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Preface
This book is here to help you make sense of Hadoop and use it to solve your big data 
problems. It's a really exciting time to work with data processing technologies such as 
Hadoop. The ability to apply complex analytics to large data sets—once the monopoly of 
large corporations and government agencies—is now possible through free open source  
software (OSS).

But because of the seeming complexity and pace of change in this area, getting a grip on 
the basics can be somewhat intimidating. That's where this book comes in, giving you an 
understanding of just what Hadoop is, how it works, and how you can use it to extract  
value from your data now.

In addition to an explanation of core Hadoop, we also spend several chapters exploring 
other technologies that either use Hadoop or integrate with it. Our goal is to give you an 
understanding not just of what Hadoop is but also how to use it as a part of your broader 
technical infrastructure.

A complementary technology is the use of cloud computing, and in particular, the offerings 
from Amazon Web Services. Throughout the book, we will show you how to use these 
services to host your Hadoop workloads, demonstrating that not only can you process  
large data volumes, but also you don't actually need to buy any physical hardware to do so.

What this book covers
This book comprises of three main parts: chapters 1 through 5, which cover the core of  
Hadoop and how it works, chapters 6 and 7, which cover the more operational aspects 
of Hadoop, and chapters 8 through 11, which look at the use of Hadoop alongside other 
products and technologies.



Preface

[ 2 ]

Chapter 1, What It's All About, gives an overview of the trends that have made Hadoop and 
cloud computing such important technologies today.

Chapter 2, Getting Hadoop Up and Running, walks you through the initial setup of a local 
Hadoop cluster and the running of some demo jobs. For comparison, the same work is also 
executed on the hosted Hadoop Amazon service.

Chapter 3, Understanding MapReduce, goes inside the workings of Hadoop to show how 
MapReduce jobs are executed and shows how to write applications using the Java API.

Chapter 4, Developing MapReduce Programs, takes a case study of a moderately sized data 
set to demonstrate techniques to help when deciding how to approach the processing and 
analysis of a new data source.

Chapter 5, Advanced MapReduce Techniques, looks at a few more sophisticated ways of 
applying MapReduce to problems that don't necessarily seem immediately applicable to the 
Hadoop processing model.

Chapter 6, When Things Break, examines Hadoop's much-vaunted high availability and fault 
tolerance in some detail and sees just how good it is by intentionally causing havoc through 
killing processes and intentionally using corrupt data.

Chapter 7, Keeping Things Running, takes a more operational view of Hadoop and will be 
of most use for those who need to administer a Hadoop cluster. Along with demonstrating 
some best practice, it describes how to prepare for the worst operational disasters so you 
can sleep at night.

Chapter 8, A Relational View On Data With Hive, introduces Apache Hive, which allows 
Hadoop data to be queried with a SQL-like syntax.

Chapter 9, Working With Relational Databases, explores how Hadoop can be integrated with 
existing databases, and in particular, how to move data from one to the other.

Chapter 10, Data Collection with Flume, shows how Apache Flume can be used to gather 
data from multiple sources and deliver it to destinations such as Hadoop.

Chapter 11, Where To Go Next, wraps up the book with an overview of the broader Hadoop 
ecosystem, highlighting other products and technologies of potential interest. In addition, it 
gives some ideas on how to get involved with the Hadoop community and to get help.

What you need for this book
As we discuss the various Hadoop-related software packages used in this book, we will 
describe the particular requirements for each chapter. However, you will generally need 
somewhere to run your Hadoop cluster.
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In the simplest case, a single Linux-based machine will give you a platform to explore almost 
all the exercises in this book. We assume you have a recent distribution of Ubuntu, but as 
long as you have command-line Linux familiarity any modern distribution will suffice.

Some of the examples in later chapters really need multiple machines to see things working, 
so you will require access to at least four such hosts. Virtual machines are completely 
acceptable; they're not ideal for production but are fine for learning and exploration.

Since we also explore Amazon Web Services in this book, you can run all the examples on 
EC2 instances, and we will look at some other more Hadoop-specific uses of AWS throughout 
the book. AWS services are usable by anyone, but you will need a credit card to sign up!

Who this book is for
We assume you are reading this book because you want to know more about Hadoop at 
a hands-on level; the key audience is those with software development experience but no 
prior exposure to Hadoop or similar big data technologies.

For developers who want to know how to write MapReduce applications, we assume you are 
comfortable writing Java programs and are familiar with the Unix command-line interface. 
We will also show you a few programs in Ruby, but these are usually only to demonstrate 
language independence, and you don't need to be a Ruby expert.

For architects and system administrators, the book also provides significant value in 
explaining how Hadoop works, its place in the broader architecture, and how it can be 
managed operationally. Some of the more involved techniques in Chapter 4, Developing 
MapReduce Programs, and Chapter 5, Advanced MapReduce Techniques, are probably  
of less direct interest to this audience.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1
2.	 Action 2
3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:
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What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own 
understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "You may notice that we used the Unix command 
rm to remove the Drush directory rather than the DOS del command."

A block of code is set as follows: 

# * Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

# * Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300
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Any command-line input or output is written as follows:

cd /ProgramData/Propeople

rm -r Drush

git clone --branch master http://git.drupal.org/project/drush.git

Newterms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "On the Select Destination 
Location screen, click on Next to accept the default destination."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to  
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from  
your account at http://www.packtpub.com. If you purchased this book elsewhere,  
you can visit http://www.packtpub.com/support and register to have the files  
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes  
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded to our website, or added to any list of existing errata, under the Errata 
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works, in any form, on the Internet, please provide us with 
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com


1
What It's All About

This book is about Hadoop, an open source framework for large-scale data 
processing. Before we get into the details of the technology and its use in later 
chapters, it is important to spend a little time exploring the trends that led to 
Hadoop's creation and its enormous success.

Hadoop was not created in a vacuum; instead, it exists due to the explosion 
in the amount of data being created and consumed and a shift that sees this 
data deluge arrive at small startups and not just huge multinationals. At the 
same time, other trends have changed how software and systems are deployed, 
using cloud resources alongside or even in preference to more traditional 
infrastructures.

This chapter will explore some of these trends and explain in detail the specific  
problems Hadoop seeks to solve and the drivers that shaped its design.

In the rest of this chapter we shall:

�� Learn about the big data revolution

�� Understand what Hadoop is and how it can extract value from data

�� Look into cloud computing and understand what Amazon Web Services provides

�� See how powerful the combination of big data processing and cloud computing  
can be

�� Get an overview of the topics covered in the rest of this book

So let's get on with it!
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Big data processing
Look around at the technology we have today, and it's easy to come to the conclusion that 
it's all about data. As consumers, we have an increasing appetite for rich media, both in 
terms of the movies we watch and the pictures and videos we create and upload. We also, 
often without thinking, leave a trail of data across the Web as we perform the actions of  
our daily lives.

Not only is the amount of data being generated increasing, but the rate of increase is also 
accelerating. From emails to Facebook posts, from purchase histories to web links, there are 
large data sets growing everywhere. The challenge is in extracting from this data the most 
valuable aspects; sometimes this means particular data elements, and at other times, the 
focus is instead on identifying trends and relationships between pieces of data.

There's a subtle change occurring behind the scenes that is all about using data in more  
and more meaningful ways. Large companies have realized the value in data for some  
time and have been using it to improve the services they provide to their customers, that 
is, us. Consider how Google displays advertisements relevant to our web surfing, or how 
Amazon or Netflix recommend new products or titles that often match well to our tastes  
and interests.

The value of data
These corporations wouldn't invest in large-scale data processing if it didn't provide a 
meaningful return on the investment or a competitive advantage. There are several main 
aspects to big data that should be appreciated:

�� Some questions only give value when asked of sufficiently large data sets. 
Recommending a movie based on the preferences of another person is, in the 
absence of other factors, unlikely to be very accurate. Increase the number of 
people to a hundred and the chances increase slightly. Use the viewing history of 
ten million other people and the chances of detecting patterns that can be used to 
give relevant recommendations improve dramatically.

�� Big data tools often enable the processing of data on a larger scale and at a lower 
cost than previous solutions. As a consequence, it is often possible to perform data 
processing tasks that were previously prohibitively expensive.

�� The cost of large-scale data processing isn't just about financial expense; latency is 
also a critical factor. A system may be able to process as much data as is thrown at 
it, but if the average processing time is measured in weeks, it is likely not useful. Big 
data tools allow data volumes to be increased while keeping processing time under 
control, usually by matching the increased data volume with additional hardware.
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�� Previous assumptions of what a database should look like or how its data should be 
structured may need to be revisited to meet the needs of the biggest data problems.

�� In combination with the preceding points, sufficiently large data sets and flexible 
tools allow previously unimagined questions to be answered.

Historically for the few and not the many
The examples discussed in the previous section have generally been seen in the form of 
innovations of large search engines and online companies. This is a continuation of a much 
older trend wherein processing large data sets was an expensive and complex undertaking, 
out of the reach of small- or medium-sized organizations.

Similarly, the broader approach of data mining has been around for a very long time but has 
never really been a practical tool outside the largest corporations and government agencies.

This situation may have been regrettable but most smaller organizations were not at a 
disadvantage as they rarely had access to the volume of data requiring such an investment.

The increase in data is not limited to the big players anymore, however; many small and 
medium companies—not to mention some individuals—find themselves gathering larger 
and larger amounts of data that they suspect may have some value they want to unlock.

Before understanding how this can be achieved, it is important to appreciate some of these 
broader historical trends that have laid the foundations for systems such as Hadoop today.

Classic data processing systems
The fundamental reason that big data mining systems were rare and expensive is that scaling 
a system to process large data sets is very difficult; as we will see, it has traditionally been 
limited to the processing power that can be built into a single computer.

There are however two broad approaches to scaling a system as the size of the data 
increases, generally referred to as scale-up and scale-out.

Scale-up
In most enterprises, data processing has typically been performed on impressively large 
computers with impressively larger price tags. As the size of the data grows, the approach is 
to move to a bigger server or storage array. Through an effective architecture—even today, 
as we'll describe later in this chapter—the cost of such hardware could easily be measured in 
hundreds of thousands or in millions of dollars.

www.allitebooks.com

http://www.allitebooks.org
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The advantage of simple scale-up is that the architecture does not significantly change 
through the growth. Though larger components are used, the basic relationship (for 
example, database server and storage array) stays the same. For applications such as 
commercial database engines, the software handles the complexities of utilizing the  
available hardware, but in theory, increased scale is achieved by migrating the same  
software onto larger and larger servers. Note though that the difficulty of moving software 
onto more and more processors is never trivial; in addition, there are practical limits on just 
how big a single host can be, so at some point, scale-up cannot be extended any further.

The promise of a single architecture at any scale is also unrealistic. Designing a scale-up system 
to handle data sets of sizes such as 1 terabyte, 100 terabyte, and 1 petabyte may conceptually 
apply larger versions of the same components, but the complexity of their connectivity may 
vary from cheap commodity through custom hardware as the scale increases.

Early approaches to scale-out
Instead of growing a system onto larger and larger hardware, the scale-out approach  
spreads the processing onto more and more machines. If the data set doubles, simply use 
two servers instead of a single double-sized one. If it doubles again, move to four hosts.

The obvious benefit of this approach is that purchase costs remain much lower than for 
scale-up. Server hardware costs tend to increase sharply when one seeks to purchase larger 
machines, and though a single host may cost $5,000, one with ten times the processing 
power may cost a hundred times as much. The downside is that we need to develop 
strategies for splitting our data processing across a fleet of servers and the tools  
historically used for this purpose have proven to be complex.

As a consequence, deploying a scale-out solution has required significant engineering effort; 
the system developer often needs to handcraft the mechanisms for data partitioning and 
reassembly, not to mention the logic to schedule the work across the cluster and handle 
individual machine failures.

Limiting factors
These traditional approaches to scale-up and scale-out have not been widely adopted 
outside large enterprises, government, and academia. The purchase costs are often high,  
as is the effort to develop and manage the systems. These factors alone put them out of the 
reach of many smaller businesses. In addition, the approaches themselves have had several 
weaknesses that have become apparent over time:

�� As scale-out systems get large, or as scale-up systems deal with multiple CPUs, the 
difficulties caused by the complexity of the concurrency in the systems have become 
significant. Effectively utilizing multiple hosts or CPUs is a very difficult task, and 
implementing the necessary strategy to maintain efficiency throughout execution  
of the desired workloads can entail enormous effort.
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�� Hardware advances—often couched in terms of Moore's law—have begun to 
highlight discrepancies in system capability. CPU power has grown much faster than 
network or disk speeds have; once CPU cycles were the most valuable resource in 
the system, but today, that no longer holds. Whereas a modern CPU may be able to 
execute millions of times as many operations as a CPU 20 years ago would, memory 
and hard disk speeds have only increased by factors of thousands or even hundreds. 
It is quite easy to build a modern system with so much CPU power that the storage 
system simply cannot feed it data fast enough to keep the CPUs busy.

A different approach
From the preceding scenarios there are a number of techniques that have been used 
successfully to ease the pain in scaling data processing systems to the large scales  
required by big data.

All roads lead to scale-out
As just hinted, taking a scale-up approach to scaling is not an open-ended tactic. There is 
a limit to the size of individual servers that can be purchased from mainstream hardware 
suppliers, and even more niche players can't offer an arbitrarily large server. At some point, 
the workload will increase beyond the capacity of the single, monolithic scale-up server, so 
then what? The unfortunate answer is that the best approach is to have two large servers 
instead of one. Then, later, three, four, and so on. Or, in other words, the natural tendency  
of scale-up architecture is—in extreme cases—to add a scale-out strategy to the mix.  
Though this gives some of the benefits of both approaches, it also compounds the costs  
and weaknesses; instead of very expensive hardware or the need to manually develop  
the cross-cluster logic, this hybrid architecture requires both.

As a consequence of this end-game tendency and the general cost profile of scale-up 
architectures, they are rarely used in the big data processing field and scale-out  
architectures are the de facto standard.

If your problem space involves data workloads with strong internal 
cross-references and a need for transactional integrity, big iron  
scale-up relational databases are still likely to be a great option.

Share nothing
Anyone with children will have spent considerable time teaching the little ones that it's good 
to share. This principle does not extend into data processing systems, and this idea applies to 
both data and hardware.
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The conceptual view of a scale-out architecture in particular shows individual hosts, each 
processing a subset of the overall data set to produce its portion of the final result. Reality 
is rarely so straightforward. Instead, hosts may need to communicate between each other, 
or some pieces of data may be required by multiple hosts. These additional dependencies 
create opportunities for the system to be negatively affected in two ways: bottlenecks and 
increased risk of failure.

If a piece of data or individual server is required by every calculation in the system, there is 
a likelihood of contention and delays as the competing clients access the common data or 
host. If, for example, in a system with 25 hosts there is a single host that must be accessed  
by all the rest, the overall system performance will be bounded by the capabilities of this  
key host.

Worse still, if this "hot" server or storage system holding the key data fails, the entire 
workload will collapse in a heap. Earlier cluster solutions often demonstrated this risk;  
even though the workload was processed across a farm of servers, they often used a  
shared storage system to hold all the data.

Instead of sharing resources, the individual components of a system should be as 
independent as possible, allowing each to proceed regardless of whether others  
are tied up in complex work or are experiencing failures.

Expect failure
Implicit in the preceding tenets is that more hardware will be thrown at the problem  
with as much independence as possible. This is only achievable if the system is built  
with an expectation that individual components will fail, often regularly and with 
inconvenient timing.

You'll often hear terms such as "five nines" (referring to 99.999 percent uptime 
or availability). Though this is absolute best-in-class availability, it is important 
to realize that the overall reliability of a system comprised of many such devices 
can vary greatly depending on whether the system can tolerate individual 
component failures.
Assume a server with 99 percent reliability and a system that requires five such 
hosts to function. The system availability is 0.99*0.99*0.99*0.99*0.99 which 
equates to 95 percent availability. But if the individual servers are only rated  
at 95 percent, the system reliability drops to a mere 76 percent.

Instead, if you build a system that only needs one of the five hosts to be functional at any 
given time, the system availability is well into five nines territory. Thinking about system 
uptime in relation to the criticality of each component can help focus on just what the 
system availability is likely to be.
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If figures such as 99 percent availability seem a little abstract to you, consider 
it in terms of how much downtime that would mean in a given time period. 
For example, 99 percent availability equates to a downtime of just over 3.5 
days a year or 7 hours a month. Still sound as good as 99 percent?

This approach of embracing failure is often one of the most difficult aspects of big data 
systems for newcomers to fully appreciate. This is also where the approach diverges most 
strongly from scale-up architectures. One of the main reasons for the high cost of large 
scale-up servers is the amount of effort that goes into mitigating the impact of component 
failures. Even low-end servers may have redundant power supplies, but in a big iron box, 
you will see CPUs mounted on cards that connect across multiple backplanes to banks of 
memory and storage systems. Big iron vendors have often gone to extremes to show how 
resilient their systems are by doing everything from pulling out parts of the server while it's 
running to actually shooting a gun at it. But if the system is built in such a way that instead of 
treating every failure as a crisis to be mitigated it is reduced to irrelevance, a very different 
architecture emerges.

Smart software, dumb hardware
If we wish to see a cluster of hardware used in as flexible a way as possible, providing hosting 
to multiple parallel workflows, the answer is to push the smarts into the software and away 
from the hardware.

In this model, the hardware is treated as a set of resources, and the responsibility for 
allocating hardware to a particular workload is given to the software layer. This allows 
hardware to be generic and hence both easier and less expensive to acquire, and the 
functionality to efficiently use the hardware moves to the software, where the knowledge 
about effectively performing this task resides.

Move processing, not data
Imagine you have a very large data set, say, 1000 terabytes (that is, 1 petabyte), and you 
need to perform a set of four operations on every piece of data in the data set. Let's look  
at different ways of implementing a system to solve this problem.

A traditional big iron scale-up solution would see a massive server attached to an equally 
impressive storage system, almost certainly using technologies such as fibre channel to 
maximize storage bandwidth. The system will perform the task but will become I/O-bound; 
even high-end storage switches have a limit on how fast data can be delivered to the host.
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Alternatively, the processing approach of previous cluster technologies would perhaps see 
a cluster of 1,000 machines, each with 1 terabyte of data divided into four quadrants, with 
each responsible for performing one of the operations. The cluster management software 
would then coordinate the movement of the data around the cluster to ensure each piece 
receives all four processing steps. As each piece of data can have one step performed on the 
host on which it resides, it will need to stream the data to the other three quadrants, so we 
are in effect consuming 3 petabytes of network bandwidth to perform the processing.

Remembering that processing power has increased faster than networking or disk 
technologies, so are these really the best ways to address the problem? Recent experience 
suggests the answer is no and that an alternative approach is to avoid moving the data and 
instead move the processing. Use a cluster as just mentioned, but don't segment it into 
quadrants; instead, have each of the thousand nodes perform all four processing stages on 
the locally held data. If you're lucky, you'll only have to stream the data from the disk once 
and the only things travelling across the network will be program binaries and status reports, 
both of which are dwarfed by the actual data set in question.

If a 1,000-node cluster sounds ridiculously large, think of some modern server form factors 
being utilized for big data solutions. These see single hosts with as many as twelve 1- or 
2-terabyte disks in each. Because modern processors have multiple cores it is possible to 
build a 50-node cluster with a petabyte of storage and still have a CPU core dedicated to 
process the data stream coming off each individual disk.

Build applications, not infrastructure
When thinking of the scenario in the previous section, many people will focus on the 
questions of data movement and processing. But, anyone who has ever built such a  
system will know that less obvious elements such as job scheduling, error handling,  
and coordination are where much of the magic truly lies.

If we had to implement the mechanisms for determining where to execute processing, 
performing the processing, and combining all the subresults into the overall result, we 
wouldn't have gained much from the older model. There, we needed to explicitly manage 
data partitioning; we'd just be exchanging one difficult problem with another.

This touches on the most recent trend, which we'll highlight here: a system that handles 
most of the cluster mechanics transparently and allows the developer to think in terms of 
the business problem. Frameworks that provide well-defined interfaces that abstract all this 
complexity—smart software—upon which business domain-specific applications can be built 
give the best combination of developer and system efficiency.
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Hadoop
The thoughtful (or perhaps suspicious) reader will not be surprised to learn that the 
preceding approaches are all key aspects of Hadoop. But we still haven't actually  
answered the question about exactly what Hadoop is.

Thanks, Google
It all started with Google, which in 2003 and 2004 released two academic papers describing 
Google technology: the Google File System (GFS) (http://research.google.com/
archive/gfs.html) and MapReduce (http://research.google.com/archive/
mapreduce.html). The two together provided a platform for processing data on a very 
large scale in a highly efficient manner.

Thanks, Doug
At the same time, Doug Cutting was working on the Nutch open source web search 
engine. He had been working on elements within the system that resonated strongly 
once the Google GFS and MapReduce papers were published. Doug started work on the 
implementations of these Google systems, and Hadoop was soon born, firstly as a subproject 
of Lucene and soon was its own top-level project within the Apache open source foundation. 
At its core, therefore, Hadoop is an open source platform that provides implementations of 
both the MapReduce and GFS technologies and allows the processing of very large data sets 
across clusters of low-cost commodity hardware.

Thanks, Yahoo
Yahoo hired Doug Cutting in 2006 and quickly became one of the most prominent supporters 
of the Hadoop project. In addition to often publicizing some of the largest Hadoop 
deployments in the world, Yahoo has allowed Doug and other engineers to contribute to 
Hadoop while still under its employ; it has contributed some of its own internally developed 
Hadoop improvements and extensions. Though Doug has now moved on to Cloudera 
(another prominent startup supporting the Hadoop community) and much of the Yahoo's 
Hadoop team has been spun off into a startup called Hortonworks, Yahoo remains a major 
Hadoop contributor.

Parts of Hadoop
The top-level Hadoop project has many component subprojects, several of which we'll 
discuss in this book, but the two main ones are Hadoop Distributed File System (HDFS)  
and MapReduce. These are direct implementations of Google's own GFS and MapReduce. 
We'll discuss both in much greater detail, but for now, it's best to think of HDFS and 
MapReduce as a pair of complementary yet distinct technologies.

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
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HDFS is a filesystem that can store very large data sets by scaling out across a cluster of 
hosts. It has specific design and performance characteristics; in particular, it is optimized  
for throughput instead of latency, and it achieves high availability through replication  
instead of redundancy.

MapReduce is a data processing paradigm that takes a specification of how the data will be 
input and output from its two stages (called map and reduce) and then applies this across 
arbitrarily large data sets. MapReduce integrates tightly with HDFS, ensuring that wherever 
possible, MapReduce tasks run directly on the HDFS nodes that hold the required data.

Common building blocks
Both HDFS and MapReduce exhibit several of the architectural principles described in the 
previous section. In particular:

�� Both are designed to run on clusters of commodity (that is, low-to-medium 
specification) servers

�� Both scale their capacity by adding more servers (scale-out)

�� Both have mechanisms for identifying and working around failures

�� Both provide many of their services transparently, allowing the user to concentrate 
on the problem at hand

�� Both have an architecture where a software cluster sits on the physical servers and 
controls all aspects of system execution

HDFS
HDFS is a filesystem unlike most you may have encountered before. It is not a POSIX-
compliant filesystem, which basically means it does not provide the same guarantees as a 
regular filesystem. It is also a distributed filesystem, meaning that it spreads storage across 
multiple nodes; lack of such an efficient distributed filesystem was a limiting factor in some 
historical technologies. The key features are:

�� HDFS stores files in blocks typically at least 64 MB in size, much larger than the 4-32 
KB seen in most filesystems.

�� HDFS is optimized for throughput over latency; it is very efficient at streaming  
read requests for large files but poor at seek requests for many small ones.

�� HDFS is optimized for workloads that are generally of the write-once and  
read-many type.

�� Each storage node runs a process called a DataNode that manages the blocks on 
that host, and these are coordinated by a master NameNode process running on a 
separate host.
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�� Instead of handling disk failures by having physical redundancies in disk arrays or 
similar strategies, HDFS uses replication. Each of the blocks comprising a file is 
stored on multiple nodes within the cluster, and the HDFS NameNode constantly 
monitors reports sent by each DataNode to ensure that failures have not dropped 
any block below the desired replication factor. If this does happen, it schedules the 
addition of another copy within the cluster.

MapReduce
Though MapReduce as a technology is relatively new, it builds upon much of the 
fundamental work from both mathematics and computer science, particularly approaches 
that look to express operations that would then be applied to each element in a set of data. 
Indeed the individual concepts of functions called map and reduce come straight from 
functional programming languages where they were applied to lists of input data.

Another key underlying concept is that of "divide and conquer", where a single problem is 
broken into multiple individual subtasks. This approach becomes even more powerful when 
the subtasks are executed in parallel; in a perfect case, a task that takes 1000 minutes could 
be processed in 1 minute by 1,000 parallel subtasks.

MapReduce is a processing paradigm that builds upon these principles; it provides a series of 
transformations from a source to a result data set. In the simplest case, the input data is fed 
to the map function and the resultant temporary data to a reduce function. The developer 
only defines the data transformations; Hadoop's MapReduce job manages the process of 
how to apply these transformations to the data across the cluster in parallel. Though the 
underlying ideas may not be novel, a major strength of Hadoop is in how it has brought 
these principles together into an accessible and well-engineered platform.

Unlike traditional relational databases that require structured data with well-defined 
schemas, MapReduce and Hadoop work best on semi-structured or unstructured data. 
Instead of data conforming to rigid schemas, the requirement is instead that the data be 
provided to the map function as a series of key value pairs. The output of the map function is 
a set of other key value pairs, and the reduce function performs aggregation to collect the 
final set of results.

Hadoop provides a standard specification (that is, interface) for the map and reduce 
functions, and implementations of these are often referred to as mappers and reducers. 
A typical MapReduce job will comprise of a number of mappers and reducers, and it is not 
unusual for several of these to be extremely simple. The developer focuses on expressing the 
transformation between source and result data sets, and the Hadoop framework manages all 
aspects of job execution, parallelization, and coordination.
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This last point is possibly the most important aspect of Hadoop. The platform takes 
responsibility for every aspect of executing the processing across the data. After the user 
defines the key criteria for the job, everything else becomes the responsibility of the system. 
Critically, from the perspective of the size of data, the same MapReduce job can be applied 
to data sets of any size hosted on clusters of any size. If the data is 1 gigabyte in size and on 
a single host, Hadoop will schedule the processing accordingly. Even if the data is 1 petabyte 
in size and hosted across one thousand machines, it still does likewise, determining how best 
to utilize all the hosts to perform the work most efficiently. From the user's perspective, the 
actual size of the data and cluster are transparent, and apart from affecting the time taken to 
process the job, they do not change how the user interacts with Hadoop.

Better together
It is possible to appreciate the individual merits of HDFS and MapReduce, but they are even 
more powerful when combined. HDFS can be used without MapReduce, as it is intrinsically a 
large-scale data storage platform. Though MapReduce can read data from non-HDFS sources, 
the nature of its processing aligns so well with HDFS that using the two together is by far the 
most common use case.

When a MapReduce job is executed, Hadoop needs to decide where to execute the code 
most efficiently to process the data set. If the MapReduce-cluster hosts all pull their data 
from a single storage host or an array, it largely doesn't matter as the storage system is 
a shared resource that will cause contention. But if the storage system is HDFS, it allows 
MapReduce to execute data processing on the node holding the data of interest, building  
on the principle of it being less expensive to move data processing than the data itself.

The most common deployment model for Hadoop sees the HDFS and MapReduce clusters 
deployed on the same set of servers. Each host that contains data and the HDFS component 
to manage it also hosts a MapReduce component that can schedule and execute data 
processing. When a job is submitted to Hadoop, it can use an optimization process as much 
as possible to schedule data on the hosts where the data resides, minimizing network traffic 
and maximizing performance.

Think back to our earlier example of how to process a four-step task on 1 petabyte of 
data spread across one thousand servers. The MapReduce model would (in a somewhat 
simplified and idealized way) perform the processing in a map function on each piece  
of data on a host where the data resides in HDFS and then reuse the cluster in the reduce 
function to collect the individual results into the final result set.

A part of the challenge with Hadoop is in breaking down the overall problem into the best 
combination of map and reduce functions. The preceding approach would only work if the 
four-stage processing chain could be applied independently to each data element in turn. As 
we'll see in later chapters, the answer is sometimes to use multiple MapReduce jobs where 
the output of one is the input to the next.
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Common architecture
Both HDFS and MapReduce are, as mentioned, software clusters that display common 
characteristics:

�� Each follows an architecture where a cluster of worker nodes is managed by a 
special master/coordinator node

�� The master in each case (NameNode for HDFS and JobTracker for MapReduce) 
monitors the health of the cluster and handle failures, either by moving data  
blocks around or by rescheduling failed work

�� Processes on each server (DataNode for HDFS and TaskTracker for MapReduce) are 
responsible for performing work on the physical host, receiving instructions from 
the NameNode or JobTracker, and reporting health/progress status back to it

As a minor terminology point, we will generally use the terms host or server to refer to the 
physical hardware hosting Hadoop's various components. The term node will refer to the 
software component comprising a part of the cluster.

What it is and isn't good for
As with any tool, it's important to understand when Hadoop is a good fit for the problem 
in question. Much of this book will highlight its strengths, based on the previous broad 
overview on processing large data volumes, but it's important to also start appreciating  
at an early stage where it isn't the best choice.

The architecture choices made within Hadoop enable it to be the flexible and scalable data 
processing platform it is today. But, as with most architecture or design choices, there are 
consequences that must be understood. Primary amongst these is the fact that Hadoop is a 
batch processing system. When you execute a job across a large data set, the framework will 
churn away until the final results are ready. With a large cluster, answers across even huge 
data sets can be generated relatively quickly, but the fact remains that the answers are not 
generated fast enough to service impatient users. Consequently, Hadoop alone is not well 
suited to low-latency queries such as those received on a website, a real-time system, or a 
similar problem domain.

When Hadoop is running jobs on large data sets, the overhead of setting up the job, 
determining which tasks are run on each node, and all the other housekeeping activities 
that are required is a trivial part of the overall execution time. But, for jobs on small data 
sets, there is an execution overhead that means even simple MapReduce jobs may take a 
minimum of 10 seconds.

www.allitebooks.com
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Another member of the broader Hadoop family is HBase, an 
open-source implementation of another Google technology.  
This provides a (non-relational) database atop Hadoop that  
uses various means to allow it to serve low-latency queries.

But haven't Google and Yahoo both been among the strongest proponents of this method 
of computation, and aren't they all about such websites where response time is critical? 
The answer is yes, and it highlights an important aspect of how to incorporate Hadoop into 
any organization or activity or use it in conjunction with other technologies in a way that 
exploits the strengths of each. In a paper (http://research.google.com/archive/
googlecluster.html), Google sketches how they utilized MapReduce at the time; after a 
web crawler retrieved updated webpage data, MapReduce processed the huge data set, and 
from this, produced the web index that a fleet of MySQL servers used to service end-user 
search requests.

Cloud computing with Amazon Web Services
The other technology area we'll explore in this book is cloud computing, in the form  
of several offerings from Amazon Web Services. But first, we need to cut through some  
hype and buzzwords that surround this thing called cloud computing.

Too many clouds
Cloud computing has become an overused term, arguably to the point that its overuse risks 
it being rendered meaningless. In this book, therefore, let's be clear what we mean—and 
care about—when using the term. There are two main aspects to this: a new architecture 
option and a different approach to cost.

A third way
We've talked about scale-up and scale-out as the options for scaling data processing systems. 
But our discussion thus far has taken for granted that the physical hardware that makes 
either option a reality will be purchased, owned, hosted, and managed by the organization 
doing the system development. The cloud computing we care about adds a third approach; 
put your application into the cloud and let the provider deal with the scaling problem.
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It's not always that simple, of course. But for many cloud services, the model truly is this 
revolutionary. You develop the software according to some published guidelines or interface 
and then deploy it onto the cloud platform and allow it to scale the service based on the 
demand, for a cost of course. But given the costs usually involved in making scaling systems, 
this is often a compelling proposition.

Different types of costs
This approach to cloud computing also changes how system hardware is paid for. By 
offloading infrastructure costs, all users benefit from the economies of scale achieved by 
the cloud provider by building their platforms up to a size capable of hosting thousands 
or millions of clients. As a user, not only do you get someone else to worry about difficult 
engineering problems, such as scaling, but you pay for capacity as it's needed and you 
don't have to size the system based on the largest possible workloads. Instead, you gain the 
benefit of elasticity and use more or fewer resources as your workload demands.

An example helps illustrate this. Many companies' financial groups run end-of-month 
workloads to generate tax and payroll data, and often, much larger data crunching occurs at 
year end. If you were tasked with designing such a system, how much hardware would you 
buy? If you only buy enough to handle the day-to-day workload, the system may struggle at 
month end and may likely be in real trouble when the end-of-year processing rolls around. If 
you scale for the end-of-month workloads, the system will have idle capacity for most of the 
year and possibly still be in trouble performing the end-of-year processing. If you size for the 
end-of-year workload, the system will have significant capacity sitting idle for the rest of the 
year. And considering the purchase cost of hardware in addition to the hosting and running 
costs—a server's electricity usage may account for a large majority of its lifetime costs—you 
are basically wasting huge amounts of money.

The service-on-demand aspects of cloud computing allow you to start your application  
on a small hardware footprint and then scale it up and down as the year progresses.  
With a pay-for-use model, your costs follow your utilization and you have the capacity  
to process your workloads without having to buy enough hardware to handle the peaks.

A more subtle aspect of this model is that this greatly reduces the costs of entry for an 
organization to launch an online service. We all know that a new hot service that fails to 
meet demand and suffers performance problems will find it hard to recover momentum and 
user interest. For example, say in the year 2000, an organization wanting to have a successful 
launch needed to put in place, on launch day, enough capacity to meet the massive surge of 
user traffic they hoped for but did n't know for sure to expect. When taking costs of physical 
location into consideration, it would have been easy to spend millions on a product launch.
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Today, with cloud computing, the initial infrastructure cost could literally be as low as a  
few tens or hundreds of dollars a month and that would only increase when—and if—the 
traffic demanded.

AWS – infrastructure on demand from Amazon
Amazon Web Services (AWS) is a set of such cloud computing services offered by Amazon. 
We will be using several of these services in this book. 

Elastic Compute Cloud (EC2)
Amazon's Elastic Compute Cloud (EC2), found at http://aws.amazon.com/ec2/, is 
basically a server on demand. After registering with AWS and EC2, credit card details are  
all that's required to gain access to a dedicated virtual machine, it's easy to run a variety  
of operating systems including Windows and many variants of Linux on our server.

Need more servers? Start more. Need more powerful servers? Change to one of the higher 
specification (and cost) types offered. Along with this, EC2 offers a suite of complimentary 
services, including load balancers, static IP addresses, high-performance additional virtual 
disk drives, and many more.

Simple Storage Service (S3)
Amazon's Simple Storage Service (S3), found at http://aws.amazon.com/s3/, is a 
storage service that provides a simple key/value storage model. Using web, command-
line, or programmatic interfaces to create objects, which can be everything from text files 
to images to MP3s, you can store and retrieve your data based on a hierarchical model. 
You create buckets in this model that contain objects. Each bucket has a unique identifier, 
and within each bucket, every object is uniquely named. This simple strategy enables an 
extremely powerful service for which Amazon takes complete responsibility (for service 
scaling, in addition to reliability and availability of data).

Elastic MapReduce (EMR)
Amazon's Elastic MapReduce (EMR), found at http://aws.amazon.com/
elasticmapreduce/, is basically Hadoop in the cloud and builds atop both EC2 and 
S3. Once again, using any of the multiple interfaces (web console, CLI, or API), a Hadoop 
workflow is defined with attributes such as the number of Hadoop hosts required and the 
location of the source data. The Hadoop code implementing the MapReduce jobs is provided 
and the virtual go button is pressed.
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In its most impressive mode, EMR can pull source data from S3, process it on a Hadoop 
cluster it creates on EC2, push the results back into S3, and terminate the Hadoop cluster 
and the EC2 virtual machines hosting it. Naturally, each of these services has a cost (usually 
on per GB stored and server time usage basis), but the ability to access such powerful data 
processing capabilities with no need for dedicated hardware is a powerful one.

What this book covers
In this book we will be learning how to write MapReduce programs to do some serious data 
crunching and how to run them on both locally managed and AWS-hosted Hadoop clusters.

Not only will we be looking at Hadoop as an engine for performing MapReduce processing, 
but we'll also explore how a Hadoop capability can fit into the rest of an organization's 
infrastructure and systems. We'll look at some of the common points of integration, such as 
getting data between Hadoop and a relational database and also how to make Hadoop look 
more like such a relational database.

A dual approach
In this book we will not be limiting our discussion to EMR or Hadoop hosted on Amazon EC2; 
we will be discussing both the building and the management of local Hadoop clusters (on 
Ubuntu Linux) in addition to showing how to push the processing into the cloud via EMR.

 The reason for this is twofold: firstly, though EMR makes Hadoop much more accessible, 
there are aspects of the technology that only become apparent when manually 
administering the cluster. Though it is also possible to use EMR in a more manual mode, 
we'll generally use a local cluster for such explorations. Secondly, though it isn't necessarily 
an either/or decision, many organizations use a mixture of in-house and cloud-hosted 
capacities, sometimes due to a concern of over reliance on a single external provider, but 
practically speaking, it's often convenient to do development and small-scale tests on local 
capacity then deploy at production scale into the cloud.

In some of the latter chapters, where we discuss additional products that integrate with 
Hadoop, we'll only give examples of local clusters as there is no difference in how the 
products work regardless of where they are deployed.
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Summary
We learned a lot in this chapter about big data, Hadoop, and cloud computing.

Specifically, we covered the emergence of big data and how changes in the approach to 
data processing and system architecture bring within the reach of almost any organization 
techniques that were previously prohibitively expensive.

We also looked at the history of Hadoop and how it builds upon many of these trends  
to provide a flexible and powerful data processing platform that can scale to massive 
volumes. We also looked at how cloud computing provides another system architecture 
approach, one which exchanges large up-front costs and direct physical responsibility 
for a pay-as-you-go model and a reliance on the cloud provider for hardware provision, 
management and scaling. We also saw what Amazon Web Services is and how its Elastic 
MapReduce service utilizes other AWS services to provide Hadoop in the cloud.

We also discussed the aim of this book and its approach to exploration on both  
locally-managed and AWS-hosted Hadoop clusters.

Now that we've covered the basics and know where this technology is coming from  
and what its benefits are, we need to get our hands dirty and get things running,  
which is what we'll do in Chapter 2, Getting Hadoop Up and Running.



2
Getting Hadoop Up and Running

Now that we have explored the opportunities and challenges presented  
by large-scale data processing and why Hadoop is a compelling choice,  
it's time to get things set up and running.

In this chapter, we will do the following:

�� Learn how to install and run Hadoop on a local Ubuntu host

�� Run some example Hadoop programs and get familiar with the system

�� Set up the accounts required to use Amazon Web Services products such as EMR

�� Create an on-demand Hadoop cluster on Elastic MapReduce

�� Explore the key differences between a local and hosted Hadoop cluster

Hadoop on a local Ubuntu host
For our exploration of Hadoop outside the cloud, we shall give examples using one or  
more Ubuntu hosts. A single machine (be it a physical computer or a virtual machine)  
will be sufficient to run all the parts of Hadoop and explore MapReduce. However, 
production clusters will most likely involve many more machines, so having even a 
development Hadoop cluster deployed on multiple hosts will be good experience.  
However, for getting started, a single host will suffice.

Nothing we discuss will be unique to Ubuntu, and Hadoop should run on any Linux 
distribution. Obviously, you may have to alter how the environment is configured if  
you use a distribution other than Ubuntu, but the differences should be slight.
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Other operating systems
Hadoop does run well on other platforms. Windows and Mac OS X are popular choices  
for developers. Windows is supported only as a development platform and Mac OS X is  
not formally supported at all.

If you choose to use such a platform, the general situation will be similar to other Linux 
distributions; all aspects of how to work with Hadoop will be the same on both platforms 
but you will need use the operating system-specific mechanisms for setting up environment 
variables and similar tasks. The Hadoop FAQs contain some information on alternative 
platforms and should be your first port of call if you are considering such an approach.  
The Hadoop FAQs can be found at http://wiki.apache.org/hadoop/FAQ.

Time for action – checking the prerequisites
Hadoop is written in Java, so you will need a recent Java Development Kit (JDK) installed  
on the Ubuntu host. Perform the following steps to check the prerequisites:

1.	 First, check what's already available by opening up a terminal and typing  
the following:
$ javac

$ java -version

2.	 If either of these commands gives a no such file or directory or similar 
error, or if the latter mentions "Open JDK", it's likely you need to download the full 
JDK. Grab this from the Oracle download page at http://www.oracle.com/
technetwork/java/javase/downloads/index.html; you should get the 
latest release.

3.	 Once Java is installed, add the JDK/bin directory to your path and set the  
JAVA_HOME environment variable with commands such as the following,  
modified for your specific Java version:

$ export JAVA_HOME=/opt/jdk1.6.0_24

$ export PATH=$JAVA_HOME/bin:${PATH}

What just happened?
These steps ensure the right version of Java is installed and available from the command line 
without having to use lengthy pathnames to refer to the install location.



Chapter 2

[ 27 ]

Remember that the preceding commands only affect the currently running shell and the 
settings will be lost after you log out, close the shell, or reboot. To ensure the same setup  
is always available, you can add these to the startup files for your shell of choice, within  
the .bash_profile file for the BASH shell or the .cshrc file for TCSH, for example.

An alternative favored by me is to put all required configuration settings into a standalone 
file and then explicitly call this from the command line; for example:

$ source Hadoop_config.sh

This technique allows you to keep multiple setup files in the same account without making 
the shell startup overly complex; not to mention, the required configurations for several 
applications may actually be incompatible. Just remember to begin by loading the file at the 
start of each session!

Setting up Hadoop
One of the most confusing aspects of Hadoop to a newcomer is its various components, 
projects, sub-projects, and their interrelationships. The fact that these have evolved over 
time hasn't made the task of understanding it all any easier. For now, though, go to http://
hadoop.apache.org and you'll see that there are three prominent projects mentioned:

�� Common

�� HDFS

�� MapReduce

The last two of these should be familiar from the explanation in Chapter 1, What It's All 
About, and common projects comprise a set of libraries and tools that help the Hadoop 
product work in the real world. For now, the important thing is that the standard Hadoop 
distribution bundles the latest versions all of three of these projects and the combination is 
what you need to get going.

A note on versions
Hadoop underwent a major change in the transition from the 0.19 to the 0.20 versions, most 
notably with a migration to a set of new APIs used to develop MapReduce applications. We 
will be primarily using the new APIs in this book, though we do include a few examples of the 
older API in later chapters as not of all the existing features have been ported to the new API.

Hadoop versioning also became complicated when the 0.20 branch was renamed to 1.0. 
The 0.22 and 0.23 branches remained, and in fact included features not included in the 1.0 
branch. At the time of this writing, things were becoming clearer with 1.1 and 2.0 branches 
being used for future development releases. As most existing systems and third-party tools 
are built against the 0.20 branch, we will use Hadoop 1.0 for the examples in this book.

http://hadoop.apache.org/
http://hadoop.apache.org/
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Time for action – downloading Hadoop
Carry out the following steps to download Hadoop:

1.	 Go to the Hadoop download page at http://hadoop.apache.org/common/
releases.html and retrieve the latest stable version of the 1.0.x branch; at the 
time of this writing, it was 1.0.4.

2.	 You'll be asked to select a local mirror; after that you need to download  
the file with a name such as hadoop-1.0.4-bin.tar.gz.

3.	 Copy this file to the directory where you want Hadoop to be installed  
(for example, /usr/local), using the following command:
$ cp Hadoop-1.0.4.bin.tar.gz /usr/local

4.	 Decompress the file by using the following command:
$ tar –xf hadoop-1.0.4-bin.tar.gz

5.	 Add a convenient symlink to the Hadoop installation directory.
$ ln -s /usr/local/hadoop-1.0.4 /opt/hadoop

6.	 Now you need to add the Hadoop binary directory to your path and set  
the HADOOP_HOME environment variable, just as we did earlier with Java.
$ export HADOOP_HOME=/usr/local/Hadoop

$ export PATH=$HADOOP_HOME/bin:$PATH

7.	 Go into the conf directory within the Hadoop installation and edit the  
Hadoop-env.sh file. Search for JAVA_HOME and uncomment the line,  
modifying the location to point to your JDK installation, as mentioned earlier.

What just happened?
These steps ensure that Hadoop is installed and available from the command line.  
By setting the path and configuration variables, we can use the Hadoop command-line  
tool. The modification to the Hadoop configuration file is the only required change to  
the setup needed to integrate with your host settings.

As mentioned earlier, you should put the export commands in your shell startup file  
or a standalone-configuration script that you specify at the start of the session.

Don't worry about some of the details here; we'll cover Hadoop setup and use later.

http://apache.mirror.anlx.net/hadoop/common/hadoop-0.20.205.0/hadoop-0.20.205.0-bin.tar.gz
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Time for action – setting up SSH
Carry out the following steps to set up SSH:

1.	 Create a new OpenSSL key pair with the following commands:
$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hadoop/.ssh/id_rsa): 

Created directory '/home/hadoop/.ssh'.

Enter passphrase (empty for no passphrase): 

Enter same passphrase again: 

Your identification has been saved in /home/hadoop/.ssh/id_rsa.

Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.

…

2.	 Copy the new public key to the list of authorized keys by using the following 
command:
$ cp .ssh/id _rsa.pub  .ssh/authorized_keys 

3.	 Connect to the local host.
$ ssh localhost

The authenticity of host 'localhost (127.0.0.1)' can't be 
established.

RSA key fingerprint is b6:0c:bd:57:32:b6:66:7c:33:7b:62:92:61:fd:c
a:2a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (RSA) to the list of known 
hosts.

4.	 Confirm that the password-less SSH is working.

$ ssh localhost

$ ssh localhost

What just happened?
Because Hadoop requires communication between multiple processes on one or more 
machines, we need to ensure that the user we are using for Hadoop can connect to each 
required host without needing a password. We do this by creating a Secure Shell (SSH) key 
pair that has an empty passphrase. We use the ssh-keygen command to start this process 
and accept the offered defaults.

www.allitebooks.com
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Once we create the key pair, we need to add the new public key to the stored list of trusted 
keys; this means that when trying to connect to this machine, the public key will be trusted. 
After doing so, we use the ssh command to connect to the local machine and should expect 
to get a warning about trusting the host certificate as just shown. After confirming this, we 
should then be able to connect without further passwords or prompts.

Note that when we move later to use a fully distributed cluster, we will 
need to ensure that the Hadoop user account has the same key set up 
on every host in the cluster.

Configuring and running Hadoop
So far this has all been pretty straightforward, just downloading and system administration. 
Now we can deal with Hadoop directly. Finally! We'll run a quick example to show Hadoop in 
action. There is additional configuration and set up to be performed, but this next step will 
help give confidence that things are installed and configured correctly so far.

Time for action – using Hadoop to calculate Pi
We will now use a sample Hadoop program to calculate the value of Pi. Right now,  
this is primarily to validate the installation and to show how quickly you can get a 
MapReduce job to execute. Assuming the HADOOP_HOME/bin directory is in your path,  
type the following commands:

$ Hadoop jar hadoop/hadoop-examples-1.0.4.jar  pi 4 1000

Number of Maps  = 4

Samples per Map = 1000

Wrote input for Map #0

Wrote input for Map #1

Wrote input for Map #2

Wrote input for Map #3

Starting Job

12/10/26 22:56:11 INFO jvm.JvmMetrics: Initializing JVM Metrics 
with processName=JobTracker, sessionId=

12/10/26 22:56:11 INFO mapred.FileInputFormat: Total input paths 
to process : 4

12/10/26 22:56:12 INFO mapred.JobClient: Running job: job_
local_0001
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12/10/26 22:56:12 INFO mapred.FileInputFormat: Total input paths 
to process : 4

12/10/26 22:56:12 INFO mapred.MapTask: numReduceTasks: 1

…

12/10/26 22:56:14 INFO mapred.JobClient:  map 100% reduce 100%

12/10/26 22:56:14 INFO mapred.JobClient: Job complete: job_
local_0001

12/10/26 22:56:14 INFO mapred.JobClient: Counters: 13

12/10/26 22:56:14 INFO mapred.JobClient:   FileSystemCounters

…

Job Finished in 2.904 seconds

Estimated value of Pi is 3.14000000000000000000

$

What just happened?
There's a lot of information here; even more so when you get the full output on your screen. 
For now, let's unpack the fundamentals and not worry about much of Hadoop's status 
output until later in the book. The first thing to clarify is some terminology; each Hadoop 
program runs as a job that creates multiple tasks to do its work.

Looking at the output, we see it is broadly split into three sections:

�� The start up of the job

�� The status as the job executes

�� The output of the job

In our case, we can see the job creates four tasks to calculate Pi, and the overall job result 
will be the combination of these subresults. This pattern should sound familiar to the one 
we came across in Chapter 1, What It's All About; the model is used to split a larger job into 
smaller pieces and then bring together the results.

The majority of the output will appear as the job is being executed and provide status 
messages showing progress. On successful completion, the job will print out a number of 
counters and other statistics. The preceding example is actually unusual in that it is rare to see 
the result of a MapReduce job displayed on the console. This is not a limitation of Hadoop, 
but rather a consequence of the fact that jobs that process large data sets usually produce a 
significant amount of output data that isn't well suited to a simple echoing on the screen.

Congratulations on your first successful MapReduce job!
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Three modes
In our desire to get something running on Hadoop, we sidestepped an important issue: in 
which mode should we run Hadoop? There are three possibilities that alter where the various 
Hadoop components execute. Recall that HDFS comprises a single NameNode that acts as 
the cluster coordinator and is the master for one or more DataNodes that store the data. For 
MapReduce, the JobTracker is the cluster master and it coordinates the work executed by one 
or more TaskTracker processes. The Hadoop modes deploy these components as follows:

�� Local standalone mode: This is the default mode if, as in the preceding Pi example, 
you don't configure anything else. In this mode, all the components of Hadoop, such 
as NameNode, DataNode, JobTracker, and TaskTracker, run in a single Java process.

�� Pseudo-distributed mode: In this mode, a separate JVM is spawned for each of the 
Hadoop components and they communicate across network sockets, effectively 
giving a fully functioning minicluster on a single host.

�� Fully distributed mode: In this mode, Hadoop is spread across multiple machines, 
some of which will be general-purpose workers and others will be dedicated hosts 
for components, such as NameNode and JobTracker.

Each mode has its benefits and drawbacks. Fully distributed mode is obviously the only one 
that can scale Hadoop across a cluster of machines, but it requires more configuration work, 
not to mention the cluster of machines. Local, or standalone, mode is the easiest to set 
up, but you interact with it in a different manner than you would with the fully distributed 
mode. In this book, we shall generally prefer the pseudo-distributed mode even when using 
examples on a single host, as everything done in the pseudo-distributed mode is almost 
identical to how it works on a much larger cluster.

Time for action – configuring the pseudo-distributed mode
Take a look in the conf directory within the Hadoop distribution. There are many 
configuration files, but the ones we need to modify are core-site.xml, hdfs-site.xml 
and mapred-site.xml.

1.	 Modify core-site.xml to look like the following code:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
<name>fs.default.name</name>
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<value>hdfs://localhost:9000</value>
</property>
</configuration>

2.	 Modify hdfs-site.xml to look like the following code:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>

3.	 Modify mapred-site.xml to look like the following code:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
</property>
</configuration>

What just happened?
The first thing to note is the general format of these configuration files. They are obviously 
XML and contain multiple property specifications within a single configuration element.

The property specifications always contain name and value elements with the possibility for 
optional comments not shown in the preceding code.

We set three configuration variables here:

�� The dfs.default.name variable holds the location of the NameNode and is 
required by both HDFS and MapReduce components, which explains why it's in 
core-site.xml and not hdfs-site.xml.
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�� The dfs.replication variable specifies how many times each HDFS block should 
be replicated. Recall from Chapter 1, What It's All About, that HDFS handles failures 
by ensuring each block of filesystem data is replicated to a number of different 
hosts, usually 3. As we only have a single host and one DataNode in the pseudo-
distributed mode, we change this value to 1.

�� The mapred.job.tracker variable holds the location of the JobTracker just 
like dfs.default.name holds the location of the NameNode. Because only 
MapReduce components need know this location, it is in mapred-site.xml.

You are free, of course, to change the port numbers used, though 9000 
and 9001 are common conventions in Hadoop.

The network addresses for the NameNode and the JobTracker specify the ports on which 
the actual system requests should be directed. These are not user-facing locations, so don't 
bother pointing your web browser at them. There are web interfaces that we will look at 
shortly.

Configuring the base directory and formatting the filesystem
If the pseudo-distributed or fully distributed mode is chosen, there are two steps that need 
to be performed before we start our first Hadoop cluster.

1.	 Set the base directory where Hadoop files will be stored.

2.	 Format the HDFS filesystem.

To be precise, we don't need to change the default directory; but, as 
seen later, it's a good thing to think about it now.

Time for action – changing the base HDFS directory
Let's first set the base directory that specifies the location on the local filesystem under 
which Hadoop will keep all its data. Carry out the following steps:

1.	 Create a directory into which Hadoop will store its data:
$ mkdir /var/lib/hadoop

2.	 Ensure the directory is writeable by any user:
$ chmod 777 /var/lib/hadoop
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3.	 Modify core-site.xml once again to add the following property:

<property>
<name>hadoop.tmp.dir</name>
<value>/var/lib/hadoop</value>
</property>

What just happened?
As we will be storing data in Hadoop and all the various components are running on our local 
host, this data will need to be stored on our local filesystem somewhere. Regardless of the 
mode, Hadoop by default uses the hadoop.tmp.dir property as the base directory under 
which all files and data are written.

MapReduce, for example, uses a /mapred directory under this base directory; HDFS uses 
/dfs. The danger is that the default value of hadoop.tmp.dir is /tmp and some Linux 
distributions delete the contents of /tmp on each reboot. So it's safer to explicitly state 
where the data is to be held.

Time for action – formatting the NameNode
Before starting Hadoop in either pseudo-distributed or fully distributed mode for the first 
time, we need to format the HDFS filesystem that it will use. Type the following:

$  hadoop namenode -format

The output of this should look like the following:

$ hadoop namenode -format

12/10/26 22:45:25 INFO namenode.NameNode: STARTUP_MSG: 

/************************************************************

STARTUP_MSG: Starting NameNode

STARTUP_MSG:   host = vm193/10.0.0.193

STARTUP_MSG:   args = [-format]

…

12/10/26 22:45:25 INFO namenode.FSNamesystem: fsOwner=hadoop,hadoop

12/10/26 22:45:25 INFO namenode.FSNamesystem: supergroup=supergroup

12/10/26 22:45:25 INFO namenode.FSNamesystem: isPermissionEnabled=true

12/10/26 22:45:25 INFO common.Storage: Image file of size 96 saved in 0 
seconds.
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12/10/26 22:45:25 INFO common.Storage: Storage directory /var/lib/hadoop-
hadoop/dfs/name has been successfully formatted.

12/10/26 22:45:26 INFO namenode.NameNode: SHUTDOWN_MSG: 

/************************************************************

SHUTDOWN_MSG: Shutting down NameNode at vm193/10.0.0.193

$ 

What just happened?
This is not a very exciting output because the step is only an enabler for our future use  
of HDFS. However, it does help us think of HDFS as a filesystem; just like any new storage 
device on any operating system, we need to format the device before we can use it. The 
same is true for HDFS; initially there is a default location for the filesystem data but no  
actual data for the equivalents of filesystem indexes.

Do this every time!
If your experience with Hadoop has been similar to the one I have had, there 
will be a series of simple mistakes that are frequently made when setting 
up new installations. It is very easy to forget about the formatting of the 
NameNode and then get a cascade of failure messages when the first Hadoop 
activity is tried.
But do it only once!
The command to format the NameNode can be executed multiple times, but in 
doing so all existing filesystem data will be destroyed. It can only be executed 
when the Hadoop cluster is shut down and sometimes you will want to do it 
but in most other cases it is a quick way to irrevocably delete every piece of 
data on HDFS; it does take much longer on large clusters. So be careful!

Starting and using Hadoop
After all that configuration and setup, let's now start our cluster and actually do something 
with it.

Time for action – starting Hadoop
Unlike the local mode of Hadoop, where all the components run only for the lifetime of the 
submitted job, with the pseudo-distributed or fully distributed mode of Hadoop, the cluster 
components exist as long-running processes. Before we use HDFS or MapReduce, we need to 
start up the needed components. Type the following commands; the output should look as 
shown next, where the commands are included on the lines prefixed by $:



Chapter 2

[ 37 ]

1.	 Type in the first command:
$ start-dfs.sh

starting namenode, logging to /home/hadoop/hadoop/bin/../logs/
hadoop-hadoop-namenode-vm193.out

localhost: starting datanode, logging to /home/hadoop/hadoop/
bin/../logs/hadoop-hadoop-datanode-vm193.out

localhost: starting secondarynamenode, logging to /home/hadoop/
hadoop/bin/../logs/hadoop-hadoop-secondarynamenode-vm193.out

2.	 Type in the second command:
$ jps

9550 DataNode

9687 Jps

9638 SecondaryNameNode

9471 NameNode

3.	 Type in the third command:
$ hadoop dfs -ls /

Found 2 items

drwxr-xr-x   - hadoop supergroup          0 2012-10-26 23:03 /tmp

drwxr-xr-x   - hadoop supergroup          0 2012-10-26 23:06 /user

4.	 Type in the fourth command:
$ start-mapred.sh 

starting jobtracker, logging to /home/hadoop/hadoop/bin/../logs/
hadoop-hadoop-jobtracker-vm193.out

localhost: starting tasktracker, logging to /home/hadoop/hadoop/
bin/../logs/hadoop-hadoop-tasktracker-vm193.out

5.	 Type in the fifth command:

$ jps

9550 DataNode

9877 TaskTracker

9638 SecondaryNameNode

9471 NameNode

9798 JobTracker

9913 Jps
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What just happened?
The start-dfs.sh command, as the name suggests, starts the components necessary for 
HDFS. This is the NameNode to manage the filesystem and a single DataNode to hold data. 
The SecondaryNameNode is an availability aid that we'll discuss in a later chapter.

After starting these components, we use the JDK's jps utility to see which Java processes are 
running, and, as the output looks good, we then use Hadoop's dfs utility to list the root of 
the HDFS filesystem.

After this, we use start-mapred.sh to start the MapReduce components—this time the 
JobTracker and a single TaskTracker—and then use jps again to verify the result.

There is also a combined start-all.sh file that we'll use at a later stage, but in the early 
days it's useful to do a two-stage start up to more easily verify the cluster configuration.

Time for action – using HDFS
As the preceding example shows, there is a familiar-looking interface to HDFS that allows 
us to use commands similar to those in Unix to manipulate files and directories on the 
filesystem. Let's try it out by typing the following commands:

Type in the following commands:

$ hadoop -mkdir /user

$ hadoop -mkdir /user/hadoop

$ hadoop fs -ls /user

Found 1 items

drwxr-xr-x   - hadoop supergroup          0 2012-10-26 23:09 /user/Hadoop

$ echo "This is a test." >> test.txt

$ cat test.txt

This is a test.

$ hadoop dfs -copyFromLocal test.txt  .

$ hadoop dfs -ls

Found 1 items

-rw-r--r--   1 hadoop supergroup         16 2012-10-26 23:19/user/hadoop/
test.txt

$ hadoop dfs -cat test.txt

This is a test.

$ rm test.txt 

$ hadoop dfs -cat test.txt
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This is a test.

$ hadoop fs -copyToLocal test.txt

$ cat test.txt

This is a test.

What just happened?
This example shows the use of the fs subcommand to the Hadoop utility. Note that both 
dfs and fs commands are equivalent). Like most filesystems, Hadoop has the concept of a 
home directory for each user. These home directories are stored under the /user directory 
on HDFS and, before we go further, we create our home directory if it does not already exist.

We then create a simple text file on the local filesystem and copy it to HDFS by using the 
copyFromLocal command and then check its existence and contents by using the -ls and 
-cat utilities. As can be seen, the user home directory is aliased to . because, in Unix, -ls 
commands with no path specified are assumed to refer to that location and relative paths 
(not starting with /) will start there.

We then deleted the file from the local filesystem, copied it back from HDFS by using the 
-copyToLocal command, and checked its contents using the local cat utility.

Mixing HDFS and local filesystem commands, as in the preceding example, 
is a powerful combination, and it's very easy to execute on HDFS commands 
that were intended for the local filesystem and vice versa. So be careful, 
especially when deleting.

There are other HDFS manipulation commands; try Hadoop fs -help for a detailed list.

Time for action – WordCount, the Hello World of MapReduce
Many applications, over time, acquire a canonical example that no beginner's guide should 
be without. For Hadoop, this is WordCount – an example bundled with Hadoop that counts 
the frequency of words in an input text file.

1.	 First execute the following commands:
$ hadoop dfs -mkdir data

$ hadoop dfs -cp test.txt data

$ hadoop dfs -ls data

Found 1 items

-rw-r--r--   1 hadoop supergroup         16 2012-10-26 23:20 /
user/hadoop/data/test.txt

www.allitebooks.com

http://www.allitebooks.org
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2.	 Now execute these commands:
$ Hadoop Hadoop/hadoop-examples-1.0.4.jar  wordcount data out

12/10/26 23:22:49 INFO input.FileInputFormat: Total input paths to 
process : 1

12/10/26 23:22:50 INFO mapred.JobClient: Running job: 
job_201210262315_0002

12/10/26 23:22:51 INFO mapred.JobClient:  map 0% reduce 0%

12/10/26 23:23:03 INFO mapred.JobClient:  map 100% reduce 0%

12/10/26 23:23:15 INFO mapred.JobClient:  map 100% reduce 100%

12/10/26 23:23:17 INFO mapred.JobClient: Job complete: 
job_201210262315_0002

12/10/26 23:23:17 INFO mapred.JobClient: Counters: 17

12/10/26 23:23:17 INFO mapred.JobClient:   Job Counters 

12/10/26 23:23:17 INFO mapred.JobClient:     Launched reduce 
tasks=1

12/10/26 23:23:17 INFO mapred.JobClient:     Launched map tasks=1

12/10/26 23:23:17 INFO mapred.JobClient:     Data-local map 
tasks=1

12/10/26 23:23:17 INFO mapred.JobClient:   FileSystemCounters

12/10/26 23:23:17 INFO mapred.JobClient:     FILE_BYTES_READ=46

12/10/26 23:23:17 INFO mapred.JobClient:     HDFS_BYTES_READ=16

12/10/26 23:23:17 INFO mapred.JobClient:     FILE_BYTES_
WRITTEN=124

12/10/26 23:23:17 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=24

12/10/26 23:23:17 INFO mapred.JobClient:   Map-Reduce Framework

12/10/26 23:23:17 INFO mapred.JobClient:     Reduce input groups=4

12/10/26 23:23:17 INFO mapred.JobClient:     Combine output 
records=4

12/10/26 23:23:17 INFO mapred.JobClient:     Map input records=1

12/10/26 23:23:17 INFO mapred.JobClient:     Reduce shuffle 
bytes=46

12/10/26 23:23:17 INFO mapred.JobClient:     Reduce output 
records=4

12/10/26 23:23:17 INFO mapred.JobClient:     Spilled Records=8

12/10/26 23:23:17 INFO mapred.JobClient:     Map output bytes=32

12/10/26 23:23:17 INFO mapred.JobClient:     Combine input 
records=4

12/10/26 23:23:17 INFO mapred.JobClient:     Map output records=4

12/10/26 23:23:17 INFO mapred.JobClient:     Reduce input 
records=4
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3.	 Execute the following command:
$ hadoop fs -ls out

Found 2 items

drwxr-xr-x   - hadoop supergroup          0 2012-10-26 23:22 /
user/hadoop/out/_logs

-rw-r--r--   1 hadoop supergroup         24 2012-10-26 23:23 /
user/hadoop/out/part-r-00000

4.	 Now execute this command:

$ hadoop fs -cat out/part-0-00000

This  1

a  1

is  1

test.  1

What just happened?
We did three things here, as follows:

�� Moved the previously created text file into a new directory on HDFS

�� Ran the example WordCount job specifying this new directory and a non-existent 
output directory as arguments

�� Used the fs utility to examine the output of the MapReduce job

As we said earlier, the pseudo-distributed mode has more Java processes, so it may seem 
curious that the job output is significantly shorter than for the standalone Pi. The reason is 
that the local standalone mode prints information about each individual task execution to 
the screen, whereas in the other modes this information is written only to logfiles on the 
running hosts.

The output directory is created by Hadoop itself and the actual result files follow the  
part-nnnnn convention illustrated here; though given our setup, there is only one result  
file. We use the fs -cat command to examine the file, and the results are as expected.

If you specify an existing directory as the output source for a Hadoop job, it 
will fail to run and will throw an exception complaining of an already existing 
directory. If you want Hadoop to store the output to a directory, it must not exist. 
Treat this as a safety mechanism that stops Hadoop from writing over previous 
valuable job runs and something you will forget to ascertain frequently. If you are 
confident, you can override this behavior, as we will see later.
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The Pi and WordCount programs are only some of the examples that ship with Hadoop. Here 
is how to get a list of them all. See if you can figure some of them out.

$ hadoop jar hadoop/hadoop-examples-1.0.4.jar 

Have a go hero – WordCount on a larger body of text
Running a complex framework like Hadoop utilizing five discrete Java processes to count the 
words in a single-line text file is not terribly impressive. The power comes from the fact that 
we can use exactly the same program to run WordCount on a larger file, or even a massive 
corpus of text spread across a multinode Hadoop cluster. If we had such a setup, we would 
execute exactly the same commands as we just did by running the program and simply 
specifying the location of the directories for the source and output data.

Find a large online text file—Project Gutenberg at http://www.gutenberg.org is a good 
starting point—and run WordCount on it by copying it onto the HDFS and executing the 
WordCount example. The output may not be as you expect because, in a large body of text, 
issues of dirty data, punctuation, and formatting will need to be addressed. Think about how 
WordCount could be improved; we'll study how to expand it into a more complex processing 
chain in the next chapter.

Monitoring Hadoop from the browser
So far, we have been relying on command-line tools and direct command output to see what 
our system is doing. Hadoop provides two web interfaces that you should become familiar 
with, one for HDFS and the other for MapReduce. Both are useful in pseudo-distributed 
mode and are critical tools when you have a fully distributed setup.

The HDFS web UI
Point your web browser to port 50030 on the host running Hadoop. By default, the web 
interface should be available from both the local host and any other machine that has 
network access. Here is an example screenshot:

http://www.gutenberg.org/
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There is a lot going on here, but the immediately critical data tells us the number of nodes 
in the cluster, the filesystem size, used space, and links to drill down for more info and even 
browse the filesystem.

Spend a little time playing with this interface; it needs to become familiar. With a multinode 
cluster, the information about live and dead nodes plus the detailed information on their 
status history will be critical to debugging cluster problems.
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The MapReduce web UI
The JobTracker UI is available on port 50070 by default, and the same access rules stated 
earlier apply. Here is an example screenshot:

This is more complex than the HDFS interface! Along with a similar count of the number 
of live/dead nodes, there is a history of the number of jobs executed since startup and a 
breakdown of their individual task counts.

The list of executing and historical jobs is a doorway to much more information; for every 
job, we can access the history of every task attempt on every node and access logs for 
detailed information. We now expose one of the most painful parts of working with any 
distributed system: debugging. It can be really hard.

Imagine you have a cluster of 100 machines trying to process a massive data set where the 
full job requires each host to execute hundreds of map and reduce tasks. If the job starts 
running very slowly or explicitly fails, it is not always obvious where the problem lies. Looking 
at the MapReduce web UI will likely be the first port of call because it provides such a rich 
starting point to investigate the health of running and historical jobs.
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Using Elastic MapReduce
We will now turn to Hadoop in the cloud, the Elastic MapReduce service offered by Amazon 
Web Services. There are multiple ways to access EMR, but for now we will focus on the 
provided web console to contrast a full point-and-click approach to Hadoop with the 
previous command-line-driven examples.

Setting up an account in Amazon Web Services
Before using Elastic MapReduce, we need to set up an Amazon Web Services account and 
register it with the necessary services.

Creating an AWS account
Amazon has integrated their general accounts with AWS, meaning that if you already have an 
account for any of the Amazon retail websites, this is the only account you will need to use 
AWS services.

Note that AWS services have a cost; you will need an active credit card associated with the 
account to which charges can be made.

If you require a new Amazon account, go to http://aws.amazon.com, select create a new 
AWS account, and follow the prompts. Amazon has added a free tier for some services, so 
you may find that in the early days of testing and exploration you are keeping many of your 
activities within the non-charged tier. The scope of the free tier has been expanding, so make 
sure you know for what you will and won't be charged.

Signing up for the necessary services
Once you have an Amazon account, you will need to register it for use with the required 
AWS services, that is, Simple Storage Service (S3), Elastic Compute Cloud (EC2), and Elastic 
MapReduce (EMR). There is no cost for simply signing up to any AWS service; the process 
just makes the service available to your account.

Go to the S3, EC2, and EMR pages linked from http://aws.amazon.com and click on the 
Sign up button on each page; then follow the prompts.

http://aws.amazon.com/
http://aws.amazon.com/


Getting Hadoop Up and Running

[ 46 ]

Caution! This costs real money!
Before going any further, it is critical to understand that use of AWS services will 
incur charges that will appear on the credit card associated with your Amazon 
account. Most of the charges are quite small and increase with the amount of 
infrastructure consumed; storing 10 GB of data in S3 costs 10 times more than 
for 1 GB, and running 20 EC2 instances costs 20 times as much as a single one. 
There are tiered cost models, so the actual costs tend to have smaller marginal 
increases at higher levels. But you should read carefully through the pricing 
sections for each service before using any of them. Note also that currently 
data transfer out of AWS services, such as EC2 and S3, is chargeable but data 
transfer between services is not. This means it is often most cost-effective to 
carefully design your use of AWS to keep data within AWS through as much of 
the data processing as possible.

Time for action – WordCount on EMR using the management 
console

Let's jump straight into an example on EMR using some provided example code. Carry out 
the following steps:

1.	 Browse to http://aws.amazon.com, go to Developers | AWS Management 
Console, and then click on the Sign in to the AWS Console button. The default  
view should look like the following screenshot. If it does not, click on Amazon S3 
from within the console.

http://aws.amazon.com/
http://aws.amazon.com/
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2.	 As shown in the preceding screenshot, click on the Create bucket button and enter 
a name for the new bucket. Bucket names must be globally unique across all AWS 
users, so do not expect obvious bucket names such as mybucket or s3test to  
be available.

3.	 Click on the Region drop-down menu and select the geographic area nearest to you.

4.	 Click on the Elastic MapReduce link and click on the Create a new Job Flow button. 
You should see a screen like the following screenshot:
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5.	 You should now see a screen like the preceding screenshot. Select the Run a sample 
application radio button and the Word Count (Streaming) menu item from the 
sample application drop-down box and click on the Continue button.

6.	 The next screen, shown in the preceding screenshot, allows us to specify the 
location of the output produced by running the job. In the edit box for the output 
location, enter the name of the bucket created in step 1 (garryt1use is the bucket 
we are using here); then click on the Continue button.
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7.	 The next screenshot shows the page where we can modify the number and size of 
the virtual hosts utilized by our job. Confirm that the instance type for each combo 
box is Small (m1.small), and the number of nodes for the Core group is 2 and for the 
Task group it is 0. Then click on the Continue button.

8.	 This next screenshot involves options we will not be using in this example. For the 
Amazon EC2 key pair field, select the Proceed without key pair menu item and click 
on the No radio button for the Enable Debugging field. Ensure that the Keep Alive 
radio button is set to No and click on the Continue button.

www.allitebooks.com

http://www.allitebooks.org
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9.	 The next screen, shown in the preceding screenshot, is one we will not be doing 
much with right now. Confirm that the Proceed with no Bootstrap Actions radio 
button is selected and click on the Continue button.

10.	Confirm the job flow specifications are as expected and click on the Create Job Flow 
button. Then click on the View my Job Flows and check status buttons. This will give 
a list of your job flows; you can filter to show only running or completed jobs. The 
default is to show all, as in the example shown in the following screenshot:
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11.	Occasionally hit the Refresh button until the status of the listed job, Running or 
Starting, changes to Complete; then click its checkbox to see details of the job flow, 
as shown in the following screenshot:

12.	Click the S3 tab and select the bucket you created for the output location. You will 
see it has a single entry called wordcount, which is a directory. Right-click on that 
and select Open. Then do the same until you see a list of actual files following the 
familiar Hadoop part-nnnnn naming scheme, as shown in the following screenshot:
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Right click on part-00000 and open it. It should look something like this:

a              14716
aa             52
aakar          3
aargau         3
abad           3
abandoned      46
abandonment    6
abate          9
abauj          3
abbassid       4
abbes          3
abbl           3
…

Does this type of output look familiar?

What just happened?
The first step deals with S3, and not EMR. S3 is a scalable storage service that allows you to 
store files (called objects) within containers called buckets, and to access objects by their 
bucket and object key (that is, name). The model is analogous to the usage of a filesystem, and 
though there are underlying differences, they are unlikely to be important within this book.

S3 is where you will place the MapReduce programs and source data you want to process in 
EMR, and where the output and logs of EMR Hadoop jobs will be stored. There is a plethora 
of third-party tools to access S3, but here we are using the AWS management console, a 
browser interface to most AWS services.

Though we suggested you choose the nearest geographic region for S3, this is not required; 
non-US locations will typically give better latency for customers located nearer to them, but 
they also tend to have a slightly higher cost. The decision of where to host your data and 
applications is one you need to make after considering all these factors.

After creating the S3 bucket, we moved to the EMR console and created a new job flow.  
This term is used within EMR to refer to a data processing task. As we will see, this can  
be a one-time deal where the underlying Hadoop cluster is created and destroyed on 
demand or it can be a long-running cluster on which multiple jobs are executed.

We left the default job flow name and then selected the use of an example application,  
in this case, the Python implementation of WordCount. The term Hadoop Streaming refers  
to a mechanism allowing scripting languages to be used to write map and reduce tasks, but 
the functionality is the same as the Java WordCount we used earlier.
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The form to specify the job flow requires a location for the source data, program, map and 
reduce classes, and a desired location for the output data. For the example we just saw, most 
of the fields were prepopulated; and, as can be seen, there are clear similarities to what was 
required when running local Hadoop from the command line.

By not selecting the Keep Alive option, we chose a Hadoop cluster that would be created 
specifically to execute this job, and destroyed afterwards. Such a cluster will have a longer 
startup time but will minimize costs. If you choose to keep the job flow alive, you will see 
additional jobs executed more quickly as you don't have to wait for the cluster to start up. 
But you will be charged for the underlying EC2 resources until you explicitly terminate the 
job flow.

After confirming, we do not need to add any additional bootstrap options; we selected the 
number and types of hosts we wanted to deploy into our Hadoop cluster. EMR distinguishes 
between three different groups of hosts:

�� Master group: This is a controlling node hosting the NameNode and the JobTracker.  
There is only 1 of these.

�� Core group: These are nodes running both HDFS DataNodes and MapReduce 
TaskTrackers. The number of hosts is configurable.

�� Task group: These hosts don't hold HDFS data but do run TaskTrackers and can 
provide more processing horsepower. The number of hosts is configurable.

The type of host refers to different classes of hardware capability, the details of which can 
be found on the EC2 page. Larger hosts are more powerful but have a higher cost. Currently, 
by default, the total number of hosts in a job flow must be 20 or less, though Amazon has a 
simple form to request higher limits.

After confirming, all is as expected—we launch the job flow and monitor it on the console 
until the status changes to COMPLETED. At this point, we go back to S3, look inside the 
bucket we specified as the output destination, and examine the output of our WordCount 
job, which should look very similar to the output of a local Hadoop WordCount.

An obvious question is where did the source data come from? This was one of the 
prepopulated fields in the job flow specification we saw during the creation process. For 
nonpersistent job flows, the most common model is for the source data to be read from a 
specified S3 source location and the resulting data written to the specified result S3 bucket.

That is it! The AWS management console allows fine-grained control of services such as S3 
and EMR from the browser. Armed with nothing more than a browser and a credit card, 
we can launch Hadoop jobs to crunch data without ever having to worry about any of the 
mechanics around installing, running, or managing Hadoop.
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Have a go hero – other EMR sample applications
EMR provides several other sample applications. Why not try some of them as well?

Other ways of using EMR
Although a powerful and impressive tool, the AWS management console is not always 
how we want to access S3 and run EMR jobs. As with all AWS services, there are both 
programmatic and command-line tools to use the services.

AWS credentials
Before using either programmatic or command-line tools, however, we need to look at how 
an account holder authenticates for AWS to make such requests. As these are chargeable 
services, we really do not want anyone else to make requests on our behalf. Note that as  
we logged directly into the AWS management console with our AWS account in the 
preceding example, we did not have to worry about this.

Each AWS account has several identifiers that are used when accessing the various services:

�� Account ID: Each AWS account has a numeric ID.

�� Access key: Each account has an associated access key that is used to identify the 
account making the request.

�� Secret access key: The partner to the access key is the secret access key. The access 
key is not a secret and could be exposed in service requests, but the secret access 
key is what you use to validate yourself as the account owner.

�� Key pairs: These are the key pairs used to log in to EC2 hosts. It is possible to either 
generate public/private key pairs within EC2 or to import externally generated keys 
into the system.

If this sounds confusing, it's because it is. At least at first. When using a tool to access an 
AWS service, however, there's usually a single up-front step of adding the right credentials 
to a configured file, and then everything just works. However, if you do decide to explore 
programmatic or command-line tools, it will be worth a little time investment to read the 
documentation for each service to understand how its security works.

The EMR command-line tools
In this book, we will not do anything with S3 and EMR that cannot be done from the AWS 
management console. However, when working with operational workloads, looking to 
integrate into other workflows, or automating service access, a browser-based tool is not 
appropriate, regardless of how powerful it is. Using the direct programmatic interfaces to  
a service provides the most granular control but requires the most effort.
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Amazon provides for many services a group of command-line tools that provide a useful way 
of automating access to AWS services that minimizes the amount of required development. 
The Elastic MapReduce command-line tools, linked from the main EMR page, are worth a 
look if you want a more CLI-based interface to EMR but don't want to write custom code  
just yet.

The AWS ecosystem
Each AWS service also has a plethora of third-party tools, services, and libraries that can 
provide different ways of accessing the service, provide additional functionality, or offer 
new utility programs. Check out the developer tools hub at http://aws.amazon.com/
developertools, as a starting point.

Comparison of local versus EMR Hadoop
After our first experience of both a local Hadoop cluster and its equivalent in EMR, this is a 
good point at which we can consider the differences of the two approaches.

As may be apparent, the key differences are not really about capability; if all we want is an 
environment to run MapReduce jobs, either approach is completely suited. Instead, the 
distinguishing characteristics revolve around a topic we touched on in Chapter 1, What It's 
All About, that being whether you prefer a cost model that involves upfront infrastructure 
costs and ongoing maintenance effort over one with a pay-as-you-go model with a lower 
maintenance burden along with rapid and conceptually infinite scalability. Other than the 
cost decisions, there are a few things to keep in mind:

�� EMR supports specific versions of Hadoop and has a policy of upgrading over time. 
If you have a need for a specific version, in particular if you need the latest and 
greatest versions immediately after release, then the lag before these are live on 
EMR may be unacceptable.

�� You can start up a persistent EMR job flow and treat it much as you would a local 
Hadoop cluster, logging into the hosting nodes and tweaking their configuration. If 
you find yourself doing this, its worth asking if that level of control is really needed 
and, if so, is it stopping you getting all the cost model benefits of a move to EMR?

�� If it does come down to a cost consideration, remember to factor in all the hidden 
costs of a local cluster that are often forgotten. Think about the costs of power, 
space, cooling, and facilities. Not to mention the administration overhead, which 
can be nontrivial if things start breaking in the early hours of the morning.

http://aws.amazon.com/developertools
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Summary
We covered a lot of ground in this chapter, in regards to getting a Hadoop cluster up and 
running and executing MapReduce programs on it.

Specifically, we covered the prerequisites for running Hadoop on local Ubuntu hosts.  
We also saw how to install and configure a local Hadoop cluster in either standalone or 
pseudo-distributed modes. Then, we looked at how to access the HDFS filesystem and 
submit MapReduce jobs. We then moved on and learned what accounts are needed to 
access Elastic MapReduce and other AWS services.

We saw how to browse and create S3 buckets and objects using the AWS management 
console, and also how to create a job flow and use it to execute a MapReduce job on an 
EMR-hosted Hadoop cluster. We also discussed other ways of accessing AWS services and 
studied the differences between local and EMR-hosted Hadoop.

Now that we have learned about running Hadoop locally or on EMR, we are ready to start 
writing our own MapReduce programs, which is the topic of the next chapter.



3
Understanding MapReduce

The previous two chapters have discussed the problems that Hadoop allows us 
to solve, and gave some hands-on experience of running example MapReduce 
jobs. With this foundation, we will now go a little deeper.

In this chapter we will be:

�� Understanding how key/value pairs are the basis of Hadoop tasks

�� Learning the various stages of a MapReduce job

�� Examining the workings of the map, reduce, and optional combined stages in detail

�� Looking at the Java API for Hadoop and use it to develop some simple  
MapReduce jobs

�� Learning about Hadoop input and output

Key/value pairs
Since Chapter 1, What It's All About, we have been talking about operations that process  
and provide the output in terms of key/value pairs without explaining why. It is time to 
address that.

What it mean
Firstly, we will clarify just what we mean by key/value pairs by highlighting similar concepts 
in the Java standard library. The java.util.Map interface is the parent of commonly used 
classes such as HashMap and (through some library backward reengineering) even the 
original Hashtable.
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For any Java Map object, its contents are a set of mappings from a given key of a specified 
type to a related value of a potentially different type. A HashMap object could, for example, 
contain mappings from a person's name (String) to his or her birthday (Date).

In the context of Hadoop, we are referring to data that also comprises keys that relate to 
associated values. This data is stored in such a way that the various values in the data set  
can be sorted and rearranged across a set of keys. If we are using key/value data, it will  
make sense to ask questions such as the following:

�� Does a given key have a mapping in the data set?

�� What are the values associated with a given key?

�� What is the complete set of keys?

Think back to WordCount from the previous chapter. We will go into it in more detail shortly, 
but the output of the program is clearly a set of key/value relationships; for each word 
(the key), there is a count (the value) of its number of occurrences. Think about this simple 
example and some important features of key/value data will become apparent, as follows:

�� Keys must be unique but values need not be

�� Each value must be associated with a key, but a key could have no values  
(though not in this particular example)

�� Careful definition of the key is important; deciding on whether or not the  
counts are applied with case sensitivity will give different results

Note that we need to define carefully what we mean by keys being unique 
here. This does not mean the key occurs only once; in our data set we may see 
a key occur numerous times and, as we shall see, the MapReduce model has 
a stage where all values associated with each key are collected together. The 
uniqueness of keys guarantees that if we collect together every value seen for 
any given key, the result will be an association from a single instance of the key 
to every value mapped in such a way, and none will be omitted.

Why key/value data?
Using key/value data as the foundation of MapReduce operations allows for a powerful 
programming model that is surprisingly widely applicable, as can be seen by the adoption of 
Hadoop and MapReduce across a wide variety of industries and problem scenarios. Much 
data is either intrinsically key/value in nature or can be represented in such a way. It is a 
simple model with broad applicability and semantics straightforward enough that programs 
defined in terms of it can be applied by a framework like Hadoop.
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Of course, the data model itself is not the only thing that makes Hadoop useful; its real 
power lies in how it uses the techniques of parallel execution, and divide and conquer 
discussed in Chapter 1, What It's All About. We can have a large number of hosts on which 
we can store and execute data and even use a framework that manages the division of 
the larger task into smaller chunks, and the combination of partial results into the overall 
answer. But we need this framework to provide us with a way of expressing our problems 
that doesn't require us to be an expert in the execution mechanics; we want to express the 
transformations required on our data and then let the framework do the rest. MapReduce, 
with its key/value interface, provides such a level of abstraction, whereby the programmer 
only has to specify these transformations and Hadoop handles the complex process of 
applying this to arbitrarily large data sets.

Some real-world examples
To become less abstract, let's think of some real-world data that is key/value pair:

�� An address book relates a name (key) to contact information (value)

�� A bank account uses an account number (key) to associate with the account  
details (value)

�� The index of a book relates a word (key) to the pages on which it occurs (value)

�� On a computer filesystem, filenames (keys) allow access to any sort of data,  
such as text, images, and sound (values)

These examples are intentionally broad in scope, to help and encourage you to think that 
key/value data is not some very constrained model used only in high-end data mining but  
a very common model that is all around us.

We would not be having this discussion if this was not important to Hadoop. The bottom line 
is that if the data can be expressed as key/value pairs, it can be processed by MapReduce.

MapReduce as a series of key/value transformations
You may have come across MapReduce described in terms of key/value transformations, in 
particular the intimidating one looking like this:

{K1,V1} -> {K2, List<V2>} -> {K3,V3}

We are now in a position to understand what this means:

�� The input to the map method of a MapReduce job is a series of key/value pairs that 
we'll call K1 and V1.
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�� The output of the map method (and hence input to the reduce method) is a series 
of keys and an associated list of values that are called K2 and V2. Note that each 
mapper simply outputs a series of individual key/value outputs; these are combined 
into a key and list of values in the shuffle method.

�� The final output of the MapReduce job is another series of key/value pairs, called K3 
and V3.

These sets of key/value pairs don't have to be different; it would be quite possible to input, 
say, names and contact details and output the same, with perhaps some intermediary format 
used in collating the information. Keep this three-stage model in mind as we explore the Java 
API for MapReduce next. We will first walk through the main parts of the API you will need 
and then do a systematic examination of the execution of a MapReduce job.

Pop quiz – key/value pairs
Q1. The concept of key/value pairs is…

1.	 Something created by and specific to Hadoop.

2.	 A way of expressing relationships we often see but don't think of as such.

3.	 An academic concept from computer science.

Q2. Are username/password combinations an example of key/value data?

1.	 Yes, it's a clear case of one value being associated to the other.

2.	 No, the password is more of an attribute of the username, there's no index-type 
relationship.

3.	 We'd not usually think of them as such, but Hadoop could still process a series  
of username/password combinations as key/value pairs.

The Hadoop Java API for MapReduce
Hadoop underwent a major API change in its 0.20 release, which is the primary interface 
in the 1.0 version we use in this book. Though the prior API was certainly functional, the 
community felt it was unwieldy and unnecessarily complex in some regards.

The new API, sometimes generally referred to as context objects, for reasons we'll see later, 
is the future of Java's MapReduce development; and as such we will use it wherever possible 
in this book. Note that caveat: there are parts of the pre-0.20 MapReduce libraries that have 
not been ported to the new API, so we will use the old interfaces when we need to examine 
any of these.



Chapter 3

[ 61 ]

The 0.20 MapReduce Java API
The 0.20 and above versions of MapReduce API have most of the key classes and interfaces 
either in the org.apache.hadoop.mapreduce package or its subpackages.

In most cases, the implementation of a MapReduce job will provide job-specific subclasses  
of the Mapper and Reducer base classes found in this package.

We'll stick to the commonly used K1 / K2 / K3 / and so on terminology, 
though more recently the Hadoop API has, in places, used terms such as 
KEYIN/VALUEIN and KEYOUT/VALUEOUT instead. For now, we will 
stick with K1 / K2 / K3 as it helps understand the end-to-end data flow.

The Mapper class
This is a cut-down view of the base Mapper class provided by Hadoop. For our own  
mapper implementations, we will subclass this base class and override the specified  
method as follows:

class Mapper<K1, V1, K2, V2>
{
      void map(K1 key, V1 value Mapper.Context context) 
            throws IOException, InterruptedException 
{..}
}

Although the use of Java generics can make this look a little opaque at first, there is  
actually not that much going on. The class is defined in terms of the key/value input  
and output types, and then the map method takes an input key/value pair in its parameters. 
The other parameter is an instance of the Context class that provides various mechanisms 
to communicate with the Hadoop framework, one of which is to output the results of a map 
or reduce method.

Notice that the map method only refers to a single instance of K1 and V1 key/
value pairs. This is a critical aspect of the MapReduce paradigm in which you 
write classes that process single records and the framework is responsible 
for all the work required to turn an enormous data set into a stream of key/
value pairs. You will never have to write map or reduce classes that try to 
deal with the full data set. Hadoop also provides mechanisms through its 
InputFormat and OutputFormat classes that provide implementations 
of common file formats and likewise remove the need of having to write file 
parsers for any but custom file types.
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There are three additional methods that sometimes may be required to be overridden.

protected void setup( Mapper.Context context) 
      throws IOException, Interrupted Exception

This method is called once before any key/value pairs are presented to the map method.  
The default implementation does nothing.

protected void cleanup( Mapper.Context context) 
      throws IOException, Interrupted Exception

This method is called once after all key/value pairs have been presented to the map method. 
The default implementation does nothing.

protected void run( Mapper.Context context) 
      throws IOException, Interrupted Exception

This method controls the overall flow of task processing within a JVM. The default 
implementation calls the setup method once before repeatedly calling the map  
method for each key/value pair in the split, and then finally calls the cleanup method.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this 
book elsewhere, you can visit http://www.packtpub.com/support  
and register to have the files e-mailed directly to you.

The Reducer class
The Reducer base class works very similarly to the Mapper class, and usually requires only 
subclasses to override a single reduce method. Here is the cut-down class definition:

public class Reducer<K2, V2, K3, V3>
{
void reduce(K1 key, Iterable<V2> values, 
      Reducer.Context context) 
        throws IOException, InterruptedException
{..}
}

Again, notice the class definition in terms of the broader data flow (the reduce method 
accepts K2/V2 as input and provides K3/V3 as output) while the actual reduce method 
takes only a single key and its associated list of values. The Context object is again the 
mechanism to output the result of the method.

This class also has the setup, run, and cleanup methods with similar default 
implementations as with the Mapper class that can optionally be overridden:
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protected void setup( Reduce.Context context) 
throws IOException, InterruptedException

This method is called once before any key/lists of values are presented to the reduce 
method. The default implementation does nothing.

protected void cleanup( Reducer.Context context) 
throws IOException, InterruptedException

This method is called once after all key/lists of values have been presented to the reduce 
method. The default implementation does nothing.

protected void run( Reducer.Context context) 
throws IOException, InterruptedException

This method controls the overall flow of processing the task within JVM. The default 
implementation calls the setup method before repeatedly calling the reduce method for as 
many key/values provided to the Reducer class, and then finally calls the cleanup method.

The Driver class
Although our mapper and reducer implementations are all we need to perform the 
MapReduce job, there is one more piece of code required: the driver that communicates 
with the Hadoop framework and specifies the configuration elements needed to run a 
MapReduce job. This involves aspects such as telling Hadoop which Mapper and Reducer 
classes to use, where to find the input data and in what format, and where to place the 
output data and how to format it. There is an additional variety of other configuration 
options that can be set and which we will see throughout this book.

There is no default parent Driver class as a subclass; the driver logic usually exists in the main 
method of the class written to encapsulate a MapReduce job. Take a look at the following 
code snippet as an example driver. Don't worry about how each line works, though you 
should be able to work out generally what each is doing:

public class ExampleDriver
{
...
public static void main(String[] args) throws Exception
{
// Create a Configuration object that is used to set other options
    Configuration conf = new Configuration() ;
// Create the object representing the job
Job job = new Job(conf, "ExampleJob") ;
// Set the name of the main class in the job jarfile
    job.setJarByClass(ExampleDriver.class) ;
// Set the mapper class
    job.setMapperClass(ExampleMapper.class) ;
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// Set the reducer class
    job.setReducerClass(ExampleReducer.class) ;
// Set the types for the final output key and value
    job.setOutputKeyClass(Text.class) ; 
    job.setOutputValueClass(IntWritable.class) ; 
// Set input and output file paths
FileInputFormat.addInputPath(job, new Path(args[0])) ;
FileOutputFormat.setOutputPath(job, new Path(args[1])) 
// Execute the job and wait for it to complete
 System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}}

Given our previous talk of jobs, it is not surprising that much of the setup involves operations 
on a Job object. This includes setting the job name and specifying which classes are to be 
used for the mapper and reducer implementations.

Certain input/output configurations are set and, finally, the arguments passed to the main 
method are used to specify the input and output locations for the job. This is a very common 
model that you will see often.

There are a number of default values for configuration options, and we are implicitly using 
some of them in the preceding class. Most notably, we don't say anything about the file 
format of the input files or how the output files are to be written. These are defined through 
the InputFormat and OutputFormat classes mentioned earlier; we will explore them 
in detail later. The default input and output formats are text files that suit our WordCount 
example. There are multiple ways of expressing the format within text files in addition to 
particularly optimized binary formats.

A common model for less complex MapReduce jobs is to have the Mapper and Reducer 
classes as inner classes within the driver. This allows everything to be kept in a single file, 
which simplifies the code distribution.

Writing MapReduce programs
We have been using and talking about WordCount for quite some time now; let's actually 
write an implementation, compile, and run it, and then explore some modifications.
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Time for action – setting up the classpath
To compile any Hadoop-related code, we will need to refer to the standard  
Hadoop-bundled classes.

Add the Hadoop-1.0.4.core.jar file from the distribution to the Java classpath  
as follows:

$ export CLASSPATH=.:${HADOOP_HOME}/Hadoop-1.0.4.core.jar:${CLASSPATH}

What just happened?
This adds the Hadoop-1.0.4.core.jar file explicitly to the classpath alongside the 
current directory and the previous contents of the CLASSPATH environment variable.

Once again, it would be good to put this in your shell startup file or a standalone file  
to be sourced.

We will later need to also have many of the supplied third-party libraries 
that come with Hadoop on our classpath, and there is a shortcut to do this. 
For now, the explicit addition of the core JAR file will suffice.

Time for action – implementing WordCount
We have seen the use of the WordCount example program in Chapter 2, Getting Hadoop  
Up and Running. Now we will explore our own Java implementation by performing the 
following steps:

1.	 Enter the following code into the WordCount1.java file:
Import java.io.* ;
import org.apache.hadoop.conf.Configuration ;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 



Understanding MapReduce

[ 66 ]

public class WordCount1 
{
    

    public static class WordCountMapper
    extends Mapper<Object, Text, Text, IntWritable>
{
        
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        
        public void map(Object key, Text value, Context context
        ) throws IOException, InterruptedException {
            String[] words = value.toString().split(" ") ;
            
            for (String str: words)
            {
                word.set(str);
                context.write(word, one);
            }
        }
    }
    
    public static class WordCountReducer
    extends Reducer<Text,IntWritable,Text,IntWritable> {
        public void reduce(Text key, Iterable<IntWritable> values,
            Context context
            ) throws IOException, InterruptedException {
                int total = 0;
            for (IntWritable val : values) {
                total++ ;
            }
            context.write(key, new IntWritable(total));
        }
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount1.class);
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        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

2.	 Now compile it by executing the following command:

$ javac WordCount1.java

What just happened?
This is our first complete MapReduce job. Look at the structure and you should recognize the 
elements we have previously discussed: the overall Job class with the driver configuration in 
its main method and the Mapper and Reducer implementations defined as inner classes.

We'll do a more detailed walkthrough of the mechanics of MapReduce in the next section, 
but for now let's look at the preceding code and think of how it realizes the key/value 
transformations we talked about earlier.

The input to the Mapper class is arguably the hardest to understand, as the key is not 
actually used. The job specifies TextInputFormat as the format of the input data and, by 
default, this delivers to the mapper data where the key is the line number in the file and  
the value is the text of that line. In reality, you may never actually see a mapper that uses 
that line number key, but it is provided.

The mapper is executed once for each line of text in the input source and every time  
it takes the line and breaks it into words. It then uses the Context object to output  
(more commonly known as emitting) each new key/value of the form <word, 1>.  
These are our K2/V2 values.

We said before that the input to the reducer is a key and a corresponding list of values,  
and there is some magic that happens between the map and reduce methods to collect 
together the values for each key that facilitates this, which we'll not describe right now. 
Hadoop executes the reducer once for each key and the preceding reducer implementation 
simply counts the numbers in the Iterable object and gives output for each word in the 
form of <word, count>. This is our K3/V3 values.



Understanding MapReduce

[ 68 ]

Take a look at the signatures of our mapper and reducer classes: the WordCountMapper 
class gives IntWritable and Text as input and gives Text and IntWritable as output. 
The WordCountReducer class gives Text and IntWritable both as input and output. This 
is again quite a common pattern, where the map method performs an inversion on the key and 
values, and instead emits a series of data pairs on which the reducer performs aggregation.

The driver is more meaningful here, as we have real values for the parameters.  
We use arguments passed to the class to specify the input and output locations.

Time for action – building a JAR file
Before we run our job in Hadoop, we must collect the required class files into a single JAR  
file that we will submit to the system.

Create a JAR file from the generated class files.

$ jar cvf wc1.jar WordCount1*class

What just happened?
We must always package our class files into a JAR file before submitting to Hadoop, be it  
local or on Elastic MapReduce.

Be careful with the JAR command and file paths. If you include in a JAR file 
class the files from a subdirectory, the class may not be stored with the path 
you expect. This is especially common when using a catch-all classes directory 
where all source data gets compiled. It may be useful to write a script to 
change into the directory, convert the required files into JAR files, and move 
the JAR files to the required location.

Time for action – running WordCount on a local Hadoop cluster
Now we have generated the class files and collected them into a JAR file, we can run the 
application by performing the following steps:

1.	 Submit the new JAR file to Hadoop for execution.
$ hadoop jar wc1.jar WordCount1 test.txt output

2.	 If successful, you should see the output being very similar to the one we obtained 
when we ran the Hadoop-provided sample WordCount in the previous chapter. 
Check the output file; it should be as follows:
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$ Hadoop fs –cat output/part-r-00000

This 1

yes 1

a 1

is 2

test 1

this 1

What just happened?
This is the first time we have used the Hadoop JAR command with our own code. There are 
four arguments:

1.	 The name of the JAR file.

2.	 The name of the driver class within the JAR file.

3.	 The location, on HDFS, of the input file (a relative reference to the /user/Hadoop 
home folder, in this case).

4.	 The desired location of the output folder (again, a relative path).

The name of the driver class is only required if a main class has not 
(as in this case) been specified within the JAR file manifest.

Time for action – running WordCount on EMR
We will now show you how to run this same JAR file on EMR. Remember, as always, that this 
costs money!

1.	 Go to the AWS console at http://aws.amazon.com/console, sign in, and  
select S3.

2.	 You'll need two buckets: one to hold the JAR file and another for the job output.  
You can use existing buckets or create new ones.

3.	 Open the bucket where you will store the job file, click on Upload, and add the wc1.
jar file created earlier.

4.	 Return to the main console home page, and then go to the EMR portion of the 
console by selecting Elastic MapReduce.

http://aws.amazon.com/console
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5.	 Click on the Create a New Job Flow button and you'll see a familiar screen as  
shown in the following screenshot:

6.	 Previously, we used a sample application; to run our code, we need to perform 
different steps. Firstly, select the Run your own application radio button.

7.	 In the Select a Job Type combobox, select Custom JAR.

8.	 Click on the Continue button and you'll see a new form, as shown in the  
following screenshot:
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We now specify the arguments to the job. Within our uploaded JAR file, our code—
particularly the driver class—specifies aspects such as the Mapper and Reducer classes.

What we need to provide is the path to the JAR file and the input and output paths for the 
job. In the JAR Location field, put the location where you uploaded the JAR file. If the JAR file 
is called wc1.jar and you uploaded it into a bucket called mybucket, the path would be 
mybucket/wc1.jar.

In the JAR Arguments field, you need to enter the name of the main class and the  
input and output locations for the job. For files on S3, we can use URLs of the form  
s3://bucketname/objectname. Click on Continue and the familiar screen to specify  
the virtual machines for the job flow appears, as shown in the following screenshot:

Now continue through the job flow setup and execution as we did in Chapter 2, Getting 
Hadoop Up and Running.

What just happened?
The important lesson here is that we can reuse the code written on and for a local Hadoop 
cluster in EMR. Also, besides these first few steps, the majority of the EMR console is the 
same regardless of the source of the job code to be executed.

Through the remainder of this chapter, we will not explicitly show code being executed  
on EMR and will instead focus more on the local cluster, because running a JAR file on  
EMR is very easy.
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The pre-0.20 Java MapReduce API
Our preference in this book is for the 0.20 and above versions of MapReduce Java API, but 
we'll need to take a quick look at the older APIs for two reasons:

1.	 Many online examples and other reference materials are written for the older APIs.

2.	 Several areas within the MapReduce framework are not yet ported to the new API, 
and we will need to use the older APIs to explore them.

The older API's classes are found primarily in the org.apache.hadoop.mapred package.

The new API classes use concrete Mapper and Reducer classes, while the older API had this 
responsibility split across abstract classes and interfaces.

An implementation of a Mapper class will subclass the abstract MapReduceBase class and 
implement the Mapper interface, while a custom Reducer class will subclass the same 
MapReduceBase abstract class but implement the Reducer interface.

We'll not explore MapReduceBase in much detail as its functionality deals with job setup 
and configuration, which aren't really core to understanding the MapReduce model. But the 
interfaces of pre-0.20 Mapper and Reducer are worth showing:

public interface Mapper<K1, V1, K2, V2>
{
void map( K1 key, V1 value, OutputCollector< K2, V2> output, Reporter 
reporter) throws IOException ;
}

public interface Reducer<K2, V2, K3, V3>
{
void reduce( K2 key, Iterator<V2> values, 
OutputCollector<K3, V3> output, Reporter reporter) 
throws IOException ;
}

There are a few points to understand here:

�� The generic parameters to the OutputCollector class show more explicitly how 
the result of the methods is presented as output.

�� The old API used the OutputCollector class for this purpose, and the Reporter 
class to write status and metrics information to the Hadoop framework. The 0.20 
API combines these responsibilities in the Context class.
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�� The Reducer interface uses an Iterator object instead of an Iterable object; 
this was changed as the latter works with the Java for each syntax and makes for 
cleaner code.

�� Neither the map nor the reduce method could throw InterruptedException  
in the old API.

As you can see, the changes between the APIs alter how MapReduce programs are written 
but don't change the purpose or responsibilities of mappers or reducers. Don't feel obliged 
to become an expert in both APIs unless you need to; familiarity with either should allow  
you to follow the rest of this book.

Hadoop-provided mapper and reducer implementations
We don't always have to write our own Mapper and Reducer classes from scratch. Hadoop 
provides several common Mapper and Reducer implementations that can be used in our 
jobs. If we don't override any of the methods in the Mapper and Reducer classes in the 
new API, the default implementations are the identity Mapper and Reducer classes, which 
simply output the input unchanged.

Note that more such prewritten Mapper and Reducer implementations may be added over 
time, and currently the new API does not have as many as the older one.

The mappers are found at org.apache.hadoop.mapreduce.lib.mapper, and include 
the following:

�� InverseMapper: This outputs (value, key)

�� TokenCounterMapper: This counts the number of discrete tokens in each line  
of input

The reducers are found at org.apache.hadoop.mapreduce.lib.reduce, and currently 
include the following:

�� IntSumReducer: This outputs the sum of the list of integer values per key

�� LongSumReducer: This outputs the sum of the list of long values per key

Time for action – WordCount the easy way
Let's revisit WordCount, but this time use some of these predefined map and reduce 
implementations:

1.	 Create a new WordCountPredefined.java file containing the following code:
import org.apache.hadoop.conf.Configuration ;
import org.apache.hadoop.fs.Path;
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import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.map.TokenCounterMapper ;
import org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer ;

public class WordCountPredefined
{   
    public static void main(String[] args) throws Exception
    {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count1");
        job.setJarByClass(WordCountPredefined.class);
        job.setMapperClass(TokenCounterMapper.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

2.	 Now compile, create the JAR file, and run it as before.

3.	 Don't forget to delete the output directory before running the job, if you want to 
use the same location. Use the hadoop fs -rmr output, for example.

What just happened?
Given the ubiquity of WordCount as an example in the MapReduce world, it's perhaps not 
entirely surprising that there are predefined Mapper and Reducer implementations that 
together realize the entire WordCount solution. The TokenCounterMapper class simply 
breaks each input line into a series of (token, 1) pairs and the IntSumReducer class 
provides a final count by summing the number of values for each key.

There are two important things to appreciate here:

�� Though WordCount was doubtless an inspiration for these implementations, they 
are in no way specific to it and can be widely applicable

�� This model of having reusable mapper and reducer implementations is one thing to 
remember, especially in combination with the fact that often the best starting point 
for a new MapReduce job implementation is an existing one
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Walking through a run of WordCount
To explore the relationship between mapper and reducer in more detail, and to expose  
some of Hadoop's inner working, we'll now go through just how WordCount (or indeed  
any MapReduce job) is executed.

Startup
The call to Job.waitForCompletion() in the driver is where all the action starts. The 
driver is the only piece of code that runs on our local machine, and this call starts the 
communication with the JobTracker. Remember that the JobTracker is responsible for 
all aspects of job scheduling and execution, so it becomes our primary interface when 
performing any task related to job management. The JobTracker communicates with the 
NameNode on our behalf and manages all interactions relating to the data stored on HDFS.

Splitting the input
The first of these interactions happens when the JobTracker looks at the input data and 
determines how to assign it to map tasks. Recall that HDFS files are usually split into blocks 
of at least 64 MB and the JobTracker will assign each block to one map task.

Our WordCount example, of course, used a trivial amount of data that was well within a 
single block. Picture a much larger input file measured in terabytes, and the split model 
makes more sense. Each segment of the file—or split, in MapReduce terminology—is 
processed uniquely by one map task.

Once it has computed the splits, the JobTracker places them and the JAR file containing 
the Mapper and Reducer classes into a job-specific directory on HDFS, whose path will be 
passed to each task as it starts.

Task assignment
Once the JobTracker has determined how many map tasks will be needed, it looks at the 
number of hosts in the cluster, how many TaskTrackers are working, and how many map 
tasks each can concurrently execute (a user-definable configuration variable). The JobTracker 
also looks to see where the various input data blocks are located across the cluster and 
attempts to define an execution plan that maximizes the cases when a TaskTracker processes 
a split/block located on the same physical host, or, failing that, it processes at least one in the 
same hardware rack.

This data locality optimization is a huge reason behind Hadoop's ability to efficiently process 
such large datasets. Recall also that, by default, each block is replicated across three different 
hosts, so the likelihood of producing a task/host plan that sees most blocks processed locally 
is higher than it may seem at first.
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Task startup
Each TaskTracker then starts up a separate Java virtual machine to execute the tasks.  
This does add a startup time penalty, but it isolates the TaskTracker from problems  
caused by misbehaving map or reduce tasks, and it can be configured to be shared  
between subsequently executed tasks.

If the cluster has enough capacity to execute all the map tasks at once, they will all be  
started and given a reference to the split they are to process and the job JAR file. Each 
TaskTracker then copies the split to the local filesystem.

If there are more tasks than the cluster capacity, the JobTracker will keep a queue of  
pending tasks and assign them to nodes as they complete their initially assigned map tasks.

We are now ready to see the executed data of map tasks. If this all sounds like a lot of  
work, it is; and it explains why when running any MapReduce job, there is always a  
non-trivial amount of time taken as the system gets started and performs all these steps.

Ongoing JobTracker monitoring
The JobTracker doesn't just stop work now and wait for the TaskTrackers to execute all the 
mappers and reducers. It is constantly exchanging heartbeat and status messages with the 
TaskTrackers, looking for evidence of progress or problems. It also collects metrics from the 
tasks throughout the job execution, some provided by Hadoop and others specified by the 
developer of the map and reduce tasks, though we don't use any in this example.

Mapper input
In Chapter 2, Getting Hadoop Up and Running, our WordCount input was a simple one-line 
text file. For the rest of this walkthrough, let's assume it was a not-much-less trivial two-line 
text file:

This is a test
Yes this is

The driver class specifies the format and structure of the input file by using TextInputFormat, 
and from this Hadoop knows to treat this as text with the line number as the key and 
line contents as the value. The two invocations of the mapper will therefore be given the 
following input:

1 This is a test
2 Yes it is.
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Mapper execution
The key/value pairs received by the mapper are the offset in the file of the line and the line 
contents respectively because of how the job is configured. Our implementation of the map 
method in WordCountMapper discards the key as we do not care where each line occurred in 
the file and splits the provided value into words using the split method on the standard Java 
String class. Note that better tokenization could be provided by use of regular expressions or 
the StringTokenizer class, but for our purposes this simple approach will suffice.

For each individual word, the mapper then emits a key comprised of the actual word itself, 
and a value of 1.

We add a few optimizations that we'll mention here, but don't worry 
too much about them at this point. You will see that we don't create the 
IntWritable object containing the value 1 each time, instead we 
create it as a static variable and re-use it in each invocation. Similarly, we 
use a single Text object and reset its contents for each execution of the 
method. The reason for this is that though it doesn't help much for our 
tiny input file, the processing of a huge data set would see the mapper 
potentially called thousands or millions of times. If each invocation 
potentially created a new object for both the key and value output, this 
would become a resource issue and likely cause much more frequent 
pauses due to garbage collection. We use this single value and know the 
Context.write method will not alter it.

Mapper output and reduce input
The output of the mapper is a series of pairs of the form (word, 1); in our example  
these will be:

(This,1), (is, 1), (a, 1), (test., 1), (Yes, 1), (it, 1), (is, 1)

These output pairs from the mapper are not passed directly to the reducer. Between 
mapping and reducing is the shuffle stage where much of the magic of MapReduce occurs.

Partitioning
One of the implicit guarantees of the Reduce interface is that a single reducer will be given 
all the values associated with a given key. With multiple reduce tasks running across a cluster, 
each mapper output must therefore be partitioned into the separate outputs destined for 
each reducer. These partitioned files are stored on the local node filesystem.
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The number of reduce tasks across the cluster is not as dynamic as that of mappers, and 
indeed we can specify the value as part of our job submission. Each TaskTracker therefore 
knows how many reducers are in the cluster and from this how many partitions the mapper 
output should be split into.

We'll address failure tolerance in a later chapter, but at this point an obvious 
question is what happens to this calculation if a reducer fails. The answer is 
that the JobTracker will ensure that any failed reduce tasks are reexecuted, 
potentially on a different node so a transient failure will not be an issue. A 
more serious issue, such as that caused by a data-sensitive bug or very corrupt 
data in a split will, unless certain steps are taken, cause the whole job to fail.

The optional partition function
Within the org.apache.hadoop.mapreduce package is the Partitioner class, an 
abstract class with the following signature:

public abstract class Partitioner<Key, Value>
{
public abstract int getPartition( Key key, Value value, 
int numPartitions) ;
}

By default, Hadoop will use a strategy that hashes the output key to perform the 
partitioning. This functionality is provided by the HashPartitioner class within the org.
apache.hadoop.mapreduce.lib.partition package, but it is necessary in some cases 
to provide a custom subclass of Partitioner with application-specific partitioning logic. 
This would be particularly true if, for example, the data provided a very uneven distribution 
when the standard hash function was applied.

Reducer input
The reducer TaskTracker receives updates from the JobTracker that tell it which nodes  
in the cluster hold map output partitions which need to be processed by its local reduce  
task. It then retrieves these from the various nodes and merges them into a single file  
that will be fed to the reduce task.
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Reducer execution
Our WordCountReducer class is very simple; for each word it simply counts the number  
of elements in the array and emits the final (Word, count) output for each word.

We don't worry about any sort of optimization to avoid excess object creation 
here. The number of reduce invocations is typically smaller than the number 
of mappers, and consequently the overhead is less of a concern. However, feel 
free to do so if you find yourself with very tight performance requirements.

For our invocation of WordCount on our sample input, all but one word have only one value 
in the list of values; is has two.

Note that the word this and This had discrete counts because we did 
not attempt to ignore case sensitivity. Similarly, ending each sentence with 
a period would have stopped is having a count of two as is would be 
different from is.. Always be careful when working with textual data such 
as capitalization, punctuation, hyphenation, pagination, and other aspects, as 
they can skew how the data is perceived. In such cases, it's common to have a 
precursor MapReduce job that applies a normalization or clean-up strategy to 
the data set.

Reducer output
The final set of reducer output for our example is therefore:

(This, 1), (is, 2), (a, 1), (test, 1), (Yes, 1), (this, 1)

This data will be output to partition files within the output directory specified in the driver 
that will be formatted using the specified OutputFormat implementation. Each reduce task 
writes to a single file with the filename part-r-nnnnn, where nnnnn starts at 00000 and is 
incremented. This is, of course, what we saw in Chapter 2, Getting Hadoop Up and Running; 
hopefully the part prefix now makes a little more sense.

Shutdown
Once all tasks have completed successfully, the JobTracker outputs the final state of the job 
to the client, along with the final aggregates of some of the more important counters that 
it has been aggregating along the way. The full job and task history is available in the log 
directory on each node or, more accessibly, via the JobTracker web UI; point your browser  
to port 50030 on the JobTracker node.
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That's all there is to it!
As you've seen, each MapReduce program sits atop a significant amount of machinery 
provided by Hadoop and the sketch provided is in many ways a simplification. As before, 
much of this isn't hugely valuable for such a small example, but never forget that we can  
use the same software and mapper/reducer implementations to do a WordCount on a much 
larger data set across a huge cluster, be it local or on EMR. The work that Hadoop does for 
you at that point is enormous and is what makes it possible to perform data analysis on such 
datasets; otherwise, the effort to manually implement the distribution, synchronization, and 
parallelization of code will be immense.

Apart from the combiner…maybe
There is one additional, and optional, step that we omitted previously. Hadoop allows the 
use of a combiner class to perform some early sorting of the output from the map method 
before it is retrieved by the reducer.

Why have a combiner?
Much of Hadoop's design is predicated on reducing the expensive parts of a job that usually 
equate to disk and network I/O. The output of the mapper is often large; it's not infrequent 
to see it many times the size of the original input. Hadoop does allow configuration options 
to help reduce the impact of the reducers transferring such large chunks of data across the 
network. The combiner takes a different approach, where it is possible to perform early 
aggregation to require less data to be transferred in the first place.

The combiner does not have its own interface; a combiner must have the same signature as 
the reducer and hence also subclasses the Reduce class from the org.apache.hadoop.
mapreduce package. The effect of this is to basically perform a mini-reduce on the mapper 
for the output destined for each reducer.

Hadoop does not guarantee whether the combiner will be executed. At times, it may not be 
executed at all, while at times it may be used once, twice, or more times depending on the 
size and number of output files generated by the mapper for each reducer.

Time for action – WordCount with a combiner
Let's add a combiner to our first WordCount example. In fact, let's use our reducer as  
the combiner. Since the combiner must have the same interface as the reducer, this is 
something you'll often see, though note that the type of processing involved in the  
reducer will determine if it is a true candidate for a combiner; we'll discuss this later.  
Since we are looking to count word occurrences, we can do a partial count on the map  
node and pass these subtotals to the reducer.
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1.	 Copy WordCount1.java to WordCount2.java and change the driver class to add 
the following line between the definition of the Mapper and Reducer classes:
        job.setCombinerClass(WordCountReducer.class);

2.	 Also change the class name to WordCount2 and then compile it.
$ javac WordCount2.java

3.	 Create the JAR file.
$ jar cvf wc2.jar WordCount2*class

4.	 Run the job on Hadoop.
$ hadoop jar wc2.jar WordCount2 test.txt output

5.	 Examine the output.

$ hadoop fs -cat output/part-r-00000

What just happened?
This output may not be what you expected, as the value for the word is is now incorrectly 
specified as 1 instead of 2.

The problem lies in how the combiner and reducer will interact. The value provided to the 
reducer, which was previously (is, 1, 1), is now (is, 2) because our combiner did its 
own summation of the number of elements for each word. However, our reducer does not 
look at the actual values in the Iterable object, it simply counts how many are there.

When you can use the reducer as the combiner
You need to be careful when writing a combiner. Remember that Hadoop makes no 
guarantees on how many times it may be applied to map output, it may be 0, 1, or more.  
It is therefore critical that the operation performed by the combiner can effectively be 
applied in such a way. Distributive operations such as summation, addition, and similar 
are usually safe, but, as shown previously, ensure the reduce logic isn't making implicit 
assumptions that might break this property.

Time for action – fixing WordCount to work with a combiner
Let's make the necessary modifications to WordCount to correctly use a combiner.

Copy WordCount2.java to a new file called WordCount3.java and change the reduce 
method as follows:

public void reduce(Text key, Iterable<IntWritable> values,            
Context context) throws IOException, InterruptedException 
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{
int total = 0 ;
for (IntWritable val : values))
{
total+= val.get() ;
}
            context.write(key, new IntWritable(total));
}

Remember to also change the class name to WordCount3 and then compile, create the  
JAR file, and run the job as before.

What just happened?
The output is now as expected. Any map-side invocations of the combiner performs 
successfully and the reducer correctly produces the overall output value.

Would this have worked if the original reducer was used as the combiner and 
the new reduce implementation as the reducer? The answer is no, though our 
test example would not have demonstrated it. Because the combiner may be 
invoked multiple times on the map output data, the same errors would arise 
in the map output if the dataset was large enough, but didn't occur here due 
to the small input size. Fundamentally, the original reducer was incorrect, but 
this wasn't immediately obvious; watch out for such subtle logic flaws. This 
sort of issue can be really hard to debug as the code will reliably work on a 
development box with a subset of the data set and fail on the much larger 
operational cluster. Carefully craft your combiner classes and never rely on 
testing that only processes a small sample of the data.

Reuse is your friend
In the previous section we took the existing job class file and made changes to it. This is a 
small example of a very common Hadoop development workflow; use an existing job file as 
the starting point for a new one. Even if the actual mapper and reducer logic is very different, 
it's often a timesaver to take an existing working job as this helps you remember all the 
required elements of the mapper, reducer, and driver implementations.

Pop quiz – MapReduce mechanics
Q1. What do you always have to specify for a MapReduce job?

1.	 The classes for the mapper and reducer.

2.	 The classes for the mapper, reducer, and combiner.
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3.	 The classes for the mapper, reducer, partitioner, and combiner.

4.	 None; all classes have default implementations.

Q2. How many times will a combiner be executed?

1.	 At least once.

2.	 Zero or one times.

3.	 Zero, one, or many times.

4.	 It's configurable.

Q3. You have a mapper that for each key produces an integer value and the following set of 
reduce operations:

�� Reducer A: outputs the sum of the set of integer values.

�� Reducer B: outputs the maximum of the set of values.

�� Reducer C: outputs the mean of the set of values.

�� Reducer D: outputs the difference between the largest and smallest values  
in the set.

Which of these reduce operations could safely be used as a combiner?

1.	 All of them.

2.	 A and B.

3.	 A, B, and D.

4.	 C and D.

5.	 None of them.

Hadoop-specific data types
Up to this point we've glossed over the actual data types used as the input and output  
of the map and reduce classes. Let's take a look at them now.

The Writable and WritableComparable interfaces
If you browse the Hadoop API for the org.apache.hadoop.io package, you'll  
see some familiar classes such as Text and IntWritable along with others with  
the Writable suffix.
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This package also contains the Writable interface specified as follows:

import java.io.DataInput ;
import java.io.DataOutput ;
import java.io.IOException ;

public interface Writable
{
void write(DataOutput out) throws IOException ;
void readFields(DataInput in) throws IOException ;
}

The main purpose of this interface is to provide mechanisms for the serialization and 
deserialization of data as it is passed across the network or read and written from the 
 disk. Every data type to be used as a value input or output from a mapper or reducer  
(that is, V1, V2, or V3) must implement this interface.

Data to be used as keys (K1, K2, K3) has a stricter requirement: in addition to Writable, 
 it must also provide an implementation of the standard Java Comparable interface.  
This has the following specifications:

public interface Comparable
{
public int compareTO( Object obj) ;
}

The compare method returns -1, 0, or 1 depending on whether the compared object is less 
than, equal to, or greater than the current object.

As a convenience interface, Hadoop provides the WritableComparable interface in the 
org.apache.hadoop.io package.

public interface WritableComparable extends Writable, Comparable
{}

Introducing the wrapper classes
Fortunately, you don't have to start from scratch; as you've already seen, Hadoop provides 
classes that wrap the Java primitive types and implement WritableComparable. They are 
provided in the org.apache.hadoop.io package.
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Primitive wrapper classes
These classes are conceptually similar to the primitive wrapper classes, such as Integer  
and Long found in java.lang. They hold a single primitive value that can be set either  
at construction or via a setter method.

�� BooleanWritable

�� ByteWritable

�� DoubleWritable

�� FloatWritable

�� IntWritable

�� LongWritable

�� VIntWritable – a variable length integer type

�� VLongWritable – a variable length long type

Array wrapper classes
These classes provide writable wrappers for arrays of other Writable objects. For example, 
an instance of either could hold an array of IntWritable or DoubleWritable but not 
arrays of the raw int or float types. A specific subclass for the required Writable class will 
be required. They are as follows:

�� ArrayWritable

�� TwoDArrayWritable

Map wrapper classes
These classes allow implementations of the java.util.Map interface to be used as keys  
or values. Note that they are defined as Map<Writable, Writable> and effectively 
manage a degree of internal-runtime-type checking. This does mean that compile type 
checking is weakened, so be careful.

�� AbstractMapWritable: This is a base class for other concrete Writable  
map implementations

�� MapWritable: This is a general purpose map mapping Writable keys to  
Writable values

�� SortedMapWritable: This is a specialization of the MapWritable class that  
also implements the SortedMap interface
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Time for action – using the Writable wrapper classes
Let's write a class to show some of these wrapper classes in action:

1.	 Create the following as WritablesTest.java:
import org.apache.hadoop.io.* ;
import java.util.* ;

public class WritablesTest
{
    public static class IntArrayWritable extends ArrayWritable
    {
        public IntArrayWritable()
        {
            super(IntWritable.class) ;
        }
    }
    
    public static void main(String[] args)
    {
System.out.println("*** Primitive Writables ***") ;
        BooleanWritable bool1 = new BooleanWritable(true) ;
        ByteWritable byte1 = new ByteWritable( (byte)3) ;
        System.out.printf("Boolean:%s Byte:%d\n", bool1, byte1.
get()) ;
        
        IntWritable i1 = new IntWritable(5) ;
        IntWritable i2 = new IntWritable( 17) ;         System.
out.printf("I1:%d I2:%d\n", i1.get(), i2.get()) ;
        i1.set(i2.get()) ;
        System.out.printf("I1:%d I2:%d\n", i1.get(), i2.get()) ;
        Integer i3 = new Integer( 23) ;
        i1.set( i3) ;
        System.out.printf("I1:%d I2:%d\n", i1.get(), i2.get()) ;
 
System.out.println("*** Array Writables ***") ;       
        ArrayWritable a = new ArrayWritable( IntWritable.class) ;
        a.set( new IntWritable[]{ new IntWritable(1), new 
IntWritable(3), new IntWritable(5)}) ;
        
        IntWritable[] values = (IntWritable[])a.get() ;
        
        for (IntWritable i: values)
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        System.out.println(i) ;
        
        IntArrayWritable ia = new IntArrayWritable() ;
        ia.set( new IntWritable[]{ new IntWritable(1), new 
IntWritable(3), new IntWritable(5)}) ;
        
        IntWritable[] ivalues = (IntWritable[])ia.get() ;
        
        ia.set(new LongWritable[]{new LongWritable(1000l)}) ;
 
System.out.println("*** Map Writables ***") ;       
        MapWritable m = new MapWritable() ;
        IntWritable key1 = new IntWritable(5) ;
        NullWritable value1 = NullWritable.get() ;
        m.put(key1, value1) ;
        System.out.println(m.containsKey(key1)) ;
        System.out.println(m.get(key1)) ;
        m.put(new LongWritable(1000000000), key1) ;
        Set<Writable> keys = m.keySet() ;
        
        for(Writable w: keys)
        System.out.println(w.getClass()) ;
    }
}

2.	 Compile and run the class, and you should get the following output:

*** Primitive Writables ***

Boolean:true Byte:3

I1:5 I2:17

I1:17 I2:17

I1:23 I2:17

*** Array Writables ***

1

3

5

*** Map Writables ***

true

(null)

class org.apache.hadoop.io.LongWritable

class org.apache.hadoop.io.IntWritable
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What just happened?
This output should be largely self-explanatory. We create various Writable wrapper objects 
and show their general usage. There are several key points:

�� As mentioned, there is no type-safety beyond Writable itself. So it is possible to 
have an array or map that holds multiple types, as shown previously.

�� We can use autounboxing, for example, by supplying an Integer object to methods 
on IntWritable that expect an int variable.

�� The inner class demonstrates what is needed if an ArrayWritable class is to be 
used as an input to a reduce function; a subclass with such a default constructor 
must be defined.

Other wrapper classes
�� CompressedWritable: This is a base class to allow for large objects that  

should remain compressed until their attributes are explicitly accessed

�� ObjectWritable: This is a general-purpose generic object wrapper

�� NullWritable: This is a singleton object representation of a null value

�� VersionedWritable: This is a base implementation to allow writable classes  
to track versions over time

Have a go hero – playing with Writables
Write a class that exercises the NullWritable and ObjectWritable classes in the same 
way as it does in the previous examples.

Making your own
As you have seen from the Writable and Comparable interfaces, the required methods 
are pretty straightforward; don't be afraid of adding this functionality if you want to use your 
own custom classes as keys or values within a MapReduce job.

Input/output
There is one aspect of our driver classes that we have mentioned several times without 
getting into a detailed explanation: the format and structure of the data input into and 
output from MapReduce jobs.



Chapter 3

[ 89 ]

Files, splits, and records
We have talked about files being broken into splits as part of the job startup and the data 
in a split being sent to the mapper implementation. However, this overlooks two aspects: 
how the data is stored in the file and how the individual keys and values are passed to the 
mapper structure.

InputFormat and RecordReader
Hadoop has the concept of an InputFormat for the first of these responsibilities.  
The InputFormat abstract class in the org.apache.hadoop.mapreduce  
package provides two methods as shown in the following code:

public abstract class InputFormat<K, V>
{
public abstract List<InputSplit> getSplits( JobContext context) ;
RecordReader<K, V> createRecordReader(InputSplit split, 
TaskAttemptContext context) ;
}

These methods display the two responsibilities of the InputFormat class:

�� To provide the details on how to split an input file into the splits required for  
map processing

�� To create a RecordReader class that will generate the series of key/value  
pairs from a split

The RecordReader class is also an abstract class within the org.apache.hadoop.
mapreduce package:

public abstract class RecordReader<Key, Value> implements Closeable
{
public abstract void initialize(InputSplit split, TaskAttemptContext 
context) ;
  public abstract boolean nextKeyValue() 
throws IOException, InterruptedException ;
public abstract Key getCurrentKey() 
throws IOException, InterruptedException ;
public abstract Value getCurrentValue() 
throws IOException, InterruptedException ;
public abstract float getProgress() 
throws IOException, InterruptedException ;
public abstract close() throws IOException ;
}
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A RecordReader instance is created for each split and calls getNextKeyValue to return a 
Boolean indicating if another key/value pair is available and if so, the getKey and getValue 
methods are used to access the key and value respectively.

The combination of the InputFormat and RecordReader classes therefore are all  
that is required to bridge between any kind of input data and the key/value pairs  
required by MapReduce.

Hadoop-provided InputFormat
There are some Hadoop-provided InputFormat implementations within the org.apache.
hadoop.mapreduce.lib.input package:

�� FileInputFormat: This is an abstract base class that can be the parent of any  
file-based input

�� SequenceFileInputFormat: This is an efficient binary file format that will be 
discussed in an upcoming section

�� TextInputFormat: This is used for plain text files

The pre-0.20 API has additional InputFormats defined in the org.
apache.hadoop.mapred package.
Note that InputFormats are not restricted to reading from files; 
FileInputFormat is itself a subclass of InputFormat. It is possible 
to have Hadoop use data that is not based on the files as the input to 
MapReduce jobs; common sources are relational databases or HBase.

Hadoop-provided RecordReader
Similarly, Hadoop provides a few common RecordReader implementations, which are also 
present within the org.apache.hadoop.mapreduce.lib.input package:

�� LineRecordReader: This implementation is the default RecordReader class for 
text files that present the line number as the key and the line contents as the value

�� SequenceFileRecordReader: This implementation reads the key/value from the 
binary SequenceFile container

Again, the pre-0.20 API has additional RecordReader classes in the org.apache.hadoop.
mapred package, such as KeyValueRecordReader, that have not yet been ported to the 
new API.
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OutputFormat and RecordWriter
There is a similar pattern for writing the output of a job coordinated by subclasses of 
OutputFormat and RecordWriter from the org.apache.hadoop.mapreduce  
package. We'll not explore these in any detail here, but the general approach is similar, 
though OutputFormat does have a more involved API as it has methods for tasks such  
as validation of the output specification.

It is this step that causes a job to fail if a specified output directory already 
exists. If you wanted different behavior, it would require a subclass of 
OutputFormat that overrides this method.

Hadoop-provided OutputFormat
The following OutputFormats are provided in the org.apache.hadoop.mapreduce.
output package:

�� FileOutputFormat: This is the base class for all file-based OutputFormats

�� NullOutputFormat: This is a dummy implementation that discards the output and 
writes nothing to the file

�� SequenceFileOutputFormat: This writes to the binary SequenceFile format

�� TextOutputFormat: This writes a plain text file

Note that these classes define their required RecordWriter implementations as inner 
classes so there are no separately provided RecordWriter implementations.

Don't forget Sequence files
The SequenceFile class within the org.apache.hadoop.io package provides an 
efficient binary file format that is often useful as an output from a MapReduce job. This 
is especially true if the output from the job is processed as the input of another job. The 
Sequence files have several advantages, as follows:

�� As binary files, they are intrinsically more compact than text files

�� They additionally support optional compression, which can also be applied at 
different levels, that is, compress each record or an entire split

�� The file can be split and processed in parallel
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This last characteristic is important, as most binary formats—particularly those that are 
compressed or encrypted—cannot be split and must be read as a single linear stream of 
data. Using such files as input to a MapReduce job means that a single mapper will be used 
to process the entire file, causing a potentially large performance hit. In such a situation, it 
is preferable to either use a splitable format such as SequenceFile, or, if you cannot avoid 
receiving the file in the other format, do a preprocessing step that converts it into a splitable 
format. This will be a trade-off, as the conversion will take time; but in many cases—especially 
with complex map tasks—this will be outweighed by the time saved.

Summary
We have covered a lot of ground in this chapter and we now have the foundation to explore 
MapReduce in more detail. Specifically, we learned how key/value pairs is a broadly applicable 
data model that is well suited to MapReduce processing. We also learned how to write mapper 
and reducer implementations using the 0.20 and above versions of the Java API.

We then moved on and saw how a MapReduce job is processed and how the map  
and reduce methods are tied together by significant coordination and task-scheduling 
machinery. We also saw how certain MapReduce jobs require specialization in the form  
of a custom partitioner or combiner.

We also learned how Hadoop reads data to and from the filesystem. It uses the concept of 
InputFormat and OutputFormat to handle the file as a whole and RecordReader and 
RecordWriter to translate the format to and from key/value pairs.

With this knowledge, we will now move on to a case study in the next chapter, which 
demonstrates the ongoing development and enhancement of a MapReduce application  
that processes a large data set.



4
Developing MapReduce Programs

Now that we have explored the technology of MapReduce, we will spend 
this chapter looking at how to put it to use. In particular, we will take a more 
substantial dataset and look at ways to approach its analysis by using the tools 
provided by MapReduce.

In this chapter we will cover the following topics:

�� Hadoop Streaming and its uses

�� The UFO sighting dataset

�� Using Streaming as a development/debugging tool

�� Using multiple mappers in a single job

�� Efficiently sharing utility files and data across the cluster

�� Reporting job and task status and log information useful for debugging

Throughout this chapter, the goal is to introduce both concrete tools and ideas about how 
to approach the analysis of a new data set. We shall start by looking at how to use scripting 
programming languages to aid MapReduce prototyping and initial analysis. Though it 
may seem strange to learn the Java API in the previous chapter and immediately move to 
different languages, our goal here is to provide you with an awareness of different ways to 
approach the problems you face. Just as many jobs make little sense being implemented 
in anything but the Java API, there are other situations where using another approach is 
best suited. Consider these techniques as new additions to your tool belt and with that 
experience you will know more easily which is the best fit for a given scenario.
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Using languages other than Java with Hadoop
We have mentioned previously that MapReduce programs don't have to be written in Java. 
Most programs are written in Java, but there are several reasons why you may want or need 
to write your map and reduce tasks in another language. Perhaps you have existing code to 
leverage or need to use third-party binaries—the reasons are varied and valid.

Hadoop provides a number of mechanisms to aid non-Java development, primary amongst 
these are Hadoop Pipes that provides a native C++ interface to Hadoop and Hadoop 
Streaming that allows any program that uses standard input and output to be used  
for map and reduce tasks. We will use Hadoop Streaming heavily in this chapter.

How Hadoop Streaming works
With the MapReduce Java API, both map and reduce tasks provide implementations for 
methods that contain the task functionality. These methods receive the input to the task as 
method arguments and then output results via the Context object. This is a clear and type-
safe interface but is by definition Java specific.

Hadoop Streaming takes a different approach. With Streaming, you write a map task that 
reads its input from standard input, one line at a time, and gives the output of its results to 
standard output. The reduce task then does the same, again using only standard input and 
output for its data flow.

Any program that reads and writes from standard input and output can be used in 
Streaming, such as compiled binaries, Unixshell scripts, or programs written in a  
dynamic language such as Ruby or Python.

Why to use Hadoop Streaming
The biggest advantage to Streaming is that it can allow you to try ideas and iterate on them 
more quickly than using Java. Instead of a compile/jar/submit cycle, you just write the scripts 
and pass them as arguments to the Streaming jar file. Especially when doing initial analysis 
on a new dataset or trying out new ideas, this can significantly speed up development.

The classic debate regarding dynamic versus static languages balances the benefits of swift 
development against runtime performance and type checking. These dynamic downsides also 
apply when using Streaming. Consequently, we favor use of Streaming for up-front analysis and 
Java for the implementation of jobs that will be executed on the production cluster.

We will use Ruby for Streaming examples in this chapter, but that is a personal preference.  
If you prefer shell scripting or another language, such as Python, then take the opportunity 
to convert the scripts used here into the language of your choice.
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Time for action – implementing WordCount using Streaming
Let's flog the dead horse of WordCount one more time and implement it using Streaming  
by performing the following steps:

1.	 Save the following file to wcmapper.rb:
#/bin/env ruby

while line = gets
    words = line.split("\t")
    words.each{ |word| puts word.strip+"\t1"}}
end

2.	 Make the file executable by executing the following command:
$ chmod +x wcmapper.rb

3.	 Save the following file to wcreducer.rb:
#!/usr/bin/env ruby

current = nil
count = 0

while line = gets
    word, counter = line.split("\t")

    if word == current
        count = count+1
    else
        puts current+"\t"+count.to_s if current
        current = word
        count = 1
    end
end
puts current+"\t"+count.to_s

4.	 Make the file executable by executing the following command:
$ chmod +x wcreducer.rb
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5.	 Execute the scripts as a Streaming job using the datafile from the previous chapter:
$ hadoop jar hadoop/contrib/streaming/hadoop-streaming-1.0.3.jar 

-file wcmapper.rb -mapper wcmapper.rb -file wcreducer.rb 

-reducer wcreducer.rb -input test.txt -output output

packageJobJar: [wcmapper.rb, wcreducer.rb, /tmp/hadoop-
hadoop/hadoop-unjar1531650352198893161/] [] /tmp/
streamjob937274081293220534.jar tmpDir=null

12/02/05 12:43:53 INFO mapred.FileInputFormat: Total input paths 
to process : 1

12/02/05 12:43:53 INFO streaming.StreamJob: getLocalDirs(): [/var/
hadoop/mapred/local]

12/02/05 12:43:53 INFO streaming.StreamJob: Running job: 
job_201202051234_0005

…

12/02/05 12:44:01 INFO streaming.StreamJob:  map 100%  reduce 0%

12/02/05 12:44:13 INFO streaming.StreamJob:  map 100%  reduce 100%

12/02/05 12:44:16 INFO streaming.StreamJob: Job complete: 
job_201202051234_0005

12/02/05 12:44:16 INFO streaming.StreamJob: Output: wcoutput

6.	 Check the result file:

$ hadoop fs -cat output/part-00000

What just happened?
Ignore the specifics of Ruby. If you don't know the language, it isn't important here.

Firstly, we created the script that will be our mapper. It uses the gets function to read a line 
from standard input, splits this into words, and uses the puts function to write the word and 
the value 1 to the standard output. We then made the file executable.

Our reducer is a little more complex for reasons we will describe in the next section. 
However, it performs the job we would expect, it counts the number of occurrences for each 
word, reads from standard input, and gives the output as the final value to standard output. 
Again we made sure to make the file executable.

Note that in both cases we are implicitly using Hadoop input and output formats discussed 
in the earlier chapters. It is the TextInputFormat property that processes the source file 
and provides each line one at a time to the map script. Conversely, the TextOutputFormat 
property will ensure that the output of reduce tasks is also  
correctly written as textual data. We can of course modify these if required.
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Next, we submitted the Streaming job to Hadoop via the rather cumbersome command line 
shown in the previous section. The reason for each file to be specified twice is that any file 
not available on each node must be packaged up by Hadoop and shipped across the cluster, 
which requires it to be specified by the -file option. Then, we also need to tell Hadoop 
which script performs the mapper and reducer roles.

Finally, we looked at the output of the job, which should be identical to the previous  
Java-based WordCount implementations

Differences in jobs when using Streaming
The Streaming WordCount mapper looks a lot simpler than the Java version, but the reducer 
appears to have more logic. Why? The reason is that the implied contract between Hadoop 
and our tasks changes when we use Streaming.

In Java we knew that our map() method would be invoked once for each input key/value 
pair and our reduce() method would be invoked for each key and its set of values.

With Streaming we don't have the concept of the map or reduce methods anymore, instead 
we have written scripts that process streams of received data. This changes how we need to 
write our reducer. In Java the grouping of values to each key was performed by Hadoop; each 
invocation of the reduce method would receive a single key and all its values. In Streaming, 
each instance of the reduce task is given the individual ungathered values one at a time.

Hadoop Streaming does sort the keys, for example, if a mapper emitted the following data:

First     1
Word      1
Word      1
A         1
First     1

The Streaming reducer would receive this data in the following order:

A         1
First     1
First     1
Word      1
Word      1

Hadoop still collects the values for each key and ensures that each key is passed only to a 
single reducer. In other words, a reducer gets all the values for a number of keys and they are 
grouped together; however, they are not packaged into individual executions of the reducer, 
that is, one per key, as with the Java API.
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This should explain the mechanism used in the Ruby reducer; it first sets empty default 
values for the current word; then after reading each line it determines if this is another value 
for the current key, and if so, increments the count. If not, then there will be no more values 
for the previous key and its final output is sent to standard output and the counting begins 
again for the new word.

After reading so much in the earlier chapters about how great it is for Hadoop to do so much 
for us, this may seem a lot more complex, but after you write a few Streaming reducers it's 
actually not as bad as it may first appear. Also remember that Hadoop does still manage 
the assignment of splits to individual map tasks and the necessary coordination that sends 
the values for a given key to the same reducer. This behavior can be modified through 
configuration settings to change the number of mappers and reducers just as with the  
Java API.

Analyzing a large dataset
Armed with our abilities to write MapReduce jobs in both Java and Streaming, we'll now 
explore a more significant dataset than any we've looked at before. In the following section, 
we will attempt to show how to approach such analysis and the sorts of questions Hadoop 
allows you to ask of a large dataset.

Getting the UFO sighting dataset
We will use a public domain dataset of over 60,000 UFO sightings. This is hosted by 
InfoChimps at http://www.infochimps.com/datasets/60000-documented-ufo-
sightings-with-text-descriptions-and-metada.

You will need to register for a free InfoChimps account to download a copy of the data.

The data comprises a series of UFO sighting records with the following fields:

1.	 Sighting date: This field gives the date when the UFO sighting occurred.

2.	 Recorded date: This field gives the date when the sighting was reported, often 
different to the sighting date.

3.	 Location: This field gives the location where the sighting occurred.

4.	 Shape: This field gives a brief summary of the shape of the UFO, for example, 
diamond, lights, cylinder.

5.	 Duration: This field gives the duration of how long the sighting lasted.

6.	 Description: This field gives free text details of the sighting.

Once downloaded, you will find the data in a few formats. We will be using the .tsv (tab-
separated value) version.
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Getting a feel for the dataset
When faced with a new dataset it is often difficult to get a feel for the nature, breadth, and 
quality of the data involved. There are several questions, the answers to which will affect 
how you approach the follow-on analysis, in particular:

�� How big is the dataset?

�� How complete are the records?

�� How well do the records match the expected format?

The first is a simple question of scale; are we talking hundreds, thousands, millions, or more 
records? The second question asks how complete the records are. If you expect each record 
to have 10 fields (if this is structured or semi-structured data), how many have key fields 
populated with data? The last question expands on this point, how well do the records 
match your expectations of format and representation?

Time for action – summarizing the UFO data
Now we have the data, let's get an initial summarization of its size and how many records 
may be incomplete:

1.	 With the UFO tab-separated value (TSV) file on HDFS saved as ufo.tsv, save the 
following file to summarymapper.rb:
#!/usr/bin/env ruby

while line = gets
    puts "total\t1"
    parts = line.split("\t")
    puts "badline\t1" if parts.size != 6
    puts "sighted\t1" if !parts[0].empty?
    puts "recorded\t1" if !parts[1].empty?
    puts "location\t1" if !parts[2].empty?
    puts "shape\t1" if !parts[3].empty?
    puts "duration\t1" if !parts[4].empty?
    puts "description\t1" if !parts[5].empty?
end

2.	 Make the file executable by executing the following command:
$ chmod +x summarymapper.rb
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3.	 Execute the job as follows by using Streaming:
$ hadoop jar hadoop/contrib/streaming/hadoop-streaming-1.0.3.jar 

-file summarymapper.rb -mapper summarymapper.rb -file wcreducer.rb 
-reducer wcreducer.rb -input ufo.tsv -output ufosummary

4.	 Retrieve the summary data:

$ hadoop fs -cat ufosummary/part-0000

What just happened?
Remember that our UFO sightings should have six fields as described previously.  
They are listed as follows:

�� The date of the sighting

�� The date the sighting was reported

�� The location of the sighting

�� The shape of the object

�� The duration of the sighting

�� A free text description of the event

The mapper examines the file and counts the total number of records in addition to 
identifying potentially incomplete records.

We produce the overall count by simply recording how many distinct records are 
encountered while processing the file. We identify potentially incomplete records  
by flagging those that either do not contain exactly six fields or have at least one  
field that has a null value.

Therefore, the implementation of the mapper reads each line and does three things  
as it proceeds through the file:

�� It gives the output of a token to be incremented in the total number of  
records processed

�� It splits the record on tab boundaries and records any occurrence of lines which  
do not result in six fields' values
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�� For each of the six expected fields it reports when the values present are other than 
an empty string, that is, there is data in the field, though this doesn't actually say 
anything about the quality of that data

We wrote this mapper intentionally to produce the output of the form (token, count). 
Doing this allowed us to use our existing WordCount reducer from our earlier implementations 
as the reducer for this job. There are certainly more efficient implementations, but as this job is 
unlikely to be frequently executed, the convenience is worth it.

At the time of writing, the result of this job was as follows:

badline324
description61372
duration58961
location61377
recorded61377
shape58855
sighted61377
total61377

We see from these figures that we have 61,300records. All of these provide values for the 
sighted date, reported date, and location fields. Around 58,000-59,000 records have values 
for shape and duration, and almost all have a description.

When split on tab characters there were 372 lines found to not have exactly six fields. 
However, since only five records had no value for description, this suggests that the bad 
records typically have too many tabs as opposed to too few. We could of course alter our 
mapper to gather detailed information on this fact. This is likely due to tabs being used in 
the free text description, so for now we will do our analysis expecting most records to have 
correctly placed values for all the six fields, but not make any assumptions regarding further 
tabs in each record.

Examining UFO shapes
Out of all the fields in these reports, it was shape that immediately interested us most, 
as it could offer some interesting ways of grouping the data depending on what sort of 
information we have in that field.
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Time for action – summarizing the shape data
Just as we provided a summarization for the overall UFO data set earlier, let's now do a more 
focused summarization on the data provided for UFO shapes:

1.	 Save the following to shapemapper.rb:
#!/usr/bin/env ruby

while line = gets  
    parts = line.split("\t")    
    if parts.size == 6        
        shape = parts[3].strip     
        puts shape+"\t1" if !shape.empty?   
    end     
end     

2.	 Make the file executable:
$ chmod +x shapemapper.rb

3.	 Execute the job once again using the WordCount reducer:
$ hadoop jar hadoop/contrib/streaming/hadoop-streaming-1.0.3.jarr 
--file shapemapper.rb -mapper shapemapper.rb -file wcreducer.rb 
-reducer wcreducer.rb -input ufo.tsv -output shapes

4.	 Retrieve the shape info:

$ hadoop fs -cat shapes/part-00000  

What just happened?
Our mapper here is pretty simple. It breaks each record into its constituent fields,  
discards any without exactly six fields, and gives a counter as the output for any  
non-empty shape value.

For our purposes here, we are happy to ignore any records that don't precisely match the 
specification we expect. Perhaps one record is the single UFO sighting that will prove it once 
and for all, but even so it wouldn't likely make much difference to our analysis. Think about 
the potential value of individual records before deciding to so easily discard some. If you 
are working primarily on large aggregations where you care mostly about trends, individual 
records likely don't matter. But in cases where single individual values could materially  
affect the analysis or must be accounted for, an approach of trying to parse and recover 
more conservatively rather than discard may be best. We'll talk more about this trade-off  
in Chapter 6, When Things Break.



Chapter 4

[ 103 ]

After the usual routine of making the mapper executable and running the job we produced, 
data showing 29 different UFO shapes were reported. Here's some sample output tabulated 
in compact form for space reasons:

changed1 changing1533 chevron758 cigar1774
circle5250 cone265 crescent2 cross177
cylinder981 delta8 diamond909 disk4798
dome1 egg661 fireball3437 flare1
flash988 formation1775 hexagon1 light12140
other4574 oval2859 pyramid1 rectangle957
round2 sphere3614 teardrop592 triangle6036
unknown4459

As we can see, there is a wide variance in sighting frequency. Some such as pyramid occur 
only once, while light comprises more than a fifth of all reported shapes. Considering many 
UFO sightings are at night, it could be argued that a description of light is not terribly useful 
or specific and when combined with the values for other and unknown we see that around 
21000 of our 58000 reported shapes may not actually be of any use. Since we are not about 
to run out and do additional research, this doesn't matter very much, but what's important 
is to start thinking of your data in these terms. Even these types of summary analysis can 
start giving an insight into the nature of the data and indicate what quality of analysis may be 
possible. In the case of reported shapes, for example, we have already discovered that out of 
our 61000 sightings only 58000 reported the shape and of these 21000 are of dubious value. 
We have already determined that our 61000 sample set only provides 37000 shape reports 
that we may be able to work with. If your analysis is predicated on a minimum number of 
samples, always be sure to do this sort of summarization up-front to determine if the data 
set will actually meet your needs.

Time for action – correlating of sighting duration to UFO shape
Let's do a little more detailed analysis in regards to this shape data. We wondered if there 
was any correlation between the duration of a sighting to the reported shape. Perhaps  
cigar-shaped UFOs hang around longer than the rest or formations always appear for  
the exact amount of time.

1.	 Save the following to shapetimemapper.rb:
#!/usr/bin/env ruby

pattern = Regexp.new /\d* ?((min)|(sec))/

while line = gets
parts = line.split("\t")
if parts.size == 6
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shape = parts[3].strip
duration = parts[4].strip.downcase
if !shape.empty? && !duration.empty?
match = pattern.match(duration)
time = /\d*/.match(match[0])[0]
unit = match[1]
time = Integer(time)
time = time * 60 if unit == "min"
puts shape+"\t"+time.to_s
end
end
end

2.	 Make the file executable by executing the following command:
$ chmod +x shapetimemapper.rb

3.	 Save the following to shapetimereducer.rb:
#!/usr/bin/env ruby

current = nil
min = 0
max = 0
mean = 0
total = 0
count = 0

while line = gets
word, time = line.split("\t")
time = Integer(time)

if word == current
count = count+1
total = total+time
min = time if time < min
max = time if time > max
else
puts current+"\t"+min.to_s+" "+max.to_s+" "+(total/count).to_s if 
current
current = word
count = 1
total = time
min = time
max = time
end
end
puts current+"\t"+min.to_s+" "+max.to_s+" "+(total/count).to_s
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4.	 Make the file executable by executing the following command:
$ chmod +x shapetimereducer.rb

5.	 Run the job:
$ hadoop jar hadoop/contrib/streaminghHadoop-streaming-1.0.3.jar 
-file shapetimemapper.rb -mapper shapetimemapper.rb -file 
shapetimereducer.rb -reducer shapetimereducer.rb -input ufo.tsv 
-output shapetime

6.	 Retrieve the results:

$ hadoop fs -cat shapetime/part-00000

What just happened?
Our mapper here is a little more involved than previous examples due to the nature of the 
duration field. Taking a quick look at some sample records, we found values as follows:

15 seconds
2 minutes
2 min
2minutes
5-10 seconds

In other words, there was a mixture of range and absolute values, different formatting and 
inconsistent terms for time units. Again for simplicity we decided on a limited interpretation 
of the data; we will take the absolute value if present, and the upper part of a range if not. 
We would assume that the strings min or sec would be present for the time units and 
would convert all timings into seconds. With some regular expression magic, we unpack the 
duration field into these parts and do the conversion. Note again that we simply discard  
any record that does not work as we expect, which may not always be appropriate.

The reducer follows the same pattern as our earlier example, starting with a default key 
and reading values until a new one is encountered. In this case, we want to capture the 
minimum, maximum, and mean for each shape, so use numerous variables to track the 
needed data.

Remember that Streaming reducers need to handle a series of values grouped into their 
associated keys and must identify when a new line has a changed key, and hence indicates 
the last value for the previous key that has been processed. In contrast, a Java reducer would 
be simpler as it only deals with the values for a single key in each execution.
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After making both files executable we run the job and get the following results, where we 
removed any shape with less than 10 sightings and again made the output more compact 
for space reasons. The numbers for each shape are the minimum value, the maximum value, 
and mean respectively:

changing0 5400 670 chevron0 3600 333
cigar0 5400 370 circle0 7200 423
cone0 4500 498 cross2 3600 460
cylinder0 5760 380 diamond0 7800 519
disk0 5400 449 egg0 5400 383
fireball0 5400 236 flash0 7200 303
formation0 5400 434 light0 9000 462
other0 5400 418 oval0 5400 405
rectangle0 4200 352 sphere0 14400 396
teardrop0 2700 335 triangle0 18000 375
unknown0 6000 470

It is surprising to see the relatively narrow variance in the mean sighting duration across all 
shape types; most have the mean value between 350 and 430 seconds. Interestingly, we 
also see that the shortest mean duration is for fireballs and the maximum for changeable 
objects, both of which make some degree of intuitive sense. A fireball by definition wouldn't 
be a long-lasting phenomena and a changeable object would need a lengthy duration for its 
changes to be noticed.

Using Streaming scripts outside Hadoop
This last example with its more involved mapper and reducer is a good illustration of how 
Streaming can help MapReduce development in another way; you can execute the scripts 
outside of Hadoop.

It's generally good practice during MapReduce development to have a sample of the 
production data against which to test your code. But when this is on HDFS and you are 
writing Java map and reduce tasks, it can be difficult to debug problems or refine complex 
logic. With map and reduce tasks that read input from the command line, you can directly 
run them against some data to get quick feedback on the result. If you have a development 
environment that provides Hadoop integration or are using Hadoop in standalone mode, the 
problems are minimized; just remember that Streaming does give you this ability to try the 
scripts outside of Hadoop; it may be useful some day.

While developing these scripts the author noticed that the last set of records in his UFO 
datafile had data in a better structured manner than those at the start of the file. Therefore, 
to do a quick test on the mapper all that was required was:

$ tail ufo.tsv | shapetimemapper.rb

This principle can be applied to the full workflow to exercise both the map and reduce script.



Chapter 4

[ 107 ]

Time for action – performing the shape/time analysis from the 
command line

It may not be immediately obvious how to do this sort of local command-line analysis,  
so let's look at an example.

With the UFO datafile on the local filesystem, execute the following command:

$ cat ufo.tsv | shapetimemapper.rb | sort| shapetimereducer.rb

What just happened?
With a single Unixcommand line, we produced output identical to our previous full 
MapReduce job. If you look at what the command line does, this makes sense.

Firstly, the input file is sent—a line at a time—to the mapper. The output of this is passed 
through the Unix sort utility and this sorted output is passed a line at a time to the reducer. 
This is of course a very simplified representation of our general MapReduce job workflow.

Then the obvious question is why should we bother with Hadoop if we can do equivalent 
analysis at the command line. The answer of course is our old friend, scale. This simple 
approach works fine for a file such as the UFO sightings, which though non-trivial, is only 
71MB in size. To put this into context we could hold thousands of copies of this dataset  
on a single modern disk drive.

So what if the dataset was 71GB in size instead, or even 71TB? In the latter case, at least 
we would have to spread the data across multiple hosts, and then decide how to split the 
data, combine partial answers, and deal with the inevitable failures along the way. In other 
words,we would need something like Hadoop.

However, don't discount the use of command-line tools like this, such approaches should  
be well used during MapReduce development.

Java shape and location analysis
Let's return to the Java MapReduce API and consider some analysis of the shape and location 
data within the reports.

However, before we start writing code, let's think about how we've been approaching the 
per-field analysis of this dataset. The previous mappers have had a common pattern:

�� Discard records determined to be corrupt

�� Process valid records to extract the field of interest

�� Output a representation of the data we care about for the record
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Now if we were to write Java mappers to analyze location and then perhaps the sighting 
and reported time columns, we would follow a similar pattern. So can we avoid any of the 
consequent code duplication?

The answer is yes, through the use of org.apache.hadoop.mapred.lib.ChainMapper. 
This class provides a means by which multiple mappers are executed in sequence and it is 
the output of the final mapper that is passed to the reducer. ChainMapper is applicable not 
just for this type of data clean-up; when analyzing particular jobs, it is not an uncommon 
pattern that is useful to perform multiple map-type tasks before applying a reducer.

An example of this approach would be to write a validation mapper that could be used by all 
future field analysis jobs. This mapper would discard lines deemed corrupt, passing only valid 
lines to the actual business logic mapper that can now be focused on analyzing data instead 
of worrying about coarse-level validation.

An alternative approach here would be to do the validation within a custom InputFormat 
class that discards non-valid records; which approach makes the most sense will depend on 
your particular situation.

Each mapper in the chain is executed within a single JVM so there is no need to worry about 
the use of multiple mappers increasing our filesystem I/O load.

Time for action – using ChainMapper for field validation/
analysis

Let's use this principle and employ the ChainMapper class to help us provide some record 
validation within our job:

1.	 Create the following class as UFORecordValidationMapper.java:
import java.io.IOException;

import org.apache.hadoop.io.* ;
import org.apache.hadoop.mapred.* ;
import org.apache.hadoop.mapred.lib.* ;

public class UFORecordValidationMapper extends MapReduceBase
implements Mapper<LongWritable, Text, LongWritable, Text>
{

    public void map(LongWritable key, Text value,
        OutputCollector<LongWritable, Text> output,
        Reporter reporter) throws IOException
{
String line = value.toString();
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        if (validate(line))
            output.collect(key, value);
    }

        private boolean validate(String str)
        {
            String[] parts = str.split("\t") ;

            if (parts.length != 6)
            return false ;

            return true ;
        }
    }

2.	 Create the following as UFOLocation.java:
import java.io.IOException;
import java.util.Iterator ;
import java.util.regex.* ;

import org.apache.hadoop.conf.* ;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.* ;
import org.apache.hadoop.mapred.* ;
import org.apache.hadoop.mapred.lib.* ;

public class UFOLocation
{

    public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, LongWritable>
{

private final static LongWritable one = new LongWritable(1);
private static Pattern locationPattern = Pattern.compile(
"[a-zA-Z]{2}[^a-zA-Z]*$") ;

public void map(LongWritable key, Text value,
OutputCollector<Text, LongWritable> output,
Reporter reporter) throws IOException
{
String line = value.toString();
        String[] fields = line.split("\t") ;
        String location = fields[2].trim() ;
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        if (location.length() >= 2)
        {

            Matcher matcher = locationPattern.matcher(location) ;
            if (matcher.find() )
            {
                int start = matcher.start() ;
                String state = location.substring(start,start+2);

                output.collect(new Text(state.toUpperCase()), 
                       One);
            }
        }
    }
}

public static void main(String[] args) throws Exception
{
    Configuration config = new Configuration() ;
JobConf conf = new JobConf(config, UFOLocation.class);
conf.setJobName("UFOLocation");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(LongWritable.class);

JobConf mapconf1 = new JobConf(false) ;
ChainMapper.addMapper( conf, UFORecordValidationMapper.class,                  
LongWritable.class, Text.class, LongWritable.class, 
Text.class, true, mapconf1) ;

JobConf mapconf2 = new JobConf(false) ;
ChainMapper.addMapper( conf, MapClass.class, 
LongWritable.class, Text.class, 
Text.class, LongWritable.class, true, mapconf2) ;
conf.setMapperClass(ChainMapper.class);
conf.setCombinerClass(LongSumReducer.class);
conf.setReducerClass(LongSumReducer.class);

FileInputFormat.setInputPaths(conf,args[0]) ;
FileOutputFormat.setOutputPath(conf, new Path(args[1])) ;

JobClient.runJob(conf);
}
}
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3.	 Compile both files:
$ javac UFORecordValidationMapper.java UFOLocation.java

4.	 Jar up the class files and submit the job to Hadoop:
$ Hadoop jar ufo.jar UFOLocation ufo.tsv output

5.	 Copy the output file to the local filesystem and examine it:

$ Hadoop fs -get output/part-00000 locations.txt
$ more locations.txt

What just happened?
There's quite a bit happening here, so let's look at it one piece at a time.

The first mapper is our simple validation mapper. The class follows the same interface as 
the standard MapReduce API and the map method simply returns the result of a utility 
validation method. We split this out into a separate method to highlight the functionality of 
the mapper, but the checks could easily have been within the main map method itself. For 
simplicity, we keep to our previous validation strategy of looking for the number of fields  
and discarding lines that don't break into exactly six tab-delimited fields.

Note that the ChainMapper class has unfortunately been one of the last components to be 
migrated to the context object API and as of Hadoop 1.0, it can only be used with the older 
API. It remains a valid concept and useful tool but until Hadoop 2.0, where it will finally be 
migrated into the org.apache.hadoop.mapreduce.lib.chain package, its current  
use requires the older approach.

The other file contains another mapper implementation and an updated driver in the main 
method. The mapper looks for a two-letter sequence at the end of the location field in a 
UFO sighting report. From some manual examination of data, it is obvious that most location 
fields are of the form city, state, where the standard two-character abbreviation is used 
for the state.

Some records, however, add trailing parenthesis, periods, or other punctuation. Some others 
are simply not in this format. For our purposes, we are happy to discard those records and 
focus on those that have the trailing two-character state abbreviation we are looking for.

The map method extracts this from the location field using another regular expression and 
gives the output as the capitalized form of the abbreviation along with a simple count.

The driver for the job has the most changes as the previous configuration involving a single 
map class is replaced with multiple calls on the ChainMapper class.
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The general model is to create a new configuration object for each mapper, then add the 
mapper to the ChainMapper class along with a specification of its input and output,  
and a reference to the overall job configuration object.

Notice that the two mappers have different signatures. Both input a key of type 
LongWritable and value of type Text which are also the output types of 
UFORecordValidationMapper. UFOLocationMapper however outputs the  
reverse with a key of type Text and a value of type LongWritable.

The important thing here is to match the input from the final mapper in the chain 
(UFOLocationMapper) with the inputs expected by the reduce class (LongSumReducer). 
When using theChainMapper class the mappers in the chain can have different input and 
output as long as the following are true:

�� For all but the final mapper each map output matches the input of the subsequent 
mapper in the chain

�� For the final mapper, its output matches the input of the reducer

We compile these classes and put them in the same jar file. This is the first time we have 
bundled the output from more than one Java source file together. As may be expected, 
there is no magic here; the usual rules on jar files, path, and class names apply. Because in 
this case we have both our classes in the same package, we don't have to worry about an 
additional import in the driver class file.

We then run the MapReduce job and examine the output, which is not quite as expected.

Have a go hero
Use the Java API and the previousChainMapper example to reimplement the mappers 
previously written in Ruby that produce the shape frequency and duration reports.

Too many abbreviations
The following are the first few entries from our result file of the previous job:

AB      286
AD      6
AE      7
AI      6
AK      234
AL      548
AM      22
AN      161
…
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The file had 186 different two-character entries. Plainly, our approach of extracting the final 
character digraph from the location field was not sufficiently robust.

We have a number of issues with the data which becomes apparent after a manual analysis 
of the source file:

�� There is inconsistency in the capitalization of the state abbreviations

�� A non-trivial number of sightings are from outside the U.S. and though they  
may follow a similar (city, area) pattern, the abbreviation is not one of  
the 50 we'd expect

�� Some fields simply don't follow the pattern at all, yet would still be captured  
by our regular expression

We need to filter these results, ideally by normalizing the U.S. records into correct state 
output and by gathering everything else into a broader category.

To perform this task we need to add to the mapper some notion of what the valid U.S. state 
abbreviations are. We could of course hardcode this into the mapper but that does not seem 
right. Although we are for now going to treat all non-U.S. sightings as a single category, we 
may wish to extend that over time and perhaps do a breakdown by country. If we hardcode 
the abbreviations, we would need to recompile our mapper each time.

Using the Distributed Cache
Hadoop gives us an alternative mechanism to achieve the goal of sharing reference data 
across all tasks in the job, the Distributed Cache. This can be used to efficiently make 
available common read-only files that are used by the map or reduce tasks to all nodes.  
The files can be text data as in this case but could also be additional jars, binary data, or 
archives; anything is possible.

The files to be distributed are placed on HDFS and added to the DistributedCache within 
the job driver. Hadoop copies the files onto the local filesystem of each node prior to job 
execution, meaning every task has local access to the files.

An alternative is to bundle needed files into the job jar submitted to Hadoop. This does tie 
the data to the job jar making it more difficult to share across jobs and requires the jar to  
be rebuilt if the data changes.
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Time for action – using the Distributed Cache to improve 
location output

Let's now use the Distributed Cache to share a list of U.S. state names and abbreviations 
across the cluster:

1.	 Create a datafile called states.txt on the local filesystem. It should have the state 
abbreviation and full name tab separated, one per line. Or retrieve the file from this 
book's homepage. The file should start like the following:
AL      Alabama
AK      Alaska
AZ      Arizona
AR      Arkansas
CA      California

…

2.	 Place the file on HDFS:
$ hadoop fs -put states.txt states.txt

3.	 Copy the previous UFOLocation.java file to UFOLocation2.java file and make the 
changes by adding the following import statements:
import java.io.* ;
import java.net.* ;
import java.util.* ;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache ;

4.	 Add the following line to the driver main method after the job name is set:
DistributedCache.addCacheFile(new URI ("/user/hadoop/states.txt"), 
conf) ;

5.	 Replace the map class as follows:
    public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, LongWritable>
    {

        private final static LongWritable one = new 
LongWritable(1);
        private static Pattern locationPattern = Pattern.compile(
"[a-zA-Z]{2}[^a-zA-Z]*$") ;
        private Map<String, String> stateNames ;

        @Override
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        public void configure( JobConf job)
        {
            try
            {
                Path[] cacheFiles = DistributedCache.
getLocalCacheFiles(job) ;
                setupStateMap( cacheFiles[0].toString()) ;
            } catch (IOException e) 
{
System.err.println("Error reading state file.") ;
                    System.exit(1) ;
}
        }

        private void setupStateMap(String filename) 
throws IOException
        {
            Map<String, String> states = new HashMap<String, 
String>() ;
            BufferedReader reader = new BufferedReader( new 
FileReader(filename)) ;
            String line = reader.readLine() ;
            while (line != null)
            {
                String[] split = line.split("\t") ;
                states.put(split[0], split[1]) ;
                line = reader.readLine() ;
            }

            stateNames = states ;
        }

        public void map(LongWritable key, Text value,
            OutputCollector<Text, LongWritable> output,
            Reporter reporter) throws IOException
        {
            String line = value.toString();
        String[] fields = line.split("\t") ;
        String location = fields[2].trim() ;
        if (location.length() >= 2)
        {

            Matcher matcher = locationPattern.matcher(location) ;
            if (matcher.find() )
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            {
                int start = matcher.start() ;
                String state = location.substring(start, start+2) 
;

                output.collect(newText(lookupState(state.
toUpperCase())), one);
            }
        }
    }

    private String lookupState( String state)
    {
        String fullName = stateNames.get(state) ;

        return fullName == null? "Other": fullName ;
        }
}

6.	 Compile these classes and submit the job to Hadoop. Then retrieve the result file.

What just happened?
We first created the lookup file we will use in our job and placed it on HDFS. Files to be 
added to the Distributed Cache must initially be copied onto the HDFS filesystem.

After creating our new job file, we added the required class imports. Then we modified the  
driver class to add the file we want on each node to be added to the DistributedCache.  
The filename can be specified in multiple ways, but the easiest way is with an absolute  
path to the file location on HDFS.

There were a number of changes to our mapper class. We added an overridden configure 
method, which we use to populate a map that will be used to associate state abbreviations 
with their full name.

The configure method is called on task startup and the default implementation does 
nothing. In our overridden version, we retrieve the array of files that have been added to the 
Distributed Cache. As we know there is only one file in the cache we feel safe in using the 
first index in this array, and pass that to a utility method that parses the file and uses the 
contents to populate the state abbreviation lookup map. Notice that once the file reference 
is retrieved, we can access the file with standard Java I/O classes; it is after all just a file on 
the local filesystem.
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We add another method to perform the lookup that takes the string extracted from 
the location field and returns either the full name of the state if there is a match or 
the string Other otherwise. This is called prior to the map result being written via the 
OutputCollector class.

The result of this job should be similar to the following data:

Alabama	 548
Alaska	 234
Arizona	 2097
Arkansas	 534
California	 7679
…
Other	 4531…
…

This works fine but we have been losing some information along the way. In our validation 
mapper, we simply drop any lines which don't meet our six field criteria. Though we don't 
care about individual lost records, we may care if the number of dropped records is very 
large. Currently, our only way of determining that is to sum the number of records for each 
recognized state and subtract from the total number of records in the file. We could also try 
to have this data flow through the rest of the job to be gathered in a special reduced key but 
that also seems wrong. Fortunately, there is a better way.

Counters, status, and other output
At the end of every MapReducejob, we see output related to counters such as the  
following output:

12/02/12 06:28:51 INFO mapred.JobClient: Counters: 22
12/02/12 06:28:51 INFO mapred.JobClient:   Job Counters 
12/02/12 06:28:51 INFO mapred.JobClient:     Launched reduce tasks=1
12/02/12 06:28:51 INFO mapred.JobClient:     Launched map tasks=18
12/02/12 06:28:51 INFO mapred.JobClient:     Data-local map tasks=18
12/02/12 06:28:51 INFO mapred.JobClient:   SkippingTaskCounters
12/02/12 06:28:51 INFO mapred.JobClient:     MapProcessedRecords=61393
…

It is possible to add user-defined counters that will likewise be aggregated from all tasks and 
reported in this final output as well as in the MapReduce web UI.
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Time for action – creating counters, task states, and writing log 
output

We'll modify our UFORecordValidationMapper to report statistics about skipped records 
and also highlight some other facilities for recording information about a job:

1.	 Create the following as the UFOCountingRecordValidationMapper.java file:
import java.io.IOException;

import org.apache.hadoop.io.* ;
import org.apache.hadoop.mapred.* ;
import org.apache.hadoop.mapred.lib.* ;

public class UFOCountingRecordValidationMapper extends 
MapReduceBase
implements Mapper<LongWritable, Text, LongWritable, Text>
{

    public enum LineCounters
    {
        BAD_LINES,
        TOO_MANY_TABS,
        TOO_FEW_TABS
    } ;

    public void map(LongWritable key, Text value,
        OutputCollector<LongWritable, Text> output,
        Reporter reporter) throws IOException
    {
        String line = value.toString();

        if (validate(line, reporter))
Output.collect(key, value);
    }

    private boolean validate(String str, Reporter reporter)
    {
        String[] parts = str.split("\t") ;

        if (parts.length != 6)
        {
            if (parts.length < 6)
            {
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reporter.incrCounter(LineCounters.TOO_FEW_TABS, 1) ;
            }
            else
            {
                reporter.incrCounter(LineCounters.TOO_MANY_TABS, 
1) ;
            }

            reporter.incrCounter(LineCounters.BAD_LINES, 1) ;

if((reporter.getCounter(
LineCounters.BAD_LINES).getCounter()%10)
== 0)
            {
                reporter.setStatus("Got 10 bad lines.") ;
                System.err.println("Read another 10 bad lines.") ;
            }

            return false ;
        }
        return true ;
    }
        }

2.	 Make a copy of the UFOLocation2.java file as the UFOLocation3.java file to 
use this new mapper instead of UFORecordValidationMapper:
…
        JobConf mapconf1 = new JobConf(false) ;
        ChainMapper.addMapper( conf, 
UFOCountingRecordValidationMapper.class,
            LongWritable.class, Text.class, LongWritable.class, 
Text.class,
            true, mapconf1) ;

3.	 Compile the files, jar them up, and submit the job to Hadoop:
…

12/02/12 06:28:51 INFO mapred.JobClient: Counters: 22

12/02/12 06:28:51 INFO mapred.JobClient:   UFOCountingRecordValida
tionMapper$LineCounters

12/02/12 06:28:51 INFO mapred.JobClient:     TOO_MANY_TABS=324

12/02/12 06:28:51 INFO mapred.JobClient:     BAD_LINES=326

12/02/12 06:28:51 INFO mapred.JobClient:     TOO_FEW_TABS=2

12/02/12 06:28:51 INFO mapred.JobClient:   Job Counters 
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4.	 Use a web browser to go to the MapReduce web UI (remember by default it is on 
port 50030 on the JobTracker host). Select the job at the bottom of the Completed 
Jobs list and you should see a screen similar to the following screenshot:
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5.	 Click on the link to the map tasks and you should see an overview screen like the 
following screenshot:
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6.	 For one of the tasks with our custom status message, click on the link to its counters. 
This should give a screen similar to the one shown as follows:
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7.	 Go back to the task list and click on the task ID to get the task overview similar to 
the following screenshot:
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8.	 Under the Task Logs column are options for the amount of data to be displayed. 
Click on All and the following screenshot should be displayed:

9.	 Now log into one of the task nodes and look through the files stored under hadoop/
logs/userlogs. There is a directory for each task attempt and several files within 
each; the one to look for is stderr.

What just happened?
The first thing we need to do in order to add new counters is to create a standard Java 
enumeration that will hold them. In this case we created what Hadoop would consider a 
counter group called LineCounters and within that there are three counters for the total 
number of bad lines, and finer grained counters for the number of lines with either too 
few or too many fields. This is all you need to do to create a new set of counters; define 
the enumeration and once you start setting the counter values, they will be automatically 
understood by the framework.
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To add to a counter we simply increment it via the Reporter object, in each case here we 
add one each time we encounter a bad line, one with fewer than six fields, and one with 
more than six fields.

We also retrieve the BAD_LINE counter for a task and if it is a multiple of 10, do  
the following:

�� Set the task status to reflect this fact

�� Write a similar message to stderr with the standard Java System.err.println 
mechanism

We then go to the MapReduce UI and validate whether we can see both the counter totals in 
the job overview as well as tasks with the custom state message in the task list.

We then explored the web UI, looking at the counters for an individual job, then under the 
detail page for a task we saw, we can click on through the log files for the task.

We then looked at one of the nodes to see that Hadoop also captures the logs from each 
task in a directory on the filesystem under the {HADOOP_HOME}/logs/userlogs directory. 
Under subdirectories for each task attempt, there are files for the standard streams as well 
as the general task logs. As you will see, a busy node can end up with a large number of task 
log directories and it is not always easy to identify the task directories of interest. The web 
interface proved itself to be a more efficient view on this data.

If you are using the Hadoop context object API, then counters are accessed 
through the Context.getCounter().increment() method.

Too much information!
After not worrying much about how to get status and other information out of our jobs,  
it may suddenly seem like we've got too many confusing options. The fact of the matter is 
that when running a fully distributed cluster in particular, there really is no way around the 
fact that the data may be spread across every node. With Java code we can't as easily mock 
its usage on the command line as we did with our Ruby Streaming tasks; so care needs to be 
taken to think about what information will be needed at runtime. This should include details 
concerning both the general job operation (additional statistics) as well as indicators of 
problems that may need further investigation.
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Counters, task status messages, and good old-fashioned Java logging can work together. If 
there is a situation you care about, set it as a counter that will record each time it occurs and 
consider setting the status message of the task that encountered it. If there is some specific 
data, write that to stderr. Since counters are so easily visible, you can know pretty quickly 
post job completion if the situation of interest occurred. From this, you can go to the web UI 
and see all the tasks in which the situation was encountered at a glance. From here, you can 
click through to examine the more detailed logs for the task.

In fact, you don't need to wait until the job completes; counters and task status messages 
are updated in the web UI as the job proceeds, so you can start the investigation as soon  
as either counters or task status messages alert you to the situation. This is particularly 
useful in very long running jobs where the errors may cause you to abort the job.

Summary
This chapter covered development of a MapReduce job, highlighting some of the issues  
and approaches you are likely to face frequently. In particular, we learned how Hadoop 
Streaming provides a means to use scripting languages to write map and reduce tasks,  
and how using Streaming can be an effective tool for early stages of job prototyping and  
initial data analysis.

We also learned that writing tasks in a scripting language can provide the additional  
benefit of using command-line tools to directly test and debug the code. Within the Java  
API, we looked at the ChainMapper class that provides an efficient way of decomposing  
a complex map task into a series of smaller, more focused ones.

We then saw how the Distributed Cache provides a mechanism for efficient sharing of data 
across all nodes. It copies files from HDFS onto the local filesystem on each node, providing 
local access to the data. We also learned how to add job counters by defining a Java 
enumeration for the counter group and using framework methods to increment their  
values, and how to use a combination of counters, task status messages,  
and debug logs to develop an efficient job analysis workflow.

We expect most of these techniques and ideas to be the ones that you will encounter 
frequently as you develop MapReduce jobs. In the next chapter, we will explore a series  
of more advanced techniques that are less often encountered but are invaluable when  
they are.
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Advanced MapReduce Techniques

Now that we have looked at a few details of the fundamentals of MapReduce and its usage, 
it's time to examine some more techniques and concepts involved in MapReduce. This 
chapter will cover the following topics:

�� Performing joins on data

�� Implementing graph algorithms in MapReduce

�� How to represent complex datatypes in a language-independent fashion

Along the way, we'll use the case studies as examples in order to highlight other aspects  
such as tips and tricks and identifying some areas of best practice.

Simple, advanced, and in-between
Including the word "advanced" in a chapter title is a little dangerous, as complexity is a 
subjective concept. So let's be very clear about the material covered here. We don't, for even 
a moment, suggest that this is the pinnacle of distilled wisdom that would otherwise take 
years to acquire. Conversely, we also don't claim that some of the techniques and problems 
covered in this chapter will have occurred to someone new to the world of Hadoop.

For the purposes of this chapter, therefore, we use the term "advanced" to cover things that 
you don't see in the first days or weeks, or wouldn't necessarily appreciate if you did. These 
are some techniques that provide both specific solutions to particular problems but also 
highlight ways in which the standard Hadoop and related APIs can be employed to address 
problems that are not obviously suited to the MapReduce processing model. Along the way, 
we'll also point out some alternative approaches that we don't implement here but which 
may be useful sources for further research.

Our first case study is a very common example of this latter case; performing join-type 
operations within MapReduce.
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Joins
Few problems use a single set of data. In many cases, there are easy ways to obviate the need 
to try and process numerous discrete yet related data sets within the MapReduce framework.

The analogy here is, of course, to the concept of join in a relational database. It is very 
natural to segment data into numerous tables and then use SQL statements that join tables 
together to retrieve data from multiple sources. The canonical example is where a main  
table has only ID numbers for particular facts, and joins against other tables are used to 
extract data about the information referred to by the unique ID.

When this is a bad idea
It is possible to implement joins in MapReduce. Indeed, as we'll see, the problem is  
less about the ability to do it and more the choice of which of many potential strategies  
to employ.

However, MapReduce joins are often difficult to write and easy to make inefficient. Work 
with Hadoop for any length of time, and you will come across a situation where you need 
to do it. However, if you very frequently need to perform MapReduce joins, you may want 
to ask yourself if your data is well structured and more relational in nature than you first 
assumed. If so, you may want to consider Apache Hive (the main topic of Chapter 8, A 
Relational View on Data with Hive) or Apache Pig (briefly mentioned in the same chapter). 
Both provide additional layers atop Hadoop that allow data processing operations to be 
expressed in high-level languages; in the case of Hive, through a variant of SQL.

Map-side versus reduce-side joins
That caveat out of the way, there are two basic approaches to join data in Hadoop and these 
are given their names depending on where in the job execution the join occurs. In either 
case, we need to bring multiple data streams together and perform the join through some 
logic. The basic difference between these two approaches is whether the multiple data 
streams are combined within the mapper or reducer functions.

Map-side joins, as the name implies, read the data streams into the mapper and uses 
logic within the mapper function to perform the join. The great advantage of a map-side 
join is that by performing all joining—and more critically data volume reduction—within 
the mapper, the amount of data transferred to the reduce stage is greatly minimized. The 
drawback of map-side joins is that you either need to find a way of ensuring one of the 
data sources is very small or you need to define the job input to follow very specific criteria. 
Often, the only way to do that is to preprocess the data with another MapReduce job whose 
sole purpose is to make the data ready for a map-side join.
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In contrast, a reduce-side join has the multiple data streams processed through the map 
stage without performing any join logic and does the joining in the reduce stage. The 
potential drawback of this approach is that all the data from each source is pulled through 
the shuffle stage and passed into the reducers, where much of it may then be discarded by 
the join operation. For large data sets, this can become a very significant overhead.

The main advantage of the reduce-side join is its simplicity; you are largely responsible  
for how the jobs are structured and it is often quite straightforward to define a reduce-side 
join approach for related data sets. Let's look at an example.

Matching account and sales information
A common situation in many companies is that sales records are kept separate from the 
client data. There is, of course, a relationship between the two; usually a sales record 
contains the unique ID of the user account through which the sale was performed.

In the Hadoop world, these would be represented by two types of data files: one containing 
records of the user IDs and information for sales, and the other would contain the full data 
for each user account.

Frequent tasks require reporting that uses data from both these sources; say, for example, 
we wanted to see the total number of sales and total value for each user but do not want 
to associate it with an anonymous ID number, but rather with a name. This may be valuable 
when customer service representatives wish to call the most frequent customers—data from 
the sales records—but want to be able to refer to the person by name and not just a number.

Time for action – reduce-side join using MultipleInputs
We can perform the report explained in the previous section using a reduce-side join by 
performing the following steps:

1.	 Create the following tab-separated file and name it sales.txt:
00135.992012-03-15
00212.492004-07-02
00413.422005-12-20
003499.992010-12-20
00178.952012-04-02
00221.992006-11-30
00293.452008-09-10
0019.992012-05-17
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2.	 Create the following tab-separated file and name it accounts.txt:
001John AllenStandard2012-03-15
002Abigail SmithPremium2004-07-13
003April StevensStandard2010-12-20
004Nasser HafezPremium2001-04-23

3.	 Copy the datafiles onto HDFS.
$ hadoop fs -mkdir sales

$ hadoop fs -put sales.txt sales/sales.txt

$ hadoop fs -mkdir accounts

$ hadoop fs -put accounts/accounts.txt

4.	 Create the following file and name it ReduceJoin.java:
import java.io.* ;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.input.*;

public class ReduceJoin
{

    public static class SalesRecordMapper
extends Mapper<Object, Text, Text, Text>
{

        public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
        {
            String record = value.toString() ;
            String[] parts = record.split("\t") ;

            context.write(new Text(parts[0]), new 
Text("sales\t"+parts[1])) ;
        }
    }

    public static class AccountRecordMapper
extends Mapper<Object, Text, Text, Text>
{
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        public void map(Object key, Text value, Context context)
throws IOException, InterruptedException
        {
            String record = value.toString() ;
            String[] parts = record.split("\t") ;

            context.write(new Text(parts[0]), new 
Text("accounts\t"+parts[1])) ;
        }
    }

    public static class ReduceJoinReducer
    extends Reducer<Text, Text, Text, Text>
    {

        public void reduce(Text key, Iterable<Text> values,
            Context context)
            throws IOException, InterruptedException
        {
            String name = "" ;
double total = 0.0 ;
            int count = 0 ;

            for(Text t: values)
            {
                String parts[] = t.toString().split("\t") ;

                if (parts[0].equals("sales"))
                {
                    count++ ;
                    total+= Float.parseFloat(parts[1]) ;
                }
                else if (parts[0].equals("accounts"))
                {
                    name = parts[1] ;
                }
            }

            String str = String.format("%d\t%f", count, total) ;
            context.write(new Text(name), new Text(str)) ;
        }
    }
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    public static void main(String[] args) throws Exception 
{
        Configuration conf = new Configuration();
        Job job = new Job(conf, "Reduce-side join");
        job.setJarByClass(ReduceJoin.class);
        job.setReducerClass(ReduceJoinReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
MultipleInputs.addInputPath(job, new Path(args[0]), 
TextInputFormat.class, SalesRecordMapper.class) ;
MultipleInputs.addInputPath(job, new Path(args[1]), 
TextInputFormat.class, AccountRecordMapper.class) ;
        Path outputPath = new Path(args[2]);
        FileOutputFormat.setOutputPath(job, outputPath);
outputPath.getFileSystem(conf).delete(outputPath);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

5.	 Compile the file and add it to a JAR file.
$ javac ReduceJoin.java

$ jar -cvf join.jar *.class

6.	 Run the job by executing the following command:
$ hadoop jar join.jarReduceJoin sales accounts outputs

7.	 Examine the result file.

$ hadoop fs -cat /user/garry/outputs/part-r-00000

John Allen	 3	 124.929998

Abigail Smith	3	 127.929996

April Stevens	1	 499.989990

Nasser Hafez	 1	 13.420000

What just happened?
Firstly, we created the datafiles to be used in this example. We created two small data sets as 
this makes it easier to track the result output. The first data set we defined was the account 
details with four columns, as follows:

�� The account ID

�� The client name
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�� The type of account

�� The date the account was opened

We then created a sales record with three columns:

�� The account ID of the purchaser

�� The value of the sale

�� The date of the sale

Naturally, real account and sales records would have many more fields than the ones 
mentioned here. After creating the files, we placed them onto HDFS.

We then created the ReduceJoin.java file, which looks very much like the previous 
MapReduce jobs we have used. There are a few aspects to this job that make it special  
and allow us to implement a join.

Firstly, the class has two defined mappers. As we have seen before, jobs can have multiple 
mappers executed in a chain; but in this case, we wish to apply different mappers to each 
of the input locations. Accordingly, we have the sales and account data defined into the 
SalesRecordMapper and AccountRecordMapper classes. We used the MultipleInputs 
class from the org.apache.hadoop.mapreduce.lib.io package as follows:

MultipleInputs.addInputPath(job, new Path(args[0]), 
TextInputFormat.class, SalesRecordMapper.class) ;
MultipleInputs.addInputPath(job, new Path(args[1]), 
TextInputFormat.class, AccountRecordMapper.class) ;

As you can see, unlike in previous examples where we add a single input location, the 
MultipleInputs class allows us to add multiple sources and associate each with a  
distinct input format and mapper.

The mappers are pretty straightforward; the SalesRecordMapper class emits an output of 
the form <account number>, <sales value> while the AccountRecordMapper class 
emits an output of the form <account number>, <client name>. We therefore have 
the order value and client name for each sale being passed into the reducer where the  
actual join will happen.

Notice that both mappers actually emit more than the required values.  
The SalesRecordMapper class prefixes its value output with sales while  
the AccountRecordMapper class uses the tag account.

If we look at the reducer, we can see why this is so. The reducer retrieves each record for a 
given key, but without these explicit tags we would not know if a given value came from the 
sales or account mapper and hence would not understand how to treat the data value.
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The ReduceJoinReducer class therefore treats the values in the Iterator 
object differently, depending on which mapper they came from. Values from the 
AccountRecordMapper class—and there should be only one—are used to populate 
the client name in the final output. For each sales record—likely to be multiple, as most 
clients buy more than a single item—the total number of orders is counted as is the overall 
combined value. The output from the reducer is therefore a key of the account holder name 
and a value string containing the number of orders and the total order value.

We compile and execute the class; notice how we provide three arguments representing 
the two input directories as well as the single output source. Because of how the 
MultipleInputs class is configured, we must also ensure we specify the directories  
in the right order; there is no dynamic mechanism to determine which type of file is in  
which location.

After execution, we examine the output file and confirm that it does indeed contain the 
overall totals for named clients as expected.

DataJoinMapper and TaggedMapperOutput
There is a way of implementing a reduce-side join in a more sophisticated and object-
oriented fashion. Within the org.apache.hadoop.contrib.join package are classes 
such as DataJoinMapperBase and TaggedMapOutput that provide an encapsulated 
means of deriving the tags for map output and having them processed at the reducer. This 
mechanism means you don't have to define explicit tag strings as we did previously and then 
carefully parse out the data received at the reducer to determine from which mapper the 
data came; there are methods in the provided classes that encapsulate this functionality.

This capability is particularly valuable when using numeric or other non-textual data. For 
creating our own explicit tags as in the previous example, we would have to convert types 
such as integers into strings to allow us to add the required prefix tag. This will be more 
inefficient than using the numeric types in their normal form and relying on the additional 
classes to implement the tag.

The framework allows for quite sophisticated tag generation as well as concepts such as tag 
grouping that we didn't implement previously. There is additional work required to use this 
mechanism that includes overriding additional methods and using a different map base class. 
For straightforward joins such as in the previous example, this framework may be overkill, 
but if you find yourself implementing very complex tagging logic, it may be worth a look.



Chapter 5

[ 135 ]

Implementing map-side joins
For a join to occur at a given point, we must have access to the appropriate records from 
each data set at that point. This is where the simplicity of the reduce-side join comes into  
its own; though it incurs the expense of additional network traffic, processing it by definition 
ensures that the reducer has all records associated with the join key.

If we wish to perform our join in the mapper, it isn't as easy to make this condition hold 
true. We can't assume that our input data is sufficiently well structured to allow associated 
records to be read simultaneously. We generally have two classes of approach here: obviate 
the need to read from multiple external sources or preprocess the data so that it is amenable 
for map-side joining.

Using the Distributed Cache
The simplest way of realizing the first approach is to take all but one data set and make it 
available in the Distributed Cache that we used in the previous chapter. The approach can  
be used for multiple data sources, but for simplicity let's discuss just two.

If we have one large data set and one smaller one, such as with the sales and account info 
earlier, one option would be to package up the account info and push it into the Distributed 
Cache. Each mapper would then read this data into an efficient data structure, such as a  
hash table that uses the join key as the hash key. The sales records are then processed,  
and during the processing of record each the needed account information can be  
retrieved from the hash table.

This mechanism is very effective and when one of the smaller data sets can easily fit into 
memory, it is a great approach. However, we are not always that lucky, and sometimes the 
smallest data set is still too large to be copied to every worker machine and held in memory.

Have a go hero - Implementing map-side joins
Take the previous sales/account record example and implement a map-side join using the 
Distributed Cache. If you load the account records into a hash table that maps account ID 
numbers to client names, you can use the account ID to retrieve the client name. Do this 
within the mapper while processing the sales records.

Pruning data to fit in the cache
If the smallest data set is still too big to be used in the Distributed Cache, all is not 
necessarily lost. Our earlier example, for instance, extracted only two fields from each record 
and discarded the other fields not required by the job. In reality, an account will be described 
by many attributes, and this sort of reduction will limit the data size dramatically. Often the 
data available to Hadoop is this full data set, but what we need is only a subset of the fields.
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In such a case, therefore, it may be possible to extract from the full data set only the fields 
that are needed during the MapReduce job, and in doing so create a pruned data set that is 
small enough to be used in the cache.

This is a very similar concept to the underlying column-oriented databases. 
Traditional relational databases store data a row at a time, meaning that 
the full row needs to be read to extract a single column. A column-based 
database instead stores each column separately, allowing a query to read 
only the columns in which it is interested.

If you take this approach, you need to consider what mechanism will be used to generate 
the data subset and how often this will be done. The obvious approach is to write another 
MapReduce job that does the necessary filtering and this output is then used in the 
Distributed Cache for the follow-on job. If the smaller data set changes only rarely, you may 
be able to get away with generating the pruned data set on a scheduled basis; for example, 
refresh it every night. Otherwise, you will need to make a chain of two MapReduce jobs: one 
to produce the pruned data set and the other to perform the join operation using the large 
set and the data in the Distributed Cache.

Using a data representation instead of raw data
Sometimes, one of the data sources is not used to retrieve additional data but is instead 
used to derive some fact that is then used in a decision process. We may, for example, be 
looking to filter sales records to extract only those for which the shipping address was in a 
specific locale.

In such a case, we can reduce the required data size down to a list of the applicable sales 
records that may more easily fit into the cache. We can again store it as a hash table, where 
we are just recording the fact that the record is valid, or even use something like a sorted 
list or a tree. In cases where we can accept some false positives while still guaranteeing no 
false negatives, a Bloom filter provides an extremely compact way of representing such 
information.

As can be seen, applying this approach to enable a map-side join requires creativity and not 
a little luck in regards to the nature of the data set and the problem at hand. But remember 
that the best relational database administrators spend significant time optimizing queries 
to remove unnecessary data processing; so it's never a bad idea to ask if you truly need to 
process all that data.

Using multiple mappers
Fundamentally, the previous techniques are trying to remove the need for a full cross data 
set join. But sometimes this is what you have to do; you may simply have very large data  
sets that cannot be combined in any of these clever ways.
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There are classes within the org.apache.hadoop.mapreduce.lib.join package that 
support this situation. The main class of interest is CompositeInputFormat, which applies 
a user-defined function to combine records from multiple data sources.

The main limitation of this approach is that the data sources must already be indexed based 
on the common key, in addition to being both sorted and partitioned in the same way. The 
reason for this is simple: when reading from each source, the framework needs to know if  
a given key is present at each location. If we know that each partition is sorted and contains 
the same key range, simple iteration logic can do the required matching.

This situation is obviously not going to happen by accident, so again you may find yourself 
writing preprocess jobs to transform all the input data sources into the correct sort and 
partition structure.

This discussion starts to touch on distributed and parallel join algorithms; 
both topics are of extensive academic and commercial research. If you are 
interested in the ideas and want to learn more of the underlying theory, go 
searching on http://scholar.google.com.

To join or not to join...
After our tour of joins in the MapReduce world, let's come back to the original question:  
are you really sure you want to be doing this? The choice is often between a relatively  
easily implemented yet inefficient reduce-side join, and more efficient but more complex 
map-side alternatives. We have seen that joins can indeed be implemented in MapReduce, 
but they aren't always pretty. This is why we advise the use of something like Hive or Pig if 
these types of problems comprise a large portion of your workload. Obviously, we can use 
tools such as those that do their own translation into MapReduce code under the hood  
and directly implement both map-side and reduce-side joins, but it's often better to use  
a well-engineered and well-optimized library for such workloads instead of building your 
own. That is after all why you are using Hadoop and not writing your own distributed 
processing framework!

Graph algorithms
Any good computer scientist will tell you that the graph data structure is one of the  
most powerful tools around. Many complex systems are best represented by graphs and 
a body of knowledge going back at least decades (centuries if you get more mathematical 
about it) provides very powerful algorithms to solve a vast variety of graph problems. But 
by their very nature, graphs and their algorithms are often very difficult to imagine in a 
MapReduce paradigm.
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Graph 101
Let's take a step back and define some terminology. A graph is a structure comprising of 
nodes (also called vertices) that are connected by links called edges. Depending on the type 
of graph, the edges may be bidirectional or unidirectional and may have weights associated 
with them. For example, a city road network can be seen as a graph where the roads are  
the edges, and intersections and points of interest are nodes. Some streets are one-way  
and some are not, some have tolls, some are closed at certain times of day, and so forth.

For transportation companies, there is much money to be made by optimizing the routes 
taken from one point to another. Different graph algorithms can derive such routes by taking 
into account attributes such as one-way streets and other costs expressed as weights that 
make a given road more attractive or less so.

For a more current example, think of the social graph popularized by sites such as Facebook 
where the nodes are people and the edges are the relationships between them.

Graphs and MapReduce – a match made somewhere
The main reason graphs don't look like many other MapReduce problems is due to the 
stateful nature of graph processing, which can be seen in the path-based relationship 
between elements and often between the large number of nodes processed together 
for a single algorithm. Graph algorithms tend to use notions of the global state to make 
determinations about which elements to process next and modify such global knowledge  
at each step.

In particular, most of the well-known algorithms often execute in an incremental or reentrant 
fashion, building up structures representing processed and pending nodes, and working 
through the latter while reducing the former.

MapReduce problems, on the other hand, are conceptually stateless and typically based 
upon a divide-and-conquer approach where each Hadoop worker host processes a small 
subset of the data, writing out a portion of the final result where the total job output is 
viewed as the simple collection of these smaller outputs. Therefore, when implementing 
graph algorithms in Hadoop, we need to express algorithms that are fundamentally stateful 
and conceptually single-threaded in a stateless parallel and distributed framework. That's 
the challenge!

Most of the well-known graph algorithms are based upon search or traversal of the graph, 
often to find routes—frequently ranked by some notion of cost—between nodes. The most 
fundamental graph traversal algorithms are depth-first search (DFS) and breadth-first search 
(BFS).The difference between the algorithms is the ordering in which a node is processed in 
relationship to its neighbors.
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We will look at representing an algorithm that implements a specialized form of such a 
traversal; for a given starting node in the graph, determine the distance between it and  
every other node in the graph.

As can be seen, the field of graph algorithms and theory is a huge one that 
we barely scratch the surface of here. If you want to find out more, the 
Wikipedia entry on graphs is a good starting point; it can be found at http://
en.wikipedia.org/wiki/Graph_(abstract_data_type).

Representing a graph
The first problem we face is how to represent the graph in a way we can efficiently  
process using MapReduce. There are several well-known graph representations known 
as pointer-based, adjacency matrix, and adjacency list. In most implementations, these 
representations often assume a single process space with a global view of the whole graph; 
we need to modify the representation to allow individual nodes to be processed in discrete 
map and reduce tasks.

We'll use the graph shown here in the following examples. The graph does have some extra 
information that will be explained later.

Our graph is quite simple; it has only seven nodes, and all but one of the edges is 
bidirectional. We are also using a common coloring technique that is used in standard  
graph algorithms, as follows:

�� White nodes are yet to be processed

�� Gray nodes are currently being processed

�� Black nodes have been processed
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As we process our graph in the following steps, we will expect to see the nodes move 
through these stages.

Time for action – representing the graph
Let's define a textual representation of the graph that we'll use in the following examples.

Create the following as graph.txt:

12,3,40C
21,4
31,5,6
41,2
53,6
63,5
76

What just happened?
We defined a file structure that will represent our graph, based somewhat on the adjacency 
list approach. We assumed that each node has a unique ID and the file structure has four 
fields, as follows:

�� The node ID

�� A comma-separated list of neighbors

�� The distance from the start node

�� The node status

In the initial representation, only the starting node has values for the third and fourth 
columns: its distance from itself is 0 and its status is "C", which we'll explain later.

Our graph is directional—more formally referred to as a directed graph—that is to say,  
if node 1 lists node 2 as a neighbor, there is only a return path if node 2 also lists node 1  
as its neighbor. We see this in the graphical representation where all but one edge has an 
arrow on both ends.

Overview of the algorithm
Because this algorithm and corresponding MapReduce job is quite involved, we'll explain  
it before showing the code, and then demonstrate it in use later.

Given the previous representation, we will define a MapReduce job that will be executed 
multiple times to get the final output; the input to a given execution of the job will be the 
output from the previous execution.
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Based on the color code described in the previous section, we will define three states  
for a node:

�� Pending: The node is yet to be processed; it is in the default state (white)

�� Currently processing: The node is being processed (gray)

�� Done: The final distance for the node has been determined (black)

The mapper
The mapper will read in the current representation of the graph and treat each node  
as follows:

�� If the node is marked as Done, it gives output with no changes.

�� If the node is marked as Currently processing, its state is changed to Done and gives 
output with no other changes. Each of its neighbors gives output as per the current 
record with its distance incremented by one, but with no neighbors; node 1 doesn't 
know node 2's neighbors, for example.

�� If the node is marked Pending, its state is changed to Currently processing and it 
gives output with no further changes.

The reducer
The reducer will receive one or more records for each node ID, and it will combine their 
values into the final output node record for that stage.

The general algorithm for the reducer is as follows:

�� A Done record is the final output and no further processing of the values  
is performed

�� For other nodes, the final output is built up by taking the list of neighbors,  
where it is to be found, and the highest distance and state

Iterative application
If we apply this algorithm once, we will get node 1 marked as Done, several more (its 
immediate neighbors) as Current, and a few others as Pending. Successive applications of 
the algorithm will see all nodes move to their final state; as each node is encountered, its 
neighbors are brought into the processing pipeline. We will show this later.
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Time for action – creating the source code
We'll now see the source code to implement our graph traversal. Because the code  
is lengthy, we'll break it into multiple steps; obviously they should all be together in  
a single source file.

1.	 Create the following as GraphPath.java with these imports:
import java.io.* ;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;

public class GraphPath
{

2.	 Create an inner class to hold an object-oriented representation of a node:
// Inner class to represent a node
    public static class Node
    {
// The integer node id
        private String id ;
// The ids of all nodes this node has a path to
        private String neighbours ;
// The distance of this node to the starting node
        private int distance ;
// The current node state
        private String state ;

// Parse the text file representation into a Node object
        Node( Text t)
        {
            String[] parts = t.toString().split("\t") ;
this.id = parts[0] ;
this.neighbours = parts[1] ;
            if (parts.length<3 || parts[2].equals(""))
this.distance = -1 ;
            else
this.distance = Integer.parseInt(parts[2]) ;
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            if (parts.length< 4 || parts[3].equals(""))
this.state = "P" ;
            else
this.state = parts[3] ;
        }

// Create a node from a key and value object pair
        Node(Text key, Text value)
        {
            this(new Text(key.toString()+"\t"+value.toString())) ;
        }

        Public String getId()
        {return this.id ;
        }

        public String getNeighbours()
        {
            return this.neighbours ;
        }

        public int getDistance()
        {
            return this.distance ;
        }

        public String getState()
        {
            return this.state ;
        }
    }

3.	 Create the mapper for the job. The mapper will create a new Node object for its 
input and then examine it, and based on its state do the appropriate processing.
    public static class GraphPathMapper
extends Mapper<Object, Text, Text, Text>
{

       public void map(Object key, Text value, Context context)
throws IOException, InterruptedException 
{
         Node n = new Node(value) ;

         if (n.getState().equals("C"))
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         {
//  Output the node with its state changed to Done
            context.write(new Text(n.getId()), new  
Text(n.getNeighbours()+"\t"+n.getDistance()+"\t"+"D")) ;

                for (String neighbour:n.getNeighbours().
split(","))
                {
// Output each neighbour as a Currently processing node
// Increment the distance by 1; it is one link further away
                    context.write(new Text(neighbour), new 
Text("\t"+(n.getDistance()+1)+"\tC")) ;
                }
            }
            else
            {
// Output a pending node unchanged
                context.write(new Text(n.getId()), new 
Text(n.getNeighbours()+"\t"+n.getDistance()
+"\t"+n.getState())) ;
            }

        }
    }

4.	 Create the reducer for the job. As with the mapper, this reads in a representation 
of a node and gives as output a different value depending on the state of the node. 
The basic approach is to collect from the input the largest value for the state and 
distance columns, and through this converge to the final solution.
    public static class GraphPathReducer
extends Reducer<Text, Text, Text, Text>
{

        public void reduce(Text key, Iterable<Text> values,
            Context context)
            throws IOException, InterruptedException 
{
// Set some default values for the final output
            String neighbours = null ;
int distance = -1 ;
String state = "P" ;

            for(Text t: values)
{
                Node n = new Node(key, t) ;
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                if (n.getState().equals("D"))
                {
// A done node should be the final output; ignore the remaining 
// values
neighbours = n.getNeighbours() ;
                    distance = n.getDistance() ;
                    state = n.getState() ;
                    break ;
                }

// Select the list of neighbours when found                
                if (n.getNeighbours() != null)
neighbours = n.getNeighbours() ;

// Select the largest distance
                if (n.getDistance() > distance)
distance = n.getDistance() ;

// Select the highest remaining state
                if (n.getState().equals("D") || 
(n.getState().equals("C") &&state.equals("P")))
state=n.getState() ;
            }

// Output a new node representation from the collected parts        
            context.write(key, new 
Text(neighbours+"\t"+distance+"\t"+state)) ;
        }
    }

5.	 Create the job driver:

    public static void main(String[] args) throws Exception 
{
        Configuration conf = new Configuration();
        Job job = new Job(conf, "graph path");
        job.setJarByClass(GraphPath.class);
        job.setMapperClass(GraphPathMapper.class);
        job.setReducerClass(GraphPathReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
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What just happened?
The job here implements the previously described algorithm that we'll execute in  
the following sections. The job setup is pretty standard, and apart from the algorithm 
definition the only new thing here is the use of an inner class to represent nodes.

The input to a mapper or reducer is often a flattened representation of a more complex 
structure or object. We could just use that representation, but in this case this would result 
in the mapper and reducer bodies being full of text and string manipulation code that would 
obscure the actual algorithm.

The use of the Node inner class allows the mapping from the flat file to object representation 
that is to be encapsulated in an object that makes sense in terms of the business domain. 
This also makes the mapper and reducer logic clearer as comparisons between object 
attributes are more semantically meaningful than comparisons with slices of a string 
identified only by absolute index positions.

Time for action – the first run
Let's now perform the initial execution of this algorithm on our starting representation of  
the graph:

1.	 Put the previously created graph.txt file onto HDFS:
$ hadoop fs -mkdirgraphin

$ hadoop fs -put graph.txtgraphin/graph.txt

2.	 Compile the job and create the JAR file:
$ javac GraphPath.java

$ jar -cvf graph.jar *.class

3.	 Execute the MapReduce job:
$ hadoop jar graph.jarGraphPathgraphingraphout1

4.	 Examine the output file:

$ hadoop fs –cat /home/user/hadoop/graphout1/part-r00000

12,3,40D

21,41C

31,5,61C

41,21C

53,6-1P

63,5-1P

76-1P
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What just happened?
After putting the source file onto HDFS and creating the job JAR file, we executed the job in 
Hadoop. The output representation of the graph shows a few changes, as follows:

�� Node 1 is now marked as Done; its distance from itself is obviously 0

�� Nodes 2, 3, and 4 – the neighbors of node 1 — are marked as Currently processing

�� All other nodes are Pending

Our graph now looks like the following figure:

Given the algorithm, this is to be expected; the first node is complete and its neighboring 
nodes, extracted through the mapper, are in progress. All other nodes are yet to  
begin processing.

Time for action – the second run
If we take this representation as the input to another run of the job, we would expect nodes 
2, 3, and 4 to now be complete, and for their neighbors to now be in the Current state. Let's 
see; execute the following steps:

1.	 Execute the MapReduce job by executing the following command:
$ hadoop jar graph.jarGraphPathgraphout1graphout2

2.	 Examine the output file:

$ hadoop fs -cat /home/user/hadoop/graphout2/part-r000000

12,3,40D

21,41D
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31,5,61D

41,21D

53,62C

63,52C

76-1P

What just happened?
As expected, nodes 1 through 4 are complete, nodes 5 and 6 are in progress, and node 7 is 
still pending, as seen in the following figure:

If we run the job again, we should expect nodes 5 and 6 to be Done and any unprocessed 
neighbors to become Current.

Time for action – the third run
Let's validate that assumption by running the algorithm for the third time.

1.	 Execute the MapReduce job:
$ hadoop jar graph.jarGraphPathgraphout2graphout3

2.	 Examine the output file:

$ hadoop fs -cat /user/hadoop/graphout3/part-r-00000

12,3,40D

21,41D

31,5,61D
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41,21D

53,62D

63,52D

76-1P

What just happened?
We now see nodes 1 through 6 are complete. But node 7 is still pending and no nodes are 
currently being processed, as shown in the following figure:

The reason for this state is that though node 7 has a link to node 6, there is no edge in the 
reverse direction. Node 7 is therefore effectively unreachable from node 1. If we run the 
algorithm one final time, we should expect to see the graph unchanged.

Time for action – the fourth and last run
Let's perform the fourth execution to validate that the output has now reached its final 
stable state.

1.	 Execute the MapReduce job:
$ hadoop jar graph.jarGraphPathgraphout3graphout4
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2.	 Examine the output file:

$ hadoop fs -cat /user/hadoop/graphout4/part-r-00000

12,3,40D

21,41D

31,5,61D

41,21D

53,62D

63,52D

76-1P

What just happened?
The output is as expected; since node 7 is not reachable by node 1 or any of its neighbors, it 
will remain Pending and never be processed further. Consequently, our graph is unchanged 
as shown in the following figure:

The one thing we did not build into our algorithm was an understanding of a terminating 
condition; the process is complete if a run does not create any new D or C nodes.

The mechanism we use here is manual, that is, we knew by examination that the 
graph representation had reached its final stable state. There are ways of doing this 
programmatically, however. In a later chapter, we will discuss custom job counters; we 
can, for example, increment a counter every time a new D or C node is created and only 
reexecute the job if that counter is greater than zero after the run.
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Running multiple jobs
The previous algorithm is the first time we have explicitly used the output of one MapReduce 
job as the input to another. In most cases, the jobs are different; but, as we have seen, there 
is value in repeatedly applying an algorithm until the output reaches a stable state.

Final thoughts on graphs
For anyone familiar with graph algorithms, the previous process will seem very alien. This 
is simply a consequence of the fact that we are implementing a stateful and potentially 
recursive global and reentrant algorithm as a series of serial stateless MapReduce jobs. 
The important fact is not in the particular algorithm used; the lesson is in how we can take 
flat text structures and a series of MapReduce jobs, and from this implement something 
like graph traversal. You may have problems that at first don't appear to have any way of 
being implemented in the MapReduce paradigm; consider some of the techniques used 
here and remember that many algorithms can be modeled in MapReduce. They may look 
very different from the traditional approach, but the goal is the correct output and not an 
implementation of a known algorithm.

Using language-independent data structures
A criticism often leveled at Hadoop, and which the community has been working  
hard to address, is that it is very Java-centric. It may appear strange to accuse a project 
fully implemented in Java of being Java-centric, but the consideration is from a client's 
perspective.

We have shown how Hadoop Streaming allows the use of scripting languages to implement 
map and reduce tasks and how Pipes provides similar mechanisms for C++. However, one 
area that does remain Java-only is the nature of the input formats supported by Hadoop 
MapReduce. The most efficient format is SequenceFile, a binary splittable container that 
supports compression. However, SequenceFiles have only a Java API; they cannot be written 
or read in any other language.

We could have an external process creating data to be ingested into Hadoop for MapReduce 
processing, and the best way we could do this is either have it simply as an output of text 
type or do some preprocessing to translate the output format into SequenceFiles to be 
pushed onto HDFS. We also struggle here to easily represent complex data types; we either 
have to flatten them to a text format or write a converter across two binary formats, neither 
of which is an attractive option.
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Candidate technologies
Fortunately, there have been several technologies released in recent years that address 
the question of cross-language data representations. They are Protocol Buffers (created 
by Google and hosted at http://code.google.com/p/protobuf), Thrift (originally 
created by Facebook and now an Apache project at http://thrift.apache.org), and 
Avro (created by Doug Cutting, the original creator of Hadoop). Given its heritage and tight 
Hadoop integration, we will use Avro to explore this topic. We won't cover Thrift or Protocol 
Buffers in this book, but both are solid technologies; if the topic of data serialization interests 
you, check out their home pages for more information.

Introducing Avro
Avro, with its home page at http://avro.apache.org, is a data-persistence framework 
with bindings for many programming languages. It creates a binary structured format  
that is both compressible and splittable, meaning it can be efficiently used as the input  
to MapReduce jobs.

Avro allows the definition of hierarchical data structures; so, for example, we can create a 
record that contains an array, an enumerated type, and a subrecord. We can create these 
files in any programming language, process them in Hadoop, and have the result read by  
a third language.

We'll talk about these aspects of language independence over the next sections, but this 
ability to express complex structured types is also very valuable. Even if we are using only 
Java, we could employ Avro to allow us to pass complex data structures in and out of 
mappers and reducers. Even things like graph nodes!

Time for action – getting and installing Avro
Let's download Avro and get it installed on our system.

1.	 Download the latest stable version of Avro from http://avro.apache.org/
releases.html.

2.	 Download the latest version of the ParaNamer library from http://paranamer.
codehaus.org.

3.	 Add the classes to the build classpath used by the Java compiler.
$ export CLASSPATH=avro-1.7.2.jar:${CLASSPATH}

$ export CLASSPATH=avro-mapred-1.7.2.jar:${CLASSPATH}

$ export CLASSPATH=paranamer-2.5.jar:${CLASSPATH
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4.	 Add existing JAR files from the Hadoop distribution to the build classpath.
Export CLASSPATH=${HADOOP_HOME}/lib/Jackson-core-asl-
1.8.jar:${CLASSPATH}

Export CLASSPATH=${HADOOP_HOME}/lib/Jackson-mapred-asl-
1.8.jar:${CLASSPATH}

Export CLASSPATH=${HADOOP_HOME}/lib/commons-cli-
1.2.jar:${CLASSPATH}

5.	 Add the new JAR files to the Hadoop lib directory.

$cpavro-1.7.2.jar ${HADOOP_HOME}/lib

$cpavro-1.7.2.jar ${HADOOP_HOME}/lib

$cpavro-mapred-1.7.2.jar ${HADOOP_HOME}/lib

What just happened?
Setting up Avro is a little involved; it is a much newer project than the other Apache tools 
we'll be using, so it requires more than a single download of a tarball.

We download the Avro and Avro-mapred JAR files from the Apache website. There is also  
a dependency on ParaNamer that we download from its home page at codehaus.org.

The ParaNamer home page has a broken download link at the time of writing; 
as an alternative, try the following link:
http://search.maven.org/remotecontent?filepath=com/
thoughtworks/paranamer/paranamer/2.5/paranamer-2.5.jar

After downloading these JAR files, we need to add them to the classpath used by our 
environment; primarily for the Java compiler. We add these files, but we also need to  
add to the build classpath several packages that ship with Hadoop because they are 
required to compile and run Avro code.

Finally, we copy the three new JAR files into the Hadoop lib directory on each host  
in the cluster to enable the classes to be available for the map and reduce tasks at  
runtime. We could distribute these JAR files through other mechanisms, but this is  
the most straightforward means.
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Avro and schemas
One advantage Avro has over tools such as Thrift and Protocol Buffers, is the way it approaches 
the schema describing an Avro datafile. While the other tools always require the schema to be 
available as a distinct resource, Avro datafiles encode the schema in their header, which allows 
for the code to parse the files without ever seeing a separate schema file.

Avro supports but does not require code generation that produces code tailored to a specific 
data schema. This is an optimization that is valuable when possible but not a necessity.

We can therefore write a series of Avro examples that never actually use the datafile schema, 
but we'll only do that for parts of the process. In the following examples, we will define a 
schema that represents a cut-down version of the UFO sighting records we used previously.

Time for action – defining the schema
Let's now create this simplified UFO schema in a single Avro schema file.

Create the following as ufo.avsc:

{ "type": "record",
  "name": "UFO_Sighting_Record",
  "fields" : [
    {"name": "sighting_date", "type": "string"},
    {"name": "city", "type": "string"},
    {"name": "shape", "type": ["null", "string"]}, 
    {"name": "duration", "type": "float"}
] 
}

What just happened?
As can be seen, Avro uses JSON in its schemas, which are usually saved with the .avsc 
extension. We create here a schema for a format that has four fields, as follows:

�� The Sighting_date field of type string to hold a date of the form yyyy-mm-dd

�� The City field of type string that will contain the city's name where the  
sighting occurred

�� The Shape field, an optional field of type string, that represents the UFO's shape

�� The Duration field gives a representation of the sighting duration in  
fractional minutes

With the schema defined, we will now create some sample data.
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Time for action – creating the source Avro data with Ruby
Let's create the sample data using Ruby to demonstrate the cross-language capabilities  
of Avro.

1.	 Add the rubygems package:
$ sudo apt-get install rubygems

2.	 Install the Avro gem:
$ gem install avro

3.	 Create the following as generate.rb:
require 'rubygems'
require 'avro'

file = File.open('sightings.avro', 'wb')
schema = Avro::Schema.parse(
File.open("ufo.avsc", "rb").read)

writer = Avro::IO::DatumWriter.new(schema)
dw = Avro::DataFile::Writer.new(file, writer, schema)
dw<< {"sighting_date" => "2012-01-12", "city" => "Boston", "shape" 
=> "diamond", "duration" => 3.5}
dw<< {"sighting_date" => "2011-06-13", "city" => "London", "shape" 
=> "light", "duration" => 13}
dw<< {"sighting_date" => "1999-12-31", "city" => "New York", 
"shape" => "light", "duration" => 0.25}
dw<< {"sighting_date" => "2001-08-23", "city" => "Las Vegas", 
"shape" => "cylinder", "duration" => 1.2}
dw<< {"sighting_date" => "1975-11-09", "city" => "Miami", 
"duration" => 5}
dw<< {"sighting_date" => "2003-02-27", "city" => "Paris", "shape" 
=> "light", "duration" => 0.5}
dw<< {"sighting_date" => "2007-04-12", "city" => "Dallas", "shape" 
=> "diamond", "duration" => 3.5}
dw<< {"sighting_date" => "2009-10-10", "city" => "Milan", "shape" 
=> "formation", "duration" => 0}
dw<< {"sighting_date" => "2012-04-10", "city" => "Amsterdam", 
"shape" => "blur", "duration" => 6}
dw<< {"sighting_date" => "2006-06-15", "city" => "Minneapolis", 
"shape" => "saucer", "duration" => 0.25}
dw.close

4.	 Run the program and create the datafile:

$ ruby generate.rb
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What just happened?
Before we use Ruby, we ensure the rubygems package is installed on our Ubuntu host.  
We then install the preexisting Avro gem for Ruby. This provides the libraries we need  
to read and write Avro files from, within the Ruby language.

The Ruby script itself simply reads the previously created schema and creates a datafile  
with 10 test records. We then run the program to create the data.

This is not a Ruby tutorial, so I will leave analysis of the Ruby API as an exercise for the 
reader; its documentation can be found at http://rubygems.org/gems/avro.

Time for action – consuming the Avro data with Java 
Now that we have some Avro data, let's write some Java code to consume it:

1.	 Create the following as InputRead.java:
import java.io.File;
import java.io.IOException;

import org.apache.avro.file.DataFileReader;
import org.apache.avro.generic.GenericData;
import org.apache.avro. generic.GenericDatumReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumReader;

public class InputRead
{
    public static void main(String[] args) throws IOException
    {
        String filename = args[0] ;

        File file=new File(filename) ;
DatumReader<GenericRecord> reader= new 
GenericDatumReader<GenericRecord>();
DataFileReader<GenericRecord>dataFileReader=new 
DataFileReader<GenericRecord>(file,reader);

        while (dataFileReader.hasNext())
        {
GenericRecord result=dataFileReader.next();
            String output = String.format("%s %s %s %f",
result.get("sighting_date"), result.get("city"), 
result.get("shape"), result.get("duration")) ;
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System.out.println(output) ;
        }
    }
}

2.	 Compile and run the program:

$ javacInputRead.java

$ java InputReadsightings.avro

The output will be as shown in the following screenshot:

What just happened?
We created the Java class InputRead, which takes the filename passed as a  
command-line argument and parses this as an Avro datafile. When Avro reads  
from a datafile, each individual element is called a datum and each datum will  
follow the structure defined in the schema.

In this case, we don't use an explicit schema; instead, we read each datum into the 
GenericRecord class, and from this extract each field by explicitly retrieving it by name.

The GenericRecord class is a very flexible class in Avro; it can be used to wrap any record 
structure, such as our UFO-sighting type. Avro also supports primitive types such as integers, 
floats, and booleans as well as other structured types such as arrays and enums. In these 
examples, we'll use records as the most common structure, but this is only a convenience.
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Using Avro within MapReduce
Avro's support for MapReduce revolves around several Avro-specific variants of other 
familiar classes, whereas we'd normally expect a new datafile format to be supported 
in Hadoop through new InputFormat and OutputFormat classes, we'll use AvroJob, 
AvroMapper, and AvroReducer instead of the non-Avro versions. AvroJob expects Avro 
datafiles as its input and output, so instead of specifying input and output format types,  
we configure it with details of the input and output Avro schemas.

The main difference for our mapper and reducer implementations are the types used. Avro, 
by default, has a single input and output, whereas we're used to our Mapper and Reducer 
classes having a key/value input and a key/value output. Avro also introduces the Pair class, 
which is often used to emit intermediate key/value data.

Avro does also support AvroKey and AvroValue, which can wrap other types, but we'll not 
use those in the following examples.

Time for action – generating shape summaries in MapReduce
In this section we will write a mapper that takes as input the UFO sighting record we defined 
earlier. It will output the shape and a count of 1, and the reducer will take this shape and 
count records and produce a new structured Avro datafile type containing the final counts 
for each UFO shape. Perform the following steps:

1.	 Copy the sightings.avro file to HDFS.
$ hadoopfs -mkdiravroin

$ hadoopfs -put sightings.avroavroin/sightings.avro

2.	 Create the following as AvroMR.java:
import java.io.IOException;
import org.apache.avro.Schema;
import org.apache.avro.generic.*;
import org.apache.avro.Schema.Type;
import org.apache.avro.mapred.*;
import org.apache.avro.reflect.ReflectData;
import org.apache.avro.util.Utf8;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.io.* ;
import org.apache.hadoop.util.*;

// Output record definition
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class UFORecord
{
UFORecord()
    {
    }

    public String shape ;
    public long count ;
}

public class AvroMR extends Configured  implements Tool
{
// Create schema for map output
    public static final Schema PAIR_SCHEMA =         
Pair.getPairSchema(Schema.create(Schema.Type.STRING), 
Schema.create(Schema.Type.LONG));
// Create schema for reduce output
    public final static Schema OUTPUT_SCHEMA = 
ReflectData.get().getSchema(UFORecord.class);

    @Override
    public int run(String[] args) throws Exception
    {
JobConfconf = new JobConf(getConf(), getClass());
conf.setJobName("UFO count");

        String[] otherArgs = new GenericOptionsParser(conf, args).
getRemainingArgs();
        if (otherArgs.length != 2)
        {
System.err.println("Usage: avro UFO counter <in><out>");
System.exit(2);

        }

FileInputFormat.addInputPath(conf, new Path(otherArgs[0]));
        Path outputPath = new Path(otherArgs[1]);
FileOutputFormat.setOutputPath(conf, outputPath);
outputPath.getFileSystem(conf).delete(outputPath);
        Schema input_schema = 
Schema.parse(getClass().getResourceAsStream("ufo.avsc"));
AvroJob.setInputSchema(conf, input_schema);
AvroJob.setMapOutputSchema(conf,           
Pair.getPairSchema(Schema.create(Schema.Type.STRING), 
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Schema.create(Schema.Type.LONG)));

AvroJob.setOutputSchema(conf, OUTPUT_SCHEMA);
AvroJob.setMapperClass(conf, AvroRecordMapper.class);
AvroJob.setReducerClass(conf, AvroRecordReducer.class);
conf.setInputFormat(AvroInputFormat.class) ;
JobClient.runJob(conf);

        return 0 ;
    }

    public static class AvroRecordMapper extends 
AvroMapper<GenericRecord, Pair<Utf8, Long>>
    {
        @Override
        public void map(GenericRecord in, AvroCollector<Pair<Utf8, 
Long>> collector, Reporter reporter) throws IOException
        {
            Pair<Utf8,Long> p = new Pair<Utf8,Long>(PAIR_SCHEMA) ;
Utf8 shape = (Utf8)in.get("shape") ;
            if (shape != null)
            {
p.set(shape, 1L) ;
collector.collect(p);
            }
        }
    }

    public static class AvroRecordReducer extends 
AvroReducer<Utf8, 
Long, GenericRecord>
    {
        public void reduce(Utf8 key, Iterable<Long> values, 
AvroCollector<GenericRecord> collector,  
            Reporter reporter) throws IOException
        {
            long sum = 0;
            for (Long val : values)
            {
                sum += val;
            }

GenericRecord value = new 
GenericData.Record(OUTPUT_SCHEMA);
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value.put("shape", key);
value.put("count", sum);

collector.collect(value);
        }
    }

    public static void main(String[] args) throws Exception
    {
int res = ToolRunner.run(new Configuration(), new AvroMR(),
args);
System.exit(res);
    } 
}

3.	 Compile and run the job:
$ javacAvroMR.java

$ jar -cvfavroufo.jar *.class ufo.avsc

   $ hadoop jar ~/classes/avroufo.jarAvroMRavroinavroout

4.	 Examine the output directory:
$ hadoopfs -lsavroout

Found 3 items

-rw-r--r--   1 … /user/hadoop/avroout/_SUCCESS

drwxr-xr-x   - hadoopsupergroup          0 … /user/hadoop/
avroout/_logs

-rw-r--r--   1 …  /user/hadoop/avroout/part-00000.avro

5.	 Copy the output file to the local filesystem:

$ hadoopfs -get /user/hadoop/avroout/part-00000.avroresult.avro

What just happened?
We created the Job class and examined its various components. The actual logic within the 
Mapper and Reducer classes is relatively straightforward: the Mapper class just extracts 
the shape column and emits it with a count of 1; the reducer then counts the total number 
of entries for each shape. The interesting aspects are around the defined input and output 
types to the Mapper and Reducer classes and how the job is configured.

The Mapper class has an input type of GenericRecord and an output type of Pair. The 
Reducer class has a corresponding input type of Pair and output type of GenericRecord.
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The GenericRecord class passed to the Mapper class wraps a datum that is the UFO 
sighting record represented in the input file. This is how the Mapper class is able to retrieve 
the Shape field by name.

Recall that GenericRecords may or may not be explicitly created with a schema, and in 
either case the structure can be determined from the datafile. For the GenericRecord  
output by the Reducer class, we do pass a schema but use a new mechanism for its creation.

Within the previously mentioned code, we created the additional UFORecord class and used 
Avro reflection to generate its schema dynamically at runtime. We were then able to use this 
schema to create a GenericRecord class specialized to wrap that particular record type.

Between the Mapper and Reducer classes we use the Avro Pair type to hold a key and 
value pair. This allows us to express the same logic for the Mapper and Reducer classes  
that we used in the original WordCount example back in Chapter 2, Getting Hadoop Up  
and Running; the Mapper class emits singleton counts for each value and the reducer  
sums these into an overall total for each shape.

In addition to the Mapper and Reducer classes' input and output, there is some 
configuration unique to a job processing Avro data:

Schema input_schema = Schema.parse(getClass().
getResourceAsStream("ufo.avsc")) ;
AvroJob.setInputSchema(conf, input_schema);
AvroJob.setMapOutputSchema(conf,           Pair.getPairSchema(Schema.
create(Schema.Type.STRING), Schema.create(Schema.Type.LONG)));

AvroJob.setOutputSchema(conf, OUTPUT_SCHEMA);
AvroJob.setMapperClass(conf, AvroRecordMapper.class);
AvroJob.setReducerClass(conf, AvroRecordReducer.class);

These configuration elements demonstrate the criticality of schema definition to Avro; 
though we can do without it, we must set the expected input and output schema types. Avro 
will validate the input and output against the specified schemas, so there is a degree of data 
type safety. For the other elements, such as setting up the Mapper and Reducer classes, 
we simply set those on AvroJob instead of the more generic classes, and once done, the 
MapReduce framework will perform appropriately.

This example is also the first time we've explicitly implemented the Tool interface. When 
running the Hadoop command-line program, there are a series of arguments (such as -D) 
that are common across all the multiple subcommands. If a job class implements the Tool 
interface as mentioned in the previous section, it automatically gets access to any of these 
standard options passed on the command line. It's a useful mechanism that prevents lots of 
code duplication.
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Time for action – examining the output data with Ruby
Now that we have the output data from the job, let's examine it again using Ruby.

1.	 Create the following as read.rb:
require 'rubygems'
require 'avro'

file = File.open('res.avro', 'rb')
reader = Avro::IO::DatumReader.new()
dr = Avro::DataFile::Reader.new(file, reader)

dr.each {|record|  
print record["shape"]," ",record["count"],"\n"
}
dr.close

2.	 Examine the created result file.

$ ruby read.rb

blur 1

cylinder 1

diamond 2

formation 1

light 3

saucer 1

What just happened?
As before, we'll not analyze the Ruby Avro API. The example created a Ruby script that  
opens an Avro datafile, iterates through each datum, and displays it based on explicitly 
named fields. Note that the script does not have access to the schema for the datafile;  
the information in the header provides enough data to allow each field to be retrieved.

Time for action – examining the output data with Java
To show that the data is accessible from multiple languages, let's also display the job output 
using Java.

1.	 Create the following as OutputRead.java:
import java.io.File;
import java.io.IOException;
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import org.apache.avro.file.DataFileReader;
import org.apache.avro.generic.GenericData;
import org.apache.avro. generic.GenericDatumReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumReader;

public class OutputRead
{
    public static void main(String[] args) throws IOException
    {
        String filename = args[0] ;

        File file=new File(filename) ;
DatumReader<GenericRecord> reader= new 
GenericDatumReader<GenericRecord>();
DataFileReader<GenericRecord>dataFileReader=new 
DataFileReader<GenericRecord>(file,reader);

        while (dataFileReader.hasNext())
        {
GenericRecord result=dataFileReader.next();
            String output = String.format("%s %d",
result.get("shape"), result.get("count")) ;
System.out.println(output) ;
        }
    }
}

2.	 Compile and run the program:

$ javacOutputResult.java

$ java OutputResultresult.avro

blur 1

cylinder 1

diamond 2

formation 1

light 3

saucer 1
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What just happened?
We added this example to show the Avro data being read by more than one language.  
The code is very similar to the earlier InputRead class; the only difference is that the  
named fields are used to display each datum as it is read from the datafile.

Have a go hero – graphs in Avro
As previously mentioned, we worked hard to reduce representation-related complexity in 
our GraphPath class. But with mappings to and from flat lines of text and objects, there  
was an overhead in managing these transformations.

With its support for nested complex types, Avro can natively support a representation of  
a node that is much closer to the runtime object. Modify the GraphPath class job to read 
and write the graph representation to an Avro datafile comprising of datums for each node.  
The following example schema may be a good starting point, but feel free to enhance it:

{ "type": "record",
  "name": "Graph_representation",
  "fields" : [
{"name": "node_id", "type": "int"},
    {"name": "neighbors", "type": "array", "items:"int" },
    {"name": "distance", "type": "int"},
  {"name": "status", "type": "enum", 
"symbols": ["PENDING", "CURRENT", "DONE"
},]
] 
}

Going forward with Avro
There are many features of Avro we did not cover in this case study. We focused only on its 
value as an at-rest data representation. It can also be used within a remote procedure call 
(RPC) framework and can optionally be used as the default RPC format in Hadoop 2.0. We 
didn't use Avro's code generation facilities that produce a much more domain-focused API. 
Nor did we cover issues such as Avro's ability to support schema evolution that, for example, 
allows new fields to be added to recent records without invalidating old datums or breaking 
existing clients. It's a technology you are very likely to see more of in the future.
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Summary
This chapter has used three case studies to highlight some more advanced aspects of 
Hadoop and its broader ecosystem. In particular, we covered the nature of join-type 
problems and where they are seen, how reduce-side joins can be implemented with  
relative ease but with an efficiency penalty, and how to use optimizations to avoid  
full joins in the map-side by pushing data into the Distributed Cache.

We then learned how full map-side joins can be implemented, but require significant input 
data processing; how other tools such as Hive and Pig should be investigated if joins are a 
frequently encountered use case; and how to think about complex types like graphs and  
how they can be represented in a way that can be used in MapReduce.

We also saw techniques for breaking graph algorithms into multistage MapReduce jobs, 
the importance of language-independent data types, how Avro can be used for both 
language independence as well as complex Java-consumed types, and the Avro extensions 
to the MapReduce APIs that allow structured types to be used as the input and output to 
MapReduce jobs.

This now concludes our coverage of the programmatic aspects of the Hadoop MapReduce 
framework. We will now move on in the next two chapters to explore how to manage and 
scale a Hadoop environment.



6
When Things Break

One of the main promises of Hadoop is resilience to failure and an ability to 
survive failures when they do happen. Tolerance to failure will be the focus  
of this chapter.

In particular, we will cover the following topics:

�� How Hadoop handles failures of DataNodes and TaskTrackers

�� How Hadoop handles failures of the NameNode and JobTracker

�� The impact of hardware failure on Hadoop

�� How to deal with task failures caused by software bugs

�� How dirty data can cause tasks to fail and what to do about it

Along the way, we will deepen our understanding of how the various components  
of Hadoop fit together and identify some areas of best practice.

Failure
With many technologies, the steps to be taken when things go wrong are rarely covered in 
much of the documentation and are often treated as topics only of interest to the experts. 
With Hadoop, it is much more front and center; much of the architecture and design of 
Hadoop is predicated on executing in an environment where failures are both frequent  
and expected.
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Embrace failure
In recent years, a different mindset than the traditional one has been described by the term 
embrace failure. Instead of hoping that failure does not happen, accept the fact that it will 
and know how your systems and processes will respond when it does.

Or at least don't fear it
That's possibly a stretch, so instead, our goal in this chapter is to make you feel more 
comfortable about failures in the system. We'll be killing the processes of a running cluster, 
intentionally causing the software to fail, pushing bad data into our jobs, and generally 
causing as much disruption as we can.

Don't try this at home
Often when trying to break a system, a test instance is abused, leaving the operational 
system protected from the disruption. We will not advocate doing the things given in this 
chapter to an operational Hadoop cluster, but the fact is that apart from one or two very 
specific cases, you could. The goal is to understand the impact of the various types of failures 
so that when they do happen on the business-critical system, you will know whether it is a 
problem or not. Fortunately, the majority of cases are handled for you by Hadoop.

Types of failure
We will generally categorize failures into the following five types:

�� Failure of a node, that is, DataNode or TaskTracker process

�� Failure of a cluster's masters, that is, NameNode or JobTracker process

�� Failure of hardware, that is, host crash, hard drive failure, and so on

�� Failure of individual tasks within a MapReduce job due to software errors

�� Failure of individual tasks within a MapReduce job due to data problems

We will explore each of these in turn in the following sections.

Hadoop node failure
The first class of failure that we will explore is the unexpected termination of the individual 
DataNode and TaskTracker processes. Given Hadoop's claims of managing system availability 
through survival of failures on its commodity hardware, we can expect this area to be very 
solid. Indeed, as clusters grow to hundreds or thousands of hosts, failures of individual  
nodes are likely to become quite commonplace.

Before we start killing things, let's introduce a new tool and set up the cluster properly.
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The dfsadmin command
As an alternative tool to constantly viewing the HDFS web UI to determine the cluster status, 
we will use the dfsadmin command-line tool:

$ Hadoop dfsadmin 

This will give a list of the various options the command can take; for our purposes we'll 
be using the -report option. This gives an overview of the overall cluster state, including 
configured capacity, nodes, and files as well as specific details about each configured node.

Cluster setup, test files, and block sizes
We will need a fully distributed cluster for the following activities; refer to the setup 
instructions given earlier in the book. The screenshots and examples that follow use a  
cluster of one host for the JobTracker and NameNode and four slave nodes for running  
the DataNode and TaskTracker processes.

Remember that you don't need physical hardware for each node, 
we use virtual machines for our cluster.

In normal usage, 64 MB is the usual configured block size for a Hadoop cluster. For 
our testing purposes, that is terribly inconvenient as we'll need pretty large files to get 
meaningful block counts across our multinode cluster.

What we can do is reduce the configured block size; in this case, we will use 4 MB. Make the 
following modifications to the hdfs-site.xml file within the Hadoop conf directory:

<property>
<name>dfs.block.size</name>
<value>4194304</value>
;</property>
<property>
<name>dfs.namenode.logging.level</name>
<value>all</value>
</property>

The first property makes the required changes to the block size and the second one increases 
the NameNode logging level to make some of the block operations more visible.
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Both these settings are appropriate for this test setup but would rarely be 
seen on a production cluster. Though the higher NameNode logging may be 
required if a particularly difficult problem is being investigated, it is highly 
unlikely you would ever want a block size as small as 4 MB. Though the 
smaller block size will work fine, it will impact Hadoop's efficiency.

We also need a reasonably-sized test file that will comprise of multiple 4 MB blocks. We 
won't actually be using the content of the file, so the type of file is irrelevant. But you should 
copy the largest file you can onto HDFS for the following sections. We used a CD ISO image:

$ Hadoop fs –put cd.iso file1.data

Fault tolerance and Elastic MapReduce
The examples in this book are for a local Hadoop cluster because this allows some of the 
failure mode details to be more explicit. EMR provides exactly the same failure tolerance 
as the local cluster, so the failure scenarios described here apply equally to a local Hadoop 
cluster and the one hosted by EMR.

Time for action – killing a DataNode process
Firstly, we'll kill a DataNode. Recall that the DataNode process runs on each host in the  
HDFS cluster and is responsible for the management of blocks within the HDFS filesystem. 
Because Hadoop, by default, uses a replication factor of 3 for blocks, we should expect a  
single DataNode failure to have no direct impact on availability, rather it will result in some 
blocks temporarily falling below the replication threshold. Execute the following steps to  
kill a DataNode process:

1.	 Firstly, check on the original status of the cluster and check whether everything is 
healthy. We'll use the dfsadmin command for this:
$ Hadoop dfsadmin -report

Configured Capacity: 81376493568 (75.79 GB)

Present Capacity: 61117323920 (56.92 GB)

DFS Remaining: 59576766464 (55.49 GB)

DFS Used: 1540557456 (1.43 GB)

DFS Used%: 2.52%

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0

-------------------------------------------------
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Datanodes available: 4 (4 total, 0 dead)

Name: 10.0.0.102:50010

Decommission Status : Normal

Configured Capacity: 20344123392 (18.95 GB)

DFS Used: 403606906 (384.91 MB)

Non DFS Used: 5063119494 (4.72 GB)

DFS Remaining: 14877396992(13.86 GB)

DFS Used%: 1.98%

DFS Remaining%: 73.13%

Last contact: Sun Dec 04 15:16:27 PST 2011

…

Now log onto one of the nodes and use the jps command to determine the process 
ID of the DataNode process:

$ jps

2085 TaskTracker

2109 Jps

1928 DataNode

2.	 Use the process ID (PID) of the DataNode process and kill it:
$ kill -9  1928

3.	 Check that the DataNode process is no longer running on the host:
$ jps

2085 TaskTracker

4.	 Check the status of the cluster again by using the dfsadmin command:
$ Hadoop dfsadmin -report

Configured Capacity: 81376493568 (75.79 GB)

Present Capacity: 61117323920 (56.92 GB)

DFS Remaining: 59576766464 (55.49 GB)

DFS Used: 1540557456 (1.43 GB)

DFS Used%: 2.52%

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0
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-------------------------------------------------

Datanodes available: 4 (4 total, 0 dead)

…

5.	 The key lines to watch are the lines reporting on blocks, live nodes, and the last 
contact time for each node. Once the last contact time for the dead node is around 
10 minutes, use the command more frequently until the block and live node values 
change:
$ Hadoop dfsadmin -report

Configured Capacity: 61032370176 (56.84 GB)

Present Capacity: 46030327050 (42.87 GB)

DFS Remaining: 44520288256 (41.46 GB)

DFS Used: 1510038794 (1.41 GB)

DFS Used%: 3.28%

Under replicated blocks: 12

Blocks with corrupt replicas: 0

Missing blocks: 0

-------------------------------------------------

Datanodes available: 3 (4 total, 1 dead)

…

6.	 Repeat the process until the count of under-replicated blocks is once again 0:

$ Hadoop dfsadmin -report

…

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0

-------------------------------------------------

Datanodes available: 3 (4 total, 1 dead)

…

What just happened?
The high-level story is pretty straightforward; Hadoop recognized the loss of a node and 
worked around the problem. However, quite a lot is going on to make that happen.
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When we killed the DataNode process, the process on that host was no longer available to 
serve or receive data blocks as part of the read/write operations. However, we were not 
actually accessing the filesystem at the time, so how did the NameNode process know this 
particular DataNode was dead?

NameNode and DataNode communication
The answer lies in the constant communication between the NameNode and DataNode 
processes that we have alluded to once or twice but never really explained. This occurs through 
a constant series of heartbeat messages from the DataNode reporting on its current state 
and the blocks it holds. In return, the NameNode gives instructions to the DataNode, such as 
notification of the creation of a new file or an instruction to retrieve a block from another node.

It all begins when the NameNode process starts up and begins receiving status messages 
from the DataNode. Recall that each DataNode knows the location of its NameNode and  
will continuously send status reports. These messages list the blocks held by each DataNode 
and from this, the NameNode is able to construct a complete mapping that allows it to relate 
files and directories to the blocks from where they are comprised and the nodes on which 
they are stored.

The NameNode process monitors the last time it received a heartbeat from each DataNode 
and after a threshold is reached, it assumes the DataNode is no longer functional and marks 
it as dead.

The exact threshold after which a DataNode is assumed to be dead is 
not configurable as a single HDFS property. Instead, it is calculated from 
several other properties such as defining the heartbeat interval. As we'll 
see later, things are a little easier in the MapReduce world as the timeout 
for TaskTrackers is controlled by a single configuration property.

Once a DataNode is marked as dead, the NameNode process determines the blocks which 
were held on that node and have now fallen below their replication target. In the default 
case, each block held on the killed node would have been one of the three replicas, so each 
block for which the node held a replica will now have only two replicas across the cluster.

In the preceding example, we captured the state when 12 blocks were still under-replicated, 
that is they did not have enough replicas across the cluster to meet the replication target. 
When the NameNode process determines the under-replicated blocks, it assigns other 
DataNodes to copy these blocks from the hosts where the existing replicas reside. In this 
case we only had to re-replicate a very small number of blocks; in a live cluster, the failure of 
a node can result in a period of high network traffic as the affected blocks are brought up to 
their replication factor.
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Note that if a failed node returns to the cluster, we have the situation of blocks having  
more than the required number of replicas; in such a case the NameNode process will  
send instructions to remove the surplus replicas. The specific replica to be deleted is  
chosen randomly, so the result will be that the returned node will end up retaining  
some of its blocks and deleting the others.

Have a go hero – NameNode log delving
We configured the NameNode process to log all its activities. Have a look through these  
very verbose logs and attempt to identify the replication requests being sent.

The final output shows the status after the under-replicated blocks have been copied  
to the live nodes. The cluster is down to only three live nodes but there are no  
under-replicated blocks.

A quick way to restart the dead nodes across all hosts is to use the 
start-all.sh script. It will attempt to start everything but is smart 
enough to detect the running services, which means you get the dead 
nodes restarted without the risk of duplicates.

Time for action – the replication factor in action
Let's repeat the preceding process, but this time, kill two DataNodes out of our cluster  
of four. We will give an abbreviated walk-through of the activity as it is very similar to  
the previous Time for action section:

1.	 Restart the dead DataNode and monitor the cluster until all nodes are marked  
as live.

2.	 Pick two DataNodes, use the process ID, and kill the DataNode processes.

3.	 As done previously, wait for around 10 minutes then actively monitor the cluster 
state via dfsadmin, paying particular attention to the reported number of under-
replicated blocks.

4.	 Wait until the cluster has stabilized with an output similar to the following:

Configured Capacity: 61032370176 (56.84 GB)

Present Capacity: 45842373555 (42.69 GB)

DFS Remaining: 44294680576 (41.25 GB)

DFS Used: 1547692979 (1.44 GB)

DFS Used%: 3.38%

Under replicated blocks: 125

Blocks with corrupt replicas: 0
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Missing blocks: 0

-------------------------------------------------

Datanodes available: 2 (4 total, 2 dead)

…

What just happened?
This is the same process as before; the difference is that due to two DataNode failures  
there were significantly more blocks that fell below the replication factor, many going  
down to a single remaining replica. Consequently, you should see more activity in the 
reported number of under-replicated blocks as it first increase because nodes fail and  
then drop as re-replication occurs. These events can also be seen in the NameNode logs.

Note that though Hadoop can use re-replication to bring those blocks with only a single 
remaining replica up to two replicas, this still leaves the blocks in an under-replicated  
state. With only two live nodes in the cluster, it is now impossible for any block to  
meet the default replication target of three.

We have been truncating the dfsadmin output for space reasons; in particular, we have 
been omitting the reported information for each node. However, let's take a look at the  
first node in our cluster through the previous stages. Before we started killing any DataNode, 
it reported the following:

Name: 10.0.0.101:50010

Decommission Status : Normal

Configured Capacity: 20344123392 (18.95 GB)

DFS Used: 399379827 (380.88 MB)

Non DFS Used: 5064258189 (4.72 GB)

DFS Remaining: 14880485376(13.86 GB)

DFS Used%: 1.96%

DFS Remaining%: 73.14%

Last contact: Sun Dec 04 15:16:27 PST 2011

After a single DataNode was killed and all blocks had been re-replicated as necessary, it 
reported the following:

Name: 10.0.0.101:50010

Decommission Status : Normal

Configured Capacity: 20344123392 (18.95 GB)

DFS Used: 515236022 (491.37 MB)

Non DFS Used: 5016289098 (4.67 GB)

DFS Remaining: 14812598272(13.8 GB)
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DFS Used%: 2.53%

DFS Remaining%: 72.81%

Last contact: Sun Dec 04 15:31:22 PST 2011

The thing to note is the increase in the local DFS storage on the node. This shouldn't be a 
surprise. With a dead node, the others in the cluster need to add some additional block 
replicas and that will translate to a higher storage utilization on each.

Finally, the following is the node's report after two other DataNodes were killed:

Name: 10.0.0.101:50010

Decommission Status : Normal

Configured Capacity: 20344123392 (18.95 GB)

DFS Used: 514289664 (490.46 MB)

Non DFS Used: 5063868416 (4.72 GB)

DFS Remaining: 14765965312(13.75 GB)

DFS Used%: 2.53%

DFS Remaining%: 72.58%

Last contact: Sun Dec 04 15:43:47 PST 2011

With two dead nodes it may seem as if the remaining live nodes should consume even more 
local storage space, but this isn't the case and it's yet again a natural consequence of the 
replication factor.

If we have four nodes and a replication factor of 3, each block will have a replica on three 
of the live nodes in the cluster. If a node dies, the blocks living on the other nodes are 
unaffected, but any blocks with a replica on the dead node will need a new replica created. 
However, with only three live nodes, each node will hold a replica of every block. If a second 
node fails, the situation will result into under-replicated blocks and Hadoop does not have 
anywhere to put the additional replicas. Since both remaining nodes already hold a replica  
of each block, their storage utilization does not increase.

Time for action – intentionally causing missing blocks
The next step should be obvious; let's kill three DataNodes in quick succession.

This is the first of the activities we mentioned that you really should not do 
on a production cluster. Although there will be no data loss if the steps are 
followed properly, there is a period when the existing data is unavailable.
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The following are the steps to kill three DataNodes in quick succession:

1.	 Restart all the nodes by using the following command:
$ start-all.sh

2.	 Wait until Hadoop dfsadmin -report shows four live nodes.

3.	 Put a new copy of the test file onto HDFS:
$ Hadoop fs -put file1.data file1.new

4.	 Log onto three of the cluster hosts and kill the DataNode process on each.

5.	 Wait for the usual 10 minutes then start monitoring the cluster via dfsadmin until 
you get output similar to the following that reports the missing blocks:
…

Under replicated blocks: 123

Blocks with corrupt replicas: 0

Missing blocks: 33

-------------------------------------------------

Datanodes available: 1 (4 total, 3 dead)

…

6.	 Try and retrieve the test file from HDFS:
$ hadoop fs -get file1.new  file1.new

11/12/04 16:18:05 INFO hdfs.DFSClient: No node available for 
block: blk_1691554429626293399_1003 file=/user/hadoop/file1.new

11/12/04 16:18:05 INFO hdfs.DFSClient: Could not obtain block 
blk_1691554429626293399_1003 from any node:  java.io.IOException: 
No live nodes contain current block

…

get: Could not obtain block: blk_1691554429626293399_1003 file=/
user/hadoop/file1.new

7.	 Restart the dead nodes using the start-all.sh script:
$ start-all.sh

8.	 Repeatedly monitor the status of the blocks:
$ Hadoop dfsadmin -report | grep -i blocks

Under replicated blockss: 69

Blocks with corrupt replicas: 0

Missing blocks: 35
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$ Hadoop dfsadmin -report | grep -i blocks

Under replicated blockss: 0

Blocks with corrupt replicas: 0

Missing blocks: 30

9.	 Wait until there are no reported missing blocks then copy the test file onto  
the local filesystem:
$ Hadoop fs -get file1.new file1.new

10.	Perform an MD5 check on this and the original file:

$ md5sum file1.*

f1f30b26b40f8302150bc2a494c1961d  file1.data

f1f30b26b40f8302150bc2a494c1961d  file1.new

What just happened?
After restarting the killed nodes, we copied the test file onto HDFS again. This isn't strictly 
necessary as we could have used the existing file but due to the shuffling of the replicas,  
a clean copy gives the most representative results.

We then killed three DataNodes as before and waited for HDFS to respond. Unlike the 
previous examples, killing these many nodes meant it was certain that some blocks would 
have all of their replicas on the killed nodes. As we can see, this is exactly the result; the 
remaining single node cluster shows over a hundred blocks that are under-replicated 
(obviously only one replica remains) but there are also 33 missing blocks.

Talking of blocks is a little abstract, so we then try to retrieve our test file which, as we  
know, effectively has 33 holes in it. The attempt to access the file fails as Hadoop could  
not find the missing blocks required to deliver the file.

We then restarted all the nodes and tried to retrieve the file again. This time it was 
successful, but we took an added precaution of performing an MD5 cryptographic  
check on the file to confirm that it was bitwise identical to the original one — which it is.

This is an important point: though node failure may result in data becoming unavailable, 
there may not be a permanent data loss if the node recovers.

When data may be lost
Do not assume from this example that it's impossible to lose data in a Hadoop cluster. For 
general use it is very hard, but disaster often has a habit of striking in just the wrong way.
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As seen in the previous example, a parallel failure of a number of nodes equal to or greater 
than the replication factor has a chance of resulting in missing blocks. In our example of 
three dead nodes in a cluster of four, the chances were high; in a cluster of 1000, it would 
be much lower but still non-zero. As the cluster size increases, so does the failure rate and 
having three node failures in a narrow window of time becomes less and less unlikely. 
Conversely, the impact also decreases but rapid multiple failures will always carry a  
risk of data loss.

Another more insidious problem is recurring or partial failures, for example, when  
power issues across the cluster cause nodes to crash and restart. It is possible for  
Hadoop to end up chasing replication targets, constantly asking the recovering hosts  
to replicate under-replicated blocks, and also seeing them fail mid-way through the task. 
Such a sequence of events can also raise the potential of data loss.

Finally, never forget the human factor. Having a replication factor equal to the size of the 
cluster—ensuring every block is on every node—won't help you when a user accidentally 
deletes a file or directory.

The summary is that data loss through system failure is pretty unlikely but is possible through 
almost inevitable human action. Replication is not a full alternative to backups; ensure that 
you understand the importance of the data you process and the impact of the types of loss 
discussed here.

The most catastrophic losses in a Hadoop cluster are actually caused by 
NameNode failure and filesystem corruption; we'll discuss this topic in 
some detail in the next chapter.

Block corruption
The reports from each DataNode also included a count of the corrupt blocks, which we  
have not referred to. When a block is first stored, there is also a hidden file written to the 
same HDFS directory containing cryptographic checksums for the block. By default, there  
is a checksum for each 512-byte chunk within the block.

Whenever any client reads a block, it will also retrieve the list of checksums and compare 
these to the checksums it generates on the block data it has read. If there is a checksum 
mismatch, the block on that particular DataNode will be marked as corrupt and the client  
will retrieve a different replica. On learning of the corrupt block, the NameNode will 
schedule a new replica to be made from one of the existing uncorrupted replicas.
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If the scenario seems unlikely, consider that faulty memory, disk drive, storage controller, or 
numerous issues on an individual host could cause some corruption to a block as it is initially 
being written while being stored or when being read. These are rare events and the chances 
of the same corruption occurring on all DataNodes holding replicas of the same block 
become exceptionally remote. However, remember as previously mentioned that replication 
is not a full alternative to backup and if you need 100 percent data availability, you likely 
need to think about off-cluster backup.

Time for action – killing a TaskTracker process
We've abused HDFS and its DataNode enough; now let's see what damage we can do to 
MapReduce by killing some TaskTracker processes.

Though there is an mradmin command, it does not give the sort of status reports we are 
used to with HDFS. So we'll use the MapReduce web UI (located by default on port 50070  
on the JobTracker host) to monitor the MapReduce cluster health.

Perform the following steps:

1.	 Ensure everything is running via the start-all.sh script then point your browser 
at the MapReduce web UI. The page should look like the following screenshot:
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2.	 Start a long-running MapReduce job; the example pi estimator with large values  
is great for this:
$ Hadoop jar Hadoop/Hadoop-examples-1.0.4.jar pi 2500 2500

3.	 Now log onto a cluster node and use jps to identify the TaskTracker process:
$ jps

21822 TaskTracker

3918 Jps

3891 DataNode

4.	 Kill the TaskTracker process:
$ kill -9 21822

5.	 Verify that the TaskTracker is no longer running:
$jps

3918 Jps

3891 DataNode

6.	 Go back to the MapReduce web UI and after 10 minutes you should see that  
the number of nodes and available map/reduce slots change as shown in the 
following screenshot:
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7.	 Monitor the job progress in the original window; it should be proceeding, even if  
it is slow.

8.	 Restart the dead TaskTracker process:
$ start-all.sh

9.	 Monitor the MapReduce web UI. After a little time the number of nodes should  
be back to its original number as shown in the following screenshot:

What just happened?
The MapReduce web interface provides a lot of information on both the cluster as well 
as the jobs it executes. For our interests here, the important data is the cluster summary 
that shows the currently executing number of map and reduce tasks, the total number of 
submitted jobs, the number of nodes and their map and reduce capacity, and finally, any 
blacklisted nodes.

The relationship of the JobTracker process to the TaskTracker process is quite different  
than that between NameNode and DataNode but a similar heartbeat/monitoring  
mechanism is used.
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The TaskTracker process frequently sends heartbeats to the JobTracker, but instead of status 
reports of block health, they contain progress reports of the assigned task and available 
capacity. Each node has a configurable number of map and reduce task slots (the default  
for each is two), which is why we see four nodes and eight map and reduce slots in the  
first web UI screenshot.

When we kill the TaskTracker process, its lack of heartbeats is measured by the JobTracker 
process and after a configurable amount of time, the node is assumed to be dead and we  
see the reduced cluster capacity reflected in the web UI.

The timeout for a TaskTracker process to be considered dead is modified by 
the mapred.tasktracker.expiry.interval property, configured 
in mapred-site.xml.

When a TaskTracker process is marked as dead, the JobTracker process also considers its  
in-progress tasks as failed and re-assigns them to the other nodes in the cluster. We see  
this implicitly by watching the job proceed successfully despite a node being killed.

After the TaskTracker process is restarted it sends a heartbeat to the JobTracker, which marks 
it as alive and reintegrates it into the MapReduce cluster. This we see through the cluster node 
and task slot capacity returning to their original values as can be seen in the final screenshot.

Comparing the DataNode and TaskTracker failures
We'll not perform similar two or three node killing activities with TaskTrackers as the task 
execution architecture renders individual TaskTracker failures relatively unimportant. 
Because the TaskTracker processes are under the control and coordination of JobTracker, 
their individual failures have no direct effect other than to reduce the cluster execution 
capacity. If a TaskTracker instance fails, the JobTracker will simply schedule the failed tasks on 
a healthy TaskTracker process in the cluster. The JobTracker is free to reschedule tasks around 
the cluster because TaskTracker is conceptually stateless; a single failure does not affect 
other parts of the job.

In contrast, loss of a DataNode—which is intrinsically stateful—can affect the persistent data 
held on HDFS, potentially making it unavailable.

This highlights the nature of the various nodes and their relationship to the overall Hadoop 
framework. The DataNode manages data, and the TaskTracker reads and writes that data. 
Catastrophic failure of every TaskTracker would still leave us with a completely functional 
HDFS; a similar failure of the NameNode process would leave a live MapReduce cluster that  
is effectively useless (unless it was configured to use a different storage system).
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Permanent failure
Our recovery scenarios so far have assumed that the dead node can be restarted on the 
same physical host. But what if it can't due to the host having a critical failure? The answer is 
simple; you can remove the host from the slave's file and Hadoop will no longer try to start a 
DataNode or TaskTracker on that host. Conversely, if you get a replacement machine with a 
different hostname, add this new host to the same file and run start-all.sh.

Note that the slave's file is only used by tools such as the start/stop and 
slaves.sh scripts. You don't need to keep it updated on every node, but only 
on the hosts where you generally run such commands. In practice, this is likely to 
be either a dedicated head node or the host where the NameNode or JobTracker 
processes run. We'll explore these setups in Chapter 7, Keeping Things Running.

Killing the cluster masters
Though the failure impact of DataNode and TaskTracker processes is different, each 
individual node is relatively unimportant. Failure of any single TaskTracker or DataNode is 
not a cause for concern and issues only occur if multiple others fail, particularly in quick 
succession. But we only have one JobTracker and NameNode; let's explore what happens 
when they fail.

Time for action – killing the JobTracker
We'll first kill the JobTracker process which we should expect to impact our ability to execute 
MapReduce jobs but not affect the underlying HDFS filesystem.

1.	 Log on to the JobTracker host and kill its process.

2.	 Attempt to start a test MapReduce job such as Pi or WordCount:
$ Hadoop jar wc.jar WordCount3 test.txt output

Starting Job

11/12/11 16:03:29 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9001. Already tried 0 time(s).

11/12/11 16:03:30 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9001. Already tried 1 time(s).

…

11/12/11 16:03:38 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9001. Already tried 9 time(s).
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java.net.ConnectException: Call to /10.0.0.100:9001 failed on 
connection exception: java.net.ConnectException: Connection 
refused

  at org.apache.hadoop.ipc.Client.wrapException(Client.java:767)

  at org.apache.hadoop.ipc.Client.call(Client.java:743)

  at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:220)

…

3.	 Perform some HDFS operations:

$ hadoop fs -ls /

Found 2 items

drwxr-xr-x   - hadoop supergroup          0 2011-12-11 19:19 /user

drwxr-xr-x   - hadoop supergroup          0 2011-12-04 20:38 /var

$ hadoop fs -cat test.txt

This is a test file

What just happened?
After killing the JobTracker process we attempted to launch a MapReduce job. From the 
walk-through in Chapter 2, Getting Hadoop Up and Running, we know that the client on 
the machine where we are starting the job attempts to communicate with the JobTracker 
process to initiate the job scheduling activities. But in this case there was no running 
JobTracker, this communication did not happen and the job failed.

We then performed a few HDFS operations to highlight the point in the previous section;  
a non-functional MapReduce cluster will not directly impact HDFS, which will still be 
available to all clients and operations.

Starting a replacement JobTracker
The recovery of the MapReduce cluster is also pretty straightforward. Once the JobTracker 
process is restarted, all the subsequent MapReduce jobs are successfully processed.

Note that when the JobTracker was killed, any jobs that were in flight are lost and need to 
be restarted. Watch out for temporary files and directories on HDFS; many MapReduce jobs 
write temporary data to HDFS that is usually cleaned up on job completion. Failed jobs—
especially the ones failed due to a JobTracker failure—are likely to leave such data behind 
and this may require a manual clean-up.
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Have a go hero – moving the JobTracker to a new host
But what happens if the host on which the JobTracker process was running has a fatal 
hardware failure and cannot be recovered? In such situations you will need to start a new 
JobTracker process on a different host. This requires all nodes to have their mapred-site.
xml file updated with the new location and the cluster restarted. Try this! We'll talk about it 
more in the next chapter.

Time for action – killing the NameNode process
Let's now kill the NameNode process, which we should expect to directly stop us from 
accessing HDFS and by extension, prevent the MapReduce jobs from executing:

Don't try this on an operationally important cluster. Though the impact will 
be short-lived, it effectively kills the entire cluster for a period of time.

1.	 Log onto the NameNode host and list the running processes:
$ jps

2372 SecondaryNameNode

2118 NameNode

2434 JobTracker

5153 Jps

2.	 Kill the NameNode process. Don't worry about SecondaryNameNode, it can keep 
running.

3.	 Try to access the HDFS filesystem:
$ hadoop fs -ls /

11/12/13 16:00:05 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 0 time(s).

11/12/13 16:00:06 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 1 time(s).

11/12/13 16:00:07 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 2 time(s).

11/12/13 16:00:08 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 3 time(s).

11/12/13 16:00:09 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 4 

time(s).

…

Bad connection to FS. command aborted.
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4.	 Submit the MapReduce job:
$ hadoop jar hadoop/hadoop-examples-1.0.4.jar  pi 10 100

Number of Maps  = 10

Samples per Map = 100

11/12/13 16:00:35 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 0 time(s).

11/12/13 16:00:36 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 1 time(s).

11/12/13 16:00:37 INFO ipc.Client: Retrying connect to server: 
/10.0.0.100:9000. Already tried 2 time(s).

…

java.lang.RuntimeException: java.net.ConnectException: Call 
to /10.0.0.100:9000 failed on connection exception: java.net.
ConnectException: Connection refused

  at org.apache.hadoop.mapred.JobConf.getWorkingDirectory(JobConf.
java:371)

  at org.apache.hadoop.mapred.FileInputFormat.
setInputPaths(FileInputFormat.java:309)

…

Caused by: java.net.ConnectException: Call to /10.0.0.100:9000 
failed on connection exception: java.net.ConnectException: 
Connection refused

…

5.	 Check the running processes:
$ jps

2372 SecondaryNameNode

5253 Jps

2434 JobTracker

Restart the NameNode

$ start-all.sh

6.	 Access HDFS:

$ Hadoop fs -ls /

Found 2 items

drwxr-xr-x   - hadoop supergroup          0 2011-12-16 16:18 /user                                                                                                                                             

drwxr-xr-x   - hadoop supergroup          0 2011-12-16 16:23 /var                                                                                                                                              
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What just happened?
We killed the NameNode process and tried to access the HDFS filesystem. This of course 
failed; without the NameNode there is no server to receive our filesystem commands.

We then tried to submit a MapReduce job and this also failed. From the abbreviated 
exception stack trace you can see that while trying to set up the input paths for the  
job data, the JobTracker also tried and failed to connect to NameNode.

We then confirmed that the JobTracker process is healthy and it was the NameNode's 
unavailability that caused the MapReduce task to fail.

Finally, we restarted the NameNode and confirmed that we could once again access  
the HDFS filesystem.

Starting a replacement NameNode
With the differences identified so far between the MapReduce and HDFS clusters, it 
shouldn't be a surprise to learn that restarting a new NameNode on a different host is  
not as simple as moving the JobTracker. To put it more starkly, having to move NameNode  
due to a hardware failure is probably the worst crisis you can have with a Hadoop cluster. 
Unless you have prepared carefully, the chance of losing all your data is very high.

That's quite a statement and we need to explore the nature of the NameNode process to 
understand why this is the case.

The role of the NameNode in more detail
So far we've spoken of the NameNode process as the coordinator between the DataNode 
processes and the service responsible for ensuring the configuration parameters, such as 
block replication values, are honored. This is an important set of tasks but it's also very 
operationally focused. The NameNode process also has the responsibility of managing  
the HDFS filesystem metadata; a good analogy is to think of it holding the equivalent  
of the file allocation table in a traditional filesystem.

File systems, files, blocks, and nodes
When accessing HDFS you rarely care about blocks. You want to access a given file at a 
certain location in the filesystem. To facilitate this, the NameNode process is required to 
maintain numerous pieces of information:

�� The actual filesystem contents, the names of all the files, and their  
containing directories

�� Additional metadata about each of these elements, such as size,  
ownership, and replication factor
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�� The mapping of which blocks hold the data for each file

�� The mapping of which nodes in the cluster hold which blocks and from this, the 
current replication state of each

All but the last of the preceding points is persistent data that must be maintained across 
restarts of the NameNode process.

The single most important piece of data in the cluster – fsimage
The NameNode process stores two data structures to disk, the fsimage file and the edits 
log of changes to it. The fsimage file holds the key filesystem attributes mentioned in the 
previous section; the name and details of each file and directory on the filesystem and the 
mapping of the blocks that correspond to each.

If the fsimage file is lost, you have a series of nodes holding blocks of data without any 
knowledge of which blocks correspond to which part of which file. In fact, you don't even 
know which files are supposed to be constructed in the first place. Loss of the fsimage file 
leaves you with all the filesystem data but renders it effectively useless.

The fsimage file is read by the NameNode process at startup and is held and manipulated 
in memory for performance reasons. To avoid changes to the filesystem being lost, any 
modifications made are written to the edits log throughout the NameNode's uptime. The 
next time it restarts, it looks for this log at startup and uses it to update the fsimage file 
which it then reads into memory.

This process can be optimized by the use of the SecondaryNameNode 
which we'll mention later.

DataNode startup
When a DataNode process starts up, it commences its heartbeat process by reporting to the 
NameNode process on the blocks it holds. As explained earlier in this chapter, this is how the 
NameNode process knows which node should be used to service a request for a given block. 
If the NameNode process itself restarts, it uses the re-establishment of the heartbeats with 
all the DataNode processes to construct its mapping of blocks to nodes.

With the DataNode processes potentially coming in and out of the cluster, there is little use 
in this mapping being stored persistently as the on-disk state would often be out-of-date 
with the current reality. This is why the NameNode process does not persist the location  
of which blocks are held on which nodes.



When Things Break

[ 190 ]

Safe mode
If you look at the HDFS web UI or the output of dfsadmin shortly after starting an HDFS 
cluster, you will see a reference to the cluster being in safe mode and the required threshold 
of the reported blocks before it will leave safe mode. This is the DataNode block reporting 
mechanism at work.

As an additional safeguard, the NameNode process will hold the HDFS filesystem in a read-
only mode until it has confirmed that a given percentage of blocks meet their replication 
threshold. In the usual case this will simply require all the DataNode processes to report in, 
but if some have failed, the NameNode process will need to schedule some re-replication 
before safe mode can be left.

SecondaryNameNode
The most unfortunately named entity in Hadoop is the SecondaryNameNode. When one 
learns of the critical fsimage file for the first time, this thing called SecondaryNameNode 
starts to sound like a helpful mitigation. Is it perhaps, as the name suggests, a second copy 
of the NameNode process running on another host that can take over when the primary 
fails? No, it isn't. SecondaryNameNode has a very specific role; it periodically reads in the 
state of the fsimage file and the edits log and writes out an updated fsimage file with the 
changes in the log applied. This is a major time saver in terms of NameNode startup. If the 
NameNode process has been running for a significant period of time, the edits log will be 
huge and it will take a very long time (easily several hours) to apply all the changes to the old 
fsimage file's state stored on the disk. The SecondaryNameNode facilitates a faster startup.

So what to do when the NameNode process has a critical failure?
Would it help to say don't panic? There are approaches to NameNode failure and this is such 
an important topic that we have an entire section on it in the next chapter. But for now, the 
main point is that you can configure the NameNode process to write its fsimage file and 
edits log to multiple locations. Typically, a network filesystem is added as a second location 
to ensure a copy of the fsimage file outside the NameNode host.

But the process of moving to a new NameNode process on a new host requires manual 
effort and your Hadoop cluster is dead in the water until you do. This is something you want 
to have a process for and that you have tried (successfully!) in a test scenario. You really 
don't want to be learning how to do this when your operational cluster is down, your CEO is 
shouting at you, and the company is losing money.
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BackupNode/CheckpointNode and NameNode HA
Hadoop 0.22 replaced SecondaryNameNode with two new components, BackupNode and 
CheckpointNode. The latter of these is effectively a renamed SecondaryNameNode; it is 
responsible for updating the fsimage file at regular checkpoints to decrease the NameNode 
startup time.

The BackupNode, however, is a step closer to the goal of a fully functional hot-backup for 
the NameNode. It receives a constant stream of filesystem updates from the NameNode 
and its in-memory state is up-to-date at any point in time, with the current state held in the 
master NameNode. If the NameNode dies, the BackupNode is much more capable of being 
brought into service as a new NameNode. The process isn't automatic and requires manual 
intervention and a cluster restart, but it takes some of the pain out of a NameNode failure.

Remember that Hadoop 1.0 is a continuation of the Version 0.20 branch, so it does not 
contain the features mentioned previously.

Hadoop 2.0 will take these extensions to the next logical step: a fully automatic NameNode 
failover from the current master NameNode to an up-to-date backup NameNode. This 
NameNode High Availability (HA) is one of the most long-requested changes to the Hadoop 
architecture and will be a welcome addition when complete.

Hardware failure
When we killed the various Hadoop components earlier, we were—in most cases—using 
termination of the Hadoop processes as a proxy for the failure of the hosting physical 
hardware. From experience, it is quite rare to see the Hadoop processes fail without  
some underlying host issue causing the problem.

Host failure
Actual failure of the host is the simplest case to consider. A machine could fail due to a 
critical hardware issue (failed CPU, blown power supply, stuck fans, and so on), causing 
sudden failure of the Hadoop processes running on the host. Critical bugs in system-level 
software (kernel panics, I/O locks, and so on) can also have the same effect.

Generally speaking, if the failure causes a host to crash, reboot, or otherwise become 
unreachable for a period of time, we can expect Hadoop to act just as demonstrated 
throughout this chapter.
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Host corruption
A more insidious problem is when a host appears to be functioning but is in reality producing 
corrupt results. Examples of this could be faulty memory resulting in corruption of data or 
disk sector errors, resulting in data on the disk being damaged.

For HDFS, this is where the status reports of corrupted blocks that we discussed earlier come 
into play.

For MapReduce there is no equivalent mechanism. Just as with most other software, the 
TaskTracker relies on data being written and read correctly by the host and has no means  
to detect corruption in either task execution or during the shuffle stage.

The risk of correlated failures
There is a phenomenon that most people don't consider until it bites them; sometimes the 
cause of a failure will also result in subsequent failures and greatly increase the chance of 
encountering a data loss scenario.

As an example, I once worked on a system that used four networking devices. One of these 
failed and no one cared about it; there were three remaining devices, after all. Until they all 
failed in an 18-hour period. Turned out they all contained hard drives from a faulty batch.

It doesn't have to be quite this exotic; more frequent causes will be due to faults in the 
shared services or facilities. Network switches can fail, power distribution can spike, air 
conditioning can fail, and equipment racks can short-circuit. As we'll see in the next chapter 
Hadoop doesn't assign blocks to random locations, it actively seeks to adopt a placement 
strategy that provides some protection from such failures in shared services.

We are again talking about unlikely scenarios, most often a failed host is just that and not the 
tip of a failure-crisis iceberg. However, remember to never discount the unlikely scenarios, 
especially when taking clusters to progressively larger scale.

Task failure due to software
As mentioned earlier, it is actually relatively rare to see the Hadoop processes themselves 
crash or otherwise spontaneously fail. What you are likely to see more of in practice are 
failures caused by the tasks, that is faults in the map or reduce tasks that you are executing 
on the cluster.

Failure of slow running tasks
We will first look at what happens if tasks hang or otherwise appear to Hadoop to have 
stopped making progress.
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Time for action – causing task failure
Let's cause a task to fail; before we do, we will need to modify the default timeouts:

1.	 Add this configuration property to mapred-site.xml:
<property>
<name>mapred.task.timeout</name>
<value>30000</value>
</property>

2.	 We will now modify our old friend WordCount from Chapter 3, Understanding 
MapReduce. Copy WordCount3.java to a new file called WordCountTimeout.
java and add the following imports:
import java.util.concurrent.TimeUnit ;
import org.apache.hadoop.fs.FileSystem ;
import org.apache.hadoop.fs.FSDataOutputStream ;

3.	 Replace the map method with the following one:
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
String lockfile = "/user/hadoop/hdfs.lock" ;
  Configuration config = new Configuration() ;  
FileSystem hdfs = FileSystem.get(config) ;  
Path path = new Path(lockfile) ;  
if (!hdfs.exists(path))
{
byte[] bytes = "A lockfile".getBytes() ;
  FSDataOutputStream out = hdfs.create(path) ;  
out.write(bytes, 0, bytes.length);
out.close() ;
TimeUnit.SECONDS.sleep(100) ;
}

String[] words = value.toString().split(" ") ;

for (String str: words)
{
        word.set(str);
        context.write(word, one);

    }
    }
  }
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4.	 Compile the file after changing the class name, jar it up, and execute it on  
the cluster:

$ Hadoop jar wc.jar WordCountTimeout test.txt output

…

11/12/11 19:19:51 INFO mapred.JobClient:  map 50% reduce 0%

11/12/11 19:20:25 INFO mapred.JobClient:  map 0% reduce 0%

11/12/11 19:20:27 INFO mapred.JobClient: Task Id : attempt_2011121
11821_0004_m_000000_0, Status : FAILED

Task attempt_201112111821_0004_m_000000_0 failed to report status 
for 32 seconds. Killing!

11/12/11 19:20:31 INFO mapred.JobClient:  map 100% reduce 0%

11/12/11 19:20:43 INFO mapred.JobClient:  map 100% reduce 100%

11/12/11 19:20:45 INFO mapred.JobClient: Job complete: 
job_201112111821_0004

11/12/11 19:20:45 INFO mapred.JobClient: Counters: 18

11/12/11 19:20:45 INFO mapred.JobClient:   Job Counters

…

What just happened?
We first modified a default Hadoop property that manages how long a task can seemingly 
make no progress before the Hadoop framework considers it for termination.

Then we modified WordCount3 to add some logic that causes the task to sleep for 100 
seconds. We used a lock file on HDFS to ensure that only a single task instance sleeps.  
If we just had the sleep statement in the map operation without any checks, every  
mapper would timeout and the job would fail.

Have a go hero – HDFS programmatic access
We said we would not really deal with programmatic access to HDFS in this book.  
However, take a look at what we have done here and browse through the Javadoc  
for these classes. You will find that the interface largely follows the patterns for  
access to a standard Java filesystem.

Then we compile, jar up the classes, and execute the job on the cluster. The first task goes 
to sleep and after exceeding the threshold we set (the value was specified in milliseconds), 
Hadoop kills the task and reschedules another mapper to process the split assigned to the 
failed task.
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Hadoop's handling of slow-running tasks
Hadoop has a balancing act to perform here. It wants to terminate tasks that have got  
stuck or, for other reasons, are running abnormally slowly; but sometimes complex tasks 
simply take a long time. This is especially true if the task relies on any external resources  
to complete its execution.

Hadoop looks for evidence of progress from a task when deciding how long it has been  
idle/quiet/stuck. Generally this could be:

�� Emitting results

�� Writing values to counters

�� Explicitly reporting progress

For the latter, Hadoop provides the Progressable interface which contains one method  
of interest:

Public void progress() ;

The Context class implements this interface, so any mapper or reducer can call context.
progress() to show it is alive and continuing to process.

Speculative execution
Typically, a MapReduce job will comprise of many discrete maps and reduce task executions. 
When run across a cluster, there is a real risk that a misconfigured or ill host will cause its 
tasks to run significantly slower than the others.

To address this, Hadoop will assign duplicate maps or reduce tasks across the cluster  
towards the end of the map or reduce phase. This speculative task execution is aimed  
at preventing one or two slow running tasks from causing a significant impact on the  
overall job execution time.

Hadoop's handling of failing tasks
Tasks won't just hang; sometimes they'll explicitly throw exceptions, abort, or otherwise  
stop executing in a less silent way than the ones mentioned previously.

Hadoop has three configuration properties that control how it responds to task failures,  
all set in mapred-site.xml:

�� mapred.map.max.attempts: A given map task will be retried this many times 
before causing the job to fail
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�� mapred.reduce.max.attempts: A given reduce task will be retried these many 
times before causing the job to fail

�� mapred.max.tracker.failures: The job will fail if this many individual task 
failures are recorded

The default value for all of these is 4.

Note that it does not make sense for mapred.tracker.max.failures 
to be set to a value smaller than either of the other two properties.
Which of these you consider setting will depend on the nature of your data 
and jobs. If your jobs access external resources that may occasionally cause 
transient errors, increasing the number of repeat failures of a task may be 
useful. But if the task is very data-specific, these properties may be less 
applicable as a task that fails once will do so again. However, note that a 
default value higher than 1 does make sense as in a large complex system 
various transient failures are always possible.

Have a go hero – causing tasks to fail
Modify the WordCount example; instead of sleeping, have it throw a RuntimeException 
based on a random number. Modify the cluster configuration and explore the relationship 
between the configuration properties that manage how many failed tasks will cause the 
whole job to fail.

Task failure due to data
The final types of failure that we will explore are those related to data. By this, we mean 
tasks that crash because a given record had corrupt data, used the wrong data types or 
formats, or a wide variety of related problems. We mean those cases where the data 
received diverges from expectations.

Handling dirty data through code
One approach to dirty data is to write mappers and reducers that deal with data defensively. 
So, for example, if the value received by the mapper should be a comma-separated list of 
values, first validate the number of items before processing the data. If the first value should 
be a string representation of an integer, ensure that the conversion into a numerical type has 
solid error handling and default behavior.

The problem with this approach is that there will always be some type of weird data input 
that was not considered, no matter how careful you were. Did you consider receiving values 
in a different unicode character set? What about multiple character sets, null values, badly 
terminated strings, wrongly encoded escape characters, and so on?
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If the data input to your jobs is something you generate and/or control, these possibilities 
are less of a concern. However, if you are processing data received from external sources, 
there will always be grounds for surprise.

Using Hadoop's skip mode
The alternative is to configure Hadoop to approach task failures differently. Instead of 
looking upon a failed task as an atomic event, Hadoop can instead attempt to identify which 
records may have caused the problem and exclude them from future task executions. This 
mechanism is known as skip mode. This can be useful if you are experiencing a wide variety 
of data issues where coding around them is not desirable or practical. Alternatively, you may 
have little choice if, within your job, you are using third-party libraries for which you may not 
have the source code.

Skip mode is currently available only for jobs written to the pre 0.20 version of API, which is 
another consideration.

Time for action – handling dirty data by using skip mode
Let's see skip mode in action by writing a MapReduce job that receives the data that causes 
it to fail:

1.	 Save the following Ruby script as gendata.rb:
File.open("skipdata.txt", "w") do |file|
  3.times do
    500000.times{file.write("A valid record\n")}
    5.times{file.write("skiptext\n")}
  end
  500000.times{file.write("A valid record\n")}
End

2.	 Run the script:
$ ruby gendata.rb 

3.	 Check the size of the generated file and its number of lines:
$ ls -lh skipdata.txt

-rw-rw-r-- 1 hadoop hadoop 29M 2011-12-17 01:53 skipdata.txt

~$ cat skipdata.txt | wc -l

2000015

4.	 Copy the file onto HDFS:
$ hadoop fs -put skipdata.txt skipdata.txt
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5.	 Add the following property definition to mapred-site.xml:
<property>
<name>mapred.skip.map.max.skip.records</name>
<value5</value>
</property>

6.	 Check the value set for mapred.max.map.task.failures and set it to 20  
if it is lower.

7.	 Save the following Java file as SkipData.java:
import java.io.IOException;

import org.apache.hadoop.conf.* ;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.* ;
import org.apache.hadoop.mapred.* ;
import org.apache.hadoop.mapred.lib.* ;

public class SkipData
{
    
    public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, LongWritable>
    {
        
        private final static LongWritable one = new 
LongWritable(1);
        private Text word = new Text("totalcount");
        
        public void map(LongWritable key, Text value,
            OutputCollector<Text, LongWritable> output,
                Reporter reporter) throws IOException
                {
                    String line = value.toString();
                
                if (line.equals("skiptext"))
                throw new RuntimeException("Found skiptext") ;
                output.collect(word, one);
            }
        }
        
        public static void main(String[] args) throws Exception
        {
            Configuration config = new Configuration() ;
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            JobConf conf = new JobConf(config, SkipData.class);
            conf.setJobName("SkipData");
            
            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(LongWritable.class);
            
            conf.setMapperClass(MapClass.class);
            conf.setCombinerClass(LongSumReducer.class);
            conf.setReducerClass(LongSumReducer.class);
            
            FileInputFormat.setInputPaths(conf,args[0]) ;
            FileOutputFormat.setOutputPath(conf, new 
Path(args[1])) ;
            
            JobClient.runJob(conf);
        }
    }

8.	 Compile this file and jar it into skipdata.jar.

9.	 Run the job:
$ hadoop jar skip.jar SkipData skipdata.txt output

…

11/12/16 17:59:07 INFO mapred.JobClient:  map 45% reduce 8%

11/12/16 17:59:08 INFO mapred.JobClient: Task Id : attempt_2011121
61623_0014_m_000003_0, Status : FAILED

java.lang.RuntimeException: Found skiptext

  at SkipData$MapClass.map(SkipData.java:26)

  at SkipData$MapClass.map(SkipData.java:12)

  at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:50)

  at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.
java:358)

  at org.apache.hadoop.mapred.MapTask.run(MapTask.java:307)

  at org.apache.hadoop.mapred.Child.main(Child.java:170)

11/12/16 17:59:11 INFO mapred.JobClient:  map 42% reduce 8%

...

11/12/16 18:01:26 INFO mapred.JobClient:  map 70% reduce 16%

11/12/16 18:01:35 INFO mapred.JobClient:  map 71% reduce 16%

11/12/16 18:01:43 INFO mapred.JobClient: Task Id : attempt_2011111
61623_0014_m_000003_2, Status : FAILED

java.lang.RuntimeException: Found skiptext

...

11/12/16 18:12:44 INFO mapred.JobClient:  map 99% reduce 29%

11/12/16 18:12:50 INFO mapred.JobClient:  map 100% reduce 29%
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11/12/16 18:13:00 INFO mapred.JobClient:  map 100% reduce 100%

11/12/16 18:13:02 INFO mapred.JobClient: Job complete: 
job_201112161623_0014

...

10.	Examine the contents of the job output file:
$ hadoop fs -cat output/part-00000

totalcount  2000000

11.	Look in the output directory for skipped records:
$ hadoop fs -ls output/_logs/skip

Found 15 items

-rw-r--r--   3 hadoop supergroup        203 2011-12-16 18:05 /
user/hadoop/output/_logs/skip/attempt_201112161623_0014_m_000001_3

-rw-r--r--   3 hadoop supergroup        211 2011-12-16 18:06 /
user/hadoop/output/_logs/skip/attempt_201112161623_0014_m_000001_4

…

12.	Check the job details from the MapReduce UI to observe the recorded statistics as 
shown in the following screenshot:
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What just happened?
We had to do a lot of setup here so let's walk through it a step at a time.

Firstly, we needed to configure Hadoop to use skip mode; it is disabled by default. The key 
configuration property was set to 5, meaning that we didn't want the framework to skip any 
set of records greater than this number. Note that this includes the invalid records, and by 
setting this property to 0 (the default) Hadoop will not enter skip mode.

We also check to ensure that Hadoop is configured with a sufficiently high threshold for 
repeated task attempt failures, which we will explain shortly.

Next we needed a test file that we could use to simulate dirty data. We wrote a simple 
Ruby script that generated a file with 2 million lines that we would treat as valid with three 
sets of five bad records interspersed through the file. We ran this script and confirmed that 
the generated file did indeed have 2,000,015 lines. This file was then put on HDFS where it 
would be the job input.

We then wrote a simple MapReduce job that effectively counts the number of valid records. 
Every time the line reads from the input as the valid text we emit an additional count of 1 to 
what will be aggregated as a final total. When the invalid lines are encountered, the mapper 
fails by throwing an exception.

We then compile this file, jar it up, and run the job. The job takes a while to run and as seen 
from the extracts of the job status, it follows a pattern that we have not seen before. The 
map progress counter will increase but when a task fails, the progress will drop back then 
start increasing again. This is skip mode in action.

Every time a key/value pair is passed to the mapper, Hadoop by default increments a counter 
that allows it to keep track of which record caused a failure.

If your map or reduce tasks process their input through mechanisms other  
than directly receiving all data via the arguments to the map or reduce method 
(for example, from asynchronous processes or caches) you will need to ensure 
you explicitly update this counter manually.

When a task fails, Hadoop retries it on the same block but attempts to work around the 
invalid records. Through a binary search approach, the framework performs retries across 
the data until the number of skipped records is no greater than the maximum value we 
configured earlier, that is 5. This process does require multiple task retries and failures as the 
framework seeks the optimal batch to skip, which is why we had to ensure the framework 
was configured to be tolerant of a higher-than-usual number of repeated task failures.
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We watched the job continue following this back and forth process and on completion 
checked the contents of the output file. This showed 2,000,000 processed records, that  
is the correct number of valid records in our input file. Hadoop successfully managed to  
skip only the three sets of five invalid records.

We then looked within the _logs directory in the job output directory and saw that  
there is a skip directory containing the sequence files of the skipped records.

Finally, we looked at the MapReduce web UI to see the overall job status, which  
included both the number of records processed while in skip mode as well as the  
number of records skipped. Note that the total number of failed tasks was 22, which is 
greater than our threshold for failed map attempts, but this number is aggregate failures 
across multiple tasks.

To skip or not to skip...
Skip mode can be very effective but as we have seen previously, there is a performance 
penalty caused by Hadoop having to determine which record range to skip. Our test file was 
actually quite helpful to Hadoop; the bad records were nicely grouped in three groups and 
only accounted for a tiny fraction of the overall data set. If there were many more invalid 
records in the input data and they were spread much more widely across the file, a more 
effective approach may have been to use a precursor MapReduce job to filter out all the 
invalid records.

This is why we have presented the topics of writing code to handle bad data and using  
skip mode consecutively. Both are valid techniques that you should have in your tool  
belt. There is no single answer to when one or the other is the best approach, you need  
to consider the input data, performance requirements, and opportunities for hardcoding 
before making a decision.

Summary
We have caused a lot of destruction in this chapter and I hope you never have to deal with 
this much failure in a single day with an operational Hadoop cluster. There are some key 
learning points from the experience.

In general, component failures are not something to fear in Hadoop. Particularly with large 
clusters, failure of some component or host will be pretty commonplace and Hadoop is 
engineered to handle this situation. HDFS, with its responsibility to store data, actively 
manages the replication of each block and schedules new copies to be made when the 
DataNode processes die.
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MapReduce has a stateless approach to TaskTracker failure and in general simply schedules 
duplicate jobs if one fails. It may also do this to prevent the misbehaving hosts from slowing 
down the whole job.

Failure of the HDFS and MapReduce master nodes is a more significant failure. In particular, 
the NameNode process holds critical filesystem data and you must actively ensure you have 
it set up to allow a new NameNode process to take over.

In general, hardware failures will look much like the previous process failures, but always 
be aware of the possibility of correlated failures. If tasks fail due to software errors, Hadoop 
will retry them within configurable thresholds. Data-related errors can be worked around by 
employing skip mode, though it will come with a performance penalty.

Now that we know how to handle failures in our cluster, we will spend the next chapter 
working through the broader issues of cluster setup, health, and maintenance.





7
Keeping Things Running

Having a Hadoop cluster is not all about writing interesting programs to do 
clever data analysis. You also need to maintain the cluster, and keep it tuned 
and ready to do the data crunching you want.

In this chapter we will cover:

�� More about Hadoop configuration properties

�� How to select hardware for your cluster

�� How Hadoop security works

�� Managing the NameNode

�� Managing HDFS

�� Managing MapReduce

�� Scaling the cluster

Although these topics are operationally focused, they do give us an opportunity to explore 
some aspects of Hadoop we have not looked at before. Therefore, even if you won't be 
personally managing the cluster, there should be useful information here for you too.
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A note on EMR
One of the main benefits of using cloud services such as those offered by Amazon Web Services 
is that much of the maintenance overhead is borne by the service provider. Elastic MapReduce 
can create Hadoop clusters tied to the execution of a single task (non-persistent job flows) or 
allow long-running clusters that can be used for multiple jobs (persistent job flows). When 
non-persistent job flows are used, the actual mechanics of how the underlying Hadoop cluster 
is configured and run are largely invisible to the user. Consequently, users employing non-
persistent job flows will not need to consider many of the topics in this chapter. If you are  
using EMR with persistent job flows, many topics (but not all) do become relevant.

We will generally talk about local Hadoop clusters in this chapter. If you need to reconfigure 
a persistent job flow, use the same Hadoop properties but set them as described in Chapter 
3, Writing MapReduce Jobs.

Hadoop configuration properties
Before we look at running the cluster, let's talk a little about Hadoop's configuration 
properties. We have been introducing many of these along the way, and there are a  
few additional points worth considering.

Default values
One of the most mystifying things to a new Hadoop user is the large number of  
configuration properties. Where do they come from, what do they mean, and  
what are their default values?

If you have the full Hadoop distribution—that is, not just the binary distribution—the 
following XML files will answer your questions:

�� Hadoop/src/core/core-default.xml

�� Hadoop/src/hdfs/hdfs-default.xml

�� Hadoop/src/mapred/mapred-default.xml

Time for action – browsing default properties
Fortunately, the XML documents are not the only way of looking at the default values; there 
are also more readable HTML versions, which we'll now take a quick look at.
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These files are not included in the Hadoop binary-only distribution; if you are using that,  
you can also find these files on the Hadoop website.

1.	 Point your browser at the docs/core-default.html file within your  
Hadoop distribution directory and browse its contents. It should look like  
the next screenshot:

2.	 Now, similarly, browse these other files:

�� Hadoop/docs/hdfs-default.html

�� Hadoop/docs/mapred-default.html

What just happened?
As you can see, each property has a name, default value, and a brief description. You will 
also see there are indeed a very large number of properties. Do not expect to understand  
all of these now, but do spend a little time browsing to get a flavor for the type of 
customization allowed by Hadoop.
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Additional property elements
When we have previously set properties in the configuration files, we have used an XML 
element of the following form:

<property>
<name>the.property.name</name>
<value>The property value</value>
</property>

There are an additional two optional XML elements we can add, description and final. 
A fully described property using these additional elements now looks as follows:

<property>
<name>the.property.name</name>
<value>The default property value</value>
<description>A textual description of the property</description>
<final>Boolean</final>
</property>

The description element is self-explanatory and provides the location for the descriptive text 
we saw for each property in the preceding HTML files.

The final property has a similar meaning as in Java: any property marked final cannot be 
overridden by values in any other files or by other means; we will see this shortly. Use this 
for those properties where for performance, integrity, security, or other reasons, you wish to 
enforce cluster-wide values.

Default storage location
You will see properties that modify where Hadoop stores its data on both the local disk and 
HDFS. There's one property used as the basis for many others hadoop.tmp.dir, which is 
the root location for all Hadoop files, and its default value is /tmp.

Unfortunately, many Linux distributions—including Ubuntu—are configured to remove 
the contents of this directory on each reboot. This means that if you do not override this 
property, you will lose all your HDFS data on the next host reboot. Therefore,  
it is worthwhile to set something like the following in core-site.xml:

<property>
<name>hadoop.tmp.dir</name>
<value>/var/lib/hadoop</value>
</property>
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Remember to ensure the location is writable by the user who will start Hadoop, and that  
the disk the directory is located on has enough space. As you will see later, there are a 
number of other properties that allow more granular control of where particular types  
of data are stored.

Where to set properties
We have previously used the configuration files to specify new values for Hadoop properties. 
This is fine, but does have an overhead if we are trying to find the best value for a property 
or are executing a job that requires special handling.

It is possible to use the JobConf class to programmatically set configuration properties on 
the executing job. There are two types of methods supported, the first being those that 
are dedicated to setting a specific property, such as the ones we've seen for setting the job 
name, input, and output formats, among others. There are also methods to set properties 
such as the preferred number of map and reduce tasks for the job.

In addition, there are a set of generic methods, such as the following:

�� Void set(String key, String value);

�� Void setIfUnset(String key, String value);

�� Void setBoolean( String key, Boolean value);

�� Void setInt(String key, int value);

These are more flexible and do not require specific methods to be created for each  
property we wish to modify. However, they also lose compile time checking meaning  
you can use an invalid property name or assign the wrong type to a property and will  
only find out at runtime.

This ability to set property values both programmatically and in the 
configuration files is an important reason for the ability to mark a property as 
final. For properties for which you do not want any submitted job to have the 
ability to override them, set them as final within the master configuration files.

Setting up a cluster
Before we look at how to keep a cluster running, let's explore some aspects of setting it up in 
the first place.
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How many hosts?
When considering a new Hadoop cluster, one of the first questions is how much capacity to 
start with. We know that we can add additional nodes as our needs grow, but we also want 
to start off in a way that eases that growth.

There really is no clear-cut answer here, as it will depend largely on the size of the data sets 
you will be processing and the complexity of the jobs to be executed. The only near-absolute 
is to say that if you want a replication factor of n, you should have at least that many nodes. 
Remember though that nodes will fail, and if you have the same number of nodes as the 
default replication factor then any single failure will push blocks into an under-replicated 
state. In most clusters with tens or hundreds of nodes, this is not a concern; but for very 
small clusters with a replication factor of 3, the safest approach would be a five-node cluster.

Calculating usable space on a node
An obvious starting point for the required number of nodes is to look at the size of the data 
set to be processed on the cluster. If you have hosts with 2 TB of disk space and a 10 TB data 
set, the temptation would be to assume that five nodes is the minimum number needed.

This is incorrect, as it omits consideration of the replication factor and the need for 
temporary space. Recall that the output of mappers is written to the local disk to be 
retrieved by the reducers. We need to account for this non-trivial disk usage.

A good rule of thumb would be to assume a replication factor of 3, and that 25 percent of 
what remains should be accounted for as temporary space. Using these assumptions, the 
calculation of the needed cluster for our 10 TB data set on 2 TB nodes would be as follows:

�� Divide the total storage space on a node by the replication factor:

2 TB/3 = 666 GB

�� Reduce this figure by 25 percent to account for temp space:

666 GB * 0.75 = 500 GB

�� Each 2 TB node therefore has approximately 500 GB (0.5 TB) of usable space

�� Divide the data set size by this figure:

10 TB / 500 GB = 20

So our 10 TB data set will likely need a 20 node cluster as a minimum, four times our  
naïve estimate.

This pattern of needing more nodes than expected is not unusual and should be 
remembered when considering how high-spec you want the hosts to be; see the  
Sizing hardware section later in this chapter.
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Location of the master nodes
The next question is where the NameNode, JobTracker, and SecondaryNameNode will 
live. We have seen that a DataNode can run on the same host as the NameNode and the 
TaskTracker can co-exist with the JobTracker, but this is unlikely to be a great setup for a 
production cluster.

As we will see, the NameNode and SecondaryNameNode have some specific resource 
requirements, and anything that affects their performance is likely to slow down the entire 
cluster operation.

The ideal situation would be to have the NameNode, JobTracker, and SecondaryNameNode 
on their own dedicated hosts. However, for very small clusters, this would result in a 
significant increase in the hardware footprint without necessarily reaping the full benefit.

If at all possible, the first step should be to separate the NameNode, JobTracker, and 
SecondaryNameNode onto a single dedicated host that does not have any DataNode or 
TaskTracker processes running. As the cluster continues to grow, you can add an additional 
server host and then move the NameNode onto its own host, keeping the JobTracker and 
SecondaryNameNode co-located. Finally, as the cluster grows yet further, it will make sense 
to move to full separation.

As discussed in Chapter 6, Keeping Things Running, Hadoop 2.0 will split the 
Secondary NameNode into Backup NameNodes and Checkpoint NameNodes. 
Best practice is still evolving, but aiming towards having a dedicated host each 
for the NameNode and at least one Backup NameNode looks sensible.

Sizing hardware
The amount of data to be stored is not the only consideration regarding the specification 
of the hardware to be used for the nodes. Instead, you have to consider the amount of 
processing power, memory, storage types, and networking available.

Much has been written about selecting hardware for a Hadoop cluster, and once again there 
is no single answer that will work for all cases. The big variable is the types of MapReduce 
tasks that will be executed on the data and, in particular, if they are bounded by CPU, 
memory, I/O, or something else.

Processor / memory / storage ratio
A good way of thinking of this is to look at potential hardware in terms of the CPU / memory 
/ storage ratio. So, for example, a quad-core host with 8 GB memory and 2 TB storage could 
be thought of as having two cores and 4 GB memory per 1 TB of storage.
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Then look at the types of MapReduce jobs you will be running, does that ratio seem 
appropriate? In other words, does your workload require proportionally more of one  
of these resources or will a more balanced configuration be sufficient?

This is, of course, best assessed by prototyping and gathering metrics, but that isn't always 
possible. If not, consider what part of the job is the most expensive. For example, some 
of the jobs we have seen are I/O bound and read data from the disk, perform simple 
transformations, and then write results back to the disk. If this was typical of our workload, 
we could likely use hardware with more storage—especially if it was delivered by multiple 
disks to increase I/O—and use less CPU and memory.

Conversely, jobs that perform very heavy number crunching would need more CPU, and 
those that create or use large data structures would benefit from memory.

Think of it in terms of limiting factors. If your job was running, would it be CPU-bound 
(processors at full capacity; memory and I/O to spare), memory-bound (physical memory full 
and swapping to disk; CPU and I/O to spare), or I/O-bound (CPU and memory to spare, but 
data being read/written to/from disk at maximum possible speed)? Can you get hardware 
that eases that bound?

This is of course a limitless process, as once you ease one bound another will manifest itself. 
So always remember that the idea is to get a performance profile that makes sense in the 
context of your likely usage scenario.

What if you really don't know the performance characteristics of your jobs? Ideally, try 
to find out, do some prototyping on any hardware you have and use that to inform your 
decision. However, if even that is not possible, you will have to go for a configuration and  
try it out. Remember that Hadoop supports heterogeneous hardware—though having 
uniform specifications makes your life easier in the end—so build the cluster to the  
minimum possible size and assess the hardware. Use this knowledge to inform future 
decisions regarding additional host purchases or upgrades of the existing fleet.

EMR as a prototyping platform
Recall that when we configured a job on Elastic MapReduce we chose the type of hardware 
for both the master and data/task nodes. If you plan to run your jobs on EMR, you have 
a built-in capability to tweak this configuration to find the best combination of hardware 
specifications to price and execution speed.

However, even if you do not plan to use EMR full-time, it can be a valuable prototyping 
platform. If you are sizing a cluster but do not know the performance characteristics of  
your jobs, consider some prototyping on EMR to gain better insight. Though you may end  
up spending money on the EMR service that you had not planned, this will likely be a lot less  
than the cost of finding out you have bought completely unsuitable hardware for your cluster.
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Special node requirements
Not all hosts have the same hardware requirements. In particular, the host for the 
NameNode may look radically different to those hosting the DataNodes and TaskTrackers.

Recall that the NameNode holds an in-memory representation of the HDFS filesystem and 
the relationship between files, directories, blocks, nodes, and various metadata concerning 
all of this. This means that the NameNode will tend to be memory bound and may require 
larger memory than any other host, particularly for very large clusters or those with a huge 
number of files. Though 16 GB may be a common memory size for DataNodes/TaskTrackers, 
it's not unusual for the NameNode host to have 64 GB or more of memory. If the NameNode 
ever ran out of physical memory and started to use swap space, the impact on cluster 
performance would likely be severe.

However, though 64 GB is large for physical memory, it's tiny for modern storage, and  
given that the filesystem image is the only data stored by the NameNode, we don't need  
the massive storage common on the DataNode hosts. We care much more about NameNode 
reliability so are likely to have several disks in a redundant configuration. Consequently,  
the NameNode host will benefit from multiple small drives (for redundancy) rather than 
large drives.

Overall, therefore, the NameNode host is likely to look quite different from the other 
hosts in the cluster; this is why we made the earlier recommendations regarding moving 
the NameNode to its own host as soon as budget/space allows, as its unique hardware 
requirements are more easily satisfied this way.

The SecondaryNameNode (or CheckpointNameNode and BackupNameNode 
in Hadoop 2.0) share the same hardware requirements as the NameNode. You 
can run it on a more generic host while in its secondary capacity, but if you do 
ever need to switch and make it the NameNode due to failure of the primary 
hardware, you may be in trouble.

Storage types
Though you will find strong opinions on some of the previous points regarding the relative 
importance of processor, memory, and storage capacity, or I/O, such arguments are usually 
based around application requirements and hardware characteristics and metrics. Once we 
start discussing the type of storage to be used, however, it is very easy to get into flame war 
situations, where you will find extremely entrenched opinions.
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Commodity versus enterprise class storage
The first argument will be over whether it makes most sense to use hard drives aimed at 
the commodity/consumer segments or those aimed at enterprise customers. The former 
(primarily SATA disks) are larger, cheaper, and slower, and have lower quoted figures for 
mean time between failures (MTBF). Enterprise disks will use technologies such as SAS or 
Fiber Channel, and will on the whole be smaller, more expensive, faster, and have higher 
quoted MTBF figures.

Single disk versus RAID
The next question will be on how the disks are configured. The enterprise-class approach 
would be to use Redundant Arrays of Inexpensive Disks (RAID) to group multiple disks into 
a single logical storage device that can quietly survive one or more disk failures. This comes 
with the cost of a loss in overall capacity and an impact on the read/write rates achieved.

The other position is to treat each disk independently to maximize total storage and 
aggregate I/O, at the cost of a single disk failure causing host downtime.

Finding the balance
The Hadoop architecture is, in many ways, predicated on the assumption that hardware will 
fail. From this perspective, it is possible to argue that there is no need to use any traditional 
enterprise-focused storage features. Instead, use many large, cheap disks to maximize the 
total storage and read and write from them in parallel to do likewise for I/O throughput. 
A single disk failure may cause the host to fail, but the cluster will, as we have seen, work 
around this failure.

This is a completely valid argument and in many cases makes perfect sense. What the 
argument ignores, however, is the cost of bringing a host back into service. If your cluster 
is in the next room and you have a shelf of spare disks, host recovery will likely be a quick, 
painless, and inexpensive task. However, if you have your cluster hosted by a commercial 
collocation facility, any hands-on maintenance may cost a lot more. This is even more 
the case if you are using fully-managed servers where you have to pay the provider for 
maintenance tasks. In such a situation, the extra cost and reduced capacity and I/O from 
using RAID may make sense.

Network storage
One thing that will almost never make sense is to use networked storage for your primary 
cluster storage. Be it block storage via a Storage Area Network (SAN) or file-based via 
Network File System (NFS) or similar protocols, these approaches constrain Hadoop by 
introducing unnecessary bottlenecks and additional shared devices that would have a  
critical impact on failure.
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Sometimes, however, you may be forced for non-technical reasons to use something like 
this. It's not that it won't work, just that it changes how Hadoop will perform in regards to 
speed and tolerance to failures, so be sure you understand the consequences if this happens.

Hadoop networking configuration
Hadoop's support of networking devices is not as sophisticated as it is for storage, and 
consequently you have fewer hardware choices to make compared to CPU, memory, and 
storage setup. The bottom line is that Hadoop can currently support only one network device 
and cannot, for example, use all 4-gigabit Ethernet connections on a host for an aggregate  
of 4-gigabit throughput. If you need network throughput greater than that provided by a  
single-gigabit port then, unless your hardware or operating system can present multiple 
ports as a single device to Hadoop, the only option is to use a 10-gigabit Ethernet device.

How blocks are placed
We have talked a lot about HDFS using replication for redundancy, but have not explored 
how Hadoop chooses where to place the replicas for a block.

In most traditional server farms, the various hosts (as well as networking and other devices) 
are housed in standard-sized racks that stack the equipment vertically. Each rack will usually 
have a common power distribution unit that feeds it and will often have a network switch 
that acts as the interface between the broader network and all the hosts in the rack.

Given this setup, we can identify three broad types of failure:

�� Those that affect a single host (for example, CPU/memory/disk/motherboard failure)

�� Those that affect a single rack (for example, power unit or switch failure)

�� Those that affect the entire cluster (for example, larger power/network failures, 
cooling/environmental outages)

Remember that Hadoop currently does not support a cluster that is spread 
across multiple data centers, so instances of the third type of failure will 
quite likely bring down your cluster.

By default, Hadoop will treat each node as if it is in the same physical rack. This implies that 
the bandwidth and latency between any pair of hosts is approximately equal and that each 
node is equally likely to suffer a related failure as any other.
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Rack awareness
If, however, you do have a multi-rack setup, or another configuration that otherwise 
invalidates the previous assumptions, you can add the ability for each node to report  
its rack ID to Hadoop, which will then take this into account when placing replicas.

In such a setup, Hadoop tries to place the first replica of a node on a given host, the second 
on another within the same rack, and the third on a host in a different rack.

This strategy provides a good balance between performance and availability. When racks 
contain their own network switches, communication between hosts inside the rack often has 
lower latency than that with external hosts. This strategy places two replicas within a rack 
to ensure maximum speed of writing for these replicas, but keeps one outside the rack to 
provide redundancy in the event of a rack failure.

The rack-awareness script
If the topology.script.file.name property is set and points to an executable script  
on the filesystem, it will be used by the NameNode to determine the rack for each host.

Note that the property needs to be set and the script needs to exist only on the  
NameNode host.

The NameNode will pass to the script the IP address of each node it discovers, so the script  
is responsible for a mapping from node IP address to rack name.

If no script is specified, each node will be reported as a member of a single default rack.

Time for action – examining the default rack configuration
Let's take a look at how the default rack configuration is set up in our cluster.

1.	 Execute the following command:
$ Hadoop fsck -rack

2.	 The result should include output similar to the following:

Default replication factor:    3

Average block replication:     3.3045976

Corrupt blocks:                0

Missing replicas:              18 (0.5217391 %)

Number of data-nodes:          4

Number of racks:               1

The filesystem under path '/' is HEALTHY
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What just happened?
Both the tool used and its output are of interest here. The tool is hadoop fsck, which  
can be used to examine and fix filesystem problems. As can be seen, this includes some 
information not dissimilar to our old friend hadoop dfsadmin, though that tool is focused 
more on the state of each node in detail while hadoop fsck reports on the internals of the 
filesystem as a whole.

One of the things it reports is the total number of racks in the cluster, which, as seen in the 
preceding output, has the value 1, as expected.

This command was executed on a cluster that had recently been used for 
some HDFS resilience testing. This explains the figures for average block 
replication and under-replicated blocks.
If a block ends up with more than the required number of replicas due to a 
host temporarily failing, the host coming back into service will put the block 
above the minimum replication factor. Along with ensuring that blocks have 
replicas added to meet the replication factor, Hadoop will also delete excess 
replicas to return blocks to the replication factor.

Time for action – adding a rack awareness script
We can enhance the default flat rack configuration by creating a script that derives the rack 
location for each host.

1.	 Create a script in the Hadoop user's home directory on the NameNode host called 
rack-script.sh, containing the following text. Remember to change the IP 
address to one of your HDFS nodes.
#!/bin/bash

if [ $1 = "10.0.0.101" ]; then
    echo -n "/rack1 "
else
    echo -n "/default-rack "
fi

2.	 Make this script executable.
$ chmod +x rack-script.sh

3.	 Add the following property to core-site.xml on the NameNode host:
<property>
<name>topology.script.file.name</name>
<value>/home/Hadoop/rack-script.sh</value>
</property>
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4.	 Restart HDFS.
$ start-dfs.sh

5.	 Check the filesystem via fsck.

$ Hadoop fsck –rack

The output of the preceding command can be shown in the following screenshot:

What just happened?
We first created a simple script that returns one value for a named node and a default value 
for all others. We placed this on the NameNode host and added the needed configuration 
property to the NameNode core-site.xml file.

After starting HDFS, we used hadoop fsck to report on the filesystem and saw that  
we now have a two-rack cluster. With this knowledge, Hadoop will now employ more 
sophisticated block placement strategies, as described previously.

Using an external host file
A common approach is to keep a separate data file akin to the /etc/hosts 
file on Unix and use this to specify the IP/rack mapping, one per line. This file 
can then be updated independently and read by the rack-awareness script.
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What is commodity hardware anyway?
Let's revisit the question of the general characteristics of the hosts used for your cluster, and 
whether they should look more like a commodity white box server or something built for a 
high-end enterprise environment.

Part of the problem is that "commodity" is an ambiguous term. What looks cheap 
and cheerful for one business may seem luxuriously high-end for another. We suggest 
considering the following points to keep in mind when selecting hardware and then 
remaining happy with your decision:

�� With your hardware, are you paying a premium for reliability features that duplicate 
some of Hadoop's fault-tolerance capabilities?

�� Are the higher-end hardware features you are paying for addressing the need or risk 
that you have confirmed is realistic in your environment?

�� Have you validated the cost of the higher-end hardware to be higher than dealing 
with cheaper / less reliable hardware?

Pop quiz – setting up a cluster
Q1. Which of the following is most important when selecting hardware for your new  
Hadoop cluster?

1.	 The number of CPU cores and their speed.

2.	 The amount of physical memory.

3.	 The amount of storage.

4.	 The speed of the storage.

5.	 It depends on the most likely workload.

Q2. Why would you likely not want to use network storage in your cluster?

1.	 Because it may introduce a new single point of failure.

2.	 Because it most likely has approaches to redundancy and fault-tolerance that may 
be unnecessary given Hadoop's fault tolerance.

3.	 Because such a single device may have inferior performance to Hadoop's use of 
multiple local disks simultaneously.

4.	 All of the above.
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Q3. You will be processing 10 TB of data on your cluster. Your main MapReduce job  
processes financial transactions, using them to produce statistical models of behavior  
and future forecasts. Which of the following hardware choices would be your first  
choice for the cluster?

1.	 20 hosts each with fast dual-core processors, 4 GB memory, and one 500 GB  
disk drive.

2.	 30 hosts each with fast dual-core processors, 8 GB memory, and two 500 GB  
disk drives.

3.	 30 hosts each with fast quad-core processors, 8 GB memory, and one 1 TB disk drive.

4.	 40 hosts each with 16 GB memory, fast quad-core processors, and four 1 TB  
disk drives.

Cluster access control
Once you have the shiny new cluster up and running, you need to consider questions of 
access and security. Who can access the data on the cluster—is there sensitive data that  
you really don't want the whole user base to see?

The Hadoop security model
Until very recently, Hadoop had a security model that could, at best, be described as 
"marking only". It associated an owner and group with each file but, as we'll see, did very 
little validation of a given client connection. Strong security would manage not only the 
markings given to a file but also the identities of all connecting users.

Time for action – demonstrating the default security
When we have previously shown listings of files, we have seen user and group names for 
them. However, we have not really explored what that means. Let's do so.

1.	 Create a test text file in the Hadoop user's home directory.
$ echo "I can read this!" >  security-test.txt 

$ hadoop fs -put security-test.txt  security-test.txt 

2.	 Change the permissions on the file to be accessible only by the owner.
$ hadoop fs -chmod 700 security-test.txt 

$ hadoop fs -ls
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The output of the preceding command can be shown in the following screenshot:

3.	 Confirm you can still read the file.
$ hadoop fs -cat security-test.txt 

You'll see the following line on the screen:

I can read this!

4.	 Connect to another node in the cluster and try to read the file from there.
$ ssh node2

$ hadoop fs -cat security-test.txt 

You'll see the following line on the screen:

I can read this!

5.	 Log out from the other node.
$ exit

6.	 Create a home directory for another user and give them ownership.
$ hadoop m[Kfs -mkdir /user/garry

$ hadoop fs -chown garry /user/garry

$ hadoop fs -ls /user

The output of the preceding command can be shown in the following screenshot:
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7.	 Switch to that user.
$ su garry

8.	 Try to read the test file in the Hadoop user's home directory.
$ hadoop/bin/hadoop fs -cat /user/hadoop/security-test.txt

cat: org.apache.hadoop.security.AccessControlException: Permission 
denied: user=garry, access=READ, inode="security-test.txt":hadoop:
supergroup:rw-------

9.	 Place a copy of the file in this user's home directory and again make it accessible 
only by the owner.
$ Hadoop/bin/Hadoop fs -put security-test.txt security-test.txt

$ Hadoop/bin/Hadoop fs -chmod 700 security-test.txt

$ hadoop/bin/hadoop fs -ls 

The output of the preceding command can be shown in following screenshot:

10.	Confirm this user can access the file.
$ hadoop/bin/hadoop fs -cat security-test.txt 

You'll see the following line on the screen:

I can read this!

11.	Return to the Hadoop user.
$ exit

12.	Try and read the file in the other user's home directory.

$ hadoop fs -cat /user/garry/security-test.txt

You'll see the following line on the screen:

I can read this!
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What just happened?
We firstly used our Hadoop user to create a test file in its home directory on HDFS. We used 
the -chmod option to hadoop fs, which we have not seen before. This is very similar to the 
standard Unix chmod tool that gives various levels of read/write/execute access to the file 
owner, group members, and all users.

We then went to another host and tried to access the file, again as the Hadoop user. Not 
surprisingly, this worked. But why? What did Hadoop know about the Hadoop user that 
allowed it to give access to the file?

To explore this, we then created another home directory on HDFS (you can use any other 
account on the host you have access to), and gave it ownership by using the -chown 
option to hadoop fs. This should once again look similar to standard Unix -chown. Then 
we switched to this user and attempted to read the file stored in the Hadoop user's home 
directory. This failed with the security exception shown before, which is again what we 
expected. Once again, we copied a test file into this user's home directory and made it only 
accessible by the owner.

But we then muddied the waters by switching back to the Hadoop user and tried to access 
the file in the other account's home directory, which, surprisingly, worked.

User identity
The answer to the first part of the puzzle is that Hadoop uses the Unix ID of the user 
executing the HDFS command as the user identity on HDFS. So any commands executed by a 
user called alice will create files with an owner named alice and will only be able to read 
or write files to which this user has the correct access.

The security-minded will realize that to access a Hadoop cluster all one needs to do is create 
a user with the same name as an already existing HDFS user on any host that can connect 
to the cluster. So, for instance, in the previous example, any user named hadoop created 
on any host that can access the NameNode can read all files accessible by the user hadoop, 
which is actually even worse than it seems.

The super user
The previous step saw the Hadoop user access another user's files. Hadoop treats the user 
ID that started the cluster as the super user, and gives it various privileges, such as the 
ability to read, write, and modify any file on HDFS. The security-minded will realize even 
more the risk of having users called hadoop randomly created on hosts outside the Hadoop 
administrator's control.
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More granular access control
The preceding situation has caused security to be a major weakness in Hadoop since its 
inception. The community has, however, not been standing still, and after much work the 
very latest versions of Hadoop support a more granular and stronger security model.

To avoid reliance on simple user IDs, the developers need to learn the user identity from 
somewhere, and the Kerberos system was chosen with which to integrate. This does require 
the establishment and maintenance of services outside the scope of this book, but if such 
security is important to you, consult the Hadoop documentation. Note that this support does 
allow integration with third-party identity systems such as Microsoft Active Directory, so it is 
quite powerful.

Working around the security model via physical access control
If the burden of Kerberos is too great, or security is a nice-to-have rather than an absolute, 
there are ways of mitigating the risk. One favored by me is to place the entire cluster behind 
a firewall with tight access control. In particular, only allow access to the NameNode and 
JobTracker services from a single host that will be treated as the cluster head node and  
to which all users connect.

Accessing Hadoop from non-cluster hosts
Hadoop does not need to be running on a host for it to use the command-line 
tools to access HDFS and run MapReduce jobs. As long as Hadoop is installed on 
the host and its configuration files have the correct locations of the NameNode 
and JobTracker, these will be found when invoking commands such as Hadoop 
fs and Hadoop jar.

This model works because only one host is used to interact with Hadoop; and since this host 
is controlled by the cluster administrator, normal users should be unable to create or access 
other user accounts.

Remember that this approach is not providing security. It is putting a hard shell around a  
soft system that reduces the ways in which the Hadoop security model can be subverted.

Managing the NameNode
Let's do some more risk reduction. In Chapter 6, When Things Break, I probably scared 
you when talking about the potential consequences of a failure of the host running the 
NameNode. If that section did not scare you, go back and re-read it—it should have. The 
summary is that the loss of the NameNode could see you losing every single piece of data on 
the cluster. This is because the NameNode writes a file called fsimage that contains all the 
metadata for the filesystem and records which blocks comprise which files. If the loss of the 
NameNode host makes the fsimage unrecoverable, all the HDFS data is likewise lost.
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Configuring multiple locations for the fsimage class
The NameNode can be configured to simultaneously write fsimage to multiple locations. 
This is purely a redundancy mechanism, the same data is written to each location and there 
is no attempt to use multiple storage devices for increased performance. Instead, the policy 
is that multiple copies of fsimage will be harder to lose.

Time for action – adding an additional fsimage location
Let's now configure our NameNode to simultaneously write multiple copies of fsimage to 
give us our desired data resilience. To do this, we require an NFS-exported directory.

1.	 Ensure the cluster is stopped.
$ stopall.sh

2.	 Add the following property to Hadoop/conf/core-site.xml, modifying the 
second path to point to an NFS-mounted location to which the additional copy of 
NameNode data can be written.
<property>
<name>dfs.name.dir</name>
<value>${hadoop.tmp.dir}/dfs/name,/share/backup/namenode</value>
</property>

3.	 Delete any existing contents of the newly added directory.
$ rm -f /share/backup/namenode

4.	 Start the cluster.
$ start-all.sh

5.	 Verify that fsimage is being written to both the specified locations by running the 
md5sum command against the two files specified before (change the following code 
depending on your configured locations):
$ md5sum /var/hadoop/dfs/name/image/fsimage

a25432981b0ecd6b70da647e9b94304a  /var/hadoop/dfs/name/image/
fsimage

$ md5sum /share/backup/namenode/image/fsimage

a25432981b0ecd6b70da647e9b94304a  /share/backup/namenode/image/
fsimage

What just happened?
Firstly, we ensured the cluster was stopped; though changes to the core configuration files 
are not reread by a running cluster, it's a good habit to get into in case that capability is ever 
added to Hadoop.
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We then added a new property to our cluster configuration, specifying a value for the 
data.name.dir property. This property takes a list of comma-separated values and writes 
fsimage to each of these locations. Note how the hadoop.tmp.dir property discussed 
earlier is de-referenced, as would be seen when using Unix variables. This syntax allows us to 
base property values on others and inherit changes when the parent properties are updated.

Do not forget all required locations
The default value for this property is ${Hadoop.tmp.dir}/dfs/name. 
When adding an additional value, remember to explicitly add the default 
one also, as shown before. Otherwise, only the single new value will be  
used for the property.

Before starting the cluster, we ensure the new directory exists and is empty. If the directory 
doesn't exist, the NameNode will fail to start as should be expected. If, however, the 
directory was previously used to store NameNode data, Hadoop will also fail to start as it will 
identify that both directories contain different NameNode data and it does not know which 
one is correct.

Be careful here! Especially if you are experimenting with various NameNode data locations 
or swapping back and forth between nodes; you really do not want to accidentally delete the 
contents from the wrong directory.

After starting the HDFS cluster, we wait for a moment and then use MD5 cryptographic 
checksums to verify that both locations contain the identical fsimage.

Where to write the fsimage copies
The recommendation is to write fsimage to at least two locations, one of which should be 
the remote (such as a NFS) filesystem, as in the previous example. fsimage is only updated 
periodically, so the filesystem does not need high performance.

In our earlier discussion regarding the choice of hardware, we alluded to other 
considerations for the NameNode host. Because of fsimage criticality, it may be useful 
to ensure it is written to more than one disk and to perhaps invest in disks with higher 
reliability, or even to write fsimage to a RAID array. If the host fails, using the copy written 
to the remote filesystem will be the easiest option; but just in case that has also experienced 
problems, it's good to have the choice of pulling another disk from the dead host and using it 
on another to recover the data.
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Swapping to another NameNode host
We have ensured that fsimage is written to multiple locations and this is the single most 
important prerequisite for managing a swap to a different NameNode host. Now we need  
to actually do it.

This is something you really should not do on a production cluster. Absolutely not when 
trying for the first time, but even beyond that it's not a risk-free process. But do practice  
on other clusters and get an idea of what you'll do when disaster strikes.

Having things ready before disaster strikes
You don't want to be exploring this topic for the first time when you need to recover the 
production cluster. There are several things to do in advance that will make disaster recovery 
much less painful, not to mention possible:

�� Ensure the NameNode is writing the fsimage to multiple locations, as done before.

�� Decide which host will be the new NameNode location. If this is a host currently 
being used for a DataNode and TaskTracker, ensure it has the right hardware needed 
to host the NameNode and that the reduction in cluster performance due to the loss 
of these workers won't be too great.

�� Make a copy of the core-site.xml and hdfs-site.xml files, place them 
(ideally) on an NFS location, and update them to point to the new host. Any time 
you modify the current configuration files, remember to make the same changes to 
these copies.

�� Copy the slaves file from the NameNode onto either the new host or the NFS 
share. Also, make sure you keep it updated.

�� Know how you will handle a subsequent failure in the new host. How quickly can 
you likely repair or replace the original failed host? Which host will be the location 
of the NameNode (and SecondaryNameNode) in the interim?

Ready? Let's do it!

Time for action – swapping to a new NameNode host
In the following steps we keep the new configuration files on an NFS share mounted to /
share/backup and change the paths to match where you have the new files. Also use a 
different string to grep; we use a portion of the IP address we know isn't shared with any 
other host in the cluster.
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1.	 Log on to the current NameNode host and shut down the cluster.
$ stop-all.sh

2.	 Halt the host that runs the NameNode.
$ sudo poweroff

3.	 Log on to the new NameNode host and confirm the new configuration files have the 
correct NameNode location.
$ grep 110 /share/backup/*.xml

4.	 On the new host, first copy across the slaves file.
$ cp /share/backup/slaves Hadoop/conf

5.	 Now copy across the updated configuration files.
$ cp /share/backup/*site.xml Hadoop/conf

6.	 Remove any old NameNode data from the local filesystem.
$ rm -f /var/Hadoop/dfs/name/*

7.	 Copy the updated configuration files to every node in the cluster.
$ slaves.sh cp /share/backup/*site.xml Hadoop/conf

8.	 Ensure each node now has the configuration files pointing to the new NameNode.
$ slaves.sh grep 110 hadoop/conf/*site.xml

9.	 Start the cluster.
$ start-all.sh

10.	Check HDFS is healthy, from the command line.
$ Hadoop fs ls /

11.	Verify whether HDFS is accessible from the web UI.

What just happened?
First, we shut down the cluster. This is a little un-representative as most failures see the 
NameNode die in a much less friendly way, but we do not want to talk about issues of 
filesystem corruption until later in the chapter.

We then shut down the old NameNode host. Though not strictly necessary, it is a good way 
of ensuring that nothing accesses the old host and gives you an incorrect view on how well 
the migration has occurred.
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Before copying across files, we take a quick look at core-site.xml and hdfs-site.xml 
to ensure the correct values are specified for the fs.default.dir property in  
core-site.xml.

We then prepare the new host by firstly copying across the slaves configuration file and 
the cluster configuration files and then removing any old NameNode data from the local 
directory. Refer to the preceding steps about being very careful in this step.

Next, we use the slaves.sh script to get each host in the cluster to copy across the new 
configuration files. We know our new NameNode host is the only one with 110 in its IP 
address, so we grep for that in the files to ensure all are up-to-date (obviously, you will  
need to use a different pattern for your system).

At this stage, all should be well; we start the cluster and access via both the command-line 
tools and UI to confirm it is running as expected.

Don't celebrate quite yet!
Remember that even with a successful migration to a new NameNode, you aren't done quite 
yet. You decided in advance how to handle the SecondaryNameNode and which host would 
be the new designated NameNode host should the newly migrated one fail. To be ready for 
that, you will need to run through the "Be prepared" checklist mentioned before once more 
and act appropriately.

Do not forget to consider the chance of correlated failures. Investigate the 
cause of the NameNode host failure in case it is the start of a bigger problem.

What about MapReduce?
We did not mention moving the JobTracker as that is a much less painful process as  
shown in Chapter 6, When Things Break. If your NameNode and JobTracker are running 
on the same host, you will need to modify the preceding approach by also keeping a new 
copy of mapred-site.xml, which has the location of the new host in the mapred.job.
tracker property.

Have a go hero – swapping to a new NameNode host
Perform a migration of both the NameNode and JobTracker from one host to another.
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Managing HDFS
As we saw when killing and restarting nodes in Chapter 6, When Things Break, Hadoop 
automatically manages many of the availability concerns that would consume a lot of effort on 
a more traditional filesystem. There are some things, however, that we still need to be aware of.

Where to write data
Just as the NameNode can have multiple locations for storage of fsimage specified via  
the dfs.name.dir property, we explored earlier that there is a similar-appearing property 
called dfs.data.dir that allows HDFS to use multiple data locations on a host, which we 
will look at now.

This is a useful mechanism that works very differently from the NameNode property. If 
multiple directories are specified in dfs.data.dir, Hadoop will view these as a series of 
independent locations that it can use in parallel. This is useful if you have multiple physical 
disks or other storage devices mounted at distinct points on the filesystem. Hadoop will 
use these multiple devices intelligently, maximizing not only the total storage capacity but 
also by balancing reads and writes across the locations to gain maximum throughput. As 
mentioned in the Storage types section, this is the approach that maximizes these factors  
at the cost of a single disk failure causing the whole host to fail.

Using balancer
Hadoop works hard to place data blocks on HDFS in a way that maximizes both performance 
and redundancy. However, in certain situations, the cluster can become unbalanced, with a 
large discrepancy between the data held on the various nodes. The classic situation that causes 
this is when a new node is added to the cluster. By default, Hadoop will consider the new node 
as a candidate for block placement alongside all other nodes, meaning that it will remain lightly 
utilized for a significant period of time. Nodes that have been out of service or have otherwise 
suffered issues may also have collected a smaller number of blocks than their peers.

Hadoop includes a tool called the balancer, started and stopped by the start-balancer.
sh and stop-balancer.sh scripts respectively, to handle this situation.

When to rebalance
Hadoop does not have any automatic alarms that will alert you to an unbalanced filesystem. 
Instead, you need to keep an eye on the data reported by both hadoop fsck and hadoop 
fsadmin and watch for imbalances across the nodes.
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In reality, this is not something you usually need to worry about, as Hadoop is very good at 
managing block placement and you likely only need to consider running the balancer to remove 
major imbalances when adding new hardware or when returning faulty nodes to service. To 
maintain maximum cluster health, however, it is not uncommon to have the balancer run on a 
scheduled basis (for example, nightly) to keep the block balancing within a specified threshold.

MapReduce management
As we saw in the previous chapter, the MapReduce framework is generally more tolerant of 
problems and failures than HDFS. The JobTracker and TaskTrackers have no persistent data to 
manage and, consequently, the management of MapReduce is more about the handling of 
running jobs and tasks than servicing the framework itself.

Command line job management
The hadoop job command-line tool is the primary interface for this job management.  
As usual, type the following to get a usage summary:

$ hadoop job --help

The options to the command are generally self-explanatory; it allows you to start, stop, 
list, and modify running jobs in addition to retrieving some elements of job history. Instead 
of examining each individually, we will explore the use of several of these subcommands 
together in the next section.

Have a go hero – command line job management
The MapReduce UI also provides access to a subset of these capabilities. Explore the UI and 
see what you can and cannot do from the web interface.

Job priorities and scheduling
So far, we have generally run a single job against our cluster and waited for it to complete. 
This has hidden the fact that, by default, Hadoop places subsequent job submissions into a 
First In, First Out (FIFO) queue. When a job finishes, Hadoop simply starts executing the next 
job in the queue. Unless we use one of the alternative schedulers that we will discuss in later 
sections, the FIFO scheduler dedicates the full cluster to the sole currently running job.

For small clusters with a pattern of job submission that rarely sees jobs waiting in the queue, 
this is completely fine. However, if jobs are often waiting in the queue, issues can arise. In 
particular, the FIFO model takes no account of job priority or resources needed. A long-running 
but low-priority job will execute before faster high-priority jobs that were submitted later.
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To address this situation, Hadoop defines five levels of job priority: VERY_HIGH, HIGH, 
NORMAL, LOW, and VERY_LOW. A job defaults to NORMAL priority, but this can be changed 
with the hadoop job -set-priority command.

Time for action – changing job priorities and killing a job
Let's explore job priorities by changing them dynamically and watching the result of  
killing a job.

1.	 Start a relatively long-running job on the cluster.
$ hadoop jar hadoop-examples-1.0.4.jar pi 100 1000

2.	 Open another window and submit a second job.
$ hadoop jar hadoop-examples-1.0.4.jar wordcount test.txt out1

3.	 Open another window and submit a third.
$ hadoop jar hadoop-examples-1.0.4.jar wordcount test.txt out2

4.	 List the running jobs.
$ Hadoop job -list

You'll see the following lines on the screen:

3 jobs currently running

JobId  State  StartTime  UserName  Priority  SchedulingInfo

job_201201111540_0005  1  1326325810671  hadoop  NORMAL  NA

job_201201111540_0006  1  1326325938781  hadoop  NORMAL  NA

job_201201111540_0007  1  1326325961700  hadoop  NORMAL  NA

5.	 Check the status of the running job.
$ Hadoop job -status job_201201111540_0005

You'll see the following lines on the screen:

Job: job_201201111540_0005

file: hdfs://head:9000/var/hadoop/mapred/system/
job_201201111540_0005/job.xml

tracking URL: http://head:50030/jobdetails.
jsp?jobid=job_201201111540_000

map() completion: 1.0

reduce() completion: 0.32666665

Counters: 18
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6.	 Raise the priority of the last submitted job to VERY_HIGH.
$ Hadoop job -set-priority job_201201111540_0007 VERY_HIGH

7.	 Kill the currently running job.
$ Hadoop job -kill job_201201111540_0005

8.	 Watch the other jobs to see which begins processing.

What just happened?
We started a job on the cluster and then queued up another two jobs, confirming that the 
queued jobs were in the expected order by using hadoop job -list. The hadoop job 
-list all command would have listed both completed as well as the current jobs and 
hadoop job -history would have allowed us to examine the jobs and their tasks in much 
more detail. To confirm the submitted job was running, we used hadoop job -status to get 
the current map and reduce task completion status for the job, in addition to the job counters.

We then used hadoop job -set-priority to increase the priority of the job currently 
last in the queue.

After using hadoop job -kill to abort the currently running job, we confirmed the job 
with the increased priority that executed next, even though the job remaining in the queue 
was submitted beforehand.

Alternative schedulers
Manually modifying job priorities in the FIFO queue certainly does work, but it requires 
active monitoring and management of the job queue. If we think about the problem, the 
reason we are having this difficulty is the fact that Hadoop dedicates the entire cluster to 
each job being executed.

Hadoop offers two additional job schedulers that take a different approach and share the 
cluster among multiple concurrently executing jobs. There is also a plugin mechanism by 
which additional schedulers can be added. Note that this type of resource sharing is one of 
those problems that is conceptually simple but is in reality very complex and is an area of 
much academic research. The goal is to maximize resource allocation not only at a point in 
time, but also over an extended period while honoring notions of relative priority.

Capacity Scheduler
The Capacity Scheduler uses multiple job queues (to which access control can be applied) to 
which jobs are submitted, each of which is allocated a portion of the cluster resources. You 
could, for example, have a queue for large long-running jobs that is allocated 90 percent of 
the cluster and one for smaller high-priority jobs allocated the remaining 10 percent. If both 
queues have jobs submitted, the cluster resources will be allocated in this proportion.
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If, however, one queue is empty and the other has jobs to execute, the Capacity Scheduler 
will temporarily allocate the capacity of the empty queue to the busy one. Once a job is 
submitted to the empty queue, it will regain its capacity as the currently running tasks 
complete execution. This approach gives a reasonable balance between the desired  
resource allocation and preventing long periods of unused capacity.

Though disabled by default, the Capacity Scheduler supports job priorities within each 
queue. If a high priority job is submitted after a low priority one, its tasks will be scheduled  
in preference to the other jobs as capacity becomes available.

Fair Scheduler
The Fair Scheduler segments the cluster into pools into which jobs are submitted; there 
is often a correlation between the user and the pool. Though by default each pool gets an 
equal share of the cluster, this can be modified.

Within each pool, the default model is to share the pool across all jobs submitted to that 
pool. Therefore, if the cluster is split into pools for Alice and Bob, each of whom submit three 
jobs, the cluster will execute all six jobs in parallel. It is possible to place total limits on the 
number of concurrent jobs running in a pool, as too many running at once will potentially 
produce a large amount of temporary data and provide overall inefficient processing.

As with the Capacity Scheduler, the Fair Scheduler will over-allocate cluster capacity to 
other pools if one is empty, and then reclaim it as the pool receives jobs. It also supports job 
priorities within a pool to preferentially schedule tasks of high priority jobs over those with a 
lower priority.

Enabling alternative schedulers
Each of the alternative schedulers is provided as a JAR file in capacityScheduler and 
fairScheduler directories within the contrib directory in the Hadoop installation. To 
enable a scheduler, either add its JAR to the hadoop/lib directory or explicitly place it on 
the classpath. Note that each scheduler requires its own set of properties to configure its 
usage. Refer to the documentation for each for more details.

When to use alternative schedulers
The alternative schedulers are very effective, but are not really needed on small clusters  
or those with no need to ensure multiple job concurrency or execution of late-arriving  
but high-priority jobs. Each has multiple configuration parameters and requires tuning  
to get optimal cluster utilization. But for any large cluster with multiple users and varying  
job priorities, they can be essential.
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Scaling
You have data and you have a running Hadoop cluster; now you get more of the former and 
need more of the latter. We have said repeatedly that Hadoop is an easily scalable system.  
So let us add some new capacity.

Adding capacity to a local Hadoop cluster
Hopefully, at this point, you should feel pretty underwhelmed at the idea of adding another 
node to a running cluster. All through Chapter 6, When Things Break, we constantly killed 
and restarted nodes. Adding a new node is really no different; all you need to do is perform 
the following steps:

1.	 Install Hadoop on the host.

2.	 Set the environment variables shown in Chapter 2, Getting Up and Running.

3.	 Copy the configuration files into the conf directory on the installation.

4.	 Add the host's DNS name or IP address to the slaves file on the node from  
which you usually run commands such as slaves.sh or cluster start/stop scripts.

And that's it!

Have a go hero – adding a node and running balancer
Try out the process of adding a new node and afterwards examine the state of HDFS. If it 
is unbalanced, run the balancer to fix things. To help maximize the effect, ensure there is a 
reasonable amount of data on HDFS before adding the new node.

Adding capacity to an EMR job flow
If you are using Elastic MapReduce, for non-persistent clusters, the concept of scaling does 
not always apply. Since you specify the number and type of hosts required when setting up 
the job flow each time, you need only ensure that the cluster size is appropriate for the job 
to be executed.

Expanding a running job flow
However, sometimes you may have a long-running job that you want to complete more 
quickly. In such a case, you can add more nodes to the running job flow. Recall that EMR has 
three different types of node: master nodes for NameNode and JobTracker, core nodes for 
HDFS, and task nodes for MapReduce workers. In this case, you could add additional task 
nodes to help crunch the MapReduce job.
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Another scenario is where you have defined a job flow comprising a series of MapReduce 
jobs instead of just one. EMR now allows the job flow to be modified between steps in such 
a series. This has the advantage of each job being given a tailored hardware configuration 
that gives better control of balancing performance against cost.

The canonical model for EMR is for the job flow to pull its source data from S3, process that 
data on a temporary EMR Hadoop cluster, and then write results back to S3. If, however, 
you have a very large data set that requires frequent processing, the copying back and 
forth of data could become too time-consuming. Another model that can be employed in 
such a situation is to use a persistent Hadoop cluster within a job flow that has been sized 
with enough core nodes to store the needed data on HDFS. When processing is performed, 
increase capacity as shown before by assigning more task nodes to the job flow.

These tasks to resize running job flows are not currently available from the AWS 
Console and need to be performed through the API or command line tools.

Summary
This chapter covered how to build, maintain, and expand a Hadoop cluster. In particular, 
we learned where to find the default values for Hadoop configuration properties and how 
to set them programmatically on a per-job level. We learned how to choose hardware for a 
cluster and the value in understanding your likely workload before committing to purchases, 
and how Hadoop can use awareness of the physical location of hosts to optimize its block 
placement strategy through the use of rack awareness.

We then saw how the default Hadoop security model works, its weaknesses and how to 
mitigate them, how to mitigate the risks of NameNode failure we introduced in Chapter 
6, When Things Break, and how to swap to a new NameNode host if disaster strikes. We 
learned more about block replica placement, how the cluster can become unbalanced,  
and what to do if it does.

We also saw the Hadoop model for MapReduce job scheduling and learned how job 
priorities can modify the behavior, how the Capacity Scheduler and Fair Scheduler give 
a more sophisticated way of managing cluster resources across multiple concurrent job 
submissions, and how to expand a cluster with a new capacity.

This completes our exploration of core Hadoop in this book. In the remaining chapters,  
we will look at other systems and tools that build atop Hadoop to provide more sophisticated 
views on data and integration with other systems. We will start with a relational view on the 
data in HDFS through the use of Hive.
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A Relational View on Data with Hive

MapReduce is a powerful paradigm which enables complex data processing 
that can reveal valuable insights. However, it does require a different mindset 
and some training and experience on the model of breaking processing 
analytics into a series of map and reduce steps. There are several products that 
are built atop Hadoop to provide higher-level or more familiar views on the 
data held within HDFS. This chapter will introduce one of the most popular of 
these tools, Hive.

In this chapter, we will cover:

�� What Hive is and why you may want to use it

�� How to install and configure Hive

�� Using Hive to perform SQL-like analysis of the UFO data set

�� How Hive can approximate common features of a relational database such  
as joins and views

�� How to efficiently use Hive across very large data sets

�� How Hive allows the incorporation of user-defined functions into its queries

�� How Hive complements another common tool, Pig

Overview of Hive
Hive is a data warehouse that uses MapReduce to analyze data stored on HDFS. In particular, 
it provides a query language called HiveQL that closely resembles the common Structured 
Query Language (SQL) standard.
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Why use Hive?
In Chapter 4, Developing MapReduce Programs, we introduced Hadoop Streaming and 
explained that one large benefit of Streaming is how it allows faster turn-around in the 
development of MapReduce jobs. Hive takes this a step further. Instead of providing a 
way of more quickly developing map and reduce tasks, it offers a query language based 
on the industry standard SQL. Hive takes these HiveQL statements and immediately and 
automatically translates the queries into one or more MapReduce jobs. It then executes  
the overall MapReduce program and returns the results to the user. Whereas Hadoop 
Streaming reduces the required code/compile/submit cycle, Hive removes it entirely  
and instead only requires the composition of HiveQL statements.

This interface to Hadoop not only accelerates the time required to produce results from data 
analysis, it significantly broadens who can use Hadoop and MapReduce. Instead of requiring 
software development skills, anyone with a familiarity with SQL can use Hive.

The combination of these attributes is that Hive is often used as a tool for business and data 
analysts to perform ad hoc queries on the data stored on HDFS. Direct use of MapReduce 
requires map and reduce tasks to be written before the job can be executed which means 
a necessary delay from the idea of a possible query to its execution. With Hive, the data 
analyst can work on refining HiveQL queries without the ongoing involvement of a software 
developer. There are of course operational and practical limitations (a badly written query 
will be inefficient regardless of technology) but the broad principle is compelling.

Thanks, Facebook!
Just as we earlier thanked Google, Yahoo!, and Doug Cutting for their contributions to Hadoop 
and the technologies that inspired it, it is to Facebook that we must now direct thanks.

Hive was developed by the Facebook Data team and, after being used internally, it was 
contributed to the Apache Software Foundation and made freely available as open source 
software. Its homepage is http://hive.apache.org.

Setting up Hive
In this section, we will walk through the act of downloading, installing, and configuring Hive.

Prerequisites
Unlike Hadoop, there are no Hive masters, slaves, or nodes. Hive runs as a client application 
that processes HiveQL queries, converts them into MapReduce jobs, and submits these to a 
Hadoop cluster.
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Although there is a mode suitable for small jobs and development usage, the usual situation 
is that Hive will require an existing functioning Hadoop cluster.

Just as other Hadoop clients don't need to be executed on the actual cluster nodes, Hive  
can be executed on any host where the following are true:

�� Hadoop is installed on the host (even if no processes are running)

�� The HADOOP_HOME environment variable is set and points to the location of the 
Hadoop installation

�� The ${HADOOP_HOME}/bin directory is added to the system or user path

Getting Hive
You should download the latest stable Hive version from http://hive.apache.org/
releases.html.

The Hive getting started guide at http://cwiki.apache.org/confluence/display/
Hive/GettingStarted will give recommendations on version compatibility, but as a 
general principle, you should expect the most recent stable versions of Hive, Hadoop, and 
Java to work together.

Time for action – installing Hive
Let's now set up Hive so we can start using it in action.

1.	 Download the latest stable version of Hive and move it to the location to which you 
wish to have it installed:
$ mv hive-0.8.1.tar.gz /usr/local

2.	 Uncompress the package:
$ tar –xzf hive-0.8.1.tar.gz

3.	 Set the HIVE_HOME variable to the installation directory:
$ export HIVE_HOME=/usr/local/hive

4.	 Add the Hive home directory to the path variable:
$ export PATH=${HIVE_HOME}/bin:${PATH}

5.	 Create directories required by Hive on HDFS:
$ hadoop fs -mkdir /tmp

$ hadoop fs -mkdir /user/hive/warehouse

http://hive.apache.org/releases.html
http://hive.apache.org/releases.html
http://cwiki.apache.org/confluence/display/Hive/GettingStarted
http://cwiki.apache.org/confluence/display/Hive/GettingStarted
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6.	 Make both of these directories group writeable:
$ hadoop fs -chmod g+w /tmp

$ hadoop fs -chmod g+w /user/hive/warehouse

7.	 Try to start Hive:
$ hive

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203031500_480385673.txt

hive>

8.	 Exit the Hive interactive shell:

$ hive> quit;

What just happened?
After downloading the latest stable Hive release, we copied it to the desired location  
and uncompressed the archive file. This created a directory, hive-<version>.

Similarly, as we previously defined HADOOP_HOME and added the bin directory within  
the installation to the path variable, we then did something similar with HIVE_HOME  
and its bin directory.

Remember that to avoid having to set these variables every time you log in, 
add them to your shell login script or to a separate configuration script that 
you source when you want to use Hive.

We then created two directories on HDFS that Hive requires and changed their attributes 
to make them group writeable. The /tmp directory is where Hive will, by default, write 
transient data created during query execution and will also place output data in this  
location. The /user/hive/warehouse directory is where Hive will store the data  
that is written into its tables.

After all this setup, we run the hive command and a successful installation will give output 
similar to the one mentioned above. Running the hive command with no arguments enters 
an interactive shell; the hive> prompt is analogous to the sql> or mysql> prompts familiar 
from relational database interactive tools.
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We then exit the interactive shell by typing quit;. Note the trailing semicolon ;. HiveQL is, 
as mentioned, very similar to SQL and follows the convention that all commands must be 
terminated by a semicolon. Pressing Enter without a semicolon will allow commands to  
be continued on subsequent lines.

Using Hive
With our Hive installation, we will now import and analyze the UFO data set introduced in 
Chapter 4, Developing MapReduce Programs.

When importing any new data into Hive, there is generally a three-stage process:

1.	 Create the specification of the table into which the data is to be imported.

2.	 Import the data into the created table.

3.	 Execute HiveQL queries against the table.

This process should look very familiar to those with experience with relational databases. 
Hive gives a structured query view of our data and to enable that, we must first define the 
specification of the table's columns and import the data into the table before we can execute 
any queries.

We assume a general level of familiarity with SQL and will be focusing 
more on how to get things done with Hive than in explaining particular 
SQL constructs in detail. A SQL reference may be handy for those with little 
familiarity with the language, though we will make sure you know what 
each statement does, even if the details require deeper SQL knowledge.

Time for action – creating a table for the UFO data
Perform the following steps to create a table for the UFO data:

1.	 Start the Hive interactive shell:
$ hive

2.	 Create a table for the UFO data set, splitting the statement across multiple lines for 
easy readability:
hive> CREATE TABLE ufodata(sighted STRING, reported STRING, 
sighting_location STRING,    > shape STRING, duration STRING, 

description STRING COMMENT 'Free text description')

COMMENT 'The UFO data set.' ;
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You should see the following lines once you are done:

OK

Time taken: 0.238 seconds

3.	 List all existing tables:
hive> show tables;

You will receive the following output:

OK

ufodata

Time taken: 0.156 seconds

4.	 Show tables matching a regular expression:
hive> show tables '.*data';

You will receive the following output:

OK

ufodata

Time taken: 0.065 seconds

5.	 Validate the table specification:
hive> describe ufodata;

You will receive the following output:

OK

sighted  string  

reported  string  

sighting_location  string  

shape  string  

duration  string  

description  string  Free text description

Time taken: 0.086 seconds

6.	 Display a more detailed description of the table:

hive> describe extended ufodata;

You will receive the following output:

OK
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sighted  string  

reported  string  

…

Detailed Table Information  Table(tableName:ufodata, 
dbName:default, owner:hadoop, createTime:1330818664, 
lastAccessTime:0, retention:0, 

…

…location:hdfs://head:9000/user/hive/warehouse/
ufodata, inputFormat:org.apache.hadoop.mapred.
TextInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat, compressed:false, numBuckets:-1, 

What just happened?
After starting the interactive Hive interpreter, we used the CREATE TABLE command to 
define the structure of the UFO data table. As with standard SQL, this requires that each 
column in the table has a name and datatype. HiveQL also offers optional comments on  
each column and on the overall table, as shown previously where we add one column  
and one table comment.

For the UFO data, we use STRING as the data type; HiveQL, as with SQL, supports a variety 
of datatypes:

�� Boolean types: BOOLEAN
�� Integer types: TINYINT, INT, BIGINT
�� Floating point types: FLOAT, DOUBLE
�� Textual types: STRING

After creating the table, we use the SHOW TABLES statement to verify that the table has 
been created. This command lists all tables and in this case, our new UFO table is the only 
one in the system.

We then use a variant on SHOW TABLES that takes an optional Java regular expression to 
match against the table name. In this case, the output is identical to the previous command, 
but in systems with a large number of tables—especially when you do not know the exact 
name—this variant can be very useful.

We have seen the table exists but we have not validated whether 
it was created properly. We next do this by using the DESCRIBE 
TABLE command to display the specification of the named table. 
We see that all is as specified (though note the table comment is 
not shown by this command) and then use the DESCRIBE TABLE 
EXTENDED variant to get much more information about the table.
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We have omitted much of this final output though a few points of interest are present.  
Note the input format is specified as TextInputFormat; by default, Hive will assume  
any HDFS files inserted into a table are stored as text files.

We also see that the table data will be stored in a directory under the /user/hive/
warehouse HDFS directory we created earlier.

A note on case sensitivity:
HiveQL, as with SQL, is not case sensitive in terms of keywords, columns, or 
table names. By convention, SQL statements use uppercase for SQL language 
keywords and we will generally follow this when using HiveQL within files, as 
shown later. However, when typing interactive commands, we will frequently 
take the line of least resistance and use lowercase.

Time for action – inserting the UFO data
Now that we have created a table, let us load the UFO data into it.

1.	 Copy the UFO data file onto HDFS:
$ hadoop fs -put ufo.tsv /tmp/ufo.tsv

2.	 Confirm that the file was copied:
$ hadoop fs -ls /tmp

You will receive the following response:

Found 2 items

drwxrwxr-x   - hadoop supergroup          0 … 14:52 /tmp/hive-
hadoop

-rw-r--r--   3 hadoop supergroup   75342464 2012-03-03 16:01 /tmp/
ufo.tsv

3.	 Enter the Hive interactive shell:
$ hive

4.	 Load the data from the previously copied file into the ufodata table:
hive> LOAD DATA INPATH '/tmp/ufo.tsv' OVERWRITE INTO TABLE 
ufodata;

You will receive the following response:

Loading data to table default.ufodata

Deleted hdfs://head:9000/user/hive/warehouse/ufodata
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OK

Time taken: 5.494 seconds

5.	 Exit the Hive shell:
hive> quit;

6.	 Check the location from which we copied the data file:
$ hadoop fs -ls /tmp

You will receive the following response:

Found 1 items

drwxrwxr-x   - hadoop supergroup          0 … 16:10 /tmp/hive-
hadoop

What just happened?
We first copied onto HDFS the tab-separated file of UFO sightings used previously in Chapter 
4, Developing MapReduce Programs. After validating the file's presence on HDFS, we started 
the Hive interactive shell and used the LOAD DATA command to load the file into the 
ufodata table.

Because we are using a file already on HDFS, the path was specified by INPATH alone.  
We could have loaded directly from a file on the local filesystem (obviating the need  
for the prior explicit HDFS copy) by using LOCAL INPATH.

We specified the OVERWRITE statement which will delete any existing data in the table 
before loading the new data. This obviously should be used with care, as can be seen  
from the output of the command, the directory holding the table data is removed by  
use of OVERWRITE.

Note the command took only a little over five seconds to execute, significantly longer  
than it would have taken to copy the UFO data file onto HDFS.

Though we specified an explicit file in this example, it is possible to load multiple 
files with a single statement by specifying a directory as the INPATH location; in 
such a case, all files within the directory will be loaded into the table.

After exiting the Hive shell, we look again at the directory into which we copied the data file 
and find it is no longer there. If a LOAD statement is given a path to data on HDFS, it will not 
simply copy this into /user/hive/datawarehouse, but will move it there instead. If you 
want to analyze data on HDFS that is used by other applications, then either create a copy or 
use the EXTERNAL mechanism that will be described later.
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Validating the data
Now that we have loaded the data into our table, it is good practice to do some quick 
validating queries to confirm all is as expected. Sometimes our initial table definition  
turns out to be incorrect.

Time for action – validating the table
The easiest way to do some initial validation is to perform some summary queries to validate 
the import. This is similar to the types of activities for which we used Hadoop Streaming in 
Chapter 4, Developing MapReduce Programs.

1.	 Instead of using the Hive shell, pass the following HiveQL to the hive command-line 
tool to count the number of entries in the table:
$ hive -e "select count(*) from ufodata;"

You will receive the following response:

Total MapReduce jobs = 1

Launching Job 1 out of 1

…

Hadoop job information for Stage-1: number of mappers: 1; number 
of reducers: 1

2012-03-03 16:15:15,510 Stage-1 map = 0%,  reduce = 0%

2012-03-03 16:15:21,552 Stage-1 map = 100%,  reduce = 0%

2012-03-03 16:15:30,622 Stage-1 map = 100%,  reduce = 100%

Ended Job = job_201202281524_0006

MapReduce Jobs Launched: 

Job 0: Map: 1  Reduce: 1   HDFS Read: 75416209 HDFS Write: 6 
SUCESS

Total MapReduce CPU Time Spent: 0 msec

OK

61393

Time taken: 28.218 seconds

2.	 Display a sample of five values for the sighted column:

$ hive -e  "select sighted from ufodata limit 5;"

You will receive the following response:

Total MapReduce jobs = 1

Launching Job 1 out of 1
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…

OK

19951009  19951009   Iowa City, IA      Man repts. witnessing 
&quot;flash, followed by a classic UFO, w/ a tailfin at 
back.&quot; Red color on top half of tailfin. Became triangular.

19951010  19951011   Milwaukee, WI    2 min.  Man  on Hwy 43 SW 
of Milwaukee sees large, bright blue light streak by his car, 
descend, turn, cross road ahead, strobe. Bizarre!

19950101  19950103   Shelton, WA      Telephoned Report:CA 
woman visiting daughter witness discs and triangular ships over 
Squaxin Island in Puget Sound. Dramatic.  Written report, with 
illustrations, submitted to NUFORC.

19950510  19950510   Columbia, MO    2 min.  Man repts. son&apos;s 
bizarre sighting of small humanoid creature in back yard.  Reptd. 
in Acteon Journal, St. Louis UFO newsletter.

19950611  19950614   Seattle, WA      Anonymous caller repts. 
sighting 4 ufo&apos;s in NNE sky, 45 deg. above horizon.  (No 
other facts reptd.  No return tel. #.)

Time taken: 11.693 seconds

What just happened?
In this example, we use the hive -e command to directly pass HiveQL to the Hive tool 
instead of using the interactive shell. The interactive shell is useful when performing a series 
of Hive operations. For simple statements, it is often more convenient to use this approach 
and pass the query string directly to the command-line tool. This also shows that Hive can  
be called from scripts like any other Unix tool.

When using hive –e, it is not necessary to terminate the HiveQL string 
with a semicolon, but if you are like me, the habit is hard to break. If 
you want multiple commands in a single string, they must obviously be 
separated by semicolons.

The result of the first query is 61393, the same number of records we saw when analyzing 
the UFO data set previously with direct MapReduce. This tells us the entire data set was 
indeed loaded into the table.

We then execute a second query to select five values of the first column in the table, which 
should return a list of five dates. However, the output instead includes the entire record 
which has been loaded into the first column.

The issue is that though we relied on Hive loading our data file as a text file, we didn't take 
into account the separator between columns. Our file is tab separated, but Hive, by default, 
expects its input files to have fields separated by the ASCII code 00 (control-A). 
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Time for action – redefining the table with the correct column 
separator

Let's fix our table specification as follows:

1.	 Create the following file as commands.hql:
DROP TABLE ufodata ;
CREATE TABLE ufodata(sighted string, reported string, sighting_
location string,
shape string, duration string, description string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t' ;
LOAD DATA INPATH '/tmp/ufo.tsv' OVERWRITE INTO TABLE ufodata ;

2.	 Copy the data file onto HDFS:
$ hadoop fs -put ufo.tsv /tmp/ufo.tsv

3.	 Execute the HiveQL script:
$ hive -f commands.hql 

You will receive the following response:

OK

Time taken: 5.821 seconds

OK

Time taken: 0.248 seconds

Loading data to table default.ufodata

Deleted hdfs://head:9000/user/hive/warehouse/ufodata

OK

Time taken: 0.285 seconds

4.	 Validate the number of rows in the table:
$ hive -e "select count(*) from ufodata;"

You will receive the following response:

OK

61393

Time taken: 28.077 seconds
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5.	 Validate the contents of the reported column:

$ hive -e "select reported from ufodata limit 5"

You will receive the following response:

OK

19951009

19951011

19950103

19950510

19950614

Time taken: 14.852 seconds

What just happened?
We introduced a third way to invoke HiveQL commands in this example. In addition to  
using the interactive shell or passing query strings to the Hive tool, we can have Hive  
read and execute the contents of a file containing a series of HiveQL statements.

We first created such a file that deletes the old table, creates a new one, and loads the  
data file into it.

The main differences with the table specification are the ROW FORMAT and FIELDS 
TERMINATED BY statements. We need both these commands as the first tells Hive  
that the row contains multiple delimited fields, while the second specifies the actual 
separator. As can be seen here, we can use both explicit ASCII codes as well as common 
tokens such as \t for tab.

Be careful with the separator specification as it must be precise and is case 
sensitive. Do not waste a few hours by accidentally writing \T instead of 
\t as I did recently.

Before running the script, we copy the data file onto HDFS again—the previous copy was 
removed by the DELETE statement—and then use hive -f to execute the HiveQL file.

As before, we then execute two simple SELECT statements to first count the rows in the 
table and then extract the specific values from a named column for a small number of rows.

The overall row count is, as should be expected, the same as before, but the second 
statement now produces what looks like correct data, showing that the rows are now 
correctly being split into their constituent fields.
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Hive tables – real or not?
If you look closely at the time taken by the various commands in the preceding example, 
you'll see a pattern which may at first seem strange. Loading data into a table takes about as 
long as creating the table specification, but even the simple count of all row statements takes 
significantly longer. The output also shows that table creation and the loading of data do not 
actually cause MapReduce jobs to be executed, which explains the very short execution times.

When loading data into a Hive table, the process is different from what may be expected with 
a traditional relational database. Although Hive copies the data file into its working directory, it 
does not actually process the input data into rows at that point. What it does instead is create 
metadata around the data which is then used by subsequent HiveQL queries.

Both the CREATE TABLE and LOAD DATA statements, therefore, do not truly create 
concrete table data as such, instead they produce the metadata that will be used when  
Hive is generating MapReduce jobs to access the data conceptually stored in the table.

Time for action – creating a table from an existing file
So far we have loaded data into Hive directly from files over which Hive effectively takes 
control. It is also possible, however, to create tables that model data held in files external 
to Hive. This can be useful when we want the ability to perform Hive processing over data 
written and managed by external applications or otherwise required to be held in directories 
outside the Hive warehouse directory. Such files are not moved into the Hive warehouse 
directory or deleted when the table is dropped.

1.	 Save the following to a file called states.hql:
CREATE EXTERNAL TABLE states(abbreviation string, full_name 
string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LOCATION '/tmp/states' ;

2.	 Copy the data file onto HDFS and confirm its presence afterwards:
$ hadoop fs -put states.txt /tmp/states/states.txt

$ hadoop fs -ls /tmp/states

You will receive the following response:

Found 1 items

-rw-r--r--   3 hadoop supergroup        654 2012-03-03 16:54 /tmp/
states/states.txt
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3.	 Execute the HiveQL script:
$ hive -f states.hql

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203031655_1132553792.txt

OK

Time taken: 3.954 seconds

OK

Time taken: 0.594 seconds

4.	 Check the source data file:
$ hadoop fs -ls /tmp/states

You will receive the following response:

Found 1 items

-rw-r--r--   3 hadoop supergroup        654 … /tmp/states/states.
txt

5.	 Execute a sample query against the table:
$ hive -e "select full_name from states where abbreviation like 
'CA'"

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203031655_410945775.txt

Total MapReduce jobs = 1

...

OK

California

Time taken: 15.75 seconds
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What just happened?
The HiveQL statement to create an external table only differs slightly from the forms of 
CREATE TABLE we used previously. The EXTERNAL keyword specifies that the table exists 
in resources that Hive does not control and the LOCATION clause specifies where the source 
file or directory are to be found.

After creating the HiveQL script, we copied the source file onto HDFS. For this table, we used 
the data file from Chapter 4, Developing MapReduce Programs, which maps U.S. states to 
their common two-letter abbreviation.

After confirming the file was in the expected location on HDFS, we executed the query to 
create the table and checked the source file again. Unlike previous table creations that 
moved the source file into the /user/hive/warehouse directory, the states.txt  
file is still in the HDFS location into which it was copied.

Finally, we executed a query against the table to confirm it was populated with the source 
data and the expected result confirms this. This highlights an additional difference with this 
form of CREATE TABLE; for our previous non-external tables, the table creation statement 
does not ingest any data into the table, a subsequent LOAD DATA or (as we'll see later) 
INSERT statement performs the actual table population. With table definitions that include 
the LOCATION specification, we can create the table and ingest data in a single statement.

We now have two tables in Hive; the larger table with UFO sighting data and a smaller one 
mapping U.S. state abbreviations to their full names. Wouldn't it be a useful combination to 
use data from the second table to enrich the location column in the former?

Time for action – performing a join
Joins are a very frequently used tool in SQL, though sometimes appear a little intimidating 
to those new to the language. Essentially a join allows rows in multiple tables to be logically 
combined together based on a conditional statement. Hive has rich support for joins which 
we will now examine.

1.	 Create the following as join.hql:
SELECT t1.sighted, t2.full_name
FROM ufodata t1 JOIN states t2
ON (LOWER(t2.abbreviation) = LOWER(SUBSTR( t1.sighting_location, 
(LENGTH(t1.sighting_location)-1)))) 
LIMIT 5 ;

2.	 Execute the query:

$ hive -f join.hql
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You will receive the following response:

OK

20060930  Alaska

20051018  Alaska

20050707  Alaska

20100112  Alaska

20100625  Alaska

Time taken: 33.255 seconds

What just happened?
The actual join query is relatively straightforward; we want to extract the sighted date and 
location for a series of records but instead of the raw location field, we wish to map this into 
the full state name. The HiveQL file we created performs such a query. The join itself is specified 
by the standard JOIN keyword and the matching condition is contained in the ON clause.

Things are complicated by a restriction of Hive in that it only supports equijoins, that is, 
those where the ON clause contains an equality check. It is not possible to specify a join 
condition using operators such as >, ?, <, or as we would have preferred to use here, the 
LIKE keyword.

Instead, therefore, we have an opportunity to introduce several of Hive's built-in functions,  
in particular, those to convert a string to lowercase (LOWER), to extract a substring from a 
string (SUBSTR) and to return the number of characters in a string (LENGTH).

We know that most location entries are of the form "city, state_abbreviation." So we use 
SUBSTR to extract the third and second from last characters in the string, using length to 
calculate the indices. We convert both the state abbreviation and extracted string to lower 
case via LOWER because we cannot assume that all entries in the sighting table will correctly 
use uniform capitalization.

After executing the script, we get the expected sample lines of output that indeed include 
the sighting date and full state name instead of the abbreviation.

Note the use of the LIMIT clause that simply constrains how many output rows will be 
returned from the query. This is also an indication that HiveQL is most similar to SQL  
dialects such as those found in open source databases such as MySQL.

This example shows an inner join; Hive also supports left and right outer joins as well as left 
semi joins. There are a number of subtleties around the use of joins in Hive (such as the 
aforementioned equijoin restriction) and you should really read through the documentation 
on the Hive homepage if you are likely to use joins, especially when using very large tables.
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This is not a criticism of Hive alone; joins are incredibly powerful tools but it 
is probably fair to say that badly written joins or those created in ignorance 
of critical constraints have brought more relational databases to a grinding 
halt than any other type of SQL query.

Have a go hero – improve the join to use regular expressions
As well as the string functions we used previously, Hive also has functions such as RLIKE and 
REGEXP_EXTRACT that provide direct support for Java-like regular expression manipulation. 
Rewrite the preceding join specification using regular expressions to make a more accurate 
and elegant join statement.

Hive and SQL views
Another powerful SQL feature supported by Hive is views. These are useful when instead 
of a static table the contents of a logical table are specified by a SELECT statement and 
subsequent queries can then be executed against this dynamic view (hence the name)  
of the underlying data.

Time for action – using views
We can use views to hide the underlying query complexity such as the previous join example. 
Let us now create a view to do just that.

1.	 Create the following as view.hql:
CREATE VIEW IF NOT EXISTS usa_sightings (sighted, reported,  
shape, state)
AS select t1.sighted, t1.reported, t1.shape, t2.full_name
FROM ufodata t1 JOIN states t2
ON (LOWER(t2.abbreviation) = LOWER(substr( t1.sighting_location, 
(LENGTH(t1.sighting_location)-1)))) ;

2.	 Execute the script:
$ hive -f view.hql

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203040557_1017700649.txt

OK

Time taken: 5.135 seconds
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3.	 Execute the script again:
$ hive -f view.hql

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203040557_851275946.txt

OK

Time taken: 4.828 seconds

4.	 Execute a test query against the view:
$ hive -e "select count(state) from usa_sightings where state = 
'California'"

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203040558_1729315866.txt

Total MapReduce jobs = 2

Launching Job 1 out of 2

…

2012-03-04 05:58:12,991 Stage-1 map = 0%,  reduce = 0%

2012-03-04 05:58:16,021 Stage-1 map = 50%,  reduce = 0%

2012-03-04 05:58:18,046 Stage-1 map = 100%,  reduce = 0%

2012-03-04 05:58:24,092 Stage-1 map = 100%,  reduce = 100%

Ended Job = job_201203040432_0027

Launching Job 2 out of 2

…

2012-03-04 05:58:33,650 Stage-2 map = 0%,  reduce = 0%

2012-03-04 05:58:36,673 Stage-2 map = 100%,  reduce = 0%

2012-03-04 05:58:45,730 Stage-2 map = 100%,  reduce = 100%

Ended Job = job_201203040432_0028

MapReduce Jobs Launched: 

Job 0: Map: 2  Reduce: 1   HDFS Read: 75416863 HDFS Write: 116 
SUCESS

Job 1: Map: 1  Reduce: 1   HDFS Read: 304 HDFS Write: 5 SUCESS

Total MapReduce CPU Time Spent: 0 msec.
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OK

7599

Time taken: 47.03 seconds

5.	 Delete the view:

$ hive -e "drop view usa_sightings"

You will receive the following output on your screen:

OK

Time taken: 5.298 seconds

What just happened?
We firstly created the view using the CREATE VIEW statement. This is similar to CREATE 
TABLE but has two main differences:

�� The column definitions include only the name as the type, which will be determined 
from the underlying query

�� The AS clause specifies the SELECT statement that will be used to generate the view

We use the previous join statement to generate the view, so in effect we are creating a table 
that has the location field normalized to the full state name without directly requiring the 
user to deal with how that normalization is performed.

The optional IF NOT EXISTS clause (which can also be used with CREATE TABLE) means 
that Hive will ignore duplicate attempts to create the view. Without this clause, repeated 
attempts to create the view will generate errors, which isn't always the desired behavior.

We then execute this script twice to both create the view and to demonstrate that the 
inclusion of the IF NOT EXISTS clause is preventing errors as we intended.

With the view created, we then execute a query against it, in this case, to simply count how 
many of the sightings took place in California. All our previous Hive statements that generate 
MapReduce jobs have only produced a single one; this query against our view requires a 
pair of chained MapReduce jobs. Looking at the query and the view specification, this isn't 
necessarily surprising; it's not difficult to imagine how the view would be realized by the 
first MapReduce job and its output fed to the subsequent counting query performed as the 
second job. As a consequence, you will also see this two-stage job take much longer than any 
of our previous queries.



Chapter 8

[ 257 ]

Hive is actually smarter than this. If the outer query can be folded into the view creation, 
then Hive will generate and execute only one MapReduce job. Given the time taken to hand-
develop a series of co-operating MapReduce jobs this is a great example of the benefits 
Hive can offer. Though a hand-written MapReduce job (or series of jobs) is likely to be much 
more efficient, Hive is a great tool for determining which jobs are useful in the first place. It 
is better to run a slow Hive query to determine an idea isn't as useful as hoped instead of 
spending a day developing a MapReduce job to come to the same conclusion.

We have mentioned that views can hide underlying complexity; this does often mean that 
executing views is intrinsically slow. For large-scale production workloads, you will want  
to optimize the SQL and possibly remove the view entirely.

After running the query, we delete the view through the DROP VIEW statement, which 
demonstrates again the similarity between how HiveQL (and SQL) handle tables and views.

Handling dirty data in Hive
The observant among you may notice that the number of California sightings reported by 
this query is different from the number we generated in Chapter 4, Developing MapReduce 
Programs. Why?

Recall that before running our Hadoop Streaming or Java MapReduce jobs in Chapter 4, 
Developing MapReduce Programs, we had a mechanism to ignore input rows that were 
malformed. Then while processing the data, we used more precise regular expressions to 
extract the two-letter state abbreviation from the location field. However, in Hive, we did  
no such pre-processing and relied on quite crude mechanisms to extract the abbreviation.

On the latter, we could use some of Hive's previously mentioned functions that support 
regular expressions but for the former, we'd at best be forced to add complex validation 
WHERE clauses to many of our queries.

A frequent pattern is to instead preprocess data before it is imported into Hive, so for 
example, in this case, we could run a MapReduce job to remove all malformed records  
in the input file and another to do the normalization of the location field in advance.

Have a go hero – do it!
Write MapReduce jobs (it could be one or two) to do this pre-processing of the input data 
and generate a cleaned-up file more suited for direct importation into Hive. Then write a 
script to execute the jobs, create a Hive table, and import the new file into the table.  
This will also show how easily and powerfully scriptable Hadoop and Hive can be together.
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Time for action – exporting query output
We have previously either loaded large quantities of data into Hive or extracted very small 
quantities as query results. We can also export large result sets; let us look at an example.

1.	 Recreate the previously used view:
$ hive -f view.hql

2.	 Create the following file as export.hql:
INSERT OVERWRITE DIRECTORY '/tmp/out'
SELECT reported, shape, state
FROM usa_sightings
WHERE state = 'California' ;

3.	 Execute the script:
$ hive -f export.hql

You will receive the following response:

2012-03-04 06:20:44,571 Stage-1 map = 100%,  reduce = 100%

Ended Job = job_201203040432_0029

Moving data to: /tmp/out

7599 Rows loaded to /tmp/out

MapReduce Jobs Launched: 

Job 0: Map: 2  Reduce: 1   HDFS Read: 75416863 HDFS Write: 210901 
SUCESS

Total MapReduce CPU Time Spent: 0 msec

OK

Time taken: 46.669 seconds

4.	 Look in the specified output directory:
$ hadoop fs -ls /tmp/out

You will receive the following response:

Found 1 items

-rw-r--r--   3 hadoop supergroup     210901 … /tmp/out/000000_1

5.	 Examine the output file:

$ hadoop fs -cat /tmp/out/000000_1 | head
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You will receive the following output on your screen:

20021014_ light_California

20050224_ other_California

20021001_ egg_California

20030527_ sphere_California

20050813_ light_California

20040701_ other_California

20031007_ light_California

What just happened?
After reusing the previous view, we created our HiveQL script using the INSERT OVERWRITE 
DIRECTORY command. This, as the name suggests, places the results of the subsequent 
statement into the specified location. The OVERWRITE modifier is again optional and simply 
determines if any existing content in the location is to be firstly removed or not. The INSERT 
command is followed by a SELECT statement which produces the data to be written to the 
output location. In this example, we use a query on our previously created view which you 
will recall is built atop a join, demonstrating how the query here can be arbitrarily complex.

There is an additional optional LOCAL modifier for occasions when the output data is to be 
written to the local filesystem of the host running the Hive command instead of HDFS.

When we run the script, the MapReduce output is mostly as we have come to expect but 
with the addition of a line stating how many rows have been exported to the specified 
output location.

After running the script, we check the output directory and see if the result file is there  
and when we look at it, the contents are as we would expect.

Just as Hive's default separator for text files in inputs is ASCII code 
0001 ('\a'), it also uses this as the default separator for output files, 
as shown in the preceding example.

The INSERT command can also be used to populate one table with the results of a query  
on others and we will look at that next. First, we need to explain a concept we will use at  
the same time.
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Partitioning the table
We mentioned earlier that badly written joins have a long and disreputable history of 
causing relational databases to spend huge amounts of time grinding through unnecessary 
work. A similar sad tale can be told of queries that perform full table scans (visiting every 
row in the table) instead of using indices that allow direct access to rows of interest.

For data stored on HDFS and mapped into a Hive table, the default situation almost demands 
full table scans. With no way of segmenting data into a more organized structure that allows 
processing to apply only to the data subset of interest, Hive is forced to process the entire 
data set. For our UFO file of approximately 70 MB, this really is not a problem as we see the 
file processed in tens of seconds. However, what if it was a thousand times larger?

As with traditional relational databases, Hive allows tables to be partitioned based on the 
values of virtual columns and for these values to then be used in query predicates later.

In particular, when a table is created, it can have one or more partition columns and when 
loading data into the table, the specified values for these columns will determine the 
partition into which the data is written.

The most common partitioning strategy for tables that see lots of data ingested on a daily basis 
is for the partition column to be the date. Future queries can then be constrained to process 
only that data contained within a particular partition. Under the covers, Hive stores each 
partition in its own directory and files, which is how it can then apply MapReduce jobs only on 
the data of interest. Through the use of multiple partition columns, it is possible to create a rich 
hierarchical structure and for large tables with queries that require only small subsets of data it 
is worthwhile spending some time deciding on the optimal partitioning strategy.

For our UFO data set, we will use the year of the sighting as the partition value but we have 
to use a few less common features to make it happen. Hence, after this introduction, let us 
now make some partitions!

Time for action – making a partitioned UFO sighting table
We will create a new table for the UFO data to demonstrate the usefulness of partitioning.

1.	 Save the following query as createpartition.hql:
CREATE TABLE partufo(sighted string, reported string, sighting_
location string,shape string, duration string, description string) 
PARTITIONED BY (year string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t' ;
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2.	 Save the following query as insertpartition.hql:
SET hive.exec.dynamic.partition=true ;
SET hive.exec.dynamic.partition.mode=nonstrict ;

INSERT OVERWRITE TABLE partufo partition (year)
SELECT sighted, reported, sighting_location, shape, duration, 
description,
SUBSTR(TRIM(sighted), 1,4)  FROM ufodata ;

3.	 Create the partitioned table:
$ hive -f createpartition.hql 

You will receive the following response:

Logging initialized using configuration in jar:file:/opt/hive-
0.8.1/lib/hive-common-0.8.1.jar!/hive-log4j.properties

Hive history file=/tmp/hadoop/hive_job_log_
hadoop_201203101838_17331656.txt

OK

Time taken: 4.754 seconds

4.	 Examine the created table:
OK

sighted  string  

reported  string  

sighting_location  string  

shape  string  

duration  string  

description  string  

year  string  

Time taken: 4.704 seconds

5.	 Populate the table:
$ hive -f insertpartition.hql 

You will see the following lines on the screen:

Total MapReduce jobs = 2

…

…
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Ended Job = job_201203040432_0041

Ended Job = 994255701, job is filtered out (removed at runtime).

Moving data to: hdfs://head:9000/tmp/hive-hadoop/hive_2012-03-
10_18-38-36_380_1188564613139061024/-ext-10000

Loading data to table default.partufo partition (year=null)

	 Loading partition {year=1977}

	 Loading partition {year=1880}

	 Loading partition {year=1975}

	 Loading partition {year=2007}

	 Loading partition {year=1957}

…

Table default.partufo stats: [num_partitions: 100, num_files: 100, 
num_rows: 0, total_size: 74751215, raw_data_size: 0]

61393 Rows loaded to partufo

…

OK

Time taken: 46.285 seconds

6.	 Execute a count command against a partition:
$ hive –e "select count(*)from partufo where year  = '1989'"

You will receive the following response:

OK

249

Time taken: 26.56 seconds

7.	 Execute a similar query on the non-partitioned table:
$ hive –e "select count(*) from ufodata where sighted like 
'1989%'"

You will receive the following response:

OK

249

Time taken: 28.61 seconds

8.	 List the contents of the Hive directory housing the partitioned table:

$ Hadoop fs –ls /user/hive/warehouse/partufo
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You will receive the following response:

Found 100 items

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=0000

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1400

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1762

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1790

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1860

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1864

drwxr-xr-x   - hadoop supergroup          0 2012-03-10 18:38 /
user/hive/warehouse/partufo/year=1865

What just happened?
We created two HiveQL scripts for this example. The first of these creates the new 
partitioned table. As we can see, it looks very much like the previous CREATE TABLE 
statements; the difference is in the additional PARTITIONED BY clause.

After we execute this script, we describe the table and see that from a HiveQL perspective 
the table appears just like the previous ufodata table but with the addition of an extra 
column for the year. This allows the column to be treated as any other when it comes to 
specifying conditions in WHERE clauses, even though the column data does not actually  
exist in the on-disk data files.

We next execute the second script which performs the actual loading of data into the 
partitioned table. There are several things of note here.

Firstly, we see that the INSERT command can be used with tables just as we previously did 
for directories. The INSERT statement has a specification of where the data is to go and a 
subsequent SELECT statement gathers the required data from existing tables or views.

The partitioning mechanism used here is taking advantage of a relatively new feature in Hive, 
dynamic partitions. In most cases, the partition clause in this statement would include an 
explicit value for the year column. But though that would work if we were uploading a day's 
data into a daily partition, it isn't suitable for our type of data file where the various rows 
should be inserted into a variety of partitions. By simply specifying the column name with no 
value, the partition name will be automatically generated by the value of the year column 
returned from the SELECT statement.
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This hopefully explains the strange final clause in the SELECT statement; after specifying all 
the standard columns from ufodata, we add a specification that extracts a string containing 
the first four characters of the sighting column. Remember that because the partitioned 
table sees the year partition column as the seventh column, this means we are assigning the 
year component of the sighted string to the year column in each row. Consequently, each 
row is inserted into the partition associated with its sighting year.

To prove this is working as expected, we then perform two queries; one counts all records  
in the partition for 1989 in the partitioned table, the other counts the records in ufodata 
that begin with the string "1989", that is, the component used to dynamically create the 
partitions previously.

As can be seen, both queries return the same result, verifying that our partitioning strategy is 
working as expected. We also note that the partitioned query is a little faster than the other, 
though not by very much. This is likely due to the MapReduce start up times dominating the 
processing of our relatively modest data set.

Finally, we take a look inside the directory where Hive stores the data for the partitioned 
table and see that there is indeed a directory for each of the 100 dynamically-generated 
partitions. Any time we now express HiveQL statements that refer to specific partitions,  
Hive can perform a significant optimization by processing only the data found in the 
appropriate partitions' directories.

Bucketing, clustering, and sorting... oh my!
We will not explore it in detail here, but hierarchical partition columns are not the full extent 
of how Hive can optimize data access patterns within subsets of data. Within a partition, 
Hive provides a mechanism to further gather rows into buckets using a hash function on 
specified CLUSTER BY columns. Within a bucket, the rows can be kept in sorted order  
using specified SORT BY columns. We could, for example, have bucketed our data based  
on the UFO shape and within each bucket sorted on the sighting date.

These aren't necessarily features you'll need to use on day 1 with Hive, but if you find 
yourself using larger and larger data sets, then considering this type of optimization  
may help query processing time significantly.

User-Defined Function
Hive provides mechanisms for you to hook custom code directly into the HiveQL execution. 
This can be in the form of adding new library functions or by specifying Hive transforms, 
which work quite similarly to Hadoop Streaming. We will look at user-defined functions in 
this section as they are where you are most likely to have an early need to add custom code. 
Hive transforms are a somewhat more involved mechanism by which you can add custom 
map and reduce classes that are invoked by the Hive runtime. If transforms are of interest, 
they are well documented on the Hive wiki.
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Time for action – adding a new User Defined Function (UDF)
Let us show how to create and invoke some custom Java code via a new UDF.

1.	 Save the following code as City.java:
package com.kycorsystems ;

import java.util.regex.Matcher ;
import java.util.regex.Pattern ;
import org.apache.hadoop.hive.ql.exec.UDF ;
import org.apache.hadoop.io.Text ;

public class City extends UDF
{
    private static Pattern pattern = Pattern.compile(
        "[a-zA-z]+?[\\. ]*[a-zA-z]+?[\\, ][^a-zA-Z]") ;
    
    public Text evaluate( final Text str)
    {
        Text result ;
        String location = str.toString().trim() ;
        Matcher matcher = pattern.matcher(location) ;
        
        if (matcher.find())
        {
            result = new Text(                 location.
substring(matcher.start(), matcher.end()-2)) ;
        }
        else
        {
            result = new Text("Unknown") ;
        }        
        return result ;
    }
}

2.	 Compile this file:
$ javac -cp hive/lib/hive-exec-0.8.1.jar:hadoop/hadoop-1.0.4-core.
jar  -d . City.java

3.	 Package the generated class file into a JAR file:
$ jar cvf city.jar com
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You will receive the following response:

added manifest

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/kycorsystems/(in = 0) (out= 0)(stored 0%)

adding: com/kycorsystems/City.class(in = 1101) (out= 647)(deflated 
41%)

4.	 Start the interactive Hive shell:
$ hive

5.	 Add the new JAR file to the Hive classpath:
hive> add jar city.jar;

You will receive the following response:

Added city.jar to class path

Added resource: city.jar

6.	 Confirm that the JAR file was added:
hive> list jars;

You will receive the following response:

file:/opt/hive-0.8.1/lib/hive-builtins-0.8.1.jar

city.jar

7.	 Register the new code with a function name:
hive> create temporary function city as 'com.kycorsystems.City' ;

You will receive the following response:

OK

Time taken: 0.277 seconds

8.	 Execute a query using the new function:

hive> select city(sighting_location), count(*) as total

    > from partufo

    > where year = '1999'

    > group by city(sighting_location)

    > having  total > 15 ;
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You will receive the following response:

Total MapReduce jobs = 1

Launching Job 1 out of 1

…

OK

Chicago  19

Las Vegas  19

Phoenix  19

Portland  17

San Diego  18

Seattle  26

Unknown  34

Time taken: 29.055 seconds

What just happened?
The Java class we wrote extends the base org.apache.hadoop.hive.exec.ql.UDF 
(User Defined Function) class. Into this class, we define a method for returning a city name 
given a location string that follows the general pattern we have seen previously.

UDF does not actually define a series of evaluate methods based on type; instead, you are 
free to add your own with arbitrary arguments and return types. Hive uses Java Reflection 
to select the correct evaluation method, and if you require a finer-grained selection, you can 
develop your own utility class that implements the UDFMethodResolver interface.

The regular expression used here is a little unwieldy; we wish to extract the name of the  
city, assuming it will be followed by a state abbreviation. However, inconsistency in how  
the names are delineated and handling of multi-word names gives us the regular expression 
seen before. Apart from this, the class is pretty straightforward.

We compile the City.java file, adding the necessary JARs from both Hive and Hadoop  
as we do so.

Remember, of course, that the specific JAR filenames may be different if 
you are not using the same versions of both Hadoop and Hive.

We then bundle the generated class file into a JAR and start the Hive interactive shell.

After creating the JAR, we need to configure Hive to use it. This is a two-step process. Firstly, 
we use the add jar command to add the new JAR file to the classpath used by Hive. After 
doing so, we use the list jars command to confirm that our new JAR has been registered 
in the system.
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Adding the JAR only tells Hive that some code exists, it does not say how we wish to refer  
to the function within our HiveQL statements. The CREATE FUNCTION command does 
this—associating a function name (in this case, city) with the fully qualified Java class  
that provides the implementation (in this case, com.kycorsystems.City).

With both the JAR file added to the classpath and the function created, we can now refer  
to our city() function within our HiveQL statements.

We next ran an example query that demonstrates the new function in action. Going back to the 
partitioned UFO sightings table, we thought it would be interesting to see where the most UFO 
sightings were occurring as everyone prepared for the end-of-millennium apocalypse.

As can be seen from the HiveQL statement, we can use our new function just like any other 
and indeed the only way to know which functions are built-in and which are UDFs is through 
familiarity with the standard Hive function library.

The result shows a significant concentration of sightings in the north-west and south-west of 
the USA, Chicago being the only exception. We did get quite a few Unknown results however, 
and it would require further analysis to determine if that was due to locations outside of the 
U.S. or if we need to further refine our regular expression.

To preprocess or not to preprocess...
Let us re-visit an earlier topic; the potential need to pre-process data into a cleaner  
form before it is imported into Hive. As can be seen from the preceding example, we  
could perform similar processing on the fly through a series of UDFs. We could, for  
example, add functions called state and country that extract or infer the further  
region and nation components from the location sighting string. There are rarely  
concrete rules for which approach is best, but a few guidelines may help.

If, as is the case here, we are unlikely to actually process the full location string for  
reasons other than to extract the distinct components, then preprocessing likely makes  
more sense. Instead of performing expensive text processing every time the column is 
accessed, we could either normalize it into a more predictable format or even break it  
out into separate city/region/country columns.

If, however, a column is usually used in HiveQL in its original form and additional processing 
is the exceptional case, then there is likely little benefit to an expensive processing step 
across the entire data set.

Use the strategy that makes the most sense for your data and workloads. Remember that 
UDFs are for much more than this sort of text processing, they can be used to encapsulate 
any type of logic that you wish to apply to data in your tables.
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Hive versus Pig
Search the Internet for articles about Hive and it won't be long before you find many 
comparing Hive to another Apache project called Pig. Some of the most common questions 
around this comparison are why both exist, when to use one over the other, which is better, 
and which makes you look cooler when wearing the project t-shirt in a bar.

The overlap between the projects is that whereas Hive looks to present a familiar SQL-like 
interface to data, Pig uses a language called Pig Latin that specifies dataflow pipelines. Just 
as Hive translates HiveQL into MapReduce which it then executes, Pig performs similar 
MapReduce code generation from the Pig Latin scripts.

The biggest difference between HiveQL and Pig Latin is the amount of control expressed 
over how the job will be executed. HiveQL, just like SQL, specifies what is to be done but 
says almost nothing about how to actually structure the implementation. The HiveQL query 
planner is responsible for determining in which order to perform particular parts of the 
HiveQL command, in which order to evaluate functions, and so on. These decisions are  
made by Hive at runtime, analogous to a traditional relational database query planner,  
and this is also the level at which Pig Latin operates.

Both approaches obviate the need to write raw MapReduce code; they differ in the 
abstractions they provide.

The choice of Hive versus Pig will depend on your needs. If having a familiar SQL interface 
to the data is important as a means of making the data in Hadoop available to a wider 
audience, then Hive is the obvious choice. If instead you have personnel who think in terms 
of data pipelines and need finer-grained control over how the jobs are executed, then Pig 
may be a better fit. The Hive and Pig projects are looking for closer integration so hopefully 
the false sense of competition will decrease and instead both will be seen as complementary 
ways of decreasing the Hadoop knowledge required to execute MapReduce jobs.

What we didn't cover
In this overview of Hive, we have covered its installation and setup, the creation and 
manipulation of tables, views, and joins. We have looked at how to move data into and out 
of Hive, how to optimize data processing, and explored several of Hive's built-in functions.

In reality, we have barely scratched the surface. In addition to more depth on the previous 
topics and a variety of related concepts, we didn't even touch on topics such as the 
MetaStore where Hive stores its configuration and metadata or SerDe (serialize/deserialize) 
objects, which can be used to read data from more complex file formats such as JSON.
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Hive is an incredibly rich tool with many powerful and complex features. If Hive is something 
that you feel may be of value to you, then it is recommended that after running through the 
examples in this chapter that you spend some quality time with the documentation on the 
Hive website. There you will also find links to the user mailing list, which is a great source of 
information and help.

Hive on Amazon Web Services
Elastic MapReduce has significant support for Hive with some specific mechanisms to help its 
integration with other AWS services.

Time for action – running UFO analysis on EMR
Let us explore the use of EMR with Hive by doing some UFO analysis on the platform.

1.	 Log in to the AWS management console at http://aws.amazon.com/console.

2.	 Every Hive job flow on EMR runs from an S3 bucket and we need to select the 
bucket we wish to use for this purpose. Select S3 to see the list of the buckets 
associated with your account and then choose the bucket from which to run the 
example, in the example below, we select the bucket called garryt1use.

3.	 Use the web interface to create three directories called ufodata, ufoout, and 
ufologs within that bucket. The resulting list of the bucket's contents should  
look like the following screenshot:
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4.	 Double-click on the ufodata directory to open it and within it create two 
subdirectories called ufo and states.

5.	 Create the following as s3test.hql, click on the Upload link within the ufodata 
directory, and follow the prompts to upload the file:
CREATE EXTERNAL TABLE IF NOT EXISTS ufodata(sighted string, 
reported string, sighting_location string,
shape string, duration string, description string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t' 
LOCATION '${INPUT}/ufo' ;

CREATE EXTERNAL TABLE IF NOT EXISTS states(abbreviation string, 
full_name string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LOCATION '${INPUT}/states' ;

CREATE VIEW IF NOT EXISTS usa_sightings (sighted, reported, shape, 
state)
AS SELECT t1.sighted, t1.reported, t1.shape, t2.full_name
FROM ufodata t1 JOIN states t2
ON (LOWER(t2.abbreviation) = LOWER(SUBSTR( t1.sighting_location, 
(LENGTH(t1.sighting_location)-1)))) ;

CREATE EXTERNAL TABLE IF NOT EXISTS state_results ( reported 
string, shape string, state string)
ROW FORMAT DELIMITED
FFIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '${OUTPUT}/states' ;

INSERT OVERWRITE TABLE state_results
SELECT reported, shape, state
FROM usa_sightings
WHERE state = 'California' ;
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The contents of ufodata should now look like the following screenshot:

6.	 Double-click the states directory to open it and into this, upload the states.txt 
file used earlier. The directory should now look like the following screenshot:

7.	 Click on the ufodata component at the top of the file list to return to this directory.
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8.	 Double-click on the ufo directory to open it and into this, upload the ufo.tsv file 
used earlier. The directory should now look like the following screenshot:

9.	 Now select Elastic MapReduce and click on Create a New Job Flow. Then select  
the option Run your own application and select a Hive application, as shown in  
the following screenshot:
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10.	Click on Continue and then fill in the required details for the Hive job flow. Use the 
following screenshot as a guide, but remember to change the bucket name (the first 
component in the s3:// URLs) to the bucket you set up before:
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11.	Click on Continue, review the number and the type of hosts to be used, and then 
click on Continue once again. Then fill in the name of the directory for the logs, as 
shown in the following screenshot:
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12.	Click on Continue. Then do the same through the rest of the job creation process as 
there are no other default options that need to be changed for this example. Finally 
start the job flow and monitor its progress from the management console.

13.	Once the job has completed successfully, go back to S3 and double-click on the 
ufoout directory. Within that should be a directory called states and within that, 
a file named something like 0000000. Double-click to download the file and verify 
that its contents look something like the following:

20021014   light   California
20050224   other   California
20021001   egg     California
20030527   sphere  California

What just happened?
Before we actually execute our EMR job flow, we needed to do a bit of setup in the 
preceding example. Firstly, we used the S3 web interface to prepare the directory structure 
for our job. We created three main directories to hold the input data, into which to write 
results and one for EMR to place logs of the job flow execution.

The HiveQL script is a modification of several of the Hive commands used earlier in this 
chapter. It creates the tables for the UFO sighting data and state names as well as the 
view joining them. Then it creates a new table with no source data and uses an INSERT 
OVERWRITE TABLE to populate the table with the results of a query.

The unique feature in this script is the way we specify the LOCATION clauses for each  
of the tables. For the input tables, we use a path relative to a variable called INPUT  
and do likewise with the OUTPUT variable for the result table.

Note that Hive in EMR expects the location of table data to be a directory and not a file.  
This is the reason for us previously creating subdirectories for each table into which we 
uploaded the specific source file instead of specifying the table with the direct path to  
the data files themselves.

After setting up the required file and directory structure within our S3 bucket, we went  
to the EMR web console and started the job flow creation process.

After specifying that we wish to use our own program and that it would be a Hive 
application, we filled in a screen with the key data required for our job flow:

�� The location of the HiveQL script itself

�� The directory containing input data

�� The directory to be used for output data



Chapter 8

[ 277 ]

The path to the HiveQL script is an explicit path and does not require any explanation.  
However, it is important to realize how the other values are mapped into the variables  
used within our Hive script.

The value for the input path is available to the Hive script as the INPUT variable and this 
is how we then specify the directory containing the UFO sighting data as ${INPUT}/ufo. 
Similarly, the output value specified in this form will be used as the OUTPUT variable within 
our Hive script.

We did not make any changes to the default host setup, which will be one small master  
and two small core nodes. On the next screen, we added the location into which we  
wanted EMR to write the logs produced by the job flow execution.

Though optional, it is useful to capture these logs, particularly in the early stages of running 
a new script, though obviously S3 storage does have a cost. EMR can also write indexed log 
data into SimpleDB (another AWS service), but we did not show that in action here.

After completing the job flow definition, we started it and on successful execution, went  
to the S3 interface to browse to the output location, which happily contained the data  
we were expecting.

Using interactive job flows for development
When developing a new Hive script to be executed on EMR, the previous batch job execution 
is not a good fit. There is usually a several minute latency between job flow creation and 
execution and if the job fails, then the cost of several hours of EC2 instance time will have 
been incurred (partial hours are rounded up).

Instead of selecting the option to create an EMR job flow to run a Hive script, as in the 
previous example, we can start a Hive job flow in interactive mode. This effectively spins up a 
Hadoop cluster without requiring a named script. You can then SSH into the master node as 
the Hadoop user where you will find Hive installed and configured. It is much more efficient 
to do the script development in this environment and then, if required, set up the batch 
script job flows to automatically execute the script in production.

Have a go hero – using an interactive EMR cluster
Start up an interactive Hive job flow in EMR. You will need to have SSH credentials already 
registered with EC2 so that you can connect to the master node. Run the previous script 
directly from the master node, remembering to pass the appropriate variables to the script.
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Integration with other AWS products
With a local Hadoop/Hive installation, the question of where data lives usually comes  
down to HDFS or local filesystems. As we have seen previously, Hive within EMR gives 
another option with its support for external tables whose data resides in S3.

Another AWS service with similar support is DynamoDB (at http://aws.amazon.com/
dynamodb), a hosted NoSQL database solution in the cloud. Hive job flows within EMR  
can declare external tables that either read data from DynamoDB or use it as the  
destination for query output.

This is a very powerful model as it allows Hive to be used to process and combine data  
from multiple sources while the mechanics of mapping data from one system into Hive 
tables happens transparently. It also allows Hive to be used as a mechanism for moving  
data from one system to another. The act of getting data frequently into such hosted  
services from existing stores is a major adoption hurdle.

Summary
We have looked at Hive in this chapter and learned how it provides many tools and 
features that will be familiar to anyone who uses relational databases. Instead of requiring 
development of MapReduce applications, Hive makes the power of Hadoop available to a 
much broader community.

In particular, we downloaded and installed Hive, learning that it is a client application that 
translates its HiveQL language into MapReduce code, which it submits to a Hadoop cluster. 
We explored Hive's mechanism for creating tables and running queries against these tables. 
We saw how Hive can support various underlying data file formats and structures and how  
to modify those options.

We also appreciated that Hive tables are largely a logical construct and that behind the 
scenes, all the SQL-like operations on tables are in fact executed by MapReduce jobs on  
HDFS files. We then saw how Hive supports powerful features such as joins and views  
and how to partition our tables to aid in efficient query execution.

We used Hive to output the results of a query to files on HDFS and saw how Hive is 
supported by Elastic MapReduce, where interactive job flows can be used to develop  
new Hive applications, and then ran automatically in batch mode.

As we have mentioned several times in this book, Hive looks like a relational database but is 
not really one. However, in many cases you will find existing relational databases are part of 
the broader infrastructure into which you need integrate. Performing that integration and how 
to move data across these different types of data sources will be the topic of the next chapter.
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Working with Relational Databases

As we saw in the previous chapter, Hive is a great tool that provides a relational 
database-like view of the data stored in Hadoop. However, at the end of the 
day, it is not truly a relational database. It does not fully implement the SQL 
standard, and its performance and scale characteristics are vastly different  
(not better or worse, just different) from a traditional relational database.

In many cases, you will find a Hadoop cluster sitting alongside and used with 
(not instead of) relational databases. Often the business flows will require data 
to be moved from one store to the other; we will now explore such integration.

In this chapter, we will:

�� Identify some common Hadoop/RDBMS use cases

�� Explore how we can move data from RDBMS into HDFS and Hive

�� Use Sqoop as a better solution for such problems

�� Move data with exports from Hadoop into an RDBMS

�� Wrap up with a discussion of how this can be applied to AWS

Common data paths
Back in Chapter 1, What It's All About, we touched on what we believe to be an artificial 
choice that causes a lot of controversy; to use Hadoop or a traditional relational database.  
As explained there, it is our contention that the thing to focus on is identifying the right 
tool for the task at hand and that this is likely to lead to a situation where more than one 
technology is employed. It is worth looking at a few concrete examples to illustrate this idea.
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Hadoop as an archive store
When an RDBMS is used as the main data repository, there often arises issues of scale  
and data retention. As volumes of new data increase, what is to be done with the older  
and less valuable data?

Traditionally, there are two main approaches to this situation:

�� Partition the RDBMS to allow higher performance of more recent data;  
sometimes the technology allows older data to be stored on slower and  
less expensive storage systems

�� Archive the data onto tape or another offline store

Both approaches are valid, and the decision between the two often rests on just whether or 
not the older data is required for timely access. These are two extreme cases as the former 
maximizes for access at the cost of complexity and infrastructure expense, while the latter 
reduces costs but makes data less accessible.

The model being seen recently is for the most current data to be kept in the relational 
database and the older data to be pushed into Hadoop. This can either be onto HDFS as 
structured files or into Hive to retain the RDBMS interface. This gives the best of both worlds, 
allowing the lower-volume, more recent data to be accessible by high-speed, low-latency 
SQL queries, while the much larger volume of archived data will be accessed from Hadoop. 
The data therefore remains available for use cases requiring either types of access; this 
would be needed on a platform that does require additional integration for any queries  
that need to span both the recent and archive data.

Because of Hadoop's scalability, this model gives great future growth potential; we know we 
can continue to increase the amount of archive data being stored while retaining the ability 
to run analytics against it.

Hadoop as a preprocessing step
Several times in our Hive discussion, we highlighted opportunities where some preprocessing 
jobs to massage or otherwise clean up the data would be hugely useful. The unfortunate  
fact is that, in many (most?) big data situations, the large volumes of data coming from 
multiple sources mean that dirty data is simply a given. Although most MapReduce jobs  
only require a subset of the overall data to be processed, we should still expect to find 
incomplete or corrupt data across the data set. Just as Hive can benefit from preprocessing 
data, a traditional relational database can as well.

Hadoop can be a great tool here; it can pull data from multiple sources, combine them  
for necessary transformations, and clean up prior to the data being inserted into the 
relational database.
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Hadoop as a data input tool
Hadoop is not just valuable in that it makes data better and is well suited to being ingested 
into a relational database. In addition to such tasks, Hadoop can also be used to generate 
additional data sets or data views that are then served from the relational database. 
Common patterns here are situations such as when we wish to display not only the primary 
data for an account but to also display alongside it secondary data generated from account 
history. Such views could be summaries of transactions against types of expenditure for the 
previous months. This data is held within Hadoop, from which can be generated the actual 
summaries that may be pushed back into the database for quicker display.

The serpent eats its own tail
Reality is often more complex than these well-defined situations, and it's not uncommon 
for the data flow between Hadoop and the relational database to be described by circles 
and arcs instead of a single straight line. The Hadoop cluster may, for example, do the 
preprocessing step on data that is then ingested into the RDBMS and then receive frequent 
transaction dumps that are used to build aggregates, which are sent back to the database. 
Then, once the data gets older than a certain threshold, it is deleted from the database but 
kept in Hadoop for archival purposes.

Regardless of the situation, the ability to get data from Hadoop to a relational database and 
back again is a critical aspect of integrating Hadoop into your IT infrastructure. So, let's see 
how to do it.

Setting up MySQL
Before reading and writing data from a relational database, we need a running relational 
database. We will use MySQL in this chapter because it is freely and widely available and 
many developers have used it at some point in their career. You can of course use any 
RDBMS for which a JDBC driver is available, but if you do so, you'll need to modify the 
aspects of this chapter that require direct interaction with the database server.

Time for action – installing and setting up MySQL
Let's get MySQL installed and configured with the basic databases and access rights.

1.	 On an Ubuntu host, install MySQL using apt-get:
$ apt-get update

$ apt-get install mysql-server

2.	 Follow the prompts, and when asked, choose a suitable root password.
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3.	 Once installed, connect to the MySQL server:
$ mysql -h localhost -u root -p

4.	 Enter the root password when prompted:
Welcome to the MySQL monitor.  Commands end with ; or \g.

Your MySQL connection id is 40

…

Mysql>

5.	 Create a new database to use for the examples in this chapter:
Mysql> create database hadooptest;

You will receive the following response:

Query OK, 1 row affected (0.00 sec)

6.	 Create a user account with full access to the database:
Mysql>  grant all on hadooptest.* to 'hadoopuser'@'%' identified 
by 'password';

You will receive the following response:

Query OK, 0 rows affected (0.01 sec)

7.	 Reload the user privileges to have the user changes take effect:
Mysql> flush privileges;

You will receive the following response:

Query OK, 0 rows affected (0.01 sec)

8.	 Log out as root:
mysql> quit;

You will receive the following response:

Bye

9.	 Log in as the newly created user, entering the password when prompted:
$ mysql -u hadoopuser -p

10.	Change to the newly created database:
mysql> use hadooptest;
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11.	Create a test table, drop it to confirm the user has the privileges in this database, 
and then log out:

mysql> create table tabletest(id int);

mysql> drop table tabletest;

mysql> quit;

What just happened?
Due to the wonders of package managers such as apt, installing complex software such 
as MySQL is really very easy. We just use the standard process to install a package; under 
Ubuntu (and most other distributions in fact), requesting the main server package for MySQL 
will bring along all needed dependencies as well as the client packages.

During the install, you will be prompted for the root password on the database. Even if this is 
a test database instance that no one will use and that will have no valuable data, please give 
the root user a strong password. Having weak root passwords is a bad habit, and we do not 
want to encourage it.
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After MySQL is installed, we connect to the database using the mysql command-line utility. 
This takes a range of options, but the ones we will use are as follows:

�� -h: This option is used to specify the hostname of the database (the local machine is 
assumed if none is given)

�� -u: This option is used for the username with which to connect (the default is the 
current Linux user)

�� -p: This option is used to be prompted for the user password

MySQL has the concept of multiple databases, each of which is a collective grouping 
of tables. Every table needs be associated with a database. MySQL has several built-in 
databases, but we use the CREATE DATABASE statement to create a new one called 
hadooptest for our later work.

MySQL refuses connections/requests to perform actions unless the requesting user has 
explicitly been given the needed privileges to perform the action. We do not want to do 
everything as the root user (a bad practice and quite dangerous since the root can modify/
delete everything), so we create a new user called hadoopuser by using the GRANT statement.

The GRANT statement we used actually does three distinct things:

�� Creates the hadoopuser account

�� Sets the hadoopuser password; we set it to password, which obviously you should 
never do; pick something easy to memorize

�� Gives hadoopuser all privileges on the hadooptest database and all its tables

We issue the FLUSH PRIVILEGES command to have these changes take effect and then we 
log out as root and connect as the new user to check whether all is working.

The USE statement here is a little superfluous. In future, we can instead add the database 
name to the mysql command-line tool to automatically change to that database.

Connecting as the new user is a good sign, but to gain full confidence, we create a new table 
in the hadooptest database and then drop it. Success here shows that hadoopuser does 
indeed have the requested privileges to modify the database.

Did it have to be so hard?
We are perhaps being a little cautious here by checking every step of the process along 
the way. However, I have found in the past that subtle typos, in the GRANT statement in 
particular, can result in really hard-to-diagnose problems later on. And to continue our 
paranoia, let's make one change to the default MySQL configuration that we won't need 
quite yet, but which if we don't do, we'll be sorry later.
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For any production database, you would of course not have security-sensitive statements, 
such as GRANT, present that were typed in from a book. Refer to the documentation of your 
database to understand user accounts and privileges.

Time for action – configuring MySQL to allow remote 
connections

We need to change the common default MySQL behavior, which will prevent us from 
accessing the database from other hosts.

1.	 Edit /etc/mysql/my.cnf in your favorite text editor and look for this line:
bind-address = 127.0.0.1

2.	 Change it to this:
# bind-address = 127.0.0.1

3.	 Restart MySQL:

$ restart mysql

What just happened?
Most out-of-the-box MySQL configurations allow access only from the same host on which 
the server is running. This is absolutely the correct default from a security standpoint. 
However, it can also cause real confusion if, for example, you launch MapReduce jobs that try 
to access the database on that host. You may see the job fail with connection errors. If that 
happens, you fire up the mysql command-line client on the host; this will succeed. Then, 
perhaps, you will write a quick JDBC client to test connectivity. This will also work. Only when 
you try these steps from one of the Hadoop worker nodes will the problem be apparent. Yes, 
this has bit ten me several times in the past!

The previous change tells MySQL to bind to all available interfaces and thus be accessible 
from remote clients.

After making the change, we need to restart the server. In Ubuntu 11.10, many of the service 
scripts have been ported to the Upstart framework, and we can use the handy restart 
command directly.

If you are using a distribution other than Ubuntu—or potentially even a different version of 
Ubuntu—the global MySQL configuration file may be in a different location; /etc/my.cnf, 
for example, on CentOS and Red Hat Enterprise Linux.
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Don't do this in production!
Or at least not without thinking about the consequences. In the earlier example, we gave a 
really bad password to the new user; do not do that. However, especially don't do something 
like that if you then make the database available across the network. Yes, it is a test database 
with no valuable data, but it is amazing how many test databases live for a very long time 
and start getting more and more critical. And will you remember to remove that user with 
the weak password after you are done?

Enough lecturing. Databases need data. Let's add a table to the hadooptest database that 
we'll use throughout this chapter.

Time for action – setting up the employee database
No discussion of databases is complete without the example of an employee table, so we will 
follow tradition and start there.

1.	 Create a tab-separated file named employees.tsv with the following entries:
Alice  Engineering  50000  2009-03-12
Bob	 Sales  35000  2011-10-01
Camille  Marketing  40000  2003-04-20
David  Executive  75000  2001-03-20
Erica  Support  34000  2011-07-07

2.	 Connect to the MySQL server:
$ mysql -u hadoopuser -p hadooptest

3.	 Create the table:
Mysql> create table employees(

first_name varchar(10) primary key,

dept varchar(15),

salary int,

start_date date

) ;

4.	 Load the data from the file into the database:

mysql> load data local infile '/home/garry/employees.tsv'

    -> into table employees

    -> fields terminated by '\t' lines terminated by '\n' ;
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What just happened?
This is pretty standard database stuff. We created a tab-separated data file, created the table 
in the database, and then used the LOAD DATA LOCAL INFILE statement to import the 
data into the table.

We are using a very small set of data here as it is really for illustration purposes only.

Be careful with data file access rights
Don't omit the LOCAL part from the LOAD DATA statement; doing so sees MySQL try and 
load the file as the MySQL user, and this usually results in access problems.

Getting data into Hadoop
Now that we have put in all that up-front effort, let us look at ways of bringing the data out 
of MySQL and into Hadoop.
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Using MySQL tools and manual import
The simplest way to export data into Hadoop is to use existing command-line tools and 
statements. To export an entire table (or indeed an entire database), MySQL offers the 
mysqldump utility. To do a more precise export, we can use a SELECT statement of the 
following form:

SELECT col1, col2 from table
INTO OUTFILE '/tmp/out.csv'
FIELDS TERMINATED by ',', LINES TERMINATED BY '\n';

Once we have an export file, we can move it into HDFS using hadoop fs -put or into  
Hive through the methods discussed in the previous chapter.

Have a go hero – exporting the employee table into HDFS
We don't want this chapter to turn into a MySQL tutorial, so look up the syntax of the 
mysqldump utility, and use it or the SELECT … INTO OUTFILE statement to export  
the employee table into a tab-separated file you then copy onto HDFS.

Accessing the database from the mapper
For our trivial example, the preceding approaches are fine, but what if you need to export  
a much larger set of data, especially if it then is to be processed by a MapReduce job?

The obvious approach is that of direct JDBC access within a MapReduce input job that pulls 
the data from the database and writes it onto HDFS, ready for additional processing.

This is a valid technique, but there are a few not-so-obvious gotchas.

You need to be careful how much load you place on the database. Throwing this sort of job 
onto a very large cluster could very quickly melt the database as hundreds or thousands 
of mappers try to simultaneously open connections and read the same table. The simplest 
access pattern is also likely to see one query per row, which obviates the ability to use more 
efficient bulk access statements. Even if the database can take the load, it is quite possible 
for the database network connection to quickly become the bottleneck.

To effectively parallelize the query across all the mappers, you need a strategy to partition 
the table into segments each mapper will retrieve. You then need to determine how each 
mapper is to have its segment parameters passed in.

If the retrieved segments are large, there is a chance that you will end up with long-running 
tasks that get terminated by the Hadoop framework unless you explicitly report progress.

That is actually quite a lot of work for a conceptually simple task. Wouldn't it be much  
better to use an existing tool for the purpose? There is indeed such a tool that we will  
use throughout the rest of this chapter, Sqoop.
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A better way – introducing Sqoop
Sqoop was created by Cloudera (http://www.cloudera.com), a company that provides 
numerous services related to Hadoop in addition to producing its own packaging of the 
Hadoop distribution, something we will discuss in Chapter 11, Where to Go Next.

As well as providing this packaged Hadoop product, the company has also created a number 
of tools that have been made available to the community, and one of these is Sqoop. Its 
job is to do exactly what we need, to copy data between Hadoop and relational databases. 
Though originally developed by Cloudera, it has been contributed to the Apache Software 
Foundation, and its homepage is http://sqoop.apache.org.

Time for action – downloading and configuring Sqoop
Let's download and get Sqoop installed and configured.

1.	 Go to the Sqoop homepage, select the link for the most stable version that is  
no earlier than 1.4.1, and match it with the version of Hadoop you are using. 
Download the file.

2.	 Copy the retrieved file where you want it installed on your system; then uncompress 
it:
$mv sqoop-1.4.1-incubating__hadoop-1.0.0.tar.gz_ /usr/local

$ cd /usr/local

$ tar –xzf sqoop-1.4.1-incubating__hadoop-1.0.0.tar.gz_

3.	 Make a symlink:
$ ln -s sqoop-1.4.1-incubating__hadoop-1.0.0 sqoop

4.	 Update your environment:
$ export SQOOP_HOME=/usr/local/sqoop

$ export PATH=${SQOOP_HOME}/bin:${PATH}

5.	 Download the JDBC driver for your database; for MySQL, we find it at http://dev.
mysql.com/downloads/connector/j/5.0.html.

6.	 Copy the downloaded JAR file into the Sqoop lib directory:
$ cp mysql-connector-java-5.0.8-bin.jar /opt/sqoop/lib

7.	 Test Sqoop:

$ sqoop help

http://www.cloudera.com
http://www.cloudera.com
http://dev.mysql.com/downloads/connector/j/5.0.html
http://dev.mysql.com/downloads/connector/j/5.0.html
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You will see the following output:
usage: sqoop COMMAND [ARGS]

Available commands:

  codegen            Generate code to interact with database 
records

…

  version            Display version information

See 'sqoop help COMMAND' for information on a specific command.

What just happened?
Sqoop is a pretty straightforward tool to install. After downloading the required version from 
the Sqoop homepage—being careful to pick the one that matches our Hadoop version—we 
copied and unpacked the file.

Once again, we needed to set an environment variable and added the Sqoop bin directory 
to our path so we can either set these directly in our shell, or as before, add these steps to a 
configuration file we can source prior to a development session.

Sqoop needs access to the JDBC driver for your database; for us, we downloaded the MySQL 
Connector and copied it into the Sqoop lib directory. For the most popular databases, this 
is as much configuration as Sqoop requires; if you want to use something exotic, consult the 
Sqoop documentation.

After this minimal install, we executed the sqoop command-line utility to validate that it is 
working properly.

You may see warning messages from Sqoop telling you that additional 
variables such as HBASE_HOME have not been defined. As we are not 
talking about HBase in this book, we do not need this setting and will 
be omitting such warnings from our screenshots.

Sqoop and Hadoop versions
We were very specific in the version of Sqoop to be retrieved before; much more so than for 
previous software downloads. In Sqoop versions prior to 1.4.1, there is a dependency on an 
additional method on one of the core Hadoop classes that was only available in the Cloudera 
Hadoop distribution or versions of Hadoop after 0.21.

Unfortunately, the fact that Hadoop 1.0 is effectively a continuation of the 0.20 branch 
meant that Sqoop 1.3, for example, would work with Hadoop 0.21 but not 0.20 or 1.0.  
To avoid this version confusion, we recommend using version 1.4.1 or later, which removes 
the dependency.
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There is no additional MySQL configuration required; we would discover if the server had not 
been configured to allow remote clients, as described earlier, through use of Sqoop.

Sqoop and HDFS
The simplest import we can perform is to dump data from a database table onto structured 
files on HDFS. Let's do that.

Time for action – exporting data from MySQL to HDFS
We'll use a straightforward example here, where we just pull all the data from a single 
MySQL table and write it to a single file on HDFS.

1.	 Run Sqoop to export data from MySQL onto HDFS: 
$ sqoop import --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser \ > --password password --table employees
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2.	 Examine the output directory:
$ hadoop fs -ls employees

You will receive the following response:

Found 6 items

-rw-r--r--   3 hadoop supergroup          0 2012-05-21 04:10 /
user/hadoop/employees/_SUCCESS

drwxr-xr-x   - hadoop supergroup          0 2012-05-21 04:10 /
user/hadoop/employees/_logs

-rw-r--r--   3 … /user/hadoop/employees/part-m-00000

-rw-r--r--   3 … /user/hadoop/employees/part-m-00001

-rw-r--r--   3 … /user/hadoop/employees/part-m-00002

-rw-r--r--   3 … /user/hadoop/employees/part-m-00003

3.	 Display one of the result files:

$ hadoop fs -cat /user/hadoop/employees/part-m-00001

You will see the following output:

Bob,Sales,35000,2011-10-01

Camille,Marketing,40000,2003-04-20

What just happened?
We did not need any preamble; a single Sqoop statement is all we require here. As can be 
seen, the Sqoop command line takes many options; let's unpack them one at a time.

The first option in Sqoop is the type of task to be performed; in this case, we wish to import 
data from a relational source into Hadoop. The --connect option specifies the JDBC URI for 
the database, of the standard form jdbc:<driver>://<host>/<database>. Obviously, 
you need to change the IP or hostname to the server where your database is running.

We use the --username and --password options to specify those attributes and finally 
use --table to indicate from which table we wish to retrieve the data. That is it! Sqoop 
does the rest.

The Sqoop output is relatively verbose, but do read it as it gives a good idea of exactly what 
is happening.

Repeated executions of Sqoop may however include a nested error about 
a generated file already existing. Ignore that for now.
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Firstly, in the preceding steps, we see Sqoop telling us not to use the --password option 
as it is inherently insecure. Sqoop has an alternative -P command, which prompts for the 
password; we will use that in future examples.

We also get a warning about using a textual primary key column and that it's a very bad  
idea; more on that in a little while.

After all the setup and warnings, however, we see Sqoop execute a MapReduce job and 
complete it successfully.

By default, Sqoop places the output files into a directory in the home directory of the  
user who ran the job. The files will be in a directory of the same name as the source table.  
To verify this, we used hadoop fs -ls to check this directory and confirmed that it 
contained several files, likely more than we would have expected, given such a small  
table. Note that we slightly abbreviated the output here to allow it to fit on one line.

We then examined one of the output files and discovered the reason for the multiple  
files; even though the table is tiny, it was still split across multiple mappers, and hence,  
output files. Sqoop uses four map tasks by default. It may look a little strange in this case,  
but the usual situation will be a much larger data import. Given the desire to copy data onto 
HDFS, this data is likely to be the source of a future MapReduce job, so multiple files makes 
perfect sense.

Mappers and primary key columns
We intentionally set up this situation by somewhat artificially using a textual primary key 
column in our employee data set. In reality, the primary key would much more likely be  
an auto-incrementing, numeric employee ID. However, this choice highlighted the nature  
of how Sqoop processes tables and its use of primary keys.

Sqoop uses the primary key column to determine how to divide the source data across 
its mappers. But, as the warnings before state, this means we are reliant on string-based 
comparisons, and in an environment with imperfect case significance, the results may be 
incorrect. The ideal situation is to use a numeric column as suggested.

Alternatively, it is possible to control the number of mappers using the -m option. If we use 
-m 1, there will be a single mapper and no attempt will be made to partition the primary key 
column. For small data sets such as ours, we can also do this to ensure a single output file.

This is not just an option; if you try to import from a table with no primary key, Sqoop will  
fail with an error stating that the only way to import from such a table is to explicitly set a 
single mapper.
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Other options
Don't assume that Sqoop is all or nothing when it comes to importing data. Sqoop has 
several other options to specify, restrict, and alter the data extracted from the database.  
We will illustrate these in the following sections, where we discuss Hive, but bear in mind 
that most can also be used when exporting into HDFS.

Sqoop's architecture
Now that we have seen Sqoop in action, it is worthwhile taking a few moments to clarify its 
architecture and see how it works. In several ways, Sqoop interacts with Hadoop in much 
the same way that Hive does; both are single client programs that create one or more 
MapReduce jobs to perform their tasks.

Sqoop does not have any server processes; the command-line client we run is all there is  
to it. However, because it can tailor its generated MapReduce code to the specific tasks  
at hand, it tends to utilize Hadoop quite efficiently.

The preceding example of splitting a source RDBMS table on a primary key is a good  
example of this. Sqoop knows the number of mappers that will be configured in the 
MapReduce job—the default is four, as previously mentioned—and from this, it can  
do smart partitioning of the source table.

If we assume a table with 1 million records and four mappers, then each will process 
2,50,000 records. With its knowledge of the primary key column, Sqoop can create four  
SQL statements to retrieve the data that each use the desired primary key column range 
as caveats. In the simplest case, this could be as straightforward as adding something like 
WHERE id BETWEEN 1 and 250000 to the first statement and using different id  
ranges for the others.

We will see the reverse behavior when exporting data from Hadoop as Sqoop again 
parallelizes data retrieval across multiple mappers and works to optimize the insertion of this 
data into the relational database. However, all these smarts are pushed into the MapReduce 
jobs executed on Hadoop; the Sqoop command-line client's job is to generate this code as 
efficiently as possible and then get out of the way as the processing occurs.

Importing data into Hive using Sqoop
Sqoop has significant integration with Hive, allowing it to import data from a relational 
source into either new or existing Hive tables. There are multiple ways in which this  
process can be tailored, but again, let's start with the simple case.
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Time for action – exporting data from MySQL into Hive
For this example, we'll export all the data from a single MySQL table into a correspondingly 
named table in Hive. You will need Hive installed and configured as detailed in the  
previous chapter.

1.	 Delete the output directory created in the previous section:
$ hadoop fs -rmr employees

You will receive the following response:
Deleted hdfs://head:9000/user/hadoop/employees

2.	 Confirm Hive doesn't already contain an employees table:
$ hive -e "show tables like 'employees'"

You will receive the following response:
OK

Time taken: 2.318 seconds

3.	 Perform the Sqoop import:
$ sqoop import --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser -P

--table employees --hive-import --hive-table employees  
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4.	 Check the contents in Hive:
$ hive -e "select * from employees"

You will receive the following response:

OK

Alice  Engineering  50000  2009-03-12

Camille  Marketing  40000  2003-04-20

David  Executive  75000  2001-03-20

Erica  Support  34000  2011-07-07

Time taken: 2.739 seconds

5.	 Examine the created table in Hive:

$ hive -e "describe employees"

You will receive the following response:

OK

first_name  string  

dept  string  

salary  int  

start_date  string  

Time taken: 2.553 seconds

What just happened?
Again, we use the Sqoop command with two new options, --hive-import to tell Sqoop 
the final destination is Hive and not HDFS, and --hive-table to specify the name of the 
table in Hive where we want the data imported.

In actuality, we don't need to specify the name of the Hive table if it is the same as the 
source table specified by the --table option. However, it does make things more explicit, 
so we will typically include it.

As before, do read the full Sqoop output as it provides great insight into what's going on,  
but the last few lines highlight the successful import into the new Hive table.

We see Sqoop retrieving five rows from MySQL and then going through the stages of  
copying them to HDFS and importing into Hive. We will talk about the warning re type 
conversions next.

After Sqoop completes the process, we use Hive to retrieve the data from the new Hive table 
and confirm that it is what we expected. Then, we examine the definition of the created table.
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At this point, we do see one strange thing; the start_date column has been given a type 
string even though it was originally a SQL DATE type in MySQL.

The warning we saw during the Sqoop execution explains this situation:

12/05/23 13:06:33 WARN hive.TableDefWriter: Column start_date had to be 
cast to a less precise type in Hive

The cause of this is that Hive does not support any temporal datatype other than TIMESTAMP. 
In those cases where imported data is of another type, relating to dates or times, Sqoop 
converts it to a string. We will look at a way of dealing with this situation a little later.

This example is a pretty common situation, but we do not always want to import an entire 
table into Hive. Sometimes, we want to only include particular columns or to apply a 
predicate to reduce the number of selected items. Sqoop allows us to do both.

Time for action – a more selective import
Let's see how this works by performing an import that is limited by a conditional expression.

1.	 Delete any existing employee import directory:
$ hadoop fs -rmr employees

You will receive the following response:

Deleted hdfs://head:9000/user/hadoop/employees

2.	 Import selected columns with a predicate:
sqoop import --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser -P

--table employees --columns first_name,salary

 --where "salary > 45000" 

--hive-import --hive-table salary 

You will receive the following response:

12/05/23 15:02:03 INFO hive.HiveImport: Hive import complete.

3.	 Examine the created table:
$ hive -e "describe salary"

You will receive the following response:

OK

first_name  string  
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salary  int  

Time taken: 2.57 seconds

4.	 Examine the imported data:

$ hive -e "select * from salary"

You will see the following output:

OK

Alice  50000

David  75000

Time taken: 2.754 seconds

What just happened?
This time, our Sqoop command first added the --columns option that specifies which 
columns to include in the import. This is a comma-separated list.

We also used the --where option that allows the free text specification of a WHERE clause 
that is applied to the SQL used to extract data from the database.

The combination of these options is that our Sqoop command should import only the names 
and salaries of those with a salary greater than the threshold specified in the WHERE clause.

We execute the command, see it complete successfully, and then examine the table created 
in Hive. We see that it indeed only contains the specified columns, and we then display the 
table contents to verify that the where predicate was also applied correctly.

Datatype issues
In Chapter 8, A Relational View on Data with Hive, we mentioned that Hive does not support 
all the common SQL datatypes. The DATE and DATETIME types in particular are not currently 
implemented though they do exist as identified Hive issues; so hopefully, they will be added 
in the future. We saw this impact our first Hive import earlier in this chapter. Though the 
start_date column was of type DATE in MySQL, the Sqoop import flagged a conversion 
warning, and the resultant column in Hive was of type STRING.

Sqoop has an option that is of use here, that is, we can use --map-column-hive to 
explicitly tell Sqoop how to create the column in the generated Hive table.
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Time for action – using a type mapping
Let's use a type mapping to improve our data import.

1.	 Delete any existing output directory:
$ hadoop fs -rmr employees

2.	 Execute Sqoop with an explicit type mapping:
sqoop import --connect jdbc:mysql://10.0.0.100/hadooptest 
--username hadoopuser 

-P --table employees 

--hive-import --hive-table employees 

--map-column-hive start_date=timestamp

You will receive the following response:

12/05/23 14:53:38 INFO hive.HiveImport: Hive import complete.

3.	 Examine the created table definition:
$ hive -e "describe employees"

You will receive the following response:

OK

first_name  string  

dept  string  

salary  int  

start_date  timestamp  

Time taken: 2.547 seconds

4.	 Examine the imported data:

$ hive -e "select * from employees";

You will receive the following response:

OK

Failed with exception java.io.IOException:java.lang.
IllegalArgumentException: Timestamp format must be yyyy-mm-dd 
hh:mm:ss[.fffffffff]

Time taken: 2.73 seconds
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What just happened?
Our Sqoop command line here is similar to our original Hive import, except for the addition 
of the column mapping specification. We specified that the start_date column should be  
of type TIMESTAMP, and we could have added other specifications. The option takes a 
comma-separated list of such mappings.

After confirming Sqoop executed successfully, we examined the created Hive table  
and verified that the mapping was indeed applied and that the start_date column  
has type TIMESTAMP.

We then tried to retrieve the data from the table and could not do so, receiving an error  
about type format mismatch.

On reflection, this should not be a surprise. Though we specified the desired column type 
was to be TIMESTAMP, the actual data being imported from MySQL was of type DATE, which 
does not contain the time component required in a timestamp. This is an important lesson. 
Ensuring that the type mappings are correct is only one part of the puzzle; we must also 
ensure the data is valid for the specified column type.

Time for action – importing data from a raw query
Let's see an example of an import where a raw SQL statement is used to select the data  
to be imported.

1.	 Delete any existing output directory:
$ hadoop fs –rmr employees

2.	 Drop any existing Hive employee table:
$ hive -e 'drop table employees'

3.	 Import data using an explicit query:
sqoop import --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser -P

--target-dir employees  

--query 'select first_name, dept, salary, 

timestamp(start_date) as start_date from employees where 
$CONDITIONS' 

--hive-import --hive-table employees 

--map-column-hive start_date=timestamp -m 1

4.	 Examine the created table:
$ hive -e "describe employees"
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You will receive the following response:

OK

first_name  string  

dept  string  

salary  int  

start_date  timestamp  

Time taken: 2.591 seconds

5.	 Examine the data:

$ hive -e "select * from employees"

You will receive the following response:

OK

Alice  Engineering  50000  2009-03-12 00:00:00

Bob	 Sales  35000  2011-10-01 00:00:00

Camille  Marketing  40000  2003-04-20 00:00:00

David  Executive  75000  2001-03-20 00:00:00

Erica  Support  34000  2011-07-07 00:00:00

Time taken: 2.709 seconds

What just happened?
To achieve our goal, we used a very different form of the Sqoop import. Instead of specifying 
the desired table and then either letting Sqoop import all columns or a specified subset, here 
we use the --query option to define an explicit SQL statement.

In the statement, we select all the columns from the source table but apply the 
timestamp() function to convert the start_date column to the correct type.  
(Note that this function simply adds a 00:00 time element to the date). We alias  
the result of this function, which allows us to name it in the type mapping option.

Because we have no --table option, we have to add --target-dir to tell Sqoop the 
name of the directory it should create on HDFS.

The WHERE clause in the SQL is required by Sqoop even though we are not actually using it. 
Having no --table option does not just remove Sqoop's ability to auto-generate the name 
of the export directory, it also means that Sqoop does not know from where data is being 
retrieved, and hence, how to partition the data across multiple mappers. The $CONDITIONS 
variable is used in conjunction with a --where option; specifying the latter provides Sqoop 
with the information it needs to partition the table appropriately.
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We take a different route here and instead explicitly set the number of mappers to 1, which 
obviates the need for an explicit partitioning clause.

After executing Sqoop, we examine the table definition in Hive, which as before, has the 
correct datatypes for all columns. We then look at the data, and this is now successful, with 
the start_date column data being appropriately converted into the TIMESTAMP values.

When we mentioned in the Sqoop and HDFS section that Sqoop provided 
mechanisms to restrict the data extracted from the database, we were 
referring to the query, where, and columns options. Note that these 
can be used by any Sqoop import regardless of the destination.

Have a go hero
Though it truly is not needed for such a small data set, the $CONDITIONS variable is an 
important tool. Modify the preceding Sqoop statement to use multiple mappers with an 
explicit partitioning statement.

Sqoop and Hive partitions
In Chapter 8, A Relational View on Data with Hive, we talked a lot about Hive partitions  
and highlighted how important they are in allowing query optimization for very large tables. 
The good news is that Sqoop can support Hive partitions; the bad news is that the support  
is not complete.

To import data from a relational database into a partitioned Hive table, we use the --hive-
partition-key option to specify the partition column and the --hive-partition-
value option to specify the value for the partition into which this Sqoop command will 
import data.

This is excellent but does require each Sqoop statement to be imported into a single Hive 
partition; there is currently no support for Hive auto-partitioning. Instead, if a data set is  
to be imported into multiple partitions in a table, we need use a separate Sqoop statement 
for insertion into each partition.

Field and line terminators
Until now, we have been implicitly relying on some defaults but should discuss them at this 
point. Our original text file was tab separated, but you may have noticed that the data we 
exported onto HDFS was comma-separated. If you go look in the files under /user/hive/
warehouse/employees (remember this is the default location on HDFS where Hive keeps 
its source files), the records use ASCII code 001 as the separator. What is going on?
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In the first instance, we let Sqoop use its defaults, which in this case, means using a comma 
to separate fields and using \n for records. However, when Sqoop is importing into Hive, it 
instead employs the Hive defaults, which include using the 001 code (^A) to separate fields.

We can explicitly set separators using the following Sqoop options:

�� fields-terminated-by: This is the separator between fields

�� lines-terminated-by: The line terminator

�� escaped-by: Used to escape characters (for example, \)

�� enclosed-by: The character enclosing fields (for example, ")

�� optionally-enclosed-by: Similar to the preceding option but not mandatory

�� mysql-delimiters: A shortcut to use the MySQL defaults

This may look a little intimidating, but it's not as obscure as the terminology may suggest, 
and the concepts and syntax should be familiar to those with SQL experience. The first few 
options are pretty self-explanatory; where it gets less clear is when talking of enclosing and 
optionally enclosing characters.

This is really about (usually free-form) data where a given field may include characters that 
have special meanings. For example, a string column in a comma-separated file that includes 
commas. In such a case, we could enclose the string columns within quotes to allow the 
commas within the field. If all fields need such enclosing characters, we would use the first 
form; if it was only required for a subset of the fields, it could be specified as optional.

Getting data out of Hadoop
We said that the data flow between Hadoop and a relational database is rarely a linear  
single direction process. Indeed the situation where data is processed within Hadoop  
and then inserted into a relational database is arguably the more common case. We will 
explore this now.

Writing data from within the reducer
Thinking about how to copy the output of a MapReduce job into a relational database,  
we find similar considerations as when looking at the question of data import into Hadoop.
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The obvious approach is to modify a reducer to generate the output for each key and its 
associated values and then to directly insert them into a database via JDBC. We do not have 
to worry about source column partitioning, as with the import case, but do still need to think 
about how much load we are placing on the database and whether we need to consider 
timeouts for long-running tasks. In addition, just as with the mapper situation, this approach 
tends to perform many single queries against the database, which is typically much less 
efficient than bulk operations.

Writing SQL import files from the reducer
Often, a superior approach is not to work around the usual MapReduce case of generating 
output files, as with the preceding example, but instead to exploit it.

All relational databases have the ability to ingest data from source files, either through 
custom tools or through the use of the LOAD DATA statement. Within the reducer, 
therefore, we can modify the data output to make it more easily ingested into our relational 
destination. This obviates the need to consider issues such as reducers placing load on the 
database or how to handle long-running tasks, but it does require a second step external to 
our MapReduce job.

A better way – Sqoop again
It probably won't come as a surprise—certainly not if you've looked at the output of Sqoop's 
inbuilt help or its online documentation—to learn that Sqoop can also be our tool of choice 
for data export from Hadoop.

Time for action – importing data from Hadoop into MySQL
Let's demonstrate this by importing data into a MySQL table from an HDFS file.

1.	 Create a tab-separated file named newemployees.tsv with the following entries: 
Frances  Operations  34000  2012-03-01
Greg  Engineering  60000  2003-11-18
Harry  Intern  22000  2012-05-15
Iris  Executive  80000  2001-04-08
Jan  Support  28500  2009-03-30

2.	 Create a new directory on HDFS and copy the file into it:
$hadoop fs -mkdir edata

$ hadoop fs -put newemployees.tsv edata/newemployees.tsv

3.	 Confirm the current number of records in the employee table:
$ echo "select count(*) from employees" | 
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mysql –u hadoopuser –p hadooptest

You will receive the following response:

Enter password: 

count(*)

5

4.	 Run a Sqoop export:
$ sqoop export --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser  -P --table employees 

--export-dir edata --input-fields-terminated-by '\t'

You will receive the following response:

12/05/27 07:52:22 INFO mapreduce.ExportJobBase: Exported 5 
records.

5.	 Check the number of records in the table after the export:
Echo "select count(*) from employees" 

| mysql -u hadoopuser -p hadooptest

You will receive the following response:

Enter password: 

count(*)

10

6.	 Check the data:

$ echo "select * from employees" 

| mysql -u hadoopuser -p hadooptest

You will receive the following response:

Enter password: 

first_name  dept  salary  start_date

Alice  Engineering  50000  2009-03-12

…

Frances  Operations  34000  2012-03-01

Greg  Engineering  60000  2003-11-18

Harry  Intern  22000  2012-05-15

Iris  Executive  80000  2001-04-08

Jan  Support  28500  2009-03-30
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What just happened?
We first created a data file containing information on five more employees. We created a 
directory for our data on HDFS into which we copied the new file.

Before running the export, we confirmed that the table in MySQL contained the original five 
employees only.

The Sqoop command has a similar structure as before with the biggest change being the use 
of the export command. As the name suggests, Sqoop exported export data from Hadoop 
into a relational database.

We used several similar options as before, mainly to specify the database connection, the 
username and password needed to connect, and the table into which to insert the data.

Because we are exporting data from HDFS, we needed to specify the location containing any 
files to be exported which we do via the --export-dir option. All files contained within 
the directory will be exported; they do not need be in a single file; Sqoop will include all files 
within its MapReduce job. By default, Sqoop uses four mappers; if you have a large number 
of files it may be more effective to increase this number; do test, though, to ensure that load 
on the database remains under control.

The final option passed to Sqoop specified the field terminator used in the source files, in this 
case, the tab character. It is your responsibility to ensure the data files are properly formatted; 
Sqoop will assume there is the same number of elements in each record as columns in the 
table (though null is acceptable), separated by the specified field separator character.

After watching the Sqoop command complete successfully, we saw it reports that it exported 
five records. We check, using the mysql tool, the number of rows now in the database and 
then view the data to confirm that our old friends are now joined by the new employees.

Differences between Sqoop imports and exports
Though similar conceptually and in the command-line invocations, there are a number of 
important differences between Sqoop imports and exports that are worth exploring.

Firstly, Sqoop imports can assume much more about the data being processed; through 
either explicitly named tables or added predicates, there is much information about both 
the structure and type of the data. Sqoop exports, however, are given only a location of 
source files and the characters used to separate and enclose fields and records. While Sqoop 
imports into Hive can automatically create a new table based on the provided table name 
and structure, a Sqoop export must be into an existing table in the relational database.
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Even though our earlier demonstration with dates and timestamps showed there are some 
sharp edges, Sqoop imports are also able to determine whether the source data complies 
with the defined column types; the data would not have been possible to insert into the 
database otherwise. Sqoop exports again only have access effectively to fields of characters 
with no understanding of the real datatype. If you have the luxury of very clean and  
well-formatted data, this may never matter, but for the rest of us, there will be a need to 
consider data exports and type conversions, particularly in terms of null and default values. 
The Sqoop documentation goes into these options in some detail and is worth a read.

Inserts versus updates
Our preceding example was very straightforward; we added an entire new set of data that 
can happily coexist with the existing contents of the table. Sqoop exports by default do a 
series of appends, adding each record as a new row in the table.

However, what if we later want to update data when, for example, our employees get 
increased salaries at the end of the year? With the database table defining first_name  
as a primary key, any attempt to insert a new row with the same name as an existing 
employee will fail with a failed primary key constraint.

In such cases, we can set the Sqoop --update-key option to specify the primary key, and 
Sqoop will generate UPDATE statements based on this key (it can be a comma-separated list 
of keys), as opposed to INSERT statements adding new rows.

In this mode, any record that does not match an existing key value will 
silently be ignored, and Sqoop will not flag errors if a statement updates 
more than one row.

If we also want the option of an update that adds new rows for non-existing data, we can set 
the --update-mode option to allowinsert.

Have a go hero
Create another data file that contains three new employees as well as updated salaries for 
two of the existing employees. Use Sqoop in import mode to both add the new employees 
as well as apply the needed updates.

Sqoop and Hive exports
Given the preceding example, it may not be surprising to learn that Sqoop does not currently 
have any direct support to export a Hive table into a relational database. More precisely, 
there are no explicit equivalents to the --hive-import option we used earlier.
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However, in some cases, we can work around this. If a Hive table is storing its data in text 
format, we could point Sqoop at the location of the table data files on HDFS. In case of tables 
referring to external data, this may be straightforward, but once we start seeing Hive tables 
with complex partitioning, the directory structure becomes more involved.

Hive can also store tables as binary SequenceFiles, and a current limitation is that Sqoop 
cannot transparently export from tables stored in this format.

Time for action – importing Hive data into MySQL
Regardless of these limitations, let's demonstrate that, in the right situations, we can use 
Sqoop to directly export data stored in Hive.

1.	 Remove any existing data in the employee table:
$ echo "truncate employees" | mysql –u hadoopuser –p hadooptest

You will receive the following response:

Query OK, 0 rows affected (0.01 sec)

2.	 Check the contents of the Hive warehouse for the employee table:
$ hadoop fs –ls /user/hive/warehouse/employees

You will receive the following response:

Found 1 items

… /user/hive/warehouse/employees/part-m-00000

3.	 Perform the Sqoop export:

sqoop export --connect jdbc:mysql://10.0.0.100/hadooptest 

--username hadoopuser –P --table employees \

--export-dir /user/hive/warehouse/employees  

--input-fields-terminated-by '\001' 

--input-lines-terminated-by '\n'
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What just happened?
Firstly, we truncated the employees table in MySQL to remove any existing data and then 
confirmed the employee table data was where we expected it to be.

Note that Sqoop may also create an empty file in this directory with the 
suffix _SUCCESS; if this is present it should be deleted before running 
the Sqoop export.
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The Sqoop export command is like before; the only changes are the different source 
location for the data and the addition of explicit field and line terminators. Recall that  
Hive, by default, uses ASCII code 001 and \n for its field and line terminators, respectively 
(also recall, though, that we have previously imported files into Hive with other separators, 
so this is something that always needs to be checked).

We execute the Sqoop command and watch it fail due to Java 
IllegalArgumentExceptions when trying to create instances of java.sql.Date.

We are now hitting the reverse of the problem we encountered earlier; the original type  
in the source MySQL table had a datatype not supported by Hive, and we converted the  
data to match the available type of TIMESTAMP. When exporting data back again, however, 
we are now trying to create a DATE using a TIMESTAMP value, which is not possible without 
some conversion.

The lesson here is that our earlier approach of doing a one-way conversion only worked 
for as long as we only had data flowing in one direction. As soon as we need bi-directional 
data transfer, mismatched types between Hive and the relational store add complexity and 
require the insertion of conversion routines.

Time for action – fixing the mapping and re-running the export
In this case, however, let us do what probably makes more sense—modifying the definition 
of the employee table to make it consistent in both data sources.

1.	 Start the mysql utility:
$ mysql -u hadoopuser -p hadooptest

Enter password: 

2.	 Change the type of the start_date column:
mysql> alter table employees modify column start_date timestamp;

You will receive the following response:

Query OK, 0 rows affected (0.02 sec)

Records: 0  Duplicates: 0  Warnings: 0
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3.	 Display the table definition:
mysql> describe employees; 

4.	 Quit the mysql tool:
mysql> quit;

5.	 Perform the Sqoop export:
sqoop export --connect jdbc:mysql://10.0.0.100/hadooptest 
--username hadoopuser –P –table employees

--export-dir /user/hive/warehouse/employees 

--input-fields-terminated-by '\001' 

--input-lines-terminated-by '\n'

You will receive the following response:

12/05/27 09:17:39 INFO mapreduce.ExportJobBase: Exported 10 
records.
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6.	 Check the number of records in the MySQL database:

$ echo "select count(*) from employees" 

| mysql -u hadoopuser -p hadooptest

You will receive the following output:

Enter password: 

count(*)

10

What just happened?
Before trying the same Sqoop export as last time, we used the mysql tool to connect to 
the database and modify the type of the start_date column. Note, of course, that such 
changes should never be made casually on a production system, but given that we have a 
currently empty test table, there are no issues here.

After making the change, we re-ran the Sqoop export and this time it succeeded.

Other Sqoop features
Sqoop has a number of other features that we won't discuss in detail, but we'll highlight 
them so the interested reader can look them up in the Sqoop documentation.

Incremental merge
The examples we've used have been all-or-nothing processing that, in most cases, make the 
most sense when importing data into empty tables. There are mechanisms to handle additions, 
but if we foresee Sqoop performing ongoing imports, some additional support is available.

Sqoop supports the concept of incremental imports where an import task is additionally 
qualified by a date and only records more recent than that date are processed by the task. 
This allows the construction of long-running workflows that include Sqoop.

Avoiding partial exports
We've already seen how errors can occur when exporting data from Hadoop into a relational 
database. For us, it wasn't a significant problem as the issue caused all exported records to 
fail. But it isn't uncommon for only part of an export to fail and result in partially committed 
data in the database.
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To mitigate this risk, Sqoop allows the use of a staging table; it loads all the data into this 
secondary table, and only after all data is successfully inserted, performs the move into the 
main table in a single transaction. This can be very useful for failure-prone workloads but 
does come with some important restrictions, such as the inability to support update mode. 
For very large imports, there are also performance and load impacts on the RDBMS of a 
single very long-running transaction.

Sqoop as a code generator
We've been ignoring an error during Sqoop processing that we casually brushed off a while 
ago—the exception thrown because the generated code required by Sqoop already exists.

When performing an import, Sqoop generates Java class files that provide a programmatic 
means of accessing the fields and records in the created files. Sqoop uses these classes 
internally, but they can also be used outside of a Sqoop invocation, and indeed, the  
Sqoop codegen command can regenerate the classes outside of an export task.

AWS considerations
We've not mentioned AWS so far in this chapter as there's been nothing in Sqoop that either 
supports or prevents its use on AWS. We can run Sqoop on an EC2 host as easily as on a 
local one, and it can access either a manually or EMR-created Hadoop cluster optionally 
running Hive. The only possible quirk when considering use in AWS is security group access 
as many default EC2 configurations will not allow traffic on the ports used by most relational 
databases (3306 by default for MySQL). But, that's no more of an issue than if our Hadoop 
cluster and MySQL database were to be located on different sides of a firewall or any other 
network security boundary.

Considering RDS
There is another AWS service that we've not mentioned before that does deserve an 
introduction now. Amazon Relational Database Service (RDS) offers hosted relational 
databases in the cloud and provides MySQL, Oracle, and Microsoft SQL Server options. 
Instead of having to worry about the installation, configuration, and management of a 
database engine, RDS allows an instance to be started from either the console or command-
line tools. You then just point your database client tool at the database and start creating 
tables and manipulating data.

RDS and EMR are a powerful combination, providing hosted services that take much of the 
pain out of manually managing such services. If you need a relational database but don't 
want to worry about its management, RDS may be for you.
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The RDS and EMR combination can be particularly powerful if you use EC2 hosts to generate 
data or store data in S3. Amazon has a general policy that there is no cost for data transfer 
from one service to another within a single region. Consequently, it's possible to have a fleet 
of EC2 hosts generating large data volumes that get pushed into a relational database in RDS 
for query access and are stored in EMR for archival and long-term analytics. Getting data into 
the storage and processing systems is often a technically challenging activity that can easily 
consume significant expense if the data needs be moved across commercial network links. 
Architectures built atop collaborating AWS services such as EC2, RDS, and EMR can minimize 
both these concerns.

Summary
In this chapter, we have looked at the integration of Hadoop and relational databases. In 
particular, we explored the most common use cases and saw that Hadoop and relational 
databases can be highly complimentary technologies. We considered ways of exporting  
data from a relational database onto HDFS files and realized that issues such as primary  
key column partitioning and long-running tasks make it harder than it first seems.

We then introduced Sqoop, a Cloudera tool now donated to the Apache Software Foundation 
and that provides a framework for such data migration. We used Sqoop to import data from 
MySQL into HDFS and then Hive, highlighting how we must consider aspects of datatype 
compatibility in such tasks. We also used Sqoop to do the reverse—copying data from HDFS 
into a MySQL database—and found out that this path has more subtle considerations than 
the other direction, briefly discussed issues of file formats and update versus insert tasks, and 
introduced additional Sqoop capabilities, such as code generation and incremental merging.

Relational databases are an important—often critical—part of most IT infrastructures.  
But, they aren't the only such component. One that has been growing in importance—often 
with little fanfare—is the vast quantities of log files generated by web servers and other 
applications. The next chapter will show how Hadoop is ideally suited to process and  
store such data.



10
Data Collection with Flume

In the previous two chapters, we've seen how Hive and Sqoop give a  
relational database interface to Hadoop and allow it to exchange data with 
"real" databases. Although this is a very common use case, there are, of course,  
many different types of data sources that we may want to get into Hadoop.

In this chapter, we will cover:

�� An overview of data commonly processed in Hadoop

�� Simple approaches to pull this data into Hadoop

�� How Apache Flume can make this task a lot easier

�� Common patterns for simple through sophisticated, Flume setups

�� Common issues, such as the data lifecycle, that need to be considered  
regardless of technology

A note about AWS
This chapter will discuss AWS less than any other in the book. In fact, we won't even mention 
it after this section. There are no Amazon services akin to Flume so there is no AWS-specific 
product that we could explore. On the other hand, when using Flume, it works exactly 
the same, be it on a local host or EC2 virtual instance. The rest of this chapter, therefore, 
assumes nothing about the environment on which the examples are executed; they will 
perform identically on each.
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Data data everywhere...
In discussions concerning integration of Hadoop with other systems, it is easy to think of it as 
a one-to-one pattern. Data comes out of one system, gets processed in Hadoop, and then is 
passed onto a third.

Things may be like that on day one, but the reality is more often a series of collaborating 
components with data flows passing back and forth between them. How we build this 
complex network in a maintainable fashion is the focus of this chapter.

Types of data
For the sake of the discussion, we will categorize data into two broad categories:

�� Network traffic, where data is generated by a system and sent across a network 
connection

�� File data, where data is generated by a system and written to files on a  
filesystem somewhere

We don't assume these data categories are different in any way other than how the data  
is retrieved.

Getting network traffic into Hadoop
When we say network data, we mean things like information retrieved from a web server 
via an HTTP connection, database contents pulled by a client application, or messages sent 
across a data bus. In each case, the data is retrieved by a client application that either pulls 
the data across the network or listens for its arrival.

In several of the following examples, we will use the curl utility to 
either retrieve or send network data. Ensure that it is installed on your 
system and install it if not.

Time for action – getting web server data into Hadoop
Let's take a look at how we can simplistically copy data from a web server onto HDFS.

1.	 Retrieve the text of the NameNode web interface to a local file:
$ curl localhost:50070 > web.txt

2.	 Check the file size:
$ ls -ldh web.txt 
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You will receive the following response:

-rw-r--r-- 1 hadoop hadoop 246 Aug 19 08:53 web.txt

3.	 Copy the file to HDFS:
$ hadoop fs -put web.txt web.txt

4.	 Check the file on HDFS:

$ hadoop fs -ls 

You will receive the following response:

Found 1 items

-rw-r--r--   1 hadoop supergroup        246 2012-08-19 08:53 /
user/hadoop/web.txt

What just happened?
There shouldn't be anything that is surprising here. We use the curl utility to retrieve a  
web page from the embedded web server hosting the NameNode web interface and save  
it to a local file. We check the file size, copy it to HDFS, and verify the file has been 
transferred successfully.

The point of note here is not the series of actions—it is after all just another use of the 
hadoop fs command we have used since Chapter 2, Getting Up and Running—rather  
the pattern used is what we should discuss.

Though the data we wanted was in a web server and accessible via the HTTP protocol,  
the out of the box Hadoop tools are very file-based and do not have any intrinsic support  
for such remote information sources. This is why we need to copy our network data into a 
file before transferring it to HDFS.

We can, of course, write data directly to HDFS through the programmatic interface 
mentioned back in Chapter 3, Writing MapReduce Jobs, and this would work well.  
This would, however, require us to start writing custom clients for every different  
network source from which we need to retrieve data.

Have a go hero
Programmatically retrieving data and writing it to HDFS is a very powerful capability 
and worth some exploration. A very popular Java library for HTTP is the Apache 
HTTPClient, within the HTTP Components project found at http://hc.apache.org/
httpcomponents-client-ga/index.html.
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Use the HTTPClient and the Java HDFS interface to retrieve a web page as before and write it 
to HDFS.

Getting files into Hadoop
Our previous example showed the simplest method for getting file-based data into Hadoop 
and the use of the standard command-line tools or programmatic APIs. There is little else to 
discuss here, as it is a topic we have dealt with throughout the book.

Hidden issues
Though the preceding approaches are good as far as they go, there are several reasons why 
they may be unsuitable for production use.

Keeping network data on the network
Our model of copying network-accessed data to a file before placing it on HDFS will  
have an impact on performance. There is added latency due to the round-trip to disk,  
the slowest part of a system. This may not be an issue for large amounts of data retrieved  
in one call—though disk space potentially becomes a concern—but for small amounts of 
data retrieved at high speed, it may become a real problem.

Hadoop dependencies
For the file-based approach, it is implicit in the model mentioned before that the point at 
which we can access the file must have access to the Hadoop installation and be configured 
to know the location of the cluster. This potentially adds additional dependencies in the 
system; this could force us to add Hadoop to hosts that really need to know nothing about it. 
We can mitigate this by using tools like SFTP to retrieve the files to a Hadoop-aware machine 
and from there, copy onto HDFS.

Reliability
Notice the complete lack of error handling in the previous approaches. The tools we are 
using do not have built-in retry mechanisms which means we would need to wrap a degree 
of error detection and retry logic around each data retrieval.

Re-creating the wheel
This last point touches on perhaps the biggest issue with these ad hoc approaches; it is  
very easy to end up with a dozen different strings of command-line tools and scripts, each 
of which is doing very similar tasks. The potential costs in terms of duplicate effort and more 
difficult error tracking can be significant over time.
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A common framework approach
Anyone with experience in enterprise computing will, at this point, be thinking that this 
sounds like a problem best solved with some type of common integration framework.  
This is exactly correct and is indeed a general type of product well known in fields such  
as Enterprise Application Integration (EAI).

What we need though is a framework that is Hadoop-aware and can easily integrate with 
Hadoop (and related projects) without requiring massive effort in writing custom adaptors. 
We could create our own, but instead let's look at Apache Flume which provides much of 
what we need.

Introducing Apache Flume
Flume, found at http://flume.apache.org, is another Apache project with tight Hadoop 
integration and we will explore it for the remainder of this chapter.

Before we explain what Flume can do, let's make it clear what it is not. Flume is described 
as a system for the retrieval and distribution of logs, meaning line-oriented textual data. It is 
not a generic data-distribution platform; in particular, don't look to use it for the retrieval or 
movement of binary data.

However, since the vast majority of the data processed in Hadoop matches this description, 
it is likely that Flume will meet many of your data retrieval needs.

Flume is also not a generic data serialization framework like Avro that we used 
in Chapter 5, Advanced MapReduce Techniques, or similar technologies such as 
Thrift and Protocol Buffers. As we'll see, Flume makes assumptions about the 
data format and provides no ways of serializing data outside of these.

Flume provides mechanisms for retrieving data from multiple sources, passing it to remote 
locations (potentially multiple locations in either a fan-out or pipeline model), and then 
delivering it to a variety of destinations. Though it does have a programmatic API that allows 
the development of custom sources and destinations, the base product has built-in support 
for many of the most common scenarios. Let's install it and take a look.

A note on versioning
Flume has gone through some major changes in recent times. The original Flume 
(now renamed Flume OG for Original Generation) is being superseded by Flume NG 
(Next Generation). Though the general principles and capabilities are very similar, the 
implementation is quite different.

http://flume.apache.org
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Because Flume NG is the future, we will cover it in this book. For some time though, it 
will lack several of the features of the more mature Flume OG, so if you find a specific 
requirement that Flume NG doesn't meet then it may be worth looking at Flume OG.

Time for action – installing and configuring Flume
Let's get Flume downloaded and installed.

1.	 Retrieve the most recent Flume NG binary from http://flume.apache.org/ and 
download and save it to the local filesystem.

2.	 Move the file to the desired location and uncompress it:
$ mv apache-flume-1.2.0-bin.tar.gz /opt

$ tar -xzf /opt/apache-flume-1.2.0-bin.tar.gz

3.	 Create a symlink to the installation:
$ ln -s /opt/apache-flume-1.2.0 /opt/flume

4.	 Define the FLUME_HOME environment variable:
Export FLUME_HOME=/opt/flume

5.	 Add the Flume bin directory to your path:
Export PATH=${FLUME_HOME}/bin:${PATH}

6.	 Verify that JAVA_HOME is set:
Echo ${JAVA_HOME}

7.	 Verify that the Hadoop libraries are in the classpath:
$ echo ${CLASSPATH}

8.	 Create the directory that will act as the Flume conf directory:
$ mkdir /home/hadoop/flume/conf

9.	 Copy the needed files into the conf directory:
$ cp /opt/flume/conf/log4j.properties /home/hadoop/flume/conf

$ cp /opt/flume/conf/flume-env.sh.sample /home/hadoop/flume/conf/
flume-env.sh

10.	Edit flume-env.sh and set JAVA_HOME.

http://flume.apache.org/
http://flume.apache.org/
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What just happened?
The Flume installation is straightforward and has similar prerequisites to previous tools we 
have installed.

Firstly, we retrieved the latest version of Flume NG (any version of 1.2.x or later will do) and 
saved it to the local filesystem. We moved it to the desired location, uncompressed it, and 
created a convenience symlink to the location.

We needed to define the FLUME_HOME environment variable and add the bin directory 
within the installation directory to our classpath. As before, this can be done directly on  
the command line or within convenience scripts.

Flume requires JAVA_HOME to be defined and we confirmed this is the case. It also requires 
Hadoop libraries, so we checked that the Hadoop classes are in the classpath.

The last steps are not strictly necessary for demonstration though will be used in production. 
Flume looks for a configuration directory within which are files defining the default logging 
properties and environment setup variables (such as JAVA_HOME). We find Flume performs 
most predictably when this directory is properly set up, so we did this now and don't need  
to change it much later.

We assumed /home/hadoop/flume is the working directory within which the  
Flume configuration and other files will be stored; change this based on what's  
appropriate for your system.

Using Flume to capture network data
Now that we have Flume installed, let's use it to capture some network data.

Time for action – capturing network traffic in a log file
In the first instance, let's use a simple Flume configuration that will capture the network data 
to the main Flume log file.

1.	 Create the following file as agent1.conf within your Flume working directory:
agent1.sources = netsource
agent1.sinks = logsink
agent1.channels = memorychannel

agent1.sources.netsource.type = netcat
agent1.sources.netsource.bind = localhost
agent1.sources.netsource.port = 3000
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agent1.sinks.logsink.type = logger

agent1.channels.memorychannel.type = memory
agent1.channels.memorychannel.capacity = 1000
agent1.channels.memorychannel.transactionCapacity = 100

agent1.sources.netsource.channels = memorychannel
agent1.sinks.logsink.channel = memorychannel

2.	 Start a Flume agent:
$ flume-ng agent --conf conf --conf-file 10a.conf  --name agent1 

The output of the preceding command can be shown in the following screenshot:
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3.	 In another window, open a telnet connection to port 3000 on the local host and 
then type some text:
$ curl telnet://localhost:3000

Hello

OK

Flume!

OK

4.	 Close the curl connection with Ctrl + C.

5.	 Look at the Flume log file:

$ tail flume.log

You will receive the following response:

2012-08-19 00:37:32,702 INFO sink.LoggerSink: Event: { headers:{} 
body: 68 65 6C 6C 6F                                  Hello }

2012-08-19 00:37:32,702 INFO sink.LoggerSink: Event: { headers:{} 
body: 6D 65                                           Flume }

What just happened?
Firstly, we created a Flume configuration file within our Flume working directory. We'll go 
into this in more detail later, but for now, think of Flume receiving data through a component 
called a source and writing it to a destination called a sink.

In this case, we create a Netcat source which listens on a port for network connections.  
You can see we configure it to bind to port 3000 on the local machine.

The configured sink is of the type logger which, not surprisingly, writes its output to a  
log file. The rest of the configuration file defines an agent called agent1, which uses this 
source and sink.

We then start a Flume agent by using the flume-ng binary. This is the tool we'll use to 
launch all Flume processes. Note that we give a few options to this command:

�� The agent argument tells Flume to start an agent, which is the generic name  
for a running Flume process involved in data movement

�� The conf directory, as mentioned earlier

�� The particular configuration file for the process we are going to launch

�� The name of the agent within the configuration file
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The agent will start and no further output will appear on that screen. (Obviously, we would 
run the process in the background in a production setting.)

In another window, we open a telnet connection to port 3000 on the local machine using 
the curl utility. The traditional way of opening such sessions is of course the telnet program 
itself, but many Linux distributions have curl installed by default; almost none use the older 
telnet utility.

We type a word on each line and hit Enter then kill the session with a Ctrl + C command. 
Finally, we look at the flume.log file that is being written into the Flume working directory 
and see an entry for each of the words we typed in.

Time for action – logging to the console
It's not always convenient to have to look at log files, particularly when we already have the 
agent screen open. Let's modify the agent to also log events to the screen.

1.	 Restart the Flume agent with an additional argument:
$ flume-ng agent --conf conf --conf-file 10a.conf --name agent1 
-Dflume.root.logger=INFO,console

You will receive the following response:

Info: Sourcing environment configuration script /home/hadoop/
flume/conf/flume-env.sh

…

org.apache.flume.node.Application --conf-file 10a.conf --name 
agent1

2012-08-19 00:41:45,462 (main) [INFO - org.apache.flume.lifecycle.
LifecycleSupervisor.start(LifecycleSupervisor.java:67)] Starting 
lifecycle supervisor 1

2.	 In another window, connect to the server via curl:
$ curl telnet://localhost:3000

3.	 Type in Hello and Flume on separate lines, hit Ctrl + C, and then check the  
agent window:

telnet://localhost:3000
telnet://localhost:3000
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What just happened?
We added this example as it becomes very useful when debugging or creating new flows.

As seen in the previous example, Flume will, by default, write its logs to a file on the 
filesystem. More precisely, this is the default behavior as specified within the log4j property 
file within our conf directory. Sometimes we want more immediate feedback without 
constantly looking at log files or having to change the property file.

By explicitly setting the flume.root.logger variable on the command line, we can override 
the default logger configuration and have the output sent directly to the agent window. The 
logger is standard log4j, so the usual log levels such as DEBUG and INFO are supported.
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Writing network data to log files
The default log sink behavior of Flume writing its received data into log files has some 
limitations, particularly if we want to use the captured data in other applications.  
By configuring a different type of sink, we can instead write the data into more  
consumable data files.

Time for action – capturing the output of a command to a flat file
Let's show this in action, along the way demonstrating a new kind of source as well.

1.	 Create the following file as agent2.conf within the Flume working directory:
agent2.sources = execsource
agent2.sinks = filesink
agent2.channels = filechannel

agent2.sources.execsource.type = exec
agent2.sources.execsource.command = cat /home/hadoop/message

agent2.sinks.filesink.type = FILE_ROLL
agent2.sinks.filesink.sink.directory = /home/hadoop/flume/files
agent2.sinks.filesink.sink.rollInterval = 0

agent2.channels.filechannel.type = file
agent2.channels.filechannel.checkpointDir = /home/hadoop/flume/fc/
checkpoint
agent2.channels.filechannel.dataDirs = /home/hadoop/flume/fc/data

agent2.sources.execsource.channels = filechannel
agent2.sinks.filesink.channel = filechannel

2.	 Create a simple test file in the home directory:
$ echo "Hello again Flume!" > /home/hadoop/message

3.	 Start the agent:
$ flume-ng agent --conf conf --conf-file agent2.conf --name agent2

4.	 In another window, check file sink output directory:
$ ls files

$ cat files/*
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The output of the preceding command can be shown in the following screenshot:

What just happened?
The previous example follows a similar pattern as before. We created the configuration file 
for a Flume agent, ran the agent, and then confirmed it had captured the data we expected.

This time we used an exec source and a file_roll sink. The former, as the name suggests, 
executes a command on the host and captures its output as the input to the Flume agent. 
Although, in the previous case, the command is executed only once, this was for illustration 
purposes only. More common uses will use commands that produce an ongoing stream of 
data. Note that the exec sink can be configured to restart the command if it does terminate.

The output of the agent is written to a file as specified in the configuration file. By default, 
Flume rotates (rolls) to a new file every 30 seconds; we disable this capability to make it 
easier to track what's going on in a single file.

We see the file does indeed contain the output of the specified exec command.

Logs versus files
It may not be immediately obvious why Flume has both log and file sinks. Conceptually  
both do the same thing, so what's the difference?

The logger sink in reality is more of a debug tool than anything else. It doesn't just  
record the information captured by the source, but adds a lot of additional metadata  
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and events. The file sink however records the input data exactly as it was received with  
no alteration—though such is possible if required as we will see later.

In most cases, you'll want the file sink to capture the input data but the log may also be of 
use in non-production situations depending on your needs.

Time for action – capturing a remote file in a local flat file
Let's show another example of capturing data to a file sink. This time we will use another 
Flume capability that allows it to receive data from a remote client.

1.	 Create the following file as agent3.conf in the Flume working directory:
agent3.sources = avrosource
agent3.sinks = filesink
agent3.channels = jdbcchannel

agent3.sources.avrosource.type = avro
agent3.sources.avrosource.bind = localhost
agent3.sources.avrosource.port = 4000
agent3.sources.avrosource.threads = 5

agent3.sinks.filesink.type = FILE_ROLL
agent3.sinks.filesink.sink.directory = /home/hadoop/flume/files
agent3.sinks.filesink.sink.rollInterval = 0

agent3.channels.jdbcchannel.type = jdbc

agent3.sources.avrosource.channels = jdbcchannel
agent3.sinks.filesink.channel = jdbcchannel

2.	 Create a new test file as /home/hadoop/message2:
Hello from Avro!

3.	 Start the Flume agent:
$ flume-ng agent –conf conf –conf-file agent3.conf –name agent3 

4.	 In another window, use the Flume Avro client to send a file to the agent:
$ flume-ng avro-client -H localhost -p 4000 -F /home/hadoop/
message

5.	 As before, check the file in the configured output directory:

$ cat files/*
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The output of the preceding command can be shown in following screenshot:

What just happened?
As before, we created a new configuration file and this time used an Avro source for the agent. 
Recall from Chapter 5, Advanced MapReduce Techniques, that Avro is a data serialization 
framework; that is, it manages the packaging and transport of data from one point to another 
across the network. Similarly to the Netcat source, the Avro source requires configuration 
parameters that specify its network settings. In this case, it will listen on port 4000 on the local 
machine. The agent is configured to use the file sink as before and we start it up as usual.

Flume comes with both an Avro source and a standalone Avro client. The latter can be used 
to read a file and send it to an Avro source anywhere on the network. In our example, we 
just use the local machine, but note that the Avro client requires the explicit hostname and 
port of the Avro source to which it should send the file. So this is not a constraint; an Avro 
client can send files to a listening Flume Avro source anywhere on the network.

The Avro client reads the file, sends it to the agent, and this gets written to the file sink. We 
check this behavior by confirming that the file contents are in the file sink location as expected.
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Sources, sinks, and channels
We intentionally used a variety of sources, sinks, and channels in the previous examples 
just to show how they can be mixed and matched. However, we have not explored them—
especially channels—in much detail. Let's dig a little deeper now.

Sources
We've looked at three sources: Netcat, exec, and Avro. Flume NG also supports a sequence 
generator source (mostly for testing) as well as both TCP and UDP variants of a source that 
reads syslogd data. Each source is configured within an agent and after receiving enough 
data to produce a Flume event, it sends this newly created event to the channel to which the 
source is connected. Though a source may have logic relating to how it reads data, translates 
events, and handles failure situations, the source has no knowledge of how the event is to be 
stored. The source has the responsibility of delivering the event to the configured channel, 
and all other aspects of the event processing are invisible to the source.

Sinks
In addition to the logger and file roll sinks we used previously, Flume also supports sinks for 
HDFS, HBase (two types), Avro (for agent chaining), null (for testing), and IRC (for an Internet 
Relay Chat service). The sink is conceptually similar to the source but in reverse.

The sink waits for events to be received from the configured channel about whose inner 
workings it knows nothing. On receipt, the sink handles the output of the event to its 
particular destination, managing all issues around time outs, retries, and rotation.

Channels
So what are these mysterious channels that connect the source and sink? They are, as 
the name and configuration entries before suggest, the communication and retention 
mechanism that manages event delivery.

When we define a source and a sink, there may be significant differences in how they read 
and write data. An exec source may, for example, receive data much faster than a file roll sink 
can write it or the source may have times (such as when rolling to a new file or dealing with 
system I/O congestion) that writing needs be paused. The channel, therefore, needs buffer 
data between the source and sink to allow data to stream through the agent as efficiently 
as possible. This is why the channel configuration portions of our configuration files include 
elements such as capacity.

The memory channel is the easiest to understand as the events are read from the source 
into memory and passed to the sink as it is able to receive them. But if the agent process 
dies mid-way through the process (be it due to software or hardware failure), then all the 
events currently in the memory channel are lost forever.
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The file and JDBC channels that we also used provide persistent storage of events to prevent 
such loss. After reading an event from a source, the file channel writes the contents to a file 
on the filesystem that is deleted only after successful delivery to the sink. Similarly, the JDBC 
channel uses an embedded Derby database to store events in a recoverable fashion.

This is a classic performance versus reliability trade-off. The memory channel is the fastest 
but has the risk of data loss. The file and JDBC channels are typically much slower but 
effectively provide guaranteed delivery to the sink. Which channel you choose depends  
on the nature of the application and the values of each event.

Don't worry too much about this trade-off; in the real world, the answer 
is usually obvious. Also be sure to look carefully at the reliability of the 
source and sink being used. If those are unreliable and you drop events 
anyway, do you gain much from a persistent channel?

Or roll your own
Don't feel limited by the existing collection of sources, sinks, and channels. Flume offers 
an interface to define your own implementation of each. In addition, there are a few 
components present in Flume OG that have not yet been incorporated into Flume NG  
but may appear in the future.

Understanding the Flume configuration files
Now that we've talked through sources, sinks, and channels, let's take a look at one of  
the configuration files from earlier in a little more detail:

agent1.sources = netsource
agent1.sinks = logsink
agent1.channels = memorychannel

These first lines name the agent and define the sources, sinks, and channels associated  
with it. We can have multiple values on each line; the values are space separated:

agent1.sources.netsource.type = netcat
agent1.sources.netsource.bind = localhost
agent1.sources.netsource.port = 3000

These lines specify the configuration for the source. Since we are using the Netcat source, 
the configuration values specify how it should bind to the network. Each type of source  
has its own configuration variables.

agent1.sinks.logsink.type = logger
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This specifies the sink to be used is the logger sink which is further configured via the 
command line or the log4j property file.

agent1.channels.memorychannel.type = memory
agent1.channels.memorychannel.capacity = 1000
agent1.channels.memorychannel.transactionCapacity = 100
These lines specify the channel to be used and then add the type 
specific configuration values.  In this case we are using the memory 
channel and we specify its capacity but – since it is non-persistent – 
no external storage mechanism.
agent1.sources.netsource.channels = memorychannel
agent1.sinks.logsink.channel = memorychannel

These last lines configure the channel to be used for the source and sink. Though we used 
different configuration files for our different agents, we could just as easily place all the 
elements in a single configuration file as the respective agent names provide the necessary 
separation. This can, however, produce a pretty verbose file which can be a little intimidating 
when you are just learning Flume. We can also have multiple flows within a given agent, we 
could, for example, combine the first two preceding examples into a single configuration file 
and agent.

Have a go hero
Do just that! Create a configuration file that specifies the capabilities of both our previous 
agent1 and agent2 from the preceding example in a single composite agent that contains:

�� A Netcat source and its associated logger sink

�� An exec source and its associated file sink

�� Two memory channels, one for each of the source/sink pairs mentioned before

To get you started, here's how the component definitions could look:

agentx.sources = netsource execsource
agentx.sinks = logsink filesink
agentx.channels = memorychannel1 memorychannel2

It's all about events
Let's discuss one more definition before we try another example. Just what is an event?

Remember that Flume is explicitly based around log files, so in most cases, an event equates 
to a line of text followed by a new line character. That is the behavior we've seen with the 
sources and sinks we've used.
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This isn't always the case, however, the UDP syslogd source, for example, treats each packet 
of data received as a single event, which gets passed through the system. When using these 
sinks and sources, however, these definitions of events are unchangeable and when reading 
files, for example, we have no choice but to use line-based events.

Time for action – writing network traffic onto HDFS
This discussion of Flume in a book about Hadoop hasn't actually used Hadoop at all so far. 
Let's remedy that by writing data onto HDFS via Flume.

1.	 Create the following file as agent4.conf within the Flume working directory:
agent4.sources = netsource
agent4.sinks = hdfssink
agent4.channels = memorychannel

agent4.sources.netsource.type = netcat
agent4.sources.netsource.bind = localhost
agent4.sources.netsource.port = 3000

agent4.sinks.hdfssink.type = hdfs
agent4.sinks.hdfssink.hdfs.path = /flume
agent4.sinks.hdfssink.hdfs.filePrefix = log
agent4.sinks.hdfssink.hdfs.rollInterval = 0
agent4.sinks.hdfssink.hdfs.rollCount = 3
agent4.sinks.hdfssink.hdfs.fileType = DataStream

agent4.channels.memorychannel.type = memory
agent4.channels.memorychannel.capacity = 1000
agent4.channels.memorychannel.transactionCapacity = 100

agent4.sources.netsource.channels = memorychannel
agent4.sinks.hdfssink.channel = memorychannel

2.	 Start the agent:
$ flume-ng agent –conf conf –conf-file agent4.conf –name agent4 

3.	 In another window, open a telnet connection and send seven events to Flume:
$ curl telnet://localhost:3000

4.	 Check the contents of the directory specified in the Flume configuration file and 
then examine the file contents:

$ hadoop fs -ls /flume

$ hadoop fs –cat "/flume/*"
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The output of the preceding command can be shown in the following screenshot:

What just happened?
This time we paired a Netcat source with the HDFS sink. As can be seen from the 
configuration file, we need to specify aspects such as the location for the files, any file prefix, 
and the strategy for rolling from one file to another. In this case, we specified files within the 
/flume directory, each starting with log- and with a maximum of three entries in each file 
(obviously, such a low value is for testing only).

After starting the agent, we use curl once more to send seven single word events to Flume. 
We then used the Hadoop command-line utility to look at the directory contents and verify 
that our input data was being written to HDFS.

Note that the third HDFS file has a .tmp extension. Remember that we specified three 
entries per file but only input seven values. We, therefore, filled up two files and started 
on another. Flume gives the file currently being written a .tmp extension, which makes it 
easy to differentiate the completed files from in-progress files when specifying which files to 
process via MapReduce jobs.
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Time for action – adding timestamps
We mentioned earlier that there were mechanisms to have file data written in slightly more 
sophisticated ways. Let's do something very common and write our data into a directory with 
a dynamically-created timestamp.

1.	 Create the following configuration file as agent5.conf:
agent5.sources = netsource
agent5.sinks = hdfssink
agent5.channels = memorychannel

agent5.sources.netsource.type = netcat
agent5.sources.netsource.bind = localhost
agent5.sources.netsource.port = 3000
agent5.sources.netsource.interceptors = ts

agent5.sources.netsource.interceptors.ts.type = org.apache.flume.
interceptor.TimestampInterceptor$Builder

agent5.sinks.hdfssink.type = hdfs
agent5.sinks.hdfssink.hdfs.path = /flume-%Y-%m-%d
agent5.sinks.hdfssink.hdfs.filePrefix = log-
agent5.sinks.hdfssink.hdfs.rollInterval = 0
agent5.sinks.hdfssink.hdfs.rollCount = 3
agent5.sinks.hdfssink.hdfs.fileType = DataStream

agent5.channels.memorychannel.type = memory
agent5.channels.memorychannel.capacity = 1000
agent5.channels.memorychannel.transactionCapacity = 100

agent5.sources.netsource.channels = memorychannel
agent5.sinks.hdfssink.channel = memorychannel

2.	 Start the agent:
$ flume-ng agent –conf conf –conf-file agent5.conf –name agent5

3.	 In another window, open up a telnet session and send seven events to Flume:
$ curl telnet://localhost:3000

4.	 Check the directory name on HDFS and the files within it:

$ hadoop fs -ls /

telnet://localhost:3000


Data Collection with Flume

[ 336 ]

The output of the preceding code can be shown in the following screenshot:

What just happened?
We made a few changes to the previous configuration file. We added an  
interceptor specification to the Netcat source and gave its implementation  
class as TimestampInterceptor.

Flume interceptors are plugins that can manipulate and modify events before they  
pass from the source to the channel. Most interceptors either add metadata to the  
event (as in this case) or drop events based on certain criteria. In addition to several  
inbuilt interceptors, there is naturally a mechanism for user-defined interceptors.

We used the timestamp interceptor here which adds to the event metadata the Unix 
timestamp at the time the event is read. This allows us to extend the definition of the  
HDFS path into which events are to be written.
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While previously we simply wrote all events to the /flume directory, we now specified the 
path as /flume-%Y-%m-%d. After running the agent and sending some data to Flume, we 
looked at HDFS and saw that these variables have been expanded to give the directory a 
year/month/date suffix.

The HDFS sink supports many other variables such as the hostname of the source and 
additional temporal variables that can allow precise partitioning to the level of seconds.

The utility here is plain; instead of having all events written into a single directory that becomes 
enormous over time, this simple mechanism can give automatic partitioning, making data 
management easier but also providing a simpler interface to the data for MapReduce jobs. If, 
for example, most of your MapReduce jobs process hourly data, then having Flume partition 
incoming events into hourly directories will make your life much easier.

To be precise, the event passing through Flume has had a complete Unix timestamp added, 
that is, accurate to the nearest second. In our example, we used only date-related variables 
in the directory specification, if hourly or finer-grained directory partitioning is required, then 
the time-related variables would be used.

This assumes that the timestamp at the point of processing is sufficient for 
your needs. If files are being batched and then fed to Flume, then a file's 
contents may have timestamps from the previous hour than when they are 
being processed. In such a case, you could write a custom interceptor to set 
the timestamp header based on the contents of the file.

To Sqoop or to Flume...
An obvious question is whether Sqoop or Flume is most appropriate if we have data in a 
relational database that we want to export onto HDFS. We've seen how Sqoop can perform 
such an export and we could do something similar using Flume, either with a custom source 
or even just by wrapping a call to the mysql command within an exec source.

A good rule of thumb is to look at the type of data and ask if it is log data or something  
more involved.

Flume was created in large part to handle log data and it excels in this area. But in most 
cases, Flume networks are responsible for delivering events from sources to sinks without 
any real transformation on the log data itself. If you have log data in multiple relational 
databases, then Flume is likely a great choice, though I would question the long-term 
scalability of using a database for storing log records.
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Non-log data may require data manipulation that only Sqoop is capable of performing.  
Many of the transformations we performed in the previous chapter using Sqoop, such  
as specifying subsets of columns to be retrieved, are really not possible using Flume. It's 
also quite possible that if you are dealing with structured data that requires individual field 
processing, then Flume alone is not the ideal tool. If you want direct Hive integration then 
Sqoop is your only choice.

Remember, of course, that the tools can also work together in more complex workflows. 
Events could be gathered together onto HDFS by Flume, processed through MapReduce,  
and then exported into a relational database by Sqoop.

Time for action – multi level Flume networks
Let's put together a few pieces we touched on earlier and see how one Flume agent can use 
another as its sink.

1.	 Create the following file as agent6.conf:
agent6.sources = avrosource
agent6.sinks = avrosink
agent6.channels = memorychannel

agent6.sources.avrosource.type = avro
agent6.sources.avrosource.bind = localhost
agent6.sources.avrosource.port = 2000
agent6.sources.avrosource.threads = 5

agent6.sinks.avrosink.type = avro
agent6.sinks.avrosink.hostname = localhost
agent6.sinks.avrosink.port = 4000

agent6.channels.memorychannel.type = memory
agent6.channels.memorychannel.capacity = 1000
agent6.channels.memorychannel.transactionCapacity = 100

agent6.sources.avrosource.channels = memorychannel
agent6.sinks.avrosink.channel = memorychannel

2.	 Start an agent configured as per the agent3.conf file created earlier, that is, with 
an Avro source and a file sink:
$ flume-ng client –conf conf –conf-file agent3.conf agent3  

3.	 In a second window, start another agent; this one configured with the preceding file:
$ flume-ng client –conf conf –conf-file agent6.conf agent6
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4.	 In a third window, use the Avro client to send a file to each of the Flume agents:
$ flume-ng avro-client –H localhost –p 4000 –F /home/hadoop/
message

$ flume-ng avro-client -H localhost -p 2000 -F /home/hadoop/
message2

5.	 Check the output directory for files and examine the file present:

What just happened?
Firstly, we defined a new agent with an Avro source and also an Avro sink. We've not used 
this sink before; instead of writing the events to a local location or HDFS, this sink sends the 
events to a remote source using Avro.

We start an instance of this new agent and then also start an instance of agent3 we used 
earlier. Recall this agent has an Avro source and a file roll sink. We configure the Avro sink in 
the first agent to point to the host and port of the Avro sink in the second and by doing so, 
build a data-routing chain.
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With both agents running, we then use the Avro client to send a file to each and confirm that 
both appear in the file location configured as the destination for the agent3 sink.

This isn't just technical capability for its own sake. This capability is the building block that 
allows Flume to build arbitrarily complex distributed event collection networks. Instead of 
one copy of each agent, think of multiple agents of each type feeding events into the next 
link in the chain, which acts as an event aggregation point.

Time for action – writing to multiple sinks
We need one final piece of capability to build such networks, namely, an agent that can write 
to multiple sinks. Let's create one.

1.	 Create the following configuration file as agent7.conf:
agent7.sources = netsource
agent7.sinks = hdfssink filesink
agent7.channels = memorychannel1 memorychannel2

agent7.sources.netsource.type = netcat
agent7.sources.netsource.bind = localhost
agent7.sources.netsource.port = 3000
agent7.sources.netsource.interceptors = ts

agent7.sources.netsource.interceptors.ts.type = org.apache.flume.
interceptor.TimestampInterceptor$Builder

agent7.sinks.hdfssink.type = hdfs
agent7.sinks.hdfssink.hdfs.path = /flume-%Y-%m-%d
agent7.sinks.hdfssink.hdfs.filePrefix = log
agent7.sinks.hdfssink.hdfs.rollInterval = 0
agent7.sinks.hdfssink.hdfs.rollCount = 3
agent7.sinks.hdfssink.hdfs.fileType = DataStream

agent7.sinks.filesink.type = FILE_ROLL
agent7.sinks.filesink.sink.directory = /home/hadoop/flume/files
agent7.sinks.filesink.sink.rollInterval = 0

agent7.channels.memorychannel1.type = memory
agent7.channels.memorychannel1.capacity = 1000
agent7.channels.memorychannel1.transactionCapacity = 100

agent7.channels.memorychannel2.type = memory
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agent7.channels.memorychannel2.capacity = 1000
agent7.channels.memorychannel2.transactionCapacity = 100

agent7.sources.netsource.channels = memorychannel1 memorychannel2
agent7.sinks.hdfssink.channel = memorychannel1
agent7.sinks.filesink.channel = memorychannel2

agent7.sources.netsource.selector.type = replicating

2.	 Start the agent:
$ flume-ng agent –conf conf –conf-file agent7.conf –name agent7     

3.	 Open a telnet session and send an event to Flume:
$ curl telnet://localhost:3000

You will receive the following response:

Replicating!

Check the contents of the HDFS and file sinks:

$ cat files/*

$ hdfs fs –cat "/flume-*/*"

The output of the preceding command can be shown in the following screenshot:
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What just happened?
We created a configuration file containing a single Netcat source and both the file and HDFS 
sink. We configured separate memory channels connecting the source to both sinks.

We then set the source selector type to replicating, which means events will be sent to 
all configured channels.

After starting the agent as normal and sending an event to the source, we confirmed that  
the event was indeed written to both the filesystem and HDFS sinks.

Selectors replicating and multiplexing
The source selector has two modes, replicating as we have seen here and multiplexing.  
A multiplexing source selector will use logic to determine to which channel an event  
should be sent, depending on the value of a specified header field.

Handling sink failure
By their nature of being output destinations, it is to be expected that sinks may fail or 
become unresponsive over time. As with any input/output device, a sink may be saturated, 
run out of space, or go offline.

Just as Flume associates selectors with sources to allow the replication and multiplexing 
behavior we have just seen it also supports the concept of sink processors.

There are two defined sink processors, namely, the failover sink processor and the load 
balancing sink processor.

The sink processors view the sinks as being within a group and, dependent on their type, react 
differently when an event arrives. The load balancing sink processor sends events to sinks one 
at a time, using either a round-robin or random algorithm to select which sink to use next. If a 
sink fails, the event is retried on another sink, but the failed sink remains in the pool.

The failover sink, in contrast, views the sinks as a prioritized list and only tries a lower priority 
sink if the ones above it have failed. Failed sinks are removed from the list and are only 
retried after a cooling-off period that increases with subsequent failures.

Have a go hero - Handling sink failure
Set up a Flume configuration that has three configured HDFS sinks, each writing to different 
locations on HDFS. Use the load balancer sink processor to confirm events are written to 
each sink, and then use the failover sink processor to show the prioritization.

Can you force the agent to select a processor other than the highest priority one?
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Next, the world
We have now covered most of the key features of Flume. As mentioned earlier, Flume is a 
framework and this should be considered carefully; Flume has much more flexibility in its 
deployment model than any other product we have looked at.

It achieves its flexibility through a relatively small set of capabilities; the linking of sources 
to sinks via channels and multiple variations that allow multi-agent or multi-channel 
configurations. This may not seem like much, but consider that these building blocks can be 
composed to create a system such as the following where multiple web server farms feed 
their logs into a central Hadoop cluster:

�� Each node in each farm runs an agent pulling each local log file in turn.
�� These log files are sent to a highly-available aggregation point, one within each farm 

which also performs some processing and adds additional metadata to the events, 
categorizing them as three types of records.

�� These first level aggregators then send the events to one of the series of agents that 
access the Hadoop cluster. The aggregators offer multiple access points and event 
types 1 and 2 are sent to the first, event type 3 to the second.

�� Within the final aggregator, they write event type 1 and 2 to different locations on 
HDFS, with type 2 also being written to a local filesystem. Event type 3 is written 
directly into HBase.

It is amazing how simple primitives can be composed to build complex systems like this!

Have a go hero - Next, the world
As a thought experiment, try to work through the preceding scenario and determine what 
sort of Flume setup would be required at each step in the flow.

The bigger picture
It's important to realize that "simply" getting data from one point to another is rarely the 
extent of your data considerations. Terms such as data lifecycle management have become 
widely used recently for good reason. Let's briefly look at some things to consider, ideally 
before you have the data flooding across the system.

Data lifecycle
The main question to be asked in terms of data lifecycle is for how long will the value you 
gain from data storage be greater than the storage costs. Keeping data forever may seem 
attractive but the costs of holding more and more data will increase over time. These costs 
are not just financial; many systems see their performance degrade as volumes increase.



Data Collection with Flume

[ 344 ]

This question isn't—or at least rarely should be—decided by technical factors. Instead,  
you need the value and costs to the business to be the driving factors. Sometimes data 
becomes worthless very quickly, other times the business cannot delete it for either 
competitive or legal reasons. Determine the position and act accordingly.

Remember of course that it is not a binary decision between keeping or deleting data;  
you can also migrate data across tiers of storage that decrease in cost and performance  
as they age.

Staging data
On the other side of the process, it is often worthwhile to think about how data is fed into 
processing platforms such as MapReduce. With multiple data sources, the last thing you 
often want is to have all the data arrive on a single massive volume.

As we saw earlier, Flume's ability to parameterize the location to which it writes on HDFS is a 
great tool to aid this problem. However, often it is useful to view this initial drop-off point as 
a temporary staging area to which data is written prior to processing. After it is processed, it 
may be moved into the long-term directory structure.

Scheduling
At many points in the flows, we have discussed that there is an implicit need for an external 
task to do something. As mentioned before, we want MapReduce to process files once they 
are written to HDFS by Flume, but how is that task scheduled? Alternatively, how do we 
manage the post-processing, the archival or deletion of old data, even the removal of log 
files on the source hosts?

Some of these tasks, such as the latter, are likely managed by existing systems such as 
logrotate on Linux but the others may be things you need to build. Obvious tools such as 
cron may be good enough, but as system complexity increases, you may need to investigate 
more sophisticated scheduling systems. We will briefly mention one such system with tight 
Hadoop integration in the next chapter.
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Summary
This chapter discussed the problem of how to retrieve data from across the network  
and make it available for processing in Hadoop. As we saw, this is actually a more general 
challenge and though we may use Hadoop-specific tools, such as Flume, the principles are 
not unique. In particular, we covered an overview of the types of data we may want to write 
to Hadoop, generally categorizing it as network or file data. We explored some approaches 
for such retrieval using existing command-line tools. Though functional, the approaches 
lacked sophistication and did not suit extension into more complex scenarios.

We looked at Flume as a flexible framework for defining and managing data (particularly 
from log files) routing and delivery, and learned the Flume architecture which sees data 
arrive at sources, be processed through channels, and then written to sinks.

We then explored many of Flume's capabilities such as how to use the different  
types of sources, sinks, and channels. We saw how the simple building blocks could  
be composed into very complex systems and we closed with some more general  
thoughts on data management.

This concludes the main content of this book. In the next chapter, we will sketch out a 
number of other projects that may be of interest and highlight some ways of engaging  
the community and getting support.





11
Where to Go Next

This book has, as the title suggests, sought to give a beginner to Hadoop  
in-depth knowledge of the technology and its application. As has been seen  
on several occasions, there is a lot more to the Hadoop ecosystem than the  
core product itself. We will give a quick highlight of some potential areas of 
interest in this chapter.

In this chapter we will discuss:

�� What we covered in this book

�� What we didn't cover in this book

�� Upcoming Hadoop changes

�� Alternative Hadoop distributions

�� Other significant Apache projects

�� Alternative programming abstractions

�� Sources of information and help

What we did and didn't cover in this book
With our focus on beginners, the aim of this book was to give you a strong grounding in the 
core Hadoop concepts and tools. In addition, we provided experiences with some other tools 
that help you integrate the technology into your infrastructure.
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Though Hadoop started as the single core product, it's fair to say that the ecosystem 
surrounding Hadoop has exploded in recent years. There are alternative distributions  
of the technology, some providing commercial custom extensions. There are a plethora 
of related projects and tools that build upon Hadoop and provide specific functionality 
or alternative approaches to existing ideas. It's a really exciting time to get involved with 
Hadoop; let's take a quick tour of what is out there.

Note, of course, that any overview of the ecosystem is both skewed by the 
author's interests and preferences and outdated the moment it is written. 
In other words, don't for a moment think this is all that's available; consider 
it a whetting of the appetite.

Upcoming Hadoop changes
Before discussing alternative Hadoop distributions, let's look at some changes to Hadoop 
itself in the near future. We've already discussed the HDFS changes coming in Hadoop 2.0, 
particularly the high availability of NameNode enabled by the new BackupNameNode and 
CheckpointNameNode services. This is a significant capability for Hadoop as it will make 
HDFS much more robust, greatly enhancing its enterprise credentials and streamlining 
cluster operations. The impact of NameNode HA is hard to exaggerate; it will almost  
certainly become one of those capabilities that no one will be able to remember how  
we lived without in a few years' time.

MapReduce is not standing still while all this is going on, and in fact, the changes  
being introduced may not have as much immediate impact but are actually much  
more fundamental.

These changes were initially developed under the name MapReduce 2.0 or MRV2.  
However, the name now being used is YARN (Yet Another Resource Negotiator), which is 
more accurate as the changes are much more about Hadoop as a platform than MapReduce  
itself. The goal of YARN is to build a framework on Hadoop that allows cluster resources to be 
allocated to given applications and for MapReduce to be only one of these applications.

If you consider the JobTracker today, it is responsible for two quite different tasks: 
managing the progress of a given MapReduce job (but also identifying which cluster 
resources are available at any point in time) and allocating the resources to the various 
stages of the job. YARN separates these out into distinct roles; a global ResourceManager 
that uses NodeManagers on each host to manage the cluster's resources and a distinct 
ApplicationManager (the first example of which is MapReduce) that communicates with the 
ResourceManager to get the resources it needs for its job.
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The MapReduce interface in YARN will be unchanged, so from a client perspective, all existing 
code will still run on the new platform. But as new ApplicationManagers are developed, we 
will start to see Hadoop being used more as a generic task processing platform with multiple 
types of processing models supported. Early examples of other models being ported to YARN 
are stream-based processing and a port of the Message Passing Interface (MPI), which is 
broadly used in scientific computing.

Alternative distributions
Way back in Chapter 2, Getting Up and Running, we went to the Hadoop homepage from 
which we downloaded the installation package. Odd as it may seem, this is far from the only 
way to get Hadoop. Odder still may be the fact that most production deployments don't use 
the Apache Hadoop distribution.

Why alternative distributions?
Hadoop is open source software. Anyone can, providing they comply with the Apache 
Software License that governs Hadoop, make their own release of the software. There  
are two main reasons alternative distributions have been created.

Bundling
Some providers seek to build a pre-bundled distribution containing not only Hadoop but 
also other projects, such as Hive, HBase, Pig, and many more. Though installation of most 
projects is rarely difficult—with the exception of HBase, which has historically been more 
difficult to set up by hand—there can be subtle version incompatibilities that don't arise  
until a particular production workload hits the system. A bundled release can provide a  
pre-integrated set of compatible versions that are known to work together.

The bundled release can also provide the distribution not only in a tarball file but also in 
packages that are easily installed through package managers such as RPM, Yum, or APT.

Free and commercial extensions
Being an open source project with a relatively liberal distribution license, creators are also 
free to enhance Hadoop with proprietary extensions that are made available either as free 
open source or commercial products.

This can be a controversial issue as some open source advocates dislike any 
commercialization of successful open source projects; to them it appears that the 
commercial entity is freeloading by taking the fruits of the open source community without 
having to build it for themselves. Others see this as a healthy aspect of the flexible Apache 
license; the base product will always be free and individuals and companies can choose to  
go with commercial extensions or not. We do not pass judgment either way, but be aware 
that this is a controversy you will almost certainly encounter.
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Given the reasons for the existence of alternative distributions, let's look at a few popular 
examples.

Cloudera Distribution for Hadoop
The most widely used Hadoop distribution is the Cloudera Distribution for Hadoop,  
referred to as CDH. Recall that Cloudera is the company that first created Sqoop and 
contributed it back to the open source community and is where Doug Cutting now works.

The Cloudera distribution is available at http://www.cloudera.com/hadoop and 
contains a large number of Apache products, from Hadoop itself, Hive, Pig, and HBase 
through tools such as Sqoop and Flume, to other lesser-known products such as Mahout  
and Whir. We'll talk about some of these later.

CDH is available in several package formats and deploys the software in a ready-to-go 
fashion. The base Hadoop product, for example, is separated into different packages  
for the components such as NameNode, TaskTracker, and so on, and for each, there is 
integration with the standard Linux service infrastructure.

CDH was the first widely available alternative distribution, and its breadth of available 
software, proven level of quality, and free cost has made it a very popular choice.

Cloudera does also offer additional commercial-only products, such as a Hadoop 
management tool, in addition to training, support, and consultancy services. Details  
are available on the company webpage.

Hortonworks Data Platform
In 2011, the Yahoo division responsible for so much of the development of Hadoop was  
spun off into a new company called Hortonworks. They have also produced their own  
pre-integrated Hadoop distribution, called the Hortonworks Data Platform (HDP) and 
available at http://hortonworks.com/products/hortonworksdataplatform/.

HDP is conceptually similar to CDH, but both products have differences in their focus. 
Hortonworks makes much of the fact that HDP is fully open source, including the 
management tool. They also have positioned HDP as a key integration platform through 
support for tools such as Talend Open Studio. Hortonworks does not offer commercial 
software; its business model focuses instead on offering professional services and support 
for the platform.

Both Cloudera and Hortonworks are venture-backed companies with significant engineering 
expertise; both companies employ many of the most prolific contributors to Hadoop. The 
underlying technology is however the same Apache projects; the differences are how they 
are packaged, the versions employed, and the additional value-added offerings provided by 
the companies.

http://www.cloudera.com/hadoop
http://hortonworks.com/products/hortonworksdataplatform/
http://hortonworks.com/products/hortonworksdataplatform/
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MapR
A different type of distribution is offered by MapR Technologies, though the company and 
distribution are usually referred to simply as MapR. Available at http://www.mapr.com, 
the distribution is based on Hadoop but has added a number of changes and enhancements.

One main MapR focus is on performance and availability, for example, it was the first 
distribution to offer a high-availability solution for the Hadoop NameNode and JobTracker, 
which you will remember (from Chapter 7, Keeping Things Running) is a significant weakness 
in core Hadoop. It also offers native integration with NFS file systems, which makes 
processing of existing data much easier; MapR replaced HDFS with a full POSIX-compliant 
filesystem that can easily be mounted remotely.

MapR provides both a community and enterprise edition of its distribution; not all the 
extensions are available in the free product. The company also offers support services  
as part of the enterprise product subscription, in addition to training and consultancy.

IBM InfoSphere Big Insights
The last distribution we'll mention here comes from IBM. The IBM InfoSphere Big Insights 
distribution is available at http://www-01.ibm.com/software/data/infosphere/
biginsights/ and (like MapR) offers commercial improvements and extensions to the 
open source Hadoop core.

Big Insights comes in two versions, the free IBM InfoSphere Big Insights Basic Edition and the 
commercial IBM InfoSphere Big Insights Enterprise Edition. Big Insights, big names! The basic 
edition is an enhanced set of Apache Hadoop products, adding some free management and 
deployment tools as well as integration with other IBM products.

The Enterprise Edition is actually quite different from the Basic Edition; it is more of a layer 
atop Hadoop, and in fact, can be used with other distributions such as CDH or HDP. The 
Enterprise Edition provides an array of data visualization, business analysis, and processing 
tools. It also has deep integration with other IBM products such as InfoSphere Streams, DB2, 
and GPFS.

Choosing a distribution
As can be seen, the available distributions (and we didn't cover them all) range from 
convenience packaging and integration of fully open source products through to entire 
bespoke integration and analysis layers atop them. There is no overall best distribution;  
think carefully about your needs and consider the alternatives. Since all the previous 
distributions offer a free download of at least a basic version, it's also good to simply  
have a try and experience the options for yourself.

http://www.mapr.com
http://www-01.ibm.com/software/data/infosphere/biginsights/
http://www-01.ibm.com/software/data/infosphere/biginsights/
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Other Apache projects
Whether you use a bundled distribution or stick with the base Apache Hadoop download, 
you will encounter many references to other, related Apache projects. We have covered 
Hive, Sqoop, and Flume in this book; we'll now highlight some of the others.

Note that this coverage seeks to point out the highlights (from my perspective) as well  
as give a taste of the wide range of the types of projects available. As before, keep looking 
out; there will be new ones launching all the time.

HBase
Perhaps the most popular Apache Hadoop-related project that we didn't cover in this  
book is HBase; its homepage is at http://hbase.apache.org. Based on the BigTable 
model of data storage publicized by Google in an academic paper (sound familiar?),  
HBase is a non-relational data store sitting atop HDFS.

Whereas both MapReduce and Hive tasks focus on batch-like data access patterns, HBase 
instead seeks to provide very low latency access to data. Consequently, HBase can, unlike  
the already mentioned technologies, directly support user-facing services.

The HBase data model is not the relational approach we saw used in Hive and all other 
RDBMSs. Instead, it is a key-value, schemaless solution that takes a column-oriented view  
of data; columns can be added at run-time and depend on the values inserted into HBase. 
Each lookup operation is then very fast as it is effectively a key-value mapping from the row 
key to the desired column. HBase also treats timestamps as another dimension on the data, 
so one can directly retrieve data from a point in time.

The data model is very powerful but does not suit all use cases, just as the relational  
model isn't universally applicable. But if you have a need for structured low-latency views  
on large-scale data stored in Hadoop, HBase is absolutely something you should look at.

Oozie
We have said many times that Hadoop clusters do not live in a vacuum and need to integrate 
with other systems and into broader workflows. Oozie, available at http://oozie.
apache.org, is a Hadoop-focused workflow scheduler that addresses this latter scenario.

In its simplest form, Oozie provides mechanisms to schedule the execution of MapReduce 
jobs based either on a time-based criteria (for example, do this every hour) or on data 
availability (for example, do this when new data arrives in this location). It allows the 
specification of multi-stage workflows that can describe a complete end-to-end process.

http://oozie.apache.org
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In addition to straight-forward MapReduce jobs, Oozie can also schedule jobs that run 
Hive or Pig commands as well as tasks entirely outside of Hadoop (such as sending emails, 
running shell scripts, or running commands on remote hosts).

There are many ways of building workflows; a common approach is with Extract Transform 
and Load (ETL) tools such as Pentaho Kettle (http://kettle.pentaho.com) and Spring 
Batch (http://static.springsource.org/spring-batch). These, for example, do 
include some Hadoop integration but the traditional dedicated workflow engines may not. 
Consider Oozie if you are building workflows with significant Hadoop interaction and you  
do not have an existing workflow tool with which you have to integrate.

Whir
When looking to use cloud services such as Amazon AWS for Hadoop deployments, it is 
usually a lot easier to use a higher-level service such as ElasticMapReduce as opposed to 
setting up your own cluster on EC2. Though there are scripts to help, the fact is that the 
overhead of Hadoop-based deployments on cloud infrastructures can be involved. That is 
where Apache Whir from http://whir.apache.org comes in.

Whir is not focused on Hadoop; it is about supplier-independent instantiation of cloud 
services of which Hadoop is a single example. Whir provides a programmatic way of 
specifying and creating Hadoop-based deployments on cloud infrastructures in a way that 
handles all the underlying service aspects for you. And it does this in a provider-independent 
fashion so that once you've launched on, say, EC2, you can use the same code to create the 
identical setup on another provider such as Rackspace or Eucalyptus. This makes vendor  
lock-in—often a concern with cloud deployments—less of an issue.

Whir is not quite there yet. Today it is limited in what services it can create and only supports 
a single provider, AWS. However, if you are interested in cloud deployment with less pain, it 
is worth watching its progress.

Mahout
The previous projects are all general-purpose in that they provide a capability that is 
independent of any area of application. Apache Mahout, located at http://mahout.
apache.org, is instead a library of machine learning algorithms built atop Hadoop and 
MapReduce.

The Hadoop processing model is often well suited for machine learning applications 
where the goal is to extract value and meaning from a large dataset. Mahout provides 
implementations of such common ML techniques as clustering and recommenders.

If you have a lot of data and need help finding the key patterns, relationships, or just the 
needles in the haystack, Mahout may be able to help.

http://kettle.pentaho.com
http://whir.apache.org
http://mahout.apache.org
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MRUnit
The final Apache Hadoop project we will mention also highlights the wide range of what 
is available. To a large extent, it does not matter how many cool technologies you use and 
which distribution if your MapReduce jobs frequently fail due to latent bugs. The recently 
promoted MRUnit from http://mrunit.apache.org can help here.

Developing MapReduce jobs can be difficult, especially in the early days, but testing and 
debugging them is almost always hard. MRUnit takes the unit test model of its namesakes 
such as JUnit and DBUnit and provides a framework to help write and execute tests that 
can help improve the quality of your code. Build up a test suite, integrate with automated 
test, and build tools, and suddenly, all those software engineering best practices that you 
wouldn't dream of not following when writing non-MapReduce code are available here also.

MRUnit may be of interest, well, if you ever write any MapReduce jobs. In my humble 
opinion, it's a really important project; please check it out.

Other programming abstractions
Hadoop is not just extended by additional functionality; there are tools to provide entirely 
different paradigms for writing the code used to process your data within Hadoop.

Pig
We mentioned Pig (http://pig.apache.org) in Chapter 8, A Relational View on Data 
with Hive, and won't say much else about it here. Just remember that it is available and  
may be useful if you have processes or people for whom a data flow definition of the  
Hadoop processes is a more intuitive or better fit than writing raw MapReduce code or 
HiveQL scripts. Remember that the major difference is that Pig is an imperative language 
(it defines how the process will be executed), while Hive is more declarative (defines the 
desired results but not how they will be produced).

Cascading
Cascading is not an Apache project but is open source and is available at  
http://www.cascading.org. While Hive and Pig effectively define different languages 
with which to express data processing, Cascading provides a set of higher-level abstractions.

Instead of thinking of how multiple MapReduce jobs may process and share data with 
Cascading, the model is a data flow using pipes and multiple joiners, taps, and similar 
constructs. These are built programmatically (the core API was originally Java, but there are 
numerous other language bindings), and Cascading manages the translation, deployment, 
and execution of the workflow on the cluster.

http://mrunit.apache.org
http://pig.apache.org
http://www.cascading.org
http://www.cascading.org
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If you want a higher-level interface to MapReduce and the declarative style of Pig and Hive 
doesn't suit, the programmatic model of Cascading may be what you are looking for.

AWS resources
Many Hadoop technologies can be deployed on AWS as part of a self-managed cluster.  
But just as Amazon offers support for Elastic MapReduce, which handles Hadoop as a 
managed service, there are a few other services that are worth mentioning.

HBase on EMR
This isn't really a distinct service per se, but just as EMR has native support for Hive and Pig, 
it also now offers direct support for HBase clusters. This is a relatively new capability, and 
it will be interesting to see how well it works in practice; HBase has historically been quite 
sensitive to the quality of the network and system load.

SimpleDB
Amazon SimpleDB (http://aws.amazon.com/simpledb) is a service offering an  
HBase-like data model. This isn't actually implemented atop Hadoop, but we'll mention  
this and the following service as they do provide hosted alternatives worth considering  
if a HBase-like data model is of interest. The service has been around for several years  
and is very mature with well understood use cases.

SimpleDB does have some limitations, particularly on table size and the need to manually 
partition large datasets, but if you have a need for an HBase-type store at smaller volumes,  
it may be a good fit. It's also easy to set up and can be a nice way of having a go at the 
column-based data model.

DynamoDB
A more recent service from AWS is DynamoDB, available at http://aws.amazon.com/
dynamodb. Though its data model is again very similar to that of SimpleDB and HBase, it is 
aimed at a very different type of application. Where SimpleDB has quite a rich search API 
but is very limited in terms of size, DynamoDB provides a more constrained API but with a 
service guarantee of near-unlimited scalability.

The DynamoDB pricing model is particularly interesting; instead of paying for a certain number 
of servers hosting the service, you allocate a certain read/write capacity and DynamoDB 
manages the resources required to meet this provisioned capacity. This is an interesting 
development as it is a purer service model, where the mechanism of delivering the desired 
performance is kept completely opaque to the service user. Look at DynamoDB if you need 
a much larger scale of data store than SimpleDB can offer, but do consider the pricing model 
carefully as provisioning too much capacity can become very expensive very quickly.

http://aws.amazon.com/simpledb
http://aws.amazon.com/dynamodb
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Sources of information
You don't just need new technologies and tools, no matter how cool they are. Sometimes,  
a little help from a more experienced source can pull you out of a hole. In this regard you  
are well covered; the Hadoop community is extremely strong in many areas.

Source code
It's sometimes easy to overlook, but Hadoop and all the other Apache projects are after 
all fully open source. The actual source code is the ultimate source (pardon the pun) of 
information about how the system works. Becoming familiar with the source and tracing 
through some of the functionality can be hugely informative, not to mention helpful, when 
you hit unexpected behavior.

Mailing lists and forums
Almost all the projects and services listed earlier have their own mailing lists and/or forums; 
check out the homepages for the specific links. If using AWS, make sure to check out the 
AWS developer forums at https://forums.aws.amazon.com.

Remember to always read posting guidelines carefully and understand the expected 
etiquette. These are tremendous sources of information, and the lists and forums are  
often frequently visited by the developers of the particular project. Expect to see the  
core Hadoop developers on the Hadoop lists, Hive developers on the Hive list, EMR 
developers on the EMR forums, and so on.

LinkedIn groups
There are a number of Hadoop and related groups on the professional social network, LinkedIn. 
Do a search for your particular areas of interest, but a good starting point may be the general 
Hadoop Users group at http://www.linkedin.com/groups/Hadoop-Users-988957.

HUGs
If you want more face-to-face interaction, look for a Hadoop User Group (HUG) in your 
area; most should be listed at http://wiki.apache.org/hadoop/HadoopUserGroups. 
These tend to arrange semi-regular get-togethers that combine things such as quality 
presentations, the ability to discuss technology with like-minded individuals, and often  
pizza and drinks.

No HUG near where you live? Consider starting one!

http://wiki.apache.org/hadoop/HadoopUserGroups
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Conferences
Though it's a relatively new technology, Hadoop already has some significant  
conference action involving the open source, academic, and commercial worlds.  
Events such as the Hadoop Summit are pretty big; it and and other events are  
linked to via http://wiki.apache.org/hadoop/Conferences.

Summary
In this chapter, we took a quick gallop around the broader Hadoop ecosystem.  
We looked at the upcoming changes in Hadoop, particularly HDFS high availability  
and YARN, why alternative Hadoop distributions exist and some of the more popular  
ones, and other Apache projects that provide capabilities, extensions, or Hadoop  
supporting tools.

We also looked at the alternative ways of writing or creating Hadoop jobs and sources  
of information and how to connect with other enthusiasts.

Now go have fun and build something amazing!
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Chapter 3, Understanding MapReduce

Pop quiz – key/value pairs

Q1 2

Q2 3

Pop quiz – walking through a run of WordCount

Q1 1

Q2 3

Q3 2. Reducer C cannot be used because if such reduction were to 
occur, the final reducer could receive from the combiner a series 
of means with no knowledge of how many items were used to 
generate them, meaning the overall mean is impossible to calculate. 
Reducer D is subtle as the individual tasks of selecting a maximum 
or minimum are safe for use as combiner operations. But if the goal 
is to determine the overall variance between the maximum and 
minimum value for each key, this would not work. If the combiner 
that received the maximum key had values clustered around it, this 
would generate small results; similarly for the one receiving the 
minimum value. These subranges have little value in isolation and 
again the final reducer cannot construct the desired result.
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Chapter 7, Keeping Things Running

Pop quiz – setting up a cluster

Q1 5. Though some general guidelines are possible and you may need to 
generalize whether your cluster will be running a variety of jobs, the best 
fit depends on the anticipated workload.

Q2 4. Network storage comes in many flavors but in many cases you may 
find a large Hadoop cluster of hundreds of hosts reliant on a single  
(or usually a pair) of storage devices. This adds a new failure scenario  
to the cluster and one with a less uncommon likelihood than many 
others. Where storage technology does look to address failure mitigation 
it is usually through disk-level redundancy. These disk arrays can be 
highly performant but will usually have a penalty on either reads or 
writes. Giving Hadoop control of its own failure handling and allowing  
it full parallel access to the same number of disks is likely to give higher  
overall performance.

Q3 3. Probably! We would suggest avoiding the first configuration as, 
though it has just enough raw storage and is far from underpowered, 
there is a good chance the setup will provide little room for growth. 
An increase in data volumes would immediately require new hosts and 
additional complexity in the MapReduce job could require additional 
processor power or memory.

Configurations B and C both look good as they have surplus storage for 
growth and provide similar head-room for both processor and memory. 
B will have the higher disk I/O and C the better CPU performance. 
Since the primary job is involved in financial modelling and forecasting, 
we expect each task to be reasonably heavyweight in terms of CPU 
and memory needs. Configuration B may have higher I/O but if the 
processors are running at 100 percent utilization it is likely the extra disk 
throughput will not be used. So the hosts with greater processor power 
are likely the better fit.

Configuration D is more than adequate for the task and we don’t choose 
it for that very reason; why buy more capacity than we know we need?
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