
www.allitebooks.com

http://www.allitebooks.org

Fast Data Processing
with Spark

High-speed distributed computing made easy
with Spark

Holden Karau

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Fast Data Processing with Spark

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1151013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-706-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Holden Karau

Reviewers
Wayne Allan

Andrea Mostosi

Reynold Xin

Acquisition Editor
Kunal Parikh

Commissioning Editor
Shaon Basu

Technical Editors
Krutika Parab

Nadeem N. Bagban

Project Coordinator
Amey Sawant

Copy Editors
Brandt D'Mello

Kirti Pai

Lavina Pereira

Tanvi Gaitonde

Dipti Kapadia

Proofreader
Jonathan Todd

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Holden Karau is a transgendered software developer from Canada currently
living in San Francisco. Holden graduated from the University of Waterloo in 2009
with a Bachelors of Mathematics in Computer Science. She currently works as a
Software Development Engineer at Google. She has worked at Foursquare, where
she was introduced to Scala. She worked on search and classification problems at
Amazon. Open Source development has been a passion of Holden's from a very
young age, and a number of her projects have been covered on Slashdot. Outside
of programming, she enjoys playing with fire, welding, and dancing. You can
learn more at her website (http://www.holdenkarau.com), blog (http://blog.
holdenkarau.com), and github (https://github.com/holdenk).

I'd like to thank everyone who helped review early versions of this
book, especially Syed Albiz, Marc Burns, Peter J. J. MacDonald,
Norbert Hu, and Noah Fiedel.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Andrea Mostosi is a passionate software developer. He started software
development in 2003 at high school with a single-node LAMP stack and grew with
it by adding more languages, components, and nodes. He graduated in Milan and
worked on several web-related projects. He is currently working with data, trying
to discover information hidden behind huge datasets.

I would like to thank my girlfriend, Khadija, who lovingly supports
me in everything I do, and the people I collaborated with—for fun or
for work—for everything they taught me. I'd also like to thank Packt
Publishing and its staff for the opportunity to contribute to this book.

Reynold Xin is an Apache Spark committer and the lead developer for Shark
and GraphX, two computation frameworks built on top of Spark. He is also a
co-founder of Databricks which works on transforming large-scale data analysis
through the Apache Spark platform. Before Databricks, he was pursuing a PhD
in the UC Berkeley AMPLab, the birthplace of Spark.

Aside from engineering open source projects, he frequently speaks at Big Data
academic and industrial conferences on topics related to databases, distributed
systems, and data analytics. He also taught Palestinian and Israeli high-school
students Android programming in his spare time.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing Spark and Setting Up Your Cluster	 5

Running Spark on a single machine	 7
Running Spark on EC2	 8

Running Spark on EC2 with the scripts	 8
Deploying Spark on Elastic MapReduce	 13
Deploying Spark with Chef (opscode)	 14
Deploying Spark on Mesos	 15
Deploying Spark on YARN	 16
Deploying set of machines over SSH	 17
Links and references	 21
Summary	 22

Chapter 2: Using the Spark Shell	 23
Loading a simple text file	 23
Using the Spark shell to run logistic regression	 25
Interactively loading data from S3	 27
Summary	 29

Chapter 3: Building and Running a Spark Application	 31
Building your Spark project with sbt	 31
Building your Spark job with Maven	 35
Building your Spark job with something else	 37
Summary	 38

Chapter 4: Creating a SparkContext	 39
Scala	 40
Java	 40
Shared Java and Scala APIs	 41
Python	 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Links and references	 42
Summary	 42

Chapter 5: Loading and Saving Data in Spark	 43
RDDs	 43
Loading data into an RDD	 44
Saving your data	 49
Links and references	 49
Summary	 50

Chapter 6: Manipulating Your RDD	 51
Manipulating your RDD in Scala and Java	 51

Scala RDD functions	 60
Functions for joining PairRDD functions	 61
Other PairRDD functions	 62
DoubleRDD functions	 64
General RDD functions	 64
Java RDD functions	 66
Spark Java function classes	 67

Common Java RDD functions	 68
Methods for combining JavaPairRDD functions	 69

JavaPairRDD functions	 70
Manipulating your RDD in Python	 71

Standard RDD functions	 73
PairRDD functions	 75

Links and references	 76
Summary	 76

Chapter 7: Shark – Using Spark with Hive	 77
Why Hive/Shark?	 77
Installing Shark	 78
Running Shark	 79
Loading data	 79
Using Hive queries in a Spark program	 80
Links and references	 83
Summary	 83

Chapter 8: Testing	 85
Testing in Java and Scala	 85

Refactoring your code for testability	 85
Testing interactions with SparkContext	 88

Testing in Python	 92
Links and references	 94
Summary	 94

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 9: Tips and Tricks	 95
Where to find logs?	 95
Concurrency limitations	 95
Memory usage and garbage collection	 96
Serialization	 96
IDE integration	 97
Using Spark with other languages	 98
A quick note on security	 99
Mailing lists	 99
Links and references	 99
Summary	 100

Index	 101

www.allitebooks.com

http://www.allitebooks.org

Preface
As programmers, we are frequently asked to solve problems or use data that is too
much for a single machine to practically handle. Many frameworks exist to make
writing web applications easier, but few exist to make writing distributed programs
easier. The Spark project, which this book covers, makes it easy for you to write
distributed applications in the language of your choice: Scala, Java, or Python.

What this book covers
Chapter 1, Installing Spark and Setting Up Your Cluster, covers how to install Spark
on a variety of machines and set up a cluster—ranging from a local single-node
deployment suitable for development work to a large cluster administered by a
Chef to an EC2 cluster.

Chapter 2, Using the Spark Shell, gets you started running your first Spark jobs in
an interactive mode. Spark shell is a useful debugging and rapid development
tool and is especially handy when you are just getting started with Spark.

Chapter 3, Building and Running a Spark Application, covers how to build standalone
jobs suitable for production use on a Spark cluster. While the Spark shell is a great
tool for rapid prototyping, building standalone jobs is the way you will likely find
most of your interaction with Spark to be.

Chapter 4, Creating a SparkContext, covers how to create a connection a Spark cluster.
SparkContext is the entry point into the Spark cluster for your program.

Chapter 5, Loading and Saving Your Data, covers how to create and save RDDs (Resilient
Distributed Datasets). Spark supports loading RDDs from any Hadoop data source.

Preface

[2]

Chapter 6, Manipulating Your RDD, covers how to do distributed work on your data
with Spark. This chapter is the fun part.

Chapter 7, Using Spark with Hive, talks about how to set up Shark—a HiveQL-
compatible system with Spark—and integrate Hive queries into your Spark jobs.

Chapter 8, Testing, looks at how to test your Spark jobs. Distributed tasks can be
especially tricky to debug, which makes testing them all the more important.

Chapter 9, Tips and Tricks, looks at how to improve your Spark task.

What you need for this book
To get the most out of this book, you need some familiarity with Linux/Unix and
knowledge of at least one of these programming languages: C++, Java, or Python.
It helps if you have access to more than one machine or EC2 to get the most out of
the distributed nature of Spark; however, it is certainly not required as Spark has
an excellent standalone mode.

Who this book is for
This book is for any developer who wants to learn how to write effective distributed
programs using the Spark project.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The tarball file contains a bin directory that needs to be added to your path and
SCALA_HOME should be set to the path where the tarball is extracted."

Any command-line input or output is written as follows:

./run spark.examples.GroupByTest local[4]

Preface

[3]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"by selecting Key Pairs under Network & Security".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
All of the example code from this book is hosted in three separate github repos:

•	 https://github.com/holdenk/fastdataprocessingwithspark-
sharkexamples

•	 https://github.com/holdenk/fastdataprocessingwithsparkexamples

•	 https://github.com/holdenk/chef-cookbook-spark

Preface

[4]

Disclaimer
The opinions in this book are those of the author and not necessarily those any of
my employers, past or present. The author has taken reasonable steps to ensure
the example code is safe for use. You should verify the code yourself before using
with important data. The author does not give any warranty express or implied or
make any representation that the contents will be complete or accurate or up to date.
The author shall not be liable for any loss, actions, claims, proceedings, demand or
costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Installing Spark and
Setting Up Your Cluster

This chapter will detail some common methods for setting up Spark. Spark on
a single machine is excellent for testing, but you will also learn to use Spark's
built-in deployment scripts to a dedicated cluster via SSH (Secure Shell). This
chapter will also cover using Mesos, Yarn, Puppet, or Chef to deploy Spark.
For cloud deployments of Spark, this chapter will look at EC2 (both traditional
and EC2MR). Feel free to skip this chapter if you already have your local Spark
instance installed and want to get straight to programming.

Regardless of how you are going to deploy Spark, you will want to get the latest
version of Spark from http://spark-project.org/download (Version 0.7 as of
this writing). For coders who live dangerously, try cloning the code directly from the
repository git://github.com/mesos/spark.git. Both the source code and pre-built
binaries are available. To interact with Hadoop Distributed File System (HDFS), you
need to use a Spark version that is built against the same version of Hadoop as your
cluster. For Version 0.7 of Spark, the pre-built package is built against Hadoop 1.0.4. If
you are up for the challenge, it's recommended that you build against the source since
it gives you the flexibility of choosing which HDFS version you want to support as
well as apply patches. You will need the appropriate version of Scala installed and the
matching JDK. For Version 0.7.1 of Spark, you require Scala 2.9.2 or a later 2.9 series
release (2.9.3 works well). At the time of this writing, Ubuntu's LTS release (Precise)
has Scala Version 2.9.1. Additionally, the current stable version has 2.9.2 and Fedora 18
has 2.9.2. Up-to-date package information can be found at http://packages.ubuntu.
com/search?keywords=scala. The latest version of Scala is available from http://
scala-lang.org/download. It is important to choose the version of Scala that matches
the version requested by Spark, as Scala is a fast-evolving language.

Installing Spark and Setting Up Your Cluster

[6]

The tarball file contains a bin directory that needs to be added to your path, and
SCALA_HOME should be set to the path where the tarball file is extracted. Scala can
be installed from source by running:

wget http://www.scala-lang.org/files/archive/scala-2.9.3.tgz && tar -xvf
scala-2.9.3.tgz && cd scala-2.9.3 && export PATH=`pwd`/bin:$PATH &&
export SCALA_HOME=`pwd`

You will probably want to add these to your .bashrc file or equivalent:

export PATH=`pwd`/bin:\$PATH

export SCALA_HOME=`pwd`

Spark is built with sbt (simple build tool, which is no longer very simple), and build
times can be quite long when compiling Scala's source code. Don't worry if you don't
have sbt installed; the build script will download the correct version for you.

On an admittedly under-powered core 2 laptop with an SSD, installing a fresh copy
of Spark took about seven minutes. If you decide to build Version 0.7 from source,
you would run:

wget http://www.spark-project.org/download-spark-0.7.0-sources-tgz &&
tar -xvf download-spark-0.7.0-sources-tgz && cd spark-0.7.0 && sbt/sbt
package

If you are going to use a version of HDFS that doesn't match the default version
for your Spark instance, you will need to edit project/SparkBuild.scala and set
HADOOP_VERSION to the corresponding version and recompile it with:

sbt/sbt clean compile

The sbt tool has made great progress with dependency resolution,
but it's still strongly recommended for developers to do a clean
build rather than an incremental build. This still doesn't get it
quite right all the time.

Once you have started the build it's probably a good time for a break, such as getting
a cup of coffee. If you find it stuck on a single line that says "Resolving [XYZ]...." for a
long time (say five minutes), stop it and restart the sbt/sbt package.

If you can live with the restrictions (such as the fixed HDFS version), using the
pre-built binary will get you up and running far quicker. To run the pre-built
version, use the following command:

wget http://www.spark-project.org/download-spark-0.7.0-prebuilt-tgz &&
tar -xvf download-spark-0.7.0-prebuilt-tgz && cd spark-0.7.0

Chapter 1

[7]

Spark has recently become a part of the Apache Incubator. As an
application developer who uses Spark, the most visible changes
will likely be the eventual renaming of the package to under the
org.apache namespace.
Some of the useful links for references are as follows:
http://spark-project.org/docs/latest

http://spark-project.org/download/

http://www.scala-lang.org

Running Spark on a single machine
A single machine is the simplest use case for Spark. It is also a great way to sanity
check your build. In the Spark directory, there is a shell script called run that can be
used to launch a Spark job. Run takes the name of a Spark class and some arguments.
There is a collection of sample Spark jobs in ./examples/src/main/scala/spark/
examples/.

All the sample programs take the parameter master, which can be the URL
of a distributed cluster or local[N], where N is the number of threads. To run
GroupByTest locally with four threads, try the following command:

./run spark.examples.GroupByTest local[4]

If you get an error, as SCALA_HOME is not set, make sure your SCALA_
HOME is set correctly. In bash, you can do this using the export SCALA_
HOME=[pathyouextractedscalato].

If you get the following error, it is likely you are using Scala 2.10, which is not
supported by Spark 0.7:

[literal]"Exception in thread "main" java.lang.NoClassDefFoundError:
scala/reflect/ClassManifest"[/literal]

The Scala developers decided to rearrange some classes between 2.9 and 2.10
versions. You can either downgrade your version of Scala or see if the development
build of Spark is ready to be built along with Scala 2.10.

Installing Spark and Setting Up Your Cluster

[8]

Running Spark on EC2
There are many handy scripts to run Spark on EC2 in the ec2 directory. These
scripts can be used to run multiple Spark clusters, and even run on-the-spot
instances. Spark can also be run on Elastic MapReduce (EMR). This is Amazon's
solution for MapReduce cluster management, which gives you more flexibility
around scaling instances.

Running Spark on EC2 with the scripts
To get started, you should make sure that you have EC2 enabled on your account by
signing up for it at https://portal.aws.amazon.com/gp/aws/manageYourAccount.
It is a good idea to generate a separate access key pair for your Spark cluster, which
you can do at https://portal.aws.amazon.com/gp/aws/securityCredentialsR.
You will also need to create an EC2 key pair, so that the Spark script can SSH to the
launched machines; this can be done at https://console.aws.amazon.com/ec2/
home by selecting Key Pairs under Network & Security. Remember that key pairs are
created "per region", so you need to make sure you create your key pair in the same
region as you intend to run your spark instances. Make sure to give it a name that you
can remember (we will use spark-keypair in this chapter as its example key pair
name) as you will need it for the scripts. You can also choose to upload your public
SSH key instead of generating a new key. These are sensitive, so make sure that you
keep them private. You also need to set your AWS_ACCESS_KEY and AWS_SECRET_KEY
key pairs as environment variables for the Amazon EC2 scripts:

chmod 400 spark-keypair.pem

export AWS_ACCESS_KEY="..."

export AWS_SECRET_KEY="..."

You will find it useful to download the EC2 scripts provided by Amazon from
http://aws.amazon.com/developertools/Amazon-EC2/351. Once you unzip
the resulting ZIP file, you can add the bin folder to your PATH variable in a similar
manner to what you did with the Spark bin folder:

wget http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

unzip ec2-api-tools.zip

cd ec2-api-tools-*

export EC2_HOME=`pwd`

export PATH=$PATH:`pwd`:/bin

Chapter 1

[9]

The Spark EC2 script automatically creates a separate security group and firewall
rules for the running Spark cluster. By default your Spark cluster will be universally
accessible on port 8080, which is somewhat a poor form. Sadly, the spark_ec2.py
script does not currently provide an easy way to restrict access to just your host.
If you have a static IP address, I strongly recommend limiting the access in spark_
ec2.py; simply replace all instances 0.0.0.0/0 with [yourip]/32. This will not
affect intra-cluster communication, as all machines within a security group can talk
to one another by default.

Next, try to launch a cluster on EC2:

./ec2/spark-ec2 -k spark-keypair -i pk-[....].pem -s 1 launch
myfirstcluster

If you get an error message such as "The requested Availability
Zone is currently constrained and....", you can specify a different
zone by passing in the --zone flag.

If you get an error about not being able to SSH to the master, make sure that only
you have permission to read the private key, otherwise SSH will refuse to use it.

You may also encounter this error due to a race condition when the hosts report
themselves as alive, but the Spark-ec2 script cannot yet SSH to them. There is a fix
for this issue pending in https://github.com/mesos/spark/pull/555. For now a
temporary workaround, until the fix is available in the version of Spark you are using,
is to simply let the cluster sleep an extra 120 seconds at the start of setup_cluster.

If you do get a transient error when launching a cluster, you can finish the launch
process using the resume feature by running:

./ec2/spark-ec2 -i ~/spark-keypair.pem launch myfirstsparkcluster
--resume

www.allitebooks.com

http://www.allitebooks.org

Installing Spark and Setting Up Your Cluster

[10]

If everything goes ok, you should see something like the following screenshot:

This will give you a bare-bones cluster with one master and one worker, with all
the defaults on the default machine instance size. Next, verify that it has started
up, and if your firewall rules were applied by going to the master on port 8080.
You can see in the preceding screenshot that the name of the master is output at
the end of the script.

Try running one of the example's jobs on your new cluster to make sure everything
is ok:

sparkuser@h-d-n:~/repos/spark$ ssh -i ~/spark-keypair.pem root@ec2-107-
22-48-231.compute-1.amazonaws.com

Last login: Sun Apr 7 03:00:20 2013 from 50-197-136-90-static.hfc.
comcastbusiness.net

 __| __|_)

 _| (/ Amazon Linux AMI

 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2012.03-release-notes/
There are 32 security update(s) out of 272 total update(s) available

Chapter 1

[11]

Run "sudo yum update" to apply all updates.
Amazon Linux version 2013.03 is available.
[root@domU-12-31-39-16-B6-08 ~]# ls
ephemeral-hdfs hive-0.9.0-bin mesos mesos-ec2 persistent-hdfs
scala-2.9.2 shark-0.2 spark spark-ec2
[root@domU-12-31-39-16-B6-08 ~]# cd spark
[root@domU-12-31-39-16-B6-08 spark]# ./run spark.examples.GroupByTest
spark://`hostname`:7077
13/04/07 03:11:38 INFO slf4j.Slf4jEventHandler: Slf4jEventHandler started
13/04/07 03:11:39 INFO storage.BlockManagerMaster: Registered
BlockManagerMaster Actor
....
13/04/07 03:11:50 INFO spark.SparkContext: Job finished: count at
GroupByTest.scala:35, took 1.100294766 s
2000

Now that you've run a simple job on our EC2 cluster, it's time to configure your EC2
cluster for our Spark jobs. There are a number of options you can use to configure
with the Spark-ec2 script.

First, consider what instance types you may need. EC2 offers an ever-growing
collection of instance types, and you can choose a different instance type for the master
and the workers. The instance type has the most obvious impact on the performance
of your spark cluster. If your work needs a lot of RAM, you should choose an instance
with more RAM. You can specify the instance type with --instance-type=(name of
instance type). By default, the same instance type will be used for both the master
and the workers. This can be wasteful if your computations are particularly intensive
and the master isn't being heavily utilized. You can specify a different master instance
type with --master-instance-type=(name of instance).

EC2 also has GPU instance types that can be useful for workers, but would be
completely wasted on the master. This text will cover working with Spark and GPUs
later on; however, it is important to note that EC2 GPU performance may be lower
than what you get while testing locally, due to the higher I/O overhead imposed by
the hypervisor.

Downloading the example code
All of the example code from this book is hosted in three separate
github repos:

•	 https://github.com/holdenk/
fastdataprocessingwithspark-sharkexamples

•	 https://github.com/holdenk/
fastdataprocessingwithsparkexamples

•	 https://github.com/holdenk/chef-cookbook-spark

Installing Spark and Setting Up Your Cluster

[12]

Spark's EC2 scripts uses AMI (Amazon Machine Images) provided by the Spark team.
These AMIs may not always be up-to-date with the latest version of Spark, and if you
have custom patches (such as using a different version of HDFS) for Spark, they will
not be included in the machine image. At present, the AMIs are also only available in
the U.S. East region, so if you want to run it in a different region you will need to copy
the AMIs or make your own AMIs in a different region.

To use Spark's EC2 scripts, you need to have an AMI available in your region. To copy
the default Spark EC2 AMI to a new region, figure out what the latest Spark AMI is by
looking at the spark_ec2.py script and seeing what URL the LATEST_AMI_URL points
to and fetch it. For Spark 0.7, run the following command to get the latest AMI:

curl https://s3.amazonaws.com/mesos-images/ids/latest-spark-0.7

There is an ec2-copy-image script that you would hope provides the ability to copy
the image, but sadly it doesn't work on images that you don't own. So you will need
to launch an instance of the preceding AMI and snapshot it. You can describe the
current image by running:

ec2-describe-images ami-a60193cf

This should show you that it is an EBS-based (Elastic Block Store) image, so you
will need to follow EC2's instructions for creating EBS-based instances. Since you
already have a script to launch the instance, you can just start an instance on an
EC2 cluster and then snapshot it. You can find the instances you are running with:

ec2-describe-instances -H

You can copy the i-[string] instance name and save it for later use.

If you wanted to use a custom version of Spark or install any other tools or
dependencies and have them available as part of our AMI, you should do that
(or at least update the instance) before snapshotting.

ssh -i ~/spark-keypair.pem root@[hostname] "yum update"

Once you have your updates installed and any other customizations you want,
you can go ahead and snapshot your instance with:

ec2-create-image -n "My customized Spark Instance" i-[instancename]

With the AMI name from the preceding code, you can launch your customized
version of Spark by specifying the [cmd]--ami[/cmd] command-line argument.
You can also copy this image to another region for use there:

ec2-copy-image -r [source-region] -s [ami] --region [target region]

Chapter 1

[13]

This will give you a new AMI name, which you can use for launching your EC2
tasks. If you want to use a different AMI name, simply specify --ami [aminame].

As of this writing, there was an issue with the default AMI and
HDFS. You may need to update the version of Hadoop on the
AMI, as it does not match the version that Spark was compiled
for. You can refer to https://spark-project.atlassian.
net/browse/SPARK-683 for details.

Deploying Spark on Elastic MapReduce
In addition to Amazon's basic EC2 machine offering, Amazon offers a hosted
MapReduce solution called Elastic MapReduce. Amazon provides a bootstrap script
that simplifies the process of getting started using Spark on EMR. You can install the
EMR tools from Amazon using the following command:

mkdir emr && cd emr && wget http://elasticmapreduce.s3.amazonaws.com/
elastic-mapreduce-ruby.zip && unzip *.zip

So that the EMR scripts can access your AWS account, you will want to create a
credentials.json file:

{
 "access-id": "<Your AWS access id here>",
 "private-key": "<Your AWS secret access key here>",
 "key-pair": "<The name of your ec2 key-pair here>",
 "key-pair-file": "<path to the .pem file for your ec2 key pair
here>",
 "region": "<The region where you wish to launch your job flows
(e.g us-east-1)>"
}

Once you have the EMR tools installed, you can launch a Spark cluster by running:

elastic-mapreduce --create --alive --name "Spark/Shark Cluster" \
--bootstrap-action s3://elasticmapreduce/samples/spark/install-spark-
shark.sh \
--bootstrap-name "install Mesos/Spark/Shark" \
--ami-version 2.0 \
--instance-type m1.large --instance-count 2

This will give you a running EC2MR instance after about five to ten minutes.
You can list the status of the cluster by running elastic-mapreduce --list.
Once it outputs j-[jobid], it is ready.

Installing Spark and Setting Up Your Cluster

[14]

Some of the useful links that you can refer to are as follows:
•	 http://aws.amazon.com/articles/4926593393724923

•	 http://docs.aws.amazon.com/ElasticMapReduce/
latest/DeveloperGuide/emr-cli-install.html

Deploying Spark with Chef (opscode)
Chef is an open source automation platform that has become increasingly popular for
deploying and managing both small and large clusters of machines. Chef can be used
to control a traditional static fleet of machines, but can also be used with EC2 and other
cloud providers. Chef uses cookbooks as the basic building blocks of configuration and
can either be generic or site specific. If you have not used Chef before, a good tutorial
for getting started with Chef can be found at https://learnchef.opscode.com/.
You can use a generic Spark cookbook as the basis for setting up your cluster.

To get Spark working, you need to create a role for both the master and the
workers, as well as configure the workers to connect to the master. Start by getting
the cookbook from https://github.com/holdenk/chef-cookbook-spark. The
bare minimum is setting the master hostname as master (so the worker nodes can
connect) and the username so that Chef can install in the correct place. You will also
need to either accept Sun's Java license or switch to an alternative JDK. Most of the
settings that are available in spark-env.sh are also exposed through the cookbook's
settings. You can see an explanation of the settings on configuring multiple hosts
over SSH in the Set of machines over SSH section. The settings can be set per-role or
you can modify the global defaults:

To create a role for the master with knife role, create spark_master_role -e
[editor]. This will bring up a template role file that you can edit. For a simple
master, set it to:

{
 "name": "spark_master_role",

 "description": "",
 "json_class": "Chef::Role",

 "default_attributes": {
 },
 "override_attributes": {
 "username":"spark",
 "group":"spark",
 "home":"/home/spark/sparkhome",

Chapter 1

[15]

 "master_ip":"10.0.2.15",
 },
 "chef_type": "role",
 "run_list": [
 "recipe[spark::server]",
 "recipe[chef-client]",
],
 "env_run_lists": {
 },
}

Then create a role for the client in the same manner except instead of spark::server,
use the spark::client recipe. Deploy the roles to the different hosts:

knife node run_list add master role[spark_master_role]
knife node run_list add worker role[spark_worker_role]

Then run chef-client on your nodes to update. Congrats, you now have a Spark
cluster running!

Deploying Spark on Mesos
Mesos is a cluster management platform for running multiple distributed
applications or frameworks on a cluster. Mesos can intelligently schedule and run
Spark, Hadoop, and other frameworks concurrently on the same cluster. Spark can
be run on Mesos either by scheduling individual jobs as separate Mesos tasks or
running all of Spark as a single Mesos task. Mesos can quickly scale up to handle
large clusters, beyond the size of which you would want to manage, with plain
old SSH scripts. It was originally created at UC Berkley as a research project; it is
currently undergoing Apache incubation and is actively used by Twitter.

To get started with Mesos, you can download the latest version from http://
mesos.apache.org/downloads/ and unpack the ZIP files. Mesos has a number
of different configuration scripts you can use; for an Ubuntu installation use
configure.ubuntu-lucid-64, and for other cases the Mesos README file will
point you at which configuration file to use. In addition to the requirements of
Spark, you will need to ensure that you have the Python C header files installed
(python-dev on Debian systems) or pass --disable-python to the configured
script. Since Mesos needs to be installed on all the machines, you may find it
easier to configure Mesos to install somewhere other than the root, most easily
alongside your Spark installation as follows:

./configure --prefix=/home/sparkuser/mesos && make && make check && make
install

Installing Spark and Setting Up Your Cluster

[16]

Much like with the configuration of Spark in standalone mode with Mesos, you
need to make sure the different Mesos nodes can find one another. Start with adding
mesossprefix/var/mesos/deploy/masters to the hostname of the master, and
then adding each worker hostname to mesossprefix/var/mesos/deploy/slaves.
Then you will want to point the workers at the master (and possibly set some other
values) in mesossprefix/var/mesos/conf/mesos.conf.

Once you have Mesos built, it's time to configure Spark to work with Mesos. This is
as simple as copying the conf/spark-env.sh.template to conf/spark-env.sh,
and updating MESOS_NATIVE_LIBRARY to point to the path where Mesos is installed.
You can find more information about the different settings in spark-env.sh in the
table shown in the next section.

You will need to install both Mesos on Spark on all the machines in your cluster.
Once both Mesos and Spark are configured, you can copy the build to all the
machines using pscp as shown in the following command:

pscp -v -r -h -l sparkuser ./mesos /home/sparkuser/mesos

You can then start your Mesos clusters by using mesosprefix/sbin/mesos-start-
cluster.sh, and schedule your Spark on Mesos by using mesos://[host]:5050
as the master.

Deploying Spark on YARN
YARN is Apache Hadoop's NextGen MapReduce. The Spark project provides an
easy way to schedule jobs on YARN once you have a Spark assembly built. It is
important that the Spark job you create uses a standalone master URL. The example
Spark applications all read the master URL from the command-line arguments,
so specify --args standalone.

To run the same example as in the SSH section, do the following:

sbt/sbt assembly #Build the assembly

SPARK_JAR=./core/target/spark-core-assembly-0.7.0.jar ./run spark.deploy.
yarn.Client --jar examples/target/scala-2.9.2/spark-examples_2.9.2-
0.7.0.jar --class spark.examples.GroupByTest --args standalone --num-
workers 2 --worker-memory 1g --worker-cores 1

Chapter 1

[17]

Deploying set of machines over SSH
If you have a set of machines without any existing cluster management software,
you can deploy Spark over SSH with some handy scripts. This method is known as
"standalone mode" in the Spark documentation. An individual master and worker
can be started by ./run spark.deploy.master.Master and ./run spark.deploy.
worker.Worker spark://MASTERIP:PORT respectively. The default port for the
master is 8080. It's likely that you don't want to go to each of your machines and run
these commands by hand; there are a number of helper scripts in bin/ to help you
run your servers.

A prerequisite for using any of the scripts is having a password-less SSH access setup
from the master to all the worker machines. You probably want to create a new user
for running Spark on the machines and lock it down. This book uses the username
sparkuser. On your master machine, you can run ssh-keygen to generate the SSH
key and make sure that you do not set a password. Once you have generated the
key, add the public one (if you generated an RSA key it would be stored in ~/.ssh/
id_rsa.pub by default) to ~/.ssh/authorized_keys2 on each of the hosts.

The Spark administration scripts require that your username
matches. If this isn't the case, you can configure an alternative
username in your ~/.ssh/config.

Now that you have SSH access to the machines set up, it is time to configure
Spark. There is a simple template in [filepath]conf/spark-env.sh.template[/
filepath] that you should copy to [filepath]conf/spark-env.sh[/filepath].
You will need to set the SCALA_HOME variable to the path where you extracted Scala
to. You may also find it useful to set some (or all) of the following environment
variables:

Name Purpose Default

MESOS_NATIVE_LIBRARY Point to match where
Mesos is located

None

SCALA_HOME Point to where you
extracted Scala

None, must be set

SPARK_MASTER_IP The IP address for
the master to listen
on and the IP address
for the workers to
connect to port #

The result of running
hostname

Installing Spark and Setting Up Your Cluster

[18]

Name Purpose Default

SPARK_MASTER_PORT The port # for the
Spark master to listen
on

7077

SPARK_MASTER_WEBUI_PORT The port # of the web
UI on the master

8080

SPARK_WORKER_CORES The number of cores
to use

All of them

SPARK_WORKER_MEMORY The amount of
memory to use

Max of system memory -
(minus) 1 GB (or 512 MB)

SPARK_WORKER_PORT The port # on which
the worker runs on

random

SPARK_WEBUI_PORT The port # on which
the worker web UI
runs on

8081

SPARK_WORKER_DIR The location where
to store files from the
worker

SPARK_HOME/work_dir

Once you have your configuration all done, it's time to get your cluster up and
running. You will want to copy the version of Spark and the configurations you
have built to all of your machines. You may find it useful to install PSSH, a set
of parallel SSH tools including PCSP. The PSCP application makes it easy to SCP
(securely copy files) to a number of target hosts, although it will take a while,
such as:

pscp -v -r -h conf/slaves -l sparkuser ../spark-0.7.0 ~/

If you end up changing the configuration, you need to distribute the configuration
to all the workers, such as:

pscp -v -r -h conf/slaves -l sparkuser conf/spark-env.sh ~/
spark-0.7.0/conf/spark-env.sh

If you use a shared NFS on your cluster—although by default
Spark names logfiles and similar with the shared names—you
should configure a separate worker directory otherwise they will
be configured to write to the same place. If you want to have your
worker directories on the shared NFS, consider adding `hostname`,
for example, SPARK_WORKER_DIR=~/work-`hostname`.

Chapter 1

[19]

You should also consider having your logfiles go to a scratch directory for better
performance.

If you don't have Scala installed on the remote machines yet, you can also use pssh
to set it up:

pssh -P -i -h conf/slaves -l sparkuser "wget http://www.scala-lang.org/
downloads/distrib/files/scala-2.9.3.tgz && tar -xvf scala-2.9.3.tgz && cd
scala-2.9.3 && export PATH=$PATH:`pwd`/bin && export SCALA_HOME=`pwd` &&
echo \"export PATH=`pwd`/bin:\\\\$PATH && export SCALA_HOME=`pwd`\" >>
~/.bashrc"

Now you are ready to start the cluster. It is important to note that start-all and
start-master both assume they are being run on the node, which is the master for
the cluster. The start scripts all daemonize, so you don't have to worry about running
them in a screen.

ssh master bin/start-all.sh

If you get a class not found error, such as java.lang.NoClassDefFoundError:
scala/ScalaObject, check to make sure that you have Scala installed on that
worker host and that the SCALA_HOME is set correctly.

The Spark scripts assume that your master has Spark
installed as the same directory as your workers. If this is
not the case, you should edit bin/spark-config.sh
and set it to the appropriate directories.

The commands provided by Spark to help you administer your cluster are in the
following table:

Command Use
bin/slaves.sh <command> Runs the provided command on all the

worker hosts. For example, bin/slave.sh
uptime will show how long each of the
worker hosts have been up.

bin/start-all.sh Starts the master and all the worker hosts.
It must be run on the master.

bin/start-master.sh Starts the master host. Must be run on the
master.

bin/start-slaves.sh Starts the worker hosts.
bin/start-slave.sh Start a specific worker.
bin/stop-all.sh Stops master and workers.

www.allitebooks.com

http://www.allitebooks.org

Installing Spark and Setting Up Your Cluster

[20]

Command Use
bin/stop-master.sh Stops the master.
bin/stop-slaves.sh Stops all the workers.

You now have a running Spark cluster, as shown in the following screenshot. There
is a handy web UI on the master running on port 8080; you should visit and switch
on all the workers on port 8081. The web UI contains such helpful information as the
current workers, and current and past jobs.

Now that you have a cluster up and running let's actually do something with
it. As with the single host example, you can use the provided run script to run
Spark commands. All the examples listed in examples/src/main/scala/spark/
examples/ take a parameter, master, which points them to the master machine.
Assuming you are on the master host you could run them like this:

./run spark.examples.GroupByTest spark://`hostname`:7077

Chapter 1

[21]

If you run into an issue with
java.lang.UnsupportedClassVersionError, you may need to
update your JDK or recompile Spark if you grabbed the binary version.
Version 0.7 was compiled with JDK 1.7 as the target. You can check the
version of the JRE targeted by Spark with:
java -verbose -classpath ./core/target/scala-2.9.2/
classes/

spark.SparkFiles | head -n 20

Version 49 is JDK1.5, Version 50 is JDK1.6, and Version 60 is JDK1.7.

If you can't connect to the localhost, make sure that you've configured your master
to listen to all the IP addresses (or if you don't want to replace the localhost with the
IP address configured to listen too).

If everything has worked correctly, you will see a lot of log messages output to
stdout something along the lines of:

13/03/28 06:35:31 INFO spark.SparkContext: Job finished: count at
GroupByTest.scala:35, took 2.482816756 s
2000

Links and references
Some of the useful links are as follows:

•	 http://archive09.linux.com/feature/151340

•	 http://spark-project.org/docs/latest/spark-standalone.html

•	 https://github.com/mesos/spark/blob/master/core/src/main/scala/
spark/deploy/worker/WorkerArguments.scala

•	 http://bickson.blogspot.com/2012/10/deploying-
graphlabsparkmesos-cluster-on.html

•	 http://www.ibm.com/developerworks/library/os-spark/

•	 http://mesos.apache.org/

•	 http://aws.amazon.com/articles/Elastic-
MapReduce/4926593393724923

•	 http://spark-project.org/docs/latest/ec2-scripts.html

Installing Spark and Setting Up Your Cluster

[22]

Summary
In this chapter, we have installed Spark on our machine for local development and also
set up on our cluster, so we are ready to run the applications that we write. In the next
chapter, we will learn to use the Spark shell.

Using the Spark Shell
The Spark shell is a wonderful tool for rapid prototyping with Spark. It helps to be
familiar with Scala, but it isn't necessary when using this tool. The Spark shell allows
you to query and interact with the Spark cluster. This can be great for debugging or
for just trying things out. The previous chapter should have gotten you to the point
of having a Spark instance running, so now all you need to do is start your Spark
shell, and point it at your running index with the following command:

MASTER=spark://`hostname`:7077 ./spark-shell

If you are running Spark in local mode and don't have a Spark instance already
running, you can just run the preceding command without the MASTER= part. This will
run with only one thread, hence to run multiple threads you can specify local[n].

Loading a simple text file
When running a Spark shell and connecting to an existing cluster, you should see
something specifying the app ID like Connected to Spark cluster with app ID
app-20130330015119-0001. The app ID will match the application entry as shown
in the web UI under running applications (by default, it would be viewable on port
8080). You can start by downloading a dataset to use for some experimentation.
There are a number of datasets that are put together for The Elements of Statistical
Learning, which are in a very convenient form for use. Grab the spam dataset using
the following command:

wget http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/spam.data

Now load it as a text file into Spark with the following command inside your
Spark shell:

scala> val inFile = sc.textFile("./spam.data")

Using the Spark Shell

[24]

This loads the spam.data file into Spark with each line being a separate entry in the
RDD (Resilient Distributed Datasets).

Note that if you've connected to a Spark master, it's possible that it will attempt
to load the file on one of the different machines in the cluster, so make sure it's
available on all the cluster machines. In general, in future you will want to put your
data in HDFS, S3, or similar file systems to avoid this problem. In a local mode, you
can just load the file directly, for example, sc.textFile([filepah]). To make a
file available across all the machines, you can also use the addFile function on the
SparkContext by writing the following code:

scala> import spark.SparkFiles;
scala> val file = sc.addFile("spam.data")
scala> val inFile = sc.textFile(SparkFiles.get("spam.data"))

Just like most shells, the Spark shell has a command history.
You can press the up arrow key to get to the previous commands.
Getting tired of typing or not sure what method you want to call
on an object? Press Tab, and the Spark shell will autocomplete the
line of code as best as it can.

For this example, the RDD with each line as an individual string isn't very useful,
as our data input is actually represented as space-separated numerical information.
Map over the RDD, and quickly convert it to a usable format (note that _.toDouble
is the same as x => x.toDouble):

scala> val nums = inFile.map(x => x.split(' ').map(_.toDouble))

Verify that this is what we want by inspecting some elements in the nums RDD and
comparing them against the original string RDD. Take a look at the first element of
each RDD by calling .first() on the RDDs:

scala> inFile.first()
[...]
res2: String = 0 0.64 0.64 0 0.32 0 0 0 0 0 0 0.64 0 0 0 0.32 0 1.29
1.93 0 0.96 0
0 0.778 0 0 3.756 61 278 1

scala> nums.first()
[...]
res3: Array[Double] = Array(0.0, 0.64, 0.64, 0.0, 0.32, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.64, 0.0, 0.0, 0.0, 0.32, 0.0, 1.29, 1.93, 0.0, 0.96,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.778, 0.0, 0.0, 3.756, 61.0, 278.0, 1.0)

Chapter 2

[25]

Using the Spark shell to run logistic
regression
When you run a command and have not specified a left-hand side (that is, leaving out
the val x of val x = y), the Spark shell will print the value along with res[number].
The res[number] function can be used as if we had written val res[number] = y.
Now that you have the data in a more usable format, try to do something cool with it!
Use Spark to run logistic regression over the dataset as follows:

scala> import spark.util.Vector
import spark.util.Vector

scala> case class DataPoint(x: Vector, y: Double)
defined class DataPoint

scala> def parsePoint(x: Array[Double]): DataPoint = {
 DataPoint(new Vector(x.slice(0,x.size-2)) , x(x.size-1))
 }
parsePoint: (x: Array[Double])this.DataPoint

scala> val points = nums.map(parsePoint(_))
points: spark.RDD[this.DataPoint] = MappedRDD[3] at map at
<console>:24

scala> import java.util.Random
import java.util.Random

scala> val rand = new Random(53)
rand: java.util.Random = java.util.Random@3f4c24
scala> var w = Vector(nums.first.size-2, _ => rand.nextDouble)
13/03/31 00:57:30 INFO spark.SparkContext: Starting job: first at
<console>:20
...
13/03/31 00:57:30 INFO spark.SparkContext: Job finished: first at
<console>:20, took 0.01272858 s
w: spark.util.Vector = (0.7290865701603526, 0.8009687428076777,
0.6136632797111822, 0.9783178194773176, 0.3719683631485643,
0.46409291255379836, 0.5340172959927323, 0.04034252433669905,
0.3074428389716637, 0.8537414030626244, 0.8415816118493813,
0.719935849109521, 0.2431646830671812, 0.17139348575456848,
0.5005137792223062, 0.8915164469396641, 0.7679331873447098,
0.7887571495335223, 0.7263187438977023, 0.40877063468941244,
0.7794519914671199, 0.1651264689613885, 0.1807006937030201,

Using the Spark Shell

[26]

0.3227972103818231, 0.2777324549716147, 0.20466985600105037,
0.5823059390134582, 0.4489508737465665, 0.44030858771499415,
0.6419366305419459, 0.5191533842209496, 0.43170678028084863,
0.9237523536173182, 0.5175019655845213, 0.47999523211827544,
0.25862648071479444, 0.020548000101787922, 0.18555332739714137, 0....

scala> val iterations = 100
iterations: Int = 100

scala> import scala.math._

scala> for (i <- 1 to iterations) {
 val gradient = points.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
 }
[....]

scala> w
res27: spark.util.Vector = (0.2912515190246098, 1.05257972144256,
1.1620192443948825, 0.764385365541841, 1.3340446477767611,
0.6142105091995632, 0.8561985593740342, 0.7221556020229336,
0.40692442223198366, 0.8025693176035453, 0.7013618380649754,
0.943828424041885, 0.4009868306348856, 0.6287356973527756,
0.3675755379524898, 1.2488466496117185, 0.8557220216380228,
0.7633511642942988, 6.389181646047163, 1.43344096405385,
1.729216408954399, 0.4079709812689015, 0.3706358251228279,
0.8683036382227542, 0.36992902312625897, 0.3918455398419239,
0.2840295056632881, 0.7757126171768894, 0.4564171647415838,
0.6960856181900357, 0.6556402580635656, 0.060307680034745986,
0.31278587054264356, 0.9273189009376189, 0.0538302050535121,
0.545536066902774, 0.9298009485403773, 0.922750704590723,
0.072339496591

If things went well, you just used Spark to run logistic regression. Awsome!
We have just done a number of things: we have defined a class, we have created
an RDD, and we have also created a function. As you can see the Spark shell is
quite powerful. Much of the power comes from it being based on the Scala REPL
(the Scala interactive shell), so it inherits all the power of the Scala REPL (Read-
Evaluate-Print Loop). That being said, most of the time you will probably want
to work with a more traditionally compiled code rather than working in the
REPL environment.

Chapter 2

[27]

Interactively loading data from S3
Now, let's try a second exercise with the Spark shell. As part of Amazon's EMR
Spark support, it has provided some handy sample data of Wikipedia's traffic
statistics in S3 in the format that Spark can use. To access the data, you first need to
set your AWS access credentials as shell's parameters. For instructions on signing
up for EC2 and setting up the shell parameters, see the Running Spark on EC2 with
the scripts section in Chapter 1, Installing Spark and Setting Up Your Cluster (S3 access
requires additional keys fs.s3n.awsAccessKeyId/awsSecretAccessKey or using
the s3n://user:pw@ syntax). Once that's done, load the S3 data and take a look at
the first line:

scala> val file = sc.textFile("s3n://bigdatademo/sample/wiki/")
13/04/21 21:26:14 INFO storage.MemoryStore: ensureFreeSpace(37539)
called with curMem=37531, maxMem=339585269
13/04/21 21:26:14 INFO storage.MemoryStore: Block broadcast_1 stored
as values to memory (estimated size 36.7 KB, free 323.8 MB)
file: spark.RDD[String] = MappedRDD[3] at textFile at <console>:12

scala> file.take(1)
13/04/21 21:26:17 INFO mapred.FileInputFormat: Total input paths to
process : 1
...
13/04/21 21:26:17 INFO spark.SparkContext: Job finished: take at
<console>:15, took 0.533611079 s
res1: Array[String] = Array(aa.b Pecial:Listusers/sysop 1 4695)

You don't need to set your AWS credentials as shell's parameters; the general form of
the S3 path is s3n://<AWS ACCESS ID>:<AWS SECRET>@bucket/path. It's important
to take a look at the first line of data because unless we force Spark to materialize
something with the data, it won't actually bother to load it. It is useful to note that
Amazon provided a small sample dataset to get started with. The data is pulled from
a much larger set at http://aws.amazon.com/datasets/4182. This practice can be
quite useful, when developing in interactive mode, since you want the fast feedback
of your jobs completing quickly. If your sample data was too big and your executions
were taking too long, you could quickly slim down the RDD by using the sample
functionality built into the Spark shell:

scala> val seed = (100*math.random).toInt
seed: Int = 8
scala> file.sample(false,1/10.,seed)
res10: spark.RDD[String] = SampledRDD[4] at sample at <console>:17

//If you wanted to rerun on the sampled data later, you could write it
back to S3
scala> res10.saveAsTextFile("s3n://mysparkbucket/test")

Using the Spark Shell

[28]

13/04/21 22:46:18 INFO spark.PairRDDFunctions: Saving as hadoop file
of type (NullWritable, Text)
....
13/04/21 22:47:46 INFO spark.SparkContext: Job finished:
saveAsTextFile at <console>:19, took 87.462236222 s

Now that you have the data loaded, find the most popular articles in a sample. First,
parse the data separating it into name and count. Second, as there can be multiple
entries with the same name, reduce the data by the key summing the counts. Finally,
we swap the key/value so that when we sort by key, we get back the highest count
item as follows:

scala> val parsed = file.sample(false,1/10.,seed).map(x => x.split("
")).map(x => (x(1), x(2).toInt))
parsed: spark.RDD[(java.lang.String, Int)] = MappedRDD[5] at map at
<console>:16

scala> val reduced = parsed.reduceByKey(_+_)
13/04/21 23:21:49 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable
13/04/21 23:21:49 WARN snappy.LoadSnappy: Snappy native library not
loaded
13/04/21 23:21:50 INFO mapred.FileInputFormat: Total input paths to
process : 1
reduced: spark.RDD[(java.lang.String, Int)] = MapPartitionsRDD[8] at
reduceByKey at <console>:18

scala> val countThenTitle = reduced.map(x => (x._2, x._1))
countThenTitle: spark.RDD[(Int, java.lang.String)] = MappedRDD[9] at
map at <console>:20

scala> countThenTitle.sortByKey(false).take(10)
13/04/21 23:22:08 INFO spark.SparkContext: Starting job: take at
<console>:23
....
13/04/21 23:23:15 INFO spark.SparkContext: Job finished: take at
<console>:23, took 66.815676564 s
res1: Array[(Int, java.lang.String)] = Array((213652,Main_Page),
(14851,Special:Search), (9528,Special:Export/Can_You_Hear_Me),
(6454,Wikipedia:Hauptseite), (4189,Special:Watchlist), (3520,%E7
%89%B9%E5%88%A5:%E3%81%8A%E3%81%BE%E3%81%8B%E3%81%9B%E8%A1%A8%E7
%A4%BA), (2857,Special:AutoLogin), (2416,P%C3%A1gina_principal),
(1990,Survivor_(TV_series)), (1953,Asperger_syndrome))

You can also work with Spark interactively in Python by running ./pyspark.

Chapter 2

[29]

Summary
In this chapter, you have learned how to start the Spark shell, load our data, and we
did a few simple things through a hands-on machine-learning approach. Now that
you've seen how Spark's interactive console works, it's time to see how to build Spark
jobs in a more traditional and persistent environment in the subsequent chapter.

www.allitebooks.com

http://www.allitebooks.org

Building and Running
a Spark Application

Using Spark in an interactive mode with the Spark shell has limited permanence
and does not work in Java. Building Spark jobs is a bit trickier than building a
normal application as all the dependencies have to be available on all the machines
that are in your cluster. This chapter will cover building a Java and Scala Spark job
with Maven or sbt and Spark jobs with a non-maven-aware build system.

Building your Spark project with sbt
The sbt tool is a popular build tool for Scala that supports building both Scala and
Java code. Building Spark projects with sbt is one of the easiest options because
Spark itself is built with sbt. It makes it easy to bring in dependencies (which is
especially useful for Spark) as well as package everything into a single deployable/
JAR file. The current normal method of building packages that use sbt is to use a
shell script that bootstraps the specific version of sbt that your project uses, making
installation simpler.

As a first step, take a Spark job that already works and go through the process of
creating a build file for it. In the spark directory, begin by copying the GroupByTest
example into a new directory as follows:

mkdir -p example-scala-build/src/main/scala/spark/examples/

cp -af sbt example-scala-build/

cp examples/src/main/scala/spark/examples/GroupByTest.scala example-
scala-build/src/main/scala/spark/examples/

Building and Running a Spark Application

[32]

Since you are going to ship your JAR file to the other machines, you will want to
ensure that all the dependencies are included in them. You can either add a bunch of
JAR files or use a handy sbt plugin called sbt-assembly to group everything into a
single JAR file. If you don't have a bunch of transitive dependencies, you may decide
that using the assembly extension isn't useful for your project. Instead of using sbt-
assembly, you probably want to run sbt/sbt assembly in the Spark project and
add the resulting JAR file core/target/spark-core-assembly-0.7.0.jar to your
classpath. The sbt-assembly package is a great tool to avoid having to manually
manage a large number of JAR files. To add the assembly extension to your build,
add the following code to project/plugins.sbt:

resolvers += Resolver.url("artifactory",
url("http://scalasbt.artifactoryonline.com/scalasbt/
sbt-plugin-releases"))(Resolver.ivyStylePatterns)

resolvers += "Typesafe Repository" at
"http://repo.typesafe.com/typesafe/releases/"

resolvers += "Spray Repository" at "http://repo.spray.cc/"
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.7")

Resolvers are used by sbt so that it can find where a package is; you can think of this
as similar to specifying an additional APT PPA (Personal Package Archive) source,
except it only applies to the one package that you are trying to build. If you load up
the resolver URLs in your browser, most of them have directory listing turned on,
so you can see what packages are provided by the resolver. These resolvers point to
web URLs, but there are also resolvers for local paths, which can be useful during
development. The addSbtPlugin directive is deceptively simple; it says to include
the sbt-assembly package from com.eed3si9n at Version 0.8.7 and implicitly
adds the Scala version and sbt version. Make sure to run sbt reload clean
update to install new plugins.

The following is the build file for one of the GroupByTest.scala examples as if it
were being built on its own; insert the following code in ./build.sbt:

//Next two lines only needed if you decide to use the assembly plugin
import AssemblyKeys._
assemblySettings

scalaVersion := "2.9.2"

name := "groupbytest"

libraryDependencies ++= Seq(

Chapter 3

[33]

 "org.spark-project" % "spark-core_2.9.2" % "0.7.0"
)

resolvers ++= Seq(
 "JBoss Repository" at
 "http://repository.jboss.org/nexus/content/
 repositories/releases/",
 "Spray Repository" at "http://repo.spray.cc/",
 "Cloudera Repository" at
 "https://repository.cloudera.com/artifactory/cloudera-repos/",
 "Akka Repository" at "http://repo.akka.io/releases/",
 "Twitter4J Repository" at "http://twitter4j.org/maven2/"
)
//Only include if using assembly
mergeStrategy in assembly <<= (mergeStrategy in assembly) {
 (old) =>
 {
 case PathList("javax", "servlet", xs @ _*) => MergeStrategy.first
 case PathList("org", "apache", xs @ _*) => MergeStrategy.first
 case "about.html" => MergeStrategy.rename
 case x => old(x)
 }
}

As you can see, the build file is similar in format to plugins.sbt. There are a few
unique things about this build file that are worth mentioning. Just as we did with
the plugin file, you also need to add a number of resolvers so that sbt can find
all the dependencies. Note that we are including it as "org.spark-project" %
"spark-core_2.9.2" % "0.7.0" rather than using "org.spark-project" %%
"spark-core" % "0.7.0". If possible, you should try to use the %% format, which
automatically adds the Scala version. Another unique part of this build file is the
use of mergeStrategy. Since multiple dependencies can define the same files,
when you merge everything into a single JAR file, you need to tell the plugin
how to handle it. It is a fairly simple build file other than the merge strategy
and manually specifying the Scala version of Spark that you are using.

If you have a different JDK on the master than JRE on the
workers, you may want to switch the target JDK by adding
the following code to your build file:

javacOptions ++= Seq("-target", "1.6")

Now that your build file is defined, build your GroupByTest Spark job:

sbt/sbt clean compile package

Building and Running a Spark Application

[34]

This will produce target/scala-2.9.2/groupbytest_2.9.2-0.1-SNAPSHOT.jar.

Run sbt/sbt assembly in the spark directory to make sure you have the Spark
assembly available to your classpaths. The example requires a pointer to where
Spark is using SPARK_HOME and where the jar example is using SPARK_EXAMPLES_
JAR. We also need to specify the classpath that we built to Scala locally with -cp.
We can then run the following example:

SPARK_HOME="../" SPARK_EXAMPLES_JAR="./target/scala-2.9.2/
groupbytest-assembly-0.1-SNAPSHOT.jar" scala -cp/users/
sparkuser/spark-0.7.0/example-scala-build/target/scala-2.9.2/
groupbytest_2.9.2-0.1-SNAPSHOT.jar:/users/sparkuser/spark-0.7.0/
core/target/
spark-core-assembly-0.7.0.jar spark.examples.GroupByTest local[1]

If you have decided to build all of your dependencies into a single JAR file with the
assembly plugin, we need to call it like this:

sbt/sbt assembly

This will produce an assembly snapshot at target/scala-2.9.2/groupbytest-
assembly-0.1-SNAPSHOT.jar, which you can then run in a very similar manner,
simply without spark-core-assembly:

SPARK_HOME="../" \ SPARK_EXAMPLES_JAR="./target/scala-2.9.2/groupbytest-
assembly-0.1-SNAPSHOT.jar" \

 scala -cp /users/sparkuser/spark-0.7.0/example-scala-build/target/
scala-2.9.2/groupbytest-assembly-0.1-SNAPSHOT.jar spark.examples.
GroupByTest local[1]

You may run into merge issues with sbt assembly if things have
changed; a quick search over the web will probably provide
better current guidance than anything that could be written
taking guesses about future merge problems. In general,
MergeStategy.first should work.
Your success for the preceding code may have given you a
false sense of security. Since sbt will resolve security from the
local cache, the deps package that was brought in by another
project could mean that the code builds on one machine and not
others. Delete your local ivy cache and run sbt clean to make
sure. If some files fail to download, try looking at Spark's list of
resolvers and adding any missing ones to your build.sbt.

Chapter 3

[35]

Some of the following links useful for referencing are as follows:

•	 http://www.scala-sbt.org/

•	 https://github.com/sbt/sbt-assembly

•	 http://spark-project.org/docs/latest/scala-programming-guide.
html

Building your Spark job with Maven
Maven is an open source Apache project that builds Spark jobs in Java or Scala.
As with sbt, you can include the Spark dependency through Maven, simplifying
our build process. As with sbt, Maven has the ability to bundle Spark and all of our
dependencies, in a single JAR file using a plugin or build Spark as a monolithic JAR
using sbt/sbt assembly for inclusion.

To illustrate the build process for Spark jobs with Maven, this section will use Java
as an example since Maven is more commonly used to build Java tasks. As a first
step, let's take a Spark job that already works and go through the process of creating
a build file for it. We can start by copying the GroupByTest example into a new
directory and generating the Maven template as follows:

mkdir example-java-build/; cd example-java-build

mvn archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DgroupId=spark.examples \

 -DartifactId=JavaWordCount \

 -Dfilter=org.apache.maven.archetypes:maven-archetype-quickstart

cp ../examples/src/main/java/spark/examples/JavaWordCount.java
JavaWordCount/src/main/java/spark/examples/JavaWordCount.java

Next, update your Maven pom.xml to include information about the version of Spark
we are using. Also, since the example file we are working with requires JDK 1.5, we
will need to update the Java version that Maven is configured to use; at the time of
writing, it defaults to 1.3. In between the <project> tags, we will need to add the
following code:

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>

Building and Running a Spark Application

[36]

 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.spark-project</groupId>
 <artifactId>spark-core_2.9.2</artifactId>
 <version>0.7.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

We can now build our jar with the maven package, which can be run using the
following commands:

SPARK_HOME="../" SPARK_EXAMPLES_JAR="./target/JavaWordCount-1.0-
SNAPSHOT.jar" java -cp ./target/JavaWordCount-1.0-SNAPSHOT.jar:../../
core/target/spark-core-assembly-0.7.0.jar spark.examples.JavaWordCount
local[1] ../../README

As with sbt, we can use a plugin to include all the dependencies in our JAR file.
In between the <plugins> tags, add the following code:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.7</version>
 <configuration>
 <!-- This transform is used so that merging of akka configuration
files works -->
 <transformers>
 <transformer implementation=
 "org.apache.maven.plugins.shade.resource
 .ApacheLicenseResourceTransformer">
 </transformer>
 <transformer implementation=
 "org.apache.maven.plugins.shade
 .resource.AppendingTransformer">
 <resource>reference.conf</resource>
 </transformer>

Chapter 3

[37]

 </transformers>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Then run mvn assembly and the resulting jar file can be run as the preceding code,
but leaving out the Spark assembly jar file from the classpath.

Some of the following links useful for referencing are as follows:

•	 http://maven.apache.org/guides/getting-started/

•	 http://maven.apache.org/plugins/maven-compiler-plugin/examples/
set-compiler-source-and-target.html

•	 http://maven.apache.org/plugins/maven-dependency-plugin/

Building your Spark job with something
else
If neither sbt nor Maven suits your needs, you may decide to use another build system.
Thankfully, Spark supports building a fat JAR file with all the dependencies of Spark,
which makes it easy to include in the build system of your choice. Simply run sbt/sbt
assembly in the Spark directory and copy the resulting assembly JAR file from core/
target/spark-core-assembly-0.7.0.jar to your build dependencies, and you are
good to go.

No matter what your build system is, you may find yourself
wanting to use a patched version of the Spark libraries. In that
case, you can deploy your Spark library locally. I recommend
giving it a different version number to ensure that sbt/maven
picks up the modified version. You can change the version
by editing project/SparkBuild.scala and changing the
version := part of the code. If you are using sbt, you should
run an sbt/sbt update in the project that is importing the
custom version. For other build systems, you just need to ensure
that you use the new assembly jar file as part of your build.

Building and Running a Spark Application

[38]

Summary
So, now you can build your Spark jobs with Maven, sbt, or a build system
of your choice. It's time to jump in and start learning how to do more fun and
exciting things, such as how to create a Spark context, in the subsequent chapter.

Creating a SparkContext
This chapter will cover how to create a SparkContext context for your cluster.
A SparkContext class represents the connection to a Spark cluster and provides
the entry point for interacting with Spark. We need to create a SparkContext
instance so that we can interact with Spark and distribute our jobs. In Chapter 2,
Using the Spark Shell, we interacted with Spark through the Spark shell, which
created a SparkContext. Now you can create RDDs, broadcast variables, counters,
and so on, and actually do fun things with your data. The Spark shell serves as an
example of interaction with the Spark cluster through SparkContext in ./repl/
src/main/scala/spark/repl/SparkILoop.scala.

The following code snippet creates a SparkContext instance using the MASTER
environment variable (or local, if none are set) called Spark shell and doesn't
specify any dependencies. This is because the Spark shell is built into Spark and,
as such, doesn't have any JAR files that it needs to be distributed.

def createSparkContext(): SparkContext = {
 val master = this.master match {
 case Some(m) => m
 case None => {
 val prop = System.getenv("MASTER")
 if (prop != null) prop else "local"
 }
 }
 sparkContext = new SparkContext(master, "Spark shell")
 sparkContext
 }

www.allitebooks.com

http://www.allitebooks.org

Creating a SparkContext

[40]

For a client to establish a connection to the Spark cluster, the SparkContext object
needs some basic information as follows:

•	 master: The master URL can be in one of the following formats:
°° local[n]: for a local mode
°° spark://[sparkip]: to point to a Spark cluster
°° mesos://: for a mesos path if you are running a mesos cluster

•	 application name: This is the human-readable application name
•	 sparkHome: This is the path to Spark on the master/workers machines
•	 jars: This gives the path to the list of JAR files required for your job

Scala
In a Scala program, you can create a SparkContext instance using the following code:

val spar kContext = new SparkContext(master_path, "application
name", ["optional spark home path"],["optional list of jars"])

While you can hardcode all of these values, it's better to read them from the
environment with reasonable defaults. This approach provides maximum flexibility
to run the code in a changing environment without having to recompile the code.
Using local as the default value for the master machine makes it easy to launch
your application locally in a test environment. By carefully selecting the defaults,
you can avoid having to over-specify them. An example would be as follows:

import spark.sparkContext
import spark.sparkContext._
import scala.util.Properties

val master = Properties.envOrElse("MASTER","local")
val sparkHome = Properties.get("SPARK_HOME")
val myJars = Seq(System.get("JARS")
val sparkContext = new SparkContext(master, "my app", sparkHome,
myJars)

Java
To create a SparkContext instance in Java, try the following code:

import spark.api.java.JavaSparkContext;

JavaSparkContext ctx = new JavaSparkContext("master_url",
"application name", ["path_to_spark_home", "path_to_jars"]);

Chapter 4

[41]

While the preceding code works (once you have replaced the parameters with the
correct values for your setup), it requires a code change if you've changed any of
the parameters. Instead, use reasonable defaults and allow them to be overridden
similar to the example Scala code. The following illustrates how to do this with the
environment variables:

String master = System.getEnv("MASTER");
if (master == null) {
 master = "local";
}
String sparkHome = System.getEnv("SPARK_HOME");
if (sparkHome == null) {
 sparkHome = "./";
}
String jars = System.getEnv("JARS");
JavaSparkContext ctx = new JavaSparkContext(System.getenv("MASTER"),
"my Java app",
System.getenv("SPARK_HOME"), System.getenv("JARS"));

Shared Java and Scala APIs
Once you have a SparkContext created, it will serve as your main entry point. In the
next chapter, you will learn how to use our SparkContext instance to load and save
data. You can also use the SparkContext instance to launch more Spark jobs and
add or remove dependencies. Some of the non-data-driven methods you can use on
the SparkContext instance are as follows:

Method Use
addJar(path) Adds the JAR file for all future jobs run through the

SparkContext instance
addFile(path) Downloads the file to all nodes on the cluster
stop() Shuts down the SparkContext connection
clearFiles() Removes the files so that new nodes will not download them
clearJars() Removes the JAR files from being required for future jobs

Python
The Python SparkContext is a bit different from the Scala and Java contexts
since Python doesn't use JAR files to distribute dependencies. Since you are still
likely to have dependencies, set pyFiles with the ZIP and PY files as desired on
SparkContext (or leave it empty if you don't have any files to distribute).

Creating a SparkContext

[42]

You can create a Python SparkContext using the following code:

from pyspark import SparkContext

sc = SparkContext("master","my python app", sparkHome="sparkhome",
pyFiles="placeholderdeps.zip")

Now you are able to create a connection to your Spark cluster, so it's time to get
started on loading our data into Spark.

Links and references
Some useful links for referencing are listed as follows:

•	 http://spark-project.org/docs/latest/quick-start.html

•	 http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html

•	 https://github.com/mesos/spark/blob/master/repl/src/main/scala/
spark/repl/SparkILoop.scala

•	 http://spark-project.org/docs/0.7.0/api/pyspark/pyspark.
context.SparkContext-class.html

•	 http://spark-project.org/docs/0.7.0/api/core/spark/
SparkContext.html

•	 http://spark-project.org/docs/0.7.0/api/core/spark/api/java/
JavaSparkContext.html

•	 http://www.scala-lang.org/api/current/index.html#scala.util.
Properties$

Summary
In this chapter, we've covered how to connect to our Spark cluster using SparkContext.
Using SparkContext, we will start to look at the different data sources that we can use
to load data into Spark in the next chapter.

Loading and Saving Data
in Spark

By this point in the book you have experimented with the Spark shell, figured out how
to create a connection to the Spark cluster, and built jobs for deployment. Now to make
those jobs useful, you will learn how to load and save data in Spark. Spark's primary
unit for data representation is an RDD, which allows for easy parallel operations on
the data. Other forms of data, such as counters, have their own representation. Spark
can load and save RDDs from a variety of sources.

RDDs
Spark RDDs can be created from any supported Hadoop source. Native collections
in Scala, Java, and Python can also serve as the basis for an RDD. Creating RDDs
from a native collection is especially useful for testing.

Before jumping into the details on the supported data sources/sinks, take some time
to learn about what RDDs are and what they are not. It is crucial to understand that
even though an RDD is defined, it does not actually contain data. This means that
when you go to access the data in an RDD it could fail. The computation to create the
data in an RDD is only done when the data is referenced; for example, it is created
by caching or writing out the RDD. This means that you can chain a large number of
operations together, and not have to worry about excessive blocking. It's important
to note that during the application development, you can write code, compile it, and
even run your job, and unless you materialize the RDD, your code may not have even
tried to load the original data.

Loading and Saving Data in Spark

[44]

Each time you materialize an RDD it is re-computed. If we are going
to be using something frequently, a performance improvement can
be achieved by caching the RDD.

Loading data into an RDD
Now the chapter will examine the different sources you can use for your RDD.
If you decide to run through the examples in the Spark shell, you can call .cache()
or .first() on the RDDs you generate to verify that it can be loaded. In Chapter 2,
Using the Spark Shell, you learned how to load data text from a file and from the S3
storage system, where you can look at different formats of data and the different
sources that are supported.

One of the easiest ways of creating an RDD is taking an existing Scala collection
and converting it into an RDD. The Spark context provides a function called
parallelize; this takes a Scala collection and turns it into an RDD that is of the
same type as the data input.

•	 Scala:
val dataRDD = sc.parallelize(List(1,2,4))

•	 Java:
JavaRDD<Integer> dataRDD = sc.parallelize(Arrays.asList(1,2,4));

•	 Python:
rdd = sc.parallelize([1,2,3])

The simplest method for loading external data is loading text from a file. This
requires the file to be available on all the nodes in the cluster, which isn't much of a
problem for a local mode. When in a distributed mode, you will want to use Spark's
addFile functionality to copy the file to all the machines in your cluster. Assuming
your SparkContext is called sc, we could load text data from a file (you need to
create the file):

•	 Scala:
import spark.SparkFiles;
...
sc.addFile("spam.data")
val inFile = sc.textFile(SparkFiles.get("spam.data"))

Chapter 5

[45]

•	 Java:
import spark.Sparkfiles;

sc.addFile("spam.data");
JavaRDD<String> lines = sc.textFile(SparkFiles.get("spam.data"));

•	 Python:
from pyspark.files import SparkFiles

sc.addFile("spam.data")
sc.textFile(SparkFiles.get("spam.data"))

The resulting RDD is an overridden string with each line being a unique element
in the RDD. Frequently, your input files will be CSV or TSV files, which you will
want to parse using one of the standard CSV libraries. In Chapter 2, Using the Spark
Shell, you parsed them with a split and toDouble, but that doesn't always work
out so well for more complex CSV files. Looking back to Chapter 3, Building and
Running a Spark Application where you learned how to build jobs, you can change
the libraryDependencies in build.sbt to be:

libraryDependencies ++= Seq(
 "org.spark-project" % "spark-core_2.9.2" % "0.7.0",
 "net.sf.opencsv" % "opencsv" % "2.0"
)

This brings in a CSV parser to use. This chapter uses opencsv for this example for
brevity's sake, but you may find another CSV parser better suited to your needs
depending on what you are parsing. Let's look at a sample that parses the input
CSV and sums all the rows:

package pandaspark.examples

import spark.SparkContext
import spark.SparkContext._
import spark.SparkFiles;
import au.com.bytecode.opencsv.CSVReader
import java.io.StringReader

object LoadCsvExample {
 def main(args: Array[String]) {
 if (args.length != 2) {
 System.err.println("Usage: LoadCsvExample <master>
 <inputfile>")
 System.exit(1)
 }

Loading and Saving Data in Spark

[46]

 val master = args(0)
 val inputFile = args(1)
 val sc = new SparkContext(master, "Load CSV Example",
 System.getenv("SPARK_HOME"),
 Seq(System.getenv("JARS")))
 sc.addFile(inputFile)
 val inFile = sc.textFile(inputFile)
 val splitLines = inFile.map(line => {
 val reader = new CSVReader(new StringReader(line))
 reader.readNext()
 })
 val numericData = splitLines.map(line => line.map(_.toDouble))
 val summedData = numericData.map(row => row.sum)
 println(summedData.collect().mkString(","))
 }

}

The previous code also illustrates one of the ways of getting the data out of Spark:
you can transform it to a standard Scala array using the collect() function. The
collect() function is especially useful for testing, in much the same way as the
parallelize() function is. The collect() function only works if your data fits
in memory on a single host; in that case it adds the bottleneck of everything having
to come back to a single machine.

While loading text files into Spark is certainly easy, text files on a local disk are often
not the most convenient format for storing large chunks of data. Spark supports
loading from all the different Hadoop formats (sequence files, regular text files, and
so on) and from all the support Hadoop storage sources (HDFS, S3, HBase, and
so on). If you want you can also load your CSV into HBase using some of its bulk
loading tools (such as ImportTsv) and get at your CSV data that way. As of Version
0.7, PySpark does not support any of the advanced methods of loading data we will
be discussing in the rest of this chapter.

Sequence files are binary-flat files consisting of key-value pairs, and they are one of
the common ways of storing data for use with Hadoop. Loading a sequence file into
Spark is similar to loading a text file, but you also need to let it know about the types
of the keys and values. The types must either be subclasses of Hadoop's Writable
class or be implicitly convertible to such a type. For Scala users, some natives are
convertible through implicit conversions in WritableConverter. As of Version 0.7,
the standard WritableConverter types are Int, Long, Double, Float, Boolean,
Array, and String.

Chapter 5

[47]

Let's illustrate this by looking at how to load a sequence file of String to Integer.

•	 Scala:
val data = sc.sequenceFile[String, Int](inputFile)

•	 Java:
JavaPairRDD<Text, IntWritable> dataRDD = sc.sequenceFile(file,
Text.class, IntWritable.class);
JavaPairRDD<String, Integer> cleanData = dataRDD.map(new
PairFunction<Tuple2<Text, IntWritable>, String, Integer>() {
 @Override
public Tuple2<String, Integer> call(Tuple2<Text, IntWritable>
pair) {
return new Tuple2<String, Integer>(pair._1().toString(),
pair._2().get());
}
});

Note that in the preceding cases, like with the text input,
the file need not be a traditional file; it can reside on S3,
HDFS, and so on. Also note that for Java, you can't rely
on implicit conversions between types.

HBase is a Hadoop-based database designed to support random read/write access
to entries. Loading data from HBase is a bit different from text files and sequence
files. With HBase, we have to specify the type information of our data to Spark in a
different way. Since HBase isn't included by default as a dependency of Spark, you
will need to add it to your build system like you did with opencsv previously by
adding org.apache.hbase" % "hbase" % "0.94.6.

If you run into difficulty with unresolved dependencies,
make sure to add the Apache HBase release Maven repository
at https://repository.apache.org/content/
repositories/releases to your resolvers.

Let's illustrate the use of HBase database:

•	 Scala:
import spark._
import org.apache.hadoop.hbase.{HBaseConfiguration,
HTableDescriptor}
import org.apache.hadoop.hbase.client.HBaseAdmin

Loading and Saving Data in Spark

[48]

import org.apache.hadoop.hbase.mapreduce.TableInputFormat
…
val conf = HBaseConfiguration.create()
conf.set(TableInputFormat.INPUT_TABLE, input_table)
 // Initialize hBase table if necessary
val admin = new HBaseAdmin(conf)
if(!admin.isTableAvailable(input_table)) {
 val tableDesc = new HTableDescriptor(input_table)
 admin.createTable(tableDesc)
}
val hBaseRDD = sc.newAPIHadoopRDD(conf,
 classOf[TableInputFormat],
 classOf[org.apache.hadoop.
 hbase.io.ImmutableBytesWritable],
 classOf[org.apache.hadoop.
 hbase.client.Result])

•	 Java:
import spark.api.java.JavaPairRDD;
import spark.api.java.JavaSparkContext;
import spark.api.java.function.FlatMapFunction;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.client.Result;
...
JavaSparkContext sc = new JavaSparkContext(args[0], "sequence
load", System.getenv("SPARK_HOME"), System.getenv("JARS"));
Configuration conf = HBaseConfiguration.create();
conf.set(TableInputFormat.INPUT_TABLE, args[1]);
//Initialize HBase table if necessary
HBaseAdmin admin = new HBaseAdmin(conf);
if(!admin.isTableAvailable(args[1])) {
 HTableDescriptor tableDesc = new
 HTableDescriptor(args[1]);
 admin.createTable(tableDesc);
}
JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD
= sc.newAPIHadoopRDD(conf, TableInputFormat.class,
ImmutableBytesWritable.class, Result.class);

Chapter 5

[49]

The method that you used to load the HBase data can be generalized for loading
all other sorts of Hadoop data. If a helper method in Spark context does not already
exist for loading the data, simply create a configuration specifying how to load the
data and pass it into the newAPIHadoopRDD method. Helper methods exist for plain
text files and sequence files. A helper method also exists for Hadoop files similar to
the Sequence File API.

Saving your data
While distributed computational jobs are a lot of fun, they are much more applicable
when the results get stored somewhere useful. While the methods for loading an
RDD are largely found in the SparkContext class, the methods for saving an RDD
are defined on the RDD classes. In Scala, implicit conversion exists so that an RDD
that can be saved as a sequence file is converted to the appropriate type, and in Java
explicit conversion must be used.

Here are the different ways to save an RDD:

•	 Scala:
rddOfStrings.saveAsTextFile("out.txt")
keyValueRdd.saveAsSequenceFile("sequenceOut")

•	 Java:
rddOfStrings.saveAsTextFile("out.txt")
keyValueRdd.saveAsSequenceFile("sequenceOut")

•	 Python:
rddOfStrings.saveAsTextFile("out.txt")

Links and references
Some of the useful links that you can use for references are as follows:

•	 http://spark-project.org/docs/latest/scala-programming-guide.
html#hadoop-datasets

•	 http://opencsv.sourceforge.net/

•	 http://commons.apache.org/proper/commons-csv/

•	 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/
mapred/SequenceFileInputFormat.html

www.allitebooks.com

http://www.allitebooks.org

Loading and Saving Data in Spark

[50]

•	 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/
mapred/InputFormat.html

•	 http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-
linux-single-node-cluster/

•	 http://spark-project.org/docs/latest/api/pyspark/index.html

•	 http://wiki.apache.org/hadoop/SequenceFile

•	 http://hbase.apache.org/book/quickstart.html

•	 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/
mapreduce/TableInputFormat.html

•	 http://spark-project.org/docs/latest/api/core/index.html#spark.
api.java.JavaPairRDD

Summary
In this chapter, we have seen how to load data from a variety of different sources.
We have also looked at basic parsing of the data from text input files. Now that
we can get our data loaded into a Spark RDD, it is time to explore the different
operations we can perform on our data in the next chapter.

Manipulating Your RDD
The last few chapters have been the necessary groundwork for getting Spark working.
Now that you know how to load and save your data in different ways, it's time for
the big payoff: manipulating the data. The API for manipulating your RDD is similar
between the languages, but not identical. Unlike the previous chapters, each language
is covered in its own section; you probably only need to read the one pertaining to
the language you are interested in using. Particularly, the Python implementation is
currently not on feature parity with the Scala/Java API, but it supports most of the
basic functionalities as of 0.7 with plans for future versions to improve feature parity.

Manipulating your RDD in Scala and Java
Manipulating your RDD in Scala is quite simple, especially if you are familiar with
Scala's collection library. Many of the standard functional list functions are available
directly on Spark's RDDs with the primary catch being that one can't rely on them
being executed on the same machine. This makes porting of the existing Scala code
to be distributed in a much simpler way than porting of the, say, Java or Python code.

Manipulating your RDD in Java is fairly simple, but a little more awkward at times
than in Scala. As Java doesn't have implicit conversions, we have to be more explicit
with our types. While the return types are Java friendly, Spark requires the use of
Scala's Tuple2 class for key-value pairs.

The hallmark of a MapReduce system are the two commands: map and reduce. We've
seen the map function used in the previous chapters. The map function works by taking
in a function that works on each individual element in the input RDD and produces
a new output element. For example, to produce a new RDD where you add one to
every number, use rdd.map(x => x+1) or in Java, you can use the following code:

rdd.map(new Function<Integer, Integer>() {
 public Integer call(Integer x) { return x+1;}
});

Manipulating Your RDD

[52]

It is important to understand that the map function and the other Spark functions do not
transform the existing elements, rather they return a new RDD with the new elements.
The reduce function takes a function that operates on pairs to combine all the data. The
function you provide needs to be commutative and associative (that is, f(a,b) == f(b,a)
and f(a,f(b,c)) == f(f(a,b),c). For example, to sum all the elements, use rdd.reduce(x,y
=> x+y) or rdd.reduce(new Function2<Integer, Integer, Integer>(){
public Integer call(Integer x, Integer y) { return x+y;} }.

The flatMap function is a useful utility, which lets you write a function that returns an
Iterable object of the type you want and then flattens the results. A simple example
of this is a case where you want to parse all the data, but may fail to parse some of
it. The flatMap function can be used to output an empty list if it failed, or a list with
the success if it worked. In addition to the reduce function, there is a corresponding
reduceByKey function that works on RDDs, which are key-value pairs to produce
another RDD. Unlike when using map on a list in Scala, your function will run on a
number of different machines, so you can't depend on a shared state with this.

Before continuing with the other wonderful functions for manipulating your RDD,
first you need to read a bit about shared states. In the preceding example where we
added one to every integer, we didn't really share states. However, for even simple
tasks, like the distributed parsing of data that we did when loading the CSV file,
it can be quite handy to have shared counters for things like keeping track of the
number of rejected records. Spark supports both shared immutable data, which it calls
broadcast and accumulator variables. You can create a new broadcast by calling
sc.broadcast(value). While you don't have to explicitly broadcast values as Spark
does its magic in the background, broadcasting ensures that the value is sent to each
node only once. The broadcast variables are often used for operations such as side
inputs (for example, a hashmap), which need to look up as part of the map function.
This returns an object that can be used to reference the broadcast value.

Another method of sharing state is with an accumulator variable. To create an
accumulator variable, use sc.accumulator(initialvalue). This returns an object
that you can add to in a distributed context and then get back the value by calling
.value(). The accumulableCollection function can be used to create a collection
that is appended in a distributed fashion; however, if you find yourself using this,
ask yourself if you could use the results of a map output better. If the predefined
accumulators don't work for your use case, you can use accumulable to define your
own accumulation type. A broadcast value can be read by all the workers and an
accumulator value can be written to by all the workers and only read by the driver.

Chapter 6

[53]

If you are writing Scala code that interacts with a Java
Spark process (say for testing), you may find it useful to use
intAccumulator and similar methods on the Java Spark context,
otherwise your accumulator types might not quite match up.
If you find your accumulator variable isn't increasing in
value like you expect, remember that Spark is lazy. This means
that Spark won't actually perform the maps, reduces, or other
computation on RDDs until the data outputs the computations.

Look at your previous example that parsed CSV files and made it a bit more robust.
In your previous work, you assumed the input was well formatted and if any errors
occurred, our entire pipeline would fail. While this can be the correct behavior for
some work, when dealing with data from third-party parties, we may want to accept
some number of malformed records. On the other hand, we don't want to just throw
out all the records and declare it a success; we might miss an important format
change and produce meaningless results. Let's add counters for errors to our code:

package spark.examples

import spark.SparkContext
import spark.SparkContext._
import spark.SparkFiles;

import au.com.bytecode.opencsv.CSVReader

import java.io.StringReader

object LoadCsvWithCountersExample {
 def main(args: Array[String]) {
 if (args.length != 2) {
 System.err.println("Usage: LoadCsvExample <master>
 <inputfile>")
 System.exit(1)
 }
 val master = args(0)
 val inputFile = args(1)
 val sc = new SparkContext(master, "Load CSV With Counters
 Example",
 System.getenv("SPARK_HOME"),
 Seq(System.getenv("JARS")))
 val invalidLineCounter = sc.accumulator(0)
 val invalidNumericLineCounter = sc.accumulator(0)
 sc.addFile(inputFile)

Manipulating Your RDD

[54]

 val inFile = sc.textFile(inputFile)
 val splitLines = inFile.flatMap(line => {
 try {
 val reader = new CSVReader(new StringReader(line))
 Some(reader.readNext())
 }
 catch {
 case _ => {
 invalidLineCounter += 1
 None
 }
 }
 }
)
 val numericData = splitLines.flatMap(line => {
 try {
 Some(line.map(_.toDouble))
 }
 catch {
 case _ => {
 invalidNumericLineCounter += 1
 None
 }
 }
 }
)
 val summedData = numericData.map(row => row.sum)
 println(summedData.collect().mkString(","))
 println("Errors:
 "+invalidLineCounter+","+invalidNumericLineCounter)
 }

}

Or in Java:

import spark.Accumulator;
import spark.api.java.JavaRDD;
import spark.api.java.JavaPairRDD;
import spark.api.java.JavaSparkContext;
import spark.api.java.function.FlatMapFunction;

import au.com.bytecode.opencsv.CSVReader;

Chapter 6

[55]

import java.io.StringReader;
import java.util.Arrays;
import java.util.List;
import java.util.ArrayList;

public class JavaLoadCsvCounters {
 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println("Usage: JavaLoadCsvCounters <master>
 <inputfile>");
 System.exit(1);
 }
 String master = args[0];
 String inputFile = args[1];
 JavaSparkContext sc = new JavaSparkContext(master,
 "java load csv with counters",
 System.getenv("SPARK_HOME"),
 System.getenv("JARS"));
 final Accumulator<Integer> errors = sc.accumulator(0);
 JavaRDD<String> inFile = sc.textFile(inputFile);
 JavaRDD<Integer[] > splitLines = inFile.flatMap(
 new FlatMapFunction<String,
 Integer[]> (){
 public Iterable<Integer[]> call(String line) {
 ArrayList<Integer[]> result = new ArrayList<Integer[]>();
 try {
 CSVReader reader = new CSVReader(
 new StringReader(line));
 String[] parsedLine = reader.readNext();
 Integer[] intLine = new Integer[parsedLine.length];
 for (int i = 0; i < parsedLine.length; i++) {
 intLine[i] = Integer.parseInt(parsedLine[i]);
 }
 result.add(intLine);
 }
 catch (Exception e) {
 errors.add(1);
 }
 return result;
 }
 }
);
 System.out.println("Loaded data "+splitLines.collect());
 System.out.println("Error count "+errors.value());
 }
}

Manipulating Your RDD

[56]

The preceding code example illustrates the use of the flatMap method.
In general, flatMap can be used when your map function returns a
sequence of the type you are returning and flattens it. Since options in
Scala can be used as sequences through an implicit conversion, you can
avoid having to explicitly filter out the None result and just use flatMap.

Summary statistics can be quite useful when examining large data sets. In the
preceding example, you loaded the data as Double, to use Spark's provided
summary statistics capabilities on the RDD. In Java, this requires explicit use of
the JavaDoubleRDD type. It is also important to use DoubleFunction<Integer[]>
rather than Function<Integer[], Double> in the following example, since the
first won't result in the type JavaDoubleRDD. No such consideration is required
for Scala as implicit conversions deal with the details. Compute the mean and
the variance, or compute them together with the statistics. You can extend this by
adding on the end of the preceding function to print out the summary statistics
as println(summedData.stats()):

To do this in Java, you can add the following code:

JavaDoubleRDD summedData = splitLines.map(
 new DoubleFunction<Integer[]>()
{
 public Double call(Integer[] in) {
 Double ret = 0.;
 for (int i = 0; i < in.length; i++) {
 ret += in[i];
 }
 return ret;
 }
});
System.out.println(summedData.stats());

When working with key-value pair data, it can be quite useful to group data with
the same key together (for example, if the key represents the user or sample). The
groupByKey function provides an easy way to group data together by keys. The
groupByKey key-value pair is a special case of combineByKey. There are several
functions in the PairRDD class, which are all implemented very closely on top of
combineByKey. If you find yourself using groupByKey or one of the other functions
derived from combineByKey and immediately transforming the result, you should
check if the function is better suited to the task. A common thing to do while starting
out is to use groupByKey and then sum the results with groupByKey().map((x,y)
=> (x,y.sum)), or you can also use the following code in Java:

pairData.groupByKey().mapValues(new Function<List<Integer>,
 Integer >(){

Chapter 6

[57]

 public Integer call(List<Integer> x){
 Integer sum = 0;
 for (Integer i : x) {
 sum += i;
 }
 return sum;
 }
});

By using reduceByKey, it could be simplified to reduceByKey((x,y) => x+y),
or to do this in Java you can use the following code:

pairData.reduceByKey(new Function2<Integer, Integer, Integer>() {
 public Integer call (Integer a, Integer b){
 return a+b;
 }
});

The foldByKey(zeroValue) (function) method is similar to a traditional
fold operation that works on per key. On a list in a traditional fold function, the
provided values would be called with the initial value and the first element of the
list, and then the resulting value and the next element of the list would be the input
to the next call of fold. Doing this requires sequentially processing the entire list,
so foldByKey behaves slightly differently. There is a handy table of functions of
PairRDD at the end of this section. Some of the PairRDD functionality was only
added to the Java API in 0.7.2.

Sometimes, you will only want to update the values of a key-value pair data structure,
such as a PairRDD. You've learned about foldByKey and how it doesn't quite work as
a traditional fold. For Scala developers, if you require the "traditional" fold behavior,
you can do a groupByKey and then map a fold over the resulting RDD by value. This
is an example of a case where you only want to change the value and don't care about
the key of the RDD, so examine the following code:

rdd.groupByKey().mapValues(x => {x.fold(0)((a,b) => a+b)})

Often your data won't be a clean value from a single source and you will want to join
the data together for processing, which can be done with coGroup. This can be done
when you are joining web access logs with transaction data or even just joining two
different computations on the same data. Provided that the RDDs have the same key,
we can join two RDDs together with rdd.coGroup(otherRdd). There are a number
of different join functions for different purposes, illustrated in the table at the end of
this section.

Manipulating Your RDD

[58]

The next task you will learn is distributing files among the clusters. We illustrate this
by adding GeoIP support and mixing it together with the gradient descent example
from the earlier chapter. Sometimes the libraries you use need files distributed along
with them. While it is possible to add them to JAR and access them as class objects,
Spark provides a simple way to distribute the required files by calling addFile()
as shown in the following code:

package pandaspark.examples
import scala.math

import spark.SparkContext
import spark.SparkContext._
import spark.SparkFiles;
import spark.util.Vector

import au.com.bytecode.opencsv.CSVReader

import java.util.Random
import java.io.StringReader
import java.io.File

import com.snowplowanalytics.maxmind.geoip.IpGeo

case class DataPoint(x: Vector, y: Double)

object GeoIpExample {

 def main(args: Array[String]) {
 if (args.length != 2) {
 System.err.println("Usage: GeoIpExample <master>
 <inputfile>")
 System.exit(1)
 }
 val master = args(0)
 val inputFile = args(1)
 val iterations = 100
 val maxMindPath = "GeoLiteCity.dat"
 val sc = new SparkContext(master, "GeoIpExample",
 System.getenv("SPARK_HOME"),
 Seq(System.getenv("JARS")))
 val invalidLineCounter = sc.accumulator(0)
 val inFile = sc.textFile(inputFile)
 val parsedInput = inFile.flatMap(line => {

Chapter 6

[59]

 try {
 val row = (new CSVReader(
 new StringReader(line))).readNext()
 Some((row(0),row.drop(1).map(_.toDouble)))
 }
 catch {
 case _ => {
 invalidLineCounter += 1
 None
 }
 }
 })
 val geoFile = sc.addFile(maxMindPath)
 //getLocation gives back an option so we use flatMap to only
output if it's a some type
 val ipCountries = parsedInput.flatMapWith(_ => IpGeo
 (dbFile = SparkFiles.get(maxMindPath)))
 ((pair, ipGeo) => {
 ipGeo.getLocation(pair._1).map(c => (pair._1,
 c.countryCode)).toSeq
 })
 ipCountries.cache()
 val countries = ipCountries.values.distinct().collect()
 val countriesBc = sc.broadcast(countries)
 val countriesSignal = ipCountries.mapValues(
 country => countriesBc.value.map(
 s => if (country == s) 1
 else 0
))
 val dataPoints = parsedInput.join(countriesSignal)
 .map(input => {
 input._2 match {
 case (countryData, originalData) => DataPoint(
 new Vector(countryData++originalData
 .slice(1,originalData.size-2)),
 originalData(originalData.size-1))
 }
 })
 countriesSignal.cache()
 dataPoints.cache()
 val rand = new Random(53)
 var w = Vector(dataPoints.first.x.length, _ =>
 rand.nextDouble)
 for (i <- 1 to iterations) {
 val gradient = dataPoints.map(p =>
 (1 / (1 + math.exp(-p.y*(w dot p.x))) - 1) * p.y *
 p.x).reduce(_ + _)

www.allitebooks.com

http://www.allitebooks.org

Manipulating Your RDD

[60]

 w -= gradient
 }
 println("Final w: "+w)
 }
}

There have been issues with addFile in the local mode in the
past. If you run into this, you can try the workaround that the
Shark (a tool we cover later) developers used (essentially using
the result from addFile if it exists and falling back on the
original file if it doesn't).
To know more about this, you can refer to:
https://github.com/amplab/shark/commit/47c21f55
621acd5afb412f54a45c68e141240030.

In the preceding code, you see multiple Spark computations. The first is to determine
all the countries that our data covers, so we can map each country to a binary feature.
The code then uses a public list of proxies and the reported latency to try to estimate
the latency I measured. This also illustrates the use of mapWith. If you have a
mapping job that needs to create a per partition resource, mapWith can be used to do
this. This can be useful for connections to backends or the creation of something like
a PRNG (pseudorandom number generator). Some elements also can't be serialized
over the wire (such as the IpCountry, in the example), so you have to create them
per share. You can also see that we cache a number of our RDDs to keep them from
having to be re-computed.

There are several options when working with multiple RDDs.

Scala RDD functions
PairRDD functions are based on combineByKey. All operate on RDDs of type [K,V]
as shown in the following table:

Function Parameter options Explanation Return type
foldByKey (zeroValue)

(func(V,V)=>V)

(zeroValue,
partitioner)
(func(V,V=>V)

(zeroValue,
partitions)
(func(V,V=>V)

Merges the values using
the provided function.
Unlike a traditional fold
function over a list, the
zeroValue can be added
an arbitrary number of
times.

RDD[K,V]

Chapter 6

[61]

Function Parameter options Explanation Return type
reduceByKey (func(V,V)=>V)

(func(V,V)=>V,
numTasks)

Parallel version of reduce
that merges the values
for each key using the
provided function and
returns an RDD.

RDD[K,V]

groupByKey ()

(numPartitions)

Groups elements together
by key.

RDD[K,Seq[V]]

Functions for joining PairRDD functions
Often when working with two or more key-value RDDs, it is useful to join them
together. There are a few different methods to do this depending on what your
desired behavior is, as shown in the following table:

Function Parameter options Explanation Return type
cogroup (otherRDD[K,W]...) Joins two (or more)

RDDs by the shared
key. Note that if an
element is missing
in one RDD but
present in the other,
one of the Seq will
simply be empty.

RDD[(K,(Seq[V],
Seq[W]...))]

join (otherRDD[K,W])

(otherRDD[K,W],
 partitioner)

(otherRDD[K,W],
numPartitions)

Joins an RDD with
another RDD. The
result is only present
for elements where
the key is present in
both RDDs.

RDD[(K,(V,W))]

subtractKey (otherRDD[K,W])

(otherRDD[K,W],
partitioner)

(otherRDD[K,W],
numPartitions)

Returns an RDD
with only keys not
present in the other
RDD.

RDD[(K,V)]

Manipulating Your RDD

[62]

Other PairRDD functions
Some functions only make sense when working on key-value pairs.

Function Parameter options Explanation Return type
lookup (key: K) Looks up a specific

element in the RDD.
Uses the RDD's
partitioner to figure
out which partition(s)
to look at.

Seq[V]

mapValues (f: V => U) A specialized version
of map for PairRDD
when you only want
to change the value
of the key-value
pair. This takes
the provided Map
function and applies
it to the value. If you
need to make your
change based on both
key and value, you
must use one of the
normal RDD Map
functions.

RDD[(K,U)]

collectAsMap () Takes an RDD and
returns a concrete
map. Your RDD must
be able to fit into the
memory.

Map[K, V]

countByKey () Counts the number of
elements for each key.

Map[K,
Long]

Chapter 6

[63]

Function Parameter options Explanation Return type
partitionBy (partitioner:

Partitioner,
mapSideCombine
: Boolean)

Returns a new RDD
with the same data
but partitioned
by the new
Partitioner, and
mapSideCombine
controls Spark group
values with the
same key together
before repartitioning.
Defaults to false; set
to true if you have
a large percent of
duplicate keys.

RDD[(K,V)]

flatMapValues (f: V =>
TraversableOnce[U]
)

Similar to
mapValues. A
specialized version
of flatMap for
PairRDDs when you
only want to change
the value of the key-
value pair. Takes
the provided Map
function and applies
it to the value. The
resulting sequence is
then "flattened"; that
is, instead of getting
Seq[Seq[V]], you
get Seq[V]. If you
need to make your
change based on both
key and value, you
must use one of the
normal RDD map
functions.

RDD[(K,U)]

For information on saving PairRDD, refer to the previous chapter.

Manipulating Your RDD

[64]

DoubleRDD functions
Spark defines a number of convenience functions, which work when your RDD is
comprised of double data types.

Function Arguments Returns
mean () Average of RDDs elements
sampleStdev () Standard deviation for a sample

rather than a population (divides
by N-1 rather than N)

Stats () Mean, variance, and count as a
StatCounter

Stdev () Standard deviation (for
population)

Sum () Sum of the elements

variance () Variance of RDDs elements

General RDD functions
The remaining RDD functions are defined on all RDDs.

Function Arguments Returns
aggregate (zeroValue: U)(seqOp:

(U,T) => T, combOp
(U, U) => U)

Aggregates all the elements
of each partition of an RDD,
and then combines them
using combOp. The argument
zeroValue should be neutral
(that is, 0 for + and 1 for *).

cache () Caches an RDD reused
without recomputing. Same
as persist(StorageLevel.
MEMORY_ONLY).

collect () An array of all the elements in
the RDD.

count () The number of elements in an
RDD.

countByValue () A map of value to the number
of times that value occurs.

distinct ()

(partitions: Int)

RDD containing only distinct
elements.

Chapter 6

[65]

Function Arguments Returns
filter (f: T => Boolean) RDD containing only elements

matching f.
filterWith (construct A: Int

=> A)(f: (T, A) =>
Boolean)

Similar to filter, but f takes an
additional parameter generated
by constructA, which is
called per partition. The original
motivation for this came from
providing PRNG generation per
partition.

first () The "first" element of the RDD.
flatMap (f: T =>

TraversableOnce[U])
An RDD of type U.

fold (zeroValue: T)(op:
(T,T) => T)

Merges values using the provided
operation, first on each partition,
and then merges the merged
result.

foreach (f: T => Unit) Applies the function f to each
element.

groupBy (f: T => K)

(f: T => K, p:
Partitioner)

(f: T => K,
numPartitions:Int)

Takes in an RDD and produces an
RDD pair of type (K,Seq[T])
using the result of f for the key of
each element.

keyBy (f: T => K)

(f: T => K, p:
Partitioner)

(f: T => K,
numPartitions:Int)

Same as groupBy, but does
not group results together with
duplicate keys. Returns an RDD
of (K,T).

map (f: T => U) An RDD of the result of applying
f to every element in the input
RDD.

mapPartitions (f: Iterator[T] =>
Iterator[U])

Similar to map, except the
provided function takes and
returns an Iterator and is
applied to each partition.

mapPartitionsWithIndex (f: (Int,
Iterator[T]) =>
Iterator[U],
preservePartitions)

Same as mapPartitions, but
also provides the index of the
original partition.

Manipulating Your RDD

[66]

Function Arguments Returns
mapWith (constructA: Int =>

A)(f: (T, A) => U)
Similar to map, but f takes an
additional parameter generated
by constructorA, which is
called per partition. The original
motivation for this came from
providing PRNG generation per
partition.

persist ()

(newLevel:
StorageLevel)

Sets the RDD storage level, which
can cause the RDD to be stored
after it is computed. Different
StorageLevels can be seen in
StorageLevel.scala (NONE,
DISK_ONLY, MEMORY_ONLY,
and MEMORY_AND_DISK are the
common ones).

pipe (command:
Seq[String])

(command:
Seq[String], env:
Map[String, String])

Takes an RDD and calls the
specified command with the
optional environment and
pipes each element through the
command. Results in an RDD of
String type.

sample (withReplacement:
Boolean, fraction:
Double, seed: Int)

RDD of that fraction.

takeSample (withReplacement:
Boolean, num: Int,
seed: Int)

An array of the requested number
of elements. This works by
oversampling the RDD and then
grabbing a subset.

toDebugString () A handy function that outputs the
recursive deps of the RDD.

union (other: RDD[T]) An RDD containing elements of
both RDDs. Duplicates are not
removed.

unpersist () Remove all the persistent blocks of
the RDD from the memory/disk.

zip (other: RDD[U]) Requires that the RDDs have the
same number of partitions of the
same size. Returns an RDD of key-
value pairs RDD[T,U].

Java RDD functions
Many of the Java RDD functions are quite similar to the Scala RDD functions, but the
type signatures are somewhat different.

Chapter 6

[67]

Spark Java function classes
For the Java RDD API, we need to extend one of the provided function classes when
implementing our function. The following table shows some of the Spark Java
functions:

Name Parameters Purpose
Function<T,R> R apply(T t) This function takes

something of type T and
returns something of type
R. Commonly used for
maps.

DoubleFunction<T> Double apply(T t) Same as Function<T,
Double>, but the result of
the map-like call returns
a JavaDoubleRDD (for
summary statistics).

PairFunction<T, K, V> Tuple2<K, V>
apply(T t)

This function results in a
JavaPairRDD. If working
on a JavaPairRDD<A,B>,
let T be of type
Tuple2<A,B>.

FlatMapFunction<T, R> Iterable<R>
apply(T t)

This function is for
producing an RDD
through a flatMap
function.

PairFlatMapFunction<T, K,
V>

Iterable<Tuple2<K,
V>> apply(T t)

This function results in a
JavaPairRDD. If working
on a JavaPairRDD<A,B>,
let T be of type
Tuple2<A,B>.

DoubleFlatMapFunction<T> Iterable<Double>
apply(T t)

Same as
FlatMapFunction<T,
Double>, but the result
of the map-like call returns
a JavaDoubleRDD
(for summary statistics).

Function2<T1, T2, R> R apply(T1 t1, T2
t2)

This function is for taking
two inputs and returning
an output. Used by fold
and similar functions.

Manipulating Your RDD

[68]

Common Java RDD functions
The following table explains RDD functions that are available regardless of the type
of RDD.

Name Parameters Purpose
cache () Persists an RDD in

memory.
coalesce numPartitions: Int Returns a new RDD

with numPartitions
partitions.

collect () Returns the List
representation of the
entire RDD.

count () Number of elements.
countByValue () A map of each unique

value to the number of
times that a value shows
up.

distinct ()

(Int numPartitions)

An RDD consisting of
all the distinct elements
of the RDD optionally in
the provided number of
partitions.

filter (Function<T, Boolean> f) An RDD containing only
elements for which f
returns true.

first () The first element of the
RDD.

flatMap (FlatMapFunction<T, U> f)

(DoubleFlatMapFunction<T> f)

(PairFlatMapFunction<T, K,
V> f)

An RDD of the specified
type (U, Double, and
Pair<K,V> respectively).

fold (T zeroValue, Function2<T,
T, T> f)

The result T and each
partition is folded
individually with the
zeroValue and then
the results are folded.

foreach (VoidFunction<T> f) Applies the function to
each element in the RDD.

Chapter 6

[69]

Name Parameters Purpose
groupBy (Function<T, K> f)

(Function<T, K> f, Int
numPartitions)

A JavaPairRDD of
grouped elements.

map (DoubleFunction<T> f)

(PairFunction<T, K2, V2> f)

(Function<T, U> f)

An RDD of the
appropriate type for the
input function (see the
previous table) by calling
the provided function on
each element in the input
RDD.

mapPartitions (DoubleFunction<Iterator<T>>
f)

(PairFunction<Iterator<T>,
K2, V2> f)

(Function<Iterator<T>, U> f)

Similar to map, but the
provided function is
called per partition. This
can be useful if you have
some setup work that
you need to do for each
partition.

reduce (Function2<T, T, T> f) Uses the provided
function to reduce all
the elements.

sample (Boolean withReplacement,
Double fraction, Int seed)

A smaller RDD consisting
of only the requested
fraction of the data.

Methods for combining JavaPairRDD
functions
There are a number of different functions we can use to combine RDDs as shown in
the following table:

Name Parameters Purpose
subtract (JavaRDD<T> other)

(JavaRDD<T> other,
Partitioner p)

(JavaRDD<T> other,
Int numPartitions)

Returns an RDD with only
the elements initially present
in the first RDD and not
present in the other RDD.

union (JavaRDD<T> other) The union of the two RDDs.

Manipulating Your RDD

[70]

Name Parameters Purpose
zip (JavaRDD<U> other) Returns an RDD of key-value

pairs RDD[T,U].
Important: This function
requires that the RDDs
have the same number of
partitions and size.

JavaPairRDD functions
The following table explains some functions that are only defined on key-value
pair RDDs:

Name Parameters Purpose
cogroup (JavaPairRDD<K, W>

other)

(JavaPairRDD<K, W>
other, Int
numPartitions)

(JavaPairRDD<K, W>
other1,
JavaPairRDD<K, W>
other2)

(JavaPairRDD<K, W>
other1, JavaPairRDD<K,
W>
other2, Int
numPartitions)

Joins two (or more) RDDs by
the shared key. Note that if an
element is missing in one RDD
but present in the other, one of
the list will simply be empty.

combineByKey (Function<V, C>
createCombiner,
Function2<C, V, C>
mergeValue,
Function2<C,C,C>
mergeCombiners)

Generic function to combine
elements by keys. The
argument createCombiner
turns something of type
V into something of type
C, mergeValue adds a
type V to a type C, and
mergeCombiners is used to
combine two C types into a
single C.

collectAsMap () Returns a map of the key-
value pairs.

countByKey () Returns a map of the key to
the number of elements with
that key.

Chapter 6

[71]

Name Parameters Purpose
flatMapValues (Function[T] f,

Iterable[V] v)
Returns an RDD of type V.

join (JavaPairRDD<K, W>
other)

(JavaPairRDD<K, W>
other, Int integers)

Joins an RDD with another
RDD. The result is only
present for elements where
the key is present in both
RDDs.

keys () Returns an RDD of only the
keys.

lookup (Key k) Looks up a specific element
in the RDD. Uses the RDDs'
partitioner to figure out which
partition(s) to look at.

reduceByKey (Function2[V,V,V] f) The reduceByKey is the
parallel version of reduce,
which merges the values for
each key using the provided
function and returns an RDD.

sortByKey (Comparator[K] comp,
Boolean ascending)

(Comparator[K] comp)

(Boolean ascending)

Sorts the RDDs by keys, so
each partition contains a fixed
range.

values () Returns an RDD of only the
values.

Manipulating your RDD in Python
Spark has a more limited API than Java and Scala, but supports most of the core
functionalities.

The hallmarks of a MapReduce system are the two commands: map and reduce.
You've seen the map function used in the past chapters. The map function works by
taking in a function that works on each individual element in the input RDD and
produces a new output element. For example, to produce a new RDD where you
have added one to every number, you would use rdd.map(lambda x: x+1). It's
important to understand that the map function and the other Spark functions do
not transform the existing elements, rather they return a new RDD with the new
elements. The reduce function takes a function that operates on pairs to combine
all the data. This is returned to the calling program. If you were to sum all the
elements, you would use rdd.reduce(lambda x, y: x+y).

Manipulating Your RDD

[72]

The flatMap function is a useful utility that allows you to write a function which
returns an Iterable object of the type you want and then flattens the results. A
simple example of this is a case where you want to parse all the data, but some
of the data may not be parsed. The flatMap function can output an empty list
if it failed or a list with the success if it worked. In addition to reduce, there is a
corresponding reduceByKey function that works on RDDs which are key-value
pairs and produces another RDD.

Many of the mapping operations are also defined with a partition variant. In this
case, the function you need to provide takes and returns an Iterator object that
represents all the data on that partition. This can be quite useful if the operation
you need to perform has to do extensive work on each partition, for example,
establishing a connection to a backend server.

Often, your data can be expressed with key-value mappings. As such, many of the
functions defined on the Python RDD class only work if your data is in a key-value
mapping. The mapValues function is used when you only want to update the key-
value pair you are working with.

Another variant on the traditional map function is mapPartitions, which works on
a per-partition level. The primary reason for using mapPartitions is to create the
setup for your map function, which can't be serialized across the network. A good
example of this is creating an expensive connection to a backend service or parsing
some expensive side input.

def f(iterator):
 //Expensive work goes here
 for i in iterator:
 yield per_element_function(i)

In addition to simple operations on the data, Spark provides support for broadcast
and accumulator values. The broadcast values can be used to broadcast a read-only
value to all the partitions that can save having to reserialize a given value multiple
times. Accumulators allow all the partitions to add to the accumulator and the result
can then be read on the master. You can create an accumulator by doing counter =
sc.accumulator(initialValue). If you want to add custom behavior, you can also
provide an AccumulatorParam as an argument to the accumulator function. The
return can then be incremented as counter += x on any of the workers. The resulting
value can then be read with counter.value(). The broadcast value is created with
bc = sc.broadcast(value) and then accessed by bc.value() by any worker. The
accumulator value can only be read on the master and the broadcast value can be
read on all the partitions.

Chapter 6

[73]

Standard RDD functions
The following table explains some of the functions that are available on all RDDs
in Python:

Name Parameters Purpose

flatMap (f, preservesPartitioning
=False)

Takes a function that
returns an Iterator
object of type U for each
input of type T and
returns a flattened RDD of
type U.

mapPartitions (f,
preservesPartitioning=False)

Takes a function, and
the function takes in an
Iterator of type T and
returns an Iterator of type
U and results in an RDD
of type U. So, for example,
if we provided a function
that took in an iterator
of integers and returned
an iterator of strings and
called it on an RDD of
integers we would get
back an RDD of strings.
Useful for map operations
with expensive per
machine setup work.

filter (f) Takes a function and
returns an RDD with
only the elements that the
function returns true for.

distinct () Returns an RDD with
distinct elements (for
example, entering 1, 1,
and 2 will output 1, 2).

union (other) Returns a union of two
RDDs.

cartesian (other) Returns the cartesian
product of the RDD with
the other RDD.

Manipulating Your RDD

[74]

Name Parameters Purpose

groupBy (f,
numPartitions
=None)

Returns an RDD with
the elements grouped
together for the value that
f outputs.

pipe (command, env={}) Pipes each element of
the RDD to the provided
command and returns an
RDD of the result.

foreach f Applies the function f to
each element in the RDD.

reduce f Reduces the elements
using the provided
function.

fold zeroValue, op Each partition is folded
individually with
zeroValue and then the
results are folded.

countByValue () Returns a dictionary
mapping each distinct
value to the number of
times it is found in the
RDD.

take num Returns a list of num
elements. This can be slow
for large values of num,
so use collect if you
want to get back the entire
RDD.

partitionBy (numPartitions,
partition
Func
 = hash)

Makes a new RDD
partitioned by the
provided partitioning
function. The
partitionFunc
argument simply needs
to map the input key to
the integer space, at which
point partionBy takes it
mod numPartitions.

Chapter 6

[75]

PairRDD functions
The following table explains some functions that are only available on key-value
pair functions:

Name Parameters Purpose
collectAsMap () Returns a dictionary consisting

of all the key-value pairs of
the RDD.

reduceByKey (func,
numPartitions=None)

The reduceByKey function is
the parallel version of reduce,
which merges the values for
each key using the provided
function and returns an RDD.

countByKey () Returns a dictionary of the
number of elements for each
key.

join (other,
numPartitions=None)

Joins an RDD with another
RDD. The result is only present
for elements where the key
is present in both RDDs. The
value that gets stored for each
key is a tuple of the values from
each RDD.

rightOuterJoin (other,
numPartitions=None)

Joins an RDD with another
RDD. This function outputs a
given key-value pair only if the
key is present in the RDD being
joined with. If the key is not
present in the source RDD, the
first value in the tuple will be
None.

leftOuterJoin (other,
numPartitions=None)

Joins an RDD with another
RDD. This function outputs
a given key-value pair only if
the key is present in the source
RDD. If the key is not present in
the other RDD, the second value
in the tuple will be None.

Manipulating Your RDD

[76]

Name Parameters Purpose
combineByKey (createCombiner,

mergeValues,
mergeCombiners)

Combines elements by keys.
This function takes an RDD
of type (K,V) and returns
an RDD of type (K,C). The
argument createCombiner
turns something of type V
into something of type C,
mergeValue adds a V to a C,
and mergeCombiners is used
to combine two C types into a
single C.

groupByKey (numPartitions=None) Groups the values in the RDD
by the keys they have.

cogroup (other,
numPartitions=None)

Joins two (or more) RDDs by
the shared key. Note that if an
element is missing in one RDD
but present in the other one, the
list will simply be empty.

Links and references
Some of the useful links for referencing are as follows:

•	 http://www.scala-lang.org/api/current/index.html#scala.
collection.immutable.List

•	 http://spark.incubator.apache.org/docs/latest/api/core/index.
html#spark.api.java.JavaRDD

•	 http://spark.incubator.apache.org/docs/latest/api/core/index.
html#spark.api.java.JavaPairRDD

•	 http://spark.incubator.apache.org/docs/latest/api/core/index.
html#spark.SparkContext

•	 http://spark.incubator.apache.org/docs/latest/api/core/index.
html#packa

Summary
This chapter looked at how to perform computations on our data in a distributed
fashion once loaded into an RDD. Combined with our knowledge of how to load
and save RDDs, we can now write distributed programs using Spark. In the next
chapter, we will look at how to use Spark with Hive.

Shark – Using Spark
with Hive

This chapter will cover how to use Spark with Hive, and how to integrate Hive
queries with a Spark program. This chapter isn't needed to understand any of the
following chapters, so if you don't want to learn about Hive, skip ahead on to the
next chapter.

The following topics are covered in this chapter:

•	 Uses of Hive/Shark
•	 How to install Shark
•	 Loading data into Shark
•	 Running Shark
•	 Using HiveQL queries inside of a Spark program

Why Hive/Shark?
Hive is a popular Hadoop project that (among other things) allows for adhoc queries
of large datasets. The query language for Hive is called HiveQL, and supports much
of SQL as well as number of extensions. Shark is designed to be compatible with the
Hive query language, serialization formats, and so on. People primarily choose to use
Shark because it is much faster than traditional Hive and Hadoop for multiple queries.
This chapter will not be able to teach you Hive if you don't already know it, but rather
it will look at integrating HiveQL into your Spark programs and how to set up Shark.
That being said, HiveQL is very similar to SQL, so if you have a strong grasp of SQL
you can probably follow along reasonably well.

Shark – Using Spark with Hive

[78]

Installing Shark
As of the writing of this chapter, the latest version of Shark is v0.7.0 and it requires
Spark 0.7.2 as well as a very recent JVM (Open JK7/Oracle HotSpot JDK7). Shark is
available pre-built for both Hadoop 1 and Hadoop 2. As of the writing, the respective
files are http://spark-project.org/download/shark-0.7.0-hadoop1-bin.tgz
and http://spark-project.org/download/shark-0.7.0-hadoop2-bin.tgz. Once
you have downloaded and extracted Shark, it's time to configure it. In this example,
we will assume that you extracted in /home/spark/. Shark has a separate configuration
from Spark, which lives at shark-0.7.0/conf/shark-env.sh. For local mode, you
need to set up at least HIVE_HOME and SPARK_HOME like so:

export HIVE_HOME=/home/spark/hive-0.9.0-bin
export SPARK_HOME=/home/park/spark-0.7.2
source $SPARK_HOME/conf/spark-env.sh

In local mode, you also need to create a place for Hive to store its files, which by
default is /user/hive/warehouse. Make sure to use the chown command in order
to make the files accessible to your user like so:

mkdir -p /user/hive/warehouse && chown [your-spark-user] /user/hive/
warehouse

If you are using Shark with a Spark cluster, you also need to set the MASTER and
HADOOP_HOME variables. If you are using Shark with an existing Hive installation, you
must set HIVE_CONF_DIR to the directory containing the Hive XML configuration files.
If you add these after the source... line, you can reference the variables in the Spark
configuration with:

export HADOOP_HOME=/path/to/hadoop
export MASTER=spark://$SPARK_MASTER_IP:7077

Once you have Shark installed and set up, you also need to copy Shark and its custom
hive to all the workers nodes; do this with:

pscp -v -r -h ./spark-0.7.2/conf/slaves -l sparkuser
./shark-0.7.0 ~/

pscp -v -r -h ./spark-0.7.2/conf/slaves -l sparkuser
./hive-0.9.0-bin ~/

If you are doing an EC2-based setup, just use the latest AMI; it should already be set
up for Shark.

Chapter 7

[79]

Running Shark
Regardless of what setup mechanism you used in the preceding section, you
can launch the Shark CLI in the same way for all of them. Shark's bin directory
provides three different variations for different levels of logging. The default of
Shark, ./bin/shark, is suitable for most cases. If you run into a problem, you may
find ./bin/shark-withinfo to be useful, and if you find problems where you
need more debugging information, ./bin/shark-withdebug is the final option.
If you are connecting Shark to a Spark cluster, you should be able to see the Spark
job in the web UI console under running jobs (if you don't, it is possible your Shark
job is just running against a local Spark, so double check your configurations).

Loading data
Hive ships with a default dataset in ~/hive-0.9.0-bin/example/, which you
can load and use to verify if your Shark setup is working. To load the data in
Shark, use the following commands:

shark> CREATE TABLE src(key INT, value STRING);

shark> LOAD DATA LOCAL INPATH '${env:HIVE_HOME}/examples/files/in1.txt'
INTO TABLE src;

shark> SELECT src.key, src.value FROM src WHERE src.key < 100;

This should output something similar to the following code, if everything
was successful:

OK

48

Time taken: 3.02 seconds

Shark can also load data from S3 in the same way as Hive. To test this, you can load
sample data from one of the public datasets mentioned in the HiveAWS guide, such
as s3n://data.s3ndemo.hive/kv, for the key-value pair data. To access this, you
can configure Shark with your AWS credentials in ~/hive-0.9.0-bin/conf/hive-
site.xml (you may have to create it) like so:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

Shark – Using Spark with Hive

[80]

 <name>fs.s3n.awsAccessKeyId</name>
 <value>accesskeygoeshere</value>
</property>
<property>
 <name>fs.s3n.awsSecretAccessKey</name>
 <value>yoursecretkeygoeshere</value>
</property>
</configuration>

You can also specify your AWS credintals with s3n://username:password@[...]
when doing your request. Assuming we have configured our AWS credentials in
hive-site.xml, we create a table for the data like so: create external table
kv (key int, values string) location 's3n://data.s3ndemo.hive/kv';.
The HiveAWS guide explains how to load more complex data.

Shark also provides a separate Shark shell interface, which is similar to Spark's
shell. In this interface, you can write a Scala code that interacts with Shark. The
confusion is—the Shark context is available as sc, which is also used for referring
SparkContext in the Spark shell.

Using Hive queries in a Spark program
If your data analyst (or yourself) has come up with a Hive query that you wish to
use as a part of a Spark project, sql2rdd allows for easy integration with Scala Spark
project. It is important to note that the return type is RDD[shark.api.Row], so you
still need to do some transformation work to make it usable by normal Spark code.
The Row API provides get[Type](rowName) for all the supported types. So to get
an integer out of a row entry, we can write row.getInt("key"), assuming the
column with the integer is called key.

Shark was originally designed to be a standalone project and was only recently
"mavenized", which allows for easy inclusion as a dependency in a similar Spark
environment as covered in Chapter 3, Building and Running a Spark Application.
However, Shark is not currently deployed to any of the Maven repositories, but you
can deploy it to your local maven and make it available for building against it by
running sbt/sbt publish-local in the Spark directory.

If you see errors about unsafe and an unexpected number of
parameters, it is possible that sbt is using an old JDK. You can
specify a specific JDK using java_home.

Chapter 7

[81]

You can experiment with this using the Shark shell commands in an interactive
mode. Here is a simple example of a Shark/Spark combination:

//Basic Shark example in Scala

package com.pandaspark.examples

import shark._
import spark.SparkContext._

object BasicSharkExample {
 def main(args: Array[String]) {
 val sc = SharkEnv.initWithSharkContext("BasicSharkExample")
 println("Starting shark requests");
 sc.sql("drop table if exists src");
 sc.sql("CREATE TABLE src(key INT, value STRING)")
 sc.sql("LOAD DATA LOCAL INPATH
 '${env:HIVE_HOME}/examples/files/in1.txt'
 INTO TABLE src")
 val rdd = sc.sql2rdd("SELECT src.key, src.value
 FROM src WHERE src.key < 100")
 rdd.cache()
 println("Found "+rdd.count()+" num rows")
 val normalRDD = rdd.map(x => (x.getInt("src.key"),
 x.getString("src.value")))
 println("Formatted as "+normalRDD.collect().mkString(","))
 }
}

You can do the same in Java:

//Basic Shark example in Java

package com.pandaspark.examples;

import spark.api.java.JavaRDD;
import spark.api.java.JavaPairRDD;
import spark.api.java.function.PairFunction;

import scala.Tuple2;

import shark.SharkEnv;
import shark.api.Row;
import shark.api.JavaSharkContext;

Shark – Using Spark with Hive

[82]

import shark.api.JavaTableRDD;

public class BasicJavaSharkExample {
 public static void main(String[] args) {
 JavaSharkContext sc = SharkEnv.
 initWithJavaSharkContext("BasicSharkExample");
 sc.sql("drop table if exists src");
 sc.sql("CREATE TABLE src(key INT, value STRING)");
 sc.sql("LOAD DATA LOCAL INPATH
 '${env:HIVE_HOME}/examples/files/in1.txt'
 INTO TABLE src");
 JavaTableRDD rdd = sc.sql2rdd("SELECT src.key,
 src.value FROM src
 WHERE src.key < 100");
 rdd.cache();
 System.out.println("Found "+rdd.count()+" num rows");
 JavaPairRDD<Integer, String> normalRDD = rdd.map(new
 PairFunction<Row, Integer, String>() {
 @Override
 public Tuple2<Integer, String> call(Row x) {
 return new Tuple2<Integer,String>(x.getInt("key"),
 x.getString("value"));
 }
 });
 System.out.println("Collected: "+normalRDD.collect());
 }
}

Instead of depending directly on Spark, we will have our build.sbt pointing to:

libraryDependencies ++= Seq(
 "edu.berkeley.cs.amplab" % "shark_2.9.3" % "0.7.0"
)

You also need to include the patched version of Hive, which is distributed with Shark
(while excluding an old guava JAR file), by adding this to the build file as well:

unmanagedJars in Compile <++= baseDirectory map {
 base => val hiveFile = file(System.getenv("HIVE_HOME")) / "lib"
 val baseDirectories = (base / "lib") +++ (hiveFile)
 val customJars = (baseDirectories ** "*.jar")
//Hive uses an old version of guava that doesn't have what we want
 customJars.classpath.filter(!_.toString.contains("guava"))
}

Chapter 7

[83]

Running the resulting jobs is slightly different than just running normal Spark jobs.
However, in the SharkEnv initialization logic, it looks at a number of environment
variables to help it with the setup. As such, the easiest way to ensure you have all
the correct environment variables set up is to use the provided run script and just
set the CLASSPATH as the following code:

CLASSPATH=/home/spark/fastdataprocessingwithspark-sharkexamples/target/
scala-2.9.3/fastdataprocessingwithspark-sharkexamples-assembly-0.1-
SNAPSHOT.jar ./run com.pandaspark.examples.BasicSharkExample

Links and references
Some useful links for referencing are listed as follows:

•	 http://hive.apache.org/

•	 https://github.com/amplab/shark/wiki/Shark-User-Guide

•	 https://github.com/amplab/shark/wiki

•	 https://github.com/amplab/shark/wiki/Running-Shark-Locally

•	 https://github.com/amplab/shark/wiki/Running-Shark-on-a-Cluster

•	 https://cwiki.apache.org/confluence/display/Hive/
HiveAws+HivingS3nRemotely

•	 https://github.com/amplab/shark/wiki#developer-documentation

Summary
In this chapter, you have seen how to set up Shark and how to integrate Shark into your
Spark programs. In the next chapter, you will learn how to write simple unit tests.

Testing
Writing effective software without tests is quite challenging. Effective testing,
especially in cases with slow end-to-end running times, such as distributed systems,
can help improve developer effectiveness greatly. However, this chapter isn't going
to try and convince you that you should be testing; if you really want to ride without
a seat belt, that's fine too.

Testing in Java and Scala
For the sake of simplicity, this chapter will look at using ScalaTest and JUnit as
the testing libraries. ScalaTest can be used to test both Scala and Java code and is
the testing library currently used in Spark. JUnit is a popular testing framework
for Java.

Refactoring your code for testability
If you have code that can be isolated from the RDD interaction or SparkContext
interaction, this code can be tested using standard methodologies. While it can
be quite convenient to use anonymous functions when writing Spark code, by
giving them names, you can test them more easily without having to deal with
the expensive overhead of setting up SparkContext. For example, in your Scala
CSV parser, you could had this hard to test code:

 val splitLines = inFile.map(line => {
 val reader = new CSVReader(new StringReader(line))
 reader.readNext().map(_.toDouble)
 }

Testing

[86]

Or in Java you had:

JavaRDD<Integer[]> splitLines = inFile.flatMap(
new FlatMapFunction<String, Integer[]> (){
 public Iterable<Integer[]> call(String line) {
 ArrayList<Integer[]> result = new ArrayList<Integer[]>();
 try {
 CSVReader reader = new CSVReader(new StringReader(line));
 String[] parsedLine = reader.readNext();
 Integer[] intLine = new Integer[parsedLine.length];
 for (int i = 0; i < parsedLine.length; i++) {
 intLine[i] = Integer.parseInt(parsedLine[i]);
 result.add(intLine);
 }
 catch (Exception e) {
 errors.add(1);
 }
 return result;
 }
 }
);

Instead in Scala, you could write this in the CSV parser as a separate function:

def parseLine(line: String): Array[Double] = {
 val reader = new CSVReader(new StringReader(line))
 reader.readNext().map(_.toDouble)
}

While, in Java, you could add this:

public class JavaLoadCsvTestable {
 public static class ParseLine extends Function<String, Integer[]>
{
 public Integer[] call(String line) throws Exception {
 CSVReader reader = new CSVReader(new StringReader(line));
 String[] parsedLine = reader.readNext();
 Integer[] intLine = new Integer[parsedLine.length];
 for (int i = 0; i < parsedLine.length; i++) {
 intLine[i] = Integer.parseInt(parsedLine[i]);
 }
 return intLine;
 }
 }

Chapter 8

[87]

You can then test the Java code, without having to worry about any Spark-specific
setup or logic:

package pandaspark.examples

import org.scalatest.FunSuite
import org.scalatest.matchers.ShouldMatchers

class TestableLoadCsvExampleSuite extends FunSuite with ShouldMatchers
{
 test("should parse a csv line with numbers") {
 TestableLoadCsvExample.parseLine("1,2") should equal
(Array[Double](1.0,2.0))
 TestableLoadCsvExample.parseLine("100,-1,1,2,2.5")
 should equal (Array[Double](100,-1,1.0,2.0,2.5))
 }
 test("should error if there is a non-number") {
 evaluating {
 TestableLoadCsvExample.parseLine("pandas")
 } should produce [NumberFormatException]
 }
}

Or, to test the Java code, you could write something like:

class JavaLoadCsvExampleSuite extends FunSuite with ShouldMatchers {

 test("should parse a csv line with numbers") {
 val parseLine = new JavaLoadCsvTestable.ParseLine();
 parseLine.call("1,2") should equal (Array[Integer](1,2))
 parseLine.call("100,-1,1,2,2") should equal
 (Array[Integer](100,-1,1,2,2))
 }
 test("should error if there is a non-integer") {
 val parseLine = new JavaLoadCsvTestable.ParseLine();
 evaluating { parseLine.call("pandas") } should produce
 [NumberFormatException]
 evaluating {parseLine.call("100,-1,1,2.2,2") should equal
 (Array[Integer](100,-1,1,2,2)) } should produce
 [NumberFormatException]
 }
}

Note that the test is still written in Scala; don't worry, we will look at JUnit tests later.

Testing

[88]

Testing interactions with SparkContext
However, you may remember that you later extended our CSV parser to increment
counters on invalid input so as to gracefully handle failures. To verify that behavior,
you could provide mock counters and other mock objects for the Spark components
you are using. You are restricted to only testing the parts of our code that don't
depend on Spark. Instead, you could re-factor our code to have the core be testable
without Spark as well as do a more complete test using a provided SparkContext
as illustrated in the following example:

This does have the significant downside of requiring that your tests
run serially as, otherwise, sbt (or another build infrastructure) may try
and launch multiple SparkContext at the same time, which will cause
confusing error messages. We can force tests to execute sequentially in
sbt with parallelExecution in Test := false.

object MoreTestableLoadCsvExample {
 def parseLine(line: String): Array[Double] = {
 val reader = new CSVReader(new StringReader(line))
 reader.readNext().map(_.toDouble)
 }
 def handleInput(invalidLineCounter: Accumulator[Int],
 inFile: RDD[String]): RDD[Double] = {
 val numericData = inFile.flatMap(line => {
 try {
 Some(parseLine(line))
 }
 catch {
 case _ => {
 invalidLineCounter += 1
 None
 }
 }
 })
 numericData.map(row => row.sum)
 }

 def main(args: Array[String]) {
 if (args.length != 2) {
 System.err.println("Usage: TestableLoadCsvExample
 <master> <inputfile>")
 System.exit(1)
 }
 val master = args(0)

Chapter 8

[89]

 val inputFile = args(1)
 val sc = new SparkContext(master, "Load CSV Example",
 System.getenv("SPARK_HOME"),
 Seq(System.getenv("JARS")))
 sc.addFile(inputFile)
 val inFile = sc.textFile(inputFile)
 val invalidLineCounter = sc.accumulator(0)
 val summedData = handleInput(invalidLineCounter, inFile)
 println(summedData.collect().mkString(","))
 println("Errors: "+invalidLineCounter)
 println(summedData.stats())
 }

}

We test this with the following code:

import spark._
import spark.SparkContext._
import org.scalatest.FunSuite
import org.scalatest.matchers.ShouldMatchers

class MoreTestableLoadCsvExampleSuite extends FunSuite with
ShouldMatchers {
 test("summ data on input") {
 val sc = new SparkContext("local", "Load CSV Example")
 val counter = sc.accumulator(0)
 val input = sc.parallelize(List("1,2","1,3"))
 val result = MoreTestableLoadCsvExample.handleInput(counter,
 input)
 result.collect() should equal (Array[Int](3,4))
 }
 test("should parse a csv line with numbers") {
 MoreTestableLoadCsvExample.parseLine("1,2") should equal
 (Array[Double](1.0,2.0))
 MoreTestableLoadCsvExample.parseLine("100,-1,1,2,2.5")
 should equal (Array[Double](100,-1,1.0,2.0,2.5))
 }
 test("should error if there is a non-number") {
 evaluating { MoreTestableLoadCsvExample.parseLine("pandas") }
 should produce [NumberFormatException]
 }
}

Testing

[90]

And in Java we use:

public class JavaLoadCsvMoreTestable {
 public static class ParseLineWithAcc extends
 FlatMapFunction<String, Integer[]> {
 Accumulator<Integer> acc;
 ParseLineWithAcc(Accumulator<Integer> acc) {
 this.acc = acc;
 }
 public Iterable<Integer[]> call(String line) throws Exception{
 ArrayList<Integer[]> result = new ArrayList<Integer[]>();
 try {
 CSVReader reader = new CSVReader(new StringReader(line));
 String[] parsedLine = reader.readNext();
 Integer[] intLine = new Integer[parsedLine.length];
 for (int i = 0; i < parsedLine.length; i++) {
 intLine[i] = Integer.parseInt(parsedLine[i]);
 }
 result.add(intLine);
 }
 catch (Exception e) {
 acc.add(1);
 }
 return result;
 }
 }
 public static JavaDoubleRDD processData(
 Accumulator<Integer> acc, JavaRDD<String> input) {
 JavaRDD<Integer[]> splitLines = input.flatMap(
 new ParseLineWithAcc(acc));
 JavaDoubleRDD summedData = splitLines.map(
 new DoubleFunction<Integer[]>() {
 public Double call(Integer[] in) {
 Double ret = 0.;
 for (int i = 0; i < in.length; i++) {
 ret += in[i];
 }
 return ret;
 }
 }
);
 return summedData;
}

Chapter 8

[91]

You can test this in Scala with:

class JavaLoadCsvMoreTestableSuite extends FunSuite
with ShouldMatchers {
 test("sum data on input") {
 val sc = new JavaSparkContext("local", "Load Java CSV test")
 val counter: Accumulator[Integer] = sc.intAccumulator(0)
 val input: JavaRDD[String] = sc.parallelize
 (List("1,2","1,3","murh"))
 val javaLoadCsvMoreTestable = new JavaLoadCsvMoreTestable();
 val resultRDD = JavaLoadCsvMoreTestable.
 processData(counter,input)
 resultRDD.cache();
 val resultCount = resultRDD.count()
 val result = resultRDD.collect().toArray()
 resultCount should equal (2)
 result should equal (Array[Double](3.0, 4.0))
 counter.value should equal (1)
 sc.stop()
 }
}

Note that we add an invalid input for the counter.

In Java, using JUnit4 you can add the following code for testing:

package pandaspark.examples;

import spark.*;
import spark.api.java.JavaSparkContext;
import spark.api.java.JavaRDD;
import spark.api.java.JavaDoubleRDD;
import org.scalatest.FunSuite;
import org.scalatest.matchers.ShouldMatchers;

import static org.junit.Assert.assertEquals;
import org.junit.Test;
import org.junit.Ignore;
import org.junit.runner.RunWith;
import org.junit.runners.JUnit4;

import java.util.Arrays;
import java.util.List;
import java.util.ArrayList;

Testing

[92]

@RunWith(JUnit4.class)
public class JavaLoadCsvMoreTestableSuiteJunit {
 @Test
 public void testSumDataOnInput() {
 JavaSparkContext sc = new JavaSparkContext("local",
 "Load Java CSV test");
 Accumulator<Integer> counter = sc.intAccumulator(0);
 String[] inputArray = {"1,2","1,3","murh"};
 JavaRDD<String> input = sc.parallelize
 (Arrays.asList(inputArray));
 JavaDoubleRDD resultRDD = JavaLoadCsvMoreTestable.
 processData(counter, input);
 long resultCount = resultRDD.count();
 assertEquals(resultCount, 2);
 int errors = counter.value();
 assertEquals(errors, 1);
 sc.stop();
 }
}

Testing in Python
Python testing of Spark is very similar in concept, but the testing libraries are a
bit different. PySpark uses both doctest and unittest to test itself. The doctest
library makes it easy to create tests based on the expected output of code run in
the Python interpreter. We can run the tests by running pyspark -m doctest
[pathtocode]. By taking the wordcount.py example from Spark and factoring
out countWords, you can test the word count functionality using doctest:

"""
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> b = sc.parallelize(["pandas are awesome", "and ninjas are also
awesome"])
>>> countWords(b)
[('also', 1), ('and', 1), ('are', 2), ('awesome', 2), ('ninjas', 1),
('pandas', 1)]
"""

import sys
from operator import add

from pyspark import SparkContext

Chapter 8

[93]

def countWords(lines):
 counts = lines.flatMap(lambda x: x.split(' ')) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)
 return sorted(counts.collect())

if __name__ == "__main__":
 if len(sys.argv) < 3:
 print >> sys.stderr, "Usage: PythonWordCount
 <master> <file>"
 exit(-1)
 sc = SparkContext(sys.argv[1], "PythonWordCount")
 lines = sc.textFile(sys.argv[2], 1)
 output = countWords(lines)
 for (word, count) in output:
 print "%s : %i" % (word, count)

We can also test something similar to our Java and Scala programs like so:

"""
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> b = sc.parallelize(["1,2","1,3"])
>>> handleInput(b)
[3, 4]
"""

import sys
from operator import add

from pyspark import SparkContext
def handleInput(lines):
 data = lines.map(lambda x: sum(map(int, x.split(','))))
 return sorted(data.collect())

if __name__ == "__main__":
 if len(sys.argv) < 3:
 print >> sys.stderr, "Usage: PythonLoadCsv
 <master> <file>"
 exit(-1)
 sc = SparkContext(sys.argv[1], "PythonLoadCsv")
 lines = sc.textFile(sys.argv[2], 1)
 output = handleInput(lines)
 for sum in output:
 print sum

Testing

[94]

Links and references
Here are some useful links for reference:

•	 http://blog.quantifind.com/posts/spark-unit-test/

•	 http://www.scalatest.org/

•	 http://junit.org/

•	 http://docs.python.org/2/library/unittest.html

•	 http://docs.python.org/2/library/doctest.html

Summary
This chapter has looked at how to structure code so that it is testable and at the testing
framework that is used within Spark. Effective testing can save large amounts of
debugging time, which can be especially painful in large distributed systems. In the
next chapter, we will look at some tips and tricks, such as tuning and securing Spark.

Tips and Tricks
Now that you have the tools to build and test Spark jobs as well as set up a Spark
cluster to run them on, it's time to figure out how to make the most of your time
as a Spark developer.

Where to find logs?
Spark and Shark have very useful logs for figuring out what's going on when things
are not behaving as expected. When working with a program that uses sql2rdd or
any other Shark-related tool, a good place to start debugging is by looking at what
HiveQL queries are being run. You should find this in the console logs where you
execute the Spark program: look for a line such as Hive history file=/tmp/spark/
hive_job_log_spark_201306090132_919529074.txt. Spark also keeps a per machine
log on each machine, by default, in the logs subdirectory of the Spark directory.
Spark's web UI provides a convenient place to see the stdout and stderr files
of each job, running and completing separate output per worker.

Concurrency limitations
Spark's concurrency for operations is limited by the number of partitions. Conversely,
having too many partitions can cause an excess overhead with too many tasks
being launched. If you have too many partitions, you can shrink it down using the
coalesce(count) method; coalesce will only decrease the number of partitions.
When creating a new RDD, you can specify the number of splits to be used. Also, the
grouping/joining mechanism on the RDDs of pairs can take the number of partitions
or, alternatively, a partitioner. The default number of partitions for new RDDs is
controlled by spark.default.parallelism, which also controls the number of
tasks used by groupByKey and other shuffle operations.

Tips and Tricks

[96]

Memory usage and garbage collection
To measure the impact of garbage collection, you can ask the JVM to print
details about the garbage collection. You can do this by adding -verbose:gc
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps to your SPARK_JAVA_OPTS
environment variable in conf/spark-env.sh. The details will then be printed to
the standard output when you run your job, which will be available as described
in the Where to find logs? section of this chapter.

If you find that your Spark cluster is using too much time on garbage collection, you
can reduce the amount of space used for RDD caching by changing spark.storage.
memoryFraction, which is set to 0.66 by default. If you are planning to run Spark
for a long time on a cluster, you may wish to enable spark.cleaner.ttl. By default,
Spark does not clean up any metadata; set spark.cleaner.ttl to a nonzero value in
seconds to clean up metadata after that length of time.

You can also control the RDD storage level if you find that you are using too much
memory. If your RDDs don't fit in the memory and you still wish to cache them, you
can try using a different storage level such as:

•	 MEMORY_ONLY: This stores the entire RDD in the memory if it can and is the
default storage level

•	 MEMORY_AND_DISK: This stores each partition in the memory if it can, or if it
doesn't, it stores it on disk

•	 DISK_ONLY: This stores each partition on the disk regardless of whether it
can fit in the memory

These options are set when you call the persist function on your RDD. By default,
the RDDs are stored in a deserialized form, which requires less parsing. We can save
space by adding _SER to the storage level; in this case, Spark will serialize the data to
be stored, which normally saves some space.

Serialization
Spark supports different serialization mechanisms; the choice is a trade-off between
speed, space efficiency, and full support of all Java objects. If you are using a
serializer to cache your RDDs, you should strongly consider a fast serializer. The
default serializer uses Java's default serialization. The KyroSerializer is much faster
and generally uses about one-tenth of the memory as the default serializer. You can
switch the serializer by changing spark.serializer to spark.KryoSerializer.
If you want to use the KyroSerializer, you need to make sure that the classes are
serializable by the KyroSerializer.

Chapter 9

[97]

Spark provides a trait KryoRegistrator, which you can extend to register your classes
with Kyro as follows:

class MyReigstrator extends spark.KyroRegistrator {
 override def registerClasses(kyro: Kyro) {
 kyro.register(classOf[MyClass])
 }
}

Visit https://code.google.com/p/kryo/#Quickstart
to figure out how to write custom serializers for your classes if
you need something customized. You can substantially decrease
the amount of space used for your objects by customizing
your serializers. For example, rather than writing out the full
class name, you can give them an integer ID by calling kyro.
register(classOf[MyClass],100).

IDE integration
As an Emacs user, the author finds that having an ENhanced Scala Interaction
Mode (ensime) setup helps with development. You can install the latest ensime
from https://github.com/aemoncannon/ensime/downloads (make sure to
choose the one that matches your Scala version).

wget https://github.com/downloads/aemoncannon/ensime/ensime_2.9.2-
0.9.8.1.tar.gz
tar -xvf ensime_2.9.2-0.9.8.1.tar.gz

In your .emacs file, add:

;; Load the ensime lisp code...
(add-to-list 'load-path "ENSIME_ROOT/elisp/")
(require 'ensime);;
This step causes the ensime-mode to be started whenever
;; scala-mode is started for a buffer. You may have to customize this
step
;; if you're not using the standard scala mode.
(add-hook 'scala-mode-hook 'ensime-scala-mode-hook)

You can then add the ensime sbt plugin to your project (in project/plugins.sbt):

addSbtPlugin("org.ensime" % "ensime-sbt-cmd" % "0.1.0")

You can then run the plugin:

sbt
> ensime generate

Tips and Tricks

[98]

If you are using git, you will probably want to add .ensime to the .gitignore file
if it isn't already present.

If you are using IntelliJ, a similar plugin exists called sbt-idea that can be used to
generate IntelliJ IDEA files. You can add the IntelliJ sbt plugin to your project
(in project/plugins.sbt):

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.5.1")

You can then run the plugin:

sbt

> gen-idea

This will generate the IDEA project file that can be loaded into IntelliJ.

Eclipse users can also use sbt to generate Eclipse project files with the sbteclipse
plugin. You can add the Eclipse sbt plugin to your project (in project/plugins.sbt):

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %
"2.3.0")

You can then run the plugin:

sbt
> eclipse

This will generate the Eclipse project files, and you can then import them into your
Eclipse project using the Import wizard in Eclipse. Eclipse users might also find the
spark-plug project useful; it can be used to launch clusters from within Eclipse.

Using Spark with other languages
If you find yourself wanting to work with your RDD in another language, there are
a few options. With Java/Scala, you can try using the JNI, and with Python, you can
use the FFI. Sometimes, however, you will want to work with a language that isn't C
language or with an already compiled program. In that case, the easiest thing to do is
use the pipe interface that is available in all of the three APIs. The Stream API works
by taking the RDD, serializing it to strings, and piping it to the specified program.
If your data happens to be plain strings, this is very convenient; but if not, you will
need to serialize your data in such a way it can be understood on either side. JSON or
protocol buffers can be good options depending on how structured your data is.

Chapter 9

[99]

A quick note on security
Another important consideration in your Spark setup is security. If you are using
Spark on EC2 with the default scripts, you will notice that access to your Spark
cluster is restricted. This is a good idea even if you aren't running Spark inside EC2
since your Spark cluster will most likely have access to data you would rather not
share with the world. (And even if it doesn't, you probably don't want to allow
arbitrary code execution by strangers.) If your Spark cluster is already on a private
network, that's great; otherwise, you should talk to your system's administrator
about setting up some IPTables rules to restrict access.

Mailing lists
Probably the most useful tip to finish with is that the Spark-users' mailing
list is an excellent source of up-to-date information about other people's
experiences with Spark. You can subscribe to https://groups.google.com/
forum/?fromgroups#!forum/spark-users (soon to be http://mail-archives.
apache.org/mod_mbox/incubator-spark-user/) as well as search the archives
to see if other people have run into similar problems as you have.

Links and references
Some useful links for referencing are listed as follows:

•	 http://blog.quantifind.com/posts/logging-post/

•	 http://jawher.net/2011/01/17/scala-development-environment-
emacs-sbt-ensime/

•	 https://www.assembla.com/spaces/liftweb/wiki/Emacs-ENSIME

•	 http://syndeticlogic.net/?p=311

•	 http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

•	 https://github.com/shivaram/spark-ec2/blob/master/ganglia/init.
sh

•	 http://spark-project.org/docs/0.7.2/tuning.html

•	 https://github.com/mesos/spark/blob/master/docs/configuration.md

•	 http://kryo.googlecode.com/svn/api/v2/index.html

•	 https://code.google.com/p/kryo/

Tips and Tricks

[100]

•	 http://scala-ide.org/download/current.html

•	 http://syndeticlogic.net/?p=311

•	 http://mail-archives.apache.org/mod_mbox/incubator-spark-user/

•	 https://groups.google.com/forum/?fromgroups#!forum/spark-users

Summary
That wraps up some common things, which you can use to help improve your
Spark development experience. I wish you the best of luck with your Spark projects.
Now go solve some fun problems!

Index
A
addFile(path) method 41
addJar(path) method 41
aggregate function 64
AMI (Amazon Machine Images) 12

B
bin/slaves.sh <command> command 19
bin/start-all.sh command 19
bin/start-master.sh command 19
bin/start-slave.sh command 19
bin/start-slaves.sh command 19
bin/stop-all.sh command 19
bin/stop-master.sh command 20
bin/stop-slaves.sh command 20

C
cache function 64, 68
cartesian function 73
Chef (opscode)

used, for Spark deploying 14, 15
chown command 78
clearFiles() method 41
clearJars() method 41
coalesce function 68
code

testing 85-87
cogroup function 61, 70, 76
collectAsMap function 62, 70, 75
collect function 64, 68
collect() function 46
combineByKey function 70, 76
concurrency

limitations 95

countByKey function 62, 70, 75
countByValue function 64, 68, 74
count function 64, 68

D
data

loading 79, 80
distinct function 64, 68, 73
DoubleFlatMapFunction function 67
DoubleFunction<T> function 67
DoubleRDD functions

mean 64
sampleStdev 64
Stats 64
Stdev 64
Sum 64
variance 64

E
EC2

Spark, running on 8
Elastic MapReduce

Spark, deploying on 13
ENhanced Scala Interaction Mode

(ensime) 97

F
filter function 68, 73
filterWith function 65
first function 65, 68
flatMap function 65, 68, 73
FlatMapFunction<T, R> function 67
flatMap method 56
flatMapValues function 63, 71

[102]

foldByKey function 60
fold function 65, 68, 74
foreach function 65, 68, 74
Function2<T1, T2, R> function 67
Function<T,R> function 67

G
garbage collection

impact, measuring 96
general RDD functions

aggregate 64
cache 64
collect 64
count 64
countByValue 64
distinct 64
filter 65
filterWith 65
first 65
flatMap 65
fold 65
foreach 65
groupBy 65
keyBy 65
map 65
mapPartitions 65
mapPartitionsWithIndex 65
mapWith 66
persist 66
pipe 66
sample 66
takeSample 66
toDebugString 66
union 66
unpersist 66
zip 66

groupBy function 65, 69, 74
groupByKey function 61, 76

H
Hadoop Distributed File System. See HDFS
HBase database

use 47-49
HDFS 5
Hive 77

I
IDE integration 97, 98
installation

Shark 78
IntelliJ sbt plugin 98

J
Java

SparkContext, creating in 40
testing 85

JavaPairRDD functions
cogroup 70
collectAsMap 70
combineByKey 70
countByKey 70
flatMapValues 71
join 71
keys 71
lookup 71
reduceByKey 71
sortByKey 71
values 71

JavaPairRDD functions combination
methods

subtract 69
union 69
zip 70

Java RDD functions
cache 68
coalesce 68
collect 68
count 68
countByValue 68
distinct 68
filter 68
first 68
flatMap 68
fold 68
foreach 68
groupBy 69
map 69
mapPartitions 69
reduce 69
sample 69
Spark Java function classes 67

[103]

join function 61, 71, 75
joining functions, for PairRDD functions

cogroup function 61
join function 61
subtractKey function 61

K
keyBy function 65
keys function 71

L
leftOuterJoin function 75
logs

finding 95
lookup function 62, 71

M
map function 65, 69
mapPartitions function 65, 69, 73
mapPartitionsWithIndex function 65
mapValues function 62
mapWith function 66
Maven

used, for Spark job building 35-37
mean function 64
Mesos

used, for Spark deploying 15
MESOS_NATIVE_LIBRARY variable 17

N
newAPIHadoopRDD method 49

P
PairFlatMapFunction<T, K, V> function 67
PairFunction<T, K, V> function 67
PairRDD functions, for RDD manipulation

in Java
collectAsMap 62
countByKey 62
flatMapValues 63
lookup 62
mapValues 62
partitionBy 63

PairRDD functions, for RDD manipulation
in Python

cogroup 76
collectAsMap 75
combineByKey 76
countByKey 75
groupByKey 76
join 75
leftOuterJoin 75
reduceByKey 75
rightOuterJoin 75

parallelize() function 46
partitionBy function 63, 74
persist function 66
pipe function 66, 74
PPA (Personal Package Archive) 32
PRNG (pseudorandom number

generator) 60
Python

RDD, manipulating in 71, 72
SparkContext, creating in 41
testing 92, 93

R
RDD manipulation, in Python

about 71, 72
PairRDD functions 75
standard RDD functions 73

RDDs
about 43
data, loading into 44-49
manipulating, in Java 51
manipulating in Python 71
manipulating, in Scala 51
saving, ways 49

reduceByKey function 61, 71, 75
reduce function 69, 74
reference links

about 21, 76
Hive queries, using in 83
mailing lists 99, 100
saving 49, 50
SparkContext, creating in 42

Resilient Distributed Datasets. See RDDs
rightOuterJoin function 75

[104]

S
S3

data, loading from 27, 28
path 27

sample function 66, 69
sampleStdev function 64
sbt

used,for Spark project building 31-34
Scala

about 40
SparkContext, creating in 40
testing 85

SCALA_HOME variable 17
Scala RDD functions

foldByKey 60
groupByKey 61
reduceByKey 61

Scala REPL (Read-Evaluate-Print Loop) 26
serialization mechanisms 96, 97
shared Java APIs 41
shared Scala APIs 41
Shark

about 77
installing 78
running 79

simple text file
loading 23, 24

sortByKey function 71
Spark

about 7
deploying, Chef (opscode) 14, 15
deploying, on Elastic MapReduce 13
deploying, on Mesos 15, 16
deploying, on YARN 16
deploying, over SSH 17-19
mailing lists 99
running, on EC2 8
running, on EC2 with scripts 8-12
running, on single machine 7
security 99
using, with other languages 98

SparkContext
about 39
application name 40
creating, in Java 40

creating, in Python 41
creating, in Scala 40
interactions, testing 88-92
jars 40
master 40
sparkHome 40

SparkContext class 49
Spark Java function classes

DoubleFlatMapFunction<T> 67
DoubleFunction<T> 67
FlatMapFunction<T, R> 67
Function2<T1, T2, R> 67
Function<T,R> 67
PairFlatMapFunction<T, K, V> 67
PairFunction<T, K, V> 67

Spark job
building, with Maven 35-37
building, with other options 37

SPARK_MASTER_IP variable 17
SPARK_MASTER_PORT variable 18
SPARK_MASTER_WEBUI_PORT

variable 18
Spark program

Hive queries, using in 80-82
Spark project

building, with sbt 31-34
Spark RDDs. See RDDs
Spark shell

about 23
used, for logistic regression running 25, 26

SPARK_WEBUI_PORT variable 18
SPARK_WORKER_CORES variable 18
SPARK_WORKER_DIR variable 18
SPARK_WORKER_MEMORY variable 18
SPARK_WORKER_PORT variable 18
standalone mode 17
Stats function 64
Stdev function 64
stop() method 41
storage level

DISK_ONLY 96
MEMORY_AND_DISK 96
MEMORY_ONLY 96

subtract function 69
subtractKey function 61
Sum function 64

[105]

T
take function 74
takeSample function 66
testing

in Java 85
in Python 92, 93
in Scala 85
reference links 94

toDebugString function 66

U
union function 66, 69, 73
unpersist function 66

V
values function 71
variance function 64

Y
YARN

used, for Spark deploying 16

Z
zip function 66, 70

Thank you for buying
Fast Data Processing with Spark

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence
ISBN: 978-1-849693-28-8 Paperback: 448 pages

Learn to transform your machine data into valuable
IT and business insights with this comprehensive and
practical tutorial

1.	 Learn to search, dashboard, configure, and
deploy Splunk on one machine or thousands

2.	 Start working with Splunk fast, with a tested
set of practical examples and useful advice

3.	 Step-by-step instructions and examples with
a comprehensive coverage for Splunk veterans
and newbies alike

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-782165-16-3 Paperback: 368 pages

Over 60 recipes showing you how to design,
configure, manage, monitor, and tune a
Hadoop cluster

1.	 Hands-on recipes to configure a Hadoop
cluster from bare metal hardware nodes

2.	 Practical and in depth explanation of cluster
management commands

3.	 Easy-to-understand recipes for securing and
monitoring a Hadoop cluster, and design
considerations

Please check www.PacktPub.com for information on our titles

Instant Apache Hive Essentials
How-to
ISBN: 978-1-782169-47-5 Paperback: 76 pages

Leverage your knowledge of SQL to easily write
distributed data processing applications on Hadoop
using Apache Hive

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 Learn to use SQL to write Hadoop jobs

3.	 Understand how the Hive query processor
works to optimize common queries

Hadoop MapReduce Cookbook
ISBN: 978-1-849517-28-7 Paperback: 300 pages

Recipes for analyzing large and complex datasets
with Hadoop MapReduce

1.	 Learn to process large and complex data
sets, starting simply, then diving in deep

2.	 Solve complex big data problems such
as classifications, finding relationships,
online marketing and recommendations

3.	 More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and
real world examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Spark and
Setting Up Your Cluster
	Running Spark on a single machine
	Running Spark on EC2
	Running Spark on EC2 with the scripts

	Deploying Spark on Elastic MapReduce
	Deploying Spark with Chef (opscode)
	Deploying Spark on Mesos
	Spark on YARN
	Set of machines over SSH
	Links and references
	Summary

	Chapter 2: Using the Spark Shell
	Loading a simple text file
	Using the Spark shell to run logistic regression
	Interactively loading data from S3
	Summary

	Chapter 3: Building and Running
a Spark Application
	Building your Spark project with sbt
	Building your Spark job with Maven
	Building your Spark job with something else
	Summary

	Chapter 4: Creating a SparkContext
	Scala
	Java
	Shared Java and Scala APIs
	Python
	Links and references
	Summary

	Chapter 5: Loading and Saving Data in Spark
	RDDs
	Loading data into an RDD
	Saving your data
	Links and references
	Summary

	Chapter 6: Manipulating Your RDD
	Manipulating your RDD in Scala and Java
	Scala RDD functions
	Functions for joining PairRDD functions
	Other PairRDD functions
	DoubleRDD functions
	General RDD functions
	Java RDD functions
	Spark Java function classes
	Common Java RDD functions

	Methods for combining JavaPairRDD functions
	JavaPairRDD functions

	Manipulating your RDD in Python
	Standard RDD functions
	PairRDD functions

	Links and References
	Summary

	Chapter 7: Shark – Using Spark with Hive
	Why Hive/Shark?
	Installing Shark
	Running Shark
	Loading data
	Using Hive queries in a Spark program
	Links and references
	Summary

	Chapter 8: Testing
	Testing in Java and Scala
	Refactoring your code for testability
	Testing interactions with the SparkContext

	Testing in Python
	Links and references
	Summary

	Chapter 9: Tips and Tricks
	Where to find logs?
	Concurrency limitations
	Memory usage and garbage collection
	Serialization
	IDE integration
	Using Spark with other languages
	A quick note on security
	Mailing lists
	Links and references
	Summary

	Index

