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“In Essential Mobile Interaction Design, Banga and Weinhold do a great job of explaining what 

it takes to make a good-looking and easy-to-use app. The accessible language and visual 

examples of quality work combine to make this book a great resource for those looking to get 

into app design, or to take their craft to the next level.”

— Jon Becker
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“Essential Mobile Interaction Design is not merely a book full of pictures and design concepts or 

one of straight technical drivel. Instead, it is a guidebook for creating human-based interfaces 
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design is different from traditional desktop design, how to work with a developer, or even 

what tools to use for the creation process, Essential Mobile Interaction Design demonstrates the 

answer for that.”
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“Filled with nuggets of useful information, this book is a solid resource for the many aspects 

of designing a mobile app. I’ve found many recommendations in this book that we can use in 
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— Lucius Kwok

CEO, Felt Tip, Inc.

“A well-rounded, easy-to-read book that provides a good grounding in mobile design and how 

to keep all those small details in mind so that your apps will really shine.”
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PREFACE

This text offers an introduction to and general overview of interaction design for all mobile 

computing platforms, with a particular emphasis on Google’s Android and Apple’s iOS 

platforms.

Mobile apps should feel natural and intuitive. Users should quickly and easily understand them. 

This means that effective interaction and interface design is crucial to the success of any mobile 

app. Few mobile app developers (or even designers), however, have had adequate training in 

these areas.

Touchscreen-focused, mass-market mobile applications are a type of technology that’s only 

been possible to create since 2008, and the industry has seen monumental shifts and growth in 

the six years between the introduction of the “app economy” and the publication of this work.

This book aims to help put you in a place to succeed as a designer in today’s app market by 

teaching proven principles and techniques that you can use in your next app, no matter what 

mobile platform, targeted device, form factor, or user base you’re targeting.

In short, the tutorial style used here aims to help you master the mindset, processes, and vocab-

ulary of mobile interaction design so that you can start making better choices right away. This 

book guides you through the entire process of app design, demystifying many of the tasks and 

issues that arise during the many stages of developing, releasing, and improving a mobile app.

Cameron Banga has been working in mobile application development since 2009, and in the 

nearly five years since releasing his first app he’s contributed as a designer or as an adviser to 

more than 100 applications for iPhone, iPad, Android, and OS X. In that time, he’s seen firsthand 

the growth and change experienced in the mobile industry and has worked to meet client and 

customer expectations throughout the many evolutions of mobile platforms.

This book aims to serve as a central resource for programmers or designers looking to best 

determine how to establish themselves in today’s modern mobile landscape by offering advice 

formulated and acquired through Cameron’s experiences over the past several years as a pio-

neer of the mobile app economy.

Topics chosen for this book were selected carefully by Cameron with advice from and in coordi-

nation with several successful and award-winning industry colleagues. The goal of each chapter 

was to focus on a particular strong primary skill required of any successful designer, breaking 

that skill down into a few key components that any novice could focus on and, with some 

strong advice and clear guidance, work to master quickly.
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xviii PREFACE

No programming knowledge and only basic design knowledge is required to understand this 

book, as it’s been carefully crafted to be universally readable and helpful. In situations in which 

it does dive into extremely specific terminology or a topic for which prior information would 

be required, breakout boxes offer context and suggestions as to where the reader can look for 

further information that’s beyond the scope of this book.

Only basic design tools were used to create the example work included in this book, and the 

software or hardware that was used is detailed where relevant. Much of this book focuses on 

general theories and somewhat universal design practices that can be slightly modified and 

fine-tuned to the reader’s specific circumstances. Additional resources that are required or may 

be helpful have been posted online at http://cameronbanga.com/EMIDbook.

We hope you enjoy this book and that it helps you make progress toward your goal of becom-

ing an outstanding mobile app designer. If you would like to share your thoughts or if you have 

a question, feel free to contact the authors at book@cameronbanga.com.

http://cameronbanga.com/EMIDbook
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C H A P T E R  1

A LOOK AT MOBILE AND 

ITS MAIN PLAYERS

Apple may have popularized the use of smartphones 

and tablets, but a number of other companies 

followed its path and moved quickly to get in on 

this latest digital revolution. Now the marketplace 

is filled with hardware manufacturers and 

platforms. In this chapter, you’ll find an overview of 

introductory topics that will be crucial to understand 

as you begin designing for iPhone, Android, and 

other mobile platforms.

You’ll also find a brief history of mobile app 

design and information about how this industry 

grew. As a designer, you’ll need to understand the 

past in order to successfully design for the future.
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2 CHAPTER 1 A LOOK AT MOBILE AND ITS MAIN PLAYERS

The Field of Interface Design
There once was a very dark time in the world of mobile computing: a time when we navigated 

phones using small arrow keys or a rough scroll ball, a time when a calculator and an alarm 

clock were considered advanced features on a device that primarily made calls and sent text 

messages, a time when the most advanced game a phone could run involved a rectangular 

“snake” chasing after pixelized “fruit.”

But in the late 2000s, a combination of two companies, touch-screen technology, and one ad 

campaign changed all of that.

Just a few years after Apple touted in print and television advertising that “there’s an app for 

that,” asserting that there was a way to accomplish anything you wanted to on the iPhone, it 

seems that there has become an application for any task our hearts desire to perform. Yet, there 

can’t be an app for everything already; otherwise, you wouldn’t be looking to jump into the 

world of mobile development.

Today, smartphones function as portable computers that respond to our every touch and that 

come equipped with a digital marketplace flush with programs for every imaginable purpose. 

In just a few short years, the world of mobile computing has gotten noticeably brighter.

Now there are a host of companies competing for consumers’ mobile device dollars and even 

more companies competing for consumers’ mobile application dollars. If you’re reading this 

book, you’re most likely a developer, designer, or project manager working in mobile, and you’re 

looking to gain a better understanding of interface and interaction design on a mobile phone.

Over the course of this book, we hope to be able to lend a hand by explaining many of the most 

difficult problems that pop up in mobile interaction design. We’ll offer in-depth analysis of the 

differences between mobile and traditional computing, the tools needed to optimize design, how 

to develop a visually attractive design, the best methods of gaining feedback, and much more.

If you’re not a programmer or technically minded, fear not; this book is intended for everyone. 

The topics discussed—including theoretically optimal interaction design and operating-system-

agnostic interface implementations—should be helpful regardless of the platform you’re using.

This book may be most helpful for people who have some experience with general software 

design, perhaps on the Web or traditional desktop computers, and are now looking to learn 

how they can best apply their skills to mobile devices. If you’ve never worked in software 

before, though, don’t fret; everything in this book is served up for easy digestion. Likewise, if 

you’re a grizzled mobile veteran there are also a ton of tips and tricks you should find handy.

As with many technical volumes, this content is not necessarily designed to be consumed in a 

linear fashion. If only one or two chapters seem most applicable to your next app development 

project, feel free to skip ahead and take in the relevant pieces as you see fit.
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Let’s get started. You’ll be jumping into the fine details of mobile interaction design soon 

enough, but first you need a short history lesson in mobile computing to lay the groundwork 

for the world you’ll soon be exploring.

The Dawn of the App
With the sudden explosion of the affordable smartphone market came the rapid ubiquity 

of apps: smaller, more focused, and often inexpensive programs that add value to the most 

advanced piece of technology individuals have ever owned.

What makes up these apps? Naturally, they have an underlying logic and are comprised of code, 

art, and images; but what actually makes up one?

Apps aren’t a new thing or a recent advance in computing. An app—short for application—is 

just a piece of computer software designed to help a user solve a problem. Compiled from lines 

of code into a binary code (see Figure 1.1), typically written inside of an integrated development 

environment (IDE) such as Xcode or Eclipse, an app is seen as the most practical way for users to 

manipulate their computers or mobile phones into helping with an everyday task.

Today, you’ll find apps most commonly on mobile phones, but they’ve existed on comput-

ers for decades. Generations of word processors, spreadsheet programs, first-person shooter 

games, and photo-editing platforms all qualify as “apps”; such apps just had to be installed via 

a floppy disk or CD-ROM. The abbreviated, seemingly new term grew popular in 2008 because 

of Apple’s well-known “There’s an app for that” marketing campaign and the launch of the 

App Store.

Figure 1.1 Each pixel you design on screen will be manipulated by source code files, usually written 

in an IDE such as Xcode or Eclipse.
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Most smartphones that came before the iPhone or Android phones shipped to consumers with 

a miniscule number of applications installed, typically curated by the hardware manufacturer 

or phone carrier. Because there wasn’t much choice, these applications often had a high cost 

and limited feature set. There was no reasonable market for such apps because most develop-

ers were unable to get their software on the platform and carriers had little incentive to create 

apps that truly met consumer needs.

That environment changed radically, however, with both the advent of the touchscreen phone 

and access to a consumer-facing app store. Full-glass touchscreen phones, like the iPhone 

shown in Figure 1.2, were revolutionary in many respects. Gone were the days of phone inter-

faces limited by a number keypad or an extremely small keyboard that was difficult to type on. 

The glass screen became a blank canvas on which anything could be created, and it allowed 

developers to work with a fluid interface capable of handling nearly any type of application.

Although the technology within a phone gave developers unprecedented design power, an app 

store gave them unprecedented direct access to consumers. Almost instantly, developers with 

basic programming knowledge and a computer capable of compiling code could get their prod-

ucts in front of millions of consumers eager to see what this new, futuristic device could do.

Figure 1.2 The iPhone 5 is a great example of a modern-day smartphone with a large screen used 

to create a dynamic and fluid interface.
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Defining an App in Today’s Context

In the practical sense, apps have been around almost as long as computers, but does the tradi-

tional definition remain the same as the modern one? When consumers ask you if you can make 

an app that fits their needs, exactly what are they asking for?

Today, an app is typically defined as a fully contained software application designed to run 

natively on a mobile phone, tablet, or even a traditional computer. Apps usually are down-

loaded from a store created and curated by the platform owner, such as Apple, Google, Micro-

soft, or BlackBerry. Often, an app is either inexpensive or free and serves a small, single purpose. 

Modern operating systems are now built around making it easy for the user to get in and out of 

apps, typically with some sort of basic launcher platform such as iOS’s Springboard, shown in 

Figure 1.3.

From a technical standpoint, apps are typically compiled using code native to the platform, 

such as Objective-C or Java, and an IDE in coordination with software development kits (often 

Figure 1.3 iOS’s launcher, called Springboard, is a standard mobile application launcher; rounded 

rectangle icons depict each application.
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referred to as SDKs) provided by the operating system creator. Application languages and pro-

gramming, however, are topics outside the scope of this book.

Technically, HTML-based Web applications could also be considered mobile apps; they’ll be 

discussed a bit throughout this book, but as a general rule of thumb, when apps are discussed 

the conversation involves writing in the native language of the platform rather than writing an 

app designed for one-size-fits-all access across a menagerie of devices.

Although it is possible to build a program with Web technologies such as HTML or JavaScript, 

most users don’t think of those as “apps” unless they’re downloaded from a traditional mobile 

store. Mostly this matters from a delivery standpoint, which we’ll discuss later in this chapter.

There are many reasons a programming development team might want to build an app 

natively instead of on the Internet with Web technologies. First and foremost, the application 

will be reminiscent of the device’s native language architecture and is thus likely to be much 

more responsive than applications written in Web languages such as HTML and JavaScript. 

Although there are some exceptions to the rule—some great applications have been cre-

ated using such technologies—in general it is much easier for a developer to make a smooth, 

responsive, animated application when using a native language.

Another benefit of working in the native language of the system you’re programming for is 

that you’ll likely have much shorter communication with the hardware features of the device. If 

you’re looking to integrate features into an app—to take advantage of the device’s GPS, gyro-

scope, accelerometer, camera, microphone, or other advanced hardware—you’re probably best 

off building a native app using the platform’s SDK.

tip

Current mobile operating systems, such as Android and iOS, provide easy access 

to advanced hardware features such as GPS or gyroscopes by using a simple 

API. Take advantage of these features to provide exceptional interactions in your 

application.

As mentioned earlier, the interaction design techniques discussed in this book are designed 

to be platform agnostic and should be applicable whether you’re working on iOS, Android, 

BlackBerry, or the Web. If you haven’t done much mobile development, it’s probably a bit 

difficult to understand the technical differences between a native iPhone or Android app and 

a mobile Web app, and that’s no problem.

If you’re reading this book, you may be a programmer fluent in a language such as Java or 

Objective-C; if so your platform decision has already been made, and now you want your 

interface to function a little bit better. Or you may be a designer or project manager who hasn’t 
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worked frequently on a mobile platform, and so your target platform has likely been picked 

already by your programmer or technical team. As we mentioned earlier, we won’t dive too far 

into the technical aspects of each platform, but we will discuss important design constraints or 

limitations for each major platform.

Build It and They Will Come

Ironically, the biggest players in this mobile revolution may not have even foreseen the potential 

of apps when they first announced their platforms. When launching the iPhone, Apple initially 

indicated there was no need for a marketplace for native software on the iPhone. Google likewise 

did not make a software store available for its Android mobile operating system at first launch.

It wasn’t until 2008 that the typically unflappable Apple changed that plan. With the release of 

the iPhone App Store in July of that year, developers were finally given the opportunity to build 

native software for the platform. Google followed suit with the release of the Google Play Store 

(originally called the Android Market) just three months later (see Figure 1.4).

Apple’s App Store and the Google Play Store were the first mobile app markets that prompted 

any significant customer response or gained traction with mainstream users. Today, however, 

Figure 1.4 Consumers go to digital marketplaces such as Android’s Google Play Store to find and 

download applications.
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there are a variety of app stores available for nearly every mobile platform; popular ones 

include the Amazon App Store, BlackBerry World, the Windows Store, the Nokia Symbian Store, 

and Samsung Apps. Every major platform will be discussed throughout this book, but the 

premise remains the same for each; app stores are a place that users go to quickly download 

new software for their phones or tablets.

When Apple says “there’s an app for that” now, it isn’t kidding—and the same holds true for 

its competitors. The number of programs available on their stores continues to grow. To date, 

Apple has more than 900,000 apps in its store. Android has around 700,000. The Windows 

Store, though still young, claims to have 100,000 applications.

The astronomical growth of these mobile applications has greatly outpaced what any observer 

might have expected for such a marketplace. In a relatively short amount of time, applications 

for phones and tablets have redefined how we view computing. In the past, applications were 

viewed as larger, fully functioning operations: Web browsers, mail clients, and word processors 

that could be used for a multitude of tasks during an average computing day. Now applications 

are being built to target smaller, more specialized tasks.

On an iPhone or an Android phone today, for example, it’s not uncommon to have three 

applications that handle e-mail, as they all serve different purposes for sorting through a user’s 

daily messages. It’s also not uncommon to have a handful of Web browsers—perhaps one for 

syncing bookmarks and another for sharing links socially. Additionally, many Web companies or 

services such as Facebook or Twitter now have their own applications; in the past, a user would 

simply open a Web browser to access such services.

Apps are easy to build. They’re easy to get. And they’re easy to use, thanks in large part to 

native application frameworks with features such as pinch-to-zoom, maps integration, and 

calendar support. All told, that makes apps the optimal experience on mobile devices.

What Is a Mobile Device?
Apps and the smartphones that use them have been mentioned frequently already, but what 

truly defines a “mobile” device? One attribute commonly used to categorize nearly all mobile 

devices is the operating system that they’re running. Most mobile devices today are based on 

what tech companies such as Apple and Google call a “post-PC” operating system: something 

that functions differently from the point-and-click only, window-based interfaces of desktops 

and laptops. (The term “post-PC” still doesn’t have a technical definition, though. It’s essentially 

a buzzword coined by Apple at the release of the iPad.)

A collection of mainstream operating systems now in the market meets this post-PC qualifi-

cation: iOS, Android, Blackberry OS, and Windows 8. In this book, we’ll be strictly discussing 

interaction design related to such operating systems.
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These mobile operating systems are everywhere, so much so that it’s difficult to get away from 

them. Phones, tablets, and even many laptops are now considered mobile devices running 

post-PC operating systems. Analysts estimate that in the beginning of 2014, mobile phones 

overtook personal computers as the type of device most commonly used for Web access. It’s 

also estimated that two billion smartphone units have been sold worldwide, with iPhone and 

Android dominating almost 70 percent of the market.

So many devices in consumers’ hands also means that there’s a large quantity of potential users 

willing to pay to download apps. Apple alone has more than 575 million accounts registered 

with credit cards on the App Store, and the revenue generated by their app purchases, a few 

dollars at a time, really adds up. By summer 2013, app developers had already made more than 

$10 billion in revenue from sales inside Apple’s App Store.

Smartphones aren’t only making an impact in the United States, as areas including China, India, 

and many parts of Europe have been quick to adapt to these devices. In many countries with 

developing economics, potential users frequently pass over personal computers and instead 

choose a more affordable, versatile technology: mobile phones.

note

Mobile platforms today make it very easy to localize applications for numerous 

world languages. With a small amount of work, applications can become more 

desirable to people in different countries around the globe.

A Portable, Pocket Computer

Although mobile devices today are largely defined as phones and tablets, their origins can 

be traced back to more humble, single-function products. MP3 players, including the original 

iPod and the Microsoft Zune, are often cited as the first mobile devices that mainstream users 

embraced in great numbers.

In fact, mobile computing devices themselves have been around since the early to mid 1990s. 

But the technology really hit its stride in the early to mid 2000s as cell phones became more 

accessible, lightweight, smaller, faster, and cheaper. Multipurpose devices such as the iPod or 

Zune made it easy for users to carry entire music collections, games, texts, and contact informa-

tion in their pockets. Over time, these devices converged with cell phones to form an all-in-one 

device that was friendlier to users’ pockets and wallets.

Smartphones, then, aren’t exactly recent technology; they’ve been around for more than a 

decade. Running apps on these devices isn’t really a new idea either, as phones have long had 

programs designed specifically for them. So what exactly led to the rapid rise of smartphones 

and the dramatic evolution in technology usage over the past few years?
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This change was driven primarily by a refined definition of what it means to own a smartphone. 

Prior to the iPhone and Android phones, smartphone technology was seen as something best 

used for calls, text messages, and e-mail. The new wave of smartphones was revolutionary, 

because it took a device nearly as powerful as a home computer and shrunk it down to a size that 

could fit in a pocket or a purse. For the first time, a phone was effectively capable of browsing the 

Web or running programs on par with the type computers had featured for decades.

With the creation of mobile app stores, it also became simple for nearly anyone to create 

software for these devices. To spawn a mobile application in the past, a developer would be 

forced to go through restrictive mobile carriers or hardware manufacturers—a difficult task for 

even seasoned software veterans. Only a few privileged developers then were able to make 

programs and sell them to consumers worldwide; now it only takes a few months, a computer, 

and a connection to the Internet for any of the tens of thousands of developers to release their 

creations to users worldwide. This new “app economy” is a flat playing field in which anyone 

can make an impact with little experience or few resources.

The combination of extremely capable smartphones, an abundance of great mobile software, 

and previously unimaginable Internet speeds from mobile carriers created a perfect storm for 

the industry in 2008 and 2009; as a result, a modern economy now exists in which smartphone 

adoption rates are approaching 80 percent in major markets such as the United States, Canada, 

Japan, England, and France.

Tablets, Too

Since 2010, the world of mobile computing has grown to include tablets, especially with the 

proliferation and success of Android and iOS operating systems. Devices such as the iPad and 

Google’s Nexus 7 are now seeing even faster adoption rates than smartphones ever did.

Tablets aren’t a new, unprecedented computing experience either. Microsoft was an early 

proponent of tablets that featured a pen stylus and touch interface, but the company mar-

keted them with little to no success throughout the 1990s and early 2000s. Over the past 20 

to 30 years, tablets have been seen as the computing device of the future, making frequent 

appearances in science fiction movies and TV shows, and for good reason; a carryable com-

puter that can be written on or interacted with by touch just seems to make sense.

tip

Currently, all major tablet operating systems are essentially siblings of and based 

off of systems that were also successful and popular on phones. Don’t try to pick up
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both Apple and Android tablets when first learning about design in an attempt to 

diversify your knowledge of mobile interaction types. Instead, focus on one mobile 

operating system and become an expert at its phone and tablet interface designs.

Most early tablet devices failed or were targeted for extremely niche markets, but they finally 

found success in 2010 when Apple released the iPad (although even that device was met ini-

tially with a mixed response).

In the years since its release, the iPad has been nothing short of a dramatic, industry-disrupting 

device. It has seen incredibly strong growth and adoption rates: even better than those of the 

iPhone, considered one of the most profitable products ever.

With the success of the iPad, competitors have followed suit. Google has now moved its 

Android operating system to the tablet format, allowing apps to take advantage of the larger-

screen devices. Google now partners directly with hardware manufacturers such as Asus to 

create its own hardware as well, and their Nexus 7 is viewed as the most successful Android 

tablet to hit the market. Due to the operating system’s open-source nature, a variety of hard-

ware manufacturers have built unbelievable tablets with a multitude of screen sizes to choose 

from—ranging from 7 to 13 inches—on hundreds of devices released worldwide.

Microsoft also jumped into the tablet market with its own touch-centric tablet. The Surface, 

released in 2012, is a popular piece of hardware that integrates closely with the company’s 

Touch and Type Covers. Users can quickly attach or detach the tablet’s keyboard, which makes 

typing in apps such as Microsoft Word or Excel simple and easy. The Surface has developed a 

dedicated user base, but it still has room for improvement. It hasn’t picked up a large market 

share, although many designers and programmers are keeping an eye on this device as one 

that could have future potential.

Other Devices That Are Part of the Revolution

So far, this discussion has focused only on smartphones and tablets, all of which have touch-

screens, but mobile devices don’t necessarily need to have a panel that responds to swipes and 

pinches from fingers. Hardware that uses more conventional navigation tools has had some 

success as well.

Microsoft’s Surface, for example, includes a touchscreen but also comes with a keyboard and 

a standard laptop trackpad that allows users to operate the device as both a tablet and a 

traditional laptop. And in 2013, BlackBerry released its BlackBerry 10 operating system which, 

although capable of supporting touch interfaces, also supports the classic QWERTY keyboard 

devices that were once the dominant smartphone feature (see Figure 1.5).
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The Industry’s Key Players
Now that you have a background in apps, mobile devices, and the operating systems involved, 

it’s time to dive further into the key players in the industry. Mobile’s growth has been charac-

terized by big, bold moves by the companies detailed ahead, and some historical context can 

be helpful in understanding what drives the systems that you’re creating software for. From 

Apple’s revitalization to Microsoft’s reimagining of Windows, the critical events explained here 

present some perspective on what’s led to today’s current mobile app landscape.

Apple

The foundation for the emergence of so-called post-PC operating systems was laid by Apple 

with the release of the original iPod in 2001. At the time, most didn’t see the device as a 

revolutionary mobile computing platform, but the iPod was one of the first devices that truly 

Figure 1.5 Although many current device interfaces are touch-screen only, some still come with 

physical keyboards.
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allowed the average person to simultaneously carry their music, videos, podcasts, contacts, and 

calendar: essentially, their entire digital personas. Apple hit a gold mine when it discovered that 

people wanted the capability and functionality of a computer in a smaller, pocket-sized device.

At Apple, the impending mobile revolution was being designed and refined over a period of 

several years. Steve Jobs, designer Jony Ive, engineer Scott Forstall, and other Apple executives 

led a secret project to merge Apple’s expertise in desktop computing with its new hit mobile 

music and video player.

It wasn’t until 2007, though, that Apple was finally able to crack the code and deliver a min-

iature computer. The device was so incredible at the time that many critics and competitors 

didn’t believe that the product shown off during the initial press conference was even real. 

Many thought that Apple was using gimmicks or tricks to make the device as fast, smooth, and 

responsive as it appeared in initial video previews. At the time, storing all that media on one 

device with a remarkably long battery life was seen as something just shy of magic.

The release of the iPhone sparked the mobile-computing revolution. For many, it was as simple 

and fun, if not more so, to use than a laptop or desktop computer for browsing the Web, watch-

ing videos, reading PDFs, or playing games.

Not only did the iPhone change the way users saw computers (to the point of ignoring them 

altogether), it also significantly advanced touch computing. Although touchscreen computers 

had been available for many years, the technology never saw mainstream adoption, primarily 

due to inaccurate screens hindered by poor build quality. But after the iPhone, other vendors 

took notice; operating systems such as Android, BlackBerry, Windows, and the now-defunct 

WebOS integrated first-class touchscreen functionality.

Apple followed up the iPhone in 2010 with its iPad, which pushed growth in a market that had 

never seen widespread commercial success. As noted, the iPad has experienced phenomenal 

growth, and tablet computers are poised to soon eclipse the yearly sales, market share, and 

Web-browsing rates of desktop computers and traditional operating systems.

Google and Android

Android has been a breath of fresh air for mainstream open-source computing since Google 

announced it in 2007. Early versions of Android were defined and led by operating system 

cofounder Andy Rubin and were mostly inspired by his work at his previous company, Danger.

Android was designed from the ground up to be an open-source system run by the Linux ker-

nel, which would power the smartphones. The original Android operating system was focused 

on bringing a truly great e-mail and messaging function to mobile phones that traditionally 

had very limited capability for such features. Although originally created by a small startup 

team led by Rubin, Android was acquired by Google and rolled into what would be the founda-

tion for the Web giant’s now strong mobile strategy.
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Because Android is open source and available to any manufacturer that’s able to compile the 

source code and willing to work within the platform’s license agreement, it’s now available on 

more than 4,000 distinct hardware devices worldwide (see Figure 1.6). A new iPhone only hits 

the market once a year, but Android device makers can literally release dozens of new imple-

mentations with a variety of different specifications every month.

These contrasting strategies lead to many of the differences in operating systems that will be 

discussed throughout this book. Although the specifications of iOS devices are strictly dictated 

by Apple, Android devices can be found with nearly any screen size, processor, RAM, and hard-

ware configuration imaginable.

Consumers love this functionality, as they can buy a device to match any need they might 

have, but it makes interfaces a bit tougher to build. Yet, the success of Android and the large 

market size it has built means that there are millions upon millions of customers waiting to use 

applications.

The Other Players

Aside from Apple and Google, there are a few other players of note. Although you may never 

design anything for these platforms, it’s important to know what they mean for the mobile 

industry.

Figure 1.6 Because Android is open source, you can visit Google’s resource Web site to download 

the entire operating system source code.
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BlackBerry 

The first major competitor is BlackBerry, a company credited with being the driving force 

behind the original smartphone craze. Before Apple took over with the iPhone in 2007, Black-

Berry stood alone atop the mobile summit, primarily due to demand from the business world. 

Once renowned for phones with full QWERTY keyboards, BlackBerry had significant difficulty 

adapting once touchscreens emerged and became popular. The BlackBerry 10 operating sys-

tem is the company’s latest offering in the mobile space. This new design focuses on dynamic 

interactive messaging, making it easy for users to quickly move back and forth between e-mail, 

text messages, social networks, and more.

The most difficult hurdle for BlackBerry to overcome has been a lack of applications. Because 

its post-PC operating system didn’t arrive on the scene until January 2013, most developers had 

already established themselves on either Android or iOS. Although the interface is clean and 

intuitive—and available with both touchscreen and physical keyboard options—BlackBerry 10 

has seen relatively slow market growth to date.

Microsoft 

Another strong mobile competitor has been Microsoft and its Windows 8 and Windows Phone 

8 platforms. A rash departure from its typical style, Microsoft overhauled a long-standing 

operating system strategy, converging mobile and traditional desktop computing into a single 

platform that uses the same interface styles and design language. This vast change was some-

what uncharacteristic for the computer behemoth out of Redmond, Washington. For nearly 

two decades, Windows was renowned for its consistency. Today, Windows phones, tablets, 

and desktops feature a new flat design, which Microsoft previously labeled “Metro” but is now 

calling the Microsoft design language. This new format is characterized by bold colors, large 

text, and square, sharp-edged buttons. The initial version of Windows 8 received some criticism 

because it did away almost entirely with its famous “Start” menu and desktop format. In later 

updates, Microsoft backtracked on its uncompromising devotion to its new idea because some 

long-term users had found the new interface hard to work with.

To date, Windows 8 has faced relatively mixed reviews as well as mixed success in the market. 

The new Windows desktops and tablets were greeted with adoption rates similar to those of 

their predecessors, but Windows Phone has had a difficult time gaining wider public adoption. 

For application developers, it would be advantageous for Windows to see greater worldwide 

popularity because the unified design structure and language among platforms makes app 

creation easier; however, customers just aren’t jumping on the bandwagon.

tip

If you’re struggling to decide which platform you should target with your first 

mobile project, try either your favorite platform or the platform that you currently
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use on your phone every day. If you can’t think of a type of project you want to 

work on, build something that solves a personal need or something you would use 

every day. Designing a project for yourself will help provide extra motivation when 

picking up and learning a development platform. 

Mobile Web Sites 

Finally, don’t forget about mobile Web sites. As discussed earlier, they don’t offer the same 

experience as native apps, but they’ve still had success and are turned to frequently by users. 

A variety of new operating system choices that focus on using the mobile Web as the primary 

application-delivery framework have surfaced recently. Popular Linux distributors such as 

Ubuntu are proposing a completely open-source take on mobile software and operating sys-

tems. Browser stalwart Mozilla is also promising to take Firefox and use it as the foundation for 

a mobile platform.

Later, we’ll take a look at the variety of benefits and potential pitfalls that the mobile Web 

faces regarding interaction design. The goal of working with HTML, CSS, JavaScript, and other 

Web technologies is quite simple: Developers should be able to write once, and designers 

should be able to design once, creating a Web application that runs on any hardware and any 

operating system. In theory, that sounds amazing, but in practice it hasn’t worked out so 

well. Browsers simply aren’t completely consistent between operating systems or render-

ing engines. Although much work has been done to help mobile Web sites work well in 

any browser, these applications take a lot of tinkering and fine-tuning in order to function 

properly. Most of the best mobile applications currently being built use native frameworks 

such as Objective-C or Java. Although Web apps do look promising, it appears that they’re 

still a few years away from offering the same responsive, animated interactions that users 

demand from their mobile phones.

This is changing rapidly—even daily—and there could be a time in the near future in which 

mobile Web sites overtake native applications as the platform Web developers and designers 

target first. It’s best to remain open-minded and consider developing a mobile Web applica-

tion whenever it can provide the same experience as a mobile app. This results in a product 

that allows you to have an audience much larger than any single mobile platform’s customer 

base while also helping to keep a development team small and design resources focused.

Distinctions between Platforms
As a designer, you often won’t play a major role in choosing the platform you’ll be working 

with. Typically, engineering resources on a project dictate the direction in which you head. 

Because this book will focus on interface design, we won’t dive too far into which programming 
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languages are the most efficient or simplest to learn, but you should be cognizant of the tech-

nical hurdles surrounding a project.

Designers typically see themselves as artists, thus becoming too focused on the creative proj-

ect and not enough on the technical cogs that spin in the background. This is one of the big-

gest mistakes designers make, especially early in their careers. Mobile interface design is much 

more than pretty pictures and perfect typography.

The essence of mobile interaction design is defined by the way an application feels in your hands, 

the way it responds when you are most dependent upon the information contained within it.

Users expect an application to feel alive on the phone. They expect consistency, reliability, and 

sophistication. They don’t just expect these traits inside your app; they also demand them from 

how your application functions within the entire ecosystem of their chosen operating system. 

Therefore, it’s important to understand the technical choice you’re making with a platform so 

that you can design to the delight of your user base.

If you target Apple’s iOS operating system, it’s likely that you’re building an application rich in 

animation with an aesthetic much like that of a piece of fine woodwork. The best applications 

in Apple’s ecosystem feel handcrafted, like something passed down from generation to genera-

tion. It’s this “Garden of Eden” feel that draws users to the Apple infrastructure.

If you’re targeting Apple’s platform, your primary goal should be to  focus, focus, and focus 

some more on your interface. To Apple users, details matter, so be sure that you take seemingly 

insignificant font-size decisions or color choices into consideration.

Google, meanwhile, has long lived by the mantra of “open and free.” Android is an open-source 

operating system, and the majority of applications available for the platform are either free or 

open source as well. This strategy has been effective as Android has built a reputation of being 

a perfect haven for individuals who want to tinker around or start their own hobby project. As 

such, applications on this platform are notorious for being quick to market and a little rough 

around the edges. This can be an advantage for good designers, though, because it can make it 

much easier to stand out from the rest of the often ragged crowd.

The reluctance of Android users to pay for apps can cause some issues with monetization strat-

egies, however. Because most applications for Android are free, it’s very common to see adver-

tising contained within the application itself. Banner ads, splash screens, or entirely branded 

applications have become a very real by-product of the mobile app world, and as a designer 

you will have to live with that reality.

Currently, there’s a lot of potential for Android tablet applications. Although Android phone 

apps are more than plentiful, there are actually very few tablet applications, especially com-

pared to the iPad market. Android provides many tools to help scale applications from small 
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screens to large screens, and with a bit of extra work you can create an outstanding tablet 

experience, which is rare for Android users.

In the post-PC market, Microsoft has entrenched itself as the leading platform for enterprise deploy-

ments. For users who must have their long-standing powerhouse applications, such as Word, Excel, 

or PowerPoint, Microsoft has emphasized that they are the only significant player around.

Microsoft also offers a unique opportunity for designers as it now uses the same operating sys-

tem on desktop computers and tablets. Although Apple has OS X on its desktops and Google 

pushes the Chrome operating system for traditional computers, Microsoft has championed the 

“no compromises” system in which users conceivably can have their cake and eat it too.

This cross-platform strategy leads to some interesting design decisions, many of which are in 

direct contradiction to established interface-design principles such as Fitts’s Law (discussed in 

the following Note). It’s still too early to decide how this strategy will play out, but Apple and 

Google seem somewhat open to copying this idea. In OS X Lion and Mountain Lion, Apple 

brought many of its successful iOS features to the desktop, and Google recently began working 

to unify the design language between Android and Chrome.

note

Fitts’s Law is a common model for user-interface design and a common principle 

that designers work with when building software for desktop applications.

The idea is fairly long and complex, but it can be most simply stated like this: 

Because your computer mouse stops moving either vertically or horizontally 

once you hit the top or bottom of a computer screen, buttons or interface objects 

placed on the edges of the screen essentially have infinite width or height. Look 

at your computer and you’ll see this with menus or important navigation buttons 

appearing near the corners of the screen.

This principle doesn’t apply to mobile devices for which fingers are used to 

manipulate objects, as your finger doesn’t need to scroll from one target point to 

another; you just pick it up and move it where it needs to go.

We could write an entire volume discussing which operating system is best suited for your 

software, but this small overview is enough background for now on which design elements 

make each platform unique. Throughout this book, we’ll continue to discuss the unique design 

factors of each operating system, so by the time we’re done you’ll feel at home as a designer 

regardless of the platform you’re tackling.
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Conclusion
When kicking off a first or second mobile design project, it may be a bit confusing to determine 

an initial direction. Between various operating system providers, device sizes, and target audi-

ences, there’s a lot that can make it difficult to get comfortable and to feel like you’re in control 

of the design.

But by sitting back, relaxing, and tackling these problems one at a time, it will be easy to focus 

your work and begin building an interface with exceptional interaction design. First, decide 

whether to use iOS, Android, or another operating system; then choose whether to work for a 

phone or tablet; then prepare to begin your project.

Interaction design, and design in general, is about making choices. A target operating system 

and device type are just two choices in the long process of building a product. As you continue 

to explore the mobile design process, you’ll learn how to focus choices into small and simple 

decisions. Before long, you’ll be isolating problems and making informed decisions like an 

expert mobile designer.

IN-DEPTH

What’s the best way to get familiar with the interface design of a new operating system? 

Study the prepackaged applications of an operating system, programs that companies 

like Microsoft, Apple, or Google ship to users. These are constructed by the same people 

who created the design language and human-interface guidelines for the platform; thus 

they’re prime examples of what the developer sees as model software for the platform.

 ■ Examine them carefully until you understand why each and every decision was 

made regarding the user interface.

 ■ Look at the human-interface guidelines for the system. These documents go 

deep into the design decisions of the system and are like the designer’s bible for 

building a platform.

 ■ Spend a few hours using the built-in applications; set up the native mail app to 

check e-mail and look at forecasts on the weather app. Soon, you’ll be able to 

understand why the interface works the way it does.

Interface design isn’t just about making something look pretty; it’s about building a 

functional piece of software that serves its purpose intently and efficiently. Prebuilt apps 

are often prime examples of projects with those goals in mind.
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C H A P T E R  2

DESIGN FOR HUMANS, 

BY HUMANS

Now that the history lesson is complete, it’s time to 

dive headfirst into the pool of mobile interaction 

design. Over the coming chapters, we’ll cover the 

various interaction foundations that we should 

master and the potential roadblocks that stand in 

the way of building mobile interfaces. The first step 

of that quest involves determining what exactly 

mobile interaction design is. Next, it’s critical 

to learn how to avoid the first big mental pitfall 

that traps many designers working on interfaces: 

learning that they are designing for humans—

impressionable, sometimes confused, unforgiving 

humans.
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What Is Interaction Design?
Mobile interaction design can be a somewhat confusing term—and one relatively advanced 

for those just beginning careers in interface design. Often used interchangeably, interaction 

design and interface design are completely different concepts, and it’s important not to mis-

take one for the other. In fact, the two ideas can appear to be so similar that a casual reading 

of this text could make it seem as if we are confusing the two as well. They have separate 

definitions, however, and although they do work together to achieve the same goal, they 

are actually quite different.

Interface design involves the technical pieces and intricate design language created and man-

dated by a platform developer for use in a specific operating system. On a popular mobile sys-

tem such as Android, this includes standards such as using Roboto as a system font or applying 

the Holo Light or Dark visual theme styles that specify suggested color, font size, line height, or 

other properties of phone interfaces. Apple has its own carefully defined set of interface design 

standards, as pictured in Figure 2.1.

Figure 2.1 In iOS 7, the use of attributes such as Helvetica Neue-Light as a system font or white as a 

font color are examples of interface design elements.
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Interface design revolves around a standard look for specific elements—for example, the way 

an icon appears or the type of text used in error messages—throughout an interface. Modern 

operating systems typically have long human interface guidelines documents that detail how 

to establish the correct look and feel for each and every visual asset in an application. As an 

interface designer, it’s your responsibility to understand these documents and to be capable of 

building an interface that meets their requirements.

Interaction design, meanwhile, is a more abstract term. If interface design is like chemistry class, 

then interaction design is a philosophy seminar. Interaction design has much more to do with 

the design concepts and interface tools used to present information to a user.

With interaction design, you’re going for something much more powerful than slick fonts or an 

appealing logo; you’re looking to understand and influence users’ behaviors once they load an 

application. Though you will use interface tools such as buttons, switches, typography, lighting, 

audio sound effects, icons, or color to help do this, interaction design is also more focused on 

the user’s reaction or on habits that develop in response to each of these elements. Your goal is 

to learn how the average user will respond to your interface—ultimately, you hope, in a predict-

able manner—and then refine and evolve the interface so the user experiences exactly what 

you intend.

warning

NO PERFECT USERS Unfortunately, when building the interactions contained in 

an app there is no exact “ideal user” you can target everything toward. In economics, 

problems that need solving reference “homo economicus”: a hypothetical person 

who makes rational and well-thought-out economic decisions. For mobile designers, 

though, that person doesn’t exist.

Interaction design is a fluid, ever-evolving field. Although interface design changes are some-

what like the world of fashion, dominated by color schemes, background types, and gestures 

that go in and out of style, interaction design remains a slower-moving industry, one primarily 

driven by the way users interact with the human-interface tools the operating system offers to 

applications.

Interaction design, for example, changes when tools like the mouse and keyboard change. 

Major advancements in interaction design occur when users flock to new technology such as 

mobile phones, forcing designers to learn how to adapt and build software that takes advan-

tage of features like the pinch-to-zoom and swipe-to-unlock gestures, similar to the examples 

in Figure 2.2.
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The field will also continue to evolve in the future. Who knows what will drive the devices and 

interfaces of the coming years? In just the past few years, major advancements have been made 

through new technologies such as the Siri voice-command personal assistant and the Google 

Glass visual platform. If the advanced worlds imagined by science fiction writers continue to 

manifest in our realm, perhaps previously unthinkable elements such as brainwave control or 

holographic interfaces could play a role in the interface design of the future.

tip

Interaction design isn’t strictly limited to mobile applications; everything we use 

involves interaction design. Practice your design critical-thinking skills by finding 

ways to improve the interaction design in common, everyday items. How would 

you improve the design of your car, refrigerator, or vacuum cleaner? Look for the

Figure 2.2 On the same iOS 7 lock screen, the use of a slide-from-left-to-right gesture to unlock the 

device or a tap-and-drag-up gesture from the camera icon are examples of interaction design.
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beauty and simplicity in items that function well (or the clutter and difficulty 

posed by poor interaction design), then use these as inspiration to help improve 

your apps.

Goals When Designing an Interface
Now that you know what you’re trying to achieve with interaction design—efficient and easy-

to-use interfaces—what should your goals be when you embark on this journey? Is an ideal 

interface one that’s simple or full of features? Should you try your best to blend in with every 

other application and operating system, or should you try to be unique?

Building a product involves making lots of decisions, so your primary goal as an interaction 

designer is to be in a position to best understand what the right choice is. The end goal is 

always to create the “ultimate” interface. Unfortunately, that notion is subjective, and in reality 

it will never happen. Yet, it doesn’t hurt to try.

tip

In a perfect world, you’d be able to design for “homo interacticus”: a hypothetical 

person who makes rational, well-thought-out decisions when they interact with a 

mobile app. But because he or she doesn’t exist, it’s often helpful when designing 

to refer back to the applications built by the platform creator (Mail or Safari on iOS 

and Gmail or Chrome on Android) to see examples of near-perfect applications.

Because you can’t build an ultimate interface, your goal should be to refine your interface as 

you learn about your customer base and work to retain users and increase their opinion of your 

application (something measured quantitatively in app stores through ratings and reviews). If 

you take a systematic approach, you can hopefully solve the seemingly unsolvable equation 

that reveals which parts of an application increase or decrease user satisfaction.

Designing for Humans

It sounds silly, yet it’s so simple. You’re designing applications to be used by humans; if not 

them, who else would use your work? Grasping that concept, however, is the most difficult 

obstacle designers face when attempting to build the perfect app interface.

When you design computer software, you’re making it for users quite similar to yourself—and 

ideally your software will scratch the itch of some problem they’re trying to solve. But although 
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it’s important to remember that they are like you, also keep in mind that they aren’t entirely like 

you. When using interface pieces to plan out an interaction design, you must be careful that the 

design doesn’t make sense only inside your own head.

Although that might seem simplistic, redundant, and perhaps even patronizing, it’s still 

the most important primary lesson of designing user interfaces. The vast majority of users, 

although human, aren’t interface designers and may not even be extremely tech-savvy. By 

reading this book, you are acknowledging that you know more about computer interfaces and 

interaction design than 99 percent of your potential user base. Users are normal people that 

come in all different shapes and sizes. They may speak different languages, be older or younger, 

be better or worse readers, know more or less about computers, and even have various disabili-

ties (such as color blindness) that hinder their ability to use your application. Your users will be 

simultaneously a lot and hardly anything like you.

Comprehending that you are building for all types of people quickly reveals how difficult 

interaction design can be. For many, it’s this diversity and challenge that makes the job of an 

interface designer exciting. Understanding your audience helps you see software problems dif-

ferently and in a way that will help you create an effective design.

As you’ll learn through experience, humans are by no means the perfect users. Interface 

designs need to be forgiving, preventing the user from messing everything up in an instant. 

Designing for humans is in stark contrast to designing for computers, which automatically run 

all programming instructions defined in the code. In the apps developed for mobile platforms, 

human users often won’t listen to what they’re told even when you think you’ve laid out every-

thing in a clear and deliberate way. Meeting that challenge is both the most rewarding and the 

most frustrating aspect of building an interface and interaction design for humans.

So what’s the best design for human users? It’s one built with forgiveness in mind. Ideally, strive 

to create something that gives the user a sense of freedom and the ability to explore without 

fear or apprehension. The biggest way to comfort users through interaction design is to guard 

against data loss, clearly explain the results of major actions, and allow users to start over when 

they feel they’ve made a mistake. When building apps, you want to create experiences that give 

the user a sense of security to explore your work.

Apple’s App Store (see Figure 2.3) is a great example of a design built toward encouraging user 

exploration while also confirming content. To pay for an app, a user must tap on an app’s price, 

tap a subsequent “buy” button, and then finally enter a password before a purchase is con-

firmed. This gives users the comfort of browsing without fear of making a mistake and acciden-

tally purchasing something.

That threat of losing massive amounts of important information was one of the biggest dangers 

of early computing. If the user didn’t know how to properly manage applications, it was quite 



ptg12441863

GOALS WHEN DESIGNING AN INTERFACE 27

easy to delete important work documents, treasured family photos, or entire folders of impor-

tant system information.

In post-PC operating systems, however, there’s been a reimagining of how documents are 

handled, and it’s a shining example of great interaction design. Developers working in iOS, for 

example, don’t get full access to the photos a user takes with the iPhone camera. Instead, the 

applications seeking to alter or enhance photos—by cropping, removing red-eye, or adding a 

filter—must first create a duplicate of the original photo.

This is a drastic change from the era of traditional computing, in which applications had direct 

access to original files and any changes made could potentially overwrite or damage precious 

user photos. Knowing this—and knowing that it made users fearful of working with photos—

Apple retooled the way files lived in an operating system, and with this change they paved 

the way for the significant growth of applications that allow users to get creative with their 

photographs.

Figure 2.3 Apple’s App Store for iPhone makes prices clear, and purchases require specific 

confirmation actions from the user.
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Designing for humans brings other challenges too; some of them are fun, like working around 

the impatience and aversion users have for sitting and learning how to use an app via a tutorial 

or help menu. The way new users are trained on software has changed significantly in recent 

years, something interaction designers have needed to adapt to. Fifteen years ago, it was not 

uncommon for an application to ship with a guide of 100 pages or more, but today modern 

software—especially mobile software—often comes with no help manual.

That evolution is a direct consequence of users’ increased knowledge of and familiarity with 

computers: as individuals become more experienced with technology, there is less need for 

generalized instruction. But this change also resulted from better interaction design. As the 

computer software industry matures, the entities and people developing applications increase 

their knowledge of how to build software. On the mobile operating systems of today, naviga-

tion menus have been simplified, making a more straightforward and clear process for users to 

work through.

Designed by Humans

Though users are imperfect and will likely make mistakes when using your applications, it’s 

important to note that designers are also human and far from perfect. In building interaction 

design for any application, you’re likely to make many mistakes—and any design is capable of 

being improved in order to offer a better user experience.

There are many ways, though, to learn from your mistakes. Users are very good at pointing 

out spots where designers mess up, so why not take advantage of that fact? Let users get their 

hands on your application, test it out, and offer feedback. Be sure to listen to their comments 

and criticisms, as taking in negative feedback and growing from it is among the most difficult 

things a person has to adapt to when making work public. It’s just like waiting for a grade on 

a test in high school; you inherently don’t want to see or hear what you’re doing wrong. As a 

result, it takes an intentional effort on your part to open up an interface design for comment 

from the general public and then use that feedback to improve your work.

tip

Design is not a profession for the shy. In order to be a great designer, you’ll have to 

show off your work frequently and deal with constant criticism about your prod-

ucts. Be warned: Once work has gone public, everyone (and we mean everyone) 

will have an opinion on your work.

That doesn’t mean you have to unveil your in-development app to the entire world right away, 

though. There are many design-focused communities on the Internet that can get your work 

in front of experienced eyeballs for input on how to improve it. Dribbble and Forrst are com-

munities geared toward designers who want to improve their craft. In these networks, users 
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are encouraged to post their upcoming work on a public forum so that others can comment 

and suggest improvements. Consider joining one of these sites to gain constructive and well-

intended criticism on designs for upcoming projects.

Likewise, it’s often valuable to build a small pool of trusted friends and colleagues who are 

willing to review your work and offer thoughts on what you’re doing correctly and what needs 

improvement. Most successful software development teams implement formal processes such 

as peer design reviews or code reviews to help make sure their work is being checked internally 

for improvement.

When working by yourself or on a small team in which you are the only designer, however, it 

can be difficult to find close friends who are talented and knowledgeable enough to provide 

this type of insight into your project. If you find yourself in this situation, tech conferences are 

a great place to meet like-minded individuals who you can build friendships with based on a 

shared passion for mobile application development. Because you’re building digital software, 

it’s easy to instantly share Photoshop designs, wireframe workflows, or early software beta 

builds with anyone around the globe. Plan to attend a few conferences and make a concerted 

effort to meet other designers and software developers while you’re there.

Finally, there’s often nothing more helpful than a beta-testing group that allows you to experi-

ment with interaction design types and play with test builds of upcoming applications. When 

finding users to test prerelease software, it’s important to select a diverse group of potential 

users. Look for friends and family who are known for vocally sharing their opinions, and be will-

ing to listen when they offer their thoughts. It can often be a valuable experience to sit next to 

them and watch as they use your software for the first time. While observing, you can see what 

parts of the design they had problems with and where it could be clarified, simplified, or better 

explained.

tip

When choosing one of your first beta groups, try to recruit a group about two or 

three times larger than you imagine is necessary. Unfortunately, people get busy 

or will offer less feedback than you desire, so grow your group in order to get 

adequate amounts of feedback. 

By realizing that you, like your users, are also imperfect, you can give yourself a stronger chance 

of success with software designs. The importance of listening to users with an open mind 

can’t be overstated. Sure, they probably don’t know as much about user interface or interac-

tion design as you do. They won’t understand whether the technique used in an application 

is thought out well or applies the proper implementation suggested by the operating system 

provider. The same users don’t know all the work that goes into making a Hollywood block-

buster or the construction of a pro sports team’s roster—but that doesn’t mean their criticism 
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isn’t spot-on sometimes. These people are your users—potential customers—and as the saying 

goes, the customer is always right.

Where to Begin
Now that you’ve admitted that you’re a self-doubting designer permanently cursed to a lifetime 

of consistent pixel-by-pixel second-guessing, it’s a good time to start thinking about how to 

launch an app project. To begin, it’s important to know how software and interfaces work 

together to build a complete product. This leads to a new spin on an age-old question: Which 

came first, the software or the interface?

note

The neck-bearded and nerdy amongst us may snidely comment here that the 

answer is obvious: Software came before interfaces, you might say, with the intro-

duction of punch-card computers or even text terminals. But remember, text is an 

interface too. As long as a user is interacting with data or a computer, an interface 

of some sort is required.

There’s a distinct difference between software and interfaces, and it’s even possible for a single 

piece of software to have several different interfaces. Consider the Windows 8 operating system 

shown in Figure 2.4. When running an application on a traditional desktop computer with a 

keyboard and mouse, users have a distinctly different interaction experience than they do 

when using a finger as a pointing device on a Windows tablet that runs the same software on 

the same operating system. Regardless of the hardware, users want the same experience with 

the different interface mechanisms.

Your software should be fine-tuned so that regardless of interface, operating system, or 

device size the experience is unique and effective. It’s your job as the interaction designer to 

thoroughly understand the difference between software and interface. In essence, the user is 

paying for you to make the tough design decisions for them, relying on your skill and expertise 

to provide an experience that is both delightful and intuitive. But because the user’s experi-

ence with software is so dependent upon the interface and because an outstanding interface 

requires responsive and well-programmed software, it can often be difficult to tell the differ-

ence between interface and software. Let’s take a minute to examine how these two important 

aspects of software design intertwine when building a product.

Advancements in interface design will sometimes allow for novel software ideas and concepts. 

In other situations, changes in software will create new interface opportunities. Processing 

power advances in the original computer terminal, for example, paved the way for the use of 
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computers as word processors. In the early age of computers, it was clear they would at some 

point replace typewriters and pen and paper as the most common writing tools; it just took 

time for software to get there and be capable of handling such an interface.

Inversely, the advent of a new interface—the accurate touch screen on the first iPhone—

allowed for novel software opportunities thanks to new powers such as pinching two fingers 

together to make photographs larger or smaller on the screen. Today, nearly every photo appli-

cation on every mobile platform with a touch screen allows the user to swipe or pinch in order 

to see new photos or zoom in to tiny details. This hardware change fostered a type of software 

design that quickly became intuitive.

Computer interfaces, be they hardware or software, work hand in hand with applications. With 

new methods constantly being invented, it’s our job as interaction designers to keep up with 

trends in the industry. The best way to do this is to follow the announcements and major unveil-

ings made by key players in the mobile industry. Large hardware producers such as Samsung, 

Apple, and Microsoft frequently have conferences and press announcements at which they roll 

out new hardware designs. Operating systems likewise are often updated on a yearly or even 

more frequent basis, and the providers of software development kits typically keep developer 

portals up to date with information on system roadmaps and software changes. Be sure to fre-

quently check these portals; information in the mobile software world usually has a short shelf 

life before it’s cleared away for newer technology.

Figure 2.4 File management and cloud storage app SkyDrive effectively utilizes the advantages of 

Windows 8’s user-interface changes. It features large touch targets for tapping with a finger while also 

providing function buttons toward the bottom of the screen for optimal accessibility with a mouse.
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Anticipating Your User Base
Because you’re designing for people, it’s wise to step back and take time to anticipate what 

type of people will be using your application. Your user base will not be an infallible group 

incapable of being confused by your designs, so you must prepare for that and work to design 

an application that is as easy to interact with as possible. Most apps won’t be marketable or 

functional for every single mobile device owner; you’re best off to first envision who will com-

prise your user base.

Depending on the type of app you’re constructing, you could be designing for a specific 

age group, gender, or other special-interest demographic. By nature, people have their own 

inherent tastes, interests, and preferences, so interaction designers must build software 

for those varying tendencies. One of the most important skills designers can develop is the 

ability to imagine themselves in the shoes (or the fingers) of the user so that problems can 

be understood and potentially troublesome points can be identified. You don’t just need to 

know where they’re having problems, though; you need to understand why they’re having 

those issues.

Many designers are apprehensive about the idea of catering their work to people of different 

tastes or abilities; after all, it’s easiest to build what you know. But by not panicking over the 

notion of constructing software for different types of people and embracing this reality of 

design, you’ll have a leg up on competing applications and open up the possibility of wider 

success.

There’s an urban legend frequently passed around Silicon Valley that Facebook’s logo is blue 

because its founder, Mark Zuckerberg, suffers from red/green color blindness and thus has the 

easiest time seeing things that are blue. As a result, it was a supposedly natural choice for him 

to pick that color as the primary design accent for his Web interface and branding.

This story is an effective parable that should guide your work as a designer. You’ll be building 

tools for people who have disabilities or who experience computer software differently than 

you do. One of the biggest mistakes you can make as a designer is to lose sight of the fact that 

your users are a very diverse group.

There are many ways to help your apps cater to segments of the population with capabilities 

that differ from your own. There are a number of tools available, such as xScope by Iconfactory, 

that help designers get a better understanding of how applications look to people with vari-

ous forms of color blindness. Likewise, Apple has built a variety of accessibility tools into iOS. 

AssistiveTouch, for example, is a feature that allows various iPhone gestures to be performed 

with a single hand, helping those users who may have disabilities that make using two hands to 

operate a device difficult or impossible.
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tip

When building applications, enable operating system features such as text-to-

voice, color blindness controls, and enhanced zoom modes to see how your 

on-screen interactions work with these features. It would be a disservice to users 

with disabilities if you didn’t test an app to make sure it’s usable by as many people 

as possible.

Instead of ignoring this reality and allowing the iPhone to be unusable for people with disabili-

ties, Apple has built a special tool developers can take advantage of to provide an accessible 

application for all. Not to be outdone, Google is well known for its industry-leading voice search 

function, which allows users who find typing difficult to browse the Web as easily as any other 

mobile device owners. Google has also built other powerful accessibility options into Android, 

such as text scaling for users who have trouble reading standard font sizes.

Certainly not every app developed can have such focused or advanced design considerations, 

but these do serve as strong examples of the way the titans of the industry have rethought the 

traditionally single-faced form of interaction design applications, making them work better for 

a number of users who otherwise would have been left out in the cold. When designing inter-

actions on screen, it’s important to be creative and imaginative in order to push the envelope of 

efficiency and create groundbreaking mobile interfaces.

So what’s the best way to formally undertake the process of planning for your user base? Many 

designers practice a concept called preparing personas. Personas are hypothetical people 

who might download your app; for practice, try to role-play as those personas in an attempt to 

understand the problems your application is trying to solve for them, how they’ll use the appli-

cation, and what their impression of your interface and interaction designs might be.

Designers for the popular image-centric social-networking site Pinterest, for example, might 

create personas—a bride-to-be, a person looking to redecorate their home, or someone 

looking for a new wardrobe—to put themselves in the mindset of people who would check 

out their photo-sharing service. Each type of user will have very different needs and desires 

for their application, and all need to be considered when making design choices. Similarly, a 

personal-health application might try to envision what avid runners would do when using their 

software, or an educational app developer might consider how kindergartners would respond 

and react to their reading-instruction tool.

Through an app such as MindNode for Mac (see Figure 2.5), you can quickly create simple per-

sonas that can be shared among your design team and project stakeholders, allowing you to 

better analyze and critique potential app interfaces for a specific type of user.
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Another solid strategy for learning more about potential users is to peruse the field for existing 

applications that aim to solve similar problems or that have similar user bases to the app you 

plan to build. The success of the app store model means there are now hundreds of thousands 

of applications to compete against in the marketplace, but that also means there are hundreds 

of thousands of apps to use as inspiration. Don’t hesitate to look at other successful applica-

tions, especially the top downloads on the platform you’re designing on, for quality examples 

of design, implementation of special features, and use of interface components. Mobile app 

stores have now enjoyed five years of success and growth, so learn from the wealth of experi-

ence gained by designers and developers. Most stores police their top-download lists, so the 

apps you find at the top of the charts will almost always be admirable pieces of quality develop-

ment work.

Finally, a lot can be learned by directly discussing application ideas with potential users. Beta 

testing was mentioned earlier, but that effort can often come too far into the development 

process to make a drastic overhaul of major ideas or interaction design. Beta testing is a great 

way to figure out small quirks or bugs that need to be fixed before shipping the app to the 

marketplace, although there’s usually not enough time remaining to fix issues deeply rooted in 

the interaction design.

Instead of waiting until then to identify major issues, it’s useful to reach out to anonymous 

potential users before typing the first line of code or opening the first Photoshop file. Although 

it sounds simple, many designers advocate hitting up a local coffee shop with sketches or 

early interaction wireframes in order to pick the brains of random possible customers. Grab 

a sampling of various ages and genders, offer to buy them a cup of coffee, and use them as a 

Figure 2.5 With MindNode, you can draw up hypothetical personas to help you envision how 

potential users will react to your interfaces.
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focus group to gather reactions to and feedback on your early ideas. Often, those few dollars 

will go a long way toward figuring out whether you’re on the right or wrong path to developing 

a successful mobile app.

Mobile’s Role in User Workflow
Because your audience is composed of humans, you need to recognize not only their faults but 

also the great things about them: namely, the fact that they have very busy lives. Many users are 

likely to be juggling hectic jobs, a busy social schedule, sometimes a full family, and perhaps a 

hobby or two. No matter how helpful an app may be or how much time you guarantee to save 

the user with it, it will still be a struggle to convince your intended audience that an application 

can provide value to them.

Because most applications cost very little (if anything at all), there’s not much incentive for the 

user to sink time into learning a program’s interface or features; they didn’t pay much for it, 

so they don’t lose much if it just sits on their device’s metaphorical bookshelf collecting dust. 

Most people are unable to find the time to review the user manual for their new $30,000 car or 

$2,000 television, much less a $1 app buried amongst the dozens of others on their phone. That 

places just a little bit of pressure on designers to make sure software is simple, intuitive, and 

easy to learn, doesn’t it?

With this understandable impatience in mind, it can’t be stressed strongly enough that applica-

tions should have simple, easy-to-understand interfaces and user interactions that are readily 

apparent and require little thought. If the user is unable to pick up an application and figure it 

out quickly, he’s likely to leave it and never open it again. With so many apps fighting for users’ 

attention, the opportunity cost is simply too low for them to spend more than a few minutes 

attempting to understand how a program works.

Some startling math helps put this point in perspective. If an iPhone user wanted to test 

out every application in the App Store for just one minute, it would take nearly two years—

without sleep—to finish that quest. With this incredible amount of software available, does 

anyone have an incentive to pick up an application and continue using it if it can’t be easily 

understood?

When developing an interface and interaction design on a mobile phone, it’s also important to 

keep in mind that mobile computing is still in its infancy and ultimately serves as a companion 

to the functions offered by traditional computers. Many designers often forget that their phone 

applications are in fact properly named “mobile” apps; they’re used on the go, with only a few 

glances given to them at a time. It’s important to remember that these applications are not run-

ning on powerful computers with large displays. At least for the time being, it will be difficult to 

replace traditional workstation applications such as word processors, advanced photo editors, 



ptg12441863

36 CHAPTER 2 DESIGN FOR HUMANS, BY HUMANS

or other programs that require significant typing and a steady hand with a mouse. But mobile 

phones do handle portable, simple software extremely well.

note

Remember that users might be using not a single traditional computer but a 

variety of traditional computers. Work desktops, home laptops, Windows PCs, and 

Macintosh and Linux machines could all be things your users encounter on a daily 

basis. Try to imagine any potential use case that a potential user could fit into.

Finally, it’s also crucial to be cognizant of the types of situations users will be in when accessing 

your work. Laptops, obviously, are not very convenient for use at the grocery store, on a sub-

way, or at a youth soccer game. Yet, thanks to smartphones it’s now possible for anyone to send 

Figure 2.6 iBiker by ITMP Technology, Inc. features large text and a simple interface, making the app 

useful for runners or bikers looking to access it while exercising. (Courtesy of ITMP Technology, Inc.)
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e-mails or check Twitter while in those locations. Thus, it’s imperative that you not only consider 

the interaction methods you use in applications, but also the situations a user will be in when 

attempting those interactions.

Suppose you’re building an app for avid cyclists to use to track workouts, one like iBiker (see 

Figure 2.6). It’s very likely they will access this program while riding their bicycles. As a result, it 

would be a terrible idea to pick small typography or pile a host of buttons on the most promi-

nent interfaces. As a designer, you must anticipate where your application will be called upon 

if you want to provide the best experience. Mobile apps will often complement traditional 

computing experiences, not replace them.

IN-DEPTH

Looking for an application that was built to meet the needs of as wide a range of users 

as possible? Browse different mainstream social-network applications such as Facebook, 

Twitter, or Foursquare.

Applications like these have enjoyed worldwide success and are now used by people of 

all languages, ages, and genders and in dozens of countries around the globe. There is 

not a single demographic that isn’t found in these applications’ user bases. With this in 

mind, their designers had to build extraordinarily wide-reaching applications.

Take some time to browse these applications and think deeply about why their design-

ers made the decisions they did. How would you design an app if you knew it had to be 

viewable in nearly every language spoken on the planet? Which gestures and interaction 

types would you integrate if you knew your application would be used by both the most 

novice and most advanced users on a platform?

These applications may not be perfect in every way, but their designers have inevitably 

tackled a plethora of questions related to the broad scope of their user base. They are 

great case studies of design that show how to walk the fine line of creating something 

that works for everyone.

Conclusion
If your applications are going to find success in the marketplace, it’s your job as a designer to 

remember that you’re building for people like you. No matter how brilliant a concept is or how 

sensible you are with interface principles, an app won’t go far if the user doesn’t find it engag-

ing, coherent, and easy to use. This can be anticipated and accounted for by reaching out for 

input both before you start work and during the development process.
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Although you might want to design an application with every feature imaginable, the most 

successful apps on any mobile platform often do only one thing extremely well. As long as you 

know what you’re trying to provide a user with, you can strip away the unnecessary fluff or 

problem points; as a result, it’s much more likely that the app will climb the popularity charts.
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DYNAMIC DIFFERENCES 

IN MOBILE DESIGN

Clearly, no two mobile computing devices are 

created alike. With a variety of operating systems, 

platforms, and screen sizes, there’s a lot to keep in 

mind when attempting to cater an application to a 

certain piece of technology.

It’s time to start tying interaction and human-

interface design together as you begin breaking 

down how to design for specific form factors and for 

the ways people use software on their devices.
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Understanding the Role of Mobile
As advanced as mobile devices and software have become, they still play a complementary role 

to traditional computing. Applications often tie into more traditional digital setups, be they 

word processors, spreadsheet managers, slideshow presentations, PDF readers, e-mail clients, 

or anything else used to perform work or personal functions. When not uploading photos from 

a hike, watching a movie, or playing a game on a mobile phone or tablet, some other form of 

hardware or software—most likely the kind that predates smartphones—is being used.

But as smartphones and tablets increase in power and potential, users are using these devices 

for an increasing number of tasks, and this growth has led to a remarkable point in computer 

history. PC sales consistently climbed for years, but numbers are now beginning to drop, while 

tablet sales are rising exponentially. The trend reported by various hardware manufacturers is 

largely the same; PC demand is way down and mobile demand is way up.

The drop in demand for PCs may also, ironically, be due to improvements in the quality of 

desktops and laptops. Processing power, hard drive space, and other features that previously 

advanced radically on an annual basis throughout the 1990s and 2000s no longer change so 

quickly. Owners now get more bang for their buck because computers live significantly longer 

and don’t seem outdated shortly after leaving the store shelf.

Some manufacturers, it appears, saw this problem coming. If their products became so reliable 

and so advanced that purchases were necessary only once every decade, their bottom line 

would gradually become frighteningly small.

Enter the tablet. When Apple announced the iPad in January 2010, Steve Jobs tried hard to 

make the case for the need for his new electronic product. Everyone he knew owned a laptop 

and smartphone, the Apple executive said, and the iPad would fit somewhere in between those 

two devices. Jobs believed there was a place for a device bigger than a phone but not as hefty 

as a laptop.

Over time, though, tablets may end up playing an even bigger role in users’ daily lives than even 

Jobs expected. As the large yet holdable devices begin to permeate the marketplace, fewer 

people see the need for a traditional computer and instead opt to use only mobile platforms.

Just six months after he defended his product’s very existence, Jobs sat on stage at the All Things 

Digital conference and made a now famous statement: Traditional computers are like trucks and 

iPads are like cars. In the early days of transportation, he pointed out, many people drove trucks 

merely because there was no other type of vehicle available. But as people and products evolved, 

the car became the preferred method of transportation and dominated the world’s roads.

Jobs saw tablet computing as a digital interaction method primed to become the sedan of the 

information superhighway. Tablets, he contended, could emerge as the computing device for 

the common person.
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As the battle for users’ dollars and attention plays out between desktops, laptops, tablets, 

and phones in the coming years, the market will remain volatile and cluttered, while the 

industry will be full of opinions on what should drive computing forward. Perhaps in the end 

mobile will continue to outpace other computers and push laptops to the brink of extinc-

tion, or maybe the two will serve unique purposes and play separate roles in the daily lives 

of the public.

Today, though, there’s a wealth of services that help developers build software that can be 

made available to users of all types of devices. Cloud database and file-hosting services such 

as Parse, Apple’s iCloud, Google Cloud Messaging, or Microsoft’s Windows Azure have made it 

incredibly easy to build complex and feature-rich software that shares data across many plat-

forms. This gives development teams the ability to target all users on native platforms as long 

as they optimize for device characteristics and interaction methods.

note

Where technology is today, it’s much easier to provide a responsive experience 

and optimal interaction using native code and frameworks. As your development 

team advances, you’ll probably be targeting software toward multiple platforms. 

This is where software such as iCloud or Azure comes into the picture, because 

simple cross-platform compatibility and easy data accessibility is very much an 

important aspect of successful modern interaction design. 

Mobile and its influence on the way people use digital systems is still in its infancy. As inter-

action designers, it’s essential to understand our users and the way they work with devices 

but also to know the history of the technology they’re using. It’s all part of the effort to 

comprehend how current products solve user problems and meet user needs: valuable 

information we can use when developing products that define how we solve similar prob-

lems in the future.

Mobile-Only Interactions
By now, you know that interaction design is the process by which software is iterated and 

fine-tuned into a form that delivers the best possible experience for the user. As an interface or 

interaction designer, it’s your job to sit down and strip away all unnecessary details and excess 

in your software so that you can minimize its complexity for potential customers.

Although interaction design often relates to software interfaces, hardware plays a major role in 

that concept as well. Let’s take a look at user-interaction methods and potentially problematic 

situations that only arise when working with smartphones and tablets.
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Interactions Only Possible with a Smartphone

In the early days of advanced mobile phones, processing power was the most significant limit-

ing factor in interaction design. It was also the reason phones had been seen as second-class 

computing citizens; the devices just didn’t boast the juice that desktops and laptops have long 

had, and as a result performance suffered. Early smartphones often stuttered and were gener-

ally unresponsive.

tip

While working on interface design, it’s important to remember that responsive-

ness is a subjective term and can change greatly when moving across devices and 

operating systems. It’s important to use a variety of devices on a platform in order 

to gain a better idea of relative performance context.

When using an iPhone or Samsung Galaxy device that’s a year or two old, it will 

likely feel slow and sluggish, but remember that these devices once provided the 

most responsive experiences for their respective platforms, and current devices 

that feel fast will one day be very slow.

Only with the launch of the iPhone did on-the-go devices finally start to enter the conversation 

as having major multiuse potential. This new class of device didn’t bring an exponential jump 

in processing power, though, as its major advancement was the result of a remarkable decision 

by Apple’s design team. They chose to key in on the interface’s responsiveness to touch. Many 

competitors had focused on giving phones desktop-style functionality, but Apple focused on 

interactivity and simplicity.

The design goals were simple in concept. When pinched, photos should resize dynamically 

without delay or slowdown; Web pages should scroll immediately when flicked up or down; 

dragging an icon around on screen should be fluid and should feel as if the pixels below are 

magnetized to our fingertips.

Creating these interactions is easier said than done when working with limited phone proces-

sors and RAM. Mobile operating systems today still work within these constraints, although 

hardware improvements have increased significantly with dual- or quad-core processors, and 

cloud-hosting solutions make limited storage space less of an issue.

Any remaining lack of power is made up for by the dramatic difference in hardware function-

ality and capabilities that smartphones now provide over their predecessors. For example, 

pinpointing the precise location of a laptop wasn’t an essential function 10 years ago, but 

now that feature is essential to many smartphone apps thanks to GPS receivers and cell-tower 
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triangulation. Location identification has significantly enhanced mobile interaction design and 

has been a major force of smartphone growth. With a device that can quickly locate exactly 

where a user is, there’s no longer a need to spend time entering a ZIP code or address when 

attempting to find show times at nearby movie theaters or when determining where the best 

Chinese food restaurant is in a 10-block radius.

Taking advantage of previously unimaginable smartphone features like GPS helps teach a criti-

cal early lesson of mobile interaction design: You should always minimize the amount of user 

effort required to interface with your service. Thankfully, many new mobile tools and hardware 

features are there to help us accomplish this goal.

You can use a phone’s gyroscope to determine the device’s orientation, customize a profile 

using photos taken with the phone’s camera, or create augmented reality applications using a 

device’s magnetic compass. The features you’re able to take advantage of continue to develop, 

evidenced by new technologies such as near-field communication or infrared sensors, and will 

only continue to grow more impressive in the future.

When designing an app, it’s important to ensure these functions take advantage of smart-

phones’ inherent mobility. When working on a platform, it’s useful to think of the features 

and functions at hand as if you’re playing a sport; laying out an interaction plan for an app 

is like working out a team’s lineup and game strategy. If you want to be the best manager 

you can be, you need to fully understand the way the wind is blowing on any given day, 

and play to your personal design strengths, all while de-emphasizing the design weak-

nesses for your team.

A great example of this is the Hourly News application produced by Urban Apps, shown in 

Figure 3.1. Its exceptional interaction design capitalizes on the various hardware and software 

advantages offered by a mobile phone.

The app is fairly simple; its sole function is to allow a user to listen to hourly news updates 

from notable news, sports, and finance media outlets. The app’s designers, though, assumed 

it would most frequently be used when a person is in motion: driving a car, walking, or riding 

public transportation. Therefore, when the app is opened the first newscast is started automati-

cally, with no interaction with the interface required. The gorgeous main interface contains only 

a single, primary interface button. Very large and in the center of the screen, the button’s only 

function is to pause or play the audio. The feed can be skipped through or moved backwards 

with an on-screen swipe gesture. A cell phone connection or Wi-Fi network is needed in order 

for recent news updates to be downloaded at the application’s launch.

By understanding how a user would interact with the app and integrating common hardware 

capabilities, a simple and wonderful app was created that offers a prime example of software 

that would not be possible on any device other than a smartphone.
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Interactions Only Possible with a Tablet

Smartphones don’t have a monopoly on unique mobile experiences, though. Tablets also boast 

a host of interactions that are unique to their platform—though they do share many of the 

advantages that smartphones feature, because the two devices share a common ancestry.

Tablets are much smaller and lighter than laptops and also contain advanced microphones, 

cameras, location-tracking chips, gyroscopes, and other features that typically do not ship with 

traditional computers.

Much like when building a phone app, key features should be taken advantage of when con-

structing tablet software, but it’s important to recognize that not all of these advantages are 

guaranteed. The iPad, for example, comes in two models: one with cellular connectivity and 

one without. Similarly, the first-generation Nexus 7 has no rear-facing camera, and the Micro-

soft Surface has no cellular connectivity option.

Figure 3.1 If mobile interaction design was a sport, Hourly News would be on a long winning streak 

with its exceptional design focused on optimizing utility for mobile use. (Courtesy of Urban Apps, LLC.)
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The features that are available on a device vary greatly by manufacturer and platform, so it’s 

important to identify the necessity of each and every function in an app and how it will operate 

if certain hardware qualities are not available on a device.

note

How do you determine the hardware features that will be available for the plat-

form you’re targeting? It’s a constant question for designers and developers. It can 

vary heavily by platform, but most operating system providers offer some sort of 

official page, usually on their primary developer portal, that offers some type of 

running statistics of or insight into devices prevalent in the market.

Bloggers and developers with an interest in a platform often publish data and 

attempt to identify the prevalence of features on a certain device or operating 

system in order to know what’s most common. If data is unavailable from the plat-

form provider, these posts can be useful, but the limited number of sources they 

draw from means that they shouldn’t be considered authoritative on the subject.

This influences interaction design, as an app needs to offer a uniform experience regardless 

of device capability. For example, designers need to ensure software doesn’t crash if a device 

isn’t constantly connected to the Internet, because some devices come with Wi-Fi only or with 

cellular data options. If you’re integrating photos into your app, it should be designed so that a 

user can pull an image from the local photo library if a camera is unavailable to take a picture to 

fill that space.

It’s these subtle, sometimes overlooked device differences and hardware issues that often lead 

to terrible experiences for users. Interaction design is not only about producing great experi-

ences for users in the most ideal situations, it’s also about guaranteeing they don’t have an 

atrocious time attempting to navigate an app because their device doesn’t contain a hardware 

feature a designer erroneously assumed would be there.

The tablet’s biggest advantage is simply that it brings the world of touch screens and dynami-

cally interfaced applications to a device that is sized for reading, writing, and interacting with 

data. Once a designer first begins designing an app for a tablet, he or she is often struck by how 

similar it is to creating a poster, book cover, or other graphic for a paper product. For users too, 

this is the device’s most exciting feature; it’s the size of a book, yet eliminates the need to keep 

track of hundreds of pages of paper. In many respects, tablets are better than books because 

they allow for an interactive experience that a bound collection of dead-tree fragments simply 

doesn’t provide.

For these reasons, Fortune 500 companies have been big early adopters of tablets despite 

historically being some of the slowest movers when it comes to information technology. 
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“Enterprise customers,” as they’re known, are notorious among software developers and 

contractors for needing to use an operating system or software package for long beyond its 

anticipated lifespan simply because the existing product is too familiar and upgrading requires 

too much time or money. Because this group of purchasers—people and companies who nor-

mally would be averse to adopting a technology early—has embraced tablets so readily, there’s 

a large potential market for products that replicate traditional work or productivity tasks that 

require traditional filing systems or high performance in situations in which traditional comput-

ers may be impractical.

Tablets also have great potential as individualized entertainment devices, and that market 

should not be ignored either. Phone devices are often too small to make watching videos or 

playing games enjoyable for long periods of time, but tablets are the perfect devices for users 

who want to sit back and be entertained in a location other than the living room. By optimizing 

the interaction experience and focusing on content and clarity, many apps in recent years have 

offered immersive experiences akin to ones featured in movie theaters and on modern-day 

video game consoles.

Interactions That Aren’t Possible 
on Mobile
So far, this chapter has done nothing but sing the praises of next-generation mobile devices 

and the new types of app experiences they offer. However, there are several potential interac-

tion designs and features that are impossible or extremely difficult to achieve on a phone or 

tablet.

Returning quickly to the “interaction design is a sport” analogy, the following experiences and 

interaction methods would be a team’s worst players. Ideally, these individuals would sit on the 

bench and stay far away from the field of the interaction plan for our app.

Keyboards and Data Entry

Applications that require extensive text entry or typing are standout examples of mobile-

problematic experiences. It’s hard to recreate the ease and familiarity of the full QWERTY 

keyboard on a glass surface. Many have tried custom keyboard configurations, but text entry 

is still a key feature for which mobile devices trail traditional computers.

There are ways to get around this deficiency, including the Bluetooth support that allows external 

wireless keyboards to connect to tablets or phones, but this remains more of an obstacle than a 

solution as users must constantly remember to grab an extra device in order gain full functionality.

Third-party hardware manufacturers, and even Microsoft with its Surface tablet, have launched 

efforts to create covers that also function as QWERTY keyboards, but these attempts often 
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involve shape, size, or other format compromises that still make them less useful than tradi-

tional typing setups.

When creating an application of any kind, be aware of this data-entry difficulty as the interac-

tion design is developed. Many programs make inputting numbers and letters too difficult, and 

as a result users shy away from using those apps. A little bit of work focused on making text 

entry more efficient can go a long way in interaction design.

Most operating systems, for example, provide multiple keyboard types that can be chosen in 

the programming stage. iOS and Android both have several layouts to pick from—including 

one optimized with buttons for entering common Web URL endings such as .com and .edu 

and another designed for typing text paragraphs efficiently. When laying out the various 

points for data entry in an application, take time to learn all the native interface components 

that are available, including the different switches and button styles. The designers who 

created these components spent significant time deciding what the easiest ways to man-

age entry on the platform would be. They’ve probably thought about a lot of the issues you 

haven’t and definitely considered the issues you already have. Go for the simple answer: If a 

component looks well suited for the type of data entry your app requires, don’t second-guess 

that hunch.

Click, Tap, Point

A discussion of interaction types would not be complete without mentioning pointer devices—

the tool used to click, tap, or manipulate content on screen. For mobile computers, this means 

fingers; for traditional computers, it’s the mouse.

The most important difference between the two involves the interaction radius the user has to 

engage with content. When moving a mouse, the user directly interacts with a small number 

of pixels at a time, usually only a handful. But when tapping with the finger, the user comes 

into contact with a much larger radius—sometimes as many as 40 or 50 pixels. Human fingers 

clearly aren’t as precise as mouse-pointer icons. Thus users have a much harder time mak-

ing small, precise inputs on a screen, which is why larger buttons and icons are often seen on 

mobile devices.

User pointing devices won’t be the only variable designers need to consider; user dexterity is 

never the same either. When working with a mouse, users don’t directly interact with content; 

instead, they move a device sitting on a table that then interacts with content. The software 

that operates computer mice can be adjusted for a variety of speed settings, giving the user 

flexibility in determining how his ability will affect the computing experience. A finger, though, 

comes with no such options menu, and some users may find it difficult to accomplish advanced 

gestures that come naturally to others.
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Expandability

Mobile phones and tablets come with their own limitations as well. Namely, they lack the 

expandability and added-feature compatibility that traditional computers have offered for 

years. It’s tough, for example, to find a mainstream smartphone with USB ports, HDMI inputs, 

or connections to output to multiple monitors or hard drives. In some ways, this makes your job 

easier, as designers can focus on a single user experience and not worry about outlying features 

that are not commonly used. But like many tradeoffs in the mobile realm, this is a double-

edged sword; many enthusiastic potential customers gain satisfaction from features or capabili-

ties that are difficult or nearly impossible to implement on modern mobile devices—leaving 

potential profit on the table as a result.

Universal Appeal
So far, this discussion has focused on the difference between phones and tablets, but designers 

will often have to tackle a situation in which they need to create an application that works well 

on both, or they’ll need to build a program that can function easily across a variety of operat-

ing systems. So what essential design and interaction practices are important to know while 

attempting to put together a one-size-fits-many app?

Interaction Experiences for Phones and Tablets

When discussing the design of an app that will work on both phones and tablets, let’s first 

assume that it will be built for the same operating system platform. If you start out designing 

an app for iPhone, it’s most likely you’ll be adapting it for iPad next; an Android phone app will 

convert most easily to an Android tablet. Although it’s possible, albeit unlikely, that an iPhone 

app you design will be quickly ported over to an Android tablet or vice versa, we’ll save discus-

sion of techniques for creating multiplatform apps for the next section.

When creating an app for both phones and tablets, the primary goal should be to scale interac-

tion types for the two devices from the very beginning of the project. If an app targeted for 

both small- and large-form devices appears anywhere on a potential project roadmap, it’s 

highly recommended that you consider how your design will work on various screen sizes 

before moving too far along in the creation process.

For inspiration, look to how leading Web sites have developed in recent years—especially the 

way they’ve implemented responsive Web design techniques. While mobile app designers have 

enjoyed the luxury of being able to target native interface elements or specify interaction types 

based on a device’s screen size, Web designers have been working since the pre-iPhone era to 

provide identical content and functionality on screens both large and small as well as in situa-

tions in which connectivity is limited. Many of these Web sites may be less interactive than or 
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have limited features compared to a mobile application, but they provide valuable insight into 

the way content can flow on a page and be rendered effectively for mobile.

Most responsive Web sites with multiple pages stacked in a hierarchical menu, for example, 

found that the way to function best depended on the platform used to access the page. On 

a mobile phone with a small screen, the menu remains hidden and requires interaction with 

buttons to bring the menu into focus. On a larger touchscreen device or a desktop browser, the 

entire menu stays visible and appears above or next to content.

Take a look at the Google.com homepage (Figure 3.2) as an example. When moving from the 

desktop site to the mobile version, the search window is scaled, different menus appear, search 

buttons are reconstructed, and the displayed interface is reduced. Google clearly knows how to 

slightly modify the browsing experience based on form factor, an essential principle of respon-

sive Web design.

It’s a simple design element, but a key one; like most good interaction decisions, it involves 

stripping away unnecessary clutter when on a small screen and emphasizing controls and 

enhanced navigation opportunities when on a large screen. Designing an app that can be scal-

able to screens of any size relies on a key concept: questioning whether every feature added 

during the development process simplifies or clarifies the interface. Designers can easily be 

trapped by the temptation to add features that seem to enhance functionality without realizing 

that such decisions come with consequences.

Far too often, designers work out a full interface concept complete with related interaction 

techniques for a mobile phone application before they begin to contemplate how it will look 

and feel on a larger tablet. Don’t wait to consider concepts of scalability until after the design is 

complete or, even worse, the app design is being programmed. Once the design is pixel perfect 

Figure 3.2 Google offers a scaling interface for users that looks great on both laptops and phones.
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in Photoshop or lines of code have been written, it’s essentially too late; changes are much 

more expensive and time-consuming when implemented in a near-final state than they are 

when the design is in the form of wireframes and pencil-and-paper sketches.

Take typography, for example. Text that may fit easily on a large iPad screen can frequently 

fit poorly or even be illegible when scaled down for an iPhone. Thus it’s important to discuss 

things like menu copy and paragraph length with the rest of your application team to deter-

mine how the words will best flow on a variety of screen sizes.

Before kicking off the design process, it’s also important to research how the platform you’re 

targeting specifically handles the movement between large and small device styles when it 

comes to interaction design and program logic. Each platform deals with these issues dif-

ferently, so it’s best to keep up with the strategies recommended by the operating system’s 

creator.

On iOS, for instance, designers and engineers typically work together to produce two separate 

XIBs (Xcode Interface Builder files) for any universal binary (an application that will run on both 

iPhone and iPad). This strategy allows for versatility when moving between screen sizes as well 

as the opportunity to easily pick different interaction types or gesture methods based on the 

screen size a user engages with.

The introductions of iOS 6 and 7, however, also brought Apple’s announcement of a new 

method of managing mobile interfaces called auto-layout. This allows just one XIB to be cre-

ated for use on a variety of screen sizes.

note

An Xcode Interface Builder file is a proprietary file type that can be used in the 

creation of iPhone and iPad application interfaces using an Xcode feature called 

Interface Builder. These files are extremely common, as they allow interfaces to be 

designed graphically while also allowing an easy tie-in to programmed code.

Currently, auto-layout is something still a bit complex and not fully embraced by designers as 

a way to easily move apps from iPhone to iPad. The most common implementation method is 

still to create separate XIBs for each screen size or to create interfaces completely in code. Yet, 

the new auto-layout process is growing in popularity, and Apple continues to make consider-

able advancements with the technology. It became much more useful with the introduction 

of the larger iPhone 5, because designers needed to implement interfaces that could adapt to 

both the new 4-inch diagonal screen size and the 3.5-inch version of older iPhone generations. 

As a result, it’s not unforeseeable that at some point in the near future a single XIB could be 

used for both iPad and iPhone.
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Android, meanwhile, is much better suited to adapt to multiple interface sizes. Because Android 

was a system built from the ground up to support various screen resolutions, the tools for creat-

ing Android apps have always focused on easily forming scalable interfaces. Today, most design 

work is aided by creating XML files that dictate how an interface should scale based on the size 

of the device’s screen.

Currently, the Android system supports four screen sizes for phones and tablets: small, normal, 

large, and extra large. Devices are classified based on screen size and resolution, and Google 

dictates the acceptable ranges for each screen type. When working with Android, it’s up to the 

designer to decide how the app should respond to each size.

The action bar, for example, is a common Android interface item that allows the user to access 

the app’s main menu and switch between different application views or functions. The bar also 

often serves as a home for common interactions inside an app, such as searching or sharing 

content. Finally, the action bar often contains a title to indicate a user’s current location inside 

the app.

An action bar may have multiple items, not all of which can fit on the screen at one time. While 

working with Android interface XML, a designer can specify which fragment functions are 

the most important and should appear on screen regardless of the device’s size. Likewise, a 

designer can specify the font size based on a screen’s specifications. With multiple screen sizes 

to target and the ability to modify based on screen density or resolution, Android designs can 

be tailored to work well with the wide range of tablets on the market.

On Android, the action bar anchored to the top of the view and right below the main naviga-

tion bar shows the variety of different fragments available to the user for displaying content. 

For the Google Play app shown in Figure 3.3, content such as different app categories and top 

lists are available for easy tapping.

Although scalable applications and shared code between phones and tablets are great, there’s 

no shame in avoiding such strategies from time to time. If an application idea has too much 

potential but will fundamentally change with a move from phone to tablet, consider scrapping 

the design conversion completely and instead building separate applications for each screen 

size. There’s no requirement to build the same interface for a phone and tablet, and there’s no 

requirement to even build the same application for each form factor.

note

“Form factor” is a smartphone or tablet’s size, shape, aspect ratio, or other physi-

cal attributes that vary between devices even though the operating system may 

remain the same or be extremely similar. For example, two phones may both run
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Android, but one may have a 3.5-inch screen and be very thin and another may 

have a 5-inch display and be very thick. These devices are both Android smart-

phones, but they have very different form factors, and as a result they can feel very 

different when used in practice.

In fact, for some apps it may make sense to focus on bringing the features and functionalities 

best suited for both devices to their respective screens. This creates two different design direc-

tions along with two different potential feature sets and the potential for even more work. But 

if your application does not seem well suited for small screens and large screens using the same 

feature set and design style, it might be best to make the extra effort and focus on creating 

exceptional applications for both devices.

Figure 3.3 The Google Play app uses the standard action bar to help the user navigate.
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Interaction Experiences for Multiple Platforms

A more difficult task than designing an app for phones and tablets on the same operating 

system is designing one for multiple phones and tablets on different operating systems. When 

moving from Android to iPhone, it’s as though a designer or programmer is crossing a border 

into a new country with a completely different language and culture. Making such a transi-

tion involves adapting to new programming conventions and growing accustomed to a new 

design style.

Far and away, the biggest mistake that can be made when planning such a project is forcing an 

initial design onto another platform. If an app has been detailed and customized for iOS, don’t 

try replicating it attribute for attribute on Android or BlackBerry 10.

Aside from games, most applications depend on the use of several native interface pieces and 

as a result don’t work well when forced onto a foreign platform. Unfortunately for designers, 

there’s no universal interaction implementation that translates an app to all operating systems, 

so porting an iPhone interface to Android is likely to make a program feel extremely out of 

place and unintuitive to a user. Most iOS applications, for example, rely on tabs to navigate the 

user between different views, but that interface style looks confusing and is unlikely to scale 

well on Android and its various device sizes.

Building an application for multiple operating systems is much like building one for multiple 

devices: You will benefit greatly if planning begins from the get-go. In many respects, that’s a 

difficult task either because it’s impossible to predict the future or because the project’s budget 

doesn’t allow for such forethought. But if designers are capable of beginning work for both 

platforms at the same time, it’s ideal to start with interaction and interface wireframes for a 

general mobile application, ignoring any specific target platform. By building such a wireframe, 

a designer worries less about the specific interaction methods or interface pieces—such as a 

tab bar or navigation bar—and instead focuses on the source of the content inside the applica-

tion, including tables, maps, videos, and how those elements connect coherently for the user.

Once an understanding is developed of the general path a user will take to move inside an app, 

a designer can begin to apply the specific interface pieces needed for the targeted operating 

system. This is the time to decide whether the tab bar will be used for an iOS app or the action 

bar will be featured in an Android app. It’s also the time to implement Android’s system-wide 

“Back” button to return through application hierarchy or to include iOS’s “Back” button in the 

standard navigation controller.

At this stage, take a look at the app’s content flow, and decide how interaction should be 

implemented in accordance with the established and defined conventions for each operating 

system platform. Although interface controls may have different styles or interaction gestures 
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on each platform, the content will likely be similar between operating systems; the designer 

just needs to determine the most appropriate way to display the content on the target 

platforms.

note

Human-interface guidelines for the target platform should be the most important 

document a designer refers to when deciding the appropriate interaction methods 

for his work. These guidelines are typically found at the platform’s online devel-

oper portal.

Specific interface components and interaction methods will evolve over time. Just 

look at the changes between Apple’s iOS 6 and iOS 7 for an example of how much 

can change in a year. It would be impossible and likely irresponsible to claim that 

a specific interface style or interaction gesture was appropriate in all mobile situ-

ations, as these conventions change drastically and extremely rapidly. As such, it’s 

important to refer to a platform’s design documentation and interface guidelines, 

as they will instruct you how to proceed in presenting content.

Once designers determine the pieces they will use to put the puzzle together, they can then go 

and tie the app together across platforms by using similar colors, backgrounds, and general art 

design. This allows the application to feel unique to the platform it calls home while still being 

part of a unified brand.

As new operating systems and platforms become available in the future, you’ll most likely want 

to create something on one piece of technology that might not work on its ancestors. Avoid the 

inclination to mimic or port any new design features backward onto earlier technology; it won’t 

go nearly as smoothly as you anticipate.

Remember Cover Flow? The OS X-introduced design style is still prominent in the Finder appli-

cation (shown in Figure 3.4) used to navigate through files and folders on Apple computers. 

At the time of the original iPhone, it was a groundbreaking way to display album art, allowing 

listeners to swipe left and right to browse their digital music collections.

This method of displaying album covers proved so popular that many developers attempted 

to implement it on other operating systems and hardware that weren’t up to the task of such 

a graphic-intensive visual design feature. As a result, the hardware couldn’t keep up with the 

advanced swipes and scrolls necessary to display images or files that way and ended up stalling 

and stuttering.

Although the look proved great for selecting music albums, it wasn’t a particularly useful way to 

navigate through other file types. Nevertheless, developers tried to catalog many other types 
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of data with scrolling images. This trend quickly became overused and misappropriated, and 

now it stands as an example of an interaction design convention that harmed applications and 

didn’t help users. Apple removed Cover Flow from its applications, and it’s now rare to see the 

concept in use in modern apps.

Complementing Traditional Workflows
Because your mobile applications will often be used to complement traditional workflows, it’s 

important to focus interaction design on aiding users with their traditional work. Much like you 

did when working on scaling an application from phone to tablet, you should consider ways 

in which your application could be improved through a design that focuses on working in col-

laboration with users as they move through their day.

A common way many applications do this is through the incorporation of sync services such as 

Azure, iCloud, or Dropbox. Unfortunately, it can sometimes be difficult to build a service that 

relies on users interacting with documents, because the mobile world has largely thrown file 

management by the wayside. Yet, despite the simplicity that the no-file system was designed 

to bring to users, an application can be significantly easier to interact with if a user can easily 

import and export documents between a phone, tablet, and desktop. By spending time allow-

ing document interoperability, an application becomes much more usable.

Figure 3.4 Apple removed the Cover Flow technology from its mobile devices, but it still lives on 

desktops and laptops.
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AgileBits’s 1Password, shown in Figure 3.5, is a service that stores and syncs notes and secure 

passwords across platforms and is a great example of an application with enhanced interac-

tion aided by interoperability. 1Password uses a variety of methods that make it easy to share 

between devices. Because 1Password requires a gratuitous amount of typing and the manage-

ment of usernames and passwords, which often require a heavy combination of numbers, 

different letter cases, and symbols, it is a hassle to manage it on a phone or tablet without 

the aid of a desktop computer. Through the inclusion of simple syncing services and settings, 

interaction design is greatly improved and the application becomes easy to use, as it now gives 

an alternative way to handle the difficult task of data management.

Another way to enhance a user’s traditional work experience via mobile interaction is by 

providing an interface or capability that is difficult to perform with a traditional keyboard or 

mouse. Standout examples of this notion include map apps, in which pinch-to-zoom allows for 

navigation and exploration of an area that can’t be achieved on paper, or Twitter apps, in which 

users can quickly yet precisely flip through a long feed. On a mobile phone, a flick-to-scroll 

gesture is easy to implement and much more convenient to use than a mouse.

Figure 3.5 Through syncing with Dropbox, 1Password users have access to their data on iPhone, 

iPad, Android, a desktop or laptop, and a plethora of other devices.
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tip

Designers aren’t limited only to touch gestures when attempting to improve an 

application’s interaction experience. Actions such as a device shake or rotation can 

also be used to offer shortcuts or another way to solve an interface problem that is 

not easily fixed through touch.

Finally, another interaction type that benefits the user is one that expands or supplements a 

pre-existing Web or desktop application on mobile—especially one that is used most often or 

is most necessary when on the go. Consider software used to manage employee time cards. 

Most of the work within this system, of course, will be done by employees or managers on a 

desktop computer when logging vacation time or approving hours worked over a pay period. 

But occasionally a person may need to track time when on vacation or out on a sales call. In 

this case, a simple mobile application that allows access to only a single feature—say, time 

tracking—would add considerable value to the original desktop application.

IN-DEPTH

Somewhat ironically, it’s often easiest to learn good design through the intentional expo-

sure of incredibly flawed design. In experiencing the bad, you can better see the subtle 

nuances that make other projects good.

There are some simple ways to experience mobile apps in an unflattering light. One way 

is to use an iPad to run an application that has only been built or optimized for iPhone or, 

likewise, find an Android application that has received no optimization for tablet-sized 

screens.

After a few minutes of using these applications, the lack of focus and optimization for 

the large form factor should be more than apparent. Text will be poorly spaced, images 

may be stretched, and interaction methods may be out of place or feel inappropriate. 

Through using these application and understanding why they provide bad experiences, 

we can easily see why it is important to prepare and modify an application to feel at 

home on its target platform. 

Conclusion
Thanks to the commoditization of device components and desire for mobility, software that 

functions while remaining consistent between devices and form factors is no longer a luxury: 

It’s now a reality of software development. If you design a successful app, it’s extremely likely 

that you will be required to make that app available for a variety of platforms and devices.
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Through a grasp of the techniques and concepts discussed in this chapter, designers should 

be prepared for the critical thinking that is required when porting an app to a tablet or across 

platforms.

So long as you keep focusing on the long-term strategy and break designs down to their most 

critical and basic components before building them up to a specific device size or operating 

system, it is more than possible to build a great multiplatform experience that provides consis-

tent content and brand no matter where it’s released.
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FIRST SKETCHES  

OF AN APP

You won’t need a hammer or a screwdriver; maybe 

you’ll need a tape measure—though preferably one 

in digital form on the top and side of your computer 

screen. Like any job, there’s an established set of 

tools that most interaction and interface designers 

use to create their projects. Programs such as 

Photoshop, Balsamiq, xScope, and others are critical 

components of the interface-building process. In 

this chapter, you’ll find a general strategic outlay 

for planning the design of a mobile application. 

Using the steps and techniques presented, you’ll be 

prepared for the different phases a design evolves 

through during its infancy, before a programmer 

writes the first lines of code.
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What Tools Do You Need?
A mechanic is only as good as his or her tools, or so the saying goes. The ones that care about 

their work the most are the ones that most significantly invest in their tools. It’s true for auto 

body shops, and it’s true for design shops as well.

Before making a serious effort to create an app, designers need to make sure they have the best 

equipment available at all times. When starting out, this can be a bit difficult, as new comput-

ers and professional software are often quite expensive. To avoid wasting money on improper 

tools, it’s important to get the best bang for your tech buck.

Many of the tools and tips recommended in this chapter developed from labors of love: fond-

ness and expertise forged over a couple of years and a hundred apps worth of experience. But 

it’s important to note that there are no one-size-fits-all solutions when it comes to choosing 

tools or selecting a process to draft a design. The following recommendations come from a 

process that has led to the creation of several successful apps, but if you come across a piece of 

software better suited to your task at hand don’t be afraid of going your own route. Likewise, 

the tools available to designers grow and evolve at a lightning-quick pace, and new products 

are constantly hitting the market that make design faster, easier, and more efficient. It’s always 

worth giving new products a try, as any learning curve involved may pay off significantly down 

the road.

The first tool needed in a designer’s supply kit is one that’s essential to everyone from elemen-

tary school students to rocket scientists: a quality notebook, journal, or word processor. Being 

a successful interaction designer requires taking notes consistently and excessively. Everything 

from trends in the industry seen in other apps to thoughts on personal work should be docu-

mented for future reference.

note

Remember that the tool suggestions in this chapter are just that: suggestions. If 

you currently have a workflow that functions better than what’s recommended, 

feel free to diverge (or, even better, share your setup with other designers online). 

The goal is to do apps well, regardless of the tools and methods used.

Interaction design focuses on the constant development of a product in order to increase 

usability and value, so there’s always room to improve a work. As is also true for painters 

and comedians, inspiration doesn’t always strike at the most convenient moments. Some of 

a designer’s best ideas will come when he or she isn’t working; they’ll arrive while walking 

down the street or in the middle of the night. Always having a notebook or phone-based word 

processor handy is a great way to quickly jot down thoughts as soon as genius strikes. Try Field 
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Notes by Draplin Design Company and Coudal Partners. These handy, portable notebooks 

come in a standard size that’s roughly the same aspect ratio, width, and height as a smartphone 

screen and, likewise, work well to approximately portray a scaled-down tablet screen. They fit 

well in a pants pocket or purse, and they’re great for scrawling out quick ideas or sketching out 

design prototypes.

When it comes to computer hardware for a designer’s utility belt, it’s tough to suggest anything 

other than an Apple laptop running OS X, preferably the most recent version available so there 

are no issues with compatibility for Apple’s development applications. There’s no denying that 

all iOS development and interface design implementation and most Android development 

takes place on computers running OS X. Access to Windows is required, however, for Win-

dows phone app development, so designers planning on taking that route will need to keep 

that in mind.

If you don’t plan on doing any coding at all and most of your work will be focused on creating 

visual designs, you could be perfectly fine with a Windows PC. Do consider using a machine, how-

ever, that will allow you to commit code for the projects you plan on contributing to, even if you 

don’t see yourself as the programming type. It can be very valuable for designers to have access 

to source code for modifying art files or making basic code changes, typography selections, or 

color choices. If you plan on developing for iOS, it will be well worth your while to have an Apple 

laptop or desktop so that you won’t be limited in case you want to tinker with code in the future.

The most frequently recommended computer for mobile design is Apple’s MacBook Pro, ide-

ally one with a Retina display. The benefits of the mobility a laptop provides far outweigh the 

added power provided by a desktop. Apple’s most recent laptops with Retina display are great 

for designing work that looks fantastic on the high-resolution displays found in most phones 

and tablets. Designing on a low-density display can be difficult, because in some cases you 

may not be able to preview app designs from Photoshop or a similar program in full resolution. 

If cost is an issue, the MacBook Air is an excellent laptop, but steer clear of the 11-inch model; 

such a small screen size will make design work difficult.

If a stationary computer is preferable based on your personal needs, a designer can’t go wrong 

with an iMac, either. These need to be capable of professional-level functionality, so it’s best to 

purchase the most well-equipped computer you can afford. If you’re low on budget, Apple’s 

Mac mini is a more than capable machine for design and development. The biggest and best 

system isn’t always essential; for most practical purposes, Apple’s recently redesigned Mac Pro 

is probably overkill for the type of work you’ll be doing.

warning

UPGRADES CAN BE DIFFICULT It’s important to note that for many Apple com-

puters, specifically the MacBook Air, MacBook Pro, and iMac, it can be difficult or
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impossible to upgrade RAM or hard drive storage space after purchase. Carefully 

consider your spec decisions before ordering a computer.

Preferences for design software can vary greatly based on personal taste, but there are a few 

essential tools to look for in any program. First and foremost, designers need some sort of 

wireframe or mockup function that can take interaction ideas and translate them into a visual 

element programmers can use to begin their work.

Balsamiq by Balsamiq Tools LLC (see Figure 4.1) is the multiplatform industry standard for 

quickly creating visual wireframes. The application is built specifically for digital design work 

and comes equipped with many templates and styles that cater to building Web sites and 

mobile software. Balsamiq balances speed and style and also quickly visualizes interaction 

thoughts into something others can see, understand, and offer feedback on.

Figure 4.1 Creating attractive, quick wireframes with a tool like Balsamiq is rather simple, as designs 

take just minutes and can be extremely helpful in the visualization process.
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Two other valuable sketching and early prototype applications of note are OmniGraffle by 

The OmniGroup and MindNode Pro by IdeasOnCanvas GmbH. OmniGraffle is a wireframing 

and digital prototype application in the same light as Balsamiq, but OmniGraffle focuses more 

heavily on creating work that looks close to reality. Such a feature offers output that’s visually 

appealing for clients or stakeholders, but it does add time to the concept process. MindNode 

Pro, shown in Figure 4.2, is a mind-mapping application that’s used for creating general text 

outlines. It’s a fairly simple tool, but it allows a designer to take a simple idea, spread it out into 

actual words and thoughts, and then transform those thoughts into patterns that outline a 

more complete thought process.

MindNode Pro is a favorite tool of designers due to its ability to easily and quickly visualize 

ideas. It’s also useful for a variety of non-app-related tasks. For one example, look no farther 

than this very page; MindNode Pro for iPad and OS X was used to visualize and outline each 

chapter of this book.

When it comes to rendering anything in pixels, meanwhile, Adobe’s Photoshop is far and away 

the most popular choice for computer graphics creation and editing, and it’s a piece of software 

that’s used heavily in interaction and interface design. If it’s something visual and not something 

done in code, odds are it’ll need to be done in Photoshop. Adobe recently made a major model 

shift to its Creative Cloud platform, which is basically an all-you-can-eat buffet for their products. 

For a monthly fee ($50 currently), users have access to Adobe’s entire Creative Suite. This is a 

great shift for designers who previously found the high cost of each Adobe program prohibitive, 

as they are no longer limited to one program but can instead now use other Adobe products 

when creating software, such as Illustrator for vector art creation or Audition for audio editing.

Figure 4.2 MindNode Pro offers a simple, clean interface for creating mind maps.
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Still, there are other options available for small app-creation teams who find that monthly 

expense to be a creative barrier or for designers who simply want a product not offered by 

Adobe. Several strong—and extremely affordable—competitors have emerged recently, 

including Pixelmator by Pixelmator Team Ltd. and Sketch by Bohemian Coding. The down-

side of going with less popular products, though, is losing out on the wisdom of the crowds. 

Countless online tutorials, books, and instructional videos have been developed to walk users 

through basic and advanced Photoshop techniques, so individuals not experienced in visual 

design may have some trouble instantly mastering alternative programs.

Finally, a software gem that’s absolutely imperative to have in a designer’s tool kit is xScope by 

The Iconfactory. It’s essentially the Swiss Army knife for interaction designers, offering a variety 

of magnification and pixel-measuring tools to use when analyzing an application on the iOS 

simulator or an Android virtual device. The tool is priceless because designers sweat to make 

sure every pixel is in exactly the right place while debugging and testing software.

It’s somewhat difficult to describe what xScope does (or appreciate how well it does it) without 

using it. Essentially, the application makes it simple to measure a variety of important on-screen 

metrics when designing and developing apps. In Figure 4.3, you’ll see an on-screen ruler and 

magnification loupe being used to inspect the visuals of a Web site.

Figure 4.3 xScope helps designers measure a variety of on-screen metrics.
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Becoming a Designer
Once your design utility belt is firmly buckled and your tool kit fully equipped, it’s time to 

determine how to actually tackle the job of becoming a designer. There’s no certification 

exam to pass or credentials to acquire, but there are many classes to enroll in (for a fee) and 

even some universities offering to teach the trade of design; but are they worth your time 

and money?

If you’re young and either in college or about to head off to it, by all means enter a program 

that’s focused on design and product creation, even if it’s not specifically geared toward the 

development of mobile apps. There’s a great deal of benefit to be derived from going through 

a full college or trade-school program on how to become highly proficient in computer soft-

ware creation.

But if your college years have passed you by or the cost or time required for a full course load 

is daunting, there’s a nearly endless supply of free information available on the Internet that 

can help you become more adept at this craft. 

Currently, most mobile app designers are either self-taught or have some background in 

computer engineering or another traditional visual design field. Eventually, though, the lead-

ers of the industry five, ten, or twenty years from now will have gone through some post-high 

school program focused on software development.

Another way to hone your skills or grow your knowledge base is something often discussed 

by those looking to get into the world of app development: conferences. There’s certainly no 

shortage of events, ranging anywhere from a day to a week in length, vying for developers’ 

time and dollars. These sessions are often quite expensive, but they remain one of the only 

ways a programmer or designer can spend hours upon hours listening to or talking with titans 

of the industry.

Based on personal experience, conferences offer the opportunity to draw from a wealth of 

knowledge and enjoy a healthy dose of much-needed social interaction and networking. The 

face-to-face benefits of a conference cannot be understated, especially in the tech industry. 

Many mobile developers work alone at home or at small companies of two to three people and 

each one is perhaps the only person in town with such a hobby or profession. Thus, confer-

ences offer a valuable opportunity to foster camaraderie between people with similar interests, 

providing both inspiration and motivation.
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With many conferences making audio and video of lectures and roundtable discussions avail-

able via the Internet, though, any technical expertise gained by attending in person becomes 

less and less valuable. If you’re paying your own way to an event, aim for the ones that are 

most affordable—something in line with what you’d spend on a short and cheap weekend 

getaway. Look at conferences as the entree of establishing friendships and interacting with 

individuals with shared passions that just happens to come with a side dish of learning. Don’t 

break the bank on pricey conferences, and you won’t be saddled with overeater’s remorse 

the day after.

tip

For a good list of various conferences that anyone can attend regardless of their 

mobile platform of choice, check out http://lanyrd.com. The site is dedicated to 

helping connect users to different professional conferences.

Planning for a Specific Platform
Once the basic wireframes of an application are drawn up, it’s time to move on and begin 

preparing for the intricacies of a specific platform. Now, you should start thinking about how an 

application will look and feel on one specific mobile device or another.

First, it’s essential to find the developer documentation for the appropriate platform. The 

human-interface guidelines will be the most important document for a designer, along with 

any other design-specific documentation available from the platform’s developer center. For 

iOS or Android, Apple and Google frequently update documents on human interfaces much 

like they do for API and other technical processes. Major mobile platform developers also have 

other documents available detailing how to implement specific looks and feels for common 

interface features, and they often update these style bibles after a major operating system 

update. Even if you’re comfortable with a platform’s interface guidelines, it’s always important 

to check back with the developer’s recommendations to see if anything has changed. Human-

interface guidelines are most definitely a living document, sometimes even more so than the 

platform programming guides themselves.

While reading over a platform’s documentation, it’s valuable to make sure that one or more test 

devices are available at a designer’s disposal. Ideally, a minimum of one fairly new and up-to-

date physical device should be handy, and some virtual devices should be installed and loaded. 

These can be things such as an iOS simulator that’s prepackaged with Xcode, an emulated 

Android device from the Android SDK, or something similar that allows a designer to run test 

applications on a computer. These vary by platform, so visit the manufacturer’s developer 

resources page to learn what options are available.

http://lanyrd.com
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tip

A good rule of thumb is to always have three devices for testing: one device that’s 

new and uses the most recent technology, one that’s old and contains the least 

powerful technology that you plan to support, and one dedicated for use in offline 

or other edge-case scenarios.

Once you get your hands on a device, ensure that you’re comfortable using it. One recom-

mended strategy during app development is to carry the targeted device as your primary 

phone or tablet for at least a week. After using it for several consecutive days, you’ll become 

familiar with its common interaction practices and begin to appreciate how users work with the 

device in professional and personal settings.

New designers often make the mistake of using only screenshots or the human-interface guide-

lines document to draft their interface work for a new platform. Interaction design, though, is 

less about the look of an application and more about the feel and flow of how an application 

works. It’s impossible to accurately judge what feels natural on a platform based solely on 

screenshots, and the guidelines document is written using colloquial terms that only make 

sense after using a device for a couple of days.

In Apple’s human interface guidelines for iPhone and iPad, for example, the author uses the 

following sentence: “And, although people might not be aware of human interface design 

principles such as direct manipulation or consistency, they can tell when apps follow them and 

when they don’t.” Users will know if an application feels out of place, and there’s no way for a 

designer to know if he or she has implemented principles correctly unless the operating system 

has been used personally for day-to-day tasks.

Once a device is in your pocket or backpack and you’ve studied up on an interface’s official 

documentation, take a look at some third-party development resources such as books or blog 

tutorials on the design for your target platform. Although the interface guidelines will be your 

rulebook going forward, and the device itself will help you experience how to use the plat-

form, advice and instruction from leading developers is one of the best ways to learn about 

real-world user expectations. Follow some top developers and designers on Twitter or RSS 

feeds to get a constant flow of information on how platform design changes daily. The mobile 

development community is still a very tight-knit group, and many bloggers or book authors are 

approachable and more than willing to discuss your interaction plan online or over lunch at a 

conference, so don’t hesitate to reach out and ask for help.

And again, don’t underestimate the power of social interaction. Find local groups or meet-

ups with like-minded mobile developers; most medium- to large-sized cities have clubs with 

monthly meetings to discuss trends and evolutions in the industry. Getting together to chat 

and interact is crucial for members of an industry known for having its fair share of people 
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working alone at home. You’re designing for some of the hottest platforms in the world, and 

people love offering up their opinions, so go out and be social.

Starting with a Workflow
Now that you’ve got a device and have a plan of attack for learning about a specific platform 

and staying up to date on its news and trends, it’s time to begin the real work: developing an 

application’s interaction design. The best place to start is by composing a wireframe and build-

ing a general overview of the application’s workflow.

If the world of interaction design is like a house, an application’s workflow is the cement foun-

dation, and the wireframe is the wood that supports the walls. It’s not time yet to pick what 

type of doors to install or what color to paint the living room, but a number of important deci-

sions are made at this early stage that will influence how an application works—decisions that 

will be very difficult to change once you progress further. It’s crucial to make sure these choices 

are thought out well and thoroughly evaluated.

Begin this process by writing down or drawing a graph of a basic plan for what users will experi-

ence when first launching the application and then how they will move through it to accomplish 

a certain task. This initial phase of the workflow should be extremely abstract initially. The gen-

eral purpose of this exercise is to understand the reasons why users will download this app, what 

their first impressions of it will be, and how information can be presented to them as quickly and 

efficiently as possible. You can conduct this process by using an application such as the previ-

ously mentioned MindNode Pro or you can simply use a large piece of paper with boxes, lines, 

and text that describes the setup and flow. You’re essentially developing an advanced connect-

the-dots process while also working to remove as many dots from the system as possible.

Figure 4.4 shows a relatively simple workflow design, starting with the user entering the 

application and ending with the user’s purchase of a pair of jeans. The goal with the design is to 

minimize the steps needed to reach that end result and properly identify places in the inter-

face at which a user might find interaction difficult. That helps a designer determine where to 

devote the most time during the development process. The key at this stage is simplicity, mak-

ing rapid iteration easy as you see the need for changes while working on your ideas.

In this example, we realized it might be difficult to present a way for the user to quickly and 

easily pick out the exact size of jeans they want. We’ve got a couple of strategies in mind that 

might solve that problem, but we’re not sure which one we like best yet, so we’ve jotted down a 

few notes to return to later.

Even at this early stage of working with a wireframe, it’s not too soon to begin gauging user 

experience. One of the most common ways to evaluate an application is to calculate how many 
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taps the user must make or the number of page transitions required to go from launching an 

application to completing the desired task. As designers, we have two factors that are very much 

in our control: how easy it is for users to understand where to make input decisions on an inter-

face and how many screen-to-screen transitions they must go through. Decisions made about 

those elements directly influence how much time a user spends moving through an application, 

and you’re unlikely to find someone who enjoys an application that fruitlessly wastes his or her 

time. Respect the user, and always find the quickest way to get from Point A to Point B.

Ideally, designers should strive to strip away as much complexity and as many obstacles from 

an application as possible, removing until they can’t remove anymore. Interaction design is all 

about creating an optimal experience for users, and for many reasons apps are optimal when 

they are the most simple. They’re used on the go and on small screens, so complex experiences 

often do nothing but frustrate the average person. Designers should always be aware of those 

factors and aim to avoid complexities when designing a workflow.

tip

Another valuable metric—aside from measuring the number of taps or screens 

required to get to a solution—is measuring how much time it takes the user to 

complete tasks after entering the app. The faster the experience, the happier 

the user.

Figure 4.4 MindNode Pro can be used to build a plan for a hypothetical application designed to help 

a user pick out a pair of jeans at a store.
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Meeting Design Expectations

Once a general workflow is laid out—something that looks like a combination of general word 

associations and a connect-the-dots puzzle—it’s time to move on to a generalized wireframe.

At this phase of the design process, it’s time to imagine and render every single interface piece 

and interaction method that will be replicated inside the application. Now, decisions will have 

to be made about whether to use elements such as integrated voice commands or advanced 

uncommon system gestures. The documentation created here will also be the primary way to 

communicate design concepts and philosophies to involved parties—programmers, managers, 

marketers, or other stakeholders—that might be involved in the app production process.

While wading into these waters, it’s the perfect time to research how other applications with 

similar functions and features implement interaction design, especially ones developed and 

designed by the maker of the operating system itself. Keeping in mind prime examples of soft-

ware on a platform helps guide how your own application should look and feel. It also allows 

you to spot flaws or problem areas in competitor apps, presenting an opportunity for your app 

to offer something different that helps it stand out in the marketplace.

tip

Constantly peruse the “Top Apps” lists for all major platforms that you plan to sup-

port and take note of how they handle complex interaction challenges. Hundreds 

of new applications are released each day, and the best of the best often tackle 

difficult problems in unique ways.

Once you’ve gained a good understanding of the way other applications address the problems 

your app might face and you’ve analyzed the best work on the platform by the people who 

made it, you can begin crafting a voice for your application. Will it be one that truly fits in with 

the rest of the apps on a user’s phone, or will it be something that boasts a truly unique design 

and aims to stand out from the crowd? There are positives and negatives to both approaches, 

and now is the time to thoughtfully consider where your application will fit. Because most 

operating systems have a rather coherent universal design philosophy, it’s important to remain 

cognizant of what breaking from that pattern will mean. If a user is aware of that design out-

look, they know it by name—or at least by sight—and expect applications to look a certain 

way. Offering something strikingly different can be eye-catching, but it can also sometimes be 

unsettling to a user.

An operating system design philosophy is a deep concept that permeates an entire platform. 

Just look at Apple’s Aqua visual interface design in OS X, unveiled in January 2000 but still in 

use today. Aqua (shown in Figure 4.5) is easily recognizable in the standard OS X window, with 

polished metal chrome capping off the top edge of the view; bright, glass-styled red, yellow, 
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and green buttons in the top-left corner; rounded rectangle buttons; and bright blue that 

highlights selected items.

Apple, though, sees Aqua as something much more than a basic visual look. To the company’s 

designers, Aqua represents the foundation of the operating system’s entire graphical user inter-

face; it presents elements with a goal of “incorporating color, depth, translucence, and com-

plex textures into a visually appealing interface,” according to Apple’s OS X Human Interface 

Guidelines.

Apple’s plan was to use these principles in combination with an animation system that 

appeared to be as fluid as water itself to create designs that looked so great that (especially in 

the early versions, which far outpaced competitors at the time) you can understand what the 

writer is talking about and how that design principle set a standard for every single application 

on the operating system.

Clearly, Aqua is not just a visual style; it represents a design goal, one that Apple makes easy 

for developers to achieve in their own work. Aqua is also a great example of iterative design. 

The style was introduced nearly 15 years ago and has gotten better through 10 (and counting) 

major releases. The design language contained within it has evolved, but Aqua’s core design 

philosophy remains unchanged.

As with Aqua, current mobile application platforms also have their own sets of design goals. It’s 

extremely important for designers to understand the intentions and aims of these design goals 

and not just view them as a visual style to occasionally abide by. Currently, Google recommends 

Figure 4.5 If you’ve worked with OS X before, you’ll recognize Apple’s Aqua visual interface design 

by its steel window appearance and blue tint.
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that developers design to its Holo style, a system designed to unify applications’ appearance, 

color scheme, and typography after a period in which Android software offered a very mixed 

bag when it came to interface design. The style has been hugely successful, creating a standard 

for applications that lets the platform appear distinct while also allowing for a design that is 

scalable and usable on multiple types of devices.

It’s also worth noting that, because Android is open source, hardware manufacturers are free 

to customize the experience and make modifications to the standard interface design. Popular 

examples of this are Samsung’s TouchWiz and HTC’s Sense. As long as you design applications 

that conform to Google’s Holo design standards, your interface should have no issues with 

being displayed on these manufacturer-specific designs.

Apple, meanwhile, is in a major transition phase, dropping its instantly recognizable iOS 6 look 

and feel in favor of a radically reimagined, visually simplified aesthetic and design functionality 

in iOS 7.

Well-designed interaction and interface designs often share an important trait: The designs are 

consistent across all applications on the operating system, and the user can easily predict how 

a common button, gesture, or interface structure will respond to interaction. There’s much to 

be learned from using these operating systems repeatedly; you gain an understanding of the 

feel of the system, but you also develop a sense of what the creator’s design expectation is. 

Through that, a designer can decide if it’s wiser to stick to the platform norms or venture out 

onto a creative new path.

In most situations, especially for novice or inexperienced designers, it’s best to stick to the 

platform’s design conventions. As a result, you’re less likely to make a serious design mistake or 

create an interaction design method that is confusing and discouraging to users. The interac-

tion methods that are baked into an operating system are tried and true, tested with a multi-

tude of usability drills and established as the common (and often best) practices on a system. 

By venturing out and attempting to create a new interface and interaction style, a designer risks 

stepping too far away from a user’s comfort zone.

tip

New designers may see sticking to standard user-interface conventions as boring, 

opting instead to get wild and pursue their own creative ideas. But remember, 

the first goal of interaction design is to create something that works, not some-

thing that breaks the mold. Simple and boring trumps complex and confusing 

every time.

That’s not to say there aren’t wonderful examples of designers taking risks and reaping big 

rewards as a result. Look at Loren Brichter, a digital designer renowned for his creation of 
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the pull-to-refresh interaction method, now common among thousands of apps on multiple 

platforms. Brichter took an action that was fairly common—scrolling up and down to view 

content—and used an “excessive pull” gesture at the top of a page to launch a screen-refresh 

function. The design is beautiful, immediately discoverable, easily comprehensible, and visually 

hypnotizing, and it in no way interferes with the rest of the application’s interface.

Keep in mind, though, that Brichter was originally an Apple designer who worked on software 

for the first iPhone. When he created this new interface technique, he was already an accom-

plished expert in the field and understood the ramifications of what he was building. His story 

presents an important lesson on attempting to create new application interaction types: When 

choosing to throw caution to the wind and ignore pre-existing conventions, a designer had 

better know full well what he or she is doing.

Wrapping Up Design Documentation

Once the relatively primitive sketch of an app’s general look and feel is complete—and thought 

has been put into its interaction and usability—it’s almost time to move to the next big phase 

of the process and begin turning your design ideas into pixels and programming code. Work in 

the wireframe and early design stages shouldn’t be brushed aside, however, as it’s important 

to create as detailed a preliminary document as possible. Often, a designer will be tempted 

to jump quickly to Photoshop files or other advanced design work, but devoting extra time to 

these early steps will pay off down the road. An extra hour or two spent creating documenta-

tion can save dozens of hours further along in the project.

Keep this key guideline in mind: If you can’t describe an animation, gesture, or other piece 

of interaction implementation to a programmer or teammate in a simple sentence or two, it 

probably needs additional refinement or further thought. The documentation you create at this 

stage of development will be the foundation for everything else on the project, from program-

ming, to art, to testing. Be as direct and explicit as possible when discussing and writing direc-

tions for implementation.

Software development can often be like the “telephone” game that kids play in which a phrase is 

whispered from one person, to another, to another. Usually, the sentence the last person in the chain 

says out loud is far different from the one the originator first uttered. In app development, the lead 

designer is much like the person at the start of that game. If the direction and plan isn’t clear, con-

cise, and simple, it’s likely that the vision will get misinterpreted somewhere along the development 

chain, resulting in an application that’s much different than the one the designer intended.

Creating Pixel-Perfect Digital Mockups
After fully documenting the application in a wireframe or sketches, it’s time to start creat-

ing art assets for the implementation of the software’s design. Some designers may only be 
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working on interaction design and concepts—such as interface feature implementation or 

gesture utilization—and as a result won’t be implementing the actual visual design of the 

project. If that’s the case for you, feel free to skip this section.

Creating art designs for a project is often one of the most difficult concepts to teach in any field 

of design, not just app development. Although interaction is very much an objective concept, 

and a platform’s descriptive documentation clearly outlines when to use gestures, aesthetic 

design is much more subjective. Ahead are general tips and recommendations for creating app 

art, but for those looking to get additional help on aesthetic design, consider taking an art class 

or reviewing books on visual design principles.

Most of the example work described in this section is performed using Adobe’s Photoshop, an 

industry-standard tool for anyone in the creative arts. The program allows designers to use a variety 

of visual tools such as brushes, shapes, and erasers to create nearly anything imaginable. Developing 

your own style and skills in Photoshop is something that takes time to master; the best artists in the 

industry often have a dozen or more years of experience and are still learning and growing.

If you’re a new designer and uncomfortable with Photoshop, consider searching for tutorials 

online that best mimic the specific visual style you hope to achieve in your app and then use 

blog posts, podcasts, or videos to walk you through the steps needed to create this look. There 

are thousands upon thousands of Photoshop instruction sources online, and they can be an 

invaluable resource. Likewise, there are many books on Photoshop that can help you tap into 

the potential of every tool the program has to offer.

note

Photoshop talents and design skills require a lot of practice and plenty of trial and 

error to develop. Do you see an icon design or app style that you like? Practice by 

trying to recreate the look in Photoshop. Your first few attempts will be difficult, 

but with repetition you’ll quickly learn how to create similar designs.

A great visual design is a very important component of interaction design; if a designer can’t 

fully represent how to interact with an app via simple text, iconography, and interactive features 

users won’t be able to understand the software, and in turn the app won’t see much success.

Visual cues create a path for users, helping them find safe ground so they don’t fall astray. That’s 

a reason why it’s often wise for a project’s interaction designer to also be the visual designer, 

because a uniform thought process by a single individual helps maintain coherence between 

interaction intention and visual implementation. Imagine interaction design as the artistic 

idea, Photoshop or programmed code as the paintbrush, and the visualization of the app as 

the canvas. It’s much easier to bring a work of art to life if only one person is in control of the 

paintbrush from start to finish.
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The amount of art required for an app can fluctuate from project to project based on the tech-

nical requirements of the software, the desired visual aesthetics, and the platform, so there’s 

no straight answer for how much art will be needed every time. A thorough discussion with 

the project’s lead programmer is the best way to determine how to bring a wireframe to life 

with both art and code. Once again, this is where that extra time spent developing a detailed 

wireframe and application design document comes in handy; a programmer can review these 

and instruct the designer how they want the project’s visual assets to be created.

On iOS and Android, most art will be produced in the PNG file format and will be imported 

and referred to in code to make the visuals appear on screen. It’s best to create as little art as 

possible in Photoshop or another image-based program, instead implementing elements with 

code for native interface design pieces. Code is typically more nimble and able to be altered 

more easily while also being rendered on screen more quickly. Applications will thus be more 

responsive and require less work while also being less likely to break down when the operating 

system changes in the future. Each programmer has a different opinion, however, on what they 

prefer to do in code and what they want to do using other assets, and so constant communica-

tion with the app programmer is required.

Reiterating Before It’s Too Late
One of the primary goals of interaction design is to be constantly iterating on an implementa-

tion in an effort to improve upon the original work. Although you’ve already done this for a 

wireframe, you now have actual art assets in PNG or another format along with full Photoshop 

design files that will aid in a more complete analysis.

note

Remember, iterating on a design is the thoughtful and intentional process of tak-

ing original work, questioning decisions, and potentially revising and recreating 

parts of the project in an effort to improve its design.

Now is the perfect time to sit down and review your design work with every stakeholder in the 

project, from the client who’s funding it to the programmer that’s implementing the design. 

The following five questions are often simple and easy to answer when working only with con-

cept art designs, but they’ll grow more difficult and expensive to resolve once the application 

becomes actual lines of code, so it’s best to address them now:

1. Does the app look like it will fit in with the platform?

It’s a designer’s prerogative whether he or she wants the work to blend in on the 

platform or not, so this question can often be answered either positively or negatively 



ptg12441863

76 CHAPTER 4 FIRST SKETCHES OF AN APP

and still be OK, depending on the person’s intentions. What’s most important, though, 

is creating a coherent design that looks and acts like mobile software.

2. Will users be able to use the application with no guidance?

Long gone are the days in which each piece of software came with a hefty instruc-

tion manual. Mobile apps must be capable of remaining useful while standing alone, 

because the production team won’t be there to guide the user along the way. This 

question can often be answered by showing the Photoshop work to another tech-

minded person who can offer an outside perspective while also understanding what 

the designs in the program are intended to represent.

3. Can the programmer implement the design with art assets and design documen-

tation only?

Most likely, a designer will be working hand-in-hand with the programmers on a proj-

ect, who will hopefully be able to ask questions about why something was designed 

the way it was and how it should be implemented. This isn’t always the case, though, 

and designers should be prepared for that possibility. Once design documentation is 

handed off to a manager or programmer, they should be able to deduce the designer’s 

intentions and planned interaction design without being required to check in with 

concerns every five minutes. If a programmer can’t create a design with only the docu-

mentation provided, more work is likely.

4. Will the design age gracefully?

Age can wear heavily on things, and mobile apps are no different. There’s an adage 

frequently quoted when creating logos for corporations or businesses that says that 

the goal should be to design something that would have looked outstanding 100 

years ago, would look outstanding today, and will look outstanding 100 years in 

the future. Strive for a general style and brand that will remain tasteful and visu-

ally appealing as an operating system or platform changes over time. This can vary 

in difficulty based on platform, but it’s wise to avoid trendy “flavor-of-the-week” 

design practices that will fall out of fashion quickly. Instead opt for classic, traditional, 

platform-friendly looks.

5. Does the design meet future project goals?

A lot of new designers get tripped up in their development by creating a great first 

version of an app but failing to allow space for future feature improvements that will 

be necessary in subsequent releases. Designs shouldn’t be handcuffed by hypotheti-

cal “maybes,” but it is important to consider how an application’s design might evolve 

after another six or twelve months of work. Take a journaling application, for example, 

in which a designer uses a swipe interaction to open various menus but fails to rec-

ognize that the app’s 2.0 release will include a photo-adding function in which users 
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will swipe to move through pictures. This will cause an interaction conflict, leading 

to a complete design overhaul a few months after launch, complete user confusion, 

a completely unreliable design, or some other terrible cocktail of those poor-design 

consequences.

note

Identify each stakeholder in a project long before work begins, especially if your 

project is for a client. Stakeholders will be managers, bosses, programmers, and 

anyone else who has a vested interest in a project. Moving too far along with the 

design before receiving stakeholder approval on a feature or style may result in 

work disapproval and unsatisfied clients. 

As you get more and more involved with the world of software, you may run into an increas-

ingly common programming approach called agile software design that runs in direct contra-

diction to the strategy just outlined. Agile software design involves design and programming 

team members working out basic features and plans to constantly add more to the product 

based on user response, testing, and developer experience. It’s a great strategy, but only for 

those who are quite familiar with software development and are comfortable with how to han-

dle a product constantly in motion. If you’re new to design and programming, hesitate before 

adopting this strategy; you may be better off thoroughly thinking through a design prior to the 

start of programming.

Preparing for the Next Stage
Although the app remains in its infancy at this phase of the development process, it’s not too 

soon to take formal opinions of it from potential users or colleagues. As designers, it’s often our 

job to dictate or direct the development path and make important decisions about the project, 

but we’re by no means dictators. Don’t let yourself be above healthy discussion or critiques of 

your work from anybody. Each and every voice that responds to your output can be valuable, 

so don’t jump to dismiss the opinions of others who don’t have design experience. Apps aren’t 

just for the tech elite; everyone from mothers to bank tellers to baristas are potential users too. 

Inevitably, someone in such a position will point out a bad design idea.

Ultimately, if you can’t defend your own design it’s probably not that great of a design to begin 

with. Be willing to question and evaluate your own ideas with the goal of an improved user 

experience in mind. Developing apps is very much a team sport, and your work will inevitably 

grow with thoughtful critique and constant iteration.
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IN-DEPTH

In order to build apps, you need apps. A few great software-development tools were 

briefly mentioned in this chapter, but here’s a more detailed look at these favorites, along 

with a few additional gems that you might come to depend on. These pieces of OS X 

software will give you a leg up on the competition when designing your app.

 ■ Adobe Photoshop is the gold standard by which all other design tools are 

judged. Originally released by Adobe in 1990, the software has been used for a 

variety of graphic design purposes and has permeated society to such a point 

that “to Photoshop” has become a household verb. Regardless of the platform 

you’re designing for or the platform you’re building with, Photoshop will be an 

indispensable tool.

 ■ Skitch is a simple application currently owned and managed by Evernote that 

allows for simple text and graphical markup on screenshots captured by a com-

puter. It’s very quick to use; just take a screenshot and then mark up the image 

with arrows to point out errors, text to explain intention, or simple shapes to 

note where content should be. When building work in a preproduction emula-

tor, Skitch is a useful tool for quickly noting where interface errors exist so that 

programmers can fix bugs and improve the app.

 ■ Balsamiq is a multiplatform tool that allows for rapid creation of a basic soft-

ware wireframe, which is used to show stakeholders and programmers how an 

interaction design works when programmed. Clear communication is a neces-

sary skill for any interface designer, and Balsamiq is a great tool to graphically 

indicate design intentions to the people who will be coding your work.

 ■ xScope is the Swiss Army knife of interaction design, with a variety of invaluable 

tools to help improve and iterate on an interface. The application includes vari-

ous measurement utilities, color indicators, and magnification tools that allow 

a designer to zoom in and view tiny details easily. xScope—created by Iconfac-

tory, a team known for building some of the most beautiful interfaces available 

on OS X and iOS—provides a great way to double-check that you’ve properly 

placed all of your interface pieces.

 ■ Pixelmator is renowned as a worthy competitor to the almighty Photoshop. It’s 

an extraordinary digital art enhancement tool currently available for much less 

than a single monthly subscription payment to Photoshop. If you’re a novice 

designer looking to get your feet wet with as little cash overhead as possible, 

Pixelmator is your soulmate.
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Conclusion
A carpenter doesn’t build a house the first time he or she picks up a hammer. A writer doesn’t 

crank out a great novel the first time he or she sits down at the keyboard. Likewise, it takes 

time and development for designers to become comfortable with—much less master—using 

the tools of their trade. You’ve just begun to crack the surface of the work involved in creating 

an app by learning about the early steps of design. With a solid foundation laid, you can now 

begin building the framework of your original mobile creation.
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FINDING THE RIGHT 

DESIGN FLOW

Not all apps are created equal. Even if it 

accomplishes a desired task, how effectively an 

app does its job can vary greatly based on its 

type of application. As a result, it’s critical for 

designers to understand the various categories of 

apps their work falls into. Although the number 

of applications for various platforms is almost 

beyond comprehension, most of them fit into one 

of several broad categories. In this chapter, you’ll 

find examples of apps that fit into several simple 

and easily recognizable categories that will help you 

understand the work they’re doing at a root level.
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The Big Three App Types
At their most basic foundational level, applications fall into three general types regardless of 

the platform they’re on: native, Web, and hybrid. As long as the device on which the app runs 

has the capability to load software and access the Internet, it fits into one of these three desig-

nations. Although the differences between these types are subtle, it’s important to recognize 

the distinctions and determine what type you’re looking at when analyzing a piece of work. 

Identifying these three different categories can help you learn a lot about how an app works 

and make good assumptions about how its interface was set up.

Native Apps

A native app is composed of pieces of software completely written in the native language of 

a platform. For iOS, the native language is Objective-C; for Android it’s Java or C/C++. Native 

applications are written entirely to the specification of the platform owner by using the tech-

nologies and best practices prescribed by whoever has built the operating system.

If an app comes preinstalled on your phone or tablet, it’s most likely native software. 

In Figure 5.1, you’ll see a collection of 27 applications that come preinstalled with the 

Figure 5.1 These are all native applications that come preinstalled on a first-generation Google 

Nexus 7.
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first-generation Google Nexus 7. Created by Google, the native apps are built using the 

Android SDK.

Native applications will usually be the most powerful applications on any given system, 

because they have the ability to most easily tie in to the various advanced hardware func-

tions (GPS, motion control, etc.) of a phone or tablet. Likewise, the platform providers will also 

produce diverse APIs that make it easy to integrate features such as maps, advanced-interface 

user interactions, easy file storage, and much more. Native applications will persist as the most 

dynamic and fluid applications on a device, providing superior hardware power thanks to 

their direct framework integration with the various device components. That allows for better 

integration of animations, advanced 3-D rendering, and anything else that may require high 

processing power.

Simple and responsive animations may be the most common interaction implementation that 

is well served by using a native app, as providing a quality experience often requires creating 

animations to instruct or delight a user.

Web Apps

The complete antithesis of the native application, meanwhile, is one that actually offers the 

best explanation of what a native app really is. The native app’s polar opposite is the Web 

application, something all smartphone users will inevitably come across. These are pieces of 

software that run completely inside of a Web browser. They feature interfaces built with HTML 

or CSS; are powered via one of a variety of popular Web programming languages, such as Ruby 

on Rails, JavaScript, PHP, or Python; and can typically be run on any phone, tablet, or computer 

with a standards-compliant, modern Web browser.

For a well-done example of a Web application, check out weather software Forecast.io (Fig-

ure 5.2) by The Dark Sky Company, LLC. It effectively uses Web resources to provide an excep-

tional user experience. The application is written with an HTML/CSS front-end interface, yet it 

provides rich graphics and animations that are on par with native experiences.

The ability to run on nearly any phone, tablet, or computer does also come with several big 

hurdles that must be overcome, however. First and foremost, designers won’t have access to 

the native frameworks and interface-creation tools provided by Apple, Google, or another plat-

form creator. Instead, designers must create their own user interface entirely from scratch.

For an experienced interface designer, this may not be that big of a challenge, but for a begin-

ner this is often a substantial undertaking. Likewise, designers will be missing many animation 

tools, meaning that the application will not look as fluid or responsive as a native piece of 

software. Designers will have to pay careful attention to small details, as many of the pieces put 

into place automatically for a native app will not be available.
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Hybrid Apps

The hybrid app combines attributes of both native and Web apps. The ultimate goal of hybrid 

applications is to use some sort of redundant, common code that can be used across platforms 

while also tailoring required attributes to the native system.

Take an application designed, for example, to display topics hierarchically in a standard iOS or 

Android table while also relying on HTML-based text views when a user moves forward to view 

specific information in a topic area. This presents a designer with HTML formatting language 

that is capable of providing advanced text styling on multiple platforms using just one docu-

ment but can still take advantage of the native device presentation offered by using tables.

The definition of a hybrid application can vary a bit depending on who you ask, but most 

describe it as an app in a situation similar to the one detailed previously or as an application 

whose primary logic and functionality is completely reliant on back-end server infrastructure 

code, with the native mobile system serving as little more than an interface shell to control 

Figure 5.2 Forecast.io features a clean user interface that neatly presents weather data. (Courtesy of 

Adam Grossman.)
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and power the app. Hybrid applications usually have some benefits of native interfaces and 

advanced hardware capabilities. Full use of the app can be limited at times, though, when 

connectivity is poor due to the constant requirement that an Internet connection be avail-

able, because the code driving the application resides on a Web server. Hybrid applications are 

typically the middle of the road when it comes to responsiveness, often falling behind native 

applications but still performing better than Web apps.

For guidance on what a strong hybrid development toolkit looks like, research Appcelerator’s 

Titanium SDK. Their kit allows developers to use a single JavaScript framework and a single 

code base in the creation of applications for iOS, Android, and Windows Phone.

Common App Navigation Methods
Now that you know the difference between three major types of applications, how will each 

change the way you go about building ways for users to navigate through and interact with 

your programs? Each app type has its own set of common navigation-interaction methods that 

will change how you operate, depending upon the platform you’re working on.

Before this breakdown, though, it’s important to understand one simple-sounding, yet key, 

term: view. In apps, views are windows or screen areas that contain various interactive interface 

attributes. System views are components that were created by the operating system provider 

and that contain specific functionality through which the user can take an action. After that, the 

app presents more information in the same view or transfers the user to a different view.

Now, let’s take a look at a variety of common interface components and view windows found 

on iOS and Android.

Single View

Single-view applications are easily the simplest type of applications that you can build, contain-

ing merely a single page of information that can be interacted with on screen. What users see 

upon opening the application is all they get. Although remarkably basic, this type of app is 

still rather common; most calculators, built-in cameras, and utility apps use this form of simple 

interface, as shown in Figure 5.3.

Because of their relative simplicity, these apps often have significant similarities across plat-

forms and software types. The most important attributes to target when building a single-view 

application are clarity and organization, because where each interface item is placed and how it 

responds is of the utmost importance.

Look at the Voice Memos application on the iPhone, for example, and how it emphasizes clarity 

in a single view. In the app, two different pseudo-views are available, and an animation slides 
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to place emphasis on either the audio-recording meter or a list of saved memos, depending 

on what action state the user is in. The user can either record more content or share existing 

recordings, and an elegant animation makes the change between those two states apparent 

and easily comprehensible. Although this is an app exclusive to the iPhone, a similar design 

would be easy to replicate on Android; likewise, its key features and style could be replicated in 

a Web app.

tip

Other single-view applications worth checking out include Reminders on iPhone 

and Google Earth and Google Now on Android.

Figure 5.3 Apple’s Calculator is a solid single-view application; it focuses on one simple and specific 

task and achieves it in a polished, focused manner.
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Stacked Navigation Bar

Stacked navigation views are popular on a variety of different mobile operating systems and 

are perhaps even the most common interactions interface a designer ever works with. On 

modern-day iOS, this interface is called the “Navigation Bar” and on Android it’s typically 

referred to as the “Action Bar.”

Regardless of platform, this interaction piece is often anchored to the top of the view and 

remains a constant figure spanning the width of the screen. This navigational tool is quite 

familiar to anyone who has ever used a mobile operating system; it presents several interaction 

pieces in the main part of the screen, and tapping one pushes forward to a new view. As it does 

so, a navigation stack anchored to the top of the screen animates to visually indicate to the user 

that a foreword movement has taken place. A back arrow appears at the top left of the naviga-

tion bar, as you can see in Figure 5.4, allowing the user to reverse to the previous view.

This is one of the most common interaction types seen in mobile today: It’s used to navigate 

through e-mail, text messages, and many other applications. On Android, however, it’s not 

Figure 5.4 On both Android and iOS, a left-facing chevron is the most common way to indicate a 

“back” function. Here, it appears as the left-most item in the action bar.
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always necessary or even especially common for the action bar to contain a back arrow 

icon after the user has advanced through multiple views. Instead, the hardware or soft-

ware standard back button on the device is touched in order to return the user to the 

previous view.

Navigation stacks are frequently seen in native and hybrid applications, but they are more 

difficult to pull off in Web applications. Many Web apps take the standard navigation stack 

and anchor it to a static bar at the top of HTML Web pages. This is rather unadvisable yet fairly 

common. In Web applications, the preferred method is to use the standard Web browser 

navigation buttons so that the application can operate like any other Web experience. By 

attempting to recreate the standard navigation stack through art and a Web browser, design-

ers are likely to create a messy situation that can be better handled using the more familiar 

browser controls.

tip

For other good examples of stacked navigation applications, take a look at 

Mail and Contacts on iOS and the Google Play Store and Google Play Music on 

Android.

Tab Controller

The tab view is another primary controller type and navigation view found on a wide range of 

platforms. This style is called upon when there are three or four different views that will contain 

all of the application’s functionality. In these views, opening one of the tabs or using a slight 

swipe from left or right is used to switch the primary content view on screen.

On iOS, segmented view controllers can also serve a similar function, though the segmented 

control is usually only applied in order to switch between two or three different types of views. 

The tab controller, meanwhile, may be used for up to five or six different views of content. 

Sometimes, navigation controllers will be used on top of tab controllers to provide multiple 

levels of hierarchy for content.

This control is most often seen on native and hybrid applications for iPhone and Android and 

is rarely used in Web applications. That’s because when a tab or segmented control is used the 

expected behavior is a smooth animation for the data managed directly by the segmented 

control. Controls such as tabs or segmented views don’t work well in Web applications because 

HTML Web pages are arranged in a linked, individual-page fashion. Dynamic content on one 

page is a bit less fluid and fundamental and often performs in a clunky manner, resulting in a 

below-optimal user experience.
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tip

Want to see more examples of standout tab-view applications? Load Clock or 

Music on iOS and Clock on Android.

Scroll Views

Scroll views have been an extremely popular element throughout the history of computing, 

and anyone who has grabbed a mouse or touched arrow keys on a keyboard over the past few 

decades is familiar with them. On mobile, though, this interaction method handles a bit differ-

ently. Scroll views are used for groups of photos, text, or any other information that surpasses 

the width and height of the device, as we can find in the iOS Weather app in Figure 5.5. In this 

Figure 5.5 Scroll views don’t need to only scroll vertically in a constant, fluid motion. The iOS 

Weather app scrolls horizontally on fixed-width intervals to show weather forecasts and information for 

different cities.
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method, only a piece of the entire content is visible at a given time, and the user must flick right 

or left to view additional elements outside the current view.

Scroll views can be also be used in combination with the navigation bar, tab controller, or a vari-

ety of other interaction types and is common on both iPhone and Android. It is also used and is 

prevalent in native, hybrid, and Web applications.

tip

Great scroll-view applications you might want to take a look at include Weather 

and Calendar on iOS and Google Keep and Google Play Movies & TV on Android.

Search-Driven Navigation

Another common navigation type—search-driven navigation—is an interaction method not 

often thought of as one that moves users between views. It’s commonly used on both iPhone 

and Android, though, and can be implemented without taking up much space on screen 

because the search bar is usually fairly small. Incorporating search functions helps to navigate 

and drive a user through an application, as you can see in Figure 5.6 with Terminology by Agile 

Tortoise.

Designers can also use voice search in a way similar to how Apple has integrated Siri and 

Google has incorporated Google Now into their respective devices, or a designer can keep it 

simple and use a more standard, text-based search. Both Android and iOS offer simple interac-

tion tools that help implement search-centric applications via text, although you may have to 

put in a bit more effort and integrate a third-party framework into an app binary in order to 

include voice search.

Search is an ideal tool to implement for navigation when an app contains a large amount of 

data a user may potentially have an interest in, especially if it’s likely the user will have a solid 

idea of what data to seek out. How painful would it be to navigate through a music library full 

of thousands of songs on a mobile screen without a search function? Scrolling through a seem-

ingly endless list just to find a single, three-minute tune would quickly become frustrating. By 

using a simple search function, though, the song can be found in seconds.

note

It’s common to have two or more of these interaction and navigation types in any 

application. In the iOS music player alone, users come into contact with a tab con-

troller, a scroll view, a navigation bar controller, and a search controller.
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Modal Controller

One of the more common control types—modal—is used so frequently that designers are 

likely to implement it without ever realizing it. Modal controls are used when an application 

forces the user to make one choice or interaction decision specifically before moving on to a 

further view or seeing more information. A modal setup can contain several specific views or 

multiple controls within it, but it’s always seen as somewhat of an interjection into the typical 

application flow, helping to focus the user on the task at hand.

Implementing an e-mail sheet in an application is a nice example of effective modal control. 

If a user, say, taps an image that looks like an envelope, he or she could be presented with 

a system-standard view that allows for information from the app to be shared with another 

person. The experience, remember, is disruptive, but it focuses the user; the e-mail form sheet 

(a modal view) pops up on top of the app’s standard content, forcing the user to send an e-mail 

or cancel out of the window.

Figure 5.6 In the Terminology app, search helps a user locate one specific word and its definition in 

the midst of a database of thousands.
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The method used to add a financial listing for iOS’s Stocks app to track, as shown in Figure 5.7, 

is a modal view that requires the user to either enter a stock or cancel in order to proceed. The 

user has no other choices; hence, this view is modal.

Gesture-Based Navigation

Another navigation interaction—one that’s relatively new to the mobile landscape—is a 

pure, gesture-based navigation control. Gesture techniques such as two- or three-finger 

scrolls, pinches, and others are now often used to move the user through different parts of an 

application.

This application-flow model is not very common, but it’s possible on both iOS and Android and 

on native and hybrid applications; however, a gesture-focused-navigation app would be very 

difficult to execute in a Web application. Trouble arises there due to the lack of the direct use of 

essential gesture-recognition frameworks that are built into mobile platforms such as Android 

and iOS. Instead, a Web browser controls most of our touch-based interaction, and browsers 

Figure 5.7 A modal-interface view forces the user to make a specific choice in order to proceed.



ptg12441863

PICKING AN INTERACTION TYPE 93

aren’t programmed to recognize and take advantage of the advanced gestures required for 

these controls.

Clear for iPhone by Realmac Software is an app that uses this method notably well. This to-do 

list software functions entirely on gesture-based-interaction techniques and does not contain 

standard interface chrome buttons for creating new lists or tasks. Instead, a user simply pulls, 

pushes, and pinches to move through the app.

tip

Don’t confuse the term “interface chrome” with the Google Chrome browser. 

Interface chrome is somewhat common computer software design slang used to 

describe buttons of an interface.

The term’s origin is disputable, though it seems to have been used as early as the 

mid-1980s and is included in Eric Raymond’s The New Hacker’s Dictionary, often 

considered to be one of the most definitive sources for programming slang and 

popular terminology.

Gesture-based application navigation structures are extremely advanced and require a 

significant amount of mobile interaction experience in order to implement correctly. It’s best 

to reserve the strategies used inside apps like Clear for designers who grasp how gestures are 

typically used within mobile operating systems and who understand how to make these ges-

tures obvious to users so that they can easily interact with the app.

Picking an Interaction Type
How should a designer go about considering which interaction type is best suited to an upcom-

ing app project? Ideally, by now you’ve read through the full set of human-interface guidelines 

for the platform you’re targeting. Once you have a pretty solid grasp on the interaction meth-

ods and controls that are available to you, it’s time to start constructing strategies.

When attempting to determine which control to use, it’s often tough to predict which piece will 

be best for an app. It’s wise to adopt a mentality of using the piece that will allow for the most 

unobtrusive interaction. Quite frequently, less is more, and an interface that allows content to 

be front and center to the user is best. Having users struggling to wade through an interface in 

order to find the content they want benefits no one.

In most situations, the standard navigation bar or action bar is a great tool to use, because it 

allows the user to be presented with considerable content in the view but also allows for jump-

ing forward if there is a need to learn more about a specific topic. The primary content resides 

in a large view, and the navigation bar at the top of the screen is visually unobtrusive, sitting 
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back and only animating into an obvious hierarchal structure when the user has the ability to 

move backwards. It’s also possible to add buttons to the action bar or navigation bar in case 

there’s a feature a designer wants to focus on or make readily available.

The standard navigation stack typically works best for applications that are styled and pre-

sented somewhat like a dictionary, with many pieces of related information stacked in clear 

and linear hierarchies. It’s quite common to see this type of information presented within an 

application, whether the user is looking at e-mails, music playlists, or text messages. Here, it’s 

easy to stack a large amount of information into a scrolling table and let users drill down further 

into a specific topic or section while also allowing for a quick swipe or touch to return a user 

back to the starting point.

It’s worth noting that on Android conflicting opinions have long existed on how navigation 

stacks should work, especially regarding whether or not returning back to the previous 

view should be handled inside of an app using the back icon or at the system level using 

the standard system back button. In early versions of Android, it was commonly under-

stood that the system back button would be used whenever the user wanted to return to 

the previous screen.

This has changed somewhat over the past few Android iterations, however, especially since 

Honeycomb (version 3.0). Currently, applications typically contain their own back buttons inside 

the action bar, in a style similar to that in iOS. The system-wide back button managed at the 

operating system level is now usually only used to jump back into an application if, for example, 

a video is played in the original app that requires a redirect to YouTube. 

tip

Google’s developer portal at http://developer.android.com has a helpful section 

titled “Navigation,” which offers further details on how the persistent Android 

system-wide back button should function and behave.

If the application you’re designing uses only three to four primary views or features, consider 

using a tab-view control on iOS or a slide view on Android. Tab bars are like the grandfather of 

mobile interfaces; the tool was a very common interaction method in the original days of iOS, 

but now it’s become less prevalent, falling out of style as designers move to gesture-based 

interfaces or more advanced navigational stack controls. The tab control works extraordinarily 

well, though, because on an iPhone the tab bar resides on the bottom of the screen, where it 

can easily be touched by a thumb at any point. On Android, a fragment pager allows the user to 

quickly flick to change view content.

If you’re working with an application that contains immense amounts of data—a thesaurus 

with thousands of words, for instance—you’ll quickly find that search-based navigation is 

http://developer.android.com
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nearly essential. Although a scroll view may be used or a standard dedicated control might feel 

more native and expected to users, a search function will be the best way to help target desired 

information as quickly as possible.

Be aware, however, that search is programmatically a tough element to implement when not 

using criteria already included in the app’s body of data. In a music library, for example, it’s easy 

to incorporate a search function for song or artist names, because that data is already tied into 

the file names on the device. Song genres prove much trickier, though; that information isn’t 

likely included in the data. And of course, search functions are inherently reliant upon a user 

typing terms correctly.

note

A common way to judge an application interface—and often the best way to 

choose which interaction control is best for an app—is through a metric called 

data density. That’s the amount of valuable information presented on a screen at 

any given time; admittedly, it’s a fairly relative metric.

Take a look at the data you want to display to your user and then the potential 

controls. Consider which method would provide the most information on screen in 

the cleanest fashion. The most data-dense choice is probably a good indicator as 

to the best direction to take.

Some designers will contend that single-view applications are plain and boring or stand to 

be “improved upon” with additional features or interface chrome. Given the nature of mobile 

devices, this can often be the wrong attitude to have; designers should strive to remove as 

many screens, views, or buttons as possible to make the app experience easier and smoother. 

Many incorrectly believe that adding on to a simple design is the way to show the hand of an 

experienced designer, but minimalism is becoming an appreciated quality again; the industry 

has evolved over the past few years and moved back toward simple, clean styles.

Apple’s design reinvention with the 2013 release of iOS 7 is perhaps the biggest reflection of 

that shift in approach, encouraging the elimination of excess in favor of simplicity. If your appli-

cation seems as though it could be best managed with just a single screen view, that’s OK (and, 

for many situations, encouraged). All current iterations of popular mobile operating systems 

use what’s described as a “flat” interface structure, in which color palettes and design chrome 

are simplified or removed in an effort to focus on user content.

To fully understand how significant this overhaul is, consider the previously mentioned Voice 

Memos app, the redesign of which is shown in Figure 5.8. In iOS 6, the application contained 

a pair of different views, one of which was a skeuomorphic microphone. In iOS 7, however, 

Apple managed to simplify this app even further by ditching the faux microphone appearance 
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and increasing functionality through the addition of a large, clear sound-level meter. Here, the 

mobile giant proved once again that inside an application less is more.

Minimizing Interface Friction
Now that you know more about the different types of apps and views available to you, let’s 

discuss a key, overarching principle of interaction design—reducing interface friction as much 

as possible—and what you’ll use these different views, interface elements, and app types for.

A fairly common term inside of the world of application design, friction is used to explain any 

scenario in which the user may be stopped or impeded when using an application. It is usually 

the result of some sort of correctable mistake: a poor interface component, confusing text copy, 

or time lost to load and perform a complex and unnecessary animation. Developers generally 

Figure 5.8 Apple redesigned its native Voice Memos app to focus on simplicity and clarity.
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understand that some amount of interface friction is inevitable, but they aim to remove as 

much of it as possible when building an app.

note

When friction is discussed, it’s implied that the term doesn’t refer to inevitable or 

unsolvable problems, such as the time it takes to load an image or view a video. 

Instead, friction is thought of as application problems that are capable of being 

solved through improvements in programming or design.

The best way to tackle excessive interface friction is to focus on “touch points” inside an 

application: places where users will directly interact with the content and interface. Designers 

should sit back and question the work being done by the app after users touch each interface 

component. How does the app respond? Is the text on the screen or button concise, clear, and 

appropriate? Is there a way to minimize time spent from the point at which the user enters the 

application to the point at which they are satisfied and given a result? These are questions for 

designers to ask themselves all the way from the initial wireframe mock-up through general 

release.

This is also another opportunity to talk to potential users and see how they respond during 

beta testing. When working on a project, it’s not uncommon for a designer to become overly 

immersed in the work and overlook interface and interaction problems that are glaringly obvi-

ous to those outside of the development team. Another set of eyes never hurts; they can find 

problems as simple as the wrong word or icon on a button (creating confusion) or can highlight 

where an interface didn’t effectively point the user to a key feature (again, more confusion).

When considering how users interact with our applications, especially how they respond to 

different touch points, don’t forget to consider that users with a variety of levels of English com-

prehension could be downloading your software. The app market is truly a global one, and it’s 

increasingly shortsighted to only target users who speak a specific language or live in a certain 

region. Examine any icons you plan to use and the text that will be used on buttons or in tutori-

als. Use simple English so that a strong mastery of the language isn’t a necessity to use the app, 

or, better yet, plan on translating the application into other languages. Either way, the simpler 

the words are from the start, the easier it will be to broaden the appeal of your software.

Instagram prepared effectively for users who speak and read languages other than English. As 

shown in Figure 5.9, using instantly recognizable iconography—rather than words—on the 

app’s tab controller makes it easy for anyone to quickly determine how to navigate the app, no 

matter where they’re from or how they communicate.
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Preparing for Connectivity Failure
Designers also often overlook (or fail to put sufficient thought into) how a user will experience 

an app in various Internet-connectivity scenarios, including what will happen when Wi-Fi is 

unavailable or mobile signals through LTE networks are nowhere to be found. Does the applica-

tion bounce back gracefully and maintain a fluid and responsive interface for the duration of 

the inactivity period, or does it screech to a halt and become unusable due to a lack of connec-

tion to the outside world? It’s not uncommon for a designer to create work inside an expe-

riential bubble, but just because you have a great LTE signal in your home or office—not to 

mention the latest and greatest mobile device—doesn’t mean that every user will interact with 

an app under similar conditions at all times.

Until just recently, it was rather difficult to simulate poor connectivity conditions, but recent 

improvements to iOS, Android, and standard development tools thankfully have made it easy 

Figure 5.9 Instagram is well-known for its filters, but it also has a distinguishable interface full of 

helpful iconography.
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to test an application design at various potential signal levels. Thus, there’s no longer an excuse 

not to test. Connectivity issues are a constant source of friction in many applications, so it’s 

important to tackle the problem and ensure that it’s been solved.

It sounds obvious, but it always bears repeating (both in print and in your own mind) that 

mobile computing is just that: mobile. As a result, making sure that apps can still be functional 

when disconnected from an Internet or data signal is an essential component of interaction 

design. Users expect to be able to launch and interact with our apps whenever and wherever 

they want, but designers can’t always guarantee that will be possible.

When building software, designers should be looking to create something that “fails gracefully,” 

a term often recited amongst programmers, designers, and other tech-creating individuals. 

For your purposes, that concept involves designing an application in such a way that when the 

software receives a response that is undesirable, such as a lack of cellular network availability, it 

clearly communicates to users what has happened but still allows them to do as much as possible 

while the app waits for other factors to respond as desired. Unfortunately, it’s somewhat common 

to find applications that crash entirely when a cell signal is unavailable; obviously, it’s best to avoid 

repeating these mistakes and to instead aim to fail in a much more graceful manner.

tip

As a designer, it’s best to heed Murphy’s Law regarding mobile connectivity. What 

can go wrong will go wrong, so plan your design around the potential for a lost 

connection. In fact, a storm knocked out the power—and thus the Internet 

connection—as the tips for this very chapter were being written.

Because testing for potential problems has now become so simple, there’s really no excuse for 

making an app that fails when it runs into a problem such as losing a cellular network connec-

tion. In fact, this sort of reaction could even lead to Apple or Microsoft rejecting the program 

during the app review process required to gain entry to the online store. Don’t be satisfied with 

that minimum standard, though; designers should aim to go much further and provide the best 

user experience possible.

Because connectivity can be so hot and cold in the world of mobile devices, it’s extremely com-

mon to cache all required application data locally inside an application so that it will continue 

to work even if a signal is dropped. An e-mail app, for instance, may download the contents of 

all messages locally so that the user can continue to read them even when disconnected from 

the Internet. In that same type of software, users often expect e-mails they write during periods 

of no connectivity to be saved by the application and then sent at a later time when an Internet 

signal returns.
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It’s also important to make it clear in the interface of an app when a connection is unavailable 

while also indicating that the application can still be used in the meantime. Often, apps use text 

to unobtrusively notify the user when a connection was not made properly. The best ones pres-

ent on-screen information in the event that an expected result doesn’t occur while also explain-

ing that connectivity was the reason for the error. Twitter apps, for example, do this effectively 

by presenting a small timestamp that shows the user when data was last pulled down success-

fully, as shown in Figure 5.10.

No matter the interaction scenario inside an application, it’s important that the software react 

safely in any situation in which the response from the server or user input falls outside the 

Figure 5.10 In the Tweetbot app by Tapbots, LLC, a timestamp displaying “Last updated [day] at 

[time]” is used to help make it clear when the last refresh took place. (Courtesy of Dillon I. Carter)



ptg12441863

PREPARING FOR CONNECTIVITY FAILURE 101

IN-DEPTH

Designing for the Web carries one big benefit: Once an application is created, its front-end 

interface written in HTML and CSS will port over to a variety of operating systems because 

it can be displayed in a browser. Because such an easy method of making an app available 

to everyone at once exists, that has to be the preferred app design method, right?

Unfortunately, what sounds too good to be true often is, and building a Web applica-

tion interface that looks and works great on every operating system is often a bit more 

involved than you might think.

First and foremost, Web-rendering engines tend to vary greatly, especially when being 

built across multiple operating systems. A font or image that renders in one way on one 

system may not work as planned on other systems. Thus, although you may save some 

time not natively preparing or coding interface assets for each platform, you’ll spend 

much more time fine-tuning your design to each platform you attempt to support.

For example, take another look at Forecast.io, a weather application used as a Web app 

example earlier in this chapter. This time, however, look at it on a Google Nexus 7, a popu-

lar Android device (see Figure 5.11).

As you can see, there are many layout, image, typographic, and even feature differences 

when moving across devices. Although Web apps are great because they make it easy 

to carry work across platforms, that doesn’t mean that you don’t need to rethink your 

design based on your experience tinkering with major platforms and devices.

In short, many designers and developers often find it easier to forgo the measure-

twice-cut-once approach of designing Web apps and instead program multiple native 

applications, especially when working on software rich in media and complex anima-

tions. Although it may be a bit more time-consuming, the hours are well spent, as it will 

be easier to provide the interaction experience you desire without compromising on 

features or quality.

realm of what it expected to happen. Graceful fallbacks are an important skill to learn for any 

designer looking to make their work better, so go out and find ways to make your application 

respond flawlessly for the user.
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Conclusion
Hybrid, modal, search, native: The words are different, but the primary goal is always the same. 

You want to make the best application possible while remaining true to the platform and focus-

ing on reducing interface friction and creating a premium experience.

No matter how overwhelming the variety of application and interface types may seem, don’t 

worry too much; you’re less in over your head than you feel. Keep the primary goal—creating an 

exceptional way for users to interact with content and data using the interaction and interface 

components that make the experience as clean and consistent to the native operating system as 

possible—in focus and you’ll be just fine.

Figure 5.11 Here’s how Forecast.io looks when rendered on a Google Nexus 7 Web browser.
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DESIGNING FOR VISUAL 

APPEAL

In the real world, you only get one chance to make 

a first impression. The same goes for the digital 

world; users often make quick judgments about a 

mobile app based on its icon and design. As a result, 

it’s essential to develop a strong, distinctive look 

for your software that will catch the eyes of users 

and quickly indicate why downloading your app 

will benefit them. In this chapter, you’ll find lots of 

tips and tricks to keep in mind while developing an 

application’s design.
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How Appearance Changes Interactions
So far, you’ve read a lot about the nuts and bolts of an app’s design—interaction methods and 

views—but haven’t yet seen much about the shiny cover that envelops those elements. When 

building an app, it’s just as important for designers to focus on the visual appeal of the software 

as it is to concentrate on interaction design.

An application’s visual style sets the tone for the user experience, so it’s worth spending a lot of 

time tinkering with and tweaking a piece of software’s artwork in order to give it a unique look 

and feel. Think of the visual design of an app as its fashion sense—a carefully crafted, unique 

style that strives to make a certain type of first impression and speak volumes about what its 

intentions and purpose are.

It takes a lot of effort to develop an individual style and even more time to make sure it’s consis-

tent. The process involves constantly asking yourself questions as each design choice is made: 

Does this fit the style? What does this color palette communicate to the user? Does the icon 

blend with what’s inside the app? Just as getting dressed for a night out on the town requires 

making lots of choices in front of a mirror, a designer must devote significant effort to planning 

out an app’s look and style.

There are a number of different approaches to building an app’s artwork. From simple, utilitar-

ian designs to elaborate, ornate, elegant constructions, there are numerous ways to convey a 

mood or emotion to the user just by the way an app looks. The colors, typography, and artwork 

all team together to deliver a certain type of experience for a user, so it’s important to ensure 

that a well-rounded design sets the proper tone.

Although the number of styles designers could use to construct the visual layout of an app is 

limitless, there are two most commonly used approaches today: skeuomorphic and flat designs.

Skeuomorphic Design

The skeuomorphic style involves an app that retains the physical design cues of a previous 

or antiquated product. To see an example of this trait, take a look at the camera on your cell 

phone. Regardless of the brand of phone you own, it’s likely that a click sound can be heard 

when taking a photo, an effect meant to imitate the closing and opening of a shutter. Although 

none of these cameras actually have a shutter that produces such a sound, the designers of 

each phone included that function to indicate to the user that a photo has been taken.

In interaction design, skeuomorphic constructs involve visual elements on a screen that are 

designed by artists to mimic a real-world object. At one point, such elements were plentiful: a 

note-taking application that resembled a pad of paper, a calendar app that featured animations 

imitating the tearing away of pages on a physical calendar, and the voicemail button resem-

bling a reel-to-reel tape machine, for example.
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The underlying goal of skeuomorphic designs isn’t just to create art that mirrors a real-world 

object; it’s also meant to instruct and inform the user about the purpose and interaction meth-

ods of an application. This isn’t a new tactic either; it’s been a common method in computer-

interface design since the introduction of the graphical user interface in the late 1970s and 

early 1980s.

Apple’s iBooks app for iPhone and iPad is a strong example of how effective a skeuomorphic 

design can be. Prior to the release of the iPad in 2010, e-books were gradually becoming more 

popular with consumers, but the technology had yet to be widely adopted by casual readers. 

To make the process of progressing through an e-book easier and more understandable, Apple 

implemented an intuitive page-turning animation that required only the swipe of a finger. This 

skeuomorphic design mimicked the behavior of physical books, making it easy for users to pick 

up and instantly understand how to navigate through the digital material.

The pre-iOS 7 Compass app (see Figure 6.1) employed a skeuomorphic design as well by resem-

bling an actual physical compass in nearly every way. Although the use of skeuomorphic design 

was extremely common during the infancy of smartphones and tablets, especially on Apple’s 

mobile operating system, the release of iOS 7 in late 2013 heralded Apple’s shift away from the 

Figure 6.1 iOS 6’s Compass app was skeuomorphic; it resembled its real-world counterpart, making 

the program easily understandable to users.
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design philosophy. Although many apps still champion such designs today, most operating 

system vendors have pushed away from skeuomorphic interfaces.

Flat Design

Flat design is the antithesis of skeuomorphic interfaces. It’s the complete removal of any ornate 

interface and interaction design, leaving the app void of any component that does not directly 

provide an output for the user. Recent versions of Android and Apple’s iOS 7 are the two most 

prevalent examples of this approach, but they both lagged behind Microsoft, which forged into 

this territory much earlier when it released Windows Phone 7, shown in Figure 6.2.

The proponents of flat design style contend that because computers are quite different from 

physical objects and abstractly depict data on a screen using pixels instead of tangible mat-

ter it makes little sense to conform an interface’s look to that of pre-existing objects. Doing 

so, they argue, only limits the potential of a device and prevents it from achieving its optimal 

interaction design.

Figure 6.2 Windows Phone features a flat design home screen: no frills, just colored icons with large 

text on a dark background.
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Clearly, their points are beginning to prove persuasive. Many applications and now even full 

mobile operating systems are jumping on the flat-design bandwagon. This progression has 

advanced in large part thanks to the maturity and widespread adoption of mobile computing. 

Generally, skeumorphic designs are easier to understand, because they replicate the interac-

tion method of a physical object—like iBooks’s page-turning function—and require little to no 

teaching of the user. Designers simply draw upon consumers’ cognitive understanding of the 

real world and apply it to digital software.

But users have now reached a comfort level with mobile devices that makes such extensive 

hand-holding no longer necessary. Be careful, though; with a flat design there are fewer oppor-

tunities for users to pull from their own experience when navigating an app. Although design-

ers are no longer confined to mimicking interaction methods found in real-world settings, you 

do have to be cautious in how you allow users to interact with data on screen. It’s important 

that users understand the ramifications of each action and are able to quickly determine an 

app’s purpose.

In selecting whether to go with a skeumorphic- or flat-design style, it’s ultimately a matter of 

the designer’s personal preference; there’s no right or wrong choice. In the end, a designer is 

likely best off making a decision based on his or her own individual art style, because a bet-

ter product will result from a process or technique the designer is comfortable with. It’s also 

important, though, to meet the anticipated design aesthetic of the operating system so that 

the visual look is in line with the expectations of the user. This is a careful balancing act to strike 

throughout the design process and is one that requires an understanding of both the art design 

of the system and the designer’s own talents.

tip

Are you still uncertain what’s skeuomorphic and what’s flat? Take a look at the tex-

ture and shadow in an application’s art design. Flat designs tend to drop all texture 

and most shadow and instead use solid colors in sharp contrast to the background 

and buttons or text.

Creating an App Icon
The app’s icon is the first thing the user sees; before he or she ever opens the app or explores 

its functionality, this is the element that makes an impression, communicating a message about 

the style and purpose of your software amongst the thousands of other offerings in the mobile 

store. Although the icon is a digital product, it carries the same weight as a first handshake 

between potential business partners or the greeting a store employee offers a customer at the 

front door; it can either discourage a quality consumer experience or be the sign of positive 

things to come.
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tip

Are you looking for inspiration in creating an app icon? There are many Web 

sites dedicated to exceptional icon work. A quick Web search of “great app 

icon designs” will turn up hundreds of pages of standout stuff curated by other 

designers.

As much as an often-quoted maxim warns against it, it’s impossible not to judge a book by its 

cover (or a movie by its poster or a cereal by its box). More than we’d like to admit, consumers 

are attracted to an item not because of what is actually contained inside but because of what 

its packaging alludes to. As a result, it’s essential that designers work to create an app icon 

that is eye-catching and appealing, helping to win the affection of users before they’ve ever 

launched it.

Before building an app icon, it’s smart to first take note of the style presented by the system’s 

icons, information generally noted in the platform’s human-interface guidelines. Developers 

such as Apple or Google typically prefer applications with icons that look like they were cut 

from the same stone as its own programs so that a user’s home screen or dock is composed of 

icons that blend well together. iOS icons, for example, are always rounded rectangles, whereas 

on Android there’s no specific shape requirement, as can be seen in Figure 6.3.

As you begin to develop rough introductory sketches and general app icon ideas, one thing will 

become immediately apparent: Any icon you create, regardless of the platform it’s developed 

for, must look good in a variety of sizes, from something 1,000 pixels square to a mere 30 pixels 

square. Creating a design that is visually appealing in both a very large and very small size isn’t 

easy, so how can you go about making something that is universally attractive?

Simplicity helps; cram too much into an icon and much of it will get lost or be tough to see 

when shrunk down to a small size. Figure 6.4 shows a medical app icon for helping patients 

track the cups of water they drink in a day. The icon is scaled to the variety of sizes required for 

an iPhone application. Although each icon uses the same base image, its visual appearance can 

vary considerably when going from the largest to the smallest size. So when working to create 

an icon, repeatedly judge its appearance at a variety of sizes to ensure you’re making some-

thing that looks great no matter how big or small it is.

To do this, it’s best to draw your art in a vector format in a program such as Adobe Illustrator 

or in an extremely large raster format—at least 1,200 pixels square. Vector formats are ideal, 

as they are essentially able to scale up or down infinitely to any size; but as you’ve prob-

ably learned if you’ve ever worked with both vector and raster formats, vectors tend to be 

much more difficult to create, and the tools you’re forced to use to make them are a bit more 

restricted. Thus, if you’re not incredibly comfortable with vector techniques, it’s better to 

design in a large raster format than to create bad vector art.
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Figure 6.3 On Android, app icons appear as silhouette-style objects; unlike iOS, they don’t have to 

use the same shape.

Figure 6.4 In this icon, the letter P formed from a water drop is clear no matter the size. (Courtesy of 

Ronald Yap, M.D., M.B.A.)
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tip

Are you unfamiliar with the terms raster or vector? These two concepts are 

explained at length later in this chapter, in the “Building Art That Scales” section.

Once you’ve designed a large raster image or a vector icon, it’s time to begin adapting the 

image to various sizes. Depending on the platform, the icon will likely need to exist in a variety 

of different forms (typically outlined in the human-interface guidelines). Resize the raster or 

vector icon to the appropriate sizes, and then save these as PNG files. At each size, though, you 

may notice that the artwork requires a bit of touchup work, especially at smaller sizes.

When building an icon that will look great in both large and small sizes, focus on developing 

an image that has a single visual focal point—an immediately recognizable shape or letter, for 

instance—at a size that takes up much of the icon. Some of the best icons are the simplest: clear 

shapes that contrast with the background color, creating a visual that is instantly recognizable, 

regardless of the icon’s size.

You’ve no doubt seen them countless times already, but take another look at the application 

icons for popular social networks such as Facebook, Google+, Vine, and Tumblr, shown in 

Figure 6.5. They all consist of a powerfully colored background and a white or light-colored let-

ter in a typography style that is consistent with the service’s branding initiatives. This isn’t the 

result of some unique trait of social networks; it’s merely great design: an easily recognizable 

icon that allows the user to pick it out quickly on screen. The effectiveness of these logos can be 

seen on a daily basis; countless billboards, commercials, and other marketing materials feature 

a business’s social-media handles accompanied by the blue-and-white Facebook logo or the 

red-and-white Google+ logo. These designs are simple, clear, and quickly identifiable.

Figure 6.5 All of these major social networks have a similar icon style, with a large, single letter 

contrasting with a solid background color.
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If your app can’t be represented by a single letter, a simple shape could also be featured promi-

nently. Text-messaging applications, for example, typically use an icon that consists primarily of 

a speech bubble. Phone or voice-chat services often use icons depicting a telephone handset. 

Photo apps usually boast an icon that prominently displays a camera silhouette or a lens image.

As you prepare to scale an image down from its largest version, know that the exact sizes you 

need vary by operating system, what type of device you’re designing for, and a handful of other 

factors, so therefore it’s wise to visit your platform’s online developer center to find out which 

dimensions you’ll need. On most projects, expect to make between three and seven different 

icon sizes.

After exporting the icon to the various required sizes, you may notice that certain components 

or colors look less than ideal when their dimensions are reduced. Most platforms require that 

a general icon appear the same at all dimensions, but you can make small detail adjustments 

if a specific shadow or highlight suffers at a certain resolution. Be sure to verify that every-

thing looks acceptable, and prepare the art asset for the programming team to include in the 

app binary.

Finding a Unique Look
Once you’ve put the finishing touches on the app icon, you’re ready to move on and tackle 

design for the rest of the project. When designing an app, you’ll have to work hard to come 

up with something that sets it apart—something most easily done by developing your own 

unique style. In a competitive marketplace, it’s essential to create something that stands out 

from the crowd of competitors by using a style that plays to your personal attributes and 

advantages.

That doesn’t mean designers should stand out too much, though; the line of creativity is one 

that must be tip-toed along by presenting fresh, bold flavors that are uniquely your own while 

also providing the user with an experience that feels in line with the native platform. This is a 

struggle for any app designer, and it won’t be something you solve after producing one or two 

applications. It’s a constant, evolving battle to consistently improve your work while build-

ing upon the huge body of style imposed by Apple, Google, and the other mobile platform 

creators.

As with many other art forms (or any other endeavor, for that matter), improvement really only 

comes through constant practice. Hard work is truly the only path for growth and success in 

app design.
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tip

Are you having some difficulty creating the look you desire in Photoshop? There’s 

a multitude of great tutorials available only a Web search away. Many bloggers 

write tutorials for creating popular styles and visual appearances, so just do a quick 

search for what you’re looking for, and you’ll be surprised at how many resources 

you’ll find.

There is much to be learned from the work of your competitors and app designers who came 

before you. Take a look at popular (or even not so popular) apps on any platform you’re design-

ing for. Assess what the icon does well and what it doesn’t do well. Consider how you would 

work to improve it if you were given the task of overhauling the design. This will help put you in 

the proper design mindset and give you ideas for when it’s time to start on your own project.

The best way to begin is to analyze each view of an application, and then examine how the 

view observes and conforms to the platform’s human-interface guidelines. For example, if 

certain controls are required for specific content, does the app meet those criteria in every 

circumstance? It’s likely that there will be many situations in which the interface guidelines are 

not followed, including on very popular applications, but by thinking critically you’ll gain a lot 

of great interaction insight and begin to understand why a designer broke the convention in 

the first place.

Your goal should be to develop an ability to recognize mistakes and areas for improvement 

when analyzing an app’s design. Strive to understand the platform and its interface guidelines 

so well that it’s immediately apparent to you once a mistake has been made. For the seasoned 

designer, it’s also a valuable skill to be able to analyze and determine design strategies that 

could quickly and simply be integrated into an application to improve interaction design.

If you can conduct a quick interface analysis of another designer’s work, it’s a great sign that 

you’re improving at your craft. A master interaction designer can often look at another applica-

tion for only a few minutes and easily point out places where it either follows or conflicts with 

the platform’s human-interface guidelines, and the best can quickly offer suggestions on how 

to revise the app in order to meet those standards.

A trained eye can identify when a designer has complied with or disobeyed standard conven-

tions, but it also recognizes that a good designer doesn’t ignore guidelines simply for the sake 

of it. Instead, veteran designers know when an interaction needs to be pushed forward. In 

some situations, a designer may be intentionally ignoring the platform’s interface rules in order 

to create a new type of interaction technique. Here, the goal is to implement a new interaction 

type only in situations in which the user’s experience and cognitive flow through an app can be 

improved or made more efficient by way of that change.
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There may be times, however, in which the designer will stray from the human interface 

guidelines for good reason; determining whether this decision is wise or not is a very subjective 

process. An experienced designer, for example, could go against the grain because he or she 

believes that a better solution has been found, so he or she will go ahead and implement that 

concept instead of following the prescribed practice.

There are many examples of designers pushing the mobile envelope and creating something 

valuable and influential. When someone introduces a technique or method that increases user 

efficiency, that concept is immediately recognizable to both users and designers, and the new 

process quickly becomes common.

One major occurrence of this was the pull-to-refresh design championed by Loren Brichter in 

the iPhone app Tweetie, which was a popular Twitter client in the early days of the iOS App 

Store. Tweetie created a gesture that allowed a user to slightly pull or tug the top of a data table 

to refresh the content contained within it. A refresh previously required a unique button, which 

took up space in a menu or navigation bar. But with the addition of this gesture, the menu no 

longer needed that button, creating space that could be used for another feature or left blank 

to make the overall design cleaner.

The pull-to-refresh gesture is now extremely common and instantly recognizable. At the time 

of its introduction, however, it was a revolutionary way to quickly update content in an app 

without wasting valuable screen real estate. Now, you can see the gesture inside of many apps, 

as shown in Figure 6.6.

Another powerful example is the technique often called “swipe from the edge,” in which the 

user makes a swipe gesture from the border of the device or even outside its display area. 

Pioneered in mobile by Android and later introduced into iOS, a swipe by the user from the top 

of the screen now drops down a notification menu listing missed phone calls, weather fore-

casts, e-mails, and other useful information. Once this idea was introduced, users and designers 

immediately recognized its benefit and have implemented it in countless programs since then.

Figure 6.6 Pull down a table view to reveal this common visual indicator.
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There are even examples of entire app companies being formed based on the principle of 

clashing with human interface guidelines. Take the popular iOS development team Tapbots, 

LLC, for example. The company was founded with a design concept focused entirely on making 

quasi-personified “app robots” dedicated to performing specific utility tasks. Each robot has 

its own unique style and structure but remains true to the Tapbots form, which both is recog-

nizable and works to push the limits of the human-interface guidelines for iOS. The Tapbots 

team is well experienced in software development and mobile programming, and although 

their work is often bold and beyond convention it’s produced in a tasteful manner that’s well 

designed and ultimately usable by anyone with little help or instruction.

The two examples in Figure 6.7 show how Tapbots’s popular app Tweetbot displays a user’s 

timeline differently compared to the standard Twitter application, which uses the normal iOS 

interface conventions.

Figure 6.7 Although these two apps look a lot like each other, the Tapbots app (left) breaks with 

standard conventions (right) in many significant ways.
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Just looking at this example, the differences may not be so obvious, but to the trained eye 

they’re astonishing. Shown on the left, Tweetbot features a nonstandard tab bar that uses 

custom icons, with the space normally occupied by text labels instead used for small glow 

indicators that show when new content is available. In addition, whereas standard tabs serve 

only as a way to switch between different types of data, in Tweetbot they offer additional func-

tionality. For example, holding down on a tab brings up a contextual menu that allows the user 

to quickly jump to other app features. Other sophisticated interface gestures (which can’t be 

shown in the screenshot) include swiping left or right on a tweet to quickly reply to or favorite 

a tweet, and holding a single finger down on a tweet to bring up a menu of advanced sharing 

options, such as the ability to email a tweet. An application using standard interaction methods 

could require three or more button presses in order to achieve the same goals, but Tweetbot 

found quick ways to differentiate itself and create an exceptional experience.

Tweetbot takes liberties with its design that require much practice and experience to pull off, 

but when done correctly they’re extremely valuable and do much to improve the application. 

Such decisions are not for a designer who hasn’t read and internalized the interface guidelines, 

but instead for the expert who has contemplated the positives and negatives of such a design.

note

Panic Inc., The Iconfactory, Rovio, and Bolt Creative are all development studios 

that have created a consistent visual brand for mobile, and their apps are immedi-

ately recognizable due to their unique designs.

Matching Art to Interaction Design
How should you go about constructing interaction designs that offer a highly polished experi-

ence that both catches a user’s eye and remains true to the platform’s style and structure? How 

does a designer create something that looks amazing yet also meets user expectations by abid-

ing by standard human-interface guidelines?

First, focus on interaction design and interface elements in a way that makes you blind to the 

visual aesthetics of what you’re creating. All too often, designers get ahead of themselves and 

focus on perfecting the polish of every pixel or color palette—a significant mistake. Focusing 

too intensely right away on the color and visual style of an app is akin to choosing a kitchen 

table and wallpaper for a house before the builders have even laid a foundation. Although it’s a 

lot more fun to pick out furniture than it is to watch cement dry, it’s unwise to choose where to 

put walls on a blueprint solely in order to accommodate small pieces of furniture. Your goal is to 

build a quality house that will last for a long time, so first focus on establishing a solid frame-

work for the app. Details, like wall hangings and carpets, can come later.
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Simple design tools—something as basic as pen and paper or more advanced like the Balsamiq 

wireframe tool shown in Figure 6.8—can help you isolate yourself from every visual variable in 

a design that’s unrelated to the interaction experience. At this stage, you can determine what 

animation users will see as they move from one section of the app to another, where buttons 

will be placed, how data can be interacted with, and many other processes. Now is not the time 

to focus on the “pretty” aspects of the app; it’s the time to focus on usability. Once you have a 

solid understanding of how the user will move through the app, then you can focus on making 

those basic assets more appealing to the eye.

Once you’ve fleshed out a full wireframe model, you’re ready to jump forward and approach 

the visual design of an application. Designers tackle wireframing in various ways, but the pro-

cess is typically finished after the interface of every view or screen in the app is laid out using 

your wireframe tool of choice along with short paragraphs connected to most if not all of the 

situations in which the user interacts with the app.

tip

Balsamiq is a favorite wireframing tool for designers, but others exist as well, 

including OmniGraffle by The Omni Group and Layout by SwordSoft.

These paragraphs should explain in fairly simple language exactly what will happen when the 

user activates or manipulates the content on screen. A wireframe explaining the page-curl 

interaction in Apple’s iBooks, for example, could be written like this: “The user is presented with 

a full-screen view that contains the e-book text laid out in its appropriate formatting and para-

graph style on screen. The user will move to the next page by placing their finger on the right 

Figure 6.8 Simple wireframes are used so that the focus stays on what’s important: great interaction 

design.
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corner of the screen, then either swiping or dragging the page to the left side of the screen. The 

page-curl animation should anchor to the user’s finger, allowing for dynamic 3-D movement 

that makes the user feel as if he is actually flipping pages in a physical book. The user can also 

go back to a previous page by using a similar gesture in reverse.”

Once you’ve created a wireframe and fully explained the app’s interaction methods, you’re 

ready to move on to working on the visual graphic design inside of your application. Your 

wireframe is complete when you can hand it to a programmer, and that programmer has no 

questions or concerns on how to program or implement a design feature. Work in open com-

munication with your programmers and continue to elaborate in your wireframe design docu-

ment until you’ve satisfied their questions.

When creating and modifying visuals for your new application, the most valuable concept to 

keep in mind is design coherence, which involves making every interface attribute, animation, 

and piece of typography feel as if it was crafted from the same material. This is potentially 

the most difficult part of creating a visual look and feel, because it requires a pinpoint level of 

attention to detail.

In many ways, application design is like making a movie: The director and producers want to 

create a world for the audience that, no matter how unreal it actually is, seems absolutely real. 

Each choice must continue to facilitate the illusion of this alternative reality, making each shot 

feel like it takes place in the same universe, thus ensuring that the viewer remains engaged with 

the film. If in the midst of a Western the protagonist cowboy suddenly jumped into a sports 

car to ride into the sunset, the fictional world of the movie would be completely destroyed, 

perhaps prompting the viewer to notice other elements that are out of place.

Building an app is quite similar, as one single piece of a custom interface that feels like it doesn’t 

belong could immediately make the user aware of other pieces that don’t work well or feel 

awkward compared to previous app experiences.

Crossing Platforms

If the application you’re building is intended to be a cross-platform piece of software, the task 

of creating a coherent design universe becomes much more difficult. Now, the app not only has 

to blend well with the million apps on one platform but must also not seem out of place among 

the million apps on a competing platform with its own separate design conventions.

Even if there’s a small chance that an app will eventually be ported over to another platform in 

the future, it’s advisable to consider the design structure of all target platforms before moving 

past the wireframing stage of the development process, and it certainly must be done prior 

to working on detailed visual designs. Often, an interaction strategy that works well on one 

platform will hit a roadblock or hindrance on another platform.
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During the early days of app markets for Apple and Android, for example, the tab bar interface 

method was extremely common on the iPhone yet relatively difficult to accurately recreate 

and implement on Android without being clunky and confusing. Because designers failed to 

take these differences into account, it was common to see a poor Android port of an iPhone 

app. These substandard programs had interfaces that contained many problems due to a 

development team’s attempt to hastily and haphazardly fit the tab bar style into the Android 

ecosystem.

When fighting against this multiplatform problem, it’s best to first focus on the general 

interaction design of each, especially on user flow, animations, and any interface pieces you 

plan to use.

App Branding Guides

When you’re working on your first app for two platforms, you may find yourself struggling to 

keep its look and feel consistent when moving to a new operating system. Quickly, you’ll find 

yourself asking odd but important questions, things like, “Exactly what was the hexadecimal 

color code for the shade of blue I’m using?” and “What alpha transparency level of black did we 

pick for shadows again?”

If you’re having these difficulties, it may be helpful to first draw up a general application-

branding guide, a small handbook outlining general style decisions and themes for the 

app. Although branding guides are documents most commonly found in large companies—

typically developed by a marketing department to ensure all corporate communications 

use the same logo, typography, and colors—a branding guide can be extremely valuable 

in the app development world as well. It’s a great reference to have on hand when work-

ing to ensure that the general look and feel of the software is consistent as it moves across 

platforms.

In your guide, work to define as narrowly as possible exact color shades, common background 

textures, shadow color and blur radius, and other specific visual design characteristics. From 

there, you’ll be able to build on these generalities and adapt them as your development 

progresses.

Creating these short guides, usually only a handful of pages in length, will allow you to estab-

lish a hard standard you can return to when working with design variables that should remain 

constant across platforms. It’s important to use the exact colors and typography on Android 

that you used on iPhone so that users feel they get the same experience from your app regard-

less of which platform they access it on.

Such branding designs will also be useful if you have to hand the project off to another 

designer in the future or if the app sees success and you hire new designers for your opera-

tion. This reference guide will be available so that future designers on the app can also find the 
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correct color codes or font choices without guessing, actions that often lead to inconsistency or 

incorrect design.

Building Art That Scales
Once you begin the process of creating art designs for your apps, it’s important to construct 

something that “scales” effectively at various sizes. But what does this mean for your mobile 

project? It’s a simple concept of digital art creation, but one that will give you a leg up on 

the competition and help you from being caught off-guard when the mobile app landscape 

changes in the coming years.

Throughout the history of computer graphic design, artists and interactive designers have 

typically done most of their work in what’s known as a raster format. The term refers to the grid 

of pixels that makes up an image, each filled with a specific color shade and perhaps a certain 

level of transparency. As computers have evolved over the past three decades, this concept has 

evolved somewhat, with the number of pixels available on a screen and the number of colors 

that can be produced on an image both increasing.

note

Common raster formats include PSD, JPEG, PNG, and GIF. If you’re working with 

one of these, you’re working in the raster format.

In mobile, the LCD panels on phones and tablets continually boast greater and greater levels of 

pixel density. In 2010, Apple introduced the Retina display for the iPhone 4, which at the time 

had one of the highest pixel display densities in the consumer market. Typically, displays are 

measured in units of pixels per inch, literally the number of pixels lined up next to each other 

on one linear inch of screen real estate. The iPhone 4 and subsequent models contained 326 

pixels per inch, whereas some Android devices have since featured mobile displays with more 

than 400 pixels per inch.

This pixel-per-inch growth jump was significant, and with Apple’s shift to a Retina display 

its mobile phone now contains four times the amount of pixels that had been present in the 

previous model, the iPhone 3GS. But with the new screen density, art assets produced for the 

older screen size needed to increase significantly in size; otherwise the art would look pixelated 

or muddy on the new iPhone screen. Android designers have long had to produce assets of 

multiple resolutions in order to get the best look, with each asset needing to be drawn at 

multiple resolutions for low-, medium-, and high-resolution displays. The general increase in 

screen pixel density over the past several years, however, has required even larger assets, with 

some Android designs needing five different redrawings in order to get the best look on each 

resolution display.
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tip

On Android, you don’t need to produce elements for every display size; create 

them large and the device will scale them down when needed. Be aware, though, 

that this action eats up the device’s processing power.

In addition to needing to produce artwork at various resolutions to get the best look on each 

display, there may be other situations that require a designer to create various art attributes at 

even larger sizes. If things go well for your project, your app may need to be promoted in a mar-

keting campaign or featured by Apple or Google in their respective stores. If you’re fortunate 

enough to have that happen, you’re going to need higher-resolution versions of your art.

tip

Google currently requires developers to send special promotional artwork when 

submitting an app to the Google Play Store. These images could be used as a ban-

ner on its Web site or in a prominent display spot in the store. Spend a fair amount 

of time on these and give them as much care as you would your app icon. Special 

placement in any app store is the developer’s equivalent to winning the lottery.

How can you create art that will work on all of the various screen resolutions you might need 

down the road while also being capable of adapting to even larger sizes in the future? Many 

designers often think that it’s best to just create raster artwork at a very large scale, perhaps at a 

size even larger than you’ll need on the highest pixel density phone screen, but this can lead to 

several significant problems.

First, unless you have a very new computer with abundant RAM and processing power on 

which to create the artwork, your computer is likely to suffer a significant slowdown when it 

attempts to process and manage a very large raster file. These files simply aren’t the most effi-

cient way to create large pieces of artwork.

Second, you may find that a piece of raster art rendered at a large size will not always scale 

down uniformly when shrunk to a smaller size. For example, when you take a 1,000 x 1,000 

pixel square and shrink it down to 100 x 100, the software you use to handle that manipulation, 

typically Photoshop, merely estimates how the art should look at the smaller size and then 

recreates the piece of work to fit the new resolution. However, because your artwork previously 

fit a size much larger than the new piece there will be lost pixels.

Remember that raster art actually contains exact pixels, laid out in a grid, with each holding a 

dot of color data. The original artwork in this example contained 1,000,000 pixels, but the new, 

smaller piece only contains 10,000; so what happens to the lost 990,000 pixels? The algorithms 
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used to estimate what the figure should look like at a smaller size are fairly advanced and, in 

most situations, will do the job completely and accurately; but occasionally you will shrink a 

piece of raster artwork that looks slightly off.

It’s for these scale scenarios that designers recommend creating assets in the vector format, 

using an application such as Adobe Illustrator. Although raster art contains a finite amount of 

pixels, each with a specific color, vector art is mathematically based, and each point in the visual 

object on screen relates to other points based on an equation. The math can be complex and is 

relatively unimportant, but vectors work in such a way that when you shrink or increase them 

in size, the lines, circles, squares, and triangles that make up the artwork all shift in size accord-

ingly with each other, keeping their relationships more or less the same.

As a result, the art asset can essentially scale as large or as small as you want it to while still 

maintaining a mostly consistent look. There are some exceptions to this, especially at very small 

sizes, but in most situations, vector art is a much more effective way of creating art that works 

at multiple sizes.

note

Common vector formats include AI, SVG, and sometimes PDF. If you’re working in 

these formats you’re working with vector data.

If vector art is the key to this scalable kingdom why bother even considering something 

else? Why don’t designers just create everything in vector? The answer, unfortunately, is a bit 

complex.

First and foremost, it’s considerably more difficult to create art in the vector format than it is to 

make something in a raster format. Of course, like many questions of personal choice, this sub-

ject often leads to considerable debate, but in general creating artwork that fits an extremely 

rigid size structure in pixels—the kind of art needed for a mobile device with a specific resolu-

tion display—is much easier in the finite raster world. That’s mostly because designers depend 

on specific measurements and the ability to lay out pieces in exact alignments, all of which are 

measured in pixels, the raster world’s unit of measurement.

Similarly, adding gradients, shadows, textures, and other details as art accents—the kind of sub-

tle keys that will create a good interface—is much more true to real-world output in raster than it 

is in vector. If a designer works only in the vector format, he or she may find that a creation on a 

computer often looks different than it does on a phone or tablet display, because the mathemat-

ical representations of the figure changed a bit based on the size or scale of a certain device.

The best plan of attack for a mobile interface designer involves a two-step approach. First, use 

a vector-creation program, such as Adobe Illustrator, to make the dynamic art assets that are 
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unique to the app and will need to look great at multiple resolutions. If you’re creating icons to 

fit in a tab or button, for example, make those first as a vector so that you can later scale them 

up or down in size for use on a variety of screen densities. Once the general shape and look of 

a piece of artwork is finalized in a vector form, you can then export the file to the various raster 

art resolutions required for a project, resulting in a PNG or similar file type that’s optimized for 

any resolution. From there, you can add shadows, textures, or other detailed work that is best 

done at a specific resolution in Photoshop or a similar program.

Keeping this in mind, there’s a third route that helps designers avoid vector or raster art entirely. 

Whenever possible, designers should work with their programming team to create visual inter-

face elements in project code, because that process brings multiple benefits. 

First, like vector art, interface code is typically a flexible size format and works effectively on a 

variety of screen resolutions. Second, creating interface components and art designs in code 

improves app performance significantly, because it’s easier for a computing device to draw art 

with code than it is to draw the art when referenced from a PNG or other graphic asset.

By creating interfaces in programming code with the standard software frameworks provided 

by the operating system’s designer, your app will be able to take advantage of any optimization 

added later by the platform vendor. For example, when Google moved to the new Holo design 

or when Apple moved to the drastically different iOS 7 it was much easier for developers to 

migrate their designs if they had used source code-level interface components. Designers who 

created all their artwork as raster or vector images needed to recreate every asset in order to 

adapt an app to the platform’s new look. 

Some designers, however, still may prefer to not have such drastic changes to an app without 

strong internal influence, so the design-by-coding route may actually end up being a detriment 

to a development team.

With the recent maturation of mobile design, many tools have been developed to help 

designers create more of their work in code. The practice previously was a fairly complex one, 

especially for interaction designers who didn’t have a formal computer science background or 

significant programming experience. Now, though, applications such as PaintCode by PixelCut 

(see Figure 6.9), Hype by Tumult, and Edge Animate by Adobe have made it easier for design-

ers to create complex visuals or animations using graphical user interface tools that are more 

familiar to an artist than a programmer.
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Adding the Final Touches
As you continue to gain experience and become a more capable interaction designer, there are 

many things to keep in mind as you put the final touches on an app and grow closer to the final 

shipping date.

First, when creating interaction designs or app icons—anything the user will see while engag-

ing with the app—remain focused on an often-cited principle of traditional graphic design. 

Aim to make something that would have looked great 10 years ago and something you antici-

pate will still look good 10 years from now. Good design is universal and will always look great, 

Figure 6.9 Using PaintCode by PixelCut, any designer can work with familiar visual tools to create an 

app’s art in code.
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whereas fashions and trends come and go. Refrain from creating works that draw entirely on 

short-term industry fads that are likely to fade in the near future. By doing so, you’ll make a solid 

product that will continue to stand out for reasons other than your ability to show off with the 

latest Photoshop tricks.

Next, don’t be afraid to iterate, iterate, and then iterate further upon your design. Like great 

writing, design requires constant revision and persistent thought to get right. You won’t create 

your best work on your first draft, so don’t trick yourself into thinking your first pass on an inter-

face is an unstoppable, perfect creation.

Well-regarded Apple industrial designer Jony Ive has often mentioned the vast amount of work 

required to get a design ready for release. It takes many poor early versions and hundreds of 

hours of revisions to iterate and create a functional piece of art for Apple. But Ive emphasizes 

that he’s proud of all the failures along the way, because they ultimately helped produce the 

final version that the public has often been dazzled by.

This will hopefully be your experience in design as well: finding joy and value in continually 

improving your designs and then looking back on earlier concepts with a small sense of shame 

once you realize how much better your final product is. All designers make mistakes. The best 

designers find ways to improve on their earlier missteps. Fantastic designers are capable of 

recognizing where they went wrong and then adjusting and improving before their work ever 

goes public.

Finally, when working on a design and preparing assets or interaction outlines that you expect 

to integrate into your final work, always be sure to test it on a variety of devices and screens, no 

matter the platform you’re targeting. Although Android designers are quite familiar with this 

idea thanks to the variety of screen sizes and device manufacturers working on the platform, 

it’s essential even on Apple’s iOS, because the LCD panels vary greatly amongst the various 

generations of the iPhone, iPod touch, and iPad. Although some interfaces may appear as a 

vibrant white on some devices, the same art could have a slightly yellowish tint on another. It’s 

important to test on a handful of different devices under different circumstances and variables, 

including various lighting arrangements, to make sure that your app doesn’t contain a fatal 

visual flaw.

IN-DEPTH

No matter which platform your team is targeting, your app’s icon will be what’s front and 

center to the users who consider downloading it to their phones or tablets. In most app 

stores, only a program’s name, icon, and star rating are visible to a prospective customer. 

It’s critical to impress with just a single visual, encouraging someone perusing a long list 

of apps to tap yours and view screenshots and the app’s description.
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Figure 6.10 There’s not much to judge an app on in the Google Play Market, so attractive icons help 

grab attention.

Take a look at the Google Play Store, shown in Figure 6.10. Here, users don’t have much to 

go by outside of the app icon, so it’s important to spend time polishing and cleaning up 

your design.

It’s unfortunate, but most users will base a majority of their first impression of an app 

on the appearance of the icon. Even if it’s a free app, the user will be unlikely to give it a 

chance if the icon is bad.

If you’re uncomfortable with that pressure on your graphic design talents, fear not; there 

are freelance artists who are available for hire, many of whom specialize in mobile app 

icons. To find a talented app artist, visit popular development forums for the platform 

you’re targeting, and ask around for people who may have references.

When looking for an artist, review his or her existing portfolio; you’ll want an artist who 

has experience on at least three to four different client projects. Also, don’t shy away 

from asking for references and checking with previous clients to make sure the artist is 

prompt and appreciative of feedback. Costs can vary greatly based on the specifics of 

the design and the experience of the artist, so be sure to request quotes before hiring 

someone.
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Conclusion
Creating an art design that’s functional yet distinctive enough to attract the user’s attention 

can be difficult, especially when tackling cross-platform development. The best advice is to stay 

focused, keep the wireframe simple, and then work on visuals once you have a general interac-

tion design established. That way, the programming team can focus on app logic and other 

technical implementations that require knowledge of the general app design.

By finishing the interaction design plan in the early phases of a project, you give yourself extra 

time to spend on the visual components. On most app projects, programmers need a final 

wireframe and interaction flow model in order to begin working on code. The sooner you get 

that information to them, the sooner you can begin perfecting the look of navigation bars, but-

tons, and app icons. By the end of the project, you’ll be begging the rest of the team for extra 

time to polish up various elements, so any additional seconds you can save yourself in early 

phases will pay off down the line.
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WORKING WITH  

PROGRAMMERS

Unless you’re both a computer science genius and 

someone with a penchant for quality design, you 

won’t be able to complete an app project on your 

own. You’ll need to play nicely with others, namely 

the programmers who will write the code that 

turns your visual dream into a digital reality. This 

chapter provides practical lessons on how to work 

with technical-minded programmers as well as tips 

and tricks on how to gradually get into the realm 

of manipulating and editing code. Although that 

notion may seem menacing at first, it’s not that 

daunting once you know what you’re looking for 

and how to make changes that produce the desired 

results.
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Understanding Your Programmer
As an interaction designer who’s primarily focused on interface setup, chances are high that 

you don’t have considerable programming experience. You might have a basic understanding 

of HTML or CSS, but it’s unlikely that you’re well versed in the languages of Java or Objective-C. 

Ideally, you’re working on your project with a programmer who’s more than capable of tackling 

the code writing necessary for a successful app.

All of this, however, doesn’t mean that you shouldn’t be thinking about the technical side of 

your application as you’re designing its interface. After all, you’re visualizing everything a user 

will see in the app, but in order for your visuals to ever get to the user some technical wizardry 

will have to occur. Even if you’re the greatest interaction designer to ever hit the industry, it 

won’t mean much unless you have a quality programmer working with you to turn your visuals 

into something users can get their thumbs and fingers on.

Once you do find a programming partner to team up with, there are a number of roadblocks 

you’ll have to dodge in order to ensure that your working relationship remains strong. A major 

potential pitfall is arrogance; it’s a trait many good designers (and many good programmers) 

in the development community are notorious for having, so do your best to avoid fitting that 

stereotype.

Learning Programming Languages

Ego aside, another key issue to work through is the way you communicate and articulate your 

design vision to your programmer. It doesn’t take long while working in development to real-

ize that programming and design are two completely different worlds with vastly different 

languages; one of the only few points of unity between the two is the shared desire to pro-

duce a quality piece of software. With starkly different vocabulary in each discipline, it can be 

a struggle to clearly describe an interface in a way that both designers and programmers can 

comprehend. Bridging the language gap will be essential for your project’s success.

In order to help your programmers understand and respect you, you’ll need to study the lan-

guage of programming in much the same way you’d learn Spanish or French in a high school or 

college class. Java and Objective-C, the most common languages used to program Android and 

iOS applications today, are called languages because they have their own syntax, vocabulary, 

and rules, just like any other method of speaking and writing. As you begin working with a vari-

ety of programmers, you’ll quickly find that each has its own unique style that will take some 

time to get accustomed to—just like it takes a little while to adapt to the accent of a person 

from a different region of the country or world.
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note

Although Java and Objective-C are the most popular languages used in mobile 

today, they’re far from the only ones. Just because a programmer doesn’t use one 

of these languages doesn’t mean he or she can’t build mobile apps.

Like any other language, programming isn’t something you can become fluent in with just a 

couple of overnight cramming sessions. Instead, take small chunks of time each day to read 

and review the fundamentals of programming and practice expanding your vocabulary. 

Follow a collection of prominent platform programmers on Twitter or other social networks 

and consider subscribing to relevant e-mail newsletters or newsgroups, such as the iOS Dev 

Weekly shown in Figure 7.1. Develop a list of forums or blogs to check in on from time to time. 

As always, the platform you’re developing your app for likely has a developer portal with ample 

resources—videos, documents, and code tutorials—that can help you out as well.

If you don’t have a college degree in computer science or experience with formal program-

ming courses, understanding the terminology used to address these difficult concepts only 

through reading e-mails or social-network posts may seem daunting or impossible at first, but 

don’t get discouraged if programming terms aren’t rolling off your tongue or flying off your 

fingertips in the first couple of weeks. It’s extremely rare to find a mobile app development 

Figure 7.1 Keep up to date with development trends through a handful of different e-mail newsletters 

and listservs. (Courtesy of Dave Verwer.)
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switch-hitter—someone with above-average comprehension of both programming and inter-

face design—so you can’t expect yourself to internalize everything immediately. However, by 

acquiring small bits of knowledge here and there you’re becoming better equipped to make 

informed design decisions in the future.

Talking the talk is one thing, but walking the walk is another. Once you become familiar and 

comfortable with these not-so-foreign languages, try to act on your knowledge. Practice 

programming; this effort will earn you the respect and admiration of the programmers you’re 

working with, which will pay off when you turn to them for design advice or help implement-

ing an ambitious or atypical design plan you’ve cooked up. Making the effort to speak their 

language and understand what they do will earn you a lot of goodwill with the people who will 

make your vision a reality.

From Sketch to Programmable Design

Gaining a fundamental understanding of programming’s terminology and philosophy will go a 

long way toward helping you create design work that doesn’t make code writers cringe when 

it’s handed off to them. From the moment you begin to work on a project, one thing is certain: 

The end of the application development process will involve your design work being turned 

into computer programming code, which will then be thrown into a compiler and morphed 

into executable binary language, thus becoming the application users will download to their 

smartphones or tablets.

This chain of production is ultimately the reason why it’s important to understand how pro-

grammers operate. As a designer, you’ll develop documentation for a programmer, and the 

temptation will be to fill it with creative and flowery design verbiage. But then the programmer 

will need to translate that elaborate language into something more technical; like with any con-

version of words from one language to another, this leads to the possibility of misinterpretation 

or loss of meaning.

As you learn more about programming, you gradually eliminate the potential for valuable 

information to be lost in translation, which will ultimately lead to software that looks and 

functions closer to your original design intent and will make the app a truer fit to your original 

interaction goals.

When striving to use more accurate technical terminology in your design documents or when 

discussing a problem with a programmer, don’t get frustrated or discouraged when you’re not 

sure how to explain what you’re asking for; this is a common problem that affects everyone 

who jumps into mobile interaction design. The only real solution is to take the time to find the 

correct answer to what you’re looking for. Learn how to accurately describe and name the inter-

action technique or interface asset you’re looking for; don’t try to make uneducated guesses or, 

even worse, use terminology that doesn’t apply to the medium you’re working with. This will 
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only leave you with a confused programmer or will encourage the programmer to implement 

the incorrect interaction you accidently described.

note

How do you create design documentation? It’s a somewhat ambiguous item that 

doesn’t really have a formal definition, and it can vary greatly between designers. 

It usually involves creating a text file a few pages in length that presents wire-

frames, app mockups, examples of colors and logos, and notes for programmers 

on how the application should look and feel.

Apps mentioned earlier this book, like Balsamiq, can be useful in creating design 

documentation. Another great piece of software for making such documents is 

Napkin by Aged & Distilled LLC.

One of the biggest mistakes a designer can make, for example, is to use traditional, layman’s 

computer terms such as “double click.” Although this gesture is commonly used on a desktop 

operating system, on a mobile device a single tap on a screen is what’s used to select text or 

activate a button. This instruction to a programmer could either waste time with an improper 

implementation or lead to a poor user experience. Both are significant development mistakes 

that should be avoided at all costs. There’s no mouse pointer or clickable button on the screen 

of nearly all mobile phones. When users interact with the screen, they tap, not click. Be sure to 

get your terminology correct, or you risk confusing your programmer. Use language similar to 

what’s shown in Figure 7.2.

Figure 7.2 Use words such as tap or pinch, not traditional computer interaction terms such as click.
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Describing Your Design
It’s important to be accurate and clear when describing to a programmer what you want them 

to build. Keep reading and practicing until you’re comfortable with describing your design 

using the most common interaction words in mobile development. When using an app, users 

pinch and swipe. They don’t scroll or click. Practice your vocabulary and be capable of explain-

ing your design using these words.

tip

As a designer, you’ll need to understand the various types of gestures a user might 

perform as well as the proper terminology to describe those movements. Here’s a 

short list of common motions.

 ■ Tap: Taking a single finger and pressing a specific area of the screen 

then almost immediately lifting up.

 ■ Press: Like a tap, but the finger is kept on the screen for a few seconds.

 ■ Drag: Pressing a single finger down on the screen in a specific location 

then moving the finger to another part of screen without lifting the 

finger.

 ■ Pinch: Placing two fingers, typically the thumb and pointer finger, on 

the screen then moving them closer together or farther apart while 

keeping both on screen at all times.

 ■ Flick: Pressing down on the screen then sliding a finger in a specific 

direction. The momentum is similar to a drag, but the finger lifts off 

the screen while making the motion.

 ■ Two-finger tap: Performing the same action as a tap but with two 

fingers at the same time.

 ■ Rotate: Placing two fingers on the screen in a similar way to the pinch 

but instead rotating the fingers around a center point as if they are 

twisting a dial.

When documenting and describing your design, use clear, simple, and concise sentences to 

indicate what you envision. Don’t fret if English wasn’t your strongest subject in school, though; 

this doesn’t need to be award-winning writing. These sentences and paragraphs are more 

about implementation and less about grammar and sentence structure. A programmer isn’t 
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looking to be impressed by elaborate metaphors or ten-dollar words. He or she is simply look-

ing for you to clearly articulate your design plan.

When in doubt, refer to things the programmer is likely familiar with. Lean on other applica-

tions in order to clearly communicate your interaction design plan. Tell a programmer, for 

example, that you want new user data in your app to “automatically be pulled in and appear as 

if it continues on forever, the way Instagram displays photos or Facebook shows news stories,” 

and you’ll quickly communicate your point. Indicate that your app should have a pull-to-refresh 

function “identical to the one in the official Twitter app for iPhone,” and your message will get 

across without a problem. These types of descriptions, similar to what’s shown in Figure 7.3, 

provide concrete examples for a programmer to consult when implementing your design plan 

in code.

Figure 7.3 Tell a programmer in a simple way that pull-to-refresh is what you’re looking for, and this 

is what you’ll get: a gesture for refreshing content that is familiar to the user.
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Although it’s important to be clear and concise when describing what you want, leaving noth-

ing up to programmer interpretation is important as well. Being as detailed as possible removes 

the need for programmers to fill in the blanks and hopefully leads to a truer realization of your 

interaction design. It’s essential to state those specific details early on in the process, however, 

because design is a very abstract technique and programming is extremely literal.

A slight design variation that can be described in just a few words in a document could require 

an extraordinary amount of source code to be rewritten. Novice designers often grossly 

underestimate the amount of time it takes to replace source code and rework a programming 

problem once an implementation has already been built. The assumption that certain elements 

can be quickly rewritten only wreaks havoc on a project and leads to rushed design. The more 

a designer understands programming, the more he or she recognizes how much work it often 

takes to retool even the simplest elements.

This do-more-now-to-avoid-doing-a-lot-later concept is something that development teams 

also need to communicate to clients. It’s important that they understand that spending an 

extra half-hour at the beginning of a project to ensure something is done right will keep project 

costs down. Otherwise, they’ll end up paying a lot more for your team to make changes later in 

the game when code must be rewritten.

Therefore, be descriptive and make sure you’ve properly thought through all the potential 

design issues that may arise. Don’t shy away from asking your programmers whether you’ve 

provided enough detail for them to do their job. Although you’re likely to be working with 

them hand in hand throughout the development process, it’s crucial to thoroughly discuss 

every aspect of your design with the programmers before a single line of code is written. Once 

they start, they should feel like they could write the entire application without ever needing to 

confer with you again.

tip

What sort of questions should you ask a programmer to make sure they understand 

your design? Here are a handful of sample queries that you might want to ask to 

make sure you’re both on the same page.

 ■ Does the way I’ve integrated a segmented control bar make sense 

here?

 ■ Is it OK if we integrate this custom button that I’ve created? Is there 

any special way that I should export the art assets for you?

 ■ Do you think this custom font file will be easy enough to work into the 

app, or should I try to use one of the system standard fonts?
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You and your team may also find it useful to build an interactive prototype through one of 

many specific software packages that help designers turn their ideas into something more 

tangible. Briefs by MartianCraft and MarvelApp by Marvel Prototyping (see Figure 7.4) are two 

easy-to-use pieces of software that let designers take basic Photoshop work and translate it 

into a mockup on an iPhone or Android, allowing for rapid prototype development. Creating a 

more fully interactive prototype will require more work and consume a large amount of time, 

thus delaying the start of programming, so be sure to fully consider the pros and cons of this 

tradeoff before doing so. If you don’t think a prototype will get you to your desired result any 

faster, you may just end up wasting your limited time and resources by going through this 

extra phase.

Figure 7.4 MarvelApp offers a simple way to create interactive prototypes of mobile apps in a Web 

browser.
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Finally, be sure to do everything you can to grow your relationship with your programmers 

and ensure that strong, open lines of communication exist. If they’re not comfortable creating 

what you’re asking for, be flexible and try to understand their concerns or criticisms. It’s easy 

to get aggressive and defensive when a programmer questions your design ideas, but when a 

programmer says he or she will have a tough time doing what you’ve planned, it’s not neces-

sarily because he or she is lazy or arrogant. Concerns are being raised because the programmer 

wants to be sure he or she can help build an application that everyone on the development 

team can be proud of.

Communicating During Development
Just because you’ve gone through the preproduction process of documenting your design and 

handed it off to a programmer doesn’t mean your work on the project is complete. In order for 

the app to succeed, it will be imperative for you to be in constant contact with the program-

ming team through their phase of development up until it ships to a digital app store. Like 

peanut butter and jelly, design and programming are very different elements that complement 

each other well; they must be blended in order to effectively wrap up a project.

Clear Communication

First and foremost, it’s critical that you indicate to your programming team that you’re available 

to answer any and all design questions during their part of the development process. No matter 

how well you think you’ve documented your design and outlined what you intend the visuals 

to look like, your programmers will have questions along the way. Be sure to check in with them 

periodically—perhaps on a weekly basis—to make sure no problems or issues have popped up.

Establishing contact on a regular schedule will help you guarantee that no design implementa-

tions or product expectations fall off track—something that can complicate the situation, espe-

cially when working with a programmer for the first time. It’s much easier to make a repair or 

two early on when the wagon is just starting to move rather than much later when the wheels 

fly off the axles midway through a long journey.

Regardless of how well you do or don’t know the programmers you’re working with, it’s impor-

tant to establish a standard procedure for noting and communicating about design issues and 

software bugs that show up during the development process. Once multiple hands get on a 

project (and even when you’re working alone), it’s important to carefully note every issue that 

rears its head so that it can be adequately put to rest.

Because collaborating on design issues and alterations is such an integral part of app development, 

a niche industry has sprung up for apps that specifically help make communication easier. Skitch by 

Evernote (shown in Figure 7.5) is a popular piece of desktop software that makes it easy to quickly 

mark up images and graphically note what pieces of a design are broken and in need of a change.
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Tracking Issues

Many programming teams use what’s known as a source-code-control system to help various 

programmers and designers collaborate and share code. The most common technical protocols 

used to facilitate this process include Git, Subversion, and Mercurial. These technical tools are 

typically tied into full-service online businesses for which source code for the project is stored 

off-site on a cloud server and then distributed between team members. These control systems 

are also usually tied together with some type of bug-tracking software to manage issues and 

Figure 7.5 Skitch makes documentation and noting change requests on images simple.
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include a wiki site or other document-management tool for storing API and design documenta-

tion for the project.

Software development teams on the most popular mobile platforms frequently call upon the 

Git source-control system managed by Web sites such as GitHub or Bitbucket to manage code 

and project collaboration tasks. That level of trust can likely be attributed to the fact that Git 

was authored and managed by Linus Torvalds, the iconic programmer who was fundamental in 

creating the popular open-source operating system Linux.

In fact, Android is a Linux-based operating system, and iOS has a foundation in Unix, which 

shares many common fundamental attributes with Linux. Even without considering the Tor-

valds connection, though, Git is popular because it’s arguably the fastest source-control system 

available, a highly desirable quality for teams focused on rapid iteration.

Using services such as Bitbucket or GitHub primarily offers an easy way for others to help bug-

test your source code, make suggestions for features, and collaborate, typically all at a low cost. 

They also provide an extraordinarily easy way to manage the difficult issues that arise when 

attempting to share dozens of different text files and a variety of images between groups of 

people, especially when those files are changed quite frequently.

These tools come in handy even when working alone or when in a team of only two or three 

people, and despite the significant learning curve they come with they’re worth the effort.

Source-management tools do much of the complex work involved in merging files and tracking 

changes while also providing valuable off-site backup of precious source code, although you 

should never use a service like GitHub as the sole safety net protecting your work. If you make 

a mistake in your code, Git can be a great tool for reverting back to a previous version from 

before the complication arose.

tip

As with any form of important work, it’s important to develop a plan for backing 

up your essential code and art files that you never want to lose. Most developers 

recommend a “rule of three” for backing up data: one drive constantly connected 

to your computer using routine backup software such as Time Machine by Apple 

or CrashPlan by Code42, a local network or directly connected drive that is backed 

up on a weekly basis, and a third backup protected off-site using a cloud backup 

service.

As you grow more fluent in a source-code-management system and more comfortable with 

its tools, you can discover ways to expand its uses. If you find that your team is growing larger 

and could use a more rigid, structured system of assigning tasks and reporting code errors or 
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bugs, you might find it beneficial to turn to more full-featured project-management solu-

tions that also support source-code management—offerings like Assembla Inc.’s Assembla or 

Atlassian’s JIRA.

Figure 7.6 shows a project-issue entry created in Bitbucket, in which team members can for-

mally document problems with code. It allows programmers to comment, stakeholders to vote 

on the importance of the issue, and more.

Learning More

You could also consider learning Markdown, a simple markup language used in a variety of 

different management programs that can help you better document issues and format wiki 

pages. Markdown is used heavily and almost exclusively in the creation of wiki pages on popu-

lar source control sites such as GitHub or Bitbucket. By picking up some basic knowledge, you’ll 

be able to include powerful formatting in issue tracking and documentation, which will make it 

easier for the programmer to understand what you’re discussing.

Figure 7.6 Issue trackers are a great way to delegate bugs and feature fixes.
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tip

Markdown, created by John Gruber, is similar to HTML but much simpler in style 

and syntax. It allows you to easily add bold, italics, bullets, and other text-format-

ting features that help emphasize your writing. To set a word in bold, for example, 

you simply surround it with asterisks, like *this*; or to note a section header, use

the “#” symbol at the beginning of a line. For more information on Markdown, see 

this book’s online links page or visit http://daringfireball.net/projects/markdown.

As you fall further down the rabbit hole of source-code management, you may also find 

yourself slipping into the world of command-line interfaces, using programs such as Terminal 

in OS X or the open-source TortoiseGit project in Windows. Although many applications are 

being developed to help command-line-phobic developers through the creation of a graphical 

user interface tool for committing and pulling source changes (GitHub and Bitbucket both have 

their own GUI tools), consider giving the command line a chance. It may be intimidating, but it 

will ultimately help you learn more about how source control works and how command-line 

interfaces function.

tip

If you’re looking for help with the command line, here are some great resources to 

check out.

 ■ A Practical Guide to UNIX for Mac OS X Users by Mark G. Sobell and Peter 

Seebach

 ■ A Practical Guide to Linux Commands, Editors, and Shell Programming by 

Mark G. Sobell

 ■ UNIX for the Impatient by Paul W. Abrahams and Bruce R. Larson

 ■ Windows 7 and Vista Guide to Scripting, Automation, and Command Line 

Tools by Brian Knittel

When using a code-control system, you can easily check out a source repository during devel-

opment, poke around, and make changes to the code by using an integrated-development 

environment such as Xcode or Android Developer Studio, test the code by using an actual 

device or software emulator on your computer, and then push changes back into the project 

that will ultimately be included in the shipping application. If you’ve never contributed code 

to a project before, especially if you’ve worked as a mobile designer on a handful of projects 

already, you’re sure to find the process of contributing code to a product shipping to an app 

store extremely satisfying.

http://daringfireball.net/projects/markdown
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Comprehending the Source Code
Now that you have a basic understanding of the tools required to contribute code to a project, 

you’re ready to jump into the deep end of programming. The following recommendations will 

help you effectively manage source code and make valuable contributions to a project.

A few things to note before proceeding much further: These recommendations come from 

the perspective of designers who don’t have a formal background in computer science and 

are based on knowledge gained through significant experience and many mistakes. These 

tips should help you tackle the problems of analyzing source code and make proper design 

changes even when you have little to no experience with programming or the source language 

used to create the software.

None of these tips are ironclad requirements; feel free to test out these suggestions then break 

away and experiment on your own. The idea is to find a system that makes you feel comfortable 

when you analyze source code for the first time—then again and again—and that will allow 

you to make code changes yourself and not need to rely on a programmer. Once you’re capable 

of altering an app’s code, even if only for the interface and interaction components, you’ll be 

more capable of directly influencing how a project evolves prior to release.

tip

Programming is not a spectator sport. It’s best learned when you get your hands 

dirty and dig into code. The same goes for learning command-line interfaces, 

UNIX commands, Git, Mercurial, or any of the other technically difficult topics that 

might pop up during your career as a designer. Don’t be afraid; jump in and learn 

through experience.

A Designer’s Introduction to Programming

First and foremost, it’s important to recognize that nearly all designers try to remain as far away 

from source-code work as possible during the design process, preferring instead to dictate 

directly to a programmer. Based on personal experience, this approach is inherently wrong 

and extremely inadvisable. By learning to work with code and knowing how to make even 

small changes to it, a designer gains a much deeper understanding and comprehension of how 

software operates. Once you can work with and understand the code that is the DNA of the 

application you’re building, the whole software-development process becomes less abstract 

and significantly clearer.

Working directly in code is much like being a mechanic or using a manual car transmission; by 

peeking under a vehicle’s hood or by physically shifting it from gear to gear, you gain a more 

thorough understanding of how it functions. Likewise, by digging deep into an application’s 
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code you develop a better appreciation for how your work manifests itself on the world’s 

phones, tablets, and computers. It can even help you improve your design abilities as you find 

ways to create better functioning applications.

Second, take some time to learn how to use Git as a source management system. If the 

application you’re creating is for Android or iOS, it will be nearly impossible to ignore Git. This 

source-code-management software is used on a significant majority of all open-source mobile 

software projects, and the large majority of mobile developers use it for management tasks.

Third, acquire basic knowledge of UNIX-like operating systems. In order to contribute code 

to a project, you’ll likely need to use Git, and Git can at times be difficult to use without UNIX. 

After being able to successfully pull and push to source-code repositories, you can move on to 

attempting to edit code.

tip

Many designers, who by no means are computer-science wizards, use the Macin-

tosh command line frequently every day—making it important to understand 

UNIX. Here are a few commonly used Terminal commands and what they do when 

inside of a directory containing a Git repository.

 ■ git status: This is used to check and see what changes you’ve made to 

a project or how far behind or ahead your project is from the branch 

you’re working on. You’ll often use this to verify what you’ve changed 

before you commit code.

 ■ cd: This command is short for “change directory” and is used 

frequently when moving between different project folders.

 ■ git pull: This Git command is used to talk to the Git server and ask if any 

changes have been made by the other members of your team. If so, 

this command pulls them and integrates them into your source code.

 ■ git push: This command is the opposite of “git pull” and is used to send 

any changes you’ve made in the source code back up to the server.

 ■ git commit: A commit is a group of files that you’ve made changes to 

in the source code at the same time. You’ll tie these changes together 

with a commit message, which is a small note to let other team 

members know what you did with these files.
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 ■ open: This command is used to open a file in the UNIX command line 

on an operating system such as OS X or Linux. You can use “open” to 

edit a file quickly.

 ■ git help: When in doubt, git help it out. This command will offer many 

insights into and details about different options and abilities available 

in Git.

Writing Source Code

Source code essentially is a collection of documents that comprises everything in an applica-

tion made for iOS, Android, or other platforms. Any piece of software available today typically 

contains dozens of source code files in various different file formats—text, images, audio, etc.—

all placed together in a single package that will eventually become an application. Using an 

integrated-development environment (IDE) such as Eclipse, Android Developer Studio, or Xcode, 

these different files are tied together in a specific fashion and then “compiled” into a software 

binary, which is either loaded directly onto a computer using an emulator or onto the Android or 

iOS device you’re targeting.

IDEs typically include a source-code text editor, a set of debugging tools for solving errors, and 

the compiler that helps create the software binary. For mobile development and in more recent 

and more advanced IDEs, graphical user interfaces are becoming the go-to aid that helps cre-

ate interface pieces and software. Tools such as Xcode’s Interface Builder allow many interface 

and interaction components to be added to an app with a simple drag-and-drop interface. 

These graphical tools are of high value to designers who don’t have computer-science training, 

because they allow for quicker, more intricate changes to an interaction design. In most cases, 

though, these GUI tools only allow designers to make changes to very high-level interface and 

interaction pieces; to make fine, detailed changes, you’ll eventually need to drop down into 

actual source code.

Once you begin manipulating it, you’ll learn that working with code requires a fairly rigid work-

flow. As long as you attack programming in a structured way, you’ll find success and soon feel 

comfortable making changes to your app projects. It’s much easier than you imagine; once you 

get the hang of working with source code, you’ll find yourself increasingly more ambitious and 

willing to take on new challenges.

As a designer, working with source code goes best when using the following repeatable pattern.

1. Talk with the programmer or conduct searches yourself to find the lines of code that 

correspond to what you want to change in the app’s design.
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2. Make small changes, usually only 1 to 10 lines of code at a time, tweaking colors, 

variables, and more to (hopefully) improve the application’s interface and interaction 

design.

3. Test the code with an emulator, a computer, or your personal phone or tablet. Launch 

the application and navigate to the section in which the code change should be dis-

played, and see if it appears correctly and responds as you intended it to. If it doesn’t, 

jump back into the source code and make other adjustments then rebuild and see if 

you’ve gotten the fix right. Repeat until the app works as desired.

4. Once the code works, commit it to the local source-code repository, and—depending 

on your team’s workflow—either push to a remote repository or place a pull request at 

the origin repository your programming team has set up.

5. When you’re finished with a code change, move on to the next interface piece that 

requires an adjustment then start again at step one.

Knowing What to Change

The most important—and difficult—part of this entire process is determining which code 

lines are required to make your desired change and what different properties are available to 

make that change. The key here is to keep constant contact with your programmer as you start 

exploring source-code manipulation; politely ask for help and information whenever needed 

regarding where to find the code you’re searching for. As you start to see coding challenges 

firsthand, you’ll begin to pick up clues as to how to spot potential problem areas.

If you’re working on an iPhone app, for example, and want to change the color or font of a 

specific section of text you’ll soon find that “UIColor” and “UIFont” are key terms to search for 

when you’re looking to make such an adjustment. Once you know what to look for, your brain 

will begin to automatically search for those character combinations and help you more easily 

identify where they are in the code. The following is an example of some partial source code 

that could potentially be used in an iPhone app to create a text label:

cell.selectionStyle = UITableViewCellSelectionStyleNone;

[cell.textLabel setFont:[UIFont

fontWithName:@"HelveticaNeue-Medium" size:14.0f]];

[cell.textLabel setTextColor:[UIColor colorWithRed:175.0/255.0

green:41.0/255.0 blue:46.0/255.0 alpha:1]];

[cell.textLabel setTextAlignment:NSTextAlignmentLeft];

cell.backgroundColor = [UIColor colorWithWhite:1.0 alpha:0.75];

If you have visual design experience, there should be a great deal here that is already familiar to 

you. In this label, the app is using Helvetica Neue, a system font that is fairly standard through-

out the design world. It establishes the numeric value for the font size in a method similar to a 

word processor; here it’s set to 14 points. Percentage RGB color values set the color of the label, 
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using some simple arithmetic to get a color with a red, green, and blue mix that results in a 

shade of dark red. Here, the text is set to a left alignment, but you could easily shift that to the 

center or right with a simple adjustment. Finally, the background is set as a semi-transparent 

white to help it stand out from a textured background.

It’s as simple as that. The small set of lines above is all that’s required to change the visual 

appearance of a text label that is seen often and communicates important information to users. 

Of course, this is the code for just one label, and there will be many more of these inside apps 

you develop; to make changes to any of them, you’ll have to search through the code, locate a 

specific element, and then tinker with it until you get your desired appearance.

Once you master this skill, you’ll no longer need to repeatedly harass your programmer to make 

a label a “redder red” or a “lighter light blue”; instead, you can go in and bump color levels up or 

down until the element reaches your heart’s desire.

warning

When it comes to committing code using a source-code-management system, 

you want to commit the smallest chunk of code making a change into a push. That 

way, if anything goes wrong and a programmer needs to search for what caused 

the problem he or she can roll back appropriately, and you won’t lose big chunks of 

work due to a mistake elsewhere.

Likewise, you also want to create as meaningful and explanatory a commit mes-

sage as possible so that other teammates can read through and make sense of your 

work in the future.

Take a look at another chunk of code and how you could manage interaction changes within it:

UIButton *button = [[UIButton alloc]

initWithFrame:CGRectMake(0, 0, 33, 21)];

[button setImage:[UIImage

imageNamed:@"Menu-NavBarMenuButton.png"]

forState:UIControlStateNormal];

[button addTarget:self action:@selector(editTableView)

forControlEvents:UIControlEventTouchUpInside];

[button setExclusiveTouch:YES];

UIBarButtonItem *customMenu =

[[UIBarButtonItem alloc] initWithCustomView:button];

self.navigationItem.leftBarButtonItem = customMenu;

This block of text creates a special, customized button in the iPhone app’s navigation bar (see 

Figure 7.7), which then brings up a sidebar menu.
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This code might look intimidating if you’ve never seen it before, but once you break it down 

it’s actually quite simple. It creates a custom button that’s used to slide out a side menu, similar 

to the navigation bar button used in many popular applications. In the example code, the 

button is invoked and a frame is created. The button is 33 pixels high and 21 pixels tall, set by 

CGRectMake(0, 0, 33, 21). The two 0s at the beginning are the x and y coordinates 

on screen for where the button begins. Here, the button is being created at the top left of the 

screen. Then, the code references the image that is used to create the appearance of the but-

ton, named Menu-NavBarMenuButton.png.

If you wanted to change the look of the button and in turn the button image, you could do one 

of two things: update the button art and save over the original file, or create a new image file 

and add it to the project then change the string of code identifying the original file name.

The important interaction pieces here are the forControlEvents:UIControlEvent-

TouchUpInside and self.navigationItem.leftBarButtonItem sections of 

the code. The UIControlEventTouchUpInside event means that the button registers 

the touch and tells the application to open the menu once the user releases a tap on the 

menu button. You could change this to respond to a specific swipe or drag gesture, but the 

UIControlEventTouchUpInside property is most likely to be used in any situation 

in which you want a standard button-interaction type. The self.navigationItem

.leftBarButtonItem property means that the icon will be positioned in the standard 

location for navigation-bar button icons on the left side of the screen. If, for example, you 

wanted the button to appear on the right side of the screen, you would simply change 

leftBarButtonItem to rightBarButtonItem.

These are just the basics of working with source code to make contributions to a software 

project. If you find your experiments in this area to be valuable, though, know that you’ve taken 

a major step toward becoming a better designer capable of making a direct impact on the 

design development of your projects. Your programming team will appreciate that effort—not 

to mention the time you save them by making code changes on your own.

tip

For more tips and tricks on manipulating code, search the Internet for the snippets 

you’re working with or for keywords used earlier, such as UIColor or UIFont. 

Figure 7.7 This navigation bar doesn’t look that different from the standard iOS style, but the icon to 

the left is custom and implemented using the code shown earlier.
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IN-DEPTH

Developing a standout application requires strong communication and teamwork 

between the programming and design teams. Here are a few shining examples of those 

principles in action.

 ■ Instagram is an app that involves a variety of moving pieces yet still needs de-

sign unity across platforms. For the huge social network to be successful, it re-

quires a strong server back end to support it, technical programming that allows 

for quick and attractive edits to images using unique filters, and features that 

remain the same across iPhone and Android. Throw in the fact that the design 

team must continue to outpace competition from other photo apps and that 

the programming team must constantly plan for new features and you have an 

extraordinary case study of great communication by a development team.

 ■ What about when you add hardware engineering into the design/program-

ming equation? Automatic by Automatic Labs, Inc. is an app that pairs with a 

Bluetooth dongle that fits onto the data port on your car. It’s commonly used 

by mechanics during repairs. Using the data from the hardware accessory, the 

application provides an appealing interface that helps you track mileage, learn 

more about fuel-efficient driving, and alert family or emergency services if 

you’re in a crash. It’s another instance of a group delivering a great all-around 

experience, especially when you remember that the app performs exceptionally 

well with iOS and Android and on hundreds of different car models that have a 

Bluetooth hardware link.

 ■ Ask experienced developers what type of application is the most difficult to cre-

ate, and you’re likely to often hear “e-mail” as an answer. It’s a tough element to 

program around. The standards are rigid and unforgiving, there’s a multitude 

of rare edge cases to prepare for, and users of course expect a bug-free experi-

ence at all times. Enter Mailbox by Dropbox, a delightful and novel e-mail client 

released in 2013 that reimagines e-mail as a to-do list. The application offers a 

variety of nifty programming tricks, such as the ability to time-shift e-mail so 

that it doesn’t appear in your inbox until a future date. It paired these elements 

with elegant gestures and subtle design cues that were produced in an easy-

to-understand way. Mailbox stands out as a wonderful convergence of quality 

design and programming.

Numerous blogs and forums and the invaluable http://stackoverflow.com are all 

dedicated to helping designers get better at programming.

http://stackoverflow.com
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Conclusion
Programming isn’t something designers have to do on a daily basis, but working with people 

who program will be an essential part of your work as you build an app portfolio. Over the 

course of your career, you’ll need to get along with programmers of various backgrounds and 

all levels of experience.

Much like any profession that requires close work with someone of an alternating skill set, it’s 

important to put yourself in the other person’s shoes in an effort to understand the difficulties 

they encounter in their everyday workflow. By attempting some basic programming tech-

niques, you can better understand how to prepare your work in a way that your programmer 

will appreciate, which in turn makes you a more valuable team member.

By practicing these tips, you should become more capable of sitting behind an IDE such as 

Xcode or Android Programming Studio and have a basic understanding of what to do. By 

learning how to better influence the apps you design, you’re growing your potential to create a 

mobile masterpiece.
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MAKING APPS USABLE 

BY ALL

No programmer or designer wakes up in the 

morning and sets out to create an average piece of 

software. The goal is to make something great, and 

the way to do that is to constantly iterate in an effort 

to improve (while never harming) your application’s 

interaction design. But how do you know what will 

work and what won’t? Making your app easier to use 

requires walking a mile in the shoes of the average 

user—or at least spending a few hours in their 

eyes and fingertips. Strive to see an app the way a 

common consumer sees it, and you’re on the path to 

success.
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Knowing Your Audience
Knowing what actually constitutes an improvement to an app can be tricky. As a designer, 

you’re likely a computer and smartphone power user. You spend hours every day working with 

Photoshop or other pieces of complex software. You have dozens or even hundreds of apps 

loaded on the latest and greatest version of your smartphone or tablet of choice. You read 

many popular blogs and news sites for constant updates on what’s going on in the world of 

technology.

Essentially, it’s very unlikely that you represent a hypothetical average user of your app. As a 

result, design decisions that you think will improve users’ experiences may actually end up 

being something the average user views as a significant regression.

The average consumer of an app you design is someone who only moderately—or perhaps 

even lightly—uses a computer, tablet, or smartphone. Perhaps they only fire up a laptop to 

manage their finances, pay bills, browse the Internet, or draft documents on a word processor. 

They might have only a handful of apps on their phone, and the ones they do have might have 

come with their device, been found on a top downloads list, or have been recommended by 

friends or family members.

They’re far less versed in technology than you are, but you still must put yourself in their shoes 

if you hope to build a great product that they find appealing and useful. Although this situa-

tion is common in the development of any product—in everything from cars to power tools, 

the person putting the item together knows more about how to interact with it than the end 

user—the “appification” of software over the past several years has added a few complicating 

factors to this situation.

First and foremost, it’s extremely rare for any app built now to come with any sort of instruc-

tion manual or lengthy tutorial. The traditional software of the 1980s, the 1990s, and the first 

decade of the twenty-first century was often sold in brick-and-mortar stores and came in boxes 

that included a booklet with a few dozen pages spelling out the program’s various features and 

options. Today, applications are downloaded in seconds and users begin interacting with them 

immediately. Many even lack a Web page that offers significant details on how to best use an 

app. Unlike the designers of yesteryear, you now face a situation in which any user who opens 

your project is thrown into a dense forest—and it’s your job to lead them step by step into 

the light.

Some developers take the time to create elaborate and detailed Web sites to help a user navi-

gate through an application. These sites can be great tools, but they’re often difficult for users 

to find if they don’t know where to look or if they don’t know they exist. In Figure 8.1, you’ll see 

one strong example of a support Web site from the developer Tapbots, LLC.

Second, not everyone is an expert smartphone user; plenty of designers forget this, creating 

convoluted designs that confuse or quickly disengage a user. Too many apps include design 
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patterns or interaction sequences that are seemingly made for a secret society of smartphone 

enthusiasts. Although there certainly is a market for apps designed solely for power users—and 

you may sometimes find yourself making something for that group—it’s important to under-

stand your audience and build an app that is immediately relatable and understandable for 

average users.

tip

When working on a project, consider whether or not it passes the “grandmother 

test.” Is the application easy enough that your grandmother (who likes her smart-

phone but has never been a big computer user) could understand and enjoy it? If 

so, you’ve probably created an app that will work well for all users.

Finally, many designers forget that with the proliferation of the affordable, subsidized smart-

phone handheld devices are becoming more commonly used than computers. That means 

your user base will come in all shapes and sizes. From the young to the old, people are 

Figure 8.1 Here’s a quality support page, offering users help with the company’s apps.
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embracing these new mobile devices at unprecedented rates, which, although good for busi-

ness, does create a number of challenges for designers.

Mobile phones and tablets are so easy to use now that they can be controlled by users that 

are just a few years (or even months) old. Toca Boca (see Figure 8.2) is a development studio 

devoted to creating kid-friendly iOS and Android apps that are fun and educational.

To understand the average users of smartphones and tablets, you must grasp the world in 

which they live. Like a biologist that studies desert plant life, it’s difficult to understand your 

subjects if you’ve never made a trip out into the sand.

How Sandboxing Changed Mobile
A major fundamental shift in how users experienced software occurred in 2007 and 2008 with 

early versions of the iPhone and Android devices and the mainstream popularity of application 

“sandboxing.”

Figure 8.2 Toca Boca is well-known for family friendly apps and games. (Courtesy of Toca Boca.)
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With a traditional computer, an operating system would give the user many files to manage and 

navigate via a hierarchical folder system. This technique was implemented across various edi-

tions of Windows and OS X, all featuring data stored in various folders—with common names 

like Documents, Desktop, and Photos—that were all created and edited by applications in the 

system. Over the years, users became quite familiar with this setup. They launched a program, 

opened or created a certain file, made changes to it, saved the file, then closed the program.

In the move to mobile, this navigation and creation method shifted significantly. Although the 

operating systems on smartphones and tablets still have a hierarchical structure, it’s no longer 

one the user sees or interacts with on a regular basis. Nested directories holding files and appli-

cations have long been the norm on all mainstream computing platforms, but this practice was 

often considered too difficult for the average user. In order to increase simplicity and usability 

of mobile devices, the way users interact with content was changed drastically.

Instead of using windows and folders to navigate through information, phones and tablets use 

sandboxing, a somewhat complex security mechanism in which applications are self-contained 

and have no access to a device’s file system. Essentially, each application lives as a packaged 

binary inside its own digitally literal and figurative box, and each remains, for the most part, 

unaware of other applications on the device. Each application is, with a few exceptions, unable 

to modify files created by other applications or can only do so when explicitly ordered by the 

user. Similarly, the file system is not viewable to the user, so he or she can’t select a specific file 

to edit independently. Instead, the user must go into the application the file was created in and 

make the necessary change there. Figure 8.3 displays Springboard, which is Apple’s tool for iOS 

that allows users to move in and out of different apps.

This massive change in the way people interact with technology has various pros and cons. 

The big benefit is that users now find devices dramatically easier to work with. Not needing to 

handle a file system means that users no longer need to organize files. That brings a greater 

sense of creative freedom because there’s no need to worry about the problems that come 

with creating content: accidentally misplacing, altering, or deleting files. Instead, users now 

only need to open an app and create; all the file management happens behind the scenes.

Sandboxing also offers a multitude of security benefits for users. When apps can’t directly 

access the files created by other apps or the operating system, it becomes much more difficult 

to engineer security flaws or errors that could jeopardize the user’s private data or potentially 

harm the integrity of the device’s system.

This new interaction philosophy does pose some problems for users and designers, though. 

The major issue is that, currently, file exchange between applications or devices is extremely 

difficult, especially for non-image files on iOS. Android and Windows Phone have, with bet-

ter file implementations, allowed apps to communicate more effectively and hand off data 

through systems called “intents” and “contracts,” respectively. These setups allow other apps 
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to take hold of specific data in order to allow users to do certain tasks. Figure 8.4 shows an 

example of what the user sees when an intent is brought to the forefront.

Say, for example, that a user wanted to save a single page from an academic article being 

viewed in a PDF reader and open it in a note-keeping application. In a traditional computer 

operating system, such a technique would be fairly easy, requiring only a simple “Save as” 

action and opening the new file in the notes app or simply copying and pasting the desired 

text or images.

But with sandboxing, taking that PDF page across applications will be fairly difficult and will 

require implementing some clear and focused design so that the user can quickly manage the 

process. You can use Android intents, Windows contracts, or app URL calls to send files across 

applications for sharing.

Figure 8.3 Throughout users’ experiences in iOS, they never truly encounter any traditional file-

management opportunity.
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tip

Do you want to learn more about how applications on iOS can exchange data 

via URLs? Apple hasn’t provided intents or contracts like other platforms; see the 

“Communicating with Other Apps” section of the Advanced App Tricks page under 

their iOS App Programming Guide at https://developer.apple.com/library/ios/

navigation/.

The usability and security of this new application approach has another big benefit for tech-

minded designers: Sales of these devices and software have soared. This rapid growth was 

largely catalyzed by less digitally savvy consumers who never previously bought much soft-

ware as they were turned off by the prospect of steep learning curves and the risks posed by 

viruses or security issues.

Figure 8.4 On Android, applications can register intents as a way to make it easy for applications to 

exchange data and files.

https://developer.apple.com/library/ios/navigation/
https://developer.apple.com/library/ios/navigation/
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As a result, the average level of “computer literacy” in smartphone and tablet app users has 

dropped, and it thus becomes even more important that applications are designed to be easily 

understood. Theoretically, you could develop instructional videos or immaculately detailed text 

tutorials to outline how to use an app. However, users will want to be able to pick up and imme-

diately understand your work, so it’s to your benefit to put yourself inside the mind of the aver-

age user and anticipate and avoid design challenges that could potentially cause confusion—all 

while working within the constraints of this still relatively new world of sandboxing.

note

Sandboxing became prevalent in mobile, but it’s gradually making its way back to 

the desktop as well. With the advent of popular desktop app stores run by Apple 

and Microsoft, software is now required to concede some of its traditional abilities 

in order to be made available for download through digital marketplaces.

Figuring out a way for users to edit files created outside your app isn’t the only problem 

sandboxing poses. App developers are also extremely limited in what an app can do when it’s 

running in the background and not in use. In iOS 7, for instance, applications can only maintain 

their activity and multitask in the background when performing one of several highly specific 

tasks, such as playing audio, performing a VOIP call, or using GPS to navigate for a user.

tip

App multitasking is when an application continues to do work even when it’s no 

longer on screen. For some apps, this is highly advantageous. It means that you 

don’t have to keep a music player open to listen to songs, for example, or that you 

can continue to talk on the phone while you check sports scores. Multitasking can 

have some detrimental effects on things like battery life, though, so in the mobile 

world there are often a handful of restraints placed on how background activities 

function.

Additionally, apps released in Microsoft’s and Apple’s app stores will be subject to a relatively 

strict review process before being made available to the public, and applications must meet a 

variety of standards set forth by the platform provider in order to see a release. This typically 

isn’t a significant issue, but it is important to read through and understand the latest rules for 

the platform before you begin work as some of the things that platforms don’t allow can be 

surprising to designers and developers. Save yourself significant time by reading up on the 

rules before you get started.
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tip

Were you rejected by Apple or Microsoft when you submitted your app? All 

may not be lost. With a rejection, you’ll usually get an e-mail from the app store 

explaining which rules were violated and what, if anything, can be done to fix the 

problem. It may also be possible to appeal the decision and get approval later on.

Interactions for the Mass Market
Despite the challenges posed by sandbox software, it has opened up the potential for small 

operations to design applications that can be accessed and enjoyed by millions of users. So 

what does it take to build an app that can find success in a mass marketplace?

To effectively design a product that will be accepted by the average user, you need a solid 

understanding of who this person is. The following is a generalized portrait of the qualities and 

traits of the average mobile user today. As it always has, this picture will develop over time, and 

there are many users who fall outside this norm as it is.

Nevertheless, identifying the characteristics of average users is a valuable practice for a 

designer as it helps you better understand the needs and expectations of your target market.

Trait 1: Not a Computer Geek

Do you know whether your computer runs OS X Mountain Lion or Mavericks? Can you instantly 

name the speed of your laptop’s processor? Do you know the amount of RAM in your Android 

smartphone? Are you currently reading an entire book on designing interfaces for mobile 

phones and tablets? If you answered yes to any of these questions, we hate to break it to you, 

but you may be a geek. Don’t worry, even if you still feel like you’re in the minority despite 

geeks’ growing domination of popular culture there are many out there just like you. They just 

probably don’t make up the bulk of the people who will download the apps you design.

Most modern users of smartphones and tablets don’t know the exact specifications or techni-

cal capabilities of their devices; sometimes, they may even forget the name of the phone or 

tablet model they have or which company their cell contract is with. To these users, their phone 

or other device is a complex and valuable tech tool required to get through modern daily life, 

much like a car, refrigerator, or TV. They won’t know the details of how their device works, 

because they’re not required to know. They just know that it works. Thus, you should strive to 

create designs that allow the user to successfully move through an app without needing to 

know how large their hard drive is or what screen resolution they have.
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Trait 2: Only Uses a Handful of Apps

The average mobile software user typically only has a dozen or so different apps that they’ve 

downloaded on their phone. That may not seem like a lot, but it’s considerably larger than the 

number of software programs users regularly access when using a laptop or desktop, which of 

course is great for anyone in the app development business. It means you’re more likely to have 

your app purchased or talked about than software designers from a decade ago were, but it 

also means you’re competing for users’ largely limited time and attention to seek out or experi-

ment with new apps.

Users are hesitant to go searching for new software, so your biggest hurdle will be overcoming 

that natural friction and getting your app worked into users’ daily routines. You encourage that 

process by focusing on your app’s name, icon, promotional screenshots, and marketing copy 

as those are key elements in enticing a user to click that “download” button. Take a look at the 

home screen of this smartphone owned by a typical user (Figure 8.5) with only a few applica-

tions. Each download of your app by such a user should be seen as a high honor.

Figure 8.5 Many users only have ten or so applications on their device that were downloaded from 

an app store.
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Trait 3: Uses Apps in Short Bursts

Although mobile apps are called upon to perform in a variety of situations—in line at the 

grocery store, while waiting for an elevator, in the bathroom, etc.—the duration of each use of a 

piece of software is still relatively short. Research on the topic has found that most users spend 

five minutes or less per use of an app. Because that average time period is so short, designers 

need to focus on constructing an interface that has immediate clarity and quick usability and 

that won’t frustrate consumers.

During production, it’s best to focus carefully on the user’s “first experience”: the two to three 

minutes they spend immediately after launching the app. Consider whether the application 

launches quickly and if the primary direction the user takes is immediately apparent. If abso-

lutely necessary, it could be worthwhile to consider developing a short video or interactive 

tutorial that can quickly guide the user through your app’s processes; but be warned, these can 

be frustrating if they grow too lengthy.

tip

When working on a project, keep a measurement of “time until first useful 

response.” That’s how long it takes for users to engage with an app at initial launch 

before they’re getting value from the program. This time can vary per app, obvi-

ously, but it’s a great way to quantify how the interaction design is improving 

throughout the development process.

This trait helps explain why it’s increasingly important for designs to use as many system-

standard components as possible and why it’s often wise to avoid diverting from the norm unless 

there’s good reason to do so. Users quickly get impatient with mobile software, so it’s paramount 

that they be able to pick up an app and within minutes—if not seconds—understand what needs 

to be done to operate it. The best way to ensure that is to use familiar interaction patterns and 

interface structure.

Trait 4: Follows the 80/20 Rule

The 80/20 rule, also called the Pareto principle, has quickly become a proverb in the world of 

mobile development. The concept is simple: About 80 percent of your users will only use 20 

percent of the features contained in a piece of software. No matter how much time goes into 

developing advanced, more complex tools, a vast majority of consumers who download an app 

will only take advantage of a small part of its potential.

Don’t judge, though. Think about the word processor you last used to draft a long document or 

the spreadsheet you call upon to sketch out a budget. How many of those menu options and 
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toolbar buttons have you explored? Surely there are plenty of features and settings you remain 

completely unaware of. Every time you open that program, you likely refer back to the same 

standard set of common, popular features.

Keep this principle in mind constantly as you design, and interact with your user base and test 

users during the development process to discover what parts of an app they turn to most often. 

As you learn more about which features are in demand by your user majority, you can place 

greater emphasis on improving the interaction experiences offered by those features. Make 

your most popular features the ones that are the most enjoyable to use.

Trait 5: Likes What Everyone Else Likes

As unique and creative as your personal style may be, it won’t necessarily be for everyone. 

Taste and design preference varies from person to person, so you’re best off playing it safe and 

simple by opting for typefaces, colors, and iconography that are easy to read and interpret; 

again, avoid reinventing the design wheel with each new app.

This is why you often see strong, primary colors such as red, blue, and green in the design of 

popular icons, and the same goes for popular, standard typefaces such as Helvetica or Arial. 

Although you may enjoy your orange-and-purple complementing color theme that found a 

particularly creative use for Comic Sans, such aesthetic choices won’t bring you worldwide 

acclaim. Come up with a comfortable look that many are bound to enjoy; save the radical stabs 

in the dark for further down the road once your design enjoys success in the marketplace.

Always remember that your average user is much like you, but not entirely like you. The mere 

fact that you’re working on a mobile app means that you’re part of a group that is significantly 

more computer literate than the average person. You and your colleagues are outliers and need 

to recognize and understand the implications of that as you design. As long as you remain 

mindful of this and make every effort to put yourself in the mindset of a typical user, your app is 

on its way toward being easily understandable and useable.

Building Multilingual Interaction Designs
By constantly considering who your app is targeted for—and how to design it in such a way 

that it can find success in the mass market—you’re creating the opportunity for your project 

to lead to financial success. But in contemplating who this average user is, it’s easy to forget 

where this average user comes from. As mobile technology continues to permeate the globe, 

it becomes increasingly likely that this typical consumer is from another country and doesn’t 

share your language or culture.

Most major platforms’ app stores—especially the ones run by Apple, Google, and Microsoft—

are available in dozens of different countries and on every continent not named Antarctica. The 
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mobile marketplace is truly now a global marketplace as well, opening up the possibility that 

users speaking dozens or hundreds of different languages can access your work.

Foreign-language markets (see Figure 8.6 for the foreign markets available for iOS apps) remain 

a huge untapped resource brimming with potential revenue for developers. In the early days 

of computing, these markets were hard to break in to, especially for independent software-

development teams. Typically, only large companies with enormous capital resources could 

permeate foreign countries. With app stores, it’s now no more difficult to make your app avail-

able for download on the other side of the world than it is to make it available for download on 

the other side of the street.

When it comes to interaction and interface design, it can often be difficult to support even a 

few, if not a dozen or more, languages. Getting text copy into an application, fitting sentences 

or words onto buttons or instruction boxes, and verifying grammar and spelling is challenging 

in your native language, much less a foreign one. Translation services are often expensive and 

Figure 8.6 A partial list of all the different app stores available on iOS alone is not unlike the queue 

for the parade of nations at the opening ceremony of the Olympics.
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can lead to a wide variety of design problems; a label on a button, for example, could require 

just a word or two in English but need a longer phrase in German.

Luckily, the platform providers of these operating systems are learning that it’s important to 

make strong multilanguage tools available to developers. Apple’s recent IDE Xcode 5 has made 

it much easier for developers to juggle different languages in an app to make sure the transla-

tion of a language doesn’t cause presentation issues. It allows developers to run a simulated 

version of an app in any target language or quickly view button previews for different text 

copy. Likewise, the most popular IDE to use with Android development, Eclipse, comes with its 

own suite of tools designed to make it simpler for developers to translate their apps with little 

additional work.

note

Do you need more specific information on how to add multiple languages into your 

application? Methods and details can change as operating system or IDE versions 

get upgraded and improved, so for the latest details and procedures that pertain 

to your target platform, see http://developer.android.com, the Apple Development 

Center, or any other platform’s reference pages on language localization.

Where should you look to get translations? Thankfully, there’s no longer a shortage of language-

conversion services available for programmers and developers looking to bring their software to 

other countries. Operations such as Babylon Translator and the Web service ICanLocalize make 

it affordable and simple to translate text in an application. Most of these services cost only a few 

dollars, and the end result is an accurate translation in a variety of languages performed by an 

expert team. The best part is that many offer extremely fast turnaround times.

warning

BEWARE OF ROBOTS It will be extremely tempting to try out an automated 

online translation service, but steer clear of them. Although it’s easy to copy and 

paste large amounts of text into these services and get instant responses, the trans-

lations are often inaccurate and incomplete. Instead, seek out a reliable, human 

translation provider.

In the past, translation programming was often difficult, but at this point in the world of mobile 

technology it’s a process that’s much easier. As a designer, you position yourself for greater 

success by translating your text into as many languages as possible. Find a reputable translation 

service that fits your needs and budget, use the prescribed tools, and then roll out languages in 

your app that fit the needs of your user base.

http://developer.android.com


ptg12441863

DESIGNING FOR USERS WITH DISABILITIES 163

During a recent 9magnets development project, for example, the team noticed over a weekend 

that traffic to its Web site from the Netherlands increased significantly after a write-up in a local 

blog. Although the team wasn’t able to get the application translated and sent to Apple for an 

iPhone update as quickly as it would have liked, the developers were still able to use a language 

service to translate their Web site in just a few hours, allowing visitors from the Netherlands 

to read details about the app in their native Dutch. This significantly grew sales and, before 

the team knew it, the app skyrocketed to the number one spot in the Netherlands app store. 

Although relatively small compared to other big-developer achievements, this distinction was 

extremely valuable for the company and made the quick translation service well worth the cost.

If supporting multiple languages seems out of reach, or if the cost of getting your text trans-

lated is a barrier for your team, it’s still valuable to reconsider your design and implement as 

much iconography as possible. In app development, the old saying is true: A picture is, in fact, 

worth a thousand words, if not more. Replacing text with pictures makes elements of your app 

more universal and easily understood. Even if some text will always appear in English, users 

who speak foreign languages will still be able to understand many parts of your app and hope-

fully find benefit in it.

If you’re unable to offer language support in the early versions of your app, note that major 

digital stores offer tools that allow you to keep your software from being available in specific 

countries. If you know that your app will only be available in English and Spanish upon release, 

you can prevent it from being visible in countries that primarily speak French and German. This 

can be an extremely valuable tactic, especially for text-heavy apps that would essentially be 

useless for those unfamiliar with the language that the words appear in. This feature allows you 

to make an app available to lots of people without risking poor reviews or a tarnished reputa-

tion in areas that speak a language you can’t yet support.

Designing for Users with Disabilities
For all the work that’s been done to improve the accessibility of apps for users in foreign coun-

tries, another group of users has been traditionally underserviced in the software industry. Just 

a bit of extra work by a development team can go a long way toward providing a better experi-

ence for these individuals: users with mental, physical, visual, and learning disabilities.

In mobile computing, there’s a huge growth market for apps that cater to users with various 

impairments, and successful applications have been developed to help blind, deaf, dyslexic, 

and other users with disabilities to get the same enjoyment and opportunity for learning and 

growth from devices that other users have long taken for granted.

You might think, for example, that it’d be difficult for a blind user to fully take advantage of a 

device that has few physical buttons. On the contrary, there’s been consistent growth among 

apps built to help users navigate smartphones with gestures; advanced software that reads 
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menu options; and on-screen commands made through advanced text-to-speech libraries 

similar to the ones that power digital assistants such as Siri or Apple’s mighty AssistiveTouch, 

shown in Figure 8.7.

Additionally, companies such as Apple and Google are building advanced accessibility services 

into each device they sell. That’s led to wider industry adoption of such offerings, especially 

compared to traditional computers, which often required costly hardware or software additions 

in order to get such capability. In the past, specific programs or add-on hardware to magnify 

text on screen, invert colors, read text out loud, and other accessibility features would be sold 

separately, typically at very high costs.

This revised stance has led to a phenomenally rapid rise in accessible computing, allowing for 

previously unthought-of opportunities, such as displaying inverse colors for color-blind users, 

larger on-screen text for visually-impaired users, automatic subtitles for the hearing impaired 

that don’t require constant screen reconfiguration, and overlay tools that allow someone with 

limited dexterity to use complex multifinger gestures with a single hand. These remarkable 

Figure 8.7 The overlay in Apple’s AssistiveTouch tool makes it easy for the user to perform hardware 

functions and complex multifinger gestures with a single finger.
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developments have charted the path for a type of digital interaction that anyone can experi-

ence regardless of physical or mental obstacles.

Because Apple, Google, and others chose to hardwire these accessibility tools directly into their 

operating systems, little work is required to support them so long as the developer is using 

native frameworks and functions. Both Apple and Google have made extensive documenta-

tion available on developer sites to help designers and programmers create apps that work in 

tandem with accessibility settings and options; those are noted in the “In-Depth” section at the 

end of this chapter and in this book’s online resources. Again, it’s essential for designers to keep 

up with this information as it evolves over time.

Making sure that designs are built in a way that conforms to the platform’s expected stan-

dard ensures that features are fully supported. Apple’s tool that provides voiceover assistance 

to blind users, for example, reads a button’s file name aloud for the user if no readable text 

appears. Thus, an image named “Button4.png” is of no use to a blind user, because the file 

name gives no context for its intent or function. Instead, a title like “AddNewFriendButton.png” 

clearly states the task it performs, indicating to the user that a social-media friend request will 

be sent by activating that icon.

Likewise, Google provides the ability to add content descriptions to images, which are used in 

coordination with Android’s accessibility features, thus allowing text or voice information to be 

presented to users who are unable to see photos properly.

Aside from the platform-standard tools, there are also a variety of third-party applications that 

can help make your software more accessible to individuals with disabilities. xScope by The 

Iconfactory, shown in Figure 8.8, contains a variety of modes that help app designers visualize 

Figure 8.8 By accessing a menu in xScope, you can see how users with a variety of color-blindness 

issues will see an application.
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how users with various color-blindness issues might perceive an interface. OpenDyslexic, mean-

while, is an open-source font that can be included in an app to make text more legible for those 

with dyslexia.

By using built-in tools powered by the operating systems you’re targeting, reviewing outside 

third-party services, and spending a few extra minutes reading, you can easily make an app 

more valuable to countless users that would previously be unable to use it. Once you realize 

that a few extra minutes verifying that a design is compliant can later bring hundreds of hours 

of joy to others, the added effort becomes well worth the time.

Conclusion
By now, you’re hopefully familiar with a variety of ways in which designers can better put 

themselves in the mind of the average user in order to produce applications that mass audi-

ences find easy to use and understand. With a bit of extra work through the implementation of 

various language localizations and disability features, you’ll be able to reach even more users 

and expand project revenues along with your user base.

IN-DEPTH

Software that helps individuals with disabilities is becoming cheaper and more read-

ily available thanks to the rise of mobile devices. Here are a few examples of apps with 

interaction designs that aid accessibility.

 ■ Color ID Free for iOS: This simple app allows color-blind individuals to use a 

device’s camera to help identify the colors in photos they take. Users can access 

the onboard camera, hover the on-screen crosshairs over an item, and the appli-

cation gives the user the name of the color shown. It’s a simple way for a person 

to recognize the color of any item he or she is looking at.

 ■ Proloquo2Go: This app serves as an augmentative and alternative communica-

tion (AAC) device for individuals with disabilities who may have difficulty speak-

ing properly. Using the app, the user links together a handful of visual symbols 

in order to create sentences that the device speaks aloud.

 ■ BARD Mobile: Provided by the Library of Congress, this app allows blind users 

to connect their devices to a Bluetooth braille device in order to access a vast 

library of books and magazines.
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DESIGNING FOR 

SIMPLICITY

There’s no arguing against the fact that the 

technology you’re designing software for is a 

little . . . complicated. You’re making programs to 

run on pocket-sized supercomputers and book-sized 

touchscreen panels. Either would have seemed 

like something out of the realm of science fiction 

just a decade or two ago. Although these devices 

are easier to use than ever, their limitless potential 

can seem a bit daunting to some users. For that 

reason, it’s essential to strive toward creating simple 

interaction designs that will make your work easily 

usable by any potential customer.
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The Sophistication of Simplicity
So far, you’ve learned about the importance of usability and the need to constantly iterate 

upon a design to improve an application. You’ve also reviewed various strategies and methods 

that will help evolve an app’s design into a complete user experience, one that will hopefully 

lead to a higher download rate and better user ranking.

But there’s one specific design philosophy that needs to be concentrated on in detail, an over-

arching principle that will almost always push your design forward and bring it greater success: 

simplicity.

Design is an extremely difficult process, and making something appear simple and clean is 

much tougher than it looks. The work involved in creating a coherent, influential, workable 

design is vastly underappreciated by many. Design is a discipline with a variety of different 

ideals, paths, and preferred constructions that can lead to success. There is by no means a be-all 

and end-all answer to any design project, and in mobile design in particular an increased focus 

on simplicity has helped iPhone and Android designers create highly regarded works. Because 

simple designs are now setting the pace for the rest of the mobile world, it’s important to have 

an understanding of how to follow suit on your own projects.

Ahead, you’ll see why simplicity is such an important focal point in a mobile app’s design and 

how you can integrate that into your own work. You’ve likely heard the phrase “keep it simple, 

stupid.” It’s a saying that rose to popularity 50 years ago as a design mantra preached to US 

Navy engineers regarding how they should build the systems they were working on. The notion 

that the best design is often the simplest design rang true for those building nuclear subma-

rines, and it applies to smartphones and tablets as well.

Striving for Simple Interaction Design

Why is a simple design so important? It’s because a simple design is one that will always be 

more usable for a consumer. Simplicity creates usability. Just think about your own digital 

habits: When was the last time you truly enjoyed an extremely complicated piece of software? 

When you did encounter such a program and ran into a wall after your first use, did you eagerly 

return to it the next time? Or were you discouraged, choosing to let it sit on your desktop for 

weeks or months before revisiting it?

The same questions apply to any complex process. Automatic transmissions are more popular 

in cars than manual transmissions because of the simplicity they provide. The most effective TV 

remotes are the ones with the fewest buttons. How easy was it to reset the clock on your microwave 

after your last power outage? There’s got to be a better way to design that button panel, right?

Simplistic designs don’t always capture users’ hearts because they can be rather basic. How-

ever, a good designer can clearly comprehend the task at hand, put himself or herself in the 

mind of the user, and develop the most effective way for future consumers to accomplish a 
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given task. With forethought and effort, a simplistic experience can save users time, effort, and 

brainpower.

If you review the design in Figure 9.1 and think that it’s great, it’s time to look up the word 

“simple” in the dictionary. Experienced designers can examine this interface and find many 

ways to make it easier to understand.

The biggest issue with this design is that it has almost too many features and buttons; the user 

is given too many choices, and even getting basic use out of the app can become a daunting 

task. Additionally, several features seem unnecessary and could potentially be placed in differ-

ent views (specifically the search bar and the hour-and-minute time selector).

In the mobile world, the two largest players today—Apple and Google—have long been 

regarded for their commitment to simplicity and understanding of the way complex processes 

impact user experiences. This philosophy didn’t just start with iOS and Android devices, how-

ever; it took hold long before these companies began working on mobile operating systems.

Figure 9.1 This app design is a bit more complex than is usually preferred.
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Apple itself was launched on the basic premise that computers were way too difficult and 

complicated for the average person. Cofounders Steve Jobs and Steve Wozniak believed they 

could use their expertise to greatly simplify the user experience so that anyone could boot up 

a computer and learn how to interact with it. Throughout the company’s history—from the 

original Macintosh in 1984 and its simplification of the graphical user interface and operating 

system to the iPod’s portability and revolutionary take on music management—Apple has long 

focused on distilling systems down to their simplest form.

Similarly, Google developed around the mission of cataloging the entirety of the world’s data 

and making it available through a nearly featureless white page marked only by a few col-

ored letters, a box to enter text in, and a couple of buttons. When some within the operation 

pressed to add complexity to the basic search engine, it was the guiding leadership of longtime 

employees such as Marissa Mayer, vice president of search and user experience, that led to the 

rejection of any design ideas that cluttered the simple interface.

The company realized that there is value for end users having the ability to simply visit the Web 

site, type the word or phrase they’re curious about, hit a button, and then receive pages upon 

pages of information on the topic. With later products such as Gmail or Google News, the same 

philosophy was applied; take the most relevant and important data, strip away all extraneous 

pieces, and leave the user with a clean and easily manageable operation.

tip

Google’s mission statement is literally “to organize the world’s information and 

make it universally accessible and useful.” That guiding philosophy has led to some 

of the greatest computer science advancements in history. If your app requires 

a purpose or mission statement longer than Google’s, it’s probably worth sitting 

down and considering a more concise goal.

The Difficulties of Simplicity

Developing a clean desktop interface or a simple search page seems easy, but think about the 

more complex products Google and Apple have introduced over the years—such as Google 

Maps or Apple’s Siri personal assistant—and it becomes clear that making complex experiences 

look simple is the opposite of easy. Google’s map system, in nearly the blink of an eye, provides 

you with the quickest route from Point A to Point B by foot, bus, train, or car. With just the push 

of a button, Siri can answer millions of different questions. It doesn’t take much to use these 

systems, but it certainly took a lot to make them so easy to use.

For some, simple sounds like a bad thing. End users, stakeholders, or project managers often 

hear the word “simple” applied to interaction or interface and think of it as a cop-out. They see 

simple as being a lazy or easy way of doing things, thinking perhaps that a designer is trying to 
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minimize the amount of work needed to accomplish a task. But once you examine a product 

like Google’s search engine, you realize that designing and developing something simple is a 

gargantuan task. It’s much more difficult to take something away from an interface and have it 

retain the same feature set than it is to add a button or slider and ultimately further complicate 

your interface. It’s this struggle that encapsulates the difficulty of simplifying mobile design.

It’s also important to recognize, though, that simple interaction design doesn’t just mean 

removing features, functionality, interface buttons, or interaction methods for the sake of cut-

ting things out. It means refining and stripping away things that aren’t necessary until you’re 

left only with the essential parts and features. The end goal should be an interaction design 

and application interface that can be understood by a user with no intervention and little 

instruction. The best designers keep taking out elements until all that’s left is what’s absolutely 

needed to lead a user through a process.

Simple Design Goals
Reaching a simple end isn’t an insurmountable task, even for a novice designer. Keep the fol-

lowing goals in mind—clarity, continuity and flow, and retention and growth—while develop-

ing a project, and you’ll remain focused on achieving a simple interaction design.

Clarity

Of all of humanity’s accomplishments over the past few thousand years, mobile computing is 

probably one of the least natural. Is that too bold a statement? Think about it; humanity lived 

for centuries with a basic, uniform understanding of information and how it was developed and 

transferred. Knowledge was passed on orally between individuals or, eventually, written down 

and handed from person to person. The same held true even in the early digital age. The way 

computers transmitted information wasn’t all that different from the oral or written traditions. 

But in the last decade or so, this concept was flipped entirely on its head.

Now, people have the ability to carry a device in their pockets that gives them access at any 

moment to all the information ever learned and recorded by humanity. These devices also 

allow us to connect with or talk to nearly any person currently alive, all in a matter of seconds. 

This is a massive paradigm shift for life on this planet; rather than any person having access to a 

relatively limited amount of information and contact with a relatively limited amount of people, 

the possibilities for learning and communication are now limitless.

Thinking about this helps one appreciate just how complicated this entire mobile process is and 

how much potential there is to overload a user with information at any given time. It helps you 

understand why it’s important to create designs centered on clarity. The quantity of informa-

tion now available at a user’s fingertips is as overpowering as the sun. Imagine the sensation of 

standing outside in the bright sunlight for a few minutes then quickly walking inside a poorly 



ptg12441863

172 CHAPTER 9 DESIGNING FOR SIMPLICITY

lit room. Initially, your eyes are slow to react and everything appears dark and blurry, but after 

15 or 20 seconds your pupils eventually respond, and everything looks clear once again.

The influx of data available on a mobile device creates a similar reaction. When a user turns 

on a mobile device, there’s so much going on compared to what they had been looking at in 

the everyday world just moments before that they might not immediately comprehend what 

appears on the screen. It’s your job as a designer to do the work for the user’s pupils by building 

an interface and feature set that allows the eyes to adjust easily and the brain to quickly parse 

what is being shown.

Because this technology is relatively new—and because it’s being embraced by users of all ages 

and technology experience levels—it’s important to make your design straightforward and not 

confusing. Designs should be intuitive and natural. When a user opens your app and tries to 

figure out how to do something, the method forward should be immediately apparent. Buttons 

that feature imagery instead of words go a long way toward that. Interaction methods that are 

consistent with the rest of the device help too. When text is needed to explain something, it 

should be simple and direct. These devices are advanced, but the way users interact with them 

doesn’t have to be. Clearly displaying how to use your app will greatly enhance the ease of your 

app’s use.

Continuity and Flow

When it comes to continuity and flow, mobile applications and their interaction designs should 

remain consistent for the duration of the user experience while also existing in harmony with 

the entire operating system.

To again use an analogy from nature, the applications on a specific platform are all part of an 

ecosystem, making up something like a large digital forest. Each application is like a piece of 

flora or fauna that exists within that area. If you’re out hiking through the woods, you feel as if 

you’re immersed in another world in which everything seems to fit together. Large trees grow 

side by side, flowers populate the area around them, and birds, mammals, and insects find ways 

to coexist in that habitat. You know what to expect in such a place, and if, for some unexplain-

able reason, you came across a palm tree or cactus something would seem off.

What if you had to build your own forest from the ground up? Would you know what trees to 

select, what flowers to line the dirt floor with, and what animals you’d need to bring in to live 

there? It all seems so natural when you’re in the middle of it, but the proposition of creating it 

wholesale seems much more daunting. Each choice you make needs to seem completely natu-

ral; otherwise sightseers walking through your forest will quickly sense that all is not right.

Building within an operating system is similarly daunting. When developing an app, strive to 

produce a piece of software that offers continuity and flow between each different view and 

interaction experience while also fitting with the device’s world outside your app. Android, for 
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example, uses the font Roboto with standard Holo light or dark theme color sets. An Android 

app would be well served by also using this standard font and one of these set color themes 

unless you have a good, solid reason to do otherwise.

Achieving continuity and flow is likely the most difficult of these three simplicity goals, but it’s 

also often the most rewarding. It can lead to many sleepless nights as you ponder what will be 

the right gesture or animation to trigger a user from one screen to another. You’ll find it is truly 

difficult to present a seamless experience across every single view in your app. However, when 

the job is done right the user will never even notice that attention to detail, and your work will 

be so smooth and natural that each transition and interaction will just make sense.

These efforts to build interaction methods that flow smoothly often go unrecognized, but 

much like a walk along a hiking trail on a beautiful day it’s the subconscious recognition of how 

everything fits together that is the desired result. That’s what makes the experience a memo-

rable and, hopefully, often-repeated one.

Retention and Growth

Finally, designers want to aim to create an experience that will help the user grow and gradually 

learn more about how they can better take advantage of an app’s tools over time. Ideally, the 

app will feature interaction methods in its interface that directly lead to user retention and skill 

growth over time.

To do this, you’ll want to make the interface and the various causes and effects inside an app 

repeatable and clearly apparent. Essentially, this means that you should use interaction meth-

ods consistently so that they lead to the same result with every use in the app. When users click 

an arrow in the upper-left corner of the screen, it should take them back to the previous screen, 

and it should take them back each time they touch it on every screen in the app. This seems 

fairly straightforward, but it doesn’t always happen; failure to properly consider or implement 

this notion leads to user confusion.

You can achieve this end by using gestures, iconography, and methods consistently through-

out the entire app and in ways that are consistent with the operating system as a whole. Take 

a look, for example, at Figure 9.2. This sharing icon is implemented in a toolbar found inside 

Figure 9.2 If you have experience with iOS, you’ve learned that tapping this icon allows you to share 

whatever information is currently on the screen.
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many apps. Just a few years after smartphones hit the market, you now immediately recognize 

that tapping that icon will allow you to pass a link onto friends via e-mail or social networks.

That icon is immediately recognizable because users retain knowledge as they repeatedly use 

a system or observe a design. At one point in time, users must have been entirely ignorant of 

what that arrow represented or what would occur once they tapped it. Inevitably, they began 

to experiment with it, and it didn’t take long to recognize it as a common part of the mobile 

interaction experience.

The best way to increase such knowledge retention is to stick with established patterns for 

icons and on-screen visualizations so that your work remains in line with what users have expe-

rienced in any other app on a certain platform.

When designing an app that requires a motion to reload or update content on a timeline, for 

example, why bother using anything except the now-common pull-to-refresh gesture (shown 

in Figure 9.3)? This systematic pull-down action to load new items in a table view is something 

users have come to expect. It is a motion that was easy to understand at first use, and over 

subsequent experiences in many different views and apps users have now come to expect this 

interaction principle as a means to fetch new information in a piece of mobile software.

Likewise, it would seem entirely out of place and nonsensical to use a pull-to-refresh gesture to 

perform the task of, say, composing a new message in an e-mail app. This runs entirely con-

trary to user expectations and stands in direct conflict with past experiences. Upon first use, a 

consumer would instantly become confused and the reflex memory they developed from other 

apps would be useless. Because this gesture would seem so unnatural, it’s very unlikely others 

would follow your lead, so a user couldn’t learn more about how to navigate the operating 

system from your standard procedure–defying decision.

To ensure that your application works within users’ expectations and helps them grow in their 

knowledge of a platform’s interface, spend time with as many apps as possible and remain 

up to date on human-interface guidelines. Those policies aren’t created merely as sugges-

tions; they’re written as a uniform set of established principles that are the foundation for 

Figure 9.3 When a user sees this image prompting the pull-to-refresh gesture, they’ve been trained 

to know what will result.
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all designers on a platform. By using a variety of apps and keeping informed of the way they 

should function, you’ll be well equipped to create software that piggybacks off of a user’s prior 

knowledge and experiences.

Interfaces That Do It Well
Let’s take a look at two interfaces that greatly benefited from emphasizing simplicity: slide-to-

unlock on iOS and the action bar on Android. If there were ever two examples that put to action 

the principles discussed in the previous section, these would be they.

When designing for simplicity, strive for the “aha” moment for the user, the moment when 

a setup delights and encourages continued use and enjoyment of the system. The slide-to-

unlock screen and Android action bar are simple—there’s nothing there that doesn’t need 

to be—but they also offer significant functionality and information. Simplicity is about foster-

ing an environment of clarity, continuity, and growth while also helping the user get a lot 

accomplished.

iOS’s Slide-to-Unlock

The slide-to-unlock interaction, shown in Figure 9.4, appeared on the very first iPhone and 

still exists today, albeit in a slightly different form with the introduction of iOS 7. With slide-to-

unlock, before any gesture or finger touch on screen is recognized by the operating system 

after being awakened the user must first slide a finger from left to right across the screen.

This feature helped Apple get around a tricky situation with the first major touchscreen-based 

interface. Because the entire front surface of the device was operable with just a finger, devel-

opers had to take into account that not all interactions with the screen should elicit a response. 

There were many situations in which a user could accidentally brush the screen with a hand, so 

building in ways to limit the amount of times they could accidentally make a phone call or send 

an e-mail was essential to the success of new touch-sensitive technology.

This design was simple yet spectacular. It helped take what would be the most common task 

performed on the phone—unlocking the device to check messages, make a call, or open an 

app—and made its action extremely clear and easily understandable. A vivid animation and a 

clean visual design indicated to the user that the slider bar needed to be rolled across its track 

in order to successfully open the device. The interaction method offered a sense of flow, as the 

interface pieces slowly faded away and were replaced with the phone’s background—but not 

before an affirmational “click” noise indicated the move had successfully been completed.

Finally, the gesture served as a means to train and teach the user how to interact with the inter-

face, which was especially essential given that interacting with the iPhone was likely a user’s 

first important experience with a touchscreen device. The interaction remained focused on the 
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three simplicity goals—clarity, continuity and flow, and retention and growth—leading to a 

tremendously effective design.

note

Do you ever sit and just play with the unlock screen on your iPhone or Android 

device? Take some time right now and experiment with it. Observe how the design 

involves animation, subtle design changes, sounds, fades, and other cues that 

establish a simple and coherent design.

Android’s Action Bar

Simplicity in the Android operating system design can be found in the implementation, shar-

ing, and other interaction items on the action bar, shown in Figure 9.5. This interface item can 

wear many hats; typically, it’s used as an anchor at the top of the screen that allows for simple 

Figure 9.4 Apple’s slide-to-unlock mechanism, as found in iOS 6 and earlier.
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navigation and the ability to clearly feature action items for tasks such as e-mailing the data 

currently on the screen.

Developing an item such as the action bar for Android is actually more difficult than one might 

think, mostly because of the variable width of the many Android devices. Currently, there are 

thousands of different Android devices that users could experience an application on with 

dozens of different screen resolutions to support and the potential for countless future device 

sizes and screen resolutions. It would simply be impossible to create an action bar that always 

contained a definite, finite number of items like Apple has done with the tab bar interface 

object on iOS.

To work with that flexibility in device configurations, Google developed its action bar to be 

flexible in terms of how many items could appear at any given time, and then it paired the bar 

with a common “more” button, presenting a simple drop-down when more items needed to be 

viewed (shown in Figure 9.6).

This design allows the action bar to provide sufficient functionality on both the smallest phone 

screen and a 10-inch tablet. It gives developers a valuable space to put buttons that execute 

essential actions while also offering a location for the user to repeatedly look for a one-touch 

Figure 9.5 Android’s classic action bar is where you place actionable items that depend on content 

on the screen.

Figure 9.6 When the user taps the action overflow button on the action bar, further options 

drop down.
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spot from which to send an e-mail or share a link via a social network. This bar is a continuous 

presence for the user, remaining anchored to the top of the screen throughout the use of many 

applications.

Its flexible yet predictable style and functionality presents a good pattern for user growth as 

well. When using apps that support the action bar, as well as apps across various-sized devices, 

the user is able to see that developers aren’t constrained by the lowest common denominator 

(a device’s size) but instead can build features into the bar regardless of how large or small a 

phone or tablet is.

Creating Simple Interactions
Now that you know the philosophical goals you should focus your work on and have seen 

examples of those principles in action, how do you go about creating these experiences in your 

own work? The following are clear, easy strategies that, through personal experience, have 

guided the creation of simple interactions. They’re universally applicable to any operating sys-

tem and to mobile phones and tablets, so they should go a long way toward helping you create 

effective, simple apps.

Learning to Say No

First and foremost, as the lead designer on any project it’s critical to develop the ability to not 

go along with every suggestion anyone makes. As you communicate with your team or client 

about how to implement features into an app you’re building, the temptation will be strong to 

simply include another button, slider, color, or other element in the project.

You should proceed with caution when adding such items, however. There will be plenty 

of situations in which additions will be necessary, but when those arise make sure any extra 

elements actually serve a useful purpose and won’t just get in the way or make things more 

complicated than they need to be.

Making Tasks Obvious

When you’re designing, aim to make simple tasks obvious to the user. Once the app is com-

plete, you should be able to sit with a user, ask him or her how to perform a simple objective 

within the application, and have the answer be so clear that the user barely has to think in order 

to find it. You want the routine functions of your app to be true “duh” moments.

In a weather app, for example, if you were to ask a user to tell you how to find tomorrow’s 

forecast, the answer should be practically right under his or her nose. It’s a weather app, so it 

clearly serves a simple purpose: to inform the user about whether it will rain or shine and what 

the high and low temperatures will be. If it gets much more complicated than that, you may be 
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going about building your interface in the wrong way. The best ones keep it simple, such as the 

Yahoo Weather app shown in Figure 9.7.

Strive to make these duh moments intentional; use animations to clearly indicate when the 

on-screen visuals change, use colors or fonts to emphasize which text is the most important, 

or take advantage of simple shapes and figures to distinguish special pieces, such as buttons 

or tabs, from the background. Users should look at the screen and intuitively know where the 

most important information is.

Offering Subtle Hints

Believe it or not, it is possible to make things too obvious: to be an overbearing designer, worry 

too much about providing an optimal experience, and end up doing too much hand-holding 

and ultimately annoy the user. Much like a parent that constantly calls or texts to inquire about 

a child’s whereabouts, designers can be too present and can discourage users from enjoying 

and experiencing an app for themselves.

Figure 9.7 With Yahoo Weather, you don’t have to think much about how to get the weather 

information you need.
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To combat this possibility, make your usability clues subtle so that users feel like they are dis-

covering the app’s features for themselves. Let them navigate through the various screens and 

execute functions in a manner that feels rewarding.

tip

Are you looking for the best examples of how users expect applications to 

perform? Check out the most downloaded calendar, calculator, and note-taking 

applications on the platform you’re working with. These types of apps are some of 

the most commonly used on mobile devices, and thus these categories are some 

of the most competitive areas of an app store. The leaders in these fields feature 

some of the best modern design on any platform.

Consider an application that could be navigated in a variety of ways—say, a calendar—and how 

you would clue the user in on how to see various information displays. Apple’s Calendar app in 

iOS 7 provides a great subtle movement clue. To see future or previous months on the calendar, 

the user must flick up or down so that the interface displays a small segment of the month’s 

dates on the bottom of the screen. That makes it clear that the user should pull up in order to 

see more days. It’s an obvious and simple interface clue that lets users learn for themselves.

The animations used to transition between views on any operating system are also an example 

of a quality subtle cue. In iOS 7’s Photos app, for example, a grid of pictures is used to represent 

buttons for different years, months, or locations in which various images were taken. When the 

user taps on a group, such as the year 2014, the app executes an on-screen animation with the 

view zooming into the photos from that year, making them go from thumbnail size to a much 

larger display. Hitting the back button follows that animation in reverse, panning back out to 

the smaller thumbnail format. This animation helps indicate to the user how to browse their 

photos with the application.

Putting Elements in the Right Location

By now, you understand the importance of proper behavior, shape, and color when it comes 

to the physical attributes of an app’s interaction and interface methods. What about feature 

placement, though? Much like the real estate business, location is extremely important when it 

comes to app design, and you should carefully pick out a prime position for each element you 

include in your project.

But is the spot where an item typically appears—such as the location of the back button, so 

often found in the upper-left portion of a screen—always the best place for it? On both Android 

and iOS, the back buttons are placed properly when on the top-left side of the screen; it’s easy 

and simple to remember.
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What’s wrong with Figure 9.8? The back button is in the wrong location, and if you’re an 

experienced smartphone user this likely is a bit jarring. If you wanted to navigate back and find 

previous screens, you would probably have to pause and consider what to do.

Imagine if designers didn’t follow any standards and the applications you used commonly had 

different locations for the primary back button, such as any of the four locations shown in Fig-

ure 9.9. Instead of your thumb or finger reflexively going to the same spot in order to slide back 

one screen, you would often need to pause and consider where to move, or even worse, you 

could touch the wrong spot and accidentally execute a command you didn’t intend.

Like driving, walking, or typing, navigating on a mobile device is a motor skill that your brain 

builds muscle memory for over time, but if no pattern exists across a platform, it will be difficult 

to process the information and develop this intuitive ability. Don’t fight against the brain; work 

with it, and create user interfaces that feature components in their expected location based on 

other apps on your operating system.

Figure 9.8 If you’ve used a smartphone or tablet before, you’d probably do a double take when you 

saw the placement of the “Back” button positioned in the lower-right corner.



ptg12441863

182 CHAPTER 9 DESIGNING FOR SIMPLICITY

Addition by Subtraction

It’s infinitely easier to add to an interface than it is to remove from it, so going through the pro-

cess of taking away or minimizing interface assets—and potentially some features as well—will 

often be a struggle. Each button you design, gesture you map, or piece of text you stylize will 

have some value to you, because it’s your creation. But like great writers often must do, some-

times you have to kill your darlings.

Just like reorganizing your closet, when sometimes you have to get rid of previously loved 

clothes in order to make space for new ones, design often requires removing things to make 

way for fancy new toys. A great interface should be in a constant state of flux with small 

changes paving the way for better ideas and new concepts. Yes, it will be hard to throw away 

your previous design work, but it’s often a necessary step on the path to improvement.

Figure 9.9 Can you identify the right location for the “Back” button? Only one of these four spots is 

where your thumb reflexively goes when it wants to call up the screen you were on previously.
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note

It’s OK to constantly change your app’s interface. Just look at Evernote; with their 

mobile and desktop apps, the note-taking giants have never been afraid to refine 

and tinker. This has led to a constant evolution, allowing the app to grow as its 

users grow along with it.

You can also realize vast improvements by removing clutter and extra interface pieces without 

putting anything new into the app. Fewer interface obstacles often means that it’s easier for the 

central features and essential functions of a piece of software to shine through. A busy interface 

with many options makes it difficult for the user to get to the point of the program.

A finance-management calculator, for example, may have the capability of performing several 

rare functions that will only be called upon by a handful of power users. But if the point of the 

app is to allow a user to manage individual finances, these advanced features may be best left 

tucked away: accessible but not immediately apparent. Or, they could be removed altogether, 

keeping the app’s focus on its most direct objective and ensuring that a majority of the poten-

tial user base will find the software accessible and easy to navigate.

These are all things to consider before the initial version of your app ships. Once the masses 

get their collective hands on your project, it will be much more difficult to take away features. 

The handful of users who take advantage of the advanced features in your app are also likely to 

be the most vocal, so if something disappears that they found functional be prepared to hear 

about it. Trim your app down as much as possible prior to release, or suffer the wrath of nega-

tive reviews and blog posts as a result.

Simplicity through Familiarity
A recurring theme when building simplicity into your designs is familiarity: doing things in line 

with user expectations as a path to success. But why is this so important? Won’t this familiar-

ity lead to boring and repetitive designs? Familiarity is a great way to help users feel at home; 

as with a TV theme song or a chain restaurant, there’s an inherent enjoyment and comfort in 

things that are recognizable. This applies to interfaces as well; when people become accus-

tomed to one thing, they tend to prefer it.

Playing off of this sense of comfort is a big reason why reading and following the human-

interface guidelines for any platform you’re targeting is crucial. They intend to still allow for 

some creativity and independence, but there’s a reason why every established interaction and 

interface principle exists. Google, Apple, and Microsoft created these standards to make the 

apps developed for their platforms fit well alongside one another.
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Using Well-Known Visuals

Designers can also develop familiarity for users within an app through visualizations that are 

immediately recognizable. In digital design, this is commonly done through the use of skeu-

morphism. As mentioned in Chapter 6, this term refers to a practice that involves creating an 

interface or visual look that mimics the appearance of a real-world object even though the app 

is by no means constrained by the same limitations as the physical object.

In a note-taking app, applying this concept would, for example, involve creating a yellow, lined 

background and a handwriting-esque font, both of which give the impression that the text 

is being written with a pen on a legal pad of paper. A time-keeping app that uses a standard 

analog watch face would also be considered skeuomorphic.

Some critics of the concept argue that it’s silly to apply skeuomorphic design to digital cre-

ations, because it restricts objects that exist in an electronic realm with limitless potential to the 

confines of the real world. But by using real-world visualizations, an app’s look can help users 

infer the purpose of the software or a specific function without any time-wasting instructions 

or troublesome, trial-and-error experimentation.

A compass app—one similar to Apple’s previous compass design, shown in Figure 9.10—

that mimics its physical-world counterpart makes its purpose immediately apparent to 

Figure 9.10 Apple’s previous version of its native Compass application.



ptg12441863

SIMPLICITY THROUGH FAMILIARITY 185

the user; the device can be held in the palm of a hand and used exactly like the round, 

metal object whose arrow always points north. It requires little or no instruction for users 

that already know how to work a compass, and it’s the visual design cues that improve the 

experience.

Skeuomorphism has currently fallen out of style; many operating systems and app designs 

have broken away from it, sensing that users no longer need significant hand-holding to 

guide them through basic operations. It is, however, still a good principle to keep fresh in 

your design arsenal for when an appropriate situation presents itself. Like bell-bottom jeans, 

thick-frame glasses, or big mustaches, this design concept could quickly come back into 

style once you’re too old to understand why anyone would ever want to return to it again.

Following Industry Leaders

Another excellent way to retain familiarity in your design is to remain up to date on what 

Google, Apple, and other industry leaders do with their built-in apps. Take note of how these 

pieces of software change over time and how they integrate new interaction and interface 

components into major operating system updates. Because these companies get to work new 

functions and features into their apps before anyone else, their designers have already con-

templated and resolved many of the common problems you’ll run into, so they serve as strong 

examples to reference and model your projects after.

warning

DON’T FALL BEHIND Keep up with the changes that occur on a platform every 

year. Currently, Google I/O and Apple’s Worldwide Developers Conference (WWDC) 

are the leading events at which these monumental changes are announced and 

outlined. Always keep abreast of changes and be looking ahead, making sure that 

you’re not backing yourself into a design corner.

It’s also worth your while to download and use apps that have won design awards from 

popular Web sites and magazines or that have been featured by Microsoft, Apple, or Google 

on their respective app stores. The Web sites and teams that choose these winners, especially 

at bigger publications, are typically reviewers and editors that encounter an extraordinary 

quantity of applications, so they tend to have fairly strong opinions about what works and 

what doesn’t.
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Going Against the Grain

Nevertheless, all this talk of simplicity and familiarity doesn’t mean that you must absolutely, 

positively do what everyone else does 100 percent of the time without fail. In fact, many of the 

best applications available on any platform are the most successful because, for one feature or 

interaction method, a designer stepped outside what was common and made a bold decision.

When going against the grain, you must remain mindful of what you’re doing and be able to 

back up your plan and defend your reason for breaking with convention. If you’re going to go 

against the human-interface guidelines or common design practice for whatever you’re build-

ing, there had better be a good reason other than “just because.” If you find yourself at a loss 

for words regarding why you implemented a design the way you did, it’s probably not optimal, 

and that’s a signal to go back to the drawing board.

Testing Simplicity
You’ve created a design you think is totally simple, easily understandable, and a sure-fire bet for 

users to love. Now prove it. It’s time to measure your effectiveness and gather data that backs 

up your actions.

As a designer, you’ll want to collect a variety of information, such as how quickly a user can 

move between features of the app, how long it takes valuable in-app data to load, and how 

easily a user can find a desired feature or function in the app. Collecting data is important so 

that you can objectively measure how simple and elegant a design is and then create metrics 

through which you can work toward improving the design in the future.

Speed of the App

The rate at which a user can fly through your application is one of the most important factors in 

determining whether it’s a success or failure. The time it takes to load the app or process a task 

inside it is often the biggest roadblock to enjoying it. Even being able to shave mere millisec-

onds off loading times can be very beneficial and improve user experience. You can refer to this 

as the “time until response” test, in which you’ll look to measure the time it takes for the user to 

load and interact with the app.

When building assets for your app, be sure to minimize the size of any PNG or JPEG file within 

the software. Images and videos are heavy and can weigh down your app. Programs such as 

Photoshop, which you likely used to create any visual asset, include tools and saving methods 

that help minimize file size, so be sure to use them when exporting final versions of the files. 

By decreasing the size of image assets, you can shave milliseconds off loading times inside the 

app; although this sounds small, such speed improvements have been shown to drastically 

improve user experience and satisfaction.
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Decreasing the final size is a tightrope to walk, though, because any compression will lead to 

a loss in visual quality. The goal is to make the smallest file possible without the user noticing 

a significant downgrade in appearance. Several great tools exist for helping compress images, 

including the open-source project ImageOptim and JPEGmini by ICVT Ltd.

tip

What’s the difference between JPEG and PNG? They’re both raster image formats, 

meaning that they store images in pixel-by-pixel data structures. PNG supports 

lossless compression and transparencies, meaning that images often look better 

and can have a background that is invisible, but they often take up a greater file 

size. JPEG is a lossy compression format, meaning it can make file sizes much 

smaller than normal, but there may be occasional small errors. JPEG also does not 

support transparent backgrounds, so every pixel must contain some color.

Likewise, aim to avoid excessive animations that need to be loaded on screen. A two-second 

animation in which users see text or other data move around with a cute sparkle may seem 

like a fun addition the first or second time, but such flares quickly become overbearing and 

exhausting upon subsequent uses. Be respectful and mindful of users’ time when considering 

such additions.

Clock how long it takes for the user to get from the app’s launch to the point at which they gain 

the value they intended to receive from the software. Ideally, you want to make the user feel as 

if they can get in and get out of the app as quickly as they desire.

How the App Is Being Used

Nearly all modern applications on Android or iOS implement some sort of digital metric system 

in order to gain valuable data about how long a user spends inside of an application and what 

they do while inside the app. Tools such as Google Analytics or Flurry Analytics are key ways 

for developers to figure out what views or features are visited most frequently and what view 

or page the user was on when he or she left the application. Designers call these analytic tests 

“user behavior flow tests.”

If you find, for example, that a specific feature page inside of an application has a high exit 

rate—meaning, the majority of the time, that the user was viewing a certain screen when he or 

she quit the app—that likely means something in the design or look of the page was difficult 

to understand, troublesome, or dysfunctional, and the user decided to turn his or her attention 

elsewhere. Use this data to re-evaluate what you’ve built and where to make improvements. 

Once you think you have an idea or two of how to improve a poor-performing page, you can try 

“A/B testing.”
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note

What’s an A/B test? It’s something that occurs heavily in Web site development. 

Two different interfaces are created, and users are randomly sent to one site 

or another. Specific interaction points are measured to see which site features 

options that are more preferable.

As an example, a launch page might contain two different button colors for a “Sign 

Up” link. During this test, the development team will look to see which button gets 

clicked more by test users and then roll out that design for all users.

A/B testing is a strategy that is extremely popular in Web design, for which deployment and 

interface development is extremely fast and simple, but it’s a bit less practiced in mobile, for 

which deployment is difficult. There are some startups that are working to create simple A/B 

testing inside of an application, and if you find a method that works for your team, it often can 

be valuable to test out two or more different interfaces in order to see which performs better 

with your users.

Social Reach

Another way to measure feedback is through the good old-fashioned method of pounding 

the pavement to hear directly from users. Well, this method isn’t too old-fashioned; most of 

the time, it now involves using the information superhighway as opposed to meeting users in 

person. This is called “direct feedback usability testing.”

By integrating software tools such as TestFlight or HockeyApp to place feedback forms directly 

inside an app, even down to the specific locations where you suspect a user might have an 

issue, you can develop a method to speak with users directly and find ways to make your work 

clearer and more understandable in future versions. It’s especially worth considering adding 

such a feature during beta testing so that you can develop solutions to common problems prior 

to an app’s wide release.

It’s also valuable to monitor what users write about their experiences with your app on social 

media. A variety of services are available that allow you to enter keywords—perhaps your com-

pany or app name—and be notified when someone mentions that term on Facebook, Twitter, 

or Tumblr. This helps you quickly learn if a user encounters a problem with your app, allowing 

you to reach out to the user to address the issue or to correct the problem at large.

The only problem is that most social-media grumbling won’t occur until after the app has been 

released, so it may be too late to make significant tweaks or adjustments. This is the inherent 

flaw in relying upon the mass-market consumer for feedback; but, timeliness aside, much can 

be learned from what others are posting online.
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Dogfooding

A final and very common way to test usability and simplicity inside an application is called 

“dogfooding.” This somewhat unappetizing-sounding term refers to a situation in which the 

developer or designer for a project uses the software heavily, often exclusively, to fulfill what-

ever purpose the application serves.

note

Why does this process have such an odd name? Programming urban legend 

alleges that a manager at Microsoft in the 1980s used the phrase “eating your own 

dog food” to refer to company employees using their own creations. The descrip-

tion stemmed from a popular commercial at the time for a brand of dog chow, in 

which the company’s CEO said that he fed their latest product to his own pets.

This sounds like common sense, but it often can be a bit more difficult in practice, especially 

when you’re building a piece of software that has many solid competitors, such as games, cal-

endars, or weather applications. Especially when the application is still fairly rough, you may like 

your competitors’ apps a little bit better.

This is also why dogfooding can be so valuable. Do you like and use your app? If not, you might 

have a very big problem on your hands. You should be your own biggest fan, and if you find 

that other applications are doing a better job than you are you may need to retool your concept 

or approach.

warning

TIME IS OF THE ESSENCE Don’t rest on your laurels after any one project or view 

that project as your gift to all humankind. Mobile moves at an extremely fast pace, 

so always remain focused on the future and on what you’ll build tomorrow that will 

excite users, not on what you did yesterday.

IN-DEPTH

In mobile design, simplicity shines. Here are some apps that do it especially well.

 ■ Yahoo Weather: Yahoo has experienced a bit of a renaissance in recent years, 

largely due to the company’s development of best-in-class mobile apps that 

focus on simplicity and usability. The Yahoo Weather app (see Figure 9.7) is the 

leading example of this, as it features eye-catching images from its photo 
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Figure 9.11 Much of Instagram’s success can be attributed to how simple and easy to use it is. 

(Courtesy of Megan E. Lee.)

service, Flickr, tied together with clear iconography and simple direction that 

helps the user quickly see a forecast in a visually appealing way.

 ■ Instagram: Interesting social-network concepts can often be ruined through 

overcomplication. But Instagram (see Figure 9.11) threw complexity out the win-

dow and made its social network simple. Users post photos, follow friends and 

see their photos, and like or comment on photos. That’s it. Through focusing on 

a simple, pure, photo-sharing experience, the network gained massive popular-

ity and sold for $1 billion worth of stock to Facebook. Who ever said that you 

couldn’t strike it rich through simplicity?

 ■ Super Hexagon: It’s not hard to quickly become a sucker for this game. Super 

Hexagon (see Figure 9.12) is extremely fun, challenging, and—surprise—

simple. You play the role of a lonely pixelated triangle attempting to avoid 

various pattern mazes for as long as possible. If you can survive longer than 

60 seconds, you beat the level. Controls are simple: Tap left to move left and 

tap right to move right. Game designer Terry Cavanagh has truly built a mas-

terpiece here; he’s created an experience that is so simple to pick up anyone 

can learn the game in 10 to 15 seconds. It’s difficult enough, though, that only 

the persistent can master its refined gameplay.
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Figure 9.12 The extremely addicting game Super Hexagon could never be said to have ultra-

advanced graphics, but that doesn’t mean it won’t hook you. (Courtesy of Terry Cavanagh.)

Conclusion
When you strive for simplicity, what you’re really doing is focusing on making an application 

as easy to use as possible for the end user through the intentional reduction of all visual and 

interaction components that get in the way of clarity and usability.

Over time, you’ll learn the art of saying no to excess, potential confusion, and the obstacles that 

get in the way of an outstanding user experience. If you focus on interface clarity, experience 

continuity, and user growth, you’ll be well on your way toward creating an application users 

love and are willing to share.
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GAINING VALUABLE 

FEEDBACK

Releasing an app is a public demonstration of all the 

design knowledge and ability you’ve gained and 

developed to date, but perform poorly and your low 

download count and negative app store reviews will 

be harsher than any grade you ever got in school. 

Thankfully, there’s a way to anticipate problems 

users will have upon release. This is a test you can 

prepare for—by finding willing volunteers to try out 

every part of your app again and again and again.
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Showing Off Your Work
By now, you’re familiar with the process of iterating and improving upon your design work; but 

so far, you’ve primarily only dealt with the internal struggle of how to enhance a project and 

improve workflow. Eventually, if you want to find success with your application you’ll need to 

show it off to others too.

Your app can’t stay on your hard drive forever. Sooner or later, you’ll need to share your latest 

creation with clients, stakeholders, coworkers, family members, and, potentially, millions of 

users around the world. That thought may scare you, but a successful app will never be used 

just by you and you alone. Designers can’t anticipate the trials and tribulations that every user 

might have with an app, so it’s critical to get outside opinions on features and functionality.

As the designer on a project, you can often become blind to how a third party would inter-

act with your work, and you will often develop biases about its performance because you’re 

so closely connected to it. To build a viable mainstream product, it’s absolutely necessary to 

gather feedback on your software from people who don’t have a vested interest in its success.

note

Who qualifies as a stakeholder? This may sound like a simple question, but before 

you get too far into the development process be sure you know who will need to 

sign off on any beta applications before the final ship date. The last thing you want 

to do is work through the final few weeks or month of a project, rapidly iterating 

while never getting the opinion of the people who must ultimately approve the 

project prior to release.

How do you decide that it’s finally time to push your app out into the world? Answers to that 

philosophical question vary throughout the mobile world, so there are a number of different 

strategies you could embrace. There’s no universal solution, so there’s plenty of opportunity to 

try out different approaches and figure out what works best for different types of applications.

Protecting Your Secrets

No matter how you go about making your app available to other eyes—be it through a beta 

test process, a small focus group, or the public at large—it’s crucial to remember that such 

actions mean that any mystery surrounding the message or purpose of your app will no longer 

be under lock and key. From the moment someone else gets their hands on your product—

even if it’s just a trusted group of beta testers—any secrets about your app are no longer 

guaranteed to be safe.
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This may not be a problem for many apps. Small players in the digital marketplace aren’t likely 

to have a large body of users anxiously seeking out details or searching for leaks about the con-

tents of their latest project. It may not be a huge deal, then, if a beta user happens to let a piece 

or two of information slip about your app.

But for some—perhaps an app for a client with a well-recognized brand getting set for a big 

product launch or event—it’s imperative to ensure that absolute secrecy is kept regarding the 

app’s content and design. Once such an app is handed off to beta users there’s the potential for 

other outside parties to learn critical details about the project. In these situations, it’s crucial to 

be careful and keep beta builds under wraps until the last possible moment; only release it then 

to people you can trust to test it confidentially.

warning

FOR YOUR EYES ONLY On projects for which secrecy is of utmost importance, 

don’t be afraid to use code names and fake text inside the application to obscure its 

function or purpose in case the app falls into the wrong hands. Likewise, feel free to 

use placeholder art and dummy icons, and be sure to require all testers to lock their 

devices when not in use. Leaky ships don’t sail very far.

Even when the features or data inside your application don’t need to be kept top secret, once 

beta users start playing around with a product it’s possible that the general public will start 

forming an opinion about your software. Choose beta users you can rely on and who under-

stand that software in the preproduction stage is often volatile and will have bugs and issues 

that still need to be worked out. If they don’t realize these key facts, the word of mouth or buzz 

about your app could kill its chances of success before it’s available to the general public.

In this highly connected digital age, a negative or misinformed blog post or comments on 

Twitter can spell doom for your product upon release. You want the users who are testing your 

project in its infancy to help it build and grow, not to spread negative reviews that could make 

all your work be for naught.

Choosing the Right Testers

Before you hand out your work to a group of testers, you want to make sure that small cluster 

includes only people you can rely on to give honest feedback as well as constructive criticism 

on how your app can be improved. Projects that go before test groups while still in preproduc-

tion often encounter a common problem: users who are too close to the developers and thus 

fail to give honest opinions about what needs to be done to make an app better. The testers 

worry too much about the developers’ personal feelings in the comments they offer and don’t 

provide valuable critiques.
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Consider who you can currently count on to give you objective responses to any of life’s little 

questions. If you ask your mother or significant other for an honest opinion about how you look 

in your favorite T-shirt, you’ll get a very different response than if you ask a stranger in a bar. 

Those close to you will likely consider your feelings and give you the answer you want to hear 

instead of telling you when it’s time to throw the shirt out and go buy some new clothes.

warning

IN SEARCH OF GOOD OPINIONS When beta-testing software, it’s extremely 

important to find people who offer valuable opinions and not just people who you 

think will love your work and agree with every design that you’ve created. You don’t 

need “yes men” or “yes women” at this point; you need people who will question 

you and help push your product toward becoming something better.

If you choose testers who are afraid to respond honestly by informing you where your interac-

tion and interface design is lacking, you’re doing more harm to your project than if you had no 

testing process at all. It’s essential to find a few valued peers who are willing to tell you how it is, 

preventing you from letting major deficiencies persist throughout development.

As you gather feedback, keep an eye on the clock. Remember that every additional person 

you add to your beta group means more time spent teaching a new user how to install the 

software, following up on problems that pop up, and checking to see how they’re liking your 

design. When selecting a beta user, make sure this person is truly dedicated to lending a hand; 

you won’t want people who will become bored or disinterested after a few hours.

Many users will see the opportunity of beta testing an app as something highly desirable—an 

honor of sorts—but it’s not all fun and games. They need to understand that it will require 

sitting and being patient at times or replicating the same steps over and over again to isolate a 

bug. You want people who are testing an app solely for their own sense of accomplishment or 

desire to help out.

Go for quality, not quantity, when selecting beta testers. In Apple’s developer program, for 

example, you’ll be limited to only 100 users who can try out your applications, so it’s important 

to find a reliable group, because you can’t add on an unlimited number of additional users in 

the future if your first picks flake out on you.

When to Share Your Work with Testers

Before you ship your work off to be judged by beta users, you need to consider whether your 

app is in the right condition to receive good advice or suggestions on changes that should 

be implemented. Often, developers rush a project into the testing process, failing to consider 

whether it’s in a state at which the average user could look at it and determine what it will 
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look like in its final version. If you’re not to that point yet, your testers will be left confused and 

frustrated and will likely make erroneous or unhelpful suggestions about where the app should 

go in further development.

There are two things that nobody should ever see being made: sausage and software. The pro-

cess through which an app is created is often messy and can be difficult for people unfamiliar 

with the process to understand. They simply won’t recognize an app in its early stages com-

pared to the final product. If you’re not an experienced home builder, it is difficult to look at an 

incomplete framed structure and visualize exactly how the living room will look once complete. 

Likewise, it’s difficult for nondevelopers to look at an app in its infancy and understand how the 

finished version will look and function.

Remember this ugly screenshot (see Figure 10.1)? Software can be unattractive while you’re 

working on it, so don’t be afraid of iterating and improving upon your initial design even once 

the first group of testers has seen it. But be careful who you let view your unappealing early 

Figure 10.1 Don’t rush to post early screenshots for the public.
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work. App beauty often only runs pixel-deep, and your audience will harshly judge any rushed, 

less-than-perfect screenshots you post to your blog or social-media accounts.

This problem is the very reason why housing developers constructing a new subdivision will 

build a model house first; it’s an example structure they can show prospective buyers, making 

it easy to visualize what other houses in the neighborhood will look like. Without this reference 

guide, a family looking to relocate couldn’t walk around an actual building and imagine what 

their life would be like in that neighborhood.

Software is no different. Designers who are constantly thinking about the world of app devel-

opment often forget that the average person—even someone willing to help out with beta 

testing—will have a fair amount of difficulty working with a project that remains in its earliest 

stages. These people will find it tough to offer helpful advice on what improvements need to 

be made before the app hits the market.

As a result, it’s important to hold off on releasing an app to beta users until it hits a point at 

which outsiders could look at what you’ve built and comprehend how it will appear in its final 

form. Typically, this comes at the stage in which a majority, if not all, of the primary features in 

the app are functioning. This point is known in the industry as the “feature complete” stage, 

meaning that the user can walk through that function from start to finish and see the intended 

end result. This means that a majority of your interface design should be implemented in a way 

that looks more or less as it will in the final version. This doesn’t mean that everything needs to 

be bug-free; in fact, the primary purpose of a beta-test group is to isolate and track down pesky 

issues that will cause problems for users.

You never want to show off your work too soon, as users will then have issues understanding 

the ultimate purpose of the app or will run into trouble when navigating the software. Offer-

ing up the app for beta testing too early only wastes your time and the testers’ time. They will 

focus on issues that you already plan on fixing, leaving you to attempt to explain to them why 

something doesn’t work the way they think it should but will eventually.

Similarly, you should not wait too long to hand off a beta build to testers. Stalling until late in 

the development game could mean that everything in your app will be set in its foundation, 

and making big changes will be extremely difficult. At this point, your design will be stuck in its 

current form, and all testers can do is reassure you of the decisions you’ve already made or alert 

you to problems you will be unable to fix prior to shipment.

Devising a Beta-Test Strategy
Like everything else in app development, it’s important to plan ahead. You’ll want to develop a 

strategy before you send your first test version to your anxious evaluators. Doing so will make 

life significantly easier as you rush toward the final days prior to finalizing a beta version.
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The last stages of a project will often be hectic. Programmers will be running tests on various 

issues and bugs, working to improve performance. Designers will be working on every phase 

of the interaction within an app, making sure the gestures perform as intended, every pixel is 

in the right place, the text copy has been tidied up, and every label and paragraph is clear and 

concise. Soon, you’ll have a handful, if not a dozen or more, of beta testers using the applica-

tion and recommending fixes or finding problem areas. The moving parts at this stage of the 

development process only increase.

Thus, if you don’t have a sound plan you’ll quickly find yourself overwhelmed and juggling too 

many balls at once. This can be a major problem at a time when you need to be the most alert 

and ready to adapt to anything thrown your way. Consider embracing the following strategies 

to help keep your head above water.

Tracking an App’s Issues

First and foremost, the most important thing you’ll need to do once a group of testers start 

pointing out bugs is to find a solid, formal way to collect and track information on those issues. 

You’ll need a tool that will help your development team and your testers collaborate and pass 

information back and forth.

Some of the best tools to help you do this are simple, Web-based issue trackers accessed 

through services such as GitHub or Bitbucket (shown in Figure 10.2), services you might already 

be using for source-code management. These sites offer issue trackers that work much like an 

Internet forum, allowing you to tag other users and assign issues to them directly, close out 

issues once they’ve been resolved, attach screenshots or photos to help guide a program-

mer through solving the issue, and much more. You can format text in these trackers using 

Markdown, which allows for easy and quick integration of bulleted or numbered lists, bold or 

italicized text, URL linking, and other text formatting that will be useful in helping to emphasize 

a point about a specific issue.

If you choose not to use one of these services, some test groups simply use e-mail lists to pass 

along information about bugs or common problems. It’s a more rudimentary and basic way to 

handle feedback communication, but if it gets the job done for your team go ahead and do it. 

Be careful when you use this method, though; it can often result in a lot of inbox clutter, annoy-

ing some members of the list or leading to certain items being overlooked.

Some test-group administrators also use standard Web forums for handling the discussion of 

issues, creating a specific thread for each bug that users or team members can comment on. 

This method is commonly used with software in postrelease, either when collecting bug dis-

coveries from a large user group or when a large public beta is available, like in larger projects 

that may require hundreds or even thousands of testers before the app is ready for general 

consumption. It works well because some technically limited common users may be intimi-

dated by the standard software-issue tracker, and forums are much more easily understood. 
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The downside, though, is that this method doesn’t make it easy to assign issues to specific 

programmers and designers; it’s also typically unruly or difficult to manage, especially among a 

large number of users.

A final method, one frequently used by many indie developers, involves simple Web forms. The 

developer may write a basic Web site, one that includes a standard PHP Web form that when 

completed sends an e-mail to a programmer or designer, serving as the official way to col-

lect feedback from test users. This often works well because there is a low barrier to entry for 

the test user to submit feedback; he or she just needs to click a link and enter some text. The 

downside comes when you must sort through a host of e-mails that could come in a variety of 

convoluted formats and then morph them into a formal structure that allows the programmer 

to determine where a problem is occurring and how to correct it. Overall, though, it’s the easi-

est route for the beta-test user, which will likely lead to you receiving the most feedback.

Prepping Every Build

Once you’ve reached the point at which you’re ready to collect feedback, you’ll need to figure 

out what the best way will be to distribute test builds of an app to users. This seemingly simple 

Figure 10.2 Bitbucket is a frequently used personal code manager and issue tracker that might fit 

well into your workflow.
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task can often become quite complex, and there are a few key points to review before sending 

out any build.

Again, it’s important to remember that Apple currently caps the number of test users per devel-

oper account at 100. That may sound like a lot right now, but as you work on your fourth, fifth, 

or 100th application that number won’t seem so large. This figure is also tied to the number of 

devices, not specifically to the number of users, so as loyal testers get new iPhones and iPads 

they’ll be chipping away at that number.

warning

KNOW YOUR LIMITS Depending on the platform you’re working on, you may be 

limited by the number of test users you can bring on to a prerelease program. Be 

aware of these caps and how they could affect your testing cycle. Don’t lose valu-

able potential feedback because you were caught off-guard.

The first thing you’ll need to do is collect some basic information about the devices your testers 

are using. Regardless of the platform they’re on, you’ll want to know what your beta users have 

on hand to review your work with. Keep a list of the device type and operating system that each 

user tests with; this will become extremely useful once reports of the first bugs start coming in. 

The key to proper bug testing is replication; your programmers will want to see exactly what 

happens when a problem occurs in the app, and if they can’t see it on the exact device and 

operating system the tester was using it will be a difficult issue to fix.

By knowing which operating system and device the problem occurred on, you can isolate the 

vast majority of variables and quickly get to the root of the problem. This knowledge will also 

pay dividends if your app has specific features available only on certain platforms or devices, 

because you’ll be able to check whether users are able to use such tools.

Figure 10.3 details different platform-adoption rates for an app released simultaneously on 

iOS and Android. As you can see, a variety of different versions of different operating systems 

are used, and this graph can’t even begin to display the number of different devices used (174). 

Monitoring these numbers, though, can help isolate potential usability or programming issues 

during development.

You’ll also need to draw up an internal schedule outlining how often you intend to send test 

builds to users. Do you plan to have a new version every week? Every month? Some software 

teams produce nightly builds, although that’s usually for larger products and might be overkill. 

Will you only send a new build when something substantial has been done, making it worth an 

update? It’s a question you can really only answer with your team, and the answer will be based 

on your own personal workflow preferences.
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You don’t want to drown your testers with a constant barrage of new builds, but you do want 

them to have the latest and greatest version so they’re not reporting issues to you that have 

already been fixed. Work with a client to develop a plan, but delivering two beta builds per 

week is a good target, because that total and regular schedule will give the involved parties a 

consistent pattern by which they can regularly expect new work.

Another important detail to include in your plans involves coming up with a consistent and 

internally understandable build-numbering system. Ideally, you’ll want to keep that number 

prominent within the application somewhere so that users can reference it when reporting bugs 

or issues. It could be something as simple as “0.X,” with X representing the sequential number of 

test builds that have been offered. It could also be something much more complex, maybe even 

including a date or timestamp to clarify to the internal team when the build was created.

tip

Are you not sure how to format your version numbers for prerelease builds? A 

well-tested labeling format is 0.X.(Date stamp in “YYYYMMDD” format), where X can 

have three potential values:

Figure 10.3 After you release an app, users may be downloading it on several platform OS versions 

at any given time.
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 ■ 0.7: Alpha build, early release. Not feature or design complete and 

very rough around the edges.

 ■ 0.8: Beta build, mature release. Feature complete but maybe not 

design complete. Needs much work with visual pieces, text formatting, 

proper text copy, and other fine details. Likely to have significant bugs 

or issues.

 ■ 0.9: Release-candidate build, near-final release. Features and designs 

are complete, and most bugs have been fixed. Going through final 

verification to make sure the app is ready for the world.

Using this system, a beta build released on April 5, 2014, would be labeled as 

“0.8.20140405.”

You can also save yourself some time and effort by creating template e-mails that will go along 

with each build, as you’ll often repeat many of the same instructions each time a new version 

is set throughout the development process. Software such as TextExpander by Smile can be 

a lifesaver, allowing you to store and reproduce any snippet of text with just a few keystrokes. 

Aside from e-mails, you could also use those programs to save instructions on how to delete an 

application from a variety of different versions of Android or iOS, how to reset each device, how 

to determine the operating system version a device is running, how to properly report bugs 

using your issue tracker, or a variety of other common tasks you’ll be explaining frequently. 

Templates are extremely efficient and allow you to respond promptly to users as they ask com-

mon questions during the hectic, final testing period.

Handing the Beta Off

Once you have a list of users on hand and an idea of how you will respond to their feedback 

and integrate their opinions into your software, you should consider how your beta app will be 

distributed to your users. Depending on the platform you’re working on, this could be relatively 

easy or somewhat difficult. On Android, for example, you may only need to e-mail an APK file 

to test users so long as they have turned on the device setting that allows the use of unsigned 

third-party applications.

With iOS, however, you’ll have a bit more work on your hands. Requirements and policies 

change from time to time depending upon Apple’s current developer policies, so it’s best to 

first check the developer center to find out the latest procedure.

Typically, however, you will need to collect UDID codes from each user’s test device through 

iTunes and then use Apple’s developer portal to create a special provisioning profile that 
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prevents the prerelease application from being installed on any iPhone or iPad devices for 

which you do not have the UDID. From there, you will need to get the app’s compiled IPA file 

and provisioning profile to your test users. A couple of Web services have been built to help 

with this; TestFlight (shown in Figure 10.4) and Launchpad allow you to upload these files and 

automatically notify the user that a new test build is available for download.

Once you get your test app in users’ hands, it’s advisable to build a regular schedule and follow 

up with your test users to make sure they’re using the app sufficiently and getting accurate and 

appropriate test data. Likewise, you may need to prompt them to fill out the issue-tracking form 

you selected, as most users tend to be busy and may forget to note the bugs or issues they find 

during their testing periods.

Analyzing Valuable Test Data
As users report back on their experiences with your app, don’t forget to take time to 

aggregate the hopefully useful analytic data you’re collecting from your digital guinea 

pigs. Many programmers and development teams ship their apps with some type of crash-

measurement analytics as well as with some variety of usability- or feature-popularity-

measuring metric.

Figure 10.4 TestFlight’s Web service was written for developers and designers by developers and 

designers, making it a great way to manage beta testing.
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tip

As in any relationship, the connection between your team and your beta testers 

can be improved through solid, consistent contact. It often makes sense for the 

designers to be in charge of communicating directly with testers, because they will 

primarily have issues or concerns about the app’s design and interaction. Be sure 

to reach out to testers if you don’t hear from them for a couple of days or a week, 

and make sure all is going well and that they aren’t running into problems. Testers 

will appreciate this, and building that relationship will make them feel comfortable 

coming to you with questions or interaction design suggestions. A strong personal 

connection allows for an honest and open feedback cycle, which is key to creating 

outstanding work.

Implementing these analytical packages can be complex and is generally beyond the techni-

cal expertise of a designer. However, most do come with simple software development kits 

to make it easy for anyone with a bit of basic knowledge of native programming languages to 

integrate advanced analytics into their app.

Knowing Where Testers Spent Their Time

The most popular analytics services to integrate into mobile apps are Google Analytics or Flurry 

Analytics. Both systems are designed to track detailed user metrics on the features users love 

or hate.

Whereas TestFlight and Launchpad are solid ways to manage beta distribution and beta-team 

management, these apps are instead used to determine which features inside your application 

are the most popular, where users spend most of their time, how many times the average user 

opens the app, what countries or cities app users come from, which device models and operat-

ing systems are most popular, and much more.

Such data is valuable because it offers insight that even your most loyal testers may not tell you 

about. One of the first early lessons you’ll learn as a software developer is that no matter how 

hard they try users will be unable to articulate what makes them love or hate a specific app. 

Analytics can give you a peek behind the usage curtain and help you better understand what is 

appealing and what is discouraging to consumers.

Here’s one key example of the benefit of such information: A host of different development 

companies have done interface research regarding speed and how it relates to user satisfac-

tion. Google is known to pride itself on how fast its search engine can return a desired result. 

But ask the average user, and they will rarely say that the precise speed content loaded was the 
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determining factor between whether they liked or disliked an app. Data, though, can indicate 

whether long load times may be limiting use and whether any changes you make to an app 

improve key usage statistics.

You could, say, alter the amount of information you display on the screen at a given time, 

perhaps by using a compression technique to knock half a second off the initial load time. Most 

users would never notice this change, but analytic data could indicate increased time spent by 

the average user inside the app, helping support the notion that speed is important. Whenever 

possible, look at analytics and try to find ways to use data to guide design changes you make to 

an app.

Finding Software Bugs and Crashes

Crash report analytics services—especially Crashlytics, HockeyApp (shown in Figure 10.5), or 

TestFlight—are also very popular and worthwhile. They provide a variety of services, including 

sending e-mails whenever a user experiences a crash within the app complete with a detailed 

report about what was happening when it occurred, what device model and operating system 

the user had, and whether things like language settings or localization features could have 

Figure 10.5 HockeyApp integrates with iPhone or Android apps, allowing your team to receive 

e-mails when users have issues. (Courtesy of HockeyApp, Inc.)
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sparked the problem. These services will be invaluable to your programming team as they offer 

insight that beta users may not be able to provide themselves.

Having this type of information on hand will be quite useful, because the first step in solv-

ing any bug or issue is to replicate the problem over and over. A crash occurs because of a 

specific event, and you’ll need that same set of variables in place in order to observe what 

happened. It’s like a basic science experiment; you need to develop a hypothesis about what 

happened, distill the situation down to a small set of variables, then test again and again to 

see what occurs. You won’t be getting any blue ribbons for your efforts, but you will win over 

happy users.

What role do nonprogrammers play in this refinement process? Designers can contribute quite 

a bit in fact, because fixing bugs and resolving technical issues requires patience and a strong 

attention to detail, common attributes among those skilled in the visual arts. Technical bugs 

can often seem random and nonsensical until an obvious pattern is discovered, and your keen 

eye can help identify why an issue is occurring. Obviously, when it comes to pinpointing where 

the problematic areas of the code are and how to fix the issue you may be less of a help, but the 

rest of your team will surely appreciate a designer who can alleviate any difficulties that appear 

during the bug-testing stage of development.

Managing Issue Resolve

As your team works to solve the various issues your testers point out, you’ll want to develop an 

internal system of checks to ensure that problems have been resolved. Consider setting up a 

two-person checking system to verify that a bug in an app has been fixed before an issue can 

be deemed “closed.”

Under such a system, the engineer that works on fixing the bug in the software code first tests 

the issue and verifies the code has solved the problem. Then, another team member goes in 

and confirms that the bug has been eliminated. If both sign off on the issue, make sure to men-

tion it to your beta testers as something to verify once they receive your next test build.

But, you might argue, doesn’t this extra step seem a little unnecessary? Your team isn’t made 

up of children, after all, and if an engineer says an issue is resolved is there really a need to 

check it again? Yes. Even though this adds extra time to the process, it’s essential. If there’s one 

thing that annoys test users, it’s telling them that an issue has been corrected when in fact the 

problem persists.

You don’t go through a double-check process because you don’t trust your engineers; you do 

it because software bugs are complex and the mobile world features a variety of operating 

systems and devices. Issues that a programmer thinks they’ve eliminated may continue to pose 

problems for some users. Requiring two team members to sign off before an issue is pushed 

aside alleviates potential pain for beta testers and, perhaps, eventual mass-market consumers.
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From Beta to Positive Changes
It’s your job as a member of the creative team behind the project to judge how important each 

and every one of the issues raised by a tester is and how that feedback should be input and 

applied as you revise, add, and subtract from your app. You’re the captains of the development 

ship and will need to determine the course toward success, locating what pieces are ripe for 

revision and what can be skipped. Your success will be based on your ability to read the market 

and anticipate user demand, so learning what users want from your product is a critical part of 

the development process.

Determining what to do once you’ve handed out a few beta builds, tackled obvious problems, 

and collected even more feedback on your app involves making some difficult choices. You’ll likely 

have a variety of user bugs that still need addressing as well as recommendations for product 

enhancements to consider; but you’ll also have a ton of user data from your analytics platforms 

to worry about. This creates the potential for too many problems that need attention before your 

planned release date. How should your team prioritize and ultimately decide what makes the cut?

It’s this stage of the process that separates the good designers from the great ones. The deci-

sions made here over what gets included in the final version of your app will ultimately lead the 

project to success or lock it into mediocrity.

Perhaps the most difficult thing to determine involves which proposals from beta testers 

require consideration and which can be ignored, at least temporarily. No matter how hard you 

try, it will be impossible to please every user, but issues spotted by your testers could pose 

problems for the general public. The key is to be selective; there are only so many hours in the 

day and only so many days until you release your app to the world.

When attempting to prioritize issues, aim to take user complaints and correlate them to data 

amassed via Google Analytics or a similar program. A request or issue that’s reported often should 

demand your attention, because many have identified that problematic point. What’s tougher, 

though, is winnowing down the list of concerns voiced by one or two beta testers. When such 

issues arise, data is extremely valuable, because it can help you learn more about these seldom-

made requests and trace them back to the features they stemmed from. The elements most com-

monly used by beta testers should be given top priority during the refining process.

As the one creating the app, though, you know your project best. Sometimes, you’ll have to 

trust your gut and personal preferences when it comes to putting the finishing touches on a 

piece of software leading up to release then go back and clear up user concerns for later ver-

sions down the road.

Determining When Enough Is Enough

At some point, however, you have to push your app out of the development nest and hope it 

can spread its wings and fly. Steve Jobs was famous for reciting the phrase “real artists ship” in 
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the months leading up to the release of the original Macintosh. If you want to have a successful 

mobile smartphone or tablet application, you’ll first have to release it into the wild. It can’t be a 

universal success if the universe never gets to see it.

Although the process of software development can feel as rigorous and exhausting as a mara-

thon, development isn’t usually a race with a set finish line. Your team is ultimately in control 

of when the project is done. With an infinite time span, you could go on forever, but it’s best to 

set a deadline for when the project should be complete, or at the very least know when to say 

when and wrap a bow around your project. So what are the telltale signs that you’re ready to 

release?

 ■ You’ve squashed all (or most) of the bugs.

It will be impossible for you to remove every last bug from your software, but aim to 

do the best job possible and make sure any particularly pesky performance issues 

have been resolved. Small problems can be solved quite easily as long as your team 

isn’t lazy, and in the end doing so can prevent users from having a poor experience.

 ■ You’re happy with what you’ve got.

You’ll always be your harshest critic. If you’re not satisfied with your own work, you 

may want to question whether it’s ready to be released to a mass audience. But don’t 

be too hard on yourself; you’ll never get the app absolutely perfect, so you’ll have to 

let it go at some point. Remember this great quote from Nintendo video game devel-

oper Shigeru Miyamoto (creator of Mario Bros., Donkey Kong, Zelda, and many other 

titles): “A delayed game is eventually great, but a bad released game is bad forever.”

Although this philosophy isn’t as pertinent in the mobile world, because it’s fairly 

simple and fast to release minor updates, it’s important to remember that you can 

always fix issues postrelease, but letting buggy software out into the world will turn off 

many users to your app, and by the time you’ve fixed the issue and uploaded a release 

to the app store the user may have written off your app completely.

 ■ You’ve addressed beta concerns as best as possible.

Depending on the size of your beta group, you may have a lot of features suggested 

to you. Within reason, you should try to accommodate these as best as possible. Place 

a high priority on the things you determine to be most important, and try to get as 

many of them done as possible before release.

 ■ You’ve prepared a launch strategy.

As the designer on a project, it’s likely that the responsibility of creating a Web site, 

promotional banner art, screenshots that focus on special features, a press kit for the 

media, marketing e-mails, and other released material will fall to you. Make sure you 

have all these elements ready to go before the app is released to the world. You want 



ptg12441863

210 CHAPTER 10 GAINING VALUABLE FEEDBACK

the availability of this material to coincide with the release date of the app, so it has to 

be fact-checked, proofread, and finalized before launch day arrives.

 ■ You’ve checked your schedule.

This may seem like one of the silliest pieces of information offered on these pages, but 

don’t laugh. Before you set a release date, check your personal schedule. Check your 

team members’ schedules. Don’t plan to launch an app around birthdays, weddings, 

holidays, vacations, or any other time at which you and your colleagues might be away 

from the computer. Inevitably, Murphy’s Law will take hold after your app hits the 

digital marketplace, and you want everyone available at a moment’s notice if (when)

something goes wrong.

Releasing the App

Once you’ve run down this checklist and completed every item—not to mention ensured that 

you’re sufficiently satisfied with the interface and interaction design and that your program-

ming team is content with the performance of the app’s features—you’re all set for release.

The next step is to prepare and submit the binary code of your software as well as any required 

metadata to the app stores. For Android apps, your work could be available in as little as a few 

hours, but for Apple software you’ll likely be waiting a few days for the app to be approved. 

Sooner or later, though, you will be able to release your app for download to dozens, hundreds, 

thousands, or millions of consumers.

IN-DEPTH

If you’ve never worked through an application and gone through a reiteration and test-

ing phase, it’s often difficult to understand what to expect or what the experience will be 

like. Here’s some firsthand testimony from a fellow designer, offering his opinion on what 

it’s like to iterate during the beta process.

James Karras is a product manager at OUYA, Inc. OUYA was released in 2012 after suc-

cessfully completing a campaign on the independent crowdfunding site Kickstarter. The 

project allows mobile Android games to be played on large TVs using Bluetooth gaming 

controllers.

This is an exceptional example of iterating on interaction design. As Karras and his team 

looked to make hundreds of mobile Android games compatible with their upcoming 

OUYA, they were also looking to refine an interface that allowed users to jump seamlessly 

between games and menu options.

But users were having trouble with his initial menu designs, he said in an interview for 

this book, although that was only apparent after user testing:
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Conclusion
The product-development cycle for a mobile application is a lot like the human life cycle: It 

starts young and ambitious then grows and evolves until it’s finally ready to immerse itself 

in the world. Being a designer during the predevelopment beta tests, meanwhile, is a lot 

like being in college: doomed to be awkward, uncomfortable, and brimming with a sense of 

overconfidence that’s just asking to be humbled once weaknesses and flaws are pointed out. 

But over time, you and your app will refine your offerings, ultimately producing a better version 

when all is said and done.

For OUYA, user feedback is a fundamental part of how we run our business. An understand-

ing of what our gamers are doing helps us to quickly adjust and iterate in order to make the 

best experience possible.

For example, our original design for our system menus had visual elements intentionally 

going off the left side of the screen. Visually, it looked fantastic, but as soon as gamers got 

this early version in their hands, we received complaints of overscan issues with our menu 

system. This occurred when, at times, it appeared as if the screen wasn’t properly showing 

the entire viewing area, giving users the impression that they weren’t seeing the full system 

menu. The problem was exacerbated by the fact that we had a bug with certain games that 

really did have overscan problems.

The solution was simple: First, divide up the gamer feedback so we understood that there 

were multiple problems, then pull in the design elements on the left side of the menu, so we 

eliminated the confusion entirely and could focus on the specific issues with games.

Internally, we didn’t catch the issue because we all had inside design knowledge that parts 

of the menu were supposed to appear as if they were cut off. We were trained that the 

design “looked right.” It was only by listening to gamers that we understood that confusing 

element of our design. Once we got that information, it made our decision clean and easy.

Since we’re making a product for our gamers, we constantly turn to them for feedback to 

help us make the best product possible. Not only does it lead to the best outcome for gam-

ers, it makes our jobs easier too.

Karras’s team learned a hard, valuable, and necessary lesson by showing off their work to 

a small group of internal testers. By doing the same with your projects, you’ll be better 

prepared to achieve success on release day.
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REFRESHING A DESIGN

Among his many other famous sayings, legendary 

baseball player Yogi Berra was known for his quip, 

“It ain’t over ‘til it’s over.” In the app design game, 

unfortunately, even when you think a project is 

over it ain’t really over. Once you release a piece of 

software, there will be many reasons to return to 

it. Maybe users will find a bug you never noticed. 

Maybe they’ll suggest a function you never thought 

of. Maybe a new operating system or device will 

come out that makes you want to update your app. 

In this chapter, you’ll find details on how to go 

through the process of releasing a new version of 

your app.
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Improving as a Designer
Once you’ve shipped the first version of an app to a digital store and you’re waiting for it to 

clear a review period and be released to customers, you’re sure to experience a number of 

vastly different feelings. The first will likely be exhaustion.

Creating an application requires an extraordinary amount of effort, focus, and dedication—

especially in the latter stages of a project when tension and stress is high as you work to perfect 

an app. After that sets in, you’ll begin to grasp the weight of what you’ve done as a designer or 

developer. It should be a proud moment; you’ve taken an idea and brought it to reality through 

lines of code, pixels, bits, and a lot of hard work.

warning

WATCH FOR BURNOUT Long days are no laughing matter when it comes to 

app development. Toward the end of a project, it’s not uncommon to be pushing 

toward 60-or 70-hour weeks. Don’t extend yourself too far, though. Give yourself a 

break when needed.

These sentiments and sensations will become regular occurrences, but you’ll feel the effects 

most profoundly with your first couple of applications, when you’re still becoming familiar with 

the full development process and all that comes with it. It’s perfectly fine to feel the need to 

take a break and recharge after an app’s release, so do whatever it takes to clear your head. But 

with experience comes the realization that the software-development process is never truly 

complete. Before long, you’ll need to jump back into the routine of daily work.

If you work as a contract developer, you’ll soon become accustomed to this repetitive and 

short project life cycle. After an app is shipped, you’ll start working on another one almost 

immediately (assuming you’re getting work regularly), and you’ll start the process fresh again 

and again. You return to step one each time, which helps you grow as a developer and learn 

how to constantly improve your work. With each new project, you’re able to take the knowl-

edge acquired from previous releases and apply it to future work. If nothing else, you have the 

chance to make good on past mistakes.

Each time you hit the reset button and start a new project, you get the chance to clean up your 

shop and refine your process, working toward better organization, cleaner code, better-man-

aged files, a smoother workflow, and other logistical improvements. You’ll amaze yourself with 

how much you improve with each subsequent app. In a contract setting, rushing to a new proj-

ect immediately after finishing one offers opportunities to constantly improve on bad habits.

Consider, for example, re-evaluating your folder layout and naming conventions between 

projects. Inevitably, you’ll start to improperly name files and folders and get sloppy with code, 

Photoshop layers, and anything else that can be made messy. Your downtime is the ideal 
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opportunity to look at the way your last project ended up and commit to methods that will 

make your future work tidier. Figure 11.1 is an example directory layout that could be used in an 

iOS app project.

Maintaining a Work Journal

A work diary is an especially helpful tool for professional app designers (and amateur coders) to 

get in the habit of using. Create a journal on your computer and keep track of all the work you 

do each day. You can use an app such as Day One Journal to jot down notes in a file that syncs 

Figure 11.1 The file organization on this project isn’t bad, but could it be improved?
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between your laptop and phone, making it easy to mark your progress either in the office or 

when you’re out and about. You can also integrate third-party scripts and code automation to 

make all Git commits, project issues resolved, useful bookmarks, and more indexed in the file.

Maintaining a regular log becomes an invaluable resource as designers work through multiple 

projects rapidly. You’re unlikely to find the time to sit back and conduct a deep analysis of your 

work down the road after you’ve moved on from a project, as it can be difficult to look back at 

something a few months old and parse the various decisions you made in code or with an art 

file. But by dedicating a mere five minutes a day to writing down what you did or new things 

you tried you’re building a personal resource library that you can consult in the future for a 

spark of inspiration or a crucial warning sign. As you scroll through its digital pages, you’ll be 

able to see how you tackled problems in the past, how your current methods differ, and how 

much you improve over time.

Evaluating Your Own Work

When looking back at this personal work history, examine your process with each project to 

determine how well you accomplished your stated goal, no matter what time constraints you 

were under. Because you’ll often be the only designer on a project or team, it’s imperative to 

self-critique. If you don’t harshly judge your work then it’s unlikely anyone you work closely 

with will, and a helpful and fair review by someone close to the project is required for growth as 

a designer.

Ask yourself the following questions as you go about assessing your work.

 ■ How close did you come to your original design?

First, analyze how far off you were from your original plan. Take a look at the final 

screenshots from your app side by side with your initial concept sketches and early 

Photoshop work. Ideally, as you grow as an interface designer you want the final appli-

cation to be as close in form and function to the initial design as possible in order to 

increase efficiency in your workflow. Figure 11.2 shows how close the final outcome of 

an app may look to its initial wireframe.

 ■ When you diverted from the original course, why did you do so? Did it make the 

app better?

Inevitably, there will be times when your final work looks nothing like your initial 

sketches or concepts. When that happens, it’s time to ask the most important question 

you’ll consider as you look back on your work: Why is the final application different 

from your original previews? Did you misunderstand the technical requirements? Did 

your interaction design appear flawed once you actually saw it in code? Did the stake-

holder or client disapprove of the route you were taking and force a change? Differ-

ences aren’t necessarily bad, as you want to do whatever it takes to make the best app 
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possible; but understanding where breakdowns or diversions occurred can help you 

anticipate them in the future.

tip

Remember, it doesn’t matter if you move away from your original design during 

the development process, but it does matter why. When looking back at your work, 

you should be able to recognize where you made changes for the better, why 

those changes were necessary, and how they helped in the long run.

 ■ How pleased are stakeholders, clients, and customers with the design?

Did your customer or client rave about the final product? Did they seem disappointed 

with the initial release? Obviously, the most important people to please if you want to 

see financial success—and ultimately fund more app projects—are your customers. 

If you’re doing your job right, you should have a good understanding of how to meet 

their expectations, so these answers shouldn’t be a surprise. In the end, though, it’s 

necessary to assess your performance in this area after a project is put to bed.

tip

If you use Google Analytics as your analytics-tracking tool, you can track live 

data upon release and see how users are interacting with your app on the fly. It 

may seem like a bit of data overkill, but it’s fun to see a surge in stats as people 

download and try out your app. Look at usage metrics at launch and then some 

time after to see if users keep with your app over time. This is a great way to judge 

if customers are enjoying your work.

Figure 11.2 Just how close in concept was the initial sketch to the final piece of work?
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 ■ How pleased are you with your design?

At the end of the day, you should be your own biggest fan. If you’re not content 

with an app, you won’t be a happy designer or developer. The mental and emotional 

struggle that goes along with putting in late nights or weekend work in order to ship a 

project will seem less worthwhile if you’re unsatisfied, and your future work will suffer 

if you remain frustrated by a previous app. Operate in a manner that allows you to 

absolutely love each app you build. If you finish a project you’re unhappy with, take 

time to prevent this frustration from carrying over, and make every effort to ensure 

you’re not left with the same sensation on your next assignment.

 ■ Where are there potential improvements in your design?

No matter how sharp your work looks, there can always be room for improvement. 

Never rest on your laurels and assume your basic output is good enough. Application 

development is an extraordinarily competitive market, and if you’re not constantly 

finding ways to improve your talents and become a better designer, you’re destined to 

fall back from the pack. Always give your work a close look—and try to be objective—

to find where there’s room for improvement in future releases.

Judging Who Is Worth Listening To
Do you remember that one teacher you had in high school or college who, no matter how hard 

you tried on a project or paper, always ended up giving you a disappointing grade below what 

you thought you deserved? Do you remember that you’d show that score to a friend or parent 

and insist that you tried your hardest, that the grade wasn’t your fault, and that the teacher 

was biased against you? Well, prepare for frightening flashbacks. That’s what it feels like to get 

reviews as an app developer; you’ll have the same response to the user or Web site that has bad 

things to say about your work.

Once your app hits the market and is available to the masses, you can expect to receive feed-

back on the successes and failures of your work from many sources. You’ll most frequently get 

response via user reviews in app stores as well as e-mails or social-media correspondence and 

through reviews by app-focused media outlets.

Seeing a poor rating for your application can feel like a punch to the gut. You’re bound to 

make mistakes, and users are sure to pounce all over them. The best developers live, learn, 

and fix their mistakes. That’s what makes them great. Figure 11.3 shows an unfortunately poor 

response one app received to its latest update. To grow as a designer, you’ll have to learn to 

read through negative reviews and search for keys as to why customers responded poorly.

You could get a staggering, overwhelming amount of feedback soon after launch, so how 

do you determine what’s the most important, what’s worth taking to heart, and what should 

prompt you to consider revisions or updates? Who should you attempt to contact in order to 
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get them talking, writing, or tweeting about your product? All comments are valuable, and you 

should be capable of listening and willing to listen to all commentary, but you can prioritize 

where to focus your public relations energy. Some outlets warrant more attention, because 

they have the chance to influence a greater number of people.

Review Web Sites

Most of your focus should be given to popular app review Web sites (such as AppAdvice.com, 

shown in Figure 11.4), online influencers in tech (users with tons of Twitter followers, those who 

write for tech Web sites, etc.), bloggers, and traditional news outlets. These reviewers have the 

opportunity to reach a wide audience, so it’s not uncommon to see developers aggressively 

reach out to such users over e-mail or social media.

When contacting these valuable users, provide a press kit to help them with the writing or 

reviewing process. For a mobile app, this should typically include high-resolution screenshots 

of the app, a large image of the app icon, the text description that appears alongside the app 

in digital stores, personal contact information in case the writer has follow-up questions, a 

bullet-point list of key features, a test user account or login credentials (if applicable), links to 

the application’s download location, a free download promo code (if available and provided 

by the app’s current store), and any other information you think might be valuable to someone 

reviewing or otherwise writing about your work.

Compress the kit as a ZIP file, then make it available to any reviewers or press members who 

might give the app a test drive. Post these materials online too; there’s nothing more frustrating 

for a journalist or reviewer than going to a digital-media operation’s Web site and not finding 

the necessary images, descriptions, or other information needed when researching a product. 

This small effort goes a long way toward making life easier for people who can spread the word 

about your app.

Figure 11.3 You will need to learn to overcome poor ratings from reviewers.
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warning

DO A DOUBLE CHECK When creating a press kit, don’t forget to include all of 

your contact information and a link to the application along with a free download 

promo code (if applicable and available from the app store you’re selling through). 

Potentially great launches can be ruined by simple yet devastating mistakes. Cross 

all your t’s, dot all your i’s, and make sure the media has every last bit of information 

it needs.

Don’t be afraid to e-mail journalists or contact them through social networks. Even though 

unsolicited messages are likely to have a low impact and reviewers are often inundated with 

Figure 11.4 If you want to generate buzz about your app, you’ll have to work hard postrelease to 

gain some media traction. (Courtesy of Tyler Tschida.)
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random e-mails, it’s always worth a shot. Make every effort to stand out from the crowd when 

writing these messages; keep them short and to the point, mentioning only the key differenti-

ating features that make your app appealing to the journalist’s readers or viewers.

Because cold-calling (or, more appropriately, cold-messaging) can bring minimal results, 

consider reaching out to these key sources prior to the moment at which you need some-

thing from them. Introduce yourself to people who can help with the promotion of your work 

when attending development conferences, trade shows, or local, digital-related events. When 

seeking a review or published article about your app, it’s better to be working with people 

you know and who trust your work. When the opportunity arises, take a deep breath, swallow 

your nerves, and cheerfully introduce yourself to journalists and publishers from your favorite 

Web sites.

App Store Reviews

When users are considering downloading or purchasing an app, they look to the simplest place 

possible for details about prior users’ experiences: the review section of digital app stores.

On the Apple, Google, Amazon, and Microsoft online stores, users can submit brief reviews 

along with a personal rating for any app. These reviews can be especially tough to stomach for 

application developers, because it’s difficult to scroll through feedback you have no control 

over, no role in screening, or any ability to respond to by directly helping users having problems 

with your product. You can’t even respond to criticism in most app stores—with the excep-

tion of Google’s, as shown in Figure 11.5—so you’re powerless to correct reviews riddled with 

inaccuracies.

Figure 11.5 Google gives developers the opportunity to respond to reviewers’ criticisms, something 

you and other designers would surely like to see adopted by other app stores as well. (Courtesy of 

Salvador Velazquez.)
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These reviews often amount to nothing more than rants or support questions submitted in 

the wrong forum, making the entire experience frustrating and difficult for the developer. 

But unfortunately, these comments can have an astonishingly large impact on sales, because 

they’re the last bits of information any end user sees before they decide to tap that all-

important “buy” or “download” button.

note

Take comfort in the fact that some portion of an app’s success is based on nothing 

more than plain, dumb luck. Try as you might to ensure that users love your app 

and rate it highly, you’ll also have to rely on luck in order to find success in the digi-

tal software marketplace. Sometimes, an app enjoys enormous success because 

the right person stumbled across it at the right time and spread the word. Other 

times, maybe you end up near the top of the results for a common search term. Do 

the best work you can, push your app into the marketplace, and see what happens.

There’s not much you can do with these reviews besides live and learn from them, and use 

them as indicators of what parts of your application needs updating in the future. Most users 

will never go out of their way to make a formal feature request, but they will leave notes and 

comments in these reviews; take a look to find out what’s suggested frequently, and use that to 

identify spots for improvement.

Personal Messages

Users may also try to contact you through personal e-mail or other forms of direct communica-

tion, including Twitter, Facebook, or instant-messaging services. These are flattering feedback 

methods, because it means the user took time to reach out personally and privately to let you 

know what he or she thinks about your work.

warning

USERS WANT TO CONTACT YOU Users will take advantage of any method pos-

sible to contact you—even calling your personal cell phone to complain about a 

bug or missing feature. If you make information public, people will use that method 

to get in touch. Be careful what you make available.

Your application may only cost a dollar or nothing at all, but these users took their own valu-

able time to write a personal e-mail looking for clarity on an issue they had or to let you know 

about a feature they desire. You should place a lot of significance on any feature request or 
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identified bug that stems from a personal e-mail or similar type of communication. The author 

clearly cares about your product, so even if the issue they raised wasn’t a concern of yours dur-

ing development, it’s worth examining further because a user felt it was important enough to 

contact you about it.

Research, as well as anecdotal evidence, seems to indicate that personal referrals can account 

for a large percentage of the downloads and purchases of an application. The users that 

personally e-mail you show they’ve already made a huge investment in your product and 

are likely willing to carry that passion into their daily online or real-world lives and suggest 

your app to people they come in contact with. By going out of your way to accommodate 

any features or bugs they let you know about, they’ll come to appreciate and respect you as a 

developer even more, making them passionate, loyal customers who are willing to check out 

your future work.

Avoiding Negativity

Criticism is not the same as negativity—and it’s important to be able to distinguish between 

the two. When working in the online world, you’ll encounter one trait of online users that is 

increasingly frustrating and difficult to accept: an insistence on including harsh negativity when 

assessing anything. As you scan e-mails or Web reviews of your product, you can easily become 

overwhelmed by the sheer amount of harsh putdowns.

Although the anonymity provided by the Internet can be a great quality, it can also be a major 

drawback, especially in the way it changes behavior. If you go to a restaurant and get service 

that’s slightly below average, you don’t spend a long time belittling the waiter or shaming the 

manager. That’d be rude and unnecessary, making you and everyone around you embarrassed 

or uncomfortable. But on the Internet, where nearly every user has a pseudonym and there’s 

no fear of public confrontation, humans adopt a shockingly unrestrained attitude and become 

more harsh and offensive than they ever would be when talking to another person face to face.

While reading through and considering feedback, separate the constructive criticism from 

the unproductive negativity. A user who offers helpful comments is letting you know about a 

potential downfall or issue with your app but doing so in a way that allows you to understand 

the problem and develop a path toward resolving it. Critical users are tactful and polite, con-

tributing a thoughtful assessment that helps you improve your work. Destructive tactics such 

as personal attacks or harsh language only seek to tear you and your app down, offering no 

opportunity for learning, growth, or improvement.

In the end, there’s not enough time in the day to worry about people who only want to discour-

age you or dampen your spirits, so do your best to only focus on giving time and consideration 

to individuals willing to help you get better at what you do and, as a result, make better experi-

ences for the very users who are reviewing your products.
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Turning Requests into Changes
Along with all the criticism—helpful and discouraging—will also come many requests for addi-

tional features or user-generated ideas of features users would like to see added. As you scour 

through feedback, you’re sure to come across many suggestions of how outsiders think your 

work can be improved that almost always require significantly more work.

Dealing with these feature requests should be managed in a way similar to how you dealt with 

bugs in the development process, meaning that you’ll need a formal method of processing this 

information. As you receive suggestions, you’ll want to turn them into reviewable data and cre-

ate a standard procedure for how to decide what should be worked on immediately and what 

can be saved for a later version.

The issue tracker you used when dealing with bugs—a service such as GitHub or Bitbucket 

(see Figure 11.6)—may still be the best tool available to accomplish this task. Whenever a user 

Figure 11.6 Most trackers contain specific tags for proposed features and allow users to vote on the 

ideas or suggestions they think are best.
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makes a request, you should file an issue ticket just as you did for a bug, and then you can tag 

that issue as a feature request and manage it just as you did with any other issue throughout 

the project’s development. You can then keep track of and eliminate duplicate requests, set 

milestones for when you plan on implementing requests, and leave comments or attach photos 

that can help teammates in the programming and design phases down the road.

Whenever you receive user feedback, be certain to report and track that information imme-

diately. The longer you wait to process feedback through formal channels, the more likely it is 

that information will be lost or forgotten. Direct user feedback is arguably the most important 

and influential information you’ll receive throughout the development process, so it’s essential 

to take it seriously and ensure you get as much utility out of it as you possibly can.

Although your issue tracker can help you sift through multiple reports of the same issue, pay 

attention to elements that generate repeated inquiries. A number of requests on the same sub-

ject or feature should indicate to you and your team that there’s demand for a certain function 

within your app (see Figure 11.7). In the software industry, it’s often said that one bug ID or fea-

ture request is isolated and not important, but if the same thing is spotted or asked for twice it 

likely means that dozens of users are thinking the same thing but have not come forward. If you 

get multiple messages covering the same territory, note this increased demand and consider 

working it into an update soon.

Postrelease feedback is also an important way to double-check the key decisions you made 

throughout the development process. As you get responses from users, see if they relate to 

any changes you made while planning out your app. If users request a feature you cut or are 

complaining about things you added, it’s a red flag that a move you made along the way was a 

mistake. Learn from what your users bring to your attention, reflect on where you went wrong, 

and incorporate this revised approach into your next project.

Figure 11.7 Consider creating individual suggestion tickets for each user request and marking 

duplicates in your tracker. This takes a bit more time, but it offers much more detail on what precisely 

is being requested by each user.
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Preparing Users for Design Changes
The update and revision process isn’t all sunshine and rainbows, unfortunately. At some point 

in your career, you’re going to have to release a new version of an app that removes a feature 

or makes a drastic change that users might not take kindly to. Making such decisions will be 

extremely tough, as doing so involves determining when to cut an element loose because it’s 

holding the rest of the app back or it’s simply not functioning as intended anymore. In order 

to make an improvement that benefits 99 percent of users, you’ll have to do something that 

angers the other 1 percent.

note

If you haven’t worked on many software projects before, the idea of removing 

features may seem absurd. Why eliminate anything? It’s nothing more than lines 

of code! As your project totals grow, however, you’ll learn that keeping up with 

code over various operating system upgrades and new device releases involves 

considerable work. Eventually, all good things must end, and you’ll find yourself in 

a situation in which you have to cut out a feature that someone enjoys.

When faced with these situations, feedback coupled with solid analytics will help you make 

an informed decision about how to improve your app while angering as few users as possible. 

If services such as Google Analytics support your notions of which features are rarely used or 

underutilized, you can make statistically supported calls about where to focus your improve-

ment efforts or where you can afford to cut code or resources.

The development team at 9magnets, for example, worked on an app for a pro sports franchise 

awhile back in which addition by subtraction proved possible and effective. In the section of 

the app that showed the team’s upcoming games, there was a single view deep in the sched-

ule page that was rarely used and grew difficult for the developers to make look right on the 

ballooning variety of Android screen sizes. By taking a look at user statistics on an analytics 

platform and talking with users directly, the team determined that the page was rarely visited 

and was used only when a person needed more information about where a game could be 

seen on TV. With this information in hand, the developers were able to include that small detail 

in a more prevalent place on the schedule page, which both increased user satisfaction of the 

application and helped navigate around a design challenge.

Although to outsiders it may seem illogical to ever remove functionality from an app, there are 

many reasons why a development team might want to cut features from an app after it has hit 

the market.

First, you may want to remove a feature to replace it with something similar or make room for 

a revised user interface. Second, the feature could have become an unexpected nightmare 
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to support and simply might not be worth the time required to keep it from breaking down. 

You may run into such circumstances when a new operating system comes out and drastically 

changes the interaction methods you’ve designed and built around. As you find a way to con-

form your app to a platform’s new specifications, you may be forced to drop certain elements 

in the name of conversion simplicity. Finally, there may simply be situations in which you’re 

reworking your code base for a new version of an app, and you need to start from scratch in 

order to make the product cleaner and more functional. At that point, certain features won’t be 

worth the effort if only a small number of users are taking advantage of them.

No matter how underused you think a feature is or how much you believe it won’t be missed, 

there’s sure to be a section—however small—of your user base that will sorely miss it once it’s 

gone, and they’ll let you know it. There are ways, though, to prepare yourself and your users so 

that there’s minimal backlash or pushback from consumers when you take away a feature some 

of them grew accustomed to using.

The most important thing you can do is create a plan or strategy for users who will be affected 

so that when they approach you with the issue you already have a game plan that will help 

them see the minimal impact the change has on their lives. If you remove a feature they’ve 

depended on, but replace it with a similar one that accomplishes the same outcome, let them 

know about it. If all it takes to reach the same end is a small change to their personal workflow, 

point this out to them. If absolutely nothing else works, direct them to another app—even from 

a competitor—that they can turn to achieve what your feature previously did.

It’s also worthwhile to make it easy for users to export data from an app in a standard format—

a TXT or CSV file—so they can take the work they’ve produced in your program and move it 

to a different piece of software that might better suit their needs after you remove support 

for a certain feature. Offer as much warning as possible regarding any changes on the horizon, 

including blog posts and e-mails that can educate users about the reasons for, significance 

of, and extent of any changes in functionality. You don’t want to surprise users when sud-

denly, after a small update, everything looks or works differently than what they’ve become 

familiar with.

note

Data portability is a concept that involves making the user-created information 

in an application available in files readable by either humans or computers. This 

allows the user to leave an app with data in hand if they find a more effective 

alternative. It’s not required, but it can often be an easy way to build goodwill with 

your users, as they will trust you with their data because they can always export it 

and go elsewhere if need be.
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It may seem counterproductive or unnecessary to spend so much time caring about a small 

subsection of users, especially if it means you’re encouraging them to download a piece of soft-

ware from someone else. But remember, recommendations are often the most important spark 

that fuels downloads and revenue. By caring about the users affected by even a small change, 

you show you care about their well-being more than you care about any revenue you gain from 

them; ultimately, that will make them more likely to support your future projects or encourage 

others to try your products.

As in any business, the customer is always right, and their feelings are always important. Be 

appreciative that your users are showing concern when they contact you with frustrations or 

questions over the removal of a feature they depended on. Be sympathetic and understand-

ing. Never blame users for the anger or confusion they express over your decision. Don’t ignore 

them either, or their discontent will only grow. Be honest and empathetic, and you’ll prove 

capable of keeping any backlash to a minimum.

The Resubmission Process
As you prepare your team for the update process and ready your app for resubmission to the 

appropriate app stores, recognize that this process is not the same as the one you went through 

upon original release. There are a handful of significant differences you must be aware of as you 

get set to release a new version of an existing app.

First, you’ve got to prepare for the high expectations of your established user base who, 

after some time getting to know your app, will have higher performance standards than your 

original beta testers. They could be reliant upon your app to perform any number of functions 

throughout their day, so they won’t have the patience for radical new interaction models or 

daring redesigns. They want familiarity and consistency with modest improvements; they don’t 

want to relearn an app each time you feel like putting out an update.

This could prove to be a challenge for development teams as you work on applications with 

a long lifespan, because users will develop an expectation of continued support across new 

operating system versions and device styles. The mobile landscape will continue to change, as 

evidenced by recent releases of a larger iPhone, a dramatically different visual design in iOS 7, 

and the proliferation of Android phones and tablets. Users will demand that you stay on top of 

all these changes and adapt your product to each new platform or device.

As you do so, be conscious of the simultaneous responsibility of appeasing old users but 

hooking new users. You want to keep existing consumers happy and comfortable with an 

app they’ve come to enjoy, but you must also make an app that is continually drawing in fresh 

customers. With every update, your application must remain coherent and appealing to these 

two distinct sets of users. It’s a struggle to keep an app looking brand new and full of improved 
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features while not pushing reliable users outside their comfort zone, but that’s why you’re the 

one making the app and they’re the ones using it.

Similarly, you must be cognizant of the fact that your application must maintain a brand over 

time, even for users who haven’t downloaded or used your app before. Be careful not to make 

significant color, icon, or name changes as you prepare future releases. Every development 

team will get the itch to change their primary icon style or dream of testing out a new color if an 

initial launch isn’t immediately successful. Users, though, have come to associate your app with 

a certain look, even those users you may not think are aware of you. If someone goes looking 

for your app but can’t quickly recognize it by the logo, color, or style they connect it with, they 

may move on, never giving your app a longer look. Visual changes, although exciting to your 

team, may have negative consequences for user-base growth.

IN-DEPTH

When it comes to Hollywood blockbusters, sequels are rarely better than the originals. 

That’s not always the case in the world of digital apps, though. With the opportunity 

to improve on design, interaction methods, and functionality, the second iteration of 

an app can often be better than the first. Here are a few that have done that particu-

larly well.

 ■ Grades 2: This sequel—which allows students to track their grades across sev-

eral classes—from iOS development studio Tapity saw extraordinary success, 

building upon the original version through better artwork, more features, and 

tighter interaction design. The work was highly regarded, even winning a cov-

eted Apple Design Award.

 ■ Plants vs. Zombies 2: This cult hit mobile game by PopCap Games took a 

bit of a different route than its predecessor, which was originally released for 

desktop computers and video game consoles then later ported over to mobile 

phones. Because the phone apps—with simple gameplay and clear interface 

setups—were such a success, the developer actually went ahead and launched 

the sequel for mobile first, targeting iOS and Android platforms. The plan was a 

success, leading to one of the biggest app launches of all time.

 ■ Fantastical 2: This iOS calendar application has long been considered the gold 

standard for scheduling, with its powerful ability to parse natural language into 

calendar events. Just type in “Stop for coffee with Mallory at 2 p.m.” and the app 

will add an event to your calendar for 2 p.m. titled “Coffee with Mallory.”  The 

sequel added greater performance, a reminder function, cleaner visual design, 

and the ability to view maps of event locations. These additions made it a huge 

success after its release.
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Conclusion
By following this long set of suggested steps, you’ll be able to design, develop, test, release, and 

revise an application. Don’t be too humble when a piece of software you design finally hits the 

app store; it’s a remarkable achievement. Building a complete mobile application from start to 

finish is an impressive feat. You should be extremely proud.

After completing your app, it’s time to go back to the beginning and start this difficult yet 

rewarding process all over again. If you stay committed and focus on continually improving, 

you’re sure to have a long and successful career as a mobile interaction designer.
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STANDOUT APPS

There’s no better way to learn than by checking 

out concrete examples, especially when working to 

improve your mobile app design. But where should 

you begin? This appendix aims to highlight some 

of the best-designed multiplatform mobile apps. 

These products are extraordinary programs that 

function on both iOS and Android, remaining true 

to their respective platforms while still producing an 

exceptional mobile interaction experience. Check 

out these apps as you look to grow as a mobile 

designer; they’re excellent standards to learn (and 

perhaps borrow) from.
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1Password
If you’ve never heard of 1Password, consider downloading a copy of it as soon as possible. 

It provides an extremely valuable service that helps to secure your different Web service 

accounts, your banking information, and other digital valuables. If you store valuable informa-

tion on the Internet—and who doesn’t these days?—you’ll sleep easier at night using a service 

like 1Password (Figure A.1).

Because 1Password looks to push and revise the way users handle their passwords, it’s neces-

sary to provide quality and useful mobile applications for both Android and iOS. Not only must 

the applications be available, but they should also be designed to be a frictionless experience 

that’s easy to use and extremely responsive. The team behind this app has done a great job of 

providing apps focused on the user, regardless of platform.

Amazon Mobile
There’s no better online shopping location than Amazon.com, and what’s true for the Web 

rings true for mobile as well. Amazon is just as spectacular on phones and tablets as it is online, 

thanks to a speedy and powerful mobile browsing experience augmented with additions only 

possible on mobile, such as the ability to scan physical barcodes and check a product’s price (or 

even buy that product) on Amazon.

Figure A.1 No matter your platform, 1Password offers a quality native app.
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Amazon’s applications are great cross-platform references because their design shows suc-

cessful tactics for handling interaction and features at scale. These apps are used by millions of 

consumers on a variety of different phones and tablets, and the company’s business is depen-

dent on the app to satisfy consumer needs and sell more products.

Because these apps are a significant sales tool for the Internet’s largest merchant, you know 

that the interaction methods and interface principles inside its apps are the result of hundreds 

of hours of work and discussion, and no decision was taken lightly.

CNN News
Modern news programming is a 24/7 beast, requiring stations to race to put out content first 

over a multitude of different media types. Written articles, videos, audio, and photography 

must all be shared on a variety of mediums: TV, the Web, social media, and more. Mobile apps 

are just another complicated variable to add to that equation, as seen in Figure A.2.

Figure A.2 Formatting on-screen views to look great when handling photos, videos, text, and other 

content can be tough, yet CNN makes it look easy. (Courtesy of Francisco Velazquez.)
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CNN has done a fantastic job with its mobile applications, providing as much news as it possibly 

can in a design that’s comprehendible and simple and in a way that suits the needs of and dif-

ferences between Android and iOS. It’s a fantastic release no matter the operating system or 

form factor you’re using.

Coach’s Eye
Coach’s Eye is a bit of an outlier on this list. Whereas most apps listed in this appendix are 

produced by large, established corporations or teams, Coach’s Eye is made by a team known 

mostly for niche video that doesn’t have the big budget of a large multinational company.

The app is built to solve a difficult technical problem as well: How do you accurately and easily 

allow a user to dissect video of golf or baseball bat swings in a way that offers a clear indication 

to the coach of how the player is performing? Plenty of technical design restrictions arise when 

discussing an app that lays graphics on top of videos. Throw in multiple platforms and you 

really have a task to tackle.

The team behind this app solved the issue by focusing on simplicity and creating an interface that 

directs and guides the user how to complete his task. Once video has been taken, well-designed 

and simple tools allow for the overlay of various editing and markup aids to help coaches teach 

athletes the proper way to perform their tasks on the field. In porting its iOS app to Android, the 

team maintained the look and notable features of the Coach’s Eye brand while also focusing on 

simplicity and ensuring a great experience on both operating systems. If you plan on integrating 

video into your app, this is a strong example to use as reference and inspiration.

Evernote
Mobile devices have given a big push to the note-taking market, as users saw their new, 

constantly-in-hand, always-online devices as a great way to jot down notes during the days. 

Evernote has been the best performer in this market so far, with apps for all leading mobile and 

desktop computing platforms. They’ve brought successful apps to market on iOS, Android, and 

Windows Phone 8 as well as traditional Windows and Macintosh computers; they even have a 

Web browser version.

The product has been built from two steadfast principles. First, it’s been extremely reliable 

regardless of platform, even when performing complex tasks such as syncing large notebooks 
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across multiple devices or operating systems. Second, its world-class design team has excelled 

at providing unique, intuitive, tailored interaction experiences on all platforms. On a mobile 

phone, you get a great experience for working on the go, and on a tablet, you get an experi-

ence catered toward situations in which you’re likely to use a larger screen.

Evernote is perhaps the best example of cross-platform design excellence fit and finished for 

individual platforms. Obviously, it’s created by a large company with many resources, which 

allows for a lot of time to detail each app to a specific platform. You, on the other hand, are 

likely to have a variety of constraints pressed upon you that will make it impossible to reach its 

level of support, but it’s a great piece of software to aspire to.

Facebook
Facebook has gone from a college dorm startup to the largest social network in the history of 

the Internet—now with more than one billion users—and the company’s stock has become a 

darling of Wall Street, sparked by growth and monetization of its mobile applications.

Facebook was an early leader of the HTML5 app format, in which Web standards compo-

nents were integrated into the mobile application and development practices, leading to a 

mobile app that relied little on platform-specific interface and interaction models. Instead, 

Web tools were used so that much of the interface and interaction design could quickly 

and easily be ported between iOS and Android. However, this created a somewhat lack-

luster experience for the user, as the Web components were not as fast as those of a native 

interface, meaning that the lagging user interface would often be unresponsive in loading 

images or user comments.

The Facebook team overhauled its applications, going native for iOS and Android in 2012. This 

led to a much better user experience, with faster load times and an interface that was more 

responsive to touch. As a result, in-store reviews rose significantly, and users were much hap-

pier with the sleeker, speedier app compared to its slower, less native predecessor. Going native 

also gave Facebook the opportunity to innovate with new features, such as the creation of Face-

book Home for Android (shown in Figure A.3), allowing for constant communication with users 

even when outside of the Facebook app.

Facebook represents great interaction design because of the wide variety of content types 

available for consumption, expertly formatted for smooth mobile viewing and interaction. 
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Facebook has photos, videos, text statuses, calendar events, and much more. The high number 

of information types available here means that no matter what type of data you’re looking to 

display in your app, Facebook probably has taken something similar and made it look great.

Flipboard
Flipboard was a hot name in Silicon Valley after its release for the original iPad because it 

offered a fun and interesting way to quickly flip through a variety of news stories. “Flip” here 

was meant literally; the app had a unique and novel animation in which a user would use a 

finger to flick around stories set up like cards in a poker deck. The app made reading the news 

on the iPad a unique experience that felt new to the platform.

Over time, Flipboard has brought its magic to Android and the iPhone, porting its fun anima-

tions to smaller screens. It’s a great example of targeting multiple platforms with a unique style 

and interaction method.

Figure A.3 Facebook Home introduced “Chat Heads,” a persistent icon bubble using nifty physics 

that allows users constant chat capability with their friends.
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Flipboard offers a ton of value as you learn to tinker with animation, complex art layering, shad-

owing, variable-length typography, and photography. Take a look at how its team has managed 

small, animated transitions and visual presentations; there’s much to learn here.

Google Chrome
Google’s Chrome Web browser is a strong example of an application that has adapted well to 

multiple operating systems. Web browsers are among the most highly used applications on any 

operating system or device, and mobile is no different; various programs allow users to view 

any Web site from their phones or tablets.

Google has built Chrome to be a minimalistic browser focused on speed and simplicity. On 

both iOS and Android, the browser is designed to place rendered Web content front and center. 

Whereas many designers and developers focus on adding features and increasing complexity, 

Chrome is a testament to interface design that serves a strong purpose while also allowing the 

app’s content to be front and center.

Open the browser and visit your favorite site, and you’ll see how the application is focused on 

bringing Web content to the forefront. Paired with a strong feature set, such as bookmark sync-

ing with the desktop app, the browser delivers a top mobile experience.

Google Maps
Having maps and navigation information constantly available has become one of the most 

important features on smartphone devices, as users can now look up critical location informa-

tion anywhere they can get a cellular connection. Google quickly became the Internet’s leader 

in online mapping, and its Google Maps applications for Android and iOS cemented its claim to 

the top spot, bringing easy-to-use mapping data to both platforms.

The Web search giant has seen success with both Google Chrome and Google Maps because 

it’s worked hard to meet the interaction conventions of each specific platform. If you ever work 

on an application that requires cross-platform integration of location-focused data, Google 

Maps is an excellent example you can build and learn from.

Instagram
Instagram is a remarkable photo service that began on the iPhone a few years ago as a simple 

photo-taking/filtering/sharing service, but it quickly evolved into one of the most popular and 

powerful social networks in the world. The network was purchased by Facebook reportedly 

with a $1 billion dollar combination of cash and stock options, a huge amount for such a site.
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The network grew so quickly and commanded such a price because it was the best and easiest 

way on a mobile phone to share stylized photos with friends on the Web, Android or iPhone 

devices, and social networks such as Twitter or Facebook. In short, Instagram became valuable 

because it was the best tool for photography on a mobile phone. Why? Because on both iOS 

and Android the application had a simple and intuitive interaction method that empowered 

users to take wonderful photos quickly and easily. If simplicity is your target, you’d do well to 

have your arrow land on Instagram (shown in Figure A.4).

The team at Instagram focused the bulk of its efforts on presenting beautiful photos and letting 

others view those photos simply and easily. Speed is key in any interface, and Instagram made it 

easy to keep scrolling and scrolling through compelling images.

Figure A.4 Instagram only does photo sharing, and it does it really well. (Courtesy of Kenneth B. 

Sothman.)
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Instapaper
Instapaper (shown in Figure A.5) offers one of the best mobile reading experiences, allowing 

users to quickly save Web pages for reading later offline via an iPhone, iPad, or Android device. 

The service is invaluable for users who travel often or commute to work and desire ample read-

ing material.

The app is renowned for its simplicity and its focus on fantastic design, with industry-leading 

typography and legibility. Regardless of platform, the app has strived to provide the most 

well-presented reading experience possible on mobile, and has succeeded with flying colors. 

If you’re building an app in which users will be reading large bodies of text, this app is a great 

example of how to best format and present clear, legible text.

Figure A.5 If you’re working with typography, study and learn from Instapaper.
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MLB.com At Bat
So far, this list has included a variety of great utilities and social networks, but where are the 

entertainment apps? If you’re a sports fan looking for examples of phenomenal cross-platform 

software, take a look at what Major League Baseball has developed over the past few years with 

their MLB.com At Bat application for iOS and Android.

MLB has done an amazing job of bringing an assortment of entertainment content to mobile: 

live game video, short highlights, condensed games, radio broadcasts, news stories, player 

interviews, standings, scores, and much more. No matter what device you’re on, you’ll always 

get great, platform-perfect interaction from this app.

When looking at ways to best format and manage rich media content, check out MLB’s mobile 

work for inspiration. They’ve done an extraordinary job, and you’ll learn much from their example.

Twitter
The popular social network Twitter went public in 2013, powered largely by successful growth 

on its Android and iPhone mobile apps. Like most free social networks, the service survives on 

ad revenue, and the designers on the Twitter team have worked extensively to integrate ads 

into their app’s mobile experience.

The iOS app was long the gold standard for the service. The official app was a re-release of the 

independent app Tweetie by Loren Brichter—which Twitter itself acquired in 2010—long con-

sidered the far-and-away best way to blast 140-character updates from an iPhone. The mobile 

team did some minor redesign work to better match the color and feel for Twitter’s brand, but 

the initial release of the official app for iPhone looked much like its forefather.

Twitter followed up with constant iterations to the interface and an eventual port to Android 

that featured a similar interaction style. As for interaction methods, Twitter excelled with the 

tab bar–style interface made popular in iOS, but that is unavailable as a standard interface com-

ponent on Android. To counter this, the team designed a slightly modified take on the action 

bar, allowing for a similar experience that feels more at home on the platform. This lets design-

ers port over much of their interaction work and visual styles from the iPhone to the Android. 

Because changes or updates can then be applied to both versions of the app, the similarities 

allow for rapid release cycles and other timeframe benefits.

Twitter stands out because its designers have accepted vastly different interaction expectations 

on Android and iPhone. They’ve focused on optimizing versions for each platform, with a coherent 

and distinct focus on the content people want: tweets on their timeline. The interface does a great 

job at keeping its primary goal as the focal point, then adding secondary features as need be.
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TuneIn Radio
Another great example of entertainment gone multiplatform, TuneIn Radio (Figure A.6) pro-

vides access to hundreds of radio stations on the go. The design may seem simple and easy to 

jump across multiple platforms, but it can truly be difficult in practice, especially when juggling 

such large groups of data. With hundreds of stations nested into a variety of categories, geo-

locational tie-ins, and more, it’s not an easy app to port over to new platforms.

The developers of TuneIn Radio, though, have done a fantastic job of adapting their work in a 

way that stays true to the brand and feel of the application while keeping complexity low and 

functionality high. If you’re looking to design cross-reference apps that handle a large quantity 

of options or data, this is a great reference for interaction guidance.

Figure A.6 TuneIn Radio offers a great example of how to organize and structure large quantities of 

data and menus.
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Wolfram|Alpha
Wolfram|Alpha is one of the most interesting search engines available on the Internet—pri-

marily because it’s less of a search engine and more of a knowledge engine. Enter in a math 

problem, and it will solve it. Ask for a US president’s birthday, and it will give you the date along 

with the day of the week it occurred. For a variety of complex questions, Wolfram|Alpha will 

send back extremely detailed responses.

It’s these fact-filled replies that make the production of this multiplatform application diffi-

cult. Through a couple of operating systems and many different device sizes and form factors, 

responses need to be presented in a legible and coherent way whether the output contains 

short bursts of text, long strings, photos, digital graphics, etc. If the sheer variety of potential 

different design formats required doesn’t make you sympathetic toward the app’s design team, 

just imagine the potential outliers and edge cases they have to prepare and design for given 

the quantity of data they’re working with. If you’re bringing a reference app to iOS and Android, 

this is a great study guide.
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You can’t be the best carpenter if you don’t have 

the best tools. Luckily, it doesn’t take much effort to 

assemble a strong toolbox. Throughout this book, 

a handful of apps have been mentioned in passing, 

but this appendix is a quick reference of the ones 

that are more than worthwhile to look at when 

building your own designs.

Note that some of these tools are only available 

on OS X; but if you’re on Windows, fear not. Many of 

these apps are available for that platform, or other 

apps exist that can perform similar tasks.
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Adobe Photoshop
If you’ve ever done any visual design, either for print or digital mediums, you’ve inevitably 

heard of (or hopefully used) Adobe’s Photoshop. Even if you haven’t, the application is so popu-

lar that it’s become a colloquial verb, with even your mother knowing that images are manipu-

lated by “Photoshopping” them.

There have been many other applications that attempt to perform similar work as Photoshop, 

and many of these tools are phenomenal at providing similar functionality for a quarter of the 

price (or even less). Pixelmator by the Pixelmator Team has become a leading competitor for 

pixel editing, if you’re looking for an able alternative.

If you’re new to the world of design, however, Photoshop takes the cake. There are thousands 

of art technique tutorials available on the Web, and nearly all of them assume that you have 

Photoshop as your graphic design tool.

If you plan on working in mobile for the long haul, invest in Photoshop or, even better, Adobe’s 

Creative Cloud suite of applications. They’re simply the best software available for creative 

types, and they will be your primary tools for pushing pixels.

Balsamiq
After completing some technical documentation, you’ll often jump into a wireframing applica-

tion to lay out the interface in detail for your programmers, detailing each interface component 

that will be implemented on every screen throughout the app. This way, once the programmer 

goes to create the app, they’ll understand exactly how the different views and buttons should 

interact with each other and flow.

Balsamiq (Figure B.1) is a great tool to do just that, as it’s available on a variety of platforms, 

offers a variety of prepackaged mobile stencils and wireframe assets, and provides a simple 

visual style that shuns ornamentation in favor of clarity. It helps designers quickly build wire-

frames that can be shared with stakeholders and programmers while empowering your team to 

iterate extremely quickly based on what you hear back. It’s an invaluable tool to help document 

how you expect a user to interact with your app.
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Bugshot
Bugshot is a simple, handy, iOS-only application—by Marco Arment of Tumblr and Instapaper 

fame—that serves a single purpose. It allows you to take any screenshot from your iPhone and 

iPad and quickly annotate it with arrows or boxes or even blur out confidential information you 

don’t want shared, such as the contents of a private message.

In Figure B.2, an arrow has been pointed at a shadow that needs to be fixed, and some location 

text has been blurred out because a client has made the team sign a non-disclosure agreement; 

thus nothing critical will be made public if this image leaks out.

Figure B.1 Wireframes allow you to quickly put together an idea of how you want an application to 

flow between views and functionalities.
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Designers use the tool on an almost daily basis when working on design iterations and creating 

bug reports for programmers. If some formatting is wonky or something goes awry visually, 

take a screenshot and load it into the app so you can quickly point out what you want to bring 

to your programmer’s attention, making both of your lives easier.

Dribbble
Dribbble, owned and operated by the aptly named Dribbble LLC, is less of a tool and more of a 

social network located on the Web at Dribbble.com. It’s a community of designers taking time 

to showcase and preview their latest work to fellow designers in hopes of gaining feedback and 

critiques.

Figure B.2 Bugshot makes it easy to quickly mark up screenshots for teammates.
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The Web site can be a great place to pitch your work to others who make a living pushing pixels 

and to obtain evaluations from designers who have worked on app and Web site designs for 

large, successful projects. It can often be invaluable to hear feedback on your interface or inter-

action design from peers, many of whom have worked at large startups, and Dribbble offers 

this service for free.

Dribbble is also a great source of inspiration for when you’re fighting designer’s block. Thumb 

through work done by your peers and see what they’re dreaming up. Often, it can be a great 

way to see what’s new and popular; don’t copy, but do be inspired.

Icon Slate
When designing mobile apps, you’ll inevitably need to create a variety of icon sizes to go along 

with the app code you ship off to the Google Play Store, Apple App Store, or other mobile 

market. Most platforms require three to five different icons of various sizes. Often, the required 

sizes change as new operating system versions or devices are released, making it hard to keep 

track of the requirements.

Icon Slate by Jeremy Marchand helps make that process easy for you by indicating the latest 

size specifications for each mobile platform. It asks you to pick an image to be fitted into the 

various size requirements, lets you preview your icon at each respective size, and then neatly 

exports art files into a folder for insertion into your app project.

Although it’s a great tool when building iOS or Android app icons, it can also be used to build a 

variety of desktop operating system and Web icons as well. If you’re picking up design projects 

for other digital mediums, this app can often lend a hand in other ways.

Icons are often one of the most important things you’ll create in any design, so it’s important to 

have a tool that helps you design them extremely well. Icon Slate is the tool you’ll need to do 

your job correctly.

MindNode Pro
Many designers are big fans of the art of mind mapping. They tend to be visual people, and 

when working with a variety of technical programming concepts, feature sets, design com-

promises, and stakeholder requirements mind maps are a great way to combine feedback 

and requirements into a simple, well-organized visualization. All parties can then follow along 

thanks to a structured, clear format.
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note

Unfamiliar with mind mapping? This process was discussed in Chapter 4, and 

designers can find a lot of value in its practice. Fun fact: This entire book was out-

lined in MindNode Pro.

MindNode Pro by IdeasOnCanvas GmbH allows for easy creation of mind maps using fast key-

board shortcuts. Just hit the tab key to break off into a child branch or press the return key to 

spin off a sibling branch. Do you have a structure that helps you visualize the task at hand? Feel 

free to add color or text styles to get your point across.

Consider starting projects with mind maps as it’s a great way to reach a middle ground with 

involved parties. For creating a basic early design document that’s easily understood and 

discussed by designers, programmers, and managers, MindNode Pro should be your tool of 

choice.

Mind maps are a quick way to get ideas into a tangible format so they can be shared and 

discussed with other team members. They aren’t the only way to do it, though; some designers 

use slideshow tools such as PowerPoint, word processors, or even pen and paper to get their 

ideas into a form that can be exchanged with others and built upon.

Pngyu
Inside any application, you’re likely to have dozens, if not hundreds, of various art file assets. 

Most commonly, you’ll be using PNG files, the format preferred by Apple and Google for use on 

iOS and Android, respectively.

PNG is a lossy format, although many applications tend to produce PNG images with inefficient 

compression, which can account for a significant amount of fluff in file size. On mobile plat-

forms, where megabytes can make or break an experience, it’s imperative that you optimize for 

file size and create the lightest-weight app possible.

Pngyu is an open-source utility that compresses PNG assets and makes them lean-and-mean 

digital fighting machines, cutting away anything that’s unnecessary. You should always throw 

PNGs through some sort of compression tool before shipping a file app because it can cut away 

as much as 20 to 25 percent of the application’s binary size with no loss in quality.
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Skitch
Skitch by Evernote is quickly becoming a favorite of iOS and Android designers who are looking 

to transition as much work as possible to the vector format. In the early days of mobile, raster 

formats were more than adequate, but as the industry moves toward higher resolution displays 

and various aspect ratios, many designers are trying to create as much as possible in the vector 

format in order to future-proof their work.

Skitch has become the go-to tool for icons and visuals that can benefit from vector construc-

tion thanks to its intuitive interface and powerful filters and shading tools. If you’re looking 

to create a high-resolution app icon that could be later blown up to fit even on a billboard if 

necessary, Skitch is a great tool to use.

Spark Inspector
Spark Inspector by Foundry376 is a tool that is only usable for iOS development, but it’s 

extremely valuable in helping to design interaction and interfaces for the iPhone and iPad. Spark 

Inspector is a runtime inspection tool that allows you to view interface files in a pseudo-3-D state 

in order to better visualize layers and then make changes directly to interface files and see the 

results live in the iOS simulator running on your Mac.

The workflow it offers is a game-changing method of editing iOS interfaces. Traditionally, a 

designer would make a change to an interface file, recompile the application for testing, see 

how the change looks, and adjust if necessary. Spark Inspector, however, allows you to make 

changes live and see them implemented immediately. There’s no need to recompile, which is a 

time-consuming process, especially when applications become larger and more complex. For 

any designer tackling an iOS project, Spark Inspector is a worthwhile tool that soon pays for 

itself many times over.

xScope
As a designer, you’ll spend a lot of time measuring pixels, zooming in on specific parts of the 

screen to get a close-up view of animations, and verifying or editing colors. Luckily for you, 

xScope by The Iconfactory is built by designers who also spend a lot of time counting pixels 

and overanalyzing animations.
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Figure B.3 xScope lets you see a microscopic view of apps you’re building, getting a better 

perspective on details such as shadows, spacing, and alignment.

The tool measures pixel dimensions, provides multiple on-screen rulers or guides, zooms in to 

show pixel-level detail, shows how your app will look for users who have color blindness, and 

even mirrors art assets to your phone or tablet to test color accuracy and visuals, as shown in 

Figure B.3.

xScope is an invaluable tool that designers use daily. Using it to measure distances is amazing; 

when working on interaction design, you’ll often find yourself trying to space pieces specific 

pixel distances apart, which can be difficult or impossible to manage with the naked eye.
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Of the platforms on the market today, two standout 

in the mobile industry. Android and iOS account 

for a vast majority of the mobile devices currently 

in use, and nearly every popular app targets these 

platforms first. Thus, it’s likely these operating 

systems will be where you focus your initial 

development efforts. This appendix is a quick-look 

guide for important technical requirements of 

each platform: layout icon sizes, suggested image 

formats, art file naming conventions, and other 

technicalities you’ll need to know about as you 

begin designing.
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Android
Much of the previous discussion on art decisions and design tactics has used general terms, 

attempting to provide resources and tips that would be valuable no matter what platform 

you target. But there are some specific art and detail requirements that exclusively apply to 

Android. Let’s take a look at some of these.

Icon Sizes

For Android, you’ll be working with what are called launcher images for your application icon. 

The launcher image is the first thing users see on the device after they download an app, and 

this icon sits on the user’s home screen, waiting to be tapped to launch your software.

Android works on a scaled ratio system, with assets created for different display densities 

based on some mathematical logic. All Android phones can be categorized by screen density: 

medium (MDPI), high (HDPI), extra high (XHDPI), extra extra high (XXHDPI), and extra extra 

extra high (XXXHDPI). That can be a bit confusing, but it essentially allows for assets to be 

scaled up depending upon density. In the past, it was common to support low-density displays, 

but today Google recommends that you ignore this antiquated size.

With these different sizes, you’ll basically be creating icons at different multiples of the MDPI 

size, which is 48�48 p ixels. For more information on the scaling (called 2:3:4:6:8 scaling), see 

this book’s online resource links or the iconography section at http://developer.android.com. 

For Android icons, you’ll need to produce the following sizes:

 ■ MDPI: 48�48 pixels

 ■ HDPI: 72�72 pixels

 ■ XHDPI: 96�96 pixels

 ■ XXHDPI: 144�144 pixels

 ■ XXXHDPI: 192�192 pixels

 ■ Google Play Store size: 512�512 pixels

Icon images must be placed inside a square art file at these specific resolutions, but there is 

no requirement that your icon be square shaped. This means you can create any sort of shape 

that suits the taste of your app. Google recommends the images be front-facing, as if the user is 

slightly above the icon—essentially, how it would look if you were seeing the icon on a shelf.

General Art File Format

iOS and Android both use PNG art assets whenever possible for a variety of reasons. First, PNG 

is a lossless format, which means that when the image is saved from its original source the file 

http://developer.android.com
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size will be compressed as much as possible, but the image will not be degraded to a lower 

quality.

This is in stark contrast to the common image format JPEG, which you’re undoubtedly familiar 

with from photos on the internet. JPEG is a lossy format, which means that the image will be 

more significantly compressed, but only by sacrificing quality. Sophisticated algorithms are 

used to compress the image further, and the decrease in quality is unnoticeable to most users; 

but if you kept saving a JPEG over and over again, you’d begin to see color blurring and pixela-

tion in the image.

PNG also has the benefit of supporting an alpha channel, which means that a pixel will hold no 

visual data and will technically be invisible. This is great for assets like shadows, as you’ll want 

them to be partially transparent, making it look like a shadow hangs in the background behind 

your image. JPEG does not support an alpha channel, which means you’re unable to make parts 

of images transparent or partially transparent. This is also especially true for many icons or but-

tons, which you will want to be ovals or circles.

General Art File Management

Android also uses what’s known as a ratio scaling system in order to resize art properly for dif-

ferent screen sizes and pixel densities.

The medium DPI (MDPI) size setting is considered the baseline size for working with Android, 

so all of your artwork will be modified based on how large you want the asset to appear in the 

medium density. You’ll then use a different multiplier for each density:

 ■ Small Density Ratio Multiplier: 0.5�

 ■ Medium Density Ratio Multiplier: 1�

 ■ Large Density Ratio Multiplier: 1.5�

 ■ Extra Large (XL) Density Ratio Multiplier: 2�

 ■ Extra Extra Large (XXL) Density Ratio Multiplier: 3�

 ■ Extra Extra Extra Large (XXXL) Density Ratio Multiplier: 4�

This means that if you create a button you want to be 30 pixels wide by 50 pixels long on a 

medium density screen, that same button should be redrawn at 45�75 for large density dis-

plays, at 60�100 for large density displays, and so forth.

Because the multiples system can be a bit confusing due to starting at a small baseline and 

multiplying up for larger displays, it’s important to note that it’s never a good idea to just create 

the medium screen size assets and then use Photoshop or a similar tool to enlarge the icon 

for a bigger screen. The multiplier system makes this tactic seem intuitive, but it will lead to 
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pixelated and poorly rendered images. Instead, determine the sizes you need to create, then 

begin by making the largest image first and scaling down as necessary.

Naming Conventions

In Android, it’s recommended that the platform’s standard file structure be followed, with a 

specific folder structure used to contain and hold different code or asset files. You’ll have a “res” 

directory for art resources, and you’ll place images inside various “drawable” folders.

These various folders (an example is shown in Figure C.1) for drawable images will have differ-

ent appendixes, such as “-mdpi” or “-xhdpi,” and images for corresponding screen densities 

should be placed in the appropriate folders with the same file name.

Other Tips

A somewhat valuable tip for Android is that the operating system will scale your assets up or 

down as necessary if you don’t want to create assets for all the various screen densities.

If you’re serious about your app design, create and export drawable resources at the appro-

priate size for each respective density. The Android Asset Studio, provided by Google at 

http://developer.android.com, will also help determine the proper file sizes for various art 

assets in a project.

Figure C.1 In a standard folder structure for an Android app, you’ll be placing artwork in the specific 

folder for the screen density you’re targeting with the image.

http://developer.android.com
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You can save time, however, by not creating assets for screen sizes such as the rarely used 

small density (SDPI) or extra extra extra large density (XXXHDPI), and instead let the operating 

system scale for these sizes. This will produce less optimal designs for these screens, but it will 

save work you would on assets that few users will see, allowing you to focus on more pressing 

interface problems.

iOS
Like Android, iOS requires that art resources be handled in a specific way. In this section, you’ll 

find the details of those requirements.

Icon Sizes

Unlike Google, Apple doesn’t use any sort of mathematical scale for icon sizes required per app. 

Instead, they use arbitrary sizes that are best fit to their purpose. This allows for sizes that better 

fit their specific context, but it can more difficult to keep track of.

Although Android icons can be any shape, Apple requires you to create images that can fit into 

a rounded rectangle shape. As with any other art asset on iOS, you must provide an additional, 

high-resolution icon for Retina display devices, which you will denote by appending @2� onto 

the end of the file name.

For each icon, Apple requires square shapes of the following resolutions:

Required Icons

 ■ Icon size for App Store and Web: 1024�1024 pixels

 ■ iOS 7 icon size for iPhone and iPod touch: 60�60 pixels

 ■ Retina iOS 7 icon size for iPhone and iPod touch: 120�120 pixels

 ■ iOS 7 icon size for iPad or iPad mini: 76�76 pixels

 ■ Retina iOS 7 icon size for iPad or iPad mini: 152�152 pixels

 ■ iOS 6 icon size for iPhone and iPod touch: 57�57 pixels

 ■ Retina iOS 6 icon size for iPhone and iPod touch: 114�114 pixels

 ■ iOS 6 icon size for iPad or iPad mini: 72�72 pixels

 ■ Retina iOS 6 icon size for iPad or iPad mini: 144�144 pixels

Recommended Icons

 ■ Spotlight Search icon, all devices: 40�40 pixels

 ■ Retina Spotlight Search icon, all devices: 80�80 pixels
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 ■ Settings icon: 29�29 pixels

 ■ Retina Settings icon: 58�58 pixels

Newsstand Icons

Newsstand icons can vary in aspect ratio, giving a look that mimics the aspect ratio of a 

standard newspaper or magazine, depending on the publication. But all must fit these 

requirements:

 ■ iPhone or iPod touch scaled long-edge length: 60 pixels

 ■ Retina iPhone or iPod touch scaled long-edge length: 120 pixels

 ■ iPad or iPad mini scaled long-edge length: 76 pixels

 ■ Retina iPad or iPad mini scaled long-edge length: 152 pixels

These icon sizes are all accurate as of this book’s publication, although Apple does have a his-

tory of changing these requirements as time goes on and adding additional icons such as the 

Spotlight search icon. Keep up to date on documentation to ensure you’re meeting the present 

standards.

Both iOS 6 and iOS 7 requirements are listed here, but note that iOS 4 and 5 have the same 

requirements as iOS 6, although it’s currently rare to support OS versions that far back. If you 

intend to only support iOS 7, you do not need to include icons sized for iOS 6.

Finally, note that the corners of your rounded rectangle app icons will be cut off by iOS when 

viewed by the user, but you should provide them as complete squares that include art even in 

the corners of the icon. You should have no pixels using the PNG alpha channel.

General Art File Format

Exactly like Android, on iOS you’ll ideally use PNG for any asset you can, as it’s beneficial for the 

same reasons. The ability to provide greater image quality and an alpha channel will be valu-

able in designing pixel-perfect apps.

Apple has also provided additional optimizations in iOS that help the operating system render 

and display PNG images faster and more efficiently than images in other file formats. This 

extra bonus gives you even more reason to create iOS design assets as PNGs instead of in other 

formats such as JPEG.

Finally, when working with PNG it’s also important to understand compression’s influence on 

output. When working with Xcode to create iOS binaries, the IDE will help you perform a PNG 

compression to minimize file sizes. That being said, Xcode does not do an extraordinary job 

with file compression, and although this tactic is better than nothing you can do better with file 

compression.
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In order to achieve that end, first turn off automatic compression in Xcode. To do this, turn off 

“Compress PNG Files” under Packaging in the project’s Build Settings panel (see Figure C.2).

After turning off compression, consider using a third-party compression solution, such as the 

independent Pngyu utility. ImageOptim and TinyPNG are similar services that also do a great 

job with compression. Most compression tools are derivatives of the UNIX compression library 

pngquant and work better with specific file types or sizes, but overall they will do a much bet-

ter job at compression than Xcode’s built-in tool.

General Art File Management

In general, iOS allows you to be rather laissez-faire regarding how you manage art assets. Xcode 

handles images and allows you to use its grouping property to create a psuedodirectory nested 

structure to organize image assets. Images will reside inside the project directory, as created 

by Xcode, but will have little structure outside of that and will be placed without organization 

inside the folder after being imported by your IDE.

Most developers place image assets inside the group titled “Supporting Files,” made by Xcode 

at the creation of any new project, but there’s no requirement that you do this. You could follow 

this standard and then create a few simple nested groups to organize the images as best fits 

Figure C.2 When building projects, consider turning off PNG compression and using a third-party 

solution for additional optimization.
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the specific project. Consider making one group for icons used in menus, another for photos, 

another for background images, etc.

Note that with iOS, you don’t deal with the variety of screen densities that you do on Android. 

There are currently only two densities available for an app to be rendered at: regular resolution 

and Retina resolution. In every iOS circumstance, the Retina resolution is equal to exactly twice 

the resolution of the regular screen, making the math incredibly easy. A button that is 30 pixels 

tall by 50 pixels wide should be created at 60 pixels tall by 100 pixels wide for the Retina screen. 

When adding Retina files to an application in Xcode, append the “@2�” suffix to the file name, 

and the operating system will do the rest of the work for you.

Here’s an example of pixel size and file names for a hypothetical button inside of an app:

 ■ Button.png: 30�50 pixels

 ■ Button@2�.png: 60�100 pixels

On screen, this button would appear to be physically the same size on a non-Retina device as 

on a Retina device. iOS will pick the correct version for the user depending on the device; you 

only need to create both images.

Naming Conventions

There is no required standard as to how your image files should be named when adding them 

to an iOS project. You can apply whatever convention or style you prefer. Something like 

“OpenDocument.png” for opening a user’s text document is more than acceptable and in many 

cases is recommended.

That being said, inside iOS Apple has built a wonderful accessibility suite of tools to help users 

with disabilities enjoy and use their devices to their full capacity. One tool in particular, called 

VoiceOver, will read text aloud to users who have difficulty reading or who are blind.

When using VoiceOver, any button in the interface will be read to the user as the image’s 

filename, unless you’ve done a bit of additional work to optimize for accessibility. This means 

that if you use simple button names that clearly describe their purposes—something like 

“EmailSharingButton.png” or “PrintDocument.png”—they will be clear to a user of VoiceOver 

and require no additional work from you. This is a win–win scenario, allowing your application 

to be usable to a larger market base while giving users with disabilities the ability to experience 

your work.

Other Tips

When laying out art assets in an XIB interface file or in code, you use an X-Y coordinate system 

to specify to the operating system where the image should be placed. Imagine that; all of those 

high school classes on geometry are finally going to be of use.
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If you want an image 100 pixels down the screen and flush with the left side of the screen, place 

it at the (0,100) point, either in Xcode’s Interface Builder by dragging the image into position or 

in code by using something like the following:

UIImageView * imageName = [[UIImageView alloc]initWithFrame:

CGRectMake(0, 100, 30, 50)];

Here, you’re placing an image that is 30 pixels tall and 50 pixels wide at a point that is equal to 

the start of the left side of the screen and 100 pixels down from the top of the view.

When working with Retina assets, use the same coordinates and sizes of the pre-Retina stan-

dard coordinates, and the operating system will scale up. If, for example, you want a 60�100 

button to look great in the same space on Retina, keep the same coordinates and do no addi-

tional work or make any changes.

This holds true when working on an iOS 7 app for iPhone or iPod touch, for which there is no 

supported non-Retina screen and, in essence, no need for non-Retina assets. Instead, continue 

using the original resolution grid in the sizing and mapping of your art assets.
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Numbers
1Password (from AgileBits), 56, 232
80/20 rule (Pareto principle), applying to mobile 

development, 159–160

A
AAC (augmentative and alternative 

communication), accessibility for disabled 
users, 166

A/B testing, 187–188
Accessibility tools

anticipating user base and, 32–33
for users with disabilities, 163–166
in iOS, 258
naming conventions and, 258

Action bar, in Android, 87, 176–178
Adobe Creative Cloud suite, 63, 244
Adobe Illustrator, creating app icon, 108
Adobe Photoshop

creating pixel-perfect mockups, 74–75
overview of, 78
tools for minimizing file size, 186
translating Photoshop design into mockup for 

iPhone or Android, 135
for visual design, 244

Alpha channels, PNG support, 253
Amazon

examples of outstanding apps, 232–233
marketplace for native software, 8

Analytics. See also Tests
analyzing test data, 204–205
making positive changes based on beta 

tests, 208
testing app use, 187
understanding how analytic services work, 

205–206
viewing how users are interacting with 

app, 217
Android

accessibility tools, 33
action bar, 87, 176–178
APIs for accessing hardware features, 6
branding guides for apps, 118
building art that scales, 119–123
choosing as mobile platform, 17–18
cross-platform visual styles, 117–118
designing for specific platforms, 66
display densities, 252
distribution methods for beta testing, 203

INDEX

file format, 252–253
file management, 253–254
gesture-based navigation, 92–93
history of mobile devices, 10
history of tablets, 11
HockeyApp integration with, 206
Holo style, 71–72
hybrid apps, 84–85
icons, 108–109, 252
interaction experience for both phones and 

tablets, 51–52
interaction experience for multiple platforms, 

53–55
iOS compared with, 14
keyboard support, 47
Linux basis of, 138
managing connectivity failure, 98–101
modal controllers in navigation, 91–92
naming conventions, 254
native apps, 7–8, 82–83
navigation views, 93–96
open source basis of, 13–14
pixel-perfect mockups with, 75
putting elements in right location, 180–182
sandboxing in file management, 153, 155
scroll view navigation, 90
search-driven navigation, 90
single-view navigation, 86
stacked navigation, 87
tips for working with, 254–255
touchscreen interface, 13
translating Photoshop into mockup, 135

Android Asset Studio, 254
Android Developer Studio, 140, 143
Animation

app speed and, 187
viewing with xScope, 249–250

APIs (application programming interfaces), for 
accessing advanced hardware features, 6

APK files, distribution methods for beta 
testing, 203

App Store (Amazon), 7–8
App Store (Apple)

encouraging user exploration, 26–27
marketplace for native software, 7–8
registered accounts, 9
time required to test apps available in, 35

App stores
marketplace for native software, 7–8
resubmission process, 228–229
reviews from, 221–222
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AppAdvice.com, 219
Appcelerator’s Titanium SDK, 85
Appearance, how it changes interactions, 104
Apple

accessibility tools, 32–33, 164–165
app icons and, 108
app review and standards, 156–157
Aqua theme, 70–71
building art that scales, 119–123
in choosing a mobile platform, 17–18
in choosing operating system for mobile app 

design, 61
commitment to simplicity, 169–170
conferences for product rollout, 31
Cover Flow technology, 54–55
cross-platform visual styles, 117–118
designing for humans, 27
designing for specific platform, 66
example of flat design style, 106
history of tablets, 11
human-interface guidelines, 67
as industry leaders, 185
interaction experience for both phones and 

tablets, 50
key player in mobile industry, 12–13
marketplace for native software and, 7–8
multilingual interaction designs, 160–161
registered users, 9
reviews from App Store, 221–222
single-view navigation, 85–86
slide-to-unlock interaction in iOS, 175–176
“There is an app for that” marketing 

campaign, 3
Time Machine backup, 138
understanding role of mobile devices, 40–41

Application programming interfaces (APIs), for 
accessing advanced hardware features, 6

Apps. See Mobile apps
Aqua theme, in OS X, 70–71
Art

artwork requirements for iOS and Android, 251
building art that scales, 119–123
matching to interaction design, 115–117

Aspect ratio, of smartphones or tablets, 51–52
Assembla (from Assembla Inc.), project 

management software, 139
AssistiveTouch (from Apple), accessibility tools, 

32, 164
Asus, Google partnership with, 11
Audience

identifying user traits, 157–160
knowing your audience, 150–152

Audio, writing source code, 143
Audition (Adobe), 63
Augmentative and alternative communication 

(AAC), accessibility for disabled users, 166

Auto-layout, 50
Automatic app (from Automatic Labs, Inc.), 147
Azure. See Windows Azure

B
Babylon Translator, for multilingual interaction 

design, 162
Back button, putting elements in right location, 

180–182
Backup software, 138
Balsamiq (from Balsamiq Tools LLC)

creating design documentation, 131
matching art to interaction design, 116
overview of, 78
as recommended design software, 62
for wireframming, 244–245

Bard Mobile app (from Library of Congress), 166
Beta-testing. See also Tests

analyzing test data, 204–205
caps on number of tests per developer, 201
choosing testers, 195–196
deciding when to share work with testers, 

196–198
determining when you are ready to 

release, 209
developing strategy for, 198–199
distribution method for beta tests, 203–204
finding software bugs and crashes, 206–207
interaction design and, 29
maintaining relationship between 

development team and testers, 205
making positive changes based on tests, 208
managing issue resolution, 207
minimizing interface friction, 97
preparing builds for testing, 200–203
protecting your secrets, 194–195
tracking issues and bugs, 199–200
understanding how analytic services work, 

205–206
Binary code, 210
Bitbucket web site

source-code-control systems, 138–140
tracking app issues, 199–200
turning requests into changes, 224–225

BlackBerry
adoption of touchscreen interface, 13
key player in mobile industry, 15
market share, 15
mobile device interfaces, 11–12
mobile device operating systems, 8

BlackBerry World, 8
Blogs

avoiding negative feedback, 195
learning programming languages, 129
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Bluetooth, support for wireless keyboards, 46
Branding guides, for mobile apps, 118–119
Brichter, Loren, 72–73, 113
Briefs (from MartianCraft), 135
Bugs

determining when you are ready to 
release, 209

developing beta-testing strategy, 198–199
finding, 206–207
making positive changes based on beta 

tests, 208
managing issue resolution, 207
tracking, 137, 199–200
turning requests into changes, 224–225

Bugshot (from Marco Arment), for marking up 
screenshots, 245–246

Builds
preparing for testing, 200–203
version numbers for, 202–203

Burnout, cautions in app development, 214

C
Calculator app, example of single view, 86
Calendar app, in iOS 7, 180
Cameras, skeuomorphic style, 104
Cavanagh, Terry, 190
C/C++, for writing native apps in Android, 82
cd command, for working with Git, 142
Cell phones, history of, 9
Change/change management

keeping up with platform changes, 185
making positive changes based on beta 

tests, 208
preparing users for design changes, 

226–228
role of technology changes in interaction 

design, 24
turning requests into changes, 224–225

Clarity, elements in simplicity of design, 171–172
Clear for iPhone (from Realmac Software), 93
Clicking, not using in reference to mobile 

devices, 131
Clients

email clients, 40
getting feedback, 217

Cloud Messaging (from Google), for cross platform 
computing, 41

Cloud storage, SkyDrive app for, 31
CNN News app, 233–234
Coach’s Eye app, 234
Code

binary code, 210
converting design ideas into, 73
sharing, 137–138
source code. See Source code

Collaboration
code sharing and, 137–138
on design issues, 136–137

Color blindness, accessibility tools, 32–33, 166
Color ID Free for iOS, accessibility for color blind 

users, 166
Colors

app branding guides, 118
determining what to change in source 

code, 144–146
editing with xScope, 249–250
user style preferences, 160

Communication, between designers and 
programmers, 136–137

Compass app, skeuomorphic style in, 105, 184–185
Compression

PNG file format and, 252–253
Pngyu for compressing PNG images, 248
third party solutions, 257
turning off automatic compression in 

Xcode, 257
visual quality and, 187

Computer geeks, mass market design vs., 157
Computers

desktop. See Desktop computers
laptop. See Laptop computers
options for designing mobile apps, 61
upgrades and, 61–62

Conferences, educational benefits of, 65–66
Connectivity, managing connectivity failure, 

98–101
Continuity, elements in simplicity of 

design, 172–173
Cover Flow technology (from Apple), 54–55
Crashes. See also Bugs

analyzing test data, 204
finding, 206–207

Crashlytics, 206–207
CrashPlan (by Code42), backup software, 138
Creative Cloud suite (from Adobe), 63, 244
Criticism, using criticism but avoiding 

negativity, 223
Cross-platform design, Evernote example, 234–235
CSS, Web apps and, 83–84
Customers

are they pleased with app design? 217
determining which feedback is valuable, 219

D
Data entry, interactions not possible on mobile 

devices, 46–47
Data loss, protecting against, 26–27
Data portability, 227
Day One Journal app, 215–216
Demographics, anticipating user base, 32
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Design
bridging gap between programming and, 128
describing to programmers, 132–136
evaluating own work, 218
importance of consistency, reliability, and 

sophistication, 17
interaction design. See Interaction design
interface design. See Interface design
intuitive and natural basis of, 172
preparing users for design changes, 226–228
refreshing. See Updating released apps
simplicity in. See Simplicity of design
using Photoshop for, 244
visual. See Visual style

Designers
becoming a designer, 65–66
determining which feedback is valuable, 

218–219
evaluating own work, 216–218
introduction to programming, 141–143
learning opportunities for, 139–140
maintaining work journal, 215–216
making constant improvement, 214–215

Desktop computers
computers recommended for mobile app 

design, 61
sandboxing use on, 156
understanding role of mobile devices and, 

40–41
Devices. See Mobile devices
Direct feedback usability testing, 188
Direct user feedback, 225
Disabilities, accessibility options, 32–33, 

163–166
Displays

densities on Android, 252
hardware recommended for mobile app 

design, 61
Distribution methods, for beta testing, 203–204
Diversity

anticipating user base, 32
designing for humans and, 26

Documentation
Balsamiq for, 244
creating design documentation, 131
meeting design expectations, 70–73
in mobile app design, 73

Documents, designing for humans and, 27
Dogfooding, in usability testing, 189
Dribble

design community for getting feedback, 
246–247

design community for testing apps, 28
Dropbox, 55, 147
Dyslexia, accessibility for disabled users, 166

E
Eclipse

creating mobile apps, 3
writing source code, 143

Email
clients, 40
difficulties in creating e-mail apps, 147
getting feedback from users, 206
from smartphones, 36–37
soliciting reviews, 220–221

Emulators/simulators
testing source code, 144
virtual devices for simulation and testing, 66–67

Entertainment, benefits of tablets devices, 46
Entertainment apps

MLB.com At Bat, 240
TuneIn Radio, 241

Evernote
examples of outstanding apps, 234–235
Skitch software from, 78, 136–137, 249

Expandability, interaction design and, 48

F
Facebook

examples of outstanding apps, 235–236
getting personal reviews, 222–223
Zuckerberg and, 32

Familiarity
following industry leaders, 185
going against the grain, 186
simplicity through, 183
using well-know visuals, 184–185

Fantastical 2 app, 229
Features

saying no to added features, 178
turning requests into changes, 224–225
when to eliminate, 226–228

Feedback
analyzing test data, 204–205
app store reviews, 221–222
choosing testers, 195–196
conclusions, 210–211
deciding when to share work with testers, 

196–198
determining when you are ready to release, 

208–210
determining which feedback is valuable, 

218–219
developing beta-testing strategy, 198–199
direct feedback usability testing, 188
distribution method for beta testing, 203–204
finding software bugs and crashes, 206–207
learning from human error, 28
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making positive changes based on beta 
tests, 208

managing issue resolution, 207
minimizing interface friction, 97
mobile app design and, 77
personal reviews, 222–223
preparing builds for testing, 200–203
protecting your secrets, 194–195
releasing the app, 210–211
reviews Web sites, 219–221
showing off your work, 194
tracking issues and bugs, 199–200
turning requests into changes, 224–225
understanding how analytic services work, 

205–206
Field Notes (by Draplin Design Company and 

Coudal Partners), 60–61
File formats

Android, 252–253
iOS, 256–257

File management
Android, 253–254
iOS, 257–258
SkyDrive app for, 31
tranditional vs. sandboxing, 153–156

Firefox (from Mozilla), 16
Fitts’ Law, in interface design, 18
Flat design, 106–107
Flicking gesture, 132
Flipboard app, 236–237
Flow, elements in simplicity of design, 172–173
Flurry Analytics, 187, 205–206
Focus groups, anticipating user base, 34–35
Folders

file management and integration with mobile 
devices, 153–154

re-evaluating layout between projects, 214–215
Fonts

branding guides, 119
challenges in designing for web, 101
determining what to change in source code, 

144–146
user style preferences, 160

Forecast.io, 84, 101–102
Form factor, of smartphones or tablets, 51–52
Forrst community, for testing apps, 28
Forstall, Scott, 13
Forums, for learning programming languages, 129
Friction, minimizing interface friction, 96–98

G
Gestures

gesture-based navigation, 92–93
interaction design and, 37

interactions not possible on mobile devices, 47
pull-to-refresh gesture, 113
retention and growth in design and, 173–174
role of technology changes in interaction 

design, 24
slide-to-unlock interaction in iOS, 175–176
types of, 132

GIF file format, 119
Git

learning how to use, 141–143
as source-code-control system, 137–138

git commit command, 142
git help command, 143
git pull command, 142
git push command, 142
git status command, 142
GitHub web site

as source-code-control system, 138–140
tracking app issues, 199–200
turning requests into changes, 224–225

Gmail, 170
GmbH, 248
Google

accessibility tools, 33, 164–165
Android. See Android
building art that scales, 119–123
in choosing a mobile platform, 17–18
commitment to simplicity, 169–170
cross platform computing and, 41
designing for specific platform, 66
difficulties in achieving simplicity, 170–171
examples of outstanding apps, 237
getting reviews from app stores, 221–222
history of tablets, 11
Holo style, 71–72
icons, 108, 125, 252
as industry leaders, 185
key player in mobile industry, 13–14
making positive changes based on beta 

tests, 208
marketplace for native software and, 7–8
mission statement, 170
multilingual interaction designs, 160–161
native apps, 82–83
role of technology changes in interaction 

design, 24
scaling interface for various devices, 49
search-driven navigation, 90
testing app use, 187, 205–206
viewing how users are interacting with app, 217

Google Analytics
making positive changes based on beta tests, 208
testing app use, 187
testing user-reaction to app features, 205–206
viewing how users are interacting with 

app, 217
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Google Chrome, 237
Google Glass visual platform, 24
Google Maps

difficulties in achieving simplicity, 170
examples of outstanding apps, 237

Google News, 170
Google Now, 90
Google Play Store

icons and, 125, 252
marketplace for native software, 7–8

GPS
APIs for accessing, 6
interactions possible only with 

smartphones, 43
Grades 2 app, 229
Grandmother test, for ease of use, 151
Graphical user interface (GUIs), 143
Graphics tools, in designing mobile apps, 

63–64
Gruber, John, 140
GUIs (graphical user interface), 143
Gyroscope, 6, 43

H
HDPI (high density), display densities, 252, 253
Help manuals (instruction manuals)

designing for humans and, 28
rarely available, 150
using applications without guidance, 76

Hints, making clues subtle, 179–180
HockeyApp

for direct feedback usability testing, 188
finding software bugs and crashes, 206–207

Holo style, Google, 71–72
Hourly News app (from Urban Apps), 43–44
HTML

building mobile programs, 6
hybrid apps, 84–85
Markdown compared with, 140
Web apps, 83–84

Human-interface guidelines
designing for specific platform, 66–67
going against the grain, 186
reasons for straying from, 113–115

Humans
designing for, 25–28
learning from human error, 28–30

Hybrid apps, 84–85

I
iBiker app (from iTMP Technology Inc.), 36–37
iBooks apps (from Apple), 105
ICanLocalize Web service, multilingual interaction 

designs and, 162

iCloud (from Apple)
cross platform computing and, 41
having mobile applications complement 

traditional workflows, 55
Icon Slate (from Jeremy Marchand), 247
Iconfactory

Instagram app. See Instagram app
xScope. See xScope (from Iconfactory)

Icons
creating app icons, 107–111
Google Play Store and, 125
newsstand icons, 256
retention and growth in design and, 173–174
sizes in Android, 252
sizes in iOS, 255–256
user style preferences, 160
vector construction, 249

IDEs (integrated development environments)
creating mobile apps, 3
defining today’s apps, 5–6
multilingual interaction designs and, 162
writing source code, 143

Illustrator (Adobe)
creating app icon, 108
recommended design software, 63

iMac computers, for mobile app design, 61
ImageOptim, for compressing PNG images, 257
Images

app speed and, 186
compressing, 248, 257
file formats. See File formats
writing source code, 143

Information apps, Wolfram|Alpha, 242
Instagram app

examples of outstanding apps, 237–238
examples of simplicity in app design, 190
examples of teamwork, 147
iconography features, 97–98
pull-to-refresh gesture and, 133

Instant-messaging services, 222–223
Instapaper app, examples of outstanding apps, 239
Instruction manuals (help manuals)

designing for humans and, 28
rarely available, 150
using applications without guidance, 76

Integrated development environments. See IDEs 
(integrated development environments)

Interaction design
anticipating user base, 32–35
conclusions, 37–38
designing for humans, 25–28
in everyday life, 24–25
goals, 25
having mobile applications complement 

traditional workflows, 55–57
interaction experience for both phones and 

tablets, 48–52
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interaction experience for multiple platforms, 
53–55

interactions not possible on mobile devices, 
46–48

interactions possible only with smartphones, 
42–44

interactions possible only with tablets, 44–46
interface design compared with, 22–24
learning from human error, 28–30
matching art to, 115–117
multilingual designs, 160–163
from sketch to programmable design, 130–131
striving for simplicity, 168–170
universal appeal across devices, 48
user workflow in mobile environment and, 

35–37
where to begin, 30–31

Interface Builder, Xcode, 143
Interface design

Fitts’ Law in, 18
getting familiar with new OS, 19
goals, 25
interaction design contrasted with, 22–23

Interfaces
design, 2–3
minimizing interface friction, 96–98
options for mobile devices, 11–12
software compared with, 30–31

iOS
accessibility tools, 32–33, 258
Android compared with, 14
APIs for accessing hardware features, 6
choosing a mobile platform, 17–18
designing for humans, 27
designing for specific platforms, 66
distribution methods for beta testing, 203–204
example of interaction design, 24
example of interface design, 22
example of skeuomorphic style, 105
file format, 256–257
file management, 257–258
gesture-based navigation, 92–93
hybrid apps, 84–85
icons, 108–109, 255–256
interaction experience for multiple platforms, 

53–55
interaction experience for phones and 

tablets, 50
keyboard options, 47
managing connectivity failure, 98–101
modal controllers in navigation, 91–92
multilingual interaction designs, 160–161
naming conventions, 258
native apps, 82
navigation views, 93–96
offering subtle hints, 180
operating systems for mobile devices, 8

pixel-perfect mockups, 75
putting elements in right location, 180–182
sandboxing in file management, 153–154
scroll view navigation, 89–90
search-driven navigation, 90–91
segmented view (tab view) controllers, 88–89
single-view navigation, 86
slide-to-unlock interaction in, 175–176
Springboard iOS launcher, 5
stacked navigation, 87
tips for working with, 258–259
transition from iOS 6 to iOS 7, 72
Unix foundation in, 138

iOS Dev Weekly, 129
iPad

example of skeuomorphic style, 105
Flipboard app and, 236–237
history of tablets, 11
human-interface guidelines, 67
interaction experience, 50
interactions possible only with tablets, 44–46
role of Apple in mobile revolution, 13

iPhone
accessibility tools, 32–33
branding guides, 118
building art that scales, 119–123
cross-platform visual styles, 117–118
example of skeuomorphic style, 105
gesture-based navigation, 93
history of mobile apps, 4
history of mobile devices, 10
HockeyApp integration with, 206
human-interface guidelines, 67
interaction experience, 48, 50, 53–55
interactions possible only with smartphones, 

42–44
marketplace for native software and, 7–8
role of Apple in mobile revolution, 13
scroll view navigation, 90
search-driven navigation, 90
segmented view (tab view) controllers, 88
software compared with interfaces, 31
success of slide-to-unlock interaction, 175–176
translating Photoshop into mockup for, 135
Tweetie app, 113
Voice Memos example of single view, 85–86

iPod
history of mobile devices, 9
role of Apple in mobile revolution, 12–13

Issues. See also Bugs
determining when you are ready to release, 209
developing beta-testing strategy, 198–199
making positive changes based on beta 

tests, 208
managing resolution, 207
tracking, 199–200
turning requests into changes, 224–225
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Iterations
finishing touches and, 124
making improvements via, 197
in mobile app design, 75–77

Ive, Jony, 13, 124

J
Java, 5–6, 128–129
JavaScript, 6, 83
JIRA (from Atlassian), for project management, 139
Jobs, Steve, 13, 40, 170, 208–209
Journalists, soliciting reviews from, 220–221
Journals, note taking tools, 60–61
JPEG file format

app speed and, 186
PNG compared with, 187, 253
as raster format, 119

K
Karras, James, 210–211
Keyboards

interactions not possible on mobile devices, 
46–47

as interface, 11–12
Kickstarter crowd funding site, 210
Knowledge apps, Wolfram|Alpha, 242

L
Languages, multilingual interaction designs, 

160–163
Laptop computers

recommendations for mobile app 
design, 61

understanding role of mobile devices and, 
40–41

Launch strategy, 209–210
Launchpad, Web service for beta test 

distribution, 204
Layout (from SwordSoft), matching art to 

interaction design, 116
Learning opportunities, for designers, 139–140
Linux

Android based on, 13
author of, 138
reference materials, 140
Ubuntu distributor, 16

Logos, app branding guides, 118
Lossless compression, PNG file format and, 187, 

248, 252–253
Lossy compression, JPEG file format and, 

187, 253
LTE networks, managing connectivity failure, 98

M
MacBook Air, recommended for mobile app 

design, 61
Macintosh computers

Apple’s commitment to simplicity, 170
recommended for mobile app design, 61
use of personas, 33

Mailbox app, Dropbox, 147
Maps, Google Maps, 237
Marchand, Jeremy, 247
Markdown markup language, 139–140
Marketplace, for native software, 7–8
MarvelApp (from Marvel Prototyping), 135
Mass market, keys to succeeding in, 157
Mayer, Marissa, 170
MDPI (medium density), display densities, 252, 253
Mercurial, source-code-control systems, 137
Metrics, usage metrics, 187–188
Microsoft

adoption of touchscreen interface, 13
app review and standards, 156–157
choosing mobile platforms, 18
conferences for product rollout, 31
cross platform computing and, 41
early history of tablets, 10–11
example of flat design style, 106
as key player in mobile industry, 15
multilingual interaction designs, 160–161
operating systems for mobile app design, 61
reviews from app stores, 221–222
Windows OSs. See Windows OSs

Microsoft PowerPoint, 248
Microsoft Surface, 11, 44–46
Microsoft Zune, 9
Mind mapping. See MindNode Pro
MindNode Pro

creating workflows, 68–69
for mind mapping, 247–248
recommended design software, 63
use of personas, 33

Miyamoto, Shigeru, 209
MLB.com At Bat app, 240
Mobile apps

anticipating user base, 32–35
beta-testing. See Beta-testing
branding guides, 118–119
checking out award winning apps, 185
creating app icons, 107–111
examples of successfully updated apps, 229
getting feedback. See Feedback
history of, 3–4
managing connectivity failure, 98–101
marketplace for native software, 7–8
minimizing interface friction, 96–98
multitasking, 156
navigating. See Navigation methods
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review and standards, 156–157
testing speed of, 186–187
in today’s context, 5–7
types of, 82–85
usability of. See Usability
use in short bursts, 159
user preferences and, 158
user workflow in mobile environment and, 35–37
visual styles. See Visual style

Mobile apps, for designer use
Adobe Photoshop, 244
Balsamiq, 244–245
Bugshot, 245–246
Dribble, 246–247
Icon Slate, 247
MindNode Pro, 247–248
overview of, 243
Pngyu, 248
Skitch, 249
Spark Inspector, 249
xScope, 249

Mobile apps, outstanding examples
1Password, 232
Amazon Mobile, 232–233
CNN News, 233–234
Coach’s Eye, 234
Evernote, 234–235
Facebook, 235–236
Flipboard, 236–237
Google Chrome, 237
Google Maps, 237
Instagram, 237–238
Instapaper, 239
MLB.com At Bat, 240
overview of, 232
TuneIn Radio, 241
Twitter, 240
Wolfram|Alpha, 242

Mobile apps, planning
becoming a designer, 65–66
computer selection, 61
conclusions, 79
creating mockups, 73–75
creating multiple iterations, 75–77
creating workflows, 68–69
documentation, 73
getting feedback, 77
graphics tools, 63–64
meeting design expectations, 70–73
note taking tools, 60–61
operating systems and, 61
overview of, 59
on-screen metrics, 64
software development tools, 62, 78
for specific platforms, 66–68
tools for, 60
wireframe or mock up tools, 62–63

Mobile devices. See also Mobile phones; Tablets
history of mobile apps, 3–4
interaction experience for multiple platforms, 

53–55
interaction experience for phones and tablets, 

48–52
interactions not possible on, 46–48
interactions possible only with smartphones, 

42–44
interactions possible only with tablets, 44–46
interface options, 11–12
knowing your audience, 152
phones, 9–10
tablets, 10–11
understanding role of, 40–41
universal appeal across devices, 48
user workflow in mobile environment and, 

35–37
what they are, 8–9

Mobile industry key players
Apple, 12–13
BlackBerry, 15
Google, 13–14
Microsoft, 15
mobile Web sites and browsers, 16
overview of, 12

Mobile phones. See also Mobile devices
Android OS and, 13
Android phone. See Android
history of mobile apps, 3–4
human-interface guidelines, 67
interaction experience for multiple platforms, 

53–55
interaction experience for phones and tablets, 

48–52
interactions possible only with smartphones, 

42–44
iPhone. See iPhone
knowing your audience, 152
limits to expandability, 48
marketplace for native software and, 7–8
native apps, 82
sandboxing in file management, 153–156
skeuomorphic style, 104
in today’s context, 5–7
user workflow in mobile environment and, 

35–37
Windows Phone. See Windows Phone

Mobile platforms
cross platform computing and, 41
cross-platform design, 234–235
cross-platform visual styles, 117–118
designing for specific platform, 66–68
interaction experience for multiple platforms, 

53–55
keeping up with platform changes, 185
overview of, 16–19
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Mockups. See also Wireframe (mock up) tools
creating pixel-perfect, 73–75
translating Photoshop into mockup for iPhone 

or Android, 135
Modal controllers, in app navigation, 91–92
Monitors. See Displays
Mouse, interactions not possible on mobile 

devices, 47
Mozilla Firefox, 16
Multitasking, mobile apps and, 156

N
Naming conventions

Android, 254
iOS, 258
re-evaluating between projects, 214–215

Napkin (from Aged & Distilled LLC), for design 
documentation, 131

Native apps
Facebook going native, 235
hybrid apps, 84–85
marketplace for, 7–8
overview of, 82–83

Navigation (physical), Google Maps, 237
Navigation Bar, in iOS, 87
Navigation methods

gesture-based navigation, 92–93
modal controllers in navigating, 91–92
overview of, 85
picking navigation interaction type, 

93–96
sandboxing and, 152–156
scroll view navigation, 89–90
search-driven navigation, 90–91
single-view navigation, 85–86
stacked navigation, 87–88
tab view navigation, 88–89

Negativity, using criticism but avoiding 
negativity, 223

News services, 233–234
Newsletters, learning programming 

languages, 129
Newsstand icons, 256
Nexus 7 tablet

history of tablets, 11
interactions possible only with tablets, 

44–46
native apps, 82–83

Nokia Symbian Store, 8
Note taking tools

examples of outstanding apps, 234–235
overview of, 60–61
skeuomorphic style of, 184

O
Objective-C

defining today’s apps, 5–6
learning programming languages, 128–129
writing native apps in iOS, 82

OmniGraffle (from The Omni Group), 63, 116
Online shopping, Amazon.com, 232–233
On-screen metrics, in designing mobile apps, 64
open command, working with Git, 143
OpenDyslexic, accessibility for disabled users, 166
OS X

Aqua theme, 70–71
file management and integration with mobile 

devices, 153–154
for mobile app design, 61

OSs (operating systems)
Android. See Android
challenges in designing for web, 101
comparing Android with iOS, 14
iOS. See iOS
mobile devices and, 8–9
options for designing mobile apps, 61
OS X. See OS X
software compared with interfaces, 30–31
support for keyboard options, 47
tablets and, 10–11
updates, 31

OUYA, 210–211

P
PaintCode (from PixelCut), 123
Pareto principle (80/20 rule), applying to mobile 

development, 159–160
Parse, cross platform computing and, 41
Passwords

1Password app, 232
syncing across multiple devices, 56

PCs, understanding role of mobile devices and, 
40–41

PDF readers, 40
Personas, in anticipating user base, 33–34
Phones. See Mobile phones
Photo sharing services, 237–238
Photos app, in iOS 7, 180
Photoshop. See Adobe Photoshop
PHP

building Web apps, 83
Web forms for tracking app issues, 200

Pinching
on iPhone, 31
types of gestures, 132
using proper terminology, 131

Pinch-to-zoom, 23
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Pinterest social networking sites, 33
Pixelmator

as alternative to Photoshop, 244
overview of, 78
recommended design software, 64

Pixels
building art that scales, 120
converting design ideas into, 73
creating pixel-perfect mockups, 73–75
editing, 244
icon sizes and, 255
viewing with xScope, 249–250

Plants vs. Zombies 2 app, 229
Platforms. See Mobile platforms
PNG file format

for Android, 252–253
app speed and, 186
compressing, 248
creating app icons, 110
creating pixel-perfect mockups, 75
for iOS, 256–257
JPEG compared with, 187
as raster format, 119

Pngyu, for compressing PNG images, 248, 257
Pointer devices, interactions not possible on 

mobile devices, 47
Post-PC OSs. See OSs (operating systems)
Power users, knowing your audience, 151
PowerPoint (Microsoft), for sharing ideas, 248
Pressing gesture, 132
Programmers, working with

clear communication with, 136–137
comprehending source code, 141
conclusions, 148
describing your design, 132–136
designer’s introduction to programming, 

141–143
determining what to change, 144–147
interface design and, 2
learning opportunities, 139–140
learning programming languages, 128–130
from sketch to programmable design, 130–131
tracking issues, 137–139
understanding, 128
writing source code, 143–144

Programming code. See Code
Programming languages, learning, 128–130
Project management software, 139
Proloquo2Go, accessibility for disabled users, 166
PSD file format, 119
Pull-to-refresh gesture

Instagram app and, 133
overview of, 113
retention and growth in design and, 174

Python, for building Web apps, 83

Q
QWERTY keyboard

in BlackBerry phones, 15
interactions not possible on mobile devices, 

46–47
mobile device interfaces, 11–12

R
Radio, TuneIn Radio app, 241
Raster formats

building art that scales, 120
comparing JPEGs and PNGs, 187
list of, 119

Ratio scaling, in Android, 253
Reader apps, 239
Releasing apps

determining when you are ready, 208–210
making the release, 210–211

Resubmission process, updating released apps, 
228–229

Retention and growth, elements in simplicity of 
design, 173–175

Reviews. See also Feedback
app store reviews, 221–222
personal reviews and feedback, 222–223
reviews Web sites, 219–221

Revision process. See Updating released apps
Rotate gesture, 132
Rubin, Andy, 13
Ruby on Rails, for building Web apps, 83

S
Samsung

conferences for product rollout, 31
marketplace for native software, 8
TouchWiz, 72

Samsung Apps, 8
Sandboxing

usability and, 152–156
use on desktop computers, 156

Schedules
for communicating with programmers, 136
determining when you are ready to 

release, 210
Screens. See Displays
Screenshots, Bugshot for marking up, 245–246
Scroll view navigation, 89–90, 95
SDKs (software development kits), 5–6
SDPI (small density), 254
Search engines, 242
Search-based navigation, 94–95
Search-driven navigation, 90–91
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Security
passwords, 56, 232
protecting secrets while getting feedback, 

194–195
Sense (from HTC), 72
Simplicity of design

action bar in Android, 176–178
clarity and, 171–172
conclusions, 191
continuity and flow and, 172–173
difficulties in achieving, 170–171
direct feedback usability testing, 188
dogfooding, 189
examples, 189–191
familiarity and, 183
following industry leaders, 185
going against the grain, 186
locating elements properly, 180–182
making tasks obvious, 178–179
offering hints, 179–180
overview of, 167–168
retention and growth and, 173–175
saying no to added features, 178
slide-to-unlock interaction in iOS, 175–176
speed of app, 186–187
striving for simple interaction design, 168–170
testing, 186
trimming the app down, 182–183
usage metrics, 187–188
using well-know visuals to create familiarity, 

184–185
Simulators/emulators

testing source code, 144
virtual devices for simulation and testing, 66–67

Single-view navigation, 85–86
Siri

accessibility for disabled users, 164
difficulties in achieving simplicity, 170
role of technology changes in interaction 

design, 24
search-driven navigation, 90

Sketch (from Bohemian Coding), 64
Sketches. See Wireframe (mock up) tools
Skeuomorphic style

compass app, 184–185
note taking app, 184
overview of, 104–106

Skitch software (from Evernote)
for collaboration on design issues, 136–137
overview of, 78
transitioning to vector format, 249

SkyDrive app, for cloud storage, 31
Slideshow presentations

mobile devices complementing traditional 
computing functions, 40

PowerPoint for sharing ideas, 248
Slide-to-unlock interaction, in iOS, 175–176

Smartphones. See also Mobile phones
accessibility for disabled users, 163–166
Android OS and, 13
computer literacy of users, 156
designing for the mass market, 157
history of mobile apps, 3–4
history of mobile devices, 9–10
interaction experience for both phones and 

tablets, 48–52
interactions possible only with, 42–44
interface design and, 2
knowing your audience, 150–151
limits to expandability, 48
operating systems and, 9
user workflow in mobile environment and, 35–37

Social networking
designing for specific platform and, 67–68
Facebook. See Facebook
icons, 110
learning programming languages, 129
soliciting reviews, 220–221
Twitter. See Twitter

Software
applification of, 150
backup software, 138
beta-testing. See Beta-testing
bug-tracking software, 137–138
for building interactive prototypes, 135
development tools, 62, 78
finding bugs and crashes, 206–207
interfaces compared with, 30–31
Markdown markup language, 139–140
mobile. See Mobile apps
not showing off too soon, 197–198
project management software, 139
source-code-control systems, 137

Software development kits (SDKs), 5–6
Source code

committing code, 145
comprehending, 141
determining what to change, 144–146
source-code-control systems, 137–140
underestimating time for replacing, 134
writing, 143–144

Source-code-control systems, 137–140, 145
Spark Inspector, for runtime inspection, 249
Speech impairment, accessibility for disabled 

users, 166
Speed, testing app speed, 186–187
Spreadsheets, 40
Springboard (from Apple)

for app navigation, 153
iOS launcher, 5

Stacked navigation, 87–88, 94
Stakeholders

are they pleased with app design? 217
who they are, 194
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Subversion, source-code-control system, 137
Super Hexagon app, 190–191
Surface. See Microsoft Surface
Surface (Microsoft), 11, 44–46
Swipe gestures

software compared with interfaces, 31
swipe from the edge, 113
swipe-to-unlock, 23

T
Tab view navigation, 88–89, 94
Tablets

designing for the mass market, 157
evolution of mobile devices, 10–11
interaction experience for multiple platforms, 

53–55
interaction experience for phones and tablets, 

48–52
interactions possible only with, 44–46
knowing your audience, 152
limits to expandability, 48
native apps, 82
sandboxing in file management, 153–156
understanding role of mobile devices, 40–41
user computer literacy and, 156

Tapbots, LLC
Tweetbot app, 100, 114–115
Web site support, 150

Tapping gesture
types of gestures, 132
using proper terminology, 131

Tasks, making obvious, 178–179
Terminal

commands for working with Git, 142–143
for source code management, 140

Terminology app, in search-driven navigation, 91
TestFlight

direct feedback usability testing, 188
distribution methods for beta testing, 204
finding software bugs and crashes, 206–207

Tests
analyzing test data, 204–205
choosing testers, 195–196
deciding when to share work with testers, 

196–198
developing beta-testing strategy, 198–199
direct feedback usability testing, 188
distribution method for beta testing, 203–204
finding software bugs and crashes, 206–207
making positive changes based on beta 

tests, 208
managing connectivity failure, 98–101
managing issue resolution, 207
preparing builds for testing, 200–203
protecting your secrets, 194–195

for simplicity of design, 186
source code, 144
speed of app, 186–187
tracking issues and bugs, 199–200
understanding how analytic services work, 

205–206
usage metrics, 187–188
virtual devices for simulation and testing, 

66–67
Text

accessibility tools in Android, 33
interaction experience for both phones and 

tablets, 50
interactions not possible on mobile devices, 46
as an interface, 30
writing source code, 143

Text editors, 143
TextExpander (from Smile), 203
Text-to-voice, accessibility tools, 33, 164
“There is an app for that” , Apple marketing 

campaign, 3
Time Machine backup software, 138
Time until response test, 186–187
TinyPNG app, 257
Titanium SDK (from Appcelerator), 85
Toca Boca, iOS and Android apps from, 152
Tools, for designing mobile apps

computer options, 61
graphics tools, 63–64
note taking tools, 60–61
operating system options, 61
overview of, 60
on-screen metrics, 64
software development tools, 62
wireframe or mock up tools, 62–63

TortoiseGit project, for source code 
management, 140

Torvalds, Linus, 138
Touchscreen interface

in history of mobile apps, 4
interactions not possible on mobile devices, 47
role of Apple in mobile revolution, 13
software compared with interfaces, 31

TouchWiz (from Samsung), 72
Tracking bugs and issues, 137–139, 199–200
Translation services, 162
TuneIn Radio app, 241
Tutorials, 150
Tweetbot app (from Tapbots, LLC), 100, 114–115
Tweetie app, iPhone, 113
Twitter

avoiding negative feedback, 195
examples of outstanding apps, 240
getting personal reviews, 222–223
from smartphones, 36–37
Tweetie app, 113
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Two-finger tap gesture, 132
Typography

branding guides, 118
Instapaper app and, 239

U
Ubuntu distributor, Linux, 16
UDID, iOS distribution methods for beta testing, 

203–204
Unix

iOS foundation in, 138
learning how to work with, 142
references materials, 140

Updates
OSs (operating systems) and, 31
platform changes, 185

Updating released apps
app store reviews, 221–222
conclusions, 230
determining which feedback is valuable, 218–219
evaluating own work, 216–218
maintaining work journal, 215–216
making constant improvement as a designer, 

214–215
personal reviews and feedback, 222–223
preparing users for design changes, 226–228
refreshing a design, 213
resubmission process, 228–229
reviews Web sites and, 219–221
turning requests into changes, 224–225
using criticism but avoiding negativity, 223

Upgrading computers, 61–62
Urban Apps, 43–44
Usability

accessibility for disabled users, 163–166
conclusions, 166
direct feedback usability testing, 188
dogfooding, 189
finding success in mass market, 157
identifying user traits, 157–160
knowing your audience, 150–152
multilingual interaction designs, 160–163
overview of, 149
sandboxing and, 152–156
usage metrics, 187–188
viewing how users are interacting with app, 217

Usage metrics, 187–188, 217
User workflow, in mobile environment, 35–37. See 

also Workflows

V
Vector formats

list of, 121–122
Skitch for transitioning to, 249

Video, app speed and, 186
Views. See Navigation methods
Virtual devices, for simulation and testing, 66–67
Vision impairment, accessibility options, 163–166
Visual cues, creating pixel-perfect mockups, 74
Visual style

app branding guides, 118–119
building art that scales, 119–123
conclusions, 123–125
creating app icon, 107–111
cross-platform, 117–118
finding a unique look, 111–115
finishing touches, 123–125
flat design, 106–107
how appearance changes interactions, 104
matching art to interaction design, 115–117
skeuomorphic style, 104–106
using well-know visuals, 184–185

Voice Memos app
example of single view, 85–86
redesign of, 95–96

Voice search (from Google), 33
VoiceOver app, in iOS, 165, 258

W
Weather apps, YahooWeather app, 179
Web apps

building mobile programs and, 6
challenges in designing for web, 101
hybrid apps, 84–85
overview of, 83–84
stacked navigation, 88

Web browsers
building Web apps and, 83
Google Chrome, 237
mobile Web sites and browsers, 16

Web forms, tracking app issues, 200
Web forums, tracking app issues, 199–200
Web sites

Dribble.com, 246–247
mobile Web sites and browsers, 16
review sites, 219–221
support sites, 150

Wi-Fi, managing connectivity failure, 98
Windows Azure

cross platform computing and, 41
having mobile applications complement 

traditional workflows, 55
Windows OSs

file management and integration with mobile 
devices, 153–154

for mobile app design, 61
mobile device operating systems, 8
multiple interfaces in Windows 8, 30
Windows 7 references materials, 140
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Windows Phone
example of flat design style, 106
hybrid apps, 85
key players in mobile industry, 15
sandboxing in file management, 153

Windows Store, marketplace for native software, 8
Wireframe (mock up) tools

Balsamiq for, 244–245
creating workflows, 68–69
designing mobile apps, 62–63
matching art to interaction design, 116–117
meeting design expectations, 70–73
to programmable design, 130–131

Wolfram|Alpha app, 242
Word processors

mobile devices complementing traditional 
computing functions, 40

note taking tools in mobile app design, 60–61
for sharing ideas, 248

Work journal, maintaining, 215–216
Workflows

creating in mobile app design, 68–69
in mobile environment, 35–37

Worldwide Developers Conference (WWDC), 185
Wozniak, Steve, 170
WWDC (Worldwide Developers Conference), 185

X
Xcode

creating mobile apps, 3
Interface Builder, 143

multilingual interaction designs and, 162
source-code-control, 140
writing source code, 143

Xcode Interface Builder (XIBs), 50
XHDPI (extra high density), display densities, 

252, 253
XIBs (Xcode Interface Builder), 50
xScope (from Iconfactory)

accessibility for disabled users, 165–166
overview of, 78
recommended design software, 64
tool for anticipating app look to the color 

blind, 32
viewing pixels and analyzing animations, 249

XXHDPI (extra extra high density), display 
densities, 252, 253

XXXHDPI (extra extra extra large density), 254

Y
YahooWeather app, 179, 189–190

Z
Zoom, accessibility tools, 33
Zuckerberg, Mark, 32
Zune (Microsoft), 9



ptg12441863

This page intentionally left blank 



ptg12441863

Register the Addison-Wesley, Exam 
Cram, Prentice Hall, Que, and 
Sams products you own to unlock 
great benefits. 

To begin the registration process, 
simply go to informit.com/register
to sign in or create an account. 
You will then be prompted to enter 
the 10- or 13-digit ISBN that appears 
on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley  |  Cisco Press  |  Exam Cram   

IBM Press   |   Que   |   Prentice Hall   |   Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 

Professional, Que, and Sams. Here you will gain access to quality and trusted content and 

resources from the authors, creators, innovators, and leaders of technology. Whether you’re 

looking for a book on a new technology, a helpful article, timely newsletters, or access to 

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 
the following benefits:

•  Access to supplemental content, 
including bonus chapters, 
source code, or project files. 

•  A coupon to be used on your 
next purchase.

Registration benefits vary by product.  
Benefits will be listed on your Account 
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.indd   1 12/5/08   3:37:06 PM



ptg12441863

InformIT is a brand of Pearson and the online presence 
for the world’s leading technology publishers. It’s your source 
for reliable and qualified content and knowledge, providing 
access to the top brands, authors, and contributors from 
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips?  InformIT has the solution.

•  Learn about new releases and special promotions by 
subscribing to a wide variety of newsletters. 
Visit informit.com/newsletters.

•  Access FREE podcasts from experts at informit.com/podcasts.

•  Read the latest author articles and sample chapters at 
informit.com/articles.

•  Access thousands of books and videos in the Safari Books 
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the 
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook, 

Twitter, YouTube, and more! Visit informit.com/socialconnect.



ptg12441863

* Available to new subscribers only. Discount applies to the Safari Library and is valid for  rst 
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology, 
digital media and professional development from O’Reilly Media, 
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX, 
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts 
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new 
books about your favorite topics are available, and customize your library 
with favorites, highlights, tags, notes, mash-ups and more.



ptg12441863

Activate your FREE Online Edition at 
informit.com/safarifree

STEP 1:  Enter the coupon code: IOGTOXA.

STEP 2:  New Safari users, complete the brief registration form. 
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition, 
please e-mail customer-service@safaribooksonline.com

Your purchase of Essential Mobile Interaction Design includes access to a free online edition 
for 45 days through the Safari Books Online subscription service. Nearly every Addison-Wesley 
book is available online through Safari Books Online, along with over thousands of books and 
videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media, Prentice Hall, 
Que, Sams, and VMware Press. 

Safari Books Online is a digital library providing searchable, on-demand access to thousands 
of technology, digital media, and professional development books and videos from leading 
publishers. With one monthly or yearly subscription price, you get unlimited access to learning 
tools and information on topics including mobile app and software development, tips and tricks 
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE 
Online Edition

SFOE_9780321961570.indd   1 2/10/14   11:35 AM


	Contents
	Preface
	Acknowledgments
	About the Authors
	1 A Look at Mobile and Its Main Players
	The Field of Interface Design
	The Dawn of the App
	Defining an App in Today’s Context
	Build It and They Will Come

	What Is a Mobile Device?
	A Portable, Pocket Computer
	Tablets, Too
	Other Devices That Are Part of the Revolution

	The Industry’s Key Players
	Apple
	Google and Android
	The Other Players

	Distinctions between Platforms
	Conclusion

	2 Design for Humans, by Humans
	What Is Interaction Design?
	Goals When Designing an Interface
	Designing for Humans
	Designed by Humans

	Where to Begin
	Anticipating Your User Base
	Mobile’s Role in User Workflow
	Conclusion

	3 Dynamic Differences in Mobile Design
	Understanding the Role of Mobile
	Mobile-Only Interactions
	Interactions Only Possible with a Smartphone
	Interactions Only Possible with a Tablet

	Interactions That Aren’t Possible on Mobile
	Keyboards and Data Entry
	Click, Tap, Point
	Expandability

	Universal Appeal
	Interaction Experiences for Phones and Tablets
	Interaction Experiences for Multiple Platforms

	Complementing Traditional Workflows
	Conclusion

	4 First Sketches of an App
	What Tools Do You Need?
	Becoming a Designer
	Planning for a Specific Platform
	Starting with a Workflow
	Meeting Design Expectations
	Wrapping Up Design Documentation

	Creating Pixel-Perfect Digital Mockups
	Reiterating Before It’s Too Late
	Preparing for the Next Stage
	Conclusion

	5 Finding the Right Design Flow
	The Big Three App Types
	Native Apps
	Web Apps
	Hybrid Apps

	Common App Navigation Methods
	Single View
	Stacked Navigation Bar
	Tab Controller
	Scroll Views
	Search-Driven Navigation
	Modal Controller
	Gesture-Based Navigation

	Picking an Interaction Type
	Minimizing Interface Friction
	Preparing for Connectivity Failure
	Conclusion

	6 Designing for Visual Appeal
	How Appearance Changes Interactions
	Skeuomorphic Design
	Flat Design

	Creating an App Icon
	Finding a Unique Look
	Matching Art to Interaction Design
	Crossing Platforms
	App Branding Guides

	Building Art That Scales
	Adding the Final Touches
	Conclusion

	7 Working with Programmers
	Understanding Your Programmer
	Learning Programming Languages
	From Sketch to Programmable Design

	Describing Your Design
	Communicating During Development
	Clear Communication
	Tracking Issues
	Learning More

	Comprehending the Source Code
	A Designer’s Introduction to Programming
	Writing Source Code
	Knowing What to Change

	Conclusion

	8 Making Apps Usable by All
	Knowing Your Audience
	How Sandboxing Changed Mobile
	Interactions for the Mass Market
	Trait 1: Not a Computer Geek
	Trait 2: Only Uses a Handful of Apps
	Trait 3: Uses Apps in Short Bursts
	Trait 4: Follows the 80/20 Rule
	Trait 5: Likes What Everyone Else Likes

	Building Multilingual Interaction Designs
	Designing for Users with Disabilities
	Conclusion

	9 Designing for Simplicity
	The Sophistication of Simplicity
	Striving for Simple Interaction Design
	The Difficulties of Simplicity

	Simple Design Goals
	Clarity
	Continuity and Flow
	Retention and Growth

	Interfaces That Do It Well
	iOS’s Slide-to-Unlock
	Android’s Action Bar

	Creating Simple Interactions
	Learning to Say No
	Making Tasks Obvious
	Offering Subtle Hints
	Putting Elements in the Right Location
	Addition by Subtraction

	Simplicity through Familiarity
	Using Well-Known Visuals
	Following Industry Leaders
	Going Against the Grain

	Testing Simplicity
	Speed of the App
	How the App Is Being Used
	Social Reach
	Dogfooding

	Conclusion

	10 Gaining Valuable Feedback
	Showing Off Your Work
	Protecting Your Secrets
	Choosing the Right Testers
	When to Share Your Work with Testers

	Devising a Beta-Test Strategy
	Tracking an App’s Issues
	Prepping Every Build
	Handing the Beta Off

	Analyzing Valuable Test Data
	Knowing Where Testers Spent Their Time
	Finding Software Bugs and Crashes
	Managing Issue Resolve

	From Beta to Positive Changes
	Determining When Enough Is Enough
	Releasing the App

	Conclusion

	11 Refreshing a Design
	Improving as a Designer
	Maintaining a Work Journal
	Evaluating Your Own Work

	Judging Who Is Worth Listening To
	Review Web Sites
	App Store Reviews
	Personal Messages
	Avoiding Negativity

	Turning Requests into Changes
	Preparing Users for Design Changes
	The Resubmission Process
	Conclusion

	A: Standout Apps
	1Password
	Amazon Mobile
	CNN News
	Coach’s Eye
	Evernote
	Facebook
	Flipboard
	Google Chrome
	Google Maps
	Instagram
	Instapaper
	MLB.com At Bat
	Twitter
	TuneIn Radio
	Wolfram|Alpha

	B: Apps for Designers
	Adobe Photoshop
	Balsamiq
	Bugshot
	Dribbble
	Icon Slate
	MindNode Pro
	Pngyu
	Skitch
	Spark Inspector
	xScope

	C: Artwork Requirements for Android and iOS
	Android
	Icon Sizes
	General Art File Format
	General Art File Management
	Naming Conventions
	Other Tips

	iOS
	Icon Sizes
	General Art File Format
	General Art File Management
	Naming Conventions
	Other Tips


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




