL. We have already calculated the number of hits in

the earlier recipe. This recipe will sort the list.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed

Hadoop. We will use the HADOOP_HOME to refer to Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

 f This recipe will use the results from the recipe Performing Group-By using

MapReduce of this chapter. Follow it if you have not done so already.

How to do it...

The following steps show how to calculate frequency distribution using MapReduce:

1. We will use the data from the previous recipe here. So follow the recipe if you have

not already done so.

2. Run the MapReduce job using the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogFrequencyDistributionProcessor/data/output2 /data/output3

3. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output3/*

You will see that it will print the results as following:

/cgi-bin/imagemap/countdown?91,175 12

/cgi-bin/imagemap/countdown?105,143 13

/cgi-bin/imagemap/countdown70?177,284 14

Analytics

144

How it works...

The second recipe of this chapter calculated the number of hits received by each link, and the

frequency distribution as a sorted list of those results in that recipe. Therefore, let us sort the

results of the second recipe.

MapReduce always sorts the key-value pairs emitted by the mappers by their keys before

delivering them to the reducers. We will use this to sort the results.

You can ind the source for the recipe from src/chapter6/
WeblogFrequencyDistributionProcessor.java.

Map task for the job will look like the following:

public static class AMapper extends Mapper<Object,
 Text, IntWritable, Text>
{
 public void map(Object key, Text value, Context context) throws
 IOException, InterruptedException
 {
 String[] tokens = value.toString().split("\\s");
 context.write(
 new IntWritable(Integer.parseInt(tokens[1])),
 new Text(tokens[0]));
 }
}

Map task receives each line in the log ile as a different key-value pair. It parses the lines
using regular expressions and emits the number of hits as the key and the URL name as the

value. Hadoop sorts the key-value pairs emitted by the mapper before calling the reducers,

and therefore the reducer will receive the pairs in sorted order. Hence, it just has to emit them

as they arrive.

public static class AReducer extends
 Reducer<IntWritable, Text, Text, IntWritable>
{
 public void reduce(IntWritable key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException
 {
 Iterator<Text> iterator = values.iterator();
 if (iterator.hasNext())
 {
 context.write(iterator.next(), key);
 }
 }
}

The main() method of the job will work similar to the one in the earlier recipe.

Chapter 6

145

Plotting the Hadoop results using GNU Plot
Although Hadoop jobs can generate interesting analytics, making sense of those results and

getting a detailed understanding about the data often require us to see the overall trends in

the data. We often do that by plotting the data.

The human eye is remarkably good at detecting patterns, and plotting the data often yields us

a deeper understanding of the data. Therefore, we often plot the results of Hadoop jobs using

some plotting program.

This recipe explains how to use GNU Plot, which is a free and powerful plotting program, to

plot Hadoop results.

Getting ready
 f This recipe assumes that you have followed the previous recipe, Calculating

frequency distributions and sorting using MapReduce. If you have not done so,

please follow the recipe.

 f We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Install the GNU Plot plotting program by following the instructions in

http://www.gnuplot.info/.

How to do it...

The following steps show how to plot Hadoop job results using GNU Plot.

1. Download the results of the last recipe to a local computer by running the following

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output3/part-r-00000 2.data

2. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

3. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot httpfreqdist.plot

http://www.gnuplot.info/

Analytics

146

4. It will generate a ile called freqdist.png, which will look like the following:

The preceding plot is plotted in log-log scale, and the irst part of the distribution follows the
zipf (power law) distribution, which is a common distribution seen in the web. The last few

most popular links have much higher rates than expected from a zipf distribution.

Discussion about more details on this distribution is out of scope of this book. However, this

plot demonstrates the kind of insights we can get by plotting the analytical results. In most of

the future recipes, we will use the GNU plot to plot and to analyze the results.

Chapter 6

147

How it works...

The following steps describe how plotting with GNU plot works:

1. You can ind the source for the GNU plot ile from src/chapter6/resources/
httpfreqdist.plot. The source for the plot will look like the following:

set terminal png

set output "freqdist.png"

set title "Frequnecy Distribution of Hits by Url";

set ylabel "Number of Hits";

set xlabel "Urls (Sorted by hits)";

set key left top

set log y

set log x

plot"2.data" using 2 title "Frequency" with linespoints

2. Here the irst two lines deine the output format. This example uses PNG, but GNU
plot supports many other terminals like SCREEN, PDF, EPS, and so on.

3. Next four lines deine the axis labels and the title.

4. Next two lines deine the scale of each axis, and this plot uses log scale for both.

5. Last line deines the plot. Here it is asking GNU plot to read the data from the
2.data ile, and use the data in the second column of the ile via using 2 and to

plot it using lines. Columns must be separated by whitespaces.

6. Here if you want to plot one column against other, for example, data from column 1

against column 2, you should write using 1:2 instead of using 2.

There's more...

You can learn more about GNU plot from http://www.gnuplot.info/.

Calculating histograms using MapReduce
Another interesting view into a dataset is a histogram. Histogram makes sense only under

a continuous dimension (for example, access time and ile size). It groups the number of
occurrences of some event into several groups in the dimension. For example, in this recipe,

if we take the access time from weblogs as the dimension, then we will group the access time

by the hour.

http://www.gnuplot.info/

Analytics

148

The following igure shows a summary of the execution. Here the mapper calculates the
hour of the day and emits the "hour of the day" and 1 as the key and value respectively.

Then each reducer receives all the occurrences of one hour of a day, and calculates

the number of occurrences:

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed Hadoop.

We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes that you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

How to do it...

The following steps show how to calculate and plot a Histogram:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME.

If /data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz

Chapter 6

149

3. Unzip the source code of this chapter (chapter6.zip). We will call that folder

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogTimeOfDayHistogramCreator/data/input1 /data/output4

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output4/*

9. Download the results of the last recipe to a local computer by running the following

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output4/part-r-00000 3.data

10. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

11. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot httphistbyhour.plot

12. It will generate a ile called hitsbyHour.png, which will look like following:

Analytics

150

As you can see from the igure, most of the access to NASA is at night, whereas there

noontime. Also, two peaks roughly follow the tea times.

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogTimeOfDayHistogramCreator.java. As explained in the irst recipe of this chapter,
we will use regular expressions to parse the log ile and extract the access time from the log iles.

The following code segment shows the mapper function:

public void map(Object key, Text value,
 Context context) throws IOException, InterruptedException
{
 Matcher matcher = httplogPattern.matcher(value.toString());
 if (matcher.matches())
 {
 String timeAsStr = matcher.group(2);
 Date time = dateFormatter.parse(timeAsStr);
 Calendar calendar = GregorianCalendar.getInstance();
 calendar.setTime(time);
 int hours = calendar.get(Calendar.HOUR_OF_DAY);
 context.write(new IntWritable(hours), one);
 }
}

Map task receives each line in the log ile as a different key-value pair. It parses the lines
using regular expressions and extracts the access time for each web page access. Then, the

mapper function extracts the hour of the day from the access time and emits the hour of the

day and one as output of the mapper function.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for

each key. Each reducer walks through the values and calculates the count of page accesses

for each hour.

public void reduce(IntWritable key,
 Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException
 {
 int sum = 0;
 for (IntWritableval : values)
 {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }

The main() method of the job looks similar to the WordCount example as described in the

earlier recipe.

Chapter 6

151

Calculating scatter plots using MapReduce
Another useful tool while analyzing data is a Scatter plot. We use Scatter plot to ind the
relationship between two measurements (dimensions). It plots the two dimensions against

each other.

For an example, this recipe analyzes the data to ind the relationship between the size of the
web pages and the number of hits received by the web page.

The following igure shows a summary of the execution. Here, the mapper calculates and
emits the message size (rounded to 1024 bytes) as the key and one as the value. Then the

reducer calculates the number of occurrences for each message size:

Getting ready
 f This recipe assumes that you have followed the irst chapter and have

installed Hadoop. We will use the HADOOP_HOME variable to refer to the

Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

Analytics

152

How to do it...

The following steps show how to use MapReduce to calculate the correlation between

two datasets:

1. Download the weblog dataset from ftp://ita.ee.lbl.gov/traces/NASA_
access_log_Jul95.gz and unzip it. We will call this DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If /
data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input1

>bin/hadoopdfs -put <DATA_DIR>/NASA_access_log_Jul95 /data/input1

3. Unzip the source code of this chapter (chapter6.zip). We will call that folder

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to your
HADOOP_HOME.

7. Run the MapReduce job through following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
WeblogMessagesizevsHitsProcessor/data/input1 /data/output5

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output5/*

9. Download the results of the last recipe to the local computer by running the following

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output5/part-r-00000 5.data

10. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

11. Generate the plot by running the following command from HADOOP_HOME.

>gnuplot httphitsvsmsgsize.plot

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz

Chapter 6

153

12. It will generate a ile called hitsbymsgSize.png, which will look like

following screenshot:

The plot shows a negative correlation between the number of hits and the size of the

messages in the log scales, which also suggest a power law distribution.

How it works...

You can ind the source for the recipe from src/chapter6/
WeblogMessagesizevsHitsProcessor.java.

The following code segment shows the code for the mapper. Just like earlier recipes, we will

use regular expressions to parse the log entries from log iles:

public void map(Object key, Text value,

 Context context) throws IOException, InterruptedException

{

 Matcher matcher = httplogPattern.matcher(value.toString());

 if (matcher.matches())

Analytics

154

 {

 int size = Integer.parseInt(matcher.group(5));

 context.write(new IntWritable(size / 1024), one);

 }

}

Map task receives each line in the log ile as a different key-value pair. It parses the lines
using regular expressions and emits the ile size as 1024-byte blocks as the key and one as

the value.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for

each key. Each reducer walks through the values and calculates the count of page accesses

for each ile size.

public void reduce(IntWritable key, Iterable<IntWritable> values,

 Context context) throws IOException, InterruptedException

{

 int sum = 0;

 for (IntWritableval : values)

 {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

}

The main() method of the job looks similar to the earlier recipes.

Parsing a complex dataset with Hadoop
Datasets we parsed so far were simple, where each data item was contained in a single line.

Therefore, we were able to use Hadoop default parsing support to parse those datasets.

However, some datasets have much complex formats.

In this recipe, we will analyze Tomcat developer mailing list archives. In the archive, each

e-mail is composed of by multiple lines in the log ile. Therefore, we will write a Hadoop input
formatter to process the e-mail archive.

This recipe parses the complex e-mail list archives, and inds the owner (person who started
the thread) and the number of replies received by each e-mail thread.

Chapter 6

155

The following igure shows a summary of the execution. Here the mapper emits the subject of
the mail as key and the sender's e-mail address and date as the value. Then Hadoop groups

data by the e-mail subject and sends all the data related to that thread to the same reducer.

Then, the reducer calculates the owner of the thread it received, and the number of replies

received by the thread.

Getting ready
 f This recipe assumes that you have followed the irst chapter and have

installed Hadoop. We will use the HADOOP_HOME variable to refer to the

Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

How to do it...

The following steps describe how to parse the Tomcat e-mail list dataset that has complex

data format using Hadoop by writing an input formatter:

1. Download the Apache Tomcat developer list e-mail archives for the year 2012

available from http://mail-archives.apache.org/mod_mbox/tomcat-
users/. We call the destination folder as DATA_DIR.

http://mail-archives.apache.org/mod_mbox/tomcat-users/
http://mail-archives.apache.org/mod_mbox/tomcat-users/

Analytics

156

2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If

/data is already there, clean it up:

>bin/hadoopdfs -mkdir /data

>bin/hadoopdfs -mkdir /data/input2

>bin/hadoopdfs -put <DATA_DIR>/*.mbox /data/input2

3. Unzip the source code for this chapter (chapter6.zip). We will call that folder

CHAPTER_6_SRC.

4. Change the hadoop.home property in the CHAPTER_6_SRC/build.xml ile to point
to your Hadoop installation folder.

5. Compile the source by running the ant build command from the CHAPTER_6_SRC

folder.

6. Copy the build/lib/hadoop-cookbook-chapter6.jar ile to HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLReceiveReplyProcessor/data/input2 /data/output6

8. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output6/*

How it works...

As explained before, this dataset has data items that span multiple lines. Therefore, we

have to write a custom data formatter to parse the data. You can ind the source for the
recipe from src/chapter6/WebLogMessageSizeAggregator.java,src/chapter6/
MboxFileFormat.java,src/chapter6/MBoxFileReader.java.

When the Hadoop job starts, it invokes the formatter to parse the input iles. We add a new
formatter via the main() method as highlighted in the following code snippet:

Job job = new Job(conf, "LogProcessingHitsByLink");

job.setJarByClass(MLReceiveReplyProcessor.class);

job.setMapperClass(AMapper.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

job.setReducerClass(AReducer.class);

job.setInputFormatClass(MboxFileFormat.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

Chapter 6

157

As shown by the following code, the new formatter creates a record reader, which is used by

Hadoop to read input keys and values:

public class MboxFileFormat extends

 FileInputFormat<Text, Text>

{

 private MBoxFileReaderboxFileReader = null;

 public RecordReader<Text, Text>createRecordReader(

 InputSplitinputSplit, TaskAttemptContext attempt)

 throws IOException, InterruptedException

 {

 boxFileReader = new MBoxFileReader();

 boxFileReader.initialize(inputSplit, attempt);

 return boxFileReader;

 }

}

The following code snippet shows the record reader:

public class MBoxFileReader extends

 RecordReader<Text, Text>

{

 public void initialize(InputSplitinputSplit,

 TaskAttemptContext attempt) throws IOException,
InterruptedException

 {

 Path path = ((FileSplit) inputSplit).getPath();

 FileSystem fs = FileSystem.get(attempt.getConfiguration());

 FSDataInputStream fsStream = fs.open(path);

 reader = new BufferedReader(

 new InputStreamReader(fsStream));

 }

}

The initialize() method reads the ile from HDFS:

public Boolean nextKeyValue() throws IOException,

InterruptedException

{

 if (email == null)

 {

 return false;

 }

 count++;

 while ((line = reader.readLine()) != null)

 {

Analytics

158

 Matcher matcher = pattern1.matcher(line);

 if (!matcher.matches())

 {

 email.append(line).append("\n");

 }

 else

 {

 parseEmail(email.toString());

 email = new StringBuffer();

 email.append(line).append("\n");

 return true;

 }

 }

 parseEmail(email.toString());

 email = null; return true;

}

Finally, the nextKeyValue() method parses the ile, and gives users access to the key and
values for this dataset. Value has the from, subject, and date of each e-mail separated by a #.

The following code snippet shows the map task source code:

public void map(Object key, Text value,

 Context context) throws IOException, InterruptedException

{

 String[] tokens = value.toString().split("#");

 String from = tokens[0];

 String subject = tokens[1];

 String date = tokens[2].replaceAll(",", "");

 subject = subject.replaceAll("Re:", "");

 context.write(new Text(subject), new Text(date + "#" + from));

}

The map task receives each line in the log ile as a different key-value pair. It parses the lines
by breaking it by the #, and emits the subject as the key, and date and from as the value.

Then, Hadoop collects all key-value pairs, sorts them, and then invokes the reducer once for

each key. Since we use the e-mail subject as the key, each reducer will receive all the information

about each e-mail thread. Then, each reducer walks through all the e-mails and inds out who
sent the irst e-mail and how many replies have been received by each e-mail thread.

public void reduce(Text key, Iterable<Text> values, Context context)

 throws IOException, InterruptedException

{

Chapter 6

159

 TreeMap<Long, String>replyData = new TreeMap<Long, String>();

 for (Text val : values)

 {

 String[] tokens = val.toString().split("#");

 if(tokens.length != 2)

 {

 throw new IOException("Unexpected token "+ val.toString());

 }

 String from = tokens[1];

 Date date = dateFormatter.parse(tokens[0]);

 replyData.put(date.getTime(), from);

 }

 String owner = replyData.get(replyData.firstKey());

 intreplyCount = replyData.size();

 intselfReplies = 0;

 for(String from: replyData.values())

 {

 if(owner.equals(from))

 {

 selfReplies++;

 }

 }

replyCount = replyCount - selfReplies;

context.write(new Text(owner),new Text(replyCount+"#" + selfReplies));

}

Joining two datasets using MapReduce
As we have observed already, Hadoop is very good at reading through a dataset and

calculating the analytics. However, often we will have to merge two datasets for analyzing

the data. This recipe will explain how to join two datasets using Hadoop.

As an example, this recipe will use the Tomcat developer archives dataset. A common

belief among the open source community is that, the more a developer is involved with the

community (for example, by replying to threads and helping others and so on), the more

quickly he will receive a response to his queries. In this recipe we will test this hypothesis

using the Tomcat developer mailing list.

Analytics

160

To test this hypothesis, we will run the MapReduce jobs as explained in the following igure:

We would start with e-mail archives in the MBOX format, and we will read the mail using

the MBOX format class explained in the earlier recipe. Then, the Hadoop job will receive the
sender of the e-mail (from), e-mail subject, and the date the e-mail was sent, as inputs.

1. In the irst job, mapper will emit the subject as key, and the sender's e-mail address
and date as the value. Then, the reducer step will receive all values with the same

subject and it will output the subject as the key, and the owner and reply count as the

value. We have executed this job in the earlier recipe.

2. In the second job, the mapper step emits the sender's e-mail address as the key and

one as the value. Then, the reducer step will receive all the e-mails sent from the same

address to the same reducer. Using this data, each reducer will emit the e-mail address

as the key and the number of e-mails sent from that e-mail address as the value.

3. Finally, the third job reads both the output from earlier jobs, joins the results, and

emits the number of replies sent by each e-mail address and the number of replies

received by each e-mail address as the output.

Chapter 6

161

Getting ready
 f This recipe assumes that you have followed the irst chapter and have installed Hadoop.

We will use the HADOOP_HOME variable to refer to the Hadoop installation folder.

 f Start Hadoop by following the instructions in the irst chapter.

 f This recipe assumes you are aware of how Hadoop processing works. If you have

not already done so, you should follow the recipe Writing a WordCount MapReduce

sample, bundling it and running it using standalone Hadoop from Chapter 1, Getting

Hadoop Up and Running in a Cluster.

How to do it...

The following steps show how to use MapReduce to join two datasets:

1. If you have not already done so, run the previous recipe, which will set up the

environment and run the irst job as explained in the igure.

2. Run the second MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLSendReplyProcessor/data/input2 /data/output7

3. Read the results by running the following command:

>bin/hadoopdfs -cat /data/output7/*

4. Create a new folder input3 and copy both results from earlier jobs to that folder

in HDFS:

> bin/hadoopdfs -mkdir /data/input3

> bin/hadoopdfs -cp /data/output6/part-r-00000 /data/input3/1.
data

> bin/hadoopdfs -cp /data/output7/part-r-00000 /data/input3/2.data

5. Run the third MapReduce job through the following command from HADOOP_HOME:

> bin/hadoop jar hadoop-cookbook-chapter6.jar chapter6.
MLJoinSendReceiveReplies /data/input3 /data/output8

6. Download the results of the last recipe to the local computer by running the following

command from HADOOP_HOME:

> bin/hadoopdfs -get /data/output8/part-r-00000 8.data

7. Copy all the *.plot iles from CHAPTER_6_SRC to HADOOP_HOME.

8. Generate the plot by running the following command from HADOOP_HOME:

>gnuplot sendvsreceive.plot

Analytics

162

9. It will generate a ile called sendreceive.png, which will look like following:

The graph conirms our hypothesis, and like before, the data approximately follows a power
law distribution.

How it works...

You can ind the source for the recipe from src/chapter6/MLSendReplyProcessor.
java and src/chapter6/MLJoinSendReceiveReplies.java. We have already

discussed the working of the irst job in the earlier recipe.

The following code snippet shows the map() function for the second job. It receives the

sender's e-mail, subject, and date separated by # as input, which parses the input and

outputs the sender's e-mail as the key and the date the e-mail was sent, as the value:

public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException
{
String[] tokens = value.toString().split("#");
String from = tokens[0]; String date = tokens[2];
context.write(new Text(from), new Text(date));
}

Chapter 6

163

The following code snippet shows the reduce() function for the second job. Each reduce()

function receives the time of all the e-mails sent by one sender. The reducer counts the

number of replies sent by each sender, and outputs the sender's name as the key and the

replies sent, as the value:

public void reduce(Text key, Iterable<Text> values,

 Context context) throws IOException, InterruptedException

{

 int sum = 0;

 for (Text val : values)

 {

 sum = sum +1;

 }

 context.write(key, new IntWritable(sum));

}

The following code snippet shows the map() function for the third job. It reads the outputs of

the irst and second jobs and writes them as the key-value pairs:

public void map(Object key, Text value, Context context) throws
IOException, InterruptedException {

String[] tokens = value.toString().split("\\s");

 String from = tokens[0];

 String replyData = tokens[1];

context.write(new Text(from), new Text(replyData));

}

The following code snippet shows the reduce() function for the third job. Since, both

the output of the irst and the second job has the same key, the sent replies and received
replies for a given user are sent to the same reducer. The reducer does some adjustments to

remove self-replies, and outputs the sent replies and received replies as the key and value

respectively of the reducer, thus joining the two datasets:

public void reduce(Text key, Iterable<Text> values, Context context)

 throws IOException, InterruptedException

{

 StringBuffer buf = new StringBuffer("[");

 try

 {

 int sendReplyCount = 0;

 int receiveReplyCount = 0;

 for (Text val : values)

 {

 String strVal = val.toString();

 if(strVal.contains("#"))

 {

Analytics

164

 String[] tokens = strVal.split("#");

 Int repliesOnThisThread = Integer.parseInt(tokens[0]);

 Int selfRepliesOnThisThread = Integer.parseInt(tokens[1]);

 receiveReplyCount = receiveReplyCount + repliesOnThisThread;

 sendReplyCount = sendReplyCount - selfRepliesOnThisThread;

 }

 else

 {

 sendReplyCount = sendReplyCount + Integer.parseInt(strVal);

 }

 }

 context.write(new IntWritable(sendReplyCount),

 new IntWritable(receiveReplyCount)); buf.append("]");

 }

 catch (NumberFormatException e)

 {

 System.out.println("ERROR "+ e.getMessage());

 }

}

Here the inal job is an example of using the MapReduce to join two datasets. The idea is to

send all the values that need to be joined under the same key to the same reducer, and join

the data there.

7
Searching and Indexing

In this chapter, we will cover:

 f Generating an inverted index using Hadoop MapReduce

 f Intra-domain web crawling using Apache Nutch

 f Indexing and searching web documents using Apache Solr

 f Coniguring Apache HBase as the backend data store for Apache Nutch

 f Deploying Apache HBase on a Hadoop cluster

 f Whole web crawling with Apache Nutch using a Hadoop/HBase cluster

 f ElasticSearch for indexing and searching

 f Generating the in-links graph for crawled web pages

Introduction
MapReduce frameworks are well suited for large-scale search and indexing applications.

In fact, Google came up with the original MapReduce framework speciically to facilitate
the various operations involved with web searching. The Apache Hadoop project was

started as a support project for the Apache Nutch search engine, before spawning off

as a separate top-level project.

Web searching consists of fetching, indexing, ranking, and retrieval. Given the size of

the data, all these operations need to be scalable. In addition, the retrieval also should

ensure real-time access. Typically, fetching is performed through web crawling, where the

crawlers fetch a set of pages in the fetch queue, extract links from the fetched pages, add the

extracted links back to the fetch queue, and repeat this process many times. Indexing parses,

organizes, and stores the fetched data in manner that is fast and eficient for querying and
retrieval. Search engines perform ofline ranking of the documents based on algorithms such
as PageRank and real-time ranking of the results based on the query.

Searching and Indexing

166

In this chapter, we will introduce you to several tools that can be used with Apache Hadoop to

perform large-scale searching and indexing.

Generating an inverted index using Hadoop
MapReduce

Most of the text searching systems rely on inverted index to look up the set of documents that

contains a given word or a term. In this recipe, we are going to build a simple inverted index

that computes a list of terms in the documents, the set of documents that contains each

term, and the term frequency in each of the documents. Retrieval of results from an inverted

index can be as simple as returning the set of documents that contains the given terms or can

involve much more complex operations such as returning the set of documents ordered based

on a particular ranking.

Getting ready
You must have Apache Hadoop (preferably version 1.0.x) conigured and installed to follow
this recipe. Apache Ant for the compiling and building the source code.

How to do it...

In the following steps, we will use a MapReduce program to build an inverted index for a

text dataset.

1. Export the $HADOOP_HOME environmental variable pointing to the root of your local

Apache Hadoop installation.

2. Create a directory in HDFS and upload a text data set. This data set should consist of

one or more text iles.
> bin/hadoop dfs -mkdir input

> bin/hadoop dfs -put *.txt input

You can download the text versions of Project Gutenberg books by

following the instructions given at the following link. Make sure to

provide the filetypes query parameter of the download request

as txt. Unzip the downloaded files. You can use the unzipped text

files as the text data set for this recipe. http://www.gutenberg.
org/wiki/Gutenberg:Information_About_Robot_
Access_to_our_Pages

3. Unzip the resources bundle for this chapter and change to that directory.

Chapter 7

167

4. Compile the source by running ant build command from the unzipped directory.

5. Copy the resulting build/c7-samples.jar to your Hadoop home directory.

6. Run the inverted indexing MapReduce job using the following command from the

Hadoop home directory. Provide the HDFS directory where you uploaded the input

data in step 2 as the irst argument and provide a path to store the output as the
second argument.

> bin/hadoop jar c7-samples.jar chapter7.TextOutInvertedIndexer
input output

7. Check the output directory for the results by running the following command.

The output will consist of the term followed by a comma-separated list of

ilename and frequency.
> bin/hadoop dfs -cat output/*

ARE three.txt:1,one.txt:1,four.txt:1,two.txt:1,

AS three.txt:2,one.txt:2,four.txt:2,two.txt:2,

AUGUSTA three.txt:1,

About three.txt:1,two.txt:1,

Abroad three.txt:2,

……

8. We used the text outputting invert indexing MapReduce program in step 6 for the

clarity of understanding the algorithm. The src/chapter9/InvertIndexer.
java program uses the Hadoop Sequence Files and Map Writable to output an index,

which is more friendly for machine processing and more eficient for storage. You
can run this version of the program by substituting the command in step 6 with the

following command:

> bin/hadoop jar c7-samples.jar chapter7.InvertedIndexer input
output

How it works...

Map function receives a chunk of an input document as the input and outputs the term

and <docid, 1> pair for each word. In the Map function, we irst replace all the non-
alphanumeric characters from the input text value before tokenizing it.

public void map(Object key, Text value, ……… {

 String valString = value.toString().replaceAll("[^a-zA-Z0-9]+","
");

 StringTokenizer itr = new StringTokenizer(valString);

 StringTokenizer(value.toString());

 FileSplit fileSplit = (FileSplit) context.getInputSplit();

Searching and Indexing

168

 String fileName = fileSplit.getPath().getName();

 while (itr.hasMoreTokens()) {

 term.set(itr.nextToken());

 docFrequency.set(fileName, 1);

 context.write(term, docFrequency);

 }

}

We use the getInputSplit() method of the MapContext to obtain a reference to

InputSplit of assigned to the current Map task. The InputSplits for this computation

are instances of FileSplit due to the usage of FileInputFormat based InputFormat.

Then we use the getPath() method of FileSplit to obtain the path of the ile containing
the current split and extract the ilename from it. We use this extracted ilename as the
document ID when constructing the inverted index.

The reduce function receives IDs and frequencies of all the documents that contain the term

(key) as the input. The reduce function outputs the term and a list of document IDs and the

number of occurrences of the term in each document as the output:

public void reduce(Text key, Iterable<TermFrequencyWritable>
values,Context context) …………{

 HashMap<Text, IntWritable> map = new HashMap<Text, IntWritable>();

 for (TermFrequencyWritable val : values) {

 Text docID = new Text(val.getDocumentID());

 int freq = val.getFreq().get();

 if (map.get(docID) != null) {

 map.put(docID, new IntWritable(map.get(docID).get() +
freq));

 } else {

 map.put(docID, new IntWritable(freq));

 }

 }

 MapWritable outputMap = new MapWritable();

 outputMap.putAll(map);

 context.write(key, outputMap);

}

In the preceding model, we output a record for each word, generating a large amount of

Map task to Reduce task intermediate data. We use the following combiner to aggregate

the terms emitted by the Map tasks, reducing the size and amount of Map to Reduce

intermediate data transfer.

public void reduce(Text key, Iterable<TermFrequencyWritable> values ……
{

 int count = 0;

Chapter 7

169

 String id = "";

 for (TermFrequencyWritable val : values) {

 count++;

 if (count == 1) {

 id = val.getDocumentID().toString();

 }

 }

 TermFrequencyWritable writable = new TermFrequencyWritable();

 writable.set(id, count);

 context.write(key, writable);

}

In the driver program, we set the Mapper, Reducer, and the combiner classes. Also we specify

both output value and the map output value properties as we use different value types for the

Map tasks and the Reduce tasks.

Job job = new Job(conf, "Inverted Indexer");

…

job.setMapperClass(IndexingMapper.class);

job.setReducerClass(IndexingReducer.class);

job.setCombinerClass(IndexingCombiner.class);

…

job.setMapOutputValueClass(TermFrequencyWritable.class);

job.setOutputValueClass(MapWritable.class);

job.setOutputFormatClass(SequenceFileOutputFormat.class);

There's more...

The older MapReduce API of Apache Hadoop (org.apache.hadoop.mapred.*) supports

a ile format called MapFile that can be used to store an index in to the data stored in

SequenceFiles. MapFile is very useful when we need to random access records stored

in a large SequenceFile. We can utilize the MapFiles to store a secondary index in to our

inverted index. You can use MapFileOutputFormat to output MapFiles, which would

consist of a SequenceFile containing the actual data and another ile containing the index
to the SequenceFile.

We can improve this indexing program by performing optimizations into such as iltering-stop
words, substituting words with word stems, and storing more information about the context

of the word, making the indexing a much more complex problem. Luckily, there exist several

open source indexing frameworks that we can use for the indexing purposes. In this chapter

we'll be using Apache Lucene-based Apache Solr and ElasticIndex for indexing purposes.

Searching and Indexing

170

See also
The Creating TF and TF-IDF vectors for the text data recipe of Chapter 9, Mass Text

Data Processing.

Intra-domain web crawling using Apache
Nutch

Web crawling is the process of visiting and downloading all or a subset of web pages on the

Internet. Although the concept of crawling and implementing a simple crawler sounds simple,

building a full-ledged crawler takes great deal of work. A full-ledged crawler that needs to be
distributed has to obey the best practices such as not overloading servers, follow robots.
txt, performing periodic crawls, prioritizing the pages to crawl, and identifying many formats

of documents. Apache Nutch is an open source search engine that provides a highly scalable

crawler. Apache Nutch offers features such as politeness, robustness, and scalability.

In this recipe, we are going to use Apache Nutch in the standalone mode for small-scale,

intra-domain web crawling. Almost all the Nutch commands are implemented as Hadoop

MapReduce applications, as you would notice when executing the steps 10 to 18 of this

recipe. Nutch standalone executes these applications using the Hadoop the local mode.

Getting ready
Set the JAVA_HOME environmental variable. Install Apache Ant and add it to the PATH

environmental variable.

How to do it...

The following steps show you how to use Apache Nutch in standalone mode for small scale

web crawling.

1. Apache Nutch standalone mode uses the HyperSQL database as the default data

storage. Download HyperSQL from the http://sourceforge.net/projects/
hsqldb/. Unzip the distribution and go to the data directory.

> cd hsqldb-2.2.9/hsqldb

2. Start a HyperSQL database using the following command. The following database

uses data/nutchdb.* as the database iles and uses nutchdb as the database

alias name. We'll be using this database alias name in the gora.sqlstore.jdbc.
url property in the step 7.

> java -cp lib/hsqldb.jar org.hsqldb.server.Server --database.0
file:data/nutchdb --dbname.0 nutchdb

......

Chapter 7

171

[Server@79616c7]: Database [index=0, id=0, db=file:data/nutchdb,
alias=nutchdb] opened sucessfully in 523 ms.

......

3. Download Apache Nutch 2.X from http://nutch.apache.org/ and extract it.

4. Go to the extracted directory, which we will refer to as NUTCH_HOME, and build

Apache Nutch using the following command:

> ant runtime

5. Go to the runtime/local directory and run the bin/nutch command to verify

the Nutch installation. A successful installation would print out the list of Nutch

commands, shown as follows:

> cd runtime/local

> bin/nutch

Usage: nutch COMMAND

where COMMAND is one of:…..

6. Add the following to NUTCH_HOME/runtime/local/conf/nutch-site.xml. You

can give any name to the value of http.agent.name.

<configuration>

<property>

 <name>http.agent.name</name>

 <value>NutchCrawler</value>

</property>

<property>

 <name>http.robots.agents</name>

 <value>NutchCrawler,*</value>

</property>

</configuration>

7. You can restrict the domain names you wish to crawl by editing the NUTCH_HOME/
runtime/local/conf/regex-urlfiler.txt ile. For an example, in order to
restrict the domain to http://apache.org,

Replace the following in the NUTCH_HOME/runtime/local/conf/regex-
urlfilter.txt ile:
accept anything else

+.

Use the following regular expression:

+^http://([a-z0-9]*\.)*apache.org/

Searching and Indexing

172

8. Ensure that you have the following in the NUTCH_HOME/runtime/local/conf/
gora.properties ile. Provide the database alias named used in step 2.
###############################

Default SqlStore properties

###############################

gora.sqlstore.jdbc.driver=org.hsqldb.jdbc.JDBCDriver

gora.sqlstore.jdbc.url=jdbc:hsqldb:hsql://localhost/nutchdb

gora.sqlstore.jdbc.user=sa

9. Create a directory named urls and create a ile named seed.txt inside that

directory. Add your seed URLs to this ile. Seed URLs are used to start the crawling
and would be pages that are crawled irst. We use http://apache.org as the

seed URL in the following example:

> mkdir urls

> echo http://apache.org/ > urls/seed.txt

10. Inject the seed URLs in to the Nutch database using the following command:

> bin/nutch inject urls/

InjectorJob: starting

InjectorJob: urlDir: urls

InjectorJob: finished

11. Use the following command to verify the injection of the seeds to the Nutch database.

TOTAL urls printed by this command should match the number of URLs you had

in your seed.txt ile. You can use this command in the later cycles as well to get an
idea about the number of web page entries in your database.

> bin/nutch readdb -stats

WebTable statistics start

Statistics for WebTable:

min score: 1.0

....

TOTAL urls: 1

12. Use the following command to generate a fetch list from the injected seed URLs.

This will prepare list of web pages to be fetched in the irst cycle of the crawling.
Generation will assign a batch ID to the current generated fetch list, which can be

used in the subsequent commands.

> bin/nutch generate

GeneratorJob: Selecting best-scoring urls due for fetch.

GeneratorJob: starting

Chapter 7

173

GeneratorJob: filtering: true

GeneratorJob: done

GeneratorJob: generated batch id: 1350617353-1356796157

13. Use the following command to fetch the list of pages prepared in step 12. This step

performs the actual fetching of the web pages. The –all parameter is used to inform

Nutch to fetch all the generated batches.

> bin/nutch fetch -all

FetcherJob: starting

FetcherJob: fetching all

FetcherJob: threads: 10

......

fetching http://apache.org/

......

-activeThreads=0

FetcherJob: done

14. Use the following command to parse and to extract the useful data from fetched web

pages, such as the text content of the pages, metadata of the pages, and the set of

pages linked from the fetched pages. We call the set of pages linked from a fetched

page as the out-links of that particular fetched page. The out-links data will be used

to discover new pages to fetch as well as to rank pages using link analysis algorithms

such as PageRank.

> bin/nutch parse -all

ParserJob: starting

......

ParserJob: success

15. Execute the following command to update the Nutch database with the data

extracted in the preceding step. This step includes updating the contents of the

fetched pages as well as adding new entries of the pages discovered through the

links contained in the fetched pages.

> bin/nutch updatedb

DbUpdaterJob: starting

……

DbUpdaterJob: done

Searching and Indexing

174

16. Execute the following command to generate a new fetch list using the information

from the previously fetched data. The topN parameter limits the number of URLs

generated for the next fetch cycle.

> bin/nutch generate -topN 100

GeneratorJob: Selecting best-scoring urls due for fetch.

GeneratorJob: starting

......

GeneratorJob: done

GeneratorJob: generated batch id: 1350618261-1660124671

17. Fetch the new list, parse it, and update the database.

> bin/nutch fetch –all

......

> bin/nutch parse -all

......

> bin/nutch updatedb

......

18. Repeat the steps 16 and 17 till you get the desired number of pages or the depth.

See also
The Whole web crawling with Apache Nutch using a Hadoop/HBase cluster and Indexing and

searching web documents using Apache Solr recipes of this chapter.

Refer to http://www.hsqldb.org/doc/2.0/guide/index.html for more information

on using HyperSQL.

Indexing and searching web documents
using Apache Solr

Apache Solr is an open source search platform that is part of the Apache Lucene project.

It supports powerful full-text search, hit highlighting, faceted search, dynamic clustering,

database integration, rich document handling (for example, Word and PDF), and geospatial

search. In this recipe, we are going to index the web pages crawled by Apache Nutch for use

by Apache Solr and use Apache Solr to search through those web pages.

Chapter 7

175

Getting Ready
Crawl a set of web pages using Apache Nutch by following the Intra-domain crawling using

Apache Nutch recipe.

How to do it

The following steps show you how to index and search your crawled web pages dataset:

1. Download and extract Apache Solr from http://lucene.apache.org/solr/.

We use Apache Solr 4.0 for the examples in this chapter. From here on, we call the

extracted directory $SOLR_HOME.

2. Replace the $SOLR_HOME/examples/solr/collection1/conf/schema.xml

ile using the $NUTCH_HOME/runtime/local/conf/schema.solr4.xml ile.
> cp $NUTCH_HOME/conf/schema-solr4.xml \
 $SOLR_HOME/example/solr/collection1/conf/schema.xml

3. Open the example/solr/collection1/conf/solrconfig.xml ile and
comment the following tag.

<updateLog>

<str name="dir">${solr.data.dir:}</str>

</updateLog>

4. Start Solr by executing the following command from the $SOLR_HOME/example

directory.

> java -jar start.jar

5. Go to the URL http://localhost:8983/solr to verify the Apache Solr

installation.

6. Index the data fetched using Apache Nutch in to Apache Solr by issuing the following

command from the $NUTCH_HOME/runtime/local directory. This command

pushes the data crawled by Nutch in to Solr through the Solr web service interface.

 > bin/nutch solrindex http://127.0.0.1:8983/solr/ -reindex

http://lucene.apache.org/solr/

Searching and Indexing

176

7. Go to Apache Solr search UI at http://localhost:8983/solr/#/
collection1/query. Enter a search term in the q textbox and click on

Execute Query.

8. You can also issue your search queries directly using the HTTP GET requests. Paste

the following to your browser address bar:

http://localhost:8983/solr/collection1/select?q=hadoop&start=5&
rows=5&wt=xml

Chapter 7

177

How it works

Apache Solr is built using the Apache Lucene text search library. Apache Solr adds many

features on top of Apache Lucene and provides a text search web application that works out

of the box. The preceding steps deploy Apache Solr and import the data crawled by Nutch in to

the deployed Solr instance.

The metadata about the documents we plan to index and search using Solr needs to be

speciied through the Solr schema.xml ile. The Solr schema ile should deine the data ields
in our documents and how these data ields should be processed by Solr. We use the schema
ile provided with Nutch ($NUTCH_HOME/conf/schema-solr4.xml), which deines the
schema for the web pages crawled by Nutch, as the Solr schema ile for this recipe. More
information about the Solr schema ile can be found from http://wiki.apache.org/
solr/SchemaXml.

See also
 f The ElasticSearch for Indexing and searching recipe of this chapter.

 f Follow the tutorial at http://lucene.apache.org/solr/tutorial.html for

more information on using Apache Solr.

Coniguring Apache HBase as the backend
data store for Apache Nutch

Apache Nutch integrates Apache Gora to add support for different backend data stores. In

this recipe, we are going to conigure Apache HBase as the backend data storage for Apache
Nutch. Similarly, it is possible to plug in data stores such as RDBMS databases, Cassandra

and others through Gora.

Getting ready
Set the JAVA_HOME environmental variable.

Install Apache Ant and add it to the PATH environmental variable.

How to do it

The following steps show you how to conigure Apache HBase local mode as the backend data

store for Apache Nutch to store the crawled data.

1. Download and install Apache HBase. Apache Nutch 4.1 and Apache Gora 0.2

recommend HBase 0.90.4 or the later versions of the 0.90.x branch.

Searching and Indexing

178

2. Create two directories to store the HDFS data and Zookeeper data. Add the following

to the $HBASE_HOME/conf/hbase-site.xml ile, replacing the values with the
paths to the two directories:

<configuration>

<property>

 <name>hbase.rootdir</name>

 <value>file:///u/software/hbase-0.90.6/hbase-data</value>

 </property>

<property>

 <name>hbase.zookeeper.property.dataDir</name>

 <value>file:///u/software/hbase-0.90.6/zookeeper-data</value>

 </property>

</configuration>

Refer to the Installing HBase recipe in Chapter 5, Hadoop Ecosystem, for more

information on how to install HBase in the local mode. Test your HBase installation

using the HBase shell before proceeding (step 6 of the Installing HBase recipe.)

3. In case you have not downloaded Apache Nutch for the earlier recipes in this chapter,

download Nutch from the http://nutch.apache.org and extract it.

4. Add the following to the $NUTCH_HOME/conf/nutch-site.xml ile.
<property>

 <name>storage.data.store.class</name>

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

5. Uncomment the following in the $NUTCH_HOME/ivy/ivy.xml ile.
<dependency org="org.apache.gora" name="gora-hbase" rev="0.2"
conf="*->default" />

6. Add the following to the $NUTCH_HOME/conf/gora.properties ile to set the
HBase storage as the default Gora data store.

gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

7. Execute the following commands in the $NUTCH_HOME to build Apache Nutch with

HBase as the back end data storage.

> ant clean

> ant runtime

8. Follow steps 4 to 17 of the Intra-domain web crawling using Apache Nutch recipe.

Chapter 7

179

9. Start the Hbase shell and issue the following commands to view the fetched data.

> bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.90.6, r1295128, Wed Feb 29 14:29:21 UTC 2012

hbase(main):001:0> list

TABLE

webpage

1 row(s) in 0.4970 seconds

hbase(main):002:0> count 'webpage'

Current count: 1000, row: org.apache.bval:http/release-management.
html

Current count: 2000, row: org.apache.james:http/jspf/index.html

Current count: 3000, row: org.apache.sqoop:http/team-list.html

Current count: 4000, row: org.onesocialweb:http/

4065 row(s) in 1.2870 seconds

hbase(main):005:0> scan 'webpage',{STARTROW => 'org.apache.
nutch:http/', LIMIT=>10}

ROW COLUMN+CELL

 org.apache.nutch:http/ column=f:bas,
timestamp=1350800142780, value=http://nutch.apache.org/

 org.apache.nutch:http/ column=f:cnt,
timestamp=1350800142780, value=<....

......

10 row(s) in 0.5160 seconds

10. Follow the steps in the Indexing and searching web documents using Apache Solr to

index recipe and search the fetched data using Apache Solr.

How it works...

The preceding steps conigure and run Apache Nutch using Apache HBase as the storage

backend. When conigured, Nutch stores the fetched web page data and other metadata
in HBase tables. In this recipe we use a standalone HBase deployment. However, as shown

in the Whole web crawling with Apache Nutch using a Hadoop/HBase cluster recipe of this

chapter, Nutch can be used with a distributed HBase deployment as well. Usage of HBase as

the backend data store provides more scalability and performance for Nutch crawling.

Searching and Indexing

180

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem, and the Deploying

HBase on a Hadoop cluster recipe of this chapter.

Deploying Apache HBase on a Hadoop
cluster

In this recipe, we are going to deploy Apache HBase 0.90.x on top of an Apache Hadoop 1.0.x

cluster. This is required for using Apache Nutch with a Hadoop MapReduce cluster.

Getting ready
We assume you already have your Hadoop cluster (version 1.0.x) deployed. If not, refer to the

Setting Hadoop in a distributed cluster environment recipe of Chapter 1, Getting Hadoop up

and running in a Cluster, to conigure and deploy a Hadoop cluster.

How to do it

The following steps show you how to deploy a distributed Apache HBase cluster on top of an

Apache Hadoop cluster:

1. Download and install Apache HBase from http://hbase.apache.org/. Apache

Nutch 4.1 and Apache Gora 0.2 recommend HBase 0.90.4 or the later versions of

the 0.90.x branch.

2. Remove the hadoop-core-*.jar in the $HBASE_HOME/lib. Copy the

hadoop-core-*.jar and the commons-configuration*.jar from

your Hadoop deployment to the $HBASE_HOME/lib folder.

> rm lib/hadoop-core-<version>.jar

> cp ~/Software/hadoop-1.0.4/hadoop-core-1.0.4.jar ../lib/

> cp ~/Software/hadoop-1.0.4/lib/commons-configuration-1.6.jar ../
lib/

3. Conigure the $HBASE_HOME/conf/hbase-site.xml.

<configuration>

 <property>

 <name>hbase.rootdir</name>

 <value>hdfs://xxx.xx.xx.xxx:9000/hbase</value>

 </property>

 <property>

 <name>hbase.cluster.distributed</name>

Chapter 7

181

 <value>true</value>

 </property>

 <property>

 <name>hbase.zookeeper.quorum</name>

 <value>localhost</value>

 </property>

</configuration>

4. Go to the $HBASE_HOME and start HBase.

> bin/start-hbase.sh

5. Open the HBase UI at http://localhost:60010 and monitor the HBase

installation.

6. Start the HBase shell and execute the following commands to test the HBase

deployment. If the preceding command fails, check the logs in the $HBASE_HOME/
logs directory to identify the exact issue.

> bin/hbase shell

hbase(main):001:0> create 'test', 'cf'

0 row(s) in 1.8630 seconds

hbase(main):002:0> list 'test'

TABLE

test

1 row(s) in 0.0180 seconds

Hbase is very sensitive to the contents of the /etc/hosts

ile. Fixing the /etc/host ile would solve most of the HBase
deployment errors.

How it works...

The preceding steps conigure and run the Apache HBase in the distributed mode. HBase
distributed mode stores the actual data of the HBase tables in the HDFS, taking advantage of

the distributed and fault tolerant nature of HDFS.

In order to run HBase in the distributed mode, we have to conigure the HDFS NameNode and
the path to store the HBase data using the hbase.rootdir property in the hbase-site.xml.

 <property>

 <name>hbase.rootdir</name>

 <value>hdfs://<namenode>:<port>/<path></value>

 </property>

Searching and Indexing

182

We also have to set the hbase.cluster.distributed property to true.

 <property>

 <name>hbase.cluster.distributed</name>

 <value>true</value>

 </property>

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem.

Whole web crawling with Apache Nutch
using a Hadoop/HBase cluster

Crawling large amount of web documents can be done eficiently by utilizing the power of a
MapReduce cluster.

Getting ready
We assume you already have your Hadoop (version 1.0.x) and HBase (version 0.90.x) cluster

deployed. If not, refer to the Deploying HBase on a Hadoop cluster recipe of this chapter to

conigure and deploy an HBase cluster on a Hadoop cluster.

How to do it

The following steps show you how to use Apache Nutch with a Hadoop MapReduce cluster

and a HBase data store to perform large-scale web crawling.

1. Add the $HADOOP_HOME/bin directory to the PATH environment variable of

your machine.

> export PATH=$PATH:$HADOOP_HOME/bin/

2. If you have already followed the Indexing and searching web documents using

Apache Solr recipe, skip to the next step. If not, follow steps 2 to 6 of the recipe 3.

3. In case you have not downloaded Apache Nutch for the earlier recipes in this chapter,

download Nutch from http://nutch.apache.org and extract it.

4. Add the following to the nutch-site.xml in the $NUTCH_HOME/conf. You can give

any name to the value of the http.agent.name property, but that name should be

given in the http.robots.agents property as well.

<configuration>

<property>

 <name>storage.data.store.class</name>

Chapter 7

183

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

<property>

 <name>http.agent.name</name>

 <value>NutchCrawler</value>

</property>

<property>

 <name>http.robots.agents</name>

 <value>NutchCrawler,*</value>

</property>

</configuration>

5. Uncomment the following in the $NUTCH_HOME/ivy/ivy.xml file:

<dependency org="org.apache.gora" name="gora-hbase" rev="0.2"
conf="*->default" />

6. Add the following to the $NUTCH_HOME/conf/gora.properties ile to set the
HBase storage as the default Gora data store:

gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

You can restrict the domain names you wish to crawl by editing the

following line in the conf/regex-urlfiler.txt ile. Leave it
unchanged for whole web crawling.

accept anything else

+.

7. Execute the following commands in $NUTCH_HOME to build Nutch with HBase as the

backend data storage:

> ant clean

> ant runtime

8. Create a directory in HDFS to upload the seed urls.

> bin/hadoop dfs -mkdir urls

9. Create a text ile with the seed URLs for the crawl. Upload the seed URLs ile to the
directory created in the above step.

> bin/hadoop dfs -put seed.txt urls

Searching and Indexing

184

You can use the Open Directory project RDF dump (http://rdf.dmoz.
org/) to create your seed URLs. Nutch provides a utility class to select a

subset of URLs from the extracted DMOZ RDF data:

bin/nutch org.apache.nutch.tools.DmozParser content.
rdf.u8 -subset 5000 > dmoz/urls

10. Copy the $NUTCH_HOME/runtime/deploy directory to the JobTracker node of the

Hadoop cluster.

11. Issue the following command from inside the copied deploy directory in the

JobTracker node to inject the seed URLs to the Nutch database and to generate the

initial fetch list.

> bin/nutch inject urls

> bin/nutch generate

12. Issue the following commands from inside the copied deploy directory in the

JobTracker node:

> bin/nutch fetch -all

12/10/22 03:56:39 INFO fetcher.FetcherJob: FetcherJob: starting

12/10/22 03:56:39 INFO fetcher.FetcherJob: FetcherJob: fetching
all

......

> bin/nutch parse -all

12/10/22 03:48:51 INFO parse.ParserJob: ParserJob: starting

......

12/10/22 03:50:44 INFO parse.ParserJob: ParserJob: success

> bin/nutch updatedb

12/10/22 03:53:10 INFO crawl.DbUpdaterJob: DbUpdaterJob: starting

....

12/10/22 03:53:50 INFO crawl.DbUpdaterJob: DbUpdaterJob: done

> bin/nutch generate -topN 10

Chapter 7

185

12/10/22 03:51:09 INFO crawl.GeneratorJob: GeneratorJob: Selecting
best-scoring urls due for fetch.

12/10/22 03:51:09 INFO crawl.GeneratorJob: GeneratorJob: starting

....

12/10/22 03:51:46 INFO crawl.GeneratorJob: GeneratorJob: done

12/10/22 03:51:46 INFO crawl.GeneratorJob: GeneratorJob: generated
batch id: 1350892269-603479705

13. Repeat the commands in step 12 as many times as needed to crawl the desired

number of pages or the desired depth.

14. Follow the Indexing and searching fetched web documents using Apache Solr recipe

to index the fetched data using Apache Solr.

How it works

All the Nutch operations we used in this recipe, including fetching and parsing, are

implemented as MapReduce programs. These MapReduce programs utilize the Hadoop

cluster to perform the Nutch operations in a distributed manner and use the HBase to store

the data across the HDFS cluster. You can monitor these MapReduce computations through

the monitoring UI (http://jobtracker_ip:50030) of your Hadoop cluster.

Apache Nutch Ant build creates a Hadoop job ile containing all the dependencies in the
$NUTCH_HOME/runtime/deploy folder. The bin/nutch script uses this job ile to submit
the MapReduce computations to Hadoop.

See also
The Intra-domain crawling using Apache Nutch recipe of this chapter.

ElasticSearch for indexing and searching
ElasticSearch (http://www.elasticsearch.org/) is an Apache 2.0 licensed open source

search solution built on top of Apache Lucene. ElasticSearch is a distributed, multi-tenant,

and document-oriented search engine. ElasticSearch supports distributed deployments, by

breaking down an index in to shards and by distributing the shards across the nodes in the

cluster. While both ElasticSearch and Apach Solr use Apache Lucene as the core search

engine, ElasticSearch aims to provide a more scalable and a distributed solution that is better

suited for the cloud environments than Apache Solr.

Searching and Indexing

186

Getting ready
Install Apache Nutch and crawl some web pages as per the Whole web crawling with Apache

Nutch using an existing Hadoop/HBase cluster recipe or the Coniguring Apache HBase local
mode as the backend data store for Apache Nutch recipe. Make sure the backend Hbase

(or HyperSQL) data store for Nutch is still available.

How to do it

The following steps show you how to index and search the data crawled by Nutch using

ElasticSearch.

1. Download and extract ElasticSearch from http://www.elasticsearch.org/
download/.

2. Go to the extracted ElasticSearch directory and execute the following command to

start the ElasticSearch server in the foreground.

> bin/elasticsearch -f

3. Run the following command in a new console to verify your installation.

> curl localhost:9200

{

 "ok" : true,

 "status" : 200,

 "name" : "Outlaw",

 "version" : {

 "number" : "0.19.11",

 "snapshot_build" : false

 },

 "tagline" : "You Know, for Search"

4. Go to the $NUTCH_HOME/runtime/deploy (or $NUTCH_HOME/runtime/local

in case you are running Nutch in the local mode) directory. Execute the following

command to index the data crawled by Nutch in to the ElasticSearch server.

> bin/nutch elasticindex elasticsearch -all

12/11/01 06:11:07 INFO elastic.ElasticIndexerJob: Starting

…...

5. Issue the following command to perform a search:

> curl -XGET 'http://localhost:9200/_search?q=hadoop'

....

http://www.elasticsearch.org/download/

Chapter 7

187

{"took":3,"timed_out":false,
 "_shards":{"total":5,"successful":5,"failed":0},
 "hits":{"total":36,"max_score":0.44754887,
 "hits":[{"_index":"index","_type":"doc","_id": 100 30551 100
 30551 "org.apache.hadoop:http/","_score":0.44754887,
....

How it works

Similar to Apache Solr, ElasticSearch too is built using the Apache Lucene text search library.

In the preceding steps we export the data crawled by Nutch in to an instance of ElasticSearch

for indexing and searching purposes.

We add the –f switch to force the ElasticSearch to run in the foreground to make the

development and testing process easier.

bin/elasticsearch –f

You can also install ElasticSearch as a service as well. Refer to http://www.
elasticsearch.org/guide/reference/setup/installation.html for more details

on installing ElasticSearch as a service.

We use the ElasticIndex job of Nutch to import the data crawled by Nutch into the

ElasticSearch server. The usage of the elasticindex command is as follows:

bin/nutch elasticindex <elastic cluster name> \
 (<batchId> | -all | -reindex) [-crawlId <id>]

The elastic cluster name defaults to elasticsearch. You can change the cluster name by

editing the cluster.name property in the config/elasticsearch.yml ile. The cluster
name is used for auto-discovery purposes and should be unique for each ElasticSearch

deployment in a single network.

See also
 f The Indexing and searching web documents using Apache Solr recipe of this chapter.

Generating the in-links graph for crawled
web pages

The number of links to a particular web page from other pages, the number of in-links, is

widely considered a good metric to measure the popularity or the importance of a web page.

In fact, the number of in-links to a web page and the importance of the sources of those links

have become integral components of most of the popular link analysis algorithms such as

PageRank introduced by Google.

Searching and Indexing

188

In this recipe, we are going to extract the in-links information from a set of web pages fetched by

Apache Nutch and stored in Apache HBase backend data store. In our MapReduce program, we

irst retrieve the out-links information for the set of web pages stored in the Nutch HBase data
store and then use that information to calculate the in-links graph for this set of web pages. The

calculated in-link graph will contain only the link information from the fetched subset of the web

graph only.

Getting ready
Follow the Whole web crawling with Apache Nutch using an existing Hadoop/HBase cluster or

the Coniguring Apache HBase local mode as the backend data store for Apache Nutch recipe

and crawl a set of web pages using Apache Nutch to the backend HBase data store.

This recipe requires Apache Ant for building the source code.

How to do it

The following steps show you how to extract an out-links graph from the web pages stored

in Nutch HBase data store and how to calculate the in-links graph using that extracted

out-links graph.

1. Go to $HBASE_HOME and start the HBase shell.

> bin/hbase shell

2. Create an HBase table with the name linkdata and a column family named il. Exit

the HBase shell.

hbase(main):002:0> create 'linkdata','il'

0 row(s) in 1.8360 seconds

hbase(main):002:0> quit

3. Unzip the source package for this chapter and compile it by executing ant build

from the Chapter 7 source directory.

4. Copy the c7-samples.jar ile to $HADOOP_HOME. Copy the $HBASE_HOME/
hbase-*.jar and $HBASE_HOME/lib/zookeeper-*.jar to
$HADOOP_HOME/lib.

5. Run the Hadoop program by issuing the following command from $HADOOP_HOME.

> bin/hadoop jar c7-samples.jar chapter7.InLinkGraphExtractor

Chapter 7

189

6. Start the HBase shell and scan the linkdata table using the following command to

check the output of the MapReduce program:

> bin/hbase shell

hbase(main):005:0> scan 'linkdata',{COLUMNS=>'il',LIMIT=>10}

ROW COLUMN+CELL

....

How it works

As we are going to use HBase to read input as well as to write the output, we will use the

HBase TableMapper and TableReducer helper classes to implement our MapReduce

application. We will conigure the TableMapper and the TableReducer using the utility methods
given in the TableMapReduceUtil class. The Scan object is used to specify the criteria to be

used by the mapper when reading the input data from the HBase data store.

Configuration conf = HBaseConfiguration.create();

Job job = new Job(conf, "InLinkGraphExtractor");

job.setJarByClass(InLinkGraphExtractor.class);

Scan scan = new Scan();

scan.addFamily("ol".getBytes());

TableMapReduceUtil.initTableMapperJob("webpage", scan, ……);

TableMapReduceUtil.initTableReducerJob("linkdata",……);

The map implementation receives the HBase rows as the input records. In our implementation,

each of the rows corresponds to a fetched web page. The input key to the Map function

consists of the web page's URL and the value consists of the web pages linked from this

particular web page. Map function emits a record for each of the linked web pages, where the

key of a Map output record is the URL of the linked page and the value of a Map output record

is the input key to the Map function (the URL of the current processing web page).

public void map(ImmutableBytesWritable sourceWebPage, Result
values,……){

 List<KeyValue> results = values.list();

 for (KeyValue keyValue : results) {

 ImmutableBytesWritable outLink = new
 ImmutableBytesWritable(keyValue.getQualifier());

 try {

 context.write(outLink, sourceWebPage);

 } catch (InterruptedException e) {

 throw new IOException(e);

 }

 }

}

Searching and Indexing

190

The reduce implementation receives a web page URL as the key and a list of web pages that

contain links to that web page (provided in the key) as the values. The reduce function stores

these data in to an HBase table.

public void reduce(ImmutableBytesWritable key,

 Iterable<ImmutableBytesWritable> values, ……{

Put put = new Put(key.get());

 for (ImmutableBytesWritable immutableBytesWritable :values) {

put.add(Bytes.toBytes("il"),immutableBytesWritable.get(),

 Bytes.toBytes("link"));

 }

 context.write(key, put);

}

See also
 f The Running MapReduce jobs on HBase(table input/output) recipe of Chapter 5,

Hadoop Ecosystem.

8
Classiications,

Recommendations, and
Finding Relationships

In this chapter, we will cover:

 f Content-based recommendations

 f Hierarchical clustering

 f Clustering a Amazon sales dataset

 f Collaborative iltering-based recommendations
 f Classiication using Naive Bayes Classiier
 f Assigning advertisements to keywords using the Adwords balance algorithm

Introduction
This chapter discusses how we can use Hadoop for more complex use cases such as

classifying a dataset, making recommendations, or inding relationships between items.

A few instances of such scenarios are as follows:

 f Recommending products to users either based on the similarities between the

products (for example, if a user liked a book about history, he might like another

book on the same subject) or based on the user behaviour patterns (for example,

if two users are similar, they might like books that each to the other has read).

 f Clustering a data set to identify similar entities. For example, identifying users with

similar interests.

 f Classifying data into several groups learning from the historical data.

Classiications, Recommendations, and Finding Relationships

192

In this recipe, we will apply these and other techniques using MapReduce. For recipes in this

chapter, we will use the Amazon product co-purchasing network metadata dataset available

from http://snap.stanford.edu/data/amazon-meta.html.

Content-based recommendations
Recommendations are to make suggestions to someone about things that might be of interest

to him. For example, we would recommend a good book to a friend who has similar interests.

We often ind use cases for recommendations in online retail. For example, when you browse
for a product, Amazon would suggest other products that were also bought by users who

bought this item.

For example, online retail sites such as Amazon have a very large collection of items. Although

books are found classiied into several categories, often each category has too many to
browse one after the other. Recommendations make the user's life easy by helping them ind
the best products for their tastes. As recommendations make a change of a high sale, online

retailers are very much interested about recommendation algorithms.

There are many ways to do recommendations:

 f Content-based recommendations: One could use information about the product to

identify similar products. For example, you could use categories, content similarities,

and so on to identify products that are similar and recommend them to the users who

have already brought one.

 f Collaborative iltering: The other option is to use user's behavior to identify

similarities between products. For example, if the same user gave a high rating to the

two products, we can argue that there is some similarity between those two products.

We will look at an instance of this in the next recipe.

This recipe uses dataset collected from Amazon about products to make content-based

recommendations. In the dataset, each product has a list of similar items provided

pre-calculated by Amazon. In this recipe, we will use that data to make recommendations.

Getting ready
The following steps depict how to prepare for this recipe.

1. This recipe assumes that you have followed Chapter 1, Getting Hadoop up and

running in a Cluster, and have installed Hadoop. We will use the HADOOP_HOME to

refer to the Hadoop installation directory.

2. Start Hadoop by following the instructions in Chapter 1, Getting Hadoop up and

running in a Cluster.

Chapter 8

193

3. This recipe assumes you are aware of how Hadoop processing works. If you have not

already done so, you should follow the Writing the WordCount MapReduce sample,
bundling it and running it using standalone Hadoop recipe in Chapter 1, Getting

Hadoop up and running in a Cluster.

4. We will use HADOOP_HOME to refer to the Hadoop installation directory.

How to do it...

The following steps describe how to run the content-based recommendation recipe.

1. Download the dataset from Amazon product co-purchasing network metadata

available at http://snap.stanford.edu/data/amazon-meta.html and unzip

it. We call this directory as DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If the

/data directory already exists, clean it up.

$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1

3. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder as

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the CHAPTER_8_SRC

directory.

6. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the irst Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
MostFrequentUserFinder/data/input1 /data/output1

8. Read the results by running the following command:

$ bin/hadoopdfs -cat /data/output1/*

9. You will see that the MapReduce job has extracted the purchase data from each

customer, and the results will look like following:

customerID=A1002VY75YRZYF,review=ASIN=0375812253#title=Really
Useful Engines (Railway Series)#salesrank=623218#group=Book #ratin
g=4#similar=0434804622|0434804614|0434804630|0679894780|0375827439
|,review=ASIN=B000002BMD#title=EverythingMustGo#salesrank=77939#gr
oup=Music#rating=4#similar=B00000J5ZX|B000024J5H|B00005AWNW|B00002
5KKX|B000008I2Z

Classiications, Recommendations, and Finding Relationships

194

10. Run the second Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
ContentBasedRecommendation/data/output1 /data/output2

11. Read the results by running the following command:

$ bin/hadoopdfs -cat /data/output2/*

You will see that it will print the results as follows. Each line of the result contains the

customer ID and list of product recommendations for that customer.

A10003PM9DTGHQ [0446611867, 0446613436, 0446608955, 0446606812,
0446691798, 0446611867, 0446613436, 0446608955, 0446606812,
0446691798]

How it works...

The following listing shows an entry for one product from the dataset. Here, each data entry

includes an ID, title, categorization, similar items to this item, and information about users

who has brought the item.

Id: 13

ASIN: 0313230269

title: Clockwork Worlds : Mechanized Environments in SF (Contributions
to the Study of Science Fiction and Fantasy)

group: Book

salesrank: 2895088

similar: 2 1559360968 1559361247

categories: 3

 |Books[283155]|Subjects[1000]|Literature & Fiction[17]|History &
Criticism[10204]|Criticism & Theory[10207]|General[10213]

 |Books[283155]|Subjects[1000]|Science Fiction & Fantasy[25]|Fantasy
[16190]|History & Criticism[16203]

 |Books[283155]|Subjects[1000]|Science Fiction & Fantasy[25]|Science
Fiction[16272]|History & Criticism[16288]

reviews: total: 2 downloaded: 2 avg rating: 5

 2002-8-5 customer: A14OJS0VWMOSWO rating: 5 votes: 2
helpful: 1

 2003-3-21 customer: A2C27IQUH9N1Z rating: 5 votes: 4
helpful: 4

We have written a new Hadoop data format to read and parse the Amazon product data,

and the data format works similar to the format we have written in the Simple Analytics

using MapReduce recipe in Chapter 6, Analytics. The source iles src/chapter8/
AmazonDataReader.java and src/chapter8/AmazonDataFormat.java

contain the code for the Amazon data formatter.

Chapter 8

195

Amazon data formatter will parse the dataset and emit the data about each Amazon product

as key-value pairs to the map function. The data about each Amazon product is represented

as string and the class AmazonCustomer.java class includes code to parse and write out

the data about the Amazon customer.

This recipe includes two MapReduce tasks. The source for those tasks can be found

from src/chapter8/MostFrequentUserFinder.java and src/chapter8/
ContentBasedRecommendation.java.

public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException

{

 List<AmazonCustomer>customerList =

 AmazonCustomer. parseAItemLine(value.toString());

 for(AmazonCustomer customer:

 customerList){ context.write(new Text(customer.customerID),

 new Text(customer.toString()));

}

Classiications, Recommendations, and Finding Relationships

196

The map task of the irst MapReduce job receives data about each product in the logile as a
different key-value pair. When the map task receives the product data, it emits the customer

ID as the key and the product information as the value for each customer who has bought

the product.

Hadoop collects all values for the key, and invokes the reducer once for each key. There will

be a reducer task for each customer, and each reducer task will receive all products that have

been brought by a customer. The reducer emits the list of items brought by each customer,

thus building a customer proile. For limiting the size of the dataset, the reducer will not emit
any customer who has brought less than ive products.

public void reduce(Text key, Iterable<Text> values, Context context)

 throws IOException, InterruptedException

 {

 AmazonCustomer customer = new AmazonCustomer();

 customer.customerID = key.toString();

 for(Text value: values)

 {

 Set<ItemData>itemsBrought = newAmazonCustomer(

 value.toString()).itemsBrought;

 for(ItemDataitemData: itemsBrought)

 {

 customer.itemsBrought.add(itemData);

 }

 }

 if(customer.itemsBrought.size() > 5)

 {

 context.write(newIntWritable(customer.itemsBrought.size()),

 new Text(customer.toString()));

 }

}

The second MapReduce job uses the data generated from the irst MapReduce tasks to make
recommendations for each customer. The map task receives data about each customer as

the input, and the MapReduce tasks make recommendations using the following three steps:

1. Each product (item) data from Amazon includes similar items to that item. Given

a customer, irst the map task creates a list of all similar items for each item that
customer has brought.

2. Then the map task removes any item from the list of similar items that has already

brought by the same customer.

Chapter 8

197

3. Then map task selects ten items as recommendations.

Here reducer only prints out the results.

public void map(Object key, Text value, Context context)

 throwsIOException, InterruptedException

{

 AmazonCustomeramazonCustomer = newAmazonCustomer(

 value.toString() .replaceAll("[0-9]+\\s+", ""));

 List<String>recemndations = new ArrayList<String>();

 for (ItemDataitemData : amazonCustomer.itemsBrought)

 {

 recemndations.addAll(itemData.similarItems);

 }

 for (ItemDataitemData : amazonCustomer.itemsBrought)

 {

 recemndations.remove(itemData.itemID);

 }

 ArrayList<String>finalRecemndations = newArrayList<String>();

 for (inti = 0; i<Math.min(10, recemndations.size()); i++)

 {

 finalRecemndations.add(recemndations.get(i));

 }

 context.write(new Text(amazonCustomer.customerID),

 new Text(finalRecemndations.toString()));

 }

public void reduce(Text key, Iterable<Text> values, Context
context)

 throws IOException, InterruptedException

{

 for(Text value: values)

 {

 context.write(key, value);

 }

}

There's more...

You can learn more about content-based recommendations in Chapter 9, Recommendation

Systems, of Mining of Massive Datasets, Anand Rajaraman and Jeffrey D. Ullman. This book

can be found from http://infolab.stanford.edu/~ullman/mmds.html.

Classiications, Recommendations, and Finding Relationships

198

Hierarchical clustering
Many operations such as recommendations and inding relationships use clustering as
an integral component. Clustering groups a dataset into several groups using one or more

measurements such that the items in the same cluster are rather similar and items in

different clusters are more different. For example, given a set of living addresses of patients,

clustering can group them into several groups where members of each group are close to

each other so that doctors can visit them in most optimal manner.

There are many clustering algorithms; each has different costs and accuracy. Hierarchical

clustering is one of the most basic and most accurate algorithms. It works as follows:

1. First, hierarchical clustering assigns each data point to its own cluster.

2. It calculates the distance between all cluster pairs and merges the two clusters that

are closest to each other.

3. It repeats the process until only one cluster is left. At each repetition, the algorithm

records each cluster pair it has merged. This merging history provides a tree that

combines the clusters into larger and larger groups close to the root. Users may take

a cut at some place in the tree based on the number of clusters they need.

However, hierarchical clustering has the complexity of O(n2log(n)). In other words, the

algorithm would take about Cn2log(n) time for input of size n and a constant C. Hence,

often it is too complex to be used with a large dataset. However, it often serves as the

basis for many other clustering algorithms.

In this recipe, we will use hierarchical clustering to cluster a sample drawn from the Amazon

dataset. It is worth noting that it is not a MapReduce algorithm, but we will use its results in

the MapReduce algorithm in the next recipe.

Getting ready
This recipe assumes that you have followed the irst recipe and extracted the Amazon
product data.

How to do it...

The following steps describe how to run the hierarchical clustering sample:

1. Copy the results of the irst MapReduce job of the last recipe to the local machine.
$ bin/hadoopdfs -get /data/output1/ product-sales.data

Chapter 8

199

2. Run the following command to do hierarchical clustering:

$ java –cphadoop-cookbook-chapter8.jar chapter8.
HirachicalClusterProcessor product-sales.data

3. The algorithm will generate a ile called clusters.data that includes clusters.

4. You can ind the information about clusters from the clusters.data ile created
in the local directory, which will have the centroid of each cluster. Furthermore, the

clusters-raw.data ile includes all the points assigned to each cluster.

How it works...

You can ind the source for the recipe from src/chapter8/
HirachicalClusterProcessor.java.

When executed, the code would read through the input data ile and load data for 1000
Amazon customers randomly selected from the input ile and perform hierarchical clustering
on those customers.

Hierarchical clustering starts by placing each customer in its own cluster. Then it inds the two
clusters that are close to each other and merges them into one cluster. Then it recalculates

the distance between the new cluster and the old clusters, and repeats the process until it is

left with a single cluster.

The getDistance() method of the AmazonCustomer.java class under src/chapter8

shows how the distance between two Amazon clusters is calculated. It uses a variation of

Jaccard distance. With the Jaccard distance, if two customers have brought the same item

and have given similar reviews to those items, then Jaccard distance will be small. On the

other hand, if they have given different reviews, the distance between them will be high.

public double getDistance(ClusterablePoint other)

{

 double distance = 5;

 AmazonCustomer customer1 = (AmazonCustomer)this;

 AmazonCustomer customer2 = (AmazonCustomer)other;

 for(ItemData item1:customer1.itemsBrought)

 {

 for(ItemData item2:customer2.itemsBrought)

 {

 if(item1.equals(item2))

 {

 doubleratingDiff = Math.abs(item1.rating - item2.rating);

 if(ratingDiff< 5)

 {

 distance = distance - (5 - ratingDiff)/5;

 }

Classiications, Recommendations, and Finding Relationships

200

 else

 {

 distance = distance + (5 - ratingDiff)/5;

 }

 }

 }

 }

returnMath.min(10,Math.max(0.5, distance));

}

A naive implementation of the algorithm will recalculate all distances between clusters

every time two clusters are merged, and resulting algorithm will have O(n3) computational

complexity. In other words, the algorithm will take Cn3 amount of time to run with input of

size n for some constant C. However, by remembering distances between clusters and only

calculating distance from new clusters, the resulting implementation will have O(n2log(n))

complexity. The following code listing shows the implementation of the algorithm.

public List<Cluster>doHirachicalClustering(List<ClusterablePoint>

 points)

{

 List<Cluster> clusters =

 new ArrayList<HirachicalClusterProcessor.Cluster>();

 for(ClusterablePointpoint:points)

 {

 clusters.add(new Cluster(point));

 }

 for(inti =0;i<clusters.size();i++)

 {

 for(int j =(i+1);j<clusters.size();j++)

 {

 ClusterPairclusterPair = newClusterPair(clusters.get(i),

 clusters.get(j));

 addNewPairs(clusterPair);

 }

 }

 while(clusters.size() > 1)

 {

 ClusterPairnextPair = null;

 doubleminDist = Double.MAX_VALUE;

 for(ClusterPair pair:

 pairsSortedByDistance)

 {

 if(pair.distance<minDist)

 {

 nextPair = pair;

Chapter 8

201

 minDist = pair.distance;

 }

 }

 ClusterPair pair = nextPair;

 }

 removePairs(pair);

 Cluster newCluster = pair.merge();

 clusters.remove(pair.cluster1);

 clusters.remove(pair.cluster2);

 //recalcualte pairs for new cluster

 for(Cluster cluster: clusters)

 {

 ClusterPairnewclusterPair = newClusterPair(cluster, newCluster);

 addNewPairs(newclusterPair);

 }

 clusters.add(newCluster);

 }

 return clusters;

}

Finally, the program will output the centroid for each cluster. The centroid is the point within

the cluster that has the minimal value of the sum of distances to all other points in the cluster.

There's more...

Among other alternative distance measures are Cosine distance, Edit distance, and Hamming

distance. Chapter 7, Clustering, of the book Mining of Massive Datasets, Anand Rajaraman

and Jeffrey D. Ullman, explains these distances in detail. Also you can learn more about

hierarchical clustering from the same book. The book can be found from http://infolab.
stanford.edu/~ullman/mmds.html.

Clustering an Amazon sales dataset
As explained in the earlier recipe, although very accurate, hierarchical clustering has a time

complexity of O(n2log(n)), and therefore is not applicable to large datasets. For example,

the Amazon data set we will use has about 0.2 million entries and it will need about 10 tera

calculations (about 1013).

This recipe describes how to apply the GRGPFClustering algorithm to Amazon sales

dataset. We can ind the distance between any two data points (products) using items
they have co-purchased, but we do not know how to place those data points in some

multi-dimensional space (2D or 3D space) with orthogonal axes. Therefore, we say

that the data in a non-Euclidian space.

Classiications, Recommendations, and Finding Relationships

202

GRGPFClustering algorithm is a highly scalable algorithm applicable to a non-Euclidian space.

It works by irst taking a small random sample of the data and clustering it using an algorithm

such as hierarchical clustering, and then using those clusters to cluster a large dataset

without keeping all the data in memory.

Getting ready
The following steps describe how to ready to cluster the Amazon dataset.

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in

a Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to the

Hadoop installation directory.

2. Start Hadoop following the instructions in Chapter 1, Getting Hadoop up and running

in a Cluster.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not

already done so, you should follow the Writing the WordCount MapReduce sample,
bundling it and running it using standalone Hadoop recipe in Chapter 1, Getting

Hadoop up and running in a Cluster.

4. This assumes that you have followed the Content-based recommendations recipe of

this chapter and have extracted the Amazon product data.

How to do it...

The following steps describe how to get cluster the Amazon dataset.

1. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder

CHAPTER_8_SRC.

2. Change the hadoop.home property in the build.xml ile under CHAPTER_8_SRC

to point to your Hadoop installation directory.

3. Compile the source by running the ant build command from the CHAPTER_8_SRC

directory.

4. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

5. Run the MapReduce job using the following command from HADOOP_HOME. It will use

the output generated by the irst MapReduce task of the irst recipe.
$bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
GRGPFClustering /data/output1 /data/output3

6. Read the results by running the following command.

$bin/hadoopdfs -cat /data/output3/*

Chapter 8

203

You will see that it will print the results as following. Here the key indicates the cluster ID and

the rest of the results show customer details of the customers assigned to the cluster.

customerID=A3S764AIU7PCLT,clusterID=0,

review=ASIN=0140296468#title=The New New Thing: A Silicon Valley Story
..

How it works...

As the igure depicts, this tasks has a MapReduce task. You can ind the source for the recipe
from src/chapter8/GRGPFClustering.java.

When initialized, the MapReduce job will load the information about the clusters calculated in

the earlier recipe and use those clusters to assign the rest of the dataset to clusters.

public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException

{

 AmazonCustomeramazonCustomer =

Classiications, Recommendations, and Finding Relationships

204

 new AmazonCustomer(value.toString() .replaceAll("[0-9]+\\s+",
""));

 doublemindistance = Double.MAX_VALUE;

 AmazonCustomerclosestCluster = null;

 for (AmazonCustomercentriod : clusterCentrodis)

 {

 double distance = amazonCustomer.getDistance(centriod);

 if (distance <mindistance)

 {

 mindistance = distance;

 closestCluster = centriod;

 }

 amazonCustomer.clusterID = closestCluster.clusterID;

 }

 context.write(new Text(closestCluster.clusterID),

 new Text(amazonCustomer.toString()));

}

The Map task receives each line in the logile that contains information about Amazon
customer as a different key-value pair. Then, the map task compares the information about

the customer against each of the cluster's centroids, and assigns each customer to the

cluster that is closest to that customer. Then, it emits the name of the cluster as the key and

information about the customer as the value.

Then, Hadoop collects all values for the different keys (clusters) and invokes the reducer once

for each cluster. Then each reducer emits the members of each cluster.

public void reduce(Text key, Iterable<Text> values,

 Context context) throws IOException, InterruptedException

{

 for (Text value : values)

 {

 context.write(key, value);

 }

}

The main method of the job works similar to the earlier recipes.

There's more...

It is possible to improve the results by recalculating the cluster centroids in the reducer,

splitting any clusters that have customers that are too far apart from each others, and

rerunning the GRGPF algorithm with new clusters. More information about this can be found

from Chapter 7, Clustering, of the book Mining of Massive Datasets, Anand Rajaraman

and Jeffrey D. Ullman. The book can be found from http://infolab.stanford.
edu/~ullman/mmds.html.

Chapter 8

205

Collaborative iltering-based
recommendations

This recipe will use collaborative iltering to make recommendations for customers in
the Amazon dataset. As described in the introduction, collaborative iltering uses sales
activities about a given user that is common with other users to deduce the best product

recommendations for the irst user.

To implement collaborative iltering, we will cluster the users based on their behavior, and
use items brought by members of a cluster to ind recommendations of each member of the
cluster. We will use the clusters calculated in the earlier recipe.

Getting ready
The following steps show how to prepare to run the collaborative iltering example:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in a

Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to Hadoop

installation directory.

2. Start Hadoop by following the instructions in the irst chapter.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not

already done so, you should follow the Writing a WordCount MapReduce Sample,
Bundling it and running it using standalone Hadoop recipe from the irst chapter.

4. This will use the results from the previous recipe of this chapter. Follow it if you have

not done so already.

How to do it...

The following steps show how to prepare to run the collaborative iltering example:

1. Run the MapReduce job using the following command from HADOOP_HOME:

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
ClusterBasedRecommendation/data/output3 /data/output4

2. Read the results by running the following command.

$bin/hadoopdfs -cat /data/output4/*

You will see that it will print the results as following. Here the key is the customer ID and the

value is the list of recommendations for that customer.

A1JDFNG3KI9D1V [ASIN=6300215539#title=The War of the Worlds#salesrank
=1#group=Video#rating=4#, ..]

Classiications, Recommendations, and Finding Relationships

206

How it works...

Collaborative iltering uses the behavior of the users to decide on the best recommendations

for each user. For that process, the recipe will use the following steps:

1. Group customers into several groups such that similar customers are in the same

group and different customers are in different groups.

2. For making recommendations for each customer, we have looked at the other

members in the same group and used the items bought by those members assuming

that similar users would like to buy similar products.

3. When there are many recommendations, we have used the Amazon sales rank to

select the recommendations.

For grouping the customers, we can use clustering techniques used in the earlier recipes. As a

measure of the distance between customers we have used the distance measure introduced

in the second recipe of this chapter that uses customer co-purchase information to decide on

the similarity between customers.

Chapter 8

207

We have already clustered the customers to different groups in the earlier recipe. We would

use those results to make recommendations.

You can ind the source for the recipe from src/chapter8/
ClusterBasedRecommendation.java. The map task for the job will look like the following:

public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

{

 AmazonCustomeramazonCustomer =

 newAmazonCustomer(value.toString() .replaceAll("[0-9]+\\s+", ""));

 context.write(new Text(amazonCustomer.clusterID),

 new Text(amazonCustomer.toString()));

}

The map task receives each line in the logile as a different key-value pair. It parses the
lines using regular expressions and emits cluster ID as the key and the customer information

as the value.

Hadoop will group different customer information emitted against the same customer ID and

call the reducer once for each customer ID. Then, the reducer walks through the customers

assigned to this cluster and creates a list of items as potential recommendations sorted by

Amazon sales rank. Then it makes inal recommendations for a given user by removing any
items that he has already brought.

public void reduce(Text key, Iterable<Text> values, Context context)
 throws IOException, InterruptedException

{

 List<AmazonCustomer>customerList =

 newArrayList<AmazonCustomer>();

 TreeSet<AmazonCustomer.SortableItemData> highestRated1000Items =

 newTreeSet<AmazonCustomer.SortableItemData>();

 for (Text value : values)

 {

 AmazonCustomer customer =

 newAmazonCustomer(value.toString());

 for (ItemDataitemData : customer.itemsBrought)

 {

 highestRated1000Items.add(

 customer.newSortableItemData(itemData));

 if (highestRated1000Items.size() > 1000)
 {

 highestRated1000Items.remove(highestRated1000Items.last());

 }

 }

 customerList.add(customer);

Classiications, Recommendations, and Finding Relationships

208

 }

 for (AmazonCustomeramazonCustomer : customerList)

 {

 List<ItemData>recemndationList =

 newArrayList<AmazonCustomer.ItemData>();

 for (SortableItemDatasortableItemData : highestRated1000Items)

 {

 if (!amazonCustomer.itemsBrought
 .contains(sortableItemData.itemData))

 {

 recemndationList.add(sortableItemData.itemData);

 }

 }

 ArrayList<ItemData>finalRecomendations =
 newArrayList<ItemData>();

 for (inti = 0; i< 10; i++)

 {

 finalRecomendations.add(recemndationList.get(i));

 }

 context.write(new Text(amazonCustomer.customerID),
 new Text(finalRecomendations.toString()));

 }

}

The main method of the job will work similar to the earlier recipes.

Classiication using Naive Bayes Classiier
A classiier assigns inputs into one of the N classes based on some properties (features)

of inputs. Classiiers have widespread applications such as e-mail spam iltering, inding
most promising products, selecting customers for closer interactions, and taking decisions

in machine learning situations, and so on. Let us explore how to implement a classiier
using a large dataset. For instance, a spam ilter will assign each e-mail to one of the
two clusters—spam mail or not a spam mail.

There are many classiication algorithms. One of the simplest, but effective algorithms is
Naive Bayesian classiier that uses the Bayes theorem. You can ind more information about
Bayesian classiier from http://en.wikipedia.org/wiki/Naive_Bayes_classifier

and Bayes theorem from http://betterexplained.com/articles/an-intuitive-
and-short-explanation-of-bayes-theorem/.

Chapter 8

209

For this recipe, we will also focus on the Amazon purchase dataset as before. We will look

at several features about a product such as number of reviews received, amount of positive

ratings, and number of known similar items to identify a product as potential to be within the

irst 10,000 sales rank. We will use the Naive Bayesian classiier for classiications.

Getting ready
The following steps describe how to prepare to run Naive Bayesian example:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in a

Cluster and have installed Hadoop. We will use the HADOOP_HOME to refer to Hadoop

installation directory.

2. Start Hadoop by following the instructions in the irst chapter.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not

already done so, you should follow the Writing the WordCount MapReduce sample,
bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting

Hadoop up and running in a Cluster.

How to do it...

The following steps describe how to run Naive Bayesian example.

1. Download the dataset from Amazon product co-purchasing network metadata,

http://snap.stanford.edu/data/amazon-meta.html and unzip it. We will

call this DATA_DIR.

2. Upload the data to HDFS by running the following commands from HADOOP_HOME. If

the /data directory is already there, clean it up.

$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1

3. Unzip the source code for chapter 8 (chapter8.zip). We will call that folder

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the CHAPTER_8_SRC

directory.

6. Copy build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the MapReduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.
NavieBayesProductClassifer/data/input1 /data/output5

Classiications, Recommendations, and Finding Relationships

210

8. Read the results by running the following command.

$ bin/hadoopdfs -cat /data/output5/*

9. You will see that it will print the results as following. You can use these values with

Bayesian classiier to classify the inputs.
postiveReviews>30 0.635593220338983

reviewCount>60 0.62890625

similarItemCount>150 0.5720620842572062

10. Verify the classiier using the following command.
$ bin/hadoop-cp hadoop-cookbook-chapter8.jar chapter8.
NavieBayesProductClassifer

How it works...

The goal of this recipe is to look at some properties of a product and predict whether it will

fall under the irst 10,000 products at Amazon by the sales rank. We call these properties
features, and for this sample we will focus on the following three properties:

 f The number of review counts for a given a product (p.reviewCount)

 f The number of positive reviews for a given a product (p.positiveReviews)

 f The number of similar items for a given a product (p.similarItemCount)

In the following discussion, we will write P(p.salesrank<1000) to mean that the probability

that the given item p is within irst 10,000 products and similar for other properties as well.

In this recipe, given a new product p, we want to ind P(p.salesrank< 1000) based on

statistical distribution features in the products. Furthermore, we need to use MapReduce

for the calculations.

The irst step is to understanding the equation for Naive Bayes Classiier. If A
p
, B

p
, and C

p
 are

any three independent events (for example, A means p.reviewCount> 60) about a product p,

and the following three a, b, and c are deined as follows, then we can write the equation for
Naive Bayes Classiier.

a = P(Ap/ p.salesrank< 1000)

b = P(Bp/ p.salesrank< 1000)

c = P(Cp/ p.salesrank< 1000)

Here the slash suggests the conditional probability. For example, we read the irst line as a is

the probability of event Ap occurring given that p.salesrank< 1000 has already occurred.

Chapter 8

211

Then using Bayes theorem we can write the following. The following equation provides the

probability that the product will have a sales rank less than 1000 given three independent

events A
p
, B

p
, and C

p
.

P(p.salesrank< 1000/ A
p
 and B

p
 and C

p
) = abc/(abc –(1-a).(1-b).(1-c)).

Now let us focus on the real calculation. As A
p
, B

p
, C

p
, we will use following.

 f A
p
: This is the probability that given item has more than 60 reviews

 f B
p
: This is the probability that given item has more than 30 positive reviews

 f C
p
: This is the probability that given item has more than 150 similar items.

Then, we irst run the MapReduce task to calculate the probabilities—a=P(Ap/p.

salesrank<1000), b=P(Bp/p.salesrank<1000), and c=P(Cp/p.salesrank<1000). Then we

will use those with above formula to classify a given product. You can ind the source for the
classiier from src/chapter8/NavieBayesProductClassifer.java. The mapper

function looks like the following:

private static final Text TOTAL = new Text("total");

private static final Text RCOUNT_GT_60 =

 new Text("reviewCount>60");

private static final Text PREIVEWS_GT_30 =

 new Text("postiveReviews>30");

private static final Text SIMILAR_ITEMS_GT_150 =

 new Text("similarItemCount>150");

public void map(Object key, Text value, Context context)
 throwsIOException, InterruptedException

 {

 List<AmazonCustomer>customerList =
 AmazonCustomer.parseAItemLine(value.toString());

 intsalesRank = -1;

 intreviewCount = 0;

 intpostiveReviews = 0;

 intsimilarItemCount = 0;

 for (AmazonCustomer customer : customerList)

 {

 ItemDataitemData = customer.itemsBrought.iterator().next();

 reviewCount++;

 if (itemData.rating> 3)

 {

 postiveReviews++;

 }

 similarItemCount = similarItemCount +

Classiications, Recommendations, and Finding Relationships

212

 itemData.similarItems.size();

 if (salesRank == -1)

 {

 salesRank = itemData.salesrank;

 }

 }

 boolean isInFirst10k = (salesRank<= 10000);

 context.write(TOTAL, new BooleanWritable(isInFirst10k));

 if (reviewCount> 60)

 {

 context.write(RCOUNT_GT_60,

 newBooleanWritable(isInFirst10k));

 }

 if (postiveReviews> 30)

 {

 context.write(PREIVEWS_GT_30,

 newBooleanWritable(isInFirst10k));

 }

 if (similarItemCount> 150)

 {

 context.write(SIMILAR_ITEMS_GT_150,

 newBooleanWritable(isInFirst10k));

 }

}

The mapper function walks thorugh each product and for each, it evaluates the features. If

the feature evaluates to be true, it emits the feature name as the key and notiies whether the
product is within the irst 10,000 products as the value.

MapReduce invokes the reducer once for each feature. Then each reduce job receives all

values for which the feature is true, and it calculates the probability that given the feature is

true, the product is within the irst 10,000 products in the sales rank.

public void reduce(Text key, Iterable<BooleanWritable> values,
 Context context) throws IOException, InterruptedException

{

 int total = 0;

 int matches = 0;

 for (BooleanWritable value : values)

 {

 total++;

 if (value.get())
 {

 matches++;

Chapter 8

213

 }

 }

 context.write(new Text(key),

 newDoubleWritable((double) matches / total));

}

Given a product, we will examine and decide following:

 f Does it have more than 60 reviews?

 f Does it have more than 30 positive reviews?

 f Does it have more than 150 positive items?

We would use the above to decide what are the events A, B, C and we can calculate a, b, and

c accordingly using P1, P2, and P3 calculated using MapReduce task. The following code

implements this logic:

public static booleanclassifyItem(intsimilarItemCount,
 intreviewCount, intpostiveReviews)

{

 double reviewCountGT60 = 0.8;

 double postiveReviewsGT30 = 0.9;

 double similarItemCountGT150 = 0.7;

 double a , b, c;

 if (reviewCount> 60)

 {

 a = reviewCountGT60;

 }

 else

 {

 a= 1 - reviewCountGT60;

 }

 if (postiveReviews> 30)

 {

 b = postiveReviewsGT30;

 }

 else

 {

 b = 1- postiveReviewsGT30;

 }

 if (similarItemCount> 150)

 {

 c = similarItemCountGT150;

 }

 else

Classiications, Recommendations, and Finding Relationships

214

 {

 c = 1- similarItemCountGT150;

 }

 double p = a*b*c/ (a*b*c + (1-a)*(1-b)*(1-c));

 return p > 0.5;

}

When you run the classiier testing the logic, it will load the data generated by the MapReduce
job and classify 1000 randomly selected products.

Assigning advertisements to keywords using
the Adwords balance algorithm

Advertisements have become a major medium of revenue for the Web. It is a billion-dollar

business, and the source of the most Google revenue. Further, it has made it possible for

companies such as Google to run their main services free of cost, while collecting their

revenue through advertisements.

Let us explore how we can implement a simple "Adwords" style algorithm using MapReduce.

Adwords lets people bid for keywords. For example, the advertiser "A" can bid for keywords

"Hadoop Support" for 2$ and provided a maximum budget of 100$, and the advertiser "B"

would bid for keywords "Hadoop Support" for 1.50$ and provided a maximum budget of 200$.

When a user searches for a document with given keywords, the system will choose one or

more advertisements among the bids for these keywords. Advertisers will pay only if a user

clicks on the advertisement.

Adwords problem is to show advertisements such that it will maximize revenue. There are

several factors in the play while designing such a solution:

 f Only user clicks, not showing the advertisement, will get us money. Hence, we want

to show advertisements that are more likely to be clicked often. We measure this as

fraction of time an advertisement was clicked as oppose to how many times it was

shown. We call this "click-through rate" for a keyword.

 f We want to show people with large budgets, as those are likely be ones that are hard

to spend as opposed to smaller budgets.

In this recipe, we will implement a simpliied version of the Adwords balance algorithm that
can be used in such situations. For simplicity, we will assume that advertisers only bid on

single words. Also, as we cannot ind a real bid dataset, we will generate a sample bid dataset.

Chapter 8

215

Assume that you are to support a keyword-based advertisement using the Amazon dataset.

The recipe will work as follows:

 f The irst MapReduce task will approximate the click-through rate of the keyword using
Amazon sales index. Here, we assume that the keywords that are found in the title of

the products with higher sales rank will have a better click-through rate.

 f Then we will run a Java task to generate a bid dataset.

 f Then the second MapReduce task will group bids for the same product together

and create an output that is appropriate to be used by advertisement assignment

program.

 f Finally, we will use an advertisement assignment program to assign keywords to

advertisers. We would use Adword balance algorithm, which uses the following

formula. The following formula assigns priority based on the fraction of unspent

budget owned by each advertiser, bid value, and click-through rate.

Measure = bid value * click-through rate * (1-e^(-1*current budget/ initial budget))

Classiications, Recommendations, and Finding Relationships

216

Getting ready
The following steps describe how to prepare to run the Adwords sample:

1. This assumes that you have followed Chapter 1, Getting Hadoop up and running in

a Cluster and have installed Hadoop. We will use HADOOP_HOME to refer to Hadoop

installation directory.

2. Start Hadoop by following the instructions in Chapter 1, Getting Hadoop up and

running in a Cluster.

3. This recipe assumes you are aware of how Hadoop processing works. If you have not

already done so, you should follow the Writing the WordCount MapReduce sample,
bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting

Hadoop up and running in a Cluster.

How to do it...

The following steps describe how to run the Adwords sample:

1. Download the dataset from Amazon product co-purchasing network metadata,

http://snap.stanford.edu/data/amazon-meta.html and unzip it. We call

this DATA_DIR.

2. Upload the data to HDFS by running following commands from HADOOP_HOME. If the

/data directory is already there, clean it up. This dataset is large, and might take a

long time if you try to run it with a single computer. You might want to only upload the

irst 50,000 lines or so of the dataset if you need the sample to run quickly.
$ bin/hadoopdfs -mkdir /data

$ bin/hadoopdfs -mkdir /data/input1

$ bin/hadoopdfs -put <DATA_DIR>/amazon-meta.txt /data/input1

3. Unzip the source code for Chapter 8 (chapter8.zip). We will call that folder

CHAPTER_8_SRC.

4. Change the hadoop.home property in the CHAPTER_8_SRC/build.xml ile to point
to your Hadoop installation directory.

5. Compile the source by running the ant build command from the

CHAPTER_8_SRC directory.

6. Copy the build/lib/hadoop-cookbook-chapter8.jar to your HADOOP_HOME.

7. Run the Map reduce job through the following command from HADOOP_HOME.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.adwords.
ClickRateApproximator/data/input1 /data/output6

Chapter 8

217

8. Download the results to your computer by running the following command:

$ bin/hadoopdfs -get /data/output6/part-r-00000clickrate.data

9. You will see that ile contains the results as following. You can use these values with
Bayes classiier to classify the inputs.
keyword:(Annals 74

keyword:(Audio 153

keyword:(BET 95

keyword:(Beat 98

keyword:(Beginners) 429

keyword:(Beginning 110

10. Generate a bid dataset by running the following command from HADOOP_HOME.

You can ind the results in a biddata.data ile.
$ java -cp build/lib/hadoop-cookbook-chapter8.jar chapter8.
adwords.AdwordsBidGenerator clickrate.data

11. Create a directory called /data/input2 and upload the bid dataset and results

from the earlier MapReduce task to the /data/input2 directory of HDFS.

$ bin/hadoopdfs -put clickrate.data /data/input2

$ bin/hadoopdfs -put biddata.data /data/input2

12. Generate the data to be used by Adwords dataset by running the second

MapReduce job.

$ bin/hadoopjar hadoop-cookbook-chapter8.jar chapter8.adwords.
AdwordsBalanceAlgorithmDataGenerator/data/input2 /data/output7

13. Download the results to your computer by running the following command:

$ bin/hadoopdfs -get /data/output7/part-r-00000adwords.data

14. You will see that it will print the results as follows:

(Animated client23,773.0,5.0,97.0|

(Animated) client33,310.0,8.0,90.0|

(Annals client76,443.0,13.0,74.0|

client51,1951.0,4.0,74.0|

(Beginners) client86,210.0,6.0,429.0|

client6,236.0,5.0,429.0|

(Beginning client31,23.0,10.0,110.0|

Classiications, Recommendations, and Finding Relationships

218

15. Perform the matches for a random set of keywords by running the following command:

$ javajar hadoop-cookbook-chapter8.jar chapter8.adwords.
AdwordsAssigneradwords.data

How it works...

As we discussed in the How to do it... section, the recipe consists of two MapReduce tasks.

You can ind the source code for the irst MapReduce task from src/chapter8/adwords/
ClickRateApproximator.java.

The mapper function looks like the following. It parses the Amazon dataset using the Amazon

data format, and for each word in each product title, it emits the word and the sales ranks of

that product.

public void map(Object key, Text value, Context context)

{

 ItemDataitemData = null;

 List<AmazonCustomer>customerList =

 AmazonCustomer.parseAItemLine(value.toString());

 if(customerList.size() == 0)

 {

 return;

 }

 for (AmazonCustomer customer : customerList)

 {

 itemData = customer.itemsBrought.iterator().next();

 break;

 }

 String[] tokens = itemData.title.split("\\s");

 for(String token: tokens)

 {

 if(token.length() > 3)

 {

 context.write(new Text(token),
 new IntWritable(itemData.salesrank));

 }

 }

}

Chapter 8

219

Then, Hadoop sorts the emitted key-value pairs by keys and invokes the reducer once for each

key passing the values emitted against that key. As shown in the following code, the reducer

calculates an approximation for the click rate using sales ranks emitted against the key.

public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException

{

 doubleclickrate = 0;

 for(IntWritableval: values)

 {

 if(val.get() > 1)

 {

 clickrate = clickrate + 1000/Math.log(val.get());

 }

 else

 {

 clickrate = clickrate + 1000;

 }

 }

 context.write(new Text("keyword:" +key.toString()),

 newIntWritable((int)clickrate));

}

There is no publicly available bid dataset. Therefore, we will generate a random bid data set

for our recipe using AdwordsBidGenerator. It would read the keywords generated by the earlier

recipe and generate a random bid dataset.

Then we will use the second MapReduce task to merge the bid data set with click-through

rate and generate a dataset that has bids' information sorted against the keyword. You

can ind the source for the second MapReduce task from src/chapter8/adwords/
AdwordsBalanceAlgorithmDataGenerator.java. The mapper function looks

like the following:

public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException

{

 String[] keyVal = value.toString().split("\\s");

 if (keyVal[0].startsWith("keyword:"))

 {

 context.write(

 new Text(keyVal[0].replace("keyword:", "")),

 new Text(keyVal[1]));

 }

 else if (keyVal[0].startsWith("client"))

 {

 List<String[]> bids = new ArrayList<String[]>();

Classiications, Recommendations, and Finding Relationships

220

 double budget = 0;

 String clientid = keyVal[0];

 String[] tokens = keyVal[1].split(",");

 for (String token : tokens)

 {

 String[] kp = token.split("=");

 if (kp[0].equals("budget"))

 {

 budget = Double.parseDouble(kp[1]);

 }

 else if (kp[0].equals("bid"))

 {

 String[] bidData = kp[1].split("\\|");

 bids.add(bidData);

 }

 }

 for (String[] bid : bids)

 {

 String keyword = bid[0];

 String bidValue = bid[1];

 context.write(new Text(keyword),

 new Text(new StringBuffer()

 .append(clientid).append(",")

 .append(budget).append(",")

 .append(bidValue).toString()));

 }

 }

}

The mapper function reads both the bid data set and click-through rate datasets and emits

both types of data against the keyword. Then, each reducer receives all bids and associated

click-through data for each keyword. Then the reducer merges the data and emits a list of bids

against each keyword.

public void reduce(Text key, Iterable<Text> values,

 Context context) throws IOException, InterruptedException

{

 String clientid = null;

 String budget = null;

Chapter 8

221

 String bid = null;

 String clickRate = null;

 List<String>bids = new ArrayList<String>();

 for (Text val : values)

 {

 if (val.toString().indexOf(",") > 0)

 {

 bids.add(val.toString());

 }

 else

 {

 clickRate = val.toString();

 }

 }

 StringBufferbuf = new StringBuffer();

 for (String bidData : bids)

 {

 String[] vals = bidData.split(",");

 clientid = vals[0];

 budget = vals[1];

 bid = vals[2];

 buf.append(clientid).append(",")

 .append(budget).append(",")

 .append(Double.valueOf(bid)).append(",")

 .append(Math.max(1, Double.valueOf(clickRate)));

 buf.append("|");

 }

 if (bids.size() > 0)

 {

 context.write(key, new Text(buf.toString()));

 }

}

Finally, the Adwords assigner loads the bids data and stores them against the keywords in the

memory. Given a keyword, the Adwords assigner inds the bid that has maximum value for the
following equation and selects a bid among all the bids for advertisement:

Measure = bid value * click-through rate * (1-e^(-1*current budget/ initial budget))

Classiications, Recommendations, and Finding Relationships

222

There's more...

The preceding recipe assumes that Adwords assigner can load all the data in the memory to

make advertisements assignment decisions. However, if the dataset is big, we can partition

the dataset among multiple computers by keywords (for example, assign keywords that start

with "A-D" to the irst computer and so on).

This recipe assumes that users only bid for single words. However, to support multiple

keyword bids, we would need to combine the click-through rates, and the rest of the

algorithm can proceed as before.

More information about online advertisement can be found from the book, Mining of

Massive Datasets, by Anand Rajaraman and Jeffrey D. Ullman. This book can be found

at http://infolab.stanford.edu/~ullman/mmds.html.

9
Mass Text Data

Processing

In this chapter, we will cover:

 f Data preprocessing (extract, clean, and format conversion) using Hadoop Streaming

and Python

 f Data de-duplication using Hadoop Streaming

 f Loading large datasets to an Apache HBase data store using importtsv and

bulkload tools

 f Creating TF and TF-IDF vectors for the text data

 f Clustering the text data

 f Topic discovery using Latent Dirichlet Allocation (LDA)

 f Document classiication using Mahout Naive Bayes classiier

Introduction
Hadoop MapReduce together with the supportive set of projects makes for a good framework

choice to process large text datasets and to perform ETL-type operations.

In this chapter, we'll be exploring how to use Hadoop Streaming to perform data preprocessing

operations such as data extraction, format conversion, and de-duplication. We'll also use HBase

as the data store to load the data and will explore mechanisms to perform large data loads to

HBase with minimal overhead. Towards the end of the chapter, we'll look in at performing text

analytics operations using the Apache Mahout algorithms.

Mass Text Data Processing

224

Data preprocessing (extract, clean, and
format conversion) using Hadoop Streaming
and Python

Data preprocessing is an important and often required component in data analytics. Data

preprocessing becomes even more important when consuming unstructured text data

generated from multiple sources. Data preprocessing steps include operations such as

cleaning the data, extracting important features from data, removing duplicate items from

the datasets, converting data formats, and many more.

Hadoop MapReduce provides an ideal environment to perform these tasks in parallel with

massive datasets. Apart from the ability to implement Java MapReduce programs, Pig, and

Hive scripts to preprocess these data, Hadoop also provides several useful tools and features

that we can utilize to perform these data preprocessing operations. One such feature is the

support of different InputFormat classes, providing us with the ability to support proprietary

data formats by implementing custom InputFormat classes. Another feature is the Hadoop

Streaming feature, which allows us to use our favorite scripting languages to perform the

actual data cleansing and extraction, while Hadoop parallelizes the computation to hundreds

of compute and storage resources.

In this recipe, we are going to use Hadoop Streaming with a Python script-based mapper to

perform data extraction and format conversion.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it...

The following steps show you how to clean and extract data from the 20news dataset and

store the data as a tab-separated value (TSV) ile:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS. In order to preserve the compute time and

resources, you can use only a subset of the dataset; use the following command to

upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/Hadoop fs –put <extracted_folder> 20news-all

Chapter 9

225

3. Extract the resource package for this chapter and copy the MailPreProcessor.py

Python script to $HADOOP_HOME.

4. Run the following Hadoop Streaming command:

>bin/hadoop jar \

 ../contrib/streaming/hadoop-streaming-VERSION.jar \

 -input 20news-all\

 -output 20news-cleaned\

 -mapper MailPreProcessor.py \

 -file MailPreProcessor.py

5. Inspect the results by using the following command:

>bin/hadoopd fs –cat 20news-cleaned/part-00000

How it works...

Hadoop uses the default TextInputFormat class as the input speciication for the
preceding computation. Usage of the TextInputFormat class generates a map task

for each ile in the input dataset and generates a map input record for each line. Hadoop
Streaming provides the input to the map application through the standard input.

line = sys.stdin.readline();

while line:

….

 if (doneHeaders):

 list.append(line)

 elif line.find("Message-ID:") != -1:

 messageID = line[len("Message-ID:"):]

 ….

 elif line == "":

 doneHeaders = True

line = sys.stdin.readline();

The previous Python code reads the input lines from the standard input until the end of ile
is reached. We parse the headers of the news group ile till we encounter the empty line
demarcating the headers from the message contents. The message content will be read

into a list line by line.

value = ' '.join(list)

value = fromAddress + "\t" ……"\t" + value

print '%s\t%s' % (messageID, value)

Mass Text Data Processing

226

The preceding code segment merges the message content to a single string and constructs

the output value of the Streaming application as a tab-delimited set of selected headers

followed by the message content. The output key value is the Message-ID header extracted

from the input ile. The output is written to the standard output by using a tab to delimit the
key and the value.

There's more...

We can generate the output of the preceding computation in the Hadoop SequenceFile

format by specifying SequenceFileOutputFormat as the OutputFormat class of the

Streaming computations.

>bin/hadoop jar \

 ../contrib/streaming/hadoop-streaming-1.0.4.jar\

 -input 20news-all \

 -output 20news-seq \

 -mapper MailPreProcessor.py \

 -outputformat \

 org.apache.hadoop.mapred.SequenceFileOutputFormat \

 -file MailPreProcessor.py

It is a good practice to store the data as SequenceFiles after the irst pass of the
input data, as SequenceFiles take less space and support compression. You can

use bin/hadoopdfs -text <path to sequencefile> to dump the contents

of a SequenceFile format to text.

>bin/hadoop dfs –text 20news-seq/part-00000

However, for the preceding command to work, any writable classes that are used in the

SequenceFile format should be available in the Hadoop classpath.

See also
 f Using Hadoop with legacy applications – Hadoop Streaming in Chapter 4, Developing

Complex Hadoop MapReduce Applications.

 f Adding support for new input data formats – implementing a custom InputFormat in

Chapter 4, Developing Complex Hadoop MapReduce Applications.

 f More information on Hadoop Streaming can be found at http://hadoop.apache.
org/docs/r1.0.4/streaming.html.

Chapter 9

227

Data de-duplication using Hadoop Streaming
Often, the datasets contain duplicate items that need to be eliminated to ensure the

accuracy of the results. In this recipe, we use Hadoop to remove the duplicate mail records

in the 20news dataset. These duplicate records are due to the user's cross-posting the same

message to multiple news boards.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it...

The following steps show how to remove duplicate mails, due to cross-posting across the lists,

from the 20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS. In order to preserve the compute time and

resources, you may use only a subset of the dataset:

>bin/hadoop fs -mkdir 20news-all

>bin/hadoop fs –put <extracted_folder> 20news-all

3. We are going to use the MailPreProcessor.py Python script from the previous

recipe, Data extract, cleaning and format conversion using Hadoop Streaming

as the mapper. Extract the resource package for this chapter and copy the

MailPreProcessor.py and the MailPreProcessorReduce.py Python

scripts to the $HADOOP_HOME folder.

4. Execute the following command:

>bin/hadoop jar \

 ../contrib/streaming/hadoop-streaming-1.0.4.jar \

 -input 20news-all\

 -output 20news-dedup\

 -mapper MailPreProcessor.py \

 -reducer MailPreProcessorReduce.py \

 -file MailPreProcessor.py\

 -file MailPreProcessorReduce.py

Mass Text Data Processing

228

5. Inspect the results using the following command:

>bin/hadoop dfs –cat 20news-dedup/part-00000

How it works...

Mapper Python script outputs the message ID as the key. We use the message ID to identify

the duplicated messages that are a result of cross-posting across different newsgroups.

Hadoop Streaming provides the Reducer input records of the each key group line by line to

the Streaming reducer application through the standard input. However, Hadoop Streaming

does not have a mechanism to distinguish when it starts to feed records of a new key to the

process. The Streaming reducer applications need to keep track of the input key to identify

new groups. Since we output the mapper results using the MessageID header as the key,

the Reducer input gets grouped by MessageID. Any group with more than one value (that is,

message) per MessageID contains duplicates.

#!/usr/bin/env python

import sys;

currentKey = ""

for line in sys.stdin:

 line = line.strip()

 key, value = line.split('\t',1)

 if currentKey == key :

 continue

 print '%s\t%s' % (key, value)

In the previous script, we use only the irst value (message) of the record group and discard
the others, which are the duplicate

See also
 f Using Hadoop with legacy applications – Hadoop Streaming from Chapter 4,

Developing Complex Hadoop MapReduce Applications.

 f Data extract, cleaning, and format conversion using Hadoop Streaming.

 f More information on Hadoop Streaming can be found at

http://hadoop.apache.org/docs/r1.0.4/streaming.html.

Chapter 9

229

Loading large datasets to an Apache
HBase data store using importtsv and
bulkload tools

Apache HBase data store is very useful when storing large-scale data in a semi-structured

manner, so that they can be used for further processing using Hadoop MapReduce programs

or to provide a random access data storage for client applications. In this recipe, we are going

to import a large text dataset to HBase using the importtsv and bulkload tools.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Install and deploy Apache HBase in the distributed mode. Refer to the Deploying HBase

on a Hadoop cluster recipe in this chapter for more information. Export the HBASE_HOME

environment variable to point to your HBase installation root folder.

Install Python on your Hadoop compute nodes, if Python is not already installed.

How to do it…

The following steps show you how to load the TSV-converted 20news dataset into an

HBase table:

1. Follow the Data extract, cleaning, and format conversion using Hadoop Streaming
and Python recipe to perform the preprocessing of data for this recipe. We assume

that the output of the following fourth step of that recipe is stored in a HDFS folder

named 20news-cleaned:

>bin/hadoop jar \

 ../contrib/streaming/hadoop-streaming-VERSION.jar \

 -input 20news-all \

 -output 20news-cleaned \

 -mapper MailPreProcessor.py \

 -file MailPreProcessor.py

2. Go to HBASE_HOME and start the HBase Shell:

>cd $HBASE_HOME

>bin/hbase shell

Mass Text Data Processing

230

3. Create a table named 20news-data by executing the following command in the

HBase Shell. Older versions of the importtsv (used in the next step) command can

handle only a single column family. Hence, we are using only a single column family

when creating the HBase table:

hbase(main):001:0> create '20news-data,'h'

4. Go to HADOOP_HOME and execute the following command to import the preprocessed

data to the previously created HBase table:

> bin/hadoop jar \

 $HBASE_HOME/hbase-<VERSION>.jar importtsv \

 -Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg \

 20news-data 20news-cleaned

5. Go to the HBASE_HOME. Start the HBase Shell. Use the count and scan commands

of the HBase Shell to verify contents of the table:

hbase(main):010:0> count '20news-data'

12xxx row(s) in 0.0250 seconds

hbase(main):010:0> scan '20news-data', {LIMIT => 10}

ROW COLUMN+CELL

<1993Apr29.103624.1383@cronkite.ocis.te column=h:c1,

timestamp=1354028803355, value= katop@astro.ocis.temple.edu

(Chris Katopis)>

<1993Apr29.103624.1383@cronkite.ocis.te column=h:c2,

timestamp=1354028803355, value= sci.electronics

......

The following are the steps to load the 20news dataset to an HBase table using the

bulkload feature:

1. Follow steps 1 to 3, but create the table with a different name:

hbase(main):001:0> create '20news-bulk','h'

Chapter 9

231

2. Go to HADOOP_HOME. Use the following command to generate an HBase

bulkload dataile:
>bin/hadoop jar \

 $HBASE_HOME/hbase-<VERSION>.jar importtsv\

 -Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg \

 -Dimporttsv.bulk.output=hbaseloaddir \

 20news-bulk-source20news-cleaned

3. List the iles to verify that the bulkload datailes are generated:
>bin/hadoop fs -ls 20news-bulk-source

......

drwxr-xr-x - thilinasupergroup 0 2012-11-27 10:06 /
user/thilina/20news-bulk-source/h

>bin/hadoopfs -ls20news-bulk-source/h

-rw-r--r-- 1 thilinasupergroup 19110 2012-11-27 10:06 /
user/thilina/20news-bulk-source/h/4796511868534757870

4. The following command loads the data to the HBase table by moving the output iles
to the correct location:

>bin/hadoop jar $HBASE_HOME/hbase-<VERSION>.jar \

completebulkload 20news-bulk-source 20news-bulk
......

12/11/27 10:10:00 INFO mapreduce.LoadIncrementalHFiles: Trying
to load hfile=hdfs://127.0.0.1:9000/user/thilina/20news-bulk-
source/h/4796511868534757870 first= <1993Apr29.103624.1383@
cronkite.ocis.temple.edu>last= <stephens.736002130@ngis>

......

5. Go to HBASE_HOME. Start the HBase Shell. Use the count and scan commands of

the HBase Shell to verify the contents of the table:

hbase(main):010:0> count 'datatsvbulk'

hbase(main):010:0> scan 'datatsvbulk', {LIMIT => 10}

Mass Text Data Processing

232

How it works...

The MailPreProcessor.py Python script extracts a selected set of data ields from the
news board message and outputs them as a tab-separated dataset.

value = fromAddress + "\t" + newsgroup

+"\t" + subject +"\t" + value

print '%s\t%s' % (messageID, value)

We import the tab-separated dataset generated by the Streaming MapReduce computations

to Hbase using the importtsv tool. The importtsv tool requires the data to have no other

tab characters except for the tab characters separating the data ields. Hence, we remove any
tab characters in the input data using the following snippet of the Python script:

line = line.strip()

line = re.sub('\t',' ',line)

The importtsv tool supports loading data to HBase directly using the Put operations as well

as by generating the HBase internal HFiles. The following command loads the data to HBase

directly using the Put operations. Our generated dataset contains a key and four ields in the
values. We specify the data ields to table column name mapping for the dataset using the
-Dimporttsv.columns parameter. This mapping consists of listing the respective table

column names in the order of the tab-separated data ields in the input dataset:

>bin/hadoop jar \

 $HBASE_HOME/hbase-<VERSION>.jar importtsv \
 -Dimporttsv.columns=<data field to table column mappings> \
 <HBasetablename> <hdfs input directory>

We can use the following command to generate HBase HFiles for the dataset. These HFiles

can be directly loaded to HBase, without going through the HBase APIs, thereby reducing the

amount of CPU and network resources needed.

>bin/hadoop jar

 $HBASE_HOME/hbase-<VERSION>.jar importtsv \

 -Dimporttsv.columns=<filed to column mappings> \

 -Dimporttsv.bulk.output=<path for hfile output> \

 <HBasetablename> <hdfs input directory>

Chapter 9

233

These generated HFiles can be loaded into HBase tables by simply moving the iles to the right
location. This is done by using the completebulkload command:

>bin/hadoop jar $HBASE_HOME/hbase-<VERSION>.jar \

completebulkload <path for hfiles> <table name>

There's more...

You can use the importtsv tool with datasets with other dataile separator characters
as well by specifying the -Dimporttsv.separator parameter. The following is an example

of using a comma as the separator character to import a comma-separated dataset into a

HBase table.

>bin/hadoop jar \

 $HBASE_HOME/hbase-<VERSION>.jar importtsv \

 '-Dimporttsv.separator=,' \

 -Dimporttsv.columns=<data field to table column mappings> \

 <HBasetablename><hdfs input directory>

Look out for Bad Lines in the MapReduce job console output or in the Hadoop monitoring

console. One reason is having unwanted delimiter characters. In the preceding Python script,

we remove any extra tabs in the message; here is the message displayed in the job console:

12/11/27 00:38:10 INFO mapred.JobClient: ImportTsv

12/11/27 00:38:10 INFO mapred.JobClient: Bad Lines=2

Data de-duplication using HBase
HBase supports storing multiple versions of column values for each record. When querying,

HBase returns the latest version of values, unless we specify a speciic time period. This
feature of HBase can be used to perform automatic de-duplication by making sure we use the

same RowKey value for duplicate values. In our 20news example, we use MessageID as the

RowKey value for the records, thus ensuring that duplicate messages will appear as different

versions of the same data record.

HBase allows us to conigure the maximum or the minimum number of versions per column
family. Setting maximum number of versions to a low value will reduce the data usage by

discarding the older versions. Refer to http://hbase.apache.org/book/schema.
versions.html for more information on setting the maximum or minimum number of versions.

Mass Text Data Processing

234

See also
 f Installing HBase in Chapter 5, Hadoop Ecosystem.

 f Running MapReduce jobs on HBASE(table input/output) in Chapter 5,

Hadoop Ecosystem.

 f Deploying HBase on a Hadoop cluster.

Creating TF and TF-IDF vectors for the text
data

Most of the text analysis data mining algorithms operate on vector data. We can use a vector

space model to represent text data as a set of vectors. For an example, we can build a vector

space model by taking the set of all terms that appear in the dataset and by assigning an

index to each term in the term set. Number of terms in the term set is the dimensionality

of the resulting vectors and each dimension of the vector corresponds to a term. For each

document, the vector contains the number of occurrences of each term at the index location

assigned to that particular term. This creates vector space model using term frequencies in

each document, similar to the result of the computation we perform in the Generating an

inverted index using Hadoop MapReduce recipe of Chapter 7, Searching and Indexing.

The term frequencies and the resulting document vectors

Chapter 9

235

However, creating vectors using the preceding term count model gives a lot of weight to

the terms that occur frequently across many documents (for example, the, is, a, are, was,

who, and so on), although these frequent terms have only a very minimal contribution when

it comes to deining the meaning of a document. The Term frequency-inverse document

frequency (TF-IDF) model solves this issue by utilizing the inverted document frequencies

(IDF) to scale the term frequencies (TF). IDF is typically calculated by irst counting the
number of documents (DF) the term appears in, inversing it (1/DF), and normalizing it by
multiplying with the number of documents and using the logarithm of the resultant value as

shown roughly by the following equation:

TF-IDF
i
= TF

i
 X log (N/DF

i
)

In this recipe, we'll create TF-IDF vectors from a text dataset using a built-in utility tool of

Apache Mahout.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5,

Hadoop Ecosystem, for more information on installing Mahout.

How to do it…

The following steps show you how to build a vector model of the 20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

2. Upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/Hadoop fs –put <extracted_folder> 20news-all

3. Go to MAHOUT_HOME. Generate Hadoop sequence iles from the uploaded text data:
>bin/mahout seqdirectory -i 20news-all -o 20news-seq

4. Generate TF and TF-IDF sparse vector models from the text data in the

sequence iles:
>bin/mahout seq2sparse –i 20news-seq -o 20news-vector

Mass Text Data Processing

236

This launches a series of MapReduce computations, as shown in the following

screenshot; wait for the completion of these computations:

5. Check the output folder by using the following command. The tfidf-vectors

folder contains the TF-IDF model vectors, the tf-vectors folder contains the

term count model vectors and the dictionary.file-0 folder contains the term

to term-index mapping.

>/bin/hadoop dfs -ls 20news-vector

Found 7 items

drwxr-xr-x - usupergroup 0 2012-11-27 16:53 /user/
u/20news-vector /df-count

-rw-r--r-- 1 usupergroup 7627 2012-11-27 16:51 /user/
u/20news-vector/dictionary.file-0

-rw-r--r-- 1 usupergroup 8053 2012-11-27 16:53 /user/
u/20news-vector/frequency.file-0

drwxr-xr-x - usupergroup 0 2012-11-27 16:52 /user/
u/20news-vector/tf-vectors

drwxr-xr-x - usupergroup 0 2012-11-27 16:54 /user/
u/20news-vector/tfidf-vectors

drwxr-xr-x - usupergroup 0 2012-11-27 16:50 /user/
u/20news-vector/tokenized-documents

drwxr-xr-x - usupergroup 0 2012-11-27 16:51 /user/
u/20news-vector/wordcount

Chapter 9

237

6. Optionally, you can also use the following command to dump the TF-IDF vectors as

text. The key is the ilename and the contents of the vectors are in the format <term
index>:<TF-IDF value>:

>bin/mahout seqdumper -i 20news-vector/tfidf-vectors/part-r-00000

……

Key class: class org.apache.hadoop.io.Text Value Class: class org.
apache.mahout.math.VectorWritable

Key: /54492: Value: {225:3.374729871749878,400:1.5389964580535889,
321:1.0,324:2.386294364929199,326:2.386294364929199,315:1.0,144:2.
0986123085021973,11:1.0870113372802734,187:2.652313232421875,134:2
.386294364929199,132:2.0986123085021973,......}

……

How it works…

Hadoop sequence iles store the data as binary key-value pairs and supports data

compression. Mahout's seqdirectory command converts the text iles into Hadoop
SequenceFile by using the ilename of the text ile as the key and the contents of the text
ile as the value. The seqdirectory command stores all the text contents into a single

SequenceFile. However, it's possible for us to specify a chuck size to control the actual

storage of the SequenceFile data blocks in the HDFS. Following are a selected set of

options for the seqdirectory command:

> bin/mahout seqdirectory –i <HDFS path to text files>

 -o <HDFS output directory for sequence file>

 -ow If present, overwrite the output directory

 -chunk<chunk size> In MegaBytes.Defaults to 64mb

 -prefix<keyprefix> The prefix to be prepended to the key

The seq2sparse command is an Apache Mahout tool that supports the generation of

sparse vectors from SequenceFiles containing text data. It supports the generation of

both TF as well as TF-IDF vector models. This command executes as a series of MapReduce

computations. Following are a selected set of options for the seq2sparse command:

bin/mahout seq2sparse -i <HDFS path to the text sequence file>

 -o <HDFS output directory>

 -wt{tf|tfidf}

 -chunk <max dictionary chunksize inmb to keep in memory>

 --minSupport<minimum support>

 --minDF<minimum document frequency>

 --maxDFPercent<MAX PERCENTAGE OF DOCS FOR DF

Mass Text Data Processing

238

minSupport is the minimum frequency for the word to be considered as a feature. minDF is

the minimum number of documents the word needs to be in. maxDFPercent is the maximum

value of the expression (document frequency of a word/total number of documents) in order
for that word to be considered as a good feature in the document. This helps remove high

frequency features such as stop words.

You can use the Mahout seqdumper command to dump the contents of a SequenceFile

format that uses the Mahout Writable data types as plain text:

bin/mahout seqdumper -i <HDFS path to the sequence file>

 -o <output directory>

 --count Output only the number of key value pairs.

 --numItems Max number of key value pairs to output

 --facets Output the value counts per key.

See also
 f Generating an inverted index using Hadoop MapReduce in Chapter 7,

Searching and Indexing.

 f Mahout documentation on creating vectors from text data at
https://cwiki.apache.org/confluence/display/MAHOUT/
Creating+Vectors+from+Text.

Clustering the text data
Clustering plays an integral role in data mining computations. Clustering groups together

similar items of a dataset by using one or more features of the data items based on the

use-case. Document clustering is used in many text mining operations such as document

organization, topic identiication, information presentation, and so on. Document
clustering shares many of the mechanisms and algorithms with traditional data clustering

mechanisms. However, document clustering has its unique challenges when it comes to

determining the features to use for clustering and when building vector space models to

represent the text documents.

The Running K-Means with Mahout recipe of Chapter 5, Hadoop Ecosystem, focuses on

using Mahout K-Means clustering from Java code to cluster a statistics data. The Hierarchical

clustering and Clustering an Amazon sales dataset recipes of Chapter 8, Classiications,
Recommendations, and Finding Relationships, focuses on using clustering to identify

customers with similar interests. These three recipes provide a more in-depth understanding

of using clustering algorithms in general. This recipe focuses on exploring two of the several

clustering algorithms available in Apache Mahout for document clustering.

Chapter 9

239

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5,

Hadoop Ecosystem, for more information on installing Mahout.

How to do it...

The following steps use the Apache Mahout K-Means clustering algorithm to cluster the

20news dataset:

1. Follow the Creating TF and TF-IDF vectors for the text data recipe in this chapter and

generate TF-IDF vectors for the 20news dataset. We assume that the TF-IDF vectors

are in the 20news-vector/tfidf-vectors folder of the HDFS.

2. Go to the MAHOUT_HOME.

3. Execute the following command to execute the K-Means clustering computation:

>bin/mahout kmeans \

 --input 20news-vector/tfidf-vectors \

 --clusters 20news-seed/clusters \

 --output 20news-km-clusters \

 --distanceMeasure \

 org.apache.mahout.common.distance.
 SquaredEuclideanDistanceMeasure-k 10 --maxIter 20 --clustering

4. Execute the following command to convert the clusters to text:

>bin/mahout clusterdump \

 -i20news-km-clusters/clusters-*-final\

 -o 20news-clusters-dump \

 -d 20news-vector/dictionary.file-0 \

 -dt sequencefile \

 --pointsDir 20news-km-clusters/clusteredPoints

>cat 20news-clusters-dump

Mass Text Data Processing

240

The following steps use the Apache Mahout MinHash clustering algorithm to cluster the

20news dataset:

1. Execute the following command to run MinHash clustering on an already vectorised

20news data:

>bin/mahout minhash \

 --input 20news-vector/tfidf-vectors \

 --output minhashout

2. Go to HADOOP_HOME and execute the following command to inspect the MinHash

clustering results:

>bin/hadoop dfs -cat minhashout/part*

How it works...

The following is the usage of the Mahout K-Means algorithm:

>bin/mahout kmeans

 --input <tfidf vector input>

 --clusters <seed clusters>

 --output <HDFS path for output>

 --distanceMeasure<distance measure>

 -k <number of clusters>

 --maxIter<maximum number of iterations>

 --clustering

Mahout will generate random seed clusters when an empty HDFS folder path is given to the

--clusters option. Mahout supports several different distance calculation methods such as

Euclidean, Cosine, Manhattan, and so on.

Following is the usage of the Mahout clusterdump command:

>bin/mahout clusterdump

 -i <HDFS path to clusters>

 -o <local path for text output>

 -d <dictionary mapping for the vector data points>

 -dt <dictionary file type (sequencefile or text)>

 --pointsDir <directory containing the input vectors to

 clusters mapping>

Chapter 9

241

Following is the usage of the Mahout MinHash clustering algorithm:

>bin/mahout minhash

 --input <tfidf vector input>

 --output <HDFS path for output>

See also
 f Running K-Means with Mahout in Chapter 5, Hadoop Ecosystem.

Topic discovery using Latent Dirichlet
Allocation (LDA)

We can use Latent Dirichlet Allocation to cluster a given set of words into topics and a set

of documents to combinations of topics. LDA is useful when identifying the meaning of a

document or a word based on the context, not solely depending on the number of words

or the exact words. LDA can be used to identify the intent and to resolve ambiguous words

in systems such as a search engine. Some other example use-cases of LDA are identifying

inluential Twitter users for particular topics and Twahpic (http://twahpic.cloudapp.
net) application uses LDA to identify topics used on Twitter.

LDA uses the TF vector space model instead of the TF-IDFmodel, as it needs to consider the

co-occurrence and correlation of words.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5,

Hadoop Ecosystem, for more information on installing Mahout.

How to do it…

The following steps show you how to run Mahout LDA algorithm on a subset of the

20news dataset:

1. Download and extract the 20news dataset from http://qwone.com/~jason/20N
ewsgroups/20news-19997.tar.gz.

Mass Text Data Processing

242

2. Upload the extracted data to the HDFS:

>bin/hadoop fs -mkdir 20news-all

>bin/hadoop fs –put <extracted_folder> 20news-all

3. Go to the MAHOUT_HOME. Generate sequence iles from the uploaded text data:
>bin/mahout seqdirectory -i 20news-all -o 20news-seq

4. Generate sparse vector from the text data in the sequence iles:
> bin/mahout seq2sparse \

 –i 20news-seq -o 20news-tf \

 –wt tf \

 -a org.apache.lucene.analysis.WhitespaceAnalyzer

5. Convert the TF vectors from SequenceFile<Text, VectorWritable> to

SequenceFile<IntWritable,Text>:

>bin/mahout rowid -i 20news-tf/tf-vectors -o 20news-tf-int

6. Run the following command to perform the LDA computation:

> bin/mahout cvb \

 -i 20news-tf-int/matrix -o lda-out \

 -k 10 -x 20 \

 -dict 20news-tf/dictionary.file-0 \

 –dt lda-topics \

 –mt lda-topic-model

7. Dump and inspect the results of the LDA computation:

>bin/mahout seqdumper -i lda-topics/part-m-00000

Input Path: lda-topics5/part-m-00000

Key class: class org.apache.hadoop.io.IntWritable Value Class:
class org.apache.mahout.math.VectorWritable

Key: 0: Value: {0:0.12492744375758073,1:0.03875953927132082,2:0.12
28639250669511,3:0.15074522974495433,4:0.10512715697420276,5:0.101
30565323653766,6:0.061169131590630275,7:0.14501579630233746,8:0.07
872957132697946,9:0.07135655272850545}

.....

Chapter 9

243

8. Join the output vectors with the dictionary mapping of term to term indexes:

>bin/mahoutvectordump -i lda-topics/part-m-00000 --dictionary
20news-tf/dictionary.file-0 --vectorSize 10 -dt sequencefile

......

{"Fluxgate:0.12492744375758073,&:0.03875953927132082,(140.220.1.1
):0.1228639250669511,(Babak:0.15074522974495433,(Bill:0.105127156
97420276,(Gerrit:0.10130565323653766,(Michael:0.06116913159063027
5,(Scott:0.14501579630233746,(Usenet:0.07872957132697946,(continu
ed):0.07135655272850545}

{"Fluxgate:0.13130952097888746,&:0.05207587369196414,(140.220.1.1
):0.12533225607394424,(Babak:0.08607740024552457,(Bill:0.20218284
543514245,(Gerrit:0.07318295757631627,(Michael:0.0876688824220103
9,(Scott:0.08858421220476514,(Usenet:0.09201906604666685,(continu
ed):0.06156698532477829}

.......

How it works…

Mahout CVB version of LDA implements the Collapse Variable Bayesian inference algorithm

using an iterative MapReduce approach:

>bin/mahout cvb -i 20news-tf-int/matrix -o lda-out -k 10 -x 20 -dict
20news-tf/dictionary.file-0 -dt lda-topics -mt lda-topic-model

The -i parameter provides the input path, while the -o parameter provides the path to store

the output. -k speciies the number of topics to learn and -x speciies the maximum number
of iterations for the computation. -dict points to the dictionary containing the mapping of

terms to term-indexes. Path given in the -dt parameter stores the training topic distribution.

Path given in -mt is used as a temporary location to store the intermediate models.

All the command-line options of the cvb command can be queried by invoking the help

option as follows:

> bin/mahout cvb --help

Setting the number of topics to a very small value brings out very high-level topics. Large number

of topics gives more descriptive topics, but takes longer to process. maxDFPercentoption can

be used to remove common words, thereby speeding up the processing.

Mass Text Data Processing

244

See also
 f Y. W. Teh, D. Newman, and M. Welling's article, A Collapsed Variational

Bayesian Inference Algorithm for Latent Dirichlet Allocation, in NIPS, volume 19,

2006 at http://www.gatsby.ucl.ac.uk/~ywteh/research/inference/
nips2006.pdf.

Document classiication using Mahout Naive
Bayes classiier

Classiication assigns documents or data items to an already known set of classes with

already known properties. Document classiication or categorization is used when we need

to assign documents to one or more categories. This is a frequent use-case in information

retrieval as well as library science.

The Classiication using Naive Bayes classiier recipe in Chapter 8, Classiications,
Recommendations, and Finding Relationships, provides a more detailed description about

classiication use-cases and gives you an overview of using the Naive Bayes classiier
algorithm. The recipe focuses on highlighting the classiication support in Apache Mahout for
text documents.

Getting ready
Install and deploy Hadoop MapReduce and HDFS. Export the HADOOP_HOME environment

variable to point to your Hadoop installation root folder.

Download and install Apache Mahout. Export the MAHOUT_HOME environment variable to point

to your Mahout installation root folder. Refer to the Installing Mahout recipe of Chapter 5,

Hadoop Ecosystem, for more information on installing Mahout.

How to do it...

The following steps use the Apache Mahout Naive Bayes algorithm to cluster the

20news dataset:

1. Follow the Creating TF and TF-IDF vectors for the text data recipe in this chapter and

generate TF-IDF vectors for the 20news dataset. We assume that the TF-IDF vectors

are in the 20news-vector/tfidf-vectors folder of the HDFS.

2. Go to the MAHOUT_HOME.

Chapter 9

245

3. Split the data to training and test datasets:

>bin/mahout split \

 -i 20news-vectors/tfidf-vectors \

 --training Output/20news-train-vectors \

 --test Output/20news-test-vectors \

 --randomSelectionPct 40 --overwrite --sequenceFiles

4. Train the Naive Bayes model:

>bin/mahout trainnb \

-i 20news-train-vectors -el \

 -o model \

 -li labelindex

5. Test the classiication on the test dataset:
>bin/mahout testnb \

 -i 20news-train-vectors\

 -m model \

 -l labelindex \

-o 20news-testing

How it works...

The Mahout split command can be used to split a dataset to a training dataset and a

test dataset. The Mahout split command works with text datasets as well as with Hadoop

SequenceFile datasets. Following is the usage of the Mahout split command. You can

use the --help option with the split command to print out all the options:

>bin/mahout split \

 -i <input data directory> \

--trainingOutput<HDFS path to store the training dataset> \

 --testOutput<HDFS path to store the test dataset> \

 --randomSelectionPct<percentage to be selected as test data> \

--sequenceFiles

The sequenceFiles option speciies that the input dataset is in Hadoop
SequenceFiles format.

Mass Text Data Processing

246

Following is the usage of the Mahout Naive Bayes classiier training command. The -el option

informs Mahout to extract the labels from the input dataset:

>bin/mahout trainnb \

-i <HDFS path to the training dataset> \

-el \

 -o <HDFS path to store the trained classifier model> \

-li <Path to store the label index> \

Following is the usage of the Mahout Naive Bayes classiier testing command:

>bin/mahout testnb \

 -i <HDFS path to the test dataset>

 -m <HDFS path to the classifier model>\

 -l <Path to the label index> \

 -o <path to store the test result>

See also
 f Classiication using Naive Bayes classiier in Chapter 8, Classiications,

Recommendations, and Finding Relationships.

 f The book, Mahout in Action, at http://www.amazon.com/Mahout-Action-
Sean-Owen/dp/1935182684

10
Cloud Deployments:

Using Hadoop
on Clouds

In this chapter, we will cover:

 f Running Hadoop MapReduce computations using Amazon Elastic MapReduce (EMR)

 f Saving money using Amazon EC2 Spot Instances to execute EMR job lows

 f Executing a Pig script using EMR

 f Executing a Hive script using EMR

 f Creating an Amazon EMR job low using the Command Line Interface

 f Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR

 f Using EMR Bootstrap actions to conigure VMs for the Amazon EMR jobs

 f Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud environment

 f Using Apache Whirr to deploy an Apache HBase cluster in a cloud environment

Introduction
Computing clouds provide on-demand, horizontal, scalable computing resources with no

upfront capital investment, making them an ideal environment to perform occasional large

-scale Hadoop computations. In this chapter, we will explore several mechanisms to deploy

and execute Hadoop MapReduce and Hadoop-related computations on cloud environments.

Cloud Deployments: Using Hadoop on Clouds

248

This chapter discusses how to use Amazon Elastic MapReduce (EMR), the hosted Hadoop

infrastructure, to execute traditional MapReduce computations as well as Pig and Hive

computations on the Amazon EC2 cloud infrastructure. This chapter also presents how to

provision an HBase cluster using Amazon EMR and how to back up and restore the data

belonging to an EMR HBase cluster. We will also use Apache Whirr, a cloud neutral library for

deploying services on cloud environments, to provision Apache Hadoop and Apache HBase

clusters on cloud environments.

Running Hadoop MapReduce computations
using Amazon Elastic MapReduce (EMR)

Amazon Elastic MapReduce (EMR) provides on-demand managed Hadoop clusters in the

Amazon Web Services (AWS) cloud to perform your Hadoop MapReduce computations.

EMR uses Amazon Elastic Compute Cloud (EC2) instances as the compute resources.

EMR supports reading input data from Amazon Simple Storage Service (S3) and storing

of the output data in Amazon S3 as well. EMR makes our life easier by taking care of the

provisioning of cloud instances, coniguring the Hadoop cluster and the execution of our
MapReduce computational lows.

In this recipe, we are going to run the WordCount MapReduce sample (Refer to the Writing the

WordCount MapReduce sample, bundling it and running it using standalone Hadoop recipe

from Chapter 1, Getting Hadoop up and running in a Cluster) in the Amazon EC2 cloud using

Amazon Elastic MapReduce.

Getting ready
Build the required c10-samples.jar by running the Ant build in the code samples for

this chapter.

How to do it...

The steps for executing WordCount MapReduce application on Amazon Elastic MapReduce

are as follows:

1. Sign up for an AWS account by visiting http://aws.amazon.com.

2. Open the Amazon S3 monitoring console at https://console.aws.amazon.
com/s3 and sign in.

Chapter 10

249

3. Create a S3 bucket to upload the input data by clicking on Create Bucket. Provide a

unique name for your bucket. Let's assume the name of the bucket as wc-input-
data. You can ind more information on creating a S3 bucket in http://docs.
amazonwebservices.com/AmazonS3/latest/gsg/CreatingABucket.html.

There exist several third-party desktop clients for the Amazon S3. You can use one of

those clients to manage your data in S3 as well.

4. Upload your input data to the above-created bucket by selecting the bucket and

clicking on Upload. The input data for the WordCount sample should be one or

more text iles.

5. Create a S3 bucket to upload the JAR ile needed for our MapReduce computation.
Let's assume the name of the bucket as sample-jars. Upload the C10Samples.
jar ile to the newly created bucket.

6. Create a S3 bucket to store the output data of the computation. Let's assume the

name of this bucket as ws-output-data. Create another S3 bucket to store the

logs of the computation. Let's assume the name of this bucket as c10-logs.

S3 bucket namespace is shared globally by all users. Hence, using the

example bucket names given in this recipe might not work for you. In such

scenarios, you should give your own custom names for the buckets and

substitute those names in the subsequent steps of this recipe.

Cloud Deployments: Using Hadoop on Clouds

250

7. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select Run your own

application option under Create a Job Flow. Select the Custom Jar option from the

drop-down menu below that. Click on Continue.

8. Specify the S3 location of the c10-samples.jar in the Jar Location textbox of

the next tab (the Specify Parameters tab). You should specify the location of the

JAR in the format bucket_name/jar_name. In the JAR Arguments textbox, enter

chapter1.WordCount followed by the bucket location where you uploaded the

input data and the output path. The output path should not exist and we use a

directory (wc-output-data/out1) inside the output bucket you created in Step

6 as the output path. You should specify the locations using the format, s3n://
bucket_name/path. Click on Continue.

9. Leave the default options and click on Continue in the next tab, Conigure EC2
Instances. The default options use two EC2 m1.small instances for the Hadoop

slave nodes and one EC2 m1.small instance for the Hadoop master node.

Chapter 10

251

10. In the Advanced Options tab, enter the path of S3 bucket you created above for the

logs in the Amazon S3 Log Path textbox. Select Yes for the Enable Debugging. Click

on Continue.

11. Click on Continue in the Bootstrap Options. Review your job low in the Review

tab and click on Create Job Flow to launch instances and to run the MapReduce

computation.

Amazon will charge you for the compute and storage resources you use

by clicking on Create Job Flow in step 11. Refer to the Saving money

using Amazon EC2 Spot Instances for EMR recipe below to find out how

you can save money by using Amazon EC2 Spot instances.

12. Click on Refresh in the EMR console to monitor the progress of your MapReduce

job. Select your job low entry and click on Debug to view the logs and to debug the

computation. As EMR uploads the logiles periodically, you might have to wait and
refresh to access the logiles. Check the output of the computation in the output data
bucket using the AWS S3 console.

Cloud Deployments: Using Hadoop on Clouds

252

See also
 f Writing the WordCount MapReduce sample, bundling it and running it using

standalone Hadoop and Running WordCount program in a distributed cluster

environment recipes from Chapter 1, Getting Hadoop up and running in a Cluster.

Saving money by using Amazon EC2 Spot
Instances to execute EMR job lows

Amazon EC2 Spot Instances allow us to purchase underutilized EC2 compute resources at a

signiicant discount. The prices of Spot Instances change depending on the demand. We can

submit bids for the Spot Instances and we receive the requested compute instances, if our bid

exceeds the current Spot Instance price. Amazon bills these instances based on the actual

Spot Instance price, which can be lower than your bid. Amazon will terminate your instances,

if the Spot Instance price exceeds your bid. However, Amazon do not charged for partial

spot instance hours if Amazon terminated your instances. You can ind more information on
Amazon EC2 Spot Instances on http://aws.amazon.com/ec2/spot-instances/.

Amazon EMR supports using Spot Instances both as master as well as worker compute

instances. Spot Instances are ideal to execute non-time critical computations such as

batch jobs.

How to do it...

The following steps show you how to use Amazon EC2 Spot Instances with Amazon Elastic

MapReduce to execute the WordCount MapReduce application.

1. Follow the steps 1 to 8 of the Running Hadoop MapReduce computations using

Amazon ElasticMapReduce (EMR) recipe.

2. Conigure your EMR job low to use Spot Instances in the Conigure EC2 Instances

tab. (See Step 9 of the Running Hadoop MapReduce computations using Amazon

ElasticMapReduce (EMR) recipe).

3. In the Conigure EC2 Instances tab, select the Request Spot Instances checkboxes

next to the Instance Type drop-down boxes under Master and Core Instance Group

and Core Instance Group.

4. Specify your bid price in the Spot Bid Price textboxes. You can ind the Spot
Instance pricing history in the Spot Requests window of the Amazon EC2

console (https://console.aws.amazon.com/ec2).

Chapter 10

253

5. Follow the steps 10 to 12 of the Running Hadoop MapReduce computations using

Amazon ElasticMapReduce (EMR) recipe.

There's more...

You can also run the EMR computations on a combination of traditional EC2 on-demand

instances and EC2 Spot instances, safe guarding your computation against possible Spot

instance terminations.

As Amazon bills the Spot Instances using the current spot price irrespective of your

bid price, it is a good practice not to set the Spot Instance price too low to avoid the

risk of frequent terminations.

See also
 f The Running Hadoop MapReduce computations using Amazon Elastic MapReduce

(EMR) recipe from this chapter.

Executing a Pig script using EMR
Amazon EMR supports executing Pig scripts on the data stored in S3. For more details

on Pig, refer to the Installing Pig and Running your irst Pig command recipes in Chapter 5,

Hadoop Ecosystem.

In this recipe, we are going to execute the Pig script sample from the Running your irst Pig
commands recipe using Amazon EMR. This sample will use the Human Development Report

data (http://hdr.undp.org/en/statistics/data/) to print names of countries that

have a GNI value greater than 2000 of gross national income per capita (GNI) sorted by GNI.

Cloud Deployments: Using Hadoop on Clouds

254

How to do it...

The following steps show you how to use a Pig script with Amazon Elastic MapReduce to

process a dataset stored on Amazon S3.

1. Use the Amazon S3 console to create a bucket in S3 to upload the input data.

Upload the resources/hdi-data.csv ile in the source package associated with
this chapter to the newly created bucket. You can also use an existing bucket or a

directory inside a bucket as well. We assume the S3 path for the uploaded ile as
c10-input-data/hdi-data.csv.

2. Modify the Pig script from the Running your irst Pig commands recipe of Chapter 5,

Hadoop Ecosystem, to run it using EMR. Add a STORE command to save the result in

the ilesystem. Parameterize the LOAD command of the Pig script by adding $INPUT

as the input ile and the store command by adding $OUTPUT as the output directory.

The modiied Pig script is available in the resources/countryFilter-EMR.pig

ile of the resources associated with this chapter:
A = LOAD ''$INPUT'' using PigStorage('','') AS

(id:int, country:chararray, hdi:float, lifeex:int,

mysch:int, eysch:int, gni:int);

B = FILTER A BY gni > 2000;

C = ORDER B BY gni;

STORE C into ''$OUTPUT'';

3. Use the Amazon S3 console to create a bucket in S3 to upload the Pig script. Upload

the resources/countryFilter-EMR.pig script to the newly created bucket. You

can also use an existing bucket or a directory inside a bucket as well. We assume the

S3 path for the uploaded ile as c10-resources/countryFilter-EMR.pig.

4. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select Run your own

application option under Create a Job Flow. Select Pig Program option from the

drop-down menu below that. Click on Continue.

5. Specify the S3 location of the Pig script in the Script Location textbox of the next

tab (the Specify Parameters tab). You should specify the location of the script in the

format bucket_name/file_name. Specify the S3 location of the uploaded input

data ile In the Input Location textbox. In the Output Location textbox, specify a S3

location to store the output. The output path should not exist and we use a directory

(c10-out/out4) inside the output bucket as the output path. You should specify the

locations using the format, s3n://bucket_name/path. Click on Continue.

Chapter 10

255

6. Conigure the EC2 instances for the job low and conigure the log paths for the
MapReduce computations in the next two tabs. Click on Continue on the Bootstrap

Options screen. Review your job low in the Review tab and click on Create Job Flow

to launch instances and to execute the Pig script. Refer to the steps 9, 10, and 11 of

the Running Hadoop MapReduce computations using Amazon ElasticMapReduce

(EMR) recipe for more details.

Amazon will charge you for the compute and storage resources you use

by clicking Create Job Flow in the step 11. Refer to the Saving money

by using EC2 Spot Instances recipe to find out how you can save money

by using Amazon EC2 Spot instances.

7. Click on Refresh in the EMR console to monitor the progress of your MapReduce

job. Select your job low entry and click on Debug to view the logs and to debug the

computation. As EMR uploads the logiles periodically; you might have to wait and
refresh to access the logiles. Check the output of the computation in the output data
bucket using the AWS S3 console.

There's more...

Amazon EMR allows to us to use Apache Pig in the interactive mode as well.

Starting a Pig interactive session
Let's look at the steps to start a Pig interactive session:

1. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select the Run your own

application option under Create a Job Flow. Select the Pig Program option from the

drop-down menu below that. Click on Continue.

Cloud Deployments: Using Hadoop on Clouds

256

2. In order to start an interactive Pig session, select the Start an Interactive Pig

Session option of the Specify Parameters tab. Click on Continue.

3. Conigure the EC2 instances for the job low in the Conigure EC2 Instances tab.

Click on Continue.

4. You must select a key pair from the Amazon EC2 Key Pair drop-down box in the

Advanced Options tab. In case you do not have a usable Amazon EC2 key pair, log in

to the Amazon EC2 console and create a new key pair.

5. Click on Continue on the Bootstrap Options screen. Review your job low in the
Review tab and click on Create Job Flow to launch instances.

6. After the cluster is provisioned, go to the Amazon EMR console (https://console.
aws.amazon.com/elasticmapreduce). Select the current job low to view more
information about the job low. Retrieve the Master Public DNS Name value from the

information pane. (If you need more information about this step, please refer to step 6

of the Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR recipe).

7. Use the master public DNS name and the key ile of the Amazon EC2 key pair you
speciied in step 4 to SSH in to the master node of the cluster:
> ssh -i <path-to-the-key-file> hadoop@<master-public-DNS>

8. Start the Pig interactive grunt shell in the master node and issue your Pig commands.

See also
 f The Running your irst Pig commands recipe in Chapter 5, Hadoop Ecosystem.

Executing a Hive script using EMR
Amazon EMR supports executing Hive queries on the data stored in S3. For more details on

Hive, refer to the Installing Hive, Running SQL-style query with Hive and Performing a join with

Hive recipes in Chapter 5, Hadoop Ecosystem.

In this recipe, we are going to execute the Hive queries from the Running SQL style Query with
Hive recipe using Amazon EMR. This sample will use the Human Development Report data

(http://hdr.undp.org/en/statistics/data/) to print names of countries that have a

GNI value greater than 2000$ of gross national income per capita (GNI) sorted by GNI.

Chapter 10

257

How to do it...

The following steps show you how to use a Hive script with Amazon Elastic MapReduce to

query a data set stored on Amazon S3.

1. Use the Amazon S3 console to create a bucket in S3 to upload the input data.

Upload the resources/hdi-data.csv ile in the source package associate with
this chapter to the newly created bucket. You can also use an existing bucket or a

directory inside a bucket as well. We assume the S3 path for the uploaded ile as
c10-input-data/hdi-data.csv.

2. Create a Hive batch script using the queries in the Running SQL-style query with
Hive recipe of Chapter 5, Hadoop Ecosystem. Create a Hive table to store the

result of the Select query. The Hive batch script is available in the resources/
countryFilter-EMR.hive ile of the resources associated with this chapter.
CREATE TABLE HDI(

 id INT, country STRING, hdi FLOAT, lifeex INT, mysch INT, eysch
INT, gni INT

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '',''

 STORED AS TEXTFILE

 LOCATION ''s3://c10-input-data/hdi-data.csv'';

CREATE EXTERNAL TABLE output_countries(

 country STRING, gni INT

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '',''

 STORED AS TEXTFILE

 LOCATION ''${OUTPUT}/countries''

 ;

INSERT OVERWRITE TABLE output_countries

 SELECT

 country, gni

 FROM

 HDI

 WHERE

 gni > 2000;

3. Use the Amazon S3 console to create a bucket in S3 to upload the Hive script. Upload

the resources/countryFilter-EMR.hive script to the newly created bucket.

You can also use an existing bucket or a directory inside a bucket as well. We assume

the S3 path for the uploaded ile as c10-resources/countryFilter-EMR.hive.

Cloud Deployments: Using Hadoop on Clouds

258

4. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select the Run your own

application option under the Create a Job Flow. Select the Hive Program option

from the drop down menu below that. Click on Continue.

5. Specify the S3 location of the hive script in the Script Location textbox of the next

tab (Specify Parameters tab). You should specify the location of the script in the

format bucket_name/file_name. Specify the S3 location of the uploaded input

data ile In the Input Location textbox. In the Output Location textbox, specify a S3

location to store the output. The output path should not exist and we use a directory

(c10-out/hive-out-1) inside the output bucket as the output path. You should

specify the input and output locations using the format, s3n://bucket_name/
path. Click on Continue.

6. Conigure the EC2 instances for the job low and conigure the log paths for the
MapReduce computations in the next two tabs. Click on Continue on the Bootstrap

Options screen. Review your job low in the Review tab and click on Create Job Flow

to launch instances and to execute the Pig script. Refer to steps 9, 10, and 11 of the

Running Hadoop MapReduce computations using Amazon ElasticMapReduce (EMR)

recipe for more details.

Amazon will charge you for the compute and storage resources you

use by clicking on Create Job Flow in step 11. Refer to the Saving

money by using EC2 Spot Instances recipe to find out how you can

save money by using Amazon EC2 Spot Instances.

7. Click on Refresh in the EMR console to monitor the progress of your MapReduce

job. Select your job low entry and click Debug to view the logs and to debug the

computation. As EMR uploads the log iles periodically; you might have to wait and
refresh to access the logiles. Check the output of the computation in the output data
bucket using the AWS S3 console.

Chapter 10

259

There's more...

Amazon EMR also allows to us to use Hive in the interactive mode as well.

Starting a Hive interactive session
Let's look at the steps to start a Hive interactive session:

1. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select the Run your own

application option under the Create a Job Flow. Select the Hive Program option

from the drop-down menu below that. Click on Continue.

2. In order to start an interactive Hive session, select the Start an Interactive Hive

Session option of the Specify Parameters tab. Click on Continue.

3. Conigure the EC2 instances for the job low in the Conigure EC2 Instances tab.

Click on Continue.

4. You must select a key pair from the Amazon EC2 Key Pair drop-down box in the

Advanced Options tab. In case you do not have a usable Amazon EC2 key pair, log in

to the Amazon EC2 console and create a new key pair.

5. Click on Continue in Bootstrap Options. Review your job low in the Review tab and

click on Create Job Flow to launch instances.

6. After the cluster is provisioned, go to the Amazon EMR console (https://console.
aws.amazon.com/elasticmapreduce). Select the current job low to view more
information about the job low. Retrieve the Master Public DNS Name from the

information pane. (If you need more information about this step, please refer to

step 6 of the Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR

recipe).

7. Use the master public DNS name and the key ile of the Amazon EC2 key pair you
speciied in step 4 to SSH in to the master node of the cluster.
> ssh -i <path-to-the-key-file> hadoop@<master-public-DNS>

8. Start the Hive shell in the master node and issue your Hive queries.

See also
 f The Running SQL style Query with Hive recipe of Chapter 5, Hadoop Ecosystem.

Cloud Deployments: Using Hadoop on Clouds

260

Creating an Amazon EMR job low using the
Command Line Interface

Amazon also provides a Ruby-based Command Line Interface (CLI) for EMR. The EMR

Command Line Interface supports creating job lows with multiple steps as well.

This recipe creates a job low using the EMR CLI to execute the WordCount sample from the

Running Hadoop MapReduce computations using Amazon ElasticMapReduce (EMR) recipe

of this chapter.

How to do it...

The following steps show you how to create an EMR job low using the EMR command
line interface:

1. Install Ruby 1.8 in your machine. You can verify the version of your Ruby installation

by using the following command:

> ruby –v

ruby 1.8……

2. Create a new directory. Download the EMR Ruby CLI from http://aws.amazon.
com/developertools/2264 and unzip it to the newly created directory.

3. Create an Amazon EC2 key pair by logging in to the AWS EC2 console

(https://console.aws.amazon.com/ec2). To create a key pair, log in to

the EC2 dashboard, select a region and click on Key Pairs under the Network and

Security menu. Click on the Create Key Pair button in the Key Pairs window and

provide a name for the new key pair. Download and save the private key ile (PEM
format) in a safe location.

Make sure to set the appropriate file access permissions

for the downloaded private key file.

4. Save the following JSON snippet in to a ile named credentials.json in the

directory of the extracted EMR CLI. Fill the ields using the credentials of your AWS
account. A sample credentials.json ile is available in the resources/emr-
cli folder of the resource bundle available for this chapter.

 � You can retrieve your AWS Access Keys from the AWS console

(http://console.aws.amazon.com) by clicking on Security

Credentials in the context menu that appears by clicking your AWS

username in the upper-right corner of the console. You can also retrieve

the AWS Access Keys by clicking on the Security Credentials web page

link in the AWS My Account portal as well.

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key

Chapter 10

261

 � Provide the name of your Key Pair (created in step 3) as the value of the key

pair property.

 � Provide the path of the saved private key file as the value of the key-pair

file property.

 � Create a S3 bucket to store the logs of the computation. Provide the S3

bucket name as the value of the log_uri property to store the logging and

the debugging information. We assume the S3 bucket name for logging as

c10-logs.

 � You can use either us-east-1, us-west-2, us-west-1, eu-west-1, ap-

northeast-1, ap-southeast-1, or sa-east-1 as the AWS region.

{

"access_id": "[Your AWS Access Key ID]",

"private_key": "[Your AWS Secret Access Key]",

"keypair": "[Your key pair name]",

"key-pair-file": "[The path and name of your PEM file]",

"log_uri": "s3n://c10-logs/",

"region": "us-east-1"

}

You can skip to step 8, if you have completed the steps 2 to 6 of

the Running Hadoop MapReduce computations using Amazon

ElasticMapReduce (EMR) recipe on this chapter.

5. Create a bucket to upload the input data by clicking on Create Bucket in the Amazon

S3 monitoring console (https://console.aws.amazon.com/s3). Provide a

unique name for your bucket. Upload your input data to the newly-created bucket

by selecting the bucket and clicking on Upload. The input data for the WordCount

sample should be one or more text iles.

6. Create a S3 bucket to upload the JAR ile needed for our MapReduce computation.
Upload the c10-samples.jar to the newly created bucket.

7. Create a S3 bucket to store the output data of the computation.

8. Create a job low by executing the following command inside the directory of the
unzipped CLI. Replace the paths of the JAR ile, input data location and the output
data location with the locations you used in steps 5, 6, and 7.

> ./elastic-mapreduce --create --name "Hello EMR CLI" \

--jar s3n://[S3 jar file bucket]/c10-samples.jar \

--arg chapter1.WordCount \

--arg s3n://[S3 input data path] \

--arg s3n://[S3 output data path]

Cloud Deployments: Using Hadoop on Clouds

262

The preceding commands will create a job low and display the job low ID.
Created job flow x-xxxxxx

9. You can use the following command to view the description of your job low. Replace
<job-flow-id> using the job low ID displayed in step 8.
>./elastic-mapreduce --describe <job-flow-id>

{

 "JobFlows": [

 {

 "SupportedProducts": [],

………

10. You can use the following command to list and to check the status of your job lows.
You can also check the status and debug your job low using the Amazon EMR
Console (https://console.aws.amazon.com/elasticmapreduce) as well.

>./elastic-mapreduce --list

x-xxxxxxx STARTING Hello EMR CLI

 PENDING Example Jar Step

……..

11. Once the job low is completed, check the result of the computation in the output
data location using the S3 console.

>./elastic-mapreduce --list

x-xxxxxx COMPLETED ec2-xxx.amazonaws.com Hello EMR CLI

 COMPLETED Example Jar Step

There's more...

You can use EC2 spot instances with your job lows to reduce the cost of your computations.
Add a bid price to your request by adding the following commands to your job low create

command:

>./elastic-mapreduce --create --name …. \

.........

--instance-group master --instance-type m1.small \

--instance-count 1 --bid-price 0.01 \

--instance-group core --instance-type m1.small \

--instance-count 2 --bid-price 0.01

Refer to the Saving money by using Amazon EC2 Spot Instances to execute EMR job lows
recipe in this chapter for more details on Amazon Spot Instances.

Chapter 10

263

See also
 f The Running Hadoop MapReduce computations using Amazon Elastic MapReduce

(EMR) recipe of this chapter.

Deploying an Apache HBase Cluster on
Amazon EC2 cloud using EMR

We can use Amazon Elastic MapReduce to start an Apache HBase cluster on the Amazon

infrastructure to store large quantities of data in column oriented data store. We can use

the data stored on Amazon EMR HBase clusters as input and output of EMR MapReduce

computations as well. We can incrementally back up the data stored in Amazon EMR HBase

clusters to Amazon S3 for data persistency. We can also start an EMR HBase cluster by

restoring the data from a previous S3 backup.

In this recipe, we start an Apache HBase cluster on Amazon EC2 cloud using Amazon EMR;

perform several simple operations on the newly created HBase cluster and backup the HBase

data in to Amazon S3 before shutting down the cluster. Then we start a new HBase cluster

restoring the HBase data backups from the original HBase cluster.

Getting ready
You should have the Amazon EMR Command Line Interface (CLI) installed and conigured
to manually back up HBase data. Refer to the Creating an Amazon EMR job low using
the Command Line Interface recipe in this chapter for more information on installing and

coniguring the EMR CLI.

How to do it...

The following steps show how to deploy an Apache HBase cluster on Amazon EC2 using

Amazon EMR:

1. Create a S3 bucket to store the HBase backups. We assume the S3 bucket for the

HBase data backups as c10-data.

2. Open the Amazon EMR console at https://console.aws.amazon.com/
elasticmapreduce. Click on the Create New Job Flow button to create a new

EMR MapReduce job low. Provide a name for your job low. Select the Run your own

application option under the Create a Job Flow. Select the HBase option from the

drop-down menu below that. Click on Continue.

Cloud Deployments: Using Hadoop on Clouds

264

3. Conigure your Apache HBase cluster in the Specify Parameters tab. Select No for

the Restore from Backup option. Select Yes for the Schedule Regular Backups and

Consistent Backup options. Specify Backup Frequency for automatic schedules

incremental data backups and provide a path inside the Blob we created in step 1

as the Backup Location. Click on Continue.

4. Select a key pair in the Amazon EC2 Key Pair drop-down box. Make sure you have

the private key for the selected EC2 key pair downloaded in your computer.

If you do not have a usable key pair, go to the EC2 console

(https://console.aws.amazon.com/ec2) to create a key

pair. To create a key pair, log in to the EC2 dashboard, select a region

and click on Key Pairs under the Network and Security menu. Click

on the Create Key Pair button in the Key Pairs window and provide

a name for the new key pair. Download and save the private key ile
(PEM format) in to a safe location.

5. Conigure the EC2 instances for the job low and conigure the log paths for the
MapReduce computations in the next two tabs. Note that Amazon EMR does not

support the use of EC2 Small and Medium instances with HBase clusters. Click on

Continue in Bootstrap Options. Review your job low in the Review tab and click on

Create Job Flow to launch instances and to create your Apache HBase cluster.

Chapter 10

265

Amazon will charge you for the compute and storage resources you

use by clicking Create Job Flow in the above step. Refer to the Saving

money by using EC2 Spot Instances recipe to find out how you can

save money by using Amazon EC2 Spot Instances.

The following steps show you how to connect to the master node of the deployed HBase

cluster to start the HBase shell.

1. Go to the Amazon EMR console (https://console.aws.amazon.com/
elasticmapreduce). Select the job low for the HBase cluster to view more
information about the job low.

2. Retrieve the Master Public DNS Name value from the information pane.

3. Use the Master Public DNS Name and the EC2 PEM-based key (selected in step 4) to

connect to the master node of the HBase cluster.

> ssh -i ec2.pem hadoop@ec2-184-72-138-2.compute-1.amazonaws.com

Cloud Deployments: Using Hadoop on Clouds

266

4. Start the HBase shell using the hbase shell command. Create the table named

test in your HBase installation and insert a sample entry to the table using the put

command. Use the scan command to view the contents of the table.

> hbase shell

.........

hbase(main):001:0> create ''test'',''cf''

0 row(s) in 2.5800 seconds

hbase(main):002:0> put ''test'',''row1'',''cf:a'',''value1''

0 row(s) in 0.1570 seconds

hbase(main):003:0> scan ''test''

ROW COLUMN+CELL

 row1 column=cf:a, timestamp=1347261400477,
value=value1

1 row(s) in 0.0440 seconds

hbase(main):004:0> quit

The following step will back up the data stored in an Amazon EMR HBase cluster.

5. Execute the following command using the Amazon EMR CLI to manually backup the

data stored in an EMR HBase cluster. Retrieve the job low name (j-FDMXCBZP9P85)

from the EMR console. Replace <job_flow_name> using the retrieved job low
name. Change the backup directory path (s3://c10-data/hbase2) according to

your backup data blob.

> ./elastic-mapreduce --jobflow <job_flow_name> --hbase-backup
--backup-dir s3://c10-data/hbase-manual

6. Select the job low in the EMR console and click on Terminate.

Now, we will start a new Amazon EMR HBase cluster by restoring data from a backup.

7. Create a new job low by clicking on Create New Job Flow button in the EMR console.

Provide a name for your job low. Select the Run your own application option under

Create a Job Flow. Select the HBase option from the drop-down menu below that.

Click on Continue.

Chapter 10

267

8. Conigure EMR HBase cluster to restore data from the previous data backup in the

Specify Parameters tab. Select Yes for the Restore from Backup option and provide

the backup directory path you used in step 9 in the Backup Location textbox. Select

Yes for the Schedule Regular Backups and Consistent Backup options. Specify

Backup Frequency for automatic schedules incremental data backups and provide a

path inside the Blob we created in step 1 as the Backup Location. Click on Continue.

9. Repeat steps 4, 5, 6, and 7.

10. Start the HBase shell by logging to the master node of the new HBase cluster. Use

the list command to list the set tables in HBase and the scan test command to

view the contents of the test table.

> hbase shell

.........

hbase(main):001:0> list

TABLE

test

1 row(s) in 1.4870 seconds

hbase(main):002:0> scan ''test''

ROW COLUMN+CELL

 row1 column=cf:a, timestamp=1347318118294,
value=value1

1 row(s) in 0.2030 seconds

Cloud Deployments: Using Hadoop on Clouds

268

11. Terminate your job low using the EMR console, by selecting the job low and clicking
on the Terminate button.

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem and Using

Apache Whirr to deploy an Apache HBase cluster in a cloud environment

recipe on this chapter.

Using EMR Bootstrap actions to conigure
VMs for the Amazon EMR jobs

EMR Bootstrap actions provide us a mechanism to conigure the EC2 instances before
running our MapReduce computations. The examples of Bootstrap actions include providing

custom coniguration for Hadoop, installing of any dependent software, distributing a common
dataset, and so on. Amazon provides a set of predeined Bootstrap actions as well as allows
us to write our own custom Bootstrap actions as well. EMR runs the Bootstrap actions in each

instance before the Hadoop is started.

In this recipe, we are going to use a stop words list to ilter out the common words from
our WordCount sample. We download the stop words list to the workers using a custom

Bootstrap action.

How to do it...

The following steps show you how to download a ile to all the EC2 instances of an EMR
computation using a Bootstrap script.

1. Save the following script to a ile named download-stopwords.sh. Upload the ile to
a Blob container in the Amazon S3. This custom Bootstrap ile downloads a stop words
list to each instance and copy it to a pre-designated directory inside the instance.

#!/bin/bash

set -e

wget http://www.textfixer.com/resources/common-english-words-
with-contractions.txt

mkdir –p /home/Hadoop/stopwords

mv common-english-words-with-contractions.txt /home/Hadoop/
stopwords

2. Complete steps 1 to 10 of the Running Hadoop MapReduce computations using

Amazon ElasticMapReduce (EMR) recipe in this chapter.

Chapter 10

269

3. Select the Conigure your Boostrap Actions option in the Bootstrap Options tab.

Select Custom Action in the Action Type drop-down box. Give a name to your action

in the Name textbox and provide the S3 path of the location where you uploaded the

download-stopwords.sh in the Amazon S3 Location textbox. Click on Continue.

4. Review your job low in the Review tab and click on Create Job Flow to launch

instances and to run the MapReduce computation.

5. Click on Refresh in the EMR console to monitor the progress of your MapReduce

job. Select your job low entry and click on Debug to view the logs and to debug

the computation.

There's more...

Amazon provides us with the following predeined Bootstrap actions:

 f configure-daemons: This allows us to set Java Virtual Machine (JVM) options for

the Hadoop daemons such as the heap size and garbage collections behaviour.

 f configure-hadoop: This allows us to modify the Hadoop coniguration settings.
We can either upload a Hadoop coniguration XML or we can specify individual
coniguration options as key-value pairs.

Cloud Deployments: Using Hadoop on Clouds

270

 f memory-intensive: This conigures the Hadoop cluster for memory-intensive
workloads.

 f run-if: Run a Bootstrap action based on a property of an instance. This action

can be used in scenarios where we want to run a command only in the Hadoop

master node.

You can also create shutdown actions by writing scripts to a designated directory in the

instance. Shutdown actions are executed after the job low is terminated.

Refer to http://docs.amazonwebservices.com/ElasticMapReduce/latest/
DeveloperGuide/Bootstrap.html for more information.

Using Apache Whirr to deploy an Apache
Hadoop cluster in a cloud environment

Apache Whirr provides a set of cloud vendor neutral set of libraries to provision services on

the cloud resources. Apache Whirr supports provisioning, installing, and coniguring of Hadoop

clusters in several cloud environments. In addition to Hadoop, Apache Whirr also supports

provisioning of Apache Cassandra, Apache ZooKeeper, Apache HBase, Valdemort (key-value

storage), and Apache Hama clusters on the cloud environments.

In this recipe, we are going to start a Hadoop cluster on Amazon EC2 cloud using Apache

Whirr and run the WordCount MapReduce sample (Writing the WordCount MapReduce

sample, bundling it and running it using standalone Hadoop recipe from Chapter 1, Getting

Hadoop up and running in a Cluster) program on that cluster.

How to do it...

The following are the steps to deploy a Hadoop cluster on Amazon EC2 cloud using Apache

Whirr and to execute the WordCount MapReduce sample on the deployed cluster.

1. Download and unzip the Apache Whirr binary distribution from http://whirr.
apache.org/.

2. Run the following command from the extracted directory to verify your

Whirr installation.

>bin/whirr version

Apache Whirr 0.8.0

jclouds 1.5.0-beta.10

Chapter 10

271

3. Create a directory in your home directory named .whirr. Copy the conf/
credentials.sample ile in the Whirr directory to the newly created directory.
>mkdir ~/.whirr

>cp conf/credentials.sample ~/.whirr/credentials

4. Add your AWS credentials to the ~/.whirr/credentials ile by editing it as below.
You can retrieve your AWS Access Keys from the AWS console (http://console.
aws.amazon.com) by clicking on the Security Credentials in the context menu that

appears by clicking your AWS username in the upper-right corner of the console.

A sample credentials ile is provide in the resources/whirr folder of the

resources for this chapter.

Set cloud provider connection details

PROVIDER=aws-ec2

IDENTITY=<AWS Access Key ID>

CREDENTIAL=<AWS Secret Access Key>

5. Generate a rsa key pair using the following command. This key pair is not the same

as your AWS key pair.

>ssh-keygen -t rsa -P ''''

6. Copy the following to a ile named hadoop.properties. If you provided a custom

name for your key-pair in the preceding step, change the whirr.private-key-
file and the whirr.public-key-file property values to the paths of the

private key and the public key you generated. A sample hadoop.properties ile is
provided in the resources/whirr directory of the chapter resources.

whirr.aws-ec2-spot-price is an optional property that allows

us to use cheaper EC2 Spot Instances. You can delete that property

to use EC2 traditional on-demand instances.

whirr.cluster-name=whirrhadoopcluster

whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,2
hadoop-datanode+hadoop-tasktracker

whirr.provider=aws-ec2

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

whirr.hadoop.version=1.0.2

whirr.aws-ec2-spot-price=0.08

7. Execute the following command in the whirr directory to launch your Hadoop cluster

on EC2.

>bin/whirr launch-cluster --config hadoop.properties

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key

Cloud Deployments: Using Hadoop on Clouds

272

8. The trafic from the outside to the provisioned EC2 Hadoop cluster is routed through
the master node. Whirr generates a script that we can use to start this proxy, under

a subdirectory named after your Hadoop cluster inside the ~/.whirr directory. Run

this in a new terminal. It will take few minutes for whirr to start the cluster and to

generate this script.

>cd ~/.whirr/whirrhadoopcluster/

>hadoop-proxy.sh

9. You can open the Hadoop web based monitoring console in your local machine by

coniguring this proxy in your web browser.

10. Whirr generates a hadoop-site.xml for your cluster in the ~/.whirr/<your
cluster name> directory. You can use it to issue Hadoop commands from your

local machine to your Hadoop cluster on EC2. Export the path of the generated

hadoop-conf.xml ile to an environmental variable named HADOOP_CONF_DIR. To

execute the Hadoop commands, you should add the $HADOOP_HOME/bin directory

to your path or you should issue the commands from the $HADOOP_HOME/bin

directory.

>export HADOOP_CONF_DIR=~/.whirr/whirrhadoopcluster/

>hadoop fs -ls /

11. Create a directory named wc-input-data in HDFS and upload a text data set to

that directory.

>hadoop fs -mkdir wc-input-data

>hadoop fs -put sample.txt wc-input-data

12. In this step, we run the Hadoop WordCount sample in the Hadoop cluster we started

in Amazon EC2.

>hadoop jar ~/workspace/HadoopBookChap10/c10-samples.jar chapter1.
WordCount wc-input-data wc-out

13. View the results of the WordCount computation by executing the following commands:

>hadoop fs -ls wc-out

Found 3 items

-rw-r--r-- 3 thilina supergroup 0 2012-09-05 15:40 /
user/thilina/wc-out/_SUCCESS

drwxrwxrwx - thilina supergroup 0 2012-09-05 15:39 /
user/thilina/wc-out/_logs

-rw-r--r-- 3 thilina supergroup 19908 2012-09-05 15:40 /
user/thilina/wc-out/part-r-00000

>hadoop fs -cat wc-out/part-* | more

Chapter 10

273

14. Issue the following command to shut down the Hadoop cluster. Make sure to

download any important data before shutting down the cluster, as the data will be

permanently lost after shutting down the cluster.

>bin/whirr destroy-cluster --config hadoop.properties

How it works...

This section describes the properties we used in the hadoop.properties ile.

whirr.cluster-name=whirrhadoopcluster

The preceding property provides a name for the cluster. The instances of the cluster will be

tagged using this name.

whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,1 hadoop-
datanode+hadoop-tasktracker

The preceding property speciies the number of instances to be used for each set of roles and
the type of roles for the instances. In the above example, one EC2 small instance is used with

roles hadoop-jobtracker and the hadoop-namenode. Another two EC2 small instances are

used with roles hadoop-datanode and hadoop-tasktracker in each instance.

whirr.provider=aws-ec2

We use the Whirr Amazon EC2 provider to provision our cluster.

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

The preceding two properties point to the paths of the private key and the public key you

provide for the cluster.

whirr.hadoop.version=1.0.2

We specify a custom Hadoop version using the preceding property. By default, Whirr 0.8

provisions a Hadoop 0.20.x cluster.

whirr.aws-ec2-spot-price=0.08

The preceding property speciies a bid price for the Amazon EC2 Spot Instances. Specifying
this property triggers Whirr to use EC2 spot instances for the cluster. If the bid price is not

met, Apache Whirr spot instance requests time out after 20 minutes. Refer to the Saving

money by using Amazon EC2 Spot Instances to execute EMR job lows recipe for more details.

More details on Whirr coniguration can be found on http://whirr.apache.org/
docs/0.6.0/configuration-guide.html.

Cloud Deployments: Using Hadoop on Clouds

274

See also
 f The Using Apache Whirr to deploy an Apache HBase cluster in a cloud environment

and Saving money by using Amazon EC2 Spot Instances to execute EMR job lows

recipes of this chapter.

Using Apache Whirr to deploy an Apache
HBase cluster in a cloud environment

Apache Whirr provides a cloud vendor neutral set of libraries to access the cloud resources. In

this recipe, we deploy an Apache HBase cluster on Amazon EC2 cloud using Apache Whirr.

Getting ready
Follow steps 1 to 5 of the Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud

environment recipe.

How to do it...

The following are the steps to deploy a HBase cluster on Amazon EC2 cloud using

Apache Whirr.

1. Copy the following to a ile named hbase.properties. If you provided a customs

name for your key-pair in step 5 of the Using Apache Whirr to deploy an Apache

Hadoop cluster in a cloud environment recipe, change the whirr.private-key-
file and the whirr.public-key-file property values to the paths of the private

key and the public key you generated. A sample hbase.properties ile is provided
in the resources/whirr directory of the chapter resources.

whirr.cluster-name=whirrhbase

whirr.instance-templates=1 zookeeper+hadoop-namenode+hadoop-
jobtracker+hbase-master,2 hadoop-datanode+hadoop-
tasktracker+hbase-regionserver

whirr.provider=aws-ec2

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

2. Execute the following command in the Whirr home directory to launch your HBase

cluster on EC2. After provisioning the cluster, HBase prints out the commands that

we can use to log in to the cluster instances. Note them down for the next steps.

>bin/whirr launch-cluster --config hbase.properties

………

Chapter 10

275

You can log into instances using the following ssh commands:

''ssh -i ~/.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o
StrictHostKeyChecking=no thilina@174.129.92.98''

''ssh -i ~//.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o
StrictHostKeyChecking=no thilina@50.16.158.59''

The trafic from outside to the provisioned EC2 HBase cluster needs
to be routed through the master node. Whirr generates a script

that we can use to start a proxy for this purpose. The script can be

found in a subdirectory named after your HBase cluster inside the

~/.whirr directory. It will take few minutes for Whirr to provision

the cluster and to generate this script. Execute this script in a new

terminal to start the proxy.

>cd ~/.whirr/whirrhadoopcluster/

>hbase-proxy.sh

Whirr also generates hbase-site.xml for your cluster in the

~/.whirr/<your cluster name> directory, which we can

use in combination with the above proxy to connect to the HBase

cluster from the local client machine. However, currently a Whirr

bug (https://issues.apache.org/jira/browse/
WHIRR-383) prevents us from accessing HBase shell from our

local client machine. Hence in this recipe, we directly log in to the

master node of the HBase cluster.

3. Log in to an instance of your cluster using a command you note down in step 2.

>ssh -i ~/.ssh/id_rsa -o "UserKnownHostsFile /dev/null" -o
StrictHostKeyChecking=no xxxx@xxx.xxx.xx.xxx

4. Go to the /usr/local/hbase-<your-version> directory in the instance or

add the /usr/local/hbase-<your-version> /bin to the PATH variable

of the instance.

>cd /usr/local/hbase-0.90.3

5. Start the HBase shell. Execute the following commands to test your HBase installation.

>bin/hbase shell

HBase Shell;

Version 0.90.3, r1100350, Sat May 7 13:31:12 PDT 2011

hbase(main):001:0> create ''test'',''cf''

0 row(s) in 5.9160 seconds

hbase(main):007:0> put ''test'',''row1'',''cf:a'',''value1''

Cloud Deployments: Using Hadoop on Clouds

276

0 row(s) in 0.6190 seconds

hbase(main):008:0> scan ''test''

ROW COLUMN+CELL

 row1 column=cf:a, timestamp=1346893759876,
value=value1

1 row(s) in 0.0430 seconds

hbase(main):009:0> quit

6. Issue the following command to shut down the Hadoop cluster. Make sure to

download any important data before shutting down the cluster, as the data will be

permanently lost after shutting down the cluster.

>bin/whirr destroy-cluster --config hadoop.properties

How it works...

This section describes the whirr.instance-templates property we used in the hbase.
properties ile. Refer to the Using Apache Whirr to deploy an Apache Hadoop cluster in a

cloud environment recipe for descriptions of the other properties.

whirr.instance-templates=1 zookeeper+hadoop-namenode+hadoop-
jobtracker+hbase-master,2 hadoop-datanode+hadoop- tasktracker+hbase-
regionserver

This property speciies the number of instances to be used for each set of roles and the type
of roles for the instances. In the preceding example, one EC2 small instance is used with roles

hbase-master, zookeeper, hadoop-jobtracker, and the hadoop-namenode. Another

two EC2 small instances are used with roles hbase-regionserver, hadoop-datanode,

and hadoop-tasktracker in each instance.

More details on Whirr coniguration can be found on http://whirr.apache.org/
docs/0.6.0/configuration-guide.html.

See also
 f The Installing HBase recipe of Chapter 5, Hadoop Ecosystem and the Deploying an

Apache HBase Cluster on Amazon EC2 cloud using EMR and the Using Apache Whirr

to deploy an Apache Hadoop cluster in a cloud environment recipes in this chapter.

Index
Symbols

20news dataset

downloading 235

<coniguration> tag 52
<path> parameter 37
-threshold parameter 32

A

addnl parameter 49

Adwords assigner 222

Adwords balance algorithm

implementing 214-218

used, for assigning advertisements to

leywords 214

working 218-221

AdwordsBidGenerator 219

Amazon EC2 Spot Instances

about 252

URL 252

used, for executing EMR job lows 252
Amazon Elastic Compute Cloud (EC2) 248
Amazon Elastic MapReduce (EMR). See also

EMR

about 248

used, for running MapReduce computations

248-251

Amazon EMR console

URL 250

Amazon sales dataset

clustering 201, 202

working 203

Amazon Simple Storage Service (S3) 248
ant-nodeps package 48
ant-trax package 48

Apache Ant

download link 8

URL 46

Apache Forrest

URL 48

Apache Gora 177

Apache HBase

coniguring, as backend data store for Apache
Nutch 177-179

deploying, on Hadoop cluster 180, 181

download link 180

Apache HBase Cluster

deploying, on Amazon EC2 cloud with EMR

263-267

Apache Lucene project 174

Apache Mahout K-Means clustering

algorithm 239

Apache Nutch

about 170

Apache HBase, coniguring as backend data
store 177-179

used, for intra-domain web crawling 170-174

using, with Hadoop/HBase cluster for web
crawling 182-185

Apache Nutch Ant build 185
Apache Nutch search engine 165

Apache Solr

about 174

used, for indexing and searching web

documents 174, 176

working 177

Apache tomcat developer list e-mail archives

URL 136

Apache Whirr

about 270

278

used, for deploying Hadoop cluster on Amazon

E2 cloud 270-273

used, for deploying HBase cluster on Amazon

E2 cloud 274-276

Apache Whirr binary distribution

downloading 270

automake package 48
AWS Access Keys 260

B

bad records

setting 61

benchmarks

about 54

running, for verifying Hadoop

installation 54, 55

built-in data types

ArrayWritable 76

BytesWritable 76

MapWritable 76

NullWritable 76

SortedMapWritable 76

text 76

TwoDArrayWritable 76

VIntWritable 76

VLongWritable 76

C

capacity scheduler 62, 63

classiiers 208
CLI 260

cluster deployments

Hadoop conigurations, tuning 52, 53
clustering 238
clustering algorithm 130

collaborative iltering-based
recommendations

about 205

implementing 205

working 206, 208

comapreTo() method 82
combiner

about 12

activating 12

adding, to WordCount MapReduce

program 12

Command Line Interface. See CLI

completebulkload command 233

complex dataset

parsing, with Hadoop 154-158

computational complexity 200

conf/core-site.xml
about 52

coniguration properties 53
conf/hdfs-site.xml

about 52

coniguration properties 54
coniguration iles

conf/core-site.xml 52
conf/hdfs-site.xml 52
conf/mapred-site.xml 52

coniguration properties, conf/core-site.xml
fs.inmemory.size.mb 53

io.ile.buffer.size 53
io.sort.factor 53

coniguration properties, conf/hdfs-site.xml
dfs.block.size 54

dfs.namenode.handler.count 54

coniguration properties, conf/mapred-site.
xml

io.sort.mb 54

mapred.map.child.java.opts 54

mapred.reduce.child.java.opts 54

mapred.reduce.parallel.copies 54

conf/mapred-site.xml
about 52

coniguration properties 54
content-based recommendations

about 192

implementing 192-194

working 194-197

counters. See Hadoop counters

createRecordReader() method 92

custom Hadoop key type

implementing 80, 82

custom Hadoop Writable data type

implementing 77-79

custom InputFormat

implementing 90, 91

custom Partitioner

implementing 95

Cygwin 14

279

D

data

emitting, from mapper 83-86

grouping, MapReduce used 140-142

data de-duplication

Hadoop streaming, used 227, 228

HBase, used 233

Datalow language 120
data mining algorithm 129

DataNodes

about 6

adding 31

decommissioning 33, 34

data preprocessing 224

datasets

joining, MapReduce used 159-164

debug scripts

about 57

writing 58

decommissioning process

about 34

working 33

DFSIO

about 30

used, for benchmarking 30

distributed cache 60

DistributedCache. See Hadoop

DistributedCache

distributed mode, Hadoop installation 6

document classiication
about 244

Naive Bayes Classiier, used 244, 246

E

EC2 console

URL 264

ElasticSearch

about 185

download link 186

URL 185

used, for indexing and searching data 186,

187

using 187

working 187

EMR

used, for deploying Apache HBase Cluster on

Amazon EC2 cloud 263-268

used, for executing Hive script 256-258

used, for executing Pig script 253-255

EMR Bootstrap actions

conigure-daemons 269
conigure-hadoop 269
memory-intensive 270

run-if 270

used, for coniguring VMs for EMR
jobs 268-270

EMR CLI

used, for creating EMR job low 260-262
EMR job lows

creating, CLI used 260-262

executing, Amazon EC2 Spot Instances

used 252

exclude ile 33

F

failure percentages

setting 60, 61

fair scheduler 62

fault tolerance 56, 57

FIFO scheduler 62

ile replication factor
setting 36

FileSystem.create(ilePath) method 40
FileSystem.Create() method 40
FileSystem object 42

coniguring 41
frequency distribution

about 143

calculating, MapReduce used 143, 144

Fuse-DFS project

mounting 46, 47

URL 48

working 48

G

getDistance() method 199

getFileBlockLocations() function 42

getGeoLocation() method 96

getInputSplit() method 168

280

getLength() method 93

getLocalCacheFiles() method 99

getmerge command 49

getMerge command 49

getPath() method 168
getSplits() method 93

getTypes() method 84
getUri() function 41

GNU Plot

URL 147

used, for plotting results 145-147

Google 5

Gross National Income (GNI) 119

H

Hadoop

about 6

Adwords balance algorithm 214

Amazon sales dataset clustering 201

collaborative iltering-based
recommendations 205

content-based recommendations 192

hierarchical clustering 198

MapReduce program, executing 8

MapReduce program, writing 7, 8

setting, in distributed cluster environment

20-23

setting up 6

URL 6

used, for parsing complex dataset 154-158

Hadoop Aggregate package 103

Hadoop cluster

Apache HBase, deploying on 180, 181

deploying on Amazon E2, Apache Whirr used

271, 273

deploying on Amazon E2 cloud, Apache Whirr

used 270

Hadoop conigurations
tuning 52, 53

Hadoop counters

about 106

used, for reporting custom metrics 106

working 107

Hadoop data types

selecting 74-76

Hadoop DistributedCache

about 97

resources, adding from command line 100

used, for adding resources to classpath 101

used, for distributing archives 99

used, for retrieving Map and Reduce tasks 98

working 98

Hadoop Distributed File System. See HDFS

Hadoop GenericWritable data type 84
Hadoop InputFormat

selecting, for input data format 87

Hadoop installation

DataNodes 6

JobTracker 6

modes 6

NameNode 6

TaskTracker 6

verifying, benchmarks used 54, 55

Hadoop intermediate data partitioning 95

Hadoop Kerberos security

about 63

pitfalls 69

HADOOP_LOG_DIR 53

Hadoop monitoring UI

using 26

working 27

Hadoop OutputFormats

used, for formatting MapReduce

computations results 93, 94

Hadoop Partitioners 95

Hadoop results

plotting, GNU Plot used 145-147

Hadoop scheduler

changing 62, 63

hadoop script 40

Hadoop security

about 63

Kerberos, integrating with 63-69

Hadoop Streaming

about 101, 104

URL 104

used, for data de-duplication 227, 228

using with Python script-based mapper, for

data preprocessing 224-226

working 102

Hadoop’s Writable-based serialization

framework 74

281

Hadoop Tool interface

using 69, 71

hashCode() method 83, 96
HashPartitioner partitions 95

HBase

about 110

data random access, via Java client APIs 113,

114

downloading 111

installing 110, 112

MapReduce jobs, running 115-118

running, in distributed mode 113

used, for data de-duplication 233

working 113

HBase cluster

deploying on Amazon E2 cloud, Apache Whirr

used 274-276

HBase data model

about 110

reference link 110

HBase TableMapper 189
HDFS

about 13, 29

benchmarking 30, 31

DataNode, adding 31, 32

iles, merging 49
rebalancing 32

setting up 13-16

working 17

HDFS basic command-line ile operations
executing 18, 19

HDFS block size

setting 35

HDFS C API

using 42, 44

working 45

HDFS coniguration iles
coniguring 45

hdfsConnectAsUser command 45

hdfsConnect command 45

HDFS disk usage

limiting 34

HDFS ilesystem
mounting 46, 47

HDFS Java API

about 38-40

using 38-40

working 40

HDFS monitoring UI

using 17

hdfsOpenFile command 45

hdfsRead command 45

HDFS replication factor

about 36

working 37

HDFS setup

testing 67

HDFS web console

accessing 17

hierarchical clustering

about 198

implementing 198, 199

working 199-201

higher-level programming interfaces 119

histograms

about 147

calculating, MapReduce used 147-150

Hive

about 110, 123

downloading 123

installing 123, 124

join, performing with 127, 128

SQL-style query, running with 124, 125

used, for iltering and sorting 124, 125
working 124, 126

Hive interactive session

steps 259

Hive script

executing, EMR used 256-258

Human Development Report (HDR) 119, 124

I

importtsv and bulkload

used, for importing large text dataset to

HBase 229-232

importtsv tool

about 232

using 233

in-links graph

generating, for for crawled web

pages 187-189

InputFormat implementations

DBInputFormat 89

282

NLineInputFormat 88

SequenceFileInputFormat 88

TextInputFormat 88

InputSplit object 93

intra-domain web crawling

Apache Nutch used 170-174

inverted document frequencies (IDF) 235

inverted index

generating, MapReduce used 166-169

J

Java 1.6
downloading 6

installing 6

Java client APIs

used, for connecting HBase 113, 114

Java Cryptography Extension (JCE) Policy 66

Java Integrated Development Environment

(IDE) 8
Java JDK 1.6 123
Java regular expressions

URL 139

Java VMs

reusing, for improving performance 56

JDK 1.5
URL 48

JobTracker

about 6

setting up 21

join

performing, with Hive 127, 128

JSON snippet 260

K

Kerberos

installing 64

integrating with 64

principals 65

Kerberos setup

about 63, 64

DataNodes 64

JobTracker 64

NameNode 64

TaskTrackers 64

KeyFieldPartitioner 97

KeyValueTextInputFormat 87

kinit command 69

K-means

about 130

running, with Mahout 130-132

K-means results

visualizing 132, 133

L

large text dataset

importing to HBase, importtsv and bulkload

used 229-233

Latent Dirichlet Analysis. See LDA

LDA

about 241

used, for topic discovery 241, 242

libhdfs

about 42

building 48

using 42

Libtool package 48
local mode, Hadoop installation

about 6

working 7

LogFileInputFormat 92

LogFileRecordReader class 92

LogWritable class 92

M

machine learning algorithm 129

Mahout

about 110, 129

installing 129

K-means, running with 130-132

working 130

Mahout installation

verifying 129

Mahout K-Means algorithm 240

Mahout seqdumper command 238
Mahout split command 245

MapFile 169

map() function 162

mapper

data, emitting from 83, 84

implementing, for HTTP log processing

application 101, 102

283

MapReduce

about 5

used, for calculating frequency distributions

143, 144

used, for calculating histograms 147-150

used, for calculating Scatter plots 151-154

used, for calculating simple

analytics 136-139

used, for generating inverted index 166-169

used, for grouping data 140-142

used, for joining datasets 159-164

MapReduce application

MultipleInputs feature, using 89

MapReduce computations

running, Amazon Elastic MapReduce (EMR)

used 248-251

MapReduce computations results

formatting, Hadoop OutputFormats

used 93, 94

MapReduce jobs

dependencies, adding 104, 105

running, on HBase 115-118

working 118

MapReduce monitoring UI

using 26

working 27

MBOX format 160

minSupport 238
modes, Hadoop installation

distributed modes 6

local mode 6

Pseudo distributed mode 6

mrbench 55

multi-dimensional space 201

multiple disks/volumes

using 34

MultipleInputs feature

using, in MapReduce application 89

N

Naive Bayes Classiier
about 208

implementing 209

URL 208

used, for document classiication 244-246
working 210-213

NameNode 6

NASA weblog dataset

URL 136

nextKeyValue() method 92, 158
NLineInputFormat 88
nnbench 55

non-Euclidian space 201

O

orthogonal axes 201

P

Partitioner 83
Pattern.compile() method 138
Pig

about 110, 118

downloading 119

installing 119

join and sort operations,

implementing 121-123

Pig command

running 119, 120

working 121

Pig interactive session

steps 255, 256

Pig script

executing, EMR used 253-255

primitive data types

BooleanWritable 76

ByteWritable 76

FloatWritable 76

IntWritable 76

LongWritable 76

principals 64

Pseudo distributed mode, Hadoop

installation 6

R

random sample 202

readFields() method 79

read performance benchmark

running 30

rebalancer tool 32

reduce() function 163

reduce() method 85

284

S

S3 bucket 249

Scatter plot

about 151

calculating, MapReduce used 151-154

scheduling 62

seq2sparse command 237

seqdirectory command 237

SequenceFileInputFormat

about 88

SequenceFileAsBinaryInputFormat 88

SequenceFileAsTextInputFormat 89

setrep command syntax 37

shared-user Hadoop clusters 62

simple analytics

calculating, MapReduce used 136-138

speculative execution 57

SQL-style query

running, with Hive 124, 125

SSH server 14

Streaming. See Hadoop Streaming

T

TableMapReduceUtil class 189
tab-separated value (TSV)ile 224
task failures

analyzing 57-60

TaskTrackers

about 6

setting up 21

TeraSort 55

term frequencies (TF) 235

Term frequency-inverse document frequency

(TF-IDF) model 235

TestDFSIO 55

testmapredsort job 55

text data

clustering 238-240

TextInputFormat class 88, 225
TF and TF-IDF vectors

creating, for text data 234-236

working 237

Topic discovery

LDA, used 241-243

toString() method 80
TotalOrderPartitioner 97

Twahpic 241

V

VMs

coniguring for EMR jobs, EMR Bootstrap
actions used 268, 269

W

web crawling

about 170

performing, Apache Nutch used with Hadoop/
HBase cluster 182-185

web documents

indexing and searching, Apache Solr used

174, 176

WordCount MapReduce program

combiner step, adding 12

running, in distributed cluster environment

24, 26

working 10, 11

writing 7-10

Writable interface 74

write() method 79

write performance benchmark

running 30

Z

zipf 146

zlib-devel package 48

Thank you for buying
Hadoop MapReduce Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-

edge books for communities of developers, administrators, and newbies alike. For more

information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to

continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to

anybody from advanced developers to budding web designers. The Open Source brand also runs

Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project

about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to

discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing

experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 340 pages

Learn how to crunch big data to extract meaning from

the data avalanche

1. Learn tools and techniques that let you approach

big data with relish and not fear

2. Shows how to build a complete infrastructure to

handle your needs as your data grows

3. Hands-on examples in each chapter give the big

picture while also giving direct experience

Hadoop Real World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 325 pages

Realistic, simple code examples to solve problems at

scale with Hadoop and related technologies

1. Solutions to common problems when working in

the Hadoop environment

2. Recipes for (un)loading data, analytics, and

troubleshooting

3. In depth code examples demonstrating various

analytic models, analytic solutions, and common

best practices

Please check www.PacktPub.com for information on our titles

HBase Administration
Cookbook
ISBN: 978-1-84951-714-0 Paperback: 332 pages

Master HBase coniguration and administration for
optimum database performance

1. Move large amounts of data into HBase and learn

how to manage it eficiently

2. Set up HBase on the cloud, get it ready for

production, and run it smoothly with high

performance

3. Maximize the ability of HBase with the Hadoop

eco-system including HDFS, MapReduce,

Zookeeper, and Hive

Cassandra High Performance
Cookbook
ISBN: 978-1-84951-512-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale

Apache Cassandra deployments

1. Get the best out of Cassandra using this eficient
recipe bank

2. Conigure and tune Cassandra components to
enhance performance

3. Deploy Cassandra in various environments and

monitor its performance

4. Well illustrated, step-by-step recipes to make all

tasks look easy!

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Hadoop Up and Running in a Cluster
	Introduction
	Setting up Hadoop in your machine
	Writing a WordCount MapReduce sample, bundling it, and running it using standalone
	Hadoop
	Adding the combiner step to the WordCount MapReduce program
	Setting up HDFS
	Using HDFS monitoring UI
	HDFS basic command-line file operations
	Setting Hadoop in a distributed cluster environment
	Running WordCount program in a distributed cluster environment
	Using MapReduce monitoring UI

	Chapter 2: Advanced HDFS
	Introduction
	Benchmarking HDFS
	Adding a new DataNode
	Decommissioning DataNodes
	Using multiple disks/volumes and limiting HDFS disk usage
	Setting HDFS block size
	Setting the file replication factor
	Using HDFS Java API
	Using HDFS C API (libhdfs)
	Mounting HDFS (Fuse-DFS)
	Merging files in HDFS

	Chapter 3: Advanced Hadoop MapReduce Administration
	Introduction
	Tuning Hadoop configurations for cluster deployments
	Running benchmarks to verify the Hadoop installation
	Reusing Java VMs to improve the performance
	Fault tolerance and speculative execution
	Debug scripts – analyzing task failures
	Setting failure percentages and skipping bad records
	Shared-user Hadoop clusters – using fair and other schedulers
	Hadoop security – integrating with Kerberos
	Using the Hadoop Tool interface

	Chapter 4: Developing Complex Hadoop MapReduce Applications
	Introduction
	Choosing appropriate Hadoop data types
	Implementing a custom Hadoop Writable data type
	Implementing a custom Hadoop key type
	Emitting data of different value types from a mapper
	Choosing a suitable Hadoop InputFormat for your input data format
	Adding support for new input data formats – implementing a custom InputFormat
	Formatting the results of MapReduce computations – using Hadoop
	OutputFormats
	Hadoop intermediate (map to reduce) data partitioning
	Broadcasting and distributing shared resources to tasks in a MapReduce
	job – Hadoop DistributedCache
	Using Hadoop with legacy applications – Hadoop Streaming
	Adding dependencies between MapReduce jobs
	Hadoop counters for reporting custom metrics

	Chapter 5: Hadoop Ecosystem
	Introduction
	Installing HBase
	Data random access using Java client APIs
	Running MapReduce jobs on HBase (table input/output)
	Installing Pig
	Running your first Pig command
	Set operations (join, union) and sorting with Pig
	Installing Hive
	Running SQL-style query with Hive
	Performing a join with Hive
	Installing Mahout
	Running K-means with Mahout
	Visualizing K-means results

	Chapter 6: Analytics
	Introduction
	Simple analytics using MapReduce
	Performing Group-By using MapReduce
	Calculating frequency distributions and sorting using MapReduce
	Plotting the Hadoop results using GNU Plot
	Calculating histograms using MapReduce
	Calculating Scatter plots using MapReduce
	Parsing a complex dataset with Hadoop
	Joining two datasets using MapReduce

	Chapter 7: Searching and Indexing
	Introduction
	Generating an inverted index using Hadoop MapReduce
	Intra-domain web crawling using Apache Nutch
	Indexing and searching web documents using Apache Solr
	Configuring Apache HBase as the backend data store for Apache Nutch
	Deploying Apache HBase on a Hadoop cluster
	Whole web crawling with Apache Nutch using a Hadoop/HBase cluster
	ElasticSearch for indexing and searching
	Generating the in-links graph for crawled web pages

	Chapter 8: Classifications, Recommendations, and Finding Relationships
	Introduction
	Content-based recommendations
	Hierarchical clustering
	Clustering an Amazon sales dataset
	Collaborative filtering-based recommendations
	Classification using Naive Bayes Classifier
	Assigning advertisements to keywords using the Adwords balance algorithm

	Chapter 9: Mass Text Data Processing
	Introduction
	Data preprocessing (extract, clean, and format conversion) using Hadoop Streaming
	and Python
	Data de-duplication using Hadoop Streaming
	Loading large datasets to an Apache HBasedata store using importtsv and
	bulkload tools
	Creating TF and TF-IDF vectors for the text data
	Clustering the text data
	Topic discovery using Latent Dirichlet Allocation (LDA)
	Document classification using Mahout Naive Bayes classifier

	Chapter 10: Cloud Deployments Using Hadoop on Clouds
	Introduction
	Running Hadoop MapReduce computations using Amazon Elastic MapReduce (EMR)
	Saving money by using Amazon EC2 Spot Instances to execute EMR job flows
	Executing a Pig script using EMR
	Executing a Hive script using EMR
	Creating an Amazon EMR job flow using the Command Line Interface
	Deploying an Apache HBase Cluster on Amazon EC2 cloud using EMR
	Using EMR Bootstrap actions to configure VMs for the Amazon EMR jobs
	Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud environment
	Using Apache Whirr to deploy an Apache HBase cluster in a cloud environment

	Index

