
Scott

Expert Oracle Application Express, Second Edition is newly updated for APEX 5.0
and brings deep insight from some of the best APEX practitioners in the field today.
You’ll learn about important features in APEX 5.0 and how those can be applied
to make your development work easier and have greater impact on your business.
Oracle Application Express (APEX) is an entirely web-based development framework
that is built into every edition of Oracle Database. The framework rests upon Oracle’s
powerful PL/SQL language, enabling power users and developers to rapidly develop
applications that easily scale to hundreds, even thousands of concurrent users.
APEX has seen meteoric growth and is becoming the tool of choice for ad-hoc
application development in the enterprise.

The many authors of Expert Oracle Application Express, Second Edition built their
careers around APEX. They know what it takes to make the product sing—developing
secure applications that can be deployed globally to users inside and outside
a large enterprise. The authors come together in this book to share some of their
deepest and most powerful insights into solving the difficult problems surrounding
globalization, configuration and lifecycle management, and more. New in this edition
for APEX 5.0 is coverage of Oracle REST Data Services, map integration, jQuery with
APEX, and the new Page Designer.

You’ll learn about debugging and performance, deep secrets to customizing
your application user interface, securing applications from intrusion, and
deploying them globally in multiple languages. Expert Oracle Application Express,
Second Edition is truly a book that will move you and your skillset a big step towards
the apex of Application Express development.

SECOND
EDITION

RELATED

Shelve in:
Databases/Oracle

User level:
Intermediate–Advanced

SOURCE CODE ONLINE 9 781484 204856

56499
ISBN 978-1-4842-0485-6

www.allitebooks.com

http://www.allitebooks.org

Expert Oracle
Application Express

John Scott, Nick Buytaert, Karen Cannell,
Martin D’Souza, Doug Gault, Dimitri Gielis,
Roel Hartman, Denes Kubicek, Raj Mattamal,
Dan McGhan, Francis Mignault, Tom Petrus,
Jorge Rimblas and Christoph Ruepprich

www.allitebooks.com

http://www.allitebooks.org

Expert Oracle Application Express

Copyright © 2015 by John Scott, Nick Buytaert, Karen Cannell, Martin D’Souza, Doug Gault,
Dimitri Gielis, Roel Hartman, Denes Kubicek, Raj Mattamal, Dan McGhan, Francis Mignault, Tom Petrus,
Jorge Rimblas and Christoph Ruepprich

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0485-6

ISBN-13 (electronic): 978-1-4842-0484-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Douglas Pundick
Technical Reviewers: Patrick Cimolini, Vincent Morneau, and Alex Fatkulin
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/9781484204856. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484204856
www.apress.com/source-code/
http://www.allitebooks.org

This book is dedicated to Carl Backstrom and Scott Spadafore.
All author royalties will be donated equally to the charity trust funds of their respective families.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword ��xix

First-Edition Foreword ��xxi

About the Authors ��xxv

About the Technical Reviewers ��xxix

 ■Chapter 1: Page Designer �� 1

 ■Chapter 2: Oracle REST Data Services ��� 43

 ■Chapter 3: Oracle APEX 5�0 Charts Inside Out ��� 73

 ■Chapter 4: Tabular Forms �� 145

 ■Chapter 5: Team Development ��� 215

 ■Chapter 6: Globalization �� 249

 ■Chapter 7: Debugging �� 281

 ■Chapter 8: Dynamic Actions �� 319

 ■Chapter 9: Lifecycle Management ��� 359

 ■Chapter 10: Plugins ��� 403

 ■Chapter 11: jQuery with APEX ��� 455

 ■Chapter 12: Map Integration�� 477

 ■Chapter 13: Themes and Templates �� 511

 ■Chapter 14: Report Printing �� 539

 ■Chapter 15: Working with APEX Collections �� 601

Index ��� 621

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

www.Apress.com
www.ioug.org
www.ioug.org/join
http://www.allitebooks.org

vii

Contents

Foreword ��xix

First-Edition Foreword ��xxi

About the Authors ��xxv

About the Technical Reviewers ��xxix

 ■Chapter 1: Page Designer �� 1

Main Components �� 1

Navigation �� 2

Page Finder Icon ��� 2

Lock Pages and Undo and Redo Icons �� 4

Create, Utilities, and Component View Icons �� 4

Component View �� 9

Rendering ��� 9

Dynamic Actions ��� 10

Processing �� 11

Page Shared Components �� 12

Grid Layout ��� 14

Grid Layout ��� 14

Messages ��� 16

Page Search ��� 18

Help �� 19

Property Editor ��� 19

Show Common ��� 21

Show All �� 21

Collapse All ��� 21

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

Show All �� 22

Quick Pick, Go to Group, and Go to Component Icons��� 23

Code Editor ��� 26

Shortcuts �� 28

Help Functionalities �� 30

Link to the APEX 5�0 Documentation �� 30

Link to the APEX 5�0 Forum at OTN �� 31

Link to the APEX Resources at OTN ��� 31

Page Designer Help: Getting Started in Page Designer ��� 32

About Page Designer ��� 33

Other Options ��� 34

Multiple Component Selection ��� 35

Resizing Page Designer Areas �� 37

Page Designer Memory Function ��� 38

Page Designer Toolbar Options ��� 38

Summary �� 42

 ■Chapter 2: Oracle REST Data Services ��� 43

ORDS Defined ��� 43

ORDS Download and Setup �� 44

Running the Install �� 45

Database Users Used by ORDS ��� 50

Configuring Multiple Databases ��� 50

Configuration Files �� 52

Administration via SQL Developer �� 54

ORDS Development via SQL Developer �� 56

REST Enabling an Existing Table ��� 56

Invoking the New REST Service ��� 61

Creating a REST Web Service ��� 62

Accessing Hidden Parameters �� 69

Accessing ORDS Web Services via APEX �� 70

Summary �� 71

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

 ■Chapter 3: Oracle APEX 5�0 Charts Inside Out ��� 73

HTML5 Charts ��� 74

Background �� 74

Creating a Chart �� 75

The Result ��� 81

Page Designer vs� Component View ��� 83

Understanding the Chart Region �� 83

Understanding the Chart Attributes �� 83

Adding Multiple Series and Combined Charts �� 94

Different Chart Types �� 98

Behind the Scenes ��� 100

Debug and Performance �� 106

Upgrading Oracle APEX 3�x/4�x Flash and SVG Charts ��� 111

Screen Reader Mode and Charts �� 112

Extending Charts �� 114

Customizing Charts by Using Custom XML ��� 115

Customizing Charts by Using Custom XML, Dynamic Actions, and JavaScript ����������������������������������� 118

Creating Charts Manually ��� 121

Drill-Down Charts, Dashboards, and Interactivity ��� 127

Simple Dashboard with Submit �� 128

Simple Dashboard with JavaScript ��� 132

Complex Dashboard with Actions ��� 134

Building Charts with the AnyChart Plugin ��� 138

Most Common Issues ��� 139

Chart Not Rendering Correctly �� 139

Search for a Specific Feature ��� 139

Charts in the Future �� 140

Chart Plugins �� 140

Sample Charts in Packaged Application ��� 140

Inline Charts in Report �� 142

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

Resources��� 143

Summary �� 144

 ■Chapter 4: Tabular Forms �� 145

Changes in APEX 4�0 �� 145

Changes in APEX 4�1/4�2 �� 146

Changes in APEX 5�0 �� 146

Constraints ��� 146

Purpose of Tabular Forms �� 147

Tabular Forms Are Not Spreadsheets ��� 148

Features in APEX 4 ��� 148

New Item Types �� 148

Declarative Validations ��� 156

Other Features �� 160

Features in APEX 4�1/4�2 �� 161

New Validation Types for Tabular Forms ��� 161

New Variables Available for the Processing �� 168

Tabular Forms and Dynamic Actions �� 170

Custom Coding in Tabular Forms�� 174

Processing the Correct Rows ��� 174

Data Integrity �� 178

Manual Tabular Forms �� 182

Tabular Forms and Collections ��� 188

Interesting Techniques ��� 202

Multiple Tabular Forms and Modal Pages ��� 203

Adding Cascading Select Lists to a Tabular Form��� 207

Summary �� 214

 ■Chapter 5: Team Development ��� 215

Milestones �� 215

The Basics �� 216

Extending Milestone Functionality �� 218

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Features ��� 219

The Basics �� 219

Extending the Features Functionality ��� 222

To Do’s �� 225

The Basics �� 225

Extending the To-Do Functionality �� 227

Bugs �� 232

Feedback �� 233

Feedback Process �� 234

Enable Feedback �� 235

Exporting Feedback to Development �� 237

Importing Feedback into Development ��� 238

Team Development Integration in the Page Designer ��� 238

Processing Feedback ��� 239

Exporting Response to Deployment �� 241

Importing Response into Deployment ��� 242

Extending Feedback: Creating a Report�� 243

Extending Feedback: Feeding Back the Follow-Up �� 245

Further Enhancements ��� 245

Summary �� 247

 ■Chapter 6: Globalization �� 249

Using the Builder in Other Languages �� 249

Translating Applications ��� 252

Application Language Derived From ��� 253

Mapping �� 256

CSV Encoding ��� 257

Translating an Application �� 258

Manually Translate an Application �� 263

Translating Data in the Database ��� 264

Dynamic Translations ��� 265

Translating APEX Internal Text �� 267

xii

■ Contents

The APEX_LANG API ��� 269

Copying Translations to Other Environments �� 269

Export/Import the Primary Application with the Translations ��� 270

Export/Import the Primary Application and the Translated Applications Separately ��������������������������� 271

Export Only the Primary Application and the XLIFF �� 271

Localization �� 271

SINCE Format Mask �� 272

Numeric Formats �� 272

Time Zones and Territories ��� 273

Switching Languages ��� 276

Summary �� 280

 ■Chapter 7: Debugging �� 281

Principles of Code Instrumentation �� 281

Debugging Basics ��� 282

Page Processing and Rendering ��� 282

Enabling Debug �� 284

Debug Information �� 286

Benefits of Debug Mode ��� 290

Graphs and Charts �� 291

Interactive Reports ��� 293

APEX Debugging API ��� 297

APEX_DEBUG �� 297

Programmatic Debugging ��� 301

Instrumenting Your Own Code �� 305

The Data Behind Debugging ��� 310

Tables and View �� 310

Examining the Debug Data ��� 312

Using Debug Data for More Than Debugging�� 313

xiii

■ Contents

Debugging Dynamic Actions��� 314

Debugging Plugins ��� 318

Summary �� 318

 ■Chapter 8: Dynamic Actions �� 319

Custom JavaScript vs� Dynamic Actions �� 319

Manual (Custom JavaScript) Method �� 320

Dynamic Action Method �� 321

Dynamic Actions in Detail ��� 325

Identification ��� 328

Execution Options ��� 328

When��� 329

Advanced �� 334

Actions �� 335

Dynamic Actions in Action �� 341

Business Case �� 342

Setup �� 342

Create Department Employees Report ��� 343

Refresh Department Employees Report�� 345

Highlight Row ��� 346

Row Click �� 350

Emphasize Employee Change ��� 353

Modal Window �� 355

Summary �� 358

 ■Chapter 9: Lifecycle Management ��� 359

Challenges �� 360

Deploying Database Changes ��� 360

Collaborative Development ��� 360

Parallel Development �� 361

Enterprise APEX Development �� 361

The Demo Project ��� 362

xiv

■ Contents

Extending the APEX Development and Deployment Process �� 362

APEX Application Packaging ��� 363

Apache Maven �� 366

Liquibase �� 369

The Oracle APEX Maven Plugin ��� 386

Deploying Static Files ��� 392

Multi-environment Setup ��� 394

Building with Maven to Multiple Environments �� 395

One Code Base to Rule Them All ��� 398

Jenkins ��� 400

Summary �� 402

 ■Chapter 10: Plugins ��� 403

The APEX Plugin Architecture ��� 403

Create/Edit Page for Plugins ��� 404

PL/SQL APIs �� 412

Other Tools of the Trade �� 415

jQuery and jQuery UI ��� 415

jQuery UI Widget Factory �� 416

Font Awesome �� 419

Building a Region Plugin �� 419

The Base Plugin �� 419

File Setup �� 424

Initial Grid Render ��� 425

Adjusting the UI for APEX �� 428

Getting Set Up for Success ��� 429

Bringing on the AJAX �� 431

Using User-Specified Queries ��� 437

Enabling Frozen Columns ��� 441

Securing the Plugin �� 446

Best Practices for Developing Plugins ��� 451

Summary �� 453

xv

■ Contents

 ■Chapter 11: jQuery with APEX ��� 455

JavaScript and jQuery �� 455

Basics of jQuery ��� 456

The jQuery Object ��� 456

Selecting Elements ��� 456

DOM Nodes and jQuery Objects �� 458

Determining and Testing Selectors ��� 459

Basic Manipulations ��� 460

Iterating Over a Selection of Elements ��� 463

Advanced Uses of jQuery ��� 464

Handling Events �� 464

Traversing the DOM �� 469

Chaining Functions ��� 470

APEX JavaScript APIs �� 471

AJAX Calls and AJAX Callback Processes��� 471

jQuery Versions ��� 475

apex�jQuery ��� 475

Pitfalls ��� 475

Resources��� 476

Summary �� 476

 ■Chapter 12: Map Integration�� 477

Geocoding �� 477

Coordinates��� 477

Web Services �� 478

What Are XML and JSON? ��� 480

Processing XML/JSON Results ��� 481

Oracle Web Services ��� 481

Choosing a Geocoding Service ��� 485

The Mapping API �� 485

Including the API Libraries �� 486

Creating a div to Hold the Map ��� 487

xvi

■ Contents

Writing JavaScript to Render the Map �� 488

Adding Layers ��� 490

Interacting with the Database �� 497

Showing Query Results on a Map ��� 498

Spatial Math ��� 504

SDO_GEOMETRY ��� 505

SDO Metadata ��� 505

Spatial Indexes ��� 506

APEX_SPATIAL Package �� 506

Calculating Distance ��� 507

Search Within Distance ��� 507

Calculate Area ��� 508

Third-Party Data ��� 508

Summary �� 510

 ■Chapter 13: Themes and Templates �� 511

What Is a Template? ��� 511

What Is a Theme? ��� 512

Component Defaults ��� 512

Region Defaults �� 513

Dialog Defaults ��� 513

The Substitution Strings ��� 514

Finding Substitution Strings in the Application��� 518

Theme Styles �� 522

The Theme Roller �� 523

Template Options �� 524

The Grid �� 528

Responsive Layout �� 532

Subregions ��� 533

Theme Subscriptions�� 537

Summary �� 538

xvii

■ Contents

 ■Chapter 14: Report Printing �� 539

Introduction �� 539

Report Printing ��� 540

APEX Standard Report Printing �� 540

Prerequisites �� 541

Standard Report Printing Configuration ��� 541

FOP Processor in ORDS �� 542

External FOP Processor �� 543

Enable Network Services�� 544

APEX Standard Report Printing ��� 548

Classic Report Printing ��� 549

Column Width Settings ��� 556

Interactive Report PDF Output �� 559

Report Queries and Report Layouts �� 562

Report Query ��� 562

Report Layouts �� 564

XSL-FO 101 �� 565

XSL-FO ��� 566

The XML �� 566

FO Document Structure �� 570

Customized PDF Output for Interactive Reports ��� 582

Advanced XSL-FO Examples ��� 585

<xsl:value-of select=���> Conditional Formatting ��� 592

<xsl:choose ���> Conditional Formatting �� 594

XSL-FO Editors �� 595

Debugging XSL-FO �� 596

Third-Party Report Printing Solutions ��� 599

General Report Printing Solutions �� 599

The Future �� 600

Summary �� 600

xviii

■ Contents

 ■Chapter 15: Working with APEX Collections �� 601

When to Use APEX Collections ��� 601

Session State Management: A Quick Overview �� 602

Session State–Managed Tables �� 602

Logically Walking Through a Web Shopping Cart Implementation�� 602

A Look Under the Covers �� 602

Private Collections Objects Inside the APEX Engine ��� 603

Public Collections Objects Inside the APEX Engine ��� 605

Getting Started with Collections ��� 607

Initializing a Collection�� 607

Adding and Removing Data from Collections ��� 608

Using the Collection Contents ��� 611

Exploring Another Use Case �� 612

Expanding the Example �� 612

Setting Up the Example �� 612

Summary �� 619

Index ��� 621

xix

Foreword

Over four years ago I had the idea for the first edition of this book, and the reason for the book was a deeply
personal one: the Oracle APEX development team had sadly lost two members of the team, Carl Backstrom
and Scott Spadafore. I knew both Carl and Scott and had met them a number of times at Oracle conferences
over the years and corresponded with them frequently.

I was struck that both of these individuals had helped me over the years, and I wondered what I could
do to help their families in some small way in return. I came up with the idea of writing a technical APEX
book and donating all author royalties to their respective families.

To ensure the book was published and didn’t just remain in my head as a “good idea,” I came up
with a plan. I approached a number of friends and fellow APEX experts and asked if they would consider
writing a chapter. I have to say when I explained the purpose of the book to each of them, they all jumped
at the chance.

Following the recent release of APEX 5, we once again decided it was time to update the book, again
with all author royalties going to the same good causes. Once again I’m honored to know each of the chapter
authors leapt at the opportunity. I thank each of them for agreeing to help update this book and continue
helping, in our small way, the families of two people who helped us all over the years.

APEX 5 is the biggest release in the history of APEX, and the Oracle development team has done a
tremendous job of making the APEX development environment a more productive, functional, and extensive
development platform than ever before. We hope this book helps to show you why APEX 5 is second to none
in terms of rapid web development backed by the security and functionality of the Oracle Database.

On a personal note, I would like to thank Jonathan Gennick and Jill Balzano of Apress for helping to
shepherd us through the process of making the book a reality and supporting each of us in bringing our
chapters to completion (which I can only imagine is like herding cats at times!).

—John Edward Scott

xxi

First-Edition Foreword

When I wrote my first book, Pro Oracle Application Express, in 2008 (with Scott Spendolini contributing
a chapter on themes and templates), I found it an extremely rewarding experience. However, like a lot of
first-time authors, I found it tough to fit writing into my regular day job and other commitments. Pro Oracle
Application Express ended up taking a lot longer than originally anticipated and ran to almost twice as many
pages as originally planned, mainly because of my passion for the subject matter—I kept wanting to give
more and more information.

I was extremely happy to see that when Pro Oracle Application Express was released, it was a big
success, at times ranking in the top 1,000 of all books sold on Amazon, which is quite an achievement for a
technical book, let alone for a relatively niche area like Oracle Application Express. It was also the top-selling
book at Oracle OpenWorld that year.

So I’d done it. I’d written my first book, something I always wanted to do, and it was (by relative
standards) a great success. However, the questions soon started: “Hey, John, when are you writing another
book?” Well, my reply was, “Never again!”

Are you surprised by that answer? Well, let me qualify it. I have such respect for people like Tom Kyte
(who was kind enough to write the foreword to Pro Oracle Application Express) and my good friend, Steven
Feuerstein, who write book after book, but I simply don’t know how they manage to find the time to fit it into
their schedules. Writing one book, while extremely rewarding once it was published, was at times one of the
toughest things I’ve ever done. Sitting in front of a blank page at 4 a.m., trying to meet a publishing deadline,
does not quite fit the glamorous image I had of being an author.

However, two events changed my opinion on writing another book. Those events were the deaths of my
two good friends, Carl Backstrom and Scott Spadafore. Both Carl and Scott were longtime members of the
Oracle Application Express development team, and I have lost count of the number of times both Carl and
Scott have helped me in my time as a developer with Oracle Application Express. I also had the pleasure of
meeting Carl and Scott in person many times during the various Oracle conferences we all attended over
the years. One of my most vivid, happy memories during an Oracle conference was the day that Carl took
Dimitri Gielis and myself for a tour around San Francisco during Oracle OpenWorld. One of my other vivid
memories involves a deep discussion about the internals of APEX security with Scott Spadafore, sitting in a
bar late in the evening, before Scott then turned the conversation to telling jokes.

With the sad and very unexpected passing of both Carl and Scott, I wanted to do something to help
both families. Carl often spoke of his daughter, and I know that Scott was extremely proud of his family too.
Following the success of my previous book, I felt that the best way I could do something to help would be to
write another book where all of the author royalties were split between the charities of the two families.

Now since I already knew how much work is involved in writing a book, I came up with the idea of
asking other people if they would be interested in writing a chapter. At the ODTUG Kaleidoscope event last
year (2010), I approached my good friends, the authors whose names you see in this book, and asked each of
them if they would be interested in writing a chapter. I asked every one of these people because they all knew
Carl and Scott personally. I have the honor of saying that not one person hesitated to step up to the challenge
of donating their time, experience, and knowledge to make this book happen. For that I am deeply grateful
to all the authors (in alphabetical order): Anton, Dan, Denes, Dietmar, Dimitri, Doug, Francis, Martin, Mike,
Raj, Roel, and Sharon. There were many times when it looked like this book might never make it to print; it
was certainly a struggle to coordinate the book deadlines with the challenges of everyone’s day jobs.

www.allitebooks.com

http://www.allitebooks.org

xxii

■ First-edition Foreword

So, then, this book is dedicated to two people who were always so amazingly generous with their time
and help, two people who were always held in the highest regard by the Oracle APEX community, and, most
importantly, two people I had the honor calling friends.

—John Edward Scott
http://jes.blogs.shellprompt.net

www.apex-evangelists.com

I was fortunate enough to meet both Carl and Scott at the ODTUG Kaleidoscope conferences in 2008 and
2009, respectively. Carl was kind enough to spend some of his personal time answering all my questions and
going through some of his examples with me. After writing about enhancing a security feature in APEX, Scott
called me up right away to discuss it on a weekend. He was always very helpful, especially on the forums.
Both Scott and Carl were great individuals who truly loved what they did and enjoyed passing along their
wealth of knowledge to others. I’m honored to be able to contribute to this book in the same spirit that Scott
and Carl engaged themselves within the Oracle community.

—Martin Giffy D’Souza
www.talkapex.com
www.clarifit.com

I had the distinct privilege of getting to know both Scott and Carl at many of the seminars and user groups
they attended. Scott was scary smart with a dry and unforgiving sense of humor. His knowledge of the
internal workings of APEX security was unmatched, and he shared the knowledge generously both in person
and on the forums. Carl was quiet until you got to know him but a great guy and awesome JavaScript coder.
In the early days, he personally helped me solve a few problems on how to integrate JavaScript into APEX,
and his passion for APEX and JavaScript was apparent. When John Scott approached me with the idea of the
book, I didn’t hesitate and am honored to be able to be part of this tribute to two truly great men.

—Doug Gault

I first got in touch with Carl and Scott “virtually” on the Internet, through the APEX forum and the blogs.
They were both extremely helpful to me and everybody in the APEX community.

I believe it was in 2007, at Oracle OpenWorld, that I met Carl and Scott personally for the first time.
I guess my blog post (http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-meetup.html)
from that time says it all: “At the APEX demo grounds I met Scott Spadafore for the first time. ‘He’s the man!’
some say, and I must confirm. Such a nice person, a great guy!”

I liked Scott very much, not only for his knowledge (especially in security) but even more for the person
he was. And then Carl…I was truly shocked when I read about his car accident. Although we met in person
only at the Oracle conferences, Carl became a real friend. I remember the many chats we had (in MSN). He
was just a message away…I called him “Mister AJAX” because he was so strong in all the fancy web stuff.
During conferences, we always met up.

When you were with Carl, there was always something happening. He had so many great stories. He
liked to go out and have fun. I will never forget one Friday in San Francisco, just after OOW: Carl spent
that day with John and me and showed us the coolest places in the city. He also took us to one of the best
Chinese places in Chinatown and told us some great stories about his life. I remember Carl as an exceptional
person—a great friend who was always willing to help others.

Scott, Carl, I feel honored to have known you both personally, and I am happy I could contribute to this
book in your honor.

—Dimitri Gielis

http://jes.blogs.shellprompt.net
www.apex-evangelists.com
www.talkapex.com
www.clarifit.com
http://dgielis.blogspot.com/2007/11/oow07-day-1-sessions-apex-meetup.html

xxiii

■ First-edition Foreword

The first time I met Carl in real life, it was during ODTUG’s Kaleidoscope in New Orleans. I got the chance to
show him a plan board with a drag-and-drop feature—all built in APEX, of course. He was truly impressed
by what I’d done, saying “Did you truly build that in APEX?” He even convinced me to show it to the other
APEX development team members.

One of the most striking things about Carl, apart from the fact he always did his utmost best to help
everybody, was his fear of presenting. Although everybody recognized Carl as the leading expert, knowing
way more than everyone else, he always was so nervous. But I guess that was one of his charms as well! I also
remember, during that same event, Carl, John, and myself sitting at the bar, drinking some whiskey. And
every glass poured contained a fly! So we talked about the never-ending fly whiskey for a long time (after a
thorough inspection, the bottle itself appeared to contain a lot of flies).

Before I met Scott for real, we had some contact on the OTN Forum. All about security, of course,
because that was Scott’s main focus—but he also knew an awful lot of all other Oracle stuff! The thing I
remember most is a night in Monterey during which the usual suspects of APEX people got together for
some food and drinks. Scott was sitting next to Raj Mattamal, who is without any doubt the fastest speaker in
the Oracle world. And with that they formed two opposites: Raj rambling on about whatever, and Scott just
sitting there, most of the time silently. But every time Scott did say something it was either incredibly funny
or so spot on, you couldn’t imagine.

We owe a lot to these two great guys. APEX wouldn’t be the great product it is today without them. They
are missed a lot.

—Roel Hartman

As this book is an APEX one and nobody can deny Scott and Carl’s unbelievable contributions to the
community, I wanted to take this dedication moment to express that these guys were first and foremost
amazing people. I had the pleasure of calling these guys my friends since the early APEX days (and before),
and it’s their unique personalities that I’ll never forget. Not a week goes by that I’m not reminded of a joke
from Scott (even the bad ones) or a story from Carl —and I’m forever grateful for that. That the community
could come together to put such a book as this together in tribute to them is surely a testament to their
impact, but it’s critically important to me that people know what great guys they were as regular people.

—Raj Mattamal
http://nianticsystems.com

Unfortunately, I never had the opportunity to meet Scott, but a quick look at the APEX forum’s “Top Users
in Forum” list speaks volumes about the kind of guy he was—and his name will deservedly remain there for
a long time to come. The number of people that Scott was able to help, myself included, is truly impressive
and inspirational.

When it came to being helpful and inspirational, Carl was very much the same kind of guy that Scott
was, and I’m very grateful to have met him. He was incredibly influential in my development career, having
helped me along while I learned the basics of client-side development. He even introduced me to jQuery!

I find it especially rewarding to have been asked to write a chapter on plug-ins in APEX—a topic that
often involves lots of JavaScript. To me it’s proof positive that people like Carl and Scott live on in those they
helped and mentored. I will always strive to have the same impact on others as they had on me.

—Dan McGhan

The first time I met Scott was at my first OpenWorld in 2007. In fact, he was the first member of the APEX
development team that I’ve had the pleasure to meet. I remember that he introduced himself and that he
recognized me from the forum. He seemed happy to see me, and I immediately felt part of the community.
During the same conference, I also had the chance to meet Carl and the rest of the team. They both were
always available to answer questions and propose solutions. They took notes of our suggestions, and the
next thing we knew they were included in the next APEX release. I have been using Oracle products for more

http://nianticsystems.com

xxiv

■ First-edition Foreword

than 20 years, and have never seen a product team as close to their users. And that is in large part because of
Scott and Carl. I am honored to contribute to this project in memory of two great colleagues and friends, and
I would like to thank John for giving me the opportunity to pay tribute to them.

—Francis Mignault
http://insum-apex.blogspot.com

www.insum.ca

Pictured left-to-right: John Scott, Carl Backstrom, and Dimitri Gielis at IOUG Collaborate event 2007

Scott Spadafore (standing) deep in discussion with John Scott

http://insum-apex.blogspot.com
http://www.insum.ca

xxv

About the Authors

John Scott has been using Oracle since version 7 (around 1993) and has used pretty much every release
since then. He has had the good fortune to work on a wide range of projects for a varied group of clients.
He was lucky enough to start working with Oracle Application Express when it was first publicly released
and has worked with it nearly every day since (and loves it). John is an Oracle ACE Director and was
named Application Express Developer of the Year in 2006 by Oracle Magazine. He is also the cofounder of
ApexEvangelists (Apex-Evangelists.com), a company that specializes in providing training, development,
and consulting specifically for the Oracle Application Express product. You can contact John at
john.scott@apex-evangelists.com.

Nick Buytaert is an Oracle Certified Professional (OCP) with a bachelor’s degree in applied computer
science (2011). He works for a Belgian consulting firm called Contribute, which assists a wide variety of
organizations in making the most of their Oracle technology stacks. Nick started his career working as an
E-Business Suite consultant and then went on to specialize in APEX development. In April 2013, he became
an Oracle Application Express Developer Certified Expert.

Nick furthermore participates actively in the APEX community by publishing technical articles on his
blog APEXPLAINED (http://apexplained.wordpress.com). He also initiated and maintains several open
source projects, such as the Oracle APEX Maven plugin and a series of APEX plugins. Nick occasionally
engages in public speaking activities to share his ideas and experiences with the outside world. You can
follow Nick on Twitter @nbuytaert1 to find out more about him.

Karen Cannell is president of TH Technology, a small consulting firm providing Oracle technology services,
focusing on Application Express. A mechanical engineer by degree (one of them), she has analyzed,
designed, developed, converted, upgraded, enhanced, and otherwise worked on legacy and commercial
database applications for more than 25 years, concentrating on Oracle technologies since 1994. She has
worked with Application Express since its Web DB and HTML DB beginnings and continues to leverage the
Oracle suite of tools to build quality web applications for clients in government, medical, and engineering
industries. Karen can be contacted at kcannell@thtechnology.com.

Martin D’Souza is cofounder and CTO at ClariFit, a consulting firm and custom solutions provider
specializing in APEX and PL/SQL development. His experience in the technology industry has been focused
on developing database-centric web applications using the Oracle APEX technology stack.

In addition to his day job, Martin is the author of the popular blog www.TalkApex.com. He is also a
designated Oracle ACE Director and has coauthored and authored various APEX books. He has presented at
numerous international conferences such as APEXposed, COUG, and ODTUG Kscope, for which he won the
Presenter of the Year award in 2011.

Martin has a computer engineering degree from Queen’s University in Kingston, Ontario, Canada. You
can contact Martin at martin@clarifit.com.

Doug Gault is the APEX practice director at Enkitec, an Oracle Platinum partner founded in 2004, which
provides consulting, education, and products based around Oracle technology. He has been working with
Oracle since 1988, starting with version 5.1B, SQL*Forms 2.0, and RPT/RPF. He has focused his career on
Oracle’s development technologies, spending the majority of that time dedicated to web-based technologies
including the OWA Web Toolkit, PL/SQL Server Pages, WebDB, Oracle Portal, and more recently HTML-DB

http://john.scott@apex-evangelists.com
http://apexplained.wordpress.com
http://kcannell@thtechnology.com
http://www.TalkApex.com
http://martin@clarifit.com

xxvi

■ About the Authors

and APEX. Doug’s many years of Oracle experience have taken him all over the world to participate in
some truly groundbreaking projects. Doug has presented at and participated in roundtable discussions at a
number of conferences including Oracle OpenWorld, UKOUG, and ODTUG’s APEXposed and Kaleidoscope
conferences. He has an associate’s degree in computer science and an honorary master’s degree from The
School of Hard Knocks, believing there is no replacement for hard-earned experience. Doug is an Oracle Ace
and can be found on Twitter as @dgault_apex and on his blog at http://douggault.blogspot.com. You can
contact Doug at doug.gault@enkitec.com.

Dimitri Gielis has been working with Oracle Database since he began his career in 2000 with Oracle in
Belgium. Dimitri was an early adopter and supporter of HTML DB and later of Application Express. After
many years of honing his expertise with Oracle Database and Application Express, Dimitri cofounded APEX
Evangelists in 2007. In 2014 Dimitri set up APEX R&D (https://www.apexrnd.be), a company that focuses
on web application development and creating innovative solutions with Oracle Application Express.
The company also provides on-demand coaching and training in APEX. Dimitri is an active member of
the Application Express community. He routinely posts insights into Application Express on his blog at
http://dgielis.blogspot.com. He is a frequent presenter at the Oracle Benelux User Group (OBUG), IOUG
collaborate, ODTUG Kaleidoscope, the UKOUG conference, and Oracle OpenWorld. Dimitri has been an
Oracle ACE Director since 2008. He received the APEX Developer of the Year award from Oracle Magazine
in 2009.

Roel Hartman has been using Oracle Database since version 5. At that time, he used Oracle Case*Designer,
Oracle Forms 2.3, and other tools of the day. He has used all versions of those tools as they have evolved
during the years since, giving him great depth of experience as an Oracle Database developer. Today he is a
fierce advocate and user of Oracle Application Express. Roel has a master’s degree in business informatics
from the University of Twente in the Netherlands. He is an Oracle ACE Director. He works for Logica in
the Netherlands as a lead technical architect. Roel has presented at all major Oracle conferences, such as
ODTUG, Oracle OpenWorld, and UKOUG. He is a regular contributor to the OakTable Network APEX Forum.

Denes Kubicek is the chief executive officer and founder of bi-Cubes. He has been working with Oracle for
more than 12 years. Denes is an Oracle ACE Director and was APEX Developer of the Year in 2008. Denes is
also a coauthor of the first APEX book in German, Oracle APEX und Oracle XE in der Praxis. You can reach
him at bi-Cubes.com.

Raj Mattamal is copresident of Niantic Systems, LLC (NianticSystems.com). He started developing web
applications at Oracle in 1995 with the same people who came to create Oracle Application Express. In
his more than ten years with the company, he helped customers in a wide range of industries to deliver
web-based solutions on the Oracle Database. In addition to helping customers with their applications,
Raj developed numerous web applications for use internally at Oracle. Outside of database application
development, Raj spent much remaining time with Oracle evangelizing Oracle Application Express. This
entailed teaching Oracle software development and APEX classes globally, writing articles for Oracle
Magazine, writing Technotes for the Oracle Technology Network, and assisting with the development of
training material and workshops.

Having earned a bachelor’s degree in decision and information studies and another in marketing
from the University of Maryland, Raj continues to apply his knowledge of and passion for technology and
business to real-world issues. Since leaving Oracle in 2006, Raj offers his services and training to customers
in a wide range of business lines to help them get the most out of their Oracle environments. In recent years,
Raj has been recognized by his Oracle professional colleagues as an Oracle ACE Director, an honor, indeed,
to be earned among so many knowledgeable colleagues.

Dan McGhan is a senior technical consultant with the Accenture Enkitec Group. He suffers from compulsive
programing disorder, which is believed to be linked to his balding. Having started his development career in
the land of MySQL and PHP, he was only too happy to have stumbled upon APEX. Since then he’s dedicated
his programming efforts to learning more about Oracle and web-based technologies in general. Dan is an
Oracle Application Express Certified Expert, an Oracle PL/SQL Developer Certified Associate, and an Oracle

http://douggault.blogspot.com
http://doug.gault@enkitec.com
https://www.apexrnd.be
http://dgielis.blogspot.com
http://bi-Cubes.com
http://NianticSystems.com

xxvii

■ About the Authors

ACE. In addition to his “day job,” he is one of the top contributors to the APEX forum, maintains his own
Oracle and APEX blog (www.danielmcghan.us), and is a regular presenter at various events and user group
meetings.

Francis Mignault is chief technology officer and cofounder of Insum Solutions. He has been working with
Oracle Database for more than 23 years and is a certified Oracle database administrator. Francis began his
work with APEX in 2004, when it was called HTML DB. He and his team have developed bilingual software
as a service application that is now used by more than 60,000 active users. Francis is deeply involved in
the APEX community. His first-rate PL/SQL and APEX expertise led to becoming the first APEX instructor
in Quebec. He has presented at several APEX seminars and conferences in the United States and Canada,
including Oracle OpenWorld, IOUG Collaborate, ODTUG Apexposed, ODTUG Kaleidoscope, and Ora*GEC.

Tom Petrus started out as an in-house Oracle Forms developer in 2007 and made the switch to Oracle
Application Express in 2011 as a consultant. Since then he has had a wide range of projects and clients by
which he has honed his knowledge on Apex. He has a preference for everything JavaScript related and is
active on both StackOverflow and the OTN Apex forum, helping others solve problems and picking up new
nuggets of knowledge in the process. He currently works as a consultant for iAdvise Belgium.

Jorge Rimblas is a senior technical consultant with the Accenture Enkitec Group and has been an Oracle
Database professional since 1995. He started using APEX when it was known as HTML DB, starting with
version 1.6. Since 2008, APEX is all he does. His areas of expertise include Oracle Application Express,
Oracle e-Business Suite, Oracle Database, and related products. Jorge has helped several companies, in
diverse industries, implement custom themes for their applications. His knowledge and experience with UI
design, web technologies, and Adobe Photoshop uniquely position him to excel at this kind of work. He has
taught APEX to dozens of people and has been a speaker at the RMOUG Training Days and ODTUG KScope
conferences. Jorge is an Oracle ACE and can be found on Twitter as @rimblas and on his blog at
http://rimblas.com/blog.

Christoph Ruepprich has worked as an Oracle DBA and developer since 1999. As a developer, he has
worked with Oracle Forms and Reports and has extensive experience with Oracle Application Express.
In his current role as senior technical consultant at Accenture Enkitec Group, he works on various APEX
projects. He is also an active presenter on APEX topics at conferences and maintains an Oracle-related blog
at http://ruepprich.wordpress.com.

http://www.danielmcghan.us
http://rimblas.com/blog
http://ruepprich.wordpress.com

xxix

About the Technical Reviewers

Patrick Cimolini specializes in project management, development, and training services for Oracle
Application Express projects. Formal training in engineering, business administration, and project
management is complemented by more than 30 years of experience that has evolved through mainframe,
client-server, and web platforms. Patrick enjoys attending and presenting at Oracle-centric conferences such
as Kscope, Collaborate, APEXposed, and Oracle OpenWorld, all of which have contributed significantly to
his professional and personal growth. Patrick is currently working at Insum Solutions in Montréal, Québec.

Alex Fatkulin is a master of the full range of Oracle technologies. This mastery has been essential in
addressing some of the greatest challenges his customers have met.

Alex draws on years of experience working with some of the world’s largest companies, where he was
involved with almost everything related to Oracle databases, from data modeling to architecting high-
availability solutions to resolving performance issues of extremely large production sites.

Alex has a bachelor’s of computer science degree from Far Eastern National University in Vladivostok,
Russia. He is also an Oracle ACE and a proud OakTable member.

Vincent Morneau is a developer, blogger, and speaker. He has been working with APEX for more than five
years in the world’s largest APEX development team at Insum Solutions. His focus has recently shifted to the
front-end aspect of development, where he shares his vision throughout Twitter at @vincentmorneau and his
blog at http://vmorneau.me.

Vincent is also a big fan of open source coding, and he systematically shares any piece of code that he
finds valuable on his GitHub account at https://github.com/vincentmorneau.

He is on his way to earning a bachelor’s degree in software engineering by the end of 2015 and will
finally be able to dedicate more time to the APEX community.

http://vmorneau.me
https://github.com/vincentmorneau

1

Chapter 1

Page Designer

by Denes Kubicek
The Page Designer in APEX 5.0 is one of the main new features and a major improvement for APEX
developers. It changes the way you build your application pages and also the way you think about
application development. It is also close to what you probably know from Oracle Forms. The Page Designer
provides these new features:

•	 Drag-and-drop functionality

•	 Tree view and context menus

•	 Seamless adjustment of the Component View and Property Editor panels

Main Components
The Page Designer has four main components (Figure 1-1).

•	 Navigation toolbar

•	 Component View on the left side of the screen

•	 Grid Layout for drag-and-drop functionality in the middle

•	 Property Editor on the right side of the screen

Chapter 1 ■ page Designer

2

Navigation
The navigation toolbar has lots of new options compared to previous versions of APEX. Some of them
have been reworked, and their functionality is now different. Also, there are some new options that I will
describe in detail.

Page Finder Icon
The Page Finder icon works differently compared to the old one. It will lead you to a page you type in directly
or will open a modal window if you click the pop-up list of values (see Figure 1-2 and Figure 1-3).

Figure 1-1. Page Designer components

Figure 1-2. Page Finder icon

Chapter 1 ■ page Designer

3

The Page Finder will also show a warning via a pop-up if you are leaving a page with unsaved changes
(Figure 1-4).

Figure 1-3. Page Finder list of pages

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ page Designer

4

One of the things missing in the navigation within the Page Finder is the old feature to go to the previous
or next page. Even if you want to go to the previous or next page, you will be forced to do a couple of clicks to
open the modal window and then search for the page number in the list.

Lock Pages and Undo and Redo Icons
The icon for locking pages (Figure 1-5) has the same functionality as it had before. The Redo and Undo icons
allow you to undo and redo the unsaved changes similar to what you know from other programs (such as
Microsoft Office). This feature is useful, but it works only for unsaved changes.

Figure 1-4. Page Finder unsaved changes prompt

Figure 1-5. Icon for locking pages and the Undo and Redo icons

Create, Utilities, and Component View Icons
This section will cover the main set of icons in the Page Designer. You will use these icons frequently.

Chapter 1 ■ page Designer

5

Create Icon
The icon for Create (Figure 1-6 and 1-7) offers a couple of options.

•	 Create a page

•	 Create a page as a copy of an existing page

•	 Wizards to create different complex page components such as forms and reports

•	 Access to the shared components

•	 Access to the page group

•	 Access to the Team Development features

•	 Add comments to the application

Figure 1-6. Create, Utilities, and Component View icons

Figure 1-7. Create menu items

Chapter 1 ■ page Designer

6

Figure 1-8. Create Form Wizard

When you click to create a Form or Report region, you will see the corresponding wizard as a modal
dialog (Figure 1-8).

Utilities Icon
The icon for Utilities (Figure 1-6 and 1-9) offers lots of options.

•	 Delete a page

•	 Create a page as a copy of an existing page

•	 Access the Caching, Attribute Dictionary, History, and Export options

•	 Access the Cross Page Utilities, Application Utilities, and Page Groups options

•	 Access the Upgrade Application option

Chapter 1 ■ page Designer

7

Component View Icon
The icon for the Component View (Figure 1-6 and Figure 1-10) shows the old HTML view of the Page
Designer. This view option could be useful in these cases:

•	 When making mass changes of column names in a classic report

•	 When making mass changes of column names in an interactive report

•	 When making mass changes of item labels in a form region

Figure 1-9. Utilities options

Chapter 1 ■ page Designer

8

The reason is for the old view’s sefuleness is simple. If you use the new Page Designer interface for
the purposes just listed, you will have to do lots of clicks and mouse moves to first click the corresponding
column on the left side tree menu and then move the cursor to the label attribute to change it. Using the old
view, it is possible to move faster from column to column using the Tab key.

You can always switch back to the new interface using the icon shown in Figure 1-10.

Other Navigation Bar Icons
The other icons on the navigation toolbar (Figure 1-11) are used to access the Team Development,
Developer Comments, and Shared Components features.

Figure 1-10. Old HTML Page Designer layout

Figure 1-11. Other navigation toolbar icons

Team Development Icon

Using this icon, you can access Team Development features.

Developer Comments Icon

Using this icon, you create a developer comment, add a bug, or add a to-do task.

Shared Components Icon

Using this icon, you can access application shared components.

Chapter 1 ■ page Designer

9

Save and Save and Run Application Icons
The next set of icons is used to save the changes or save and run the application.

Save Icon

The Save icon will save the outstanding changes for the corresponding page.

Save and Run Icon

The Save icon will save the outstanding changes for the corresponding page and run the application in a
new tab.

In earlier versions of APEX, you could run the application by right-clicking and opening the application
in a new tab or in a new window. In APEX 5.0, this has changed; there is no right-click option anymore. The
button is an image running JavaScript. The consequence is that the behavior will be different depending on
the browser used and your browser settings. To see how to optimize the settings for Firefox, refer to this blog
posting:

www.deneskubicek.blogspot.de/2015/06/apex-50-run-applications-in-new-tabs.html

Component View
The Component View has four tabs.

•	 Rendering

•	 Dynamic Actions

•	 Processing

•	 Page Shared Components

Rendering
The Rendering tab (Figure 1-12) lists all the components of the page grouped by either component type
or processing order. Here, you can access all page regions, items, buttons, and processes (computations,
processes, and branches) executed during page rendering. Also, the tree view will show all the dynamic
actions or computations attached to one of the page components.

http://www.deneskubicek.blogspot.de/2015/06/apex-50-run-applications-in-new-tabs.html

Chapter 1 ■ page Designer

10

Dynamic Actions
On the Dynamic Actions tab (Figure 1-13), you will find a list of all the dynamic actions used on that page.
This is a useful new feature because of the growing number of dynamic actions. Now these components are
shown and accessed separately, and this helps you keep an overview of it all.

Figure 1-12. Component View: Rendering tab

Chapter 1 ■ page Designer

11

Processing
The Processing tab (Figure 1-14) shows a list of the processes run on page submit. This includes the following:

•	 Validations

•	 Computations

•	 Page processes

•	 Branches

Figure 1-13. Component View: Dynamic Actions tab

Chapter 1 ■ page Designer

12

Page Shared Components
The Page Shared Components tab (Figure 1-15) shows a list of the shared components used on the
corresponding page.

Figure 1-14. Component View: Processing tab

Chapter 1 ■ page Designer

13

Figure 1-15. Component View: Page Shared Components tab

The Component View is a tree and provides a couple of useful features.

•	 Drag-and-drop functionality

•	 Context menu options

Using drag and drop, you can change the order sequence of the page elements and processes. Using the
context menu options (Figure 1-16), you can easily access all the relevant component options.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ page Designer

14

Grid Layout
The Grid Layout also has different tabs.

•	 Grid Layout

•	 Messages

•	 Page Search

•	 Help

Grid Layout
Grid Layout (Figure 1-17) provides drag-and-drop functionality of components that can be selected from the
Gallery menu and also allows you to reorder those components.

Figure 1-16. Component View: context menu options

Chapter 1 ■ page Designer

15

Using the Grid Layout tab, you can reorder all page elements in order to get a desired layout of the page.
You can reorder the following elements:

•	 Items

•	 Regions

•	 Buttons

Using Grid Layout, you can also copy and move the copied elements. This can be achieved by selecting
an element and pressing Ctrl on the keyboard (Figure 1-18). Once you get to the position where the copied
element needs to be placed, you just release the Ctrl key and the mouse button. The element will be copied
under a new name.

Figure 1-17. Grid Layout and Gallery menu

Chapter 1 ■ page Designer

16

Messages
Messages (Figure 1-19) are a useful feature. In APEX 5.0 you do not need to wait for the save process to be
executed to see whether there are any errors. APEX 5.0 will evaluate your code and, in general, your input as
soon as you lose the focus of the element where you enter it. If there are any validation messages and errors,
they will show up on the Messages tab (Figure 1-20) saying what the problem is. The messages are generated
using AJAX, and they provide links that you can use to access the corresponding component.

Figure 1-18. Grid Layout: copying components

Figure 1-19. Messages: highlighting

Chapter 1 ■ page Designer

17

If there are errors in your code or input, not only will the message show up, but all relevant parts of the
page structure will be highlighted.

•	 Component View

•	 Grid Layout

•	 Element Properties

Clicking the message text will take you to the affected element property on the right side of the screen
showing again the error in a separate widget (Figure 1-21).

Figure 1-20. Messages: content

Figure 1-21. Messages: link

Chapter 1 ■ page Designer

18

Page Search
The Page Search tab (Figure 1-22) works based on AJAX as well. You have two options and can search based
on one of the following:

•	 Match case

•	 Regular expression

Figure 1-22. The Page Search tab

Clicking the search result will take you to the affected element property on the right side of the screen,
and it will highlight the Component View node.

Chapter 1 ■ page Designer

19

Figure 1-23. Help

Help
The Help tab (Figure 1-23) provides instant help for the Property Editor on the right side of the screen.
The help default says this:

“Select a component and then select an attribute in the Property Editor to display help on
that attribute.”

Clicking any of the options available in the Property Editor will result in showing the corresponding
help text.

Property Editor
The Property Editor in Figure 1-24 shows instantly the properties of a selected component. The Property
Editor has four buttons for the view options.

•	 Show Common

•	 Show All

•	 Collapse All

•	 Expand All

Chapter 1 ■ page Designer

20

Figure 1-24. Property Editor

Chapter 1 ■ page Designer

21

Figure 1-25. Show Common button

Figure 1-26. Show All button

Show Common
Clicking the Show Common button (Figure 1-25) lists the most common component properties. Depending
on the component you select, it will hide certain options.

Show All
Clicking the Show All button (Figure 1-26) lists all component properties. Depending on the component you
select, it will hide or show certain options compared to the other types of component.

Collapse All
Clicking the Collapse All button (Figure 1-27) collapses all Property Editor components and shows titles
only. This feature is useful when the list of properties is long and you want to avoid scrolling.

Chapter 1 ■ page Designer

22

Show All
Clicking the Show All button (Figure 1-28) shows all available properties for the selected element.

Figure 1-27. Collapse All button

Chapter 1 ■ page Designer

23

Figure 1-28. Show All button

Quick Pick, Go to Group, and Go to Component Icons
There are three new icons in the Property Editor:

•	 Quick Pick

•	 Go to Group

•	 Go to Component

Quick Pick Icon

Clicking the Quick Pick icon will show a list menu of the available options, as shown in Figure 1-29.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ page Designer

24

Go to Group Icon

Clicking the Go to Group icon will have the same result as the Collapse All button; it lists the property titles
for each property group. See Figure 1-30 for an example.

Figure 1-29. Quick Pick icon

Chapter 1 ■ page Designer

25

Figure 1-30. Quick Pick icon

Go to Component Icon

Clicking the Go to Component icon will lead you to the shared component used, as shown in Figure 1-31.
Once you make a change to the selected shared component, you will be forwarded to the property you
came from.

Chapter 1 ■ page Designer

26

Code Editor
The new Code Editor (Figure 1-32) in APEX 5.0 is one of the highlights of the Page Designer. It has lots of
options for setting it up and provides a far better way to maintain your code than with the old input text area
in older releases.

Figure 1-31. Go to Component icon

Figure 1-32. Code Editor

Chapter 1 ■ page Designer

27

You can access the Code Editor by clicking the icon (Figure 1-33) for each property that has a code option.

Figure 1-33. Code Editor icon

Figure 1-34. Code Editor showing code and syntax highlighting

The Code Editor has a few useful options that are shown in Figure 1-34:

•	 Code highlighting according to the code type of the particular property (PL/SQL,
SQL, JavaScript, jQuery, CSS) and the selected template

•	 Tab-size option

•	 Indent option

•	 Selection of different themes for the Code Editor layout

•	 Line Numbers and Ruler options

•	 Search and Replace options

•	 Access to the Query Builder

•	 Autocomplete options

•	 Undo and Redo options

•	 Inline code validation

Chapter 1 ■ page Designer

28

Shortcuts
As of APEX 5.0, you can use shortcuts to move within the Page Designer. You can find the list of available
shortcuts in the Page Designer’s Help menu (Figure 1-35) or by pressing the keyboard combination
Alt+Shift+F1.

The list shows the following shortcuts (Figure 1-36):

•	 Display From Here: Ctrl+Alt+D

•	 Display From Page: Ctrl+Alt+T

•	 Go to Dynamic Actions: Alt+2

•	 Go to Gallery Buttons: Alt+9

•	 Go to Gallery Items: Alt+8

•	 Go to Gallery Regions: Alt+7

•	 Go to Grid Layout: Alt+5

•	 Go to Help: Alt+F1

•	 Go to Messages: Ctrl+F1

•	 Go to Page Shared Components: Alt+4

•	 Go to Processing: Alt+3

•	 Go to Property Editor: Alt+6

•	 Go to Rendering: Alt+1

•	 Keyboard Shortcuts: Alt+Shift+F1

•	 Page Search: Ctrl+Alt+F

•	 Redo: Ctrl+Y

Figure 1-35. Shortcuts in Help menu

Chapter 1 ■ page Designer

29

•	 Restore/Expand: Alt+F11

•	 Save: Ctrl+Alt+S

•	 Save and Run Page: Ctrl+Alt+R

•	 Toggle Hide Empty Positions: Ctrl+Alt+E

•	 Undo: Ctrl+Z

Figure 1-36. Shortcut list

Unfortunately, you cannot define your own shortcut combinations. For sure, you will not need all the
available shortcuts from the list, and it would be nice to have an option to define your own top-ten list.
Maybe the next release will have this feature.

Chapter 1 ■ page Designer

30

Help Functionalities
The Page Designer has a huge number of help options. Clicking the icon in Figure 1-35 will open a menu
showing different possibilities to get help for the problems you may face during application development.
The following help options are available:

•	 Link to the APEX 5.0 Documentation

•	 Link to APEX Forum at OTN

•	 Link to APEX Resources at OTN

•	 Page Designer Help

•	 Shortcuts List

•	 About Help

Link to the APEX 5.0 Documentation
Directly linking to the current APEX 5.0 documentation (Figure 1-37) is a great option. It helps you to
instantly access the most current documentation available at http://docs.oracle.com.

Figure 1-37. APEX documentation

http://docs.oracle.com/

Chapter 1 ■ page Designer

31

Link to the APEX 5.0 Forum at OTN
The APEX 5.0 Page Designer is also connected to the APEX Forum at OTN (Figure 1-38), which is the best
resource if you have a question on how to solve a problem. It should be used to post your questions and to
help other developers to solve their problems.

Figure 1-38. APEX Forum at OTN

Link to the APEX Resources at OTN
This link is important when you just start to learn APEX. This link provides you with the most recent
resources related to APEX (see Figure 1-39), and those resources are an awesome source of knowledge.
There is almost no topic related to APEX you can’t find here.

Chapter 1 ■ page Designer

32

Page Designer Help: Getting Started in Page Designer
The Page Designer Help (Figure 1-40) is a short overview of Page Designer functionalities.

Figure 1-39. APEX resources at OTN

Chapter 1 ■ page Designer

33

About Page Designer
About Page Designer (Figure 1-41) gives you a short overview of the most important features such as Host
Schema, Product Build, Last DDL time, and so on.

Figure 1-40. Getting Started in Page Designer page

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ page Designer

34

Other Options
Page Designer has lots of other new features that need to be mentioned here.

•	 Multiple component selection

•	 Resizing areas

•	 Memory function

•	 Toolbar options

Figure 1-41. About Page Designer

Chapter 1 ■ page Designer

35

•	 Move them within the Component View (Figure 1-43)

Figure 1-42. Multiple component selection

Multiple Component Selection
Using Page Designer Component View or Page Designer Grid Layout, you have a possibility to select
multiple components of the same type at once and do the following:

•	 Modify them by setting the properties in the Property Editor (Figure 1-42)

Chapter 1 ■ page Designer

36

•	 Replace single elements somewhere in the Grid Layout (Figure 1-44)

Figure 1-43. Reordering multiple components

Figure 1-44. Dragging and dropping single components in the Grid Layout

Chapter 1 ■ page Designer

37

Resizing Page Designer Areas
If one of the Page Designer sections and areas such as Component View, Grid Layout, and Property Editor
are too small, you have the option to resize them and make them fit your needs (Figure 1-45).

Figure 1-45. Resizing Page Designer sections

Figure 1-46. Expand icon on Grid Layout tab

In addition, you can resize the entire Grid Layout by clicking the Expand icon on the Grid Layout tab
(Figure 1-46 and Figure 1-47).

Chapter 1 ■ page Designer

38

Page Designer Memory Function
There is one thing I need to mention regarding the Page Designer layout options. The settings you make will
be saved per user (developer) and remain the same even after you change the page you work on, log out, or
clear the browser cache. You shouldn’t get confused if, for example, you suddenly can’t find an option that
you know has to be available. The reason is probably that the option is hidden because you probably used
the button Show Common or Collapse the last time you edited one of the components.

Page Designer Toolbar Options
The Page Designer also provides a new toolbar (Figure 1-48) that you can use to inspect your runtime
applications. Some of these options were available before, so I will mention only the new ones.

•	 Show Grid

•	 Quick Edit

•	 Theme Roller

•	 Toolbar options (the cog to the far right in Figure 1-48)

Figure 1-47. Grid Layout tab: full-screen mode

Figure 1-48. Page Designer toolbar

Chapter 1 ■ page Designer

39

Show Grid

The Show Grid option (Figure 1-49) will show the page and region grids for your application pages. You can
use it to improve the layout of your pages.

Figure 1-49. Show Grid

Quick Edit

Activating the Quick Edit (Figure 1-50), you can access a single component in your runtime application, and
it will lead you to the properties of the selected element.

Chapter 1 ■ page Designer

40

Theme Roller

Selecting the Theme Roller will open the new Theme Roller panel in your runtime application. Figure 1-51
shows the panel for setting some of the Theme Roller options.

Figure 1-50. Quick Edit

Chapter 1 ■ page Designer

41

Toolbar Options

Finally, there is a button in the Page Designer toolbar that you can use to change the toolbar settings. You
can use it to change some basic settings like the following (Figure 1-52):

•	 Auto Hide

•	 Show Icons Only

•	 Display Position (left, right, top, or bottom)

Figure 1-51. Theme Roller

Chapter 1 ■ page Designer

42

Summary
The Page Designer interface is the most prominent new feature in APEX 5.0. It is different from the
previous component or tree views, and it incorporates all application development options and features on a
single screen.

The tree view was the beginning, and since version APEX 4.2, it has been reduced to the accordion on the
left side of the screen. The rest of the screen is divided into a large Grid Layout area, allowing drag-and-drop
page design, and a Property Editor area, which allows access to all the properties previously found on the
edit screen.

This new interface allows for a much more efficient development of applications. Instead of editing
individual screens and going back and forth, navigating away from the page you are looking at, you can now
select components, change the attributes in the Property Editor, and save whenever you want to see what
the application looks like. It is also possible to select multiple components of the same type and then change
any common attributes in the Property Editor at once. You also have the possibility to redo and undo all
changes in the Grid Layout or Property Editor as long as those changes are not saved (until the Save button
is clicked and the application is run). The Page Designer adds a lot of other features such as instant error
messages, AJAX page search, and the Code Editor, with native syntax highlighting, inline error highlighting,
and autocomplete functionality.

The Page Designer also shows where the future development of APEX will go. In one of the next major
releases, you can expect the same functionality you now have in the Page Designer for the applications you
provide to your customers.

•	 AJAX forms

•	 AJAX trees with context menus and drag-and-drop functionality

•	 Drag-and-drop page content

Figure 1-52. Toolbar settings

43

Chapter 2

Oracle REST Data Services

by John Scott
Oracle REST Data Services (ORDS) is the current name for what once upon a time was termed the APEX
Listener. Not only has Oracle changed the name, but it has changed a lot of the functionality as well. ORDS is
notably different and broader in scope. For example, in ORDS 3 you’ll find the following:

•	 Installation no longer requires APEX.

•	 ORDS provides Oracle NoSQL database support.

•	 ORDS autogenerates REST endpoints for tables and views.

One of the significant changes with ORDS 3.0 is that you no longer require APEX to be installed. When
I first learned that, I wondered why you would want to use ORDS without APEX. Well, the simple answer is
that Oracle has recognized that not everyone using the Oracle Database has APEX installed; however, they
might want to REST enable tables or create manual REST endpoints.

While initially this might look like ORDS is trying to distance itself from APEX, this is actually a positive
thing for APEX, since it might introduce a group of people who aren’t already using APEX to the possibility of
using APEX. If someone installs ORDS into a database that doesn’t currently have APEX installed and then
creates a bunch of REST-enabled services, then the next logical step is to install APEX to be able to provide
added functionality (perhaps to manage those REST services, administer data, and so on).

So, don’t worry about the name change. (Anecdotally, a couple of people contacted me around the time
HTMLDB was renamed to Application Express and were worried that the name change signaled the end; I’m
pleased to report that many years later APEX is stronger than ever.)

ORDS Defined
What is ORDS? Put simply, it’s a Java EE alternative to the OHS or the EPG. In other words, it’s a piece of
infrastructure that either provides web server access to your APEX environment (and applications) or, if
you’re not using APEX, allows you to create and access your REST services in your database. With ORDS 3,
you now have the following deployment options with ORDS:

•	 Stand-alone

•	 Oracle WebLogic Server (11g Release 1 [10.3.6] or newer)

•	 Glassfish Server (Release 3.1.2 or newer)

•	 Apache Tomcat (Release 7.0.56 or newer)

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ OraCle reSt Data ServiCeS

44

I could spend an entire book covering these various options, but what I want to concentrate on in
this chapter is ORDS itself and not the deployment options (which are well documented in the Oracle
documentation). So, in my examples, I will be using the stand-alone configuration, which is not recommended
for production usage since it provides no capabilities for automatically restarting in the event of any issues.

What is my recommended production deployment option? Well, I’m afraid the simple answer is (as always!)
“it depends.” I think it depends on your current environment, your (company) skill set, and your budget.
WebLogic Server is a powerful and configurable option; however, it is the most expensive option, so if you’re not
currently licensed for it, then be prepared for your licensing costs to increase (however, with that increased cost
comes with increased support). Glassfish is a much cheaper option (or free if using the community edition).
However, I think a great combination is ORDS embedded into Apache Tomcat with a reverse proxy Apache server
(to help provide capabilities such as virtual hosts, compression, load balancing, intrusion detection, and so on).

ORDS Download and Setup
The ORDS home page is currently located at here:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html

Figure 2-1 shows the download page.

Figure 2-1. Oracle REST Data Services download page

http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html

Chapter 2 ■ OraCle reSt Data ServiCeS

45

The download is a self-contained ZIP file, which at around 50MB is quite a small download for Oracle
software. When you unzip the file, you should end up with a directory structure like this:

[jes@AEMBP ords]$ ls -al
total 199192
drwxr-xr-x 9 jes staff 306 5 May 10:53 .
drwxr-xr-x 10 jes staff 340 5 May 10:52 ..
drwxr-xr-x@ 3 jes staff 102 1 May 10:23 docs
drwxr-xr-x@ 6 jes staff 204 1 May 10:28 examples
drwxr-xr-x@ 2 jes staff 68 1 May 10:28 logs
-rw-r-----@ 1 jes staff 55850624 5 May 10:46 ords.3.0.0.121.10.23.zip
-rw-r--r--@ 1 jes staff 46105869 1 May 10:28 ords.war
drwxr-xr-x@ 3 jes staff 102 1 May 10:28 params
-rw-r--r--@ 1 jes staff 23806 1 May 10:28 readme.html

Notice the ZIP file contains documentation and examples, but the main core of the download is the
ords.war file (previously called apex.war). During the ORDS configuration you will need to specify the path
to the APEX web server files (located in the images directory of the APEX download). These files are not
bundled in the ORDS download, so you will need to download them separately.

Note in the following example I have already downloaded the APEX 5 web server files and copied them
to a directory, which I will reference during the ORDS installation/configuration.

Running the Install
You can now begin the ORDS installation by running the following command:

java -jar ords.war

 ■ Note You may need to give the full path to your Java binary, which requires Java JDK 1.7 or newer.

You should see the following output:

[jes@AEMBP ords]$ java -jar ords.war
This Oracle REST Data Services instance has not yet been configured.
Please complete the following prompts

Enter the location to store configuration data:

You need to specify the location where ORDS will store configuration files; this allows you to keep the
configuration files in a different location than the main ords.war file so that when you upgrade you don’t
need to worry about overwriting the configuration (it also helps to make regressing easier in the case of a
failed upgrade).

Enter the location to store configuration data:/u01/ords/ords-config

Chapter 2 ■ OraCle reSt Data ServiCeS

46

After entering the path to the configuration directory (which will be created for you), you will be
prompted for a number of parameters. Notice that anything in square brackets will be used as a default
value, so for example here you override the database server from localhost to aevm:

Enter the name of the database server [localhost]:aevm

If you want to accept the default, just press Enter/Return. In this case, you are using the default listener
port of 1521, so you don’t need to override it.

Enter the database listen port [1521]:

Now you specify the database service name or SID.

Enter 1 to specify the database service name, or 2 to specify the database SID [1]:
Enter the database service name:apex5.localdomain

Then you need to specify the password to be used for the ORDS_PUBLIC_USER account.

Enter the database password for ORDS_PUBLIC_USER:
Confirm password:

Note the username here: ORDS_PUBLIC_USER. This is the clue that ORDS can be used without APEX
being installed since all the metadata for ORDS will now be located in the ORDS_PUBLIC_USER schema, and it
does not rely on APEX in any way.

The next question can be misleading.

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step [1]:

When I first saw this, I thought it was referring to the Embedded PL/SQL Gateway; however, if you want
to use ORDS to access APEX (rather than using it just for REST enabling your database), then you should
choose option 1 here, and you will be prompted for the APEX_PUBLIC_USER passwords.

Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step [1]:
Enter the database password for APEX_PUBLIC_USER:
Confirm password:

You will have set these passwords when installing APEX. Refer to the APEX documentation on how to
reset them if you have forgotten your choices.

You will also be able to specify passwords for the APEX_LISTENER and APEX_REST_PUBLIC_USER users.

Enter 1 to specify passwords for Application Express RESTful Services database users
(APEX_LISTENER, APEX_REST_PUBLIC_USER) or 2 to skip this step [1]:
Enter the database password for APEX_LISTENER:
Confirm password:
Enter the database password for APEX_REST_PUBLIC_USER:
Confirm password:
May 5, 2015 11:31:33 AM oracle.dbtools.common.config.file.ConfigurationFilesBase update
INFO: Updated configurations: defaults, apex_pu, apex, apex_al, apex_rt
May 5, 2015 11:31:33 AM oracle.dbtools.rt.config.setup.SchemaSetup install
INFO: Oracle REST Data Services schema version 3.0.0.121.10.23
Enter 1 if you wish to start in standalone mode or 2 to exit [1]:

Chapter 2 ■ OraCle reSt Data ServiCeS

47

Finally, you need to tell ORDS where it can find the APEX static resources (the JavaScript and CSS files
for APEX).

Enter the APEX static resources location:/u01/apex5
Enter the HTTP port [8080]:

Note the path I specified (/u01/apex5) is a directory that contains the images subdirectory from the
APEX 5 file download. (In other words, it contains only the images, CSS, and JavaScript, not the SQL files
used to install APEX.) Also, you can specify a port to listen on (with the default being 8080, so make sure
nothing is already listening on this port if you accept the default).

All being well, you should now see the ORDS server start up.

May 5, 2015 11:31:24 PM oracle.dbtools.rt.config.setup.SchemaSetup install
INFO: Oracle REST Data Services schema version 3.0.0.121.10.23
2015-05-05 11:31:24.405:INFO::main: Logging initialized @13577ms
2015-05-05 11:31:27.528:INFO:oejs.Server:main: jetty-9.2.z-SNAPSHOT
2015-05-05 11:31:27.545:INFO:oejsh.ContextHandler:main: Started o.e.j.s.h.ContextHandler@13c
78c0b{/i,null,AVAILABLE}
2015-05-05 11:31:27.638:INFO:/ords:main: INFO: Using configuration folder: /home/oracle/
ords-config/ords
2015-05-05 11:31:27.639:INFO:/ords:main: FINEST: |ApplicationContext [configurationFolder=/
u01/ords/ords-config, services=Application Scope]|
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Validating pool: apex
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Pool: apex is correctly configured
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Validating pool: apex_al
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Pool: apex_al is correctly configured
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Validating pool: apex_pu
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Pool: apex_pu is correctly configured
May 5, 2015 11:31:27 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Validating pool: apex_rt
May 5, 2015 11:31:28 PM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Pool: apex_rt is correctly configured
2015-05-05 11:31:33.272:INFO:/ords:main: INFO: Oracle REST Data Services initialized|Oracle
REST Data Services version : 3.0.0.121.10.23|Oracle REST Data Services server info:
jetty/9.2.z-SNAPSHOT|
2015-05-05 11:31:33.274:INFO:oejsh.ContextHandler:main: Started o.e.j.s.ServletContextHandle
r@3dd3bcd{/ords,null,AVAILABLE}
2015-05-05 11:31:33.314:INFO:oejs.ServerConnector:main: Started ServerConnector@73846619{HT
TP/1.1}{0.0.0.0:8080}
2015-05-05 11:31:33.315:INFO:oejs.Server:main: Started @17492ms

Chapter 2 ■ OraCle reSt Data ServiCeS

48

By default ORDS will be listening on port 8080 (which you can see in the debug information output to
the screen). If you want to stop the server, you can simply press Ctrl+C since you are running in stand-alone
mode. If at any later point you want to change the configuration, you can do it from the command line,
which also provides built-in help by typing the following:

[jes@AEMBP ords]$ java -jar ords.war help

This shows help for each specific option.

[jes@AEMBP ords]$ java -jar ords.war help
java -jar ords.war <COMMAND> [Options] [Arguments]

The following commands are available:

 configdir Set the value of the web.xml
 config.dir property

 help Describe the usage of this
 program or its commands

 install Installs Oracle REST Data
 Services

 map-url Map a URL pattern to the
 named database connection

 nosqladd Add NoSQL store configuration

 nosqldel Delete NoSQL store
 configuration

 plugin Package one or more plugin
 jar files into ords.war

 set-properties Edit the value of one or more
 configuration settings via
 the specified properties file

 set-property Edit the value of a single
 configuration setting

 setup Configure database connection

 standalone Launch Oracle REST Data
 Services in standalone mode

 static Generate a Web Application
 Archive (WAR) to serve Oracle
 Application Express static
 resources

 uninstall Uninstall ORDS_METADATA
 schema, proxy user and
 related database objects.

Chapter 2 ■ OraCle reSt Data ServiCeS

49

Figure 2-2. APEX 5 login screen accessed via ORDS

 user Create or update credentials
 for a user

To see instructions on how to use each of these commands, type help
followed by the command name, for example

 java -jar ords.war help configdir

If no command is provided Oracle REST Data Services is started in
standalone mode

If everything worked correctly (and assuming you didn’t press Ctrl+C to exit ORDS, or if you did that,
you restarted it again with java –jar ords.war), then you should be able to point your browser to point
8080 on whichever machine you installed ORDS on (in my example I installed it to my local machine).
Assuming you already had APEX installed, then you should be greeted with the default APEX Application
Builder login screen, as shown in Figure 2-2.

Chapter 2 ■ OraCle reSt Data ServiCeS

50

Notice the URL contains /ords rather than the /apex you are familiar with from the APEX Listener, or
the /pls/apex you’re familiar with from the mod_plsql handler via Apache OHS.

Success! You’re now using ORDS to access APEX 5, so you’re done right? Yes, if all you want to do is use
ORDS as a basic web server, you’d done. But it’s capable of much more than that. I’ll cover some of those
capabilities in the coming sections, but first I will give you some background on the various database users
used by ORDS.

Database Users Used by ORDS
ORDS creates and uses a number of different database users, which can be confusing at first. Part of this
complexity is because ORDS can be used without APEX and because APEX itself has a number of different
functionalities that may or may not be utilized by ORDS. The following table attempts to give an overview of
the types and purpose of each database user:

Username Required Description

APEX_PUBLIC_USER Only if using ORDS
with APEX

Database user used to invoke PL/SQL Gateway
operations when using ORDS with APEX
(for example, all APEX operations).

APEX_REST_PUBLIC_USER Only when using
RESTful services
defined inside APEX

Database user used to perform RESTful
operations defined in APEX workspaces.

APEX_LISTENER Only when using
RESTful services
defined inside APEX

Database user used to query RESTful services
defined in APEX workspaces (note query rather
than invoke as per APEX_REST_PUBLIC_USER).

ORDS_METADATA Yes Database user used to store all ORDS PL/SQL
packages and metadata that represents ORDS-
enabled schemas. It is not accessed directly by
ORDS (the schema password is set to a random
value, and the account is locked).

ORDS_PUBLIC_USER Yes Used for invoking RESTful services defined in the
ORDS-enabled schemas.

As you can see, there can potentially be (if you use APEX) a number of different schemas related to
APEX and ORDS.

It is also important to know that if you previously defined RESTful web services in your APEX application
when using the APEX Listener, then you are able to have those web services migrated to the ORDS schema.
The reason for this is consistency; by default, when looking up web service definitions, the ORDS metadata
will be used. If the definition cannot be found, then it will look for definitions via the APEX_LISTENER schema
(in other words, the pre-3.0 behavior). This gives you the flexibility to use ORDS both with and without
APEX, using the new capabilities while maintaining backward capability. In other words, it’s the best of all
possible options.

Configuring Multiple Databases
One of the great new features in ORDS is the ability to define multiple database connections, enabling you to
have a single server that serves multiple databases (before this capability was available, you would have had
to run a server specifically for each database).

Chapter 2 ■ OraCle reSt Data ServiCeS

51

When you installed ORDS, an initial database connection was created named apex. To create a new
database connection, you can use the following command-line option:

java -jar ords.war setup --database <database name>

This will walk you through the same prompts you saw earlier.

[jes@AEMBP ords]$ java -jar ords.war setup --database demo2
Enter the name of the database server [aevm]:aevm2
Enter the database listen port [1521]:
Enter the database service name [apex5.localdomain]:
Enter 1 if you want to verify/install Oracle REST Data Services schema or 2 to skip this
step [1]:
Enter the database password for ORDS_PUBLIC_USER:
...<rest of code omitted>

Now that you have defined a second database, you will want to tell ORDS how it should decide to route
traffic between the multiple connections.

Defining Request Path Routing
You can configure ORDS to route traffic depending on the request path in the URL, using the map-url
configuration option, as shown here:

java -jar ords.war map-url --type base-path --workspace <workspace_name>
<path_prefix> <database_name>

where

•	 workspace is the name of the APEX workspace where the RESTful services are
defined for this connection. If you are not using RESTful services, then you can
omit this parameter.

•	 path_prefix is the prefix that must begin at the start of the request path.

•	 database_name is the name of the database connection you previously added.

So, for example, if you ran the following

java -jar ords.war map-url --type base-path --workspace uat /uat db2

and the ORDS server was running on the aevm hostname, then using the following URL

https://aevm:8080/ords/uat/

would allow you to access the uat workspace in the db2 database (note db2 is a database connection, not
really a db2 database!).

Using this technique gives you great flexibility in defining your database connections (and to a certain
degree allows some failover and load balancing across multiple ORDS servers).

https://aevm:8080/ords/uat/

Chapter 2 ■ OraCle reSt Data ServiCeS

52

Defining Request URL Prefix–Based Routing
Similarly to request path routing, you can define request URL prefix–based routing. For example, say you use
the following command:

java -jar ords.war map-url --type base-url --workspace uat http://aevm:8080/ords/uat db2

This means that any URL that begins with

http://aevm:8080/ords/uat

will be routed to the db2 database. For example, all the following URLs would be processed by this routing:

http://aevm:8080/ords/uat/f?p=MYAPP
http://aevm:8080/ords/uat/generate_documents
http://aevm:8080/ords/uat/register?p_username=john

Configuration Files
As you have seen, ORDS is pretty straightforward to install and configure. However, what if you want to make
a change after you have installed it? First, you will need to know where the configuration files are stored. You
can check this by using the configdir command:

java -jar ords.war configdir

This should give you output similar to the following:

[jes@AEMBP ords]$ java -jar ords.war configdir
May 5, 2015 4:17:15 PM oracle.dbtools.cmdline.ModifyConfigDir execute
INFO: The config.dir value is /u01/ords/ords-config

Now you know the configuration files are stored in /u01/ords/ords-config.
Alternatively, if you want to change the location of the configuration files (perhaps you want to test a

new configuration without modifying the existing configuration), you can specify a new location after the
configdir command.

java -jar ords.war configdir </path/to/new/config>

Configuration File Structure
The configuration directory contains a number of different files contained within a specific structure.

[jes@AEMBP ords]$ pwd
/u01/ords/ords-config/ords
[jes@AEMBP ords]$ tree
.

http://aevm:8080/ords/uat
http://aevm:8080/ords/uat
http://aevm:8080/ords/uat/f?p=MYAPP
http://aevm:8080/ords/uat/generate_documents
http://aevm:8080/ords/uat/register?p_username=john

Chapter 2 ■ OraCle reSt Data ServiCeS

53

┴│./ords
 ┴│ ./ords/conf
 ┴│ ./ords/conf/apex.xml
 │ ┴│ ./ords/conf/apex_al.xml
 │ ┴│ ./ords/conf/apex_pu.xml
 │ ┴│ ./ords/conf/apex_rt.xml
 ┴│ ./ords/defaults.xml
 ┴│ ./ords/standalone
 │ ┴│ ./ords/standalone/standalone.properties
 ┴│ ./ords/url-mapping.xml

3 directories, 7 files

The defaults.xml file contains settings that are inherited by all database connections (that is, global
settings).

Database-specific configurations are stored in the files conf/<db-name>.xml, so for example in this case
you have the conf/apex.xml file, which represents settings specific to the apex database connection.

If you are using APEX (and I’ll assume you are since you bought this book!), then you will have
additional configuration files including _al.xml, _rt.xml, and _pu.xml. These files store the configuration
details for the APEX_LISTENER, APEX_REST_PUBLIC_USER, and ORDS_PUBLIC_USER.

Configuration File Format
The configuration files are text files in the Java XML properties format, which is fairly easy to read and
understand. For example, my defaults.xml file contains the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>Saved on Mon Jun 29 11:33:55 BST 2015</comment>
<entry key="cache.caching">false</entry>
<entry key="cache.directory">/tmp/apex/cache</entry>
<entry key="cache.duration">days</entry>
<entry key="cache.expiration">7</entry>
<entry key="cache.maxEntries">500</entry>
<entry key="cache.monitorInterval">60</entry>
<entry key="cache.procedureNameList"/>
<entry key="cache.type">lru</entry>
<entry key="db.hostname">aevm</entry>
<entry key="db.port">1521</entry>
<entry key="db.servicename">apex5.localdomain</entry>
<entry key="debug.debugger">false</entry>
<entry key="debug.printDebugToScreen">false</entry>
<entry key="error.keepErrorMessages">true</entry>
<entry key="error.maxEntries">50</entry>
<entry key="jdbc.DriverType">thin</entry>
<entry key="jdbc.InactivityTimeout">1800</entry>
<entry key="jdbc.InitialLimit">3</entry>
<entry key="jdbc.MaxConnectionReuseCount">1000</entry>
<entry key="jdbc.MaxLimit">10</entry>

http://java.sun.com/dtd/properties.dtd

Chapter 2 ■ OraCle reSt Data ServiCeS

54

<entry key="jdbc.MaxStatementsLimit">10</entry>
<entry key="jdbc.MinLimit">1</entry>
<entry key="jdbc.statementTimeout">900</entry>
<entry key="log.logging">false</entry>
<entry key="log.maxEntries">50</entry>
<entry key="misc.compress"/>
<entry key="misc.defaultPage">apex</entry>
<entry key="security.crypto.enc.password">UL5dl18_fJOY8rNeQncA..</entry>
<entry key="security.crypto.mac.password">rPP0Yi4KhOerYnV7HH3deQ..</entry>
<entry key="security.disableDefaultExclusionList">false</entry>
<entry key="security.maxEntries">2000</entry>
</properties>

(By the way, I have changed my encrypted password strings in there!)
You can see that it is relatively simple to change the configuration to point at a different hostname

using the db.hostname parameter or, for example, turn on the debugger by changing debug.debugger from
false to true. A side effect of these configuration files being text files is that it’s easy to take a backup of a
configuration file before making any changes and to revert to the old version if you hit any issues.

Configurable Parameters
You can configure pretty much all the parameters in both the defaults.xml file and the <database_name>.
xml file. The official Oracle help, currently available at the following link, does a great job of listing each
parameter:

http://docs.oracle.com/cd/E56351_01/doc.30/e56293/config_file.htm#AELIG7204

Administration via SQL Developer
If you were familiar with the APEX Listener, then you know that it provided a web-based configuration utility
so you could fire up your web browser and configure it without having to resort to the command line. One of
the downsides of this, however, was that frequently if the APEX Listener was misconfigured, you were unable
to connect to the web front end in order to correct it.

One of the big enhancements with ORDS 3.0 is that you can configure it via SQL Developer 4.1. Do this
from the View menu, as shown in Figure 2-3.

Figure 2-3. Administering REST Data Services via SQL Developer 4.1

http://docs.oracle.com/cd/E56351_01/doc.30/e56293/config_file.htm#AELIG7204

Chapter 2 ■ OraCle reSt Data ServiCeS

55

Figure 2-5. ORDS administration via SQL Developer 4.1

Figure 2-4. Creating an ORDS connection in SQL Developer 4.1

You will need to create a new ORDS connection, as shown in Figure 2-4.

This is the piece that can catch you out. I must admit the first few times I attempted this either I missed
a section in the documentation or I messed something up. The issue I had was that I didn’t create the user
(admin in my screenshot) that would enable me to connect via SQL Developer.

Create via two users via the command line.

java -jar ords.war user dev "SQL Developer"
java -jar ords.war user admin "Listener Administrator"

The first command will create a user for developing REST web services via SQL Developer; the second
command will create a user that allows you to access (and modify) the ORDS configuration via SQL Developer 4.1.

The important piece here is the section in quotes (for example, SQL Developer and Listener
Administrator); those are the roles that the user has. The first time I tried to set up these users, I mistyped
the role name and was then frustrated when it did not work. The best advice I can give is to consult the
documentation.

Once you have created these users, you should be able to connect via SQL Developer, as shown in Figure 2-5.

Chapter 2 ■ OraCle reSt Data ServiCeS

56

I won’t go into each setting here because they’re the same as the parameters detailed earlier, but I
encourage you to test administration via SQL Developer because it makes the configuration easier and less
error prone than directly editing the configuration files.

ORDS Development via SQL Developer
So far you have configured ORDS to act as a regular web server, but you haven’t exploited any of the
interesting features in ORDS yet. Let’s change that and dive into creating RESTful web services. You have a
couple of options here. You can either REST enable the existing tables and views or create a new REST web
service and have complete control over how it behaves.

REST Enabling an Existing Table
First, let’s take a look at how easily you can REST enable an existing table using ORDS. In SQL Developer, you
need to connect to the REST Development Wizard (I’m not quite sure if I should call this a wizard or tool, but
I’ll stick with wizard for now). Simply select View ➤ Rest Data Services ➤ Development in SQL Developer, as
shown in Figure 2-7.

This GUI allows you to configure all the parameters that are available in the configuration files I
discussed earlier, but obviously in a more user-friendly way. One nice feature of using the GUI as opposed
to the command line or editing the configuration files directly is that you can test any configuration changes
to ensure the values are correct before uploading them to ORDS server. Figure 2-6 shows the Test Settings
menu option, as well as the Upload Settings option.

Figure 2-6. You can test settings and upload directly from SQL Developer.

Chapter 2 ■ OraCle reSt Data ServiCeS

57

Figure 2-8. REST Development Wizard via SQL Developer 4.1

Figure 2-7. Connecting to the Development Wizard via SQL Developer 4.1

Once you have connected, you should see a window similar to Figure 2-8.

This is where you can easily create new REST endpoints; however, for a moment, let’s try the simple
REST enablement of tables. You might want to do this if you just need basic functionality and quickly want
to allow your tables to be queried or modified via REST web service functionality (in practice, I find that I
usually want a bit more control or fine-grained access).

First select one of your existing SQL Developer connections and right-click the top-level connection;
you should now see a REST Services menu where you can choose to enable or disable at the schema level, as
shown in Figure 2-9.

Chapter 2 ■ OraCle reSt Data ServiCeS

58

Figure 2-9. Enabling REST services at the schema level

Chapter 2 ■ OraCle reSt Data ServiCeS

59

Figure 2-10. Enabling the REST service on the EMP table

You will be prompted to enter a schema alias (which allows you to hide the underlying schema name)
and whether you want to enable authorization. In this example, I will alias my schema to ae and choose that
authorization is not required. Once you have enabled REST services, you can right-click the table (or view)
and select Enable REST Service, as shown in Figure 2-10.

You will now see a dialog (in Figure 2-11) that enables you to give the object an alias, which is useful if
you want to hide the underlying object name, and to enable authorization if required.

Chapter 2 ■ OraCle reSt Data ServiCeS

60

Figure 2-11. Enabling REST services on the EMP table

One of the nice features here is that the final step of the wizard actually shows you the DDL being
executed, which in my example is as follows:

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN

 ORDS.ENABLE_OBJECT(p_enabled => TRUE,
 p_schema => 'TRAINING',
 p_object => 'EMP',
 p_object_type => 'TABLE',
 p_object_alias => 'emp',
 p_auto_rest_auth => FALSE);

 commit;

END;

So, you can easily enable objects for REST services using the ORDS.ENABLE_OBJECT procedure rather
than using SQL Developer. (You might, for example, want to script the enabling and disabling or perhaps
provide a front end to do this via an APEX application.)

Chapter 2 ■ OraCle reSt Data ServiCeS

61

Invoking the New REST Service
So, what did the previous section give you? Well, you should now be able to call your REST web service using
the following uniform resource identifier (URI), where /ae/ represents the alias we used at the schema level
and /emp/ represents the alias you used for the table:

http://aevm:8080/ords/ae/emp/

You can use any REST tool to perform a GET on this URI. For example, using the popular tool cURL, you
should see the following:

[jes@AEMBP ~]$ curl http://aevm:8080/ords/ae/emp/
{"items":[{"empno":7839,"ename":"KING","job":"PRESIDENT","mgr":null,"hiredate":"1981-11-
17T00:00:00Z","sal":5000,"comm":null,"deptno":10,"links":[{"rel":"self","href":
"http://aevm:8080/ords/ae/emp/7839"}]},{"empno":7698,"ename":"BLAKE","job":"MANAGER","mgr":7
839,"hiredate":"1981-04-30T23:00:00Z","sal":90,"comm":null,"deptno":30,"links":[{"rel":
"self","href":"http://aevm:8080/ords/ae/emp/7698"}]},{"empno":7782,"ename":"CLARK","job":
"MANAGER","mgr":7839,"hiredate":"1981-06-08T23:00:00Z","sal":2450,"comm":null,"deptno":10,
"links":[{"rel":"self","href":"http://aevm:8080/ords/ae/emp/7782"}]},{"empno":7566,"ename":
"JONES","job":"MANAGER","mgr":7839,"hiredate":"1981-04-01T23:00:00Z","sal":2975,"comm":null,
"deptno":20,"links":[{"rel":"self","href":"http://aevm:8080/ords/ae/emp/7566
<..rest of output omitted..>

You can see that the output of the curl command is the response from the web service, which is a
JSON representation of the EMP table. If you format the output, you can more easily see the way the data is
returned.

{
 "items": [
 {
 "empno": 7839,
 "ename": "KING",
 "job": "PRESIDENT",
 "mgr": null,
 "hiredate": "1981-11-17T00:00:00Z",
 "sal": 5000,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://aevm:8080/ords/ae/emp/7839"
 }
]
 },
 <...other records omitted..>
 {
 "empno": 7934,
 "ename": "MILLER",
 "job": "CLERK",
 "mgr": 7782,

http://aevm:8080/ords/ae/emp/
http://aevm:8080/ords/ae/emp/
http://aevm:8080/ords/ae/emp/7839
http://aevm:8080/ords/ae/emp/7698
http://aevm:8080/ords/ae/emp/7782
http://aevm:8080/ords/ae/emp/7566
http://aevm:8080/ords/ae/emp/7839

Chapter 2 ■ OraCle reSt Data ServiCeS

62

 "hiredate": "1982-01-23T00:00:00Z",
 "sal": 1300,
 "comm": null,
 "deptno": 10,
 "links": [
 {
 "rel": "self",
 "href": "http://aevm:8080/ords/ae/emp/7934"
 }
]
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 14,
 "links": [
 {
 "rel": "self",
 "href": "http://aevm:8080/ords/ae/emp/"
 },
 {
 "rel": "edit",
 "href": "http://aevm:8080/ords/ae/emp/"
 },
 {
 "rel": "describedby",
 "href": "http://aevm:8080/ords/ae/metadata-catalog/emp/"
 },
 {
 "rel": "first",
 "href": "http://aevm:8080/ords/ae/emp/"
 }
]
}

You get an items array containing each record as a JSON object together with some summary information
to tell you how many rows were returned (the count property) and some standard REST attributes to represent
links back to this object (which can in other cases be used to page through resultsets, and so on).

Now you may be thinking, “What use is this data in JSON format?” Well, the answer is that with either Oracle
12c or APEX 5 it has become much easier to parse and query JSON data than ever before. It’s not the purpose of
this chapter to go into detail on the new 12c or APEX 5 JSON functionality; however, using JSON is increasingly
common among front-end web development. If you ever use third-party jQuery plugins, for example, or D3
visualizations, then the data typically needs to be provided in JSON format. Using ORDS to provide a REST web
service in JSON format makes it incredibly simple to generate the data in the format you need.

Creating a REST Web Service
So, that was a simple REST-enabled table; let’s take a look at creating a REST web service manually. Recall
earlier you connected to the REST Development Wizard in SQL Developer. Now go back to that region and
right-click the Modules link, which should allow you to select New Module, as shown in Figure 2-12.

http://aevm:8080/ords/ae/emp/7934
http://aevm:8080/ords/ae/emp/
http://aevm:8080/ords/ae/emp/
http://aevm:8080/ords/ae/metadata-catalog/emp/
http://aevm:8080/ords/ae/emp/

Chapter 2 ■ OraCle reSt Data ServiCeS

63

Figure 2-12. Selecting to create a new module

You need to provide a module name as well as a URI prefix (note the trailing slash in the URI prefix), as
shown in Figure 2-13.

Figure 2-13. Specifying properties for a new module

Chapter 2 ■ OraCle reSt Data ServiCeS

64

I can’t tell you how many times I forgot to select the Publish check box, only to be frustrated when my
simple web service didn’t work. So if you find yours doesn’t work, edit your module and make sure you
actually enabled it by selecting the Publish check box. (This provides a simple mechanism to configure your
web services and to disable them without having to lose all the details.)

Now you need to provide the URI pattern that will be used to map to this web service. Notice in
Figure 2-14 it shows the full URL combining the paths I used in step 1 and step 2 of the wizard so that you
know how to call your web service after creation.

Figure 2-14. Specifying the URI pattern

You can also specify an entity tag on this step of the wizard. This allows you to optimize the web service
call with a version identifier so that you can avoid retrieving previously retrieved resources. If you are not
sure how to specify an ETag stick, with the default option of Secure Hash, it will be calculated for you.

The final step of the wizard is to specify the Method and Source Type settings, as shown in Figure 2-15,
as well as the format the data should be returned in and whether the URI requires secure access. (Please
consult the Oracle documentation on configuring secure access because there is a lot of detail that I cannot
cover in a single chapter.)

Chapter 2 ■ OraCle reSt Data ServiCeS

65

If you are unfamiliar with web services, there are the following method handlers:

•	 GET

•	 POST

•	 PUT

•	 DELETE

Think of the GET as analogous to a SQL INSERT statement, the POST as an INSERT statement, the PUT as a
MERGE statement, and the DELETE as a—well you guessed it—a DELETE statement. In reality, you could handle
these in any way you wanted, but that is a good general convention to think of these operations.

The Source Type field has the following options:

•	 Feed: This executes a SQL query and returns results in a JSON feed representation.

•	 Media Resource: This executes a SQL query and returns a binary representation with
an HTTP Content-Type header to specify the type of the returned content (useful for
downloading images or documents, and so on).

•	 PL/SQL: This executes an anonymous PL/SQL block with optional IN and IN/OUT
parameters that accept and return a JSON representation.

Figure 2-15. Specifying the method handler and source type

Chapter 2 ■ OraCle reSt Data ServiCeS

66

•	 Query: This executes a SQL query and returns the results in JSON or CSV.

•	 Collection Query: This is currently not documented in the help documentation.
Please consult the documentation because this might have changed following the
publication of this book.

•	 Collection Query Item: This is currently not documented in the help documentation.
Please consult the documentation because this might have changed following the
publication of this book.

In this example, you will choose the Query option (which together with PL/SQL Method is probably the
most common choice you’ll pick).

The UI allows you to define the query you will use with the familiar SQL Developer worksheet, as shown
in Figure 2-16.

Figure 2-16. Specifying the query for the web service

Notice you have referenced a parameter here using the :BIND notation, so you need to specify how the
parameter is passed, as shown in Figure 2-17.

Figure 2-17. Specifying parameters

Chapter 2 ■ OraCle reSt Data ServiCeS

67

In this example, you will pass the parameters as HTTP headers. This screen allows you to map from an
HTTP header variable to an internal parameter that you can use in the query or PL/SQL procedure, and so on.

Now you can test your new web service, but one important thing to remember is that whenever you create
or modify a module or resource template in SQL Developer, you need to validate and re-upload it to ORDS.

 ■ Tip if you have made changes to your resource template but it doesn’t seem to work, check that you
have uploaded it back to OrDS. i’ve lost count of the number of times i’ve changed something and seen the
web service performing in the “old way,” only to discover that i’d forgotten to upload the new definition back
to OrDS.

Now if you rerun the curl command, you should see the following:

[jes@AEMBP ~]$ curl http://aevm:8080/ords/training/ae/employees
{"items":[]}

Note the empty return result (in other words, an items array with zero elements). This is because you
added the following predicate to your query, but you have not passed a department to the web service:

where e.deptno = :DEPT

You can pass a department number in the HTTP header in cURL using the following command:

[jes@AEMBP ~]$ curl -H "DEPT:10" \ http://aevm:8080/ords/training/ae/employees
{
 "items": [
 {
 "deptno": 10,
 "empno": 7839,
 "ename": "KING",
 "hiredate": "1981-11-17T00:00:00Z",
 "job": "PRESIDENT",
 "sal": 5000
 },
 {
 "deptno": 10,
 "empno": 7782,
 "ename": "CLARK",
 "hiredate": "1981-06-08T23:00:00Z",
 "job": "MANAGER",
 "mgr": 7839,
 "sal": 2450
 },
 {
 "deptno": 10,
 "empno": 7934,
 "ename": "MILLER",
 "hiredate": "1982-01-23T00:00:00Z",

http://aevm:8080/ords/training/ae/employees
http://aevm:8080/ords/training/ae/employees

Chapter 2 ■ OraCle reSt Data ServiCeS

68

 "job": "CLERK",
 "mgr": 7782,
 "sal": 1300
 }
],
 "next": {
 "$ref": "http://aevm:8080/ords/training/ae/employees?page=1"
 }
}

You can see how easily you can now construct web services that can be called from any other systems to
either pull data from your database or perhaps create or modify data.

Let’s look at how you can create a web service that allows users to update the salary for an employee.
First create a new handler called employee with a POST method (with a Source Type setting of PL/SQL), as
shown in Figure 2-18.

Figure 2-18. Creating a new POST method to update an employee record

Next you need to write the PL/SQL code for the web service (in the SQL worksheet like you did before).

begin
 update emp e
 set e.sal = :SAL
 where e.empno = :EMPNO;
end;

http://aevm:8080/ords/training/ae/employees?page=1

Chapter 2 ■ OraCle reSt Data ServiCeS

69

Figure 2-19. Parameters for the EMPLOYEE web service

After uploading the changes back to ORDS, you can call the web service using cURL.

[jes@AEMBP ~]$ curl -X POST -H 'EMPNO:7839' -H 'SAL:30000'
http://aevm:8080/ords/training/ae/employee
[jes@AEMBP ~]$

You will notice you do not get any response (you could modify the PL/SQL routine to echo the updated
employee record). However, if you query the emp table in your database, you should see that the employee
with empno 7839 now has a salary of 30000.

If you wanted to retrieve an image of the employee from the database, then the Media Resource source
type is a good option to choose. In this case, you need to provide a SQL query that returns exactly one record,
and the query needs to return both the content_type and the content_body, similar to the following query:

select content_type,
 content_body
 from your_table
 where ...

Accessing Hidden Parameters
Depending on the type of URI you have defined, there may be some hidden parameters that are
automatically defined for you so that you can use them inside your logic. For example, in a PL/SQL handler,
you can access the BODY of the POSTed data using :body, so you could have a block of PL/SQL like this:

declare
 l_clob clob;
 l_src_offset number;
 l_dest_offset number;
 l_blob_csid number := dbms_lob.default_csid;
 v_lang_context number := dbms_lob.default_lang_ctx;
 l_warning number;
 l_amount number;
begin
 dbms_lob.createtemporary(l_clob, true);

 l_src_offset := 1;
 l_dest_offset := 1;
 l_amount := dbms_lob.getlength(:body);

Then you need to define the parameters, as shown in Figure 2-19.

http://aevm:8080/ords/training/ae/employee

Chapter 2 ■ OraCle reSt Data ServiCeS

70

 dbms_lob.converttoclob(l_clob,
 :body,
 l_amount,
 l_src_offset,
 l_dest_offset,
 l_blob_csid,
 v_lang_context,
 l_warning);

 insert into mytable(
 id,
 data
) values (
 mytable_seq.nextval,
 l_clob
);

end;

This block would convert the body of the POSTed data from a blob to a clob and store it in a table.
Note that the purpose of this code is to show how you would reference the body rather than show a full
end-to-end demonstration.

Accessing ORDS Web Services via APEX
Although this chapter is primarily about installing and configuring ORDS, I thought it would be useful
to show just how easily you can access your ORDS web services from an APEX application. First, though,
why would you want to do that? Well, recall that earlier I mentioned that most front-end web development
requires that you will run into using JSON data at one point or another, typically if you are trying to integrate
a jQuery plugin or perhaps a third-party visualization library such as D3.

Without getting into the specifics of an actual jQuery plugin, let’s imagine two use cases.

•	 From APEX you want to access an ORDS web service via PL/SQL.

•	 From APEX you want to access an ORDS web service via jQuery.

In both cases the web service could be defined in the local ORDS server (that is, the one you’re
accessing APEX via) or in a remote web service.

In the PL/SQL method, you can use the APEX_WEB_SERVICE API and call the MAKE_REST_REQUEST
procedure like this:

declare
 l_clob CLOB;
begin
 l_clob := apex_web_service.make_rest_request(
 p_url => 'http://aevm:8080/ords/training/ae/employees',
 p_http_method => 'GET');

 sys.htp.p(l_clob);
end;

http://aevm:8080/ords/training/ae/employees

Chapter 2 ■ OraCle reSt Data ServiCeS

71

Here you use the sys.htp.p command to output the response, but you could assign it to a variable,
capture it in a table, and so on. If you wanted to pass some parameters to the web service, you could pass
those via the p_parm_name and p_parm_value parameters. Here’s an example:

declare
 l_clob CLOB;
begin
 l_clob := apex_web_service.make_rest_request(
 p_url => 'http://aevm:8080/ords/training/ae/employees',
 p_http_method => 'GET',
 p_parm_name => apex_util.string_to_table('param1:param2'),
 p_parm_value => apex_util.string_to_table('value1:value2')););

 sys.htp.p(l_clob);
end;

As you can see, it’s pretty simple to call a web service via PL/SQL from APEX. If you want to do it via
jQuery, there are a few different ways to do it, but typically I tend to use the $.ajax method. Here’s an
example:

$.ajax({
 method: "GET",
 url: "/ords/training/ae/employees"
})
 .done(function(data) {
 console.log(data.items.count);
 for (var i = 0; i < data.items.length; i++) {
 emp = data.items[i];
 console.log(emp.ename);
 }
 });

This will call the /ords/training/ae/employees URI on the same web server you are accessing APEX.
When the web service response is returned, then you loop around the items (recall the array of items you
saw earlier) and output the employee name.

Now with a web service and a few lines of code, your APEX application is able to query, create, and
modify data easily in another Oracle Database using Oracle Rest Data Services as the interface.

There are so many more features available in ORDS (I’ve barely scratched the surface), I could spend an
entire book on it; however, I have only a chapter. I do encourage you to look at the documentation that goes
into far greater detail than I can here, as well as touching on some of the more specific features (for example,
JSON query filters).

Summary
ORDS represents a new step in Oracle’s evolution of the listener used with APEX. ORDS is more powerful
than previous iterations and is more generally useful beyond merely for Application Express.

You learned in this chapter how to download ORDS and install it and then to configure it for your needs.
You were also introduced to the administration interface that is now accessible via SQL Developer. Finally,
you saw how to REST enable existing tables and how to create REST endpoints and service requests made to
them.

http://aevm:8080/ords/training/ae/employees

73

Chapter 3

Oracle APEX 5.0 Charts Inside Out

by Dimitri Gielis
This chapter will cover the charting possibilities in Oracle Application Express 5.0 and explain in great detail
how APEX charts work behind the scenes.

In my experience, a lot of people who have been developing in APEX for years don’t use charts much
or haven’t really invested time in reviewing all the options APEX provides. This is why, although this is an
expert book, I will start this chapter by explaining what APEX charts are, how they work, and what types of
charts you can create with the built-in functionality of APEX. In the second half of the chapter, I will go up a
level and discuss how to produce more advanced charts.

The release of APEX 5.0 didn’t bring a lot of changes in charting compared to APEX 4.2 (but it did
compared to APEX 4.0). The built-in charts in APEX still rely on the AnyChart 6 engine.

By understanding the different components of a chart and how APEX handles them, you’ll be able to
visually display your data in almost any way you like. From combined charts to charts with thresholds to
dashboards, this chapter will explain it all step-by-step. You’ll also learn how to make charts more interactive
and combine them with other elements on the page; for example, when you change your chart, a report on
the same page changes automatically based on the change in your chart, and the other way around.

Finally, you will look both at the future of charts in APEX and at how you can already benefit from the
latest and greatest technologies in the charting world. Charting in general has evolved over time, with more
new charting engines becoming available; D3 charts are one of the more popular ones. Integrating these
chart engines into APEX is surprisingly simple. There are even some APEX plugins available that do the
integration for you. You’ll find them in the Sample Charts packaged application.

APEX 5.0 includes two kinds of charts: HTML5 charts and Flash charts. The funny thing is that in APEX 4.0,
HTML charts were limited, so we focused on Flash charts. Today it’s the other way around: Flash charts are
basically dead because the browser needs to have an up-to-date plugin to be able to show Flash content. If
the plugin is outdated, many browsers will block the Flash content. Flash eats resources too and doesn’t have
the greatest performance. Making Flash content responsive isn’t as straightforward, and Flash doesn’t even
run on many tablets (such as the iPad). When you create a Flash chart in APEX but run the chart on a device
that doesn’t have Flash installed, APEX will automatically show the chart in HTML5. As I don’t really see any
advantage to creating Flash charts, I decided to not spend too much time on Flash charts in this chapter.

There are different types of charts natively available in APEX, but you can categorize them into three big
groups: charts, Gantts, and maps. This chapter will discuss charts in great detail and will combine them with
other components such as reports later. Gantts and maps are not covered because they are still built using
the Flash technology.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

74

HTML5 Charts
Usually when you wanted to do serious charting in APEX 4.x, you used Flash charts. Flash charts offered
many chart types, different animations, and different ways to adapt the look and feel. The AnyChart engine
was used to render the charts, and initially only Flash charts were supported. Because the industry doesn’t
like Flash anymore (because of the reasons highlighted previously), AnyChart had to follow, so it made
its charting engine available in HTML5 too. APEX 4.2 included the new AnyChart engine and introduced
HTML5 charts at that time. The wizards in APEX stayed the same; you could switch your Flash chart to an
HTML5 chart and AnyChart would take care of the rest. APEX 5.0 continues on this path; there’s one chart
wizard that offers you the different options for the chart type, and depending the rendering type, either Flash
or HTML5, the chart is rendered in that technology.

Background
Flash charts were introduced with the release of APEX 3.0 in 2007. In addition to HTML and SVG charts,
you could now create Flash-based charts. The Oracle APEX development team also made it clear that
Flash-based charts would become the preferred charting engine and SVG wouldn’t be developed further.
The APEX development team didn’t build the Flash charts from scratch and instead opted for a third-party
solution. Oracle made an agreement with AnyChart (www.anychart.com) to license its Flash charts. What
Oracle still needed to do was to create native Oracle APEX wizards to include these charts easily in an APEX
project.

I believe Oracle made a great decision here in not trying to build a Flash chart engine because charting
is a whole area in itself and evolves quickly. There were many charting engines around, but going with
AnyChart was not a bad choice because the company was committed to evolving its product along with the
rest of the charting world.

That AnyChart wouldn’t stand still proved to be true over time. In Oracle APEX 3.0, version 3.3 of the
AnyChart product was included, but a year later AnyChart 4 was already out, and soon after that, so was
version 5. With the patch releases of APEX 3.x, Oracle included newer versions of AnyChart, but it was only
in the interactive reports that AnyChart 4 and AnyChart 5 were used.

With the release of APEX 4.0, AnyChart 5 was completely supported in the wizards. In fact, all new
charts you created would automatically use the AnyChart 5 engine. As Oracle wanted APEX to be compatible
with older versions and needed to support existing applications using Flash charts, AnyChart 3.3 was also
included in APEX 4.0. So if you ran your APEX 3.x application in APEX 4.0, it would still show AnyChart 3.3
charts. Also note that the version of AnyChart 5 was a special version compiled for Oracle and didn’t include
all the available chart types that the regular AnyChart 5 supported.

Over time, AnyChart developed other charting components. In addition to the AnyChart charting
solution, it introduced AnyGantt, AnyMap, and AnyStock. In APEX 4.0, Oracle decided to also license
AnyGantt Gantt charts and AnyMap interactive maps. The Oracle APEX development team built wizards
around these engines, so you could create Gantt and Map types declaratively too.

With the release of APEX 4.2, AnyChart 6 was introduced, which replaced AnyChart 5. AnyChart 6 was
backward compatible, and the main improvement of this version was the support of HTML5 charts. The
same engine could render either in Flash charts or in HTML5 charts. The APEX wizards were changed, so
more options became available (based on the AnyChart 6 engine), and you could just flip a switch to show
your chart in HTML5 instead of Flash.

APEX 5.0 didn’t introduce many new features compared to APEX 4.2 for charts; the latest release
of AnyChart 6 and AnyGantt 4 were included, and some wizards were updated to make things easier to
understand (especially with the Page Designer).

AnyChart already released version 7, but this version is not included in APEX because AnyChart hasn’t
made it backward compatible. AnyChart 7 is also a completely new code base, which means the APEX
development team would need to spend a lot of effort in updating its code base to generate the correct
settings for the chart.

http://www.anychart.com/

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

75

Table 3-1 gives an overview of the versions of APEX and the evolution of the chart engines.

Table 3-1. Versions of APEX and the Evolution of the Chart

APEX < 3.0 APEX 3.0 APEX 3.2 APEX 4.0 APEX 4.2 APEX 5.0

HTML/SVG

AnyChart 3 AnyChart 4 AnyChart 5 AnyChart 6 AnyChart 6

Flash Flash Flash Flash/HTML5 Flash/HTML5

Chart plugins:
Flot Charts, and so on

Chart plugins: D3JS, Flot
Charts, and so on

Creating a Chart
Let’s say you want to create a page with a chart in your APEX application.

Hit the Create Page button in Application Builder and select as the page type Chart (Figure 3-1).

Figure 3-1. Select Chart as the page type

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

76

On the next page of the wizard, select HTML5 Chart for Chart Rendering and select the chart type you
want to use (Figure 3-2).

Figure 3-2. Select a chart type

The Create Chart Wizard categorizes the charts nicely. You first select the main chart type and then get
the choice to select a subtype if that is available. For example, the Line chart type doesn’t have any subtypes,
whereas the Column chart type has seven subtypes (Figure 3-3).

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

77

Clicking the subtype brings you to the Page and Region Attributes page, which is not different from any
other region screen in APEX (Figure 3-4). By default the region template is Standard, but you can choose any
you like. Now give the region a title and click Next.

Figure 3-3. Column subcharts

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

78

On the next screen, you can specify the Navigation Menu setting; just go with the default.
The next screen defines the look and feel of the chart and which options you want to include (Figure 3-5).

You can go with the defaults during creation and adapt them later; or, if you already know exactly what you
want, you can make the changes immediately. For example, if you want to include a legend, select the position
where you’d like to see it (Left, Right, Top, Bottom, Float).

Figure 3-4. Create Chart Wizard (Page and Region Attributes page)

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

79

Previously, you defined how the chart will look, but you didn’t define the source of the chart yet. What
data does the chart need to show? You’ll need to add a SQL query that will be used to feed the chart with
data (Figure 3-6). The SQL query syntax varies depending on the chart type you select.

Figure 3-5. Define the chart attributes (if the screen is big, scroll down for more features, until you see the
bottom part)

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

80

Figure 3-6. Define the SQL query of the chart

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

81

Most of the charts have a query like this:

select link, label, value
from table
order by label

where

•	 link is a URL.

•	 label is the text that displays in the chart.

•	 value is the numeric column that defines the size of the chart type.

As I said, the query of the chart depends on the type of chart you selected. At the bottom of the page
you’ll find some examples for the chart type you selected. This is handy to see the format of the SELECT
statement. Alternatively, you can use the Build Query button to create the SQL statement with a wizard. I’ll
come back to the different select statements for the different chart types in the section “Understanding the
Chart Attributes.”

The Result
Once the page with the chart region is created, it will appear on the page with a chart icon in the Page
Designer (Figure 3-7). Clicking the attributes shows the settings of the chart; clicking Series 1 shows the
series, which contains the SQL statement to provide the chart with data.

Figure 3-7. Chart region selected in the Page Designer

If you’re using the Component View to develop, you will see the result in Figure 3-8.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

82

Before you adapt the chart and look at what is happening behind the scenes, just run the page to see
what it looks like (Figure 3-9).

Figure 3-9. The chart displayed on the page

Figure 3-8. Chart region in Component View

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

83

Page Designer vs. Component View
From APEX 5 onward, the Tree View of APEX 4.x is replaced by the Page Designer. The Page Designer allows
you to access the different components (and make changes) a lot more quickly. Many features of the Tree
View are incorporated in the tree on the left in the Page Designer. It takes a bit of time to get used to the Page
Designer, and a large monitor is recommended, but I definitely recommend giving it a try.

The Component View has existed the longest, and some people still prefer that view to develop. When
you’re new to developing charts, the wizard kind of interface of the Component View might be a bit easier.
When adding a chart region, you’ll see the same wizard as when you add a new page with a chart (as shown
previously). The wizard also contains examples for the queries, something that the Page Designer lacks
when you add a chart region to an existing page.

With the Page Designer, you drag a chart region on your page and then customize the attributes. When
you’re more experienced with charts, the Page Designer allows you to add multiple charts more quickly, and
adapting the attributes of the charts will be faster. All functionalities for the charts are the same regardless of
which view you develop in, but some labels differ or are grouped a bit differently.

In the first half of this chapter, I will explain the different possibilities of the charts. I’ll use the
Component View to show the screenshots because that is a bit easier than with the Page Designer. When I
create more advanced charts, I’ll use the Page Designer.

Understanding the Chart Region
When editing the chart region (click the region name), you might be surprised at first because there is no
Region Source setting (unlike with a report). You find the chart settings in the Chart Attributes section and
the data part in the Series section. Behind the scenes, APEX will generate some HTML objects to render the
chart (which is actually the region source), but because you can’t change this rendering, I won’t go much
deeper into this.

Understanding the Chart Attributes
The previous section covered the region definition, but more importantly, if you want to change the
appearance and behavior of a chart, you can do this via the chart attributes (just below the region name in
the tree or the Chart Attributes tab in the Component View).

Depending on the chart type chosen, you have different sections in the chart attributes. As highlighted
previously, the Component View (Figure 3-10) displays the options a bit differently than the Page Designer
(Figure 3-11).

Figure 3-10. The different sections of the chart attributes (for a bar chart) in the Component View

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

84

Again, to discuss the different settings, I’ll use the Component View screenshots, but all settings are also
available in the Page Designer.

Figure 3-11. The different sections of the chart attributes (for a bar chart) in the Page Designer

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

85

The Chart Settings options allow you to change the chart type, the title, the size of the chart, and the
look and feel. Figure 3-12 shows the options, which you can set as follows:

•	 Chart Rendering: Flash or HTML5 Chart. Unless the chart type is not available as
HTML5, I recommend going with HTML5 so that on every device the look and feel is
the same.

 ■ Note If Flash is selected but the device doesn’t support Flash, it will be rendered as htMl5.

•	 Chart Title: Set a title on top of the chart.

•	 Chart Type: Change between chart types in a given family. For example, you can
change between 3D Stacked Column, 3D Bar Chart, 3D Stacked Bar Chart, and so
forth.

•	 Chart Width and Height: Specify the size of the region in which the chart is rendered
(in pixels). Leave this blank for 100 percent.

•	 Chart Margin: Specify the amount of blank space surrounding the chart. Values are
in pixels (Top, Bottom, Left, Right).

•	 Color Scheme: Select one of the built-in color schemes for your chart. Single-series
charts use one color for each data point. Multiple-series charts use one color for each
series. Look 7 will use the AnyChart default palette of colors, applying a different
color to each data point in a single series. Select the Custom option to define your
own color scheme.

•	 Color Level: Series or Point: Series will use one color per series (for example, all bars
in the same series will use blue), while Point will use a different color for every point
(for example, all bars will use a different color regardless of the series they are in).
Look 7 will always use different colors for all points.

•	 Hatch Pattern: Toggle hatch patterns off and on. In a multiseries bar chart, for
example, it will show one series as bars with lines in them, another series as bars
with stripes, and so forth. You can change explicit control of which hatch pattern is
used through adapting the XML code.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

86

The Chart Series options hold the select queries that are used to feed the chart with data. You can have
one or more series defined. To edit an existing series, you click the Edit icon, while to add a new series, you
click the Add Series button (Figure 3-13). In the next section, “Adding Multiple Series and Combined Charts,”
I’ll go into more detail about the series.

Figure 3-12. The main settings of the chart in Chart Settings

Figure 3-13. One or more series per chart in the Chart Series settings

In the Display Settings area, you define the main look and feel of the chart and the different features you
want to enable. Figure 3-14 shows the following settings that you can control:

•	 Animation controls the initial appearance of this chart. There are 30 different types
of animation available, such as Side from Left, Scale Y Top, and so on (this option is
available only when Flash Chart is selected for Chart Rendering).

•	 Style defines the visual appearance of the data element, which is most apparent in
2D bar and column charts. There are four styles available in APEX 5.0: Default, Aqua
Dark, Aqua Light, and Silver.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

87

•	 Background Type has three choices. Transparent makes the chart background
transparent. Solid Color uses the color specified in Background Color 1 for the
background of the chart. Gradient uses Background Color 1 and 2 and fades between
them depending the gradient angle specified lower down.

•	 Include on Chart allows you to select the options you want to display on your chart.
Depending on the chart type, some options might not be available. The following are
the options:

•	 Hints: Select this box if you want to see the label and value when you hover your
cursor over a data point on the chart.

•	 Values: Select this box if you want to show the values next to the data points on
the chart.

•	 Labels: Select this box if you want to see the labels along the chart axis.

•	 Group by Series: Select this box if you want to see your series split. Instead of
seeing your data grouped by column (Allen: SAL, COMM – Blake: SAL, COMM
– Clark: SAL, COMM), you will see it grouped by series first and then by column
(SAL: Allen, Blake, Clark... – COMM: Allen, Blake, Clark...).

•	 Major Ticks: Select this box if you want to see the big tick marks in a gauge or
dial chart.

•	 Minor Ticks: Select this box if you want to see the small tick marks between the
big tick marks on your gauge (or dial) chart.

•	 Tick Labels: Select this box if you want to see the values corresponding to the
tick marks.

•	 Multiple Y-Axes: Select the box if you want to see an extra y-axis positioned
opposite to the existing y-axis on the chart. On a multiseries chart, the extra
y-axis will be associated with the second series of the chart. If you customize the
XML, you get even more choices. If you need more control than APEX gives you,
check the AnyChart documentation for the XML you can use.

•	 Invert X-Axis Scale: Select this box if you want the sorting to be reversed. For
example, Adams – Ward becomes Ward – Adams.

•	 Invert Y-Axis Scale: Select this box if you want the y-axis scale in an inverted
mode. For example, selecting the box will cause a bar chart to go down instead
of up.

•	 Invert Scale: Select this box if you want the numbers to start from high to low on
a Gauge (or Dial) chart.

•	 Overlay Y-Axis: Select this box if you want bars shown one over another with
multiple series (and same label). Depending on whether you use 2D or 3D
charts, the behavior is different. You can experiment to see what looks best in
your case.

•	 Sorted Overlay Y-Axis: Select this box if you want series sorted and displayed
with lower values in front of higher values.

•	 Smart Auto Calculation Mode: Select this box if you want the y-axis to scale
automatically based on the number of decimal digits and avoid duplicate items
appearing on the axis scale.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

88

•	 Show Scrollbars controls whether a scrollbar will be displayed on your chart.
You can show a scrollbar on the x-axis, on the y-axis, or on both (available only
in Flash rendering).

•	 Show Grid controls whether a value grid will be displayed on your chart. You
can show the grid for the x-axis, for the y-axis, or for both.

•	 Gradient Angle defines the angle for the background type of Gradient. A value of
0 degrees results in a horizontal gradient with the first background color on the
left and the second background color on the right. A value of 90 degrees results
in a vertical gradient with the first background color at the top and the second
background color at the bottom.

•	 X-Axis Label, Y-Axis Label, and Values Rotation define the amount of rotation,
in degrees, for the chart labels. Positive values indicate clockwise rotation.
Negative values indicate counterclockwise rotation. The Font Face setting for
labels does not apply to rotated text. If the Y Axis Title setting contains non-
ASCII characters, make sure you don’t have a value specified in the Y-Axis Label
Rotation setting.

Figure 3-14. Define the main look and feel of the chart in display settings

In the Axes Settings area shown in Figure 3-15, you define the title of the axis, the interval, and the
format of the values.

•	 X Axis Title and Y Axis Title are used to describe the labels along the horizontal and
vertical axes of your chart.

•	 X Axis Min/Max and Y-Axis Min/Max define the smallest and largest data values you
want to appear on the corresponding axis. You see these items depending on the
chart type, such as a column chart.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

89

•	 X Axis Prefix and Y Axis Prefix define text to display before values on the
corresponding axes. This text prefix will appear before grid labels, value labels, and
hint text. For example, you can enter a currency symbol as a prefix.

•	 X Axis Postfix and Y Axis Postfix define text to display after values on the
corresponding axes. This text postfix will appear after grid labels, value labels, and
hint text. For example, you can enter a percentage symbol as a postfix.

•	 X-Axis Minor/Major Interval and Y-Axis Minor/Major Interval settings control the
minor and major scale steps used for the axis labels, the tick marks, and the grid
on your chart. If these are not set, the steps are calculated automatically. Values
entered must be positive. These settings will be used only when Show Grid in Display
Settings is set.

•	 Decimal Places defines the number of decimal places to be used in the y-axis values.

 ■ Note all these settings are static, so you can’t use page items to dynamically set them. however, if you
want to set, for example, the Y axis Min value dynamically depending the data you return, you can set Custom
XMl to Yes on the Chart XMl page and include your substitution strings there (for example, &PAGE_ITEM).

Figure 3-15. The Axes Settings area

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

90

In the Legend Settings area (see Figure 3-16) you specify whether you want a legend and where it
should appear and what the look and feel of it is.

•	 Show Legend specifies whether a legend is displayed on your chart. Possible
positions are Left, Right, Top, Bottom, and Float.

•	 The Legend Title is the title of the Legend. If no Legend Title is entered, the title will
be empty.

•	 Legend Element Layout defines whether the items of the legend will appear next to
each other or under each other. The Legend Element Layout is applicable only when
Show Legend is set to Top or Bottom.

•	 Show Legend Background specifies whether the legend background (white) is visible
on your chart or whether the legend is transparent.

Figure 3-16. Define where the legend should appear

In the Font Settings area, you define the font face, font size, and font color of the different labels, values,
hints, legend, and titles (Figure 3-17).

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

91

The Chart XML page shows the XML that APEX will send to the AnyChart chart engine (more on that in
the section “Behind the Scenes”). See Figure 3-18.

Figure 3-17. The font settings of the different text on the chart

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

92

Based on the previous settings, APEX will generate XML, so any change you make in the chart settings
will be translated into some XML. At any time you can overwrite the generated XML of APEX by setting the
Use Custom XML setting to Yes. If you select to use custom XML, attributes under Display Settings, Axes
Settings, Legend Settings, Font Settings, and Chart Title are not used and are made hidden. If you set Use
Custom XML back to No, all the settings will appear again as they were last saved by the APEX screen, and
your customizations in the XML itself will be lost.

For a complete reference of the XML that can be used, see the AnyChart web site at www.anychart.com/
products/anychart/docs/xmlReference/index.html.

In the Refresh section, you can set Asynchronous Update to Yes to give the chart new data at an interval you
specify (Figure 3-19). This is useful if you always have the same page open with a dashboard and want to see the
latest data updated every few seconds without having to reload the page. You can enter the interval in seconds
between chart updates, but updates intervals less than two seconds are discouraged because that would mean
APEX has to constantly retrieve the data. The maximum value for this setting is 99999, which is just over a day.

Figure 3-18. The Chart XML area

Figure 3-19. The Asynchronous Update setting

You can now apply what you know and change some settings of the chart to include a pattern on the
bars (hatch), get a smoother look (Aqua style), have a gradient background, have different colors and rotate
the labels, play with the axes, and add a legend.

•	 Color Scheme: Look 7

•	 Hatch Pattern: Yes

•	 Style: Aqua Light

•	 Background Type: Gradient with Background colors: #CCCCFF and #CCFFCC

•	 Include on Chart: Hints, Values, Labels, Multiple Y-Axes, Invert Y-Axis Scale

•	 Show Grid = Y-Axis

•	 Gradient Angle: 0 Degrees

•	 X-Axis Label Rotation: 45 Degrees

•	 Values Rotation: 90 Degrees

http://www.anychart.com/products/anychart/docs/xmlReference/index.html
http://www.anychart.com/products/anychart/docs/xmlReference/index.html

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

93

•	 Y Axis: Min: 200

•	 Y Axis: Prefix: $

•	 Y-Axis Major Interval: 400

•	 Y-Axis Minor Interval: 200

•	 Decimal Places: 2

•	 Show Legend: Left

•	 Legend Title: Legend

•	 Legend Element Layout: Vertical

•	 Show Legend Background: Selected

•	 Font Settings: Different colors starting with #000011 and ending with #000088 such as
X Axis Labels Color = #000011, Y-Axis Labels Font Color = #000022, and so on

Figure 3-20 shows the result.

Figure 3-20. An example of a modified chart

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

94

Figure 3-21. Chart Series page

Adding Multiple Series and Combined Charts
In Figure 3-13 in the previous section, you can see Series in the Chart Attributes. If you create a new series or
edit an existing series, a new page will open called Chart Series (Figure 3-21).

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

95

The Series Attributes section lets you define a name, type, and sequence for the series of that chart
type. In Series Name, you enter a name for this series. For scatter marker and range charts, the Series Name
setting is used to identify the series in hint and label text. Depending on the chart type chosen, you may
able to change the series types. There are three options: Bar, Line, and Marker. For example, if you want to
combine a line chart with a bar chart, you could have a main chart type setting of 2D Line and then define
the Series Type setting for one of the chart series to be Bar. I will cover combined charts in the next section.
Lastly, the sequence determines the order of evaluation.

The next section in Chart Series holds the series query. The Query Source Type setting can be of type
SQL Query or Function Returning SQL Query. Most of the time Query Source Type will be SQL Query, but if
you need to run a different query depending some values on the page, the Function Returning SQL Query
type will probably be the one to pick in that case.

In SQL, you enter the SQL statement or function that will return the data to display this chart’s series.
Depending on the chart type you choose, a different query may be necessary. If you are unsure about
which columns go first and which ones the chart type expects in the query, it’s good to use the Build Query
button because that will go through a wizard to define the query (Figure 3-22). The Build Query button is
not available in the Page Designer view. But with the Page Designer, it’s a lot quicker to add multiple series.
Right-click Series in the left tree and click the Create Series link.

Figure 3-22. The Build Query Wizard

Once the query is defined, you can still adapt it to your needs.
For more experienced developers, it might be useful to create the SQL statement first in SQL Developer or a

similar application. That allows you to see whether the query is returning the data you want and, in the case of a
really complex statement, create a view or function first and base the SQL statement on that view or function.

The SQL query syntax for the various chart types is as follows:

•	 Most of the charts have a SQL query with the following syntax:

select link, label, value
from ...

•	 In one query you can also define multiple values that will all be another series
(also called multiple series syntax).

select link, label, series_1_value [, series_2_value [, ...]]
from ...

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

96

•	 Dial charts have this syntax:

select value, maximum_value [,low_value [,high_value]]
from ...

•	 Range charts have this syntax:

select link, label, low_value, high_value
from ...

•	 Scatter charts have this syntax:

select link, label, x_value, y_value
from ...

•	 Candlestick charts have this syntax:

select link, label, open, low, high, close
from ...

Maximum Rows contains the maximum number of rows you want to use to display the chart. For pie
charts, you are restricted to displaying fewer than 50 rows; for the other charts, the number is unlimited, but
the more rows you have, the longer it takes to render the chart.

Furthermore, in the series page, you have the possibility to specify a message when there’s no data
found; you can make series conditional and specify which authorization scheme they belong to. Finally,
there’s the possibility to add a build option to it.

Figure 3-23 shows an example of a multiple series chart that combines lines, markers, and bars.
The chart shows the salary and commission for the employee as a column (bar), the minimum salary
across employees as a marker, and a line with the average salary. It also has a legend to show what color
corresponds with what value.

Figure 3-23. Chart with multiple series

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

97

Figure 3-24. Different Chart Series settings

Looking a bit closer at the series that are defined (Figure 3-24), the first series calculates the minimum
salary, has a series type of Marker, and contains a SQL query. The second series calculates the average salary
and has a series type of Line, and its Query Source Type setting is Function Returning SQL Query. Editing the
series shows the content a bit better (Figure 3-25). The last series contains the salary and commission and
uses the multiple series syntax, so one query actually contains two series: salary and commission. This series
is of type Bar.

Figure 3-25. Query Source Type setting of Function Returning SQL Query

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

98

 ■ Caution It is my recommendation that you suppress nulls because some chart types may show up
differently than expected. For example, when you don’t suppress null values in a line chart, the line will be
interrupted where null values are, and empty spaces will appear in the line. If you put NVL around the column,
in the case of a null value, it will draw the line correctly, but you will see the null values as the value 0. putting a
WHERE clause in the sQl statement to suppress the nulls, for example where comm is not null, will not show any
value for that person.

Different Chart Types
APEX ships with many chart types. To use them in your application, you just select the chart type you like
from the Create Chart Wizard. Oracle licenses these chart types from AnyChart, so you can use them freely
anywhere in APEX. The following main and subchart types are natively available in APEX 5.0 by using
the wizard:

•	 Column

•	 3D Column

•	 3D Stacked Column

•	 3D Stacked Column (Percent)

•	 2D Column

•	 2D Range Column

•	 2D Stacked Column

•	 2D Stacked Column (Percent)

•	 Horizontal Bar

•	 3D Bar Chart

•	 3D Stacked Bar Chart

•	 3D Stacked Bar Chart (Percent)

•	 2D Bar Chart

•	 2D Range Bar Chart

•	 2D Stacked Bar Chart

•	 2D Stacked Bar Chart (Percent)

•	 Pie and Doughnut

•	 3D Pie

•	 2D Pie

•	 2D Doughnut

•	 Scatter Marker

•	 Line

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

99

Figure 3-26. Comparison of the out-of-the-box charts in APEX with all available AnyChart charts

•	 Candlestick

•	 Gauges

•	 Dial

•	 Dial (Percent)

•	 Gantt (only Flash)

•	 Project Gantt

•	 Resource Gantt

If there is a chart type you want to use but you don’t see it in the previous list (for example, a bubble
chart), then you can get a separate license from AnyChart. Figure 3-26 gives an overview of the chart types
that come with APEX (most of them are available in 2D and 3D) on the left side and shows the extra
chart types that are available with the full version of AnyChart (version 6.2) on the right side.
To ease the integration of the other chart types, APEX R&D created an AnyChart plugin that you find at
https://www.apexrnd.be.

AnyChart also built an entire new engine, AnyChart 7.x, which is based entirely on JavaScript and
HTML5, but at the time of this writing, it’s not backward compatible, so APEX would need to recode a lot to
be able to support the new version. It would also mean if people used Flash charts before, they would not
work anymore, so for now in APEX 5.0 the latest version of AnyChart 6 is included.

Another alternative for other types of charts is to use other plugins. Later in this chapter you’ll find some
examples such as D3 chart plugins.

https://www.apexrnd.be/

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

100

Behind the Scenes
To understand what’s happening behind the scenes, you need to know how AnyChart works. The easiest
way to understand AnyChart is to go to its web site and download a trial version. This is not related to APEX,
but it shows the different components it needs to get a chart on an HTML page. It involves including the
AnyChart JavaScript files, creating a div on your HTML page, and creating a small piece of JavaScript to
create a new AnyChart chart and tell the engine to render the chart in the div.

This is exactly what the APEX engine is doing for you behind the scenes. The first thing it does is include
the AnyChart libraries. AnyChart 6.2 comes with two libraries, AnyChart.js and AnyChartHTML5.js, which
in APEX are located in /i/flashchart/anychart_6/js/. The next thing APEX is doing for you is creating a
container for the chart, the div element. In APEX you’ll find a div element called R<number>_chart. Finally,
it includes some JavaScript to define the chart, the settings, and the data. APEX created a widget that you can
find in /i/libraries/apex/minified/widget.chart.min.js (Figure 3-27).

Figure 3-27. The chart widget of APEX

When you call a page with a chart, the page is rendered, and the JavaScript to create the chart is
executed. APEX gets data from the database (where the definition is of the chart), formats it in a way
AnyChart understands it, and passes it to the AnyChart object, which in turn renders the chart.

More graphically presented, the flow is as shown in Figure 3-28.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

101

Figure 3-28. Graphical representation of the flow to generate the chart

Figure 3-29. The HTML and JavaScript for the chart

The following are the steps shown in Figure 3-28:

 1. The user requests a page with a chart, so the browser sends a request to APEX to
retrieve the page.

 2. APEX handles the request and sends back the HTML for that page, which
includes a container div (region) and some JavaScript to create the chart.

 3. The browser shows the HTML page and creates the chart object that will make a
request back to APEX to get the data and settings for the chart.

 4. APEX retrieves the request and sends back the XML for the data of the chart.

Looking at a real case when a user requests a page that holds a chart, the following happens:

 5. The user clicks a tab that does a call with this URL: http://webserver/pls/
apex/f?p=71450:3:103001531406712:::::.

 6. APEX searches for Application 71450, Page 3 (and the session is
103001531406712). If you want more information about an Oracle APEX URL,
click the Help in Oracle APEX and go to Home ➤ Application Builder Concepts ➤
Understanding URL Syntax. APEX will translate the source into HTML and some
JavaScript to execute and then send it back to the browser (Figure 3-29).

 7. The page is shown in the browser, and the AnyChart object will request the data
it needs to display. While it’s getting the data, you will see a loading animation
(Figure 3-30).

http://webserver/pls/apex/f?p=71450:3:103001531406712
http://webserver/pls/apex/f?p=71450:3:103001531406712

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

102

 8. To verify the request, it’s best to use the developer tools of your browser or a
developer extension for the browser such as Firebug for Firefox. When clicking
the Network tab, you’ll see the requests that are done by the browser.

The JavaScript will do an AJAX request (Figure 3-31). It will call the URL
wwv_flow.show (as a POST request) and pass these parameters:

•	 p_request: APXWGT (the APEX widget)

•	 p_flow_id: 71450 (the application ID)

•	 p_flow_step_id: 3 (the page ID)

•	 p_instance: 8477258330126 (the session ID)

•	 x01: 1549802992185414621 (the region ID)

•	 p_widget_name: chart5 (so the APEX widget knows it’s about an HTML5 chart)

Figure 3-30. Rendered HTML and call for data of the chart object

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

103

Figure 3-31. AJAX request seen in the Developer Tools of the browser

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

104

Figure 3-32. The response of the AJAX call

The AJAX call will respond with the XML that defines the chart and that the AnyChart object
understands. The XML it returns (Figure 3-32) is based on the settings you defined in the Chart Attributes
area and the series you created (Figure 3-33 and Figure 3-34). Figure 3-35 shows the final chart.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

105

Figure 3-33. First part of chart attributes

Figure 3-34. Last part of chart attributes, which shows the XML APEX will use

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

106

All the tokens (#...#) you see in the Chart XML area in APEX were replaced by values defined in the Chart
Attributes area, and the #DATA# token was replaced by the output of the select statement defined in the series.

Debug and Performance
Debugging charts is done differently than debugging other components in APEX. After reading how these
charts work behind the scenes, you know that there are different components and requests going on for a
single chart. There is the HTML for the region of the chart, the JavaScript to include the AnyChart object, the
call for the data (XML) for the chart, and the generation of the chart.

When you run your page in Debug Mode, you’ll get two debug outputs (Figure 3-36). The first “show”
(Path Info) is for the page, and the second “show APXWGT” (Path Info) is the AJAX request to get the settings
and data for the chart.

Figure 3-35. Chart completely drawn when the XML is retrieved

Figure 3-36. Debug output

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

107

The first “show” gives you an idea of how long it took to generate the page with the chart region. Drilling
into the details of the debug output shows how long it took to render the chart region (Figure 3-37). Note that
only the container of the chart is counted here. The chart object still needs to be called by another process,
and the XML still has to be generated. Most performance issues are based on the actual generation of the
XML (based on the query that is in the series). How long it took to generate the XML for all the series is
shown in the “show APXWGT” debug details (Figure 3-38).

Figure 3-37. Debug information for a page with the chart region (show)

Figure 3-38. Debug information for the chart serie(s) (show APXWGT)

Running the page in Debug Mode has another component that is valuable. In the page itself,
underneath the chart, a Show XML link will appear, so you see exactly what the chart object receives
(Figure 3-39).

Figure 3-39. Extra Show XML link when running the page in Debug Mode

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

108

The Show XML link will show the XML output that was generated by APEX for the chart (Figure 3-40).
Having this information is really important because the chart you see is defined by this XML. AnyChart has
a complete XML reference in its documentation, which explains every node. You can find the URL to the
AnyChart XML reference in the “Resources” section later in the chapter (Figure 3-41).

Figure 3-40. XML behind the chart after clicking the Show XML link

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

109

To see exactly what is happening in the browser, you need to use an external tool, such as Firebug. Other
browsers also have developer tools, which can do the same.

The Net panel in Firefox is most important for seeing what’s going on behind the scenes (Figure 3-42).
The main purpose of the Net panel is to monitor HTTP traffic initiated by a web page and simply present all
collected and computed information to the user. Its content is composed of a list of entries where each entry
represents one request/response round-trip made by the page. You can see the requests, the status, the size
of what is returned, and the time it took.

Figure 3-41. XML reference by AnyChart

Figure 3-42. The Net panel in Firebug/Firefox

The first request is the request for the APEX page. The next requests are to get some CSS and JavaScript
files. The last request is the call to wwv_flow.show to retrieve the data (xml). The XHR tab will show you the
AJAX request for the chart data too.

Hovering over the request shows you the complete URL, and clicking it slides open other options, such
as Params, Headers, Post, Response, XML, Cache, and Cookies. Depending the call, you get different options
to click. Just as in Figure 3-31 where you saw the developer tools, Firebug has this information too. Clicking
the Post tab shows you more information about the call (Figure 3-43).

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

110

Clicking the Response or XML tab will show you the XML that Oracle APEX produced based on the
settings in the Chart Attributes area for that chart.

If you have an issue with your chart, the first thing you should check is the response and the XML
(Figure 3-44). In 90 percent of cases, there is something awkward going on in the output, which explains why
something is not behaving in the chart as you expect. For example, a tag may not be closed correctly, some
special characters are making the XML invalid, or the wrong syntax is being used in the XML. Referring to
the AnyChart documentation is the next step to solve your problem. You will most likely not encounter these
issues if you stay with the declarative charts in APEX; however, if you start to customize them, come back
here to reread the possible issues.

Figure 3-43. The Post tab of a request in the Net panel in Firebug/Firefox

Figure 3-45. Hovering over the timeline gives more information

Figure 3-44. The XML tab of a request in the Net panel in Firebug/Firefox

If you find that some parts take a long time to load, you can investigate by hovering the cursor over the
bar to get more information (Figure 3-45).

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

111

If you encounter performance issues and your charts become slow, the first thing you need to look at is
the debug output. Finally, you can also check the Net panel in Firebug and check the Timeline. That will tell
you exactly where you are losing most of the time. Usually you will find that the last step (the generation of
the XML) takes most of the time.

The more series you have, the longer it may take to see the data in the chart. If you can combine multiple
series into one, you will gain performance. If you need multiple series, it’s best to try them first in SQL
Developer or SQL Workshop to see how fast the results arrive. If the query is slow in that environment, it will
be slow in the chart too. You can then compare those results with the results shown in the debug output of the
chart (show APXWGT details). (Tuning the SQL statements falls outside the boundaries of this chapter.)

Upgrading Oracle APEX 3.x/4.x Flash and SVG Charts
If you initially developed your application in an earlier version of APEX and you used SVG or Flash charts,
you might want to upgrade them to the new charts in APEX 5.0. AnyChart 6 charts are integrated with
APEX 5.0, which are nicer, are faster, and have more options than the earlier version of AnyChart charts that
came with APEX 3.x and 4.x. The fastest way to upgrade all charts is to go to Utilities and then click Upgrade
Application. This will show you which charts you can upgrade. Note that SVG charts can be upgraded with
some restrictions.

 ■ Note today I recommend migrating all types of charts to the htMl5 charts.

Follow these steps to upgrade all existing Flash and SVG charts to the latest AnyChart charts engine:

 1. Go to the Application home page.

 2. Click Utilities and then click Upgrade Application (Figure 3-46). The Upgrade
Application Summary report appears (Figure 3-47).

Figure 3-46. Utilities section in APEX 5.0

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

112

 3. Look for Upgrade SVG Charts to Flash Chart 5 and Upgrade Flash Charts to Flash
Chart 5, or Upgrade Flash Charts to HTML5 Charts, and click the number of
candidate objects.

 4. Select the objects to upgrade and click Upgrade (Figure 3-48).

Figure 3-47. Upgrade Application Summary page—Candidates of charts to upgrade to HTML5 charts

Figure 3-48. Select candidates to upgrade

Note that in some cases the charts might look a bit different or the label of the axis are not showing.
When you open the chart attributes again and hit Apply Changes, this will fix itself. This means that it will
regenerate the XML it needs. If you developed charts in APEX 4.2, they will automatically use the latest
version of the AnyChart engine.

Screen Reader Mode and Charts
APEX 5 allows you to run APEX itself and your own application in the Screen Reader Mode. The Screen
Reader Mode improves the usability of Application Express applications with a screen reader. A screen
reader is a software application that attempts to identify and interpret what is being displayed on the
screen. This interpretation is then re-presented to the user with text-to-speech, sound icons, or a Braille
output device.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

113

You can enable/disable the Screen Reader Mode in your own application in three ways.

•	 Add the #SCREEN_READER_TOGGLE# substitution string to the footer of your page
template. Doing so results in a link on your pages that viewers can use to toggle the
Screen Reader Mode on and off.

•	 Use the screen-reader APIs documented in the Oracle Application Express API
Reference. Using the APIs is more work than adding the substitution string to your
page footer, but they do provide you with more control.

•	 Create links that enable and disable the Screen Reader Mode by executing f?p
session requests. Here’s an example:

<a href="f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.:SET_SESSION_SCREEN_
READER_ON">Reader Mode On

<a href="f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.:SET_SESSION_SCREEN_
READER_OFF">Reader Mode Off

APEX charts are not currently accessible to screen readers; therefore, when running in the Screen
Reader Mode, the user will get a report representation of the information conveyed in the chart. A separate
report will be generated for each series of a multiple-series chart if the series were defined as separate series.
If the multiple series were defined in a single query, only one report will be generated (Figure 3-49).

Figure 3-49. Chart when not in the Screen Reader Mode

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

114

When running in Screen Reader Mode (Figure 3-50), these data tables contain descriptive text, in the
following format:

•	 Summary Text: In Application Builder, a combination of the chart title and chart
series title is used.

•	 Column Headers: In Application Builder, the column name/alias in the chart series
query is used to identify the columns in the report.

Figure 3-50. Chart when running in the Screen Reader Mode

Extending Charts
In the previous sections, you saw how to create charts through the APEX wizard and how these charts
work behind the scenes. If you understand how the charts work and how they are implemented in APEX,
you should be able to do anything you like. This section will give some examples of extending the existing
charting possibilities of APEX by stepping outside the APEX wizards.

I will also switch the interface to use the Page Designer because it makes it easier to extend the charting
possibilities. I also typically use the Show All attributes, instead of the most common view.

 ■ Note all the tables, data, and code used in this chapter are available to download from the apress
or apeX r&d web site. Import the application export (the sQl file you download) in your workspace and
install the supporting objects, which will create the tables and data. the application contains all examples
covered in this book, so you can see everything working immediately and can copy the code straight from
within the application.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

115

Customizing Charts by Using Custom XML
A manager wants to see how sales are going based on her forecast and targets she previously set. Showing
the budget can easily be done with a column chart, but showing the forecast and target lines is something
that is not natively available (through the wizards) in APEX (unless you create another series for the line,
but that is not quite the same). The following are the steps to add a 2D column chart and two trendlines, one
for the forecast and one for the target:

 1. If you already have some experience with AnyChart XML and what each node is
used for, go to the AnyChart reference documentation (you will find the URL in
the “Resources” section).

 2. If you are less experienced, go to the AnyChart Gallery and click the 2D Column
charts examples. Luckily there is something similar to the previous example in
the gallery called Trendlines and Axis Ranges Demo. Click that example, and a
pop-up will appear with an example chart in one tab (Figure 3-51) and the XML
code that was used in the other tab (Figure 3-52).

Figure 3-51. AnyChart Gallery example of trendlines

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

116

 3. If APEX does not support a feature through the wizard but you know AnyChart
supports it (by finding an example or looking at the XML), you can adapt the
XML for the chart in APEX to manually implement the feature. To customize the
XML, follow these steps (in Page Designer):

a. Create a normal 2D column chart.

b. Open the chart attributes.

c. Navigate to the bottom of the page (Custom XML region) and set the
drop-down for Use Custom XML to Yes. That will make the Custom XML text
area editable.

 4. Note that the settings of the chart disappear, and you now have to manually
adapt the XML to make changes to the chart (Figure 3-53).

Figure 3-52. XML code behind the example in the AnyChart Gallery

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

117

a. Looking at the existing example of AnyChart or at the documentation, to
add a trendline, you would add the Axis Markers node. As you want a line
to go horizontally, add the marker to the y-axis. Locate the end of the y-axis
node (<y_axis>), and just before that, add the following:

<axis_markers>
 <lines>
 <line value="&P17_FORECAST." thickness="2" color="Rgb(200,30,30)"

caps="Square">
 <label enabled="True" multi_line_align="Center">

 <format>Forecast: ${%Value}{numDecimals:0} </format>
 </label>
 </line>
 <line value="&P17_TARGET." thickness="2" color="Green" caps="Square">
 <label enabled="True" multi_line_align="Center">

 <format>Target: ${%Value}{numDecimals:0}</format>
 </label>
 </line>
 </lines>
</axis_markers>

b. In the code, you use &P17_TARGET. and &P17_FORECAST., which are
substitution strings for the respective page items. You can dynamically set
these items through, for example, a computation, so you can calculate the
line from a SELECT statement or PL/SQL procedure. If the values are always
fixed, you can just replace the substitution strings with a numeric value.

 5. Saving the chart and running the APEX page gives the result shown in Figure 3-54.

Figure 3-53. Use Custom XML in Chart Attributes in the APEX Page Designer

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

118

This example shows how you can customize the XML of a chart to add features that APEX doesn’t allow
by using the wizard or chart attributes. It’s useful to read the AnyChart documentation and review the XML
reference to know what is possible. The principle is always the same: once you know what XML to include,
you change the XML by setting Use Custom XML to Yes in the Chart Attributes area and, presto, you have
extended your chart!

Customizing Charts by Using Custom XML, Dynamic Actions,
and JavaScript
Customizing the XML is one way to get more out of charts, but sometimes even that is not enough and you
need to take an extra step. To illustrate this, you will look at the use case where the manager of the previous
example now wants to see which employees brought in a lot of sales, who performed well, and who did not.
She could just look at the chart and do the math in her head, but giving colors to the columns (good = green,
normal = yellow, bad = red) would make the job easier (Figure 3-55). This means you will define thresholds:
sales numbers below a certain number (red), sales numbers between certain numbers (yellow), and sales
numbers over a certain number (green).

Figure 3-54. Result of adding an axis marker manually to the chart in APEX

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

119

These are the steps to create a chart with thresholds:

 1. Create a normal 2D column chart based on the following SQL statement:

SELECT NULL LINK,
 ENAME LABEL,
 SAL VALUE
FROM EMP
ORDER BY ENAME

 2. Click the Attributes entry under the chart's region in the rendering side of the
Page Designer.

 3. Navigate to the bottom of the page (Custom XML region) and set the drop-down
for Use Custom XML to Yes. That will make the Custom XML text area editable
(Figure 3-53).

 4. The AnyChart XML reference documentation (Figure 3-56) says you can use a
threshold node (<threshold>). The following code needs to be added just after
the </data_plot_settings> node (and before #DATA#):

<thresholds>
 <threshold name="sales_threshold">
 <condition name="Bad" type="lessThan" value_1="{%Value}" value_2="1500"

color="Red"/>

Figure 3-55. Column chart with custom XML and dynamic action to show thresholds

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

120

 <condition name="Normal" type="between" value_1="{%Value}" value_2="1500"
value_3="2500" color="Yellow"/>

 <condition name="Good" type="greaterThan" value_1="{%Value}" value_2="2500"
color="Green"/>
 </threshold>
</thresholds>

Figure 3-56. AnyChart XML reference documentation—<threshold> node

 5. If you run the page now with the custom XML, you don’t see any difference,
which is because the data node also needs to take the threshold into account.
Now this isn’t as straightforward as you might think. If you look at the XML, you
will find a #DATA# token that gets replaced on the fly by Oracle APEX based on
the series. The SQL statement of the series gets translated into the correct XML.
APEX doesn’t support the threshold tag out of the box, so you need to generate
the correct XML so the thresholds are included manually.

 6. Create a Hidden Item on the page (right-click the chart region by setting Create
Page Item to Hidden) and call it P18_CHART_XML (because you are on page 18).
You will use this item to store the data part of the chart.

 7. In the Custom XML, replace #DATA# with &P18_CHART_XML. (note the . at the
end), where P18_CHART_XML is the hidden page item. That item you will fill with
the correct XML.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

121

 8. To fill P18_CHART_XML with the XML, add a computation to the page that
generates the XML. Use the XMLDB feature of the database, which lets you
create a SELECT statement that generates XML. The computation looks like this:

•	 Type: SQL Query (return single value)

SELECT xmlelement("data", xmlattributes('sales_threshold' AS "threshold"),
 xmlelement("series", xmlattributes('Series 1' AS "name"), xmlagg(
 xmlelement("point",xmlattributes(ename AS "name", sal AS "y")))))
.getClobVal() as data
FROM emp

 9. If you want to add the legend of the thresholds, you have to make another small
change to the XML in Use Custom XML. You have to tell the legend the source
is now thresholds instead of the items. Search for legend (visible only when you
defined Show Legend before you set Use Custom XML) and change it to the
following code. If you don’t find the legend node, add it after the </axes> node.

<legend enabled="true" position="Bottom" align="Near"
elements_layout="Horizontal" ignore_auto_item="true" >
 <title enabled="true">
 <text>Legend</text>

 </title>

 <items><item source="thresholds"/></items>
</legend>

Saving the chart and running the APEX page should give you the result shown in Figure 3-55.
Note that if you have Asynchronous Update set to Yes, you will also need to refresh the hidden item with

the correct data.

Creating Charts Manually
When you want full control over everything, you can choose to create a chart completely manually.
AnyChart allows you to add events to the chart to control every step, from rendering to moving the mouse
and clicking parts of the chart. In the following example, you will create a multiseries chart with multiple
axes and different tooltips per series. You will also make the width and height of the chart depend on what
the user defines on the page. I will also discuss having null values in the resultset (see item 6 in this list).

Follow these steps to create a chart manually:
Create a page with an HTML region (in this example, page 7) and name the region Manual Chart.
In the region source of the HTML region, add an empty div, which will be filled with the chart by using

JavaScript:

<div id="chartDiv"></div>

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

122

You will also create three page items.

•	 One text item (text field) that defines the width of the chart: P7_CHART_WIDTH with a
static value of 600 as the source

•	 One text item that defines the height of the chart: P7_CHART_HEIGHT with a static
value of 400 as the source

•	 One hidden item where you store the XML data for the chart: P7_CHART_XML

Because you will load the entire chart with JavaScript, you need to add the JavaScript package that
comes with AnyChart. Edit the page, and under JavaScript – File URLs, put the following:

#IMAGE_PREFIX#flashchart/anychart_6/js/AnyChart.js
#IMAGE_PREFIX#flashchart/anychart_6/js/AnyChartHTML5.js

Because you want to change the chart dynamically, you need to make sure that the chart variable in
JavaScript is accessible in the entire page. That is why you add in the Page Definition in Function and Global
Variable Declaration area the following variable declaration:

var chart;

You now need to initialize the chart by calling a specific AnyChart function, generate the data, and give
the data to the chart.

 ■ Note From apeX 4.0 onward, you should try to do as much Javascript as possible through dynamic actions.

Create a new dynamic action to generate the XML. Set the following options:

•	 Name: Load Chart

•	 Event: Page Load

Make the action a true action, and specify the following:

•	 Action: Set Value

•	 Fire On Page Load: Yes

•	 Set Type: PL/SQL Function Body

•	 PL/SQL Function Body:

declare
 l_chart varchar2(32767);
 l_xml clob;
 l_data varchar2(32767);
begin
 l_chart := '<anychart>
 <settings>
 <animation enabled="True" />
 </settings>
 <charts>

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

123

 <chart plot_type="CategorizedVertical">
 <chart_settings>
 <title enabled="true">
 <text>Multi-Series: Multiple Y-Axes</text>
 </title>
 <axes>
 <x_axis tickmarks_placement="Center">
 <title enabled="true">
 <text>Arguments</text>
 </title>
 </x_axis>
 <y_axis>
 <title enabled="true">
 <text>Primary Y-Axis</text>

 </title>
 <labels align="Inside">

 </labels>
 </y_axis>
 <extra>
 <y_axis name="extra_y_axis_1" position="Right">
 <minor_grid enabled="false" />
 <major_grid enabled="false" />
 <title enabled="true">
 <text>Secondary Y-Axis</text>

 </title>
 <labels align="Inside">

 </labels>
 </y_axis>
 </extra>
 </axes>
 </chart_settings>
 <data_plot_settings default_series_type="Line">
 <line_series>
 <label_settings enabled="true">
 <background enabled="false" />

 <effects enabled="true">
 <glow enabled="true" color="White" opacity="1" blur_x="1.5" blur_y="1.5"
 strength="3" />
 </effects>

 <format>{%YValue}{numDecimals:0}</format>
 </label_settings>
 <tooltip_settings enabled="true">
 <format>
Value: {%YValue}{numDecimals:2}
Argument: {%Name}
</format>

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

124

 <background>
 <border type="Solid" color="DarkColor(%Color)" />
 </background>

 </tooltip_settings>
 <marker_settings enabled="true" />
 <line_style>
 <line thickness="3" />
 </line_style>
 </line_series>
 </data_plot_settings>
 <data>
 #DATA#
 </data>
 </chart>
 </charts>
</anychart>';
 SELECT xmlelement("series", xmlattributes('Series 1' AS "name"), xmlagg(xmlelement
("point", xmlattributes(ename AS "name", sal AS "y")))).getClobVal()
 INTO l_xml
 FROM emp;

 l_data := l_data || wwv_flow_utilities.clob_to_varchar2(l_xml);

 SELECT xmlelement("series", xmlattributes('Series 2' AS "name", 'extra_y_axis_1' AS
 "y_axis"), xmlagg(xmlelement("point", xmlattributes(ename AS "name", nvl(comm,0) AS "y")
))).getClobVal()
 INTO l_xml
 FROM emp;

 l_data := l_data || wwv_flow_utilities.clob_to_varchar2(l_xml);

 l_chart := replace(l_chart, '#DATA#', l_data);

 return l_chart;
end;

•	 Escape Special Characters: No

•	 Affected Elements – Selection Type: Item(s)

•	 Item(s): P7_CHART_XML

You use the same XML database features of the database to generate the data part. You also have a
variable to store the XML definition of the chart. Note that the previous example works only with datasets
that are less than 32KB because there is currently a limitation in APEX that you can assign a maximum of
32KB to a page item. If you need to work with big datasets, you need to slightly change the code. Later in this
chapter, you will generate a dashboard and use the other technique, which supports XML bigger than 32KB.
Also note that you used NVL(comm,0) for the value in the second series. If you don’t use NVL, the line will be
incomplete because the y value in the XML will contain an empty string and your result might not be correct.
So, either you use NVL, which gives empty strings the value of 0 so every record will show up in the chart as
a point, or you define a WHERE clause where you specify comm is not null; that means not every record will be
shown, but your line will be complete.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

125

Figure 3-57. A chart manually created with JavaScript

Create a second true action to load the chart, with the following settings:

•	 Action: Execute JavaScript Code

•	 Fire When Event Result Is: True

•	 Code:

AnyChart.renderingType = anychart.RenderingType.SVG_ONLY;
chart = new AnyChart;
chart.width = $v('P7_CHART_WIDTH');
chart.height = $v('P7_CHART_HEIGHT');
chart.setData($v('P7_CHART_XML'));
chart.write('chartDiv');

The chart JavaScript object you defined on the page level. The previous code initiates a new AnyChart
HTML5 chart. The object can have different properties and events; in this case, I used the width and height
to define that at runtime based on the value in the page item. The setdata event gives the XML it finds in
P7_CHART_XML to the chart, and finally the write event will write the chart to the div.

 ■ Caution Make sure you adapt the code to use your item names. For example, if you are on page 1 in the
dynamic action, you probably want to use P1_CHART_WIDTH.

Running the page gives the result shown in Figure 3-57.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

126

You also want to change the tooltip of Series 2 to have a custom message. To achieve that, set the
dynamic action Load Chart to Set Value in the true action. Then replace the existing SQL statement of Series 2
with the following code:

 SELECT
 xmlelement("series",
 xmlattributes('Series 2' AS "name", 'extra_y_axis_1' AS "y_axis"),
 xmlagg(xmlelement("point",
 xmlattributes(ename AS "name", nvl(comm,0) AS "y"),
 xmlelement("tooltip", xmlattributes('true' as "enabled"), xmlelement("format",
'Job: ' || job))))).getClobVal()
 INTO l_xml
 FROM emp;

The new SQL statement that you entered previously causes the APEX engine to add an XML tooltip to the
generated XML (see that in the point node there’s a tooltip node). The new generated XML code is as follows:

<series name="Series 2" y_axis="extra_y_axis_1">
 <point name="SMITH" y="0">
 <tooltip enabled="true">
 <format>Job: CLERK</format>
 </tooltip>
 </point>
 <point name="ALLEN" y="300">
 <tooltip enabled="true">
 <format>Job: SALESMAN</format>
 </tooltip>
 </point>
 ...
 <point name="FORD" y="0">
 <tooltip enabled="true">
 <format>Job: ANALYST</format>
 </tooltip>
 </point>
 <point name="MILLER" y="0">
 <tooltip enabled="true">
 <format>Job: CLERK</format>
 </tooltip>
 </point>
</series>

The result looks like Figure 3-58.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

127

To let the user define the width and height of the chart, you need to add another dynamic action that
fires when the user changes the width and height text items. Here are the steps to do this:

Add a new advanced dynamic action with the name Change Chart Size and the following settings:

•	 Event: Change

•	 Selection Type: Item(s)

•	 Item(s): P7_CHART_WIDTH,P7_CHART_HEIGHT

Make the action a true action, and specify the following:

•	 Affected Elements: Selection Type = Region

•	 Affected Elements: Region = Manual Chart

•	 Action: Execute JavaScript Code

•	 Fire When Event Result is: True

•	 Fire On Page Load: No

•	 Code:

chart.setSize($v('P7_CHART_WIDTH'),$v('P7_CHART_HEIGHT'));

Now run the page and change the width and heights to see the results.

When you manually create a chart for the first time, it might be difficult to understand, but it
comes down to going to the AnyChart Chart Gallery, finding an example you like, or looking into the
documentation to know what XML and JavaScript you need to call. Next, you need to translate that logic into
APEX components. Only by looking at the previous examples, trying things yourself, and gaining experience
will this task become clear (if it is not already). After a while, the steps you have to take to create a chart
completely manually will become trivial.

Drill-Down Charts, Dashboards, and Interactivity
In this section, you will look more at combining different charts on the same page and letting them work
nicely together. You will create a page that will provide an instant snapshot of your business information,
by combining different reports and charts on a dashboard. With drill-down capabilities, the charts on your
dashboard can show different results based on the user interaction with the page. There are many different
techniques to create dashboard pages in APEX, from simple examples using the built-in functionalities in
APEX to complex dashboards using actions and events that come with the full license of AnyChart charts.

Figure 3-58. The tooltip when hovering over a data point

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

128

Simple Dashboard with Submit
In this first example, a manager wants to have an overview of the salaries he’s giving to the respective
departments and employees. To fulfil the manager’s wish, you will create a page with one region and three
subregions that hold the different charts so it looks like the charts are in one region (Figure 3-59).

•	 A pie chart with the salary by department

•	 A 2D column chart that shows the average, minimum, and maximum salaries by
department

•	 Another 2D column with the salary by employee

Figure 3-59. A dashboard with three charts: one pie and two 2D column charts

Next, you want to allow the manager to select a department in the pie chart and automatically update
the other charts to show information only for the selected department (drill-down). Figure 3-60 represents
the expected result when the manager clicks the Sales (green) slice of the pie chart.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

129

Figure 3-60. Dashboard chart drilled down to the Sales department

Behind the scenes, you used the wizard to create three different charts.

•	 The pie chart that shows the salary by department uses the following query:

SELECT 'f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.::::P8_DEPTNO:'||d.deptno LINK,
 d.dname LABEL,
 sum(e.SAL) sal
FROM emp e, dept d
where e.deptno = d.deptno
group by 'f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.::::P8_DEPTNO:'||d.deptno, d.dname
ORDER BY d.dname

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

130

•	 The 2D column that shows the average, minimum, and maximum salaries by
department uses this query:

SELECT NULL LINK,
 d.dname LABEL,
 avg(e.SAL) as "Average Salary",
 min(e.SAL) as "Minimum Salary",
 max(e.SAL) as "Maximum Salary"
FROM
 emp e, dept d
where e.deptno = d.deptno
 and d.deptno = nvl(:P8_DEPTNO, d.deptno)
group by d.dname
ORDER BY d.dname

•	 The 2D column that shows the salary by employee uses this query:

SELECT NULL LINK,
 ENAME LABEL,
 SAL VALUE
FROM EMP
where deptno = nvl(:P8_DEPTNO, deptno)
ORDER BY ENAME

If you want to create the previous example yourself while you are reading, take a look at Figure 3-61, which
shows all the regions, buttons, and items behind the scenes and how they are laid out. If you downloaded the
application that belongs to this chapter, you should take a look at page 8.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

131

Note that the pie chart has a link defined. That link will submit the page and set the item P8_DEPTNO, a
hidden item you created in that region, with the value of the slice the user clicks.

You also use a button on the page called All Departments, which redirects to the same page and clears
the cache. When creating the button for the action, select Redirect to Page in this Application (Page is 8 and
Clear Cache is 8).

This example is the simplest dashboard you can create. It uses charts created by the wizard and
provides interactivity and drill-down capabilities by using the link in the series SQL statement. To achieve
the dashboard look and feel, I created a parent region with three subregions for the charts. That way the
charts look like they are combined. The previous example has one big drawback: whenever the manager
clicks a link, the entire page gets submitted, which isn’t a nice effect and doesn’t flow that well. You will fix
the flow by adding a bit of JavaScript in the next section that will refresh the regions instead of submitting the
entire page.

Figure 3-61. Behind the scenes of the simple dashboard page with Submit

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

132

Simple Dashboard with JavaScript
This example will expand on the previous example, extending it to include a report on the employee data.
Rather than doing a submit of the entire page, you will just refresh the necessary regions so the manager gets
a nicer user experience.

You will copy the page of the previous example to page 10 and keep everything you did. You will add
another report that will show the data of the employees. If the manager selects a specific department, the
report only has to show the data for that department. So, you add a classic SQL report to the page with the
following SELECT statement:

select EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM
 from emp
where deptno = nvl(:P10_DEPTNO, deptno)

To remove the submit event of the page when the manager clicks the pie chart, you need to change the
link in the pie chart. You will set the value of P10_DEPTNO dynamically with JavaScript (by using $s(), a built-
in function in APEX), so no submit happens. The select statement of the pie chart becomes the following:

SELECT 'javascript:$s("P10_DEPTNO",'||d.deptno||')' LINK,
 d.dname LABEL,
 sum(e.SAL) sal
FROM emp e, dept d
where e.deptno = d.deptno
group by 'javascript:$s("P10_DEPTNO",'||d.deptno||')' , d.dname
ORDER BY d.dname

Now, when the manager clicks a slice in the pie chart, the hidden item will get a value (note that this
value is not yet in session state because it has not been submitted yet but is available through JavaScript). The
issue now is that the other charts won’t drill down yet because they were not yet refreshed, which happened
automatically before when the entire page was reloaded because of the submit event of the page. To refresh the
other charts, you could set the Asynchronous Update in the Chart Attributes area to five seconds, which will
refresh the chart every five seconds. However, this is not a recommended way of handling the chart refresh in
this scenario because the refresh will always happen, even if the manager does not click a slice. It also doesn’t
work for the report on the page because you cannot define an Asynchronous Update like you could in the chart.

To solve the refresh issue, you use a dynamic action in APEX. The dynamic action will refresh the two
charts and the report. The dynamic action will fire whenever the value of the hidden item P10_DEPTNO gets
changed. This is how the dynamic action is defined:

•	 Event: Change

•	 Selection Type: Item(s)

•	 Item(s): P10_DEPTNO

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

133

•	 True Action 1

•	 Action: Refresh

•	 Fire When Event Result is: True

•	 Fire On Page Load: No

•	 Selection Type: Region

•	 Region: Avg, Min and Max Salary per Department

•	 True Action 2

•	 Action: Refresh

•	 Fire When Event Result is: True

•	 Fire On Page Load: No

•	 Selection Type: Region

•	 Region: Salary by Employees

•	 True Action 3

•	 Action: Refresh

•	 Fire When Event Result is: True

•	 Fire On Page Load: No

•	 Selection Type: Region

•	 Region: Salary by Employees (Report)

In all the series that will get refreshed, make sure to add P10_DEPTNO in the Page Items to the Submit
field so the value of P10_DEPTNO is set in session state before it’s refreshed.

Finally, you can change the button for seeing all departments to Redirect to Url. Use the following for
the URL: javascript:$s('P10_DEPTNO',''). This basically empties out the hidden item.

Figure 3-62 represents the result of the manager clicking a slice of the pie chart.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

134

As you can see, the Sales slice in the pie chart is moved out from the rest of the chart. This “explode”
action is a feature of AnyChart when you click something in the chart, but you didn’t see this in the first
example because the entire page was submitted and rerendered.

Complex Dashboard with Actions
This example is completely different from previous examples and takes you beyond APEX. Oracle licensed
only part of AnyChart charts, so for example if you want to create a real dashboard (one chart object with
multiple charts inside it), you need to include the full AnyChart files. If you try to render the chart with
Oracle’s AnyChart version, you get an error (Figure 3-63).

Figure 3-62. Dashboard chart and report drilled down to Sales department (with JavaScript)

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

135

The definition of the HTML region is as follows:

<div id="chartDiv"></div>

And this is how the dynamic action is defined:

•	 Event: Page Load

•	 True Actions

This example (Figure 3-64) hardly uses any built-in features of APEX. The only thing you need is an
HTML region where you define the div tag that holds the dashboard and a dynamic action to load the data
for the dashboard. Unlike in the previous examples, this dashboard consists of only one AnyChart object, but
inside that one object six different charts are defined. Column, bar, spline-area, spline, bubble, and range-
area charts are inside one container.

Figure 3-64. A complex dashboard using the full AnyChart capabilities

Figure 3-63. The error when you try to run XML to generate a chart that is not licensed by Oracle

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

136

•	 Action 1:

•	 Action: Execute JavaScript Code

•	 Fire When Event Result is: True

•	 Fire On Page Load: No

•	 Code:

AnyChart.renderingType = anychart.RenderingType.SVG_ONLY;
chart = new AnyChart;
chart.width = 800;
chart.height = 500;
chart.setXMLFile('#OWNER#.GET_DASHBOARD_XML_PRC?p_param1=Full');
chart.write('chartDiv');

As you can see, there is almost no complex structure to the page. The dynamic action runs on page load
and will create a chart in the div tag. The only magic piece in the JavaScript is the call to setXMLFile, which
gets the XML for the chart. In this case, I didn’t use a hidden item to store the XML because that would
give a problem for large datasets (more than 32KB). Assigning a value to a page item is limited to 32KB,
but because the dashboard you want to create is based on three different charts, passing the information
for all three charts will exceed that 32KB limit. The setXMLFile calls a procedure on the server called
GET_DASHBOARD_XML_PRC. The #OWNER# will get replaced by the default parsing schema defined in your
workspace. The procedure has two parameters to pass extra information to the chart or change behavior
based on the user interaction, but there is another parameter called XMLCallDate, which you need to include
because AnyChart is attaching extra parameters to the call. XMLCallDate is used by AnyChart to make sure
every call is unique; otherwise, the browser might cache the result, and you might get incorrect results. You
don’t have to do anything special for that—AnyChart handles everything for you. You just need to make sure
you accept these extra parameters in your procedure. The procedure looks like this:

create or replace procedure get_dashboard_xml:prc(
 p_param1 varchar2 default null,
 XMLCallDate IN NUMBER DEFAULT NULL)
is
 -- limit of 32K in single byte characterset, for UTF8 devide by 4 -1
 l_amt number default 8191;
 l_offset number default 1;
 l_length number default 0;
 l_chart clob;
 l_chart_v varchar2(32767);
 l_chart_data clob;
begin
 dbms_lob.createtemporary(l_chart, FALSE, dbms_lob.session);
 dbms_lob.open(l_chart, dbms_lob.lob_readwrite);

 l_chart_v := '<?xml version="1.0" encoding="UTF-8"?>
<anychart>
 <dashboard>
 <view type="Dashboard">
 <title padding="0">
 <text>Multiple Charts in Dashboard Mode</text>
 </title>

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

137

 <background>
 <inside_margin all="3" top="10" />
 </background>
 <vbox width="100%" height="100%">
 <margin all="0" />
 <hbox width="100%" height="50%">
 <margin all="0" />
 <view type="Chart" source="Chart1" width="33.3%" height="100%" />
 <view type="Chart" source="Chart2" width="33.3%" height="100%" />
 <view type="Chart" source="Chart3" width="33.3%" height="100%" />
 </hbox>
 <hbox width="100%" height="50%">
 <margin all="0" />
 <view type="Chart" source="Chart4" width="33.3%" height="100%" />
 <view type="Chart" source="Chart5" width="33.3%" height="100%" />
 <view type="Chart" source="Chart6" width="33.3%" height="100%" />
 </hbox>
 </vbox>
 </view>
 </dashboard>
... /* TRUNCED FOR READABILITY */ ...’;

 dbms_lob.writeappend(l_chart, length(l_chart_v), l_chart_v);
 dbms_lob.close(l_chart);
 --
 owa_util.mime_header('text/xml', FALSE, 'utf-8');
 owa_util.http_header_close;
 l_length := dbms_lob.getlength(l_chart);
 if l_length > 0 then
 while (l_offset < l_length)
 loop
 sys.htp.prn(dbms_lob.substr(l_chart, l_amt, l_offset));
 l_offset := l_offset + l_amt;
 end loop;
 end if;
 --
 if l_chart is not null then
 dbms_lob.freetemporary(l_chart);
 end if;
end;

When you look at this code for the first time, it might look challenging, but it comes down to generating
the correct XML that AnyChart requires to render a dashboard. You would need to look into the AnyChart
Gallery and Documentation to know what XML is expected.

In this case, you hard-code many things, but you can make this procedure as dynamic as you like by
using more parameters or building more queries to retrieve the data. Because there is a limit in sys.htp.prn,
you have to write a loop to pass the XML back in chunks. There are many ways to generate the data (XML),
you could use AJAX (apex.ajax), a REST web service, an on-demand process, or a procedure. It’s just what
you feel most comfortable with what to use to generate the correct XML. I wanted to show how to do this
manually, so you see the exact steps, but typically you would wrap the code in an APEX plugin. Further in
this chapter, you’ll see how much easier it is to use a plugin to build any chart you like.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

138

There are many more options in AnyChart such as using specific events to refresh one particular view of
the dashboard (setViewData in JavaScript) or letting the chart behave completely differently when the user
is hovering over and clicking the chart.

The possibilities are endless, and you can’t show every possible feature of AnyChart, but by
understanding how AnyChart works behind the scenes and by looking at the different techniques used
throughout this chapter, you should be able to build your dream chart.

Building Charts with the AnyChart Plugin
You saw before that Oracle licensed only part of AnyChart’s charts. If you want to extend the existing charting
capabilities, you’ll need to include the full version (meaning, purchase a license) of the AnyChart engine
(some JavaScript and other files) and create the correct XML for the chart. To ease that pain, APEX R&D
developed an AnyChart plugin. By adding the region plugin to your page, it will include the full version of
AnyChart and the ability to add the settings and data more easily. AnyChart is also moving more quickly
than the releases of APEX, so the versions are out of sync. APEX 5.0 is based on AnyChart 6.2, but the latest
release of AnyChart is at the time of writing already on version 7, which is actually a completely new code
base and—so far—not backward compatible.

If you go to the AnyChart web site, all the new examples are based on the new engine, so using a plugin
makes more sense than to manually include AnyChart. It’s easier to upgrade the plugin with a new release
of the AnyChart engine than to manually update your pages. For the latest release of the AnyChart plugin,
check https://www.apexrnd.be.

To add a chart, drag the AnyChart plugin on your page in the Page Designer (Figure 3-65). You have
different options to enter the source of the chart settings and data. To make it easy, you just copied an
example JSON from the AnyChart Playground into the source of the region. You see the result in Figure 3-66.

Figure 3-65. AnyChart plugin in the Page Designer of APEX

https://www.apexrnd.be/

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

139

Figure 3-66. The chart the AnyChart plugin rendered, based on AnyChart 7

Most Common Issues
This section explains some issues people frequently seem to have and how they can be solved.

Chart Not Rendering Correctly
When upgrading the Flash charts to HTML5 charts, I noticed that sometimes my chart didn’t look
completely the same; for example, the labels were gone, or a title disappeared. It looks like some old syntax
of AnyChart is not 100 percent compatible, but luckily there’s an easy way to get around this issue. When you
edit your chart attributes and series and save it again, APEX will regenerate the correct XML, which solved
the issues in my case. If you use custom XML, you might want to set it first to not use custom XML, save it,
and make the changes again when you set it back to use custom XML.

Search for a Specific Feature
Looking at the Oracle APEX Forum, most of the requests are about how to do a certain thing in a chart.
In some cases, people don’t know where to add a link or what every option in the APEX wizard means. In
other cases, a feature wasn’t supported by an option in the APEX screens, and a change had to be made in

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

140

the XML by using Custom XML and/or some JavaScript to generate the correct XML data. And in still other
cases, people wanted to produce a chart that was not licensed by Oracle, so they had to get a valid license of
AnyChart for APEX on the AnyChart web site.

All the previous questions have been answered in this chapter, and you now have a good understanding
of how charts work in APEX and how you can enhance them. It’s a matter of reading the AnyChart
documentation and finding the correct XML syntax or JavaScript to produce the chart you want.

Charts in the Future
Charts are becoming more and more important in new web sites and applications. They provide a quick
overview of a situation at any moment. Business intelligence is already widely adopted, but having charts
in your APEX application gives you an advantage. When you look at the packaged applications, you see the
trend of using many charts and dashboards.

The charting world is rapidly changing. Column and bar charts have been around for a long time and will
exist in the future, but as data grows exponentially, time-based charts will become more and more important.
Being able to quickly navigate through a large volume of time-based data in a user-friendly way will be a
challenge. Other types of charts are becoming more popular too, such as spider and sunburst charts.

In the last few years, different companies have produced new versions of their charting engines. Flash
is disappearing in favor of JavaScript/HTML5 charting engines. HighCharts seems popular on the Web,
AnyChart created a complete new code base because it looked old-school, and many other types of charting
engines to create specific charts are flying around—some free, some not. Probably the most interesting
JavaScript library out there, which is more than just a charting engine, is D3.js. The D3.js site says it like this:
“D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using
HTML, SVG, and CSS. D3’s emphasis on web standards gives you the full capabilities of modern browsers
without tying yourself to a proprietary framework, combining powerful visualization components and a
data-driven approach to DOM manipulation.”

With D3.js you can do anything you like, and more and more people are sharing what they have done.
Oracle started to create plugins for D3.js charts, and I believe enhancing and bringing out more of those
plugins will be the direction for the next couple of years.

Other elements of the future of charting solutions will include user interaction such as zooming,
drag and drop, different information depending on user interaction, and the like. Allowing the user to do
things in an innovative and intuitive way will become increasingly important and will decide whether your
application is “wow” or just OK.

Chart Plugins
As the future of charts is in new (D3.js) plugins, I want to mention where you find those new types of charts
in APEX 5.0 and highlight the most important features.

Sample Charts in Packaged Application
APEX 5.0 includes a new Sample Charts packaged application (Figure 3-67) that includes some interesting
new chart engines.

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

141

The following plugins are available in the Sample Charts application:

•	 Badge List

•	 D3 Bar Chart

•	 D3 Bubble Chart

•	 D3 Line Chart

•	 D3 Pie Chart

•	 D3 Sunburst Chart

•	 D3 Treemap Chart

•	 Flot Line Chart

•	 Flot Pie Chart

•	 Gantt Chart

•	 HTML 5 Bar Chart

•	 JustGage Gauge

As you can see, many D3.js plugins are already available, which you can include in your own application
too. You just export the plugin and import in your application and there you go. The different plugins have
different settings and ways they work behind the scenes, but mostly it comes down to some JavaScript to
define the chart, a way to generate the data in the correct format, and then the plugin to make it available
natively in APEX.

Figure 3-67. Sample Charts packaged application

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

142

In the Source setting of the region, you define a SQL query. In the plugin attributes (Figure 3-68), you
then define which column is used for the label, which one for the value, and so on. You can also define some
custom JSON to extend and customize the chart even more.

Inline Charts in Report
Another interesting use of charts is in reports. It’s actually easy to include a percentage bar in your own
report. Go to a number column in your report (between 0 and 100) and set the type to Percent Graph. You
can see the result in Figure 3-69.

When you look at the libraries that ship with APEX 5.0 (in the images folder), the following charting
libraries are included: raphaeljs, d3js, and justgage. This gives a good indication of where Oracle is going in
the future. Although there’s a Flot chart plugin, I believe the D3.js charts will be most interesting. Those D3.js
charts are also hooked up to Theme Roller, so based on your theme, you can give your charts the same color
scheme. There are many more options in the D3.js plugins; see the example of the D3 Bubble Chart plugin
(Figure 3-68).

Figure 3-68. D3 Bubble Chart plugin

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

143

Other interesting use cases of charts are in lists or some custom regions. Looking at, for example, the
Bug Tracker sample application or P-Track gives you some other ideas on how to incorporate badges, use
inline charts, and combine different components in attractive dashboards.

Resources
These are the resources linked to using charts in a web environment and Oracle Application Express. You
might find them useful if you need more information or examples:

•	 The APEX application used in this book:

https://www.apexrnd.be/ords/f?p=APEX5_EXPERT_CHART

•	 APEX documentation, accessibility in Oracle Application Express:

http://apex.oracle.com/doc50

•	 AnyChart 6.x resources:

http://anychart.com/products/anychart/6.x/

•	 AnyChart XML reference:

http://www.anychart.com/products/anychart/docs/xmlReference/index.html

•	 AnyChart plugin for APEX:

https://www.apexrnd.be

•	 Hilary Farrell from the APEX Development Team also has a sample chart application
with many demos and tips:

http://apex.oracle.com/pls/apex/f?p=36648

•	 Firebug for Firefox:

http://getfirebug.com

Figure 3-69. Percent chart in an interactive report

https://www.apexrnd.be/ords/f?p=APEX5_EXPERT_CHART
http://apex.oracle.com/doc50
http://anychart.com/products/anychart/6.x/
http://www.anychart.com/products/anychart/docs/xmlReference/index.html
https://www.apexrnd.be/
http://apex.oracle.com/pls/apex/f?p=36648
http://getfirebug.com/

Chapter 3 ■ OraCle apeX 5.0 Charts InsIde Out

144

Summary
I started this chapter with an overview of the charting possibilities in Oracle APEX. There are two big
charting types in APEX 5.0: HTML5 charts and Flash charts. You learned that Flash charts are not further
enhanced and that HTML5 charts are the way to go.

I explained in great detail how the charts are working behind the scenes so you can identify quickly how
to do something or where to look in case of unexpected behavior.

You saw how you can customize the AnyChart XML and enhance the charting by using dynamic actions
and by creating charts and dashboards manually.

Using charts in APEX is a great way for your users to visualize the data they work with day-in and
day-out. The native AnyChart charts combined with the newer charting plugins have everything on board
to fulfill your charting dreams, and there is more to come in the future. If the current implementation of
charting doesn’t include a particular feature, there are already many extensions and plug-ins available that
give you that functionality today.

Good luck with charting, and enjoy this wonderful technology!

145

Chapter 4

Tabular Forms

by Denes Kubicek
A tabular form provides a way to display, create, edit, and delete multiple records using a grid. With tabular
forms you can edit and change multiple records at once, without having to go back and forth like in a normal
single record form.

How did tabular forms evolve? The feature has been part of APEX from the beginning. Until version 4.0,
however, there were no major changes in the way tabular forms operated. A wizard was available to lead users
through the creation of a tabular form. This wizard would create a simple editable report. In addition to the
report, it would create some buttons required for saving or discarding changes and four processes for creating,
updating, and deleting data. That was basically it. If you needed more, you had to create your own code.

Prior to starting work on this chapter, which was initially written for APEX 4.0, I was thinking about
how to modify it to fit the new version 5.0, which was released in April 2015. However, tabular forms didn’t
change in 5.0. I decided to keep all the old parts of the chapter but present the changes between versions 4.0
and 5.0 (4.1 and 4.2). I added the major changes from releases 4.1 and 4.2 and removed the following topics:

•	 Simple autocomplete

•	 Autocomplete returning key value

•	 Clone rows

I added a new topic to the section “Interesting Techniques.”

•	 Multiple tabular forms and modal pages

Changes in APEX 4.0
With APEX 4.0 came the first major changes to tabular forms since APEX was developed. These include
the following:

•	 New item types (Single Checkbox, jQuery Date Picker, Radio Group, Popup Key LOV).

•	 The client-side Add Row capability.

•	 Validations for tabular form columns.

Chapter 4 ■ tabular Forms

146

•	 Lost update protection. Finally it is possible to validate a tabular form and show the
error message on the same screen without losing the updates.

•	 Fewer processes required for a tabular form (two instead of four).

•	 Some other features, which I will mention later in this chapter.

Changes in APEX 4.1/4.2
With APEX 4.1 and 4.2, a couple of significant changes were introduced. The following are the most
important new features:

•	 Declarative validations using bind variable column syntax

•	 Declarative processing using :column syntax

•	 New variables available for the processing

•	 The ability to reference tabular form selectors in dynamic actions

The versions also fix numerous bugs related to tabular form validations and validation error
message display.

Changes in APEX 5.0
Unfortunately, APEX 5.0 doesn’t bring any significant changes to the previous versions. Only some layout
modifications were made to match the new Universal theme, and the process of creating tabular forms has
been changed in the Page Designer.

Constraints
APEX and its wwv_flows package provides 50 predefined PL/SQL arrays for tabular form operations. You can
reference these arrays using the following syntax:

wwv_flow.g_f01 ... wwv_flow.g_f50

Or, you can use this:

apex_application.g_f01 ... apex_application.g_f50

Every updatable column in a tabular form will have a unique ID in a sequential order
(the SQL statement) mapped to one of these arrays:

f01_0001, f02_0001 ... f50_0001
f01_0002, f02_0002 ... f50_0002
f01_0003, f02_0003 ... f50_0003

The limit of 50 arrays is a major constraint with tabular forms. Currently, a tabular form will allow users
to update or create a maximum of 50 columns per page. The maximum number of columns an Oracle table
can have is 1,024. Thus, you can find yourself in a position where a table has more columns than you can
display on a page.

Chapter 4 ■ tabular Forms

147

Depending on the PL/SQL you use, you will receive an error either in the Page Designer or while
submitting the form when you exceed the 50-column limit, as shown in Figure 4-1.

Figure 4-1. Typical error message after referencing a nonexisting array

 ■ Caution Keep in mind that new item types available in apeX 4 (simple Checkbox and popup Key loV) will
require two of these IDs. therefore, the limitation of 50 updatable columns per page may vary depending on
how many of those elements you have.

Purpose of Tabular Forms
The main purpose of a tabular form can be described in two cases.

•	 To maintain smaller sets of data

•	 To maintain parent-child relations

A typical example of the first case would be a page in your application where you maintain lists of
values. Normally a list of values will contain a couple of records (options), and you could display this set
of data on one page. The reason for choosing this method is so that you can quickly edit and save records
without having to drill down, paginate, or switch between the pages.

An example of the second case would be an application for order management. An order would be
a parent record (master), and ordered items would be the child records (detail). In most cases, there is a
limited (small) number of details for one master record. Normally you would want to maintain that relation
between the master and the detail on one page. In that case, tabular forms are the way to go.

Chapter 4 ■ tabular Forms

148

You can even use tabular forms to update thousands of records with up to 50 columns each. In that
case, however, you will face several issues.

•	 Application performance will go down. APEX will call the apex_item package for
each row and each column displayed on your page. (It will be even worse if you build
tabular forms manually since this will happen not only for displayed rows but for
the whole resultset.) The time required to render a page after an update process will
increase dramatically.

•	 The quality of data will suffer. Users will lose the “big picture” of their data and will
eventually need to remember their changes rather than see them since they need to
scroll the screen in all directions.

•	 The safety of data will be poor. It is quite easy to accidentally delete records without
even noticing it.

Tabular Forms Are Not Spreadsheets
One of the most frequent misunderstandings about tabular forms is that you can use them as a replacement
for Excel spreadsheets. At least one-third of the questions posted in the Oracle APEX forum related to
tabular forms concern this issue. The fact is, to a certain extent you can modify a tabular form to simulate
the behavior of an Excel spreadsheet. You can add some JavaScript and AJAX to it and make it behave like
an Excel grid. However, soon you will realize that there are many limitations to this solution and that your
code is exponentially growing for every functionality you add. What you definitely do not want is to have to
support and debug that code later. Tabular forms are not meant to replace Excel—they have a completely
different purpose.

Features in APEX 4
As mentioned earlier, the first set of major changes to tabular forms happened in release 4 of APEX. Some
important features were added and enhanced.

New Item Types
In prior releases of APEX, tabular forms were somewhat limited compared to single-row forms. A couple of
important items were missing. Release 4 corrected that issue by introducing the following item types:

•	 Single Checkbox

•	 jQuery Date Picker

•	 Radio Group

•	 Popup Key LOV

Single Checkbox
In some cases, your tabular form will need to provide a column of type Checkbox to give your users the
ability to “flag” a record. Usually it will be “Yes” or “Y” for an activated check box and “No” or “N” for the
not-checked (empty) state. In earlier versions of APEX, such a requirement would cause a lot of coding just

Chapter 4 ■ tabular Forms

149

to create a workaround for a simple problem. The Checkbox item was different from the other items in
APEX—its value was not submitted to the server for the empty state. This means that the array g_f01 would
contain the values for checked items only; there was no really good way to get around this problem.

APEX 4 changed this for the better by introducing the Single Checkbox item. This item can be used like
any other item and is capable of storing either a single value for checked (activated) or NULL for the empty
state.

To demonstrate how this feature works, you will need to do a couple of preparation steps first.

 1. Create a new workspace. (You need to make sure that your instance settings
allow the creation of the demo application, so select Workspace: INTERNAL
Home ➤ Manage Instance ➤ Feature Configuration. Set the option
“Create demonstration objects in new workspaces” to Yes.)

This will create the required tables you need for this demonstration (EMP and DEPT).

 2. Change the EMP table by adding an additional column and changing one of the
columns, as shown in Listing 4-1.

 3. Create a new application.

 4. Create a tabular form using a wizard based on the EMP table and include all the
columns.

 ■ Note together, these steps provide a framework from which to experiment with the simple Checkbox
feature. listing 4-1 shows the code to modify the EMP and DEPT tables. the valid column added to table EMP is
the check box column.

Listing 4-1. Extending EMP and DEPT Tables

ALTER TABLE emp MODIFY (ename VARCHAR2(40) NOT NULL);

ALTER TABLE emp ADD (valid VARCHAR2(1));

CREATE TABLE emp_bkp AS SELECT * FROM emp;

CREATE TABLE dept_bkp AS SELECT * FROM dept;

CREATE SEQUENCE dept_seq START WITH 50 INCREMENT BY 10 NOCACHE;

CREATE SEQUENCE emp_seq START WITH 7950 INCREMENT BY 1 NOCACHE;

CREATE OR REPLACE TRIGGER dept_tr
 BEFORE INSERT
 ON dept
 FOR EACH ROW
BEGIN
 IF :NEW.deptno IS NULL
 THEN
 SELECT dept_seq.NEXTVAL
 INTO :NEW.deptno

Chapter 4 ■ tabular Forms

150

 FROM DUAL;
 END IF;
END;
/
CREATE OR REPLACE TRIGGER emp_tr
 BEFORE INSERT
 ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.empno IS NULL
 THEN
 SELECT emp_seq.NEXTVAL
 INTO :NEW.empno
 FROM DUAL;
 END IF;
END;
/

Now, editing the report attributes and the newly created column properties for the column VALID, you
can change Type to Simple Checkbox, as shown in Figure 4-2.

Figure 4-2. Using the Simple Checkbox item type

Using the List of Values section, you will need to enter the required static Checkbox Values for a simple
check box (see Figure 4-3). If you require only one value, you will need to change the Checkbox Values
definition to Y instead of Y,N.

Chapter 4 ■ tabular Forms

151

After saving the changes, running the application, and opening the page with the tabular form, you should
see a result similar to Figure 4-4. Figure 4-5 shows the raw data from the EMP table that underlies the form.

Figure 4-3. Simple Checkbox LOV

Figure 4-4. Simple Checkbox in a tabular form

Chapter 4 ■ tabular Forms

152

 ■ Caution all check boxes in Figure 4-5 are empty since you initially created a new empty column. the first
update on the table will correct that, setting Null values to N for unchecked boxes.

If you now activate a couple of check boxes and submit the changes, the tabular form will update the
column to the expected values for the displayed set of rows only.

jQuery Date Picker
As of APEX 4, the wizard for creating tabular forms will do some additional work for you and save you some
time. If you have columns of type DATE or TIMESTAMP in your table and include them in a tabular form, APEX
will automatically set them up as Date Picker columns using the newest version of the jQuery calendar, as
shown in Figure 4-6.

Figure 4-5. EMP table

Chapter 4 ■ tabular Forms

153

Unfortunately, you cannot extend the calendar feature the way you can in simple forms and specify
the number of months or add a year range to it. Ideally that functionality will be included in one of the
next releases.

Radio Group
The Radio Group type is the next tabular form item type that came with release 4 of APEX. In earlier versions,
you were able to manually create that item type by using the apex_item.radiogroup packaged function. The
disadvantage of doing so was that APEX would create one array per entry in the radio group and you needed
to write your own code to handle that problem while inserting or updating the record.

To show how this feature works, you will now change the item type for the column VALID to Radio Group
(with a Type value of Static Values), as shown in Figure 4-7. Change the Static Values field to the following:

STATIC:Yes;Y,No;N

Figure 4-6. jQuery Date Picker in a tabular form

Chapter 4 ■ tabular Forms

154

After applying the changes, running the application, and opening the page with the tabular form, you
should see a result similar to Figure 4-8.

Figure 4-7. Changing the column attributes to Radio Group

Chapter 4 ■ tabular Forms

155

Popup Key LOV
The limitation for the select list item type regarding the number of entries you could use was one of the
biggest problems in earlier releases of APEX. As soon as the list grew over a certain size (a combination of the
number and the size of the available options), you would receive an error saying the character string buffer
was too small (see Figure 4-9).

Figure 4-9. Select list error

Figure 4-8. Tabular form with Radio Group column

For simple forms, the workaround was to use a pop-up LOV returning the key value, but for tabular
forms this simply wasn’t possible. APEX 4 changed this by including this item type for tabular forms.

To test this feature, you will need to modify your tabular form by editing the column DEPTNO and
changing it to have a value of Popup LOV (SQL Query based LOV). Then add the following query to the list of
values definition:

SELECT dname d, deptno r
 FROM dept

Chapter 4 ■ tabular Forms

156

If you now apply the changes, run the application, and sort the tabular form using the DEPTNO column, it
should show the pop-up key LOV for that column, as in Figure 4-10.

Figure 4-10. Tabular form with a Popup Key LOV item

One additional change was added to the select list item type in general. In earlier versions of APEX,
the sorting on a column containing a select list would sort the values on the return value. Often this was not
desirable. Since APEX 4, this behavior has changed, and the sorting is done on the displayed value, as you
can see in Figure 4-10.

Declarative Validations
APEX 4 introduced declarative validations for tabular forms. This feature is quite important since it saves
time while building your applications. Declarative validations can be created on a single column and are
grouped as follows:

•	 NOT NULL validations

•	 Column string comparison validations

There are several column string comparison validations, and you can view them in Figure 4-11.

Chapter 4 ■ tabular Forms

157

As of APEX 4.1/4.2, you can use declarative validations outside the scope of a single column. If you need
such a validation, you will not have to write your own code anymore. I will show how to do that later in the
chapter (see “Features in APEX 4.1/4.2” and “Custom Coding in Tabular Forms”).

Validations Created by Tabular Form Wizard
After creating a tabular form, you will find a couple of validations created by the wizard. Figure 4-12 shows
an example of these validations.

The APEX wizard that built the tabular form uses the table definition and sorts out the constraints you
defined for your table. It will create a validation for each single column containing a NOT NULL definition
(unless the column is a primary key used for the DML processes) or for columns of type Numeric and
columns of type Date.

As you can see in Figure 4-12, the APEX tabular form Wizard created several validations automatically.
If you remember the changes made in Listing 4-1, you will notice that this change resulted in a validation,
checking the ENAME column (Validation with sequence 30 – ENAME not null. The other validations are
related to the data type of all existing numeric and date columns included in the tabular form.

Figure 4-11. Tabular form validations—column string comparison validations

Chapter 4 ■ tabular Forms

158

Change the entry for the column ENAME to NULL and modify the entry for the column SALARY to an
alphanumeric character. If you try to save that, you should receive an error like the one shown in Figure 4-14.

Highlighting Validation Errors
If you want to test the validations created by the wizard, you can make a couple of changes in your table to
see how they work, as shown in Figure 4-13.

Figure 4-12. Tabular form validations—created by the wizard

Figure 4-13. Tabular form validations

Chapter 4 ■ tabular Forms

159

Figure 4-14. Tabular form validations, error highlighting

Figure 4-15. Tabular form validations—substitution string for column names

If you remember how such validations worked before version 4, you will notice a few changes.

•	 APEX is now highlighting the cells where validation errors were found.

•	 APEX will tell you the name of the column affected by the error message.

•	 APEX will provide you with a direct link for setting the focus to the affected cell as a
part of the error message.

•	 Most important, you didn’t lose the changes you made.

In earlier versions of APEX, a lot of custom coding was required to get similar functionality. To avoid
losing the changes you made after an unsuccessful validation, it was required that you display the validation
errors on an error page and click the back button.

I need to mention one more important thing. If you edit one of the validations created by the wizard,
you will notice that there is a new substitution string in the error message. You can use #COLUMN_HEADER# for
the heading of the associated tabular form column in order to display the header name as part of the error
message, as shown in Figure 4-15.

Chapter 4 ■ tabular Forms

160

Client-Side Add Row Functionality
In earlier versions, the process for adding new rows to a tabular form required you to submit and load your
page once per new row. This process had to validate and save changes each time you added a new row.
The new Add Row functionality is done by using a new JavaScript function.

javascript:addRow();

You can find the function’s invocation in the ADD button, as the URL target.
After the initial rendering of a tabular form, APEX will remove that new row from the DOM and put it in

a JavaScript variable. After clicking the ADD button, JavaScript will replace some of the substitution strings in
that variable (index, names, and so on) and add that row to the end of the table. If you want to add multiple
rows to a tabular form, the only thing you need to do is to click the button again.

Reduced Number of Processes
The addition of functionality to add new rows using client-side code brings the additional benefit of
reducing the number of processes required for DML. Earlier versions of APEX required four submit
processes for DML.

Other Features
APEX 4 also introduced a couple of other neat features. One is protection against lost updates when you
re-sort or paginate your data. Another is the ability to add new rows to a form without making a round-trip to
the server for each row added. Finally, the overall number of processes has been reduced.

Lost Update Protection
APEX 4 will inform you about the changes you made and about the risk of losing your changes if you
try to change the sorting of the tabular form or try to paginate the tabular form. Figure 4-16 shows this
warning message.

Figure 4-16. Tabular form—lost update protection

Chapter 4 ■ tabular Forms

161

•	 ApplyMRU process for saving data on submit

•	 ApplyMRU process for saving data after adding a new row

•	 ApplyMRD process for deleting of data

•	 AddRow process for adding one or multiple rows

APEX 4 requires only two of these processes. Only one MRU process is now needed because new rows
are no longer added using server-side code. For the same reason, the Add Row process is redundant and has
been removed.

Features in APEX 4.1/4.2
As mentioned earlier, APEX 4.1 and 4.2 introduced a couple of significant changes.

•	 Declarative validations using the :column syntax to reference single column values
per row

•	 Declarative processing using the :column syntax to reference single column values
per row

•	 New variables available for the processing

•	 Referencing tabular forms selectors in dynamic actions

•	 Removing numerous bugs related to tabular form validations and validation error
message display

New Validation Types for Tabular Forms
As of APEX 4.1/4.2, you can use declarative validations and processes using the :column syntax, just as you
do in normal PL/SQL processing.

•	 New validation types for tabular forms

•	 New process types for tabular forms

There are several new validation types for tabular forms, and you can view them in Figure 4-17.

Chapter 4 ■ tabular Forms

162

One of the most useful validations is PL/SQL Function (returning Error Text). I will use this one to
demonstrate how the validation feature works.

Declarative Validations Using the :column Syntax New Process Type
Often it is necessary to compare different column values in the validation process of a tabular form prior
to submitting the data and running into possible constraint errors. Prior to APEX 4.1/4.2, you had to write
custom code. As of APEX 4.1/4.2, this is not required. You can handle the tabular forms the same way you
handle a single-record form. In the following example, I will demonstrate how to validate the salary for a job
role called CLERK, which shouldn’t exceed 3,000.

In the Page Designer, switch to the Processes tab and create a validation using a right-click. Name the
validation Validate Clerk Salary – Figure 4-18.

Figure 4-17. Tabular form validations—column string comparison

Chapter 4 ■ tabular Forms

163

For the validation you will use a simple PL/SQL block, as shown in Listing 4-2.

Listing 4-2. Validation PL/SQL Block

DECLARE
 v_error VARCHAR2 (4000);
BEGIN
 IF :job = 'CLERK' AND :sal > 3000
 THEN
 v_error := 'Salary may not exceed 3000 for the job CLERK.';
 END IF;

 RETURN v_error;
END;

This PL/SQL block is using column syntax for referencing tabular form columns as a bind variable,
identical to the :P1_ITEM syntax.

You will also need to make a couple of other changes to set up the validation for the tabular form.
Figure 4-19 shows how this needs to be done.

 1. Select the tabular form.

 2. Determine the button starting the validation.

 3. Set the execution scope for the validation.

 4. Reference the columns job and sal within the PL/SQL block, applying the bind
variable syntax to it.

Figure 4-18. Tabular form validations

Chapter 4 ■ tabular Forms

164

 ■ Caution the execution scope will be either for created and modified rows or for all submitted rows visible
in the tabular form region.

If you save the changes, modify the salary for one of the records in the tabular form to exceed the limit,
and try to save the changes, a validation error will be displayed, as shown in Figure 4-20.

Figure 4-19. Tabular form validations using the :column syntax

Chapter 4 ■ tabular Forms

165

Isn’t that just great? Almost no custom coding is required using the apex_application.g_fxx syntax.
The code validating tabular forms is now as transparent as for the rest of the application code. You don’t
need to understand the apex_application package logic anymore and count the column or be careful about
the column order. This is simple and easy to debug.

Declarative Processing Using the :column Syntax New Process Type
It is logical to assume that if column syntax works for the validations, it should work for the processing as
well. As you might notice for the validations, only the right assignment to the corresponding tabular form
was required to make a PL/SQL function work. This is the same thing with the On Submit processes.

In the following example, I will demonstrate how to do some additional custom processing. You will
write some code to extend the process success message.

In the Page Designer, switch to the Processes tab and create a new On Submit process using a right-
click. Name the process Show Process Details – Figure 4-21. The sequence order of the process should be
lower than the automated MRU/MRD process sequence. You will use an existing application item T_MESSAGE
to store and display process messages.

Figure 4-20. Tabular form validation message

Chapter 4 ■ tabular Forms

166

For the process you will use a simple PL/SQL block, as shown in Listing 4-3. The purpose of this block is
to acquire information of the modified and added records.

Listing 4-3. On Submit Process PL/SQL Block

DECLARE
 v_message VARCHAR2 (4000);
BEGIN
 IF :empno IS NOT NULL
 THEN
 v_message := 'Record ' || :empno || ' has been modified.' || '
';
 ELSE
 v_message :=
 'New record for the Employee: '
 || :ename
 || ' and Job: '
 || :job
 || ' added.'
 || '
';
 END IF;

 :t_message := v_message;
END;

You will also need to make a couple of other changes to set up the process for the tabular form.
Figure 4-22 shows how this needs to be done.

 1. Select the tabular form.

 2. Determine the button starting validation.

 3. Set the execution scope for the process.

Figure 4-21. Tabular form process—created by the wizard

Chapter 4 ■ tabular Forms

167

Figure 4-22. Tabular form validations using the :column syntax

Once you are done, you can save the changes and modify and add a couple of records in the tabular
form. After saving the changes, a success message, similar to the one in Figure 4-23, should be displayed.

Chapter 4 ■ tabular Forms

168

 ■ Caution as you can see, there is almost no reason to use custom coding anymore. You should start using
these awesome new features in the future development of your applications.

New Variables Available for the Processing
As of APEX 4.1/4.2, you can use a couple of new variables for the PL/SQL processing.

•	 APEX$ROW_SELECTOR

•	 APEX$ROW_STATUS

•	 APEX$ROW_NUM

I will use the existing examples and extend them to demonstrate the possible usage of these variables.

Variable APEX$ROW_SELECTOR
APEX$ROW_SELECTOR is used for locating and fetching APEX delete check box item checked values. The value
will be X for rows where the row selector has been checked.

Variable APEX$ROW_STATUS
APEX$ROW_STATUS is used for holding a value that indicates what is happening to the rows in question. The
column holds U (update) for updating existing rows, D (delete) for the rows marked for deletion (including
new rows that were added but not touched), and the value C (create) for rows to be inserted.

Figure 4-23. Validation result

Chapter 4 ■ tabular Forms

169

Variable APEX$ROW_NUM
APEX$ROW_NUM gives (as the name already says) the corresponding row number of the processed row.

I will modify the process for tabular forms slightly and show how these variables can be used in a PL/
SQL on Submit process to acquire information about the modified and added records – Listing 4-4.

Listing 4-4. On Submit Process PL/SQL Block, Modified to Use the Variables

DECLARE
 v_message_update VARCHAR2 (4000) := 'Update Process: ' || '
';
 v_message_add VARCHAR2 (4000) := 'Insert Process: ' || '
';
 v_message_delete VARCHAR2 (4000) := 'Delete Process: ' || '
';
BEGIN
 IF :apex$row_selector = 'X'
 THEN
 v_message_delete :=
 'Record with EMPNO ' || :empno || ' has been deleted.'
 || '
';
 ELSIF :apex$row_status = 'U'
 THEN
 v_message_update :=
 'Record with EMPNO ' || :empno || ' has been modified.'
 || '
';
 ELSIF :apex$row_status = 'C'
 THEN
 v_message_add :=
 'New record for the Employee: '
 || :ename
 || ' and Job: '
 || :job
 || ' added.'
 || '
';
 END IF;

 :t_message := v_message_update || v_message_add || v_message_delete;
END;

The goal is to find out the employee number of the records deleted from the form. Also, you want to
distinguish between the records updated and the new created records and display this information in the
success message.

After modifying the On Submit process’s Show Process Details settings, you can test the process and
modify/add/delete some records in the tabular form. The result will be displayed similar to Figure 4-24.

Chapter 4 ■ tabular Forms

170

Tabular Forms and Dynamic Actions
As of APEX 4.1/4.2, you can reference tabular form selectors in dynamic actions. This gives you a couple
of new options while creating user-friendly forms. I will explain two methods in the section “Interesting
Techniques” and provide corresponding examples.

Using jQuery Selector
Every column in a tabular form can be considered an array, which is a set of items sharing the same name
and having a unique ID. If you want to create user-friendly forms, you need to use dynamic actions.
The dynamic actions will usually react on the following:

•	 Change of an element

•	 Region refresh

•	 Pagination

•	 Some other event

If working with tabular forms, you will need some help. The best thing is to use Firebug or a similar
plugin for your browser. With this plugin, you can inspect the tabular form elements, as shown in Figure 4-25.

Figure 4-24. Tabular form On Submit process using variables

Chapter 4 ■ tabular Forms

171

Figure 4-25. Firebug extension, inspecting column for salary called Sal

This way, you can find out the name or the ID of a column or for a particular item. For example, you
can use the name of the column to start a dynamic action that could be triggered after changing a jQuery
selector.

input[name="f07"],select[name="f08"]

That means if any of the elements (items) for the column Sal are changed, the dynamic action should fire.
In the Dynamic Action ➤ Action menu, you can reference that selector and get the other attribute

values from it by using the following:

this.triggeringElement.id

or the following to do something in the further processing:

this.triggeringElement.value

If you need to reference any other column other than the triggering element column, you can use the
following syntax to get the value of the column Ename:

$('#' + 'f03_' + this.triggeringElement.id.substring(4)).val()

Chapter 4 ■ tabular Forms

172

Binding Events
Sometimes you will need to do an operation prior to or after a region refresh. There are two standard events
contained in the list of dynamic action events: After or Before Refresh (of a region). Although pagination
in a report with a partial-page refresh set to Yes is also refreshing a report, such pagination will not count
as being a refresh. The action you specify to run after a region refresh will probably run before the region is
refreshed. If you have a case like that, you will need to bind a function to the Before or After Refresh event;
see the example for cascading select lists for more details. The following are the steps :

 1. Assign a static ID to the affected region.

 2. Create a dynamic action and execute JavaScript code.

 3. Use the following call to bind a function to the Before or After Refresh event:

apex.jQuery('#EMP_TABULAR_FORM').bind("apexafterrefresh", function () {
//do something
})

Looping Through a Tabular Form Array and Changing/Adding Attributes
Using jQuery in dynamic actions, you can change the attributes of the tabular form elements easily –
Figure 4-26. You can loop through an array using a statement like this:

$("[name='f03']").each(function(i){
var obj_id = $("[name='f03']").get(i).id;

//do something

});

Chapter 4 ■ tabular Forms

173

Adding or changing element attributes is quite easy and can be done with a statement similar to these
two statements (disabling and unchecking a check box column):

$('#'+obj_id).attr("disabled", true)
$('#'+obj_id).attr("checked", false)

So, the complete script that loops through a tabular form and disables and unchecks the check box
column is as follows:

$("[name='f03']").each(function(i){
var obj_id = $("[name='f01']").get(i).id;

$('#'+obj_id).attr("disabled", true)
$('#'+obj_id).attr("checked", false)

});

Figure 4-26. Looping through an array and changing attributes

Chapter 4 ■ tabular Forms

174

Custom Coding in Tabular Forms
For a standard tabular form, custom coding isn’t required anymore. As of APEX 4.1/4.2, all the necessary
standard processes are available, and there is no need to do the custom coding. As already indicated, you
will need to know how to write your own code in case you have more than one tabular form per page. The
following sections help you write custom code to cover some common use cases that you will encounter
while doing APEX development.

Processing the Correct Rows
Sometimes you have to write custom code for deleting rows from a tabular form. If you are faced with a
situation in which you need to do that, it’s important to be sure that your custom code actually does delete
the correct rows. You can put the Checkbox item to good use in identifying those rows to delete or to
otherwise process in some way. You must be careful, though, to write your code correctly.

Listing 4-5 shows a common mistake made in deleting checked rows. The code will delete the right
number of rows but not those you checked. The code will actually delete the rows starting from the first row
in the table and ending with n (representing the number of rows checked).

Listing 4-5. Deleting Checked Rows, a Common Mistake

BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP
 DELETE FROM emp
 WHERE empno = apex_application.g_f02 (i);
 -- g_f02 is the hidden column containing
 -- the primary key of the EMP table (empno)
 END LOOP;
END;

Listing 4-6 shows how the correct code should look. Because several procedures are now used, they
have been bundled together into a package. You can then simply call this package in your processes or
validations.

The package in Listing 4-6 implements a couple of small procedures in order to make the overall
processing easier. The goal is to avoid overloading the page and application with loose PL/SQL blocks.

Listing 4-6. Deleting Checked Rows, the Correct Procedure

 CREATE OR REPLACE PACKAGE tab_form_emp_pkg
 AS
 PROCEDURE disable_foreign_constraints;

 PROCEDURE enable_foreign_constraints;

 PROCEDURE restore_tables;

 PROCEDURE delete_emp_row (p_message OUT VARCHAR2);
 END tab_form_emp_pkg;
 /

Chapter 4 ■ tabular Forms

175

CREATE OR REPLACE PACKAGE BODY tab_form_emp_pkg
AS
 PROCEDURE disable_foreign_constraints
 IS
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' DISABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END disable_foreign_constraints;

 PROCEDURE enable_foreign_constraints
 IS
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' ENABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END enable_foreign_constraints;

 PROCEDURE restore_tables
 IS
 -- We will use this process to restore our date after testing.
 BEGIN
 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' DISABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;

Chapter 4 ■ tabular Forms

176

 EXECUTE IMMEDIATE 'TRUNCATE TABLE dept DROP STORAGE';

 EXECUTE IMMEDIATE 'TRUNCATE TABLE emp DROP STORAGE';

 INSERT INTO dept
 SELECT *
 FROM dept_bkp;

 INSERT INTO emp
 SELECT *
 FROM emp_bkp;

 COMMIT;

 FOR c IN (SELECT constraint_name, table_name
 FROM user_constraints
 WHERE table_name IN ('EMP', 'DEPT')
 AND constraint_type = 'R'
 ORDER BY table_name)
 LOOP
 EXECUTE IMMEDIATE 'ALTER TABLE '
 || c.table_name
 || ' ENABLE CONSTRAINT '
 || c.constraint_name;
 END LOOP;
 END restore_tables;

 PROCEDURE delete_emp_row (p_message OUT VARCHAR2)
 IS
 v_row INTEGER;
 v_count INTEGER := 0;
 BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP
 v_row := apex_application.g_f01 (i);

 DELETE FROM emp
 WHERE empno = apex_application.g_f02 (v_row);

 -- g_f02 is the hidden column containing
 -- the primary key of the EMP table (empno)
 v_count := v_count + 1;
 END LOOP;

 p_message := v_count || ' row(s) deleted.';
 END delete_emp_row;
END tab_form_emp_pkg;
/

Chapter 4 ■ tabular Forms

177

Figure 4-27. Tabular form—deleting records using custom process

Let’s work through an explanation of Listing 4-6. You need to do the following preparations for a test:

•	 Create an application item T_MESSAGE and set the session state protection to
Restricted; it may not be set from the browser. This application item will be used
to display messages. In a case of an ApplyMRD process, you have the substitution
strings like #MRD_COUNT# or #MRI_COUNT# or #MRU_COUNT#. For a custom process, you
need a new variable.

•	 Set the existing ApplyMRD process to Conditional Never so it doesn’t run.

•	 Create a new On Submit Process PL/SQL anonymous block. Name it ApplyMRD
Manual and use the following code:

BEGIN
 tab_form_emp_pkg.disable_foreign_constraints;
 tab_form_emp_pkg.delete_emp_row (:t_message);
END;

•	 Use the substitution string for the success message.

&T_MESSAGE.

•	 Make the process conditional so it runs on condition type PL/SQL Expression.

:REQUEST IN ('MULTI_ROW_DELETE')

•	 Confirm and create a process.

 ■ Caution as you can see, some additional procedures to disable constraints for referential integrity were
used. this is for testing purposes only because I am talking here about an isolated case. In the real world, you
would create a validation to check whether such constraints exist.

You can now test this process and try to delete a couple of rows to see what you get. Figure 4-27 shows
the selected rows to delete, and Figure 4-28 shows the result.

Chapter 4 ■ tabular Forms

178

Run the following block of code in SQL Workshop to restore the EMP table:

BEGIN
 tab_form_emp_pkg.restore_tables;
END;

Data Integrity
As already mentioned, there is much more work to do if you write your own custom processes. Automatic
processes created using the Tabular Form Wizard ensure data integrity, and you would need to do the same
kind of thing manually in your own code. Automatic processes may display confusing errors, but they are
secure. It is not easy to write all of that code yourself since there are many details you need to think of. My goal
now is to show you how to do that and make you aware of the most important things you should keep in mind.

Checksum
APEX 4’s Tabular Form Wizard creates a hidden checksum item for every row in a tabular form. This
checksum will be used for later automatic MRU and MRD processes. Using the Firebug extension of Firefox,
you can see that hidden item if you investigate the generated HTML, as shown in Figure 4-29.

Figure 4-29. Tabular form—checksum

Figure 4-28. Tabular form—the results

Chapter 4 ■ tabular Forms

179

When talking about checksum and data integrity, you need to keep several issues in mind.

•	 If you want to run your custom code, you will need to do a check and find out
whether the data in a row has changed. It doesn’t make sense to do an update on a
row that hasn’t changed.

•	 If the data has changed, you will need to compare the checksum of the original data
you loaded while rendering the page and the checksum of the current data in the
table for each row.

•	 If a row has changed (if the old checksum in the g_fcs array is not the same as the
new checksum of the tabular form rows you calculate), you will need to do an update.

•	 However, you should be able to update only if the original data in the table hasn’t
been changed since the last fetch (old checksum in the g_fcs array is not the same
as the new checksum of the row in the table you need to calculate). Otherwise, there
should be an error displayed, and you should stop the processing.

Validations
Following the rules outlined in the previous section, you can start extending your package by adding some
new functions.

•	 The first function will compare the original checksum with the new generated
checksum for each row in the tabular form. It will return a Boolean. (It will return
FALSE when the data in the row has changed.)

•	 The second function will compare the original checksum with the checksum of the
data in the table for each row where the first function returns FALSE. It will return a
Boolean as well. (It will return FALSE when the data in the table has changed.)

•	 Finally, the third function will be a validation function returning an error message
in case some of the rows you are trying to update have been changed by other users.
The second function returns FALSE.

Let’s extend the package tab_form_emp_pkg by adding the first function described, shown in Listing 4-7.

Listing 4-7. Checksum—Function 1

FUNCTION compare_checksum_change (p_array IN NUMBER)
 RETURN BOOLEAN;

FUNCTION compare_checksum_change (p_array IN NUMBER)
 RETURN BOOLEAN
 IS
 BEGIN
 IF apex_application.g_f02 (p_array) IS NOT NULL
 THEN
 IF apex_application.g_fcs (p_array) <>
 wwv_flow_item.md5 (apex_application.g_f02 (p_array),
 apex_application.g_f03 (p_array),
 apex_application.g_f04 (p_array),
 apex_application.g_f05 (p_array),
 apex_application.g_f06 (p_array),
 apex_application.g_f07 (p_array),

Chapter 4 ■ tabular Forms

180

 apex_application.g_f08 (p_array),
 apex_application.g_f09 (p_array),
 apex_application.g_f11 (p_array)
)
 THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 ELSE
 RETURN TRUE;
 END IF;
END compare_checksum_change;

 ■ Caution as already mentioned, the items of type simple Checkbox and popup Key loV will reserve two
arrays for one item. this is the reason for the gap between the g_f09 and g_f11 arrays.

After that, add the second function, shown in Listing 4-8.

Listing 4-8. Checksum—Function 2

FUNCTION compare_checksum_table (p_array IN NUMBER)
 RETURN BOOLEAN;

FUNCTION compare_checksum_table (p_array IN NUMBER)
 RETURN BOOLEAN
 IS
 v_empno NUMBER;
 v_emp_checksum VARCHAR2 (40);
 BEGIN
 IF apex_application.g_f02 (p_array) IS NOT NULL
 THEN
 v_empno := apex_application.g_f02 (p_array);

 SELECT wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno,
 valid
)
 INTO v_emp_checksum
 FROM emp
 WHERE empno = v_empno;

 IF apex_application.g_fcs (p_array) <> v_emp_checksum
 THEN

Chapter 4 ■ tabular Forms

181

 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 ELSE
 RETURN TRUE;
 END IF;
END compare_checksum_table;

As the last function, you can now create a validation function returning VARCHAR2, which you will then
call on the page, as shown in Listing 4-9.

Listing 4-9. Checksum—Function 3

 FUNCTION validate_data_integrity
 RETURN VARCHAR2;

 FUNCTION validate_data_integrity
 RETURN VARCHAR2
 IS
 v_error VARCHAR2 (4000);
 BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 IF NOT compare_checksum_change (i)
 –- we changed the row
 AND NOT compare_checksum_table (i)
 -– however the table data has changed
 THEN
 v_error :=
 v_error
 || '
'
 || 'Row '
 || i
 || ': The version of the data in the '
 || 'table has been change since the last page '
 || 'rendering. Click <a href="f?p='
 || v ('APP_ID')
 || ':'
 || v ('APP_PAGE_ID')
 || ':'
 || v ('APP_SESSION')
 || '">here to reload the page.';
 END IF;
 END LOOP;
 v_error := LTRIM(v_error, '
');
 RETURN v_error;
 END validate_data_integrity;

You can test this code by creating a page validation of type PL/SQL Function (returning Error Text),
using sequence 1 for the validation and naming the validation Check Data Integrity. Set the validation to
Unconditional and enter the required call to the package procedure. Here is the PL/SQL code for the page
validation:

Chapter 4 ■ tabular Forms

182

You don’t need to use the technique described in this section in a standard tabular form. A similar
message will be generated automatically in a standard form. You need the technique and code in this section
only in a manually generated tabular form.

Manual Tabular Forms
As long as APEX doesn’t allow the creation of multiple standard tabular forms per page, you will be faced
with a requirement to create a workaround for those cases in which you need to manage one master table
with multiple detail tables.

Let’s look at how to write the code for a manual tabular form. You will use only the following item types:

•	 apex_item.hidden

•	 apex_item.checkbox

•	 apex_item.text

You will also use the apex_item package and parse parameters for the following:

•	 Column array

•	 Column value

•	 Column size

•	 Column max length

BEGIN
 RETURN tab_form_emp_pkg.validate_data_integrity;
END;

Next, change one of the records using some other tool such as SQL Workshop and commit your
changes. Go to the tabular form, change the same record, and submit the change. You should see an error
message similar to that in Figure 4-30.

Figure 4-30. Tabular form—data integrity validation error

Chapter 4 ■ tabular Forms

183

Create a second blank page (page 2) and call it tabular form 2. After that, create a Report region for your
manual tabular form; it is a classic report based on a SQL statement. You will need to use a subquery in the
region source. In the subquery you will create one empty row first to be able to enter new rows upon request.
You will also need to generate a checksum for the rows that you will use later to check which rows have
changed and run an update for them. Listing 4-10 shows the SELECT statement along with its subquery.

Listing 4-10. Manual Tabular Form—SQL

SELECT apex_item.checkbox (1, '#ROWNUM#') empno,
 apex_item.hidden (2, empno)
 || apex_item.text (3, ename, 20, 20) ename,
 apex_item.text (4, job, 10, 10) job,
 apex_item.text (5, mgr, 5, 5) mgr,
 apex_item.text (6, hiredate, 12, 12) hiredate,
 apex_item.text (7, sal, 6, 6) sal,
 apex_item.text (8, comm, 6, 6) comm,
 apex_item.text (9, deptno, 4, 4)
 || apex_item.hidden (10, checksum) deptno
 FROM (SELECT NULL empno, NULL ename, NULL job,
 NULL mgr, NULL hiredate,
 NULL sal, NULL comm, NULL deptno,
 NULL checksum
 FROM DUAL
 WHERE :request IN ('ADD')
 UNION ALL
 SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno,
 wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno
) checksum
 FROM emp)

The SELECT statement for the empty column will run only if REQUEST is set to the specified value.

 ■ Caution Change the column type to standard report Column, or in the page Designer, select plain text
and set escape special characters to “No”. otherwise, you will see html code in your report. the need to make
this change is new in apeX 4 and has to do with security and cross-site scripting.

Chapter 4 ■ tabular Forms

184

The next step is to create four buttons as follows:

•	 A SUBMIT button to submit the page.

•	 A MULTI_ROW_DELETE button to delete rows. The target of this button will be this URL:

javascript:apex.confirm(htmldb_delete_message,'MULTI_ROW_DELETE');

•	 An ADD button to add new rows. This button will also submit the page.

•	 The following code needs to be added to the page’s JavaScript.Function and
Global Variable Declaration attributes.

var htmldb_delete_message='"DELETE_CONFIRM_MSG"';

•	 A CANCEL button. This button will redirect to the same page. Each of these buttons
will be positioned in the Report region. You will also need to create at least two
branches.

The minimum two branches you need to create are the following:

•	 On Submit – After Processing

•	 Condition: When Button Pressed “ADD”

•	 Redirect to Page 2

•	 include process success message is checked

•	 Element Sequence should be set to 5

•	 On Submit – After Processing

•	 This branch is Unconditional

•	 Redirect to Page 2

•	 include process success message is checked

•	 Element Sequence should be set to 10

The first branch will submit the page and redirect to the same page.
You are now ready to write the code you will need for processing. You will create two processes:

•	 ApplyMRU: This process updates existing new rows. This process will be conditional
using the PL/SQL expression :REQUEST IN ('ADD', 'SUBMIT').

•	 delete_emp_row, from Listing 4-6: This process and its associated package enable
you to delete rows. Since you already know how to use a checksum to ensure data
integrity, I will not repeat that part in this example. The process code will be as
follows:

BEGIN
 tab_form_emp_pkg.disable_foreign_constraints;
 tab_form_emp_pkg.delete_emp_row (:t_message);
END;

Chapter 4 ■ tabular Forms

185

Finally, you need to add a validation.

•	 Validate Commission of type PL/SQL Function (returning Error Text): This is a
page-level validation ensuring that you can enter a commission value only for the
department SALES, which is department 30. This validation will be unconditional.

Listing 4-11 shows the procedure for updating and the validation in your package.

Listing 4-11. Manual Tabular Form—Update and Validation Processes

PROCEDURE save_emp_custom (p_message OUT VARCHAR2);

FUNCTION validate_emp_comm
 RETURN VARCHAR2;

PROCEDURE save_emp_custom (p_message OUT VARCHAR2)
IS
 v_ins_count INTEGER := 0;
 v_upd_count INTEGER := 0;
BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 BEGIN
 IF apex_application.g_f02 (i) IS NOT NULL
 THEN
 IF apex_application.g_f10 (i) <>
 wwv_flow_item.md5 (apex_application.g_f02 (i),
 apex_application.g_f03 (i),
 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i)
)
 THEN
 UPDATE emp
 SET ename = apex_application.g_f03 (i),
 job = apex_application.g_f04 (i),
 mgr = apex_application.g_f05 (i),
 hiredate = apex_application.g_f06 (i),
 sal = apex_application.g_f07 (i),
 comm = apex_application.g_f08 (i),
 deptno = apex_application.g_f09 (i)
 WHERE empno = apex_application.g_f02 (i);

 v_upd_count := v_upd_count + 1;
 END IF;
 ELSE
 INSERT INTO emp
 (ename,
 job,
 mgr,

Chapter 4 ■ tabular Forms

186

 hiredate,
 sal,
 comm,
 deptno
)
 VALUES (apex_application.g_f03 (i),
 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i)
);

 v_ins_count := v_ins_count + 1;
 END IF;
 EXCEPTION
 WHEN OTHERS
 THEN
 p_message := p_message || SQLERRM;
 END;
 END LOOP;

 IF v_ins_count > 0 OR v_upd_count > 0
 THEN
 p_message :=
 p_message
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count
 || ' row(s) updated.';
 END IF;
EXCEPTION
 WHEN OTHERS
 THEN
 p_message := SQLERRM;
END save_emp_custom;

FUNCTION validate_emp_comm
 RETURN VARCHAR2
IS
 v_message VARCHAR2 (4000);
BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 IF apex_application.g_f09 (i) <> 30
 AND apex_application.g_f08 (i) IS NOT NULL
 THEN

Chapter 4 ■ tabular Forms

187

 v_message :=
 v_message
 || '
'
 || 'Commission is allowed for the sales department only.'
 || ' (Row '
 || i
 || ')';
 END IF;
 END LOOP;

 v_message := LTRIM (v_message, '
');
 RETURN v_message;
END validate_emp_comm;

The update/insert process will loop through the array of EMPNO (g_f02) and, for all rows containing
the primary key, compare the original checksum with the new calculated checksum. If there is a difference,
it will update the corresponding rows and update the counter. For the added rows where the array is NULL, it
will insert a new row. You will use this PL/SQL block to start that process and put &T_MESSAGE. in the Process
Success Message section:

BEGIN
 tab_form_emp_pkg.save_emp_custom (:t_message);
END;

The validation process is fairly simple. It will also loop through the array of EMPNO (g_f02) and check
whether there is an entry for the COMM column (g_f08) where DEPTNO (g_f09) is different from SALES
(value 30). You will use this PL/SQL block for the validation:

BEGIN
 RETURN tab_form_emp_pkg.validate_emp_comm;
END;

You can now test your form to confirm that it works as expected. Figures 4-31 through 4-34 will walk you
through the steps in the test.

Figure 4-31. Click the Add Row button to add a new row at the top of the form

Chapter 4 ■ tabular Forms

188

 ■ Caution In a manual tabular form, changes are lost after a validation error. If you want to keep the
changes, you will need to display the validation error on an error page or create a workaround using collections.

Tabular Forms and Collections
Collections are one of the greatest features of APEX. An APEX collection is a set of tables, packaged
procedures, and functions for maintaining session-related data. You can use a collection to create, modify,
and delete your own datasets without having to touch the original source. Once the processing is done, you
can decide either to save your changes to the source (insert, update, or delete) or to discard your changes.
If you log off or somehow lose your session, you will not be able to retrieve that data again.

Figure 4-34. Notice the error message from entering the invalid value

Figure 4-33. Try entering an invalid commission value

Figure 4-32. Submit the form and notice the success message

Chapter 4 ■ tabular Forms

189

Although a collection can accept almost an unlimited amount of data, it wouldn’t make sense to use
one for loading hundreds or even thousands of records. Collections are designed to serve smaller datasets.

Creating a Collection
The goal here is to show how to work with collections using tabular forms. This section will demonstrate a
couple of possible ways and techniques to put collections to use. Specifically, you will do the following:

•	 Create a collection containing all employees of one department

•	 Create a couple of alternate processes you could use for updating collections from a
tabular form

•	 Create a process for updating the original source using collection data

You will continue with the methods used earlier in this chapter and keep all your code in a package.
You will use APEX regions and processes only to make calls into your package code.

First, create a procedure and a view. Listing 4-12 shows a procedure for creating a collection containing
all employees of one department. Also in the listing is a view created upon that collection.

The need to use a collection often involves a small portion of data such as a snapshot or a window.
For example, you might want to create a tabular form for modifying sales department records for only
department 30. Figure 4-35 shows such a window.

Figure 4-35. A window of data for department 30

Chapter 4 ■ tabular Forms

190

Listing 4-12. Procedure and View for a Tabular Form’s Collection

PROCEDURE create_emp_collection (p_deptno IN NUMBER,
 p_message OUT VARCHAR2);

PROCEDURE create_emp_collection (p_deptno IN NUMBER,
 p_message OUT VARCHAR2)
IS
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
BEGIN
 IF apex_collection.collection_exists (v_collection)
 THEN
 apex_collection.delete_collection (v_collection);
 p_message := 'Collection deleted.';
 END IF;

 apex_collection.create_collection_from_query
 (v_collection,
 'SELECT a.*, wwv_flow_item.md5(empno, ename, job, '
 || 'mgr, hiredate, sal, comm, deptno, valid) '
 || 'FROM EMP a WHERE deptno = '
 || p_deptno
);
 p_message := p_message || '
' || 'Collection created.';
 p_message := LTRIM (p_message, '
');
 END create_emp_collection;

 CREATE OR REPLACE VIEW emp_coll_v
 AS
 SELECT seq_id, c001 empno, c002 ename,
 c003 job, c004 mgr, c005 hiredate,
 c006 sal, c007 comm, c008 deptno,
 c009 valid, c010 checksum, c011 delete_flag
 FROM apex_collections
 WHERE collection_name = 'EMP_DEPT';

The procedure will check whether the collection exists. If the collection does exist, the procedure will
delete the existing collection and create a new one based on the input. Otherwise, the procedure creates a
new collection.

The view will make it easier to deal with the collection. You will not need to remember the member
number to insert, update, or delete a row. The view takes care of the member number for you.

You can now start creating a new page, which will be page 3. Use a standard tabular form based on the
view emp_coll_v. Include all the columns. The primary key will be the combination of the SEQ_ID and EMPNO
columns. Make all columns editable. Make the region title Tabular Form Collection. After creating the page,
change the item type for the columns CHECKSUM and DELETE_FLAG to Hidden Column (Saves State).

Chapter 4 ■ tabular Forms

191

You will also need to edit the generated SQL for the tabular form and add a condition as follows:

WHERE delete_flag IS NULL

This condition will exclude those records from the collection that are marked as deleted.
You will create a select list within the tabular form region: P3_DEPTNO. This select list will show a list of

available departments based on the following SQL query:

SELECT dname, deptno
 FROM dept

You will also need a button displayed after the select list (create a button displayed among this region’s
items), which you will use to trigger the process. Name this button GO and select the action Submit Page.

Now you can start creating a page process (Create Collection) on submit for creating a collection. You
will use the following PL/SQL block for this:

BEGIN
 tab_form_emp_pkg.create_emp_collection (:p3_deptno, :t_message);
END;

Make the block conditional to run based on the following PL/SQL expression:

:REQUEST IN ('GO')

Do not forget to code the following as the success message of the process:

&T_MESSAGE.

Finally, everything is set for testing what you have done. If you select the sales department from the list
and click the GO button, you should get a result similar to the one shown in Figure 4-36.

Figure 4-36. Tabular form on APEX collection

Chapter 4 ■ tabular Forms

192

The question now is, how do you update your collection? The following are three possible methods for
updating the collection:

•	 Instead of the trigger method

•	 Writing packaged procedures for updating collections

•	 Using the on-demand process and AJAX for collection updates

The sections that follow describe the second and third methods. The first method doesn’t work even
though in most of the cases it is the first choice.

Writing Packaged Update Procedures
Before you start writing packaged procedures, you should delete the automatic DML processes that the
wizard created for you on page 3 of your application. You will need to create two procedures in your package.
These procedures are similar to those you wrote for the manual tabular forms. Add the code shown in
Listing 4-13 to the package.

Listing 4-13. Update and Delete Procedures for Tabular Form Collections

PROCEDURE save_emp_coll_custom (p_message OUT VARCHAR2);

PROCEDURE delete_emp_coll_custom (p_message OUT VARCHAR2);

PROCEDURE save_emp_coll_custom (p_message OUT VARCHAR2)
IS
 v_ins_count INTEGER := 0;
 v_upd_count INTEGER := 0;
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
BEGIN
 FOR i IN 1 .. apex_application.g_f02.COUNT
 LOOP
 BEGIN
 IF apex_application.g_f02 (i) IS NOT NULL
 THEN
 IF apex_application.g_f12 (i) <>
 wwv_flow_item.md5 (apex_application.g_f03 (i),
 apex_application.g_f04 (i),
 apex_application.g_f05 (i),
 apex_application.g_f06 (i),
 apex_application.g_f07 (i),
 apex_application.g_f08 (i),
 apex_application.g_f09 (i),
 apex_application.g_f10 (i),
 apex_application.g_f11 (i)
)
 THEN
 apex_collection.update_member
 (p_collection_name => v_collection,
 p_seq => apex_application.g_f02(i),
 p_c001 => apex_application.g_f03(i),
 p_c002 => apex_application.g_f04(i),

Chapter 4 ■ tabular Forms

193

 p_c003 => apex_application.g_f05(i),
 p_c004 => TO_NUMBER(apex_application.g_f06(i)),
 p_c005 => TO_DATE(apex_application.g_f07(i)),
 p_c006 => TO_NUMBER(apex_application.g_f08(i)),
 p_c007 => TO_NUMBER(apex_application.g_f09(i)),
 p_c008 => TO_NUMBER(apex_application.g_f10(i)),
 p_c009 => apex_application.g_f11(i),
 p_c010 => apex_application.g_f12(i),
 p_c011 => apex_application.g_f13(i));
 v_upd_count := v_upd_count + 1;
 END IF;
 ELSE
 apex_collection.add_member
 (p_collection_name => v_collection,
 p_c001 => emp_seq.NEXTVAL,
 p_c002 => apex_application.g_f04(i),
 p_c003 => apex_application.g_f05(i),
 p_c004 => TO_NUMBER(apex_application.g_f06(i)),
 p_c005 => TO_DATE(apex_application.g_f07(i)),
 p_c006 => TO_NUMBER(apex_application.g_f08(i)),
 p_c007 => TO_NUMBER(apex_application.g_f09(i)),
 p_c008 => TO_NUMBER(apex_application.g_f10(i)),
 p_c009 => apex_application.g_f11(i)
);
 v_ins_count := v_ins_count + 1;
 END IF;
 EXCEPTION
 WHEN OTHERS
 THEN
 p_message := p_message
 || '
'
 || 'Row: '
 || i
 || ' > '
 || SQLERRM;
 p_message := LTRIM (p_message, '
');
 END;
 END LOOP;

 IF v_ins_count > 0 OR v_upd_count > 0
 THEN
 p_message :=
 p_message || '
'
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count
 || ' row(s) updated.';
 END IF;
 p_message := LTRIM (p_message, '
');
EXCEPTION
 WHEN OTHERS

Chapter 4 ■ tabular Forms

194

 THEN p_message := SQLERRM;
END save_emp_coll_custom;

PROCEDURE delete_emp_coll_custom (p_message OUT VARCHAR2)
IS
 v_row INTEGER;
 v_count INTEGER := 0;
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
BEGIN
 FOR i IN 1 .. apex_application.g_f01.COUNT
 LOOP
 v_row := apex_application.g_f01 (i);
 apex_collection.update_member
 (p_collection_name => v_collection,
 p_seq => apex_application.g_f02(v_row),
 p_c011 => 'Y');
 v_count := v_count + 1;
 END LOOP;
 p_message := v_count || ' row(s) deleted.';
END delete_emp_coll_custom;

Before you can start testing this code, you will create two On Submit processes on application
page 3:

•	 Update Collection: The process for updating existing and adding new rows. This
process will be conditional using the following PL/SQL expression:

:REQUEST IN ('ADD', 'SUBMIT')

•	 Delete Collection Member: The process for flagging deleted records to Y. This
process will be conditional using this PL/SQL expression:

:REQUEST IN ('MULTI_ROW_DELETE')

You are going to use the following PL/SQL blocks to run these processes. The first PL/SQL block is for
the update process, and the second one is for the delete member process:

BEGIN
 tab_form_emp_pkg.save_emp_coll_custom (:t_message);
END;

BEGIN
 tab_form_emp_pkg.delete_emp_coll_custom (:t_message);
END;

And, of course, do not forget to put the following into the Process Success Message section:

&T_MESSAGE.

Chapter 4 ■ tabular Forms

195

You should get a similar result to the one shown in Figure 4-38.

Now, you will test your new version of page 3 and change one of the records in your tabular form.
Figure 4-37 shows a change being made.

Figure 4-38. A success message from making the change shown in Figure 4-37

Figure 4-37. Making a change to a tabular form built atop a collection

Updating a Collection via an AJAX-Callback Process
Since a collection is only a snapshot of the original data, you can use a different approach for an update. You
can create some JavaScript code and combine that with an AJAX-callback process to update the collection
when a single tabular form item changes. The validation of the collection values will be done only if you
decide to save the collection to the source. You will include only some basic validations for numeric and date
columns in this code.

The code you need to write for this demonstration consists of the following:

•	 One procedure for updating a collection member

•	 One dynamic action on the page

•	 One AJAX-callback process on the page

Chapter 4 ■ tabular Forms

196

 ■ Note this example is showing how to update one column: Job. You can easily modify the code and apply
the update on all the other columns.

Listing 4-14 shows the procedure code you will add to your package.

Listing 4-14. Tabular Form (Collection)—Update on Demand

PROCEDURE update_emp_coll_member (
 p_seq_id IN NUMBER,
 p_attribute_number IN NUMBER,
 p_attribute_value IN VARCHAR2
);
PROCEDURE update_emp_coll_member (
 p_seq_id IN NUMBER,
 p_attribute_number IN NUMBER,
 p_attribute_value IN VARCHAR2
)
IS
 v_collection VARCHAR2 (40) := 'EMP_DEPT';
 v_number NUMBER;
 v_date DATE;
 v_message VARCHAR2 (4000);
BEGIN
 IF p_seq_id IS NOT NULL
 THEN
 IF p_attribute_number IN (4, 6, 7, 8)
 THEN
 v_number := TO_NUMBER (p_attribute_value);
 ELSIF p_attribute_number IN (5)
 THEN
 v_date := TO_DATE (p_attribute_value);
 END IF;

 apex_collection.update_member_attribute
 (p_collection_name => v_collection,
 p_seq => p_seq_id,
 p_attr_number => p_attribute_number,
 p_attr_value => p_attribute_value
);
 END IF;
EXCEPTION
 WHEN OTHERS
 THEN
 v_message := SQLERRM;
 HTP.p (v_message);
END update_emp_coll_member;

You will need to create an AJAX-callback process on the page and call it updateCollection. The code is
a simple PL/SQL block.

Chapter 4 ■ tabular Forms

197

BEGIN
 tab_form_emp_pkg.update_emp_coll_member
 (TO_NUMBER (apex_application.g_x01),
 TO_NUMBER (apex_application.g_x02),
 apex_application.g_x03
);
END;

Finally, you will need a dynamic action on the page, and this dynamic action will react on a change of
the column Job. You will use the jQuery selector input[name="f05"]. It will execute JavaScript code;
Listing 4-15 shows the code.

Listing 4-15. JavaScript for Calling AJAX Process

var elem = '#' + this.triggeringElement.id;
var key = '#' + 'f02_' + this.triggeringElement.id.substring(4);
var key_val = $(key).val();
var elem_val = $(elem).val();

apex.server.process (
 "updateCollection",
 { x01: key_val,
 x02: 3,
 x03: elem_val},
 {success: function(data){
 alert (data);
 },
 dataType: "text"}
);

You are parsing three parameters here:

•	 The first one is the sequence number of the corresponding row.

•	 The second parameter is the attribute number of the column job in the collection.

•	 The third parameter is the actual value you changed.

Now run page 3 and try to update some of the rows in the tabular form, as shown in Figure 4-39.

Figure 4-39. Updating rows on the tabular form

Chapter 4 ■ tabular Forms

198

Saving Collection Data to the Table
The final step in this exercise is to save the collection data to the table. For that you will create the following:

•	 One validation function that will take care of the data integrity

•	 One procedure that will save the data back to the table

Listing 4-16 shows the code for these procedures.

Listing 4-16. Tabular Form—Saving Collection Data to the Source

FUNCTION validate_collection_data
 RETURN VARCHAR2;

PROCEDURE update_table_from_collection (
 p_deptno IN NUMBER,
 p_message OUT VARCHAR2
);

FUNCTION validate_collection_data
 RETURN VARCHAR2
IS
 v_message VARCHAR2 (4000);
 v_checksum VARCHAR2 (400);
BEGIN
 FOR c IN (SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno,

You can also activate Firebug and watch what happens at the browser level, as shown in Figure 4-40.
Activate Firebug and switch to the Console tab. After updating a column, you should see the process running
in Firebug. Opening that process will display more detail.

Figure 4-40. Watching the on-demand process from Firebug

Chapter 4 ■ tabular Forms

199

 valid, checksum, delete_flag
 FROM emp_coll_v
 WHERE checksum IS NOT NULL)
 LOOP
 SELECT wwv_flow_item.md5 (empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 comm,
 deptno,
 valid
)
 INTO v_checksum
 FROM emp
 WHERE empno = c.empno;

 IF c.checksum <> v_checksum
 THEN
 v_message :=
 v_message
 || '
'
 || 'Empno: '
 || c.empno
 || ': Snapshot too old.';
 END IF;
 END LOOP;

 v_message := LTRIM (v_message, '
');
 RETURN v_message;
END validate_collection_data;

PROCEDURE update_table_from_collection (
 p_deptno IN NUMBER,
 p_message OUT VARCHAR2
)
IS
 v_ins_count INTEGER := 0;
 v_upd_count INTEGER := 0;
 v_del_count INTEGER := 0;
 v_message VARCHAR2 (4000);
BEGIN
 FOR c IN (SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno,
 valid, checksum, delete_flag
 FROM emp_coll_v)
 LOOP
 IF c.delete_flag IS NULL AND c.checksum IS NOT NULL
 THEN
 IF c.checksum <>

Chapter 4 ■ tabular Forms

200

 wwv_flow_item.md5 (c.empno,
 c.ename,
 c.job,
 c.mgr,
 c.hiredate,
 c.sal,
 c.comm,
 c.deptno,
 c.valid
)
 THEN
 UPDATE emp
 SET ename = c.ename,
 job = c.job,
 mgr = c.mgr,
 hiredate = c.hiredate,
 sal = c.sal,
 comm = c.comm,
 deptno = c.deptno
 WHERE empno = c.empno;

 v_upd_count := v_upd_count + 1;
 END IF;
 ELSIF c.delete_flag IS NULL AND c.checksum IS NULL
 THEN
 INSERT INTO emp
 (empno, ename, job, mgr,
 hiredate, sal,
 comm, deptno, valid
)
 VALUES (c.empno, c.ename, c.job,
 c.mgr, c.hiredate, c.sal,
 c.comm, c.deptno, c.valid
);

 v_ins_count := v_ins_count + 1;
 ELSIF c.delete_flag IS NOT NULL AND c.checksum IS NOT NULL
 THEN
 DELETE FROM emp
 WHERE empno = c.empno;

 v_ins_count := v_ins_count + 1;
 END IF;
 END LOOP;

 p_message :=
 p_message
 || '
'
 || v_ins_count
 || ' row(s) inserted. '
 || v_upd_count

Chapter 4 ■ tabular Forms

201

 || ' row(s) updated. '
 || v_del_count
 || ' row(s) deleted.';

 create_emp_collection (p_deptno, v_message);
 p_message :=
 p_message
 || '
' || v_message;
 p_message := LTRIM (p_message, '
');
EXCEPTION
 WHEN OTHERS
 THEN
 p_message := SQLERRM;
END update_table_from_collection;

To be able to do an update of the table, you will need to create a button on your page 3 and name it as
follows:

SAVE_DATA

You can now call the validation function and the update process on application page 3. You will create
a page-level validation of type PL/SQL Function (returning Error Text) nd make it conditional upon the new
button you created (SAVE_DATA).

BEGIN
 RETURN tab_form_emp_pkg.validate_collection_data;
END;

The process Save Collection to Table will be on submit, and it will be conditional when the button is
clicked (SAVE_DATA). You will also enter the following in the Success Message of the process:

&T_MESSAGE.

It will look like this:

BEGIN
 tab_form_emp_pkg.update_table_from_collection
 (:p3_deptno,:t_message);
END;

Now make a couple of changes in your collection and confirm that the code works as expected.
Figure 4-41 shows some changes to be saved to the source table. Figure 4-42 shows the success message
from saving those changes.

Chapter 4 ■ tabular Forms

202

 ■ Caution the examples shown here are not complete, and they focus on single functionalities. If you want
to use the example code in your applications, you will need to complete the functionality that I’ve omitted
to keep the examples simple. For example, you will need to take care of newly added rows when updating
a collection using an on-demand process. the code shown here doesn’t do that. however, that functionality
should be fairly easy to add.

Interesting Techniques
This section will introduce two useful techniques for working with tabular forms. These techniques are
possible with version 5.0.

•	 Multiple tabular forms and modal pages

•	 Cascading select list in a tabular form

Figure 4-41. Changes to be saved to the source table

Figure 4-42. The success message

Chapter 4 ■ tabular Forms

203

Multiple Tabular Forms and Modal Pages
Multiple tabular forms per page are still a problem if you think about it the old way. You can create one
standard per page and code the second one manually. That means you will need to take care of all the stuff
APEX handles for you when you use the standard version, which could be hard. Also, it will be a pain to debug.

I used the following solution in the past:

 1. Create a normal report instead of a tabular form.

 2. Place the tabular form into a separate modal page, linked to the corresponding
report.

This approach covered 99 percent of the requirements with multiple tabular forms and worked well.
This solution was made possible after the modal page plugin was published. Now, with APEX 5.0, not even a
plugin is required to make this work; a modal page is a standard page template in APEX 5.0. In the following
example, I will show how you can easily make it work. In real life, it shouldn’t take more than 30 minutes to
get two tabular forms maintained through one parent page.

To make this example work, you will need to do a couple of steps:

 1. Create a new page using the Page Designer and include an interactive report on
table DEPT.

 2. Create a new page and add a form for the DEPT detailed view.

 3. Link those two pages.

 4. On the form page, create a simple interactive report for employees of the selected
department.

 5. Finally, on the third page, create a standard employee tabular form using the
same condition as for the report on the second page. Use Page Mode, and set it to
“Modal Dialog for this page.

 6. Link the report of employees on the second page with the tabular form on the
third page using a normal button branch to the third page.

Figures 4-43, 4-44, and 4-45 show how it should look.

Figure 4-43. Interactive report on DEPT table

Chapter 4 ■ tabular Forms

204

Figure 4-44. Departments detailed view plus report on employees of each department

Figure 4-45. Tabular form on employees as a modal page

Chapter 4 ■ tabular Forms

205

While doing the previous steps, you probably noticed the following:

•	 Creating a modal page in APEX 5.0 is equal to creating any other page type.

•	 Linking a button to a modal page is fairly simple; it is just like any other branch to
any other page in your application.

•	 The modal page will create a process on submit for closing modal pages after a
submit is successful and no validation errors are displayed.

•	 The success message will appear on the parent (calling) page.

•	 This may cause you to lose data on the parent page since a page refresh is triggered
such as if you start entering data on the parent page and call the modal prior to
saving the changes.

Now, there are just a couple of small things you need to do to make it better. You want to have the
following things happen:

•	 After closing the modal dialog, you want to refresh only the corresponding report,
not the whole page.

•	 You want to transfer the success message to the parent page and display it there.

To achieve that, do the following:

 1. Create an item on the second page called P3_MODAL_PAGE_MESSAGE in the
employee per department report region. This item will hold the success message
to display.

 2. On the modal page, you will create an additional PL/SQL process on submit,
which will save the success message into the P3_MODAL_PAGE_MESSAGE item. Use
the code in Listing 4-17. Please note that this process should fire prior to the
Close Page process.

Listing 4-17. Modal Dialog Page (Process on Submit), Unconditional

BEGIN
 :p3_modal_page_message :=
 NVL (apex_application.g_print_success_message, 'Action processed.');
END;

 3. The last step you need to do is to create one dynamic action on the second page

(parent page), which will do a couple of things.

•	 Refresh the corresponding employee report to show the changes you did in the
modal dialog

•	 Return the submitted value for the P3_MODAL_PAGE_MESSAGE item

•	 Display the corresponding success message on the calling (parent page)

 4. After you created a dynamic action Close Modal, you can choose the Framework
event Close Dialog to set the event it reacts upon.

Chapter 4 ■ tabular Forms

206

 5. The following are the actions this dynamic action does:

•	 It will do a Region Refresh for the employees report.

•	 It will execute a PL/SQL block, as shown in Listing 4-18, and return the page
item P3_MODAL_PAGE_MESSAGE.

Finally , it will execute a piece of JavaScript code, as shown in Listing 4-19, to display the
success message.

Listing 4-18. Executing Pseudo PL/SQL to Return the Value for the P3_MODAL_PAGE_MESSAGE Item,
Which Exists Only in the Session State

BEGIN
 NULL;
END;

Listing 4-19. JavaScript for Displaying the Success Message on the Parent Page

var message = '<div class="t-Body-alert">' +
'<div id="t_Alert_Success" class="t-Alert t-Alert--defaultIcons t-Alert--success t-Alert--
horizontal t-Alert--page t-Alert--colorBG is-visible" role="alert">'+
'<div class="t-Alert-wrap">' +
'<div class="t-Alert-icon">' +
'' +
'</div>' +
'<div class="t-Alert-content">' +
'<div class="t-Alert-header">' +
'<h2 class="t-Alert-title">' +
$('#P3_MODAL_PAGE_MESSAGE').val() +
'</h2>' +
'</div>' +
'</div>' +
'<div class="t-Alert-buttons">' +
'<button class="t-Button t-Button--noUI t-Button--icon t-Button--closeAlert" title="Close
Notification" type="button" style="touch-action: pan-y;">' +
'' +
'</button>' +
'</div>' +
'</div>' +
'</div>' +
'</div>';

$(message).appendTo("#t_Body_content");

$(function() {
 $('.t-Button--closeAlert').bind('click',function(){
 $(".t-Body-alert").remove();
 });
});

Chapter 4 ■ tabular Forms

207

Figure 4-46. Displaying the modal page success message on the parent page

 ■ Caution this Javascript will use the same html code you have in your template for displaying a
success message. It will wrap the content of your success message in that code and present it on the page by
appending it to the body content. Finally, it will bind a function to the close button to remove the message after
a click. this function looks much bigger than it is.

At the end, the result will be as shown in Figure 4-46.

Adding Cascading Select Lists to a Tabular Form
There are a couple of solutions out there showing how cascading select lists in a tabular form can be done.
Usually these solutions contain some external code and will work until the next update of APEX appears.
I also created an implementation using the apex_item package in 2008. However, that solution is not easy
to understand and even harder to debug. Knowing the possibilities of APEX 4.2 and 5.0, I was thinking that
there must be an easy solution to this problem using standard functionalities only. In the following example,
I will show how indeed easy that is.

Let’s create a simple page with a tabular form on employees using only three columns from the table
EMP; see Figure 4-47.

Chapter 4 ■ tabular Forms

208

You will add a static ID to the tabular form region, EMP_TABULAR_FORM, which you will use in the
later processing. Both visible items on the page are select lists with a simple select on departments and
employees; see Figure 4-48.

Figure 4-47. Simple tabular form on employees with three columns: EMPNO, DEPTNO, ENAME

Figure 4-48. Two items, both simple select lists

Set the LOV definition of the select list as shown in the Figures 4-49 and 4-50.

Chapter 4 ■ tabular Forms

209

The second select list of employees should be dependent on the selection you make in the first list. You
can achieve that easily if you understand how this can be done and what you need for that. Basically, the
following happens:

•	 You need a process that will get the dependent select list values based on the
selection you do in the department’s LOV; this will be an AJAX process returning a
JSON string.

•	 You need a dynamic action, which will trigger that process and do something with
the values returned. This dynamic action should fire on change of the department’s
LOV and on page load.

•	 Eventually, you will need a dynamic action to cover the additional actions you can
do with a tabular form, such as a pagination event for a partial-page refresh.

Let’s create those processes. The first process, getEmp, is the AJAX callback you create on the page.
Listing 4-20 shows the code for that process.

Listing 4-20. Executing PL/SQL to Return the Value for the P3_MODAL_PAGE_MESSAGE Item, Which
Exists Only in the Session State

DECLARE
 v_dept NUMBER := TO_NUMBER (apex_application.g_x01);
 v_empno NUMBER := TO_NUMBER (apex_application.g_x02);
 v_employee VARCHAR2 (4000)
 := '{"KEY0": {"NAME":"- Select Employee -","VALUE":"","SELECTED":""},';
 v_count NUMBER := 1;
BEGIN
 FOR c IN (SELECT empno, ename
 FROM emp
 WHERE deptno = v_dept)
 LOOP

Figure 4-49. Select List LOV, departments

Figure 4-50. Select List LOV, employees

Chapter 4 ■ tabular Forms

210

 v_employee :=
 v_employee
 || '"KEY'
 || v_count
 || '":{"NAME":"'
 || c.ename
 || '","VALUE":"'
 || c.ename
 || '","SELECTED":"'
 || CASE
 WHEN c.empno = v_empno
 THEN c.ename
 ELSE NULL
 END
 || '"},';
 v_count := v_count + 1;
 END LOOP;

 v_employee := RTRIM (v_employee, ',');
 v_employee := v_employee || '}';
 HTP.p (v_employee);
END;

This AJAX callback is taking the values from both lists (departments and employees), and it is figuring
out two things.

•	 Which employees belong to the selected department

•	 Which employee is the current selected employee for an already existing entry

This AJAX callback is then wrapping this information in a JSON sting and returning it to the calling
function.

The second action you need is a dynamic action called Add Values, which reacts on a change of a
jQuery selector, which is the department select list in this case: select[name="f03"]. Figure 4-51 shows how
this dynamic action is set up.

Figure 4-51. Dynamic action Add Values setup

Chapter 4 ■ tabular Forms

211

 ■ Caution use Firebug to inspect the form elements and find out the ID of the corresponding column. please
note that the dynamic action event scope is Dynamic.

The dynamic action called Action will be JavaScript code, as shown in Listing 4-21.

Listing 4-21. Executing Pseudo PL/SQL to Return the Value for the P3_MODAL_PAGE_MESSAGE Item,
Which Exists Only in the Session State

var elem = '#' + this.triggeringElement.id;
var key = '#' + 'f02_' + this.triggeringElement.id.substring(4);
var set_list = '#' + 'f04_' + this.triggeringElement.id.substring(4);
var key_val = $(key).val();
var elem_val = $(elem).val();
var selected_val = '';

apex.server.process (
 "getEmp",
 { x01: elem_val,
 x02: key_val},
 { success: function(pData) {
 $(set_list).find('option').remove();
 $.each(pData, function(key, innerjson) {
 $(set_list).append($('<option>', {
 value: innerjson.VALUE,
 text: innerjson.NAME
 }))
 if (innerjson.SELECTED != '') {selected_val = innerjson.SELECTED};
 });

 if (selected_val != '') {
 $('select' + set_list + ' option').each(function()
 {this.selected = (this.text == selected_val);});
 }},
 });

This code will do the following:

•	 It will call the AJAX process.

•	 It will take the JSON string.

•	 It will remove the existing LOV entries for the employee select list.

•	 Out of the JSON string, it will construct a new LOV and set the current value to
whatever it is.

 ■ Caution this action needs to fire on page load. Keep that option turned on.

Chapter 4 ■ tabular Forms

212

The final step is to cover the additional event that may happen on the page. The pagination added to
the tabular form will (if the option Partial Page Refresh turned on) refresh the report. You will add another
dynamic action, After Refresh, as shown in Figure 4-53.

If you now run the page, the dependent employee select list will be rendered according to your selection
in the department select list; see Figure 4-52.

Figure 4-52. Dynamic action Add Values setup

Chapter 4 ■ tabular Forms

213

This dynamic action called Action will run basically the same JavaScript code as the first action. It will
only bind the code to the tabular form and run it after the refresh is completed; see Listing 4-22.

Listing 4-22. Binding the Similar Code as in Listing 4-20 to the tabular form Partial Page Refresh
(Pagination)

apex.jQuery('#EMP_TABULAR_FORM').bind("apexafterrefresh", function () {

$("[name='f03']").each(function(i){
var obj_id = $("[name='f03']").get(i).id;

var elem = '#' + obj_id;
var key = '#' + 'f02_' + obj_id.substring(4);
var set_list = '#' + 'f04_' + obj_id.substring(4);
var key_val = $(key).val();
var elem_val = $(elem).val();
var selected_val = '';

apex.server.process (
 "getEmp",
 { x01: elem_val,
 x02: key_val},
 { success: function(pData) {
 $(set_list).find('option').remove();
 $.each(pData, function(key, innerjson) {
 $(set_list).append($('<option>', {
 value: innerjson.VALUE,
 text: innerjson.NAME
 }))
 if (innerjson.SELECTED != '') {selected_val = innerjson.SELECTED};
 });

Figure 4-53. Dynamic action After Pagination setup

Chapter 4 ■ tabular Forms

214

 if (selected_val != '') {
 $('select' + set_list + ' option').each(function()
 {this.selected = (this.text == selected_val);});
 }},
 });

});
})

This code will do a couple of things.

•	 It will bind a function to the tabular form region, after refresh.

•	 The function will go through the column of departments and check the selected
values.

•	 It will again trigger the AJAX callback function and return a JSON string.

•	 It will remove the existing LOV entries for the employee select list.

•	 Out of the JSON string, it will construct a new LOV and set the current value to
whatever it is.

This is all you need to get it working.

 ■ Caution this dynamic action doesn’t need to fire on page load. turn this option off. the first dynamic
action will take care of setting the values on page load.

Summary
Tabular forms are one of the greatest features in APEX. Without this functionality, APEX simply wouldn’t be
as successful as it is. The next release of APEX 5.1 should introduce the jQuery Grid control as an alternative
to tabular forms and finally remove all the current limitations.

•	 Multiple tabular forms per page

•	 Using dynamic actions for tabular form elements

•	 Unlimited number of arrays

•	 Options for adding/copying rows

This also means that tabular forms will be added to the list of deprecated features in APEX eventually
(not in the next release but in APEX 6.0 at the latest).

In this chapter, you saw many techniques for using tabular forms and for implementing some of the
functionality in the preceding list.

 ■ Note For even more information about tabular forms, you can visit a demo application that I maintain at
http://apex.oracle.com/pls/otn/f?p=31517:1. look in section VI of the demo for examples of tabular
form usage.

http://apex.oracle.com/pls/otn/f?p=31517:1

215

Chapter 5

Team Development

by Roel Hartman
In this chapter, I will cover Team Development features. Team Development is an APEX application within
the Application Express development environment and was introduced in version 4.0 of APEX. Figure 5-1
shows the Team Development main menu.

Figure 5-1. Team Development main menu

Team Development can be used to track features, bugs, milestones, and other elements, but the most
striking functionality is the feedback feature. Using the feedback feature, you can support the reporting and
communication of bugs and enhancement requests from your business analysts, application testers, and
end users; this can happen from a test or production environment to your development environment, and
vice versa. This chapter will cover how to set up this built-in functionality and give some examples of how to
use it. You’ll also see how to use APEX views and packages to enhance Team Development’s functionality to
meet your specific needs.

The different parts of Team Development, pictured in Figure 5-1, are discussed in more detail in this
chapter. Each section ends with some tips and tricks on how to extend the usability of the standard features.
As an example, you’ll use the development of an application you are familiar with: Oracle Application Express.

Milestones
Milestones being the first option in the menu shown in Figure 5-1 is not by accident. Defining the milestones
is usually the first thing you want to do when you start with Team Development. A milestone is a project
management term, marking the end of a stage, like the delivery of a work package. Milestones are used to
determine whether a project is on schedule. For this reason, milestones are usually the first thing you’ll
define. The milestones in this example are the delivery of APEX Early Adopter Release 1, Release 2, and the
final production versions of APEX 5.0 and 5.1.

Chapter 5 ■ team Development

216

The Basics
Figure 5-2 shows the high-level data model used to record milestones. Each milestone is categorized by a
milestone type, is associated with a release, and is owned by an owner. The Milestone Type, Release, and
Owner entities are not implemented as actual tables but as a list of used values, such as select distinct
milestone_type of milestones.

Figure 5-2. Data model of milestones

The advantage of the non-normalized implementation in Figure 5-2 is that you can create milestones
quickly, without defining most related master data beforehand. All information regarding milestones is
exposed through the APEX_TEAM_MILESTONES view.

To create a milestone, as shown in Figure 5-3, you have to set the milestone date and add some
additional information. When entering this additional information, you might notice there is a feature in the
user interface that differs from the other parts of APEX but is generally implemented in Team Development.
For some fields you have the option to select a value from a select list or enter a new value. Be aware that the
new value supersedes the value in the select list. So if you enter a new value, that one will be used, regardless
of whatever you selected in the select list, even when the “new value” field is hidden when you select
something from the select list!

Chapter 5 ■ team Development

217

The following are some descriptions of the fields shown in Figure 5-3:

•	 The Type field can be used to differentiate the type of the milestone, such as Early
Adopter, Major Release, or Patch Release.

•	 The Owner field indicates who is responsible for the milestone. The select list is
populated from all fields within Team Development where you can enter names,
such as assigned to, contributor, and others, so you are not restricted to previously
entered milestone owners. Note that the names you enter will be converted to
lowercase.

•	 The Release field defines the version of the software you set the milestone for. In this
example, you can expect releases such as 5.0, 5.0.1, 5.0.2, and 5.1.

•	 The Selectable for Features field gives you the option to hide milestones when
adding a feature. This can be used for milestones that are tentative and not yet ready
for use. Note that switching this off for a milestone doesn’t impact the features that
are currently assigned to that milestone. Furthermore, you can add a full description
of the milestone and add tags to it.

 ■ Tip From the team Development dashboard you can create a milestone with one click by using the + icon
in the upper-right corner of the milestone region on that page. Quick navigation to the milestones dashboard
can be done by clicking the > icon next to it.

Figure 5-3. Example of a milestone

Chapter 5 ■ team Development

218

Extending Milestone Functionality
Later in this chapter you will learn how to display the information you entered in a Gantt chart, but first you
have to set up your own Team Development Enhancement application. For this new application, you can
pick any schema owner you like because you will use only the standard APEX views and packages within this
application. Set Application Alias to TDE (for Team Development Enhancement) and create an empty home
page in that application with HOME set to Page Alias.

Once you’ve done that, create a link to that application via the menu Team Development ➤ Utilities ➤
Manage Links. Click Create Link, give the link a meaningful name, and set Target to f?p=TDE:HOME. Now you
can access your newly created application from within Team Development using the Manage Links action
from the Utilities menu region on the right side of the Team Development main page.

An even nicer tweak is to add an image with a link to the Team Development main page. In APEX 4.2
you could do this by adding a script to the system message, but that trick doesn’t work anymore.

Firefox users can install the GreaseMonkey extension. GreaseMonkey allows you to run any custom
JavaScript code on any page you want. Once you’ve installed GreaseMonkey, you can create and add your
own user script that will run on any web page you want. So, open your favorite editor, copy the following
code, and save the file using a .user.js extension (for instance tde.user.js). Now you can drag that file
into your browser window where the GreaseMonkey extension will deal with it.

// ==UserScript==
// @name Team Development Enhancements
// @namespace apex
// @description Team Development Enhancements
// @include http://oel6:8081/apex5/* [The URL that points to your APEX environment]
// @version 1
// @grant none
// ==/UserScript==
if ($v('pFlowStepId')=='4000') {
 // Create Image + Link to Team Development Enhancement on this page"
 $('ul.a-ImageNav.team-dev')
 .append('
 <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-
awesome.min.css">
 <li class="a-ImageNav-item">
 <a title = "Team Development Enhancement"
 href = "f?p=TDE:HOME:::::P_SESSION:' + $v('pInstance') +'"
 class = "a-ImageNav-link"
 target = "_blank" >
 <span class = "a-ImageNav-img fa fa-connectdevelop fa-4x"
 style = "padding-top:12px;">
 Team Development Enhancement

 ');
 }

This code adds an image with a link to your application to the Team Development main page, just like
the icon on the far right in Figure 5-4. You have to adapt the href and src attributes to your liking. Please
note that all HTML text used as parameters to the append function should be on one line, without additional
carriage returns. In the previous listing, the code is formatted just to improve readability. I’ll explain the use
of the P_SESSION parameter in a moment.

http://oel6:8081/apex5/

Chapter 5 ■ team Development

219

Features
Using features, you describe the functionality you want to add to or change in your application. You can
assign a feature to an owner, and a feature can have a contributor. You can also make a distinction based
on focus areas, such as Charts, Interactive Reports, or Themes. Once you’ve decided when to implement a
feature, you can assign it to a certain release and milestone. Earlier on you might have defined a milestone
as set for a certain release and that relationship is now used in the feature functionality, unlike the previous
releases. You can break down features into subfeatures, adding detail to your planning and making different
people responsible for different subfeatures.

The Basics
In Figure 5-5 you can see how the data model used for the features functionality is implemented. In addition
to the select lists for the Owner, Contributor, Focus Area, and Release fields, there are three other select lists
you’ll encounter when defining a feature: Status, Desirability, and Priority. Unlike the other select items,
these last three contain predefined and fixed values and cannot be customized.

Figure 5-4. Team Development menu with your own Enhancement

Figure 5-5. Data model of features

Chapter 5 ■ team Development

220

Values in the Status, Desirability, and Priority lists are defined using the following views in the APEX
schema: WWV_FLOW_FEATURE_DEF_ST_CODES, WWV_FLOW_FEATURE_DESIRABLITY, and WWV_FLOW_FEATURE_
PRIORITIES. The same holds for the other “status” views. In Figure 5-6 you’ll find an example of the feature
functionality. You can begin to get an idea of what is available to you by looking at the various fields in the figure.

Figure 5-6. Example of a feature

There is some date information that you can add to a feature, such as start date and due date. The latter
is defaulted to the date of the corresponding milestone. You can also add more details such as a description,
a justification, and a progress log. You can use these fields to create your own reports.

Chapter 5 ■ team Development

221

Although the standard options already offer you a lot of functionality, you can even expand the
amount of data you can enter. If you click Team Development Settings in the task list on the right side of
the Team Development home page, you can enable the tracking of attributes for all aspects of application
development, such as user interface, testing, security, and the like. Figure 5-7 shows the drop-down menu
items to enable this level of tracking.

Figure 5-7. Dialog to enable tracking attributes

Figure 5-8. Additional documentation region

For each of the tracking attributes you enable, a new region within your features screen appears at the
bottom, as shown in Figure 5-8.

Now that you know what all these fields are for, you can use the standard functionality of APEX to
customize the display of the feature’s interactive report to fit—more or less—your specific needs. Figure 5-9
shows a customized report.

Chapter 5 ■ team Development

222

Figure 5-9. Customized feature report

Starting from the standard features interactive report, you can achieve the result, as shown in Figure 5-9,
by applying these steps using the Action menu:

 1. Set Control Break to Parent Feature.

 2. Filter on “Parent Feature is not null.”

 3. Select the columns you want to display. You have to select the Control Break
column as well or the break won’t work.

 4. Compute the Remaining field by entering a computation like BA * (100-BG)/100,
where BA refers to the effort and BG to the status percent.

 5. Aggregate the Effort field—and maybe the Remaining field as well.

Extending the Features Functionality
Now that you’ve entered some project information, it would be nice to see this information in a way you’re
used to when running projects, namely, in a Gantt chart.

Create a new chart page in your Team Development Enhancement application, pick a Project Gantt
chart as the type to display, set the other settings as you’d like them, and enter this SQL query:

SELECT NULL link
, FEATURE_NAME task_name
, FEATURE_ID task_id
, PARENT_FEATURE_ID parent_id
, NVL(START_DATE,SYSDATE) actual_start
, NVL(DUE_DATE,SYSDATE) actual_end
, FEATURE_STATUS progress
FROM APEX_TEAM_FEATURES
START WITH PARENT_FEATURE_ID IS NULL
CONNECT BY PRIOR FEATURE_ID = PARENT_FEATURE_ID

With data similar to the data presented in Figure 5-9 and a few additional features, you’ll get a Gantt
chart when you run the page. You’ll notice that the start and end dates of the parent features don’t match the
dates of the subfeatures. You can solve that by including the calculation of those dates in the SQL code using

Chapter 5 ■ team Development

223

analytic functions. Later in the chapter, when you generate the XML used by the chart by yourself, you’ll
learn how to let AnyChart do the calculation.

For now you can play with the settings until you get the desired result. Figure 5-10 shows the
settings I used.

Figure 5-10. Feature Gantt settings

Chapter 5 ■ team Development

224

If you run the page again, you’ll see something like what’s shown in Figure 5-12. Now click a bar in the
charts, and you will be redirected to the page where you can view and edit the feature you clicked. Notice
the parameter used is #ID# and not the actual column name TASK_ID you provided in the SQL because the
columns in the SQL statement are renamed by the AnyChart engine.

Now, let’s create a link from the Gantt chart back into Team Development. Notice I didn’t include a link
in the SQL query because that solution doesn’t work anymore. Because APEX 5 automatically creates a new
session when you run an application, you have to take care of the session ID of the originating session, such
as the one that’s running Application Builder. Therefore, you’ve already added a P_SESSION parameter in
the GreaseMonkey script. To make use of that, add an application item named P_SESSION with Session State
Protection set to Unrestricted.

Now, go to Chart Series, add a Link of Type called Link to Custom Target, and set Target to the settings
shown in Figure 5-11.

Figure 5-11. Link settings for the Gantt example

Figure 5-12. Feature Gantt example

Chapter 5 ■ team Development

225

To Do’s
To-do items are small pieces of work, or tasks, you assign to your co-workers and want to track. As with
features, you can create a multilevel breakdown of to-do items. But if you really want to keep track of things,
creating a multilevel breakdown might not be the wisest thing to do, because if you have a lot of to-do items
defined, it can be rather difficult to keep oversight of them all. Also, since Team Development is not a real
planning tool (compared to Microsoft Project, for example), all the figures you enter, such as dates and
estimated effort, are not accumulated to the higher level. So, you cannot simply rely on those figures; you’ll
need some additional reports to get closer to the real situation.

The Basics
Figure 5-13 shows the data model for a to-do item. This gives you an idea of how the tables and views are
related and where the fields on the page in Figure 5-14 originate.

Figure 5-13. Data model for to-do items

Chapter 5 ■ team Development

226

A to-do item (also known as a task) is assigned to someone and can have a contributor or an additional
contributor. A to-do item has a certain status. Similar to features, this status is hard-coded using a view: WWV_
FLOW_TASK_DEF_STATUS_CODES. You can add more details to a to-do item by specifying a category, a release,
a feature, and a milestone. Figure 5-13 shows an example of a to-do item.

All information regarding to-do items is exposed through the APEX_TEAM_TODOS view, which is mainly
based on the WWV_FLOW_TASKS table. And, similar to feature progress, all information entered in the progress
area is recorded as task progress and represented as a list of activities carried out.

Figure 5-14. Example of a to-do item

Chapter 5 ■ team Development

227

Extending the To-Do Functionality
Now that you’ve explored the planning and activities aspects of Team Development, it would be nice to
present milestones, features, and to-do items in one Gantt chart. The following are some of the details you’ll
need to attend to in order to accomplish that goal:

•	 The roll-up of start and end dates from lower-level features to higher-level features or
from to-do items to features—defined as the parent feature of a feature or the feature
of a to-do item

•	 Defining, and showing in the Gantt chart, a predecessor for a to-do item—defined as
the parent to-do item of a to-do item

•	 Defining, and showing in the Gantt chart, what to-do item is the last step for a
milestone—defined as the Milestone property of a to-do item

First create a new project Gantt chart. You can use the SQL query provided earlier in “Extending the
Features Functionality,” or any other valid query for the chart, because you won’t use the results of that
query anyway.

Now, create a (dummy) static content region before the Chart region with a hidden field, named
P3_XML_PG. Next, edit the chart XML by providing this custom XML:

<?xml version = "1.0" encoding="utf-8" standalone = "yes"?>
<anygantt>
 <settings>
 <background enabled="false" />
 <navigation enabled="true" position="Top" size="30">
 <buttons collapse_expand_button="false" align="Far"/>
 <text>Project Gantt</text>
 </navigation>
 </settings>
 <datagrid enabled="true" width="400" />
 <styles>
 <task_styles>
 <task_style name="defaultStyle">
 <actual>
 <bar_style>
 <middle>
 <fill enabled="true" type="Gradient">
 <gradient angle="-90">
 <key color="#689663" position="0"/>
 <key color="#6B9866" position="0.38"/>
 <key color="#B4FFAB" position="1"/>
 </gradient>
 </fill>
 </middle>
 </bar_style>
 </actual>
 </task_style>
 </task_styles>
 </styles>
&P3_XML_PG.
</anygantt>

Chapter 5 ■ team Development

228

Instead of using the standard #DATA# replacement, the chart will use the contents of the P3_XML_PG field
to generate the chart. So, define a Pre-Rendering – After Header page process to load data into that field
using a function you will create shortly.

begin
 :P3_XML_PG := GenerateProjectXML;
end;

See Figure 5-16 for where to put this code. You might see a message that there is an error in your code,
but you can save the change. You will fix that error in the next step.

Figure 5-15. Custom chart XML

See Figure 5-15 for where to put these lines of code.

Figure 5-16. On Load – After Header process

Chapter 5 ■ team Development

229

Next switch to APEX’s SQL Workshop and define that function.

create or replace function GenerateProjectXML
return varchar2
is
 l_chart_data_xml varchar2(32767);
 l_task_xml varchar2(32767);
 l_connector_xml varchar2(32767);

 cursor tasks is
 select link
 , task_type
 , name
 , id
 , parent_id
 , predecessor
 , milestone_id
 , to_char(actual_start,'YYYY.MM.DD') start_date
 , to_char(actual_end,'YYYY.MM.DD') end_date
 , progress
 from
 (select null link
 , 'T' task_type
 , todo_name name
 , todo_id id
 , feature_id parent_id
 , parent_todo_id predecessor
 , milestone_id milestone_id
 , start_date actual_start
 , due_date actual_end
 , todo_status progress
 from apex_team_todos
 union
 select null link
 , 'F' task_type
 , feature_name name
 , feature_id id
 , parent_feature_id parent_id
 , null predecessor
 , null milestone_id
 , null actual_start
 , null actual_end
 , feature_status progress
 from apex_team_features
 union
 select null link
 , 'M' task_type
 , milestone name
 , milestone_id id
 , null parent_id
 , null predecessor

Chapter 5 ■ team Development

230

 , null milestone_id
 , milestone_date actual_start
 , null actual_end
 , null progress
 from apex_team_milestones
 order by 5
)
 start with parent_id is null
 connect by prior id = parent_id
 ;
begin

 -- Project Chart Opening Tag
 -- Define "auto_summary" so Anycharts does the calculations
 l_chart_data_xml := '<project_chart>'||
 '<auto_summary enabled="True" />'
 ;

 -- Task & Connectors Opening Tags
 l_task_xml := '<tasks>';
 l_connector_xml := '<connectors>';

 -- Loop through series data
 for c1 in tasks
 loop
 if c1.task_type ='T' -- ToDo
 then
 -- Task Tag
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||
 'name="' ||c1.name ||'" '||
 'parent="' ||c1.parent_id ||'" '||
 'actual_start="' ||c1.start_date ||'" '||
 'actual_end="' ||c1.end_date ||'" '||
 'progress="' ||c1.progress ||'" '||
 'style="Gantt" />'
 ;
 l_connector_xml := l_connector_xml ||
 '<connector ' ||
 'type="FinishStart" ' ||
 'from="'||c1.predecessor ||'" '||
 'to="' ||c1.id ||'" '||
 ' />'
 ;
 if c1.milestone_id is not null
 then

Chapter 5 ■ team Development

231

 l_connector_xml := l_connector_xml ||
 '<connector ' ||
 'type="FinishStart" ' ||
 'from="'||c1.id ||'" '||
 'to="' ||c1.milestone_id||'" '||
 ' />'
 ;
 end if;
 elsif c1.task_type = 'F' -- Feature
 then -- Start / End / Progress are auto-calculated
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||
 'name="' ||c1.name ||'" '||
 'parent="' ||c1.parent_id ||'" '||
 '/>'
 ;

 elsif c1.task_type = 'M' -- Milestone
 then -- A Milestone has no End date
 l_task_xml := l_task_xml ||
 '<task id="' ||c1.id ||'" '||
 'name="' ||c1.name ||'" '||
 'actual_start="'||c1.start_date||'" '||
 '/>'
 ;
 end if;
 end loop;

 -- Task Closing Tag
 l_task_xml := l_task_xml||'</tasks>';

 -- Periods Closing Tag
 l_connector_xml := l_connector_xml||'</connectors>';

 -- Project Chart Closing Tag
 l_chart_data_xml := l_chart_data_xml ||
 l_task_xml ||
 l_connector_xml ||
 '</project_chart>';

 return l_chart_data_xml;
end;

If you run the page, you’ll get a representation of your Team Development data in a Gantt chart. See
Figure 5-17 for an example.

Chapter 5 ■ team Development

232

Figure 5-17. Gantt chart with milestones, features, and to-do items

Figure 5-18. Data model of bugs

Bugs
Bugs cover a functionality we are all familiar with. Bugs are deficiencies in the products we deliver, such as
software or documentation. The model for bug tracking is built using a similar data structure as the other
pieces of Team Development. Figure 5-18 shows the model. You’ll see a few real tables, a few views with fixed
values, and some dynamic lists of values.

All information regarding to-do items is exposed through the APEX_TEAM_BUGS view, which is mainly
based on the WWV_FLOW_BUGS table.

A bug has a status, a severity, and a priority. The values in these select lists are defined in the views
WWV_FLOW_BUG_STATUS_CODES, WWV_FLOW_BUG_SEVERITY, and WWV_FLOW_BUG_PRIORITY. When resolving a
bug, it’s assigned to a person and planned to be fixed by some release, milestone, and/or date. Furthermore,
you can add a lot more information on the bug itself, like the platform, browser, or operating system.
Figure 5-19 shows an example of a filed bug.

Chapter 5 ■ team Development

233

Because a bug contains only a fix date—and no start date or effort—you have to link a bug to a to-
do item in order to use a reported bug in your customized Gantt chart. The Bug section is intended for
capturing issues that might be customer browser- or operating system–specific.

Feedback
Of all functionality in the Team Development application, feedback is without any doubt the most valuable.
Feedback offers you a simple mechanism to communicate with your end users, fellow developers, and
business analysts. And feedback can be installed in your application with just a few mouse clicks. Be careful,
though: If your application has hundreds or thousands of users, you might want to reduce the number of
people who are allowed to enter feedback. Otherwise, you might find yourself buried under hundreds of
trivial feedback entries. All information regarding feedback is exposed through the APEX_TEAM_FEEDBACK
view, which is mainly based on the WWV_FLOW_FEEDBACK table. Figure 5-20 shows the data model with all
tables and views related to the feedback functionality.

Figure 5-19. Example of a bug

Chapter 5 ■ team Development

234

The APEX_TEAM_FEEDBACK view contains a lot of information regarding the environment of the user who
enters the feedback. It not only contains the page and workspace identifiers but also contains the complete
session state and even information about the browser used and the IP addresses of the client and server. And
if that’s not enough to fit your needs, there are eight additional attributes at your disposal. Just as a side note,
there might be a security issue here because not all organizations might be happy about production data
being copied from production to development.

Feedback Process
The feedback process as implemented in Team Development consists of a couple of steps that form a
cycle together. The first step is creating a feedback entry by a user. Then the feedback is exported from the
environment the user is working in and imported into the development environment. The business analyst
or developer analyzes the feedback and responds to it. He can also log the feedback entry as a bug, a to-do
item, or even a feature. The responses, which may contain questions for clarification, are exported from the
development environment and imported into the user’s environment. Then the user can follow up on the
developer’s question. That information can be exported again, and the cycle can go round and round, as
Figure 5-21 indicates.

Figure 5-20. Data model of feedback

Chapter 5 ■ team Development

235

Within one development environment you can manage feedback from multiple sources—for instance,
from a test and production environment or even multiple production environments running at different
customer sites.

Enable Feedback
In your application, add a page of type Feedback Page. When you keep the default settings, the Feedback
page itself is created, an entry is added to the navigation bar, and feedback is enabled. When you or the users
of your application click the link in the navigation bar, a page pops up like in Figure 5-22.

Figure 5-21. Feedback process flow

Figure 5-22. Feedback pop-up page

Chapter 5 ■ team Development

236

If you’ve defined your own feedback items, you have to change the standard submit feedback page
process a little. Here’s an example:

apex_util.submit_feedback (
 p_comment => :P102_FEEDBACK,
 p_type => :P102_FEEDBACK_TYPE,
 p_application_id => :P102_APPLICATION_ID,
 p_page_id => :P102_PAGE_ID,
 p_email => :P102_EMAIL,
 p_attribute_01 => :P102_SEVERITY,
 p_label_01 => 'Severity',
 p_attribute_02 => :P102_PRIORITY,
 p_label_02 => 'Priority');

Because this is just a page in your application, you can change all fields and behavior to match your
requirements. When creating the page itself, you can create up to eight custom attributes to the feedback
page. These attributes are included in the submit process that is generated by the wizard. The default select
list feedback type is created from select the_name, id from APEX_FEEDBACK_TYPES order by id. If you
needed more or different feedback types, you might think of adding records to this table, but, like a lot of
these kinds of select lists in Team Development, it isn’t a table but a view with predefined data. So, that
wouldn’t work. Also, replacing the select list with your own dynamic or static select list isn’t a good idea
because pages in Team Development rely on values that exist in that view. So, let’s just keep that one as it is.

But you can add an item, as long as it fits within a varchar2(4000) column. In the example in Figure 5-23,
I added two additional items to help qualifying the feedback when it comes in by letting the end user enter a
severity and a priority.

Figure 5-23. Customized feedback pop-up page

Chapter 5 ■ team Development

237

All feedback entered after the date you enter in the Changes Since field will be exported. Usually you’ll
set that to the date you last exported the feedback. Leave it empty for all feedback.

 ■ Note You can export feedback only for the whole workspace, which is to say for all applications that are
contained within the workspace.

One other setting is Deployment System. This setting is used to distinguish feedback from one
workspace and another. That’s especially important if you have deployed your application in more than
one workspace, like test and production, or in production at multiple customer sites. This way you can see

You have to use your own items as values for the parameter p_attribute_01, and so on, and for easier
interpretation of the values, it is a good idea to provide the parameter p_label_01 with a value that tells what
attribute_01 actually is. These values show up in the Additional Attributes region of the feedback.

One of the other parameters is the user’s e-mail address. This is automatically filled with the e-mail
address of the user—but only if you use the APEX authentication. If you use another type of authentication,
you should place your own function here to extract the e-mail address from the username. Or, if you use
public pages with no authentication at all, you should add an e-mail address item on your feedback page.

Exporting Feedback to Development
If you develop your applications in the same workspace as your users are using, there is no need to export
and import the feedback. But that’s an unusual case. Mostly you develop in a development instance and
your users are testing in a test environment—perhaps even more than one—and running production in
another environment.

Exporting feedback starts from the Workspace Utilities main page. When you click the Export link there,
you get a number of objects you can export. Just click the last one on the left, called Team Development
Feedback (see Figure 5-24), or click the Feedback tab on the far right.

Figure 5-24. Exporting feedback to development

Chapter 5 ■ team Development

238

The feedback export file is named feedback_export_from_<Deployment System>.sql. If you entered a
date/time value in the Changes Since field, the file name is appended with _since_<datetimestamp>.

 ■ Note Change the Feedback Synchronization Source Identifier setting to a unique and meaningful name for
every workspace you deploy.

Importing Feedback into Development
From the Application Builder main page, you can access the import function. You can import the exported
feedback, which is just a SQL file, like any other APEX component. You can import the feedback as
many times as you like and in any other workspace you want. If you try to import feedback into the same
workspace you exported it from, you’ll get an error. Feedback is uniquely identified by the deployment
system and a sequence number.

Team Development Integration in the Page Designer
One of the really neat features of APEX 5 is a closer integration between Team Development and the Page
Designer. This is because when you are working on a page, it would be nice if you could easily spot whether
there are bugs or feedback entries reported on that page. In APEX 5, you are notified that there might be
more to do on your page than you might think. The upper-right corner of the Team Development icon has a
badge indicating the number of Team Development entries that are still open. You can open the drop-down
and directly navigate to that relevant bug or feedback entry. See Figure 5-26 for an example.

where feedback originates from and where the responses on the feedback should be sent to. To make this
distinction, you have to be sure that this value is different for each implementation. You can set this value in
the APEX Administration utility, via Edit Workspace Information, as shown in Figure 5-25. There it is called
Feedback Synchronization Source Identifier, and it’s defaulted to the workspace name.

Figure 5-25. Changing Feedback Synchronization Source Identifier

Chapter 5 ■ team Development

239

When you click the Log as Bug button on the page in Figure 5-27, the feedback is converted into a bug.
During that conversion step you can change the title and add some additional information. Automatically
some context is filled in, such as the application and the page affected by the bug. Figure 5-28 shows the
resulting bug report.

Processing Feedback
Once you’ve imported feedback, you can start processing it. Figure 5-27 shows the screen from which you
begin doing that.

Figure 5-26. Team Development notification in the Page Designer

Figure 5-27. Process feedback

Chapter 5 ■ team Development

240

Strangely, other information that is captured by using feedback isn’t automatically added to the bug,
such as the platform, browser, and operating system. And even more interesting stuff, such as the complete
session state, is captured but not copied to the bug description. There is also no visible reference from the
bug to the feedback to retrieve that information afterward.

Similar to creating a bug from a feedback entry, you can also create a to-do item from a feedback entry
and even transform a feedback entry into a feature. Remarkably, only when transforming a feedback entry
into a to-do item is there an option to delete the feedback entry. But deleting feedback before the issue is
completely solved isn’t a good idea because of all the information that’s contained within the feedback that
might be relevant for sorting out the issue.

Figure 5-28. Bug report created from feedback

Chapter 5 ■ team Development

241

The next challenge is to get those comments back to the originating system. After all, it doesn’t do much
good to comment on feedback if the person originating that feedback never gets to see the comment. The
next section shows how to meet this challenge.

Exporting Response to Deployment
For exporting your response back to deployment, you have to take the same steps as when exporting
feedback from deployment into development. Notice the Direction setting in Figure 5-30 when exporting the
feedback. It says “Export response to deployment” now.

Figure 5-29. Comment on feedback

Notice that Figure 5-28 mentions “Converting feedback to a bug will set the feedback status to closed.”
So, that saves you one step while processing your feedback items. Instead of—or in addition to—logging the
feedback as a bug or a to-do item, you can also edit the feedback. Doing so, you can change the status and
add comments. See the example in Figure 5-29.

Chapter 5 ■ team Development

242

You can also select the deployment system. The select lists contain every deployment system for which
there is feedback imported beforehand. This feedback export file is now named feedback_import_for_dev.sql.
You can see in Figure 5-30 that DEV is the system selected in the Deployment System drop-down.

Importing Response into Deployment
You have to take the same steps to import your response into the deployment system as you do when
importing feedback into development. The difference is that you are going in the opposite direction.

 ■ Note If you try to import a response into an environment it wasn’t exported for, you’ll get an error.

After importing, you will see that the changes you made in development are reflected in the feedback
of the deployment system, as shown in Figure 5-31. And although the Developer comments you entered are
exported, they are not imported.

Figure 5-30. Export response to deployment

Figure 5-31. Importing response into deployment

Chapter 5 ■ team Development

243

Once you’ve imported the response, you have reached the end of the feedback life cycle. But sometimes
you need some additional information to solve an issue, as in the previous example. Of course, you can
call or e-mail the person who submitted the feedback, but there is an option within Team Development
that supports this functionality as well. Unfortunately, it is not automatically implemented, but you can
implement it yourself with some additional easy steps.

Extending Feedback: Creating a Report
The first thing to do is to create a report on the feedback, so the user not only can report feedback but also
has insight on the status. To begin, create a report page, with page number 103 in this example, and make it
accessible according to your standard application navigation style; it can be an entry in a list, a tab, or a link
in the navigation bar. The following select statement selects the data from the apex_team_feedback view
and should show only the feedback for the current application. You can also choose to narrow the selection
down, so users can only see the feedback they entered themselves or feedback with a certain status. That’s
all up to you. If you use the wizard to create this report, you have to set Link to Single Row View to No in
order to prevent an error from being raised.

SELECT feedback_number "Nr."
, feedback_id "Follow up"
, feedback
, CASE
 WHEN feedback_type = 1 THEN 'General Comment'
 WHEN feedback_type = 2 THEN 'Enhancement Requested'
 WHEN feedback_type = 3 THEN 'Bug'
 END "Type"
, CASE
 WHEN feedback_status = 0 THEN 'No Status'
 WHEN feedback_status = 1 THEN 'Acknowledged'
 WHEN feedback_status = 2 THEN 'Additional Info. Requested'
 WHEN feedback_status = 3 THEN 'Open'
 WHEN feedback_status = 4 THEN 'Closed'
 END "Status"
, page_name "Page"
, public_response "Response"
FROM apex_team_feedback
WHERE application_id = :APP_ID
ORDER BY updated_on DESC

Figure 5-32 shows what the report page you’re trying to achieve will look like.

Figure 5-32. Feedback response report

Chapter 5 ■ team Development

244

To get that result, you have to make some minor changes. First, the column Follow Up in Figure 5-32 is used
as a link column. Set the link text to the image of your liking and set the URL target to javascript:FollowUp(
'#Follow up#');. The JavaScript function is defined in the Function and Global Variable Declaration section of
the page as follows:

function FollowUp(pId){
 $s('P103_FEEDBACK_ID', pId);
 $('#FollowUp').show();
}

Within the same page, create a new HTML region named FollowUp with two items: P103_FEEDBACK_ID
as Hidden and Value Protected set to No and P103_FOLLOW_UP as a text area. Set the static ID of the region to
FollowUp, and set Region Custom Attributes to style="display:none; width:540px". So, the region will
be hidden by default and shown when a user clicks the little edit image in the report. Also, create a Region
Button there to submit the page.

Next, create an On Submit Page Process to save the follow-up on the feedback using the
apex_util.submit_feedback_followup procedure, as shown in Figure 5-33.

Figure 5-33. Saving the follow-up process

Chapter 5 ■ team Development

245

You can also show the follow-up on that page using the apex_util.get_feedback_follow_up function
or querying the apex_team_feedback_followup view. Once the follow-up is entered by the end user, that
information can be transferred back to the development system.

Extending Feedback: Feeding Back the Follow-Up
You execute the same steps to get follow-up back into the development system as you did to get the feedback
from deployment to development. You export and import the feedback, and the follow-up is exported and
imported as well.

 ■ Note the Changes Since setting when exporting feedback applies only to the feedback itself and not to
the follow-up. So, when using this setting, follow-up is exported only if the feedback is changed after the
entered date. exporting all feedback may be more appropriate.

Further Enhancements
Instead of waiting for the feedback to arrive in your development environment, you can also opt for sending
the entered feedback by e-mail. This may be only for the more serious entries, but that’s up to you. And of
course that will work only if there is a mail server configured for sending e-mail from APEX.

Another enhancement you might think of is sending feedback automatically by e-mail on a regular
basis. Obviously, you also need a mail server configured for this. You can create a procedure like the one
listed next and use the apex_plsql_job.submit_process function to schedule the procedure.

create or replace procedure send_feedback
 (p_workspace apex_workspaces.workspace%type
 , p_send_to varchar2
)
is
 l_mail_id number;
 l_clob clob;
 l_blob blob;
 l_mail_blob blob;
 l_dest_offset number := 1;
 l_src_offset number := 1;
 l_amount integer := dbms_lob.lobmaxsize;
 l_blob_csid number := dbms_lob.default_csid;
 l_lang_ctx integer := dbms_lob.default_lang_ctx;
 l_warning integer;
 -- The name of the Workspace you want to export the Feedback from
 l_workspace_id apex_workspaces.workspace_id%type;
 -- Search string for removing all "trash". Real SQL starts from there
 l_search varchar2(255) := 'set define off';
begin
 -- Get the ID of the Workspace and set the environment
 l_workspace_id := apex_util.find_security_group_id (p_workspace);
 wwv_flow_api.set_security_group_id(l_workspace_id);
 -- Create the mail object

Chapter 5 ■ team Development

246

 l_mail_id := apex_mail.send
 (p_to => p_send_to
 , p_from => 'apex@oracle.com'
 , p_subj => 'Feedback Export from Deployment to Development'
 , p_body => 'See the attachment.'
);
 -- Create the CLOB
 -- Export the Feedback to Development for the Workspace provided
 l_clob :=
 wwv_flow_utilities.export_feedback_to_development (l_workspace_id);
 -- Convert to BLOB
 dbms_lob.createtemporary (lob_loc => l_blob
 , cache => true
);
 dbms_lob.converttoblob (l_blob
 , l_clob
 , l_amount
 , l_dest_offset
 , l_src_offset
 , l_blob_csid
 , l_lang_ctx
 , l_warning
);
 -- Remove all "trash", so only real SQL is left over
 dbms_lob.createtemporary (lob_loc => l_mail_blob
 , cache => true
);
 dbms_lob.copy(l_mail_blob
 , l_blob
 , dbms_lob.lobmaxsize
 , 1
 , dbms_lob.instr(lob_loc => l_blob
 , pattern => utl_raw.cast_to_raw(l_search)
)
);
 -- Add the file as a BLOB attachment to the mail
 apex_mail.add_attachment
 (p_mail_id => l_mail_id
 , p_attachment => l_mail_blob
 , p_filename => 'feedback_export_from_'||lower(p_workspace)||'.sql'
 , p_mime_type => 'application/text'
);
 commit;
end;

Chapter 5 ■ team Development

247

Summary
Now that you know about the functionality of Team Development, it may become clear that the planning
capacity of Team Development doesn’t beat a “real” project management tool, like Microsoft Project. Even if
you add some nice Gantt charts, which are an absolute necessity for any planning tool, Team Development
still lacks too much functionality. Here are a few things you can’t do with Team Development:

•	 Add a capacity to a resource (like 40 hours per week)

•	 Plan using the given capacity

•	 Add a cost to a resource so you can plan how much money you have to spend

•	 Monitor how many hours a resource spends, using an interface with a time reporting
application

•	 Add multiple predecessors to to-do items so you can plan and execute the actions in
the right order and determine the critical path

Of course, you can build all this in your custom Team Development Enhancement application, but
capacity planning and critical path determination are complex mathematical issues and not easy to
solve. Still, for small projects (up to five people or so), Team Development might be a convenient—and
inexpensive—tool to use. But when a project starts getting more complex, you have to spend some money
and buy a specialized tool to support your business.

That said, the feedback feature of Team Development is in itself so powerful—especially when you
add functionality like that shown in the examples—that for feedback alone you should consider using
Team Development. When you’re in the test phase of your project in particular, feedback will facilitate
communication between users and developers. Your application can only benefit from that.

249

Chapter 6

Globalization

by Francis Mignault
As of its first release, APEX has supported globalized applications. Since, by definition, a web application can
be accessed from anywhere, globalization is an important feature to consider. APEX and the Oracle Database
provide the functionality to help you build applications that can display data based on the location of the
end user.

In this chapter, I will cover two major aspects of globalization: translation and localization. Translation
allows you to run applications in multiple languages without having to duplicate the logic. Localization is
used to format and display the content in the application based on where the end user is located. Even if
your applications are internal or intranet applications and do not need to be translated, the globalization
parameters may still be useful for date and number formatting.

The first part of this chapter will be about translations. It will show you how to install the builder in
different languages and how to translate an application, along with the configuration required to do so.
Translation also covers how to implement the mechanism to switch from one language to another while
executing an application. The second part of the chapter will cover localization, including time zones and
date formats.

As you probably know by now, APEX is built with PL/SQL and runs directly in the database, allowing for
the use of all language specifics available in the Oracle Database. For example, you could change the time
zone or NLS_SORT using either an alter session or, in certain cases, built-in APEX utilities. Using the Oracle
language capabilities allows you to build applications in 132 supported languages while the APEX builder
is available in these 10 languages: English, German, Spanish, French, Italian, Japanese, Korean, Brazilian
Portuguese, Simplified Chinese, and Traditional Chinese.

Using the Builder in Other Languages
When APEX is first installed, English is the default language. To be able to use the builder in other languages,
you must install them. Note that uploading new languages for the builder will also translate action menus
and error messages in interactive reports that will be used by the translated applications.

You can find the scripts required to load any of the nine other languages available for the builder in the
APEX ZIP file within the builder folder, as shown in Figure 6-1. This directory contains one subdirectory for
each of the available languages.

Chapter 6 ■ Globalization

250

 ■ Note apeX is available in two different downloads, english only and all languages.

Within each directory, a language-loading script is identified by the language code (for example,
load_de.sql or load_ja.sql).

To load the language, you must first set the NLS_LANG environment variable at the operating system
level. Check the documentation for the proper command for your operating system (in this example I am
running on Windows). Note that this setting is always the same for every language being loaded.

set NLS_LANG=AMERICAN_AMERICA.AL32UTF8

Then, run the appropriate load_lang.sql script in sqlplus using sqlplus / as sysdba, where lang is
the specific language (for example, load_de.sql for German or load_ja.sql for Japanese).

ALTER SESSION SET CURRENT_SCHEMA = APEX_050000;
@load_lang.sql

Note that you will have to load the other languages every time you upgrade APEX.
You can remove a language by running the corresponding unload_lang.sql script.
Once the language is loaded, you can find the option to use this language at the bottom of the login

region on the APEX login page, as shown in Figure 6-2.

Figure 6-1. Language directories of the APEX ZIP file

Chapter 6 ■ Globalization

251

The option to change the language of the builder is also available at the bottom left of the APEX builder
home page, as Figure 6-3 shows.

Figure 6-2. Available and loaded languages for the builder

Figure 6-3. Loaded languages for the builder and internal text

Chapter 6 ■ Globalization

252

There is a report available in the Administrative APEX workspace (internal) that shows which languages
have been loaded for the builder. To view this report, log in as the administrator of the internal workspace
and select the option Installed Translations under Manage Instance.

Translating Applications
Some systems are required to be bilingual or even multilingual, depending on where and how they are used.
Applications are becoming more commonly available on the Internet, and users may prefer to access them
in their own language. For example, Google, Hotmail, and even the iPhone are multilingual because the
business market is literally worldwide.

The translation process has two parts: first the configuration of the parameters and then the application
translation itself. Applications have to be translated and published every time changes are made to the
primary application so that they can be applied to all the languages.

The following paragraphs will explain the different steps for translating your application. In short, they
are as follows:

 1. Configure the globalization attributes.

 2. Map your primary application ID with the translated applications’ IDs.

 3. Seed the translated text to the APEX translation repository.

 4. Translate your application.

 5. Publish the translated applications.

The first step required to translate an application is to configure the globalization attributes. They are
defined in the Shared Components section of the application (see Figure 6-4).

This section is also accessible via the Edit Application Properties dialog and the Globalization tab.
The first parameter to set is the default language of the primary application (the current application).

To do so, choose the language in the Application Primary Language select list, as shown in Figure 6-5. The
Application Primary Language setting is extremely important since all functionalities will be localized in
the chosen language. This parameter should be set even when translation is not required. By setting this
parameter, sorting, CSV exports, interactive reports, and APEX messages will be translated and localized for
the primary application. The default value of the Application Primary Language setting is always English
(United States) (en-us).

Figure 6-4. Globalization Attributes option

Chapter 6 ■ Globalization

253

The way APEX supports multilingual applications is by creating a copy of the primary application for
each translated version. At runtime, this is transparent to the end user. The developer makes changes to
the primary application and then publishes these to the translated versions. This will be explained in more
detail later in this chapter.

Application Language Derived From
Once the primary language is defined in the globalization attributes, the Application Language Derived
From parameter must be set, as shown in Figure 6-6. This will determine how APEX decides which language
will be used at runtime. Using this parameter, APEX will execute the corresponding translated application.

Figure 6-5. Globalization attributes

Chapter 6 ■ Globalization

254

The different options to derive the language from are as follows:

•	 NO NLS (Application not translated): Choose this if no translations are required for
the application.

•	 Application Primary Language: This uses the primary language value as the
application language. This is useful for developers to run tests in a specific language.
For example, if the primary application is en-us (English US) and a fr-ca (French
Canada) application is mapped, you could change the primary language to fr-ca and
use an Application Language Derived From setting of Application Primary Language
to run the fr-ca application. It is important not to forget to change the primary
language back to its original setting once testing is complete. When the primary
language is changed, the interactive report menus and the APEX error messages will
both be displayed in that language. For this parameter, you can select any of the 132
available languages.

•	 Browser (use browser language preference): When using this option, APEX will check
the browser language and execute the mapped application in the same language
code. For example, if the browser is set to fr-ca, APEX will run the translated fr-ca
application if it exists. If, let’s say, no fr-ca application exists, it will use the primary
application language.

Figure 6-6. List of choices for Application Language Derived From

Chapter 6 ■ Globalization

255

•	 Application Preference (use FSP_LANGUAGE_PREFERENCE): This setting
uses an APEX preference to determine which language to use. Preferences are
programmatically set using the APEX_UTIL.SET_PREFERENCE procedure and are
linked to an application user. To check the user preference, you can use the
APEX_UTIL.GET_PREFERENCE API.

APEX_UTIL.GET_PREFERENCE (
p_preference IN VARCHAR2 DEFAULT NULL,
p_user IN VARCHAR2 DEFAULT V('USER'))
RETURN VARCHAR2;

•	 Item Preference (use item containing preference): This setting can be confusing
because of its use of an application item called FSP_LANGUAGE_PREFERENCE and not
a preference. When you use this option, an application item called FSP_LANGUAGE_
PREFERENCE has to be created in the Shared Components area. Afterward, to set
the language of the application, a simple change of the value of FSP_LANGUAGE_
PREFERENCE is needed. For example, in PL/SQL you could write the following:

:FSP_LANGUAGE_PREFERENCE := 'fr-ca' ;

•	 Once the value is changed, in the next page rendering, APEX will check that value
and run the corresponding translated application with the corresponding language.

•	 Deriving the language using this method can sometimes be tricky when accessing a
specific page in a specific language via a direct external URL.

•	 For example, if you wanted to access page 200 in fr-ca with a primary application in
en-ca and while setting FSP_LANGUAGE_PREFERENCE, the URL would be as follows:

http://domain:port/pls/apex/f?p=999:200::::FSP_LANGUAGE_PREFERENCE:fr-ca

•	 In that case, APEX will start to execute the application ID 999, page 200, in the
default primary language en-ca. Then, it will set the application item FSP_LANGUAGE_
PREFERENCE to fr-ca as defined in the URL.

•	 The en-ca application, which is the primary language, will be displayed, since the
application item is set in the URL and will be processed during the page rendering.
The problem here is that even if you want to see the fr-ca as specified in the URL, the
first page view will still show the en-ca version. Only subsequent pages will be in fr-ca.

•	 One way to be able to see the fr-ca version on the first call would be to always go to a
page that sets the application item and branches back. In this page, FSP_LANGUAGE_
PREFERENCE would be set, followed by a redirection to page 200, in this example in
order to then display the right application in fr-ca. The language switch will then be
transparent to the end user.

•	 Another option to change the language via the URL is the P_LANG parameter. This can
also be used to set the language when deriving the language with the FSP_LANGUAGE_
PREFERENCE item, although this will not change the value of the FSP_LANGUAGE_
PREFERENCE application item. Using P_LANG in the URL will make all subsequent page
views in that language.

http://.../pls/apex/f?p=999 :1 :0 :::::&p_lang=fr-ca

http://domain:port/pls/apex/f?p=999:200::::FSP_LANGUAGE_PREFERENCE:fr-ca

Chapter 6 ■ Globalization

256

•	 Session: The last option for Application Language Derived From is Session. When
this option is selected, APEX will determine the application language from the
session setting.

•	 The session is set by using the API APEX_UTIL.SET_SESSION_LANG or by using the
P_LANG parameter in the URL. Here’s an example:

http://.../pls/apex/f?p=999 :1 :0 :::::&p_lang=fr-ca

•	 To get the session language value, use the API APEX_UTIL.GET_SESSION_LANG or
use the variable BROWSER_LANGUAGE. To reset the session language value, use
APEX_UTIL.RESET_SESSION_LANG. Those APIs can be used in application processes
or in database packages and procedures.

Mapping
Once you have set the globalization attributes, the next step is to map your primary application to the
application IDs that will be used by the translated applications.

Translations have to be mapped to an application ID. Those IDs will be used to generate the
applications that APEX will run when a specific language is required. To do so, go to Translate Application
under Globalization in the Shared Components area of the application, and select the first option:
“Map primary language application to translated applications.” Click Create. You will get to the application
language mapping page, as shown in Figure 6-7.

Figure 6-7. Application language mapping configuration

Chapter 6 ■ Globalization

257

You can change the mapping when you import the primary application with translations. Also, if the
application ID that is mapped to the translated application is already in use when you import, APEX will
automatically assign another ID.

Enter the corresponding translated application ID. This ID must be available in the APEX installation.
The translation will create a copy of the primary application using this translated application ID and assign it
to the selected language.

One way of making sure that the translated application IDs are not already in use is to define a development
standard and reserve a range of IDs. For example, all the translated applications could use ID 9001 and up. So,
the primary application 543 would be mapped to the translated application 9543. This standard also makes it
easier to see that two applications are related when exporting and importing them. Also note that translated
application IDs cannot end with 0; an error message will be displayed if that is the case.

Once the application ID is defined, you can enter the language and the image logical directory defined
in the web server configuration that the translated application will use. Using this option, all the images used
by the translated application will have to be in that directory.

You can create as many mappings as required, one for each language that your primary application is
going to be translated into.

CSV Encoding
When exporting the data in CSV format, it is important to make sure that the character set of the application
running will be used. Setting Automatic CSV Encoding to Yes, as shown in Figure 6-8, will export the data in
the character set of the language of the application that is currently running.

Figure 6-8. Automatic CSV Encoding option

Chapter 6 ■ Globalization

258

To set Automatic CSV Encoding, go to Globalization Attributes in the primary application’s Shared
Components area.

If Automatic CSV Encoding is not set to Yes when running multilingual applications, Excel exports may
not display special characters correctly. If it is enabled, the output will then be properly converted to match
the localized applications.

Translating an Application
The translation process consists of the following:

•	 Seeding the translated application

•	 Translating text either manually or via an XLIFF file

•	 Publishing the translated application

This process must be done every time you make changes to the primary application, before they will
appear in the translated applications. Translating a primary application creates a new translated application
that is exportable/importable but not modifiable.

All the following steps are in the Shared Components area’s Translate Application section.

Seed Translatable Text to Translation Repository
The APEX main database schema (APEX_050000 for APEX 5.0) contains a set of tables and views used for
translation that I call the translation repository. These tables are used to store the original values from the
primary application and the translations that will be used to generate the translated applications.

The seeding process extracts the translatable content from the primary application and creates entries
in the APEX translation repository, which will allow application text to be translated.

To initiate the seeding process, select the language mapping that you want to seed and click Seed
(see Figure 6-9).

The data created during the seeding process is part of the APEX translation metadata and can be
changed only via the translation process.

Figure 6-9. Seed to translation repository

Chapter 6 ■ Globalization

259

To be able to publish the mapped applications, there must be values in the APEX translation repository.
Clicking the option to manually edit the translation repository will show a report containing the rows

from the translation repository. The labels, region titles, and other translatable text will be in that report.
I will come back to that option later.

Download Translatable Text from Repository to Translation File (XLIFF File)
This step extracts the data from the translation repository and creates an XML Localization Interchange
File Format (XLIFF) file that you can save locally on your disk. This format is an official XML format for
translations.

To download the XLIFF file on your client locally, select the language to extract and click the Export
XLIFF File for Application option (see Figure 6-10). If desired, you can export only the elements requiring
translation. This will extract only the text that is new in the translation repository or has been updated in the
primary application but not translated in the repository. To be able to translate the text, the Include XLIFF
Target Elements check box must be selected since it will be those values that will be updating the repository.
It is also possible to download the XLIFF file for a specific page.

The download will generate an .xlf (XLIFF) file containing the source application ID, the target
application ID, the source language, and the target language.

It is good practice to export the primary application with translations. This will keep the translation
repository data in the export file. This way, you will always have the translations with your primary
application. See the “Copying Translations to Other Environments” section.

The XLIFF file contains all translatable elements, including labels, region titles, button names, and more.
If you look at the header of the file, the source and target languages, as well as the generated XLIFF

filename, are specified. When using source control software, this indicates when the file was generated.

Figure 6-10. Download the XLIFF file

Chapter 6 ■ Globalization

260

<?xml version="1.0" encoding="UTF-8"?>
<!--

 ** Source : 122
 ** Source Lang: en-ca
 ** Target : 9122
 ** Target Lang: fr-ca
 ** Filename: f122_9122_en-ca_fr-ca.xlf
 ** Generated By: ADMIN
 ** Date: 07-FEB-2015 13:15:21

 -->
<xliff version="1.0">
<file original="f122_9122_en-ca_fr-ca.xlf" source-language="en-ca" target-language="fr-ca"
datatype="html">
<header></header>
<body>
<trans-unit id="S-4-4463613133056390-122">
<source>Projects</source>
<target>Projects</target>
</trans-unit>
<trans-unit id="S-5-1-122">
<source>Projects</source>
<target>Projects</target>
</trans-unit>
<source>Login</source>
<target>Connexion</target>
</trans-unit>

Each trans-unit ID is loaded into the translation repository and mapped with a specific component in the
primary application during the seed process. The trans-unit ID is composed of a unit ID, a metadata ID, and
the application ID. In the example <trans-unit id="S-4-4463613133056390-122">, S-4 is an internal code that
corresponds to the text of a tab, 4463613133056390 is the metadata ID, and 122 is the primary application ID.

 ■ Warning if you change the primary application iD by exporting without translations and importing in
another iD, you will not be able to reuse the same XliFF file. See the section “Moving translations to other
environments” for more details.

Translate Text
In this step, you have to edit the XLIFF file and translate all the text extracted from the primary application.

Editing the XLIFF file is a relatively simple process. Since the XLIFF format is an official XML format for
translations, translators will be able to use the XLIFF files with their specialized translation software. This
way, the translation could also be done by a third party. But in the majority of cases, a simple text editor can
be used to perform the translation as long as the text editor is UTF8 compatible.

Chapter 6 ■ Globalization

261

To translate the text, you have to change the values of the text contained between the <target> tags.
Only changes on the <target> tags will be taken into account when the file is applied to the translation
repository.

<trans-unit id="S-5-101-122">
<source>Login</source>
<target>Connexion</target>
</trans-unit>

If the source tags are changed, these updates will not be applied to the primary application; in other
words, you cannot use this process to change the original application.

In the translation process, sometimes there may be text in the application HTML templates that
requires translation as well. To have the template text included in the XLIFF file, these templates have to be
identified as translatable, as shown in Figure 6-11.

Check the Translatable check box in the template properties. This tells APEX to include the content of
the template in the translation repository and in the XLIFF file.

There is also a Translatable check box option for list entries that will make the Seed option extract the
translatable text.

Apply XLIFF Translation File to Translation Repository
Once the translation of the XLIFF file is complete, it must be uploaded in APEX and applied to the translation
repository. This will parse and insert the contents of the file in the APEX translation tables (see Figure 6-12).

Figure 6-11. Translatable option for templates

Chapter 6 ■ Globalization

262

First, upload the XLIFF file that you want to apply. You can upload multiple XLIFF files if required.
To apply the XLIFF file, check the corresponding file name and click Apply Checked. You can also apply
multiple XLIFF files at the same time.

Publish Translated Application
The publish process generates the translated applications. Any time a primary application changes, the
translated applications must be published in order for the changes to be replicated across the different
languages. This is true even if the changes do not require text translation. Since the publish process generates
the mapped application ID, updates to SQL code and styles, as well as most other changes, will not appear in
the mapped applications until the publish process is performed.

You can see whether the translated applications are synchronized by going to the Translate area in the
globalization section in Shared Components. See Figure 6-13.

Figure 6-12. Apply the XLIFF file

Figure 6-13. See whether the translated applications are synchronized

Chapter 6 ■ Globalization

263

The mapped applications are not editable but can be exported. You will see them in the list of available
applications in the export options and also in the list of applications in the administration of the workspace.

To execute the translated application, you have to first configure how to derive the translated application,
as explained earlier. An easy way of quickly running the translated application would be to change the primary
language of the primary application and use the “use primary language derived from” option. (Switching from
one language to another is explained later in the chapter in the “Switching Languages” section.)

Manually Translate an Application
You can translate your application directly within APEX through the Shared Components ➤ Translate
Application menu. This allows you to bypass the XLIFF file export and apply process. After you have
manually translated your application, all you need to do is the publish process. You will find the option to
manually edit the translation repository at the bottom of the page, in the Translation Utilities region, as
shown in Figure 6-14.

This report, shown in Figure 6-15, shows the contents of the translation repository for the applications
mapped to your primary application.

The application must first be seeded in order for the data to appear in the translation repository.
When making changes manually, the XLIFF file does not have to be exported and applied because

the information was changed directly in the translation repository. All that must be done is to publish the
translated application.

Figure 6-14. Option to manually edit the translation repository

Figure 6-15. Manual translation in the translation repository

Chapter 6 ■ Globalization

264

This report is useful for making quick changes without going through an XLIFF file. You could do the
whole text translation with this option, but making a lot of changes for applications with lots of pages and
text is much faster with the XLIFF file method explained earlier.

This report can also be used to visualize the component description related to the translation string.
For example, to translate only the text buttons, you could use a filter on the Column Description for Page
Button Text. Unfortunately, this information is not available in the XLIFF file.

 ■ Note another purpose of this report is to validate that the right XliFF file was applied in the translation
metadata. You can do this by simply validating whether the changes you made in the XliFF file are in this report
using the Search option. During the translation process, a lot of XliFF files can be generated and applied and
sometimes it gets confusing.

Translating Data in the Database
For multilingual applications, it is important to plan the multilingual implementation from the start of the
project. It is important to remember that not only user interface elements require translation but the underlying
data may as well. This will impact the data model. For example, an application that lists departments should
display the department names in the language in which the application is running, such as a French name for
when the user uses the application in French and an English name for when it is used in English. A multilingual
application implies that the application will be used simultaneously in multiple languages.

For example, let’s say you have a bilingual application in French and English. Descriptions must be
displayed both in French and in English, based on the language currently being used.

In the database, you could use a table column to store the French description and another for the
English description. When displaying the description to the end user, the application should show only the
one that corresponds to the active language.

First, add a new column to the departments lookup table that will contain the French department name.

Alter table departments add (DEPARTMENT_NAME_FR varchar2(30));

Then, to avoid having to check for the language in every single select throughout the application,
you will create a view that will do just that. Notice the BROWSER_LANGUAGE variable. At any time, to know the
language of the application running, you can check its value from the session state. Even if the name refers
to the browser, it really contains the language of the application, not the browser. Also notice that you use the
APEX V function. This function returns the values of the user session state.

CREATE OR REPLACE FORCE VIEW DEPARTMENTS_V
(DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID) AS
select DEPARTMENT_ID
,decode(nvl(v('BROWSER_LANGUAGE'),'en-us'),'fr-ca',coalesce(DEPARTMENT_NAME_FR,
 DEPARTMENT_NAME),coalesce(DEPARTMENT_NAME, DEPARTMENT_NAME_FR)) DEPARTMENT_NAME
, MANAGER_ID, LOCATION_ID
from DEPARTMENTS;

Note that it is best to always display something as a description rather than nothing at all. This allows
for the view to display the department name in the application language, but if it is null, it will display
the department name in the other language. Therefore, if the application is run in French and no French
department name is found, the English department name will be displayed.

Chapter 6 ■ Globalization

265

Once the view is created, you can use it in all your lists of values, reports, and any other places that you
have to display the department name in the appropriate language.

The advantage of such a view is that if you later want to add a new language or add other columns for
translation to your tables, you will reduce the changes to your applications. Basically, adding a new language
will require changing views.

Dynamic Translations
In some cases, lists of values or other strings used in queries may not be translatable using the XLIFF file.

The dynamic translations API (APEX_LANG.LANG) checks the language of the running application and
returns the translation from an APEX table. The data in the dynamic translations table is populated by the
developer of the primary application. The dynamic translations will be part of the application export file;
therefore, they will be automatically imported.

To create dynamic translations, you must use the “Manage dynamic translation repository” option,
as shown in Figure 6-16. You can find this section at the bottom of the page in Translate Application in the
Shared Components area of the Globalization section.

For example, you may decide to always translate Sales to Ventes, Accounting to Comptabilité, and
Shipping to Livraison.

The steps are as follows (see Figure 6-17):

 1. Select the language to translate to and that matches the mapped translated
application language.

 2. Enter Sales for Translate From Text.

 3. Enter Ventes for Translate To Text.

Figure 6-16. Dynamic Translations option

Chapter 6 ■ Globalization

266

The Translate From Text value must exactly match the text that will be selected by the List of Values using
the APEX_LANG.LANG function. Once all the translations have been entered into the dynamic translations
repository, the APEX_LANG.LANG function will return the corresponding translations in the lists of values.

Select APEX_LANG.LANG(Department), deptno
From departments;

Figure 6-18 shows the result of the LOV query in English (en-us).

Figure 6-19 shows the result of the same LOV query in French (fr-ca).

Figure 6-17. Dynamic translation page

Figure 6-18. Example of dynamic translation (en-us)

Chapter 6 ■ Globalization

267

Dynamic translations have to be entered manually through these pages. It would be nice to have the
option of using an API to update these values programmatically, but none currently exists. There is a view
called APEX_APPLICATION_TRANS_DYNAMIC that lists the content of dynamic translations.

Translating APEX Internal Text
As previously mentioned, when you apply the translations that come with APEX, every one of the internal
APEX messages is translated. These messages include the interactive report menus, the help menus, and the
report paginations.

If you want to translate into a language that is not part of the ten included APEX languages, you’ll need
to translate all the internal messages manually.

You can translate the internal messages by selecting Text Messages in the Shared Components area
of the Globalization menu, shown in Figure 6-20. Other options exist in the Shared Components area that
link to the same option. Text message translation is also accessible in the Translate Application section
when selecting “Create and manage text messages,” “Manage Messages Repository,” “Create and Manage
messages callable from PL/SQL,” or “Optionally translate messages which are used by PL/SQL procedures
and functions.”

Table 6-1 lists the internal messages used for interactive reports.

Figure 6-19. Example of dynamic translation (fr-ca)

Figure 6-20. Translating APEX internal text

Chapter 6 ■ Globalization

268

As an example, consider a bilingual application with the primary language as English Canadian and a
mapped Czech application. To translate the interactive report button Actions, the internal APEX messages
must be translated using the APEX text messages. Create an entry in Shared Components ➤ Translate ➤
Text Messages for the APEXIR_ACTIONS message. The English text message is already defined in APEX; it was
loaded at installation. If other languages have been loaded, the internal text messages in those languages are
also already defined. They cannot be overridden.

Therefore, all that needs to be done is to create an entry for APEXIR_ACTIONS in cs (Czech), as shown in
Figure 6-21.

Figure 6-22. Interactive report Action button in Czech

Table 6-1. Internal Messages for Interactive Reports

APEXIR_ACTIONS Actions

APEXIR_SELECT_COLUMNS Select Columns

APEXIR_FILTER Filter

APEXIR_ROWS_PER_PAGE Rows Per Page

APEXIR_FLASHBACK Flashback

APEXIR_SAVE_REPORT Save Report

APEXIR_RESET Reset

APEXIR_HELP Help

APEXIR_DOWNLOAD Download

Figure 6-21. Interactive report text translation

When the application runs in Czech (cs)—for example, if I change Default Language to Czech (cs)—the
correct translation will appear in every interactive report within the application, as Figure 6-22 shows.

Keep in mind that these internal translations must be performed for every distinct primary application.
If multiple applications must to be created and translated, a base application with internal messages
translated could be created, and a copy can be used for new application developments. When exporting and
importing an application, translated text messages and dynamic actions are also exported and imported.

Chapter 6 ■ Globalization

269

Some of the internal messages use substitution variables, making it important to reuse them in the
translated message text. For example, FLOW.VALIDATION_ERROR message text includes the number of errors
that occurred; “%0 errors have occurred” could be translated to “%0 erreurs sur la page.”

This feature of translatable messages can also be used for other strings used in applications generated
from PL/SQL stored procedures, functions, triggers, packaged procedures, and functions. Simply define
a new text message and use the APEX_LANG.MESSAGE function. This is the same function as the dynamic
translation:

Ex : select APEX_LANG.MESSAGE('MY_MESSAGE')

This will display the text defined in the message text in the language in which the application is running
for MY_MESSAGE.

There is a view called APEX_APPLICATION_TRANSLATIONS that lists all the text message translations.

The APEX_LANG API
Like many of the functionalities in APEX, there is an API that allows you to perform all the translation tasks
programmatically. As explained earlier, you can use APEX_LANG.LANG to create dynamic translations and
APEX_LANG.MESSAGE to translate the internal text used for interactive reports and other APEX functionalities.
APEX_LANG can also be used for all the other translation functionalities such as creating mappings, seeding,
publishing, and updating the translated strings. The APEX API documentation explains in great detail the
APEX_LANG API and includes examples.

With the APEX_LANG API, you can use the following procedures to create or delete the language mapping
for the translation of an application:

CREATE_LANGUAGE_MAPPING
DELETE_LANGUAGE_MAPPING
UPDATE_LANGUAGE_MAPPING

The LANG procedure is used for dynamic translations. See the “Dynamic Translations” section.
The MESSAGE and UPDATE_MESSAGE procedures are used for translatable text message and the APEX

internal text (for example, the Interactive reports menu) for the specified application. See the “Translating
APEX Internal Text” section.

The SEED_TRANSLATIONS procedure is used to see the translatable text from the specified application
into the translation repository.

The UPDATE_TRANSLATED_STRING procedure allows you to change the translated strings in the
translation repository.

The PUBLISH_APPLICATION procedure is used to publish the translated version of an applications.
Perform a seed and publish process each time you want to update the translated version of your application
and synchronize it with the primary application.

Copying Translations to Other Environments
In a standard configuration, you usually have multiple environments: one for development where
developers have the flexibility to change almost anything and one for user testing that is usually more
restricted and often used for testing the move to production, maybe a preproduction environment and a
production environment that is completely secured and restricted. This section explains how you can move
your applications and their translations from one environment to another.

Chapter 6 ■ Globalization

270

Translating a primary application into multiple languages generates a separate translated application
for each mapped language. When the seed is completed, the translation repository is populated, and this
data is used to generate and publish the translated applications. The translated applications cannot be
modified in the builder but can be exported and imported.

There are different ways to promote your applications and their translated versions from one environment
to the other.

You can do the following:

•	 Export/import the primary application with the translation

•	 Export and import the primary application and the translated applications

•	 Export only the primary application and the XLIFF file

You should always use the first option of exporting the primary application with the translation.
The other options, as explained later, can be used in specific cases.

A good practice is to use the same application IDs in all your environments. This makes it easier to
maintain because you can relate and identify the same application everywhere. But, in certain cases, you
may have to change the primary application ID or the translated application IDs. It could be because you are
sending your application to the cloud or because you use the same database for dev and test.

The good news is that you can change the mapping of the translated application at import time. APEX
will even automatically give you a new application ID for your mapped application if it is already used by
another application.

Translation text messages and dynamic translations will always be included in the primary
application export.

Export/Import the Primary Application with the Translations
To move your primary applications and their translation mappings from one environment to the other, you
have to export the primary application with the translation. In the export preferences, there is an option
called Export Translations (see Figure 6-23). This option is set to Yes by default.

Using this option will include the translation repository content of all your mapped translations in the
export file.

After you import the primary application into the destination environment, the translation repository
will be populated, and you will have to publish (synchronize) the translated applications. This is not done
automatically.

Figure 6-23. Export translations

Chapter 6 ■ Globalization

271

If you want to change the primary application ID, this is the method you have to use. Importing an
application that contains the translations will automatically map new application IDs.

Export/Import the Primary Application and the Translated
Applications Separately
You can also export the primary application and the generated translated applications one by one
separately. The translated applications cannot be modified but are accessible in the export process.

Be aware that if you import the translated application by itself, you will not be able to regenerate it
without the content in the translation repository. If ever you import the primary application and the mapped
applications separately and you want to regenerate the mapped applications at a later time, you will have to
keep the mapping in the primary application and upload a valid XLIFF file that uses the same application IDs.

Export Only the Primary Application and the XLIFF
Another way of promoting your applications is to export the primary application without the translations
and download the corresponding XLIFF files. This is the same as exporting the primary application with
translations but doing so manually. The difference is that you will have to save the XLIFF file in your source
versioning system and make sure that you apply it and publish in the destination environment.

This could be useful if ever you want to restart the translation from a backup or if you forgot to select the
Export Translations preference during the export.

Localization
Localization refers to when data is displayed to the end user based on his location. It could be the time
and date of a meeting or the number format used in the end user’s region, for example. When localizing
applications, special attention must be paid to the different formats used for dates and numbers. Date
formats are different depending on the user’s location.

Since APEX is a set of PL/SQL programs and runs in the Oracle Database, every database NLS setting
can be changed using an alter session.

Oracle also provides locale-sensitive date formats, which, of course, can be used in APEX. For example,
a Long Date format of DL can be used to show the date in different languages.

Alter session set NLS_TERRITORY='CANADA';
Alter session set NLS_LANGUAGE = 'FRENCH'
Select to_char(sysdate,'DL') from dual;

TO_CHAR(SYSDATE,'DL')

lundi 21 février 2011

Alter session set NLS_TERRITORY='CANADA';
Alter session set NLS_LANGUAGE='ENGLISH'
Select to_char(sysdate,'DL') from dual;

TO_CHAR(SYSDATE,'DL')

monday 21 february 2011

Chapter 6 ■ Globalization

272

Developers should be careful in their choice of date formats that are used when developing global
applications. Long Date format (DL) and Short Date format (DS) could be used to display dates in
locale-sensitive formats.

Long Date format (DL):

•	 en-us: Monday, February 21, 2011

•	 fr-ca: lundi 21 février 2011

Short Date format (DS):

•	 en-us mm/dd/yyyy: 6/16/2008

•	 de dd.mm.yyyy: 16.06.2008

SINCE Format Mask
In APEX, you can use the SINCE format mask on date and timestamp columns. It has to be defined in the
format mask of report columns or in the Automatic DML page items.

Values will be displayed in the format “x days ago,” where x is the number of days before the current
time, as shown in Figure 6-24. This format mask is also translated into the ten languages available for APEX
builder (see “Loading Languages” at the beginning of this chapter).

Figure 6-24. Example of SINCE date format

Future dates and timestamps are also supported in APEX. It will display “x days from now,” where x is
the number of days after the current time. The SINCE format mask is supported against the columns of type
TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

The APEX_UTIL.GET_SINCE API can also be used to return the SINCE format for a DATE or a TIMESTAMP.

Numeric Formats
The same approach should be taken with numeric formats. If your application is going to be global, choose
appropriate numeric formats. The important part of the format is the locale-neutral format G and D that
defines the Group (G) separator and the Decimal (D) separator. The TO_CHAR function also accepts NLS
parameters.

Chapter 6 ■ Globalization

273

For example, to_char(123.45,'999D99','NLS_NUMERIC_CHARACTERS = ''.,''') will display the
number 123.45 with the appropriate decimal notation depending on the territory defined in the APEX
session. For the Currency format, the following should be used: FML999G999G999G990D00. The FML format
will display the correct currency symbol depending on the territory of the session. Keep in mind that this
formats only the number and that there are no automatic processes available to convert the amounts based
on currencies and localization in APEX. To convert an amount to a different currency, a process has to be
programmed in order to get the currency conversion rate and apply it to the amount.

The session NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT are set in the
Globalization attributes of the Shared Components of the application, as shown in Figure 6-25.

Time Zones and Territories
To demonstrate the time zone and territory localization features in APEX, I built a simple application. In the
example shown in Figure 6-26, I am running the application in Canada, localized in Montreal. You can see
that the time zone is Greenwich –5, the currency sign is $, and the decimals indicator is represented by a
comma, which is the locale standard for that region.

Figure 6-25. Application date formats

Chapter 6 ■ Globalization

274

If you use a timestamp with the local time zone data type, the display of the time automatically changes
when time zone changes are made. A user accessing the application from France will therefore see their
local time, while a user accessing the application from New York will see the dates in their local time.

It is also possible to automatically set the time zone by setting Automatic Time Zone to Yes in the
Globalization attributes in the Shared Components area of the application (see Figure 6-27). This setting will
use the client localization attributes defined by the web browser to determine the time zone and will be set
for the duration of the Application Express session.

When Automatic Time Zone is set to Yes, it is automatically set in the URL when the application is run
for a new session. You can see the TZ parameter at the end of the URL. This setting can be overridden using
APEX_UTIL.SET_SESSION_TIME_ZONE or reset using APEX_UTIL.RESET_SESSION_TIME_ZONE.

Figure 6-26. Example application for time zones and territories

Figure 6-27. Setting the time zone automatically

Chapter 6 ■ Globalization

275

In this example, a select list is used to allow the user to select the time zone, as shown in Figure 6-28.
Once selected, it is changed using the APEX_UTIL API as follows:

APEX_UTIL.SET_SESSION_TIME_ZONE(:P1_NEW_TZ);

Because in this example you are using a data type timestamp with the local time zone, the query will
automatically change the display of the time of the date value from the database to the corresponding
time zone.

It is also possible to change the time zone directly in the URL; for example, you could add &tz=+2:00 for
the Turkey time zone.

/pls/apex/f?p=115:1:0:::::&tz=+2:00

The territory is linked to the application language. When the language is derived using “session,” the
p_territory parameter can be changed in the URL without having to change the application language.
There is also an API that can be used to change the territory programmatically.

This parameter also establishes the default date format, the default decimal character and group
separator, the default International standard (ISO), and local currency symbols.

In this example, you added a select list to select the territory for the application, as shown in Figure 6-29.
Changing the select list will call the APEX_UTIL API as follows: APEX_UTIL.SET_SESSION_TERRITORY
(:P1_NEW_TERRITORY);.

Figure 6-28. Example of time zone change

Chapter 6 ■ Globalization

276

For a list of valid territories, you can use the following select statement:

select value
from v$nls_valid_values
where parameter='TERRITORY'
order by 1

The number will then be localized based on the territory since you are using the number format
FML999G999G999G990D00. The format changes only the display of the number; it does not convert the
amount. To apply currency conversion, you need to get the current conversion rate, as explained earlier.

You can also change the territory in the URL by using the P_TERRITORY parameter with a valid Oracle
territory name.

/pls/apex/f?p=115:1:0:::::&p_territory=AMERICA

Switching Languages
Using multiple languages in an application often means that the user can select which language he wants to
access the application in.

A simple way to allow this is to add a link in the navigation bar to switch from one language to another.
For example, let’s assume that the language is derived using “session” as defined in the globalization
attributes of the shared components of the primary application. What you want to do is change the Language
value in the session and refresh the page.

One way of doing this is to use a dynamic action that changes the language in the session using the
APEX_UTIL.GET_SESSION_LANG and SET_SESSION_LANG and JavaScript to reload the page.

For example, let’s say that the language of the primary application is English and that the translated
application is French. You want to display a link on the page to switch from one language to the other. So,
in your English version, you want a link that says “Français” and in your French version you want a link that
says “English.”

Figure 6-29. Example of territory change

Chapter 6 ■ Globalization

277

Here are the steps to implement this:

 1. Add a link in all your pages to switch the language.

The first step consists of adding a link in your page to allow the user to switch to another language. One
way of doing so is to add a link with a CSS id=switchlang. Using this ID you will be able to assign a dynamic
action (see step 2) to this link.

You can use the navbar entries to have the link at the top of every page. For example, if you are using the
APEX 5 universal theme, you can do the following:

a. Edit the Navigation Bar list template in the User Interface section of the
shared components.

•	 Add the CSS id=#A03# to the list template in the Current and NonCurrent
sections (see Figure 6-30).

•	 At the bottom of the page, in the Attribute Descriptions section of the same
template (see Figure 6-31), for the attribute #A03#, add a description like
Switch Lang ID. This is the attribute you will use to set the link with CSS
ID=switchlang.

Figure 6-30. Modifying the list template in the Current and NonCurrent sections for id=#A03#

Figure 6-31. Setting the #A03# attribute description

b. Edit the Navigation Bar List in the Navigation section of the shared
components. Create a new entry in the Desktop Navigation Bar
(see Figure 6-32) with the following:

•	 List Entry Label: Français

•	 Target type: URL

Chapter 6 ■ Globalization

278

•	 URL Target: javascript:void()

•	 User Defined Attribute #3: switchlang (see Figure 6-33; this value will
replace the #A03# that you added in the template in step 1a at runtime and
set the id=switchlang)

Figure 6-32. Setting the navbar list entry

Figure 6-33. Setting the navbar list entry user-defined attribute #3

Chapter 6 ■ Globalization

279

This will create a link on the top-right corner that says “Français” with the id=switchlang and a link
that calls javascript:void();. Checking the Translatable check box indicates that this list entry will be
extracted for translation.

 2. In a page 0 global page, add a dynamic action on click, based on a JQuery
selector of #switchlang with two true actions (see Figure 6-34).

In the Execute PL/SQL Code area, do the following:

if nvl(apex_util.get_session_lang,'en-ca') = 'en-ca'
 then apex_util.set_session_lang('fr-ca');
 else apex_util.set_session_lang('en-ca');
end if;

In the Execute JavaScript Code area, do the following:

location.reload();

Make sure that both your actions are set to No for Fire on Page Load.

 3. Seed, translate, and publish your application.

The last step is to translate the application so that the switch language link will be functional in both
French and English.

Seed the application, translate List Item Display Text from “Français” to “English,” and publish.
Voilà! (See Figure 6-35.) Using this example, the user will be able to switch languages on any pages

within the application.

Figure 6-34. Switch Lang dynamic action

Chapter 6 ■ Globalization

280

Care should be taken when running an application in multiple languages because it can be confusing.
Development is always done in the default primary language application, but the translated applications
must be resynchronized (published) even if the changes made are not text related or do not require
translation in order for these to be included.

Testing an application in the default language first and publishing the translated applications before
testing other languages is an essential part of debugging and testing.

Summary
In today’s business market, globalization is an important aspect of application development. Companies
often have offices all over the world, and customers can be located anywhere. Unfortunately, globalization
is often a feature overlooked by many, but it is definitely worth looking at and may end up to be useful. The
Internet allows you to create applications that can be used by multiple users in multiple locations at the
same time. Oracle Application Express possesses all the required tools to support you in building globalized
applications to help you better serve your customers.

As shown in this chapter, translation is relatively easy once you understand that an application must
be seeded, translated, and published. Having all the information stored in a metadata makes it even easier.
Another important aspect is that the translation process can be extended to third parties, because of its use
of the standard XLIFF format, also used by translators.

Localization is the other aspect of globalization taken care of in APEX. Date formats, number formats,
time zones, territories, and other NLS settings are easily customizable. There are even automatic settings
available to developers for building fully localized applications. And even for U.S. English–only applications
some of the globalization attributes can be useful.

All in all, APEX has been handling globalization from its first version, and this feature is well integrated.
And I am sure that it will continue to improve in its next releases.

Figure 6-35. Switch Lang dynamic action

281

Chapter 7

Debugging

by Doug Gault
At some point during the process of writing or maintaining an APEX application you will need to step into
the world of debugging. APEX 5 has quite extensive debugging capabilities compared to its predecessors.
This chapter will introduce you to the nuances of debugging in APEX.

 ■ Note This chapter specifically addresses the tools that APEX 5 provides for debugging and does not
discuss external or third-party tools.

Principles of Code Instrumentation
While it may seem odd to start a chapter on APEX debugging with a discussion about what makes good code
instrumentation, it’s an important topic. In any development environment, the ability to quickly and easily
see what your program is doing during execution is a critical component of debugging, especially when
using a framework such as APEX where a large portion of the core code is beyond your capacity to change.

Proper code instrumentation has a set of precepts that should be followed. They include the following:

•	 Exists in every environment: Code instrumentation should be available in all
environments, from development to production. Inserting instrumentation code in a
development environment and then removing it before migrating to production not
only takes away your ability to diagnose issues in production but also changes the
core code, potentially introducing changes in functionality.

•	 Easy to enable and disable: The instrumentation should be easy for the programmer
(and in certain cases, for the user) to enable and disable. Often code instrumentation
is disabled by default and turned on only when there is a problem to diagnose.

•	 Always available: You should not need to recompile any code to turn on
instrumentation. This is especially important in a production environment where
on-the-fly code changes are often locked down tightly. Instead, instrumentation
should be enabled by using a parameter or by adding a value to a table.

•	 Lightweight: The instrumentation should be “nonintrusive” in terms of the load it
introduces to the process that it is measuring. The difference between timings when
instrumentation is enabled and disabled should be minimal, if measurable at all.

•	 Integrated: Instrumentation should take advantage of any and all functionality
that is built into its native environment, especially any functionality that will make
problems easier to diagnose using other tools within the environment.

ChAPTEr 7 ■ DEbugging

282

As you examine APEX 5’s debugging features in greater depth, you’ll see that APEX adheres to these
precepts quite closely. I’ll also discuss how you can extend instrumentation into your own code to provide
even more granular coverage than what APEX provides by itself.

 ■ Note The remainder of the chapter discusses APEX debugging directly, but i challenge you to think about
the aforementioned precepts and see how they are implemented in APEX and how they may be implemented in
your own code.

Debugging Basics
To understand how debugging works, you need to take a quick tour of the core APEX engine. While this
might seem like an unnecessary review for many people, it’s important because of the way APEX 5 manages
and logs debug information.

Page Processing and Rendering
An APEX application is basically a group of pages that are linked together via buttons, hyperlinks, tabs, and
so on. When a user navigates through the application, submits data, or requests to view an APEX page, there
are two phases that the APEX engine goes through to provide the correct information to the user.

•	 ACCEPT (processing): This phase acts upon the request made by the user and, if
appropriate, runs any defined validations, computations, processes, and branches.
This includes setting session state and manipulating the underlying database tables.

•	 SHOW (rendering): This phase executes all appropriate code to render the page that
was identified by the branch taken in the processing phase. Page rendering may also
contain computations, processes, and branches, as well as the visual components
that make up the page to be rendered.

The reason these phases are important to debugging is that APEX breaks down the logging of debug
information into these same component parts. When the application server tier connects to the Oracle
database that contains the APEX installation, it grabs a connection from the database connection pool and
uses that to service the user’s APEX request. You can see this sequence in Figure 7-1.

Figure 7-1. Simplified APEX request-response

ChAPTEr 7 ■ DEbugging

283

The first phrase (ACCEPT) of servicing the user’s requests is to process the current page and the user’s
input. Because the state of the connection from the pool cannot be guaranteed to match the requirements
of the user’s APEX session, the first thing that APEX does is to alter the session, setting the desired NLS
parameters and session settings. Figure 7-2 shows this portion of the processing.

Figure 7-2. APEX page phases

Once the database session is in the proper state, APEX then begins checking to see whether the APEX
session is still valid, checking to see whether the user has authorization to run the page, retrieving session
state from the APEX data dictionary tables, setting session state that may have been altered by the user, and
then running the page-processing components as defined in the metadata.

The last step of the processing is to decide which programmatic branch to take, which in turn decides
which page will then be rendered and sent to the user. APEX always takes the first branch whose condition
evaluates to true.

The second phase (SHOW) is to render the page identified by the branching section of the first phase.
Because it is possible for page rendering to be called directly via a URL, this phase also walks through the
process of altering the database session, retrieving the APEX session state from the metadata tables, and
executing any required security checks. Figure 7-2 also shows the second phase of processing.

Once everything is set, APEX then walks through the process of rendering the page as defined in the
APEX metadata and presenting that page to the user via the application server. Once the application server
sees that the original request has been fully satisfied, it returns the Oracle database connection back to the
connection pool to be reused.

The two phases can be mapped directly to the page editor, as shown in Figure 7-3. In the section on the
left side of the page, the Rendering tab (1) equates to the SHOW phase, while the Processing tab (2) equates to
the ACCEPT phase. Furthermore, each step is timed. Time is measured from the beginning of the current step
to the beginning of the subsequent step. When debugging is turned on, these times are saved into the APEX
dictionary along with the step detail.

ChAPTEr 7 ■ DEbugging

284

The two-phase process of ACCEPT and SHOW iterates as the user navigates through and uses an APEX
application. At some point, you may run into issues in development where you want to see exactly what
is happening during the execution of either one, or both, of these phases. This is where APEX debugging
comes in.

APEX debugging indicates to APEX that it should emit information about exactly what it’s doing during
each of these phases. Unlike versions prior to 4.0, APEX does not emit the debug information into the page
being processed or rendered but instead stores the full debug information in a set of tables in the APEX
schema.

The newer approach is superior in that the debugging information persists beyond the lifetime of the
rendered page so that you can view and analyze multiple runs of a single page, comparing and contrasting their
debug output to see how changes you may have made might have affected the processing or performance.

Enabling Debug
Turning interactive debugging on is a straightforward process and can be done in one of two ways: via the
Developer Toolbar or via the URL. The Developer Toolbar will be visible if you are running an application
while you are also logged in to the application’s parent workspace as a developer. Figure 7-4 shows the
Developer Toolbar and highlights the Debug button, which toggles Debug mode on and off.

Figure 7-3. Mapping the phases to the APEX page definition

ChAPTEr 7 ■ DEbugging

285

You can also enable Debug mode by setting the DEBUG component of the APEX URL to either YES or
LEVELn, where n is between 1 (most critical) and 9 (least critical). The following shows both the URL syntax
and two examples of using the DEBUG component to enable Debug mode:

http://server/apex/f?p=App:Page:Session:Request:Debug:ClearCache:ItemNames:ItemValues

http://server/apex/f?p=100:1:23929384838429::YES:::
http://server/apex/f?p=100:1:23929384838429::LEVEL7:::

However, it is important to note that the ability to use either of these methods is controlled by an
attribute in the application definition. Editing the application properties and navigating to the Properties
region on the Definition tab will give you the ability to turn interactive debugging on or off. By default the
attribute is set to disallow interactive debugging.

Even so, if you are running an application in development mode (that is to say, you are running the
application while also logged in as a developer to the underlying workspace), debugging will always be
available to you. While this may seem a bit odd, this fact will allow developers to interactively debug an
application even if the application-level attribute is set to disallow debugging.

Figure 7-5 shows the Properties region and indicates the debugging attribute that should be changed to
allow interactive debugging.

Figure 7-4. APEX Developer Toolbar highlighting the Debug button

Figure 7-5. The Properties region of the application definition where interactive debugging is enabled or
disabled

 ■ Note The debugging attribute enables and disables only interactive debugging. Programmatic debugging,
discussed later in this chapter, is still possible even when the debugging attribute is set to NO.

While it may be slightly confusing, once debugging is enabled via either the Developer Toolbar or
the URL, the page will refresh, but you will notice nothing externally different about the page per se. Just
remember that APEX stores the debug information in its data dictionary tables and does not emit it into the
page being debugged.

There are two visual clues that will help you recognize when debug mode is active. If the Developer
Toolbar is visible, the text of the debug button will now be changed to No Debug, as shown in Figure 7-6.
Even if the Developer Toolbar isn’t visible, the URL will contain either YES or LEVELn in the debug position.

http://server/apex/f?p=App:Page:Session:Request:Debug:ClearCache:ItemNames:ItemValues
http://server/apex/f?p=100:1:23929384838429::YES
http://server/apex/f?p=100:1:23929384838429::LEVEL7

ChAPTEr 7 ■ DEbugging

286

Debug Information
Once Debug mode is turned on and you have executed the steps you want to debug, such as running a
report or submitting a page, you will then want to view the debug information that was captured during your
session. There are a couple of different places where you can do this.

Developer Toolbar
It’s probably most common to want to view the debug information for the page you’re currently running
immediately after turning debugging on. To do this, you again use the Developer Toolbar and click the
View Debug button. A pop-up window will appear that lists all the page views for the page you are currently
running. Figure 7-7 shows an example. The pop-up screen presents a high-level overview of all the views (or
debug sessions) that have been captured for the current page. This is actually an interactive report with a
filter set to show only views for the current page in the current application. You can alter the filters to show
whatever combination you want.

Figure 7-6. Developer Toolbar with debugging enabled

Figure 7-7. Pop-up window showing all debug views for page 1

ChAPTEr 7 ■ DEbugging

287

From this screen you can click the View Identifier link to drill down into each view and see the detailed
steps that APEX took to process and render the page. Figure 7-8 shows the detailed view for view ID 93320.

Figure 7-8. Example detailed view of a debug session for page 1 in application 116, view ID 93323

From the simple high-level view shown in Figure 7-7 you can actually see some interesting things.
You can see the timeline of debug views that have been created for this page by looking at the Timestamp
column, the action that was executed by looking at the Path Info column, the duration of each view by
looking at the Seconds column, and the number of detailed debug entries for each view by looking at the
Entries column.

Examining this particular example, you can see that one particular view (view ID 93320) took
approximately around a second to complete while the others were less than one second.

Remember that there are two phases involved in processing a user request: ACCEPT and SHOW. The
APEX debugging engine stores these two phases as separate “views” in the debug data. You can see from the
overview report that the SHOW phases are all very fast, but the ACCEPT phases often take more time.

How much more time will depend upon how much “work” is being done in the processing of your page.
The more work being done, the more likely it is that the page will take longer.

ChAPTEr 7 ■ DEbugging

288

You can drill down into the individual views to see what the APEX engine was doing during each phase
and identify the activities within the page that were taking the most time.

The details page shows the data in two formats. First is the histogram graph across the top of the page.
In this histogram, the bars represent the duration of each step in relation to the single step with the largest
duration. The second is the actual report that shows the details of what was executed during the phase
execution.

Hovering over any of the bars in the histogram with your mouse (as shown in Figure 7-9) will show
information about the step represented by that bar. Clicking that bar will scroll the screen so that the detail
line represented by the bar will come into view in the window.

Figure 7-9. View detail histogram showing hover hint

Figure 7-10. The Debug View Navigation region

The detail report is, again, an interactive report allowing you to create filters and manipulate the data
in many different ways. The first row of the report, when sorted by elapsed time or row, will identify the base
information about the current view, including the phase and request. This will help you identify exactly what
you are looking at. The subsequent lines show the individual steps taken to complete the phase being executed.

The detail report also has a column labeled Graph that mirrors the histogram that appears at the top of
the page. This visual clue will help you scroll down the detail report and easily identify those steps that took
the most time during the phase execution.

The actual detailed steps that appear will vary from page to page and also between the ACCEPT and SHOW
phases. However, they will generally conform to the broad sections outlined earlier in Figure 7-2.

Navigation between the different detail views can be achieved via the navigation region at the top of
the detail page, as presented in Figure 7-10. If you know the view ID, you can simply type it in the Page View
Identifier field at the top of the detail view page and click the Set button. If you want to return to the high-
level view page, click the Select Page View Identifier button.

Clicking the Reset button will return the current report to its default settings, resetting any filters you
may have implemented.

Application Utilities
Another place to view debug information is via the application utilities. You can reach these by clicking
the large Utilities icon on the main application edit page (as shown in Figure 7-11) or by clicking the small
Utilities icon in the menu at the top of the Page Designer and then selecting Application Utilities (as shown
in Figure 7-12).

ChAPTEr 7 ■ DEbugging

289

Figure 7-11. Utilities icon on the Application edit page

Figure 7-12. Utilities icon on the Quick Links menu

Selecting either option will take you to the Application Utilities page. From here, select the Debug
Messages option (as indicated in Figure 7-13).

ChAPTEr 7 ■ DEbugging

290

You will be presented with a high-level report identical to the one you see when accessing the data from
the Developer Toolbar. The difference is that the report initially shows all views for all pages in the current
application. Using the interactive report capabilities, you can filter the debug views to display only the ones
you’re interested in.

Drilling down will take you to the detail report, this time without the histogram across the top. Apart
from this small change, all the data is the same as you would see via the Developer Toolbar.

Navigation in this version of the report is slightly different. Here you use the APEX breadcrumbs to
navigate between the Debug and Debug Message Data pages to select the desired views, as shown in
Figure 7-14.

Figure 7-13. The Debug Messages option

Figure 7-14. Breadcrumbs for the Debug Messages utilities

Another change to the utilities-based Debug view is the addition of the Purge Debug Messages button.
This button allows both workspace administrators and developers to purge underlying debug data for the
currently selected application based on certain criteria. The available criteria are as follows:

•	 Purge all messages: This option will purge all data for the selected application that
currently resides in the underlying debug tables.

•	 Purge messages by age: This option allows you to select a time frame for which to
purge, from 1 day to 4 weeks.

•	 Purge current session messages: This option allows the purge of messages for the
currently active user session.

•	 Purge by View Identifier: This option allows the purge of messages related to a
specific view ID.

 ■ Caution When purging data, be aware of what other developers are working on within the workspace and
application. it is possible to accidently purge data that may be important to other developers.

Benefits of Debug Mode
There are a few benefits to Debug mode that are worth mentioning because they help make debugging some
of the more complex pieces of APEX a little easier. These benefits are particularly apparent when working
with graphs and charts or when developing interactive reports.

ChAPTEr 7 ■ DEbugging

291

Graphs and Charts
APEX 5 uses AnyChart 6 (www.anychart.com) as its main graphing and charting engine. While the APEX
team has done a wonderful job of hiding the behind-the-scenes complexity of how charting works,
sometimes you may need to dig into the details of how charts are being rendered.

As you learned in Chapter 3, everything you change on the Chart Attributes page of a given chart’s
definition ends up creating an XML document that determines how the chart will be drawn. You can, if you
want, edit the XML manually to make changes that are not available via the Chart Attribute options.

Although you can get a good feel for the XML that will be generated, you cannot guarantee what the
XML will look like until runtime. To be able to view the full runtime XML, prior versions of APEX required
you to use third-party, browser-based debugging tools. APEX, however, has made things much easier.

When Debug mode is on, each chart will contain a link that will allow you to view the XML that was
generated to drive it. Figure 7-15 shows a bar chart with the Show XML link visible in the lower-left corner.

Figure 7-15. Chart in Debug mode with Show XML link

Clicking this link will display the full runtime XML that was generated to drive the chart. This is useful
for debugging manual changes you may have made to chart XML or to view how the data has been emitted
into the XML from the series queries you have defined. Figure 7-16 shows an example of the generated XML.

http://www.anychart.com/
http://dx.doi.org/10.1007/9781484204856_3

ChAPTEr 7 ■ DEbugging

292

When debugging is enabled, APEX 5 also captures the AJAX callback to the database to generate the
XML and inserts information about that call into the APEX_DEBUG_MESSAGES table. The Path Info setting for
the corresponding Debug view will be set to show APXWGT, and the details will show information regarding
the underlying series of the chart, as shown in Figure 7-17.

Figure 7-16. Generated runtime XML for a chart

ChAPTEr 7 ■ DEbugging

293

Interactive Reports
While interactive reports give an amazing amount of power to the end user, debugging them can be a bit
challenging because APEX basically rewrites the query behind the scenes based on the user’s column
selections, filters, and more. Enabling debugging on an Interactive Report page will emit the SQL that is
generated for the current incarnation of the interactive report into the debug data.

Once an interactive report is rendered to the page, any changes made to the filters, sorting, column
selection, and so on, are done via AJAX calls. If debugging is enabled, changes to the report will still be
logged, but as an ajax plugin request for the page as opposed to a “show.” In fact, APEX now logs any AJAX
call having to do with the interactive report, including ones as simple as retrieving a distinct list of values
when clicking a column heading. While this may seem like overkill, it is extremely useful to know what’s
going on as you click around the interactive report options.

Consider the three debug snippets shown in Figures 7-18, 7-19, and 7-20. All the snippets are from the
same interactive report.

Figure 7-17. Debug detail for an XMLHttpRequest generated by an APEX chart

ChAPTEr 7 ■ DEbugging

294

Figure 7-18. Debug data for the default version of an interactive report

Figure 7-18 shows the detail debug data for an interactive report region prior to a user having made any
changes to the report. The path info for this view would be SHOW. You can tell the following from the figure:

•	 Line 76 indicates the start of the region.

•	 Line 81 lists the columns that will be displayed.

•	 Line 83 shows the base SQL statement.

•	 Line 84 shows the value of the APXWS_MAX_ROW_CNT bind variable because it will be
used in the SQL statement.

Figure 7-19 shows the AJAX plugin view that is associated with the user having clicked the Assigned To
column in the report to get a distinct list of asignees. Here you can see the following:

•	 Line 25 indicates the request for a distinct list.

•	 Line 28 shows the SQL statement that is to be executed.

•	 Line 29 to 30 show the bind variables and their values.

ChAPTEr 7 ■ DEbugging

295

Figure 7-19. Debug data for the AJAX call to get the distinct list of asignees

Figure 7-20 shows the detailed debug data for the same Interactive Report region after a user has
made changes to the report, as indicated in Figure 7-21. The changes indicate that you are filtering on the
ASSIGNED_TO value.

•	 Line 27 lists the columns that will be displayed.

•	 Line 30 shows the base SQL statement.

•	 Line 32 shows the value of the APXWS_EXPR_1 bind variable because it will be used in
the SQL statement.

ChAPTEr 7 ■ DEbugging

296

Figure 7-20. Debug data for the altered version of an interactive report

Figure 7-21. The filters applied to the altered report

With this debug data you have enough information to not only troubleshoot but also examine the
potential performance of the query that was generated.

ChAPTEr 7 ■ DEbugging

297

APEX Debugging API
Not only does APEX provide you with a method to interactively debug your application pages, it
also provides a full API that allows you to instrument your own code and even turn on debugging
programmatically. In this section, you’ll examine the APIs and see how they can be put to use in an
application context.

APEX_DEBUG
The core debugging API exists in the form of the APEX_DEBUG package. This package is now well documented
in the Oracle Application Express API reference. The following sections are brief descriptions of what’s
available in the API and some usage notes. For full technical definitions, please refer to the official
documentation. I’ll discuss their usage further in later sections.

CONSTANTS
The package provides a number of constants used throughout the package itself as well as being available for
developers to use.

subtype t_log_level is pls_integer;
c_log_level_error constant t_log_level := 1; -- critical error
c_log_level_warn constant t_log_level := 2; -- less critical error
c_log_level_info constant t_log_level := 4; -- default debug level
c_log_level_app_enter constant t_log_level := 5; -- APP: message when Procs/Funcs entered
c_log_level_app_trace constant t_log_level := 6; -- APP: other messages within Procs/Funcs
c_log_level_engine_enter constant t_log_level := 8; -- APEX: message when Procs/Funcs entered
c_log_level_engine_trace constant t_log_level := 9; -- APEX: other messages within Procs/Funcs

DISABLE Procedure
This procedure allows the developer to programmatically disable debugging in the context of the current
phase of page processing.

Usage Notes

DISABLE will turn off debugging no matter how it was enabled.
Disabling debugging in the middle of a phase will cause the actions that follow to be omitted from the

debug information.
The latest points in an APEX page where debugging can be programmatically disabled are as follows:

•	 Page rendering: Occurs after the footer, making sure that the sequence number of the
process is the highest in the set

•	 Page processing: Occurs on submit, after computations and validations, making sure
that the sequence number of the process is the highest in the set

ENABLE Procedure
This procedure allows the developer to programmatically enable debugging in the context of the current
phase of page processing.

ChAPTEr 7 ■ DEbugging

298

Usage Notes

Level 1 is the most critical.
Level 9 is the least critical.
Setting p_level to 3 would log any message at levels 1, 2, and 3.
Enabling debugging programmatically is not limited by the application-level setting that disallows

interactive debugging. Therefore, even if the application is set to disallow interactive debugging,
programmatic debugging will still work as expected.

The earliest points in an APEX page where debugging can be programmatically enabled are as follows:

•	 Page rendering: You can create a branch of type Function Returning a Page (Show
Only) with a processing point of Before Header, making sure that the sequence
number of the process is the lowest in the set. Set the function body to simply return
the current page number and use the condition to create a PL/SQL function body to
use APEX_DEBUG to turn debugging on to the correct level. If the condition function
always returns false, the branch will never be taken, but debugging can still be
turned on.

•	 Page processing: You can create a process of type PL/SQL Code with a processing
point of After Submit, making sure that the sequence number of the process is the
lowest in the set.

When debugging is programmatically enabled via the API, APEX will not emit the debug message that
indicates the phase (that is, SHOW or ACCEPT). Therefore, it is good practice to use the LOG_MESSAGE procedure
to output a message immediately after debug that will help you to identify the phase. For example, the
following code snippet could be placed in an On Load page process to programmatically enable debugging
and immediately emit a message indicating the phase:

apex_debug.enable (p_level => 7);
apex_debug.log_message('S H O W --- Programmatically enabled');

Once turned on programmatically, debugging will remain on until it is either turned off programmatically
or via the Developer Toolbar, if available.

ENTER Procedure
This procedure logs messages only when debugging is set to the level defined by the constant
c_log_level_app_enter or higher.

Usage Notes

ENTER allows you to log the name of a routine being called and up to ten of its arguments and their values.
You can also use the p_value_max_length to truncate the values passed to a finite length.

This procedure is useful when you need to understand what’s being passed in to a procedure or
function so you can debug what it will do with those particular values.

ERROR Procedure
This procedure logs messages only when debugging is set to the level defined by the constant
c_log_level_error or higher.

ChAPTEr 7 ■ DEbugging

299

Usage Notes

ERROR allows you to log errors into the DEBUG_MESSAGES table. This procedure will always log errors even if
debugging is off.

The message passed to the ERROR procedure is reminiscent of the C language’s sprintf routine and
therefore can contain up to 20 occurrences of %s. Those occurrences will be replaced with the values of p0 to p19.
Values passed via the p<n> variables can be truncated to a maximum length using the p_max_length parameter.

INFO Procedure
This procedure logs messages only when debugging is set to the level defined by the constant
c_log_level_info or higher.

Usage Notes

INFO allows you to log errors into the DEBUG_MESSAGES table.
The message passed to the INFO procedure is reminiscent of the C language’s sprintf routine and therefore

can contain up to ten occurrences of %s. Those occurrences will be replaced with the values of p0 to p09. Values
passed via the p<n> variables can be truncated to a maximum length using the p_max_length parameter.

LOG_DBMS_OUTPUT Procedure
This procedure uses dbms_output.get_lines to retrieve the current contents of the DBMS_OUTPUT buffer and
write them to the DEBUG_MESSAGES table.

Usage Notes

Using this procedure, the messages emitted by legacy PL/SQL that contains calls to DBMS_OUTPUT can be
captured and written to the debug log.

For these messages to be captured, debugging must be enabled.

LOG_MESSAGE Procedure
This procedure allows the developer to emit debug messages from within either APEX anonymous blocks or
stored packages and procedures called from APEX.

Usage Notes

Level 1 is the most critical.
Level 9 is the least critical.
When using within stored PL/SQL program units that might be called outside of the context of APEX,

always set P_ENABLED to FALSE. Failing to do so will result in an error because the APEX security group ID will
not be set.

LOG_LONG_MESSAGE Procedure
This procedure allows the developer to emit debug messages larger than 4,000 characters from within either
APEX anonymous blocks or stored packages and procedures called from APEX.

ChAPTEr 7 ■ DEbugging

300

Usage Notes

Level 1 is the most critical.
Level 9 is the least critical.
Logging will be split into 4,000-byte chunks.
When using the LOG_LONG_MESSAGE procedure within stored PL/SQL program units that might be

called outside of the context of APEX, always set P_ENABLED to FALSE. Failing to do so will result in an error
because the APEX security group ID will not be set.

LOG_PAGE_SESSION_STATE Procedure
This procedure allows the developer to emit session state information into the debug messages table for a
given page in the current application.

Usage Notes

Each item from the indicated page and its current value in session state will be emitted to the debug
messages table.

MESSAGE Procedure
This procedure inserts a formatted debug message into the DEBUG_MESSAGES table.

Usage Notes

The message passed to the MESSAGE procedure is reminiscent of the C language’s sprintf routine and
therefore can contain up to 20 occurrences of %s. Those occurrences will be replaced with the values of p0
to p19. Values passed via the p<n> variables can be truncated to a maximum length using the p_max_length
parameter.

If p_force is set to true, the message will be logged even if debugging is turned off or if the current
debug level is smaller than that set using the p_level parameter.

REMOVE_DEBUG_BY_AGE Procedure
This procedure allows the developer to programmatically remove all debug messages for a specific
application where the message timestamp is prior to n days before today.

REMOVE_DEBUG_BY_APP Procedure
This procedure allows the developer to programmatically remove any debug messages associated with a
specific application.

REMOVE_DEBUG_BY_VIEW Procedure
This procedure allows the developer to programmatically remove any debug messages for a specific
application that are identified as belonging to a specific debug view.

ChAPTEr 7 ■ DEbugging

301

REMOVE_SESSION_MESSAGES Procedure
This procedure allows the developer to programmatically remove any debug messages associated with a
specific user session.

TOCHAR Function
This function converts a Boolean true or false value to its VARCHAR2 equivalent.

TRACE Procedure
This procedure logs messages only when debugging is set to the level defined by the constant
c_log_level_trace or higher.

Usage Notes

TRACE allows you to log messages into the DEBUG_MESSAGES table.
The message passed to the TRACE procedure is reminiscent of the C language’s sprintf routine and

therefore can contain up to ten occurrences of %s. Those occurrences will be replaced with the values of p0
to p10. Values passed via the p<n> variables can be truncated to a maximum length using the p_max_length
parameter.

WARN Procedure
This procedure logs messages only when debugging is set to the level defined by the constant c_log_level_
warn or higher.

Usage Notes

WARN allows you to log messages into the DEBUG_MESSAGES table.
The message passed to the WARN procedure is reminiscent of the C language’s sprintf routine and

therefore can contain up to ten occurrences of %s. Those occurrences will be replaced with the values of p0
to p10. Values passed via the p<n> variables can be truncated to a maximum length using the p_max_length
parameter.

Programmatic Debugging
As you can see, the APEX_DEBUG_MESSAGE API provides the facilities necessary to enable and disable
Debug mode programmatically. And as mentioned in the preceding documentation, the ability to use
programmatic debugging is not affected by the application-level setting. This means that even if you have a
standard that dictates that applications are deployed into production with debugging disabled, you still have
the ability to capture debug information.

Figure 7-22 shows the capture of debug information for a single page in an application that displays a
simple report. The debug information was captured interactively by using the Developer Toolbar.

ChAPTEr 7 ■ DEbugging

302

Figure 7-22. Debug data gathered interactively

Figure 7-23 shows a branch created to gather debug information programmatically. The branch was
created at the earliest possible point on the page. The branch does not in fact redirect to another page but
instead simply enables debugging programmatically. Figure 7-24 shows the resulting debug data.

ChAPTEr 7 ■ DEbugging

303

Figure 7-23. Definition of a branch that programmatically enables debugging

ChAPTEr 7 ■ DEbugging

304

While it may be more natural to think that a page process might be the best place to turn on
programmatic debugging, there is some method to the madness of choosing a branch instead. No matter
what its sequence number, page processes always execute after branches and computations. Therefore, if
you want to capture information about branches and computations in your debug output, you must turn
Debug mode on before these items are processed by APEX.

Figure 7-24. Debug data gathered programmatically

ChAPTEr 7 ■ DEbugging

305

The ability to create a branch of type Function Returning a Page (Show Only) at a process point of
Before Header that actually does not branch anywhere is perfect for these purposes. As long as its sequence
number is lower than any other branch, programmatic debugging will capture all logged messages for any
branch, computation, or process that follows it.

When debugging is turned on via the API, even at the earliest point possible, APEX will have already
completed some of the steps involved in rendering or processing the page.

If you compare the interactive data to the data that was gathered programmatically, you’ll notice there
are a number of things that just don’t get captured in the programmatic version. This shouldn’t concern you
too much because what is missing is directly related to core APEX code and not code for which you will likely
be seeking to gather information.

However, one of the more important things that gets left out is the first line of debug information, which
indicates the phase. This is easily remedied by following the ENABLE call with a call to LOG_MESSAGE, as shown
earlier in Figure 7-23.

The same is true for the PROCESS phase as for the SHOW phase demonstrated earlier. When enabling
debugging programmatically, there will be some things that get missed. In most circumstances, the missing
data isn’t significant enough to be concerned about; however, if you want to make sure you get all the data
relating to a page, you’re likely to want to enable debug as part of the page phase that is directly before the
one you want to capture.

For example, if you want to capture all the details about page processing for a page, turn debugging on
during that page’s SHOW phase. Alternatively, if you want to capture all information regarding a page’s SHOW
phase, enable debugging as part of the processing phase of the page that branches to the page in question.
If Debug mode is already enabled prior to reaching the desired phase, even if it was enabled programmatically,
the entire phase’s information will be captured.

Instrumenting Your Own Code
While having access to the debug information APEX emits by default is helpful, there will inevitably be times
when you’ll need deeper insight into what may be going on in the code that you have written.

The APEX Debugging API provides methods to expand the depth of information being gathered. This is
especially useful when you’re trying to understand what is happening within PL/SQL that might be part of a
branch, computation, or process.

Logging Custom Messages
The LOG_MESSAGE and LOG_LONG_MESSAGE procedures are quite simple in signature; however, they provide an
amazing amount of flexibility and functionality when it comes to gathering information about what’s going
on within your application.

The most straightforward use case would be one in which you might want to emit simple messages
that mark the steps a piece of PL/SQL might be executing, such as marking the purpose of a simple code
construct, like a loop, as in Listing 7-1.

Listing 7-1. Simple Code Demarcation Using LOG_MESSAGE

BEGIN
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...');
--
FOR I IN 1..10000 LOOP

ChAPTEr 7 ■ DEbugging

306

 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
END LOOP;
--
END;

Enabling Debug mode and running the page will produce the output shown in Figure 7-25.

Figure 7-25. Using LOG_MESSAGE to emit a line into the debug information

However, to add real value, it behooves you to mark not only the beginning but also the end of each
significant step, as in Listing 7-2.

Listing 7-2. Marking the Beginning and End of a Block of Code

BEGIN
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...');
--
FOR I IN 1..10000 LOOP
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
END LOOP;
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>END - INSERTING 10000 RECORDS...');
--
END;

Remember that execution timing is measured from the beginning of the current step to the beginning
of the subsequent step. These step boundaries coincide with the point at which a debug message is logged.
Therefore, surrounding a code block with calls to LOG_MESSAGE provides the extra benefit of capturing an
accurate timing of all the code that ran between those two messages, as shown in Figure 7-26.

ChAPTEr 7 ■ DEbugging

307

You have to be careful about your usage of the LOG_MESSAGE procedure, though. For instance, injecting a
LOG_MESSAGE call in the middle of the loop would first create a huge number of log entries that you would be
unlikely to want to wade through, and also it would potentially impact performance because you would be
executing the full code path of the LOG_MESSAGE procedure 10,000 times.

That is where the p_level parameter comes in handy. Consider Listing 7-3. Here I’ve done exactly what
I just warned against, but notice that the value for the level of the outer calls is at a higher level than that of
the inner calls.

Listing 7-3. Using P_LEVEL to Designate the Message Level

BEGIN
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
FOR I IN 1..10000 LOOP
 --
 APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START RECORD '||I, P_LEVEL=>7);
 --
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
 --
 APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'END RECORD '||I, P_LEVEL=>7);
 --
END LOOP;
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'END - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
END;

Now when you choose to enable debugging programmatically, you can use the p_level parameter to
decide to what level of message you want to log. Calling ENABLE with p_level set to 5 would log only the
messages outside the loop. However, enabling debugging with a message level of 7 would log both outside
and inside the loop. Using this mechanism, you can manage the level at which messages are logged and
what level of log message you want to capture.

Figure 7-26. Surrounding code blocks with LOG_MESSAGE calls to capture an accurate timing

ChAPTEr 7 ■ DEbugging

308

 ■ Caution using interactive debugging either by using the Developer Toolbar or by manipulating the urL and
inserting YES in the debug position will always initiate logging to capture messages level 4 and above.

Lastly, using the p_enabled parameter of LOG_MESSAGE allows you to dictate that a message is important
enough to always be logged, whether or not debugging has been enabled. Listing 7-4 shows the same code
but injects a LOG_MESSAGE call in the top of the block that will always be written to the APEX dictionary,
regardless of the state of debugging.

Listing 7-4. Using P_ENABLED to Always Log a Message

BEGIN
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'THIS MESSAGE IS ALWAYS LOGGED...', P_ENABLED=>TRUE,
P_LEVEL=>3);
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
FOR I IN 1..10000 LOOP
 --
 APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'START RECORD '||I, P_LEVEL=>7);
 --
 INSERT INTO PERF_TEST (guid1, guid2, guid3, created_on)
 VALUES (SYS_GUID, SYS_GUID, SYS_GUID, SYSDATE);
 --
 APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'END RECORD '||I, P_LEVEL=>7);
 --
END LOOP;
--
APEX_DEBUG.LOG_MESSAGE(P_MESSAGE =>'END - INSERTING 10000 RECORDS...', P_LEVEL=>5);
--
END;

Logging Session State
There are many instances when trying to debug a page where it would be beneficial to know specifically
what was in session state. The LOG_PAGE_SESSION_STATE procedure will provide you with exactly that
information.

The API will emit information into the DEBUG logs, which shows the session state for each item on the
designated page. Like the LOG_MESSAGE procedure, the LOG_PAGE_SESSION_STATE procedure lets you dictate
what log level will be associated with the emitted log records and allows you to decide whether to override
the debug setting and always log the session state.

You can call the LOG_PAGE_SESSION_STATE procedure without passing any parameters, and it will log the
session state for the currently processing page at debug message level 4, but it will do so only if debugging is
enabled.

Figure 7-27 shows an example of the output of debug information that contains session state
information. The session state information is specifically contained in rows 34 through 38 in the report.

ChAPTEr 7 ■ DEbugging

309

The data contains a row for each item that appears on the page, whether visible to the user or not, and
contains the item name, length, and value. While it may seem odd that the items are rendered not in the
order that they appear on the screen, but in alphabetical order by item name, this is because many of the
new APEX themes are div based and it is not necessarily possible to identify where they appear on the page.

You can also emit more than just the current page’s session state, but to do this you will need to make an
API call for each page you want to include. Figure 7-28 shows an example including session state for page 9
and page 7.

Figure 7-27. Debug information containing session state information

ChAPTEr 7 ■ DEbugging

310

The Data Behind Debugging
As mentioned earlier, APEX debugging data is now kept in a set of data dictionary tables so that it can be
examined and compared to other runs of the same page. In this section, you’ll look at the underlying tables
and view, the lifetime of the data in them, and how the data differs when captured interactively as opposed
to when captured programmatically.

Tables and View
Debug data is stored as metadata in the core APEX schema and is split across two tables: WWV_FLOW_DEBUG_
MESSAGES and WWV_FLOW_DEBUG_MESSAGES2. The data is exposed to the developer via a single APEX data
dictionary view: APEX_DEBUG_MESSAGES.

 ■ Caution Don’t try to query the tables directly. Focus on the view. You don’t want to waste your time trying
to sort out whether your debug data is contained in one table or spread across them both. Always query the view.

Figure 7-28. Debug information including session state information for two separate pages

ChAPTEr 7 ■ DEbugging

311

While it may seem odd that there are two underlying tables, APEX uses this two-table setup in a number
of places to keep a finite duration of data around. The table into which data is actually inserted is switched,
by default, every 14 days. When the switch occurs from one table to the other, APEX truncates the table that
it’s switching to. This means that at a minimum it will have no data (in other words, no debug information
has been gathered) or, depending upon how APEX is configured, up to 360 days’ worth of data. Figure 7-29
gives a visual depiction of this idea.

Figure 7-29. The view and underlying tables that hold APEX debug information

 ■ Note The actual number of days in a cycle is defined at the APEX instance level by the APEX administrator
and can be a maximum of 180 days between log switches.

You may think that having a finite amount of data available to you at any one time might be too limiting,
and I would have to agree with you. If you want to keep more than that amount of data, you’ll have to take
matters into your own hands. Doing this is actually quite straightforward.

First, you’ll need to create a local version of the debug data table that you control. The simplest way to
do this is as follows:

CREATE TABLE MY_DEBUG_MESSAGES
AS
SELECT * FROM APEX_DEBUG_MESSAGES
WHERE 'X' = 'Y'

ChAPTEr 7 ■ DEbugging

312

This will create the table without bringing any of the rows over. Then, you’ll want to copy only the rows
from the APEX_DEBUG_MESSAGES view to your new table, but to make this something that can be run over and
over, you’ll want to copy only the rows that don’t already exist in the table. Luckily, the PAGE_VIEW_ID column
gives you something unique to compare against. The following SQL statement will copy only the information
that does not already exist in the table:

INSERT INTO MY_DEBUG_MESSAGES
SELECT *
FROM APEX_DEBUG_MESSAGES
WHERE PAGE_VIEW_ID NOT IN
 (SELECT DISTINCT PAGE_VIEW_ID FROM MY_DEBUG_MESSAGES);

To automate this process, you can include the previous SQL statement in a stored procedure and set it
up to run regularly as a database-scheduled job. And to make sure that you are always looking at the latest
information, you can create a view that joins the data in your table with the data in the APEX view, as follows:

CREATE OR REPLACE VIEW MY_DEBUG_MESSAGES_V
AS
 SELECT *
 FROM my_debug_messages
UNION
 SELECT *
 FROM APEX_DEBUG_MESSAGESS
 WHERE page_view_id NOT IN
 (SELECT DISTINCT page_view_id FROM my_debug_messages);

Now you have everything you need to duplicate the screens and reports that APEX provides you as part
of the debugging interface. In fact, you can actually replicate it 100 percent by simply examining the code
behind the APEX pages.

 ■ Note if you’re not already aware, you can load the APEX core applications into a workspace and examine
the code and SQL statements that make them tick. Most of the core code of APEX is held in the wrapped
packages in the APEX_050000 schema, but most of the APEX page magic is there for you to examine.

Examining the Debug Data
Now that you know where the debug data is kept, let’s take a look at exactly what is being kept. Table 7-1
describes each column and the data it contains.

ChAPTEr 7 ■ DEbugging

313

Most of the columns in the view are pretty self-explanatory, but the relationship between MESSAGE_
TIMESTAMP, ELAPSED_TIME, and EXECUTION_TIME merits some discussion.

The MESSAGE_TIMESTAMP column is straightforward; it’s merely the accurate timestamp of when the
debug message was entered into the underlying debug message tables. To get a clear picture of the order
in which things happened during a page SHOW or ACCEPT, simply order the rows ascending by the MESSAGE_
TIMESTAMP.

The EXECUTION_TIME is calculated as the difference between the current timestamp and the timestamp
from the subsequent record. So, in essence, it shows how much time has elapsed between the two records
being inserted. You can see this calculation in the definition of the APEX_DEBUG view. The view uses the LEAD
and PARTITION functions to calculate the difference between the two timestamps.

ELAPSED_TIME is something different entirely. This column is supposed to show the elapsed time since
the beginning of the page submission or the page view. While logic might dictate that you should be able
to perform some arithmetic using the timestamp and the calculated execution time to arrive at the elapsed
time, you’d be wrong to do so. APEX actually uses yet another mechanism (a function call in this case)
to calculate the elapsed time since the beginning of this phase. Because the function call actually takes
some time (even if it’s microseconds), the timing of the elapsed time is always just a little off from what
you might expect. Don’t get hung up on this. They are usually within such a small tolerance that it’s fairly
unmeasurable unless the task you are tracking is huge.

And in any account, what you really should be paying attention to is EXECUTION_TIME. If you want to find
what you need to performance-tune within your page, pay attention to the thing with the largest execution
time.

Using Debug Data for More Than Debugging
The fact that you have direct access to the data, and now know how to keep the data around for longer
than the natural cycle that is built in to APEX, means that you can begin to use this data for more than just
debugging. The overall information that is available makes this data perfect for performing longer-term
analysis and performance tracking.

Table 7-1. Columns of the APEX_DEBUGS View

Column Name Description

PAGE_VIEW_ID Page view identifier that is a unique sequence generated for each page view
recorded with debugging

MESSAGE_TIMESTAMP Timestamp in GMT that the message was saved

ELAPSED_TIME Elapsed time in seconds from the beginning of the page submission or page view

EXECUTION_TIME Time elapsed between the current and the next debug message

MESSAGE Text of the debug message

APPLICATION_ID Application identifier, unique across all workspaces

PAGE_ID Page identifier within the specified application

SESSION_ID APEX session identifier

APEX_USER Username of the user authenticated to the APEX application

MESSAGE_LEVEL Level of debug message, ranging from 1 to 9

WORKSPACE_ID APEX workspace identifier, unique within an instance

ChAPTEr 7 ■ DEbugging

314

For instance, using programmatic debugging, you could choose to collect and keep performance
information about your most important application pages. You may not want to keep information for
every page view, but you could easily write logic that captures n percent of all page views. Then using the
information contained in your long-term debug tables, you can track the performance over time. You could
even begin to spot and map trends in performance, potentially identifying when a critical process might
trend outside its window of acceptability.

Another potential use is to compare data before and after making a change to a page. If the main
structure of the page hasn’t changed, but instead the driving query behind it has changed, then you would
be able to easily write code to compare, line for line, whether the new version of the page ran faster or slower
than a previously captured version.

If a page calls stored PL/SQL code that is also instrumented using the APEX debugging API, you then
have insight into the performance trends of the business logic that you’ve written in PL/SQL.

The bottom line is that you have this data for whatever purposes you want, and the better instrumented
your code, the more detail you have at your disposal.

Debugging Dynamic Actions
Because the Dynamic Actions framework is actually implemented as JavaScript that is processed in the
browser, debugging dynamic actions is approached a bit differently. APEX still uses Debug mode to
determine whether the Dynamic Actions framework should emit data, and you can still enable debugging
in all the same ways that have been discussed. However, instead of inserting data into the underlying debug
messages tables, the Dynamic Actions framework emits message to the browser’s JavaScript console.

The information that appears in the JavaScript console takes the following form:

Dynamic Action Fired: [Dynamic Action Name](Specific Action Fired)

Figure 7-30 shows an example of using Chrome’s debug console to view the debug information.

Figure 7-30. The Chrome JavaScript console containing Dynamic Actions framework debug messages

ChAPTEr 7 ■ DEbugging

315

While this doesn’t give you any detail about what the dynamic action code is doing, it does give you a
visual indicator that the dynamic action code is firing. For a bit more information, you can edit the Chrome
console’s settings to include XMLHttpRequests, as shown in Figure 7-31.

Figure 7-31. Choosing to show XMLHttpRequests in the console

Figure 7-32. Console containing XMLHttpRequests and dynamic action debug messages

After this is turned on, you’ll not only see the dynamic actions that fire but also the calls to WWV_FLOW.
SHOW that indicate XMLHttpRequests (or AJAX calls), as shown in Figure 7-32.

ChAPTEr 7 ■ DEbugging

316

If you really want to get into the details of what is happening during a dynamic action, you’ll need to get
into the depths of JavaScript debugging, which is beyond the scope of this chapter. But ideally what has been
presented will give you a method for at least knowing whether the defined dynamic actions are firing when
expected and bringing back the data they should.

Like interactive reports, any AJAX callbacks to the database performed by a dynamic action will be
captured in the APEX_DEBUG_MESSAGES table under the path info of ajax plugin. You’ll be able to see any
session state that was set as part of the AJAX call as well as the execution of any SQL or PL/SQL, as shown
in Figure 7-34.

In Chrome, to view information about the XMLHttpRequest, click the link that contains the reference to
wwv_flow.show. This will take you to the Network tab and briefly highlight the related row.

Clicking the indicated row will expand the detail of the AJAX call and will expose the header, post,
response, and so on, as shown in Figure 7-33. Because the dynamic actions are generated code based on
what you declared within the APEX builder, the POST section will be only partially useful. You’ll be able to
see what field initiated the transaction and what APP and PAGE were involved, but the other data will likely be
unfamiliar and mean nothing to you. However, the data contained on the Response tab actually represents
any data that was returned by the AJAX call and was used by the dynamic action.

Figure 7-33. Expanding the POST to see its content

ChAPTEr 7 ■ DEbugging

317

Figure 7-34. Detailed debug data for an AJAX call made by a dynamic action

ChAPTEr 7 ■ DEbugging

318

Debugging Plugins
When it comes to plugins, things are similar to debugging most other things. Plugins that provide any type
of visual content to a page will emit debug information into the APEX_DEBUG_MESSAGES table as part of the
standard page’s SHOW view.

However, anywhere a plugin makes a callback to the database via AJAX, the debug detail will be inserted
into a separate AJAX plugin view, much like interactive reports or dynamic actions.

Because plugins are often a mix of SQL, PL/SQL, and JavaScript, you may again have to break open the
JavaScript console and debugging tools of your browser to get a full picture of what is going on.

Summary
I hope you’ve seen how useful APEX debugging can be when trying to troubleshoot your applications, and I
hope I’ve given you some food for thought as to how debug data could potentially be used for performance
analysis and trending. As APEX continues to develop as a product, I am sure that there will be more
alterations and extensions to the APIs, allowing for more and more granular messages to be captured. Keep
an eye on the APEX core documentation for new releases because many of these alterations and extensions
often go unannounced and unnoticed.

319

Chapter 8

Dynamic Actions

by Martin Giffy D’Souza
Dynamic actions were first introduced in APEX 4.0. They allow developers to declaratively define actions
based on browser events. This chapter will cover all aspects of dynamic actions including creating and
modifying dynamic actions and how dynamic actions can interact with each other. This chapter is divided
into three main sections. It will first compare the manual way of manipulating browser events using custom
JavaScript to create a dynamic action. The second section will cover all the options and features available
with dynamic actions. The last section will present a detailed example of using multiple dynamic actions.

This chapter assumes you are familiar with APEX and have a basic understanding of the following web
technologies:

•	 JavaScript

•	 jQuery

•	 CSS

•	 HTML

If you are unfamiliar with any of these languages or need additional information, please go to
www.w3schools.com. The JavaScript examples provided in this chapter will use jQuery, which is included
as part of APEX 5.

 ■ Note APEX 5 supports two development methods: Component View and Page Designer. Component view
is the old (APEX 4 and older) developer page with the traditional Page Rendering, Page Processing, and Shared
Components columns. The new Page Designer is a more modern IDE. It has a three-column development page
that does not require wizards for each step. For the purpose of this chapter, all examples will use the new Page
Designer view and refer to the three columns as the left, central, and right panes.

Custom JavaScript vs. Dynamic Actions
The best way to highlight dynamic actions is to compare them to the manual method using custom
JavaScript. This section will examine a simple problem you may have faced when developing an APEX
application and show how to resolve it first manually and then using a dynamic action. The purpose is to
demonstrate the manual versus dynamic action way to handle browser-based events in APEX.

http://www.w3schools.com/
http://www.w3schools.com/

ChAPTER 8 ■ DynAmIC ACTIonS

320

Suppose you have a select list for a department (P1_DEPTNO) and employees (P1_EMPNO) on page 1. If
no department is selected, the list of employees should not be displayed, as shown in Figure 8-1. Once a
department is selected, the list of employees should appear, as shown in Figure 8-2. The two subsections that
follow compare the different ways to implement the functionality shown in the figures.

Figure 8-1. No department selected

Figure 8-2. Department selected

Manual (Custom JavaScript) Method
Prior to APEX 4, if you wanted to perform an action based on a browser event, you needed to write custom
JavaScript code. Writing custom JavaScript code poses several issues.

•	 The code can be stored in different locations such as an external file, HTML region,
region header, as part of a page process, and so on. This can make it hard to find the
exact location of the code if you need to debug or modify it.

•	 If developing in a team environment, each developer may use different techniques,
and the code might not be reusable.

•	 Not all APEX developers understand JavaScript.

The following JavaScript example shows how to toggle a field based on a browser event prior to APEX 4.
This code snippet needs to be included in your page. Since there are multiple ways to include it in your page,
it can be hard for someone to track down where the code is stored.

/**
 * Toggle Empno based on P1_DEPTNO's value
 */
function showHideEmpno(){
 if ($v('P1_DEPTNO') == '')
 $x_HideItemRow('P1_EMPNO');

ChAPTER 8 ■ DynAmIC ACTIonS

321

 else
 $x_ShowItemRow('P1_EMPNO');
}//showHideEmpno
//Wait for page to be ready
$(document).ready(function() {
 //Show/Hide Empno after page load
 showHideEmpno();

 //Register browser event (onChange)
 $('#P1_DEPTNO').on('change',function(){showHideEmpno();});
});

Dynamic Action Method
Starting in APEX 4, you can declaratively trigger actions based on browser events using dynamic actions.
Dynamic actions are a preferred method over custom JavaScript functions because of the following reasons:

•	 They are declarative, which allows developers to easily identify where the code is stored.

•	 They have a built-in framework to maintain consistency across an application.

•	 They make it easy for non-JavaScript developers to apply browser event–based actions.

The following steps describe how to toggle the Employee field, as was done in the previous example,
using a dynamic action. This example does not cover each step in detail since the goal is to quickly compare
the manual method with the dynamic action. The next section of this chapter will describe each of the
available options in detail.

 1. In the Page Designer, click the Dynamic Actions icon at the top of the left pane, as
shown in Figure 8-3.

Figure 8-3. Click the Dynamic Actions icon

 2. Right-click the Events folder and select the Create Dynamic Action option from
the menu, as shown in Figure 8-4.

ChAPTER 8 ■ DynAmIC ACTIonS

322

 3. The left pane shows the new (yet still unspecified) dynamic action, as shown in
Figure 8-5. Some of the missing required information is highlighted in red. To
see the complete list of missing components, click the Messages tab, as shown in
Figure 8-6.

Figure 8-4. Create Dynamic Action menu item

Figure 8-5. Newly created dynamic action

ChAPTER 8 ■ DynAmIC ACTIonS

323

 4. In the left pane, click the dynamic action currently labeled as X New and modify
its properties in the right pane, as shown in Figure 8-7.

 5. On the left pane, select X Show and edit its properties in the right pane, as shown
in Figure 8-8.

Figure 8-6. Page Designer Messages notifications

Figure 8-7. Dynamic Action properties

ChAPTER 8 ■ DynAmIC ACTIonS

324

 6. In the left pane, right-click the newly created Show action and select Create
Opposite Action, as shown in Figure 8-9. This will create a new False action that
will hide the employee row.

Figure 8-8. True Action properties

Figure 8-9. Create Opposite Action menu item

ChAPTER 8 ■ DynAmIC ACTIonS

325

 7. Click the Save button in the top-right corner of the page and run the page to test
the new dynamic action. An employee should appear only when a department
has been selected.

Dynamic actions have a lot of benefits; however, there are some situations where you may want use
custom JavaScript, primarily for performance and control issues. For example, if you have a client-side
action that needs to be performed as quickly as possible, then manually coding it using JavaScript may
be a better approach. Dynamic actions add a minimal amount of overhead compared to certain manual
techniques. In most situations, this additional overhead is not significant nor will it degrade the performance
of your application.

Dynamic Actions in Detail
This section will cover all the options available for dynamic actions and will reference the OnChange
DeptNo dynamic action that was created in the previous section.

An easy way to understand dynamic actions is to break down their components into two main parts:
drivers and actions. The driver determines what causes a dynamic action to run and when an action is
triggered. Actions contain the code to perform the tasks. In the previous example, the driver is when the
P1_DEPTNO select list is changed. The actions is to either show or hide the P1_EMPNO select list. Figure 8-10
highlights the driver and actions concept as part of a flow chart. In Figure 8-10, DA stands for dynamic action.

ChAPTER 8 ■ DynAmIC ACTIonS

326

When modifying a dynamic action, the When and Advanced sections allow you to define the driver.
The True and False actions define the actions to perform based on a real-time condition.

Figure 8-10. Dynamic action f low chart

ChAPTER 8 ■ DynAmIC ACTIonS

327

To edit a dynamic action, simply click the Dynamic Actions icon (shown earlier in Figure 8-3) and click
the desired dynamic action. Alternatively, you can select the rendering icon in the left pane, as shown in
Figure 8-11. Then expand the P1_DEPTNO item and click its dynamic actions, as shown in Figure 8-12.

Figure 8-11. Rendering icon

Figure 8-12. Dynamic action under page item

ChAPTER 8 ■ DynAmIC ACTIonS

328

 ■ Note When a dynamic action is linked to a region or an item, it will also appear in the region’s or item’s
tree entry in the left pane.

Editing a dynamic action will display its properties in the right pane. The following sections will
cover each of these options, except for the standard sections (Condition, Authorization, Configuration,
Comments) that are found in most APEX objects. If a section does not appear in your current view, try to
toggle between the property editor’s view options, Show Command and Show All, as shown in Figure 8-13.

Identification
The Identification section, as shown in Figure 8-14, is similar to other objects in APEX. You can define a
name and a sequence. Although the name will not be displayed to the end user, a meaningful name is useful
for other developers modifying your application.

Dynamic actions can have multiple actions, so it is recommended that you come up with a naming
scheme that works for your organization. One naming scheme that has proven useful is to name the
dynamic action based on the triggering event.

Execution Options
The Execution Options section, as shown in Figure 8-15, sets the sequence number. The sequence number
determines the order in which dynamic actions are performed. If an action is set to fire on page load, the
sequence number will determine the order of the actions, regardless of their triggering event, during the
page load. After the page is loaded, the sequence is relevant only if you have multiple dynamic actions that
are executed by the same event.

Figure 8-13. Property editor view options

Figure 8-14. Dynamic action: Identification

ChAPTER 8 ■ DynAmIC ACTIonS

329

When
APEX dynamic actions bind events to objects that you specify in the When section. When the defined event
occurs on the objects, APEX will run the appropriate actions. Figure 8-16 shows the When section for the
onChange Deptno dynamic action.

There are three main components to the When section: Event, Selection Type, and Condition. If you
click each of these labels, you’ll get some excellent documentation about each of these components. You can
find the documentation in the Help tab in the central pane, as shown in Figure 8-17.

Figure 8-15. Dynamic action: Execution Options

Figure 8-16. Dynamic action: When

ChAPTER 8 ■ DynAmIC ACTIonS

330

Event
Dynamic actions are triggered by browser-based events. These events are invoked by a user’s actions or
by JavaScript. The event determines which event will trigger the dynamic action to run. In the example,
the dynamic action is set to run when the user changed the value for P1_DEPTNO, so the Change event was
selected.

Events are grouped into four main categories: Browser, Framework, Component, and Custom events.
Browser events are standard HTML events (for more information about HTML event types, please refer
to the jQuery event documentation: http://api.jquery.com/category/events). Framework events are
triggered by APEX-specific events. For example, the After Refresh event is triggered after a report region is
refreshed as part of report pagination. Component events are triggered by specific objects within APEX or
by plug-ins. Custom events allow you to define a JavaScript event name to listen to. Use this option only if
the required event is not available in the list of drop-down events. The following site covers custom events in
detail: https://learn.jquery.com/events/introduction-to-custom-events.

Selection Type
The event option will determine which events APEX needs to “listen” for. The Selection Type option and its
corresponding object determine the objects to listen on. In the example, Item(s) was selected. This means
that APEX will wait for a change to occur on P1_DEPTNO. Once a user changes the P1_DEPTNO select list, the
onChange DeptNo dynamic action will be triggered. There are five different selection types to choose from:
Item(s), Button, Region, jQuery Selector, and JavaScript Expression.

If the selection type is set to Item(s), you need to specify a comma-delimited list of items in the Item(s)
field. APEX will listen to all the specified items and apply the same actions, regardless of which item was
selected. When the dynamic action is triggered, APEX passes the specific item that triggered it as part of a
JavaScript object (more on this later).

Similar to Item(s), when specifying a selection type of Button, you need to select a button from the
current page. This allows you to easily control what happens when a user clicks a button in the page without
submitting the page.

The Region selection allows you to select a single region for APEX to listen on. A good example of this
is if you wanted to display a custom wait message each time an interactive report is refreshed. In this case,
you’d set the event to Before Refresh, set the selection type to Region, and select the region that contains
your interactive report.

When using a region as the selection type, it is important to ensure that the region’s template contains
an ID. If the region’s template is set to No Template, APEX will not be able to register its listener on the
region since the region does not contain an ID. For more information, read the following blog post:
www.talkapex.com/2011/01/missing-id-in-no-template-region.html. If using the new APEX 5 universal
theme, this should not be an issue.

Instead of listening on APEX-specific objects such as items or a region, you can specify a jQuery selector
or a JavaScript expression. In most cases, the jQuery selector should be sufficient; however, they are cases
when you want to use JavaScript expressions for more complex selections.

For example, if you wanted APEX to perform a dynamic action each time someone moved their
mouse over an HTML element with a class of highlight-me, you would select jQuery Selector and enter
.highlight-me, as shown in Figure 8-18. The jQuery Selector option uses jQuery notation. You can find
detailed information about the jQuery selector notation on the jQuery API site:
http://api.jquery.com/category/selectors.

Figure 8-17. Help tab

http://api.jquery.com/category/events
https://learn.jquery.com/events/introduction-to-custom-events
http://www.talkapex.com/2011/01/missing-id-in-no-template-region.html
http://www.talkapex.com/2011/01/missing-id-in-no-template-region.html
http://api.jquery.com/category/selectors

ChAPTER 8 ■ DynAmIC ACTIonS

331

If JavaScript Expression is selected, it expects a DOM object, an array of DOM objects, or a jQuery
object. Examples of a DOM object are objects such as document and window. The jQuery object can be
any jQuery object such as a tree traversal. An example of this is using $('p').children() to select all the
children of paragraph (p) elements. You can find more information about jQuery tree traversals
here: http://api.jquery.com/category/traversing/tree-traversal/.

Condition
Dynamic actions allow you to perform different actions based on a condition. This condition is not the same
as a standard APEX object condition. It is evaluated in real time against the triggering element each time the
event occurs. If the condition is true or not defined, then the True actions are executed. If the condition is
false, the False actions are performed.

In the example, the condition (previously shown in Figure 8-16) is set to “is not null.” This means that
each time the triggering element P1_DEPTNO is changed, APEX will evaluate it to see whether it is null. If it is
null, then it will hide the list of employees (False action). If a department is selected, it will show the list of
employees (True action).

Figure 8-19 shows a list of conditions. All conditions, except for “is not null” and “is null,” require that
you enter some additional information in the Value(s) field.

Figure 8-18. When selection type: jQuery Selector

http://api.jquery.com/category/traversing/tree-traversal/

ChAPTER 8 ■ DynAmIC ACTIonS

332

The value required for the first six comparison conditions is a static value. You can reference an item
value, but you must use the substitution string &PX_ITEM_NAME. notation. If you use a substitution string, it
will use the value of the item when the page is loaded, which may not be the same value that is currently on
the page when the condition is evaluated.

The two list conditions compare static comma-delimited lists. If referencing a substitution string, the
value of the item at the time the page is loaded will be used.

The last condition, “JavaScript expression,” allows you to compare values in real time when the
condition is evaluated. All the other conditions are evaluated against the triggering element. If you use a
JavaScript expression, you can compare any set of values. In most cases, part of the expression will include
the triggering element.

The JavaScript expression condition type contains several objects.

•	 this.triggeringElement: The DOM object that triggered the dynamic action.
this.triggeringElement.value will give you the value of the triggering element.
If you defined multiple objects for Selection Type, this will let you know which one
was triggered.

•	 this.browserEvent: The event object that caused the dynamic action to run.
this.browserEvent.type will give you a string value of the type of event that
occurred. If this were used in the example, this.browserEvent.type would have
been “change.”

•	 this.data: Additional data that can be passed from the event. In most cases, this value
will be null. Dynamic action plug-ins may populate this field to pass additional data.

Figure 8-19. List of conditions

ChAPTER 8 ■ DynAmIC ACTIonS

333

If you want to quickly see all the additional information that is available in each of the attributes listed
previously, set the condition to “JavaScript expression” and in the Value field enter console.log(this);,
as shown in Figure 8-20. Refresh the page and trigger the event. If you look at the console, you will see the
output of the this object, as shown in Figure 8-21.

Figure 8-20. Configuring condition to display this object

Figure 8-21. Console output of condition of this object

 ■ Note The console is available in most browsers (except for Internet Explorer 8 and older). The following list
describes how to view the console output in each of the major browsers:

•	 Firefox: Install FireBug (http://getfirebug.com), F12

•	 Google Chrome: Ctrl+Shift+J

•	 Safari: Ctrl+Alt+C

•	 Internet Explorer 9: F12

To demonstrate a condition that uses a JavaScript expression, add an additional Number Field item
on page 1 called P1_X. Change the condition in the OnChange DeptNo dynamic action from “is not null”
to JavaScript Expression. In the JavaScript Expression text area, enter this.triggeringElement.value >
apex.item('P1_X').getValue(), as shown in Figure 8-22. Refresh the page and enter 20 in the P1_X field.

http://getfirebug.com/

ChAPTER 8 ■ DynAmIC ACTIonS

334

When you change the department, the list of employees will appear only when you select Operations (40)
and Sales (30). You’ll notice that if you change the value of P1_X, the condition will evaluate without having
to submit the page or set the value in session state.

Advanced
The When section defines the events and objects that APEX should listen to. The Advanced section defines
how the events are bound to the objects. There are three different ways to attach an event to an object, as
shown in Figure 8-23.

Figure 8-22. JavaScript condition

Figure 8-23. Event scopes

ChAPTER 8 ■ DynAmIC ACTIonS

335

•	 Static: The default method that APEX attaches events to objects with is the bind
method. Static means that the dynamic action will be run each time the event occurs
on the object. If the object is replaced, the event is no longer attached to the object
(it’s considered a new object), and the dynamic action will not be triggered. An
object can be replaced during a partial-page refresh on a report or interactive report.

•	 Dynamic: Dynamic is similar to the bind option except that the event will be
attached to the object for the lifetime of the page or any new objects of that type are
added to the page. If a dynamic action is attached to a row in an interactive report,
then this option will ensure that the dynamic action will be triggered each time the
interactive report is refreshed.

•	 Once: If you want a dynamic action to fire only once, select this option. For example,
you would use this option if you wanted to display a warning message the first
time the user selected a department. Otherwise, it may get annoying to the user to
consistently see the same warning message. If the action dynamic action is set to
trigger on page load and is executed during the page load, it will still run one more
time when its event is triggered.

For more information about attaching events, please refer to the following documentation:
http://api.jquery.com/category/events/event-handler-attachment. The jQuery API contains
additional event handler attachment options that are currently not available in APEX.

Actions
Prior to APEX 5, the True and False actions used were modifiable on the Dynamic Action edit page. Starting
with APEX 5, they are now visible in the left pane under each dynamic action, as shown in Figure 8-24. They
contain actions to perform based on the dynamic action’s condition. If multiple actions exist in each section,
they will be synchronously executed in order (unless specified), determined by their sequence number.

Figure 8-24. True and False actions

http://api.jquery.com/category/events/event-handler-attachment

ChAPTER 8 ■ DynAmIC ACTIonS

336

Figure 8-25. Edit Show action

Earlier in this chapter, you created the OnChange DeptNo dynamic action. The True/False Actions
steps allowed you to define True and False actions (see Figure 8-8).

To help describe the options available when editing an action on the right pane, edit the True (Show)
action by clicking it in the left pane, as shown in Figure 8-25. The action’s properties are now available in the
right pane, as shown in Figure 8-26. The following subsections will describe all the options available when
modifying an action.

ChAPTER 8 ■ DynAmIC ACTIonS

337

Identification
The Identification section allows you to select the action that the action will perform. The options in the
Action select list are broken up into six categories, as shown in Figure 8-27. The categories have no impact on
the system and are there to help organize the list of available actions. This list also includes plugin dynamic
actions that are suffixed with [Plug-in]. When the Action option selected, click the Help tab in the central
pane to get a brief description for each of the built-in actions. Some actions require additional configuration,
which is covered in the “Settings” and “Affected Elements” sections.

Figure 8-26. Edit action

ChAPTER 8 ■ DynAmIC ACTIonS

338

Settings
The Settings section is available only for certain actions. Each Settings section is different depending on the
action selected. In the example, the only available option is to show all page items on the same line. This
section will cover the settings options for two different action types: Execute JavaScript Code and Execute
PL/SQL Code.

Execute JavaScript Code: When the action is set to Execute JavaScript Code, the Settings section
contains a text box where you can enter some JavaScript code to run. To help, APEX provides the this object
that contains five different elements. this.triggeringElement, this.browserEvent, and this.data were
already covered in the “Dynamic Actions Condition” section.

Figure 8-27. Action select list

ChAPTER 8 ■ DynAmIC ACTIonS

339

•	 this.action: This contains information about the action along with some additional
information such as action attributes. Action attributes are useful in plug-in
development. Please refer to Chapter 12 for more information about plug-ins.

•	 this.affectedElements: This is a jQuery object array of all the elements that should
be affected as part of this action. If your JavaScript code needs to modify anything on
the page, you should reference this object to find out which elements to modify. The
affected elements are defined in the Affected Elements section that will be covered in
the next subsection.

You can get an overview of these objects by clicking the Code label and clicking the Help tab in the
central pane. To explore all the options available, enter console.log(this); in the Code section, refresh
your page, trigger the dynamic action, and then look at the console window.

Execute PL/SQL Code: When the action is set to Execute PL/SQL Code, APEX will send an AJAX request
to the database to execute the block of PL/SQL code. You can reference page and application items using
bind variables in this block of code. It’s important to remember that the page and application items are the
values in session state, which may not be the same as the values currently displayed on the page.

To submit page items as part of the AJAX request, enter them as a comma-delimited list in the Page
Items to Submit field. If any of the items submitted as part of the action have session state protection
enabled, the action will fail since the item requires a checksum, which is not provided in AJAX requests. This
is done for security reasons to prevent malicious users from tampering with data.

Values from session state (page and application items) can be returned by the PL/SQL code by
entering the item names in the Page Items to Return field. When doing so, the item’s value on the page will
automatically be updated with the value in session state at the end of the action.

Affected Elements
The Affected Elements section allows you to define which elements on the page are impacted by the
dynamic action. This section will show up only for actions that can affect an object on the page. In the
example, the affected element type was Item(s) on P1_EMPNO since it needed to be shown and hidden.
The different types of affected elements are as follows:

•	 Item(s): This is the comma-delimited list of items that will be affected by the action.

•	 Button: Select a button that will be affected by the action.

•	 Region: Select a region from the drop-down list. The list of regions will include both
the current page regions and regions on page 0 (in other words, the global page).

•	 jQuery selector: This is a jQuery selector that can select multiple elements on the
page. Read http://api.jquery.com/category/selectors for more information
and examples.

•	 JavaScript expression: This is a DOM object, an array of DOM objects, or a jQuery
object. Examples of a DOM object are objects such as document and window. The
jQuery object can be any jQuery object such as a tree traversal. An example of this is
using $('p').children() to select all the children of paragraph (p) elements. You
can find more information about jQuery tree traversals at http://api.jquery.com/
category/traversing/tree-traversal.

http://api.jquery.com/category/selectors
http://api.jquery.com/category/traversing/tree-traversal
http://api.jquery.com/category/traversing/tree-traversal

ChAPTER 8 ■ DynAmIC ACTIonS

340

•	 Triggering element: The triggering element is the element that was defined in the
When section for the dynamic action. In the example, it is P1_DEPTNO.

•	 Event source: The event source is the specific element that triggered the dynamic
action to fire. This may be the triggering element or a child of the triggering element.
For example, suppose that you created a dynamic action for a click event on the
Select Employee region. If you click a blank part of the region, the event source will
be the region itself, which is the same as the triggering element. If you click one of
the select list items, the event source will be the select list (P1_EMPNO or P1_DEPTNO)
since that is the element that caused the dynamic action to run.

Not all actions require or allow for affected elements to be defined. For example, it doesn’t make sense
for the Alert action type, which triggers a pop-up notification, to have any affected elements.

Execution Options
The Execution Options section (as shown in Figure 8-28) determines when to run the action based on the
dynamic action’s condition. An action can be run when the condition is either true or false. Setting the value
to True or False will determine which section the action is listed in, as shown in Figure 8-25.

Figure 8-28. Execution Options

You can choose whether to fire the action once the page is loaded. For the option to be run on page
load, this option needs to be selected, and the dynamic action’s condition result must match the True/False
setting during the page load. For example, both of the actions in the OnChange DeptNo dynamic action are
set to fire on page load. Only one of these will actually be run during the page load based on the value of
P1_DEPTNO at the time the dynamic action is executed. Some actions, such as Execute PL/SQL Code and Set
Value, allow you to select additional attributes: Stop Execution On Error and Wait for Result, as shown in
Figure 8-29.

ChAPTER 8 ■ DynAmIC ACTIonS

341

•	 Stop Execution On Error: If the action causes an error and this option is set, any other
actions that are part of the same dynamic action will not run.

•	 Wait for Result: This determines whether this action should be run asynchronously.
If no other dynamic action is dependent on this action being run, set to Yes.

•	 Future versions of APEX will use asynchronous AJAX requests, and this attribute
will be deprecated. See http://docs.oracle.com/cd/E59726_01/doc.50/
e39143/toc.htm#HTMRN313 for more information.

Dynamic Actions in Action
The example that was used in the previous sections was a basic Show/Hide dynamic action. This section
will cover how to create more complex dynamic actions. All the available actions won’t be covered in this
chapter; however, this example will make you familiar with some of them and how they can interact with
one another. A final copy of this example is included in the book’s files as an application. The file is
08_example-2_finished_application.sql.

 ■ Note The following example will leverage some features available only in recent web browsers. If you are
using Internet Explorer, please ensure that it is version 8 or newer.

Figure 8-29. Execution Options additional attributes

http://docs.oracle.com/cd/E59726_01/doc.50/e39143/toc.htm#HTMRN313
http://docs.oracle.com/cd/E59726_01/doc.50/e39143/toc.htm#HTMRN313

ChAPTER 8 ■ DynAmIC ACTIonS

342

Business Case
After showing users the previous example, they requested some modifications to the department/employee
behavior. Instead of selecting an employee from a select list, they would like to select an employee from a
report. The full list of requirements is as follows:

•	 When a user selects the department, a modal window is displayed with a report
listing all the employees in the selected department. The report will include the
employee’s name, job, hire date, and salary.

•	 When the user hovers over a report row, the row will be highlighted yellow.

•	 If the user clicks a row in the report, the employee’s number is stored in a hidden
field, and the employee name is selected for P1_EMPNO.

•	 Immediately after an employee is selected, the name should be bold for a few
seconds to emphasize that it has been selected.

Using dynamic actions, you’ll be able to implement all these requirements. To simplify the solution,
it has been broken up into small sections.

Setup
Before working on this example, you’ll need to modify a few things from the first example. You will
find an application that was configured with the following modifications in the Source Code/Download
area of the Apress web site at www.apress.com. You can skip this section if you import the application
08_example-2_base_application.sql.

 1. Change the P1_EMPNO type to Text Field. Leaving it as a text field will help debug any
issues with the dynamic action, and later in this example it will be set to hidden.

 2. Create a new field called P1_ENAME and set its properties as the same as in
Figure 8-30. This field will be used to display the selected employee’s name.

http://www.apress.com/

ChAPTER 8 ■ DynAmIC ACTIonS

343

 3. Remove the existing dynamic action, which is onChange DeptNo, that is
currently attached to the P1_DEPTNO item.

Create Department Employees Report
To meet the first requirement, create a Classic Report region that lists the employees in the selected
department. To create this report, follow these steps:

 1. Create a standard report region called Department Employees using the
following query:

select e.empno,
 initcap(e.ename) ename,
 initcap(e.job) job,
 e.hiredate,
 e.sal
from emp e
where e.deptno = :p1_deptno

 2. Modify the region’s attributes and set Page Items to Submit as P1_DEPTNO, as
shown in Figure 8-31.

Figure 8-30. P1_ENAME properties

ChAPTER 8 ■ DynAmIC ACTIonS

344

 3. Modify the report column attributes so that EMPNO is not displayed by setting its
column type to Hidden Column.

 4. Some additional attributes need to be added to the ENAME column that will be
used to send data to P1_EMPNO and P1_ENAME when the user clicks a row in the
report. To edit the ENAME column, click the column name in the left pane, and
its properties will be in the right pane. In the Column Formatting section, enter
#ENAME# in the
HTML Expression field, as shown in Figure 8-32. The HTML Expression field
allows you to customize the appearance of each column.

 ■ Note The two custom attributes, data-empno and data-ename, are hTmL 5–compliant custom attributes.
hTmL 5 supports custom attributes by prefixing the attribute name with data-. The following blog contains a
brief overview of hTmL 5 custom data attributes: http://ejohn.org/blog/html-5-data-attributes.

If you refresh page 1, it will look like Figure 8-33. If you change the department, nothing happens, since
you haven’t applied any dynamic actions.

Figure 8-31. Region’s Source

Figure 8-32. Column formatting/HTML expression

http://ejohn.org/blog/html-5-data-attributes

ChAPTER 8 ■ DynAmIC ACTIonS

345

Refresh Department Employees Report
The first dynamic action to create is to refresh the Department Employees report when the P1_DEPTNO select
list changes. The following steps will create the dynamic action when the department is changed:

 1. In the left pane, right-click the P1_DEPTNO page item and select Create dynamic
action from the content menu.

 2. Modify the dynamic actions properties as follows:

•	 Name: onChange DeptNo

 3. Modify the True Action (currently set to Show by default) properties to the same
configuration in Figure 8-34. The items to change are highlighted.

If you refresh the page and change the department, the report should be updated. Figure 8-35 shows the
page when Accounting is selected as the department.

Figure 8-33. Department Employees report added

Figure 8-34. OnChange True Action properties

ChAPTER 8 ■ DynAmIC ACTIonS

346

Highlight Row
Now that the Department Employees report refreshes when the department is changed, the next step is to
add the ability to highlight each row when a user hovers over it. If you inspect the CSS styles for a column in
the department employee’s table when you hover over it, the style changes to Figure 8-36.

Using the CSS definition from Figure 8-36, you can modify the CSS to highlight the row when you move
it to yellow. The new CSS should look like the following code sample (where REGION_ID is the region’s ID).
Adding #REGION_ID restricts the new highlight rules to just the Department Employees report.

/* Using the DEPT_EMP_REPORT id ensures that this highlighting will only affect the
 Department Employees report */
#<REGION_ID> .t-Report--rowHighlight .t-Report-report tr:hover .t-Report-cell{
 background-color: yellow !important;
}

Figure 8-35. Department Employees report updated by dynamic action

Figure 8-36. Table row hover CSS

ChAPTER 8 ■ DynAmIC ACTIonS

347

Figure 8-37. Page inline CSS

Normally you would include the CSS in the page’s inline CSS area by selecting Page 1 in the left pane
and then modifying its properties in the right pane. Figure 8-37 shows where to include the custom CSS. If
you want to make the CSS available to the entire application, you can modify the custom CSS option in
the Theme Roller, as shown in Figure 8-38.

ChAPTER 8 ■ DynAmIC ACTIonS

348

For the purpose of this example, inline CSS will be “injected” into the application using a dynamic action.

 1. In the left pane, click the Dynamic Actions icon (see Figure 8-3). Right-click the
Page Load folder and select Create Dynamic Action. As the name suggests, this
dynamic action will be executed once the page has loaded.

 2. Change the dynamic actions name to onPageLoad.

 3. Modify the True action (currently set to Show). Set the Action and Affected
Elements properties, as shown in Figure 8-39.

Figure 8-38. Theme Roller custom CSS

ChAPTER 8 ■ DynAmIC ACTIonS

349

Figure 8-39. onPageLoad Action configuration

 4. Use the following code snippet and put it in the action’s Settings ➤ Code text
area. Note that the code does not reference the Department Employees region at
all; rather, it references the this.affectedElements jQuery object. By doing so,
this leverages APEX’s declarative dynamic action functionality. Referring to the
region also means that only the Department Employees region will be affected
with the yellow highlighting.

var regionId = this.affectedElements.attr('id');

var css = '#REGION_ID .t-Report--rowHighlight .t-Report-report tr:hover
.t-Report-cell{ background-color: yellow !important; }';

css = css.replace('REGION_ID', regionId);

$(this.affectedElements).prepend('<style type="text/css">' + css + ' </style>');

If you refresh the page and hover over each row, you should notice that the current row is highlighted
in yellow, as shown in Figure 8-40. You can change the color by modifying the value in the dynamic action’s
JavaScript code.

ChAPTER 8 ■ DynAmIC ACTIonS

350

Row Click
The next dynamic action will handle what happens when a row is clicked. According to the requirements,
when a row is clicked, the employee number should be set in a hidden field (P1_EMPNO), and the employee
name should be displayed.

To meet this requirement, the additional custom data attributes that were added to the ENAME column
in the report will be leveraged. If you inspect the HTML of an employee name in the report column, you’ll
notice the additional attributes, data-ename and data-empno, as shown in Figure 8-41.

The following steps will create the dynamic action that will handle the row click event:

 1. Create a dynamic action on the Department Employees region.

 2. Make the changes highlighted in Figure 8-42 to the newly added dynamic
action. The event scope was changed to Dynamic since the report will be
refreshed after each change in department. If the dynamic action were to remain
static, it would not work after the first report refresh.

Figure 8-40. Highlighted row

Figure 8-41. HTML 5 custom data attributes

ChAPTER 8 ■ DynAmIC ACTIonS

351

 3. Set the dynamic action’s Condition field to the following code. Without this
condition, the dynamic action will fire on any click event in the entire region (not
just in the visible employees table). Adding this condition ensures that only clicks
in a row containing an employee will trigger the actions.

$(this.browserEvent.target).closest('tbody', this.browserEvent.
currentTarget).length > 0

 4. Modify the True action to the settings highlighted in Figure 8-43.

Figure 8-42. onClick Emp dynamic action configuration

ChAPTER 8 ■ DynAmIC ACTIonS

352

 5. Add the following code to the Settings ➤ Code field, and it will set P1_EMPNO and
P1_ENAME. In this example, the values are being set with JavaScript. Alternatively,
two actions to set the values could have been used.

//dataSpan will represent the span tag that was created earlier
//which contains the custom data attributes
var dataSpan = $(this.browserEvent.target).closest('tr').
find('[data-empno]');

//Set the EMPNO and its display values using the data attributes
apex.item('P1_EMPNO').setValue(dataSpan.data('empno'));
apex.item('P1_ENAME').setValue(dataSpan.data('ename'));

Figure 8-43. onClick Emp True action

ChAPTER 8 ■ DynAmIC ACTIonS

353

Once you confirm that everything is working, change P1_EMPNO to a hidden field. Since you’re modifying
its value in JavaScript, change the Value Protected option on the item to No.

Emphasize Employee Change
The displayed employee name needs to be emphasized after the employee has been selected. To emphasize
the name, immediately hide the employee name, make it red, and then have it fade in. Once the fade-in is
complete, remove the highlighted red color.

There are various ways to do this in dynamic actions. You could modify the existing dynamic action and
append some additional JavaScript. The following steps will help highlight another type of action and how
multiple actions work within a dynamic action:

 1. Create a new action in the onChange Emp dynamic action and set its properties
to Figure 8-45.

Figure 8-44. Select Employee, row click

If you refresh the page and click a row in the Department Employees region, the associated employee’s
name should be displayed beside the Employee label, and P1_EMPNO will be populated accordingly, as shown
in Figure 8-44.

ChAPTER 8 ■ DynAmIC ACTIonS

354

 2. In the left pane, drag the newly created action above the existing Execute
JavaScript Code action so that it runs first. Figure 8-46 shows the new order.

Figure 8-45. Set Style action

ChAPTER 8 ■ DynAmIC ACTIonS

355

 3. Add an additional JavaScript action at the end of the current actions with the
following configurations:

- Action: Execute JavaScript Code
- Affected Elements > Selection Type: Item(s)
- Affected Elements > Item(s): P1_ENAME
- Fire On Page Load: No

 4. Set the Settings ➤ Code field to the following:

this.affectedElements.hide().fadeIn(2000, function(){
 //The second parameter in the fadeIn function allows you to define a
 //function to be run once the fadeIn is completed.
 //This function will be used to reset the color
 $(this).css('color', '');
});

Refresh Page 1, select a department, and then click an employee in the Department Employees report.
When the name appears in the Employee field, it should fade in and be red. Once the fade-in is complete, it
should return to its original color (black in this example).

Modal Window
So far all the requirements have been met except for the modal window. Because it is easier to develop,
debug, and demonstrate the example without the extra complexities of a modal window, I saved this for last.

Similar to other requirements in this example, there are several ways to implement this solution. One
option would be to use the new APEX 5 modal page feature; however, it would add unnecessary complexity
to the application.

Instead, this solution will take advantage of some of the features found in the new APEX 5 Universal
theme. This solution will leverage the jQuery UI Dialog widget (https://jqueryui.com/dialog/), which is
already included in APEX 5. This solution will use a simple command to open and close the dialog window.
You can find more options in the jQuery UI Dialog API documentation: http://api.jqueryui.com/dialog/.

Figure 8-46. Updated dynamic action execute order

https://jqueryui.com/dialog/
http://api.jqueryui.com/dialog/

ChAPTER 8 ■ DynAmIC ACTIonS

356

 1. In the left pane, click the Department Employees region. In the right pane, edit
the Template to Inline Dialog, as shown in Figure 8-47. This built-in template
uses the jQuery UI Dialog widget.

Figure 8-48. Template Options

Figure 8-47. Modify region’s template

 2. Click the button Use Template Defaults, Medium (600x400), as shown in
Figure 8-47. This will display a new modal window to edit the Inline Dialog
template’s properties. Change Dialog Size to Small, as shown in Figure 8-48.

ChAPTER 8 ■ DynAmIC ACTIonS

357

 3. Refresh Page 1, and you’ll notice that the Department Employees region is no
longer visible on the page. That is because it is a jQuery UI Dialog window, which
needs to be opened and closed using JavaScript.

 4. To open the dialog window, add another True action to the onChange DeptNo
dynamic action. Modify the new action’s properties to look like Figure 8-49.

 5. Use the following for the Code property:

this.affectedElements.dialog('open');

Figure 8-49. Dialog open dynamic action properties

ChAPTER 8 ■ DynAmIC ACTIonS

358

 6. To close the dialog window, add another True action to the onClick Emp
dynamic action. Modify the new action’s properties to look like Figure 8-49.

 7. Use the following for the Code property:

this.affectedElements.dialog('close');

Refresh Page 1 to view the changes. When you change a department, the Department Employees region
should appear as a modal dialog window. When you select an employee, the employee name gets updated,
and the Department Employees region closes.

Summary
This chapter covered all aspects of dynamic actions, such as how to create a dynamic action and all the
options available when configuring a dynamic action. The last section demonstrated several kinds of
dynamic actions and how they can work with one another.

359

Chapter 9

Lifecycle Management

by Nick Buytaert
The practice of software development these days includes much more than just writing lines of code.
To successfully deliver high-quality applications on time and within budget, modern development teams
rely on areas in the field of application lifecycle management (ALM). ALM encompasses the coordination
of a software product from its initial planning through retirement and includes all sorts of practices and
techniques, such as the following:

•	 Project and requirements management

•	 Software development

•	 Test management and quality assurance

•	 Build automation and deployment

•	 Release management

•	 Operations

ALM is thus a broad term that spans the full range of activities occurring throughout a project’s life.
The idea for a new application forms the starting point in the ALM process, while the lifecycle ends once
the application loses its business value and is no longer used. ALM is therefore a continuous process, which
can be divided into three distinct aspects. You typically maximize the business value of your software by
performing well in all three aspects.

•	 Governance: Make decisions about the project and ensure maximum business value
realization.

•	 Development: Create the software product and maintain it further.

•	 Operations: Run, manage, and monitor the application.

I will not cover the entire ALM stack because that would take us too far afield. This chapter will mainly
focus on technical topics with the intention to facilitate the overall APEX development and deployment
process. I will introduce, for example, several build automation techniques that can significantly improve the
quality and efficiency of your day-to-day development activities. The main part of this chapter guides you
through the steps of incorporating a set of powerful tools and practices that take APEX development to the
next level.

Chapter 9 ■ LifeCyCLe ManageMent

360

Challenges
Oracle Application Express is an easy-to-use development framework intended to rapidly create database-
centric web applications on top of the Oracle Database. Developing applications with APEX is no rocket
science, but that does not mean there are no challenges associated with it. The following subsections
describe the typical challenges faced by a team of developers working on an APEX project. It might be
interesting to note that some of these challenges even apply when working on a single-person project.

Deploying Database Changes
Oracle APEX development is tightly coupled to database development since you typically work with the
concept of a thick database. The thick database approach is considered a general best practice and refers
to putting as much code as possible in the database layer. You should treat APEX as the front-end or
presentation layer, meaning that it should not contain any form of business logic.

As a result of the thick database approach, many different database objects are created and
manipulated during the development phase: tables, views, packages, triggers, sequences, indexes, and so on.
The difficulty, however, arises when a new version of the application has to be deployed. This inevitable and
critical moment requires you to collect all database object changes since the previous release.

The task of collecting these changes is often laborious and error-prone, especially when you did not
explicitly track any of your database changes during development. This sort of manual operation as part of
the deployment process should be avoided at all times. Fortunately, there are ways to drastically minimize
the risk of deploying database changes, which you will read about later in this chapter.

Collaborative Development
It is common for a development team to run into concurrency issues when working in a shared
development environment, which happens to be the most widely used strategy in APEX projects. In
a shared setup, developers work simultaneously on the same application and source code. A classic
example of the concurrency problematic in APEX occurs when one of the developers unintentionally
invalidates a widely used PL/SQL package. As a result of this action, all database objects and APEX pages
that depend on that package will be invalidated too. It is therefore likely that fellow team members will
suffer consequences from this situation, resulting in unnecessary frustrating moments and a loss of time.
Another example is accidentally overwriting someone else’s changes when working on the same piece of
code in the database.

The use of local development environments overcomes the shortcomings of the shared development
strategy. In a local development setup, each developer has its own separated work area, rendering it
impossible to run into concurrency issues. This is a common practice in most mainstream development
technologies. Oracle APEX, however, is a different story since it is designed to behave better in a shared
setup than in a local one. The main reason for this argument is the incapability of the APEX application
export file to be easily merged in version control systems.

As you probably know, an application export file is nothing more than a series of black-box PL/SQL
calls that rebuild all pieces of the exported application in a target workspace. In a local development setup,
developers would have to include the large application export file with almost every commit to source
control in order to share their individual changes to the APEX application with the rest of the team. With
this approach, you will quickly find yourself having to manually merge changes from other developers in the
export file. The task of resolving these so-called merge conflicts is time-consuming and error-prone, simply
because APEX export files are not supposed to be edited manually. Given this restriction, most development
teams settled on using a shared setup, taking into account the attached downsides.

Chapter 9 ■ LifeCyCLe ManageMent

361

Another argument in favor of using a shared development environment is the APEX application builder,
which includes several helpful features that facilitate team development. You can, for example, lock pages to
restrict other developers from modifying the pages you are currently working on. The application builder also
applies optimistic locking to prevent developers from overwriting each other’s changes. Figure 9-1 shows an
example error message generated by the application builder when running into concurrency issues.

Figure 9-1. Optimistic locking error message

Parallel Development
In the early stages of a project, the development team typically follows a linear progression in which each
new version of the application is based on the prior one. Parallel development occurs as soon as you branch
off the main development line for an extra development path. Such an extra path might be necessary, for
example, when having to fix critical bugs in the production environment while the rest of the team has
already started working on the next release.

Fixing these bugs directly in production is definitely not a good idea because there is a chance you
make things even worse with a direct impact on the end users. The far more appropriate solution consists of
checking out the tagged production version from source control, fixing the bugs in a separate development
environment, and finally propagating the changes to production.

Unfortunately, you will run into trouble when trying to merge the changes made on your branch
back into the master branch. In other words, something is preventing you from easily incorporating the
production bug fixes into your main line of development. Again, as you might have guessed, it is the
application export file that spoils the merge process between the two branches. APEX projects therefore
typically follow a linear approach, in which parallel development is avoided as much as possible.

An underutilized feature in the area of parallel development is build options, which is part of your
application’s shared components. Build options allow you to enable or disable various application
components at runtime or during application export. The APEX development itself uses build options
extensively, especially when building early-adopter releases where certain components may not be ready for
release yet. Build options have two possible values: include or exclude. If you specify a component as being
included, then the APEX engine considers it part of the application definition. Conversely, if you specify a
component as being excluded, then the APEX engine treats it as if it did not exist.

The drawback of build options is the level of granularity. Not all components, let alone attributes, in
the application builder can have a build option assigned. This shortcoming is probably a reason why build
options is not the most commonly used feature. However, build options can come in handy when dealing
with new separate features that you want to exclude in an upcoming release.

Enterprise APEX Development
Creating applications with APEX is by no means affiliated with enterprise web development. Oracle itself
positions Application Express as a so-called Rapid Application Development (RAD) tool but recommends
other technologies as soon as project complexity and size increases. There are limitations, of course, but I do
believe that the RAD concept can be taken a step further in a way that APEX is capable of dealing with more
complex projects.

Chapter 9 ■ LifeCyCLe ManageMent

362

However, enterprise-level development with APEX requires you to use a more sophisticated
development approach and tool set. This chapter covers a solution that has proven to be effective in real-
world APEX projects. The solution combines APEX with a set of powerful third-party tools, resulting in
a robust and agile development technique. The main part of this chapter will focus on how one can take
advantage of these tools to turn the APEX development and delivery process into a well-oiled machine.

The Demo Project
I have set up a demo project on GitHub, which I will use for reference in the upcoming sections. It is publicly
available at the following URL:

https://github.com/nbuytaert1/orclapex-maven-demo

The demo project includes a simple APEX 5.0 application built on top of two tables you should be
familiar with: EMP and DEPT. The project has been configured with several third-party tools, which make it
possible to deploy all the application’s components simply by executing a single command.

Make sure you have access to an Oracle Database running APEX 5.0 or higher, if you want to try the
technique from the demo project yourself. It is perfectly possible, however, to apply the same techniques
to older versions of Application Express. Just keep in mind that you cannot import an APEX 5.0 application
export into an APEX 4.x instance. Figure 9-2 shows the demo project’s data model.

Figure 9-2. The demo application’s data model

 ■ Note please be aware that it is not possible to use Oracle’s apex.oracle.com evaluation service in
combination with the techniques described in this chapter.

Extending the APEX Development and Deployment Process
The objective of this section of the chapter is to set up and configure an automated build system for APEX
applications that empowers both the development and deployment processes. This approach will allow you
to receive instant feedback on the stability of the project’s code base, and it makes application deployment
a breeze. However, before getting to that point, it is important to start with the basics and think of what a
standard APEX application consists of. The best way to identify the main building blocks is by going through
the APEX packaging process.

https://github.com/nbuytaert1/orclapex-maven-demo

Chapter 9 ■ LifeCyCLe ManageMent

363

APEX Application Packaging
Packaging an application in APEX is mainly taken care of in the Supporting Objects section. This utility
makes it possible to easily define the steps required to successfully deploy an application. Prior to APEX 5.0,
the Supporting Objects section could be used for the deployment of two different types of objects.

•	 Database scripts (DDL and DML)

•	 Static files (CSS, images, JavaScript, and so on)

Starting from APEX 5.0, the Supporting Objects section has been limited to database scripts only. Static
files are now automatically part of the application export file, something that was not the case in previous
versions of Application Express. During the application export wizard, there is an option that determines
whether you want to export the Supporting Objects as well. Figure 9-3 shows this setting on the Export
Application page.

Figure 9-3. The preference that determines whether to export supporting object definitions with your
application

Setting this option to Yes or Yes and Install on Import Automatically results in a single export file
containing all required application components and database code for deployment. The Supporting Objects
can then be imported during the application import wizard or at a later time. This deployment technique,
where everything is packaged into a single SQL file, is what APEX defines as a custom packaged application.

Database Scripts
Deploying an APEX application involves nearly always the execution of database scripts to manage schema
objects on which the APEX application is built. Data Definition Language (DDL) statements allow you to
define the structure of database objects. Data Manipulation Language (DML) statements, on the other hand,
control the data within objects.

APEX 5.0 introduces an interesting new feature to simplify DDL script management. When creating an
installation script in Supporting Objects, you have the ability to associate a script with one or more database
objects, as shown in Figure 9-4.

Figure 9-4. The Create from Database Object installation script method

Chapter 9 ■ LifeCyCLe ManageMent

364

The install script will then automatically contain the DDL statements for all associated database objects.
Furthermore, the script remembers the database objects to which it has been linked, making it possible to
synchronize the script’s content at a later time. This can be achieved by checking the appropriate scripts in
the Installation Scripts overview, followed by clicking the Refresh Checked button, as shown in Figure 9-5.
Please note that other script types cannot be refreshed this way.

Figure 9-5. Refresh checked scripts

This feature has certainly improved the ease of use and maintainability of the database scripts
in Supporting Objects. Dealing with the project’s database changes through the Supporting Objects
mechanism is therefore a valid solution, on the condition that the number of database objects is not
too large. As soon as you start working with the thick database approach, I recommend you manage the
database changes through a database migration tool. Liquibase (www.liquibase.org) is my personal
favorite in this area and will be discussed later in the chapter.

Static Files
Prior to APEX 5.0, the Supporting Objects section was also capable of including static files in the form
of installation scripts. Static files are defined in the Files section under Shared Components. The tricky
thing about these files was that they were not automatically part of the application export file, not even if
you explicitly associated the file with the application you were exporting. Only the static files included in
Supporting Objects were part of the export file.

You also had to keep in mind that there was no actual relation between the file in Shared Components
and its associated script in Supporting Objects. Any changes made to the files were not reflected in the
scripts. Forgetting to update the scripts in Supporting Objects, after making changes to the files in Shared
Components, was a common mistake during the deployment process. This was especially the case when you
had to deal with a fair number of files.

The decision to disconnect static files from Supporting Objects and making them automatically part of
the application export has positively influenced application deployment. You no longer have to worry about
the question of whether all installation scripts for static files have been updated correctly before deployment.
There have also been made a number of improvements to the Files section under Shared Components in
APEX 5.0. The zip upload and download feature and the ability to organize files into a directory hierarchy
have been valuable additions, making the Files section only more interesting to use.

As shown in Figure 9-6, I have set up a directory hierarchy containing five different folders: css, images,
images/contribute, images/oracle, and js.

http://www.liquibase.org/

Chapter 9 ■ LifeCyCLe ManageMent

365

One culprit in the past for static files in Shared Components was browser caching. Prior to APEX 5.0,
any static file you referenced in your APEX application had to be downloaded to the client’s browser by
calling the get_file database procedure. This approach made browser caching unreliable, leading to
slower-loading pages and unnecessary extra load on the database. It was therefore a common practice to
store the application’s static files on the web server, making them easier to cache. In APEX 5.0, however, web
browsers can seamlessly cache files uploaded into Shared Components.

As you can see in Listing 9-1, there is a clear difference in file referencing between APEX 4.2 and
APEX 5.0. Version 4.2 uses the get_file procedure, while 5.0 takes advantage of relative file URLs.

Listing 9-1. The File Referencing Difference Between APEX 4.2 and 5.0

Applicability
I have found that the packaged application concept works well for simple and small-sized applications, but
it can become difficult for mid- to large-scale applications that require many different scripts to be managed.
Also, keep in mind that small applications can quickly evolve into larger ones over time. Taking into account
these considerations, I prefer to leave aside the Supporting Objects section whenever I can.

Not using the Supporting Objects section requires you to look for an alternative approach that simplifies
and, while at it, enhances application deployment. You are in need of a solution that is able to manage all
parts of a packaged APEX application. After going through the Supporting Objects mechanism, you can
conclude that a packaged application consists of the following three main parts:

•	 The APEX application itself (in the form of a SQL export file)

•	 Database scripts

•	 Static files (part of the application export since APEX 5.0)

Figure 9-6. An example directory hierarchy in the Files section

Chapter 9 ■ LifeCyCLe ManageMent

366

The alternative approach that I will introduce in the next sections not only focuses on the deployment
part but also improves the overall development strategy in an aim to tackle some of the challenges you saw
at the beginning of the chapter. To accomplish this, you will be using a collection of third-party tools in
combination with Application Express. All tools covered in this chapter are open source and completely free
to download. The first one to discuss is Apache Maven because it plays a central role in the tool set.

Apache Maven
Maven is a software project management and comprehension tool designed to automate a project’s build
process. It is important to fully understand what the term build process is all about. In general, it refers to
the steps required to construct something that has an observable and tangible result. A process is typically
characterized by its ability to be automated. In other words, when I talk about a build process in terms
of software development, I am talking about the—ideally automated—tasks required to put together the
parts of a software product. This process is not only about code compilation and deployment, as you might
think now. It also includes tasks such as running tests, generating documentation, and reporting. All these
different tasks can be managed through Maven from one central piece of information.

Maven’s primary goal is to allow a developer to comprehend the complete state of a development effort
in the shortest period of time. To attain this goal, Maven attempts to deal with several areas of concern.

•	 Making the build process easy

•	 Providing a uniform build system

•	 Providing quality project information

•	 Providing guidelines for best-practices development

The best way to think of the build process in the context of an APEX application is by going through the
parts of a packaged application, as you did in the previous section. Thus, the basic build process will consist
of importing the APEX application export file into a target workspace, executing all appropriate database
scripts, and optionally uploading static files to the web server in case you are not using the Files section
under Shared Components.

Maven is primarily used in the Java world, but nothing stops you from using it in APEX projects. You will
use only a subset of Maven’s features because some of them are applicable only to Java-based projects. The
primary task of Maven in this case is the automation of the APEX application build process. First, let’s take a
look at the Maven installation procedure.

Installation
Maven requires the Java Development Kit (JDK) to be installed on your machine.

 1. Download the latest JDK release from the Oracle web site.

 2. Run the JDK installer and follow the instructions.

 3. Create the JAVA_HOME environment variable by pointing to the JDK folder.

usr/jdk/jdk1.7.0

Chapter 9 ■ LifeCyCLe ManageMent

367

 4. Update the PATH environment variable by pointing to the JDK’s bin folder.

$JAVA_HOME/bin:$PATH

•	 Validate the JDK installation.

$ java -version
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b10)
Java HotSpot(TM) 64-Bit Server VM (build 23.3-b01, mixed mode)

Now install the latest version of Apache Maven.

 1. Download the latest version of Maven at http://maven.apache.org.

 2. Extract the downloaded archive file into the directory where you want to install
Maven. I have put mine in the /Users/Nick folder.

 3. Set the MAVEN_HOME environment variable.

/Users/Nick/apache-maven-3.1.1

•	 Update the PATH environment variable.

$MAVEN_HOME/bin:$PATH

•	 Validate the Maven installation.

$ mvn --version
Apache Maven 3.1.1 (0728685237757ffbf44136acec0402957f723d9a; 2013-09-17
17:22:22+0200)
Maven home: /Users/Nick/apache-maven-3.1.1
Java version: 1.7.0_07, vendor: Oracle Corporation
Java home: /Library/Java/JavaVirtualMachines/jdk1.7.0_07.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.10.1", arch: "x86_64", family: "mac"

Project Directory Layout
One of the ideas behind Maven is to provide guidelines for best-practices development in Java-based
projects. It is not possible for APEX projects to comply with these conventions, simply because there are
practically no similarities between Java and APEX development. Luckily, Maven leaves enough room for
deviations from these conventions.

Maven allows you to define your own best practices on how to manage an APEX project. Having
these rules and uniformly applying them allows developers to freely move between different projects that
use Maven and follow the same or similar best practices. By understanding how one project works, they
will understand how all of them worked. This approach can save developers a lot of time when switching
between projects.

An important aspect in Maven’s guidelines for best-practices development is the project directory
layout. It determines how the project-related files should be organized on the file system. This is actually
how you will get to the point of creating the project’s code repository. All files required to build the project
must be present in the code repository. This is an absolute necessity since you want Maven to be able

http://maven.apache.org/

Chapter 9 ■ LifeCyCLe ManageMent

368

to build all parts of the application to a target environment. Another important aspect of having a code
repository is the ability to apply version control on it. The use of a version control system is a topic that I will
discuss later in this chapter.

Listing 9-2 shows an overview of the most important top-level directories that I am using in the demo
project’s code repository. I will discuss each one of the directories in more detail later. You can of course
implement your own preferred project directory layout.

Listing 9-2. The Demo Project’s Directory Layout

my-project
 -- pom.xml
 -- src
 -- main
 -- apex
 -- database
 -- web-files
 -- util

 ■ Note the src and main directories are part of Maven’s common directory layout. the src directory
contains all source code for building the project. its subdirectory main includes the source code for building the
main build artifact. the src/test directory, for example, would contain only test sources.

The Project Object Model (POM) File
The POM file is the fundamental unit of work in Maven. It is a configuration file in XML format that contains
the majority of information required to build the project. In other words, this is the place where the project’s
build process is being automated. The standard name for the POM file is pom.xml, and it is always located
under the project’s root directory. Listing 9-3 shows how the demo project’s POM file is organized.

Listing 9-3. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.contribute.apex</groupId>
 <artifactId>orclapex-maven-demo</artifactId>
 <version>1.0</version>

 <build>
 <plugins>
 ...
 </plugins>
 </build>
</project>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 9 ■ LifeCyCLe ManageMent

369

The project element is the root node in the POM file and declares several attributes to which the
document can be validated. The modelVersion value is 4.0.0, which is currently the only supported POM
version for both Maven 2 and 3.

A Maven project is uniquely identified by its coordinate elements: groupId, artifactId, and version.
All three items are required fields. These coordinate elements, however, have a useful meaning only in the
context of Java-based projects. For you, it does not really matter what you fill in here.

The plugins element, under the build element, contains the tasks that must be executed to successfully
build the project. Defining these tasks is achieved by adding plugin elements, which contain configuration
details to fulfill a certain build task. In the next section, you will take a closer look into the plugin element
definition for each task that is required to successfully deploy an APEX application. The first task or plugin
you will execute during the build process is Liquibase.

Liquibase
The thick database approach that I talked about earlier, in combination with the code repository
concept, introduces an extra challenge: all database scripts that are part of the APEX application must
be stored in the code repository in the form of SQL files. Storing these files in the code repository makes
it possible for Maven’s automated build to execute all appropriate database scripts to successfully
migrate a database schema to a specific version. This stage of the build process is where most things can
go wrong because of the inherent complexity of deploying database changes. That is why you will take
advantage of Liquibase, a powerful database migration tool that will effectively help you in organizing
and executing database scripts.

Organizing Database Scripts
You are completely free in how you organize the directory structure for your project’s database scripts.
However, I recommend you to come up with a well-thought-out and unambiguous approach, which leaves
little or no room for interpretation. Make sure you can immediately identify the appropriate folder to locate
a specific database script. Having a logical and organized directory structure will save you a lot of time in the
long run, and it makes life just a little easier.

The directory structure that I typically use is the one I have applied in the demo project. It is based
on the different types of database objects that exist in the Oracle Database. Listing 9-4 shows you what the
directory structure looks like under the src/main/database directory.

Listing 9-4. The src/main/database Directory Layout

my-project
 -- src
 -- main
 -- database
 -- changelog
 -- data
 -- install
 -- latest
 -- master.xml
 -- post-build
 -- data
 -- install
 -- sequence
 -- table

Chapter 9 ■ LifeCyCLe ManageMent

370

 -- latest
 -- function
 -- package
 -- procedure
 -- trigger
 -- view
 -- model
 -- post-build
 -- technical-docs

As illustrated in Figure 9-7, I first differentiate between DML and DDL scripts: DML scripts always
go into the data folder, while DDL scripts get a place in either the install folder or the latest folder. In
the case of DDL, you need to ask yourself the question of whether the script contains a replaceable or
nonreplaceable database object. The following is an explanation of these two database object categories:

•	 A replaceable object is characterized by its ability to override an already existing
object definition with a new one. Objects that can be compiled using the or replace
clause fall in this category. Executing a replaceable script constitutes a change
that completely replaces the previous version of the object, if it already existed.
These sorts of scripts should go into one of the subdirectories of the latest folder.
The name of the latest folder simply refers to the fact that the scripts in the
subdirectories always contain the latest version of a database object. Examples are
packages, triggers, views, and so on.

•	 A nonreplaceable object cannot be created with the or replace clause. Modifying
the definition of a nonreplaceable object requires you to write an alter statement.
These sorts of scripts, also known as incremental scripts, should go into one of
the subdirectories of the install folder. It is important to realize that scripts in
the install folder can be executed only once, whereas replaceable scripts can be
executed over and over again. An example of a nonreplaceable object is a table.
Suppose you want to add an extra column to an already existing table. It would not
be possible to replace the previous version of the table with a new one because this
would imply dropping and re-creating the table, resulting in the loss of data.

Chapter 9 ■ LifeCyCLe ManageMent

371

The actual content of the files includes nothing more than plain SQL or PL/SQL code. There are three
different kinds of database statements that can be executed through these files.

•	 DML statements in the data folder

•	 DDL statements in the install and latest folders

•	 PL/SQL anonymous blocks in all folders

You should think of each SQL file as an atomic change to the database schema. Atomicity is part of
the ACID model (Atomicity, Consistency, Isolation, and Durability) and states that database transactions
must follow an all-or-nothing rule, meaning that all statements within a transaction are either executed
successfully or not executed at all. Liquibase treats each SQL file in the code repository as a single
transaction.

That last sentence is actually not entirely true since transaction control is not defined at the file level.
Liquibase executes the SQL files as part of so-called changeSets, which are part of changeLog files. Each
changeSet gets executed in a separate transaction that is committed at the end, or rolled back if an error
occurred. Figure 9-8 shows a visual representation of where transaction control is applied in Liquibase.

Figure 9-7. Database script file organization

Chapter 9 ■ LifeCyCLe ManageMent

372

It is possible to reference multiple files in one changeSet, which implies that multiple SQL files can be
executed within the same transaction. The concept of changeSets and changeLogs will be explained in more
detail in the next two subsections. But for now, just keep in mind that every SQL file will be executed in a
separate transaction.

It is important to fully understand the transaction control behavior in Liquibase because it helps to
answer the question of whether it is advisable to group multiple statements in a single file. The answer
depends on the sort of statements you are dealing with. DML statements in the data folder, for example, are
typically grouped in one file to guarantee the atomicity of the transaction. As an illustration, the data script
insert_dept_demo_data.sql in Listing 9-5 contains insert statements for the DEPT table.

Listing 9-5. src/main/database/data/insert_dept_demo_data.sql

insert into dept (id, deptno, dname, loc)
values (1, 10, 'ACCOUNTING', 'NEW YORK');
insert into dept (id, deptno, dname, loc)
values (2, 20, 'RESEARCH', 'DALLAS');
insert into dept (id, deptno, dname, loc)
values (3, 30, 'SALES', 'CHICAGO');
insert into dept (id, deptno, dname, loc)
values (4, 40, 'OPERATIONS', 'BOSTON');

There is no need to include a commit statement at the end of the file because Liquibase will
automatically commit the database transaction after the corresponding changeSet terminates successfully.
A rollback statement will be performed if the script produces an error during its execution, leaving the
database in a consistent state.

DDL statements in the install and latest folders are preferably limited to one per file. Imagine a
situation wherein you include multiple CREATE TABLE statements in one file and let it execute through
Liquibase. If for some reason the second statement fails, Liquibase would not be able to roll back the first
statement because the Oracle Database automatically commits DDL statements. Running Liquibase a
second time will now undoubtedly fail because the first statement in the file will be executed again, resulting
in the following error message: ORA-00955: name is already used by an existing object. The only
way to get past this error is to manually drop the table from the first statement and fix the problem with the
second statement. Manually dropping one table is not a big deal, but what if you try to execute a SQL file that
includes ten DDL statements and the last one fails?

Figure 9-8. The relation between changeLogs, changeSets, and SQL files

Chapter 9 ■ LifeCyCLe ManageMent

373

Therefore, always remember that DDL statements get automatically committed and that it is better to
prevent transaction mismatches between Liquibase and the Oracle Database. Restricting DDL statements
to one per file also greatly improves the maintainability of the code repository. The script create_dept.sql
in the src/main/database/install/table folder, for example, contains the nonreplaceable DDL code to
create the table DEPT. Listing 9-6 shows the content of the create_dept.sql file.

Listing 9-6. src/main/database/install/table/create_dept.sql

create table dept(
 id number not null,
 deptno number(2),
 dname varchar2(14),
 loc varchar2(13),
 created_by varchar2(100),
 created_on date,
 last_modified_by varchar2(100),
 last_modified_on date,
 constraint dept_pk primary key (id)
);

On a side note, it might be interesting to outline the steps needed to alter the DEPT table from the
previous code fragment. A common mistake when starting with Liquibase in a situation like this is to modify
the previous CREATE TABLE statement in order to alter the structure of the DEPT table. However, this is not how
Liquibase works. It is not allowed to modify the content of the create_dept.sql script, if the file has already
been executed through Liquibase. The following actions should be taken to correctly alter the DEPT table:

 1. Create a new SQL file, alter_dept_add_col.sql for example, and save it to the
following location: src/main/database/install/table.

 2. Add the ALTER TABLE statement to the SQL file from step 1.

 3. Open the src/main/database/changelog/install/1.0.xml changeLog file and
append a changeSet that references the alter_dept_add_col.sql file.

Another example script is the br_iu_dept.sql file in the src/main/database/latest/trigger
directory. As you can see in Listing 9-7, the file contains the replaceable DDL code to create or alter the
BR_IU_DEPT trigger.

Listing 9-7. src/main/database/latest/trigger/br_iu_dept.sql

create or replace trigger br_iu_dept
before insert or update on dept
for each row
declare
 l_user varchar2(100) := nvl(v('APP_USER'), user);
begin
 if inserting then
 :new.id := nvl(:new.id, seq_dept.nextval);
 :new.created_by := l_user;
 :new.created_on := sysdate;
 end if;

Chapter 9 ■ LifeCyCLe ManageMent

374

 if updating then
 :new.last_modified_by := l_user;
 :new.last_modified_on := sysdate;
 end if;
end br_iu_dept;

Making a change to a replaceable database object is much easier since you can simply overwrite the
existing DDL code in the SQL file. Liquibase will pick up the changes made to the content of the file and will
reexecute the script on the next Liquibase run. More in-depth information on this behavior will be given in
the following subsection.

The following are other folders under the src/main/database directory I have not yet discussed:

•	 changelog

•	 model

•	 post-build

•	 technical-docs

The changelog folder contains the Liquibase changeLog XML files. These files describe what, when,
and how database scripts should be executed during the database migration process. More information on
changeLogs and changeSets will be given in the following subsection.

The model folder simply contains the entity-relationship model (ERD) for the database schema. Oracle
SQL Developer Data Modeler has been used to create the demo project’s ERD.

The post-build directory includes scripts that will be executed at the end of the database migration.
The compile_schema.sql script is unarguably the most essential post-build script. It is the last script to be
executed by Liquibase, and its task is to scan the schema for invalid database objects. The script throws an
error if one or more invalid objects are found. The names of all invalid objects are printed out in the build
log, and the build itself terminates with a “build failed” message. The compile_schema.sql script, shown
in Listing 9-8, plays an important role during the build process because it gives the project team invaluable
feedback on the stability of the database code.

Listing 9-8. src/main/database/post-build/compile_schema.sql

declare
 l_compilation_errors varchar2(32767);

 cursor lcu_invalid_objects is
 select object_type, object_name
 from user_objects
 where status = 'INVALID'
 group by object_type, object_name
 order by object_type, object_name;
begin
 dbms_utility.compile_schema(user);

 for rec_invalid_object in lcu_invalid_objects loop
 l_compilation_errors := l_compilation_errors || chr(10) || ' ' || rpad(rec_invalid_
object.object_type, 20) || rec_invalid_object.object_name;
 end loop;

Chapter 9 ■ LifeCyCLe ManageMent

375

 if l_compilation_errors is not null then
 l_compilation_errors := chr(10) || chr(10) || 'Invalid objects in schema ' || user ||
':' || l_compilation_errors;
 raise_application_error(-20000, l_compilation_errors || chr(10));
 end if;
end;

The last folder under the src/main/database directory is technical-docs. In here, you will
automatically generate technical documentation based on comments in your SQL scripts.

ChangeLog Files
Liquibase uses changeLog files to describe what database scripts should be executed to successfully migrate
a target database schema to a desired version. ChangeLog files also define the order of script execution
and include other relevant meta-information. Let’s first take a look at how the master changeLog file looks
because it defines the main order of execution for your different types of scripts. Listing 9-9 shows the
content of the master.xml file.

Listing 9-9. src/main/database/changelog/master.xml

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
 http://www.liquibase.org/xml/ns/dbchangelog/

dbchangelog-3.0.xsd">

 <include file="src/main/database/changelog/install/1.0.xml" />
 <include file="src/main/database/changelog/latest/1.0.xml" />
 <include file="src/main/database/changelog/data/1.0.xml" />
 <include file="src/main/database/changelog/post-build/1.0.xml" />

</databaseChangeLog>

The master changeLog file is merely a collection of other changeLog files that in their turn include
so-called changeSets. Before explaining what changeSets are, let me clarify the order of execution. It is
actually all common sense.

 1. The first scripts to be executed through Liquibase are those in the install folder.
That is because other types of scripts typically depend on objects in the install
folder. As an illustration, you cannot run a data script that inserts rows in the
DEPT table before the DEPT table actually exists.

 2. Scripts in the latest folder are executed afterward. These replaceable objects
also depend on objects in the install folder, but that is not the main reason
why they are being executed at this moment. Unlike nonreplaceable objects,
Liquibase does not halt the build when it compiles invalid replaceable objects.
The reason behind this is caused by the behavior of the underlying OJDBC driver,
which Liquibase uses to compile the database scripts to the Oracle Database.
However, it is possible that data scripts depend on objects in the latest folder.
Take, for instance, a series of insert statements that depend on a before row insert
trigger to assign a sequence generated primary key value.

http://www.liquibase.org/xml/ns/dbchangelog
http://www.w3.org/2001/XMLSchema-instance
http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd

Chapter 9 ■ LifeCyCLe ManageMent

376

 3. After compiling all database objects, run the DML scripts in the data folder.

 4. Finally, run any post-build scripts. This is where the compile_schema.sql script
is being executed to validate whether the schema contains invalid objects. If it
does, halt the build and print out the names of all invalid objects.

The most common way to organize your changeLogs is by major release and database script type. As
you can see in the demo project, the src/main/database/changelog folder includes a subfolder for every
type of database script: install, latest, data, and post-build. Each of the four subfolders contains a
1.0.xml changeLog file in which the database scripts of the corresponding type are grouped together. Please
note that you are completely free in how you organize the changeLog files for your project. You can, for
example, use a single changeLog for all the different types of database scripts. This, however, quickly results
in a large and unorganized changeLog file, especially when your project counts many database objects.
Listing 9-10 shows the contents of the changelog folder.

Listing 9-10. The src/main/database/changelog Directory Layout

my-project
 -- src
 -- main
 -- database
 -- changelog
 -- data
 -- 1.0.xml
 -- install
 -- 1.0.xml
 -- latest
 -- 1.0.xml
 -- post-build
 -- 1.0.xml
 -- master.xml

ChangeLog files are composed of changeSet elements, which represent isolated transactions through
which database statements can be executed. In the demo project, you will quickly notice that each
changeSet points to a SQL script in one of subdirectories of the src/main/database directory. Listing 9-11
shows the content of the changeLog file for nonreplaceable objects.

Listing 9-11. src/main/database/changelog/install/1.0.xml

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
 http://www.liquibase.org/xml/ns/dbchangelog/

dbchangelog-3.0.xsd">

 <!-- tables -->

 <changeSet id="create_dept" author="nick.buytaert">
 <sqlFile path="src/main/database/install/table/create_dept.sql" />
 </changeSet>

http://www.liquibase.org/xml/ns/dbchangelog
http://www.w3.org/2001/XMLSchema-instance
http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd

Chapter 9 ■ LifeCyCLe ManageMent

377

 <changeSet id="create_emp" author="nick.buytaert">
 <sqlFile path="src/main/database/install/table/create_emp.sql" />
 </changeSet>

 <!-- sequences -->

 <changeSet id="create_seq_dept" author="nick.buytaert">
 <sqlFile path="src/main/database/install/sequence/create_seq_dept.sql" />
 </changeSet>

 <changeSet id="create_seq_emp" author="nick.buytaert">
 <sqlFile path="src/main/database/install/sequence/create_seq_emp.sql" />
 </changeSet>

</databaseChangeLog>

As you can clearly see, a changeLog file is yet another XML file filled with changeSet elements.
Liquibase sequentially reads out the changeLog files, starting from the master changeLog, and determines
what changeSets must be executed to successfully migrate a target database schema to the desired version.
The decision of whether to execute a changeSet is based on two aspects.

First, you should be aware that Liquibase keeps track of all previously executed changeSets within
a given schema. On its first execution in a schema, Liquibase creates the DATABASECHANGELOG and
DATABASECHANGELOGLOCK tables. The latter is a simple single-row table that prevents multiple Liquibase
executions from running at the same time. The other table contains all changeSets that have already been
run against the given database schema. The DATABASECHANGELOG table even calculates an MD5 checksum for
each entry, based on the content of the changeSet’s SQL script or scripts. This checksum allows Liquibase to
detect differences between the changeSets you are trying to execute and what was actually ran against the
database. This stateful concept is essential when having to decide whether a script should or should not be
executed during a database migration in a target schema.

Second, changeSet attributes are used to define script execution behavior. These attributes allow you to
easily differentiate between replaceable and nonreplaceable scripts. Table 9-1 gives an overview of the most
important changeSet attributes.

Table 9-1. Most Frequently Used changeSet Attributes

Attribute Description Default Value Required

id Uniquely identifies a changeSet within a changeLog file - Yes

author The name of the person who created the changeSet - Yes

runAlways Indicates whether the changeSet should be executed on
every run, even if it has been executed before

False No

runOnChange Execute the changeSet only the first time and each time the
content of the changeSet changes

False No

The runAlways and runOnChange attributes accept a Boolean value and determine whether a script
should be executed once or repeatedly. Omitting these two attributes results in false values, indicating that
a changeSet may be executed only once per schema. Thus, both changeSet definitions in Listing 9-12 are
identical.

Chapter 9 ■ LifeCyCLe ManageMent

378

Listing 9-12. ChangeSet Default Values

<changeSet id="create_dept" author="nick.buytaert">
 <sqlFile path="src/main/database/install/table/create_dept.sql" />
</changeSet>

<changeSet id="create_dept" author="nick.buytaert" runAlways="false" runOnChange="false">
 <sqlFile path="src/main/database/install/table/create_dept.sql" />
</changeSet>

This changeSet definition is typically used for nonreplaceable objects in the install folder and for data
scripts in the data folder. Setting both attribute values to true causes a changeSet to always execute when
Liquibase runs. This execution behavior is ideal for replaceable objects in the latest folder. The src/main/
database/changelog/latest/1.0.xml file contains the changeSets for the replaceable objects. Listing 9-13
includes an example of a changeSet definition that compiles the BR_IU_DEPT trigger.

Listing 9-13. ChangeSet for Compiling a Replaceable Object

<changeSet id="br_iu_dept" author="nick.buytaert" runAlways="true" runOnChange="true">
 <sqlFile splitStatements="false" path="src/main/database/latest/trigger/br_iu_dept.sql" />
</changeSet>

It is also possible to only set the runOnChange attribute to true, resulting in a changeSet that executes
only when the content of the referenced script was changed since its last execution. Also notice the
splitStatements attribute on the sqlFile element, which has been given the Boolean value false. The
default value for this attribute is true, meaning that Liquibase splits multiple statements on the semicolon
character. This is the desired behavior for most nonreplaceable and data scripts. Replaceable scripts, on the
other hand, should not interpret a semicolon as a statement separator.

The changeSet for a database package typically includes two sqlFile elements. As you might have
guessed, you need one for the package specification and one for the package body. Remember that a
changeSet demarks one database transaction in Liquibase. The changeSet for the database package will be
executed in two transactions, though. The reason is that both the package specification and body scripts
contain DDL, which gets automatically committed by the Oracle Database. Listing 9-14 shows an example
changeSet that compiles the DAO_DEPT package.

Listing 9-14. ChangeSet for Compiling a Database Package

<changeSet id="dao_dept" author="nick.buytaert" runAlways="true" runOnChange="true">
 <sqlFile splitStatements="false" path="src/main/database/latest/package/dao_dept.pks.sql" />
 <sqlFile splitStatements="false" path="src/main/database/latest/package/dao_dept.pkb.sql" />
</changeSet>

The Liquibase Maven Plugin
It is possible to use Liquibase in a stand-alone fashion, but what you will actually do is execute it as part of
your Maven build. Integrating Liquibase with Maven is easily accomplished by adding the Liquibase Maven
plugin to the pom.xml file. Simply append the plugin element from Listing 9-15 as a child to the plugins
element.

Chapter 9 ■ LifeCyCLe ManageMent

379

Listing 9-15. Liquibase Maven Plugin Definition

<plugin>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-maven-plugin</artifactId>
 <version>3.2.0</version>

 <dependencies>
 <dependency>
 <groupId>com.oracle</groupId>
 <artifactId>ojdbc7</artifactId>
 <version>12.1.0.2.0</version>
 </dependency>
 </dependencies>

 <executions>
 <execution>
 <id>liquibase-update</id>
 <phase>compile</phase>
 <goals>
 <goal>update</goal>
 </goals>

 <configuration>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <url>jdbc:oracle:thin:@localhost:8202/pdbdb01</url>
 <username>tst_apex_maven_demo</username>
 <password>secret</password>
 <changeLogFile>src/main/database/changelog/master.xml</changeLogFile>
 <promptOnNonLocalDatabase>false</promptOnNonLocalDatabase>
 <verbose>false</verbose>
 </configuration>
 </execution>
 </executions>
</plugin>

The plugin element contains all configuration details for the Liquibase Maven plugin. The groupId,
artifactId, and version tags uniquely identify the Maven plugin that should be executed as part of
the build. It is also required to define the Oracle JDBC driver as a plugin dependency because Liquibase
depends on it to execute the SQL scripts.

The executions element configures the execution details of a plugin’s goal. Every execution gets a
unique ID assigned and is linked to a phase in Maven’s build lifecycle. Without getting into too much detail
here, think of the Maven build lifecycle as a series of stages to which you can link a plugin’s execution. In the
demo project, all plugin executions are linked to the compile phase. The goal element contains the name of
the goal you want the plugin to execute. Every plugin defines its own goals. In case of the Liquibase Maven
plugin, you will execute the update goal, whose task is to apply a changeLog file to a target database schema.

Chapter 9 ■ LifeCyCLe ManageMent

380

The configuration element allows you to specify goal specific properties. The update goal requires
you to provide several database connection parameters to successfully log on as the parsing schema of the
APEX application you are deploying. You must also reference the path to the master changeLog file so that
Liquibase can determine what subchangeLog files must be read out. The following is an overview of the
specified properties:

•	 driver: The fully qualified name of the driver class that is used when connecting
to the database. The value for this property will always be oracle.jdbc.driver.
OracleDriver in combination with an Oracle Database.

•	 url: The JDBC connection URL of the target database where Liquibase will be
executed.

•	 username: The parsing schema of the APEX application.

•	 password: The database password of the parsing schema.

•	 changeLogFile: The path to the changeLog file that must be applied to the database
schema.

•	 promptOnNonLocalDatabase: Controls the prompting of users as to whether they
really want to run the changes on a database that is not local to the machine that the
user is current executing the plugin on.

•	 verbose: Controls the verbosity of the output.

A great thing about the Liquibase Maven plugin is that it is available from a public Maven repository.
Maven itself will download and install the required library files into the local Maven repository to get
Liquibase up and running. There is just one catch, and that is the Oracle JDBC driver, which you will have to
manually download and install because of Oracle license restrictions. Follow these steps:

 1. Download the appropriate OJDBC driver from the Oracle web site. Make sure to
select the driver that is compatible with your specific Oracle Database version.

 2. Open a command-line window and change the directory to the location where
you downloaded the OJDBC driver.

 3. Run the Maven install command.

mvn install:install-file -Dfile=ojdbc7.jar -DgroupId=com.oracle
-DartifactId=ojdbc7 -Dversion=12.1.0.2.0 -Dpackaging=jar

 ■ Note the version numbers in the previous install command may vary depending on the version you have
downloaded.

After adding the Liquibase plugin to the pom.xml file and installing the appropriate OJDBC driver, you
are ready to run Maven for the first time. Simply open a command-line window and change the directory
to the root of the project. Execute the mvn compile command to start the build. Maven will automatically
look for the pom.xml file in the current directory and will try to run all plugin executions that are part of the
compile phase. Listing 9-16 shows the build log produced by Maven.

Chapter 9 ■ LifeCyCLe ManageMent

381

Listing 9-16. A Successful Maven Execution

$ mvn compile
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building orclapex-maven-demo 1.0
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ orclapex-maven-
demo ---
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is
platform dependent!
[INFO] skip non existing resourceDirectory /Users/Nick/Documents/github/orclapex-maven-demo/
src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ orclapex-maven-demo ---
[INFO] No sources to compile
[INFO]
[INFO] --- liquibase-maven-plugin:3.2.0:update (liquibase-update) @ orclapex-maven-demo ---
[INFO] --
[INFO] there are no resolved artifacts for the Maven project.
[INFO] Executing on Database: jdbc:oracle:thin:@localhost:8202/pdbdb01
INFO 2/20/15 8:37 PM: liquibase: Successfully acquired change log lock
INFO 2/20/15 8:37 PM: liquibase: Creating database history table with name: DATABASECHANGELOG
INFO 2/20/15 8:37 PM: liquibase: Reading from DATABASECHANGELOG
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/install/1.0.xml::create_dept::nick.buytaert: SQL in file src/main/database/
install/table/create_dept.sql executed
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/install/1.0.xml::create_dept::nick.buytaert: ChangeSet src/main/database/
changelog/install/1.0.xml::create_dept::nick.buytaert ran successfully in 166ms
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/install/1.0.xml::create_emp::nick.buytaert: SQL in file src/main/database/install/
table/create_emp.sql executed
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/install/1.0.xml::create_emp::nick.buytaert: ChangeSet src/main/database/changelog/
install/1.0.xml::create_emp::nick.buytaert ran successfully in 176ms
...
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/data/1.0.xml::insert_emp_demo_data::nick.buytaert: SQL in file src/main/database/
data/insert_emp_demo_data.sql executed
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/data/1.0.xml::insert_emp_demo_data::nick.buytaert: ChangeSet src/main/database/
changelog/data/1.0.xml::insert_emp_demo_data::nick.buytaert ran successfully in 784ms
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/post-build/1.0.xml::compile_schema::nick.buytaert: SQL in file src/main/database/
post-build/compile_schema.sql executed
INFO 2/20/15 8:37 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/post-build/1.0.xml::compile_schema::nick.buytaert: ChangeSet src/main/database/
changelog/post-build/1.0.xml::compile_schema::nick.buytaert ran successfully in 6571ms
INFO 2/20/15 8:37 PM: liquibase: Successfully released change log lock

Chapter 9 ■ LifeCyCLe ManageMent

382

[INFO] --
[INFO]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 23.956s
[INFO] Finished at: Fri Feb 20 20:37:56 CET 2015
[INFO] Final Memory: 11M/26M
[INFO] --

I have removed some of the lines in this build log to make the output not too overwhelming. The “build
success” message at the end of the log indicates that all build actions have been executed without errors. In
this case, it means that the update goal of the Liquibase plugin successfully executed all appropriate SQL
scripts in the target database schema.

Running Maven a second time with the same mvn compile command will start the build again but
produce a different build log. That is perfectly normal since Liquibase will reexecute only the changeSets
that have been assigned the value true for the runAlways attribute. The nonreplaceable objects from the first
Liquibase run will not be executed anymore.

The last changeSet executed by Liquibase is the compile_schema.sql script. Its job was to look for
invalid objects within the currently connected database schema. The script has executed successfully in
the previous example, which means that all database objects are valid. This approach greatly benefits the
overall stability of the project because it feeds the development team with constant feedback on the source
code’s health.

Let’s take a look at how the build reacts when you introduce an invalid object in the code repository. As
an example, I have deliberately invalidated the bl_user_registration package body. Firing up the Maven
build with the same mvn compile command will now result in an unsuccessful execution, as shown in
Listing 9-17.

Listing 9-17. An Unsuccessful Maven Execution

$ mvn compile
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building orclapex-maven-demo 1.0
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ orclapex-maven-
demo ---
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is
platform dependent!
[INFO] skip non existing resourceDirectory /Users/Nick/Documents/github/orclapex-maven-demo/
src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ orclapex-maven-demo ---
[INFO] No sources to compile
[INFO]
[INFO] --- liquibase-maven-plugin:3.2.0:update (liquibase-update) @ orclapex-maven-demo ---
[INFO] --
[INFO] there are no resolved artifacts for the Maven project.
[INFO] Executing on Database: jdbc:oracle:thin:@localhost:8202/pdbdb01
INFO 2/21/15 12:44 PM: liquibase: Successfully acquired change log lock

Chapter 9 ■ LifeCyCLe ManageMent

383

INFO 2/21/15 12:44 PM: liquibase: Reading from DATABASECHANGELOG
...
INFO 2/21/15 12:44 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/latest/1.0.xml::bl_user_registration::nick.buytaert: SQL in file src/main/
database/latest/package/bl_user_registration.pks.sql executed
INFO 2/21/15 12:44 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/latest/1.0.xml::bl_user_registration::nick.buytaert: SQL in file src/main/
database/latest/package/bl_user_registration.pkb.sql executed
INFO 2/21/15 12:44 PM: liquibase: src/main/database/changelog/master.xml: src/main/database/
changelog/latest/1.0.xml::bl_user_registration::nick.buytaert: ChangeSet src/main/database/
changelog/latest/1.0.xml::bl_user_registration::nick.buytaert ran successfully in 343ms
...
SEVERE 2/21/15 12:44 PM: liquibase: src/main/database/changelog/master.xml: src/main/
database/changelog/post-build/1.0.xml::compile_schema::nick.buytaert: Change Set src/main/
database/changelog/post-build/1.0.xml::compile_schema::nick.buytaert failed. Error: Error
executing SQL
...
Invalid objects in schema TST_APEX_MAVEN_DEMO:
 PACKAGE BODY BL_USER_REGISTRATION
ORA-06512: at line 19
...
INFO 2/21/15 12:44 PM: liquibase: src/main/database/changelog/post-build/1.0.xml::compile_
schema::nick.buytaert: Successfully released change log lock
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 14.307s
[INFO] Finished at: Sat Feb 21 12:44:37 CET 2015
[INFO] Final Memory: 11M/26M
[INFO] --
...

This time, the compile_schema.sql script execution fails, resulting in the “build failure” message.
A list of invalid objects in the schema is printed out in the build log. This makes it easy for the development
team to quickly identify and fix the database objects that cause the build to fail. Note that the changeSet
for the bl_user_registration package executed successfully, even though the package body includes a
compilation error. The reason for this behavior is the underlying OJDBC driver, which does not return an
error when it compiles an invalid replaceable object. Nonreplaceable scripts that return an error during their
execution will immediately halt the build. Executing the ALTER TABLE script from Listing 9-18 as part of the
alter_emp_add_birthdate changeSet, for example, will result in an output as in Listing 9-19.

Listing 9-18. An ALTER TABLE Script

alter table emp
add birthdate date not null;

Listing 9-19. An Unsuccessful Maven Execution Caused by an Error in a SQL Script

$ mvn compile
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building orclapex-maven-demo 1.0

Chapter 9 ■ LifeCyCLe ManageMent

384

[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ orclapex-maven-demo

[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is
platform dependent!
[INFO] skip non existing resourceDirectory /Users/Nick/Documents/github/orclapex-maven-demo/
src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ orclapex-maven-demo ---
[INFO] No sources to compile
[INFO]
[INFO] --- liquibase-maven-plugin:3.2.0:update (liquibase-update) @ orclapex-maven-demo ---
[INFO] --
[INFO] there are no resolved artifacts for the Maven project.
[INFO] Executing on Database: jdbc:oracle:thin:@localhost:8202/pdbdb01
INFO 2/28/15 4:24 PM: liquibase: Successfully acquired change log lock
INFO 2/28/15 4:24 PM: liquibase: Reading from DATABASECHANGELOG
SEVERE 2/28/15 4:24 PM: liquibase: src/main/database/changelog/master.xml: src/main/
database/changelog/install/1.0.xml::alter_emp_add_birthdate::nick.buytaert: Change Set src/
main/database/changelog/install/1.0.xml::alter_emp_add_birthdate::nick.buytaert failed.
Error: Error executing SQL alter table emp
add birthdate date not null: ORA-01758: table must be empty to add mandatory (NOT NULL)
column
...
INFO 2/28/15 4:24 PM: liquibase: src/main/database/changelog/install/1.0.xml::alter_emp_add_
birthdate::nick.buytaert: Successfully released change log lock
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 11.520s
[INFO] Finished at: Sat Feb 28 16:24:19 CET 2015
[INFO] Final Memory: 12M/28M
[INFO] --
[ERROR] Failed to execute goal org.liquibase:liquibase-maven-plugin:3.2.0:update (liquibase-
update) on project orclapex-maven-demo: Error setting up or running Liquibase: Migration
failed for change set src/main/database/changelog/install/1.0.xml::alter_emp_add_
birthdate::nick.buytaert:
[ERROR] Reason: liquibase.exception.DatabaseException: Error executing SQL alter table emp
[ERROR] add birthdate date not null: ORA-01758: table must be empty to add mandatory (NOT
NULL) column
[ERROR] -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the
following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException

Chapter 9 ■ LifeCyCLe ManageMent

385

The alter_emp_add_birthdate changeSet executes with an Oracle error code and automatically
terminates the build. As a result of the error in the ALTER TABLE script execution, the changeSet will not be
written to the DATABASECHANGELOG table and will therefore be executed again on the next Liquibase run.

Other Features
With the adoption of Liquibase in your project’s workflow, a continuous connection is made between
database development and deployment. Each change to the database should be captured immediately as
a Liquibase changeSet to define and control its execution through the build process. Database changes can
also be tested more often and in smaller parts, resulting in faster problem detection and resolution.

So far in this chapter, I have given a detailed explanation on the core features of Liquibase. However, it is
certainly worth mentioning that there are still many features left undiscussed. Next up is a listing of some of
these features, without getting into too much detail.

ChangeSets can accept rollback elements to undo database changes. A rollback element typically
performs the opposite action of the changeSet it is attached to. A changeSet that creates the EMP table, for
example, will drop that same table in its rollback element, as shown in Listing 9-20.

Listing 9-20. A changeSet with a Rollback Element Defined

<changeSet id="create_emp" author="nick.buytaert">
 <sqlFile path="src/main/database/install/table/create_emp.sql" />
 <rollback>
 drop table emp;
 </rollback>
</changeSet>

You can specify what changes to roll back in three ways.

•	 Tag: A changeSet has the ability to tag the database. Such a tag can then be specified
to roll back all changeSets that were executed after the given tag was applied.

•	 Number of changeSets: Specify the total number of changeSets to roll back.

•	 Date: Choose a specific date to roll back to. The following is an example that undoes
all changeSets that were executed after January 1, 2015.

mvn liquibase:rollback -Dliquibase.rollbackDate="JAN 1, 2015"

Another powerful Liquibase feature is the concept of preconditions, which can be used to conditionally
execute a changeLog or changeSet based on the state of the database. Suppose you want to insert demo data
in the EMP table only when the table is empty. The changeSet definition in this case would look like the one
in Listing 9-21.

Listing 9-21. A changeSet with a preCondition Element Defined

<changeSet id="insert_emp_demo_data" author="nick.buytaert">
 <preConditions onFail="WARN">
 <sqlCheck expectedResult="0">
 select count(*)
 from emp;
 </sqlCheck>
 </preConditions>
 <sqlFile path="src/main/database/data/insert_emp_demo_data.sql" />
</changeSet>

Chapter 9 ■ LifeCyCLe ManageMent

386

Yet another technique to conditionally execute changeSets is the context mechanism. It is possible to
associate a changeSet with one or more contexts, while the update goal of the Liquibase Maven plugin lets
you set one or more contexts as part of the execution. Only changeSets marked with the passed contexts
will be executed. This is extremely helpful when having to run scripts that are environment dependent. It is
highly unlikely, for example, to write demo data into production tables. Thus, only the development and test
environment should execute the insert_emp_demo_data changeSet.

The insert_emp_demo_data changeSet from Listing 9-22 will be executed only when the context DEV
or TST is included in the Liquibase Maven plugin configuration section. If the PRD context is passed, for
example, the changeSet will be skipped. Listing 9-23 shows how to include the contexts parameter.

Listing 9-22. A changeSet with a Context Element Defined

<changeSet id="insert_emp_demo_data" author="nick.buytaert" context="DEV,TST">
 <sqlFile path="src/main/database/data/insert_emp_demo_data.sql" />
</changeSet>

Listing 9-23. The Liquibase Configuration Section with contexts Element

<configuration>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <url>jdbc:oracle:thin:@localhost:8202/pdbdb01</url>
 <username>tst_apex_maven_demo</username>
 <password>secret</password>
 <changeLogFile>src/main/database/changelog/master.xml</changeLogFile>
 <contexts>TST</contexts>
 <promptOnNonLocalDatabase>false</promptOnNonLocalDatabase>
 <verbose>false</verbose>
</configuration>

You can find more information on these and other Liquibase features at Liquibase’s official
documentation guide:

www.liquibase.org/documentation/

The Oracle APEX Maven Plugin
Plugins are essential when it comes to defining a project’s build process in Maven. A plugin is merely a
collection of goals with a general common purpose. The purpose of the Oracle APEX Maven plugin is to
facilitate the APEX development and deployment process. Each plugin goal is responsible for performing a
specific action. The Liquibase Maven plugin, for example, included the update goal, which allowed you to
apply a changeLog to a target database schema.

Unlike the Liquibase plugin, the Oracle APEX Maven plugin is not publicly available in the Maven
repository. This means you will have to manually download and install the plugin yourself.

 1. Go to https://github.com/nbuytaert1/orclapex-maven-plugin and download
the latest stable release.

 2. Unzip the downloaded archive file.

http://www.liquibase.org/documentation/
https://github.com/nbuytaert1/orclapex-maven-plugin

Chapter 9 ■ LifeCyCLe ManageMent

387

 3. Open a terminal window and change directory to the unzipped orclapex-maven-
plugin folder.

 4. Install the plugin in your local Maven repository with the following command:

mvn install:install-file -Dfile=orclapex-maven-plugin-1.0.jar
-DpomFile=orclapex-maven-plugin-1.0-pom.xml

 ■ Note the version numbers in the previous install command may vary depending on the version you have
downloaded.

The import Goal
The most essential goal of the Oracle APEX Maven plugin is the import goal, whose task is fairly simple:
import the SQL application export files into a target APEX workspace. The technical implementation and
complexity of a plugin’s goal is hidden for the developer in the form of a Maven old Java object (MOJO). A
MOJO is a Java class that specifies metadata about its goal, such as the goal name and the parameters it is
expecting.

The import goal requires one extra piece of software on your machine to successfully execute its task:
SQL*Plus. That is because an APEX application export file is filled with SQL*Plus commands. This means
that the import goal has no other option than executing the export file with SQL*Plus. OJDBC would have
been an alternative if the export files were just plain SQL. But since that is not the case, make sure you have
SQL*Plus installed on your machine.

Adding the Oracle APEX Maven plugin and the import goal to the POM file is pretty straightforward.
Simply append the plugin element from Listing 9-24 to the plugins tag, after the Liquibase Maven plugin.
That way, database code gets compiled first, followed by the APEX application import.

Listing 9-24. The Oracle APEX Maven Plugin Definition

<plugin>
 <groupId>com.contribute</groupId>
 <artifactId>orclapex-maven-plugin</artifactId>
 <version>1.0</version>

 <executions>
 <execution>
 <id>app-import</id>
 <phase>compile</phase>
 <goals>
 <goal>import</goal>
 </goals>

 <configuration>
 <connectionString>localhost:8202/pdbdb01</connectionString>
 <username>tst_apex_maven_demo</username>
 <password>secret</password>
 <appExportLocation>src/main/apex</appExportLocation>
 <workspaceName>tst_apex_maven_demo</workspaceName>
 <appId>1010</appId>
 </configuration>

Chapter 9 ■ LifeCyCLe ManageMent

388

 </execution>
 </executions>
</plugin>

In this example, the import goal is tied to the compile phase, just like the update goal of the Liquibase
Maven plugin. Goals tied to the same phase in the POM are executed in order of occurrence. The configuration
element contains the import goal parameters. These parameters allow you to specify how SQL*Plus should
execute the SQL export file into a target workspace. Here is a short explanation on the used parameters:

•	 connectionString: The database connection string used in the SQL*Plus login
argument.

•	 username: The database username used to log in with SQL*Plus.

•	 password: The database user’s password.

•	 sqlplusCmd: The command to start the SQL*Plus executable. The default value is
sqlplus if omitted.

•	 appExportLocation: The relative path to the folder containing the application
export files.

•	 workspaceName: The APEX workspace in which you want to import the application.

•	 appId: The ID for the application to be imported. Omit this parameter to import the
application with its original ID.

The import goal allows you to set the same application attributes as the APEX_APPLICATION_INSTALL
API package. The appId parameter, for example, uses the set_application_id procedure in the background
to set the ID of the application to be imported. The following application attributes can be set through the
import goal parameters:

•	 appId: The application ID

•	 appAlias: The application alias

•	 appName: The application name

•	 appParsingSchema: The application parsing schema

•	 appImagePrefix: The application image prefix

•	 appProxy: The proxy server attributes

•	 appOffset: The offset value for the application import

 ■ Note More information on these application attributes is available at the official documentation page of the
APEX_APPLICATION_INSTALL api package.

After adding the Oracle APEX Maven plugin to the pom.xml file, you should be able to import the
application export as part of the Maven build. The command to run the Maven build is still mvn compile.
Maven will first run Liquibase, followed by the application import. If something goes wrong with the update
goal of Liquibase, the application import will not take place. This is the desired behavior since you do not
want to import an application that would work on a previous version of the database schema. Listing 9-25
shows the Maven build log after executing the mvn compile command.

Chapter 9 ■ LifeCyCLe ManageMent

389

Listing 9-25. Part of the Maven Build Log

...
[INFO] --- orclapex-maven-plugin:1.0:import (app-import) @ orclapex-maven-demo ---
[INFO]
[INFO] SQL*Plus: Release 11.2.0.3.0 Production on Sat Jan 31 16:56:06 2015
[INFO]
[INFO] Copyright (c) 1982, 2012, Oracle. All rights reserved.
[INFO]
[INFO]
[INFO] Connected to:
[INFO] Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
[INFO] With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options
[INFO]
[INFO] workspace ID set: 25290313466775650 (TST_APEX_MAVEN_DEMO)
[INFO] application ID set: 1010
[INFO]
[INFO] PL/SQL procedure successfully completed.
[INFO]
[INFO] APPLICATION 1000 - APEX Maven Demo
[INFO] Set Credentials...
[INFO] Check Compatibility...
[INFO] Set Application ID...
[INFO] ...ui types
[INFO] ...user interfaces
[INFO] ...plug-in settings
[INFO] ...authorization schemes
[INFO] ...navigation bar entries
[INFO] ...application processes
...

The SQL*Plus prompt commands from the application export file are printed out in the Maven build
log. The output also informs you on the configuration parameters that have been set through the plugin’s
configuration properties. As you can see in the previous example, the application has been imported in the
TST_APEX_MAVEN_DEMO workspace with application ID 1010.

The run-natural-docs Goal
It is also worth mentioning that the Oracle APEX Maven plugin includes the run-natural-docs goal.
Natural Docs is an open source technical documentation generator. It scans the source code for Javadoc-
like comments and builds high-quality HTML documentation from it. All package specifications in the
demo project have been documented with these comments. Take, for example, the bl_user_registration
package specification, shown in Listing 9-26, which contains the validate_password_strength function.

Chapter 9 ■ LifeCyCLe ManageMent

390

Listing 9-26. src/main/database/latest/package/bl_user_registration.pks.sql

/*
 package: bl_user_registration
 Contains the business logic for the user registration process.
*/
create or replace
package bl_user_registration is

 /*
 function: validate_password_strength
 Determine whether a given password is strong enough.

 parameters:
 in_password - the password entered by the user

 returns:
 A boolean value. True means OK. False means that the password is not strong enough.
 */
 function validate_password_strength(
 in_password in varchar2
) return boolean;

end bl_user_registration;

Adding these comments to the source code is sufficient for Natural Docs to start generating technical
documentation. All you have to do is add another execution element to the Oracle APEX Maven plugin
in the pom.xml file, as shown in Listing 9-27. Please refer to the demo project on GitHub to see the entire
content of the pom.xml file.

Listing 9-27. The run-natural-docs Execution Element in pom.xml

<execution>
 <id>generate-natural-docs</id>
 <phase>compile</phase>
 <goals>
 <goal>run-natural-docs</goal>
 </goals>

 <configuration>
 <naturalDocsHome>util/naturaldocs</naturalDocsHome>
 <inputSourceDirectories>
 <inputSourceDirectory>src/main/database</inputSourceDirectory>
 </inputSourceDirectories>
 <outputFormat>FramedHTML</outputFormat>
 <outputDirectory>src/main/database/technical-docs</outputDirectory>
 <projectDirectory>src/main/database/technical-docs/settings</projectDirectory>
 <!-- dir must exist before generating natural docs -->
 <rebuild>true</rebuild>
 </configuration>
</execution>

Chapter 9 ■ LifeCyCLe ManageMent

391

The following is a short explanation on the parameters used in the configuration element:

•	 naturalDocsHome: The path to the folder containing the Natural Docs executable.

•	 inputSourceDirectories: Natural Docs will build the documentation from the
files in these directories and all its subdirectories. It is possible to specify multiple
directories.

•	 outputFormat: The output format. The supported formats are HTML and FramedHTML.

•	 outputDirectory: The folder in which Natural Docs will generate the technical
documentation.

•	 projectDirectory: Natural Docs needs a place to store the project’s specific
configuration and data files.

 ■ Note you need perl 5.8 or newer installed on your machine to run natural Docs. Mac and Linux users
have perl installed by default. if you are using Windows and have not installed it yet, you can get activeState’s
activeperl for free at www.activestate.com/activeperl.

Running the mvn compile command will now generate technical documentation. Listing 9-28 shows
the part of the Maven build log generated by the run-natural-docs goal.

Listing 9-28. The Build Log Generated by the run-natural-docs Goal

...
[INFO] --- orclapex-maven-plugin:1.0:run-natural-docs (generate-natural-docs) @ orclapex-
maven-demo ---
[INFO] Finding files and detecting changes...
[INFO] Parsing 21 files...
[INFO] Building 5 files...
[INFO] Building 3 indexes...
[INFO] Updating menu...
[INFO] Updating CSS file...
[INFO] Done.
...

The resulting HTML files are generated in the outputDirectory specified in the plugin’s configuration
section. Figure 9-9 shows the technical documentation for the BL_USER_REGISTRATION package.

http://www.activestate.com/activeperl

Chapter 9 ■ LifeCyCLe ManageMent

392

Deploying Static Files
By now, the Maven build successfully covers two of the three parts for the deployment of a basic APEX
application. Liquibase tackles the task of migrating database changes, and the APEX application import
is taken care of by the import goal of the Oracle APEX Maven plugin. The last part you have to deal with is
the deployment of static files. As already mentioned, APEX 5.0 includes several serious improvements that
simplified static file deployment. The APEX development team could not have made it any easier for you by
automatically exporting the static files as part of the application export.

You can safely skip this section if you decide to take advantage of the enhanced Files section under
Shared Components. In that case, the Maven build as described in the previous sections is capable of
deploying a basic APEX application with just a single command. For those who prefer to upload their static
files to the server’s file system, there is just one more task left.

 ■ Note Storing static files on the server’s file system makes it possible to automate repetitive tasks related
to static files. a CSS preprocessor, for example, can be used to enhance the writing of CSS. you can also add
utilities to your workflow that validate and minify CSS and JavaScript files.

The steps required to perform the task of copying static files to the web server are in essence fairly simple:

 1. Access the server’s file system with a privileged OS user.

 2. Remove any existing static files.

 3. Copy the static files from the code repository to the web server.

Figure 9-9. The technical documentation for the BL_USER_REGISTRATION package

Chapter 9 ■ LifeCyCLe ManageMent

393

The AntRun Plugin
The AntRun plugin provides the ability to execute Ant tasks from within a Maven build. Apache Ant is also a
build automation tool and is considered a predecessor of Maven. I will spare you any further details on this
matter, but it turns out that Ant is better suited for the task of copying files to a server’s file system. Simply
append the code fragment from Listing 9-29 to the plugins element in the pom.xml file.

Listing 9-29. The AntRun Plugin

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.7</version>

 <dependencies>
 <dependency>
 <groupId>org.apache.ant</groupId>
 <artifactId>ant-jsch</artifactId>
 <version>1.9.4</version>
 </dependency>
 </dependencies>

 <executions>
 <execution>
 <id>file-copy</id>
 <phase>compile</phase>
 <goals>
 <goal>run</goal>
 </goals>

 <configuration>
 <target>
 <sshexec host="apex.contribute.be"
 username="i"
 password="secret"
 trust="true"
 verbose="false"
 command="rm -rf /opt/apex/images/apex_custom/tst_demo &&
 mkdir -p /opt/apex/images/apex_custom/tst_demo" />

 <scp todir="i:secret@apex.contribute.be:/opt/apex/images/apex_custom/tst_demo"
 trust="true"
 verbose="false">
 <fileset dir="src/main/web-files" />
 </scp>
 </target>
 </configuration>
 </execution>
 </executions>
</plugin>

Chapter 9 ■ LifeCyCLe ManageMent

394

The AntRun plugin requires the ant-jsch dependency because it includes the sshexec and scp tasks,
which you need to successfully copy the static files. You do not need to manually install the Maven AntRun
plugin or its dependencies because these are publicly available from the Maven repository.

The target element in the configuration section includes two tasks that will be executed by Ant. The
sshexec task connects to a remote host with a specified user and executes two OS commands to clean up the
existing static files directory. Files removed from the code repository this way will also be removed from the
server’s file system after the copy.

The scp task is responsible for the actual copy of the src/main/web-files folder content to the server’s
file system. The target location in the previous example is /opt/apex/images/apex_custom/tst_demo.
Running the Maven build with the mvn compile command will now perform the file copy. Listing 9-30 shows
the build log generated by the AntRun plugin.

 ■ Note Secure Copy (SCp) is a protocol that securely transfers computer files between two hosts. it is based
on the Secure Shell (SSh) protocol. Other protocols, such as ftp, are also supported by the Maven antrun
plugin. please refer to the plugin documentation for more information on other protocols.

Listing 9-30. The Build Log Generated by the AntRun Plugin

...
[INFO] --- maven-antrun-plugin:1.7:run (file-copy) @ orclapex-maven-demo ---
[INFO] Executing tasks

main:
 [sshexec] Connecting to apex.contribute.be:22
 [sshexec] cmd : rm -rf /opt/apex/images/apex_custom/tst_demo &&
mkdir -p /opt/apex/images/apex_custom/tst_demo
 [scp] Connecting to apex.contribute.be:22
 [scp] done.
[INFO] Executed tasks
...

Multi-environment Setup
So far in this chapter, you have constantly been building to the same environment when executing the mvn
compile command. That is because the pom.xml file includes the build and configuration details only for the
test environment. However, a project setup should count at least three separate environments before being
able to support an application’s development and deployment lifecycle in a proper way. Figure 9-10 shows
these three environments.

Figure 9-10. A basic build environment setup

Chapter 9 ■ LifeCyCLe ManageMent

395

•	 The development environment is where the actual development takes place. This
environment always contains the latest version of the application because it is
the place where new features and improvements are being implemented by the
development team.

•	 In the test environment, the complete code base is merged together into a single
product. This allows the development team to verify whether deployment has been
successful and whether the application works as expected.

•	 The production environment contains the actual live application. It is recommended
to install the runtime-only configuration of APEX in this environment. This will
prohibit developers from accessing the application builder and SQL workshop,
making it impossible to directly modify the live application.

More environments can be added to the previous setup, depending on the demands of the project.
An acceptance environment, for example, is often introduced when business users are required to test the
application before it gets deployed to production. In this way, business users are more involved because they
can verify whether newly developed features or improvements meet the proposed business requirements.
This approach separates user acceptance testing from the test environment, which is typically the subject of
more technical tests. Figure 9-11 shows the environments within a DTAP street.

Figure 9-11. A DTAP cycle or street

The concept of an environment in terms of APEX development usually consists of three parts.

•	 An APEX workspace in which one or more applications will be imported

•	 A database schema to hold the database objects on which the APEX applications
depend

•	 Optionally, a location on the server’s file system to store the application’s static files

As you have probably noticed, a clear mapping can be made between the Maven build tasks and the
environment you have to deploy to.

•	 The import goal of the Oracle APEX Maven plugin is capable of importing an
application export file into a target APEX workspace.

•	 The Liquibase Maven plugin takes care of database script execution.

•	 The AntRun plugin is able to copy local files to a location on the server’s file system.
You do not need this task during the build process in case you are using the Files
section under Shared Components.

Building with Maven to Multiple Environments
The introduction of the multi-environment setup requires you to rethink the POM file in a way that it is
capable of building to different environments in an organized way. Luckily, Maven includes several helpful
features that allow you to come up with an elegant solution for this requirement. The two main elements on
which the solution is built are inheritance and build profiles.

Chapter 9 ■ LifeCyCLe ManageMent

396

Inheritance
POM files in Maven have the ability to inherit from a parent POM, which defines global-level elements that
can be shared across its child POMs. When associating a child with its parent, all parent elements become
automatically part of the child. The demo project applies inheritance and includes a parent and child
POM in the project’s root folder: parent_pom.xml and multi_env_pom.xml. Creating a parent POM is easily
achieved by assigning the value pom to the packaging coordinate element, as shown in Listing 9-31.

Listing 9-31. The packaging Coordinate Element

<groupId>com.contribute.apex</groupId>
<artifactId>orclapex-maven-demo-parent</artifactId>
<version>1.0</version>
<packaging>pom</packaging>

The child POM multi_env_pom.xml inherits parent_pom.xml by referencing the file in the parent
element. All three coordinate elements must have the same value as defined in the parent POM. Listing 9-32
shows an example parent element.

Listing 9-32. Referencing the Parent POM with the parent Element in the Child POM

<parent>
 <groupId>com.contribute.apex</groupId>
 <artifactId>orclapex-maven-demo-parent</artifactId>
 <version>1.0</version>
 <relativePath>parent_pom.xml</relativePath>
</parent>

The goal of inheritance here is to standardize the build configuration across multiple environments.
All Maven plugin definitions are moved to a central place in the parent POM under the pluginManagement
element. The child POM will then be able to determine what and how plugins should be executed for each
environment. This approach prevents the duplication of plugin definitions and improves reusability and
maintainability. Take, for example, the Liquibase plugin definition, shown in Listing 9-33, which includes
the same configuration properties as in the pom.xml file. The only difference is that most property values
now contain variable substitution strings.

Listing 9-33. Substitution Strings in a Plugin’s Configuration Section

<configuration>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <url>${database.url}</url>
 <username>${database.username}</username>
 <password>${database.password}</password>
 <changeLogFile>src/main/database/changelog/master.xml</changeLogFile>
 <promptOnNonLocalDatabase>false</promptOnNonLocalDatabase>
 <verbose>false</verbose>
</configuration>

The ${property.name} syntax is a reference to a property defined in the child POM. These properties
make it possible to dynamically reference plugins with different configuration settings. The technique of
replacing substitution strings at runtime is called interpolation in Maven terms.

Chapter 9 ■ LifeCyCLe ManageMent

397

Build Profiles
The child POM includes a build profile for each environment in the project setup you have to build to. Build
profiles divide a POM in distinct parts, making it possible to specify environment-specific properties and
references to plugins defined in the parent POM. The technique of build profiles allows you to build the project
to different environments from a single POM file. Listing 9-34 shows the definition of the dev build profile.

Listing 9-34. The dev Build Profile

<profile>
 <id>dev</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>

 <properties>
 <database.url>jdbc:oracle:thin:@localhost:8202/pdbdb01</database.url>
 <database.username>dev_apex_maven_demo</database.username>
 <database.password>secret</database.password>
 <webserver.host>apex.contribute.be</webserver.host>
 <webserver.username>i</webserver.username>
 <webserver.password>secret</webserver.password>
 <webserver.directory>/opt/apex/images/apex_custom/dev_apex_maven_demo</webserver.
directory>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 </plugin>

 <plugin>
 <groupId>com.contribute</groupId>
 <artifactId>orclapex-maven-plugin</artifactId>

 <executions>
 <execution>
 <id>generate-natural-docs</id>
 <phase>compile</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

Chapter 9 ■ LifeCyCLe ManageMent

398

Every build profile gets an ID assigned, which is typically named after the environment it represents.
You will use these IDs in combination with the –P command-line option. As an example, consider the
following Maven command:

mvn -f multi_env_pom.xml -P tst compile

This command will activate the tst build profile in the multi_env_pom.xml POM file and will execute
all plugin goals that fall under the compile phase. Entering a comma-delimited list of IDs can activate
multiple build profiles. Setting the activeByDefault element to true within a build profile automatically
activates the profile when the –P option is not provided.

The properties section defines the substitution strings that you have already seen in the parent POM’s
pluginManagement section. The plugin configuration properties in the parent POM will be replaced at
runtime by the property values defined in the activated build profile.

The build element references the plugins from the parent POM based on groupId and artifactId.
These references avoid duplication and keep plugin definitions centralized in one place. Build profiles do
not have to execute the same plugins. Table 9-2 shows what build tasks are being executed per environment.

Table 9-2. An Overview of What Build Tasks Are Being Executed per Environment

Environment Liquibase AntRun Plugin Application Import Natural Docs

Development x x x x

Test x x x

Production x x x

The Liquibase Maven plugin is not being referenced in one of the build profiles in the multi_env_pom.xml
file. Instead, it gets referenced in the build element of the child POM itself. Plugins defined at this level will be
executed before the plugins from the build profiles that belong to the same phase. Thus, Liquibase will always
be executed first, followed by any of the plugins defined in the build profiles. Listing 9-35 shows how to reference
the parent POM’s Liquibase Maven plugin.

Listing 9-35. A Reference to the Parent POM’s Liquibase Maven Plugin

<build>
 <plugins>
 <plugin>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

One Code Base to Rule Them All
All environments are being provisioned from a central code repository. It is the single source of truth for the
development team and contains, at a minimum, all the artifacts required to completely build and deploy the
software product. The code repository concept enables you to take advantage of version control, something
that should be part of every software development project, even if you are working all by yourself. Source
control products include several essential features that are of great help for any developer.

Chapter 9 ■ LifeCyCLe ManageMent

399

•	 Track file changes and history

•	 Revert to an earlier version

•	 File merging capabilities

•	 The ability to branch and tag versions of the software product

•	 Backup and restore

•	 Easy to share the project’s source code and configuration with other developers

Even though the APEX application export file is not source control friendly, it is still worth the investment
to keep your projects under version control for other types of files. The thick database approach, for example,
will inevitably lead to a significant amount of SQL files, which you will want to keep track of. It is also a good
idea to put your static files under source control, especially when they are stored on the web server.

The most popular version control system these days is Git. It is a free and open source product designed
to handle everything from small to large projects. The basic usage of Git is pretty straightforward, and some
online services such as GitHub or BitBucket make it easy accessible and understandable. The demo project,
for example, is hosted on GitHub, a web-based Git repository hosting service that makes it really simple to
get started with Git thanks to a user-friendly graphical interface. Figure 9-12 shows the desktop version of
GitHub for Mac.

Figure 9-12. The desktop version of GitHub for Mac

It is also a good idea to directly work on the files in the code repository. Komodo Edit, Atom, or
SublimeText are examples of advanced text editors that can boost your development productivity.

Chapter 9 ■ LifeCyCLe ManageMent

400

Jenkins
Jenkins is an open source continuous integration (CI) tool in which you can define and monitor repeated
jobs, such as building a software product. Continuous integration refers to the practice of frequently pushing
small amounts of development effort to the main development line, resulting in a fully automated and
self-testing software build. This technique helps the development team to quickly identify problems with
the code base because every commit to version control triggers a build that verifies that nothing has been
broken. CI is broadly adopted in most mainstream development technologies, but it has never been fully
explored in Oracle APEX development.

Before starting with Jenkins, you need to create an isolated environment where you can build the
project an unlimited amount of times without any limitations. That is why you will introduce the CI
environment to the project’s environment setup. The multi_env_pom.xml file includes the ci build profile,
shown in Listing 9-36, which will be activated when building to the CI environment.

Listing 9-36. The ci Build Profile

<profile>
 <id>ci</id>
 <properties>
 <database.url>jdbc:oracle:thin:@localhost:8202/pdbdb01</database.url>
 <database.username>ci_apex_maven_demo</database.username>
 <database.password>secret</database.password>
 </properties>
</profile>

The build profile does not include a build element because you intend to execute only Liquibase,
which is defined in the main build element of the POM itself. Other Maven plugins are unnecessary in this
environment since they cannot give you any important feedback. The import of the APEX application export
file, for example, either works or does not work. Only a configuration problem can cause the import to fail.
The purpose of the CI build is to frequently integrate small pieces of development work in an aim to receive
constant feedback on the code base toward the project team.

Installation
The installation process for Jenkins is relatively simple. Simply navigate to http://jenkins-ci.org/ and
download the latest release for your specific operating system. Then follow the appropriate installation
guidelines to get Jenkins up and running. Jenkins is a Java web application that runs on port 8080 by default.
The home page is accessible at http://servername:8080 once Jenkins is successfully running.

 ■ Note it is possible to change Jenkins’ default port number. please review Jenkins’ documentation for any
further details on this matter.

If you are using Git as version control system, you will need to install the Git Plugin for Jenkins. Follow
these steps to do so:

 1. Open the Manage Jenkins section via the Jenkins’ home page.

 2. Select Manage Plugins.

 3. Click on the Available tab.

http://jenkins-ci.org/
http://servername:8080/

Chapter 9 ■ LifeCyCLe ManageMent

401

 4. Enter the search term git plugin in the Filter field.

 5. Install the Git Plugin.

Creating a Build
In Jenkins, you will create a build for every environment in your project’s setup. The configuration of such
a Jenkins build is just a matter of correctly setting a series of properties. To get a better view on what sort of
properties you have to set, it is important to understand what happens behind the scenes of a Jenkins build.

 1. The first step is to locate the project’s source code. It is possible to point to a
directory on the local file system if you are not using any version control system.
For the demo project, however, you will connect each Jenkins build to the public
GitHub repository.

 2. The Jenkins build will then locally check out a specific branch from the version
control system.

 3. Jenkins executes Maven to start the build and lets you specify the appropriate
POM file and options.

The following steps outline how to create the Jenkins build for the CI environment:

 1. Click the New Item link on the Jenkins home page.

 2. Enter a name for the build in the Item Name input field.

 3. Select Maven project as project type.

 4. Click the OK button, which will take you to the build’s configuration page.

 5. Select and configure the appropriate version control system under the Source
Code Management section for your project. Select None if you have no source
control applied. Here is an overview of the configuration properties for the demo
project, which uses Git as VCS:

a. Repository URL: https://github.com/nbuytaert1/orclapex-maven-demo

b. Credentials: nickbuytaert/******

c. Branch Specifier: */master

 6. Under the Build Triggers section, select the Poll SCM option and enter */2 * * * *
in the Schedule item to check for changes every two minutes.

 7. Under the Build section, enter the Root POM by pointing to the multi_env_pom.xml
file, and specify the following Goals and Options: -P ci compile.

 8. Optionally, enable E-mail Notification under Build Settings.

The SCM polling setting will cause the CI build to automatically run whenever new commits have been
pushed to the version control system. The build executes Maven and activates the ci build profile in the
multi_env_pom.xml file. This results in Liquibase being executed in order to verify whether anything has
broken the build. Figure 9-13 shows the Jenkins home page after creating a build for every environment.

https://github.com/nbuytaert1/orclapex-maven-demo

Chapter 9 ■ LifeCyCLe ManageMent

402

Figure 9-13. The Jenkins home page with an overview of all builds

The build configuration for the other environments is similar to the CI build configuration. There are
just three differences you have to keep in mind.

•	 The Branch Specifier under Source Code Management for the production build
will not be the master branch. You typically specify a branch or tag that has been
declared production-ready.

•	 Do not define a build trigger since all other builds will be executed manually in
Jenkins.

•	 Change the build profile in the Goals and Options setting according to the
environment you want to build.

Summary
Lifecycle management in Oracle Application Express is definitely a challenging exercise. This chapter has
introduced a solution that combines a number of open source products in an aim to gain more control over
the development and deployment lifecycle. You have to take into account some limitations, but I do believe
that the described solution can boost the quality and efficiency in APEX projects.

Keep in mind that this chapter has covered the build automation tasks for only a basic APEX
application. Additional build tasks can quickly make their way into a project’s build flow. Including
automated tests, for example, is an excellent way to catch bugs faster and more efficiently. Luckily, you can
take advantage of the central Maven repository to easily integrate new tasks in the build process.

403

Chapter 10

Plugins

by Dan McGhan
APEX has long been extensible. It was built in such a way that developers could add custom content to just
about any part of a page constructed by the framework. The problem, however, was twofold. First, you had
to be familiar enough with the related technologies to work outside the declarative environment that APEX
provides. Second, even if you had enough knowledge to do a customization, repeating it on another page or
in another application altogether was often quite cumbersome.

The APEX plugin architecture, introduced with APEX 4.0, solves the latter of those problems. You still
need to have sufficient knowledge of the related technologies, which most often include SQL, PL/SQL,
HTML, CSS, and JavaScript. But, provided you possess this knowledge, you can integrate customizations to
APEX in a self-contained, easily reusable, and sharable way—as a plugin.

The plugin architecture has evolved quite a bit since APEX 4.0, with enhancements having been added
in versions 4.1, 4.2, and most recently 5.0. There are currently six types of plugins, all of which extend native
APEX component types, including regions, items, processes, dynamic actions, authentication schemes, and
authorization schemes.

There are two main audiences for plugins: those who will build plugins and those who will use what
others build. This chapter is written for the former—for APEX developers interested in learning how to
create plugins for themselves and others to use. I will not cover plugin installation or configuration because I
assume you already possess this knowledge.

The target audience for this chapter is one that is comfortable working with SQL and PL/SQL and has at
least some working knowledge of HTML, CSS, and JavaScript. If you feel this doesn’t describe you perfectly,
don’t be too worried. The tutorial in this chapter was written in such a way that you should be able to follow
along, even if you don’t quite understand everything you’re doing.

Developing a plugin is a unique and rewarding experience. You may find yourself challenged at times
as you constantly move between client-side and server-side programming languages while developing a
reusable piece of an APEX application. But if you stick to it, eventually your efforts will pay off and you
(and ideally the entire APEX community) will be able to enjoy the fruits of your labor.

The APEX Plugin Architecture
The pieces of the APEX plugin architecture that plugin developers work with include pages in the shared
components of an application and PL/SQL APIs. The pages in the shared components are used to create and
modify plugins, while the PL/SQL APIs provide required constructs as well as utility functions that minimize
the amount of “plumbing” you might otherwise need to code. This section of the chapter will provide an
introduction to these new components.

Chapter 10 ■ plugins

404

Create/Edit Page for Plugins
The Create/Edit plugin page is the main page used while developing plugins, so it’s important to become
acquainted with it. To navigate to the page, first go to the Plug-ins page by clicking the Plug-ins option in the
Shared Components area (under Other Components). Once there, you can either drill down on an existing
plugin or click the Create button and complete the Create Plug-in Wizard to create a new plugin.

The Create/Edit plugin page contains 13 regions in total. You may notice subtle differences when
viewing this page at different times. Your mind is not playing tricks on you; the page changes depending on a
number of factors. For example, not all regions are available at all times or for all plugin types. Also, the items
in a region, as well as the times at which those items can be edited, can vary. All of this will be explained in
the sections that follow.

Name
The Name region (see Figure 10-1) contains items that allow plugin developers to identify a plugin as well as
the plugin type.

Figure 10-1. The Name region of the Create/Edit page

Figure 10-2. An item plugin’s name displayed in the Type attribute of a page item

You can think of the Name attribute as the display name for plugin users. Plugin users will see and
select this name to use the plugin via the declarative interface provided by the Application Builder. Exactly
where they see the name will depend on the plugin type; for example, if you create an item plugin, the Name
value will be displayed in the Type attribute of items in the application (see Figure 10-2).

Chapter 10 ■ plugins

405

The Internal Name attribute serves as a unique identifier for the plugin within an application. The
Internal Name attribute should be uppercase; lower- or mixed-case values will be converted to uppercase
when creating or updating the plugin. Note that this attribute cannot be modified if the plugin is being used
in the application.

When importing a plugin into an application, the value of the Internal Name attribute will be checked
against other plugins in the application. If a plugin with the same Internal Name attribute already exists,
users will need to confirm that they want to replace the existing plugin. For this reason, uniqueness of the
Internal Name attribute is much more important than uniqueness of the Name attribute.

 ■ Note see the “plugin Best practices” section later in this chapter for tips on naming and other topics.

The Type attribute, as I’m sure you’ve already guessed, defines the type of plugin you are working with.
The Type attribute is obviously a major attribute of a plugin, and as such its value drives some of the other
regions and items that are visible on the page. This attribute, like the Internal Name attribute, cannot be
modified if the plugin is being used in the application.

The Category attribute (not visible in Figure 10-2) is available only for dynamic action plugins. This
attribute is used to group similar dynamic actions together, which makes selection a little easier for plugin
users; it has no other impact.

Subscription
The Subscription region (see Figure 10-3) is the same as it is throughout APEX. The Reference Master Plug-in
From item allows you to link to a “master” copy of the plug-in. The master copy often resides in a centralized
application used only for this purpose. Once established, the link between master and child allows for
updates to be performed on a one-off basis from the child or in bulk from the master to all children.

Figure 10-3. The Subscription region of the Create/Edit page

Source
Plugin developers must write one or more PL/SQL functions for their plugin to work. The PL/SQL Code
attribute in a region (see Figure 10-4) is where the code for these functions typically resides; however, it is
possible to use code compiled in the database instead. The number and type of functions required vary
depending on the plugin type—see the “Callbacks” section for more details.

Chapter 10 ■ plugins

406

Callbacks
The Callbacks region (see Figure 10-5) is used to register the PL/SQL functions you have defined (see the
earlier “Source” section) with what is expected by the framework for the given plugin type. Simply add
the function name, and the framework will invoke the function at the appropriate time (except the AJAX
function, which is manually invoked when needed via JavaScript).

Figure 10-4. The Source region of the Create/Edit page

Figure 10-5. The Callbacks region of the Create/Edit page

You can use any valid Oracle name for the functions, but the signature must match that which is
expected for a given function type. Exactly which functions are available, required, or optional will vary
based the plugin type. The easiest way to look up the expected signature is to click the help button
(question mark on the right) for the function name. If the function is compiled in a package, simply prefix
the function name with the package name followed by a period.

The number and types of functions available will vary depending on the plugin type. The most common
functions include the render function, which is used to render the plugin on the page; the AJAX function,
which is used to make asynchronous calls from the plugin to the server for additional data and processing;
and the execution function (not displayed), which is used to perform some type of processing.

Chapter 10 ■ plugins

407

User Interfaces
The “Supported for” attribute of the User Interfaces region (see Figure 10-6) is used to specify which user
interfaces your plugin will work with. Keep in mind that desktop and mobile UIs can be quite different. APEX
uses jQuery Mobile for its mobile UI, so plugin developers who want to add support for that UI may need to
learn about how jQuery Mobile expects its markup, what events are available and how they work, and so on.

Figure 10-6. The “Supported for” attribute of the User Interfaces region

Figure 10-7. The Standard Attributes region of the Create/Edit page for the Modal LOV plugin (an item plugin)

Standard Attributes
Plugin developers can use two main types of attributes in plugins: standard (covered here) and custom
(covered in the next section). Both standard and custom attributes are a plugin developer’s means to provide
declarative options to plugin users who can change the characteristics or behavior of a plugin.

In APEX, many attributes for a given component type are the same. For example, the Select List and
Check Box items both have a List of Values definition. Likewise, both the Interactive and Classic Report
regions have a Source attribute that requires a SQL query. Standard attributes give plugin developers the
ability to add these types of common attributes to their plugins. Enabling standard attributes in plugins will
simply present those options to plugin users when creating a new instance of the plugin. The values entered
or selected by the developer will be passed to the plugin logic via parameters in the callback functions. It is
the responsibility of plugin developers to check the values of these attributes and code the plugin to respond
appropriately.

Always try to use standard attributes before creating custom equivalents. This will save you time and
reduce the number of custom attributes used by your plugins. More importantly, standard attributes will be
displayed where APEX developers are already familiar with them and in a way that’s consistent with other
instances of a particular component type.

The standard attributes available vary by plugin type. Figures 10-7 through 10-11 show the standard
attributes available to item, region, dynamic action, process, and authentication scheme plugins.
Authorization scheme plugins do not have any standard attributes.

Chapter 10 ■ plugins

408

Figure 10-11. The Standard Attributes region of the Create/Edit page (an authentication scheme plugin)

Figure 10-8. The Standard Attributes region of the Create/Edit page (a region plugin)

Figure 10-9. The Standard Attributes region of the Create/Edit page (a dynamic action plugin)

Figure 10-10. The Standard Attributes region of the Create/Edit page (a process plugin)

Custom Attributes
The standard attributes, while extremely useful, could never include all the attributes you might want to
add to a plugin. To remedy this fact, the APEX plugin architecture allows you to create custom attributes
(see Figure 10-12) that are exposed to plugin users as settings.

Chapter 10 ■ plugins

409

To add an attribute to a plugin, simply click the Add Attribute button. This will redirect you to the
Edit Attribute page where the attribute can be configured. When creating a new custom attribute, you will
need to specify the type. There are 23 different types of custom attributes that can be added to a plugin
(see Figure 10-13).

Figure 10-12. The Custom Attributes region of the Create/Edit page for the Modal LOV plugin

Figure 10-13. The Type options available when creating a custom attribute

The type is used to determine how the attribute should be displayed to plugin users and in some cases
can allow the plugin framework to ensure that valid values have been entered. Custom attributes can be
made to display conditionally (based on the value of other custom attributes). You can create up to 25 custom
attributes at the application level and another 25 custom attributes at the component level.

Chapter 10 ■ plugins

410

Placing attributes at the application level of a plugin is a good way to reduce the number of decisions
that plugin users face each time they use a plugin, and it’s a good way to enforce consistency. For example,
an attribute that changes the color scheme of a plugin may be best at the application level so that the
plugin is displayed the same way on different pages. Plugin users will set application-level attributes via
Component Settings in the Shared Components page.

On the other hand, not all attributes are suited for the application level. An attribute used to identify
a page-level item may be better off as a component-level attribute. This would allow the plugin to be used
more than once in an application without different instances of the plugin interfering with each other. Plugin
users will set component-level settings from a Settings region, displayed with the standard attributes, where
the component is usually configured.

The Custom Attributes region of the Create/Edit plugin page is available only after the plugin is created.
Also, certain parts of custom attributes, such as the scope, attribute (number), and LOV return values,
cannot be modified if the plugin is being used in the application.

Files
Plugins often require the use of external files for various functionality. The most common types of files
used in plugins include CSS, JavaScript, and image files (see Figure 10-14). Files uploaded here are stored
in the database and directly associated with the plugin. It is possible to upload entire ZIP files that include
directories. Directory structures will be preserved, so it’s safe to use relative paths within files. Files uploaded
to a plugin are not automatically added to the APEX page at runtime—see the “File URLs to Load” section to
see how to accomplish that task.

Figure 10-14. The Files region of the Create/Edit page

File URLs to Load
The File URLs to Load region (see Figure 10-15) allows plugin developers to declaratively add files to the
APEX page that the plugin depends on. The #PLUGIN_FILES# substitution string can be used to point to files
that have been uploaded to the plugin via the Files region. The #MIN# and #MIN_DIRECTORY# substitution
strings will be replaced with .min and minified/, respectively, when you are not logged into APEX as a
developer (typically test and production). It is up to the plugin developer to create the minified/compressed
versions of their CSS and JavaScript if they want to use these substitution strings.

Chapter 10 ■ plugins

411

CSS files will be added to the APEX page where the #APEX_CSS# substitution string is included in the
page template header (the header of the HTML document). JavaScript files, on the other hand, will be
added to the APEX page where the #GENERATED_JAVASCRIPT# substitution string in the page template footer
(the bottom of the body of the HTML document). These locations follow best practices for adding CSS and
JavaScript to web pages.

Events
The Events region (see Figure 10-16) allows plugin developers to add custom events to dynamic actions in
an application. This ability would be useful only for plugins that trigger custom events. For example, if you
created a countdown timer plugin, creating a “timeout” event would allow plugin users to create dynamic
actions that react to the event. It’s up to plugin developers to trigger custom events at the appropriate times.
The Events region is visible only after the plugin is created.

Figure 10-15. The File URLs to Load region of the Create/Edit page

Figure 10-16. The Events region of the Create/Edit page

Figure 10-17. The Information region of the Create/Edit page

Information
The Information region (see Figure 10-17) allows you to add the version number of the plugin as well as
specify an About URL. The About URL should point to a location on the Web where plugin users can learn
more about the plugin.

Chapter 10 ■ plugins

412

Help Text
The Help Text region (see Figure 10-18) allows plugin developers to add built-in documentation for plugin
users. Any documentation added by plugin developers will be visible to plugin users via the same region.

Figure 10-19. The Comments region of the Create/Edit page

Figure 10-18. The Help Text region of the Create/Edit page

Comments
The Comments region (see Figure 10-19) is similar to how it is with other components throughout APEX.
The main difference here is that there are two types of users who may use the comments: plugin developers
and plugin users (APEX developers). Plugin developers need to be aware that comments added to a plugin
are exported with the plugin and are visible when it’s later imported.

PL/SQL APIs
Many tasks involved with developing plugins are somewhat common. Here are some examples:

•	 Reading plugin settings and altering the behavior of the plugin

•	 Querying data and processing the results

•	 Performing AJAX calls

A number of PL/SQL APIs have been developed to help make these tasks easier to complete than they
would otherwise be. Learning about these APIs is important, even if only at the most basic level, because it
could save you from reinventing the wheel when you really only want to build a plugin. This section provides
an introduction to the PL/SQL APIs most commonly used for plugin development in APEX.

Chapter 10 ■ plugins

413

APEX_PLUGIN
The APEX_PLUGIN package contains a number of core types and functions that are used specifically for
plugins. The record types are used in the callback functions of a plugin and provide context and setting
values. Here’s an example of a region render function’s signature:

function some_item_render (
 p_item in apex_plugin.t_page_item,
 p_plugin in apex_plugin.t_plugin,
 p_value in varchar2,
 p_is_readonly in boolean,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_page_item_render_result

The T_PLUGIN record type, shown previously as the data type for the formal parameter p_plugin, is
included as a parameter in every callback function. It provides developers with access to the application-
level attributes of a plugin such as the name, file prefix, and any custom attributes added at that level.

Each type of plugin also has a number of dedicated record types defined in the APEX_PLUGIN package
that are used in the callback functions: one used as a formal parameter and a number of others used as
result types. The record type used as a formal parameter, T_PAGE_ITEM in this example, provides developers
with access to the component-level attributes such as the name, standard attributes, and any custom
attributes added at that level.

There is one result type defined for each of the callback functions a given plugin type can use. The
example shows part of the render function of an item plugin, which uses the corresponding T_PAGE_ITEM_
RENDER_RESULT record type as the result type. These result types allow developers to pass information back
to the plugin framework such as whether a plugin is navigable.

In addition to the record types, there are two functions defined in the APEX_PLUGIN package as well:
GET_INPUT_NAME_FOR_PAGE_ITEM and GET_AJAX_IDENTIFIER. The GET_INPUT_NAME_FOR_PAGE_ITEM function
is used only for item plugins. It returns the value plugin developers should assign to the name attribute of the
element that contains the correct value for the plugin. APEX uses the name attribute of elements to map an
element’s value on the page to the corresponding item’s session state when a page is submitted. Here is an
example from an item render function that demonstrates its use:

sys.htp.p(
 '<input type="password" name="' ||
 apex_plugin.get_input_name_for_page_item(p_is_multi_value => false) ||
 '" id="' || p_item.name ||
 '" size="' || p_item.element_width ||
 '" maxlength="' || p_item.element_max_length ||
 '" ' || p_item.element_attributes || '/>');

If you plan to take advantage of AJAX technology in your plugin, you’ll need a means to call the AJAX
callback function from JavaScript. To get around various issues related to calling the function by name,
the plugin architecture requires you to call the function via a unique identifier, which is obtained from the
GET_AJAX_IDENTIFIER function.

Chapter 10 ■ plugins

414

The function will work only in the context of the render function and only if an AJAX callback function
has been defined. The result of the function call needs to be mapped through to the plugin’s JavaScript code
so that it can be used when needed. Here is an example from a region render function that demonstrates
how the function is used (see the tutorial section for a complete example):

 l_onload_code :=
 'apex.jQuery("div#' || p_region.static_id || '").calendar({'
 || apex_javascript.add_attribute(
 p_name => 'ajaxIdentifier',
 p_value => apex_plugin.get_ajax_identifier(),
 p_omit_null => FALSE,
 p_add_comma => FALSE)
 || '});';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

APEX_PLUGIN_UTIL
APEX_PLUGIN_UTIL is a utility package that eases the burden of developing plugins by providing production-
ready code for many common plugin-related tasks. The package has many functions and procedures related
to debugging, SQL and PL/SQL processing, and more.

Depending on their scope and complexity, debugging plugins can be a difficult task. Thankfully, the
APEX_PLUGIN_UTIL package comes with a number of debug procedures—at least one for each plugin type.
The debug procedures write data about the plugin to the APEX debug log when it is enabled. The name of
the plugin and its attribute values are included with the output. Here’s an example from a region render
function that demonstrates how the procedure is used:

if apex_application.g_debug
then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
end if;

In addition to this basic level of logging, it can be useful to instrument your code using the APEX_DEBUG
package. With this package it’s possible to separate logging messages according to levels such as error, warn,
and trace, which minimizes the impact of the instrumentation when not needed.

APEX_CSS and APEX_JAVASCRIPT
The APEX_CSS and APEX_JAVASCRIPT packages consist of functions and procedures that allow you to add CSS
and JavaScript to your HTML output. Prior to APEX 5.0, these packages were the best options for adding CSS
and JavaScript needed in plugins. However, the declarative File URLs to Load region (see “File URLs to Load”
earlier) is much easier to use and will satisfy the majority of use cases. Use these packages only when you
require more programmatic control over whether or how CSS and JavaScript are added to the page.

Chapter 10 ■ plugins

415

APEX_WEB_SERVICE
The APEX_WEB_SERVICE package provides procedures and functions—too many to list here—that allow
you to interact with both SOAP- and REST-based web services from PL/SQL. Prior to the introduction of
this package, developers could have consumed web services from PL/SQL using other packages such as
UTL_HTTP. However, the APEX_WEB_SERVICE package has greatly simplified and standardized how this type of
code is written.

APEX_JSON
The APEX_JSON package provides procedures and functions related to creating, parsing, and stringifying
JSON. APEX_JSON is a welcome package because JSON has quickly become the standard format by which
data is transferred between client and server via AJAX. This package complements the JSON capabilities
added to the SQL engine of Oracle Database 12.1.0.2, which allow users to query but not generate JSON data.

Other Packages
In addition to the packages covered in this chapter, there are a number of others that are frequently used while
developing plugins in APEX. The Oracle Database PL/SQL Packages and Types Reference document now
includes almost 300 packages. At a minimum, I recommend you explore the other APIs outlined in the Oracle
Application Express API Reference as well as the packages that comprise the PL/SQL Web toolkit. A small
amount of time spent here learning from these documents could save many hours of needless development.

Other Tools of the Trade
As you have seen, the APEX plugin architecture provides a wealth of useful functionality that allows you to
create plugins. However, there are some other “tools of the trade” you may find useful. These tools can help
you produce well-structured JavaScript code and attractive user interfaces.

jQuery and jQuery UI
jQuery is a JavaScript DOM (think “web page”) manipulation library. jQuery provides simple methods for
selecting elements, traversing and manipulating the DOM, executing AJAX calls, and much more. jQuery
was created nearly ten years ago, when the DOM API was tedious and inconsistently implemented by
various browser manufacturers. Things are much better today, but jQuery continues to be quite popular,
especially when support for older browsers is important.

jQuery UI is a collection of lower-level user interface widgets. Some of the widgets included with
the library include a date picker, dialog, and slider. jQuery UI can help plugin developers focus on the
functionality of the plugins they want to build rather than the lower-level widgets needed to build them.
Although jQuery UI includes its own set of icons, it may be worth exploring Font Awesome icons as an
alternative because they can be styled better by the Theme Roller that customizes the Universal theme.

APEX includes the “base” jQuery UI theme, which is a neutral-colored theme. Many of the newer APEX
themes include CSS that modifies the base theme to give the jQuery UI widgets a more integrated look. If
your plugin has a visual component to it, you’ll need to take this into account because the plugin should look
as though it’s a native part of the application. Using jQuery UI widgets and classes should go a long way to
ensure your plugin looks great with any theme.

A quick Google search will reveal many different sources for learning more about jQuery and jQuery UI,
many of which are free. The time spent learning these technologies should easily pay you back time and time
again when you develop plugins in APEX.

Chapter 10 ■ plugins

416

jQuery UI Widget Factory
If you’re creating a region, item, or dynamic action plugin, then JavaScript will likely be an important part of
your plugin. If you come from an Oracle background, you may be comfortable working with PL/SQL but a
little apprehensive about JavaScript. Newcomers to JavaScript can spend a lot of time just figuring out a good
way to organize their code. The jQuery UI Widget Factory provides just that: a systematic approach to writing
JavaScript that provides organization as well as a number of other features.

Because this chapter is about writing plugins for APEX, I will use the term widget in place of plugin
when referring to the jQuery UI Widget Factory—although the terms are typically interchangeable. The
jQuery UI Widget Factory allows you to create stateful jQuery widgets with minimal effort. Stateful means
that the widget keeps track of its attribute values and even allows attribute updates and method calls after
the widget has been initialized. One of the best ways to learn about the jQuery UI Widget Factory is to see an
example of how it is used. The following tutorial will walk you through the steps needed to build a widget.

This tutorial will create a widget named lengthLimit. The lengthLimit widget will be used to enhance
standard input elements so that they warn users when the number of characters entered approaches a
defined maximum length. The widget will set the text color to a warning color when the text reaches 80
percent of the maximum length and then to an error color when the limit is reached. The widget will also
trim any characters entered in the input that exceed the maximum length.

 ■ Note this is intended as a “read-along” tutorial. i’ll use the concepts covered here in the “code-along”
tutorial in the “Building a region plugin” section of this chapter.

The $.widget function is called to create the widget. The first parameter passed to the function consists
of the namespace and name of the widget, which are separated by a period. The ui namespace is used by all
the widgets in the jQuery UI library. The second parameter (currently just an empty object) is the prototype
to be associated with the widget.

apex.jQuery.widget("ui.lengthLimit", {
 //widget code here
});

Before continuing to build the widget, it is important to take care of one important issue: $. Most people
who use jQuery are familiar with using the dollar sign as a shorthand reference to the jQuery object rather
than spelling out jQuery, or as it’s been exposed in APEX, apex.jQuery. While it’s possible to use the dollar
sign in your widget code, it’s best to protect references to the dollar sign from collisions with other JavaScript
libraries. The technique used to do this is to wrap your code in an immediately invoked function expression,
or IIFE (pronounced “ify”), that passes the jQuery object as an actual parameter to itself as a formal
parameter, which uses the dollar sign for its name. If this concept sounds complex and confusing, don’t
worry—it requires only two lines of code (the first and last in the following example). Note that the previous
reference to apex.jQuery has been replaced by the dollar sign now that it is safe to do so.

(function($){
$.widget("ui.lengthLimit", {
 //widget code here
});
})(apex.jQuery);

Let’s continue building the widget by adding the options object. The options object is used to set
default values for configuration options used by the widget.

Chapter 10 ■ plugins

417

(function($){
$.widget("ui.lengthLimit", {
 options: {
 warningColor: "yellow",
 errorColor: "red",
 maxLength: 50
 }
});
})(apex.jQuery);

Next you’ll add a function named create that will be invoked automatically when the widget is first
instantiated.

(function($){
$.widget("ui.lengthLimit", {
 options: {
 warningColor: "orange",
 errorColor: "red",
 maxLength: 50
 },
 _create: function() {
 var uiw = this;

 uiw.element.change(function() {
 var $textElmt = $(this);
 var currLength = $textElmt.val().length;
 var currPercent = currLength/uiw.options.maxLength;

 if (currPercent >= .9) {
 $textElmt
 .val($textElmt.val().substr(0, uiw.options.maxLength))
 .css('color', uiw.options.errorColor);
 } else if (currPercent >= .8) {
 $textElmt.css('color', uiw.options.warningColor);
 } else {
 $textElmt.css('color', 'black');
 }
 });
 }
});
})(apex.jQuery);

At this point you have a fully functioning widget. You could add this code to the Function and Global
Variable Declaration section of an APEX page and then instantiate the widget on a page item by adding the
following code to the Execute when Page Loads section. Notice that default option values can be overridden
during instantiation.

$('#P1_FIRST_NAME').lengthLimit({
 maxLength: 10
});

Chapter 10 ■ plugins

418

After a little testing, you may notice two issues. First, the main logic, which sets the color and trims
the text, is not executed when the page loads and the widget is initialized. Also, that same logic is wrapped
up in an event handler that was bound to the change event of the element. As a consequence, developers
have no way to execute that code without manually triggering the change event on the item, which may be
undesirable. With a little refactoring, you can solve both issues while keeping the code maintainable.

(function($){
$.widget("ui.lengthLimit", {
 options: {
 warningColor: "orange",
 errorColor: "red",
 maxLength: 50
 },
 _create: function() {
 var uiw = this;

 uiw.element.change(function() {
 uiw.checkLength();
 });

 uiw.checkLength();
 },
 checkLength: function() {
 var uiw = this;
 var $textElmt = uiw.element;
 var currLength = $textElmt.val().length;
 var currPercent = currLength/uiw.options.maxLength;

 if (currPercent >= .9) {
 $textElmt
 .val($textElmt.val().substr(0, uiw.options.maxLength))
 .css('color', uiw.options.errorColor);
 } else if (currPercent >= .8) {
 $textElmt.css('color', uiw.options.warningColor);
 } else {
 $textElmt.css('color', 'black');
 }
 }
});
})(apex.jQuery);

The majority of the logic has been moved to a new function named checkLength. This function is used
twice in the _create function: once in the change event handler on the element and then later at the end of
the function.

You may have noticed that the new checkLength function didn’t have the same leading underscore
that the _create function did. This is an important distinction. The underscore is used to create “private”
functions within a widget. They can help modularize your code but cannot be invoked from outside the
widget (at least not as easily as public functions). Because the checkLength function name doesn’t start with
an underscore, it’s registered as a public function and can be called at any time as follows:

$('#P1_FIRST_NAME').lengthLimit('checkLength');

Chapter 10 ■ plugins

419

Also note the subtle yet important change in reference to this. With the majority of code in a widget,
this will refer to the widget instance. But in the original _create function, an anonymous function was
bound to the change event of the element. When that function is executed, this will refer to the element that
changed. After the refactoring, the element property of the widget instance (available automatically as part
of the factory) was needed to access the same element—the element on which the widget was instantiated.
Additionally, a local variable is declared in each function to hold a reference to this. This technique is
optional but can help to avoid confusion and to take advantage of closure in JavaScript.

This introduction to the jQuery UI Widget Factory is by no means complete, but you should now have a
basic understanding of how it can be utilized to write well-structured JavaScript with minimal plumbing. To
learn more about the Widget Factory, find the “official” documentation available on the jQuery and jQuery
UI web sites as well as the many tutorials found elsewhere on the Web.

Font Awesome
Font Awesome is an iconic font and CSS toolkit that is included with APEX. The latest version of Font
Awesome as of this writing, 4.3, includes 519 icons! The icons were designed to scale from very small to very
large without losing clarity or becoming distorted. While jQuery UI includes its own icons, they are image
based and cannot be styled as easily as the font-based icons included with Font Awesome.

Font Awesome is easy to use; just create an icon tag with the right classes. Here’s a simple example of
the markup needed to create a font awesome icon: <i class="fa fa-smile-o"></i>. When rendered in
APEX, users will see a happy face. Want to make it twice as big? Just add the fa-2x class. Want to spin it in
circles? Just add the fa-spin class. You get the idea: it’s easy to use Font Awesome!

To learn more about Font Awesome icons and view the library, visit http://fortawesome.github.io/
Font-Awesome. Keep in mind that while developers are able to update the version of Font Awesome that is
being used in their APEX applications, you should not make any assumptions about this. Only use icons that
are available in the version of Font Awesome that is included by default with the version APEX for which you
wrote the plugin.

Building a Region Plugin
In the first two sections of this chapter, you explored the APEX plugin architecture and other tools of the trade
that can help when building plugins. Now you’ll put all you’ve learned to use as you build a region plugin that
allows developers to show data in a grid with some columns frozen on the left. The APEX plugin will really be
a wrapper for the jqGrid plugin, which itself is a jQuery UI Widget; it’s the plugin version of Inception.

 ■ Note You can download the code listings in this section of the chapter from apress.

The Base Plugin
You’ll start by creating a new application to house the plugin. You may skip this part if you already have an
application in which you’d like to create the plugin. Navigate to the Application Builder and complete these steps:

 1. Click Create.

 2. Click Next.

 3. Set Name to APEX jqGrid Plug-in.

 4. Click Create Application.

 5. Click Create Application (on the confirmation page).

http://fortawesome.github.io/Font-Awesome
http://fortawesome.github.io/Font-Awesome

Chapter 10 ■ plugins

420

Now that the application in place, let’s create the plugin. Navigate to the Shared Components ➤ Plug-ins
and follow these steps, as shown in Figure 10-20:

 1. Click Create.

 2. Click Next .

 3. Set Name to APEX jqGrid.

 4. Set Internal Name to COM_CORP_APEX_JQGRID.

 5. Set Type to Region.

 6. Click Create Plug-in.

Figure 10-20. Creating the APEX jqGrid plugin

Woo-hoo! You’ve created a plugin, so let’s use it! Navigate to the Page Designer for page 1 and do the
following, as shown in Figure 10-21:

 1. Drag and drop the APEX jqGrid [Plug-In] option into the CONTENT BODY area.

 2. Click Save.

Chapter 10 ■ plugins

421

Figure 10-21. Creating an instance of the APEX jqGrid plugin

Chapter 10 ■ plugins

422

I guess I knew you’d have to do some work, so let’s do it. Navigate to Shared Components ➤ Plug-ins,
click the APEX jqGrid plugin to access the Create/Edit page for the plugin, and then complete the following
steps, as shown in Figure 10-23:

 3. Add the render_apex_jqgrid function from Listing 10-1 to the PL/SQL Source field.

 4. Set Render Function Name to render_apex_jqgrid.

 5. Click Apply Changes.

Figure 10-22. The error displayed when running a region plugin without a render function

Now run the page (you may need to log in) and enjoy your plugin. That didn’t go so well! The error
(see Figure 10-22) says you need to define a render function.

Chapter 10 ■ plugins

423

 ■ Note remember to click the help icon on the right of the function name to get the signature expected.

Listing 10-1. PL/SQL Code for the APEX jqGrid Plugin

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;

begin

 return l_render_result;

end render_apex_jqgrid;

Figure 10-23. The Source and Callbacks regions of the APEX jqGrid plugin

Chapter 10 ■ plugins

424

Now try running the page again.
You should finally see the region (Figure 10-24)! Granted, it’s an empty region, but at least you don’t get

any errors.

File Setup
Now that you have your base plugin created, let’s focus on setting up a directory structure for your files
outside APEX. Create a new directory named apex-jqgrid-plugin. Copy the contents of the render_apex_
jqgrid function to a new file named plsql_code.sql in the apex-jqgrid-plugin directory. This will serve
as a file-based backup of your code. You don’t want to lose all your hard work!

Create a new subdirectory called web-server-files and within that directory create another directory
named vendor. You’ll use the web-server-files directory to store all the files that will be added to the
web-server-files and vendor subdirectories to house files that are created and maintained by third parties.

Go to www.trirand.com and download the jqGrid plugin with all the options checked. This adds some
bloat, but you can always slim things down later when you know what you don’t want to support. Create a
new subdirectory named jqgrid-4.8.2 (update the version as needed throughout this tutorial) in vendor
and then unzip the contents of the jqGrid plugin you downloaded into that directory. At this point, the
directory structure should look like Figure 10-25.

Figure 10-24. The empty APEX jqGrid region

Figure 10-25. The file structure for the APEX jqGrid plugin

http://www.trirand.com/

Chapter 10 ■ plugins

425

Now you need to make the jqGrid files available to your plugin in APEX and start using them. Zip up
the contents of the web-server-files directory (the child directories, not the web-server-files directory
itself) to a zip file named web-server-files.zip. Navigate to the plugin Create/Edit page for APEX jqGrid
and complete the following steps:

 1. Click Upload File.

 2. Use File to select the web-server-files.zip file.

 3. Click Upload.

This operation may take a little time because there are quite a lot of files to be loaded within the zip file.
Once complete, the Files region of the plugin should look like Figure 10-26. Note that the top-level directory
visible is vendor, not web-server-files.

Initial Grid Render
With the web server files uploaded, you are now ready to use them. Now let’s try getting the jqGrid plugin
to render in the most basic way possible. You won’t even worry about the plugin user specifying a query for
now. After exploring the jqGrid documentation, you’ll learn the basics of how the jQuery plugin is used and
find that it’s possible to populate the grid with local data. You’ll also learn that jqGrid needs some targets
in the DOM for placing the grid and the pagination components. Let’s make some changes to get things
working. Navigate to the plugin Create/Edit page for APEX jqGrid and follow these steps:

 1. Update the render_apex_jqgrid function in the PL/SQL Source field to the code
from Listing 10-2. Don’t forget to update your plsql_code.sql file too.

 2. Create a new JavaScript file named apex-jqgrid-plugin.js with the contents in
Listing 10-3. Save the file in the web-server-files directory created earlier.

 3. Return to APEX and click Upload File.

 4. Use File to select the apex-jqgrid-plugin.js file.

 5. Click Upload.

 6. Set Cascading Style Sheet in File URLs to Load to the following:

#PLUGIN_FILES#vendor/jqgrid-4.8.2/css/ui.jqgrid.css

Figure 10-26. The Files region (showing only six of many files) after uploading the web-server-files.zip

Chapter 10 ■ plugins

426

 7. Set JavaScript in File URLs to Load to the following:

#PLUGIN_FILES#vendor/jqgrid-4.8.2/js/i18n/grid.locale-en.js
#PLUGIN_FILES#vendor/jqgrid-4.8.2/js/jquery.jqGrid.min.js
#PLUGIN_FILES#apex-jqgrid-plugin.js

 8. Click Apply Changes.

Listing 10-2. Updated render Function for the APEX jqGrid Plug-in

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;

begin

 sys.htp.p('<table id="jqGrid"></table>');
 sys.htp.p('<div id="jqGridPager"></div>');

 return l_render_result;

end render_apex_jqgrid;

As you can see, you added two lines of code to the render function that use sys.htp.p to write to the
HTTP buffer; that’s how plugins write out their HTML.

Listing 10-3. Contents of apex-jqgrid-plugin.js

$(document).ready(function () {
 var data = [{
 "ProductName":"Steeleye Stout",
 "CategoryName":"Beverages",
 "Country":"UK",
 "Quantity":"65",
 "Price":"1008.0000"
 },
 {
 "ProductName":"Laughing Lumberjack Lager",
 "CategoryName":"Beverages",
 "Country":"USA",
 "Quantity":"10",
 "Price":"140.0000",
 }];

Chapter 10 ■ plugins

427

 var grid = $("#jqGrid").jqGrid({
 datatype: "local",
 colModel: [
 {label: 'Category Name', name: 'CategoryName', width: 75},
 {label: 'Product Name', name: 'ProductName', width: 90},
 {label: 'Country', name: 'Country', width: 100},
 {label: 'Price', name: 'Price', width: 80},
 {label: 'Quantity', name: 'Quantity', width: 80}
],
 viewrecords: true,
 width: 780,
 height: 200,
 rowNum: 30,
 loadonce: true,
 pager: "#jqGridPager"
 });

 data.forEach(function(row, idx) {
 grid.jqGrid('addRowData', idx + 1, row);
 });
});

The apex-jqgrid-plugin.js file starts by declaring an array named data that has two elements. The
elements represent rows of data that should be displayed in the grid. The next part invokes the jqGrid plugin
on the element you added to the DOM via the PL/SQL render function. Finally, you loop over the rows of
data you want to show in the grid and invoke the addRowData method of jqGrid to add them.

Run the page and take a look! You should see something like Figure 10-27.

Figure 10-27. The initial render of the APEX jqGrid plugin

Chapter 10 ■ plugins

428

Adjusting the UI for APEX
Great, you can finally see the grid! However, upon closer inspection, you may notice some things don’t look
quite right. For example, hovering over rows shows strange border colors, and the pagination at the bottom
doesn’t display the current page correctly. Let’s take a moment to fix those issues now. Navigate to the plugin
Create/Edit page for APEX jqGrid and complete the following steps:

 1. Create a new CSS file named apex-jqgrid-plugin.css with the contents in
Listing 10-4. Save the file in the web-server-files directory created earlier.

 2. Return to APEX and click Upload File.

 3. Use File to select the apex-jqgrid-plugin.css file.

 4. Click Upload.

 5. Update Cascading Style Sheets in File URLs to Load to include the following:

#PLUGIN_FILES#apex-jqgrid-plugin.css

 6. Click Apply Changes.

Listing 10-4. Contents of apex-jqgrid-plugin.css

body .ui-jqgrid,
.ui-jqgrid tr.ui-widget-content {
 background: #F8F8F8;
}
.ui-jqgrid tr.jqgrow td {
 /* First set a border color for table cells to be a transparent black */
 border-color: rgba(0,0,0,.1);
}
body .ui-jqgrid .ui-state-default,
.ui-jqgrid tr.ui-widget-content.ui-state-hover {
 background-color: #FFF;
}
.ui-jqgrid tr.ui-widget-content.ui-state-highlight {
 background: #F6F9FD;
}
.ui-jqgrid input {
 /* jqgrid uses the content-box box-model for pagination inputs */
 box-sizing: content-box;
}
.ui-jqgrid .ui-pg-button:hover {
 /* set pagination buttons padding and background color for hover state */
 padding: 0 1px;
 background: #F8F8F8;
}

Run the page and test again. Should be looking good!

Chapter 10 ■ plugins

429

Getting Set Up for Success
With the styling issues addressed, it’s pretty safe to assume that this jqGrid plugin will meet your needs.
Before you continue building out the plugin, let’s take a moment to refactor the code a little so that it’s easier
to maintain over time. The first thing you’ll address is the PL/SQL code. Navigate to the plugin Create/Edit
page for APEX jqGrid and follow these steps:

 1. Update the render_apex_jqgrid function in the PL/SQL Source field to the code
from Listing 10-5. Don’t forget to update your plsql_code.sql file too.

 2. Click Apply Changes.

Listing 10-5. Updated render Function for the APEX jqGrid Plugin

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;
 l_onload_code varchar2(4000);

begin

 if apex_application.g_debug
 then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
 end if;

 sys.htp.p('<table id="' || p_region.static_id || '_APEX_JQ_GRID"></table>');
 sys.htp.p('<div id="' || p_region.static_id || '_APEX_JQ_GRID_PAGER"></div>');

 l_onload_code := 'apex.jQuery("#' || p_region.static_id || '").apex_jqgrid();';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

 return l_render_result;

end render_apex_jqgrid;

Chapter 10 ■ plugins

430

First you added some basic debug code to the render function. Next you updated the calls that output
the HTML to ensure that the elements have unique id attributes. For this you used the region’s static ID
with some additional characters to differentiate them. This is the first time you start to make use of the
parameters that are passed to you in the PL/SQL functions. Finally, in anticipation of making the plugin a
jQuery UI widget, you added just enough JavaScript to load the widget (which will be created next).

If you run the application now, you’ll see that it doesn’t work anymore. This is because the current
JavaScript code doesn’t work with the new PL/SQL code. You need to update your JavaScript code so that it
creates a jQuery UI widget. Return to the plugin Create/Edit page for APEX jqGrid and do the following:

 1. Update the apex-jqgrid-plugin.js file to the code from Listing 10-6.

 2. Click Upload File.

 3. Use File to select the apex-jqgrid-plugin.js file.

 4. Click Upload.

Listing 10-6. Updated apex-jqgrid-plugin.js

(function($){
 $.widget("ui.apex_jqgrid", {
 options: {},
 _create: function() {
 var uiw = this;
 var data = [{
 "ProductName":"Steeleye Stout",
 "CategoryName":"Beverages",
 "Country":"UK",
 "Quantity":"65",
 "Price":"1008.0000"
 },
 {
 "ProductName":"Laughing Lumberjack Lager",
 "CategoryName":"Beverages",
 "Country":"USA",
 "Quantity":"10",
 "Price":"140.0000"
 }];

 var grid = $('#' + uiw.element.attr('id') + '_APEX_JQ_GRID').jqGrid({
 datatype: "local",
 colModel: [
 {label: 'Category Name', name: 'CategoryName', width: 75},
 {label: 'Product Name', name: 'ProductName', width: 90},
 {label: 'Country', name: 'Country', width: 100},
 {label: 'Price', name: 'Price', width: 80},
 {label: 'Quantity', name: 'Quantity', width: 80}
],
 viewrecords: true,
 width: 780,
 height: 200,

Chapter 10 ■ plugins

431

 rowNum: 30,
 loadonce: true,
 pager: '#' + uiw.element.attr('id') + '_APEX_JQ_GRID_PAGER'
 });

 data.forEach(function(row, idx) {
 grid.jqGrid('addRowData', idx + 1, row);
 });
 }
 });
})(apex.jQuery);

As you can see, the bulk of the previous code was moved to the _create function of the new widget.
Also, the code was modified slightly to accommodate the unique element IDs. Rerun the page and ensure
that the plugin works just as it did before.

Bringing on the AJAX
Now that the code has been made a bit more maintainable, let’s set out to do something big: bring in data
via AJAX! This is actually a pretty tall order to do all at once, so you’ll break it up into a couple of steps. Let’s
start off by creating a baseline AJAX function and call it from your widget in the front end. You know the drill:
navigate to the Create/Edit page for APEX jqGrid and complete these steps:

 1. Update the code in the PL/SQL Source field with the code from Listing 10-7.
Don’t forget to update your plsql_code.sql file too.

 2. Set AJAX Function Name to ajax_apex_jqgrid.

 3. Click Apply Changes.

Listing 10-7. PL/SQL Code Updated for Basic AJAX Functionality

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;
 l_onload_code varchar2(4000);
 l_crlf char(2) := chr(13)||chr(10);

begin

Chapter 10 ■ plugins

432

 if apex_application.g_debug
 then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
 end if;

 sys.htp.p('<table id="' || p_region.static_id || '_APEX_JQ_GRID"></table>');
 sys.htp.p('<div id="' || p_region.static_id || '_APEX_JQ_GRID_PAGER"></div>');

 l_onload_code := 'apex.jQuery("#' || p_region.static_id || '").apex_jqgrid({' || l_crlf ||
 ' ' || apex_javascript.add_attribute('ajaxIdentifier',

apex_plugin.get_ajax_identifier(), false, false) || l_crlf ||
 '});';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

 return l_render_result;

end render_apex_jqgrid;

function ajax_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin
)
 return apex_plugin.t_region_ajax_result
is

 l_ajax_result apex_plugin.t_region_ajax_result;

begin

 sys.htp.p('{"message": "Hello AJAX!"}');

 return l_ajax_result;

end ajax_apex_jqgrid;

The AJAX function just writes a simple JSON object to the HTTP buffer. But to call the function from
the front end, you needed to pass the value returned from apex_plugin.get_ajax_identifier to your
JavaScript code. The render function was updated to do this via the option object.

Now that the PL/SQL code has been updated, let’s update the JavaScript code to get it in sync. Return to
the Create/Edit page for APEX jqGrid and do the following:

 1. Update the apex-jqgrid-plugin.js file to the code from Listing 10-8.

 2. Click Upload File.

Chapter 10 ■ plugins

433

 3. Use File to select the apex-jqgrid-plugin.js file.

 4. Click Upload.

Listing 10-8. apex-jqgrid-plugin.js Updated for Basic AJAX Functionality

 (function($){
 $.widget("ui.apex_jqgrid", {
 options: {
 ajaxIdentifier: null
 },
 _create: function() {
 var uiw = this;
 var data = [{
 "ProductName":"Steeleye Stout",
 "CategoryName":"Beverages",
 "Country":"UK",
 "Quantity":"65",
 "Price":"1008.0000"
 },
 {
 "ProductName":"Laughing Lumberjack Lager",
 "CategoryName":"Beverages",
 "Country":"USA",
 "Quantity":"10",
 "Price":"140.0000"
 }];

 var grid = $('#' + uiw.element.attr('id') + '_APEX_JQ_GRID').jqGrid({
 datatype: "local",
 colModel: [
 {label: 'Category Name', name: 'CategoryName', width: 75},
 {label: 'Product Name', name: 'ProductName', width: 90},
 {label: 'Country', name: 'Country', width: 100},
 {label: 'Price', name: 'Price', width: 80},
 {label: 'Quantity', name: 'Quantity', width: 80}
],
 viewrecords: true,
 width: 780,
 height: 200,
 rowNum: 30,
 loadonce: true,
 pager: '#' + uiw.element.attr('id') + '_APEX_JQ_GRID_PAGER'
 });

 data.forEach(function(row, idx) {
 grid.jqGrid('addRowData', idx + 1, row);
 });

Chapter 10 ■ plugins

434

 apex.server.plugin(
 uiw.options.ajaxIdentifier,
 {},
 {
 success: function(data) {
 console.log(data);
 }
 }
);
 }
 });
})(apex.jQuery);

You’ve added an ajaxIdentifier property to the options object at the top and set its value to null.
This is really just for documentation purposes because the value will be coming from the initialization code
in the PL/SQL render function. Also, an AJAX request was made using apex.server.plugin, which is one of
the JavaScript APIs that ships with APEX. If the request is successful, then the data returned will be logged to
the browser’s console.

Make sure you have the browser’s developer tools open so you can see the console and run the page.
If everything worked, you should see the JSON message in the console.

Now that you have a means to send data from the server to the client via AJAX, let’s see whether you
can send some dynamic data via a query! Navigate to the Create/Edit page for APEX jqGrid and complete
these steps:

 1. Update the ajax_apex_jqgrid function in the PL/SQL Source field with the code
from Listing 10-9. Don’t forget to update your plsql_code.sql file too.

 2. Click Apply Changes.

Listing 10-9. AJAX Function Updated for Dynamic Data

function ajax_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin
)
 return apex_plugin.t_region_ajax_result
is

 l_ajax_result apex_plugin.t_region_ajax_result;
 l_column_value_list apex_plugin_util.t_column_value_list;

begin

 l_column_value_list :=
 apex_plugin_util.get_data(
 p_sql_statement => 'select cust_first_name, cust_last_name, cust_state from

demo_customers',
 p_min_columns => 2,
 p_max_columns => 50,
 p_component_name => p_region.name
);

Chapter 10 ■ plugins

435

 apex_json.open_array;

 for row_idx in 1 .. l_column_value_list(1).count
 loop
 apex_json.open_array;

 for column_idx in 1 .. l_column_value_list.count
 loop
 apex_json.write(l_column_value_list(column_idx)(row_idx));
 end loop;

 apex_json.close_array;
 end loop;

 apex_json.close_array;

 return l_ajax_result;

end ajax_apex_jqgrid;

Now you’re using apex_plugin_util to execute a query and apex_json to convert the resultset to JSON.
Now when you run the page and view the console, you should see customer data coming across. That’s cool,
but how can you get that to display in the grid? After reviewing the demos of the jqGrid online, you’ll learn
enough to tackle the JavaScript. Return to the Create/Edit page for the plugin and do the following:

 1. Update the apex-jqgrid-plugin.js file to the code from Listing 10-10.

 2. Click Upload File.

 3. Use File to select the apex-jqgrid-plugin.js file.

 4. Click Upload.

Listing 10-10. apex-jqgrid-plugin.js Updated for Dynamic Data

(function($){
 $.widget("ui.apex_jqgrid", {
 options: {
 ajaxIdentifier: null
 },
 _create: function() {
 var uiw = this;

 var grid = $('#' + uiw.element.attr('id') + '_APEX_JQ_GRID').jqGrid({
 datatype: "local",
 colModel: [
 { label: 'First Name', name: 'col0', width: 75 },
 { label: 'Last Name', name: 'col1', width: 90 },
 { label: 'State', name: 'col2', width: 100 }
],
 viewrecords: true,
 width: 780,
 height: 200,

Chapter 10 ■ plugins

436

 rowNum: 30,
 loadonce: true,
 pager: "#" + uiw.element.attr('id') + "_APEX_JQ_GRID_PAGER"
 });

 apex.server.plugin(
 uiw.options.ajaxIdentifier,
 {},
 {
 success: function(data) {
 var gridData = [];

 data.forEach(function(row, rowIdx) {
 var obj = {};

 row.forEach(function(col, colIdx) {
 obj['col' + colIdx] = col;
 });

 gridData.push(obj);
 });

 grid.jqGrid('setGridParam', { data: gridData});

 grid.trigger('reloadGrid');
 }
 }
);
 }
 });
})(apex.jQuery);

Rather than log the data returned from the server, you now use it to populate the grid. Now when you
run the page to test the plugin, you should see data coming from the table, as shown in Figure 10-28.

Figure 10-28. Dynamic data loaded in the grid

Chapter 10 ■ plugins

437

Using User-Specified Queries
Excellent, you are now loading dynamic data into the grid! Of course, what you really want is to allow the
developer using the plugin to specify the query. Let’s start by updating the ajax_apex_jqgrid function to
use the query specified in the region’s source. Go to the plugin Create/Edit page for APEX jqGrid and make
the following changes:

 1. Update the ajax_apex_jqgrid function in the PL/SQL Source field with the code
from Listing 10-11. Don’t forget to update your plsql_code.sql file too.

 2. Check the Region Source is SQL Statement check box in the Standard
Attributes region.

 3. Check the Region Source Required check box.

 4. Set Maximum Columns to 50.

 5. Click Apply Changes.

Listing 10-11. ajax_apex_jqgrid Updated for Dynamic Queries

function ajax_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin
)

 return apex_plugin.t_region_ajax_result

is

 l_ajax_result apex_plugin.t_region_ajax_result;
 l_column_value_list apex_plugin_util.t_column_value_list;

begin

 l_column_value_list :=
 apex_plugin_util.get_data(
 p_sql_statement => p_region.source,
 p_min_columns => 2,
 p_max_columns => 50,
 p_component_name => p_region.name
);

 apex_json.open_array;

 for row_idx in 1 .. l_column_value_list(1).count
 loop
 apex_json.open_array;

 for column_idx in 1 .. l_column_value_list.count
 loop
 apex_json.write(l_column_value_list(column_idx)(row_idx));
 end loop;

Chapter 10 ■ plugins

438

 apex_json.close_array;
 end loop;

 apex_json.close_array;

 return l_ajax_result;

end ajax_apex_jqgrid;

Now you need to move the SQL Query to the region level. Navigate to the Page Designer for page 1 and
do the following:

 1. Click the plugin region in the Grid Layout.

 2. Set SQL Query to select cust_first_name, cust_last_name, cust_state from
demo_customers.

 3. Click Save.

If you test the page now, it should be working as it was before only now the query is coming from the
region, which is dynamic. However, you still have a problem with the column headings because they are
still static in the JavaScript. If you were to change the query, things would break. The column model that
jqGrid accepts could be created dynamically; you just need a way to get dynamic information related to the
columns. This is where the Has “Region Columns” option in the standard attributes comes in. Return to the
plugin Create/Edit page for APEX jqGrid and complete these steps:

 1. Check the Has “Region Columns” check box in the Standard Attributes.

 2. Check the Has “Heading” Column Attribute.

 3. Click Apply Changes.

With those attributes enabled, let’s update the region. Go back to the Page Designer for page 1 and do
the following:

 1. Click the plugin region in the Grid Layout.

 2. Using the Component Selector (left column), expand the Columns node for the
plugin region. If the node cannot be expanded, delete the region and re-create it
now that the new options have been added to the plugin. This bug will be fixed in
a future version of APEX, and it will not affect users of the plugin.

 3. Select the CUST_FIRST_NAME column.

 4. Using the Property Editor (right column), set Heading to First Name.

 5. Select the CUST_LAST_NAME column.

 6. Set Heading to Last Name.

 7. Select the CUST_STATE column.

 8. Set Heading to State.

 9. Click Save.

Now that the headings for the columns are set with the correct values, you need to pass the values to
your jQuery UI plugin. You’ve done this before with the AJAX identifier, so you just need to expand that

Chapter 10 ■ plugins

439

code to do this the same way, only rather than pass a simple string through for the header, you’ll pass an
object that can be extended later. Go to the plugin Create/Edit page for APEX jqGrid and make the following
changes:

 1. Update the render_apex_jqgrid function in the PL/SQL Source field with the
code from Listing 10-12. Don’t forget to update your plsql_code.sql file too.

 2. Click Save.

Listing 10-12. render_apex_jqgrid Updated for Dynamic Columns

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;
 l_onload_code varchar2(4000);
 l_crlf char(2) := chr(13)||chr(10);

begin

 if apex_application.g_debug
 then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
 end if;

 sys.htp.p('<table id="' || p_region.static_id || '_APEX_JQ_GRID"></table>');
 sys.htp.p('<div id="' || p_region.static_id || '_APEX_JQ_GRID_PAGER"></div>');

 l_onload_code := 'apex.jQuery("#' || p_region.static_id || '").apex_jqgrid({' || l_crlf ||
 ' ' || apex_javascript.add_attribute('ajaxIdentifier',

apex_plugin.get_ajax_identifier(), false, true) || l_crlf ||
 ' columns: [' || l_crlf;

 for x in 1 .. p_region.region_columns.count
 loop
 if x > 1
 then
 l_onload_code := l_onload_code || ',' || l_crlf;
 end if;

Chapter 10 ■ plugins

440

 l_onload_code := l_onload_code ||
 ' {' || l_crlf ||
 ' ' || apex_javascript.add_attribute('heading',

p_region.region_columns(x).heading, false, false) || l_crlf ||
 ' }';
 end loop;

 l_onload_code := l_onload_code || l_crlf ||
 ']' || l_crlf ||
 '});';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

 return l_render_result;

end render_apex_jqgrid;

That will send the headings through to your jQuery UI widget, but you need to make use of the heading
values within that code. Let’s update the apex-jqgrid-plugins.js to do just that. Return to the Create/Edit
page for the plugin and do the following:

 1. Update the apex-jqgrid-plugin.js file to the code from Listing 10-13.

 2. Click Upload File.

 3. Use File to select the apex-jqgrid-plugin.js file.

 4. Click Upload.

Listing 10-13. apex-jqgrid-plugin.js Updated for Dynamic Columns

(function($){
 $.widget("ui.apex_jqgrid", {
 options: {
 ajaxIdentifier: null
 },
 _create: function() {
 var uiw = this;
 var colModel = [];

 uiw.options.columns.forEach(function(column, colIdx) {
 colModel.push({
 label: column.heading,
 name: 'col' + colIdx
 });
 });

 var grid = $('#' + uiw.element.attr('id') + '_APEX_JQ_GRID').jqGrid({
 datatype: "local",
 colModel: colModel,
 viewrecords: true,

Chapter 10 ■ plugins

441

 width: 780,
 height: 200,
 rowNum: 30,
 loadonce: true,
 pager: "#" + uiw.element.attr('id') + "_APEX_JQ_GRID_PAGER"
 });

 apex.server.plugin(
 uiw.options.ajaxIdentifier,
 {},
 {
 success: function(data) {
 var gridData = [];

 data.forEach(function(row, rowIdx) {
 var obj = {};

 row.forEach(function(col, colIdx) {
 obj['col' + colIdx] = col;
 });

 gridData.push(obj);
 });

 grid.jqGrid('setGridParam', { data: gridData});

 grid.trigger('reloadGrid');
 }
 }
);
 }
 });
})(apex.jQuery);

Notice the column model is now created using the columns array that’s passed in via the options. Now
the plugin is completely dynamic! Feel free to modify the query to ensure that it’s working correctly.

Enabling Frozen Columns
Going back to the main feature of the plugin, you need to make it so that some columns can be frozen.
Of course, there’s no such standard attribute for this; that’s where custom attributes come in. Let’s add a
custom attribute. Navigate to the plugin Create/Edit page for APEX jqGrid and follow these steps, as shown
in Figure 10-29:

 1. Click Add Attribute in the Custom Attributes region.

 2. Set Scope to Region Column.

 3. Set Label to Frozen.

 4. Set Type to Yes/No.

Chapter 10 ■ plugins

442

 5. Set Default Value to N.

 6. Click Create.

Now navigate to the Page Designer for page 1 and click one of the columns for the plugin region. You
should see the new Frozen attribute under Settings in the property editor (see Figure 10-30).

Figure 10-29. Creating a Frozen attribute

Figure 10-30. New Frozen attribute in the column properties

Chapter 10 ■ plugins

443

Set that to Yes for one or two columns and then click Save. You know what’s next: you have to map the
value through from the PL/SQL render function to the JavaScript widget and then utilize the value in the
widget. Navigate to the Create/Edit page of the plugin and update the PL/SQL.

 1. Update the render_apex_jqgrid function in the PL/SQL Source field with the
code from Listing 10-14. Don’t forget to update your plsql_code.sql file too.

 2. Click Apply Changes.

Listing 10-14. render_apex_jqgrid Function Updated for Frozen Columns

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;
 l_onload_code varchar2(4000);
 l_crlf char(2) := chr(13)||chr(10);

begin

 if apex_application.g_debug
 then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
 end if;

 sys.htp.p('<table id="' || p_region.static_id || '_APEX_JQ_GRID"></table>');
 sys.htp.p('<div id="' || p_region.static_id || '_APEX_JQ_GRID_PAGER"></div>');

 l_onload_code := 'apex.jQuery("#' || p_region.static_id || '").apex_jqgrid({' || l_crlf ||
 ' ' || apex_javascript.add_attribute('ajaxIdentifier',

apex_plugin.get_ajax_identifier(), false, true) || l_crlf ||
 ' columns: [' || l_crlf;

 for x in 1 .. p_region.region_columns.count
 loop
 if x > 1
 then
 l_onload_code := l_onload_code || ',' || l_crlf;
 end if;

Chapter 10 ■ plugins

444

 l_onload_code := l_onload_code ||
 ' {' || l_crlf ||
 ' ' || apex_javascript.add_attribute('heading', p_region.region_columns(x).

heading, false, true) || l_crlf ||
 ' ' || apex_javascript.add_attribute('frozen', p_region.region_columns(x).

attribute_01, false, false) || l_crlf ||
 ' }';
 end loop;

 l_onload_code := l_onload_code || l_crlf ||
 ']' || l_crlf ||
 '});';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

 return l_render_result;

end render_apex_jqgrid;

Now that the column’s frozen Y/N value is being passed through to the JavaScript widget, let’s adjust the
JavaScript code to make use of the new attribute. Return to the Create/Edit page for the plugin and complete
the following steps:

 1. Update the apex-jqgrid-plugin.js file to the code from Listing 10-15.

 2. Click Upload File.

 3. Use File to select the apex-jqgrid-plugin.js file.

 4. Click Upload.

Listing 10-15. apex-jqgrid-plugin.js Updated for Frozen Columns

(function($){
 $.widget("ui.apex_jqgrid", {
 options: {
 ajaxIdentifier: null
 },
 _create: function() {
 var uiw = this;
 var colModel = [];
 var frozenCols = [];
 var notFrozenCols = [];

 uiw.options.columns.forEach(function(column, colIdx) {
 var obj = {
 label: column.heading,
 name: 'col' + colIdx,
 width: 150
 };

Chapter 10 ■ plugins

445

 if (column.frozen === 'Y') {
 obj.frozen = true;
 frozenCols.push(obj);
 } else {
 obj.frozen = false;
 notFrozenCols.push(obj);
 }

 colModel = frozenCols.concat(notFrozenCols);
 });

 var grid = $('#' + uiw.element.attr('id') + '_APEX_JQ_GRID').jqGrid({
 datatype: 'local',
 shrinkToFit: false,
 colModel: colModel,
 viewrecords: true,
 width: 780,
 height: 200,
 rowNum: 30,
 loadonce: true,
 pager: "#" + uiw.element.attr('id') + "_APEX_JQ_GRID_PAGER"
 });

 apex.server.plugin(
 uiw.options.ajaxIdentifier,
 {},
 {
 success: function(data) {
 var gridData = [];

 data.forEach(function(row, rowIdx) {
 var obj = {};

 row.forEach(function(col, colIdx) {
 obj['col' + colIdx] = col;
 });

 gridData.push(obj);
 });

 grid.jqGrid('setGridParam', { data: gridData});

 grid.trigger('reloadGrid');

 if (frozenCols) {
 grid.jqGrid("setFrozenColumns");
 }
 }
 }
);
 }
 });
})(apex.jQuery);

Chapter 10 ■ plugins

446

As you can see, you first declare two arrays to hold and separate out the frozen columns from those
that are not frozen. This is done so that you can concatenate them back together later, placing the frozen
columns first, as is required by jqGrid. Later, the frozenCols array is also used to determine whether a call to
setFrozenColumns should be made on the grid.

Now run the page to give it a shot. Keep in mind that you’ll need to have a lot of columns to see the full
effect. Try changing the query for the region to select * from demo_customers for an easy way to test this.

With that code in place, you have achieved the major goal of this plugin. But as you can imagine, there
is still much work to be done. There are still many attributes that must be mapped through, both at the grid/
region level as well as at the column level. You’re not going to do them all here because that would be the
perfect exercise for you to get some practical experience. Here’s a list of some of the more obvious mappings
that should be done.

Standard attributes:

•	 Has “Heading Alignment” column attribute

•	 Has “Alignment” column attribute

Custom region attributes:

•	 Rows Per Page

Custom column attributes:

•	 Width

•	 Height

•	 Shrink Columns to Fit (Yes/No)

Another enhancement worth considering is “true” pagination. Currently all the rows are fetched from
the query specified for the region, and pagination is done on the client side. This works well when there
aren’t too many rows (maybe a few thousand at most), but for larger datasets this will not perform so well.
True pagination would be tricky because it would have to be customized, as APEX doesn’t support the type
of URLs that jqGrid expects. You will not implement true pagination in this chapter because it would focus
less on the plugin architecture and more on jqGrid customization.

Securing the Plugin
Another issue to consider, and one that I will address because of its importance, is security. Currently your
plugin is vulnerable to XSS attacks because you are not escaping the content returned from the queries. Also,
you are not paying any attention to the is_displayed property of the columns that lets you know whether a
column should be suppressed because of conditions or authorization schemes used on the column.

Let’s start by addressing the XSS vulnerability. Navigate to the plugin Create/Edit page for APEX jqGrid
and do the following:

 1. Check the Has “Escape Special Characters” column attribute check box.

 2. Update the ajax_apex_jqgrid function in the PL/SQL source field with the code
from Listing 10-16. Don’t forget to update your plsql_code.sql file too.

 3. Click Apply Changes.

Chapter 10 ■ plugins

447

Listing 10-16. ajax_apex_jqgrid Function Updated to Escape Special Characters

function ajax_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin
)

 return apex_plugin.t_region_ajax_result

is

 l_ajax_result apex_plugin.t_region_ajax_result;
 l_column_value_list apex_plugin_util.t_column_value_list;

begin

 l_column_value_list :=
 apex_plugin_util.get_data(
 p_sql_statement => p_region.source,
 p_min_columns => 2,
 p_max_columns => 50,
 p_component_name => p_region.name
);

 apex_json.open_array;

 for row_idx in 1 .. l_column_value_list(1).count
 loop
 apex_json.open_array;

 for column_idx in 1 .. l_column_value_list.count
 loop
 if p_region.region_columns(column_idx).escape_output
 then
 apex_json.write(apex_escape.html(l_column_value_list(column_idx)(row_idx)));
 else
 apex_json.write(l_column_value_list(column_idx)(row_idx));
 end if;
 end loop;

 apex_json.close_array;
 end loop;

 apex_json.close_array;

 return l_ajax_result;

end ajax_apex_jqgrid;

Chapter 10 ■ plugins

448

You check the escape_output property of each column, and if it’s true, you use apex_escape.html to
escape the HTML output. The default value for this attribute will be true, which is part of the “secure by
default” approach that APEX provides. If developers want to allow HTML markup through for some reason,
then they’ll have to manually set that attribute to No.

Now you should be able to run the page, and if there’s any HTML markup in the grid data, it should be
escaped automatically. If the escaping doesn’t work for you, delete the region and re-create it now that the
new attribute has been added. This bug will be fixed in a future version of APEX, and it will not affect users of
the plugin.

Next you’ll leverage the is_displayed property of the columns to prevent them from showing when
they shouldn’t. To do this correctly, you’ll need to update both the render and AJAX functions in the PL/
SQL. One last time, navigate to the Create/Edit page of the plugin and complete the following steps:

 1. Update the PL/SQL Source with the code from Listing 10-17. Don’t forget to
update your plsql_code.sql file too.

 2. Click Apply Changes.

Listing 10-17. render_apex_jqgrid and ajax_apex_jqgrid Functions Updated to Support is_displayed

function render_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin,
 p_is_printer_friendly in boolean
)

 return apex_plugin.t_region_render_result

is

 l_render_result apex_plugin.t_region_render_result;
 l_onload_code varchar2(4000);
 l_crlf char(2) := chr(13)||chr(10);
 l_col_idx pls_integer := 0;

begin

 if apex_application.g_debug
 then
 apex_plugin_util.debug_region (
 p_plugin => p_plugin,
 p_region => p_region
);
 end if;

 sys.htp.p('<table id="' || p_region.static_id || '_APEX_JQ_GRID"></table>');
 sys.htp.p('<div id="' || p_region.static_id || '_APEX_JQ_GRID_PAGER"></div>');

 l_onload_code := 'apex.jQuery("#' || p_region.static_id || '").apex_jqgrid({' || l_crlf ||
 ' ' || apex_javascript.add_attribute('ajaxIdentifier',

apex_plugin.get_ajax_identifier(), false, true) || l_crlf ||
 ' columns: [' || l_crlf;

Chapter 10 ■ plugins

449

 for x in 1 .. p_region.region_columns.count
 loop
 if p_region.region_columns(x).is_displayed
 then
 l_col_idx := l_col_idx + 1;

 if l_col_idx > 1
 then
 l_onload_code := l_onload_code || ',' || l_crlf;
 end if;

 l_onload_code := l_onload_code ||
 ' {' || l_crlf ||
 ' ' || apex_javascript.add_attribute('heading', p_region.region_

columns(l_col_idx).heading, false, true) || l_crlf ||
 ' ' || apex_javascript.add_attribute('frozen', p_region.region_

columns(l_col_idx).attribute_01, false, false) || l_crlf ||
 ' }';
 end if;
 end loop;

 l_onload_code := l_onload_code || l_crlf ||
 ']' || l_crlf ||
 '});';

 apex_javascript.add_onload_code (
 p_code => l_onload_code
);

 return l_render_result;

end render_apex_jqgrid;

function ajax_apex_jqgrid (
 p_region in apex_plugin.t_region,
 p_plugin in apex_plugin.t_plugin
)

 return apex_plugin.t_region_ajax_result

is

 l_ajax_result apex_plugin.t_region_ajax_result;
 l_column_value_list apex_plugin_util.t_column_value_list;

begin

Chapter 10 ■ plugins

450

 l_column_value_list :=
 apex_plugin_util.get_data(
 p_sql_statement => p_region.source,
 p_min_columns => 2,
 p_max_columns => 50,
 p_component_name => p_region.name
);

 apex_json.open_array;

 for row_idx in 1 .. l_column_value_list(1).count
 loop
 apex_json.open_array;

 for column_idx in 1 .. l_column_value_list.count
 loop
 if p_region.region_columns(column_idx).is_displayed
 then
 if p_region.region_columns(column_idx).escape_output
 then
 apex_json.write(apex_escape.html(l_column_value_list(column_idx)(row_idx)));
 else
 apex_json.write(l_column_value_list(column_idx)(row_idx));
 end if;
 end if;
 end loop;

 apex_json.close_array;
 end loop;

 apex_json.close_array;

 return l_ajax_result;

end ajax_apex_jqgrid;

As you can see, both functions are now referencing the is_displayed property of the columns to
conditionally display them. It may have been tempting to just update the render function because that
could have prevented the column data from having been displayed in the grid. However, to be truly secure,
the data that should never be transferred to the client. That’s why the ajax_apex_jqgrid function was
updated too.

That’s it; you’ve created a region plugin! Ideally this tutorial has demonstrated the iterative approach
that one typically uses when building a plugin. At this point, you could export your plugin and share it with
the world.

I recommend adding the plugin export file to the top level of your plugin files (in apex-jqgrid-plugin).
Then you can zip up the entire directory structure and put it somewhere others can find it. If possible,
put your source code on GitHub. Ideally others will not only use your hard work but help you make it better
as well!

Chapter 10 ■ plugins

451

Best Practices for Developing Plugins
The best practices covered in this section have been compiled from a variety of sources. Some are
evangelized by the same people who wrote the APEX plugin framework—they know their stuff. Others
are based on well-established “best practices” from related technologies such as the Oracle Database and
web development. I’ve even added a few practices I’ve learned while developing and maintaining several
successful plugins over the past few years. While intended to help, “best practices” may not always be the
best solution for every situation, so always test!

These are some best practices for plugins in general:

•	 Follow APEX standards when possible. Over the years the APEX team has
implemented a number of standards used for native components. For example,
items that render multiple elements on the page follow a standard naming
convention. Learning about and adopting these standards in your own plugins will
help maintain a level of constancy in APEX and help to ensure that your plugins
work correctly.

•	 Choose the Name value wisely. Choosing a “good” name for your plugin is
important. Your plugin should be easily distinguishable from others. Some plugin
developers have adopted the practice of including their company name to help
ensure uniqueness (and add a shameless plug, of course).

•	 Choose the Internal Name setting wisely. The Internal Name setting is used
to determine whether a new plugin is being installed or an existing plugin is
being replaced. For this reason, uniqueness of the Internal Name setting is even
more important than the Name setting. A good convention that helps to ensure
uniqueness is to base the Internal Name setting on your company name/URL, as is
often done in Java class naming. An example would be COM_CORP_CALENDAR. Also,
if you make changes to a plugin that are not compatible with previous versions,
changing the Internal Name setting will allow plugin users to “migrate” to the new
plugin without breaking existing instances. Consider appending a letter to the end of
the Internal Name setting that is incremented each time there is a compatibility issue
with the new release, as in COM_CORP_CALENDAR_B.

•	 Document, document, document. Having developed your own plugin, everything
about it will be second nature to you. But it will not be as intuitive to others. The
only solution is good documentation. Documentation should not be considered
optional if you want heavy adoption. If you’re more comfortable writing code
than documentation, reach out to someone for help. Consider adding help in the
following areas: the Help section of the plugin, the Help section of custom attributes,
and a complete help file bundled with the plugin (TXT, RTF, HTML, and PDF all
work well).

These are some best practices for JavaScript and CSS:

•	 Use the APEX JavaScript APIs when appropriate. Because jQuery is now included
with APEX, it may be tempting to use the val() function to set the value of an
element on the page. However, the $v and $s functions, part of the JavaScript APIs
included with APEX, were created to work with APEX items specifically so they
handle things like LOVs correctly. Newer, properly namespaced APIs are available
as well. For example, apex.item('PX_ITEM').getValue() can be used in place of
$v('PX_ITEM'). It’s a bit more verbose, but by using only the functions in the APEX
namespace, you can prevent issues that could result from collisions with other
JavaScript libraries.

Chapter 10 ■ plugins

452

•	 Trigger events when appropriate. A number of events were introduced with APEX 4.0,
such as apexbeforerefresh and apexafterrefresh. Ensuring that your plugins trigger
these events when they apply allows plugin users to create dynamic actions on top of
them. Also, depending on the plugin, you may want to consider triggering custom events
and registering them with the plugin so that they are available via dynamic actions.

•	 Compress your JavaScript and CSS code. The JavaScript and CSS code used in your
plugins will add to the overall page weight in APEX. To minimize the impact on
performance, make sure to compress the code before deploying the plugin. There
are many open source libraries available for compressing JavaScript and CSS; many
are made to work with task runners such as Grunt or Gulp, which can help automate
the process. Make sure to keep the original files safe for future development because
compressed files are not very usable.

•	 Use files accessible via the file system of the web server. The APEX plugin framework
makes it easy to “bundle” files with plugins by uploading them directly as part of
the plugin. This is convenient for both installation and deployments because the
files go with the plugin. However, the files are stored in the database, which adds a
little overhead when the browsers go to retrieve them. Using files on the file system
avoids this overhead but requires additional installation and deployment steps. Try
to design your plugins in such a way that plugin files are bundled by default, but
switching to file system files requires little effort.

•	 Protect references to the $ object for jQuery. Now that jQuery and jQuery UI are
included with APEX, you may want to take advantage of them in your plugins. Many
people who already use jQuery are familiar with referring to the jQuery object as $.
While convenient, this practice can cause problems if another JavaScript library is
using the $ as well. See the “jQuery UI Widget Factory” section for a working example
of how to protect references to the $ object.

•	 Use debug/logging code in your code. Debug code is code that is added to code to
provide insight into how the code is (or is not) working. Debug code can be useful to
plugin developers as well as plugin users. For JavaScript code, APEX now includes
the apex.debug namespace, which has different methods for logging based on log
levels such as trace, warn, and error.

For PL/SQL, use these best practices:

•	 Use compiled code when appropriate. When the source code of a plugin is
embedded in its PL/SQL code attribute, it is treated as an anonymous block and
must all be compiled each time any one of the callback functions is executed. Using
compiled code—code that has been placed in a PL/SQL package, for example—can
avoid this overhead. This is especially important for plugins that use a lot of PL/
SQL. However, plugin developers must keep in mind that this technique requires
additional installation steps for plugin users. Try to design your plugins in such a way
that plugin users can conveniently start using the plugin but can easily move to more
performant code if needed.

•	 Escape user input when appropriate. Plugins will often display data that is maintained
by end users. If the data is not properly escaped, the plugin could introduce cross-site
scripting (XSS) vulnerabilities in an application. Using APEX_ESCAPE.HTML to escape
special characters whenever working with user-maintained data is the best way to
protect against XSS. However, because this may not always be the desired functionality,
you may want to make it optional. See the “Creating a Region Tutorial” section for a
working example of using APEX_ESCAPE.

Chapter 10 ■ plugins

453

•	 Use debug/logging code. Debug code can be useful to plugin developers as well as
plugin users when it comes to hunting down and fixing bugs. See the “Creating a
Region Tutorial” section for a working example of using APEX_PLUGIN_UTIL to output
some basic debug information when the application was running in debug mode.
Consider using the APEX_DEBUG package to add additional debug information in your
plugins where appropriate.

•	 Use named notation as much as possible. In PL/SQL, parameters can be passed
using positional notation, named notation, or a combination of both. While it may
not make sense to always use named notation, using it as much as possible will
help to self-document your code and possibly prevent repeated readings of the API
documentation.

Summary
In the first part of this chapter, you learned about the various parts of the plugin architecture in APEX as
well as some other tools that can help with plugin development, such as the jQuery UI Widget Factory. In
the second part of the chapter, you put what you learned in the first part to use as you built a jqGrid region
plugin. Many techniques, from creating custom attributes to fetching data via AJAX, were touched on along
the way. Finally, some “best practices” were covered to help you create high-quality plugins. At this point,
you should be armed with enough knowledge to begin development on your own plugins.

455

Chapter 11

jQuery with APEX

by Tom Petrus
What is jQuery, and what does it mean for you in APEX? Basically, jQuery is a JavaScript library that was
made with cross-browser compatibility in mind. It is meant to enhance the life of web developers who use
JavaScript by making them able to actually develop more instead of spending time on implementing all sorts
of hacks and tricks to make said developments work. This is especially true for several Internet Explorer (IE)
iterations; specifically, IE 6, IE 7, and IE 8 are all dreadful in this regard because those versions especially
often did not adhere to web standards, made own implementations, or just did something special like
compatibility view.

jQuery makes an effort to implement various fixes and workarounds when problematic
implementations are present in a browser (or its implementation). But more so than providing cross-
browser safety, it is just as much a tool of convenience and improves the quality of life of web developers
seeking to enhance their JavaScript tool set. Selecting elements, for example, has been made easy,
manipulations of the DOM are done just as quick, and it has a solid AJAX interface.

The importance of jQuery in APEX has been increasing ever since it was bundled with APEX. It
is not always visible, but many libraries, functions, and widgets have been making the move to jQuery
implementations as APEX has progressed. Interactive reports are one example. In releases prior to 5, you
were limited to one report, but now you can have multiple reports on one page. With that change came a
shift in the JavaScript code used for interactive reports because the JavaScript code until then was targeted at
only one interactive report, and it is now a jQuery UI widget. This goes to show that jQuery has been here for
a while, and it is set to be with us for quite a while longer.

This chapter will take you through some of the basics of what jQuery is and how to employ it. While
some of the coverage is general, many examples are seated in the Application Express atmosphere, selecting
elements and performing manipulations on them. You’ll see how to traverse the DOM starting from an
element and how to deal with assigning and listening to events. Finally, you’ll learn how AJAX calls are
performed through jQuery and how this can be employed through APEX’s API.

JavaScript and jQuery
There can be no chapter on jQuery without acknowledging JavaScript. After all, jQuery is a JavaScript library,
and thus it remains important to have at least some basic knowledge of JavaScript. Having said that, this
will not be an introductory course on JavaScript. But if you are serious about gaining some jQuery skills and
want to interact more and more with your pages through JavaScript or jQuery, it is a good idea to learn about
everything JavaScript offers.

Chapter 11 ■ jQuery with apeX

456

Basic JavaScript knowledge encompasses things such as the following:

•	 The data types

•	 Equality and type coercion (== and ===)

•	 Scopes (functions)

•	 Closures

•	 Prototypes

Enhancing your proficiency with JavaScript will automatically enhance your jQuery proficiency because
ultimately they’re one and the same.

Basics of jQuery
This section will cover some of the more basic functionality of jQuery, including what it is and how it can be
employed. You’ll learn how to select elements and how to manipulate their attributes and properties.

The jQuery Object
To use jQuery in APEX, you do not need to do anything special. There is no additional JavaScript file you
need to load somewhere. Since jQuery is so much at the core of APEX, this library is always present and
thus allows you to use jQuery right from the start. Plainly put, jQuery exists on the page as two objects:
the variables $ and jQuery. The $ variable is just a convenience shorthand reference to jQuery, which is a
function that will return something when passed something such as a selector (though it is important to
mention that selectors are not the only thing it can do something with).

Selecting Elements
Learning the basis of working with jQuery starts with selecting elements on the page to interact with. In
short, jQuery utilizes CSS selectors and has extended that functionality with some of its own (pseudo)
selectors. Selectors are passed in as the first argument in the jQuery function. Listing 11-1 shows a couple of
selectors, and if you’ve written or seen CSS classes before, you’ll be quickly familiar with how jQuery selects.

Listing 11-1. CSS Selectors

#P6_ENAME
.myClass
#emp-report td[headers=ENAME]

If these selectors are alien to you, I’ll explain some of the more common ones here.

Selecting by ID
First is the ID selector #, which is used to target an element on the page through its id property. IDs are
expected to be unique throughout a page, and thus an ID selector (usually) means you will expect a single
item. In APEX, each page item you define will have its id attribute set with the item’s name. Listing 11-2
shows a condensed version of the P6_ENAME page item’s generated HTML. Knowing the name and the
selector syntax results in the selector #P6_ENAME.

Chapter 11 ■ jQuery with apeX

457

Listing 11-2. A Simple Input Element with an ID

<input type="text" id="P6_ENAME" value="Tom" />

Compare this easy-to-use selector for jQuery’s method of selecting an element through an ID with the
usual way of doing so in standard JavaScript with the DOM API, shown here:

document.getElementById("P6_ENAME")

Selecting by Class
The second selector you will encounter a lot is the class selector . (a dot, yes). The class selector will
search elements through the class assigned to them. Elements can have no, one, or more classes assigned
to them, and thus a class selector usually means you expect to select a collection of elements. Listing 11-3
has two input elements in it that have different IDs, and each has two classes assigned. But they both share a
class, myClass.

Listing 11-3. Input Elements with Classes Assigned

<input type="text" id="P6_ENAME" class="myClass anotherClass" value="Tom" />
<input type="text" id="P6_EMPNO" class="myClass simpleClass" value="8456" />

Both elements can be selected simply by using this class name and the class selector, with a resulting
selector of .myClass.

Another example is where you assign a class to a column link so you can intercept it for a dynamic action.

Selecting by Attribute
Another important selector is the attribute selector [], by which you can select elements through a specific
attribute and even a value. This selector is often used in APEX to select a collection of elements in classic
reports or tabular forms since APEX assigns the header attribute with the column’s alias from the query
to each element. Listing 11-4 shows a simplified version of this structure generated in classic reports and
tabular forms.

Listing 11-4. HTML Table Cells with an Attribute

<table>
<tr>
<td headers="ENAME">Tom</td><td headers="DEPT">Development</td>
<td headers="ENAME">Denes</td><td headers="DEPT">Development</td>
</tr>
</table>

The reason for applying this headers attribute to cells is that while selecting rows in tables is rather
trivial, there are no methods to select columns. For example, say you have a classic report based on table
EMP, which has among its columns the column ENAME. Selecting all the elements for this column would be
achieved by using [headers="ENAME"] as a selector. Note that quotes are not necessary as long as the value is
a valid identifier. It is also important to remember that selectors are also wrapped in quotes, and thus quotes
will have to be stacked or escaped correctly when using them.

Chapter 11 ■ jQuery with apeX

458

Hierarchy
Sometimes it is necessary to define a certain path to reach a certain selection. For example, an APEX page
is defined with two regions on it, and each region contains two page items, which all have a same class
assigned. Selecting the page items in the second region by only using the class selector requires the ability
to narrow down the selection’s path. And this can be achieved (and again, I’d like to iterate that this is the
same as for defining CSS classes!) by specifying additional selectors in the same string. Listing 11-5 shows a
simplified example of two regions with two input elements each. Both div elements have a different ID, and
both are part of the body element. The input elements all have the class myClass assigned to them.

Listing 11-5. Input Elements with the Same Class over Multiple Regions

<body>
 <div id="region1">
 <input type="text" id="PAGE_ITEM_1" class="myClass" />
 <input type="text" id="PAGE_ITEM_2" class="myClass" />
 </div>
 <div id="region2">
 <input type="text" id="PAGE_ITEM_3" class="myClass" />
 <input type="text" id="PAGE_ITEM_4" class="myClass" />
 </div>
</body>

Selectors go from left to right, and this compares to narrowing down the search in the DOM from wide
to narrow. It is easy to get all the input elements by simply using the node name as a selector $("input"),
or in this specific example they can also be retrieved by using their assigned class $(".myClass"). It’s
important to note that if, for example, the div elements also had the myClass class, it would be possible to
combine the previous statements to only target input elements with the assigned class $("input.myClass").
This is specifying on one level of selection but wouldn’t solve targeting only the items in the second region.

And thus a path has to be made. This can be done by selecting the correct region first and then provide
further selectors, and this can be read as first selecting one element and then within that element’s context
look for the existence of elements with further selectors. Selecting the second region is easy enough since
the ID is plain to see: $("#region2") would return that div element. To get to the input elements within that
element, I add a further selector, $("#region2 input.myClass"), and now only those two input elements
would be retrieved. Note the space between both selectors and how there is no space between input and
.myClass.

This sort of selection is especially handy to target elements in different regions or reports.

 ■ Note Selectors as an argument to the jQuery function are to be passed as a string. this means you will
have to put the selector in quotes as you pass it along!

DOM Nodes and jQuery Objects
When working with jQuery and making selections and alterations, you’re actually manipulating the
Document Object Model (DOM). This model is an API to interact with the page in the browser and has been
built to resemble the page’s HTML structure.

Chapter 11 ■ jQuery with apeX

459

The DOM API is what you use when you, for example, use document.getElementById. This will return
a DOM node, such as the input element with the ID P6_ENAME. This node can then be further altered by the
functionality provided by the DOM API on this particular type of node. However, some problems start to
arise when different browsers have different implementations or levels of support for certain features. For
example, the property .innerHTML on nodes may not work properly across browsers.

This is where jQuery alleviates some of these more problematic implementations. When selecting
elements through jQuery, there is of course also a DOM node, but it is held in a jQuery object. You can still
easily access that DOM node and manipulate it with the API provided in the DOM, though that is not really
the point because you really want to use the functionality jQuery layers over that direct access.

Too often selections between DOM nodes and jQuery objects are mixed up or not used with enough
thought. It might be fine to use the DOM API without fear, but this really does require you to know what
browsers you have to support and whether they support it correctly. As a rule of thumb, I simply always use
jQuery to do what I want simply out of convenience and uniformity. It is up to you as a developer to have a
critic’s eye on this when you write or copy JavaScript code from anywhere!

Determining and Testing Selectors
Now that some basics have been established, it is time to look at how to employ this knowledge. To do
this, you’ll use the browser’s developer tools. Personally, I strongly prefer using Chrome’s or Firefox with
the Firebug plugin over IE’s tools. The developer tools offer a view on the document’s elements, all loaded
sources, network traffic, a console command interface, and others. By using these tools to inspect elements
and what they are made up of and running commands from the console, you can determine and test all
your code before having to save it somewhere in an APEX page or other location. This is a huge boon to
developers, and you should check your selectors and code before placing that code into a component.
Oftentimes I too need to fine-tune my selections or double-check selectors I’ve set up.

The developer tools can usually be opened in a Windows-based browser by pressing the F12 key, but
are also accessible by going through the options menus. Figure 11-1 shows the developer tools opened in
Chrome, with the elements panel opened. The page is a form page on the EMP table.

Figure 11-1. Chrome’s developer tools opened with the elements panel active

Chapter 11 ■ jQuery with apeX

460

Usually at the top of the elements panel you can find a magnifying-glass icon. This icon will allow you
inspect the elements on the page itself. Clicking it will activate it, and you can see element specifics as you
hover over them on the page, while the selection will be highlighted in the elements panel once the element
has actually been clicked. Figure 11-2 shows what happens in the elements panel once element P7_ENAME
has been selected because it will open the structure to that element.

Selecting elements on the page and navigating through the elements panel is a great help when needing
to determine selectors. While usually it is logical to determine a specific item’s name because it has also been
defined in the Page Designer, it becomes a bit harder when selecting generic regions or collections of items.

So now I’ve determined the selector for item P7_ENAME, namely, #P7_ENAME, and I can test this selector
by using jQuery in the developer tools’ console window. In this console window JavaScript can be run on the
current page, which is extremely helpful and powerful. Since jQuery is also present on the page, it is possible
to use jQuery statements here as well. Again, you don’t need any special initialization for using jQuery on
your pages!

In Figure 11-3, the console panel has been opened, and I’ve entered and run my JavaScript statement.
The console shows the output too: the return value of the code that has been run. jQuery returns the
elements it has retrieved from the selector you gave as an argument.

Only one element was selected, and that is the input element you needed. So, now you have verified
your selector and see that it works.

Basic Manipulations
Now that you understand selectors and how to execute them, it is time to explore what you can do with this
selection. I mentioned before that jQuery’s power lays in cross-browser implementations and how it is better
to use it over that of the DOM’s API, and here you’ll see some examples.

Figure 11-2. P7_ENAME selected in the elements panel

Figure 11-3. The console window opened with the selector executed in jQuery

Chapter 11 ■ jQuery with apeX

461

The most basic form of accessing attributes is, as you will usually see, through the DOM API. This can
be the value, an onclick attribute, a class, a custom property, and so on. Most actions can be performed on
the nodes themselves, but once again, it is important to note how some of those API implementation may
differ between browsers. In modern browsers, the value property (mostly) works as you’d expect, but there
may be slight differences, and in older browsers it may simply not do exactly what you’d expect.

Elements can have a whole realm of possible attributes, and some attributes are really just that,
attributes, while others can be more special. An example is the class attribute, which actually holds a list
of classes, or the style attribute, which defines inline CSS rules. Not each attribute is accessed in the same
way, nor do they all have a similar meaning. This is reflected in jQuery, where different functions to access
these various attributes are used.

<input type="text" id="P6_ENAME" class="myClass" value="Tom" />

value and text
Even though value is a property, it is different because of how it behaves. jQuery has a dedicated function
for getting and setting the value of items: .val(). To retrieve the value of an item, just val() can be called:
$("#P6_ENAME").val(). To set the value, an argument can be passed to this function: $("#P6_ENAME").
val("Not Tom"). You should always use .val() to do this and not use the DOM’s .value API call. Even
better would be to use APEX’s apex_item API, but I’ll cover more about that later.

Note that this function is used for input elements. Select lists are a different kind of element, and
retrieving the value from a select list is completely different, and the same holds true for radio buttons. Also,
be aware that APEX will generate HTML differently for check boxes in that it will not simply create an input
element with the provided item name. This is why it is always important to double-check the HTML that has
been generated so that you know what you need to select.

Don’t try to use .val on elements such as span or div. It has no use since they have no actual value.
Sure, you see text in them, but that does not mean they have an actual value attribute. And this is a common
mix-up when first starting out. When looking at the actual HTML of, for instance, a span element, it is easy to
spot the difference with an input element: This is text to be displayed!.
It should further be noted that this text is actually a child node of the span tag in the form of a text node, and
even in the DOM API there is no direct access to the text from this element without descending the tree one
step further. Thankfully, jQuery saves the day by providing the .text() function. This function once again
allows you to get and set the text of a node: $("#myText").text("This text has been altered").

Attributes
Attributes are generally all the actual attributes you can see on an element and always consist of a key and
a value. For example, Listing 11-6 shows a really basic input element with just two attributes, id and value,
put in a table cell with an attribute of headers. That is the representation in HTML, however, and in that
plain form all the attributes are plain attributes. In the DOM, however, many attributes behave differently
from just being plain getters and setters.

Listing 11-6. An input Element in a Table Cell with Some Basic Attributes

<td headers="SELECTION"><input id="P6_CHECKBOX_0" value="Tom" /></td>

Chapter 11 ■ jQuery with apeX

462

In jQuery you can access all attributes on an element by using the .attr() function, providing the
attribute’s name as an argument to the function. This is in contrast with directly accessing the node’s
attributes through the DOM API. To retrieve the value of the headers attribute in Listing 11-6 or the value of
id on the input element, attr can be used just like this:

$("td").attr("headers")
$("input").attr("id")

Boolean Properties
Some attributes on elements behave as properties in that they indicate a binary state. This is something that
follows the HTML specification but has seen problematic implementation cross-browser for a long time.
Some examples of these properties are as follows:

•	 readonly: Indicating whether the element should not be editable but still post its
value when the form is submitted

•	 disabled: Indicating whether the element should not be editable and not post its
value when the form is submitted

•	 checked: Indicating the state of the check box on a check box input item

Often you’ll see these attributes added on elements in a manner that actually doesn’t conform with the
HTML specification. For example, the simple presence of the readonly attribute is enough to indicate that
the input element is in a readonly state. It doesn’t need further specifications such as is often seen.

•	 readonly="readonly"

•	 readonly="true"

These states exist because of how different browser used to react to these properties. Nowadays these
problems don’t exist as much anymore, but they still linger on a bit. In jQuery these properties can easily be
checked by using the .prop() function, which will return a true or false value.

Listing 11-7 shows an example of using the prop function. An element is selected, and then the
readonly property is tested.

Listing 11-7. Testing the prop Function

if ($("#P6_ENAME").prop("readonly")) {
 alert("Ename is readonly!");
} else {
 Alert("Ename is not readonly. You can simply edit it.");
};

To actually set a Boolean property on an element, prop has to be used with two arguments: the name of
the property and a Boolean value. The correct syntax will be put on the element.

prop doesn’t see much use overall. Plenty of people are still using .attr() to get and set the values of
these properties, much in the way described earlier. But prop can be much more interesting when writing
code since it will return a Boolean value, possibly reducing your code by not having to double-check
the value of the attribute. For example, constructs like this end up being used: if ($("#P6_ENAME").
attr("readonly") === "readonly"). Compare this with the ease of use of prop, and it should be easy
to spot the difference. But be consistent in your use! Don’t use prop one time and readonly another

Chapter 11 ■ jQuery with apeX

463

time. Take care when adding HTML in the various places you can in APEX. You may very well have used
readonly="false" somewhere, and even though that is wrong, browsers are forgiving. This will mess with
prop, however, because the simple existence of the readonly attribute counts as true.

Classes
Classes on elements are again a different type of property. A more apt naming for this attribute is classlist
because this attribute holds a list of currently assigned classes to the element. It could be one, and it could be
more. Using classes has multiple uses: they are used to assign style rules on them through CSS classes, and
in JavaScript they are used to make selection easy, group elements, and track certain changes.

A common example of using a class to group a set of elements to make their selection easier is assigning
a class to the column link of a report. Doing so will make all the generated links easily identifiable from
JavaScript to assign, for example, a dynamic action to them.

The other common use in JavaScript is to toggle classes on elements to reflect a certain change done on
them. A class could be assigned to items affected by a piece of code, which in turn makes identifying these
changed items easy because they can easily be selected again.

And because classes behave more like an array of assigned classes than just a singular value, it has been
reflected in jQuery as such. Adding, removing, or toggling a class has been made easy.

•	 addClass: Adds a class (or classes!) to an element and will not generate a duplicate
entry. Here’s an example: $("#P6_ENAME").addClass("trackingClass").

•	 removeClass: Removes the specified class(es) from the elements. Here’s an example:
$("#P6_ENAME").addClass("trackingClass").

•	 toggleClass: Adds or removes a class as necessary. For example, $("#P6_ENAME").
toggleClass("trackingClass") will add trackingClass when it isn’t present or
remove it when it is.

Iterating Over a Selection of Elements
Oftentimes a selector will not target just one element on the page but rather a collection of them. This is
especially the case when working with broader selections such as classes or node types. And often enough
these elements have to be dealt with in an individual manner instead of with one sweeping all-altering
statement. jQuery has several ways to deal with this, such as filtering a selection further down or allowing
you to iterate over each element selected.

An iteration can be achieved by using the .each() function, which will execute a JavaScript function for
each element in the selection and provide the current element in the set as the context.

In Listing 11-8, an HTML snippet holds a table with two rows. Both rows have two cells; one holds the
ENAME, and the other holds the SAL value of an employee (employee name and salary, respectively). It is a
condensed example of a tabular form. To target and manipulate the elements containing the salary, you’ll
employ the techniques shown so far and combine it in each statement.

Listing 11-8. A Simple Tabular Form HTML Representation

<table id="emp-tabular">
<tr><td headers="ENAME">King</td><td headers="SAL"><input type="text" name="f02"
value="5000" /></td></tr>
<tr><td headers="ENAME">>Tom</td><td headers="SAL"><input type="text" name="f02"
value="3500" /></td></tr>
</table>

Chapter 11 ■ jQuery with apeX

464

Keep in mind this is a simplified example, and it is perfectly possible just to select input elements. In
practice, you will quickly see this dashed; on an APEX page, there are plenty and plenty of input elements!
So, the goal here is to show a selector that makes sense.

 ■ Tip if you’d like to follow the example selectors and code throughout, creating an apeX page with a tabular
form on the EMP table will work absolutely fine! provide a static iD to the region with the iD emp-tabular. the
ENAME column is a display-only column.

To get those input elements, one way would be to go through the cells since they have a headers
attribute. $("td[headers=SAL]") would achieve targeting the cells, while with the addition of the input
selector, the input elements in those cells can be targeted with $("td[headers=SAL] input"). Running this
statement will return an array with two elements, namely, those two input elements.

The code in Listing 11-9 will select those elements and apply the each function on this selection. The
statement will print out the value of each element as it processes them. The each function takes a function as
an argument, and thus an anonymous function is passed in. This function is then executed for each element,
and jQuery will set the value of the context, the this object, to the DOM element of the current element in
the each loop. This allows easy access to that node and thus allows an easy way to fetch the value each time.

The console.log function is a function that will print out lines to the developer tools’ console window
and thus allows for easy debugging. This is once again a great way to test and prototype code.

Listing 11-9. The Finished each Statement

$("td[headers=SAL] input").each(function(){
 console.log($(this).val());
});

 ■ Tip take note that the this object is the DOM object and not a jQuery element. to leverage jQuery’s
value-accessing function, you need to create a jQuery object of this DOM element.

Advanced Uses of jQuery
This section will go a little deeper into some jQuery functionality than simply selecting elements and making
basic manipulations. Most important, you will learn how to deal with events in various ways and how to
travel up and down the DOM starting from a selection. You can then use chaining to make your code more
concise, and finally you will see how to employ the power of AJAX calls.

Handling Events
Another common practice made easy with jQuery is attaching event handlers on elements. Examples of
events are mouse clicks, cursor events such as entering and exiting an element, key presses, browser events
such as a window resize, or even custom events. Handlers are attached to elements, and when the event
triggers, the handler (or handlers) is resolved. This “metadata” way of handling events through events and
listeners has been good practice for a while now. However, still a lot of code can be found that incorporates
assigning handlers directly to the DOM nodes’ attributes or in HTML.

Chapter 11 ■ jQuery with apeX

465

Assigning Through Attributes
One such attribute is the onclick attribute, which is commonly found in forum posts or examples. I’m not
a fan of it, and here is why: it’s inconsistent, and it clashes with the event-handling system. Furthermore,
adding this onclick attribute adds JavaScript code in what is supposed to be just HTML. It’s usually good
form to try to separate concerns: HTML represents the data, CSS applies style, and JavaScript applies
dynamism. A reason frequently seen to use this attribute is for the sake of convenience or ease. It’s tempting
to provide this attribute in a property on an APEX item or a column link or adding it along in an apex_item
call because it’s easy to add some value to the function called. But nowadays this way is simply not regarded
as being clean.

Assigning Through Convenience Functions
In jQuery, events are generally pretty easy to handle, especially basic ones such as a mouse click or acting
on the change of an item’s value. For instance, dealing with a change event is as easy as calling the change()
function on a jQuery object.

$("#P7_SAL").change(function() {
 console.log("My value has changed to " + $(this).val());
});

Calling the change() function requires one argument: a function to be used as a callback for the event.
And once again, just like with each, the object this has been set to the element that triggered the event.

Just like the previous change event, there are many other convenience functions to quickly bind
handlers to selections: click, focus, mouseover, and so on.

Assigning with on
The convenience functions are shorthand for commonly used handlers and actually call one of the core
event-handling functions in jQuery. The two core functions are the .on() and .off() functions. Attaching
the same change handler as done earlier with .change() can be done with on().

$("#P7_SAL").on("change", function() {
 console.log("My value has changed to " + $(this).val());
});

Note that with this event handling, multiple handlers can be bound to the same element and to the
same event. Running the previous two commands will simply double up the output in the console log.

Think back to the code in Listing 11-8 with the tabular form example. Selecting the input elements in
it and applying an event handler to this selection will bind a handler to each element in that selection. In
Listing 11-10, a change handler is assigned to each input element, and in the handler, the changed value is
shown, as well as the current context. Note how an object can be passed to the console output, which is also
shown in Figure 11-4. Providing an object as an argument to the console will make the console put out that
object and allows inspecting its properties. If a DOM node is provided, it is even possible to see this
element in the web page or jump to the elements panel, which is again a wonderful tool to help out with
developing code.

Chapter 11 ■ jQuery with apeX

466

Listing 11-10. Assign a Change Handler to All Input Elements

$("td[headers=SAL] input").on("change", function() {
 console.log("Change event on: ");
 console.log(this);
 console.log("My value has changed to " + $(this).val());
});

 ■ Note when putting out an object in the console, take care not to concatenate it with text. this will
implicitly call the toString() function of said object, resulting in an output you can’t do anything with.

Dealing with Events on Dynamic Elements
There is a caveat, though. Assigning handlers through the shorthand or in the way shown earlier will
create static handlers. These handlers are attached to the elements that were in the selection at the time of
assignment. If elements that match the selector at a later point in time are added to the page (actually, the
DOM), it is normal that no handler is assigned automatically (that’s why it’s called static). An example is
the change event on elements in a tabular form, where the tabular form has pagination. When pagination
occurs, the current elements are discarded from the DOM, and a new set is entered. Thus, new elements
are added to the DOM; these are elements that were not there when the event handlers were first assigned.
Another example is the column link on an interactive report with a class defined in its attributes. If a handler
is assigned on those eligible elements on the initial page load, those handlers would be gone when the
report refreshes or is paginated because those handler’s elements are then removed from the DOM.

There is, of course, a way to have more dynamic handling of events. First, it is necessary to understand
just a bit more of exactly how an event behaves. Events happen all the time; they don’t just occur when a
handler has been bound. They’re also not stuck in the location they are fired from. Events will travel from
the element they are fired from all the way to the top of the DOM tree. This behavior is called bubbling or
propagation.

Thinking back once again to the tabular form example code and the change handler assigned on its
input elements, this means that if a change handler is also assigned to the enclosing table, the output in the
console will reflect this.

$("#emp-tabular, td[headers=SAL] input").on("change", function() {
 console.log("Change event on: ");
 console.log(this);
});

When changing an input element of the salary inputs, four lines of output will be produced. The two
objects logged will be the element the change has taken place on and the table. This is to illustrate how the
event has actually traveled up the tree and how it doesn’t simply stop at the element it fired on!

Figure 11-4. Console output for an object

Chapter 11 ■ jQuery with apeX

467

 ■ Tip i’ve combined two selectors previously to expand the selection made by using a comma. Selectors
separated by commas will simply expand the selection and not influence each other.

Now consider how once again static handlers have been assigned. But this time, if the tabular form were
to be paginated and new input elements were added, the handler on the table would still be there, and it
would still be triggered when one of the new input elements is changed (not just salary!) because the event
bubbles up.

This event propagation can thus be used to account for changes in the DOM after a handler has been
bound to a certain element. Certainly, a handler will have to be static at some element in the DOM to be able
to intercept an event, but it is not limited to just those target elements.

Here is where the on() function offers the required functionality. Not only does it allow binding to
one static set of elements, it allows binding to an element to listen for an event specifically fired on a set of
children matching a selector. For example, it is possible to bind the change handler on the table but listen
only for change events on the input elements for cells in the salary column.

$("#emp-tabular").on("change", "td[headers=SAL] input", function(e){
 console.log(this);
});

The second argument to the on function is another selector here. In the handler, the current object is
once again logged to the console. And now the change event will always be able to be handled even when
the report is paginated.

Removing Handlers
Adding handlers is pretty easy, and so is removing them. But do note that only handlers that have been
added by using .on() can be removed. Simply use .off() to remove a handler, but pay attention that the
specifications have to match those used for adding it through on().

Stopping Events
Stopping events is not the same as removing handlers. In APEX there is a dynamic action that will cancel an
event, and this stops the event from being handled. You’ll often see the statement return false; in online
resources about APEX.

The difference is subtle but important. When you know how events work and that they bubble up in
the DOM, you have different ways to stop an event. It is possible to handle the event and stop the event
from bubbling further up the DOM or to handle the event and even stop other handlers on the same event
from firing. Interacting with the event in an event handler is not hard. In the handlers shown in the previous
example, a function was always passed in as an argument. jQuery actually passes in arguments to this
function so that they can be interacted with if required. The first argument is the event object, which is a
jQuery object containing information and interaction on the current event. Taking the change handler that is
assigned to both the table and the input elements again, it is possible to make this event stop from bubbling
up after the change event handlers have been executed on the input element.

$("#emp-tabular, td[headers=SAL] input").on("change", function(event) {
 console.log("Change event on: ");
 console.log(this);
 event.stopPropagation();
});

Chapter 11 ■ jQuery with apeX

468

So, even though a change handler is bound to the table, no change event will be allowed to bubble
up from the salary input elements to any elements above it. And in this example, no change event will
propagate further up from any element in the table above the table since this event is once again stopped
from bubbling there.

Another thing of note are default events. For example, the anchor tags have a default click
handler because when the element is clicked, the browser will redirect to the URL specified in the href
attribute. So, usually in examples on APEX that involve setting up column links and attaching an event
handler to these elements, be it through dynamic actions or through handlers in jQuery, this default event
is not dealt with correctly. The dynamic action “Cancel event” is correct; returning false in code is not.
Assigning onclick="return false;" to the link element is also incorrect!

The correct method to stop a default event from executing its default action is by using preventDefault.

$("a.myColumnLinkClass").click(function(){
 alert("you clicked this link!");
 event.preventDefault();
});

Reacting on the Page Load Event
There is one specific event I’d like to highlight, and that is the page load event. This event is triggered when
the page has finished loading. All content and scripts have been loaded, parsed, and rendered. Oftentimes
it is necessary to wait for all this to happen before executing a block of code. For example, selecting a range
of elements may not return the full set of expected elements when run before the page has finished loading
since more elements may still be added to the DOM afterward depending on where the code is being ran.
Another example is a script not having been loaded yet. Nowadays the trend is to place scripts near the
bottom of the page simply because this is a better user experience. The DOM will first load the data structure
and render this and then get to the script tags, loading those. Certain libraries or scripts added may thus
end up getting loaded later.

Much depends on using page templates and just exactly where you will want to add code. But overall
the load event will be something you want to wait for. In APEX there are several ways already to do this.
Using dynamic actions, there is the page load event, an action itself can be set to trigger on page load, and
not least of all the “Execute on page load” section on a page. These are all good places to put code, if not
the best.

It may be, however, that some dynamic code is required to interact with this event or required simply
because code has been put in a JavaScript file. This load event has a specific handler in jQuery that can be
used: the ready() function. This function will wait for the DOM to be ready before executing the code here.
There is also a load function, but the differences are subtle. This ready() function is also the function used
by APEX in the various places mentioned earlier.

The ready() function has to always be bound to the document element and takes a function as an
argument.

$(document).ready(function(){
 //here comes the code you wish to perform on page load
 console.log("Page is ready!");
})

Chapter 11 ■ jQuery with apeX

469

APEX’s Refresh
As an example for custom events, APEX has the perfect example. Whenever APEX refreshes an element, it
will fire two events at specific times, for example when an interactive report is refreshed.

Right before the region is refreshed, an event apexbeforerefresh is triggered on the region, and when
the refreshing has finished the event, apexafterrefresh is triggered. Binding to a region is easiest when
providing the region with a static ID since this makes selecting it through jQuery easier. For example,
with an interactive report region with a static ID set to myStaticRegionId, it is possible to bind to the
afterrefresh event.

$("#myStaticRegionId").on("apexafterrefresh", function(){
 console.log("Report has finished refreshing!");
});

Traversing the DOM
The DOM can be seen as a big tree, with the document as the root and all other nodes under it. Selecting
elements will then return matching nodes from this tree. But sometimes it is necessary to retrieve
information from nodes that are children, siblings, or parents.

Note again how selecting elements with selectors is not hard at all. This is always top to bottom, from
the root to a set of elements. It is even possible to select elements within a given context. This goes to show
how it is relatively easy to narrow down a set from parent to children.

However, the same can’t be done from bottom to top. Selectors don’t do this. Fortunately, jQuery has
many handy functions that allow traversing the tree structure of the DOM.

Going Up
Look back at the code in Listing 11-8 with its tabular form structure and the selector used to fetch the salary
inputs. It’s possible in that listing to retrieve the row element for each input element. There are several
methods to do this, though usually the requirement would be to have as flexible code as possible to deal with
markup. For instance, it is obvious from the snippet that the input element is nested in a td element, and
this element in turn is nested in a tr element. For direct traversal upward, parent() could be used, and this
will return the direct parent node of the selected elements. Thus, it could be argued that calling this function
twice on the selected input elements will return the row element, and this would be correct. However, a
simple template change could completely destroy this kind of code. Therefore, it is more interesting to
use the closest() function. This function will traverse up the tree, starting at the origin element, until it
found an element matching the selector provided as an argument. This is great because it allows a lookup
otherwise not possible.

In Listing 11-11. each input element is retrieved, and for each element the parent row is retrieved and
put out in the console. This combines several of the techniques already shown.

Listing 11-11. Printing Each Element’s Parent Row

$("td[headers=SAL] input").each(function(){
 var myRow = $(this).closest("tr") ;
 console.log(myRow);
});

Chapter 11 ■ jQuery with apeX

470

Going Down
It is also possible to easily descend a node’s structure, which can be regarded as searching in a certain
context. The function find() accepts a selector as an argument and will look for elements matching this
selector within the context of the given jQuery object.

So, going further with the example from Listing 11-11, which finds the given parent node for the current
element, it is possible to once again search for a certain node within the context of this given row. This opens
up so many possibilities when working with reports or tabular forms in APEX! In Listing 11-12 the code from
the previous listing has been expanded to not only retrieve the parent row but also find the cell with ENAME in
it and print its text.

Listing 11-12. Finding the ENAME Cell in the Same Row

$("td[headers=SAL] input").each(function(){
 var myRow = $(this).closest("tr") ;
 var enameCell = myRow.find("td[headers=ENAME]");
 var ename = enameCell.text();
 console.log("The salary $"+ $(this).val() + " belongs to " + ename);
});

Note how the word context has already been used in several places, especially with find(). So far, I’ve
always used jQuery’s invocation with one argument, a selector or a DOM node. It is, however, possible to
provide a second argument, which when combined with a selector or DOM node will represent the context
for the first argument. So, instead of using find() to get the matching nodes within myRow, it is the same as
using myRow as the second argument in a call to jQuery with the selector as the first argument.

var enameCell = $("td[headers=ENAME]", myRow);

Keeping It Level
Traversing doesn’t always mean traveling up or down the tree. It may mean finding elements on the same
level as the current element. To this end, there is the siblings() function. This function also accepts a
selector as an argument to filter the set of sibling nodes. So, instead of traveling up from the salary input
element, it is possible to go up to the cell element and then filter that cell’s siblings to find the ENAME cell.

$("td[headers=SAL] input").each(function(){
 var myCell = $(this).closest("td") ;
 var enameCell = myCell.siblings("td[headers=ENAME]");
 var ename = enameCell.text();
 console.log("The salary $"+ $(this).val() + " belongs to " + ename);
});

Chaining Functions
With all functionality available on jQuery objects, it can be troublesome to always store the output in a
variable and then do something with that output. As discussed earlier with traversing, a jQuery function
is called three times, and the output is always stored. This isn’t really necessary because jQuery allows
chaining functions.

What this really means is that when a call is made to a jQuery function that returns a jQuery object,
another function can immediately be called on that returned object; this is called chaining.

Chapter 11 ■ jQuery with apeX

471

With this, it is possible to rewrite the code in Listing 11-12 instead of assigning to variables to chain the
functions together.

$("td[headers=SAL] input").each(function(){
 var ename = $(this).closest("tr").find("td[headers=ENAME]").text();
 console.log("The salary $"+ $(this).val() + " belongs to " + ename);
});

This can really help in keeping code concise and having to assign to variables all the time.
Chaining can go pretty far. The following snippet illustrates how chaining can be used and how the

end() function can be used to return to the original selector:

$("#emp-tabular")
 .find("td[headers=ENAME] input")
 .each(function(){ console.log('Ename:' + $(this).val()); })
.end()
 .find("td[headers=SAL] input")
 .each(function(){ console.log('Sal:' + $(this).val()); })
.end()

This code will first select the element with the ID emp-tabular. The find() function is then used to
find elements within that selection. Next, these elements are iterated over by using each(), and in which the
value of the element is sent to the console output. Then end() is called, which will cause the next chained
function to start again from the original selection, namely, the emp-tabular element. Again, a selection is
made with find(), and each is used to loop and written to the console. A final end() call will cause the final
returned element to be the emp-tabular element.

APEX JavaScript APIs
APEX has an own extensive set of JavaScript functions to deal with APEX-specific functionality on its pages.
Over the years of APEX development and releases, much functionality has changed and been added. Most
notable is the shift from working with DOM nodes to working with jQuery selectors and objects.

Overall, my advice is to use APEX functionality whenever possible. An example of this would be
retrieving values in JavaScript from the different sorts of page items. The API apex.item() implements value
retrieval from normal text items, select lists, check boxes, radio groups, and so on. Even though .val() has
been explained here, .val() just does not hold the same value as apex.item.getValue() because the latter
will work on any type of item. And similarly for setting values, apex.item.setValue() is a better option.

It is important to take note of the API documentation, though. Many functions of the API have the
ability to take different sorts of input (similar to jQuery), though usually it is limited to a string, which may
or may not be a selector or a DOM node. For example, apex.item() will take an ID for an item but not a
selector. Creating an apex_item object for P7_ENAME will be in the form of apex.item("P7_ENAME") and not
like apex.item("#P7_ENAME"). The reason here is likely to be that apex_item implicitly expects to target one
and just one element and thus assumes the #.

AJAX Calls and AJAX Callback Processes
Another area jQuery has a strong implementation for is performing AJAX calls. The interface it provides is
extensive and will safely work in all browsers. Furthermore, APEX has implemented an interface to call on-
demand processes from JavaScript based on the jQuery AJAX suite, which means it’s interesting to look at.
The documentation for the APEX implementation also mentions this; there are some presets and extensions,
but all settings can still be provided and overridden.

Chapter 11 ■ jQuery with apeX

472

First, the important thing to understand is what the first A in AJAX stands for: asynchronous. What it
comes down to in short is that a function is called but will not return an answer right away. This has a big
benefit for users because the browser is not locked up while waiting for the function to return a result.

As an example, think of APEX’s interactive report pagination. The next set of records will be fetched
through an AJAX call and will then be added to the DOM, replacing the current set. A spinning icon will be
shown throughout to indicate this process is occurring. Imagine this form of code:

function(){
 start_the_spinner;
 refresh_report;
 stop_the_spinner;
};

This is the most common mistake when first dealing with asynchronicity. It assumes that refresh_
report is called and fully resolved before stopping the spinner. However, consider that refresh_report will
actually initiate an AJAX call, asking the server for a reply (the new set of records), and when the server has
returned these records, it replaces the nodes. If this happened synchronously and fetching the new rows
took five seconds, the user would look at a locked-up screen, with a nonspinning spinner since the thread
has no time to make it spin. But everything would occur “inline.”

With AJAX calls, you can provide a function to a success handler, which will execute the function when
the call has completed. Thus, stop_the_spinner should be put in a success handler of the call to refresh_
report.

On to jQuery’s AJAX implementation: if ever the need is there to get some data from an on-demand
process, this can do it.

Setting Up an AJAX Callback Process
Listing 11-13 has some simple PL/SQL code to be used as an on-demand process. This code creates a new
process named MY_CALLBACK on an APEX page under the AJAX Callback point.

Listing 11-13. An Example AJAX Callback Process

DECLARE
 lReturn VARCHAR2(1000);
BEGIN
 lReturn := 'Value of x01: ' || apex_application.g_x01 ||', value of x02: '|| apex_
application.g_x02;
 htp.p(lReturn);
END;

This is a simplistic piece of code. It will concatenate the value of two variables and then return that
string. The X01 and X02 variables are variables usable in requests made in APEX. They go from 1 to 10, and
there are also global arrays, F##.

Chapter 11 ■ jQuery with apeX

473

Using jQuery to Call a Process
Listing 11-14 shows how to call this process from JavaScript using jQuery’s ajax() function. Starting with the
actual jQuery call, which is the last-to-previous line, jQuery’s ajax() function takes one argument, which is
an object with all settings for the AJAX request to be made. This object is the variable ajaxSettings, which
contains these properties:

•	 url: wwv_flow.show is APEX’s show page procedure.

•	 data: The data that needs to get sent in this request. This is another object and is
configured before the ajaxSettings object.

•	 type: The type of request to make. There are, for example, also GET requests, but I
want to use a POST request here because I don’t want the server to cache the results
of this call.

•	 dataType: This defines the data type of the callback’s return.

•	 success: This is the handler that will be executed when the call has completed. The
function’s first argument is the return from the callback parsed according to the
defined data type. In this code, the return is then logged to the console.

These settings are pretty usual and will cover most cases. The data type will usually differ, though, and
usually this may be of the data type JSON because this is a common and universal data type used to exchange
information and is natively accessible from JavaScript.

Passing data to a callback is done through the data property. This property is filled out through the
ajaxData object.

•	 p_request: This defines what has to be called. Here the application process MY_
CALLBACK is to be called; this is the callback process defined earlier.

•	 p_flow_id: This is the application ID. The value is retrievable from the page and is
fetched through a shorthand for the apex.item().getValue() function.

•	 p_flow_step_id: This is the page ID and is retrieved similar to p_flow_id. This
parameter is required when a process is to be called that is defined on the page
concerned. If left out, an application process can be used.

•	 p_instance: This is the session ID and is retrieved similar to p_flow_id.

•	 x01, x02,...: These represent a series of singular value parameters usable in these
kind of calls. They’re great because this way no additional page items have to be
created to use a callback process!

•	 f01, f02,...: These accept an array with values (not used in this example).

•	 p_arg_names, p_arg_values: There are two properties that accept an array of
values. The former holds an array with page item names, while the latter holds an
array with values for the specified items. Note that the matching of items with their
values is done on position within the arrays. (This is not used in this example).

Chapter 11 ■ jQuery with apeX

474

Listing 11-14. Calling an AJAX Callback Process with jQuery

(function(){
var ajaxData = {"p_request" : "APPLICATION_PROCESS=MY_CALLBACK",
 "p_flow_id" : $v('pFlowId'),
 "p_flow_step_id" : $v('pFlowStepId'),
 "p_instance" : $v('pInstance'),
 "x01" : "Tom",
 "x02" : "King"
 };

var ajaxSettings = {
 url: "wwv_flow.show"
, data: ajaxData
, type: "POST"
, dataType: "text"
, success: function(data){
 //handle the successful return -> data
 console.log(data);
 }
}

$.ajax(ajaxSettings);
})()

 ■ Tip the code to perform the call has been wrapped in a function, and this is wrapped in parentheses,
followed by (). this will execute the function anonymously, preventing variables from polluting the global scope.

Using APEX’s AJAX Functionality
APEX also has a strong implementation for making AJAX calls from JavaScript, implementing everything
shown in the previous example and expanding on it with APEX-specific functionality , since it is nothing but
a wrapper for jQuery.ajax(). In Listing 11-15, a call is made to the same callback process as in Listing 11-14.
It’s much more concise since APEX implicitly adds some settings by itself. Most evident is the setting of the
application, page, and session IDs. It requires just the process name. The second argument is the actual
data object, with data that needs to be sent for use in the callback process. Instead of having to use the
p_arg_names and p_arg_values arrays for items, APEX has provided the pageItems property, which allows
you to specify selectors for items to retrieve their name and value from and which automatically adds these
to the request.

The third argument is the settings object that will be passed to ajax(). Additionally, it allows you to
easily show a waiting indicator.

Chapter 11 ■ jQuery with apeX

475

Listing 11-15. Performing an AJAX Call with apex.server.process

(function(){
apex.server.process('MY_CALLBACK'
 , {x01: "Tom", x02: "King"}
 , { dataType: "text"
 , success: function(data){ console.log(data); }
 }
);
})()

jQuery Versions
Important to mention is the jQuery version that comes bundled with APEX. APEX versions 4.0 through 4.2
have been with use for quite a while, but unlike many improvements on the APEX side, the jQuery version
has been the same for much of this time. This meant that the jQuery API has become quite outdated for a
while now, and this began to show as more industrious members of the community started seeking out new
and advanced functions, which brought along plenty other problems. So, the jump being made with APEX 5
is rather significant.

jQuery has been updated from version 1.7.1 to version 2.1.3.
jQueryUI has been updated from version 1.8.14 to version 1.10.4.

This is a big jump from versions 1.7 to 2.1...very big. Version 2.0 was a major release and cut out much of
what was considered legacy functionality; examples were workarounds for browsers like IE 6. This shouldn’t
be a surprise. Technology does not stand still, and at a certain point this kind of cleanup is necessary to keep
the library as clean and lean as possible and provide a starting point for future implementations.

Be aware that if you have or had custom implementations in applications for versions previous to
APEX 5, you may need to update the jQuery library! Or if you previously loaded an updated jQuery
library version, it may not be necessary to do so anymore, speeding up your page.

apex.jQuery
Throughout this chapter I’ve been using $ and jQuery as the objects I perform jQuery actions with. However,
there is also the apex.jQuery object. As shown earlier, APEX comes bundled with a certain version of
jQuery, and as we progress in time, so will jQuery and APEX. At one point in the future we may end up at
the same situation as we had with APEX 4.2 and its outdated jQuery library. It may become increasingly
interesting to use another jQuery version than the bundled one, and then apex.jQuery comes in handy. Just
as the global-scoped jQuery object will reference a certain jQuery version, so will apex.jQuery reference the
jQuery version that APEX uses. After all, updating the library does not mean that all functionality will remain
the same, and thus APEX always needs its own version.

This means that when you decide to use apex.jQuery instead of $ or jQuery, you will protect yourself
from any adventures with other jQuery libraries loaded on the page. This may or may not be interesting
depending on the situation, but generally it is a better idea to use apex.jQuery.

Pitfalls
Even though many things are easily resolved by using jQuery, don’t become complacent. Technology never
stands still, and it is part of your job to keep up. Even though jQuery keeps evolving and has extended
functionality does not mean you have to use it for every single thing.

Chapter 11 ■ jQuery with apeX

476

An example is the native support of several functions on arrays in JavaScript, such as forEach. These
native functions are usually inherently faster than jQuery’s implementation. There are even polyfills
available to provide this functionality in browsers that do not support it yet.

In other words, it is wise to keep up with how JavaScript evolves.

Resources
•	 jQuery API: http://api.jquery.com/

•	 jQuery Learning Center: http://learn.jquery.com/

•	 MDN JavaScript tutorials: https://developer.mozilla.org/en-US/Learn/
JavaScript

•	 APEX JavaScript APIs: http://api.oracleapex.com

•	 DOM: www.w3.org/TR/WD-DOM/introduction.html

Summary
With what you’ve learned in this chapter, you should be able to deal with at least some of the basic jQuery
interactions on your APEX pages. There is, of course, much more you can do with jQuery, and this chapter
was a primer to tickle your sense of adventure. By now, though, you should have a grasp of some of these
basics, such as to be able to select a set of elements and perform an action on them like a manipulation,
binding an event handler, or using it as a starting point for a DOM travel trip. With a short foray into
AJAX, you should now have a lot of power in your hands once you begin to see the possibilities created by
combining all these techniques. Anything is possible on your APEX page with the power of JavaScript and
jQuery, though it will take mastering to temper oneself. Never forget to utilize the power of APEX too!

http://api.jquery.com/
http://learn.jquery.com/
https://developer.mozilla.org/en-US/Learn/JavaScript
https://developer.mozilla.org/en-US/Learn/JavaScript
http://api.oracleapex.com/
http://www.w3.org/TR/WD-DOM/introduction.html

477

Chapter 12

Map Integration

by Christoph Ruepprich
Any database application that contains location data, such as addresses or geographic coordinates, may
benefit from displaying this data on a map. It may be of further benefit to allow users to interact with this
data by associating it with other data or even performing geometric calculations against it.

In this chapter, you will explore some options to free the geographic data from its confines of the
database tables and render it in useful ways on interactive maps. To accomplish this, you will look at a
number of tools and techniques available to you in APEX, the Oracle Database, and some publicly
available APIs.

You will learn how to turn address data into geographic coordinates and how to use these coordinates
to display addresses on a map. Further, you will take a look at various mapping APIs and how to use Oracle’s
powerful spatial features to find relationships between geographic data points.

Geocoding
Geocoding is the process of turning addresses from plain text into coordinates. To do this, you will make
use of some publicly available web services that do the heavy lifting for you. You can simply call such a web
service with an address, and the service will return a cleaned-up version of this address, along with other
data elements, including coordinates. You can then store these coordinates in the database and visualize
them on a map.

 ■ Note Reverse geocoding takes a pair of coordinates as input and attempts to return the address
associated with them.

Coordinates
The coordinates used for mapping are simply numeric values for latitude and longitude. There are a number
of ways of expressing coordinates. Two notations are worth noting.

DMS: Degree Minutes Seconds

DD: Decimal Degrees

ChapteR 12 ■ Map IntegRatIon

478

Oracle’s APIs use DD notation. Latitude values range from -90 to 90, and longitude values range
from -180 to 180; both can go up to 15 decimal places. A four-decimal coordinate is accurate to about
11 meters, and a five-decimal coordinate is accurate to about 1 meter. The accuracy can vary with the
position on the globe and the coordinate system being used (see “SDO_GEOMETRY” later in the chapter).

Web Services
There are a number of available web services that provide geographic data. They can take various types
of queries as input and return detailed geographic data in the form of XML or JSON. Depending on which
service is being used, the input can range from a simple address or location to an actual SQL query, as in the
case of Yahoo. Let’s take a look at some of these services.

 ■ Note Make sure to check the terms and conditions for using these web services because they are subject
to change.

Yahoo Web Services
Yahoo provides a public web service for geocoding. As input, the user provides a query against one of the
available Yahoo tables. The geocoding table at Yahoo is called geo.placefinder. The following URL calls
the Yahoo web service and passes it the query against the geo.placefinder table. The web service then
responds with the query results in XML format.

https://query.yahooapis.com/v1/public/yql?q=select * from geo.placefinder where text="1400
6th Ave, Seattle, WA 98101"

The default output is XML. Here’s an example:

<query xmlns:yahoo="http://www.yahooapis.com/v1/base.rng" yahoo:count="1" yahoo:lang="en-US">
 <results>
 <Result>
 <quality>87</quality>
 <addressMatchType>POINT_ADDRESS</addressMatchType>
 <latitude>47.610378</latitude>
 <longitude>-122.333832</longitude>
 <offsetlat>47.610512</offsetlat>
 <offsetlon>-122.333511</offsetlon>
 <radius>400</radius>
 <name/>
 <line1>1400 6th Ave</line1>
 <line2>Seattle, WA 98101-2318</line2>
 <line3/>
 <line4>United States</line4>
 <house>1400</house>
 <street>6th Ave</street>

https://query.yahooapis.com/v1/public/yql?q=select
http://www.yahooapis.com/v1/base.rng

ChapteR 12 ■ Map IntegRatIon

479

To receive a JSON result, add the format parameter.

https://query.yahooapis.com/v1/public/yql?format=json&q=select * from geo.placefinder where
text="1400 6th Ave, Seattle, WA 98101"

For further usage details, see the following:

 https://developer.yahoo.com/yql/guide/usage_info_limits.html

Yahoo also provides a developer console that you can use to test and explore the available services.
You can find that console at https://developer.yahoo.com/yql/console.

Google Web Services
Google’s geocoding web service works similarly to that of Yahoo, except that it doesn’t use a query syntax.
For example, here is a URL invoking the web service on an address in Seattle:

http://maps.googleapis.com/maps/api/geocode/xml?sensor=false&address=1400 6th Ave,
Seattle, WA 98101

As you can see by the URL path, the result would be returned in XML. To get a JSON result, simply
substitute json for xml in the path.

The web service call responded with the following XML:

<GeocodeResponse>
<status>OK</status>
 <result>
 <type>street_address</type>
 <formatted_address>1400 6th Avenue, Seattle, WA 98101, USA</formatted_address>
 <address_component>
 <long_name>1400</long_name>
 <short_name>1400</short_name>
 <type>street_number</type>
 </address_component>
 <address_component>
 <long_name>6th Avenue</long_name>
 <short_name>6th Ave</short_name>
 <type>route</type>
 </address_component>
 <address_component>
 <long_name>Pike Pine Retail Core</long_name>
 <short_name>Pike Pine Retail Core</short_name>
 <type>neighborhood</type>
 <type>political</type>
 </address_component>
 <address_component>
 <long_name>Seattle</long_name>
 <short_name>Seattle</short_name>
 <type>locality</type>
 <type>political</type>
 </address_component>

https://developer.yahoo.com/yql/guide/usage_info_limits.html
https://developer.yahoo.com/yql/console
http://maps.googleapis.com/maps/api/geocode/xml?sensor=false&address=1400

ChapteR 12 ■ Map IntegRatIon

480

A reverse geocoding URL may look like this. Only the latlng parameter is needed.

http://maps.googleapis.com/maps/api/geocode/xml?latlng= 48.858012, 2.294746

The reverse geocoding call responded with a complete address in XML format.

<GeocodeResponse>
<status>OK</status>
 <result>
 <type>street_address</type>
 <formatted_address>8 Avenue Gustave Eiffel, 75007 Paris, France</formatted_address>
 <address_component>

What Are XML and JSON?
Extensible Markup Language (XML) is a plain-text markup language to describe data. It looks a lot like
HTML, but the tags describe data field names, which you get to define yourself. The actual data exists
between the opening and closing tags, as in <first_name>Christoph</first_name>.

JavaScript Object Notation (JSON) is a lightweight, plain-text data format, similar to XML. It is a way of
organizing data in plain text so that JavaScript can easily process it and so that humans can still easily read
it. JSON consists of objects, which are mainly name-value pairs enclosed by curly brackets ({ }), and lists of
values, which function as arrays and are enclosed with square brackets ([]). JSON can get pretty complex
when you start nesting objects and arrays. But for these purposes, JSON is quite simple.

The following example is a list of gas stations, each with a number of attributes (ID, brand, latitude,
longitude). A representation of this in JSON looks something like this:

{
 "stations":[
 {
 "id":"1",
 "brand":"Shell",
 "lat":32.343214,
 "lng":-97.398834
 },
 {
 "id":"2",
 "brand":"Valero",
 "lat":32.15534,
 "lng":-97.19984
 },
 {
 "id":"3",
 "brand":"Exxon",
 "lat":33.92234,
 "lng":-94.88223
 }
]
}

Here you have an object named stations, containing an array of name-value pairs. You are going to
generate this JSON string with PL/SQL in your AJAX callback and then pass it to your JavaScript function so
that it can be parsed and the results rendered on the map.

http://maps.googleapis.com/maps/api/geocode/xml?latlng

ChapteR 12 ■ Map IntegRatIon

481

Processing XML/JSON Results
Once you have geocoded results, you can process those results in a number of ways. If you receive XML or
JSON results, you may want to parse the data and store it. If you use the Oracle Elocation Geocoder APEX
plugin, from the Sample Geolocation Showcase sample application, you can simply work off the collection
returned by that plugin. The data contained in the collection is already parsed into the address components
(for example, street, city, state, and so on).

To decide whether you want to process XML or JSON, you should consider first where the data will
primarily be used. If you plan to directly display it on a map, you may want to consider JSON since the map
APIs are written in JavaScript, where JSON is easily processed.

If you plan to work with the results in PL/SQL and you are working in Oracle 11g or older, XML may be
the better choice because JSON processing requires the help of a third-party package. To find out more, see
https://ruepprich.wordpress.com/2013/09/17/geocoding-with-pljson/.

Oracle 12c provides native JSON processing and makes this the clear choice because you can easily use
the results in JavaScript and PL/SQL.

If you do not need to process the geocoding results in JavaScript, the Oracle Elocation Geocoder plugin
is a good choice since it directly populates an APEX collection, which allows for easy PL/SQL processing.

Oracle Web Services
Oracle also provides geocoding web services. Using them with Application Express is quite easy because
Oracle already has a geocoding plugin. That plugin is the Elocation Geocoder plugin used in the sample
application Geolocation Showcase of APEX version 4.2.5 and higher. This plugin uses Oracle’s own
geocoding service. To use this and other plugins, simply export it from the sample application and import it
into your own.

The plugin provides a text field for input and a submit button. On submit, the plugin calls Oracle’s web
services and populates a collection with the results, which can then be easily displayed and processed in
APEX.

The following is the process for creating a geocoding page with the Oracle plugin:

 1. Create a page with a static region (HTML region in versions 4 and earlier).

 2. Create search and country text fields.

 3. Create a search button.

 4. Add a classic report region.

 5. Add a dynamic action to call the geolocation service.

 6. Add a dynamic action to respond to the completed service call.

The following subsections describe each step in more detail.

Creating a Page
The first step is to create a page with a static region. This is just a basic page, and the static region should be
empty at this point in the process.

https://ruepprich.wordpress.com/2013/09/17/geocoding-with-pljson/

ChapteR 12 ■ Map IntegRatIon

482

Creating Search and Country Fields
Create a basic text field called Pn_SEARCH with a source type of Null. The country field (Pn_COUNTRY) is
required by the plugin and contains the country abbreviation. For this example, you will just use the hard-
coded value of USA, but you can always add an LOV with a list of countries and their respective codes.

Adding a Classic Report
Create a classic report region named Results using a query based on the collection that will be populated by
the geolocation dynamic action. The following query maps the generic collection columns to recognizable
column names. The values of the columns are determined by the plugin.

select
 nvl(c001, 'N/A') as street,
 c002 as house_number,
 c003 as postal_code,
 c004 as settlement,
 c005 as builtup_area,
 nvl(c006,c005) as municipality,
 case
 when c011 = 'US' then c007
 else initcap(c007)
 end as order1_area,
 c008 as side,
 c009 as error_message,
 c010 as match_vector,
 n001 as sequence,
 n002 as longitude,
 n003 as latitude,
 n004 as edge_id
from apex_collections where collection_name = 'GEOCODER_RESULTS'
and n002 is not null and n003 is not null
order by seq_id;

Creating a Search Button
You also need a button called GEOCODE that executes the search. The button uses the action Defined by
Dynamic Action. This action fires on a click of this button and executes Oracle’s geocoding services. Be
sure to specify a collection name matching that in the query from the preceding section. In this case, that
collection name should be specified as GEOCODER_RESULTS. Figure 12-1 shows the definition of the dynamic
action invoking Oracle’s geocoding service.

ChapteR 12 ■ Map IntegRatIon

483

Figure 12-1. Definition of the dynamic action invoking Oracle’s geocoding service

Add a True action that passes the search criteria to the plugin, as shown in Figure 12-2.

Figure 12-2. Settings for the True action of the dynamic action

ChapteR 12 ■ Map IntegRatIon

484

Adding a Dynamic Action to Respond
This action fires after the previous dynamic action (Oracle Elocation Geocoder [Plug-In]) executes
successfully and refreshes the report region to show the results. Figure 12-3 shows the settings of the
dynamic action for the geocoding response.

Now you add a True action to refresh the report region, as shown in Figure 12-4.

Now you can enter an address and click the Geocode button, and the results report will display the
geocoding results as shown in Figure 12-5. Note that this example is for U.S. addresses. To geocode addresses
in other countries, make sure to change the Country field to an English country name, such as Germany or
Canada.

Figure 12-3. Settings of the dynamic action for geocoding response

Figure 12-4. The settings of the True action of the geocoding response

ChapteR 12 ■ Map IntegRatIon

485

Choosing a Geocoding Service
Of course, there are more web services available, but which one should you choose? I have compared the
results of Yahoo, Google, and Oracle and have found that each one returns almost the same results as far as
latitude and longitude are concerned.

The main differences are in the additional data provided, such as cleaned-up addresses, and the way
address elements are split up. Of course, you will have to review the terms and conditions of each service
to make sure you are in compliance. You may also test the response times of each service because they may
differ depending on your location, as well as the accuracy of some of your sample data.

The Mapping API
You can take the coordinates from your geocoding efforts and plot them onto a map. A map consists of map
tiles and layers. Map tiles are images that show the geographic features on a map, such as roads, rivers, land,
and water masses. Most mapping APIs will allow you to choose from different map tiles, such as road maps,
satellite imagery, topographical features, and so on. These map tiles are provided by a tile server web service.
This web service can be a proprietary one, as in the case of Google and Yahoo, or it can be a third-party
provider, as in the case of Leaflet maps. When passing a coordinate pair and a zoom factor to the API, the
map tiles for that location, and the surrounding area, will be provided by the tile server.

To draw something onto a map, you use layers. Layers contain elements such as pins, polygons, text
(other than that included on the map tiles), and so on. Through the use of JavaScript calls, you can tell the
map where and how to draw a layer. Layers typically allow further formatting, such as colors and size, and
even can be extended with event handlers to allow them to react to mouse clicks and hovers.

You can display single coordinate pairs, which I will call points from here on, with a map marker or
pin. You can also use these points and draw a circle around them. More complex shapes, such as lines and
polygons, require multiple points.

Any marker or shape you draw on top of a map exists on a separate layer that the mapping APIs render.
These layers can then be shown, hidden, altered, or removed. Depending on the API used, these shapes can
also have additional attributes. Markers, for example, can use image files as their representations. Lines and
polygons can have attributes such as line thickness, color, and opacity. The layers can also have JavaScript
listeners attached to them that respond to clicks and hovers.

Figure 12-5. The sample page and the search results

ChapteR 12 ■ Map IntegRatIon

486

In this chapter, you will use the open source JavaScript library named Leaflet (www.leafletjs.com).
Other APIs such as Google maps (https://developers.google.com/maps/) or Yahoo maps
(https://developer.yahoo.com/maps/) work similarly and differ mainly in syntax. To get the full range of
the capabilities for each API, refer to the respective online documentation. Also check their usage terms.
I found the Leaflet API to be more concise than the others, and it works well on mobile devices.

Let’s take a closer look at how mapping APIs work. The following are the basic elements needed to
render a map on an APEX page:

•	 Inclusion of the API libraries (JavaScript/CSS)

•	 A region containing a div with a specific ID and a minimum height

•	 Custom JavaScript using the API library to render the map inside the div

Including the API Libraries
First you must include these libraries in your application. You can download these libraries and store
them in the application’s static files or on your server, or you can refer to their URLs on the Web. When
choosing the latter, keep in mind that the libraries may change over time and affect your application in
unexpected ways.

In the example shown in Figure 12-6, I downloaded the Leaflet JavaScript library and saved it to the static
files of the application, and then I included it by making a URL reference to it in the page’s JavaScript attribute.

Figure 12-6. Including the Leaflet JavaScript library in the page's JavaScript attribute

Note that APEX 5 now allows you to save static files under different directories. To keep my static files
organized, I saved my JavaScript files in the js directory and the CSS files in the css directory.

This particular API also requires a CSS library, which I obtained from its website and stored in the
application static files. I then included the CSS library by adding the URL into the CSS File URL attribute of
the page, as shown in Figure 12-7.

http://www.leafletjs.com/
https://developers.google.com/maps/
https://developer.yahoo.com/maps/

ChapteR 12 ■ Map IntegRatIon

487

Creating a div to Hold the Map
APEX regions of type Static Content are similar to blank HTML pages and allow you to add HTML to the
region source. You will create such a region to simply hold a div container with a unique ID. The map
JavaScript will then use this ID to render the map inside the div tags. Add the following syntax to the region’s
source:

<div id="mapRegion" style="width:100%;height:430px;"></div>

Figure 12-8 shows the region’s definition in APEX. You can see the preceding code in the Region Source
field at the very bottom of the image.

Figure 12-7. Including the leaflet.css CSS library in the page’s CSS attribute

Figure 12-8. The static region with the div container

ChapteR 12 ■ Map IntegRatIon

488

Writing JavaScript to Render the Map
Let’s add the following JavaScript code to the page’s JavaScript Execute when Page Loads attribute. When the
page runs, the JavaScript will automatically be executed to render the map in the div created in the previous
section.

var tileLayer =
 new L.tileLayer('http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg'
 , {
 attribution: 'Tiles Courtesy of MapQuest'
 ,subdomains: '1234'
 });

var latlng = new L.LatLng(47.610871,-122.333451);

var map = new L.Map('mapRegion'
 , { center: latlng
 ,zoom: 8
 ,layers: [tileLayer]
 });

With a few lines of code, you are able to draw the map. First you declare the variable tileLayer, which
tells the API from where to pull the map tiles. In this case, you get the tiles from MapQuest, as specified in the
URL. The URL contains four variables. The included JavaScript library will provide their values from the data
you provide when you invoke to map. The four variables are as follows:

•	 {s}: Subdomain (otile1, otile2, otile3, otile4 as specified by the provider)

•	 {z}: Zoom factor (determines how close you are zoomed into the map)

•	 {x}: X coordinate (center of the map)

•	 {y}: Y coordinate (center of the map)

The curly brackets after the URL provide some options for the tile layer. The first is the attribution,
which prints some text on the bottom right of the map. Since MapQuest was kind enough to provide the
service for obtaining tiles, you attribute that fact in the attribution option.

The subdomains option provides the values for the {s} variable to help the provider to offload requests
to different servers. The latlng variable creates and stores a LatLng object that holds a coordinate pair
(x and y).

Finally, the map variable creates and stores a new Map object. The first attribute of the object is the
ID of the div where you want to render the map. The following options provide details about the map itself:
its center with X and Y coordinates, the zoom factor, and the source for the tiles.

By simply declaring the map variable, the map is then rendered inside the div on the page. See
Figure 12-9 for an example of how the map appears.

http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg

ChapteR 12 ■ Map IntegRatIon

489

Figure 12-9. With just a few lines of code, you can easily render a map in APEX

ChapteR 12 ■ Map IntegRatIon

490

Adding Layers
Now that you have a basic map, let’s make it a bit more interesting by adding some layers. First you’ll add a
marker that shows a pop-up bubble when clicked, and then you’ll add some geometric figures.

Adding a Marker
A marker is a special layer object that represents a map pin. To add one, you just need to declare the marker
object and give it a coordinate pair and some data about how it should look. In this example, you’ll include a
custom image for the marker, rather than the standard blue pin provided by the API.

The following is the JavaScript to add a marker:

var myIcon = L.icon({
 iconUrl: '#APP_IMAGES#img/marina-2-red.png',
 iconAnchor: [22, 94],
 popupAnchor: [-6, -85]
});

var marker = L.marker(latlng,{icon: myIcon});

marker.bindPopup('Welcome to Seattle!');

marker.addTo(map);

You first create an icon that you will use as the custom marker image. The iconUrl option points to an
image I included in the application’s static files. The iconAnchor is the coordinates of the “tip” of the icon
calculated from the top left. This is useful in case the icon is of a nonstandard shape or it simply looks odd
in its default position. You may have to tweak these numbers by trial and error. For custom map icons, see
https://mapicons.mapsmarker.com/.

The popupAnchor gives the position of the pop-up bubble.
Now you create the actual marker, where you tell it its position (latlng) and what it should look like. For

the marker to react to a click, you add the bindPopup method to the marker. The method accepts standard
HTML that allows further styling.

To make the marker appear on the map, invoke the addTo method and pass the map variable to it. You
should see results like in Figure 12-10.

https://mapicons.mapsmarker.com/

ChapteR 12 ■ Map IntegRatIon

491

Figure 12-10. A map marker with a custom icon image and a pop-up bubble

Adding Many Markers
If you have a large number of markers to add to the map, you can make use of JSON. You can store all the
coordinates for the markers in a JSON string. Then you can use JavaScript to loop through the JSON object
and render each marker.

You first fetch the data from the database and store it in a hidden page item (P320_JSON). You do that
using a Before Header PL/SQL page process. Here is what the code looks like:

declare
 l_json VARCHAR2(32000);
 l_i PLS_INTEGER;
begin
 -- Begin the JSON string
 l_json := '{"stations": [';

ChapteR 12 ■ Map IntegRatIon

492

 -- Start a counter to help with formatting
 l_i := 0;

 -- Fetch data from our database table and begin a loop
 for c1 in (select id, name, brand, lat, lng from gas_stations) loop

 -- For loop iterations > 0 add a comma to the end of the string
 if l_i > 0 then
 l_json := l_json || ',';
 end if;

 -- Build the JSON string
 -- Use apex_escape.html() to escape special characters
 l_json := l_json || '{"id": "' || c1.ID
 || '", "name": "' || apex_escape.html(c1.NAME)
 || '", "brand": "' || apex_escape.html(c1.BRAND)
 || '", "lat": ' || c1.LAT
 || ', "lng": ' || c1.LNG
 || '}';

 -- Increment the counter
 l_i := l_i + 1;

 end loop;

 -- Finalize the JSON string
 l_json := l_json || ']}';

 -- Store the JSON string in a page item
 :P320_JSON := l_json;

end;

Next you add a new JavaScript function that loops through the JSON and renders each marker, along
with its pop-up bubble, on the map. You also add a function that allows you to remove the markers by
clicking a button. For this example, I have also saved a new image (fillingstation.png) to the img directory
in the static files. I also created a hidden page item (P320_JSON) to store the JSON from the JavaScript. The
complete code now looks as follows:

//Tile source
var tileLayer =
 new L.tileLayer('http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg'
 , {
 attribution: 'Tiles Courtesy of MapQuest'
 ,subdomains: '1234'
 });

//Initial map center
var latlng = new L.LatLng(32.935217,-97.084862);

http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg

ChapteR 12 ■ Map IntegRatIon

493

//Map definition
var map = new L.Map('mapRegion'
 , { center: latlng
 ,zoom: 11
 ,layers: [tileLayer]
 });

//Create a custom icon
var gasIcon = new L.icon({iconUrl: '#APP_IMAGES#img/fillingstation.png'
 ,iconAnchor: [12,41]
 });

//Create an offset for the popup bubble, 3 points to the right
//and 25 points up.
var popupOptions = {
 offset: new L.Point(3, -25)
};

//Load the JSON from the page item into a json variable
var json = JSON.parse($v('P320_JSON'));

//Parse out the stations array and save it in gs (gas stations)
var gs = json.stations;

//Add additional variables
var marker, name, text, id, lat, lng;
var Markers = [];

//Loop through gs array
for (var i = 0; i < gs.length; i++) {

 //Set ID (primary key of gas stations)
 id = gs[i].id;

 //Set latituted and longitude
 lat = Number(gs[i].lat);
 lng = Number(gs[i].lng);

 //Set name and format text for popup
 name = gs[i].name;
 text = '' + "Station " + gs[i].id + "<hr>" + name + '</
span>';

 //Create a marker and bind popup bubble
 marker = L.marker([lat,lng],{icon: gasIcon});
 marker.bindPopup(text,popupOptions);

 //Attach custom properties:
 marker.id = id;
 marker.name = name;

ChapteR 12 ■ Map IntegRatIon

494

 //Add marker to global array so we can remove it later
 Markers.push(marker);
 //Add marker to the map
 marker.addTo(map);
}

//Create function to remove markers
window.removeMarkers = function() {
 //Loop through markers
 Markers.forEach (function(e) {
 map.removeLayer(e);
 });
 Markers = [];
}

The function removeMarkers() is created in the windows namespace so that it can be called from a
button on your page. Create a button labeled Remove Markers and define its behavior to redirect to a URL
that executes a JavaScript function call, as shown in Figure 12-11.

Note that you are using a trick here to remove the markers from the map. To know which layer to
remove, you simply store each marker in an array called Markers. In the removeMarkers() function, you
simply loop through the array and delete it. There’s one more thing: Notice how you use the gas station ID
as the array index (Markers[gs[i].id] = marker;). This means that if the first gas station ID is 10, the array
will not have anything in it for indexes 0 to 9. Therefore, as you loop through the array from zero to Markers.
length, you need to check whether an array element is defined (Markers[idx] !== undefined) before you
remove the marker from the map.

Figure 12-12 shows the multiple markers, with their custom icons and pop-up bubble. The data for the
marker coordinates and gas station names came from the JSON object, which was generated with PL/SQL.

Figure 12-11. The Remove Markers button behavior attributes

ChapteR 12 ■ Map IntegRatIon

495

Adding a Polygon
Rendering polygons on a map is similar to rendering markers. The main difference is that multiple points are
specified for a polygon rather than a single point for a marker. The mapping API will take care of the rest by
connecting the points with lines and optionally filling the resulting shape with a color. A polygon can also be
bound to a listener that can react to clicks and hovers.

Let’s add a polygon to the map. Like the previous marker object, Leaflet also provides a polygon object,
which accepts an array of points. Leaflet will then connect the points with straight lines to draw the polygon.
The following JavaScript code demonstrates how to create a polygon. Place it after the map definition.

var corners = [[48.108239, -123.326049]
 ,[48.108239, -121.848388]
 ,[47.227851, -121.870360]
 ,[47.227851, -123.326049]
];

Figure 12-12. The map with multiple markers whose data came from a JSON object

ChapteR 12 ■ Map IntegRatIon

496

 var polygon = L.polygon(corners,{color: 'red',fillColor: 'red'});

 polygon.bindPopup("I'm a polygon!");

 polygon.addTo(map);

In this example, you create an array of four coordinate points and simply pass it to the polygon. In
addition, you add a couple of color options. You also bind a pop-up to the polygon, which will display a
message when the polygon is clicked. Finally, you add the polygon to the map so that it gets rendered, as
shown in Figure 12-13.

Since the polygon is drawn in order of the point array, it is important to make sure that the order is
correct; otherwise, the polygon may render in unexpected ways. Figure 12-14 shows what can happen if you
get the ordering wrong.

Figure 12-13. Map with polygon

ChapteR 12 ■ Map IntegRatIon

497

Interacting with the Database
Displaying geographic data on maps in APEX is powerful stuff. But let’s kick it up a notch and see how you
can dynamically interact with the database. You may dynamically show markers on a map depending on
report results, update page elements, or fetch data as map items are clicked. To get this level of interactivity,
you’ll make use of the on-demand processes (AJAX calls).

 ■ Note asynchronous JavaScript and XML (aJaX) allows data to be sent to a web page without having to
reload the page.

Figure 12-14. The map wth jumbled polygon points

ChapteR 12 ■ Map IntegRatIon

498

Showing Query Results on a Map
In the next example, you have a searchable report that returns data about gas stations. You could search for a
particular brand of gas station or try to find the gas stations within a ZIP code. Either way, you not only want
the search result in the report but also want to see the markers for each gas station on the map.

To do this, you need to pass the coordinates to the map, along with some additional data, such as gas
station brand, name, and address, so that you can include it in a pop-up window as the marker is clicked.
The best way to do this is to capture the data inside a JSON array, pass it into the JavaScript code, and run
the functions to render the map. Since the GAS_STATIONS table contains all the necessary data, including the
coordinates, you could use a dynamic action to read the report rows and generate a JSON array from them.
Or you could simply rerun the query in the background with an AJAX callback and directly generate the
JSON there. The second option may be better for those cases where there are lots of results and the report
will consist of multiple pages.

You will store the JSON in a CLOB column of a collection to make use of a convenient feature in the APEX
JavaScript API that allows you to read the collection in JavaScript. The code calls the AJAX callback and then
uses a callback function to render the results on the map, once the results have been completely returned.

The process flow looks like Figure 12-15.

Rather than laying out the entire example here, you’ll look at some of the trickier elements needed to
do the work. Let’s begin with fetching the gas station data on demand, in other words, not directly on page
load but rather when a button is clicked. Fetching on demand gives you a bit more flexibility by potentially
allowing you to include user input in your data fetch process.

The following JavasScript function invokes the AJAX callback PL/SQL process on the page, passes a
variable to it, waits for the results, and then calls another function to draw the markers on the map. This
example uses the page item P115_SEARCH, which is a text field into which the user can enter a search string.

window.fetchGasStationJSON = function() {
 apex.server.process("FETCH GAS STATIONS", {
 pageItems: "#P115_SEARCH"
 }, {
 success: function(a) {
 var b = new apex.ajax.clob(function() {
 var a = p.readyState;
 if (a == 1 || a == 2 || a == 2) ; else if (a == 4) {
 gJSON = p.responseText;
 showGasStations();
 } else return false
 });
 b._get();
 },
 dataType: "text",
 loadingIndicator: "#P115_SEARCH"
 });
 };

Enter Report
Search and

Submit

Report refreshes
with new report

results

On Demand re -
executes search

and creates JSON
Clob

On Load
JavaScript calls On
Demand Process

JavaScript
Callback draws
markers from

CLOB

Figure 12-15. Process flow for displaying query output onto a map

ChapteR 12 ■ Map IntegRatIon

499

This function, like any of the previous JavaScript functions, is placed in the JavaScript Function and
Global Variable Declaration of the APEX page attributes. You define this function in the window scope so it
can be called from the APEX page, for example from a button. The function calls the build APEX JavaScript
API apex.server.process, which in turn calls the AJAX callback PL/SQL process named in the first
parameter (FETCH GAS STATIONS). Following this parameter is a number of options. The first, pageItems,
sets the specified items in session state. This allows the AJAX callback to read its value. The next option
consists of three suboptions: success, dataType, and loadingIndicator. The success option specifies what
to do after the AJAX callback call succeeds. Here you specify a callback function, which reads the CLOB
value from the collection in the AJAX callback into a JavaScript variable (gJSON). This function has another
callback function, which waits until the CLOB has been completely read, assigns the CLOB to the gJSON
variable, and then calls the function (showGasStations()) to draw the markers on the map. The dataType
option simply specifies the data type for the call, and the loadingIndicator specifies the page item next to
which to display a spinner graphic while the function is executing.

 ■ Note In this example, gJSON is a globally defined variable. Using globally defined variables can help
in debugging with the browser’s JavaScript console. to define a JavaScript variable globally, place it in the
Function and global Variable Declaration of the page attributes.

Next you create the AJAX callback process in the page, as shown in Figure 12-16.

Figure 12-16. AJAX callback

ChapteR 12 ■ Map IntegRatIon

500

The following is the PL/SQL code for the FETCH GAS STATIONS AJAX callback. It creates a collection for
the JSON result. It uses a cursor-for-loop to retrieve data from the GAS_STATIONS table where either the name
or the brand matches the search term in P115_SEARCH and then stores the result in the collection.

declare
 l_json clob;
 l_idx PLS_INTEGER;
 l_station clob;
begin

 -- Set up collection:
 -- If it exists, delete it.
 if apex_collection.collection_exists(p_collection_name=>'CLOB_CONTENT')
 then
 apex_collection.delete_collection(p_collection_name=>'CLOB_CONTENT');
 end if;

 -- Create a new collection.
 apex_collection.create_or_truncate_collection(p_collection_name=>'CLOB_CONTENT');

 -- Create a temporary CLOB
 dbms_lob.createtemporary(l_json, false, dbms_lob.SESSION);

 -- Setup JSON beginning with the object stations
 l_json := '{"stations": [';

 -- l_idx is used to put the first comma in the right place
 l_idx := 0;

 -- Fetch the gas station data into cursor c1
 for c1 in (select id, name, brand, lat, lng
 from gas_stations
 where (
 instr(upper("NAME"),upper(nvl(:P115_SEARCH,"NAME"))) > 0 or
 instr(upper("BRAND"),upper(nvl(:P115_SEARCH,"BRAND"))) > 0
)
) loop

 -- Add a trailing comma to JSON after first loop iteration
 if l_idx > 0 then
 l_json := l_json || ',';
 end if;

 -- Create array element for each gas station
 l_station := '{"id": "' || c1.id
 || '", "name": "' || c1.name
 || '", "brand": "' || c1.brand
 || '", "lat": "' || c1.lat
 || '", "lng": "' || c1.lng;
 l_json := l_json || l_station || '"}';
 l_idx := l_idx + 1;
 end loop;

ChapteR 12 ■ Map IntegRatIon

501

 -- Terminate the JSON
 l_json := l_json || ']}';

 -- Send JSON to clob
 apex_collection.add_member(p_collection_name => 'CLOB_CONTENT'
 ,p_clob001 => l_json);

 -- Pass a success message back to the calling JavaScript function
 htp.p('Success. JSON length: ' || length(l_json));
end;

In this example, you use yet another trick: since the generated JSON can be quite large, you store it
inside a CLOB. To pass this CLOB back to your JavaScript function, you store the CLOB in a collection, where
the built-in apex.ajax.clob function can pick it up.

To build the JSON string, you use a cursor-for-loop to iterate through the wanted rows in the table
and simply build the JSON string, with its brackets, commas, and quotes. The htp.p call at the end sends a
success message to the calling JavaScript and is mainly used for debugging.

 ■ Tip as you are working with JSon, you may find that you get some errors because it is malformed. By
using a globally defined JavaScript variable (gJSON in this example), you can use the browser’s JavaScript
console to see its value. Free online JSon validation tools like http://jsonformatter.curiousconcept.com/
let you verify your JSon to find any errors in it.

At this point, you have all the basic elements you need to display a map with all the gas stations that
were queried in the report. You know how to do the following:

•	 Draw a map on the page

•	 Put a marker on the map

•	 Call a PL/SQL procedure from JavaScript

•	 Create a JSON object in PL/SQL

•	 Process JSON and draw the markers

Once the JSON is generated and passed to the APEX collection, the callback function in JavaScript can
now parse the JSON and render the markers for each station on the map. The pseudocode looks something
like this:

Loop through JSON
 Create a map marker.
 Assign a popup to the marker with data from a gas station.
 Add the marker to an array, so that we can later remove it.
 Add the marker to the map
End loop

http://jsonformatter.curiousconcept.com/

ChapteR 12 ■ Map IntegRatIon

502

Here is the complete JavaScript source:

var tileLayer =
 new L.tileLayer('http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg'
 , {
 attribution: 'Tiles Courtesy of MapQuest'
 ,subdomains: '1234'
 });

var latlng = new L.LatLng(32.935217,-97.084862);

var map = new L.Map('mapRegion'
 , { center: latlng
 ,zoom: 11
 ,layers: [tileLayer]
 });

//Create a custom icon
var gasIcon = new L.icon({iconUrl: '#APP_IMAGES#img/fillingstation.png'
 ,iconAnchor: [12,41]
 });

//Create an offset for the popup bubble, 3 points to the right and 25 points up.
var popupOptions = {
 offset: new L.Point(3, -25)
};

function showGasStations() {
 //Parse JSON string in gJSON into json variable
 var json = JSON.parse(gJSON);

 //Parse out the stations array and save it in gs (gas stations)
 var gs = json.stations;

 //Add additional variables
 var marker, name, text, id, lat, lng;
 var Markers = [];

 //Loop through gs array
 for (var i = 0; i < gs.length; i++) {

 //Set ID (primary key of gas stations)
 id = gs[i].id;

 //Set latituted and longitude
 lat = Number(gs[i].lat);
 lng = Number(gs[i].lng);

 //Set name and format text for popup
 name = gs[i].name;
 text = '' + "Station " + gs[i].id + "<hr>" + name + '';

http://otile{s}.mqcdn.com/tiles/1.0.0/map/{z}/{x}/{y}.jpeg

ChapteR 12 ■ Map IntegRatIon

503

 //Create a marker and bind popup bubble
 marker = L.marker([lat,lng],{icon: gasIcon});
 marker.bindPopup(text,popupOptions);

 //Attach custom properties:
 marker.id = id;
 marker.name = name;

 //Add marker to global array so we can remove it later
 Markers[gs[i].id] = marker;

 //Add marker to the map
 marker.addTo(map);
 }
}

//Create function to remove markers
window.removeMarkers = function() {

 //Loop through markers
 for (idx = 0; idx < Markers.length; idx++) {

 //If marker index exists remove that marker's layer from the map
 if (Markers[idx] !== undefined){

 //Remove marker from the map
 map.removeLayer(Markers[idx]);

 //Remove marker from array
 Markers[idx] = 0;
 }
 }
}

window.fetchGasStationJSON = function() {
 apex.server.process("FETCH GAS STATIONS", {
 pageItems: "#P330_SEARCH"
 }, {
 success: function(a) {
 var b = new apex.ajax.clob(function() {
 var a = p.readyState;
 if (a == 1 || a == 2 || a == 2) ; else if (a == 4) {
 gJSON = p.responseText;
 showGasStations();
 } else return false
 });
 b._get();
 },
 dataType: "text",
 loadingIndicator: "#P330_SEARCH"
 });
 };

ChapteR 12 ■ Map IntegRatIon

504

Now define the global variable gJSON in the page attributes, as shown in Figure 12-17.

Then add a region button to call the fetchGasStations function. See Figure 12-18 for an example.

This should give you a good example of how to dynamically fetch geographic data from the database
and display it on the map.

Spatial Math
Being able to display geographic data on a map is quite powerful; being able to analyze the relationships
between geographic points is even more so. The Oracle Locator feature provides a number of features and
services to make geographic calculations such as finding the distance between two points or calculating the
area of a polygon.

Oracle Locator is a no-cost feature of Oracle Database 11g and 12c and is a subset of the for-cost option
Oracle Spatial. Some of the capabilities that were available only in 11g Spatial at additional cost have been
included in 12c at no additional cost.

You already encountered the geographic data type sdo_geometry earlier in the chapter. To do any of
the spatial calculations, you not only need that data type but also a special spatial index and some spatial
metadata.

Figure 12-17. A JavaScript variable declared globally can also be accessed by the browser’s inspector

Figure 12-18. Button to call JavaScript procedure

ChapteR 12 ■ Map IntegRatIon

505

SDO_GEOMETRY
The SDO_GEOMETRY data type contains various parameters that allow Oracle to make the right kind of spatial
calculations. These calculations take into account the type of geometry (point, line, polygon) and the type
of coordinate system that’s being used. When comparing geometries, you should always use the same
coordinate system. Coordinate systems are identified by a spatial reference ID (SRID). In the examples, you
will use SRID 4326, which is based on the World Geodetic System WGS84, a global coordinate system. The
SDO_GEOMETRY is a built-in Oracle object type that stores the particulars for a geometric object.

This example creates an SDO_GEOMETRY of a single coordinate point:

SDO_GEOMETRY(
 2001 -- SDO_GTYPE: point
 ,4326 -- SDO_SRID (coordinate system)
 ,MDSYS.SDO_POINT_TYPE(lon, lat, NULL) -- POINT_TYPE
 ,NULL -- SDO_ELEM_INFO_ARRAY
 ,NULL -- SDO_ORDINATE_ARRAY
)

The SDO_GTYPE value defines the type of geometry (point, line, polygon). It is a “smart” number where
the first digit represents the number of dimensions, the second the linear referencing system, and the last
two the geometry type (line, polygon, and so on; see Oracle documentation http://bit.ly/1Dau4st. SRID
is the coordinate system identifier as mentioned earlier. POINT_TYPE further defines the point’s location.
SDO_ELEM_INFO_ARRAY and SDO_ORDINATE_ARRAY are used for geometries that consist of multiple points,
such as lines or polygons.

SDO Metadata
Before being able to create a spatial index, you need to tell the database a few details about the table and
column you want to index. The data dictionary table user_sdo_geom_metadata holds that information.
Along with the table and column name, you need to specify an sdo_dim_array, which basically stores
the minimum and maximum latitude and longitude you want to work with. Also, the SRID needs to be
specified. The following example creates an entry in user_sdo_geom_metadata for the geom column in the
gas_stations table. It further specifies that you want to use SRID 4326. The SDO_DIM_ARRAY specifies the size
of the geometry grid you want to work with. In this case, that is the entire earth, which spans from -180 to 180
longitude and -90 to 90 latitude.

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'GAS_STATIONS',
 'GEOM',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', -180, 180, 1),
 SDO_DIM_ELEMENT('Y', -90, 90, 1)
),
 4326
);

http://bit.ly/1Dau4st

ChapteR 12 ■ Map IntegRatIon

506

Spatial Indexes
Once the spatial metadata is defined for the table and column, you can then create the index. Create it using
the following statement:

CREATE INDEX gas_stations_geom_idx
 ON gas_stations(geom)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

APEX_SPATIAL Package
The APEX_SPATIAL package provides you with an easy utility to create the metadata and the index in a single
PL/SQL call. It is necessary when creating user_sdo_geom_meatadata records from within APEX. This
example also creates a row in user_sdo_geom_metadata for the geom column in the gas_stations table.

begin
 apex_spatial.insert_geom_metadata (
 p_table_name => 'GAS_STATIONS'
 ,p_column_name => 'GEOM'
 ,p_diminfo => SDO_DIM_ARRAY (
 SDO_DIM_ELEMENT('X', -180, 180, 1),
 SDO_DIM_ELEMENT('Y', -90, 90, 1)
)
 ,p_srid => 4326
 ,p_create_index_name => 'GAS_STATIONS_GEOM_IDX'
);
end;

 ■ Note If you want to build spatial indexes through the SQL Workshop in apeX, you will need to use the
APEX_SPATIAL package.

Now that all three pieces are in place (the sdo_geometry column, metadata, and index), you can do your
spatial math. Let’s take a look at a few functions to make geographic calculations.

ChapteR 12 ■ Map IntegRatIon

507

Calculating Distance
To calculate the distance between two points, use the SDO_GEOM.SDO_DISTANCE function. The function
simply takes two points in the form of the sdo_geometry data type and returns the distance in the desired
unit (miles, meters, kilometers, and so on). The following query shows how to calculate the distance in miles
between gas stations with IDs 1 and 2:

SELECT ROUND(SDO_GEOM.SDO_DISTANCE (
 a.geom
 ,b.geom
 ,1
 ,'unit=mile'
)
 ,2) as miles
 FROM gas_stations a
 ,gas_stations b
 WHERE a.id = 1
 AND b.id = 2;

Search Within Distance
Another useful example is to show which gas stations are within 3 kilometers of a particular point.
The following query compares the sdo_geometry attributes of all the gas stations to the given point
(- 97.078686, 32.939251). If the distance from the given point is 3 km or less, the query returns the
string TRUE.

SELECT *
 FROM gas_stations g
 WHERE
 SDO_WITHIN_DISTANCE(
 g.geom
 , MDSYS.SDO_GEOMETRY(
 2001
 , 4326
 , MDSYS.SDO_POINT_TYPE(- 97.078686, 32.939251, NULL)
 , NULL
 , NULL
)
 ,'distance = 3 unit=km'
) = 'TRUE'

ChapteR 12 ■ Map IntegRatIon

508

Calculate Area
The SDO_AREA function can be used to calculate the area of a polygon. It takes an SDO_GEOMETRY object as its
argument. The SDO_GEOMETRY object should be set as a two-dimensional object with an SDO_ORDINATE_ARRAY
of coordinate points that describe the outer points of the polygon.

select SDO_GEOM.SDO_AREA(
 SDO_GEOMETRY(
 2003 -- GTYPE: two-dimensional polygon
 ,4326 -- SRID
 ,NULL -- POINT TYPE
 ,SDO_ELEM_INFO_ARRAY(1,1003,1)
 ,SDO_ORDINATE_ARRAY(3,3, 6,3, 6,5, 4,5, 3,3)
)
 ,1) AREA
 from dual;

Third-Party Data
At some point you may want to consider receiving more complex geographic data, such as ZIP code, census,
or neighborhood boundaries from a third-party provider. These data sets can be quite large because they
may consist of tens of thousands of coordinate points. For example, a ZIP code boundary would be displayed
as a polygon layer on top of a map as shown in Figure 12-19. Since ZIP code boundaries may be intricate,
they can contain a large number of points.

Figure 12-19. A ZIP code polygon can consist of a large number of coordinate points that define its perimeter

ChapteR 12 ■ Map IntegRatIon

509

While there are multiple formats in which geometry data can be communicated, one that is fairly easy
to deal with in the Oracle Database is Well Known Text (WKT).

WKT is a plain-text markup language for representing vector geometries, such as points, lines, and
polygons. The example in Figure 12-20 shows how multiple coordinate pairs make up polygons and
multipolygons.

What makes WKT easy to deal with in Oracle is the fact that Oracle already has a built-in function to
parse WKT and convert it into the sdo_geometry data type. The function SDO_UTIL.FROM_WKTGEOMETRY will
take the WKT string and convert it into a SDO_GEOMTERY data type.

A simple conversion technique would be to build a table with a WKT column (CLOB) and a
SDO_GEOMETRY column. Then simply run an update statement to make the conversion. Here’s an example:

UPDATE zip_code_table
 SET geom = sdo_util.from_wktgeometry(wkt_column);

It is important to then update the sdo_geometry column and specify its spatial reference ID:

UPDATE zip_code_table a
 SET a.geom.sdo_srid = 4326;

Now the table is ready for spatial calculations.
Oracle also contains conversion functions for WKB and GML. WKB is the binary format of WKT. GMS is

the Geography Markup Language. When dealing with third-party data, using any of these three data formats
will serve you well because the data conversion can be made with Oracle’s built-in functionality.

POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))

MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)),
((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),
(30 20, 20 15, 20 25, 30 20)))

Figure 12-20. Graphical representations of the WKT polygon and multipolygons

ChapteR 12 ■ Map IntegRatIon

510

Summary
Including interactive maps and perfoming spatial calculations on geographic data in an APEX application
can be quite powerful. Just like charts and graphs allow a user to comprehend numeric data more efficiently,
maps remove the abstraction of addresses and coordinate points and allow the user to better understand
spatial relationships.

You explored how to convert address data into coordinates through web services and then utilized
JavaScript mapping APIs to display that data on maps. You also learned how to customize the look of map
markers and how to add polygon overlays to maps. By utilizing Oracle’s built-in spatial objects and packaged
programs, you were able to begin drawing spatial relationships between data points. Finally, you looked at
how you can utilize third-party data in your own projects.

It is important to note that the mapping JavaScript APIs are continually being developed and enhanced.
Many provide further functionality through plugins. By looking at the available documentation online, you
may discover that some of these enhancements may be suitable for your projects.

Oracle’s spatial option offers many more features and are quite performant when it comes to crunching
large amounts of geographic data.

Explore the Sample Geolocoation Showcase application included in APEX 4.2.5 and higher and the
various mapping APIs for some more usage ideas.

You can download the gas stations sample objects and data from Apress.

511

Chapter 13

Themes and Templates

by Jorge Rimblas
Everything you see on an APEX page is the result of some template. Let that sink in for a moment.

We often decide on a template without giving it much thought. I say, that’s just fine. That is the elegance
and beauty of APEX. You’re able to start building functional, responsive, and even (sometimes) beautiful
web applications with little effort and not much concern for how all the HTML makes it into the page.
However, if you’ve ever been asked to change the look of an element on your page, want to learn about other
UI elements, take your applications to the next level, or simply understand what makes an application tick,
this chapter is for you. (If you’re just learning about APEX, you should probably wait before reading this
chapter, at least until you have a solid application or two under your belt.)

Themes and templates allow APEX to separate the application logic from the visual look and feel. This
is why you’re able to start building web applications so fast without the need to get bogged down in color,
fonts, and layout decisions. A theme is the all-encompassing collection of HTML, CSS, and JavaScript that
gives your application a consistent look. Templates are part of a theme. Templates are the building blocks of
all visual elements in an application. Everything you see on the screen is the result of a template.

Before APEX 5, if you didn’t know CSS, you were not going to get too far changing the font or colors of
your application and making a lot of style changes. With the introduction of the new Universal theme and
the Theme Roller, APEX 5 changes all that. APEX 5 goes as far as designating Theme 42 as the only standard
theme. All the other 26 themes that came previously are now the “other” themes or legacy themes.

Don’t get me wrong. In previous versions of APEX, you could still control a lot of the layout on a page.
I will attempt to show some techniques that can be used with all versions of APEX and any theme.

What Is a Template?
Within APEX you will see the following information about how templates are used:

The Application Express engine constructs the appearance of each page in an application
using Templates. Templates define how pages, page controls, and page components
display.

Based on that information and since you know that web pages are made of basically three elements
(HTML, CSS, and JavaScript), you can infer that templates are nothing more than a combination of these
elements. I like to think of HTML as the structure, the scaffold, or the bones of a web page. The veneer
and paint you apply to this structure will be the CSS. The pages, regions, labels, buttons, reports, lists,
breadcrumbs, and so on, are the result of some data being applied and merged with a template or, at the
least, content from a template.

Chapter 13 ■ themes and templates

512

 ■ Note Items themselves are not based on templates. however, you can still affect them with the Css on the
page. that Css may be part of the theme or perhaps part of your own additions. an item’s name becomes its
unique Id on the page. In Css, you can target an item with the #Pn_ITEM_NAME notation.

What Is a Theme?
Themes are the skin of your application. They attempt to give your applications, as a whole, a consistent
and uniform appearance. I will call this the look and feel of an application. I also like the definition that
Application Express uses, shown here:

A theme is a named collection of templates used to define the user interface of an
application.

In addition to grouping templates under one umbrella, a theme also gives you a set of attributes that will
drive the behavior of the theme as a whole. One of the many ways themes do this is by allowing you to define
default choices within your applications. They will also have information about which templates will be the
default. You can find these by going to Shared Components ➤ Themes and clicking your current theme.
These attributes are as follows:

•	 Component Defaults

•	 Region Defaults

•	 Dialog Defaults

Component Defaults
Component Defaults is the section where you tell APEX which template to use by default for each of the
possible elements. For example, in Figure 13-1, you can see that Page is set to Standard. Other options are
Left Side Column, Left and Right Side Columns, Login, and so on.

Figure 13-1. Theme attributes: Component Defaults

Chapter 13 ■ themes and templates

513

 ■ Note In the case of pages, it is recommended that you do not choose a page template every time you
create a new page unless you want to override this default. You would choose the appropriate default here. all
your pages will use the default value, and only those that require a different type of page layout would specify a
template.

In a different example, scrolling further down the list of component defaults, buttons can have a default
too. You can see that Text is the default value, and the other possible values are Icon, Text, and Text with
Icon. Text in this case means that the button will contain readable text (such as Save, Add, and Delete). This
will probably be your most used button template. (See Figure 13-2)

Figure 13-2. Component Defaults: button templates

Region Defaults
The Region Defaults settings are similar to the Component Defaults settings, but these apply to regions on
the page. The distinction is subtle but still important. Many components in the Component Defaults section
are elements that can be used only inside a region. That means that these regions apply an extra layer of
styling to them. As a case in point, lists are both a region type and a component element. This is because you
cannot display a list without a container for it, in other words, the region. The component is the list itself,
and the region will contain the component. The List default setting for the component is Links List, and the
default for List Region is 42. Standard. Translation, the component default for a list, will be Linked Lists, and
it will be placed inside a 42. Standard region.

Dialog Defaults
APEX 5 introduced a new way of displaying pages, the Dialog page. In the past, I’ve called this type of UI
element a modal page. A modal dialog, by definition, stops interaction with the calling page until it is
dismissed. Dialogs, on the other hand, can be modal or nonmodal. The Dialog Defaults settings define the
default type of template you want to use when you create new dialogs in your applications.

Out of the box, the Universal theme contains just a little over 50 templates. This number may be
different as new releases come out. Regardless, this is a dramatic reduction from previous Application
Express themes that would usually contain close to and upward of 100 (109 on Theme 26, for example).

All the magic from a theme happens in the templates. Template themselves have a powerful muscle to
get things done called substitution strings.

Chapter 13 ■ themes and templates

514

The Substitution Strings
Have you ever seen the Russian dolls that fit one inside the other? Figure 13-3 shows a couple of sets of these
dolls, and you can see how the different dolls in each set are sized in stepwise fashion.

Figure 13-3. Templates work similar to Russian dolls

Figure 13-4. Button inside a region inside a page

Templates are somewhat similar to those dolls in that many of them go inside one another. Often,
templates cannot be used without placing them inside another template. For example, as shown in
Figure 13-4, you may have a button, inside a region, inside a page. All those three elements are templates.
When you declare a button, you specify, at least, a label and usually an action. APEX will use that
information, via substitution strings, to create the button. Then the completed button becomes a unit of
information that will be placed inside a region. In this example, items are also part of that region. Once
the region is generated, it also becomes a unit of information, and it becomes the substitution strings
themselves that will be placed on a page.

Chapter 13 ■ themes and templates

515

Even more to the point, some elements, like regions, can also have subregions. The level of nesting can
be even higher in these situations. I’ll talk more about subregions later in the chapter. Figure 13-5 graphically
shows how elements get to be part of other elements. It starts to become clear why the Russian doll analogy
makes sense.

Figure 13-5. 3D representation of how components fit inside other components

You can see how APEX places some content inside more content and yet again inside even other
content. That nested placement is accomplished via substitution strings. Substitution strings are like
programming variables that take a value, and whenever they are referenced, their value becomes what
is used. You’ll recognize them in a template because they are in uppercase and have hash signs at the
beginning and end, for example #BODY#. #BODY# is one of the most popular substitution strings. It’s popular
mainly because it’s often mandatory in many templates and because it corresponds to the Source section for
many components. In Figure 13-6, you can see the Text field inside the Source section that will be used by
the #BODY# substitution string.

Chapter 13 ■ themes and templates

516

Let’s turn some HTML into a template. Say you have the following HTML:

<div>Hello</div>

To turn this into a template, you can do this:

<div>#BODY#</div>

There, you’ve built your first template! The substitution string #BODY# will now take many different
values, and the template doesn’t have to change. All the divs in Listing 13-1 can be outputs from the first
template.

Listing 13-1.

<div>Hello World!</div>

<div>List 1List 2</div>

<div>
 <button onclick="apex.submit('SAVE');">Apply Changes</button>
</div>

Figure 13-6. Source region attribute for a Standard region template

Chapter 13 ■ themes and templates

517

Since APEX provides a mechanism for you to pass CSS classes to a template, you may want to add the
#REGION_CSS_CLASSES# substitution string to accomplish that. The CSS Classes field shown in Figure 13-7
corresponds to this substitution string.

<div class="#REGION_CSS_CLASSES#">#BODY#</div>

Figure 13-7. The CSS Classes attribute in the builder maps to #REGION_CSS_CLASSES# in the template

Next, sometimes you want to reference a region by name within CSS or JavaScript. In a region’s
attributes, in the Advanced section, you’ll see Static ID. The value entered here goes straight into #REGION_
STATIC_ID#; let’s add that too.

<div id="#REGION_STATIC_ID#" class="#REGION_CSS_CLASSES#">
#BODY#
</div>

Finally, let’s add a handful more substitution strings to the first template: #REGION_ATTRIBUTES# and
#SUB_REGIONS#.

<div id="#REGION_STATIC_ID#" #REGION_ATTRIBUTES# class="#REGION_CSS_CLASSES#">
#BODY##SUB_REGIONS#
</div>

Save for some other small changes, you have just replicated the Blank with Attributes region template.
In previous APEX releases and in certain themes, you’ve known this template as DIV Region with ID. It’s an
incredibly simple construct, with not a lot of visual footprint on the page, and yet, as you will see later, it’s a
powerful tool for placing content.

Chapter 13 ■ themes and templates

518

Table 13-1. Values to Use for Building a Region

Substitution String Value

REGION_STATIC_ID clientRegion

REGION_CSS_CLASSES

REGION_ATTRIBUTES

BODY This is the content for this region.

SUB_REGIONS

Given the values in Table 13-1, after merging them with the template, you’ll have the following result:

<div id="clientRegion" class="">
This is the content for this region.
</div>

This example may seem simple, but the power of APEX is that the value of #BODY# could come from
another completely different region. Or just as interesting, it could come from a report. Then, before you
can see any of it on the screen, once APEX has produced the output for this region, it will all become part of
the #BODY# attribute on a page. You end up breaking content into its most atomic form and placing it inside
other elements in order to create a much more complex structure, just like the little Russian dolls.

Whenever you’re looking at an existing template or creating one from scratch, scroll down to the bottom
of the definition page. You’ll see a table with all the substitution strings that are available to you for the
specific type of template you’re in. The Referenced column lets you know whether the template is currently
using the substitution. The one exception to this is report templates. Report templates don’t have a list of
available and used substitution strings. Instead, I recommend looking at the help information for each field
to learn what is available.

Finding Substitution Strings in the Application
Many components and application attributes have a clear relationship to certain substitution strings. Let’s
point out some that are important or frequently used.

The substitution strings #THEME_JAVASCRIPT# and #THEME_CSS# are accessible when you edit your
theme attributes. They correspond to a list of files that will be added to every page in your application. You
should enter one file per line, with a fully qualified path, and you don’t need to use the <script> or <link>
tag. If you reference a file uploaded to your application or workspace files, you can use #APP_IMAGES# or
#WORKSPACE_IMAGES#, respectively, in the name. In the case of CSS files, you can optionally prefix each file
with a condition like [if IE] or a media query. These substitution strings should be kept specific to making
the theme function correctly as opposed to specific to the application. Put another way, this will be code that
will be required across and used in all the applications that use this same theme.

The substitution strings #APPLICATION_JAVASCRIPT# and #APPLICATION_CSS# are similar to the
previous two, but, as their name suggests, these are application specific. I find their placement, within APEX,
hard to find at first. They are under User Interface Details. This means that if you’re using a desktop and a
mobile user interface, there will be two places where you can enter application-specific CSS and JavaScript.
Go to Shared Components ➤ User Interface Attributes. Then edit the Desktop user interface. At the bottom
of the page, as shown in Figure 13-9, you’ll see a JavaScript and a Cascading Style Sheets section.

Chapter 13 ■ themes and templates

519

Figure 13-9. User Interface Details page

Figure 13-8. User Interface Attributes option

Chapter 13 ■ themes and templates

520

The substitution strings #PAGE_JAVASCRIPT#, #GENERATED_JAVASCRIPT#, #PAGE_CSS#, #HEAD#, and
#ONLOAD# are specific to each page. Edit the page called Page Attributes to find them. Figure 13-10 shows
which is which. Be aware that certain substitution strings may be required for a template. For example, in
the case of a page template, #HEAD# and #BODY# are required. The #HEAD# substitution string is important
because it will include certain meta and link tags, and it includes all the necessary CSS files required to
correctly render the page.

Figure 13-10. Page Attributes substitution strings

Chapter 13 ■ themes and templates

521

There are placeholder fields for substitution strings all throughout APEX. Keep an eye out for them.
Recognizing them and identifying their use in a template will go a long way in helping you understand and
maximize their uses. I’m going to finish this section identifying those used in a list template. Lists are a
powerful tool while building APEX applications, and they have almost unlimited applications.

The following SQL sample, for a dynamic list, shows which values are mapped to which substitution
strings. If you were using a static list, you would find the same fields and mappings.

-- column alias substitution string
--
select level,
 labelValue label, #TEXT#
 [targetValue] target, #LINK#
 [is_current] is_current_list_entry,
 [imageValue] image, #IMAGE#
 [imageAttributeValue] image_attribute, #IMAGE_ATTR#
 [imageAltValue] image_alt_attribute,
 [attribute1] attribute1, #A01#
 [attribute2] attribute2, #A02#
 [attribute3] attribute3, #A03#
 [attribute4] attribute4, ...
 [attribute5] attribute5
 ...
from ...
where ...
order by ...

In the case of a Linked List template, #IMAGE# is used to optionally define a class name to specify an
icon. #A01# is used as the badge value. This badge can be anything, but it’s often a count. Take a look at the
following SQL:

select 1 lvl
 , 'Clients' label
 , apex_util.prepare_url(
 'f?p=' || :APP_ID || ':CLIENTS:' || :APP_SESSION) target
 , 'NO' is_current_list_entry
 , 'fa-user' image
 , null image_attribute
 , null image_alt_attribute
 , null attribute1
 from dual
union all
select 1 lvl
 , 'Providers' label
 , apex_util.prepare_url(
 'f?p=' || :APP_ID || ':PROVIDERS:' || :APP_SESSION) target
 , 'NO' is_current_list_entry
 , 'fa-building' image
 , null image_attribute
 , null image_alt_attribute
 , 7 attribute1
 from dual

Chapter 13 ■ themes and templates

522

You can see, on Figure 13-11, how clients will have an icon defined by fa-user and providers will have
an icon defined by fa-building and a badge value of 7.

Figure 13-11. List with icons and badges

The following is the actual HTML template of the list that is creating the previous list. As you can see,
there are substitution strings for the #LINK#, #TEXT#, #A01#, and so on.

<li class="t-LinksList-item is-current #A03#">

 #TEXT#
 #A01#

 ■ Note By default, the linked list template does not display icons or badges. You need to enable them via
the template Options settings. the template Options settings are explained in more detail later in the chapter.

Theme Styles
Theme styles provide an easy way to change the look of an app without changing the theme or template.
They define a set of CSS styles that your application will use. Applications can have any number of theme
styles defined; however, only one can be current at a time. Different from themes, theme styles can be
changed at runtime. Calling the following API from within your application will change the theme style at
runtime and make a different, previously created theme style current:

apex_util.set_current_theme_style (
 , p_theme_number => l_theme_number
 , p_theme_style_id => l_theme_style_id
);

You can obtain the two parameter values from apex_application_themes.theme_number, where
is_current ='Yes', and from apex_application_theme_styles.theme_style_id dictionary objects.

Chapter 13 ■ themes and templates

523

 ■ Note Calling apex_util.set_current_theme_style means that your application is going to modify itself.
apeX 5 has a security setting to allow or deny such activities. Go to application attributes ➤ security and under
runtime apI Usage select the appropriate option.

This is a powerful feature because you could even let your users change the look of the application.
Imagine giving your end users the ability to switch the theme style of an application they use day-in and
day-out. All of a sudden, they will have a renewed excitement using an application that has a new skin but
whose functionality has not been compromised by them changing the style. This activity can be as simple as
changing the wallpaper on their desktop.

In the initial release of APEX 5, the Universal theme has two predefined theme styles: Vita, which uses
a blue color scheme, and Vita – Slate, which is a gray to dark gray color scheme. It is easy for developers to
create new ones via a powerful new tool in APEX 5, the Theme Roller.

“Style is the way you say who you are without having to speak.”

—Rachel Zoe

The Theme Roller
Another amazing new feature of APEX 5 is the Theme Roller. The Theme Roller is a tool that allows developers
to customize many aspects of certain application components. It allows developers to pick styles and colors and
see their effect on the application via an interactive tool. Figure 13-12 shows the Theme Roller button you will use
to invoke it via the Developer Toolbar. Figure 13-13 demonstrates the Style select list available from within the
Theme Roller. Finally, Figure 13-14 shows the end result of switching from the Vita style to the Vita – Slate style.

Figure 13-12. Theme Roller option on the Developer Toolbar

Figure 13-13. Switching theme styles from within the Theme Roller

Chapter 13 ■ themes and templates

524

To create a new theme style from the Theme Roller, all you have to do is pick your starting style and start
modifying attributes and colors. In addition to colors, some of the attributes that can be changed with the
Theme Roller are border radius for several components, navigation tree width, actions and left-side column
widths, and the maximum width of the body container. There’s also a Custom CSS field where you can enter
any other CSS classes and attributes you need to override or reference.

When it comes to picking colors, however, I strongly recommend you seek the assistance of a graphic
designer or at least use a tool to help you select colors that complement each other or provide a cohesive
tonal range across all components of your application. Your favorite sport team’s colors will most likely not
work well for an application (unless the application is for said team). Nothing damages the trust of your
users on an application faster than a bad-looking UI.

“"You never get a second change to make a first impression.”

—Andrew Grant

Once you’re pleased with your new style, click the Save As button at the bottom of the Theme Roller. At
this time, two things will happen. A new theme style will be created for your application, and a new CSS file
with your choices will be generated and uploaded to your application and used by your new style. After this
is done, use the Set as Current button to make your new creation the default for your application.

 ■ Note the theme roller is an apeX 5 and Universal theme feature only.

Template Options
I mentioned before that the number of templates is drastically reduced in the Universal theme (Theme 42) from
previous themes. However, the flexibility and number of options to style your elements on the screen did not go
down. On the contrary, I would argue it has increased. How is this possible when instead of 36 region templates
(on Theme 25) you now have 13 (on the new Theme 42)? How is this possible when in the case of buttons the
number has gone from 10 templates to now 3 in the Universal theme? The answer is Template Options settings.

Figure 13-14. Sample Database Application page after switching to Vita – Slate theme style

Chapter 13 ■ themes and templates

525

Template Options settings add an extra degree of configuration (or styling) to just about any template.
It’s an elegant, simple, and yet powerful approach to styling templates with developer-defined options. Take,
for example, Figure 13-15. All variations from the default view were achieved by simply selecting the options
Accent, Item Size Large, and Remove Borders. Figure 13-16 shows the dialog where the Template Options
settings can be selected.

Figure 13-15. Using Accent 5, Item Size Large, and Remove Borders

Figure 13-16. Available Template Options settings for the standard template

Chapter 13 ■ themes and templates

526

This was only a small portion of all the default Template Options settings available to the standard
template used by this region.

At their core, think of a template option as a value pair, meaning a name and assigned value. The name
is what you will see when you select the option, and the value is a CSS class (or list of CSS classes). In the
previous example, the following CSS classes were added by APEX to the region as the options were selected:
t-Region, t-Region--accent5, t-Region--noBorder, t-Region--scrollBody, t-Form—large. But, you
don’t actually have to know the name of those classes. You only have to choose from friendly names and
descriptions on the Template Options selection page. The actual magic, of course, is performed by the CSS
behind those classes (and the effort of the APEX development team that thought about them). The classes
themselves are defined as part of the Core.css file that comes with the Universal theme.

The definition of Template Options also allows specifying whether a “feature” can be used in
conjunction with others or if it contains mutually exclusive options. For example, let’s take the Accent
option. Since only one Accent color makes sense at a time, they are grouped under the Accent heading, and
they are selected via a drop-down one at a time.

But you’re not limited to the options available out of the box. If you’re able to declare a CSS class, then
you can extend the template option functionality. For example, let’s define a template option that will add a
border to a Blank with Attributes template. If you recall, the template is a simple div, and it has no indication
of where its borders are. The process is straightforward: define a CSS class, include the CSS code as part of
the application, declare a template option that uses the new class, and use the option as needed from within
the APEX builder. Let’s get started with the following simple class definition:

.c-Region--Border {
 border: 1px solid #DDD;
}

You can then define a With Border template option that will add a 1-pixel solid line all around in a light
gray color. You’ll add this to the Blank with Attributes template. Go to Shared Components ➤ Templates ➤
Find and edit the Blank with Attributes template. In the Template Options section, click Add Template
Option and use the values shown in Figure 13-17.

Figure 13-17. Define a template option

Chapter 13 ■ themes and templates

527

With the template option defined, you are ready to apply the new With Border Template Option setting
to any of the Blank with Attributes regions. Select the region in the Page Designer, under Appearance find
Template Options, and click it. Figure 13-18 shows where you can find this. Once you click the Template
Options button, you’ll see a modal dialog, as shown in Figure 13-19.

Figure 13-18. Editing a region’s template options

Figure 13-19. Finding the new Style option With Border

You are almost ready to test your handy work, except for one important step. You need to add the
CSS Class definition to your application. Normally, best practice would be to place it in a file and register
the file as part of the user interface under “Cascading Style Sheets.” APEX will then add it as part of the
#APPLICATION_CSS# mentioned earlier in the chapter. However, for this example, placing the CSS on the
Page Attributes Inline CSS setting will do just fine.

Figure 13-20 shows the before and after effect of adding the new template option to a Blank with
Attributes subregion.

Chapter 13 ■ themes and templates

528

When you create your own template options, make sure you select an appropriate group. Some options
will not need one. Template options with no groups will be presented as check boxes. These are elements
that can be compounded and used in conjunction with other visual elements. However, the correct group
will go a long way in explaining to future developers what the option does. The groups will be presented as a
select list.

As a bonus, template options can be used right away in all your previous applications and themes, not
just with the Universal theme.

The Grid
Grid systems have become incredibly popular in web development. They have the power of neatly arranging
and uniformly spacing elements. Yet, they have the ability to be nested and the property of becoming fluid
and changing in size and arrangement as the web page (or the viewport) changes in size. What’s more, in
small screens, like that of a mobile device, they can reflow the content in a completely different fashion from
a desktop layout.

To put it simply and bluntly, a grid system is a bunch of HTML tags (usually div tags) where your (main)
web content is placed and some carefully crafted CSS classes arrange it all. This grid governs the placement
of the main content on a page. Regions are placed within the grid and then components (mainly labels,
items, and buttons) are placed inside another grid that belongs to the region.

The Universal theme uses a 12-column grid. This means you can divide your available space evenly by
12. I think it helps to think of the screen as having 12 units or buckets, of equal size, to place your content
on. First, you start by placing elements on the first row. Then, as you’re done placing elements on that row,
you can move to the next one and so on. On every row, you once again have 12 columns to work with. As
elements are placed, you need to make sure always to use (or account for) all 12 columns. When you need
more control or your layout is complex, it’s also possible to nest one grid within another. If you were building
web sites with a text editor or some other tool or framework other than APEX, I would now start talking
about the row class, column class, first and last column classes, spans, offsets, nesting, and so on. However,
APEX makes all this declarative and simple for you to use. (See Figure 13-21.)

Figure 13-20. Subregion Blank with Attributes with new With Border option applied (before and after)

Chapter 13 ■ themes and templates

529

The APEX Developer Toolbar provides a useful toggle button to show or hide the grid. In Figure 13-21,
you can see the grid overlay just peeking behind the One Region area. You can count 12 columns, all exactly
the same size. If you resize the browser, there will still be 12 columns of exactly the same size, only smaller in
width.

In Figure 13-22 you can see the grid attributes that you can use to control the placement of regions
and items (or elements within a region). As you can see, they are identical. This is because whether you’re
placing a region or placing an item, you have the same rules to play with. Keep this in mind as I discuss
each attribute. Start New Row means that the previous row in the grid, if present, will be closed, and a new
grid row will start. This is important because the new row will once again allow for 12 columns for a layout.
If you were working on the first row in your layout, then Start New Row would have no bearing. However, it
is still a good practice to decide whether you want the Star New Row attribute to be Yes if you added a row
above. In general, I think you want to start your first row with a Yes in this attribute to avoid future layout
surprises. The Column option indicates in which of the 12 columns of the grid this element or component
will be placed. The Automatic option allows APEX to calculate the column where the next element will be
placed; of course, APEX will start from the left with column 1. When the Column calculation is changed from
Automatic to a specific value, Column Span becomes available. Column Span indicates how many columns
the element will use. When left as Automatic, APEX will simply fill out the rest of the row.

Figure 13-21. Twelve-column grid visible behind the region thanks to the Show/Hide Grid option

Chapter 13 ■ themes and templates

530

The Grid options shown in Figure 13-22 depend on specific values defined in the grid section of the
page template. This means that each page could potentially use a different type of grid. However, unless
you’re creating your templates, this will be of no concern for most users.

APEX will make every effort to avoid invalid grid value combinations that violate the limit of a
12-column grid. If your current column position plus the column span is greater than 12, APEX will generate
an error because the placement will not be possible. For example, see Figure 13-23. If you specify placement
on column 4 but indicate a column span of 10 (10 + 4 > 12), you will see an error.

Figure 13-22. On the left, Grid options for a region. On the right, Grid options for an item

Figure 13-23. Invalid grid value combination

You may already have noticed that APEX 5 by default will display either “common” component
attributes or the most used attributes. When placing items there are three more attributes that you should
know about and they are visible only when you click the Show All selector: Label Column Span, Column CSS
Classes, and Column Attributes. Figure 13-24 shows what you’re looking for.

Chapter 13 ■ themes and templates

531

Label Column Span is a new APEX 5 attribute and a welcome enhancement. Its default value is
specified at the page template level, and it can be modified for specific items. To edit the default, you simply
edit the page template you’re using, go to the Grid Layout section, and find the Default Label Column Span
attribute. The default value for the Standard page template is three. This means that every item placed on a
row will require three columns for the label alone. Then nine columns are available for the rest of the item.
(See Figure 13-25.)

Figure 13-24. Extra attributes available when you click the Show All selector

Figure 13-25. Using the Developer Toolbar to visualize the default three-column label span

Chapter 13 ■ themes and templates

532

When placing items in front of each other, you’ll want to keep the label span in mind. Otherwise, it can
be frustrating trying to arrange a layout and not understanding where your 12 grid columns are being used.
For example, if in addition to the One Item item in Figure 13-25 you add another item in front by specifying
Start New Row as No and leave the Column as Automatic, then each item will use 6 columns of the 12-grid
layout. However, by default each item will use three columns for the label, leaving three more columns for
the item (3 + 3 and 3 + 3). If you added one more item also with Start New Row as No, now you’re looking at
each item using four columns on the grid. If each item uses three columns for the label, that leaves only one
column for each of the items (3 + 1, 3 + 1, and 3 + 1). At this point, depending on your layout, you may need
to consider changing the Default Label Column Span attribute. (See Figure 13-26.)

Figure 13-26. Three items: three column labels and one column for the item

The Default Label Column Span attribute can also be set to zero. This is a powerful layout technique
when the label is not needed. Setting it to zero will place the item in the column exactly next to the previous
item (or column 1 if this is the first item on the row).

When using Start New Row as No and New Column as No also, APEX will now place two items inside
the same grid cell. However, in many layouts, as a default behavior, they will be placed below each other
unless some extra CSS attributes (or custom template option) are applied to them.

Responsive Layout
The other powerful feature of the Universal theme’s grid layout is responsiveness. You call a layout
responsive when it can change the placement of elements on the screen based on the space available. Put
another way, if your browser screen is wide, you will get one view. If it’s small, you’ll get a different one,
and if you’re on the smallest of screens, like on a mobile device, you’ll see yet another view. The Universal
theme can accomplish this with flying colors. Your applications should be designed with this feature in
mind. For example, Figure 13-27 shows three views of the same page and how it changes as the browser
window changes in size. The interesting thing about this is that a responsive layout is handled exclusively
on the browser side. Only CSS and JavaScript contribute to the transformation. The markup is the same for
all three views, and no APEX processing is required for this to take place once the page has been rendered.
It’s outside the scope of this chapter and book to explore responsive design. However, one of the techniques
involved is what’s known as media queries. Media queries represent a CSS technique that allows you to
define different sets of CSS to be used by your application based on the size of the screen (or the media like
in the case of print). The smallest screen layout in Figure 13-27 uses a media query that is used on screens of
640 pixels (640px) or less. The size that determines when one set of CSS is used versus another is known as
the breakpoint. The intermediate size takes place between 641px and 767px. Finally, the “normal” desktop
size view takes effect at greater than 768px.

Chapter 13 ■ themes and templates

533

Subregions
It’s common to have several regions on one page, certainly more than one. If you’ve ever had to place more
than a dozen items on one page or some items and a report, you probably placed multiple regions on a page
already. However, did you know APEX supports regions within regions? Any time you place some region
inside another one, I’ll call it a subregion. See Figure 13-28 for an example of placing several subregions
inside each other. This example may not seem that useful, but it demonstrates the powerful ability to nest
one region within another. This goes back to the substitution strings and the Russian dolls analogy I made
before. You can always break down a layout into the smallest parts you can and then place them inside
another to create much more complex designs.

Figure 13-27. Effects of different screen sizes on a responsive design

Chapter 13 ■ themes and templates

534

I think subregions are usually an underutilized feature for placing content on the page. Consider the
following standard layout from the APEX wizard, as shown in Figure 13-29.

Figure 13-29. Standard wizard layout

Figure 13-28. Example of nested subregions

Chapter 13 ■ themes and templates

535

If you ask me, it seems like this layout could better utilize space on the right side. Turn on the template
option in the region called Stretch Form Fields to get the effect shown in Figure 13-30.

Figure 13-31. Layout using two subregions for item placement side by side

Figure 13-30. Stretch Form Fields template option applied

However, I think that sometimes a subregion could give you a nice end result. I left the Client region as
a standard template. Then I added a new region, Client Info, as a subregion of Clients using the Blank with
Attributes template and moved all the items except the comments to it. Then I added another subregion to
Clients, also with a Blank with Attributes template, and called it Additional Info. I changed the grid attributes
for this one, setting Star New Row to No and New Column to Yes. This way, both Client Info and Additional
Info are side by side. You already know APEX would use six columns for one and six for the other (if you
leave everything as Automatic). However, depending on your layout, you could try different settings with the
Column and Column Span attributes. The Comments item gets moved to the new Additional Info region,
and its label is changed to Above. Figure 13-31 shows the result.

Remember that inside each of the subregions (Client Info and Additional Info), you still get 12 columns
inside each to work out a layout. Keep this in mind that these 12 columns will be significantly smaller than
the 12 columns available to the parent Client region (roughly half the size to be exact). Optionally, you could
also apply the With Border template option you defined earlier in the chapter to the Client Info subregion.
This effect will give you a nice grouping of items, which something is important to draw the viewer’s eyes to a
set of elements on the screen.

Chapter 13 ■ themes and templates

536
Figure 13-33. Tabs region with a Tab Container template and its subregions

Figure 13-32. Page Designer with Client region and subregions

Let’s look at the new Tabs Container template. This new template in the Universal theme couldn’t be
easier to use. You add a static region and select Tabs Container as the template. Then add regions inside it as
subregions. Figure 13-33 shows the tab region with the following interactive reports that will be displayed as
tabs: Orders, Contacts, Statements, and Batches. Finally, Figure 13-34 shows the end result of the Contacts
tab selected. As the tabs are selected, the other tabs are hidden.

Chapter 13 ■ themes and templates

537

Theme Subscriptions
Theme subscriptions are a powerful feature that allow organizations to create applications that share a
theme with a single application. This application becomes the keeper or the master for the theme. Said
another way, if you want to change a template on a subscribed theme, you would need to either break the
subscription or, better yet, change the master and refresh the subscription. By refreshing subscriptions, you
ensure consistency across all applications.

In APEX 5, when you create a new application based on any theme, the theme will be subscribed to the
master in the theme repository. Effectively, this means your application theme and all the templates within
are locked from modifications.

However, don’t worry. If required, you can still add new templates to the theme, and these will be fully
editable. Now, to make the whole theme fully editable, you can unsubscribe from the theme repository.
When you attempt to unsubscribe a theme, you will see the following verbiage.

Note that subscribed themes can be extended by adding templates, styles, and files that are local to the
theme, for example by creating a new template or copying a subscribed template. Templates, styles, and files
added to a subscribed theme will be editable. However, subscribed components are read-only.

Figure 13-34. Tab Container template with Orders, Contacts, Statements, and Batches as subregions

Chapter 13 ■ themes and templates

538

I wouldn’t call this action permanent, but it would take some work to resubscribe. There’s a good reason
for this. This allows you and other developers to know that the theme and its subscribed templates are still
pristine. I see two big benefits to this. You know there are no surprises left by other developers hidden in the
templates, and it provides another layer to your peace of mind during APEX upgrades and patches. It will
allow your applications to take advantage of template fixes that may be released in the future. It is strongly
recommended, by Oracle, that you don’t unsubscribe the Universal theme. Doing so will prevent your theme
from receiving future updates.

Summary
Themes and templates in APEX are a vast topic. There are many areas still left to uncover. However, it was my
goal to demystify some core aspects and give you the foundation and tools that to give you the confidence to
venture deeper on your own. I find the whole architecture and functionality of themes and templates within
APEX fascinating and incredibly powerful.

For your next steps, I recommend investing time learning and understanding HTML and CSS. The more
you know about CSS, the more you will understand the capabilities and tools at your disposal. The more you
understand HTML, the better you can build creative and functional layouts.

Now go forth and make your applications your own; make them sing!

Figure 13-35. Notice the Verify, Unsubscribe, and Refresh actions

539

Chapter 14

Report Printing

by Karen Cannell
Report printing in APEX is a wide topic, with perhaps as many solutions as there are organizations looking
to address the problem. This chapter focuses on the APEX-supplied standard report printing solution for
producing Portable Document Format (PDF) output. This option uses the built-in generic XSL Formatting
Objects (XSL-FO) templates for classic and interactive reports and uses APEX report queries and customized
report layouts for more specialized report configurations.

Introduction
Report printing gets a bad rap in APEX. Some simply say APEX has none and that APEX report printing
is achieved only through other Oracle or third-party tools or plugins. Some maintain the report printing
features APEX does include are insufficient. The negative messages steer people away from the report
printing options that APEX does have. But they deserve a closer look.

The naysayers are partially correct: APEX does not have a declarative what-you-see-is-what-you-get
(WYSIWYG) report printing solution. Why not? Well, report printing means many things to many
organizations. What to build? At the cost of what other features? Report printing is often addressed though
an external reporting tool, one specifically designed to address a specific set of enterprise report generation
and report printing use cases.

Those who say APEX report printing features are insufficient are also partially correct. APEX offers
report printing features in two configurations: standard and advanced. Standard configuration is through the
Apache Formatted Objects Processor (FOP) PDF print processor. The FOP processor is supplied with APEX
installation material or can be accessed through Oracle Rest Data Services (ORDS) when APEX is deployed
via ORDS. Advanced configuration is through Oracle Business Intelligence Publisher (BI Publisher) at an
added cost. The advanced report printing configuration offers a wider variety of formats and layout options
with significantly less effort, at a significantly higher price tag. Because of the added license, you could
rightly argue the advanced report printing is not really an APEX option; it is an add-on.

Neither the standard nor advanced report printing option covers all printing use cases. Neither of these
options is declarative WYSIWYG, and neither is effortless in producing a given set of possible results. In
that light, both options could be deemed insufficient. These options do cover many simple report printing
options, however, and are, in my opinion, overlooked and underused.

This chapter focuses on the standard configuration: producing PDF output solutions in APEX using
the built-in generic XSL-FO templates for classic and interactive reports and using report queries and
customized report layouts for more customized report layouts.

Chapter 14 ■ report printing

540

I’ll focus on the standard report printing features because

•	 Standard report printing may be configured at no additional cost in all
APEX instances.

•	 Many APEX developers do not take the time to understand report layouts to make
practical use of them.

The goal is to demonstrate the extent of report printing options possible with standard APEX report printing.

Report Printing
For the scope of this chapter, report printing is the generation of a formatted, printable representation of a
given APEX report, in other words, the ability to produce a report as PDF output.

Report printing is distinct from generating an HTML page, where the purpose of the output is display;
a Microsoft Excel spreadsheet, where the purpose of the output is display and manipulation; or an export
format suitable for database inserts or imports, where the purpose of the output is transport or consumption
by another tool.

Printable formats usually take the form of a Word document, a Rich Text Format (RTF) document, or
a PDF document. The use of APEX standard report printing limits your output type to PDF.

 ■ Note if rtF or excel output is required, these formats can be achieved using similar methods with
the advanced report printing option using Bi publisher. With Bi publisher, generating report layouts is much
simpler. this chapter assumes that you do not have access to Bi publisher and explains the long way of
building XSL-Fo report layouts. if you are lucky enough to have Bi publisher, you may not need the rest of
this chapter except for reference.

APEX Standard Report Printing
APEX is great at declaratively generating reports, classic and interactive. APEX is less great at declaratively
generating PDF output representations of those classic and interactive reports, but it still does a
commendable job with most configurations, with little effort and no added cost.

APEX standard report printing is available in all APEX installations but needs to be implemented with
Apache FOP or another XSL-FO print engine, either through the use of ORDS (which includes Apache FOP 1.1) or
through the deployment of FOP on Glassfish, WebLogic, or a similar Java runtime environment (such as Tomcat).

Advanced printing refers to the set of features available when APEX is configured with BI Publisher.
Using BI Publisher requires a valid license from Oracle. BI Publisher brings significantly improved report
configuration features at a significant price tag that may be prohibitive for some organizations. Perhaps
the biggest advantage of using BI Publisher is the ability to build and use RTF templates that make it easier
to produce more complex report formats and embed graphics and charts. For more information on BI
Publisher, see the Oracle BI Publisher page at https://go.oracle.com/LP=4639?elqCampaignId=7916&src1
=ad:pas:go:dg:bi&src2=wwmk14056808mpp010&SC=sckw=WWMK14056808MPP010.

The chapter aims to dispel the myths surrounding APEX standard report printing options. Yes, XSL-FO
layouts used in APEX report layouts are difficult to build. They are downright painful to build manually, and
XSL-FO WYSIWYG editors can be expensive. In fact, the perhaps best report layout editor for APEX reports,
BI Publisher, can be expensive if you have not already invested in an Oracle Business Intelligence license.
The combination of complex XSL-FO syntax and expensive editors means that many organizations dismiss
using the APEX report templates before giving them an honest try.

https://go.oracle.com/LP=4639?elqCampaignId=7916&src1=ad:pas:go:dg:bi&src2=wwmk14056808mpp010&SC=sckw=WWMK14056808MPP010
https://go.oracle.com/LP=4639?elqCampaignId=7916&src1=ad:pas:go:dg:bi&src2=wwmk14056808mpp010&SC=sckw=WWMK14056808MPP010

Chapter 14 ■ report printing

541

Prerequisites
The examples in this chapter assume you have a working APEX 5 installation configured for PDF printing or
have an apex.oracle.com workspace. Specifically, you need the following:

•	 Oracle Database 11.2 or newer

•	 APEX 4.2 or newer (though all the screenshots and examples are based on APEX 5.0)

•	 Oracle Rest Data Services 3.0 configured as a web listener for APEX (though APEX
Listener 2.0.6 or newer will suffice)

For the XSL-FO examples, it is recommended that you have at least an editor that provides XML syntax
highlighting. An XSL-FO WYSIWYG editor is not required, though using one will help you learn XSL-FO
faster and will likely help you build XSL-FO templates faster. Consider using a trial version of a third-party
XSL-FO tool or one of the following:

•	 Altova StyleVision

•	 Stylus Studio

•	 Java4Less FO Designer

For general PL/SQL editing, an PL/SQL IDE is recommended. The examples in this chapter were
created using SQL Developer 4.1. SQL Developer does have syntax highlighting for XML documents,
including XSL and XSL-FO documents. If all you are doing is editing existing XSL-FO documents, SQL
Developer will suffice. To learn more about XSL-FO, try one of the recommended editors.

Standard Report Printing Configuration
Standard APEX report printing requires configuration. It is not enabled by default as part of the APEX
installation process. Standard report printing configuration for an APEX instance entails two steps:

 1. Install and configure an FOP print processor.

 2. Set the APEX instance’s report printing attributes.

For APEX standard print processing, there are three main options for an FOP print processor.

•	 Use the Apache FOP print engine included in ORDS.

•	 Use the fop.war file supplied with the APEX installation.

•	 Use an external XSL-FO print processor.

The overall architecture and flow of APEX standard FOP print processing is slightly different depending
on which of the previous options you use. Figure 14-1 illustrates the standard APEX report printing
architecture using an external FOP processor.

When using the FOP processor embedded in ORDS, the flow is similar except that the PDF output is
rendered in the ORDS listener and then returned to the client; there is no need to pass the PDF output back
to the database. Because of this, when using the FOP in ORDS, the APEX print APIs are not supported.

When a user clicks a report’s Print link or an interactive report’s Download PDF option, APEX generates
and sends an XML version of the report data to the FOP print engine, along with an XSL-FO report template
(either the generic template or a named-column report template defined in a report layout). The FOP
processor generates PDF output from the XML data and the XSL-FO template. The PDF output is displayed
to the end user (when using ORDS) or passed back to the database and then to the end user (when using an
external FOP processor), as shown in Figure 14-1.

Chapter 14 ■ report printing

542

FOP Processor in ORDS
If the APEX instance is deployed using ORDS 3 or newer, the instance can be configured to use the Apache
FOP 1.1 engine included in ORDS. The FOP processor is not enabled by default in ORDS 3.0 and newer,
like it was in earlier versions of ORDS. If you are using ORDS earlier than version 2.2, you may not need to
specifically enable FOP as described in the remainder of this section.

To enable the FOP Print Server in ORDS 3.0 or newer, ensure the following line exists in the defaults.xml
ORDS configuration file:

<entry key="misc.enableOldFOP">true</entry>

 ■ Note While not essential, it is nice to keep like entries in defaults.xml together because it makes it
easier for you or the next person to find a particular entry in the future. i recommend placing the
misc.enableOldFOP entry with the other misc entries.

To enable FOP in ORDS 3.0 or newer, follow these steps:

 1. Locate the defaults.xml file in the ORDS deployment directory. This will be at
the top level of the ORDS configuration directory you specified when ORDS was
configured.

 2. Edit defaults.xml. Locate the misc entries. Add the following line:

<entry key="misc.enableOldFOP">true</entry>

Save and exit the file.

 3. Restart ORDS for the changed FOP setting to take effect.

Figure 14-1. APEX standard report printing architecture with external FOP

Chapter 14 ■ report printing

543

 4. Set the APEX instance Report Printing attributes to use ORDS, as shown in
Figure 14-2.

Figure 14-2. APEX instance’s Report Printing settings for ORDS

Figure 14-3. APEX Report Printing attributes with external Apache FOP

External FOP Processor
If not configured with ORDS, the fop.war file supplied in the APEX installation media may be deployed on
Glassfish, WebLogic, or a similar Java runtime server such as Apache Tomcat or IBM JBoss.

See the Oracle APEX document “PDF Printing in Application Express” at the following location for
instructions on deploying Apache FOP:

www.oracle.com/technetwork/developer-tools/apex/application-express/configure-printing-093060.html

While much of this document describes BI Publisher configuration, section 5 addresses installing and
configuring Apache FOP, and section 6 addresses configuring other XSL-FO processing engines. Once
fop.war is deployed, the APEX instance Report Printing attributes need to be set as shown in Figure 14-3.

http://www.oracle.com/technetwork/developer-tools/apex/application-express/configure-printing-093060.html

Chapter 14 ■ report printing

544

The attributes are as follows:

Print Server Protocol: HTTP or HTTPS depending on your configuration

Print Server Host Address: The hostname for the machine where the Java
container is running

Print Server Port: The port that the J2EE server is listening on, for example, 8083

Print Server Script: /fop/apex_fop.jsp

Any external XSL-FO processor may be used instead of the APEX-supplied fop.war. Deploy the
XSL-FO processor as instructed and then configure the APEX instance’s Report Printing attributes the same
as described earlier, using settings appropriate to your XSL-FO processor.

Enable Network Services
For Oracle Database 11.1 and newer, database network services are disabled by default. If network services
for printing, e-mail, or any other purposes were not needed previously, network services may still be
disabled. Using any XSL-FO processing engine requires network services for the database to communicate
with the XSL-FO processor. Enabling network services is usually done as a post-installation step of the
APEX installation process but is not essential until features needing network services are in place. To enable
network services, follow the instructions in the Oracle Application Express Installation Guide’s “Enabling
Network Services in Oracle 11g” section.

Attempting to produce PDF output when network services are not enabled will produce this error:

ORA-20001: The printing engine could not be reached because either
the URL specified is incorrect or a proxy URL needs to be specified.

Note that this error will also be produced when the reference URL in the APEX instance’s Report
Printing attributes is incorrect. That setting should be validated as well.

Once the APEX instance Report Printing attributes are configured, PDF output is enabled for all
workspaces and all applications in the instance.

First Test Approach
There are two simple ways to test the report printing configuration. Following is the first:

 1. From a classic report, as a developer, enable the print link. Set Enabled to Yes in
the Printing attribute, as shown in Figure 14-4.

Figure 14-4. Setting Printing Enabled to Yes in the classic report attributes

Chapter 14 ■ report printing

545

 2. Then, in the Printing Attributes panel’s the Output section, enter some text, such
as Print, in the Link Text property, as shown in Figure 14-5.

Figure 14-5. Setting printing link text

Figure 14-6. Classic report Print link

 3. When printing is enabled for a classic report, by default the Print link appears at
the bottom left of the report, next to the Download to CSV link, if one is enabled,
as shown in Figure 14-6.

Chapter 14 ■ report printing

546

 4. Then, as an end user, run the report and click the Print link. Report output using the
generic format similar in appearance to the output shown in Figure 14-7 should appear.

Figure 14-7. Default classic report sample output

Chapter 14 ■ report printing

547

Second Test Approach
Alternatively, you can test using the following approach:

 1. From an interactive report, as a developer, in the interactive report’s Attributes
panel, ensure the Download option is enabled and the PDF download option is
checked, as shown in Figure 14-8.

Figure 14-8. Interactive report’s download option enabled

 2. As an interactive report user, select the Download option from the Action menu
and then select the PDF button in the Download dialog, as in Figure 14-9. Notice
in Figure 14-9 that the RTF download option does not appear, even though it is
selected in the Download attributes shown in Figure 14-8. This is because the
sample instance is not configured with Oracle BI Publisher; therefore, the RTF
download option is not configured.

Chapter 14 ■ report printing

548

The rest of this chapter assumes that report printing is configured and working for the APEX instance
and that for a classic report, a Print link is enabled, and that for an interactive report, the Download action’s
PDF output option is enabled.

All report samples use a simple query based on the EBA_DEMO_IR.PROJECTS and EBA_DEMO_IR.DEPT
tables. The data in these reports is irrelevant; the simple example is focusing on the report printing, not the
data. These tables are included in the Sample Reporting packaged application, with one change to add a
DEPTNO table to the Projects table. Listing 14-1 shows the query for all report examples in this chapter. The
scripts to create and populate these tables are in the Chapter 14 download material.

Listing 14-1. Sample Report Query

select p.ID,
 p.ROW_VERSION_NUMBER,
 p.PROJECT,
 p.TASK_NAME,
 p.DEPTNO,
 INITCAP(d.DNAME) Department,
 p.START_DATE,
 p.END_DATE,
 p.STATUS,
 p.ASSIGNED_TO,
 p.COST,
 p.BUDGET,
 (p.BUDGET - p.COST) Balance
 from EBA_DEMO_IR_PROJECTS P,
 EBA_DEMO_IR_DEPT D
 where p.deptno = d.deptno;

APEX Standard Report Printing
Once an APEX instance is configured for standard report printing, PDF output is enabled for all
workspaces and all applications on classic reports, interactive reports, and report queries set to use the
generic report layout.

Figure 14-9. Interactive report’s Download dialog

http://dx.doi.org/10.1007/9781484204856_14

Chapter 14 ■ report printing

549

For classic reports, the developer can use the default, generic, XSL-FO layout; can declaratively set
report header, footer, column heading, data appearance, and relative column widths; and can define a report
query and report layout pair for custom layouts of the same report data.

For interactive reports, the developer can use the default, generic, XLS-FO layout; can declaratively
set report header, footer, column heading, and data appearance; and can elect to define one or more sets
of report query/report layout pairs for custom layouts of specific sets of the report data. Using the generic
XSL-FO template with interactive reports captures current column orders, filters, and sorts. It does not
honor group by, chart, or pivot views, and it does not include aggregates or highlighting. When any of these
conditions apply, either the Download option is disabled or the tabular view of the data is downloaded.

The following sections address classic report print options and interactive report print options and then
introduce report queries and report layouts for more customized report output.

Classic Report Printing
For classic reports, APEX provides declarative PDF output using the built-in, generic XSL-FO printing
template. By default, when the report printing option is turned on by setting the Printing attribute to Yes, a
Print link appears at the bottom of the report. If no other print attributes are changed, APEX uses the generic
XSL-FO template with the default settings. Figure 14-10 shows the sample classic report. Notice that on the
web page, the Project and Task Name columns naturally display wider on the HTML page relative to the
other columns. Most modern browsers automatically handle the width adjustment without any additional
CSS settings. That’s not the case with printed output.

Figure 14-10. Classic report with printing enabled

Chapter 14 ■ report printing

550

Beyond enabling printing, no additional settings are required. The generic XSL-FO template will be
applied with all the default settings. Figure 14-11 shows the PDF output produced by clicking the Print
option at the bottom of the report with no Print attributes set.

Figure 14-11. Classic report default output from generic XSL-FO template

Chapter 14 ■ report printing

551

Observe that the default layout is portrait, the font is Helvetica, there is no Page Header or Footer text,
the column headers are blue background, the columns are gray background, all text is the same size, and all
columns are equal width. The print processor rightly wraps words in cells at natural word breaks, but when
a word is too wide for a column, it is truncated. These default settings may work for some simple reports, but
clearly they do not for the sample classic report (which is also quite simple). The Department, Project, Task,
Start Date and End Date columns are scrunched and have truncated data. The alignment of values in the
Cost, Budget, and Balance columns is not ideal. The color scheme leaves a lot to be desired, and there is no
header or footer text.

To address these shortcomings in a classic report, an APEX developer can declaratively set page header,
footer, column header, column format, and page layout properties. In a classic report, a developer can also
set relative column widths, using percentages or points. To access these settings, open the printing attributes
in the rightmost panel by clicking the Printing element under the classic report in the Rendering panel, as
shown in Figure 14-12.

Figure 14-12. Page Designer access to classic report print attributes

The Printing properties panel contains regions for declaratively setting options; they include Output,
Page , Page Header, Column Headings, Columns, Page Footer, and a print server override. Figures 14-13
to 14-19 show the settings for each of these sections of the Printing properties. These figures show the values
in the sample report to produce the PDF output shown in Figure 14-21. It’s much better! But let’s describe
these printing properties first.

Chapter 14 ■ report printing

552

Figure 14-13. Output properties

Figure 14-14. Page properties

Chapter 14 ■ report printing

553

Figure 14-15. Page Header properties

Figure 14-16. Column Headings properties

Chapter 14 ■ report printing

554

Figure 14-17. Columns properties

Figure 14-19. Advanced properties

Figure 14-18. Page Footer properties

Chapter 14 ■ report printing

555

In this example on the classic report, you did not set a print server override, but this setting allows a
developer to set an alternate print processor. This is helpful for large reports, for example, to divert large
reports to a server configured to handle larger volume output or, during development, to use a print
processor for which the server logs are available for debugging. Debugging XSL-FO output is discussed in
the “Debugging XSL-FO” section.

The classic report’s printing options shown in the earlier figures are defined as follows:

Output

•	 Link Text: This is the text to display on the print link. Usually this is Print but can be
any text.

•	 Format: This is the output format. For this purpose, this is set to PDF. The options are
as follows:

•	 Derive From Item: The output format will be defined by the value of an item,
usually a select list. Using this option allows end users to select their output
format. Be sure to limit your select list to options that are configured for your
APEX instance and that make sense for your data.

•	 Format Item: The page item that contains the format.

•	 PDF: This is the PDF output via the FOP processor.

•	 Word: This is Microsoft Word. This actually produces an RTF document.

•	 Excel: This is a Microsoft Excel document, in XLS format.

•	 HTML: This is a searchable HTML document.

•	 XML: This is am XML representation of the data.

•	 Layout: This sets the report layout used to generate the output. By default, this is
Default Report Layout. Any valid report layout can be used. All valid report layouts
will appear in the select list.

•	 Response Header: This is either Custom or Print Server; this sets whether the response
header generated is based on the report settings or the print server. The response
header contains the date, size, and type of file the server is sending back to the client.
When View File As is set, the response header attribute must be Custom.

•	 View File As: This is Attachment or Inline. The Attachment option will open in a new
window or a new tab according to the end user’s browser settings. The Inline option
replaces the current page with the output document.

•	 Link Example: This field contains the URL to use when building a custom button for
an end user to access the report.

Page

•	 Size, Orientation, Units, Width, Height, and Border Width: These attributes are
exactly what they say they are.

Page Header: This collection of attributes defines the report page header.

•	 Font: Set this to Helvetica, Times, or Courier.

•	 Font Weight: Set this to Normal or Bold.

Chapter 14 ■ report printing

556

•	 Font Size: Enter a value, usually 8 through 48.

•	 Font Color: Enter or select a hex value for the desired font color.

•	 Alignment: Set this to Center, Left, or Right.

•	 Text: Enter the report heading text.

Column Headings: These are the same Font, Font Weight, Font Size, Font Color settings as for Page
Header, plus the following:

•	 Background Color: This is a hexadecimal format (#FFFFFF) color for column
background color.

Columns: These are the same Font, Font Weight, Font Size, Font Color, Background Color settings as for
Column Header, plus the following:

•	 Width Units: These are the units for column widths, either Percent or Point.

Page Footer: These are the same Font, Font Weight, Font Sze, Font Color, Alignment, and Text attributes
as in Page Header, except these define the page footer.

Advanced: This section contains one property, Print Server Override.

•	 Print Server Overwrite: Use this option to specify an optional print server. This option
is often used to direct output to a locally deployed print server for access to the
server log file for debugging.

Column Width Settings
In the Page Designer, the column width settings are on the individual column attribute’s panels. When
setting all column widths, it may be easier to switch to Component View and then navigate to the Print
Attributes tab. Figure 14-20 shows the Report Columns attributes as shown in Component View.

Chapter 14 ■ report printing

557

Figure 14-20. Classic report column attributes in Component View

Column attributes can be set in points or percentages. Using Percent is often easier since column
widths should add up to (and cannot exceed) 100. Points may give you finer-grained control, depending
on the number of columns. When using Percent, try not to exceed 100 because an error occurs and all your
entries are cleared.

For the sample classic report, you can set the Project, Task Name, Department, Start Date, and End
Date columns wider and shorten the Deptno, Cost, Budget, and Balance columns. Hidden columns are
automatically set to not show in the output report.

In the example, swap the page layout orientation, lower the font size, and set font and background
color values for the Page Header, Page Footer, Column Headings, and Column attributes. The resulting PDF
output version of the classic report is much improved, as shown in Figure 14-21.

Chapter 14 ■ report printing

558

Figure 14-21. Classic report, generic template with declarative settings

 ■ Tip in apeX 5.0.0.00.31, it appears the portrait and Landscape orientation options’ Width and height
values are swapped from what they should be. go by the desired Width and height settings to get what you
want, not the portrait or Landscape label. no doubt this will be corrected in a future release.

The new, declaratively adjusted report output is much better and accomplished entirely with the
generic XSL-FO layout. This quality of output is likely acceptable for internal organization output, and the
level of effort (minutes of developer time to set the Print attributes) makes it practical for a large number of
reports.

For cases where you need more customization, such as multiple font colors, font weights, background
shading, a nontabular format, or a corporate logo in the header, you need to create a custom, named-
column report layout. Then, the developer needs to assign the custom report layout to the classic report in
the Layout print attribute. Report layouts are discussed in greater detail in the “Report Layout” section.

Chapter 14 ■ report printing

559

Interactive Report PDF Output
For interactive reports, APEX provides declarative PDF output using the built-in, generic XSL-FO printing
template, much the same as for classic reports; however, for interactive reports, there is no option to specify
column widths. All interactive report columns are equal width in the PDF output. This is likely not what
you want because words that cannot wrap and do not fit are truncated. You have the same output format
problems as observed for the default-setting classic report PDF output in Figure 14-10.

However, APEX does pick up the current interactive report column order, sorts, filters, and computed
columns in the generated PDF output. This is great because you want end users to have a PDF output option
for whatever column arrangement and report configuration they devise. But (of course, there is a “but”)
there are significant limitations. While APEX standard printing honors columns, column orders, sorts, and
filters, it ignores aggregates and highlighting and does not recognize group by, chart, or pivot views.

For break views of an interactive report (when one or more break columns are specified), the Download
PDF output is the same as for the tabular view of the data. For group by and pivot views, the Download PDF
option does not exist at all.

For the chart view, the Download PDF option again is the standard tabular view of the data, not a chart
at all. In an interactive report’s chart view, there is no AnyChart right-click Print option like there is for
regular APEX AnyChart charts.

These behaviors regarding the alternate views of an interactive report may not be exactly what you are
looking for, but for simple tabular reports, these options cover the basic need to output the as-displayed data
in PDF format for the majority of cases.

The declarative Printing attributes for interactive reports are similar to those of classic reports,
omitting the proportional column section. To access the Printing attributes of an interactive report, click
the Attributes section in the interactive report’s Attributes element in the Rendering panel, as shown
in Figure 14-22. The Printing option is the last of the Attributes elements. This is similar to the Printing
attribute’s location for a classic report.

Figure 14-22. Accessing an interactive report’s Printing attributes

Chapter 14 ■ report printing

560

The Printing attributes are organized the same as for classic reports, including Output, Page, Page
Header, Column Headings, Columns, Page Footer, and Advanced sections to declaratively customize the
appearance of the PDF output. Figure 14-23 shows the interactive report’s Printing attributes panel with
the Columns and Page Footer elements expanded. Notice there is no Column Width element under the
Columns grouping. This is the only significant difference between the classic report Printing attributes and
the interactive report Printing attributes.

Figure 14-23. Interactive report’s Printing attributes

Chapter 14 ■ report printing

561

By default, the PDF output for the interactive report with no print attribute settings is similar to that of
the classic report’s default PDF output, shown earlier in Figure 14-10. Figure 14-24 shows the PDF output
generated for the sample interactive report using the same declarative settings used for the classic report
(except for the column width settings, which do not exist for interactive reports). Notice this version of PDF
output is better than the default, but the wrapping and unwanted truncation problems may persist, as shown
in the circled area. Reducing the font size eliminates some of the wrapping issues in the sample report, but
no doubt this will not cover all cases, especially when there are many columns.

Figure 14-24. Interactive report with declarative Printing attributes

The advantage of the interactive report’s declarative PDF output is that for many interactive report
configurations, there is, essentially, an out-of-the-box report printing solution. It needs to be enabled for
each report (by default it is not enabled), and there is minimal developer time involved to declaratively set
display properties. The downside is that for cases where equal-width columns are not enough, this output
is not acceptable for production reports. The more displayed columns in the report, the more likely the
declarative PDF output options will not suffice to produce an acceptable document.

Chapter 14 ■ report printing

562

When more tailored PDF output is required, you need to advance to using report queries and report layouts
to achieve the desired results. The report queries will work off the base interactive report query, as obtained using
variations of the APEX_IR API. The report layout will be a named-column XSL-FO template that defines the table
columns and their widths, at minimum. Report queries and report layouts are discussed in the following section.
Then I will return to the interactive report topic to discuss a custom PDF output solution.

Report Queries and Report Layouts
For situations where formatted, printable output is required and the output provided by APEX classic reports
and interactive reports does not suffice, APEX provides report queries and report layouts. Report queries are
a set of one or more SQL queries that define the complete set of data to be formatted for printing. The report
query defines the set of XML data sent to the FOP print processor. Report layouts are XLS-FO templates
that contain formatting instructions for the XML dataset defined in the report query. All data elements
referenced by the report layout must exist in the report query. However, not all the report query elements
need to be used by the report layout.

The two work as a pair to generate report output. The report query defines the dataset. The report layout
defines the layout. For the standard APEX reporting purposes, the report layout is always either the generic
XSL-FO template or a named-column XSL-FO template.

On request, the report query generates an XML representation of the SQL query result set. The XML
dataset is sent along with the XSL-FO template defined by the report layout to the FOP print engine. The FOP
print engine formats the data using the XSL-FO template to produce PDF output.

Note that this is the same flow as used for default classic and interactive report PDF output options.
In the default cases, APEX generates the XML for the report (the equivalent of the report query) and uses the
built-in generic XSL-FO template (the report layout).

A report query is associated with exactly one report layout. If a report layout is not specified, the default
generic XSL-FO template applies by default.

A report layout may be used in multiple report queries, as long as the data elements referenced in the
report layout exist in the report query. If a report layout is not referenced by at least one report query, it just
sits there, defined but unused.

A report query may include any number of queries. The corresponding report layout references the
elements of each query, using the full XML path to the elements to distinguish references to the row sets and
individual data elements.

Report queries may be edited within APEX. Report queries may, and most often do, incorporate session
state values, specified as parameters to the SQL queries.

Report layouts can be uploaded and downloaded but not edited within APEX. The XSL-FO templates
are created outside of APEX, with or without an XSL-FO editor, and then uploaded into APEX. This is where
minor adjustments to XSL-FO templates can be easily edited with SQL Developer. For more complex edits,
such as layout adjustments, a specialized XSL-FO editor will often make the editing process easier.

Report Query
To build a report query, go to Shared Components, choose Report Query, and click Create. See the APEX
documentation for complete details on building a report query. Figure 14-25 shows the basic report query
interface. Note the Print URL element. This URL is the code to use in the button URL field when creating
a custom print button. The custom print button may be anywhere your APEX application, as long as any
required session state values are set; it need not be alongside the web version of the report.

Chapter 14 ■ report printing

563

To add session state values, select the Session State check box and then type in the items to the list.
Doing so tells APEX to include the current session state values in your report query’s XML dataset when
generating the XML and passing it to the FOP processor. Including session state values is the key to capturing
as-displayed values in your output reports.

Use the options for downloading the XML and XML schema, as shown in Figure 14-26. These two files
are most helpful in building your report layout and in fact are essential in some XSL-FO editors.

Figure 14-25. Report Query interface

Figure 14-26. XML data and XML schema download options

The XML Data option generates the XML representation of the report query results. The XML Schema
option generates just the schema. If you have session state variables in your query, to generate XML data,
you will need to edit the query and use the Set Bind Variables option to set test values for your session
state variables.

Chapter 14 ■ report printing

564

Report Layouts
Report layouts are built, tested, and debugged outside of APEX. The Report Layout interface is simple; it
allows you to specify a Generic or Named Column layout and then upload a file. Figure 14-27 and 14-28
show the Report Layout interface. Obviously, the bulk of the work in report layouts is accomplished outside
of APEX.

Figure 14-27. Report layout Generic Columns and Named Columns options

Chapter 14 ■ report printing

565

Once the report layout is uploaded, the developer needs to return to the report query and select the
new report layout as the layout for the report query. If a report layout is deleted and reloaded, as one does in
testing, the report query reverts to the generic template. The developer needs to return to the report query
to reset the report layout each time the report layout is re-created. This is a tedious, but that is the process;
there is no report layout update option.

XSL-FO 101
Before delving deeper into how to build report layouts, it is helpful to know some basics about XSL-FO. First,
understand that you do not need to learn everything about XSL-FO to output formatted documents; you
do need to know enough to produce the formatted output results you need. Most of what you need will be
covered here. Most likely you will learn more FO elements and how to use them as the requirements to use
them present themselves. There are many references online, and each XSL-FO editing tool has its own set of
reference documentation.

The following are the best references I have found for working with XSL-FO templates in APEX:

Apache FOP: https://xmlgraphics.apache.org/fop/

Practical Formatting Using XSL-FO (Extensible Stylesheet Language Formatting
Objects), Crane Softwrights, Ltd.: www.CraneSoftwrights.com

Figure 14-28. Report layout upload

https://xmlgraphics.apache.org/fop/
http://www.cranesoftwrights.com/

Chapter 14 ■ report printing

566

XSL-FO
XSL-FO is one member of the Extensible Stylesheet Language (XSL) family, which consists of XSLT, XSL
Formatting Objects (XSL-FO), and XPath.

Extensible Stylesheet Language (XSL) is an XML-based stylesheet language. XSL is actually a collection
of the following standards:

XSLT: A language for transforming XML documents

XPath: A language for navigating in XML documents, addressing parts
of the document

XSL-FO: The collection of formatting objects of XSL

An XSL style sheet tells the processor how to format data in an XML document for output. Note that
XML describes the data hierarchy but nothing at all related to presentation or delivery mode.

XSL-FO specifies the formatting process, not the rendering process. Different rendering tools may
produce different renderings, much like different browsers produce different versions of an HTML page.
Absent formatting properties take on the default values of the rendering tool, the same as absent CSS
properties take on the defaults according to the particular browser.

Inheritance does apply in XSL-FO. Inheritable properties need not be specified; when they are not, the
closest ancestor applies. Shorthand properties are allowed in XSL-FO, but processors are not required to
support shorthand properties. When in doubt, stick to the longhand form.

It is not necessary to know all properties of all objects to get results. Knowing a few common elements
can get you far. To best understand the structure and content of an XSL-FO template, let’s look at a simple
XSL-FO template used as a named-column report layout for an APEX report query based on the sample
query in Listing 14-1.

The XML
Prior to building an XSL-FO formatting template, you need to know and understand the structure of the XML,
which is the data to be formatted. The Report Query interface gives you options for obtaining that XML.

To view the XML associated with a report query, use the XML Data and XML Schema download options
in the Report Query interface. You will need both: the schema, an .xsd file, to view the architecture of the
XML document, and the data, an .xml file, to view the data. The structure is convenient for locating the XML
elements in the hierarchy. Listing 14-2 shows the XSD for the sample report query.

Listing 14-2. Sample Report Query XSD Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="DOCUMENT">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="DATE"/>
 <xs:element ref="USER_NAME"/>
 <xs:element ref="APP_ID"/>
 <xs:element ref="APP_NAME"/>
 <xs:element ref="TITLE"/>
 <xs:element ref="REGION"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

http://www.w3.org/2001/XMLSchema

Chapter 14 ■ report printing

567

 <xs:element name="DATE">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="USER_NAME">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="APP_ID">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="APP_NAME">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TITLE">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="REGION">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ROWSET"/>
 </xs:sequence>
 <xs:attribute name="ID" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:byte">
 <xs:enumeration value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="ROWSET">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ROW"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ROW">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID">
 <xs:simpleType>

Chapter 14 ■ report printing

568

 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ROW_VERSION_NUMBER">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="PROJECT">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TASK_NAME">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="DEPTNO">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="DEPARTMENT">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="START_DATE">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="END_DATE">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="STATUS">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ASSIGNED_TO">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="COST">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>

Chapter 14 ■ report printing

569

 </xs:simpleType>
 </xs:element>
 <xs:element name="BUDGET">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="BALANCE">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The XML data is needed for testing and validating. Listing 14-3 shows a portion of the XML file for the
sample report query.

Listing 14-3. Portion of Sample Report Query XML Representation

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<ROWSET>
 <ROW>
 <ID>271758698560587366337780068796288561218</ID>
 <ROW_VERSION_NUMBER>2</ROW_VERSION_NUMBER>
 <PROJECT>Migrate from SQL Server</PROJECT>
 <TASK_NAME>Decommission SQL Server</TASK_NAME>
 <DEPTNO>10</DEPTNO>
 <DEPARTMENT>Accounting</DEPARTMENT>
 <START_DATE>06/14/2013</START_DATE>
 <END_DATE>09/11/2013</END_DATE>
 <STATUS>Pending</STATUS>
 <ASSIGNED_TO>Al Bines</ASSIGNED_TO>
 <COST>0</COST>
 <BUDGET>500</BUDGET>
 <BALANCE>500</BALANCE>
 </ROW>
 <ROW>
 <ID>156748887419298975031195372471471610893</ID>
 <ROW_VERSION_NUMBER>2</ROW_VERSION_NUMBER>
 <PROJECT>Migrate from SQL Server</PROJECT>
 <TASK_NAME>Map data usage</TASK_NAME>
 <DEPTNO>10</DEPTNO>
 <DEPARTMENT>Accounting</DEPARTMENT>
 <START_DATE>06/02/2013</START_DATE>
 <END_DATE>07/15/2013</END_DATE>
 <STATUS>Pending</STATUS>

Chapter 14 ■ report printing

570

 <ASSIGNED_TO>Mark Nile</ASSIGNED_TO>
 <COST>0</COST>
 <BUDGET>8000</BUDGET>
 <BALANCE>8000</BALANCE>
 </ROW>
 <ROW>
 <ID>235405229871115101311183111201750483555</ID>
...

FO Document Structure
XSL-FO style sheets look similar to XSL documents, with sets of <fo:...> directives dispersed throughout.
Listing 14-4 shows the complete XSL-FO stylesheet used for this section. This listing will be broken down
into logical parts to describe the main components of the simple XSL-FO stylesheet. This stylesheet
produces the PDF output shown in Figure 14-29.

Listing 14-4. XSL-FO for Sample Report Layout

<?xml version='1.0' ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="default-page" page-height="8.5in"
 page-width="11in" margin-left="0.5in"
 margin-right="0.5in" margin-top="0.25in"
 margin-bottom="0.25in">
 <fo:region-body margin-top="0.25in" margin-bottom="0.5in"/>
 <fo:region-before extent="1.0in"/>
 <fo:region-after extent="0.3in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>
 <fo:page-sequence master-reference="default-page">
 <fo:static-content flow-name="xsl-region-before" font-size="8pt"
 font-family="times,serif" color="red"
 text-align="center">
 <fo:table>
 <fo:table-column column-width="5in"/>
 <fo:table-column column-width="5in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block text-align="start" color="#006633" font-size="12pt"
 font-family="times,serif" font-weight="bold">
 <fo:block>
 <xsl:text>APress Expert Oracle Application Express - Chapter 14
 Report Printing</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format
http://dx.doi.org/10.1007/9781484204856_14

Chapter 14 ■ report printing

571

 <fo:block text-align="end" color="black">
 <xsl:value-of select="DOCUMENT/DATE"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:static-content>
 <fo:static-content flow-name="xsl-region-after" font-size="8pt"
 font-family="times,serif" color="red"
 text-align="center">
 <fo:block>This report was made using a Report Query and a customized XSL-FO
 Repory Layout</fo:block>
 <fo:table>
 <fo:table-column column-width="5in"/>
 <fo:table-column column-width="5in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block text-align="start" color="black">
 <xsl:value-of select="DOCUMENT/USER_NAME"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="right" color="black">
 Page
 <fo:page-number/>
 of
 <fo:page-number-citation ref-id="EndOfDocument"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:static-content>
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <fo:block text-align="center">
 <fo:block>
 <fo:inline font-family="times,serif">Sample Interactive Report XSL-FO
 Demo Simple Table</fo:inline>
 </fo:block>
 <fo:block>
 <fo:table width="10in" border-style="solid" border-width="thin"
 background-repeat="repeat">
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.5in"/>
 <fo:table-column column-width="2.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>

Chapter 14 ■ report printing

572

 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-header>
 <fo:table-row background-color="green" border-style="solid"
 border-width="thin" border-color="green">
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Department</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt"
 text-align="center" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Project</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Task</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Start Date</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

573

 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>End Date</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Status</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Assigned</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Cost</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Budget</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

574

 <fo:block font-family="times,serif" font-size="8pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Balance</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-header>
 <fo:table-body>
 <xsl:for-each select="DOCUMENT/REGION/ROWSET/ROW">
 <fo:table-row>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="DEPARTMENT"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="PROJECT"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="TASK_NAME"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="START_DATE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

575

 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="END_DATE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="STATUS"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="ASSIGNED_TO"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="COST"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="BUDGET"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="BALANCE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>

Chapter 14 ■ report printing

576

 </fo:table-row>
 </xsl:for-each>
 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:block>
 </fo:block>
 <fo:block id="EndOfDocument"></fo:block>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>
</xsl:stylesheet>

All XSL-FO stylesheets have a common header and footer that generally take on the same or similar
format.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl=="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
...

The first line identifies the document as XML. The second line identifies the XSL namespace. Additional
namespace listings in this line are optional. If you use a commercial XSL-FO editor, that editor may insert
an additional namespace for you. For example, style sheets built with Stylus Studio automatically insert this
namespace:

xmlns:s="http://www.stylusstudio.com/xquery"

This directive tells the processor to include the Stylus Studio XQuery library.
Beware that the use of external namespaces is great when they are recognized in the scope of your

processing environment and all your output processing is done there. Most of these will not work with the
FOP processor delivered with APEX, nor will they work with the FOP processor in ORDS.

The third line tells the processor to apply the template to the root of the XML document, in this case, the
whole XML data set.

The fourth line identifies the XSL/Format (XSL/FO) namespace. All XSL-FO stylesheets must have an
<fo:root ... > formatting object. This is the document element.

Combined, these first four lines identify this document as an XSL-FO document.
Extension objects and properties are allowed, and non-XSL-FO namespaces are allowed for embedded

graphic images. For most APEX purposes, extension and non-XSL-FO namespaces will not be required. And
as mentioned, for most APEX FOP installations, extension namespaces will not be recognized by the APEX-
provided FOP processor.

When writing fo object and property directives, these rules apply:

•	 All characters are lowercase.

•	 A hyphen separates multiple words in an object name.

•	 A dot separates object or property names from compound elements.

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format
http://www.stylusstudio.com/xquery

Chapter 14 ■ report printing

577

Here’s an example:

space-before="12pt"
space-before.conditionality="retain"

The next lines in the sample XSL-FO template, shown in Listing 14-5, are for page layout.

Listing 14-5. XSL-FO Layout Master Set

<fo:layout-master-set>
 <fo:simple-page-master master-name="default-page"
 page-height="8.5in" page-width="11in" margin-left="0.5in"
 margin-right="0.5in" margin-top="0.25in" margin-bottom="0.25in">
 <fo:region-body margin-top="0.25in" margin-bottom="0.25in"/>
 <fo:region-before extent="1.0in"/>
 <fo:region-after extent="0.3in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

All XSL-FO style sheets must have a <layout-master-set> formatting object. The <layout-master-
set> object defines the collection of page regions available for page layout and sequences. The <layout-
master-set> object will include a <simple-page-master> or <page-sequence-master> object.

The <simple-page-master> object used in the sample describes a page and standard regions within
the page. A typical <simple-page-master> object sets the page height, width, and margins, and it defines
properties for the standard region-body, region-before (header), and region-after (footer) regions on
the page. This <simple-page-master> defines an 8.5 by 11-inch landscape orientation page with 1/2-inch
left and right margins and 1/4-inch top and bottom margins. The page header, the region-before area,
is 1 inch, and the footer, which is called region-after, is 0.3 inch. The body, called region-body, has an
additional top margin of 1/4 inch and a 1/2-inch bottom margin. These settings apply to all pages since there
is no other page definition.

All XSL-FO structures must have a page sequence, and each <page-sequence> must have at least one
flow object. The <page-sequence> defines the content that goes in the regions listed in the page master. In
the sample report layout, there is one page sequence. All pages have the same format. The page sequence
includes three tables. Two of these are static content for the header and footer regions. The third is a flow
object that contains the rows of the sample report query, flowing for as many pages as required.

The header table is a simple two-column table that holds the heading text, placed at the top right on the
page; the document date, which is at the top right of the page; and the title of the report, which is centered
on the page in a separate line. Listing 14-6 shows the XSL-FO template excerpt that describes the report
header table.

Listing 14-6. XSL-FO for Report Heading Table

<fo:static-content flow-name="xsl-region-before" font-size="8pt" font-family="times,serif"
text-align="center">
 <fo:table>
 <fo:table-column column-width="5in"/>
 <fo:table-column column-width="5in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block text-align="start" color="#006633" font-size="12pt"
 font-family="times,serif" font-weight="bold">

Chapter 14 ■ report printing

578

 <fo:block>
 <xsl:text> APress Expert APEX - Ch 18 Report Printing</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="end" color="black">
 <xsl:value-of select="DOCUMENT/DATE"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
</fo:static-content>

Since this is a simple little table, it is practical to describe the FO table format directives here. The
<fo:table...> directive opens a fo table. The next step is to define columns for the table and then the body.
The table body has table rows and table cells. The first row may be a section that defines the table heading
row. In this case, the heading row is omitted. The table row directive wraps a set of table cell directives, one
for each of the table columns.

The <fo:block> directive marks an element output, which is a chunk of text, if you will. Formatting
attributes most often are applied to the <fo:block ...> element. Here’s an example:

text-align="start" color="#006633" font-size="12pt" font-family="times,serif" font-weight="bold"

While these attributes are not exactly the same as for HTML, they are so similar as to be easily
recognized by most web developers as describing text that is left-aligned (the start for English left-to-right
lines), blue (#006633 is a hexadecimal for a medium blue color), 12 point, Times-Serif, bold text. Pretty
simple and intuitive. These same directives could have been applied at the table-row or table-cell level,
where they would have applied to all inner elements unless overridden by a directive at a lower level. This
concept of inheritance is similar to how attributes are inherited in HTML tables.

The <xsl:text> directive signals plain text for the contents of the table cell, ended by the </xsl:text>
end tag.

The <xsl:value-of SELECT="DOCUMENT/DATE"> directive tells the XSL-FO processor to use a value, the
DOCUMENT/DATE value from the XML data, as the text in this table cell. This element, as are all elements, is
ended by that analogous end tag </xsl:value>.

Each <fo:block> is ended by a closing </fo:block>.
At the end of the table, the ending </fo:table-cell></fo:table-row></fo:table> directives close the

table. The table structure overall is similar to that of an HTML table, with fo directives instead.
By now you are getting the idea that writing XSL-FO templates is similar to writing HTML documents,

with different directives. You’ve got it! The trick is using the correct series of fo directives to tell the FO
processor how to format your output.

To continue describing the sample XSL-FO template, the next fo:static directive describes the page
footer. There is one block of text, the page footer text, followed by a two-column, no-header, one-row table
for displaying the username in the bottom-left corner and the page number in the bottom-right corner. Refer
to Listing 14-1, the full XSL-FO template, to pick out the footer region. Notice that the footer, a static region,
is defined before the flow, the table body.

The next section starts the first flow object and describes how to format the data in the simple report
query. The <fo:flow ...> directive tells the processor that this starts a region of output that flows page to
page until the data is exhausted. In this case, the flow includes a single table, indicated by the <fo:table ...>
directive. For this table, the table column directives define the table column widths, in order, as shown in
Listing 14-7. Note the columns in the table definition are not named; just the widths are defined.

Chapter 14 ■ report printing

579

Listing 14-7. fo:table-column Definitions

<fo:table width="100%" border-style="outset" border-width="2pt" background-repeat="repeat">
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.5in"/>
 <fo:table-column column-width="2.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>

Next comes the table header definition; this table does have static table headings. Listing 14-8 shows
part of the table heading XSL-FO definition.

Listing 14-8. fo:table-heading Definitions (Partial)

<fo:table-column column-width="0.5in"/>
 <fo:table-header>
 <fo:table-row background-color="green" border-style="solid" border-"
 border-color="green">
 <fo:table-cell border-style="solid" border-width="1pt" border-color="gray"
 padding="2pt" background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Department</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt" border-color="gray" padding="2pt"
background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" text-align="center" color="#FFFFFF"
background-color="#008000">
 <fo:block>
 <xsl:text>Project</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt" border-color="gray" padding="2pt"
background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF" background-
color="#008000">
 <fo:block>
 <xsl:text>Task </xsl:text>
 </fo:block>
 </fo:block>
</fo:table-cell>
...

Chapter 14 ■ report printing

580

The table body definition follows the table header row. The interesting features to note here are the
<xsl:for-each ...> element and the ROW element.

Listing 14-9 shows the table body.

Listing 14-9. fo:table-body Definition (Partial)

 <fo:table-body>
 <xsl:for-each select="/DOCUMENT/ROWSET/ROW">
 <xsl:variable name="ROW" select="."/>
 <fo:table-row font-family="times,serif" font-size="8pt">
 <fo:table-cell border-style="inset" border-width="2pt" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block>
 <xsl:value-of select="DEPARTMENT"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="inset" border-width="2pt" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block>
 <xsl:value-of select="PROJECT"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="inset" border-width="2pt" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block>
 <xsl:value-of select="TASK_NAME"/>
 </fo:block>
 </fo:table-cell>
...

The <xsl:for-each ...> directive tells the processor to apply the following formatting for each set of
the DOCUMENT/ROWSET/ROW elements in the incoming XML. That means write this output row this way for
each of the rows in the XML input.

Each cell of the table includes an <xsl:value-of ...> directive to pull in the corresponding element
of the XML tree. Each cell is wrapped in an <fo:block ...> so that formatting can be applied. This extra
<fo:block ...> wrapper is not required, but it is routinely added by some tools to hold formatting applied
at the lowest level.

The table-row, xsl:for-each, table-body, and table elements all end with the appropriate closing tags.
The EndofDocument block deserves special mention. This is a dummy, named, no-content block that

is used to mark the end of the flow for pagination purposes. The <fo:block ...> processor needs to know
where the end of the flow is in order to calculate the total pages. The <fo:page-number-citation ref-
id="EndOfDocument"/> directive in the page-number directive (back up in the static content region-after
section) references the EndofDocument ID.

<fo:block text-align="right" color="black">
 Page
 <fo:page-number/> of
 <fo:page-number-citation ref-id="EndOfDocument"/>
</fo:block>

Chapter 14 ■ report printing

581

So, now you know all there is to know to build a basic table, with header, footer, formatted column
headings, and column text. From here, you can build more features on your simple report output while
learning more XSL-FO formatting features.

Now you will put that simple XSL-FO template to use in APEX. First, you upload the XSL-FO code as a
report layout. Next, you assign that report layout to a static report query. For this example, the report query
is the same as the sample query for the classic and interactive reports. Figure 14-29 shows the output of that
report query/report layout set.

Figure 14-29. Static report query and simple report layout

This is a bit better than using the generic XSL-FO output because you have more control over column
widths and a full set of appearance attributes to work with. Still, you have not done much work, just some
basic XSL-FO table and static object (header and footer) formatting.

The next section describes how to use a simple XSL-FO template in a report layout to generate PDF
output for an interactive report query. The sections after that describe adding additional formatting features
to the report query and the report layout. The intent is to demonstrate some simple conditions, providing
enough information to build on to develop more complex output layouts.

Chapter 14 ■ report printing

582

Customized PDF Output for Interactive Reports
For interactive reports, you really want to capture the sorts and filters applied by the end user and apply a
custom template. That gives you PDF output that more closely matches what the user is seeing in the online
interactive report. To do so, the report query must be dynamic to capture the as-displayed sorts and filters
currently applied. For the report layout, you want to use your own XSL-FO template to override the default,
generic XSL-FO template. Ideally, you want WYSIWYG PDF output for your interactive reports. To achieve
this, you would need a report layout generator, one that captures the current interactive report query and
then generates an appropriate report layout depending on the current display format.

 ■ Note the aLgen project by apexninjas started along that path, but that was several apeX versions back.
the concepts used by apexninjas for capturing the report filters are still sound. See the apexninjas blog for
more information on aLgen.

My compromise approach is to produce a static-column report layout and capture the sorts and filters
of the current report. In some situations, a series of such reports may be required to cover all essential views
of the data where PDF output is required.

To capture the SQL for the as-displayed interactive report, the best APEX 5 (actually APEX 4.2 or newer)
option is to use the Get IR Query plugin by Denes Kubiceck, combined with a table function.

First, define a SQL object type for the report query contents and a table type of that object type. This is
the type of row set the function will return. Listing 14-10 shows the declarations for the types required for the
new, to-be-constructed report query. You can use the same tables and columns as in the sample query, but
here, the order and data types of the columns in your type and in your report query are critical. The column
order and column data type must match, and the query result set must match the output object type;
otherwise, you will get a data type mismatch error.

Listing 14-10. Type and Table Type for the Dynamic Report Query

CREATE OR REPLACE TYPE "IR_RPT_TYPE"
AS OBJECT
(/* IR Demo Report data elements */
ID NUMBER,
ROW_VERSION_NUMBER NUMBER,
PROJECT VARCHAR2(30),
TASK_NAME VARCHAR2(255),
START_DATE DATE,
END_DATE DATE,
STATUS VARCHAR2(30),
ASSIGNED_TO VARCHAR2(30),
COST NUMBER,
BUDGET NUMBER,
DEPTNO NUMBER(10,0),
DEPARTMENT VARCHAR2(255),
BALANCE NUMBER
);

CREATE OR REPLACE TYPE IR_RPT_TABTYPE AS TABLE OF IR_RPT_TYPE;

Chapter 14 ■ report printing

583

Listing 14-11 shows the GET_IR_QUERY function that returns data as IR_RPT_TABTYPE. Exception
handling has been removed from the listing, for brevity.

Listing 14-11. GET_IR_QRY Function

create or replace FUNCTION GET_IR_QRY (P_QUERY IN VARCHAR2)
RETURN IR_RPT_TABTYPE AS
 v_sql VARCHAR2(4000);
 v_ir_report_tab IR_RPT_TABTYPE;
BEGIN
 v_sql := 'SELECT CAST(MULTISET('||p_query||') AS IR_RPT_TABTYPE) FROM DUAL';
 EXECUTE IMMEDIATE v_sql INTO v_ir_report_tab;
 RETURN v_ir_report_tab;

END GET_IR_QRY;

The single parameter in the function is the output of the GET_IR_QRY plugin. For complete
documentation and installation instructions for the GET_IR_QRY plugin, see http://deneskubicek.
blogspot.com/2014/03/apex-ir-query-plugin.html. The plugin gets applied as a dynamic action called
After Refresh of the Interactive Report region. The result is stored in a page item (usually hidden). The value
of this page item—the SQL for the as-displayed interactive report—is passed into the GET_IR_QRY function.
The function slightly modifies the query to cast the output as type IR_RPT_TABTYPE. Then the function
performs an EXECUTE IMMEDIATE and returns.

Listing 14-12 shows the SQL for the new report query that consumes the GET_IR_QRY function. This
report query gets paired with the same report layout as used to produce the static content PDF output. The
same layout is fine; the goal is to adjust the SQL query to reflect the current sorts and filters.

Listing 14-12. Dynamic Report Query for Interactive Report Use

select p.ID,
 p.ROW_VERSION_NUMBER,
 p.PROJECT,
 p.TASK_NAME,
 p.DEPTNO,
 p.Department,
 p.START_DATE,
 p.END_DATE,
 p.STATUS,
 p.ASSIGNED_TO,
 p.COST,
 p.BUDGET,
 p.Balance,
 CASE WHEN p.balance < 0 THEN
 'yellow'
 ELSE
 'white'
 END rowbg
 from TABLE(GET_IR_QRY(:P20_IR_QUERY)) p;

http://deneskubicek.blogspot.com/2014/03/apex-ir-query-plugin.html
http://deneskubicek.blogspot.com/2014/03/apex-ir-query-plugin.html

Chapter 14 ■ report printing

584

Figure 14-30 displays the resulting PDF output when the dynamic report query is combined with the
advanced report layout. I will address how to add background shading and colors on the Status column font
in the next section. For now, let’s focus on the filtered data. Note that in this output the data set is filtered to
show just the Operations department, the same filter the user applied in the interactive report.

Figure 14-30. Filtered, sorted custom IR report query and report layout

In this option, you lose the interactivity of letting the user control the columns and column order—
the template is a fixed-column format—but you gain the ability to control column width and apply other
formatting features not possible in the generic layout. A developer may need to build multiple report query/
report layout sets—one to cover the main tabular view, one for the Group By view, and another for the pivot
view, depending on business requirements.

The dynamic report query strategy is to utilize the GET_IR_QRY plugin or to use the APEX_IR package
directly to return the SQL query for the as-filtered, as-displayed report.

The report layout strategy is to build a custom XSL-FO template that specifically sets named-column
widths and conditionally applies other formatting features to meet business requirements. The next sections
cover some more advanced (but still simple) XSL-FO options for applying custom formatting.

Chapter 14 ■ report printing

585

Advanced XSL-FO Examples
The basics of XSL-FO templates described earlier give you a start. The custom interactive report example
demonstrates how to use a basic XSL-FO template that formats a tabular no-frills view of the data.

No doubt you will need more. As illustrated in the output shown in Figure 14-30, it is possible to add
highlighting and color-coded text. In fact, most any type of formatting you require can be achieved with
an XSL-FO template. The trick is to know the right directives to apply to achieve your desired layout and
coloring. Note that XSL-FO templates may be used for static or dynamic report queries. FOP does not care
where the XML data comes from; it sees only the XML dataset and applies the corresponding report layout.

The examples in this section show you how to apply a simple condition to your template and how to
define a variable and use that variable for conditional formatting. These examples are simple on purpose;
they are meant to hint at the formatting possibilities when introducing variables and conditions.

The following paragraphs detail two of the most common condition types found in XSL-FO templates:

•	 Customizing an XSL-FO template for color coding using a simple value condition

•	 Using a column as a variable in a condition, for conditional backgrounds and other
simple report formatting

Both of these techniques are applied to the report layout, producing the results in Figure 14-31. Notice
that rows where the balance is negative are highlighted in yellow, and the Status column font color changes
based on the Status value: red for Closed, orange for Pending, blue for On-Hold, and green for Open.

Listing 14-13 shows the XSL-FO template—Report Layout—to produce the PDF output shown in
Figure 14-31.

Listing 14-13. XSL-FO to Produce PDF Output Shown in Figure 14-31

<?xml version='1.0' ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="default-page" page-height="8.5in"
 page-width="11in" margin-left="0.5in"
 margin-right="0.5in" margin-top="0.25in"
 margin-bottom="0.25in">
 <fo:region-body margin-top="0.25in" margin-bottom="0.5in"/>
 <fo:region-before extent="1.0in"/>
 <fo:region-after extent="0.3in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>
 <fo:page-sequence master-reference="default-page">
 <fo:static-content flow-name="xsl-region-before" font-size="8pt"
 font-family="times,serif" color="red"
 text-align="center">
 <fo:table>
 <fo:table-column column-width="5in"/>
 <fo:table-column column-width="5in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format

Chapter 14 ■ report printing

586

 <fo:block text-align="start" color="#006633" font-size="12pt"
 font-family="times,serif" font-weight="bold">
 <fo:block>
 <xsl:text>APress Expert Oracle APEX - Chapter 14 Report Printing</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="end" color="black">
 <xsl:value-of select="DOCUMENT/DATE"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:static-content>
 <fo:static-content flow-name="xsl-region-after" font-size="8pt"
 font-family="times,serif" color="red"
 text-align="center">
 <fo:block>This report was made using a Report Query and a customized XSL-FO
 Report Layout</fo:block>
 <fo:table>
 <fo:table-column column-width="5in"/>
 <fo:table-column column-width="5in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell>
 <fo:block text-align="start" color="black">
 <xsl:value-of select="DOCUMENT/USER_NAME"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="right" color="black">
 Page
 <fo:page-number/>
 of
 <fo:page-number-citation ref-id="EndOfDocument"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:static-content>
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <fo:block text-align="center">
 <fo:block>
 <fo:inline font-family="times,serif">Sample Interactive Report XSL-FO
 Demo Simple Table</fo:inline>
 </fo:block>
 <fo:block>

http://dx.doi.org/10.1007/9781484204856_14

Chapter 14 ■ report printing

587

 <fo:table width="10in" border-style="solid" border-width="thin"
 background-repeat="repeat">
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.5in"/>
 <fo:table-column column-width="2.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="1.0in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-column column-width="0.5in"/>
 <fo:table-header>
 <fo:table-row background-color="green" border-style="solid"
 border-width="thin" border-color="green">
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Department</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt"
 text-align="center" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Project</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Task</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

588

 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Start Date</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>End Date</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Status</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Assigned</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Cost</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="1pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

589

 <fo:block font-family="times,serif" font-size="9pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Budget</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt" color="#FFFFFF"
 background-color="#008000">
 <fo:block>
 <xsl:text>Balance</xsl:text>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-header>
 <fo:table-body>
 <xsl:for-each select="DOCUMENT/REGION/ROWSET/ROW">
 <xsl:variable name="rowbg">
 <xsl:value-of select="ROWBG"/>
 </xsl:variable>
 <fo:table-row background-color="{$rowbg}">
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="DEPARTMENT"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="PROJECT"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">

Chapter 14 ■ report printing

590

 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="TASK_NAME"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="START_DATE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="END_DATE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <xsl:variable name="statcolor">
 <xsl:choose>
 <xsl:when test="STATUS='Pending'">orange</xsl:when>
 <xsl:when test="STATUS='Closed'">red</xsl:when>
 <xsl:when test="STATUS='On-Hold'">blue</xsl:when>
 <xsl:when test="STATUS='Open'">green</xsl:when>
 <xsl:otherwise>black</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <fo:inline color="{$statcolor}">
 <xsl:value-of select="STATUS"/>
 </fo:inline>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="ASSIGNED_TO"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>

Chapter 14 ■ report printing

591

 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="COST"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="BUDGET"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-style="solid" border-width="0.5pt"
 border-color="gray" padding="2pt"
 background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <fo:block>
 <xsl:value-of select="BALANCE"/>
 </fo:block>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xsl:for-each>
 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:block>
 </fo:block>
 <fo:block id="EndOfDocument"></fo:block>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>
</xsl:stylesheet>

Chapter 14 ■ report printing

592

Now the PDF output report is starting to look like something useful. Colors and formatting make this
output much more useful for your users. The following sections describe the XSL-FO additions to add
conditional row highlighting and font coloring to the PDF output. The techniques will be familiar to most
programmers: you define a variable and then use that variable in a logical condition.

<xsl:value-of select=...> Conditional Formatting
The <xsl:value of select=...> construct allows you to set a variable name based on a value. There are
many options for xsl:value of. This example uses the simplest form, select = "XML COLUMN", where XML
COLUMN is a column in the XML dataset.

The yellow row background highlight is achieved by applying a simple <xsl-value-of ...> test (read
“condition”) to each of your table rows. You create an XSL variable, set its value using <xsl:value of
select=...>, and use that variable to set the row background color.

In this example, I used a SQL CASE statement in the report query to create a ROWBG column in the output
dataset. Listing 14-14 shows the full report query. This gives you the row background color you want for that
row: the value. The value could also be created using XSL logic or any XSL variable, but I opted for simple
in this example. Note that ROWBG is not defined in the report layout table, so it does not appear in the output
report. The ROWBG value is still passed as part of the XML dataset, however, and in this example you use it for
your <xsl:value of ...> test to set your rowbg variable.

Figure 14-31. Report layout with conditional formatting

Chapter 14 ■ report printing

593

Listing 14-14. Report Query with ROWBG Value

select p.ID,
 p.ROW_VERSION_NUMBER,
 p.PROJECT,
 p.TASK_NAME,
 p.DEPTNO,
 INITCAP(d.DNAME) Department,
 p.START_DATE,
 p.END_DATE,
 p.STATUS,
 p.ASSIGNED_TO,
 TO_CHAR(p.COST,'999G999D00') cost,
 TO_CHAR(p.BUDGET,'999G999D00') budget,
 TO_CHAR((p.BUDGET - p.COST),'999G999D00') Balance,
 CASE WHEN (p.BUDGET - p.COST) < 0 THEN
 'yellow'
 ELSE
 'white'
 END rowbg
 from EBA_DEMO_IR_PROJECTS P,
 EBA_DEMO_IR_DEPT D
 where p.deptno = d.deptno;

One other technique to note in Listing 14-14 is the use of TO_CHAR to explicitly format your numbers
to the desired output format. With PDF output, you do not care if the value is a number or a character; it is
just a value on a printed page. Formatting numeric format in the SQL query is the simplest technique for
achieving the desired numeric output format. You are not asking XSL-FO to do your number formatting
for you; you are delivering the values to FOP exactly as you want them formatted. The caveat is in the
use of special characters, percent signs, and ampersands in particular. When essential, these will need
to be escaped or delivered in Unicode because the FOP processor may interpret them as directives, with
unexpected, nonreadable results.

Listing 14-15 shows the simple <xsl-value-of ...> test. First you define a variable, using
<xsl:variable name="rowbg">; then you set it using the <xsl:value-of select="ROWBG"/> line. Then you
use the variable to set the row background color in the <fo:table-row ...> directive.

Listing 14-15. Our simple test

<xsl:variable name="rowbg">
 <xsl:value-of select="ROWBG"/>
 </xsl:variable>
 <fo:table-row background-color="{$rowbg}">

The resulting output highlights rows with a negative balance in yellow, as in Figure 14-31. The technique
of using an additional value in a report for conditional formatting is also recommended within APEX for
declarative online formatting with interactive reports, so many times such columns may already be available
for use as variables. Note that the xsl variable name does not need to correspond to the XML column name;
I did so here simply for convenience.

Now that you know how to define variables, let’s see what else you can do with them. The next section
introduces <xsl:choose...>, the XSL-FO version of IF-THEN-ELSE logic.

Chapter 14 ■ report printing

594

<xsl:choose ...> Conditional Formatting
For times when more than a simple variable selection is required, the <xsl:choose...> element offers
IF-THEN-ELSE-style conditional formatting options. Listing 14-16 shows the general format of an
<xsl:choose...> element.

Listing 14-16. <xsl:choose...> Format

<xsl:choose>
 <xsl:when test="expression">
 ... some output ...
 </xsl:when>
 <xsl:otherwise>
 ... some output
 </xsl:otherwise>
</xsl:choose>

The format is similar to familiar PL/SQL IF-THEN-ELSE statements or SQL CASE statements.
Listing 14-17 shows the report layout excerpt that uses <xsl:choose ...>to set the Status column

font color. The example <xsl:choose...> element is contained within an <fo:block ...> element. This
is a common good practice; the variable is defined close to where it is used. This is not essential, but it sure
makes things easier to follow.

Reading through Listing 14-17, you open the table cell and then open a formatting block. You next
define a variable using <xsl:variable name = "statcolor"> . Then comes <xsl:choose ...> .

Listing 14-17. XLS-FO for Status Column Font Color Coding

<fo:table-cell border-style="solid" border-width="0.5pt" border-color="gray" padding="2pt"
background-repeat="repeat" display-align="center">
 <fo:block font-family="times,serif" font-size="8pt">
 <xsl:variable name="statcolor">
 <xsl:choose>
 <xsl:when test="STATUS='Pending'">orange</xsl:when>
 <xsl:when test="STATUS='Closed'">red</xsl:when>
 <xsl:when test="STATUS='Open'">green</xsl:when>
 <xsl:otherwise>blue</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <fo:inline color="{$statcolor}">
 <xsl:value-of select="STATUS"/>
 </fo:INLINE>
 </fo:block>
</fo:table-cell>

This <xsl:choose...> element with its inner <xsl:when ...> directives sets a variable statcolor
depending on the value of the STATUS column in the current row. Statcolor is then used to set the color
of the STATUS text for that table-cell, color="{$statcolor}". The resulting PDF output is color-coded text
based on the value of the STATUS column.

These simple examples scratch the surface of what can be achieved with XSL and XSL-FO. The xsl
directives handle the transformation and logic applied to the incoming XML. The fo directives handle the
formatting.

Chapter 14 ■ report printing

595

XSL-FO Editors
Commercial XSL-FO editors certainly make developing XSL-FO templates easier and facilitate learning
XSL-FO object and property syntax. Syntax highlighting and WYSIWYG editing make the template-building
process bearable. Beware that these editors are also likely to include extra or excess markup and may include
directives that are recognized by that tool’s built-in FOP processor but are not recognized by the APEX-
supplied Apache FOP 1.1 processor. When developing an XSL-FO template for use in APEX, remember to
stick with Apache FOP 1.1 objects and properties.

 ■ Tip My first venture into building a complex XSL-Fo template was using Stylus Studio. i built and tested
my template including XQuery conditions for required color coding and background shading and was quite
pleased with my result. When i moved the template to apeX, nothing worked. nothing. one by one i debugged,
and removed, all of my nice XQuery conditions. apparently they were a nicety of the Stylus Studio parsers and
processors but not recognized by the stricter apache Fop 1.0. i learned to build the same conditions the long
way using standard XSL and Xpath; it was the same results, just a different syntax. and i learned to stay close to
my deployment tool stack, using the apache Fop web site as my reference for object and property syntax.

Here are some recommendations for choosing an XSL-FO editor:

Set a budget: XSL-FO editors come in several flavors and in a wide range of
price tags, from “free” to $100 to more than $1,000 per seat. Some vendors offer
periodic sales that cut the price by up to 25 percent. Decide how important
an XSL-FO editor is to your organization and how many licenses are needed.
Base your budget on how important building XSL-FO templates quickly is to
your organization. How many XSL-FO templates are needed? How often will
new XSL-FO templates be developed? How many licenses are required? It may
make sense to have one XSL-FO editor seat and have the developer specialize
in building templates for the rest of the team. Compare the costs to how long it
takes to develop comparable XSL-FO templates manually.

Try before you buy: My experience is none of these tools is truly intuitive. I found
that none of the tools was as simple as point, click, and voila—out pops an
XSL-FO template. Plan on using the 30-day trials, and plan for a learning curve.
Make sure you can use one of the trial templates in an APEX report layout. Some
tools will be easier to learn for you than others. Download and work on the trial
versions and then decide whether to buy and which tool to buy.

Beware the free options: A web search for XSL-FO editor free lists several options,
but most of them are free trials or products where the XSL-FO features are not
included in the free version. XSL-FO editors are most often included as a for-cost
option in XML-editor families. The XSL-FO editing or transformation may not be
included in the core product; you may need to purchase an upgraded option to
obtain XSL-FO features.

Check the features: Make sure the XSL-FO editor is included in the version of the
tool you purchase. XSL-FO editors are also usually part of an XML/XSLT editor
family of tools. Licensing may be in several tiers. Where this happens, the XSL-
FO features are often bundled into the enterprise or most expensive licensing
option, which may or may not be in your budget.

Chapter 14 ■ report printing

596

Consider that the tool may include its own flavor of parsers for preprocessing and the FOP processor.
APEX deployed via ORDS uses FOP 1.1. XSL-FO templates generated in a tool that uses a different XSL
parser and/or a different FOP processor may not work the same, or at all, on Apache FOP 1.1. A clue that
this might happen is the list of extensions in the template heading. The way you will know this is happening
is that the fo template that works fine in the XSL-FO tool fails in your APEX deployment. Most often this is
because of an object or property directive that is not recognized or not supported by Apache FOP 1.1. To be
safe, use the Apache FOP site as a reference. To validate your “plain” XSL-FO, remove the extra namespace
declarations and test without them. Adjust as needed. Be easy on yourself; others have been as frustrated
before you.

When this occurs, the output PDF document—if one is produced—is invalid. To troubleshoot, read the
messages in the app server logs or read the contents of the “bad” PDF output file. For more information on
troubleshooting failed PDF output, see the “Debugging XSL-FO” section.

My experience is that the more features, the more expensive the XSL-FO tool. Features such as syntax
highlighting, code completion, and integrated PDF preview and WYSIWYG editing are essential for any XSL-
FO editor investment. Ensure that the version of tool purchased includes the XSL-FO editor, not just an FOP
processor. Weigh the cost of the tool with the productivity gain in using it over time.

Debugging XSL-FO
As you may have guessed by now, building XSL-FO templates is tedious at best and downright frustrating in
general. To make matters worse, debugging failed PDF output is a matter of being methodical, patient, and
in part a sleuth.

PDF output generation failures come in two categories:

•	 No output at all

•	 Invalid PDF output

The debugging approach is the same for both cases.
First, if you do not have enough patience to call to your cable company about a service outage, do

not even start debugging your XSL-FO. Take a break, gather your wits, borrow some from your neighbor,
and come back later. The obtuse nature of XSL-FO error messages and the tedious nature of finding the
errors in a sea of fo directives, even with syntax highlighting, make debugging XSL-FO a task for the
well fortified.

The best source of messages is the server logs on which the FOP is deployed. The location of the server
logs depends on the APEX instance’s report printing configuration and on where ORDS or FOP is deployed.
If running on a stand-alone ORDS, the FOP processing output messages are written to the console window
in which ORDS was launched. If ORDS is deployed on Glassfish, WebLogic, or another J2EE server, the
server logs are in the location specific to that application server.

Your system administrator may not allow direct read access to the server logs. If not, ask your database
administrator for read-only access through an external table setup. The following describes the steps to
create external table access to the server logs for a Windows-based Glassfish server. As a privileged database
user, follow these steps:

 1. Create an Oracle directory that points to the file server location of the server logs.

CREATE DIRECTORY GF_LOG_DIR AS 'C:\glassfish41\domains\domain1\logs';
GRANT READ ON GF_LOG_DIR TO <user>;

Chapter 14 ■ report printing

597

 2. Create an external table that points to the server log.

CREATE TABLE "THTECH"."GF_LOG_TBL"
 (
 "MESSAGE" VARCHAR2(4000)
)
 ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_LOADER DEFAULT DIRECTORY "GF_LOG_DIR" ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 NOBADFILE
 NOLOGFILE
 FIELDS TERMINATED BY '|'
 MISSING FIELD VALUES ARE NULL
 REJECT ROWS
WITH ALL NULL FIELDS(MESSAGE)) LOCATION('server.log')
) REJECT LIMIT UNLIMITED

 3. Create a view of the external table.

CREATE VIEW GF_LOGS_VW AS SELECT * FROM <user>.GF_LOG_TBL;

 4. Grant access to the database view to the developers who need access to review
FOP messages.

GRANT SELECT ON <user>.GF_LOG_TBL to <Developer User>

The developer could build an APEX interactive report on the server log view, for ease of viewing server
log contents.

This access should be granted only in development environments for FOP debugging purposes. Ideally
such access will not be required at all in production; everything will be working perfectly by then!

Now that you have access to the server logs, what are you looking for? You are looking for anything
that looks like an FOP message. These are usually quite obvious. There are warning messages and error
messages. Listing 14-18 shows a typical FOP WARNING error message. This particular set of warning messages
is output from a run of the generic XLS-FO template against a simple interactive report where some of the
columns are wider than the generic template expected. The PDF output completed fine, with some overlap
in many of the columns.

Listing 14-18. FOP WARNING Error Messages in Stand-Alone Console

...
WARNING: Line 2 of a paragraph overflows the available area by 6810 millipoints.
(See position 1:593228)
May 03, 2015 12:10:30 AM org.apache.fop.events.LoggingEventListener processEvent
WARNING: Line 4 of a paragraph overflows the available area by 700 millipoints.
(See position 1:599723)
May 03, 2015 12:10:30 AM org.apache.fop.events.LoggingEventListener processEvent
WARNING: Line 2 of a paragraph overflows the available area by 4600 millipoints.
(See position 1:599723)
May 03, 2015 12:10:30 AM org.apache.fop.events.LoggingEventListener processEvent
WARNING: Line 1 of a paragraph overflows the available area by 4040 millipoints.
(See position 1:599723)
...

Chapter 14 ■ report printing

598

Listing 14-19 displays another common but innocuous WARNING message. This message tells you that
table-layout="auto" has not been implemented by Apache FOP yet. table-layout="auto" is the default
when no table layout option is specified. Even though you specifically set column widths for all three of the
tables, the tables still defaults to table-layout="auto" according to the standard. This message highlights
the fact that when using the FOP supplied with APEX or using ORDS, you are dealing with Apache FOP
1.1 and are limited to those features implemented therein. This is why the Apache FOP Project web site
(https://xmlgraphics.apache.org/fop/fo.html) is an excellent reference for writing and debugging XSL-
FO. Relying on the Apache FOP minimizes the likelihood of trying to implement a feature that is described in
the XSL-FO standard but not yet implemented in Apache FOP.

Listing 14-19. Apache FOP table-layout="auto" WARNING Message

May 02, 2015 2:53:09 PM org.apache.fop.events.LoggingEventListener processEvent
WARNING: The following feature isn't implemented by Apache FOP, yet: table-layout
="auto" (on fo:table) (See position 1:689)
May 02, 2015 2:53:09 PM org.apache.fop.events.LoggingEventListener processEvent
WARNING: The following feature isn't implemented by Apache FOP, yet: table-layout
="auto" (on fo:table) (See position 2:28)
May 02, 2015 2:53:09 PM org.apache.fop.events.LoggingEventListener processEvent
WARNING: The following feature isn't implemented by Apache FOP, yet: table-layout
="auto" (on fo:table) (See position 7:136)

The messages shown previously are all WARNING messages that did not interrupt completion of FOP
processing. When an error occurs that does abort processing, that error message will be the last in the set of
FOP messages for that FOP output request. Note that it may not be the last message in the server log, nor the
last FOP output set in the log, because the server log includes messages from other modules as well.

Often when an error aborts processing, the same error is written to the PDF output file and is readily
readable there. In these cases, outfile.PDF is invalid as a PDF file, but when read in a plain-text editor, it
gives clues about what went wrong. Figure 14-32 shows a typical nonhelpful XSL-FO output message.

Figure 14-32. XSL-FO ERROR message in failed -file PDF

In this case, the error was an incorrect table column entry, where the entry was this:

<table-column column-width="0.5n">

instead of this:

<table-column column-width="0.5in">

It took a long time to find that missing I. The error message told me to inspect the table elements but
not much else. I have yet to find any error that can translate or navigate to position 8:3545. This is where the
sleuthing comes in. Another time this same error message occurred was when I tested my report without
including session state values. I found that problem by trial and error. Be prepared for such messages, and be
fastidious in writing and testing your code.

https://xmlgraphics.apache.org/fop/fo.html

Chapter 14 ■ report printing

599

Have no fear, not all messages are that vague. For example, the cause and correction for this message
is obvious:

The element type "xsl:textw" must be terminated by the matching end-tag "</xsl:textw>".

Since there is no xsl:textw element, simply search for textw, correct it to text, save, upload the revised
XSL-FO file to a report layout, reassign the report query to the report layout, and retest. Yes, it is that many
steps per change. And it is still worth it to be methodical, make small changes, and retest.

For this error message, the fix is again obvious but may be harder to find:

The element type "fo:block" must be terminated by the matching end-tag "</fo:block>".

Somewhere in your template is a missing or misspelled </fo:block> tag. If you have been editing in
small increments, locating the error will be easier.

Start small and clean. Get a basic template working and then add features one at a time. Add, test, add,
test. That way, when an error occurs, the source of that error is easier to find in the last changes you made.

Above all, debugging FOP output takes a lot of patience. There are few how-to examples out there other
than the most basic examples. It is likely what you are looking for is not out there, and you will need to think,
be clever, do some sleuthing, and be prepared to learn by trial and error to achieve customized features.

Third-Party Report Printing Solutions
Now back to the overall “report printing” solution. APEX offers standard printing, which was just covered,
and advanced printing with Oracle BI Publisher. Beyond that, there are a number of third-party tools that
can be integrated with APEX to provide more sophisticated reporting solutions.

The tools and products listed here each have their strengths and weaknesses. Some cost money;
some are open source. Some require specific configuration to integrate with APEX. Others are as simple as
building PL/SQL procedures or adding a plugin.

The right reporting tool for your organization depends on your reporting requirements, including staff,
monetary, and time resources.

General Report Printing Solutions
Here are the 30-second elevator pitches for some commonly used reporting printing solutions for APEX instances:

BI Publisher: An excellent Oracle-owned solution with a high price tag, unless
already licensed for Oracle Business Intelligence products. Read the fine print for
licensing combinations and costs.

PL/PDF: A relatively low-code PL/SQL-based product for writing PL/SQL
programs to generate PDF output. This is a popular option because no FOP
processor is required. The downside is every report must be coded.

BIRT: A Java Eclipse-based open source web reporting solution. There are two
components, a Java-based Report Designer and a runtime component to deploy
a J2EE application server. For organizations with Eclipse resources, this may be a
good fit. For information on integrating BIRT and APEX, see https://emoracle.
wordpress.com/2012/05/02/using-birt-with-apex-for-pdf-reports/.

Jasper Reports: Perhaps the most popular APEX report printing option. Jasper
Reports is another Java-based open source high-fidelity reporting tool for
producing reports in various formats including PDF, RTF, and XLS. The best
source for Jasper Reports and APEX information is by Dietmar Aust, at
www.opal-consulting.de/apex/f?p=20090928:4:0.

https://emoracle.wordpress.com/2012/05/02/using-birt-with-apex-for-pdf-reports/
https://emoracle.wordpress.com/2012/05/02/using-birt-with-apex-for-pdf-reports/
http://www.opal-consulting.de/apex/f?p=20090928:4:0

Chapter 14 ■ report printing

600

Plugins: There are several solid plugins for providing PDF output for all or part of
reports on a page. These provide no to limited formatting options and generally
capture most interactive report configurations. See www.apexplugins.com for
more information.

Crystal Reports: A SAP business intelligence reporting tool. Crystal Reports can
also be configured to work with APEX. Those already invested in this tool may
want to integrate with APEX.

Oracle Reports: May be integrated with APEX. Organizations with legacy Oracle
Reports and an existing license may want to use this option.

Each of these solutions serves a different purpose. Each requires configuration of the report data and
the report layout and configuring (or not) printing options. All of these can be integrated into APEX pages.
None of these is perfect for every set of “report printing” requirements. If a more complete reporting solution
is required for your organization, beyond what is offered by APEX standard printing and beyond what is
practical with XSL-FO, investigate the previous option for possible solutions.

The Future
APEX 5.0 has no new standard printing features, other than the updated FOP processor (to FOP 1.1), which
is arguably not APEX 5 but more ORDS and the external FOP processor. There are no significant new features
for standard printing planned for APEX 5.1, though the APEX 5.1 Statement of Direction used to include the
following statement:

“PDF Printing – Improve the printing capabilities utilizing the Oracle REST Data Services
FOP Support.”

As of the release of APEX 5.0, the APEX 5.1 Statement of Direction was shortened, and the reference
to PDF printing was removed. So, plan on no significant new features for a while. And plan on getting
comfortable with XSL-FO for customized report layouts.

Summary
No, APEX does not have an out-of-the-box, WYSIWYG PDF output capability. APEX does not have an all-
encompassing point-and-click report printing solution. And it never will; it is just too broad a feature to
build. What APEX does have for standard report printing is basic output generation for classic and interactive
reports and customized PDF output through the use of report queries and XSL-FO report templates.

The recommendation is to use APEX standard report printing options for as much as possible for cases
where end users desire PDF output and specialized formatted output is not essential. Where equal-spaced
columns are acceptable, embedded charts and graphs are not required, and where declarative settings can
account for most report output configurations, APEX standard report printing is a viable no-cost minimal
configuration option. When specific nontabular formats are involved, when graphics or charts are required,
or when highlighted and color coding are required, use report queries and report layouts to achieve the
desired report configuration.

Building XSL-FO templates is not as difficult as it seems. Though there is a learning curve involved,
most configurations can be readily constructed with an investment in learning XSL-FO syntax and layout
basics, plus time, patience, some sleuthing, and a bit of ingenuity. Good luck!

http://www.apexplugins.com/

601

Chapter 15

Working with APEX Collections

by Raj Mattamal
When writing applications, developers often need a way to store an unknown number of items in a
temporary structure. The most pervasive example of this is the online shopping cart. When a user browses
an online store, developers don’t know the number of items the user intends to purchase. To address this,
application developers use collections to store these variable pieces of data.

The term collections itself is a rather general one. Many, if not most, programming techniques offer
some method of storing variable collection–type data, and terms such as arrays, sets, and lists are common
across them. In Oracle PL/SQL, the need to store collection data is most commonly met using constructs
such as nested tables, varrays, and associative arrays. Unfortunately, these constructs aren’t generally useful
across pages of Oracle APEX applications because they tend to persist for the life of the given database
session, whereas APEX page views can span multiple database sessions.

To address this need to temporarily manage an unknown number of items in an application user
session that might span multiple database sessions, Oracle APEX offers APEX collections. Much in the same
way that APEX manages the session-related information stored into page- and application-level items, APEX
collections allow developers to temporarily store variable amounts of data within a user session without
burdening the developer with the mechanics of session state management. What follows is an exploration of
the need for collections, some common use cases, and tips and tricks that use collections.

When to Use APEX Collections
As already mentioned, APEX collections provide application developers an easy way to store variable
amounts of data. When discussing this in the context of database applications, people often ask why the
information shouldn’t be stored in temporary tables. The answer to this is simple: APEX web applications
are ultimately stateless, and each page view is generally a distinct database session. As temporary tables
do not persist beyond the current database session, the data gathered from one page view or process in an
APEX application won’t be readily available in subsequent ones. It is logical then to consider using regular
database tables to store collection data. In fact, APEX collections are stored in regular database tables, but
the developer does not need to be aware of this. You will take a closer look at the back-end mechanics of
collections later; for now, you can think of APEX collections almost as regular tables that are associated with
the session of the user currently logged into the application. What makes collections an excellent choice for
storing temporary data in APEX applications is that APEX manages the session state of the collections as
users click through multiple page views, and by extension multiple database sessions, without the developer
having to mind the underlying concepts. To appreciate this, it is worthwhile to take a quick look into this
extra overhead that APEX manages behind the scenes.

Chapter 15 ■ Working With apeX ColleCtions

602

Session State Management: A Quick Overview
Most conventional web application architectures are inherently stateless. Simply put, this means that the
data is not retained between subsequent executions. To allow for more complex applications, though, many
web architectures have mechanisms to retain or rejoin to session data so that processing can occur across
page views in what amounts to a single application session or user session.

Oracle APEX approaches this by using a session cookie stored on the user’s browser. When a user first
instantiates a session in an APEX application, a session cookie is placed on the user’s computer. When that
user attempts to access the same application again with a valid cookie, APEX recognizes the returning user
and makes that user’s session data available. A simple example of how this would be useful is a multiple
page survey that collects information from a user.

Imagine a user, John, is entering information into a web survey written in APEX. When John enters his
name into an item on the first page, P1_NAME, and then clicks to the next, his name appears at the top of the
second page in the form of static text, for example, “John’s Survey Responses, Page 2.” APEX was aware that
it was John accessing the second page and not some random user because, behind the scenes, it recognized
the valid session cookie and made that session’s value of P1_NAME available to the application. It is certainly
possible to manage this nontrivial logic on your own, but APEX does this incredibly efficiently and
seamlessly for you. Later, when the user’s session has been inactive for a significant period of time, APEX
even purges the older data so that unnecessary values like P1_NAME aren’t store beyond their usefulness.

Session State–Managed Tables
Similar to the way APEX handles session data for page- and application-level items, APEX collections allow
developers an easy way to share data across page views without having to check for cookies and rejoin
session data. In this sense, APEX collections can be thought of as tables that automatically provide session
state management. With this concept in mind, you can take a deeper look into the logical workings of the
traditional shopping cart example that so often is associated with APEX collections.

Logically Walking Through a Web Shopping Cart Implementation
If you built an APEX application to serve as a store for online purchases, you would need a way to track
some basic information about the items being purchased by users as they browse your store. To have this
data available at checkout time, you need to tie the data to the users’ session in some way. Earlier, I walked
through the example of a single APEX item, P1_NAME, whose data persists across user session page views, and
this might meet your needs if your customers were allowed to buy only one book per store visit—however,
that’s an unlikely rule. To store information about the unknown number of items your customers might
buy, you would want to create a collection storing information such as the product description, price,
and quantity purchased. This way, as the user clicked between pages of your online store, APEX would
automatically recognize returning users and make their shopping cart available each time. At checkout, you
could take the information gathered in the collection, process it as necessary, and store the relevant details
in some sort of Orders table. To avoid clutter, you could then drop the collection—but if you overlooked this
advisable course, APEX would handle the purging for you at a later time.

A Look Under the Covers
Before actually discussing APEX collection use cases and techniques, it is worthwhile to take a quick peek
into the APEX engine to see how collection data is stored and made available to developers. As mentioned
earlier, APEX collections are in fact stored in regular database tables. Once this data is stored, users can
then access it via the publically available APEX_COLLECTIONS synonym, which in turn points to the

Chapter 15 ■ Working With apeX ColleCtions

603

WWV_FLOW_COLLECTIONS view in the APEX engine schema. Ultimately, it is only the APEX_COLLECTIONS view
and the associated APEX_COLLECTION API that developers need to familiarize themselves with. Still, in the
interest of thoroughness, let’s take a deeper dive.

Private Collections Objects Inside the APEX Engine
The APEX engine is effectively a single schema in the database with some helper schemas to serve specific
purposes. It is within this main schema that APEX stores all its session data. Collection data is no exception
to this. Specifically, APEX collections are stored entirely in two tables: WWV_FLOW_COLLECTIONS$ and
WWV_FLOW_COLLECTION_MEMBERS$. A quick glance at the column names in Listing 15-1 shows you that the
WWV_FLOW_COLLECTIONS$ table doesn’t store application data. Instead, it stores the information APEX needs
to handle the session state management functionality discussed earlier.

Listing 15-1. Description of the WWV_FLOW_COLLECTIONS$ Table

SQL> desc WWV_FLOW_COLLECTIONS$

 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 SESSION_ID NOT NULL NUMBER
 USER_ID NOT NULL VARCHAR2(255)
 FLOW_ID NOT NULL NUMBER
 COLLECTION_NAME NOT NULL VARCHAR2(255)
 COLLECTION_CHANGED NOT NULL VARCHAR2(10)
 CREATED_ON NOT NULL DATE
 SECURITY_GROUP_ID NOT NULL NUMBER

When you take a look at the second collections table’s description in Listing 15-2, you immediately see
what appear to be placeholder columns for data such as C001 and C002 for text, N001 for numbers, and D001
for dates. It is into this table that APEX stores its collection data, but, again, it uses WWV_FLOW_COLLECTIONS$
to expose the right collected data to the right sessions in the right applications.

Listing 15-2. Description of the WWV_FLOW_COLLECTION_MEMBERS$ Table

SQL> desc WWV_FLOW_COLLECTION_MEMBERS$

Name Null? Type
--- -------- -------------------
 COLLECTION_ID NOT NULL NUMBER
 SEQ_ID NOT NULL NUMBER
 C001 VARCHAR2(4000)
 C002 VARCHAR2(4000)
 C003 VARCHAR2(4000)
 C004 VARCHAR2(4000)
 C005 VARCHAR2(4000)
 C006 VARCHAR2(4000)
 C007 VARCHAR2(4000)
 C008 VARCHAR2(4000)
 C009 VARCHAR2(4000)
 C010 VARCHAR2(4000)

Chapter 15 ■ Working With apeX ColleCtions

604

 C011 VARCHAR2(4000)
 C012 VARCHAR2(4000)
 C013 VARCHAR2(4000)
 C014 VARCHAR2(4000)
 C015 VARCHAR2(4000)
 C016 VARCHAR2(4000)
 C017 VARCHAR2(4000)
 C018 VARCHAR2(4000)
 C019 VARCHAR2(4000)
 C020 VARCHAR2(4000)
 C021 VARCHAR2(4000)
 C022 VARCHAR2(4000)
 C023 VARCHAR2(4000)
 C024 VARCHAR2(4000)
 C025 VARCHAR2(4000)
 C026 VARCHAR2(4000)
 C027 VARCHAR2(4000)
 C028 VARCHAR2(4000)
 C029 VARCHAR2(4000)
 C030 VARCHAR2(4000)
 C031 VARCHAR2(4000)
 C032 VARCHAR2(4000)
 C033 VARCHAR2(4000)
 C034 VARCHAR2(4000)
 C035 VARCHAR2(4000)
 C036 VARCHAR2(4000)
 C037 VARCHAR2(4000)
 C038 VARCHAR2(4000)
 C039 VARCHAR2(4000)
 C040 VARCHAR2(4000)
 C041 VARCHAR2(4000)
 C042 VARCHAR2(4000)
 C043 VARCHAR2(4000)
 C044 VARCHAR2(4000)
 C045 VARCHAR2(4000)
 C046 VARCHAR2(4000)
 C047 VARCHAR2(4000)
 C048 VARCHAR2(4000)
 C049 VARCHAR2(4000)
 C050 VARCHAR2(4000)
 N001 NUMBER
 N002 NUMBER
 N003 NUMBER
 N004 NUMBER
 N005 NUMBER
 D001 DATE
 D002 DATE
 D003 DATE
 D004 DATE
 D005 DATE
 CLOB001 CLOB
 BLOB001 BLOB

Chapter 15 ■ Working With apeX ColleCtions

605

 MD5_ORIGINAL VARCHAR2(4000)
 SECURITY_GROUP_ID NOT NULL NUMBER
 XMLTYPE001 SYS.XMLTYPE STORAGE BINARY

Public Collections Objects Inside the APEX Engine
As already said, APEX exposes its collection data to developers in the form of the APEX_COLLECTIONS public
synonym. A quick glance at Listing 15-3 shows that the view associated with APEX_COLLECTIONS, WWV_FLOW_
COLLECTIONS, closely mirrors the columns in the WWV_FLOW_COLLECTION_MEMBERS$ table.

Listing 15-3. Description of the APEX_COLLECTIONS View

SQL> desc APEX_COLLECTIONS

 Name Null? Type
 --- -------- ----------------------------
 COLLECTION_NAME NOT NULL VARCHAR2(255)
 SEQ_ID NOT NULL NUMBER
 C001 VARCHAR2(4000)
 C002 VARCHAR2(4000)
 C003 VARCHAR2(4000)
 C004 VARCHAR2(4000)
 C005 VARCHAR2(4000)
 C006 VARCHAR2(4000)
 C007 VARCHAR2(4000)
 C008 VARCHAR2(4000)
 C009 VARCHAR2(4000)
 C010 VARCHAR2(4000)
 C011 VARCHAR2(4000)
 C012 VARCHAR2(4000)
 C013 VARCHAR2(4000)
 C014 VARCHAR2(4000)
 C015 VARCHAR2(4000)
 C016 VARCHAR2(4000)
 C017 VARCHAR2(4000)
 C018 VARCHAR2(4000)
 C019 VARCHAR2(4000)
 C020 VARCHAR2(4000)
 C021 VARCHAR2(4000)
 C022 VARCHAR2(4000)
 C023 VARCHAR2(4000)
 C024 VARCHAR2(4000)
 C025 VARCHAR2(4000)
 C026 VARCHAR2(4000)
 C027 VARCHAR2(4000)
 C028 VARCHAR2(4000)
 C029 VARCHAR2(4000)
 C030 VARCHAR2(4000)
 C031 VARCHAR2(4000)
 C032 VARCHAR2(4000)
 C033 VARCHAR2(4000)
 C034 VARCHAR2(4000)

Chapter 15 ■ Working With apeX ColleCtions

606

 C035 VARCHAR2(4000)
 C036 VARCHAR2(4000)
 C037 VARCHAR2(4000)
 C038 VARCHAR2(4000)
 C039 VARCHAR2(4000)
 C040 VARCHAR2(4000)
 C041 VARCHAR2(4000)
 C042 VARCHAR2(4000)
 C043 VARCHAR2(4000)
 C044 VARCHAR2(4000)
 C045 VARCHAR2(4000)
 C046 VARCHAR2(4000)
 C047 VARCHAR2(4000)
 C048 VARCHAR2(4000)
 C049 VARCHAR2(4000)
 C050 VARCHAR2(4000)
 CLOB001 CLOB
 BLOB001 BLOB
 XMLTYPE001 SYS.XMLTYPE STORAGE BINARY
 N001 NUMBER
 N002 NUMBER
 N003 NUMBER
 N004 NUMBER
 N005 NUMBER
 D001 DATE
 D002 DATE
 D003 DATE
 D004 DATE
 D005 DATE
 MD5_ORIGINAL VARCHAR2(4000)

So, although APEX developers do not need to be aware of the underlying tables in the main APEX
engine schema, familiarizing yourself with the structure of the exposed APEX_COLLECTIONS view is helpful
when developing. The most important points to glean from this are

•	 The data in APEX_COLLECTIONS is effectively keyed off by the COLLECTION_NAME and
SEQ_ID columns.

•	 The remaining columns of the APEX collections infrastructure allows for the storing
of multiple data types.

•	 Varchar2

•	 BLOBs

•	 CLOBs

•	 XMLTYPEs

•	 Numbers

•	 Dates

•	 The number of values that can be stored per row is limited to the number of
columns exposed in the view. (Workarounds for this will be discussed later in
the chapter.)

Chapter 15 ■ Working With apeX ColleCtions

607

The other publically accessible part of the APEX collections infrastructure is the PL/SQL API, APEX_
COLLECTION, which you will explore in the next section.

Getting Started with Collections
With a basic understanding of the APEX collections infrastructure, you are now ready to start using them. To
do so, let’s use the example that comes available with every APEX instance, the sample database application
demonstration.

 ■ Note if the sample database application isn’t already available in your apeX workspace, it can quickly be
installed by clicking the Create icon atop the application Builder home, clicking packaged applications, and then
selecting the sample database application.

Much like the shopping cart example, the sample database application allows users to create an order
form for a variable number of products. Once the desired number of products has been selected, the user
can place the order, which effectively moves the collection data to the more permanent tables stored in the
application schema. To achieve this, a few key APEX_COLLECTION API calls are used, and these are the first
methods to understand when using collections. The application actually performs these functions in both
its desktop and mobile interfaces, so I will walk you through these methods in the application’s mobile
interface next.

Initializing a Collection
Before using a collection, it is necessary to define it in the context of the current application session.
This can be thought of as initialization. To access the mobile page in the sample database application where
the collection is first referenced, log in, click the Mobile option in the top navigation bar, and then click the
Monthly Orders option in the panel menu. Once there, clicking the Create button takes the user to page 216 of
the application, and this is where your collection is first referenced. Specifically, a new collection is initialized
in a PL/SQL Anonymous Block process that fires Before Header when the user first comes to page 11
(see Listing 15-4).

Listing 15-4. Initializing a Collection called ORDER

apex_collection.create_or_truncate_collection
 (p_collection_name => 'ORDER');

As shown in Listing 15-4, this initial call to the APEX_COLLECTION API offers developers a means from
one API call to either clear out any collection called ORDER or, if one does not yet exist, to create it. It is
important to note here that the APEX_COLLECTION API indeed offers separate procedures to create and
truncate collections, but most APEX developers tend to use the create_or_truncate call to eliminate
the need to check for the collection’s existence before resetting it. Listing 15-5 shows the somewhat more
cumbersome way to achieve the same collection initialization as in Listing 15-4.

Chapter 15 ■ Working With apeX ColleCtions

608

Listing 15-5. Initializing a Collection Called ORDER Using More Granular Methods

begin
 if not apex_collection.collection_exists('ORDER') then
 apex_collection.create_collection('ORDER');
 else
 apex_collection.truncate_collection('ORDER');
 end if;
end;

The important points to note from this longer example are

•	 Collection names must be unique within an application session. Because of this
requirement, the best practice is to check for the existence of the ORDERS collection
before attempting to create it.

•	 Attempting to manipulate a collection that does not exist returns an error. To avoid
this, the best practice before performing operations such as truncating the collection
is to check for its existence first.

Again, though, more often than not, developers tend to use the simpler call shown in Listing 15-4 over
the more granular ones shown in Listing 15-5 unless there is a compelling need for the finer control.

Adding and Removing Data from Collections
Once the collection is initialized within an application session, the APEX_COLLECTION API offers numerous
ways to manipulate its contents. You will explore the two simple methods from the sample database
application in this section, and then you will explore some more advanced techniques.

After selecting a customer name from page 216 of the sample database application and clicking the
Next button, the user is taken to page 217. From this page, clicking links on the right side of the screen adds
or removes members from the current ORDER ollection. Before examining these actions, it is important to
understand what exactly a collection member is.

As mentioned earlier, APEX collections are effectively session-based tables. When examining the APEX_
COLLECTIONS view in Listing 15-4, you saw that collection rows have a specific format with the VARCHARs
first, large object types next, and so on. A collection member is simply a row in the APEX_COLLECTIONS view,
and it will always conform to the structure of the APEX_COLLECTIONS view. The needs of the sample database
application are simple, and so it suffices to store the collected data into the first few member columns of the
collection even though those columns are VARCHAR2s and some of those member attributes are actually
numbers. The sample database application uses the Before Header PL/SQL process from page 217, Add
Product to the ORDER Collection, shown in Listing 15-6.

Listing 15-6. Adding a Member to the ORDER Collection

declare
 l_count number := 0;
begin
for x in (select p.rowid, p.* from demo_product_info p where product_id = :P217_PRODUCT_ID)
loop
 ...
 apex_collection.add_member(
 p_collection_name => 'ORDER',
 p_c001 => x.product_id,
 p_c002 => x.product_name,
 p_c003 => x.list_price,

Chapter 15 ■ Working With apeX ColleCtions

609

 p_c004 => 1,
 p_c010 => x.rowid);
end loop;
end;

However, if you wanted, for example, to later perform aggregate functions on the number values stored,
it would be better to store the numeric values into the NUMBER columns. This is done by simply passing the
numeric value into the ADD_MEMBER numeric input parameters rather than the VARCHAR2 ones, as shown in
Listing 15-7.

Listing 15-7. Adding a Member to the ORDER Collection

for x in (select * from demo_product_info where product_id = :P217_PRODUCT_ID)
loop
 apex_collection.add_member(
 p_collection_name => 'ORDER',
 p_c001 => x.product_id,
 p_c002 => x.product_name,
 p_c010 => x.rowid,
 p_n001 => x.list_price,
 p_n002 => 1);
end loop;
end;

Upon further examining this PL/SQL block, you can see that your collection will end up storing one row
for every item added to the order, regardless of quantity. Again, although this suffices for the needs of the
sample database application, there might be cases where you would want to update the quantity column for
repeated product selections rather than simply inserting a new collection row each time. Doing so affords
you the opportunity to use the UPDATE_MEMBER method, as shown in Listing 15-8.

Listing 15-8. Updating an Existing Member When Available

declare
 l_product_already_added boolean := false;
begin
 -- check if product was already selected and update member if so
 for x1 in (select seq_id, n002
 from apex_collections
 where collection_name = 'ORDER'
 and c001 = :P217_PRODUCT_ID)
 loop
 l_product_already_added := true;
 apex_collection.update_member_attribute (
 p_collection_name => 'ORDER',
 p_seq => x1.seq_id,
 p_attr_number => 2
 p_number_value => x1.noo2 + 1);
 end loop;

 -- insert new collection row if product wasn't previously selected
 if not l_product_already_added then
 for x2 in (select * from demo_product_info where product_id = :P217_PRODUCT_ID)
 loop

Chapter 15 ■ Working With apeX ColleCtions

610

 apex_collection.add_member(
 p_collection_name => 'ORDER',
 p_c001 => x2.product_id,
 p_c002 => x2.product_name,
 p_c010 => x2.rowid,
 p_n001 => x2.list_price,
 p_n002 => 1);
 end loop;
 end if;
end;

This approach offers a cleaner way to store the data in your scenario, of course, but it also highlights
one of the overloaded UPDATE_MEMBER_ATTRIBUTE procedures available in the APEX_COLLECTION API. More
specifically, UPDATE_MEMBER_ATTRIBUTE comes in six overloaded varieties—one for each of the support APEX
collection datatypes. Listing 15-8 calls the one that’s intended for the numeric columns, and because you’re
updating the second numeric column, APEX_COLLECTIONS.N002, you pass in a p_attr_number value of 2.

 ■ Note apeX versions prior to 4.x did not support numeric, date, BloB, or XMltYpe data. therefore, the
equivalent overloaded update procedures are not available in those versions.

Deleting an attribute member is a simple matter of calling the DELETE_MEMBER procedure in APEX_
COLLECTION. You can see this in action in the sample database application when users click the X link next
to an item selected in their shopping carts. Also defined on page 217 of the application, the call just requires
the two values that effectively key your collections view, the collection name, and the sequence ID of the
member to be removed, as shown in Listing 15-9.

Listing 15-9. Removing a Member from the ORDER Collection

for x in
 (select seq_id, c001 from apex_collections
 where collection_name = 'ORDER' and c001 = :P217_PRODUCT_ID)
loop
 apex_collection.delete_member(
 p_collection_name => 'ORDER',
 p_seq => x.seq_id);
end loop;

This simple DELETE_MEMBER procedure works fine for the default implementation within the sample
database application, but it would not suffice for the more advanced implementation suggested when using
UPDATE_MEMBER. In that case, your collection can store multiple instances of a selected product per row, so
you need to adjust your code to update it accordingly. As shown in Listing 15-10, this is accomplished with
the same procedure call used in the more advanced implementation of the addition of new members.

Listing 15-10. Removing a Product from the ORDER Collection

begin
 -- get seq_id of member containing product to be removed
 for x1 in (select seq_id, n002
 from apex_collections

Chapter 15 ■ Working With apeX ColleCtions

611

 where collection_name = 'ORDER'
 and c001 = :P217_PRODUCT_ID)
 loop
 -- reduce quantity of collection member by 1
 apex_collection.update_member_attribute (
 p_collection_name => 'ORDER',
 p_seq => x1.seq_id,
 p_attr_number => 2
 p_number_value => x1.noo2 - 1);
 end loop;
end;

Using the Collection Contents
After a user is done selecting products and clicks the Place Order button on that screen, a page-level PL/SQL
process is executed that does the two final pieces of the initial collections walk-through: it makes use of the
collected information and deletes the APEX collection to free up resources. You have already seen examples
of querying the collection contents in both of the more advanced order management code sections earlier,
and, as you can see in Listing 15-11, this final use of the ORDERS collection is no different. With the
collection contents stored more permanently in a table in your schema, DEMO_ORDER_ITEMS, you are able to
clear out the contents using the TRUNCATE_COLLECTION call.

Listing 15-11. Using and Then Emptying the Collection Contents

-- Loop through the ORDER collection and insert rows into the Order Line Item table
for x in (select c001, c003, sum(c004) c004 from apex_collections
 where collection_name = 'ORDER' group by c001, c003)
loop
 insert into demo_order_items values
 (null, l_order_id, to_number(x.c001), to_number(x.c003),to_number(x.c004));
end loop;
...
-- Truncate the collection after the order has been placed
apex_collection.truncate_collection(p_collection_name => 'ORDER');

A final detail to observe from the walk-through is the simple validation that is executed when the user
clicks the Place Order button. Specifically, note the validation a function from the APEX_COLLECTION API
called COLLECTION_MEMBER_COUNT, as shown in Listing 15-12. As the name suggests, this function returns the
number of items (rows) stored in a given collection.

Listing 15-12. Counting Collection Members via the APEX_COLLECTION API

 apex_collection.collection_member_count('ORDER') >= 1;

The validation could have equivalently queried the count of relevant rows from the APEX_COLLECTIONS
view, but using the provided API function keeps the code short and tidy.

Chapter 15 ■ Working With apeX ColleCtions

612

Exploring Another Use Case
Another common scenario in which APEX developers use collections in their applications is to store check
box values that are checked in paginated reports. The reason for this is that check boxes rendered inline in a
report are generally created using the APEX_ITEM API. Form elements rendered using this API do not support
the same notion of session state as regular APEX page- and application-level items. Instead, the elements
are rendered, and the developer is required to programmatically store the submitted values. Given this,
when report rows are paginated, APEX won’t automatically remember which rows were checked on a prior
screen if the user has navigated away. In the case where a user is presented with check boxes in each row of a
long report, the checked values will be forgotten each time the user clicks the report’s Previous and Forward
navigation options. Put simply, if the user checks a row on the first page of the result set, clicks Next to view
the next set of records, and then clicks Back to return to the beginning, the user will find that the originally
checked rows are no longer checked. For this reason, developers save checked values in a collection so that
APEX has the values available to it when the user navigates back to prior pages. It is this association between
the user’s session and the user’s checked values that makes APEX collections ideally suited to this purpose.

Expanding the Example
To better understand how to save check box values implemented using collections, let’s modify the sample
database application to allow users to delete orders in bulk directly from the main Orders page. Specifically,
you will add check boxes to each row of the Orders listing as well as a new Delete Checked button to page 4
of the application, which will allow users to delete the rows checked. As the user clicks each check box, you’ll
store the associated values to a collection to be processed upon the user clicking the Delete Checked button.

Setting Up the Example
Before getting into collection processing, let’s set up the UI for this expanded example. Start by adding a new
button to page 4 of the application within the Breadcrumbs [Global Page] region. When creating the new
button, accept all the default values except for the attributes shown in Listing 15-13. Doing so will make the
new button match the Enter New Order button already on that page.

Listing 15-13. Attributes for New Delete Checked Orders Button

Button Name: DELETE_CHECKED
Label: Delete Checked Rows
Region: Breadcrumbs [Global Page]
Button Position: Create
Button Template: Text with Icon

Shortly, you’ll modify the query in the Orders region to render the check boxes, but let’s first add some
of the supporting pieces to manage the new collection. Start by adding three application-level processes
to perform the PL/SQL used to manage the checked values. To create the first process, navigate to the
Application Processes section within the Shared Components section of the sample database application.
Next click the Create button, enter a Name of store_checked_order, select “On Demand: Run this
application process when requested by a page process” for Point, and click Next. Enter the code shown in
Listing 15-14, click Next, and then click Create Process.

Chapter 15 ■ Working With apeX ColleCtions

613

Listing 15-14. PL/SQL to Be Called Upon Check Box Clicks

declare
 l_collection_name varchar2(1000) := 'CHECKED_ORDERS';
 l_order_id number := wwv_flow.g_x01;
 l_value_unchecked boolean := false;
begin
 --
 -- create the collection in case it's not already there
 --
 if not apex_collection.collection_exists(l_collection_name) then
 apex_collection.create_collection(l_collection_name);
 end if;
 --
 -- check collection contents to see if order is already stored
 -- if so, this row was UNchecked as opposed to checked
 --
 for c1 in (select seq_id
 from apex_collections c
 where c.collection_name = l_collection_name
 and c.c001 = l_order_id)
 loop
 --
 -- remove order row from collection
 --
 apex_collection.delete_member(
 p_collection_name => l_collection_name
 ,p_seq => c1.seq_id);
 --
 -- note that the value was unchecked
 --
 l_value_unchecked := true;
 end loop;
 --
 -- add order to collection if it wasn't unchecked
 --
 if not l_value_unchecked then
 apex_collection.add_member(
 p_collection_name => l_collection_name
 ,p_c001 => l_order_id);
 end if;
end;

The PL/SQL in the new process will be called from JavaScript when users check or uncheck orders
on page 4. Although this code uses many of the same APEX_COLLECTION calls you’ve already reviewed, it
brings them together into one block to intelligently add or remove ORDER_ID values into the new collection.
Reviewing the comments within the code, you can also see that the process will create the collection if it’s
not already there. This logic is included so that you’re guaranteed to have a place to store the ORDER_ID
even on the first click. As an additional note, it would be slightly more performant to have the calls to
apex_collection.add_member use the numeric p_n001 parameter instead of the varchar2 p_c001 parameter
that’s shown because values passed into p_n001 are stored in the numeric collections column, N001, saving

Chapter 15 ■ Working With apeX ColleCtions

614

you from having to rely on implicit conversions later. For simplicity later in the example, however, you’ll have
the code use the first available collection column, C001. (Please see Listing 15-3 for a description of these
columns in the APEX_COLLECTIONS view.)

Beyond allowing users to check individual check boxes, the example will include a check box at the top
of the report to allow users to check or uncheck all the rows of the report. The two remaining application
processes you will create support the “uncheck all” and “check all” functionalities, respectively.

Create a new application process exactly as you did for store_checked_order, but call this one
unstore_all and have it use the PL/SQL, as shown in Listing 15-15.

Listing 15-15. Source for unstore_all Application Process

begin
 --
 -- remove any stored values in collection
 --
 apex_collection.create_or_truncate_collection ('CHECKED_ORDERS');
end;

Notice here that even though the purpose of this process is to clear out any values stored in the
CHECKED_ORDERS collection, you are using the create_or_truncate API call. This is a common technique
used by APEX developers because it accomplishes the goal of clearing out the collection while not having to
check first for its existence. If you had used the more intuitive delete_collection procedure, there’s a risk
that APEX would return an error if for some reason the collection hadn’t already been created. To get around
this possible error, a lengthier way to code the unstore_all process is shown in Listing 15-16.

Listing 15-16. Alternate Source for unstore_all Application Process

begin
 --
 -- first check to see a collection was instantiated
 --
 if apex_collection.collection_exists('CHECKED_ORDERS') then
 --
 -- delete the collection (and its members)
 --
 apex_collection.delete_collection('CHECKED_ORDERS');
 end if;
end;

The last application process you need to create effectively replaces the collection contents with all
available ORDER_IDs when the user checks the Check All check box. Create the new application process the
same way you did for the prior two processes, but call this one store_all and have it use the PL/SQL shown
in Listing 15-17. (Please note that this process calls the APEX_IR API to fetch the last version of the report
shown on page 4. This is done in case the user has filtered the rows displayed before checking the Check
All check box. By calling the APEX_IR API, you will know exactly what order numbers were presented on the
screen when the user clicked Check All.)

Listing 15-17. PL/SQL Source for store_all Application Process

declare
 l_collection_name varchar2(1000) := 'CHECKED_ORDERS';
 l_report apex_ir.t_report;
 l_ir_query varchar2(32767) default null;

Chapter 15 ■ Working With apeX ColleCtions

615

 l_collection_query varchar2(32767) default null;
 l_names wwv_flow_global.vc_arr2;
 l_values wwv_flow_global.vc_arr2;
begin
 --
 -- query the apex interactive reports view to find the
 -- region_id of the "Orders" Interactive Report
 --
 for c1 in (select region_id
 from apex_application_page_ir
 where application_id = :APP_ID
 and page_id = 4)
 loop
 --
 -- use the region_id value to fetch the last viewed
 -- version of the Orders report
 --
 l_report := apex_ir.get_report (
 p_page_id => 4,
 p_region_id => c1.region_id);
 l_ir_query := l_report.sql_query;
 end loop;
 --
 -- apex interactive report query will contain bind variables
 -- internal to apex, so use the bind information fetched
 -- into the l_report variable to separate the respective
 -- names and values
 --
 for i in 1..l_report.binds.count loop
 l_names(l_names.count + 1) := l_report.binds(i).name;
 l_values(l_values.count + 1) := l_report.binds(i).value;
 end loop;
 --
 -- wrap the fetched query with one that just
 -- selects the order_id values
 --
 l_collection_query := 'select order_id from ('||l_ir_query ||')';
 --
 -- delete the collection if one already exists
 --
 if apex_collection.collection_exists(l_collection_name) then
 apex_collection.delete_collection(l_collection_name);
 end if;
 --
 -- (re)create the CHECKED_ORDERS collection using
 -- the new query which will store all shown order_ids
 -- from page 4.
 --

Chapter 15 ■ Working With apeX ColleCtions

616

 apex_collection.create_collection_from_query_b (
 p_collection_name => l_collection_name,
 p_query => l_collection_query,
 p_names => l_names,
 p_values => l_values);
end;

This final application process introduces a powerful APEX_COLLECTION procedure, create_collection_
from _query_b. As the name suggests, the procedure takes in a query and stores its result set into a new
collection. It’s worth mentioning that the APEX_COLLECTION API also offers a simpler CREATE_COLLECTION_
FROM_QUERY procedure, but it is advisable to call CREATE_COLLECTION_FROM_QUERY_B whenever possible
because it takes advantage of bulk SQL operations for better performance.

With the three application processes created, you need to put some logic on page 4 directly and add the
check boxes to the report to complete the expanded example. The logic needed on page 4 comes in the form
of two JavaScript snippets to call your application processes and one PL/SQL process that actually deletes
the checked orders. You’ll start by adding the JavaScript snippets to the page header. Within the APEX
builder, navigate to the definition of page 4, and enter the text shown in Listing 15-18 in the Function and
Global Variable Declaration field with the JavaScript region of the page-level attributes.

Listing 15-18. JavaScript to Call the New Application Processes

function storeCheckedOrder(pOrderId){
 // use apex.server javascript api to call our app-level
 // process, store_checked_order, passing in the order_id to be stored.
 apex.server.process("store_checked_order", {x01: pOrderId}, {dataType: 'text'});
}

$(document).ready(function(){
 $('#selectAllCheckboxes').on('click',function(){
 // if the check all checkbox was checked,
 // mark all checkboxes in the report as checked and
 // call the store_all application process
 if ($(this).is(':checked')) {
 $("input:checkbox[id^='del_']").each(function(){
 this.checked = true;
 });
 apex.server.process("store_all", {x01: null}, {dataType: 'text'});
 // if the check all checkbox was UNchecked,
 // mark all checkboxes in the report as unchecked and
 // call the unstore_all application process to clear the collection
 }else{
 $("input:checkbox[id^='del_']").each(function(){
 this.checked = false;
 });
 apex.server.process("unstore_all", {x01: null}, {dataType: 'text'});
 }
 })
});

Reviewing the script in Listing 15-18, you can see that it contains two pieces: the JavaScript function,
storeCheckedOrder, which calls the store_checked_order application process via an XMLHttpRequest,
and a jQuery-based JavaScript snippet that calls the other two application-level processes you added

Chapter 15 ■ Working With apeX ColleCtions

617

depending on whether the user has checked or unchecked the Check All check box. Please note that many
APEX developers prefer to handle the JavaScript logic over using APEX dynamic actions. You’re using regular
JavaScript in this example so as to reduce the number of steps.

Now you are ready to add the final piece of logic to page 4, which is the process that actually deletes
the selected orders. This logic will be implemented in the form of a PL/SQL process that fires when the
user clicks the DELETE_CHECKED button you added earlier. To add the process, enter the PL/SQL shown in
Listing 15-19 into the source of a new process on page 4 that has the attributes shown in Listing 15-20.

Listing 15-19. PL/SQL Source for Delete Checked Orders Page Process

declare
 l_collection_name varchar2(100) := 'CHECKED_ORDERS';
begin
 --
 -- loop through collection of order_id's
 -- and delete associated order rows
 --
 for c1 in (select c.c001 order_id
 from apex_collections c
 where collection_name = l_collection_name)
 loop
 delete from demo_orders where order_id = c1.order_id;
 end loop;
 --
 -- drop the collection now that we're done
 --
 apex_collection.delete_collection (l_collection_name);
end;

Listing 15-20. Attributes for Delete Checked Orders Page Process

Process Name: Delete Checked Orders
Type: PL/SQL Code
Point: Processing
Success Message: Successfully Deleted Checked Orders
Error Message: Failed to Delete Checked Orders
When Button Pressed: DELETE_CHECKED

Next, let’s add check boxes to the report. To do so, you’ll simply add a new column to the query used
in the Orders region. As mentioned earlier, check boxes to be rendered within reports are best added
using the APEX_ITEM API. In this case, you’ll use the CHECKBOX2 function and indicate that it should call our
storeCheckedOrder JavaScript with each click. Beyond calling storeCheckedOrder, the other consideration
for the check boxes is to have them remember previously checked values. This is actually the heart of the
example in that you need to refer to your collection for those saved checked values in case the user has
navigated off the page after making selections and comes back. As collection values are easily accessible
from the apex_collections view, you simply need to join it into your query and refer to its stored ORDER_IDs
when calling CHECKBOX2. Both of these changes are reflected in Listing 15-21, so replace the current source of
the Orders report region with the query shown in the listing.

Chapter 15 ■ Working With apeX ColleCtions

618

Listing 15-21. New Query Source for Orders Report

select lpad(to_char(o.order_id),4,'0000') order_number,
 o.order_id,
 to_char(o.order_timestamp,'Month YYYY') order_month,
 trunc(o.order_timestamp) order_date,
 o.user_name sales_rep,
 o.order_total,
 c.cust_last_name||', '||c.cust_first_name customer_name,
 (select count(*)
 from demo_order_items oi
 where oi.order_id = o.order_id
 and oi.quantity != 0) order_items,
 o.tags tags,
 --new column below renders checkboxes
 APEX_ITEM.CHECKBOX2(
 p_idx => 1,
 p_value => o.order_id,
 -- attribute parameter is used here to have checkboxes
 -- call storeCheckedOrder passing in the order_id
 -- with each click
 p_attributes => ' onclick="javascript:storeCheckedOrder('||o.order_id||');" '
 --attribute parm is being used to conditionally set the checkbox to Checked
 --when the order_id is one of the ones in our collection.
 || DECODE(col.order_id,o.order_id,'CHECKED',null),
 p_item_id => 'del_'||o.order_id) delete_chk
from demo_orders o,
 demo_customers c,
 (select c.c001 order_id
 from apex_collections c
 where collection_name = 'CHECKED_ORDERS') col
where o.customer_id = c.customer_id
 -- use an outter join to join in the collection as
 -- it might only contain a subset of all order_id's
 and o.order_id = col.order_id (+)

The last detail necessary to complete the example is to adjust the column header for the new checkbox
column so that it cleanly renders a Check All check box. To do so, navigate to the column attributes screen
for the new DELETE_CHK column and replace the Heading attribute with the text shown in Listing 15-22.

Listing 15-22. New Column Heading for Check Box Column

Delete
<input type="checkbox" ID="selectAllCheckboxes">

Disable all the Enable Users To options presented on the DELETE_CHK column header attributes screen.
Specifically, this entails toggling the selectors for Hide, Sort, Filter, Highlight Control Break, Aggregate,
Compute, Chart, Group By, and Pivot to No. Additionally, set the Escape Special Characters attribute to No.
Disabling these extra features allows the column header to cleanly render without advanced interactive
report functionality interfering.

Finally, set the “Escape special characters” option to No.
With the setup complete, your page 4 should resemble Figure 15-1. Your sample database application

now uses a collection called CHECKED_ORDERS to store ORDER_IDs and delete them in bulk. After adding a few
orders, try checking some values on one page of the result set, navigate to the next, and notice your values

Chapter 15 ■ Working With apeX ColleCtions

619

are still checked when you return to the prior page. Notice, too, that if you check the Check All check box on
one page of the resultset and navigate to the next, those order are checked as well. All of this is made possible
by using an APEX collection to remember which orders were checked.

Figure 15-1. Adjusted order form

Summary
Offering the ability to extend APEX’s native session state management functionality into session-based
tables, APEX collections still tend to be surprisingly underused among beginner and even intermediate
APEX developers. Using the techniques described in this chapter, I hope that more developers will take
advantage of this powerful functionality available within APEX applications. Although I have covered only
the most conventional uses of APEX collections here, a quick search on the Web will reveal developers
thinking outside of the proverbial box to use collections to bring new and even unforeseen power to their
APEX applications.

621

��������� A
addTo method, 490
AJAX-callback process, 195
Animation, 86
Apache Tomcat, 44
APEX, 487
APEX 4

client-side add row function, 160
column string comparison validations, 156
highlighting validation errors, 158
jQuery date picker, 152
lost update protection, 160
Popup Key LOV, 155
radio group, 153
reducing number, 160
single checkbox, 148
validations creation, 157

APEX 4.1/4.2
APEX$ROW_NUM, 169
APEX$ROW_SELECTOR, 168
APEX$ROW_STATUS, 168
declarative process, 165
dynamic actions

adding/changing attributes, 173
array, 172
binding events, 172
jQuery selector, 170

validation process, 162
APEX 5.0, 600
APEX 5.1 Statement of Direction, 600
APEX collection

adjusted order form, 619
check box values, 612
data deletion, 610
data insertion, 608
data updation, 609
definition, 601
initialization, 607
JavaScript, 616
online shopping cart, 602

ORDERS collection, 611
orders report, 618
PL/SQL

delete checked orders process, 617
store_all application process, 614

private objects, 603
public objects, 605
session state managed tables, 602
session state management, 602
store_checked_order, 612
unstore_all application process, 614
uses, 606

APEX debugging
application utilities

application edit page, 289
debug messages option, 290
quick links menu, 289

Developer Toolbar, 286
graphical representation, 288
navigation region, 288
pop-up window, 286

dynamic actions
AJAX call, 317
Chrome JavaScript console, 314
POST expanding, 316
XMLHttpRequests, 315

ELAPSED_TIME, 313
EXECUTION_TIME, 313
features, 282
interactive report, 294
LOG_MESSAGE, 307
LOG_PAGE_SESSION_STATE procedure, 308
MESSAGE_TIMESTAMP, 313
page phases, 283

ACCEPT, 283
mapping, 284
SHOW, 283

p_level parameter, 307
plugins, 318
processing, 282
programmatic debugging, 301

Index

■ index

622

rendering, 282
request-response, 282
URL, 285
WWV_FLOW_DEBUG_MESSAGES, 310
WWV_FLOW_DEBUG_MESSAGES2, 310
XMLHttpRequest, 293
XML link, 291

APEX debugging API
constants, 297
disable procedure, 297
enable procedure, 297
ENTER procedure, 298
ERROR procedure, 299
INFO procedure, 299
LOG_DBMS_OUTPUT, 299
LOG_LONG_MESSAGE procedure, 300
LOG_MESSAGE procedure, 299
LOG_PAGE_SESSION_STATE procedure, 300
MESSAGE procedure, 300
REMOVE_DEBUG_BY_AGE procedure, 300
REMOVE_DEBUG_BY_APP procedure, 300
REMOVE_DEBUG_BY_VIEW procedure, 300
REMOVE_SESSION_MESSAGES procedure, 301
TOCHAR function, 301
TRACE procedure, 301
WARN procedure, 301

APEX development
Apache Maven

build process, 366
installation, 366
project directory layout, 367

application packaging
applicability, 365
database scripts, 363
export supporting object, 363
static files, 364

deploying static files, 392
Liquibase (see Liquibase)
Oracle APEX Maven plugin

import goal, 387
run-natural-docs goal, 389

APEX engine, 361
APEX plugin architecture

Create/Edit page
ajax_apex_jqgrid, 434
apex-jqgrid-plugin.css, 428
apex-jqgrid-plugin.js, 430, 433, 435, 440, 444
Callbacks region, 406
Comments region, 412
custom attributes, 408
dynamic columns, 439
dynamic query, 437
events region, 411
file region, 410, 425

file URLs region, 410
Frozen attribute, 442
help text region, 412
information region, 411
JavaScript and CSS practices, 451
name region, 404
PL/SQL code, 423, 431
PL/SQL practices, 452
plugin creation, 420
plugins developing, 451
render_apex_jqgrid and ajax_apex

_jqgrid, 448
render_apex_jqgrid function, 443
render function, 426, 429
source region, 405
Special Character updation, 447
standard attributes, 407
subscription region, 405
sys.htp.p, 426
User Interfaces region, 407
vendor subdirectory, 424
web-server-files, 424

PL/SQL APIs
AJAX callback function, 413
APEX_DEBUG package, 414
APEX_JSON package, 415
APEX_PLUGIN package, 413
APEX_WEB_SERVICE package, 415
CSS and JavaScript, 414

tools
change event, 418
checkLength() function, 418
Font Awesome, 419
jQuery, 415
jQuery UI, 415
widget function, 416

APEX standard report printing, 540
Application translation

application language derived from, 254
CSV Encoding, 257
export/import, 271
globalization attributes, 253
mapping, 256
seeding process, 258
XLIFF file

exporting primary application, 271
publish process, 262
target elements, 259
template text, 261
translation repository, 261

Asynchronous JavaScript and XML (AJAX)
CLOB, 501
creation, 499
elements, 501
FETCH GAS STATIONS, 500

APEX debugging (cont.)

■ Index

623

gJSON, 499, 504
JavaScript source, 502
JSON array, 498
P115_SEARCH, 498
pseudocode, 501
query output, 498
region button, 504

��������� B
BIRT, 599

��������� C
Chart plugins, 140
closest() function, 469
console.log function, 464
Crystal Reports, 600
Custom code

data integrity
adding tab_form_emp_pkg package, 179
checksum, 178
error message, 182
return VARCHAR2 function, 181

deleting rows, 174
manual tabular forms

ApplyMRU, 184
branches, 184
buttons, 184
delete_emp_row, 184
SELECT statement, 183
update and validation processes, 185
validate commission, 185

tabular forms and collections
AJAX-callback process, updating, 195
creation, 189
data window, 189
saving data, 198
update and delete procedures, 192

Custom column attribute, 446
Custom region attribute, 446

��������� D
Data Definition Language (DDL), 363
Data Manipulation Language (DML), 363
Document Object Model (DOM), 458
Dynamic actions

advanced section
dynamic, 335
once, 335
static, 335

affected elements section, 339
business case, 342
creation, 322

custom JavaScript, 319
department employees report

column formatting/HTML expression, 344
OnChange, 345
region’s source, 344

edit action, 337
emphasize employee change

Execute JavaScript Code, 354
set style action, 354

execution options section, 329, 340
flow chart, 326
highlight row

onPageLoad, 349
page inline CSS, 347
table row hover CSS, 346
theme roller custom CSS, 348

identification section, 328, 337
modal window

dialog open, 357
template modification, 356
template options, 356

opposite action, 324
P1_ENAME properties, 343
Page Designer messages, 323
properties, 324
property editor view options, 328
rendering icon, 327
row click

HTML 5 custom data attributes, 350
onClick Emp, 351–352
select employee, 353

settings section, 338
true/false actions, 335
When section, 329

conditions, 332
event option, 330
Help tab, 330
selection type option, 330

Dynamic data grid, 436
Dynamic report query, 582

��������� E
each() function, 463
Entity-relationship model (ERD), 374
Extensible Markup Language (XML)

definition, 480
processing, 481

Extensible Stylesheet Language (XSL), 566

��������� F
find() function, 470
FOP processor, ORDS 3.0, 542
Formatted Objects Processor (FOP) processor, 539

■ index

624

��������� G
Gantt chart, 222
g_f01 array, 149
GitHub for Mac, 399
gJSON, 499, 504
Glassfish server, 44
Globalization

APEX_LANG API, 269
APEX ZIP file, 250
attribute description, 277
localization

definition, 249, 271
locale-sensitive date formats, 271
numeric formats, 272
SINCE format mask, 272
territory change, 276
time zone, 274–275

modifying list template, 277
navbar list entry, 278
Switch Lang dynamic action, 279–280
translation

APEX internal text, 267
application (see Application translation)
data model, 264
definition, 249
dynamic translation, 267
export translations, 270
manual translation, 263

Google web services, 479
Gradient angle, 88
Grid option

definition, 528
item, 530
Label Column Span attribute, 532
region, 530
responsive layout, 533
Show All selector, 531
twelve-column grid, 529
value combination, 530

��������� H
Hatch pattern, 85
HighCharts, 140

��������� I
Interesting techniques

adding select lists, 207
AJAX callback function, 209
modal pages, 203

Invert X-Axis Scale, 87
Invert Y-Axis Scale, 87

��������� J, K
Jasper Reports, 599
JavaScript/HTML5 charting engines, 140
JavaScript Object Notation (JSON)

definition, 480
gas stations, 480
processing, 481

Jenkins
ci build profile, 400
creation, 401
installation, 400

jQuery
AJAX callback process, 472, 474
AJAX calls, 471, 473
APEX, 475
APEX JavaScript API, 471
apex.server.process, 475
attribute selector, 457
Boolean properties, 462
chaining function, 470
classlist, 463
class selector, 457
console window, 460
CSS selectors, 456
developer tools, 459
DOM nodes, 459
DOM traversing

downward, 470
siblings() function, 470
upward, 469

event handlers
APEX's refresh, 469
convenience functions, 465
dynamic handling, 466
onclick attribute, 465
page load event, 468
removing, 467
stopping, 467

features, 455
ID selector, 456
input elements, 458
iteration, 463
JavaScript, 456
objects, 456
P7_ENAME, 460
pitfalls, 475
text() function, 461
val() function, 461

■ Index

625

��������� L
LANG procedure, 269
Leaflet, 486
Lifecycle management

APEX development (see APEX development)
aspects, 359
challenges

APEX development, 361
collaborative development, 360
database changes, 360
demo project, 362
parallel development, 361

multi-environment setup
building, 394
build profiles, 397
code repository, 398
DTAP cycle / street, 395
inheritance, 396
Jenkins, 400
parts, 395

Liquibase
changeLog files

attributes, 377
compile_schema.sql script, 376
DATABASECHANGELOG, 377
DATABASECHANGELOGLOCK tables, 377
database package, 378
install folder, 375
latest folder, 375
master.xml file, 375
src/main/database directory, 376
src/main/database/changelog folder, 376

database scripts
atomicity, 371
DDL statements, 372
DEPT table, 373
DML and DDL scripts, 370
DML statements, 372
nonreplaceable object, 370
replaceable object, 370
src/main/database directory, 369, 374
transaction control, 371

Maven plugin
ALTER TABLE script, 383
configuration element, 380
definition, 379
executions element, 379
features, 385
OJDBC driver, 380
plugin element, 379
properties, 380
successful maven execution, 381
unsuccessful maven execution, 382

Long Date format (DL), 272

��������� M
Map integration

APEX_SPATIAL package, 506
area calculation, 508
distance calculation, 507
geocoding

coordinates, 477
definition, 477
Google web services, 479
JSON, 480
Oracle web services (see Oracle web services)
service choose, 485
XML, 480
Yahoo web services, 478

interaction with database (see Asynchronous
JavaScript and XML (AJAX))

mapping API
APEX, 487
Before Header PL/SQL page process, 491
JavaScript function, 492
JavaScript writing, 488
layers, 485
Leaflet, 486
libraries, 486
marker addition, 490
multiple markers, 494
points, 485
polygon, 495
removeMarkers() function, 494

SDO_GEOMETRY, 505
SDO metadata, 505
search within distance, 507
spatial indexes, 506
third-party data

sdo_geometry column, 509
WKT, 509
ZIP code polygon, 508

Maven old Java object (MOJO), 387

��������� N
NLS_DATE_FORMAT, 273
NLS_TIMESTAMP_FORMAT, 273
NLS_TIMESTAMP_TZ_FORMAT, 273

��������� O
on() function, 467
Oracle Application Express 5.0

AJAX call, 104
AnyChart, 74
AnyChart plugin, 138
build query wizard, 95
chart attributes, 79, 83, 105

■ index

626

chart creation, 75
chart region, 83
chart series page, 94
chart series settings, 97
chart types, 98
chart widget, 100
chart wizard, 78
column subcharts, 77
Component View, 82–83
dashboards, 128
debug and performance

chart region, 107
chart serie(s), 107
debug output, 106
Firebug/Firefox, 109–110
XML link, 107–109

extending charts, 114
future aspects, 140
HTML and JavaScript, 101
multiple series charts, 96
Oracle APEX 3.x/4.x Flash and SVG charts, 111
Page Designer, 81, 83
resources, 143
screen reader mode and charts, 112
SQL query syntax, 79
versions, 75

Oracle Reports, 600
Oracle Rest Data Services (ORDS), 539

accessing ORDS web services via APEX, 70
configuration files

format, 53
parameters, 54
structure, 52

database users, 50
definition, 43
download page, 44
installation

APEX 5 login screen, 49
building APEX application, 48
command, 45
configuration files, 45
database server, 46
downloading APEX 5 file, 47
installing APEX, 46
output, 45
password, 46

multiple database configuration
new database connection, 51
request path routing, 51
request URL prefix–based routing request

path routing, 52
SQL developer

accessing hidden parameters, 69
administration, 54
employee web service, 69

enabling an existing table, 56
HTTP header, 67
method handler and source, 64
new module creation, 63
new module properties, 63
new REST service, 61
parameters, 66
POST method, 68
query option, 65
URI pattern, 64

ZIP file, 45
Oracle web services

classic report, 482
dynamic action, 484
page creation, 481
search and country fields creation, 482
search button creation, 482

ORDS 3.0, 542
Overlay Y-Axis, 87

��������� P, Q
P8_DEPTNO, 131
Page Designer

code editor, 26
components, 1
Component View

dynamic actions, 10
page shared components, 12
processing, 11
rendering, 9

features, 1
grid layout

copied elements, 15
gallery menu, 14
help tab, 19
messages, 16
page search, 18

link to the APEX 5.0
documentation, 30

link to the APEX 5.0 forum at OTN, 31
link to the APEX resources at OTN, 31
navigation

Component View icon, 7
Create icon, 5
developer comments icon, 8
lock pages, 4
Page Finder icon, 2
save and run application, 9
shared components icon, 8
Team Development icon, 8
Undo and Redo icons, 4
Utilities icon, 6

options
multiple component selection, 35
Page Designer memory function, 38

Oracle Application Express 5.0 (cont.)

■ Index

627

quick edit, 39
resizing Page Designer areas, 37
show grid, 39
theme roller, 40
toolbar options, 41

overview of, 32
property editor

Collapse All button, 21
Go to Component icon, 25
Go to Group icon, 24
Quick Pick icon, 23
Show All button, 21–22
Show Common button, 21

shortcuts, 28
parent() function, 469
Polygon, 495, 508
Project Object Model (POM) file, 368

��������� R
Rapid Application Development (RAD), 361
ready() function, 468
Report layouts, 562, 564
Report printing

APEX instances solutions, 599
APEX standard report printing, 540
debugging XSL-FO

external table, 597
FOP WARNING error

messages, 597
Oracle directory, 596
PDF output generation

failures, 596
WARNING message, 598
XSL-FO ERROR message, 598

dynamic report query
APEX_IR package, 584
GET_IR_QRY function, 583
interactive report, 583
type and table type, 582

interactive report PDF output, 559
prerequisites, 541
report layouts, 562, 564–565
report queries, 562–563
Rich Text Format (RTF) document, 540
standard report printing configuration

(see Standard APEX report printing)
third-party tools, 599
XSL-FO 101 (see XSL-FO 101)
XSL-FO editors, 595
XSL-FO templates

column font color coding, 594
condition types, 585
PDF output, 585
ROWBG value, 593

<xsl:choose …> conditional formatting, 594
<xsl:value-of select=…> conditional

formatting, 592
Report queries, 562–563

��������� S
Short Date format (DS), 272
siblings() function, 470
SINCE format mask, 272
Sorted Overlay Y-Axis, 87
Standard APEX report printing

architecture, 542
classic report printing

advanced properties, 554
column headings, 556
column headings properties, 553
columns properties, 554
generic XSL-FO template, 550
layout, 555
link example, 555
output format, 555
output properties, 552
page footer, 556
page footer properties, 554
page header, 555
page header properties, 553
page properties, 552
printing attributes, 551
printing enabled, 549
print server overwrite, 556
response header, 555
view file as, 555

column width settings
Component View, 557
declarative settings, 558

enable network services
classic report print link, 545
default classic report, 546
interactive report’s download dialog, 548
interactive report’s download option, 547
sample report query, 548
setting printing link text, 545

external FOP processor, 543
ORDS settings, 543

Subregions
item placement, 535
nested, 534
Page Designer, 536
standard wizard layout, 534
stretch form fields, 535
tab container template, 536–537

Substitution strings
button creation, 514
CSS Classes attribute, 517

■ index

628

HTML template list, 522
page attributes, 520
source region attribute, 516
templates, 514
3D representation, 515
user interface attributes, 519
user interface details page, 519
values, 518

��������� T
Tabular forms

APEX 4 features
client-side add row, 160
column string comparison validations, 156
highlighting validation errors, 158
jQuery date picker, 152
lost update protection, 160
Popup Key LOV, 155
radio group, 153
reducing number, 160
single checkbox, 148
validations creation, 157

APEX 4.1/4.2 features
adding/changing attributes, 173
APEX$ROW_NUM, 169
APEX$ROW_SELECTOR, 168
APEX$ROW_STATUS, 168
array, 172
binding events, 172
declarative process, 165
jQuery selector, 170
validation process, 162

changes
APEX 4.0, 145
APEX 4.1/4.2, 146
APEX 5.0, 146

constraints, 146
custom code (see Custom code)
interesting techniques

adding select lists, 207
AJAX callback function, 209
modal pages, 203

purpose, 147
replace excel spreadsheets, 148

Team Development application
bugs, 232
features

customized report, 221
data model, 219
Gantt chart, 222
status views, 220
tracking attributes, 221

feedback
APEX_TEAM_FEEDBACK view, 234
converting bug, 239
creating reports, 243
data model, 234
enabling, 235
enhancements, 245
exporting, 237
export response to

deployment, 241
feeding back follow-up, 245
importing, 238
importing response into

deployment, 242
Page Designer, 238
process, 234
WWV_FLOW_FEEDBACK table, 233

main menu, 215
milestones

APEX_TEAM_MILESTONES view, 216
data model, 216
enhancement, 218
features field, 217
option, 215
owner field, 217
release field, 217
type field, 217

to-do items
APEX’s SQL Workshop and defining

function, 229
APEX_TEAM_TODOS view, 226
custom XML, 227
data model, 225
Gantt chart, 231
P3_XML_PG field, 228
WWV_FLOW_TASK_DEF_STATUS

_CODES, 226
WWV_FLOW_TASKS table, 226

Template Options
Accent 5, 525
definition, 526
item size large, 525
new Style option, 527
remove borders, 525
standard template, 525
subregion blank attributes, 528

Templates
definition, 511
Template Options (see Template Options)

text() function, 461
Theme

component defaults, 512–513
definition, 511
dialog defaults, 513

Substitution strings (cont.)

■ Index

629

region defaults, 513
roller, 523
styles, 522
substitution strings (see Substitution strings)

Theme subscriptions, 537
Third-party report printing, 599

��������� U
Uniform resource identifier (URI), 61
UPDATE_MEMBER method, 609

��������� V
val() function, 461

��������� W
WebLogic Server, 44
Well Known Text (WKT), 509
What-you-see -is-what-you-get (WYSIWYG)

report, 539

��������� X
XSL-FO 101

FO document structure
fo\:table-body definition, 580
fo\:table-column definitions, 579
fo\:table-heading definitions, 579
header table, 577
layout master set, 577
page sequence, 577
sample report layout, 570
simple report layout, 581
static report query, 581
Stylus Studio XQuery library, 576

XML, 566
XSL-FO, 566

XSL-FO editors, 595
XSL Formatting Objects (XSL-FO), 566

��������� Y, Z
Yahoo web services, 478

www.ioug.org/join

	Contents at a Glance
	Contents
	Foreword
	First-Edition Foreword
	About the Authors
	About the Technical Reviewers
	Chapter 1: Page Designer
	 Main Components
	 Navigation
	 Page Finder Icon
	 Lock Pages and Undo and Redo Icons
	 Create, Utilities, and Component View Icons
	 Create Icon
	 Utilities Icon
	 Component View Icon
	Other Navigation Bar Icons
	Sec10
	Team Development Icon
	Developer Comments Icon
	 Shared Components Icon

	 Save and Save and Run Application Icons
	Save Icon
	Save and Run Icon

	 Component View
	 Rendering
	 Dynamic Actions
	 Processing
	 Page Shared Components

	 Grid Layout
	 Grid Layout
	 Messages
	 Page Search
	 Help

	 Property Editor
	 Show Common
	 Show All
	 Collapse All
	 Show All
	 Quick Pick, Go to Group, and Go to Component Icons
	Sec33
	Quick Pick Icon
	 Go to Group Icon
	 Go to Component Icon
	 Show Grid
	 Quick Edit
	 Theme Roller
	 Toolbar Options

	 Code Editor
	 Shortcuts
	 Help Functionalities
	 Link to the APEX 5.0 Documentation
	 Link to the APEX 5.0 Forum at OTN
	 Link to the APEX Resources at OTN
	 Page Designer Help: Getting Started in Page Designer
	 About Page Designer

	 Other Options
	 Multiple Component Selection
	 Resizing Page Designer Areas
	 Page Designer Memory Function
	 Page Designer Toolbar Options

	 Summary

	Chapter 2: Oracle REST Data Services
	 ORDS Defined
	 ORDS Download and Setup
	 Running the Install
	 Database Users Used by ORDS
	 Configuring Multiple Databases
	Defining Request Path Routing
	Defining Request URL Prefix–Based Routing

	 Configuration Files
	Configuration File Structure
	 Configuration File Format
	Configurable Parameters

	 Administration via SQL Developer
	 ORDS Development via SQL Developer
	 REST Enabling an Existing Table
	 Invoking the New REST Service
	 Creating a REST Web Service
	 Accessing Hidden Parameters

	 Accessing ORDS Web Services via APEX
	 Summary

	Chapter 3: Oracle APEX 5.0 Charts Inside Out
	 HTML5 Charts
	 Background
	 Creating a Chart
	 The Result
	 Page Designer vs. Component View
	 Understanding the Chart Region
	 Understanding the Chart Attributes

	 Adding Multiple Series and Combined Charts
	 Different Chart Types
	 Behind the Scenes
	 Debug and Performance
	 Upgrading Oracle APEX 3. x /4. x Flash and SVG Charts
	 Screen Reader Mode and Charts
	 Extending Charts
	 Customizing Charts by Using Custom XML
	 Customizing Charts by Using Custom XML, Dynamic Actions, and JavaScript
	 Creating Charts Manually

	 Drill-Down Charts, Dashboards, and Interactivity
	 Simple Dashboard with Submit
	 Simple Dashboard with JavaScript
	 Complex Dashboard with Actions
	 Building Charts with the AnyChart Plugin

	 Most Common Issues
	 Chart Not Rendering Correctly
	 Search for a Specific Feature

	 Charts in the Future
	 Chart Plugins
	 Sample Charts in Packaged Application
	 Inline Charts in Report

	 Resources
	 Summary

	Chapter 4: Tabular Forms
	 Changes in APEX 4.0
	 Changes in APEX 4.1/4.2
	 Changes in APEX 5.0
	 Constraints
	 Purpose of Tabular Forms
	 Tabular Forms Are Not Spreadsheets
	 Features in APEX 4
	 New Item Types
	 Single Checkbox
	 jQuery Date Picker
	 Radio Group
	 Popup Key LOV

	 Declarative Validations
	 Validations Created by Tabular Form Wizard
	 Highlighting Validation Errors

	 Other Features
	Lost Update Protection
	 Client-Side Add Row Functionality
	Reduced Number of Processes

	 Features in APEX 4.1/4.2
	 New Validation Types for Tabular Forms
	 Declarative Validations Using the:column Syntax New Process Type
	Declarative Processing Using the:column Syntax New Process Type

	 New Variables Available for the Processing
	Variable APEX$ROW_SELECTOR
	Variable APEX$ROW_STATUS
	Variable APEX$ROW_NUM

	 Tabular Forms and Dynamic Actions
	Using jQuery Selector
	 Binding Events
	Looping Through a Tabular Form Array and Changing/Adding Attributes

	 Custom Coding in Tabular Forms
	 Processing the Correct Rows
	 Data Integrity
	Checksum
	Validations

	 Manual Tabular Forms
	 Tabular Forms and Collections
	Creating a Collection
	Writing Packaged Update Procedures
	 Updating a Collection via an AJAX-Callback Process
	 Saving Collection Data to the Table

	 Interesting Techniques
	 Multiple Tabular Forms and Modal Pages
	 Adding Cascading Select Lists to a Tabular Form

	 Summary

	Chapter 5: Team Development
	 Milestones
	 The Basics
	 Extending Milestone Functionality

	 Features
	 The Basics
	 Extending the Features Functionality

	 To Do’s
	 The Basics
	 Extending the To-Do Functionality

	 Bugs
	 Feedback
	 Feedback Process
	 Enable Feedback
	 Exporting Feedback to Development
	 Importing Feedback into Development
	 Team Development Integration in the Page Designer
	 Processing Feedback
	 Exporting Response to Deployment
	 Importing Response into Deployment
	 Extending Feedback: Creating a Report
	 Extending Feedback: Feeding Back the Follow- Up
	 Further Enhancements

	 Summary

	Chapter 6: Globalization
	 Using the Builder in Other Languages
	 Translating Applications
	 Application Language Derived From
	 Mapping
	 CSV Encoding
	 Translating an Application
	Seed Translatable Text to Translation Repository
	Download Translatable Text from Repository to Translation File (XLIFF File)
	 Translate Text
	 Apply XLIFF Translation File to Translation Repository
	 Publish Translated Application

	 Manually Translate an Application

	 Translating Data in the Database
	 Dynamic Translations
	 Translating APEX Internal Text
	 The APEX_LANG API
	 Copying Translations to Other Environments
	 Export/Import the Primary Application with the Translations
	 Export/Import the Primary Application and the Translated Applications Separately
	 Export Only the Primary Application and the XLIFF

	 Localization
	 SINCE Format Mask
	 Numeric Formats
	 Time Zones and Territories

	 Switching Languages
	 Summary

	Chapter 7: Debugging
	 Principles of Code Instrumentation
	 Debugging Basics
	 Page Processing and Rendering
	 Enabling Debug
	 Debug Information
	Developer Toolbar
	Application Utilities

	 Benefits of Debug Mode
	 Graphs and Charts
	 Interactive Reports

	 APEX Debugging API
	 APEX_DEBUG
	CONSTANTS
	DISABLE Procedure
	Usage Notes

	ENABLE Procedure
	Usage Notes

	ENTER Procedure
	Usage Notes

	ERROR Procedure
	Usage Notes

	INFO Procedure
	Usage Notes

	LOG_DBMS_OUTPUT Procedure
	Usage Notes

	 LOG_MESSAGE Procedure
	Usage Notes

	LOG_LONG_MESSAGE Procedure
	Usage Notes

	 LOG_PAGE_SESSION_STATE Procedure
	Usage Notes

	MESSAGE Procedure
	Usage Notes

	 REMOVE_DEBUG_BY_AGE Procedure
	 REMOVE_DEBUG_BY_APP Procedure
	 REMOVE_DEBUG_BY_VIEW Procedure
	 REMOVE_SESSION_MESSAGES Procedure
	 TOCHAR Function
	TRACE Procedure
	Usage Notes

	WARN Procedure
	Usage Notes

	 Programmatic Debugging
	 Instrumenting Your Own Code
	Logging Custom Messages
	Logging Session State

	 The Data Behind Debugging
	 Tables and View
	 Examining the Debug Data
	 Using Debug Data for More Than Debugging

	 Debugging Dynamic Actions
	 Debugging Plugins
	 Summary

	Chapter 8: Dynamic Actions
	 Custom JavaScript vs. Dynamic Actions
	 Manual (Custom JavaScript) Method
	 Dynamic Action Method

	 Dynamic Actions in Detail
	 Identification
	 Execution Options
	 When
	Event
	 Selection Type
	Condition

	 Advanced
	 Actions
	Identification
	Settings
	Affected Elements
	Execution Options

	 Dynamic Actions in Action
	 Business Case
	 Setup
	 Create Department Employees Report
	 Refresh Department Employees Report
	 Highlight Row
	 Row Click
	 Emphasize Employee Change
	 Modal Window

	 Summary

	Chapter 9: Lifecycle Management
	 Challenges
	 Deploying Database Changes
	 Collaborative Development
	 Parallel Development
	 Enterprise APEX Development

	 The Demo Project
	 Extending the APEX Development and Deployment Process
	 APEX Application Packaging
	Database Scripts
	 Static Files
	 Applicability

	 Apache Maven
	Installation
	 Project Directory Layout
	The Project Object Model (POM) File

	 Liquibase
	Organizing Database Scripts
	ChangeLog Files
	The Liquibase Maven Plugin
	 Other Features

	 The Oracle APEX Maven Plugin
	The import Goal
	 The run-natural-docs Goal

	 Deploying Static Files
	The AntRun Plugin

	 Multi-environment Setup
	 Building with Maven to Multiple Environments
	Inheritance
	 Build Profiles

	 One Code Base to Rule Them All
	 Jenkins
	Installation
	 Creating a Build

	 Summary

	Chapter 10: Plugins
	 The APEX Plugin Architecture
	 Create/Edit Page for Plugins
	Name
	 Subscription
	 Source
	 Callbacks
	User Interfaces
	 Standard Attributes
	 Custom Attributes
	 Files
	File URLs to Load
	 Events
	 Information
	Help Text
	 Comments

	 PL/SQL APIs
	APEX_PLUGIN
	APEX_PLUGIN_UTIL
	APEX_CSS and APEX_JAVASCRIPT
	APEX_WEB_SERVICE
	APEX_JSON
	Other Packages

	 Other Tools of the Trade
	 jQuery and jQuery UI
	 jQuery UI Widget Factory
	 Font Awesome

	 Building a Region Plugin
	 The Base Plugin
	 File Setup
	 Initial Grid Render
	 Adjusting the UI for APEX
	 Getting Set Up for Success
	 Bringing on the AJAX
	 Using User-Specified Queries
	 Enabling Frozen Columns
	 Securing the Plugin

	 Best Practices for Developing Plugins
	 Summary

	Chapter 11: jQuery with APEX
	 JavaScript and jQuery
	 Basics of jQuery
	 The jQuery Object
	 Selecting Elements
	Selecting by ID
	Selecting by Class
	Selecting by Attribute
	 Hierarchy

	 DOM Nodes and jQuery Objects
	 Determining and Testing Selectors
	 Basic Manipulations
	value and text
	Attributes
	 Boolean Properties
	Classes

	 Iterating Over a Selection of Elements

	 Advanced Uses of jQuery
	 Handling Events
	Assigning Through Attributes
	 Assigning Through Convenience Functions
	Assigning with on
	 Dealing with Events on Dynamic Elements
	Removing Handlers
	 Stopping Events
	Reacting on the Page Load Event
	APEX’s Refresh

	 Traversing the DOM
	Going Up
	Going Down
	Keeping It Level

	 Chaining Functions
	 APEX JavaScript APIs
	 AJAX Calls and AJAX Callback Processes
	Setting Up an AJAX Callback Process
	Using jQuery to Call a Process
	Using APEX’s AJAX Functionality

	 jQuery Versions
	 apex.jQuery
	 Pitfalls

	 Resources
	 Summary

	Chapter 12: Map Integration
	 Geocoding
	 Coordinates
	 Web Services
	 Yahoo Web Services
	 Google Web Services

	 What Are XML and JSON?
	 Processing XML/JSON Results
	 Oracle Web Services
	Creating a Page
	Creating Search and Country Fields
	 Adding a Classic Report
	Creating a Search Button
	 Adding a Dynamic Action to Respond

	 Choosing a Geocoding Service

	 The Mapping API
	 Including the API Libraries
	 Creating a div to Hold the Map
	 Writing JavaScript to Render the Map
	 Adding Layers
	Adding a Marker
	Adding Many Markers
	 Adding a Polygon

	 Interacting with the Database
	 Showing Query Results on a Map

	 Spatial Math
	 SDO_GEOMETRY
	 SDO Metadata
	 Spatial Indexes
	 APEX_SPATIAL Package
	 Calculating Distance
	 Search Within Distance
	 Calculate Area

	 Third-Party Data
	 Summary

	Chapter 13: Themes and Templates
	 What Is a Template?
	 What Is a Theme?
	 Component Defaults
	 Region Defaults
	 Dialog Defaults

	 The Substitution Strings
	 Finding Substitution Strings in the Application

	 Theme Styles
	 The Theme Roller

	 Template Options
	 The Grid
	 Responsive Layout

	 Subregions
	 Theme Subscriptions
	 Summary

	Chapter 14: Report Printing
	 Introduction
	 Report Printing
	 APEX Standard Report Printing
	 Prerequisites
	 Standard Report Printing Configuration
	 FOP Processor in ORDS
	 External FOP Processor
	 Enable Network Services
	First Test Approach
	Second Test Approach

	 APEX Standard Report Printing
	 Classic Report Printing
	 Column Width Settings

	 Interactive Report PDF Output
	 Report Queries and Report Layouts
	 Report Query
	 Report Layouts

	 XSL-FO 101
	 XSL-FO
	 The XML
	 FO Document Structure

	 Customized PDF Output for Interactive Reports
	 Advanced XSL-FO Examples
	 <xsl:value-of select=...> Conditional Formatting
	 <xsl:choose ...> Conditional Formatting

	 XSL-FO Editors
	 Debugging XSL-FO
	 Third-Party Report Printing Solutions
	 General Report Printing Solutions
	 The Future
	 Summary

	Chapter 15: Working with APEX Collections
	 When to Use APEX Collections
	 Session State Management: A Quick Overview
	 Session State–Managed Tables
	 Logically Walking Through a Web Shopping Cart Implementation

	 A Look Under the Covers
	 Private Collections Objects Inside the APEX Engine
	 Public Collections Objects Inside the APEX Engine

	 Getting Started with Collections
	 Initializing a Collection
	 Adding and Removing Data from Collections
	 Using the Collection Contents
	 Exploring Another Use Case
	 Expanding the Example
	 Setting Up the Example

	 Summary

	Index

