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Preface

Requirements
Throughout this book, we will explore Cascading and related open source projects in
the context of brief programming examples. Familiarity with Java programming is re‐
quired. We’ll show additional code in Clojure, Scala, SQL, and R. The sample apps are
all available in source code repositories on GitHub. These sample apps are intended to
run on a laptop (Linux, Unix, and Mac OS X, but not Windows) using Apache Hadoop
in standalone mode. Each example is built so that it will run efficiently with a large data
set on a large cluster, but setting new world records on Hadoop isn’t our agenda. Our
intent here is to introduce a new way of thinking about how Enterprise apps get designed.
We will show how to get started with Cascading and discuss best practices for Enterprise
data workflows.

Enterprise Data Workflows
Cascading provides an open source API for writing Enterprise-scale apps on top of
Apache Hadoop and other Big Data frameworks. In production use now for five years
(as of 2013Q1), Cascading apps run at hundreds of different companies and in several
verticals, which include finance, retail, health care, and transportation. Case studies
have been published about large deployments at Williams-Sonoma, Twitter, Etsy,
Airbnb, Square, The Climate Corporation, Nokia, Factual, uSwitch, Trulia, Yieldbot,
and the Harvard School of Public Health. Typical use cases for Cascading include large
extract/transform/load (ETL) jobs, reporting, web crawlers, anti-fraud classifiers, social
recommender systems, retail pricing, climate analysis, geolocation, genomics, plus a
variety of other kinds of machine learning and optimization problems.

Keep in mind that Apache Hadoop rarely if ever gets used in isolation. Generally speak‐
ing, apps that run on Hadoop must consume data from a variety of sources, and in turn
they produce data that must be used in other frameworks. For example, a hypothetical
social recommender shown in Figure P-1 combines input data from customer profiles
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in a distributed database plus log files from a cluster of web servers, then moves its
recommendations out to Memcached to be served through an API. Cascading encom‐
passes the schema and dependencies for each of those components in a workflow—data
sources for input, business logic in the application, the flows that define parallelism,
rules for handling exceptions, data sinks for end uses, etc. The problem at hand is much
more complex than simply a sequence of Hadoop job steps.

Figure P-1. Example social recommender

Moreover, while Cascading has been closely associated with Hadoop, it is not tightly
coupled to it. Flow planners exist for other topologies beyond Hadoop, such as in-
memory data grids for real-time workloads. That way a given app could compute some
parts of a workflow in batch and some in real time, while representing a consistent “unit
of work” for scheduling, accounting, monitoring, etc. The system integration of many
different frameworks means that Cascading apps define comprehensive workflows.

Circa early 2013, many Enterprise organizations are building out their Hadoop practi‐
ces. There are several reasons, but for large firms the compelling reasons are mostly
economic. Let’s consider a typical scenario for Enterprise data workflows prior to
Hadoop, shown in Figure P-2.
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An analyst typically would make a SQL query in a data warehouse such as Oracle or
Teradata to pull a data set. That data set might be used directly for a pivot tables in Excel
for ad hoc queries, or as a data cube going into a business intelligence (BI) server such
as Microstrategy for reporting. In turn, a stakeholder such as a product owner would
consume that analysis via dashboards, spreadsheets, or presentations. Alternatively, an
analyst might use the data in an analytics platform such as SAS for predictive modeling,
which gets handed off to a developer for building an application. Ops runs the apps,
manages the data warehouse (among other things), and oversees ETL jobs that load
data from other sources. Note that in this diagram there are multiple components—data
warehouse, BI server, analytics platform, ETL—which have relatively expensive licens‐
ing and require relatively expensive hardware. Generally these apps “scale up” by pur‐
chasing larger and more expensive licenses and hardware.

Figure P-2. Enterprise data workflows, pre-Hadoop

Circa late 1997 there was an inflection point, after which a handful of pioneering Internet
companies such as Amazon and eBay began using “machine data”—that is to say, data
gleaned from distributed logs that had mostly been ignored before—to build large-scale
data apps based on clusters of “commodity” hardware. Prices for disk-based storage and
commodity servers dropped considerably, while many uses for large clusters began to
arise. Apache Hadoop derives from the MapReduce project at Google, which was part
of this inflection point. More than a decade later, we see widespread adoption of Hadoop
in Enterprise use cases. On one hand, generally these use cases “scale out” by running
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workloads in parallel on clusters of commodity hardware, leveraging mostly open
source software. That mitigates the rising cost of licenses and proprietary hardware as
data rates grow enormously. On the other hand, this practice imposes an interesting
change in business process: notice how in Figure P-3 the developers with Hadoop ex‐
pertise become a new kind of bottleneck for analysts and operations.

Enterprise adoption of Apache Hadoop, driven by huge savings and opportunities for
new kinds of large-scale data apps, has increased the need for experienced Hadoop
programmers disproportionately. There’s been a big push to train current engineers and
analysts and to recruit skilled talent. However, the skills required to write large Hadoop
apps directly in Java are difficult to learn for most developers and far outside the norm
of expectations for analysts. Consequently the approach of attempting to retrain current
staff does not scale very well. Meanwhile, companies are finding that the process of
hiring expert Hadoop programmers is somewhere in the range of difficult to impossible.
That creates a dilemma for staffing, as Enterprise rushes to embrace Big Data and Apache
Hadoop: SQL analysts are available and relatively less expensive than Hadoop experts.

Figure P-3. Enterprise data workflows, with Hadoop

An alternative approach is to use an abstraction layer on top of Hadoop—one that fits
well with existing Java practices. Several leading IT publications have described Cas‐
cading in those terms, for example:

Management can really go out and build a team around folks that are already very ex‐
perienced with Java. Switching over to this is really a very short exercise.

— Thor Olavsrud
 CIO magazine (2012)
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Cascading recently added support for ANSI SQL through a library called Lingual. An‐
other library called Pattern supports the Predictive Model Markup Language
(PMML), which is used by most major analytics and BI platforms to export data mining
models. Through these extensions, Cascading provides greater access to Hadoop re‐
sources for the more traditional analysts as well as Java developers. Meanwhile, other
projects atop Cascading—such as Scalding (based on Scala) and Cascalog (based on
Clojure)—are extending highly sophisticated software engineering practices to Big Da‐
ta. For example, Cascalog provides features for test-driven development (TDD) of En‐
terprise data workflows.

Complexity, More So Than Bigness
It’s important to note that a tension exists between complexity and innovation, which
is ultimately driven by scale. Closely related to that dynamic, a spectrum emerges about
technologies that manage data, ranging from “conservatism” to “liberalism.”

Consider that technology start-ups rarely follow a straight path from initial concept to
success. Instead they tend to pivot through different approaches and priorities before
finding market traction. The book Lean Startup by Eric Ries (Crown Business) articu‐
lates the process in detail. Flexibility is key to avoiding disaster; one of the biggest lia‐
bilities a start-up faces is that it cannot change rapidly enough to pivot toward potential
success—or that it will run out of money before doing so. Many start-ups choose to use
Ruby on Rails, Node.js, Python, or PHP because of the flexibility those scripting lan‐
guages allow.

On one hand, technology start-ups tend to crave complexity; they want and need the
problems associated with having many millions of customers. Providing services so
mainstream and vital that regulatory concerns come into play is typically a nice problem
to have. Most start-ups will never reach that stage of business or that level of complexity
in their apps; however, many will try to innovate their way toward it. A start-up typically
wants no impediments—that is where the “liberalism” aspects come in. In many ways,
Facebook exemplifies this approach; the company emerged through intense customer
experimentation, and it retains that aspect of a start-up even after enormous growth.
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A Political Spectrum for Programming
Consider the arguments this article presents about software “liberalism” versus “con‐
servatism”:

Just as in real-world politics, software conservatism and liberalism are radically different
world views. Make no mistake: they are at odds. They have opposing value systems,
priorities, core beliefs and motivations. These value systems clash at design time, at
implementation time, at diagnostic time, at recovery time. They get along like green
eggs and ham.

— Steve Yegge
 Notes from the Mystery Machine Bus
(2012)

This spectrum is encountered in the use of Big Data frameworks, too. On the “liberalism”
end of the spectrum, there are mostly start-ups—plus a few notable large firms, such as
Facebook. On the “conservatism” end of the spectrum there is mostly Enterprise—plus
a few notable start-ups, such as The Climate Corporation.

On the other hand, you probably don’t want your bank to run customer experiments
on your checking account, not anytime soon. Enterprise differs from start-ups because
of the complexities of large, existing business units. Keeping a business running smooth‐
ly is a complex problem, especially in the context of aggressive competition and rapidly
changing markets. Generally there are large liabilities for mishandling data: regulatory
and compliance issues, bad publicity, loss of revenue streams, potential litigation, stock
market reactions, etc. Enterprise firms typically want no surprises, and predictability is
key to avoiding disaster. That is where the “conservatism” aspects come in.

Enterprise organizations must live with complexity 24/7, but they crave innovation.
Your bank, your airline, your hospital, the power plant on the other side of town—those
have risk profiles based on “conservatism.” Computing environments in Enterprise IT
typically use Java virtual machine (JVM) languages such as Java, Scala, Clojure, etc. In
some cases scripting languages are banned entirely. Recognize that this argument is not
about political views; rather, it’s about how to approach complexity. The risk profile for
a business vertical tends to have a lot of influence on its best practices.

Trade-offs among programming languages and abstractions used in Big Data exist along
these fault lines of flexibility versus predictability. In the “liberalism” camp, Apache
Hive and Pig have become popular abstractions on top of Apache Hadoop. Early adopt‐
ers of MapReduce programming tended to focus on ad hoc queries and proof-of-
concept apps. They placed great emphasis on programming flexibility. Needing to ex‐
plore a large unstructured data set through ad hoc queries was a much more common
priority than, say, defining an Enterprise data workflow for a mission-critical app. In
environments where scripting languages (Ruby, Python, PHP, Perl, etc.) run in pro‐

xii | Preface

http://bit.ly/12GSJ5R
http://en.wikipedia.org/wiki/Java_virtual_machine


duction, scripting tools such as Hive and Pig have been popular Hadoop abstractions.
They provide lots of flexibility and work well for performing ad hoc queries at scale.

Relatively speaking, circa 2013, it is not difficult to load a few terabytes of unstructured
data into an Apache Hadoop cluster and then run SQL-like queries in Hive. Difficulties
emerge when you must make frequent updates to the data, or schedule mission-critical
apps, or run many apps simultaneously. Also, as workflows integrate Hive apps with
other frameworks outside of Hadoop, those apps gain additional complexity: parts of
the business logic are declared in SQL, while other parts are represented in another
programming language and paradigm. Developing and debugging complex workflows
becomes expensive for Enterprise organizations, because each issue may require hours
or even days before its context can be reproduced within a test environment.

A fundamental issue is that the difficulty of operating at scale is not so much a matter
of bigness in data; rather, it’s a matter of managing complexity within the data. For com‐
panies that are just starting to embrace Big Data, the software development lifecycle
(SDLC) itself becomes the hard problem to solve. That difficulty is compounded by the
fact that hiring and training programmers to write MapReduce code directly is already
a bitter pill for most companies.

Table P-1 shows a pattern of migration, from the typical “legacy” toolsets used for large-
scale batch workflows—such as J2EE and SQL—into the adoption of Apache Hadoop
and related frameworks for Big Data.

Table P-1. Migration of batch toolsets

Workflow Legacy Manage complexity Early adopter  

Pipelines J2EE Cascading Pig

Queries SQL Lingual (ANSI SQL) Hive

Predictive models SAS Pattern (PMML) Mahout

As more Enterprise organizations move to use Apache Hadoop for their apps, typical
Hadoop workloads shift from early adopter needs toward mission-critical operations.
Typical risk profiles are shifting toward “conservatism” in programming environments.
Cascading provides a popular solution for defining and managing Enterprise data
workflows. It provides predictability and accountability for the physical plan of a work‐
flow and mitigates difficulties in handling exceptions, troubleshooting bugs, optimizing
code, testing at scale, etc.

Also keep in mind the issue of how the needs for a start-up business evolve over time.
For the firms working on the “liberalism” end of this spectrum, as they grow there is
often a need to migrate into toolsets that are more toward the “conservatism” end. A
large code base that has been originally written based on using Pig or Hive can be
considerably difficult to migrate. Alternatively, writing that same functionality in a
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framework such as Cascalog would provide flexibility for the early phase of the start-
up, while mitigating complexity as the business grows.

Origins of the Cascading API
In the mid-2000s, Chris Wensel was a system architect at an Enterprise firm known for
its data products, working on a custom search engine for case law. He had been working
with open source code from the Nutch project, which gave him early hands-on expe‐
rience with popular spin-offs from Nutch: Lucene and Hadoop. On one hand, Wensel
recognized that Hadoop had great potential for indexing large sets of documents, which
was core business at his company. On the other hand, Wensel could foresee that coding
in Hadoop’s MapReduce API directly would be difficult for many programmers to learn
and would not likely scale for widespread adoption.

Moreover, the requirements for Enterprise firms to adopt Hadoop—or for any pro‐
gramming abstraction atop Hadoop—would be on the “conservatism” end of the spec‐
trum. For example, indexing case law involves large, complex ETL workflows, with
substantial liability if incorrect data gets propagated through the workflow and down‐
stream to users. Those apps must be solid, data provenance must be auditable, workflow
responses to failure modes must be deterministic, etc. In this case, Ops would not allow
solutions based on scripting languages.

Late in 2007, Wensel began to write Cascading as an open source application framework
for Java developers to develop robust apps on Hadoop, quickly and easily. From the
beginning, the project was intended to provide a set of abstractions in terms of database
primitives and the analogy of “plumbing.” Cascading addresses complexity while em‐
bodying the “conservatism” of Enterprise IT best practices. The abstraction is effective
on several levels: capturing business logic, implementing complex algorithms, specify‐
ing system dependencies, projecting capacity needs, etc. In addition to the Java API,
support for several other languages has been built atop Cascading, as shown in
Figure P-4.

Formally speaking, Cascading represents a pattern language for the business process
management of Enterprise data workflows. Pattern languages provide structured meth‐
ods for solving large, complex design problems—where the syntax of the language pro‐
motes use of best practices. For example, the “plumbing” metaphor of pipes and oper‐
ators in Cascading helps indicate which algorithms should be used at particular points,
which architectural trade-offs are appropriate, where frameworks need to be integrated,
etc.

One benefit of this approach is that many potential problems can get caught at compile
time or at the flow planner stage. Cascading follows the principle of “Plan far ahead.”
Due to the functional constraints imposed by Cascading, flow planners generally detect
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errors long before an app begins to consume expensive resources on a large cluster. Or
in another sense, long before an app begins to propagate the wrong results downstream.

Figure P-4. Cascading technology stack

Also in late 2007, Yahoo! Research moved the Pig project to the Apache Incubator. Pig
and Cascading are interesting to contrast, because newcomers to Hadoop technologies
often compare the two. Pig represents a data manipulation language (DML), which
provides a query algebra atop Hadoop. It is not an API for a JVM language, nor does it
specify a pattern language. Another important distinction is that Pig attempts to per‐
form optimizations on a logical plan, whereas Cascading uses a physical plan only. The
former is great for early adopter use cases, ad hoc queries, and less complex applications.
The latter is great for Enterprise data workflows, where IT places a big premium on “no
surprises.”

In the five years since 2007, there have been two major releases of Cascading and hun‐
dreds of Enterprise deployments. Programming with the Cascading API can be done
in a variety of JVM-based languages: Java, Scala, Clojure, Python (Jython), and Ruby
(JRuby). Of these, Scala and Clojure have become the most popular for large
deployments.

Several other open source projects, such as DSLs, taps, libraries, etc., have been written
based on Cascading sponsored by Twitter, Etsy, eBay, Climate, Square, etc.—such as
Scalding and Cascalog—which help integrate with a variety of different frameworks.

Preface | xv

http://en.wikipedia.org/wiki/Data_manipulation_language


Scalding @Twitter
It’s no wonder that Scala and Clojure have become the most popular languages used for
commercial Cascading deployments. These languages are relatively flexible and dy‐
namic for developers to use. Both include REPLs for interactive development, and both
leverage functional programming. Yet they produce apps that tend toward the “con‐
servatism” end of the spectrum, according to Yegge’s argument.

Scalding provides a pipe abstraction that is easy to understand. Scalding and Scala in
general have excellent features for developing large-scale data services. Cascalog apps
are built from logical predicates—functions that represent queries, which in turn act
much like unit tests. Software engineering practices for TDD, fault-tolerant workflows,
etc., become simple to use at very large scale.

As a case in point, the revenue quality team at Twitter is quite different from Eric Ries’s
Lean Startup notion. The “lean” approach of pivoting toward initial customer adoption
is great for start-ups, and potentially for larger organizations as well. However, initial
customer adoption is not exactly an existential crisis for a large, popular social network.
Instead they work with data at immense scale and complexity, with a mission to monetize
social interactions among a very large, highly active community. Outages of the mission-
critical apps that power Twitter’s advertising servers would pose substantial risks to the
business.

This team has standardized on Scalding for their apps. They’ve also written extensions,
such as the Matrix API for very large-scale work in linear algebra and machine learning,
so that complex apps can be expressed in a minimal amount of Scala code. All the while,
those apps leverage the tooling that comes along with JVM use in large clusters, and
conforms to Enterprise-scale requirements from Ops.

Using Code Examples
Most of the code samples in this book draw from the GitHub repository for Cascading:

• https://github.com/Cascading

We also show code based on these third-party GitHub repositories:

• https://github.com/nathanmarz/cascalog

• https://github.com/twitter/scalding
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CHAPTER 1

Getting Started

Programming Environment Setup
The following code examples show how to write apps in Cascading. The apps are in‐
tended to run on a laptop using Apache Hadoop in standalone mode, on a laptop run‐
ning Linux or Unix (including Mac OS X). If you are using a Windows-based laptop,
then many of these examples will not work, and generally speaking Hadoop does not
behave well under Cygwin. However, you could run Linux, etc., in a virtual machine.
Also, these examples are not intended to show how to set up and run a Hadoop cluster.
There are other good resources about that—see Hadoop: The Definitive Guide by Tom
White (O’Reilly).

First, you will need to have a few platforms and tools installed:

Java
• Version 1.6.x was used to create these examples.

• Get the JDK, not the JRE.

• Install according to vendor instructions.

Apache Hadoop
• Version 1.0.x is needed for Cascading 2.x used in these examples.

• Be sure to install for “Standalone Operation.”

Gradle
• Version 1.3 or later is required for some examples in this book.

• Install according to vendor instructions.
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Git
• There are other ways to get code, but these examples show use of Git.

• Install according to vendor instructions.

Our use of Gradle and Git implies that these commands will be downloading JARs,
checking code repos, etc., so you will need an Internet connection for most of the ex‐
amples in this book.

Next, set up your command-line environment. You will need to have the following
environment variables set properly, according to the installation instructions for each
project and depending on your operating system:

• JAVA_HOME

• HADOOP_HOME

• GRADLE_HOME

Assuming that the installers for both Java and Git have placed binaries in the appropriate

directories, now extend your PATH definition for the other tools that depend on Java:

$ export PATH=$PATH:$HADOOP_HOME/bin:$GRADLE_HOME/bin

OK, now for some tests. Try the following command lines to verify that your installations
worked:

$ java -version

$ hadoop -version

$ gradle --version

$ git --version

Each command should print its version information. If there are problems, most likely
you’ll get errors at this stage. Don’t worry if you see a warning like the following—that
is a known behavior in Apache Hadoop:

Warning: $HADOOP_HOME is deprecated.

It’s a great idea to create an account on GitHub, too. An account is not required to run
the sample apps in this book. However, it will help you follow project updates for the
example code, participate within the developer community, ask questions, etc.

Also note that you do not need to install Cascading. Certainly you can, but the Gradle
build scripts used in these examples will pull the appropriate version of Cascading from
the Conjars Maven repo automatically. Conjars has lots of interesting JARs for related
projects—take a peek sometime.

OK, now you are ready to download source code. Connect to a directory on your com‐
puter where you have a few gigabytes of available disk space, and then clone the whole
source code repo for this multipart series:
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$ git clone git://github.com/Cascading/Impatient.git

Once that completes, connect into the part1 subdirectory. You’re ready to begin pro‐
gramming in Cascading.

Example 1: Simplest Possible App in Cascading
The first item on our agenda is how to write a simple Cascading app. The goal is clear
and concise: create the simplest possible app in Cascading while following best practices.
This app will copy a file, potentially a very large file, in parallel—in other words, it
performs a distributed copy. No bangs, no whistles, just good solid code.

First, we create a source tap to specify the input data. That data happens to be formatted
as tab-separated values (TSV) with a header row, which the TextDelimited data
scheme handles.

String inPath = args[ 0 ];

Tap inTap = new Hfs( new TextDelimited( true, "\t" ), inPath );

Next we create a sink tap to specify the output data, which will also be in TSV format:

String outPath = args[ 1 ];

Tap outTap = new Hfs( new TextDelimited( true, "\t" ), outPath );

Then we create a pipe to connect the taps:

Pipe copyPipe = new Pipe( "copy" );

Here comes the fun part. Get your tool belt ready, because we need to do a little plumb‐
ing. Connect the taps and the pipe to create a flow:

FlowDef flowDef = FlowDef.flowDef()

 .addSource( copyPipe, inTap )

 .addTailSink( copyPipe, outTap );

The notion of a workflow lives at the heart of Cascading. Instead of thinking in terms
of map and reduce phases in a Hadoop job step, Cascading developers define workflows
and business processes as if they were doing plumbing work.

Enterprise data workflows tend to use lots of job steps. Those job steps are connected
and have dependencies, specified as a directed acyclic graph (DAG). Cascading uses
FlowDef objects to define how a flow—that is to say, a portion of the DAG—must be
connected. A pipe must connect to both a source and a sink. Done and done. That
defines the simplest flow possible.

Now that we have a flow defined, one last line of code invokes the planner on it. Planning
a flow is akin to the physical plan for a query in SQL. The planner verifies that the correct
fields are available for each operation, that the sequence of operations makes sense, and
that all of the pipes and taps are connected in some meaningful way. If the planner
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detects any problems, it will throw exceptions long before the app gets submitted to the
Hadoop cluster.

flowConnector.connect( flowDef ).complete();

Generally, these Cascading source lines go into a static main method in a Main class.
Look in the part1/src/main/java/impatient/ directory, in the Main.java file, where this
is already done. You should be good to go.

Each different kind of computing framework is called a topology, and each must have

its own planner class. This example code uses the HadoopFlowConnector class to invoke
the flow planner, which generates the Hadoop job steps needed to implement the flow.
Cascading performs that work on the client side, and then submits those jobs to the
Hadoop cluster and tracks their status.

If you want to read in more detail about the classes in the Cascading API that were used,
see the Cascading User Guide and JavaDoc.

Build and Run
Cascading uses Gradle to build the JAR for an app. The build script for “Example 1:
Simplest Possible App in Cascading” is in build.gradle:

apply plugin: 'java'

apply plugin: 'idea'

apply plugin: 'eclipse'

archivesBaseName = 'impatient'

repositories {

  mavenLocal()

  mavenCentral()

  mavenRepo name: 'conjars', url: 'http://conjars.org/repo/'

}

ext.cascadingVersion = '2.1.0'

dependencies {

  compile( group: 'cascading', name: 'cascading-core', version: cascadingVersion )

  compile( group: 'cascading', name: 'cascading-hadoop', version: cascadingVersion )

}

jar {

  description = "Assembles a Hadoop ready jar file"

  doFirst {

    into( 'lib' ) {

      from configurations.compile

    }

  }
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  manifest {

    attributes( "Main-Class": "impatient/Main" )

  }

}

Notice the reference to a Maven repo called http://conjars.org/repo/ in the build
script. That is how Gradle accesses the appropriate version of Cascading, pulling from
the open source project’s Conjars public Maven repo.

Books about Gradle and Maven
For more information about using Gradle and Maven, check out these books:

• Building and Testing with Gradle: Understanding Next-Generation Builds by Tim
Berglund and Matthew McCullough (O’Reilly)

• Maven: The Definitive Guide by Sonatype Company (O’Reilly)

To build this sample app from a command line, run Gradle:

$ gradle clean jar

Note that each Cascading app gets compiled into a single JAR file. That is to say, it
includes all of the app’s business logic, system integrations, unit tests, assertions, ex‐
ception handling, etc. The principle is “Same JAR, any scale.” After building a Cascading
app as a JAR, a developer typically runs it on a laptop for unit tests and other validation
using relatively small-scale data. Once those tests are confirmed, the JAR typically moves
into continuous integration (CI) on a staging cluster using moderate-scale data. After
passing CI, Enterprise IT environments generally place a tested JAR into a Maven
repository as a new version of the app that Ops will schedule for production use with
the full data sets.

What you should have at this point is a JAR file that is ready to run. Before running it,
be sure to clear the output directory. Apache Hadoop insists on this when you’re running
in standalone mode. To be clear, these examples are working with input and output
paths that are in the local filesystem, not HDFS.

Now run the app:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/rain

Notice how those command-line arguments (actual parameters) align with the args[]
array (formal parameters) in the source. In the first argument, the source tap loads from
the input file data/rain.txt, which contains text from search results about “rain shadow.”
Each line is supposed to represent a different document. The first two lines look like
this:
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doc_id  text

doc01   A rain shadow is a dry area on the lee back side of a mountainous area.

Input tuples get copied, TSV row by TSV row, to the sink tap. The second argument

specifies that the sink tap be written to the output/rain output, which is organized as
a partition file. You can verify that those lines got copied by viewing the text output, for
example:

$ head -2 output/rain/part-00000

doc_id text

doc01  A rain shadow is a dry area on the lee back side of a mountainous area.

For quick reference, the source code, input data, and a log for this example are listed in
a GitHub gist. If the log of your run looks terribly different, something is probably not
set up correctly. There are multiple ways to interact with the Cascading developer com‐

munity. You can post a note on the cascading-user email forum. Plenty of experienced
Cascading users are discussing taps and pipes and flows there, and they are eager to
help. Or you can visit one of the Cascading user group meetings.

Cascading Taxonomy
Conceptually, a “flow diagram” for this first example is shown in Figure 1-1. Our simplest
app possible copies lines of text from file “A” to file “B.” The “M” and “R” labels represent
the map and reduce phases, respectively. As the flow diagram shows, it uses one job step
in Apache Hadoop: only one map and no reduce needed. The implementation is a brief
Java program, 10 lines long.

Wait—10 lines of code to copy a file? That seems excessive; certainly this same work

could be performed in much quicker ways, such as using the cp command on Linux.
However, keep in mind that Cascading is about the “plumbing” required to make En‐
terprise apps robust. There is some overhead in the setup, but those lines of code won’t
change much as an app’s complexity grows. That overhead helps provide for the prin‐
ciple of “Same JAR, any scale.”

Let’s take a look at the components of a Cascading app. Figure 1-2 shows a taxonomy
that starts with apps at the top level. An app has a unique signature and is versioned,
and it includes one or more flows. Optionally, those flows may be organized into
cascades, which are collections of flows without dependencies on one another, so that
they may be run in parallel.

Each flow represents a physical plan, based on the planner for a specific topology such
as Apache Hadoop. The physical plan provides a deterministic strategy for a query.
Developers talk about a principle of “Fail the same way twice.” In other words, when we
need to debug an issue, it’s quite important that Cascading flows behave deterministi‐
cally. Otherwise, the process of troubleshooting edge cases on a large cluster and with
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a large data set can become enormous. Again, that addresses a more “conservatism”
aspect of Cascading.

Figure 1-1. Flow diagram for “Example 1: Simplest Possible App in Cascading”

Figure 1-2. Cascading taxonomy

We’ve already introduced the use of pipes. Each assembly of pipes has a head and a tail.
We bind taps to pipes to create a flow; so source taps get bound to the heads of pipes for
input data, and sink taps to the tails of pipes for output data. That is the functional graph.
Any unconnected pipes and taps will cause the planner to throw exceptions.
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The physical plan of a flow results in a dependency graph of one or more steps. Formally
speaking, that is a directed acyclic graph (DAG). At runtime, data flows through the
DAG as streams of key/value tuples.

The steps created by a Hadoop flow planner, for example, correspond to the job steps
that run on the Hadoop cluster. Within each step there may be multiple phases, e.g., the
map phase or reduce phase in Hadoop. Also, each step is composed of slices. These are
the most granular “unit of work” in a Cascading app, such that collections of slices can
be parallelized. In Hadoop these slices correspond to the tasks executing in task slots.

That’s it in a nutshell, how the proverbial neck bone gets connected to the collarbone
in Cascading.

Example 2: The Ubiquitous Word Count
The first example showed how to do a file copy in Cascading. Let’s take that code and
stretch it a bit further. Undoubtedly you’ve seen Word Count before. We’d feel remiss
if we did not provide an example.

Word Count serves as a “Hello World” for Hadoop apps. In other words, this simple
program provides a great test case for parallel processing:

• It requires a minimal amount of code.

• It demonstrates use of both symbolic and numeric values.

• It shows a dependency graph of tuples as an abstraction.

• It is not many steps away from useful search indexing.

When a distributed computing framework can run Word Count in parallel at scale, it
can handle much larger and more interesting algorithms. Along the way, we’ll show
how to use a few more Cascading operations, plus show how to generate a flow diagram
as a visualization.

Starting from the source code directory that you cloned in Git, connect into the part2
subdirectory. For quick reference, the source code and a log for this example are listed
in a GitHub gist. Input data remains the same as in the earlier code.

Note that the names of the taps have changed. Instead of inTap and outTap, we’re using

docTap and wcTap now. We’ll be adding more taps, so this will help us have more de‐
scriptive names. This makes it simpler to follow all the plumbing.

Previously we defined a simple pipe to connect the taps. This example shows a more
complex pipe assembly. We use a generator inside an Each to split the document text
into a token stream. The generator uses a regex to split the input text on word bound‐
aries:
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Fields token = new Fields( "token" );

Fields text = new Fields( "text" );

RegexSplitGenerator splitter

  = new RegexSplitGenerator( token, "[ \\[\\]\\(\\),.]" );

// returns only "token"

Pipe docPipe = new Each( "token", text, splitter, Fields.RESULTS );

Out of that pipe, we get a tuple stream of token values. One benefit of using a regex is
that it’s simple to change. We can handle more complex cases of splitting tokens without
having to rewrite the generator.

Next, we use a GroupBy to count the occurrences of each token:

Pipe wcPipe = new Pipe( "wc", docPipe );

wcPipe = new GroupBy( wcPipe, token );

wcPipe = new Every( wcPipe, Fields.ALL, new Count(), Fields.ALL );

Notice that we’ve used Each and Every to perform operations within the pipe assembly.

The difference between these two is that an Each operates on individual tuples so that

it takes Function operations. An Every operates on groups of tuples so that it takes

Aggregator or Buffer operations—in this case the GroupBy performed an aggregation.
The different ways of inserting operations serve to categorize the different built-in op‐
erations in Cascading. They also illustrate how the pattern language syntax guides the
development of workflows.

From that wcPipe we get a resulting tuple stream of token and count for the output.
Again, we connect the plumbing with a FlowDef:

FlowDef flowDef = FlowDef.flowDef()

 .setName( "wc" )

 .addSource( docPipe, docTap )

 .addTailSink( wcPipe, wcTap );

Finally, we generate a DOT file to depict the Cascading flow graphically. You can load
the DOT file into OmniGraffle or Visio. Those diagrams are really helpful for trouble‐
shooting workflows in Cascading:

Flow wcFlow = flowConnector.connect( flowDef );

wcFlow.writeDOT( "dot/wc.dot" );

wcFlow.complete();

This code is already in the part2/src/main/java/impatient/ directory, in the Main.java
file. To build it:

$ gradle clean jar

Then to run it:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/wc
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This second example uses the same input from the first example, but we expect different
output. The sink tap writes to the partition file output/wc, and the first 10 lines (including
a header) should look like this:

$ head output/wc/part-00000

token           count

                9

A               3

Australia       1

Broken          1

California's    1

DVD             1

Death           1

Land            1

Secrets         1

Again, a GitHub gist shows building and running the sample app. If your run looks
terribly different, something is probably not set up correctly. Ask the Cascading devel‐
oper community how to troubleshoot for your environment.

So that’s our Word Count example. Eighteen lines of yummy goodness.

Flow Diagrams
Conceptually, we can examine a workflow as a stylized flow diagram. This helps visualize
the “plumbing” metaphor by using a design that removes low-level details. Figure 1-3
shows one of these for “Example 2: The Ubiquitous Word Count”. Formally speaking,
this diagram represents a DAG.

Figure 1-3. Conceptual flow diagram for “Example 2: The Ubiquitous Word Count”

Meanwhile the Cascading code in “Example 2: The Ubiquitous Word Count” writes a
flow diagram called dot/wc.dot to depict the flow graphically. Figure 1-4 shows a version
that has been annotated to indicate where the map and reduce phases run. As mentioned
before, those diagrams come in handy when troubleshooting Cascading workflows. If
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you ask other Cascading developers for help debugging an issue, don’t be surprised
when their first request is to see your app’s flow diagram.

Figure 1-4. Annotated flow diagram for “Example 2: The Ubiquitous Word Count”

From a high-level perspective, “Example 2: The Ubiquitous Word Count” differs from
“Example 1: Simplest Possible App in Cascading” in two ways:

• Source and sink taps are more specific.

• Three operators have been added to the pipe assembly.

Although several lines of Java source code changed, in pattern language terms we can
express the difference between the apps simply as those two points. That’s a powerful
benefit of using the “plumbing” metaphor.

First let’s consider how the source and sink taps were redefined to be more specific.
Instead of simply describing a generic “Source” or “File A,” now we’ve defined the source
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tap as a collection of text documents. Instead of “Sink” or “File B,” now we’ve defined
the sink tap to produce word count tuples—the desired end result. Those changes in
the taps began to reference fields in the tuple stream. The source tap in both examples

was based on TextDelimited with parameters so that it reads a TSV file and uses the
header line to assign field names. “Example 1: Simplest Possible App in Cascading”
ignored the fields by simply copying data tuple by tuple. “Example 2: The Ubiquitous
Word Count” begins to reference fields by name, which introduces the notion of scheme
—imposing some expectation of structure on otherwise unstructured data.

The change in taps also added semantics to the workflow, specifying requirements for
added operations needed to reach the desired results. Let’s consider the new Cascading
operations that were added to the pipe assembly in “Example 1: Simplest Possible App

in Cascading”: Tokenize, GroupBy, and Count. The first one, Tokenize, transforms the
input data tuples, splitting lines of text into a stream of tokens. That transform represents

the “T” in ETL. The second operation, GroupBy, performs an aggregation. In terms of

Hadoop, this causes a reduce with token as a key. The third operation, Count, gets applied

to each aggregation—counting the values for each token key, i.e., the number of in‐
stances of each token in the stream.

The deltas between “Example 1: Simplest Possible App in Cascading” and “Example 2:
The Ubiquitous Word Count” illustrate important aspects of Cascading. Consider how
data tuples flow through a pipe assembly, getting routed through familiar data operators

such as GroupBy, Count, etc. Each flow must be connected to a source of data as its input
and a sink as its output. The sink tap for one flow may in turn become a source tap for
another flow. Each flow defines a DAG that Cascading uses to infer schema from un‐
structured data.

Enterprise data workflows are complex applications, and managing that complexity is
the purpose for Cascading. Enterprise apps based on Apache Hadoop typically involve
more than just one Hadoop job step. Some apps are known to include hundreds of job
steps, with complex dependencies between them. Cascading leverages this concept of
a DAG to represent the business process of an app. The DAG, in turn, declares the
requirements for the job steps that are needed to complete the app’s data flow. Conse‐
quently, a flow planner has sufficient information about the workflow so that it can
leverage the DAG in several ways:
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• Ensure that necessary fields are available to operations that require them—based
on tuple scheme.

• Apply transformations to help optimize the app—e.g., moving code from reduce
into map.

• Track data provenance across different sources and sinks—understand the pro‐
ducer/consumer relationship of data products.

• Annotate the DAG with metrics from each step, across the history of an app’s in‐
stances—capacity planning, notifications for data drops, etc.

• Identify or predict bottlenecks, e.g., key/value skew as the shape of the input data
changes—troubleshoot apps.

Those capabilities address important concerns in Enterprise IT and stand as key points
by which Cascading differentiates itself from other Hadoop abstraction layers.

Another subtle point concerns the use of taps. On one hand, data taps are available for
integrating Cascading with several other popular data frameworks, including
Memcached, HBase, Cassandra, etc. Several popular data serialization systems are sup‐
ported, such as Apache Thrift, Avro, Kyro, etc. Looking at the conceptual flow diagram,
our workflow could be using any of a variety of different data frameworks and seriali‐
zation systems. That could apply equally well to SQL query result sets via JDBC or to
data coming from Cassandra via Thrift. It wouldn’t be difficult to modify the code in
“Example 2: The Ubiquitous Word Count” to set those details based on configuration
parameters. To wit, the taps generalize many physical aspects of the data so that we can
leverage patterns.

On the other hand, taps also help manage complexity at scale. Our code in “Example 2:
The Ubiquitous Word Count” could be run on a laptop in Hadoop’s “standalone” mode
to process a small file such as rain.txt, which is a mere 510 bytes. The same code could
be run on a 1,000-node Hadoop cluster to process several petabytes of the Internet
Archives’ Wayback Machine.

Taps are agnostic about scale, because the underlying topology (Hadoop) uses paral‐
lelism to handle very large data. Generally speaking, Cascading apps handle scale-out
into larger and larger data sets by changing the parameters used to define taps. Taps
themselves are formal parameters that specify placeholders for input and output data.
When a Cascading app runs, its actual parameters specify the actual data to be used—
whether those are HDFS partition files, HBase data objects, Memcached key/values, etc.
We call these tap identifiers. They are effectively uniform resource identifiers (URIs) for
connecting through protocols such as HDFS, JDBC, etc. A dependency graph of tap
identifiers and the history of app instances that produced or consumed them is analo‐
gous to a catalog in relational databases.
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Predictability at Scale
The code in “Example 1: Simplest Possible App in Cascading” showed how to move data
from point A to point B. That was simply a distributed file copy—loading data via
distributed tasks, or the “L” in ETL.

A copy example may seem trivial, and it may seem like Cascading is overkill for that.
However, moving important data from point A to point B reliably can be a crucial job
to perform. This helps illustrate one of the key reasons to use Cascading.

Consider an analogy of building a small Ferris wheel. With a little bit of imagination
and some background in welding, a person could cobble one together using old bicycle
parts. In fact, those DIY Ferris wheels show up at events such as Maker Faire. Starting
out, a person might construct a little Ferris wheel, just for demo. It might not hold
anything larger than hamsters, but it’s not a hard problem. With a bit more skill, a person
could probably build a somewhat larger instance, one that’s big enough for small chil‐
dren to ride.

Ask yourself this: how robust would a DIY Ferris wheel need to be before you let your
kids ride on it? That’s precisely part of the challenge at an event like Maker Faire. Makers
must be able to build a device such as a Ferris wheel out of spare bicycle parts that is
robust enough that strangers will let their kids ride. Let’s hope those welds were made
using best practices and good materials, to avoid catastrophes.

That’s a key reason why Cascading was created. When you need to move a few gigabytes
from point A to point B, it’s probably simple enough to write a Bash script, or just use
a single command-line copy. When your work requires some reshaping of the data, then
a few lines of Python will probably work fine. Run that Python code from your Bash
script and you’re done.

That’s a great approach, when it fits the use case requirements. However, suppose you’re
not moving just gigabytes. Suppose you’re moving terabytes, or petabytes. Bash scripts
won’t get you very far. Also think about this: suppose an app not only needs to move
data from point A to point B, but it must follow the required best practices of an En‐
terprise IT shop. Millions of dollars and potentially even some jobs ride on the fact that
the app performs correctly. Day in and day out. That’s not unlike trusting a Ferris wheel
made by strangers; the users want to make sure it wasn’t just built out of spare bicycle
parts by some amateur welder. Robustness is key.

Or, taking this analogy a few steps in another interesting direction, perhaps you’re not
only moving data and reshaping it a little, but you’re applying some interesting machine
learning algorithms, some natural language processing, gene sequencing…who knows?
Those imply lots of resource use, lots of potential expense in case of failures. Or lots of
customer exposure. You’ll want to use an application framework that is significantly
more robust than a bunch of scripts cobbled together.

14 | Chapter 1: Getting Started

http://makerfaire.com/


With Cascading, you can package your entire MapReduce application, including its
orchestration and testing, within a single JAR file. You define all of that within the
context of one programming language—whether that language may be Java, Scala, Clo‐
jure, Python, Ruby, etc. That way your tests are included within a single program, not
spread across several scripts written in different languages. Having a single JAR file
define an app helps for following the best practices required in Enterprise IT: unit tests,
stream assertions, revision control, continuous integration, Maven repos, role-based
configuration management, advanced schedulers, monitoring and notifications, data
provenance, etc. Those are key reasons why we make Cascading, and why people use it
for robust apps that run at scale.
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CHAPTER 2

Extending Pipe Assemblies

Example 3: Customized Operations
Cascading provides a wide range of built-in operations to perform on workflows. For
many apps, the Cascading API is more than sufficient. However, you may run into cases
where a slightly different transformation is needed. Each of the Cascading operations
can be extended by subclassing in Java. Let’s extend the Cascading app from “Example
2: The Ubiquitous Word Count” on page 8 to show how to customize an operation.

Modifying a conceptual flow diagram is a good way to add new requirements for a

Cascading app. Figure 2-1 shows how this iteration of Word Count can be modified to

clean up the token stream. A new class for this example will go right after the Token

ize operation so that it can scrub each tuple. In terms of Cascading patterns, this op‐

eration needs to be used in an Each operator, so we must implement it as a Function.

Figure 2-1. Conceptual flow diagram for “Example 3: Customized Operations”
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Starting from the source code directory that you cloned in Git, connect into the part3

subdirectory. We’ll define a new class called ScrubFunction as our custom operation,
which subclasses from BaseOperation while implementing the Function interface:

public class ScrubFunction extends BaseOperation implements Function { ... }

Next, we need to define a constructor, which specifies how this function consumes from
the tuple stream:

public ScrubFunction( Fields fieldDeclaration )

  {

  super( 2, fieldDeclaration );

  }

The fieldDeclaration parameter declares a list of fields that will be consumed from
the tuple stream. Based on the intended use, we know that the tuple stream will have

two fields at that point, doc_id and token. We can constrain this class to allow exactly
two fields as the number of arguments. Great, now we know what the new operation
expects as arguments.

Next we define a scrubText method to clean up tokens. The following is the business
logic of the function:

public String scrubText( String text )

  {

  return text.trim().toLowerCase();

  }

This version is relatively simple. In production it would typically have many more cases
handled. Having the business logic defined as a separate method makes it simpler to
write unit tests against.

Next, we define an operate method. This is essentially a wrapper that takes an argument

tuple, applies our scrubText method to each token, and then produces a result tuple:

public void operate( FlowProcess flowProcess, FunctionCall functionCall )

  {

  TupleEntry argument = functionCall.getArguments();

  String doc_id = argument.getString( 0 );

  String token = scrubText( argument.getString( 1 ) );

  if( token.length() > 0 )

    {

    Tuple result = new Tuple();

    result.add( doc_id );

    result.add( token );

    functionCall.getOutputCollector().add( result );

    }

  }
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Let’s consider the context of a function within a pipe assembly, as shown in Figure 2-2.
At runtime, a pipe assembly takes an input stream of tuples and produces an output
stream of tuples.

Figure 2-2. Pipe assembly

Note that by inserting an operation, we must add another pipe. Pipes get connected
together in this way to produce pipe assemblies. Looking into this in more detail, as
Figure 2-2 shows, an operation takes an argument tuple—one tuple at a time—and
produces a result tuple. Each argument tuple from the input stream must fit the argu‐
ment fields defined in the operation class. Similarly, each result tuple going to the output
stream must fit the declared fields.

Now let’s place this new class into a ScrubFunction.java source file. Then we need to

change the docPipe pipe assembly to insert our custom operation immediately after the
tokenizer:

Fields scrubArguments = new Fields( "doc_id", "token" );

ScrubFunction scrubFunc = new ScrubFunction( scrubArguments );

docPipe = new Each( docPipe, scrubArguments, scrubFunc, Fields.RESULTS );

Notice how the doc_id and token fields are defined in the scrubArguments parameter.

That matches what we specified in the constructor. Also, note how the Each operator

uses Field.RESULTS as its field selector. In other words, this tells the pipe to discard
argument tuple values (from the input stream) and instead use only the result tuple
values (for the output stream).

Figure 2-3 shows how an Each operator inserts a Function into a pipe. In this case, the

new customized ScrubFunction is fitted between two pipes, both of which are named

docPipe. That’s another important point: pipes have names, and they inherit names

Example 3: Customized Operations | 19



from where they connect—until something changes, such as a join. The name stays the

same up until just before the GroupBy aggregation:

// determine the word counts

Pipe wcPipe = new Pipe( "wc", docPipe );

wcPipe = new Retain( wcPipe, token );

wcPipe = new GroupBy( wcPipe, token );

Figure 2-3. Each with a function

Then we create a new pipe named wc and add a Retain subassembly. This discards all

the fields in the tuple stream except for token, to help make the final output simpler.

We put that just before the GroupBy to reduce the amount of work required in the
aggregation.

Look in the part3/src/main/java/impatient/ directory, where the Main.java and Scrub‐
Function.java source files have already been modified. You should be good to go.

To build:

$ gradle clean jar

To run:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/wc

This uses the same input as the previous examples, but we expect slightly different output
due to the token scrubbing. In the output, the first 10 lines (including the header) should
look like this:

20 | Chapter 2: Extending Pipe Assemblies

www.allitebooks.com

http://bit.ly/14NXRbB
http://www.allitebooks.org


$ more output/wc/part-00000

token           count

a               8

air             1

an              1

and             2

area            4

as              2

australia       1

back            1

broken          1

A gist on GitHub shows building and running “Example 3: Customized Operations”. If
your run looks terribly different, something is probably not set up correctly. Ask the
developer community for advice.

Scrubbing Tokens
Previously in “Example 2: The Ubiquitous Word Count” we used a RegexSplitGenera‐
tor to tokenize the text. That built-in operation works quite well for many use cases.
“Example 3: Customized Operations” used a custom operation in Cascading to “scrub”
the token stream prior to counting the tokens. It’s important to understand the trade-
offs between these two approaches. When should you leverage the existing API, versus
extending it?

One thing you’ll find in working with almost any text analytics at scale is that there are
lots of edge cases. Cleaning up edge cases—character sets, inconsistent hyphens, dif‐
ferent kinds of quotes, exponents, etc.—is usually the bulk of engineering work. If you
try to incorporate every possible variation into a regex, you end up with code that is
both brittle and difficult to understand, especially when you hit another rare condition
six months later and must go back and reread your (long-forgotten) complex regex
notation.

Identifying edge cases for text analytics at scale is an iterative process, based on learnings
over time, based on experiences with the data. Some edge cases might be encountered
only after processing orders of magnitude more data than the initial test cases. Also,
each application tends to have its own nuances. That makes it difficult to use “off the
shelf ” libraries for text processing in large-scale production.

So in “Example 3: Customized Operations” we showed how to extend Cascading by

subclassing BaseOperation to write our own “scrubber.” One benefit is that we can
handle many edge cases, adding more as they become identified. Better yet, in terms of
separation of concerns, we can add new edge cases as unit tests for our custom class,
then code to them. More about unit tests later.
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For now, a key point is that customized operations in Cascading are not user-defined
functions (UDFs). Customized operations get defined in the same language as the rest
of the app, so the compiler is aware of all code being added. This extends the Cascading
API by subclassing, so that the API contract must still be honored. Several benefits apply
—which are the flip side of what a programmer encounters in Hive or Pig apps, where
integration occurs outside the language of the app.

Operations act on the data to transform the tuple stream, filter it, analyze it, etc. Think

about the roles that command-line utilities such as grep or awk perform in Linux shell
scripts—instead of having to rewrite custom programs.

Similarly, Cascading provides a rich library of standard operations to codify the business
logic of transforming Big Data. It’s relatively simple to develop your own custom oper‐
ations, as our text “scrubbing” in “Example 3: Customized Operations” shows. However,
if you find yourself starting to develop lots of custom operations every time you begin
to write a Cascading app, that’s an anti-pattern. In other words, it’s a good indication
that you should step back and reevaluate.

What is the risk in customizing the API components? That goes back to the notion of
pattern language. On one hand, the standard operations in Cascading have been de‐
veloped over a period of years. They tend to cover a large class of MapReduce applica‐
tions already. The standard operations encapsulate best practices and design patterns
for parallelism. On the other hand, if you aren’t careful while defining a custom oper‐
ation, you may inadvertently introduce a performance bottleneck. Something to think
about.

Example 4: Replicated Joins
Let’s build on our Word Count app to introduce the use of a join in Cascading. Joins at
scale in Hadoop are a complex issue. We’ll add a “stop words” list to our app, which
takes advantage of the join and demonstrates a best practice about joins and preserving

parallelism at scale. A conceptual flow diagram for this iteration of Word Count in Cas‐
cading is shown in Figure 2-4.
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Figure 2-4. Conceptual flow diagram for “Example 4: Replicated Joins”
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Starting from the source code directory that you cloned in Git, connect into the part4
subdirectory. First let’s add another source tap to read the stop words list as an input
data set:

String stopPath = args[ 2 ];

Fields stop = new Fields( "stop" );

Tap stopTap = new Hfs( new TextDelimited( stop, true, "\t" ), stopPath );

Next we’ll insert another pipe into the assembly to connect to the stop words source
tap. Note that a join combines data from two or more pipes based on common field
values. We call the pipes streaming into a join its branches. For the join in our example,

the existing docPipe provides one branch, while the new stopPipe provides the other.
Then we use a HashJoin to perform a left join:

// perform a left join to remove stop words, discarding the rows

// which joined with stop words, i.e., were non-null after left join

Pipe stopPipe = new Pipe( "stop" );

Pipe tokenPipe = new HashJoin( docPipe, token, stopPipe, stop, new LeftJoin() );

When the values of the token and stop fields match, the result tuple has a non-null

value for stop. Then a stop word has been identified in the token stream. So next we
discard all the non-null results from the left join, using a RegexFilter:

tokenPipe = new Each( tokenPipe, stop, new RegexFilter( "^$" ) );

Tuples that match the given pattern are kept, and tuples that do not match get discarded.
Therefore the stop words all get removed by using a left join with a filter. This new

tokenPipe can be fitted back into the wcPipe pipe assembly that we had in earlier ex‐
amples. The workflow continues on much the same from that point:

Pipe wcPipe = new Pipe( "wc", tokenPipe );

Last, we include the additional source tap to the FlowDef:

// connect the taps, pipes, etc., into a flow

FlowDef flowDef = FlowDef.flowDef()

 .setName( "wc" )

 .addSource( docPipe, docTap )

 .addSource( stopPipe, stopTap )

 .addTailSink( wcPipe, wcTap );

Modify the Main method for these changes. This code is already in the part4/src/main/
java/impatient/ directory, in the Main.java file. You should be good to go.

To build:

$ gradle clean jar

To run:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/wc data/en.stop
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Again, this uses the same input from “Example 1: Simplest Possible App in Cascad‐
ing”, but now we expect all stop words to be removed from the output stream. Common

words such as a, an, as, etc., have been filtered out.

You can verify the entire output text in the output/wc partition file, where the first 10
lines (including the header) should look like this:

$ head output/wc/part-00000

token           count

air             1

area            4

australia       1

broken          1

california's    1

cause           1

cloudcover      1

death           1

deserts         1

The flow diagram will be in the dot/ subdirectory after the app runs. For those keeping
score, the resulting physical plan in Apache Hadoop uses one map and one reduce.

Again, a GitHub gist shows building and running this example. If your run looks terribly
different, something is probably not set up correctly. Ask the developer community for
advice.

Stop Words and Replicated Joins
Let’s consider why we would want to use a stop words list. This approach originated in
work by Hans Peter Luhn at IBM Research, during the dawn of computing. The reasons
for it are twofold. On one hand, consider that the most common words in any given
natural language are generally not useful for text analytics. For example, in English,
words such as “and,” “of,” and “the” are probably not what you want to search and
probably not interesting for Word Count metrics. They represent high frequency and
low semantic value within the token distribution. They also represent the bulk of the
processing required. Natural languages tend to have on the order of 105 words, so the
potential size of any stop words list is nicely bounded. Filtering those high-frequency
words out of the token stream dramatically reduces the amount of processing required
later in the workflow.

On the other hand, you may also want to remove some words explicitly from the token
stream. This almost always comes up in practice, especially when working with public
discussions such as social network comments.
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Think about it: what are some of the most common words posted online in comments?
Words that are not the most common words in “polite” English? Do you really want
those words to bubble up in your text analytics? In automated systems that leverage
unsupervised learning, this can lead to highly embarrassing situations. Caveat machi‐
nator.

Next, let’s consider working with a Joiner in Cascading. We have two pipes: one for the
“scrubbed” token stream and another for the stop words list. We want to filter all in‐
stances of tokens from the stop words list out of the token stream. If we weren’t working
in MapReduce, a naive approach would be to load the stop words list into a hashtable,
then iterate through our token stream to lookup each token in the hashtable and delete
it if found. If we were coding in Hadoop directly, a less naive approach would be to put
the stop words list into the distributed cache and have a job step that loads it during
setup, then rinse/lather/repeat from the naive coding approach described earlier.

Instead we leverage the workflow orchestration in Cascading. One might write a custom
operation, as we did in the previous example—e.g., a custom Filter that performs look‐
ups on a list of stop words. That’s extra work, and not particularly efficient in parallel
anyway.

Cascading provides for joins on pipes, and conceptually a left outer join solves our
requirement to filter stop words. Think of joining the token stream with the stop words
list. When the result is non-null, the join has identified a stop word. Discard it.

Understand that there’s a big problem with using joins at scale in Hadoop. Outside of
the context of a relational database, arbitrary joins do not perform well. Suppose you
have N items in one tuple stream and M items in another and want to join them? In the
general case, for an arbitrary join, that requires N × M operations and also introduces
a data dependency, such that the join cannot be performed in parallel. If both N and M
are relatively large, say in the millions of tuples, then we’d end up processing 1012

operations on a single processor—which defeats the purpose in terms of leveraging
MapReduce.

Fortunately, if some of that data is sparse, then we can use specific variants of joins to
compute more efficiently in parallel. A join has a lefthand side (LHS) branch and one
or more righthand side (RHS) branches. Cascading includes a HashJoin when the data
for all but one branch is small enough to fit into memory. In other words, given some
insights about the “shape” of the data, when we have a large data set (nonsparse) we can

join with one or more small data sets (sparse) in memory. HashJoin implements a non‐
blocking “asymmetrical join” or “replicated join,” where the leftmost side will not block
(accumulate into memory) in order to complete the join, but the rightmost sides will.
So we put the sparser data on the righthand side to leverage the performance benefits

of the HashJoin.
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Keep in mind that stop words lists tend to be bounded at approximately 105 keywords.
That is relatively sparse when compared with an arbitrarily large token stream. At typical
“web scale,” text analytics use cases may be processing billions of tokens, i.e., several
orders of magnitude larger than our largest possible stop words list. Sounds like a great

use case for HashJoin.

Comparing with Apache Pig
When it comes to the subject of building workflows—specifically about other abstrac‐
tions on top of Hadoop—perhaps the most frequent question about Cascading is how
it compares with Apache Hive and Apache Pig. Let’s take a look at comparable imple‐
mentations of the “Example 4: Replicated Joins” app in both Pig and Hive.

First you’ll need to install Pig according to the documentation, in particular the “Getting

Started” chapter. Unpack the download and set the PIG_HOME and PIG_CLASSPATH en‐

vironment variables. Be sure to include Pig in your PATH environment variable as well.

Starting from the source code directory that you cloned in Git, connect into the part4
subdirectory. The file src/scripts/wc.pig shows source for an Apache Pig script that im‐
plements Word Count:

docPipe = LOAD '$docPath' USING PigStorage('\t', 'tagsource') AS (doc_id, text);

docPipe = FILTER docPipe BY doc_id != 'doc_id';

stopPipe = LOAD '$stopPath' USING PigStorage('\t', 'tagsource') AS (stop:chararray);

stopPipe = FILTER stopPipe BY stop != 'stop';

-- specify a regex operation to split the "document" text lines into a token stream

tokenPipe = FOREACH docPipe

  GENERATE doc_id, FLATTEN(TOKENIZE(LOWER(text), ' [](),.')) AS token;

tokenPipe = FILTER tokenPipe BY token MATCHES '\\w.*';

-- perform a left join to remove stop words, discarding the rows

-- which joined with stop words, i.e., were non-null after left join

tokenPipe = JOIN tokenPipe BY token LEFT, stopPipe BY stop;

tokenPipe = FILTER tokenPipe BY stopPipe::stop IS NULL;

-- determine the word counts

tokenGroups = GROUP tokenPipe BY token;

wcPipe = FOREACH tokenGroups

  GENERATE group AS token, COUNT(tokenPipe) AS count;

-- output

STORE wcPipe INTO '$wcPath' using PigStorage('\t', 'tagsource');

EXPLAIN -out dot/wc_pig.dot -dot wcPipe;

To run the Pig app:

$ rm -rf output

$ mkdir -p dot
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$ pig -version

Warning: $HADOOP_HOME is deprecated.

Apache Pig version 0.10.0 (r1328203)

compiled Apr 19 2012, 22:54:12

$ pig -p docPath=./data/rain.txt -p wcPath=./output/wc -p \

   stopPath=./data/en.stop ./src/scripts/wc.pig

Output from this Pig script should be the same as the output from the Cascading sample
app. To be fair, Pig has support for a replicated join, which is not shown here. We tried
to get it working, but there were bugs.

Notice that the Pig source is reasonably similar to Cascading, and even a bit more com‐
pact. There are sources and sinks defined, tuple schemes, pipe assemblies, joins, func‐

tions, regex filters, aggregations, etc. Also, the EXPLAIN at the last line generates a flow
diagram, which will be in the dot/wc_pig.dot file after the script runs.

Apache Pig is a data manipulation language (DML), which provides a query algebra
atop Hadoop. It is easy to pick up and generally considered to have less of a learning
curve when compared with Cascading—especially for people who are analysts, not
J2EE developers. An interactive prompt called Grunt makes it simple to prototype apps.
Also, Pig can be extended by writing user-defined functions in Java or other languages.

Some drawbacks may be encountered when using Pig for complex apps, particularly in
Enterprise IT environments. Extensions via UDFs must be coded and built outside of
the Pig Latin language. Similarly, integration of apps outside the context of Apache
Hadoop generally requires other coding outside of the scripting language. Business logic
must cross multiple language boundaries. This makes it increasingly difficult to trou‐
bleshoot code, optimize query plans, audit schema use, handle exceptions, set notifi‐
cations, track data provenance, etc.

Also note that the LOAD and STORE statements use string literals to reference command-
line arguments. These are analogous to taps in Cascading, except that in Pig the compiler
won’t be able to catch errors until runtime—which is problematic given that potentially
expensive resources on the cluster are already being consumed. Using string literals for
business logic tends to limit testability in general.

Another issue is much more nuanced: in Pig, the logical plan for a query is conflated
with its physical plan. This implies a nondeterministic aspect to Pig’s executions, because
the number of maps and reduces may change unexpectedly as the data changes. This
limits the ability to collect app history in “apples-to-apples” comparisons across different
runs as your production data changes.

In short, simple problems are simple to do in Pig; hard problems become quite complex.
For organizations that tend toward the “conservatism” end of a spectrum for program‐
ming environments, these issues with Pig increase risk at scale. Yahoo! has been able to
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scale out use of Apache Pig for a large organization; however, that will not typically be
the case in many Enterprise verticals.

Comparing with Apache Hive
Now let’s take a look at Apache Hive. You’ll need to install Hive according to the doc‐
umentation and in particular the “Getting Started” page in the wiki. Unpack the down‐

load, set the HIVE_HOME environment variable, and include the Hive binary in your PATH
as well.

Starting from the source code directory that you cloned in Git, connect into the part4
subdirectory. The file src/scripts/wc.q shows source for an Apache Hive script that ap‐
proximates the Cascading code in “Example 4: Replicated Joins”. To run this:

$ rm -rf derby.log metastore_db/

$ hive -hiveconf hive.metastore.warehouse.dir=/tmp < src/scripts/wc.q

The first line will clear out any metadata from a previous run. Otherwise the jobs would
fail. For larger apps, Hive requires a metadata store in some relational database. How‐
ever, the examples of Hive here could use an embedded metastore.

For the sake of space, we don’t show all the output from Hive. An example is shown in
the GitHub gist for “Example 4: Replicated Joins”.

Looking at that Hive source code, first we prepare the data definition language (DDL)
for loading the raw data:

CREATE TABLE raw_docs (doc_id STRING, text STRING)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

CREATE TABLE raw_stop (stop STRING)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

LOAD DATA

LOCAL INPATH 'data/rain.txt'

OVERWRITE INTO TABLE raw_docs;

LOAD DATA

LOCAL INPATH 'data/en.stop'

OVERWRITE INTO TABLE raw_stop;

Next, we strip off the headers from the TSV files (anybody know a better approach for
this?):

CREATE TABLE docs (doc_id STRING, text STRING);

INSERT OVERWRITE TABLE docs
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SELECT * FROM raw_docs WHERE doc_id <> 'doc_id';

CREATE TABLE stop (stop STRING);

INSERT OVERWRITE TABLE stop

SELECT * FROM raw_stop WHERE stop <> 'stop';

Then we tokenize using an external Python script, which also handles scrubbing the
tokens:

CREATE TABLE tokens (token STRING);

INSERT OVERWRITE TABLE tokens

SELECT TRANSFORM(text) USING 'python ./src/scripts/tokenizer.py' AS token

FROM docs;

Let’s take a look at that Python script, too—this is an alternative approach for creating
UDFs:

#!/usr/bin/env python

# encoding: utf-8

import re

import sys

pat_l = re.compile("\w.*")

pat_r = re.compile(".*\w")

def tokenize (line):

    """

    split a line of text into a stream of tokens,

    while scrubbing the tokens

    """

    for token in map(lambda t1: re.search(pat_r, t1).group(),

                     map(lambda t0: re.search(pat_l, t0).group(),

                         line.split(" "))):

        if len(token) > 0:

            yield token

if __name__ == "__main__":

    for line in sys.stdin:

        for token in tokenize(line.strip().lower()):

            print token

Finally, filter with a left join, then group and count:

SELECT token, COUNT(*) AS count

FROM (

  SELECT

   *

  FROM tokens LEFT OUTER JOIN stop

   ON (tokens.token = stop.stop)

  WHERE stop IS NULL

) t
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GROUP BY token

;

The results should be the same as the output from “Example 4: Replicated Joins” in
Cascading. As you can see from this example, the expression of the last query is relatively
compact and easy to understand. Getting input data into Hive required a few backflips.
We didn’t show the part about getting data out, but it’s essentially an HDFS file, and
you’ll need to manage your ETL process outside of Hive.

There are several advantages for using Hive:

• Hive is the most popular abstraction atop Apache Hadoop.

• Hive has a SQL-like language where the syntax is familiar for most analysts.

• Hive makes it simple to load large-scale unstructured data and run ad hoc queries.

• Hive provides many built-in functions for statistics, JSON, XPath, etc.

It is easy to understand on the surface, given that SQL is the lingua franca of Enterprise
data. However, a typical concern voiced in Enterprise IT environments is that while
Hive provides a SQL-like syntax, it is not compliant with the ANSI SQL spec. Hive’s
behaviors contradict what people expect from SQL and relational databases. For exam‐
ple, nondeterministic execution of queries—particularly when Hive attempts to use
different join strategies—implies big surprises at scale during runtime.

Many years ago when Enterprise firms were considering SQL databases as new tech‐
nology, the predictability of runtime costs was a factor driving adoption. Although the
HQL of Hive is familiar as SQL, the predictability of runtime costs is not available.

Other issues found with Pig also apply to Hive:

• Integration generally requires code outside the scripting language.

• Business logic must cross multiple language boundaries.

• It becomes difficult to represent complex workflows, machine learning algorithms,
etc.

Again, all of this makes Hive increasingly difficult to troubleshoot, optimize, audit,
handle exceptions, set notifications, track data provenance, etc., for Enterprise data
workflows. Each “bug” may require hours or even days before its context can be repro‐
duced in a test environment. Complexity of the software grows, and so does the asso‐
ciated risk.
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CHAPTER 3

Test-Driven Development

Example 5: TF-IDF Implementation
In the previous example, we looked at extending pipe assemblies in Cascading work‐
flows. Functionally, “Example 4: Replicated Joins” is only a few changes away from
implementing an algorithm called term frequency–inverse document frequency (TF-
IDF). This is the basis for many search indexing metrics, such as in the popular open

source search engine Apache Lucene. See the Similarity class in Lucene for a great
discussion of the algorithm and its use.

For this example, let’s show how to implement TF-IDF in Cascading—which is a useful
subassembly to reuse in a variety of apps. Figure 3-1 shows a conceptual diagram for
this. Based on having a more complex app to work with, we’ll begin to examine Cas‐
cading features for testing at scale.
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Figure 3-1. Conceptual flow diagram for “Example 5: TF-IDF Implementation”
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Starting from the source code directory that you cloned in Git, connect into the part5
subdirectory. First let’s add another sink tap to write the TF-IDF weights:

String tfidfPath = args[ 3 ];

Tap tfidfTap = new Hfs( new TextDelimited( true, "\t" ), tfidfPath );

Next we’ll modify the existing pipe assemblies for Word Count, beginning immediately
after the join used as a “stop words” filter. We add the following line to retain only the

doc_id and token fields in the output tuple stream, based on the fieldSelector
parameter:

tokenPipe = new Retain( tokenPipe, fieldSelector );

Now let’s step back and consider the desired end result, a TF-IDF metric. The “TF” and
“IDF” parts of TF-IDF can be calculated given four metrics:

Term count
Number of times a given token appears in a given document

Document frequency
How frequently a given token appears across all documents

Number of terms
Total number of tokens in a given document

Document count
Total number of documents

Slight modifications to Word Count produce both term count and document frequency,
along with the other two components, which get calculated almost as by-products.

At this point, we need to use the tuple stream in multiple ways—effectively splitting the

intermediate results from tokenPipe in three ways. Note that there are three basic pat‐
terns for separating or combining tuple streams:

Merge
Combine two or more streams that have identical fields

Join
Combine two or more streams that have different fields, based on common field
values

Split
Take a single stream and send it down two or more pipes, each with unique branch
names

We’ve already seen a join; now we’ll introduce a split. This is also a good point to talk
about the names of branches in pipe assemblies. Note that pipes always have names.
When we connect pipes into pipe assemblies, the name gets inherited downstream—
unless it gets changed through the API or due to a structural difference such as a join
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or a merge. Branch names are important for troubleshooting and instrumentation of
workflows. In this case where we’re using a split, Cascading requires each branch to
have a different name.

The first branch after tokenPipe calculates term counts, as shown in Figure 3-2. We’ll

call that pipe assembly tfPipe, with a branch name TF:

// one branch of the flow tallies the token counts for term frequency (TF)

Pipe tfPipe = new Pipe( "TF", tokenPipe );

Fields tf_count = new Fields( "tf_count" );

tfPipe = new CountBy( tfPipe, new Fields( "doc_id", "token" ), tf_count );

Fields tf_token = new Fields( "tf_token" );

tfPipe = new Rename( tfPipe, token, tf_token );

Figure 3-2. Term frequency branch

This uses a built-in partial aggregate operation called CountBy, which counts duplicates
in a tuple stream. Partial aggregates are quite useful for parallelizing algorithms effi‐
ciently. Portions of an aggregation—for example, a summation—can be performed in
different tasks.

We also rename token to tf_token so that it won’t conflict with other tuple streams in
a subsequent join. At this point, we have the term counts.

The next branch may seem less than intuitive…and it is a bit odd, but efficient. We need
to calculate the total number of documents, in a way that can be consumed later in a join.
So we’ll produce total document count as a field, in each tuple for the RHS of the join.
That keeps our workflow parallel, allowing the calculations to scale out horizontally.

We’ll call that pipe assembly dPipe, with a branch name D, as shown in Figure 3-3.
Alternatively, we could calculate the total number of documents outside of this workflow
and pass it along as a parameter, or use a distributed counter.
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Fields doc_id = new Fields( "doc_id" );

Fields tally = new Fields( "tally" );

Fields rhs_join = new Fields( "rhs_join" );

Fields n_docs = new Fields( "n_docs" );

Pipe dPipe = new Unique( "D", tokenPipe, doc_id );

dPipe = new Each( dPipe, new Insert( tally, 1 ), Fields.ALL );

dPipe = new Each( dPipe, new Insert( rhs_join, 1 ), Fields.ALL );

dPipe = new SumBy( dPipe, rhs_join, tally, n_docs, long.class );

Figure 3-3. Document counts branch

This filters for the unique doc_id values and then uses another built-in partial aggregate
operation called SumBy, which sums values associated with duplicate keys in a tuple
stream. Great, now we’ve got the document count. Notice that the results are named

rhs_join, preparing for the subsequent join.

The third branch calculates document frequency for each token. We’ll call that pipe

assembly dfPipe, with a branch name DF, as shown in Figure 3-4:

// one branch tallies the token counts for document frequency (DF)

Pipe dfPipe = new Unique( "DF", tokenPipe, Fields.ALL );

Fields df_count = new Fields( "df_count" );

dfPipe = new CountBy( dfPipe, token, df_count );

Fields df_token = new Fields( "df_token" );

Fields lhs_join = new Fields( "lhs_join" );

dfPipe = new Rename( dfPipe, token, df_token );

dfPipe = new Each( dfPipe, new Insert( lhs_join, 1 ), Fields.ALL );
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Figure 3-4. Document frequency branch

Notice that the results are named lhs_join, again preparing for the subsequent join.
Now we have all the components needed to calculate TF-IDF weights.

To finish the calculations in parallel, we’ll use two different kinds of joins in Cascading
—a HashJoin followed by a CoGroup. Figure 3-5 shows how these joins merge the three
branches together:

// join to bring together all the components for calculating TF-IDF

// the D side of the join is smaller, so it goes on the RHS

Pipe idfPipe = new HashJoin( dfPipe, lhs_join, dPipe, rhs_join );

// the IDF side of the join is smaller, so it goes on the RHS

Pipe tfidfPipe = new CoGroup( tfPipe, tf_token, idfPipe, df_token );

We used HashJoin previously for a replicated join. In this case we know that document
count will not be a large amount of data, so it works for the RHS. The other join,

CoGroup, handles a more general case where the RHS cannot be kept entirely in memory.
In those cases a threshold can be adjusted for “spill,” where RHS tuples get moved to
disk.

Then we calculate TF-IDF weights using an ExpressionFunction in Cascading:

// calculate the TF-IDF weights, per token, per document

Fields tfidf = new Fields( "tfidf" );

String expression =

  "(double) tf_count * Math.log( (double) n_docs / ( 1.0 + df_count ) )";

ExpressionFunction tfidfExpression =

  new ExpressionFunction( tfidf, expression, Double.class );

Fields tfidfArguments = new Fields( "tf_count", "df_count", "n_docs" );

tfidfPipe =

  new Each( tfidfPipe, tfidfArguments, tfidfExpression, Fields.ALL );

fieldSelector = new Fields( "tf_token", "doc_id", "tfidf" );

tfidfPipe = new Retain( tfidfPipe, fieldSelector );

tfidfPipe = new Rename( tfidfPipe, tf_token, token );
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Figure 3-5. TF-IDF calculation

Now we can get back to the rest of the workflow. Let’s keep the Word Count metrics,

because those become useful when testing. This branch uses CountBy as well, to optimize
better than “Example 4: Replicated Joins”:

// keep track of the word counts, which are useful for QA

Pipe wcPipe = new Pipe( "wc", tfPipe );

Fields count = new Fields( "count" );

wcPipe = new SumBy( wcPipe, tf_token, tf_count, count, long.class );

wcPipe = new Rename( wcPipe, tf_token, token );

// additionally, sort by count

wcPipe = new GroupBy( wcPipe, count, count );

Last, we’ll add another sink tap to the FlowDef, for the TF-IDF output data:
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// connect the taps, pipes, etc., into a flow

FlowDef flowDef = FlowDef.flowDef()

 .setName( "tfidf" )

 .addSource( docPipe, docTap )

 .addSource( stopPipe, stopTap )

 .addTailSink( tfidfPipe, tfidfTap )

 .addTailSink( wcPipe, wcTap );

We’ll also change the name of the resulting Flow, to distinguish this from previous
examples:

// write a DOT file and run the flow

Flow tfidfFlow = flowConnector.connect( flowDef );

tfidfFlow.writeDOT( "dot/tfidf.dot" );

tfidfFlow.complete();

Modify the Main method for these changes. This code is already in the part5/src/main/
java/impatient/ directory, in the Main.java file. You should be good to go. For those
keeping score, the physical plan in “Example 5: TF-IDF Implementation” now uses 11
maps and 9 reduces. That amount jumped by 5x since our previous example.

If you want to read in more detail about the classes in the Cascading API that were used,
see the Cascading User Guide and JavaDoc.

To build:

$ gradle clean jar

To run:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/wc data/en.stop \

   output/tfidf

Output text gets stored in the partition file output/tfidf, and you can verify the first 10
lines (including the header) by using the following:

$ head output/tfidf/part-00000

doc_id  tfidf                   token

doc02   0.9162907318741551      air

doc01   0.44628710262841953     area

doc03   0.22314355131420976     area

doc02   0.22314355131420976     area

doc05   0.9162907318741551      australia

doc05   0.9162907318741551      broken

doc04   0.9162907318741551      california's

doc04   0.9162907318741551      cause

doc02   0.9162907318741551      cloudcover

A gist on GitHub shows building and running “Example 5: TF-IDF Implementation”.
If your run looks terribly different, something is probably not set up correctly. Ask the
developer community for troubleshooting advice.
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By the way, did you notice what the TF-IDF weights for the tokens rain and shadow
were? Those represent what these documents all have in common. How do those
compare with weights for the other tokens? Conversely, consider the weight for

australia (high weight) or area (different weights).

TF-IDF calculates a metric for each token, which indicates how “important” that token
is to a document within the context of a collection of documents. The metric is calculated
based on relative frequencies. On one hand, tokens that appear in most documents tend
to have very low TF-IDF weights. On the other hand, tokens that are less common but
appear multiple times in a few documents tend to have very high TF-IDF weights.

Note that information retrieval papers use token and term almost interchangeably in
some cases. More advanced text analytics might calculate metrics for phrases, in which

case a term becomes a more complex structure. However, we’re only looking at single
words.

Example 6: TF-IDF with Testing
Now that we have a more complex workflow for TF-IDF, let’s consider best practices for
test-driven development (TDD) at scale. We’ll add unit tests into the build, then show
how to leverage TDD features that are unique to Cascading: checkpoints, traps, asser‐
tions, etc. Figure 3-6 shows a conceptual diagram for this app.

Generally speaking, TDD starts off with a failing test, and then you code until the test
passes. We’ll start with a working app, with tests that pass—followed by discussion of
how to use assertions for the test/code cycle.

Starting from the source code directory that you cloned in Git, connect into the part6
subdirectory. As a first step toward better testing, let’s add a unit test and show how it
fits into this example. We need to add support for testing into our build. In the Gradle

build script build.gradle we need to modify the compile task to include JUnit and other
testing dependencies:

dependencies {

  compile( 'cascading:cascading-core:2.1.+' ) { exclude group: 'log4j' }

  compile( 'cascading:cascading-hadoop:2.1.+' ) { transitive = true }

  testCompile( 'cascading:cascading-test:2.1.+' )

  testCompile( 'org.apache.hadoop:hadoop-test:1.0.+' )

  testCompile( 'junit:junit:4.8.+' )

}
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Figure 3-6. Conceptual flow diagram for “Example 6: TF-IDF with Testing”
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Then we’ll add a new test task to the build:

test {

  include 'impatient/**'

  //makes standard streams (err, out) visible at console when running tests

  testLogging.showStandardStreams = true

  //listening to test execution events

  beforeTest { descriptor ->

     logger.lifecycle("Running test: " + descriptor)

  }

  onOutput { descriptor, event ->

     logger.lifecycle("Test: " + descriptor + " produced standard out/err: "

       + event.message )

  }

}

A little restructuring of the source directories is required—see this GitHub code repo
where that is already set up properly.

The custom function ScrubFunction used to scrub tokens in “Example 3: Customized
Operations” on page 17 had an additional method, to make unit testing simpler. We add

a unit test in a new class called ScrubTest.java, which extends CascadingTestCase:

public class ScrubTest extends CascadingTestCase

  {

  @Test

  public void testScrub()

    {

    Fields fieldDeclaration = new Fields( "doc_id", "token" );

    Function scrub = new ScrubFunction( fieldDeclaration );

    Tuple[] arguments = new Tuple[]{

      new Tuple( "doc_1", "FoO" ),

      new Tuple( "doc_1", " BAR " ),

      new Tuple( "doc_1", "     " ) // will be scrubbed

    };

    ArrayList<Tuple> expectResults = new ArrayList<Tuple>();

    expectResults.add( new Tuple( "doc_1", "foo" ) );

    expectResults.add( new Tuple( "doc_1", "bar" ) );

    TupleListCollector collector =

      invokeFunction( scrub, arguments, Fields.ALL );

    Iterator<Tuple> it = collector.iterator();

    ArrayList<Tuple> results = new ArrayList<Tuple>();

    while( it.hasNext() )

      results.add( it.next() );

    assertEquals( "Scrubbed result is not expected", expectResults, results );
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    }

  }

Again, this is a particularly good place for a unit test. Scrubbing tokens is a likely point
where edge cases will get encountered at scale. In practice, you’d want to define even
more unit tests.

Going back to the Main.java module, let’s see how to handle other kinds of unexpected
issues with data at scale. We’ll add both a trap and a checkpoint as taps:

String trapPath = args[ 4 ];

String checkPath = args[ 5 ];

Tap trapTap = new Hfs( new TextDelimited( true, "\t" ), trapPath );

Tap checkTap = new Hfs( new TextDelimited( true, "\t" ), checkPath );

Next we’ll modify the head of the pipe assembly for documents to incorporate a stream
assertion, as Figure 3-7 shows. This uses an AssertMatches to define the expected pattern
for data in the input tuple stream. There could be quite a large number of documents,
so it stands to reason that some data may become corrupted. In our case, another line
has been added to the example input data/rain.txt to exercise the assertion and trap.

Figure 3-7. Stream assertion and failure trap
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Notice in Figure 3-7 how the trap will apply to the entire branch that includes the stream
assertion. Then we apply AssertionLevel.STRICT to force validation of the data:

// use a stream assertion to validate the input data

Pipe docPipe = new Pipe( "token" );

AssertMatches assertMatches = new AssertMatches( "doc\\d+\\s.*" );

docPipe = new Each( docPipe, AssertionLevel.STRICT, assertMatches );

Sometimes, when working with complex workflows, we just need to see what the tuple
stream looks like. To show this feature, we’ll insert a Debug operation on the DF branch
and use DebugLevel.VERBOSE to trace the tuple values in the flow there:

// example use of a debug, to observe tuple stream; turn off below

dfPipe = new Each( dfPipe, DebugLevel.VERBOSE, new Debug( true ) );

This prints the tuple values at that point to the log file. Fortunately, it can be disabled
with a single line—in practice, you’d probably use a command-line argument to control
that.

Next let’s show how to use a Checkpoint that forces the tuple stream to be persisted to
HDFS. Figure 3-8 shows this inserted after the join of the DF and D branches.

// create a checkpoint, to observe the intermediate data in DF stream

Checkpoint idfCheck = new Checkpoint( "checkpoint", idfPipe );

Pipe tfidfPipe = new CoGroup( tfPipe, tf_token, idfCheck, df_token );

Checkpoints help especially when there is an expensive unit of work—such as a lengthy
calculation. On one hand, if a calculation fits into a single map and several branches
consume from it, then a checkpoint avoids having to redo the calculation for each
branch. On the other hand, if a Hadoop job step fails, for whatever reason, then the
Cascading app can be restarted from the last successful checkpoint.

At this point we have a relatively more complex set of taps to connect in the FlowDef,
to include the new output data for test-related features:

// connect the taps, pipes, traps, checkpoints, etc., into a flow

FlowDef flowDef = FlowDef.flowDef()

 .setName( "tfidf" )

 .addSource( docPipe, docTap )

 .addSource( stopPipe, stopTap )

 .addTailSink( tfidfPipe, tfidfTap )

 .addTailSink( wcPipe, wcTap )

 .addTrap( docPipe, trapTap )

 .addCheckpoint( idfCheck, checkTap );
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Figure 3-8. Checkpoint

Last, we’ll specify the verbosity level for the debug trace and the strictness level for the
stream assertion:

// set to DebugLevel.VERBOSE for trace,

// or DebugLevel.NONE in production

flowDef.setDebugLevel( DebugLevel.VERBOSE );

// set to AssertionLevel.STRICT for all assertions,

// or AssertionLevel.NONE in production

flowDef.setAssertionLevel( AssertionLevel.STRICT );

Modify the Main method for those changes. This code is already in the part6/src/main/
java/impatient/ directory, in the Main.java file. You should be good to go.

For those keeping score, the physical plan for “Example 6: TF-IDF with Testing” now
uses 12 maps and 9 reduces. In other words, we added one map as the overhead for
gaining lots of test features.

To build:

$ gradle clean jar
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To run:

$ rm -rf output

$ hadoop jar ./build/libs/impatient.jar data/rain.txt output/wc data/en.stop \

   output/tfidf output/trap output/check

Remember that data/rain.txt has another row, intended to cause a trap. The output log
should include a warning based on the stream assertion, which looks like this:

12/08/06 14:15:07 WARN stream.TrapHandler: exception trap on branch: 'token',

 for fields: [{2}:'doc_id', 'text'] tuple: ['zoink', 'null']

cascading.operation.AssertionException: argument tuple:

 ['zoink', 'null'] did not match: doc\d+\s.*

  at cascading.operation.assertion.BaseAssertion.throwFail(BaseAssertion.java:107)

  at cascading.operation.assertion.AssertMatches.doAssert(AssertMatches.java:84)

That is expected behavior. We asked Cascading to show warnings when stream asser‐
tions failed. The data that caused this warning gets trapped.

Not too far after that point in the log, there should be some other debug output that
looks like the following:

12/08/06 14:15:46 INFO hadoop.FlowReducer: sinking to:

TempHfs["SequenceFile[ ['df_count', 'df_token', 'lhs_join']]"][DF/93669/]

['df_count', 'df_token', 'lhs_join']

['1', 'air', '1']

['3', 'area', '1']

['1', 'australia', '1']

['1', 'broken', '1']

Plus several more similar lines. That is the result of our debug trace.

Output text gets stored in the partition file output/tfidf as before. We also have the
checkpointed data now:

$ head output/check/part-00000

df_count        df_token        lhs_join        rhs_join        n_docs

1               air             1               1               5

3               area            1               1               5

1               australia       1               1               5

1               broken          1               1               5

1               california's    1               1               5

1               cause           1               1               5

1               cloudcover      1               1               5

1               death           1               1               5

1               deserts         1               1               5

Also notice the data tuple trapped in output/trap:

$ cat output/trap/part-m-00001-00000

zoink null
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That tuple does not match the regex doc\\d+\\s.* that was specified by the stream
assertion. Great, we caught it before it blew up something downstream.

A gist on GitHub shows building and running “Example 6: TF-IDF with Testing”. If
your run looks terribly different, something is probably not set up correctly. Ask the
developer community for troubleshooting advice.

A Word or Two About Testing
At first glance, the notion of TDD might seem a bit antithetical in the context of Big
Data. After all, TDD is supposed to be about short development cycles, writing auto‐
mated test cases that are intended to fail, and lots of refactoring. Those descriptions
don’t seem to fit with batch jobs that involve terabytes of data run on huge Hadoop
clusters for days before they complete.

Stated in a somewhat different way, according to Kent Beck, TDD “encourages simple
designs and inspires confidence.” That statement fits quite well with the philosophy of
Cascading. The Cascading API is intended to provide a pattern language for working

with large-scale data—GroupBy, Join, Count, Regex, Filter—so that the need for writ‐
ing custom functions becomes relatively rare. That speaks to “encouraging simple de‐
signs” directly. The practice in Cascading of modeling business process and orchestrat‐
ing Apache Hadoop workflows speaks to “inspiring confidence” in a big way.

So now we’ll let the cat out of the bag for a little secret…working with unstructured data
at scale has been shown to be quite valuable by the likes of Google, Amazon, eBay,
Facebook, LinkedIn, Twitter, etc. However, most of the “heavy lifting” that we perform
in MapReduce workflows is essentially cleaning up data. DJ Patil, formerly Chief Sci‐
entist at LinkedIn, explains this point quite eloquently in the mini-book Data Jujitsu:

It’s impossible to overstress this: 80% of the work in any data project is in cleaning the
data… Work done up front in getting clean data will be amply repaid over the course of
the project.

— DJ Patil
 Data Jujitsu (2012)

Cleaning up unstructured data allows for subsequent use of sampling techniques, di‐
mensional reduction, and other practices that help alleviate some of the bottlenecks that
might otherwise be encountered in Enterprise data workflows. Thinking about this in
another way, we have need for API features that demonstrate how “dirty” data has been
cleaned up. Cascading provides those features, which turn out to be quite valuable in
practice.

Common practices for test-driven development include writing unit tests or mocks.
How does one write a quick unit test for a Godzilla-sized data set?
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The short answer is: you don’t. However, you can greatly reduce the need for writing
unit test coverage by limiting the amount of custom code required. Hopefully we’ve
shown that aspect of Cascading by now. Beyond that, you can use sampling techniques
to quantify confidence that an app has run correctly. You can also define system tests at
scale in relatively simple ways. Furthermore, you can define contingencies for what to
do when assumptions fail…as they inevitably do, at scale.

Let’s discuss sampling. Generally speaking, large MapReduce workflows tend to be rel‐
atively opaque processes that are difficult to observe. Cascading, however, provides two
techniques for observing portions of a workflow. One very simple approach is to insert
a Debug into a pipe to see the tuple values passing through a particular part of a work‐
flow. Debug output goes to the log instead of a file, but it can be turned off, e.g., with a
command-line option. If the data is large, one can use a Sample filter to sample the tuple
values that get written to the log.

Another approach is to use a Checkpoint, which forces intermediate data to be written
out to HDFS. This may also become important for performance reasons, i.e., forcing
results to disk to avoid recomputing—e.g., when there are multiple uses for the output
of a pipe downstream such as with the RHS of a HashJoin. Sampling may be performed
either before (with Debug) or after (with Checkpoint) the data gets persisted to HDFS.
Checkpoints can also be used to restart partially failed workflows, to recover some costs.

Next, let’s talk about system tests. Cascading includes support for stream assertions.
These provide mechanisms for asserting that the values in a tuple stream meet certain

criteria—similar to the assert keyword in Java, or an assert not null in a JUnit test.
We can assert patterns strictly as unit tests during development and then run testing
against regression data. For performance reasons, we might use command-line options
to turn off assertions in production—or keep them (fail-fast mode) if a use case requires
that level of guarantee.

Books about Test Driven Development
For more information about TDD in general, check out these books:

• Test Driven Development: By Example by Kent Beck (Addison-Wesley)

• Test-Driven Development: A Practical Guide by Dave Astels (Prentice Hall)

Lastly, what should you do when assumptions fail? One lesson of working with data at
scale is that the best assumptions will inevitably fail. Unexpected things happen, and
80% of the work will be cleaning up problems.

Cascading defines failure traps, which capture data that would otherwise cause an op‐
eration to fail, e.g., by throwing an exception. For example, perhaps 99% of the cases in
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your log files can be rolled up into a set of standard reports…but 1% requires manual
review. Great, process the 99% that work and shunt the 1% failure cases into a special
file marked “For manual review.” That can be turned into a report for the customer
support department. Keep in mind, however, that traps are intended for handling ex‐
ceptional cases. If you know in advance how to categorize good versus bad data, then a
best practice is to use a filter instead of a trap.
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CHAPTER 4

Scalding—A Scala DSL for Cascading

Why Use Scalding?
Cascading represents a pattern language where we use a “plumbing” metaphor with
pipes and operators to build workflows. Looking at sample code in the previous chapter,
the Java source requires much more detail than simply pipes and operators. Even so, we
can use conceptual flow diagrams to keep track of the plumbing—the actual logic of
what is being performed by a workflow. What if we could simply write code at the level
of detail in those diagrams?

Scalding is a domain-specific language (DSL) in the Scala programming language,
which integrates Cascading. The functional programming paradigm used in Scala is
much closer than Java to the original model for MapReduce. Consequently, Scalding
source code for workflows has a nearly 1:1 correspondence with the concise visual de‐
scriptions in our conceptual flow diagrams. In other words, developers work directly
in the plumbing of pipes, where the pattern language becomes immediately visible. That
aspect alone brings incredible advantages for software engineering with very large-scale
data. Apps written in Java with the Cascading API almost seem like assembly language
programming in comparison. Plus, Scala offers other advanced programming models
used in large-scale Enterprise work such as the actor model for concurrency.

While Scalding builds on Cascading, other libraries build atop Scalding—including
support for type-safe libraries, abstract algebra, very large sparse matrices, etc., which
are used to implement distributed algorithms and robust infrastructure for data services.
For example, simple operations such as calculating a running median can become hard
problems when you are servicing hundreds of millions of customers with tight require‐
ments for service-level agreements (SLAs). A running median is an example of a metric
needed in anti-fraud classifiers, social recommenders, customer segmentation, etc.
Scalding offers simple, concise ways to implement distributed algorithms for that kind
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of analysis. Those aspects are particularly important for the scale of operations at firms
such as Twitter, eBay, LinkedIn, Etsy, etc., where Scalding is deployed.

Keep in mind that Apache Hadoop is based on the MapReduce research made public
by Google nearly a decade ago. MapReduce became an important component of Google’s
internal technology for large-scale batch workflows. Meanwhile, Google has continued
to evolve its infrastructure; estimates place its current technology stack at least three
generations beyond the original MapReduce work. The public sees only portions of that
massive R&D effort (e.g., in papers about Dremel, Pregel, etc.).

What becomes clear from the published works is that Google scientists and engineers
leverage advanced techniques based on abstract algebra, linear algebra for very large
sparse matrices, sketches, etc., to build robust, efficient infrastructure at massive scale.
Scalding represents a relatively public view of comparable infrastructure.

Let’s start here with a few simple examples in Scalding. Given a few subtle changes in
the code, some of our brief examples can be turned into state-of-the-art parallel pro‐
cessing at scale. For instance, check out the PageRank implementation shown in the
Scalding source, and also these sample recommender systems written by Twitter.

Getting Started with Scalding
The best resource for getting started with Scalding is the project wiki page on GitHub.

In addition to Git and Java, which were set up in Chapter 1, you will need to have a few
other platforms and tools installed for the examples in this chapter:

Scala
Current version of Scalding works with Scala versions 2.8.1, 2.9.1, 2.9.2.

Simple Build Tool, a.k.a. SBT
Must be version 0.11.3.

Ruby
Required for the scald.rb script; most recent stable release.

Also, be sure to put the executable for sbt in your PATH.

The scald.rb script provides a limited command-line interface (CLI) for Scalding, so
that one can conveniently compile and launch apps. Keep in mind that this is not a build
system. For any serious work, you are better off using a build tool such as Gradle to
create a “fat jar” that includes all the class dependencies that are not available on your
Hadoop cluster. More about that later.
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Connect somewhere you have space for downloads, and then use Git to clone the latest

update from the master branch of the Scalding project on GitHub:

$ git clone git://github.com/twitter/scalding.git

Connect into that newly cloned directory and run the following steps with sbt to get
Scalding set up:

$ cd scalding

$ export SCALDING_HOME=`pwd`

$ sbt update

$ sbt test

$ sbt assembly

These commands may take a few minutes to complete. Afterward, be sure to add the
Scalding utility script in scripts/scald.rb to your path:

export PATH=`pwd`/scripts:$PATH

At this point, let’s test to see if Scalding is set up properly. The tutorial directory includes
code samples, and Tutorial1.scala provides a simplest possible app in Scalding:

import com.twitter.scalding._

class Tutorial1(args : Args) extends Job(args) {

  val input = TextLine("tutorial/data/hello.txt")

  val output = TextLine("tutorial/data/output1.txt")

  input

    .read

    .project('line)

    .write(output)

}

This is comparable with “Example 1: Simplest Possible App in Cascading” because it
copies text lines from one file to another. The example uses text in the tutorial/data/
hello.txt sample data file:

$ cat tutorial/data/hello.txt

Hello world

Goodbye world

To run this Scalding code:

$ scald.rb --local tutorial/Tutorial1.scala

12/12/25 09:58:16 INFO property.AppProps: using app.id: \

8A7F63D2D42594F9A1CD9B5DE08100E8

12/12/25 09:58:16 INFO util.Version: Concurrent, Inc - Cascading 2.0.2

12/12/25 09:58:16 INFO flow.Flow: [Tutorial1] starting

12/12/25 09:58:16 INFO flow.Flow: [Tutorial1]

  source: FileTap["TextLine[['num', 'line']->[ALL]]"]["tutorial/data/hello.txt"]"]

12/12/25 09:58:16 INFO flow.Flow: [Tutorial1]

  sink: FileTap["TextLine[['num', 'line']->[ALL]]"]["tutorial/data/output1.txt"]"]

12/12/25 09:58:16 INFO flow.Flow: [Tutorial1]  parallel execution is enabled: true
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12/12/25 09:58:16 INFO flow.Flow: [Tutorial1]  starting jobs: 1

12/12/25 09:58:16 INFO flow.Flow: [Tutorial1]  allocating threads: 1

12/12/25 09:58:16 INFO flow.FlowStep: [Tutorial1] starting step: local

Then to confirm the results after the Scalding code has run:

$ cat tutorial/data/output1.txt

Hello world

Goodbye world

If your results look similar, you should be good to go.

Otherwise, if you have any troubles, contact the cascading-user email forum or tweet

to @Scalding on Twitter. Very helpful developers are available to assist.

Example 3 in Scalding: Word Count with Customized
Operations
First, let’s try a simple app in Scalding. Starting from the “Impatient” source code di‐
rectory that you cloned in Git, connect into the part8 subdirectory. Then we’ll write a

Word Count app in Scalding that includes a token scrub operation, similar to “Example
3: Customized Operations” on page 17:

import com.twitter.scalding._

class Example3(args : Args) extends Job(args) {

  Tsv(args("doc"), ('doc_id, 'text), skipHeader = true)

    .read

    .flatMap('text -> 'token) { text : String => text.split("[ \\[\\]\\(\\),.]") }

    .mapTo('token -> 'token) { token : String => scrub(token) }

    .filter('token) { token : String => token.length > 0 }

    .groupBy('token) { _.size('count) }

    .write(Tsv(args("wc"), writeHeader = true))

  def scrub(token : String) : String = {

    token

      .trim

      .toLowerCase

  }

  override def config(implicit mode: Mode): Map[AnyRef, AnyRef] = {

    // resolves "ClassNotFoundException cascading.*" exception on a cluster

    super.config(mode) ++ Map("cascading.app.appjar.class" -> classOf[Example3])

  }

}

Let’s compare this code for Word Count with the conceptual flow diagram for “Example
3: Customized Operations”, which is shown in Figure 4-1. The lines of Scalding source
code have an almost 1:1 correspondence with the elements in this flow diagram. In other
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words, Scalding provides an almost pure expression of the DAG for this Cascading flow.
This point underscores the expressiveness of the functional programming paradigm.

Figure 4-1. Conceptual flow diagram for “Example 3: Customized Operations”

Examining this app line by line, the first thing to note is that we extend the Job() base
class in Scalding:

class Example3(args : Args) extends Job(args) { ... }

Next, the source tap reads tuples from a data set in TSV format. This expects to have a

header, then doc_id and text as the fields. The tap identifier for the data set gets specified

by a --doc command-line parameter:

Tsv(args("doc"), ('doc_id, 'text), skipHeader = true)

  .read

The flatMap() function in Scalding is equivalent to a generator in Cascading. It maps
each element to a list, then flattens that list—emitting a Cascading result tuple for each

item in the returned list. In this case, it splits text into tokens based on RegexSplitGen

erator:

  .flatMap('text -> 'token) { text : String => text.split("[ \\[\\]\\(\\),.]") }

In essence, Scalding extends the collections API in Scala. Scala has functional constructs
such as map, reduce, filter, etc., built into the language, so the Cascading operations have
been integrated as operations on its parallel iterators. In other words, the notion of a
pipe in Scalding is the same as a distributed list. That provides a powerful abstraction
for large-scale parallel processing. Keep that in mind for later.

The mapTo() function in the next line shows how to call a customized function for
scrubbing tokens. This is substantially simpler to do in Scalding:

  .mapTo('token -> 'token) { token : String => scrub(token) }

  .filter('token) { token : String => token.length > 0 }
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Defining new functions in Scalding is also much simpler, as the following code snippet
shows:

  def scrub(token : String) : String = {

    token

      .trim

      .toLowerCase

  }

A few dozen lines of Java have been replaced by a few lines of Scala. On one hand, that
represents an order of magnitude reduction in source code, which is a huge gain. On
the other hand, using Java to define this same function allows for finer-grained behav‐

iors. For example, the filter() call was added to create the same semantics that the

ScrubFunction implemented—whereas in Java that logic could be specified directly

within the operate() method.

Java, as an object-oriented language, is arguably quite good for defining the low-level
behaviors of Scala, as a functional programming language. Think of the Java code in
Cascading as a kind of “assembly language” for Scalding. Moreover, there is an enormous
number of available packages in Java that can be used by Scala. In fact, part of the reason
for the scald.rb utility script is to integrate other Java packages into Scalding.

The next line performs the equivalent of a GroupBy aggregation in Cascading, followed

by an Every and a Count operation. The size() function in Scala performs the token
count:

  .groupBy('token) { _.size('count) }

Finally, the sink tap writes tuples in the output stream to a data set in TSV format,

including a header. The tap identifier for the output data set is defined by a --wc
command-line parameter:

  .write(Tsv(args("wc"), writeHeader = true))

Also note the configuration override:

  override def config(implicit mode: Mode): Map[AnyRef, AnyRef] = { .. }

This resolves a ClassNotFoundException exception when running Scalding apps as fat

jars on a remote Hadoop cluster. As of this writing (2013Q1) Twitter uses sbt to build
Scalding apps for lots of deployments. However, other organizations have begun to use
Maven, Gradle, etc., and for some reason apps created with these other build systems
sometimes see exceptions when running fat jars on remote clusters. This workaround
was created by Chris Severs at eBay to resolve the issue. Include it in each Scala class
that defines a Scalding workflow.

This code is already in the part8/src/main/scala/ directory, in the Example3.scala file.
To build and run:
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$ rm -rf output

$ scald.rb --hdfs-local src/main/scala/Example3.scala \

   --doc data/rain.txt --wc output/wc

In the output, the first 10 lines (including the header) should look like this:

$ head output/wc/part-00000

token           count

a               8

air             1

an              1

and             2

area            4

as              2

australia       1

back            1

broken          1

A gist on GitHub shows building and running this app. If your run looks terribly dif‐
ferent, something is probably not set up correctly. Ask the developer community for
troubleshooting advice.

A Word or Two about Functional Programming
At the mention of functional programming, Java is not quite the first programming
language that comes to mind. Cascading, however, with its pattern language and plumb‐
ing metaphor, borrows much from the functional programming paradigm. For example,
there is no concept of “mutable variables” in the context of a flow—just the stream of
data tuples.

Scalding integrates Cascading within Scala, which includes many functional program‐
ming features. The name “Scalding” is a portmanteau of SCALa and cascaDING. For‐
mally, Scalding is a DSL embedded in Scala that binds to Cascading. A DSL is a language
dedicated to a particular kind of problem and solution. The Scala language was designed
in part to support a wide variety of DSLs. The domain for Scalding is about how to
express robust, large-scale data workflows that run on parallel processing frameworks,
typically for machine learning use cases.

Avi Bryant, author of Scalding, introduced his talk at the Strata 2012 conference with a
special recipe:

Start on low heat with a base of Hadoop; map, then reduce. Flavor, to taste, with Scala’s
concise, functional syntax and collections library. Simmer with some Pig bones: a tuple
model and high-level join and aggregation operators. Mix in Cascading to hold every‐
thing together and boil until it’s very, very hot, and you get Scalding, a new API for
MapReduce out of Twitter.

— Avi Bryant
 Scala + Cascading = Scalding (2012)
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The original release of Scalding was based on a fields-based API, which is what the
examples here use. Subsequently, a type-safe API has been released, although it is cur‐
rently marked “experimental.”

Twitter has released a type-safe Matrix API built on top of Scalding. This provides
enormous benefits for the typical kinds of use cases encountered in Scalding. For ex‐
ample, matrix transforms can be used to implement machine learning algorithms that
leverage social graph—at very large scale.

Another component is called Algebird, which is available as an open source project on
GitHub.

This library was originally part of the Matrix API but was subsequently promoted into
its own project with no dependencies. Algebird provides an abstract algebra library for
building aggregation systems. It has excellent uses in streaming algorithms and prob‐
abilistic data structures, such as Bloom filters and Count-Min sketches.

Type-safe libraries, efficient operations on large sparse matrices, abstract algebra, etc.
—these aspects become particularly important for building distributed algorithms and
data services at scale.

Scalding has large-scale commercial deployments at companies such as Twitter, Etsy,
eBay, LivePerson, etc. Twitter has many use cases, particularly on the revenue quality
team: ad targeting, traffic quality, etc. Etsy had created the JRuby DSL for Cascading,
and now also uses Scalding to perform web analytics and build recommender systems.
eBay uses Scalding on its search analytics and other production data pipelines.

Scalding, which was first released in January 2012, won a Bossie 2012 Award from
InfoWorld. The award described Scalding as “clean and concise” and “a natural fit”:

Hadoop puts a treasure trove of data at your fingertips, but the process for extracting
those riches can be daunting. Cascading provides a thin layer of Java-based data pro‐
cessing functionality atop Hadoop’s MapReduce execution layer. It masks the complexity
of MapReduce, simplifies the programming, and speeds you on your journey toward
actionable analytics. Cascading works with JVM languages like Clojure and JRuby, but
we prefer Scalding, a Scala API for Cascading from Twitter. A vast improvement over
native MapReduce functions or Pig UDFs, Scalding code is clean and concise. Anyone
comfortable with Ruby will find the Cascading/Scala pairing a natural fit.

— James R. Borck
 InfoWorld magazine (2012)

In addition to the main Scalding website maintained by Twitter, there are several other
excellent resources online:

• Dean Wampler of Think Big Analytics wrote an excellent Scalding tutorial/work‐
shop.

• Oscar Boykin of Twitter gave a talk about Scalding at the Hadoop Summit 2012.

58 | Chapter 4: Scalding—A Scala DSL for Cascading

http://bit.ly/165XiZK
http://bit.ly/14R5vS6
http://bit.ly/10zKtbs
https://github.com/twitter/algebird
http://bit.ly/19YiFUs
http://bit.ly/19YiFUs
http://bit.ly/12H01GD
http://bit.ly/1aCUryk
http://bit.ly/1aCUx9i
http://bit.ly/1b7VAwE
http://bit.ly/19TXJdA
http://bit.ly/19TXJdA
http://slidesha.re/1aCUCK6


• Sujit Pal wrote Scalding versions of the “Impatient” series.

• Costin Leau integrated Scalding support into Spring-Hadoop.

Books about Scala and Functional Programming
For more information about Scala, DSLs, and functional programming in general, check
out these books:

• DSLs in Action by Debasish Ghosh (Manning)

• Functional Programming for Java Developers by Dean Wampler (O’Reilly)

• Programming Scala by Dean Wampler and Alex Payne (O’Reilly)

• Scala for the Impatient by Cay Horstmann (Addison-Wesley)

Example 4 in Scalding: Replicated Joins
Next, let’s modify the Scalding code to create an app similar to the Cascading version
in “Example 4: Replicated Joins” on page 22. We’ll show how simple it is to extend pipe
assemblies in Scalding.

Starting from the “Impatient” source code directory that you cloned in Git, connect into
the part8 subdirectory. Look at the code in scripts/scala/Example4.scala:

import com.twitter.scalding._

class Example4(args : Args) extends Job(args) {

  val stopPipe = Tsv(args("stop"), ('stop), skipHeader = true)

    .read

  Tsv(args("doc"), ('doc_id, 'text), skipHeader = true)

    .read

    .flatMap('text -> 'token) { text : String => text.split("[ \\[\\]\\(\\),.]") }

    .mapTo('token -> 'token) { token : String => scrub(token) }

    .filter('token) { token : String => token.length > 0 }

    .leftJoinWithTiny('token -> 'stop, stopPipe)

    .filter('stop) { stop : String => stop == null }

    .groupBy('token) { _.size('count) }

    .write(Tsv(args("wc"), writeHeader = true))

  def scrub(token : String) : String = {

    token

      .trim

      .toLowerCase

  }
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  override def config(implicit mode: Mode): Map[AnyRef, AnyRef] = {

    // resolves "ClassNotFoundException cascading.*" exception on a cluster

    super.config(mode) ++ Map("cascading.app.appjar.class" -> classOf[Example4])

  }

}

Only a few lines have changed. First, we add a pipe called stopPipe to read the stop

words list. Its tap identifier is specified by a --stop command-line parameter. Note that

stopPipe is defined as an immutable variable (read-only) in Scala:

val stopPipe = Tsv(args("stop"), ('stop), skipHeader = true)

  .read

Next we use a leftJoinWithTiny() function in Scalding to perform the equivalent of

a HashJoin in Cascading. This is a replicated join with a left outer join on the stop words.
Scalding provides the full set of Join operations provided in Cascading.

After the join, we filter for null values—which is the equivalent of using a RegexFil

ter in “Example 4: Replicated Joins”:

  .leftJoinWithTiny('token -> 'stop, stopPipe)

  .filter('stop) { stop : String => stop == null }

This code is already in the part8/src/main/scala/ directory, in the Example4.scala file.
To build and run:

$ rm -rf output

$ scald.rb --hdfs-local src/main/scala/Example4.scala \

   --doc data/rain.txt --stop data/en.stop --wc output/wc

In the output, the first 10 lines (including the header) should look like this:

$ head output/wc/part-00000

token           count

air             1

area            4

australia       1

broken          1

california's    1

cause           1

cloudcover      1

death           1

deserts         1

Again, a gist on GitHub shows building and running this app. If your run looks terribly
different, something is probably not set up correctly. Ask the developer community for
troubleshooting advice.

In a nutshell, that’s how to extend pipe assemblies in Scalding. Welcome to Enterprise
data workflows in Scala.
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Build Scalding Apps with Gradle
For the example in an upcoming section, we will need to incorporate extensions to
Cascading, and the scald.rb script will not work for that. Instead, let’s look at how to use
Gradle to build what is called a “fat jar.” In other words, create a JAR file that includes
all the class dependencies for Scalding that Apache Hadoop would not normally provide.
Note that Gradle version 1.3 or later is required for Scala support.

Starting from the “Impatient” source code directory that you cloned in Git, connect into
the part8 subdirectory. Next, we’ll use a Gradle build.gradle script to build a Scalding
app:

apply plugin: 'scala'

archivesBaseName = 'impatient'

repositories {

  mavenLocal()

  mavenCentral()

  mavenRepo name: 'conjars', url: 'http://conjars.org/repo/'

}

dependencies {

  // Scala compiler + related tools, and standard library

  scalaTools 'org.scala-lang:scala-compiler:2.9.2'

  compile 'org.scala-lang:scala-library:2.9.2'

  // Scalding

  compile( 'com.twitter:scalding_2.9.2:0.8.1' )

  // in case you need to add JARs from a local build

  compile fileTree( dir: 'lib', includes: ['*.jar'] )

  compile( 'cascading:cascading-core:2.0.2' )

  compile( 'cascading:cascading-hadoop:2.0.2' )

}

jar {

  description = "Assembles a Hadoop-ready JAR file"

  doFirst {

    into( 'lib' ) {

      from configurations.compile

    }

  }

  manifest {

    attributes( "Main-Class": "com.twitter.scalding.Tool" )

  }

}
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Note the compile( 'com.twitter:scalding_2.9.2:0.8.1' ) directive. This pulls
Scalding version 0.8.1 from a Maven repository; check to see if there’s a later stable
version. Also note that the Cascading version is set to 2.0.2—that’s required for the
current version of Scalding; again, check to see if that has been bumped up.

This script is already in the part8/src/main/scala/ directory, in the build.gradle file. By
the way, if you reuse this script for other projects and ever need to add other JAR files
that don’t come from Maven repositories—e.g., something built locally—just add them
to the lib directory.

To verify that your Gradle build for Scalding works properly, let’s build and run “Ex‐
ample 3 in Scalding: Word Count with Customized Operations”:

$ gradle clean jar

$ rm -rf output

$ hadoop jar build/libs/impatient.jar Example3 --hdfs \

   --doc data/rain.txt --wc output/wc

Now we can verify the output/wc output:

$ head output/wc/part-00000

token           count

a               8

air             1

an              1

and             2

area            4

as              2

australia       1

back            1

broken          1

If that output looks correct, you should be good to go. Otherwise, there was probably
an issue with the setup. Ask the developer community for troubleshooting advice.

Running on Amazon AWS
We have not yet shown how to run Cascading apps on Hadoop clusters in a cloud, and
this Scalding app provides a good example.

To run “Example 3 in Scalding: Word Count with Customized Operations” on the Am‐
azon AWS cloud, first you’ll need to have an AWS account set up. Make sure to sign up
for EMR, S3, and SimpleDB. Also have your credentials set up in the local configuration
—for example, in your ~/.aws_cred/ directory.

Next, install these excellent AWS tools:

s3cmd
Create, put, get, delete data in S3
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EMR Ruby client
Command-line tool for Elastic MapReduce (EMR) 

Then edit the emr.sh shell script, which is already in the part8/src/main/scala/ directory

—you must update the BUCKET variable to be one of your S3 buckets.

Finally, use the emr.sh shell script to upload your JAR plus the input data to S3. That
script launches an Apache Hadoop cluster on the Elastic MapReduce service where it
runs the app.

#!/bin/bash -ex

BUCKET=temp.cascading.org/impatient

NAME=scalding3

# clear previous output

s3cmd del -r s3://$BUCKET/wc

# load built JAR + input data

s3cmd put build/libs/impatient.jar s3://$BUCKET/$NAME.jar

s3cmd put data/rain.txt s3://$BUCKET/rain.txt

# launch cluster and run

elastic-mapreduce --create --name "Scalding" \

  --debug \

  --enable-debugging \

  --log-uri s3n://$BUCKET/logs \

  --jar s3n://$BUCKET/$NAME.jar \

  --arg Example3 \

  --arg "--hdfs" \

  --arg "--doc" \

  --arg s3n://$BUCKET/rain.txt \

  --arg "--wc" \

  --arg s3n://$BUCKET/wc

Note that the output path in S3 must be deleted first. Hadoop checks this and will kill
a job rather than overwrite an existing data set. Also note how the command-line ar‐

guments get passed to EMR through the --arg option. Each argument from the Scalding

command line must be wrapped. Another nuance is that s3cmd uses the usual s3:
protocol to reference data URIs in S3, whereas the Hadoop jobs running on the EMR

service require the s3n: protocol. That represents a common reason for job failures on
EMR; see also the discussion at the Amazon forums.

When that elastic-mapreduce line executes, it should return a job ID. As the Hadoop
job runs on Elastic MapReduce, you can monitor progress in the AWS console based
on that job ID. Figure 4-2 shows an example console view for EMR.
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Figure 4-2. EMR console for “Example 3 in Scalding: Word Count with Customized
Operations”

After the job completes, check the wc directory in the S3 bucket that you used, to confirm
results.

64 | Chapter 4: Scalding—A Scala DSL for Cascading



CHAPTER 5

Cascalog—A Clojure DSL for Cascading

Why Use Cascalog?
Sometimes the tools we select change the way we approach a problem. As the proverb
goes, if all you have is a hammer, everything looks like a nail. And sometimes our tools,
over time, actually interfere with the process of solving a problem.

For most of the past three decades, SQL has been synonymous with database work. A
couple of generations of programmers have grown up with relational databases as the
de facto standard. Consider that while “NoSQL” has become quite a popular theme,
most vendors in the Big Data space have been rushing (circa 2013Q1) to graft SQL
features onto their frameworks.

Looking back four decades to the origins of the relational model—in the 1970 paper by
Edgar Codd, “A Relational Model of Data for Large Shared Data Banks”—the point was
about relational models and not so much about databases and tables and structured
queries. Codd himself detested SQL. The relational model was formally specified as a
declarative “data sublanguage” (i.e., to be used within some other host language) based
on first-order predicate logic. SQL is not that. In comparison, it forces programmers to
focus largely on control flow issues and the structure of tables—to a much greater extent
than the relational model intended. SQL’s semantics are also disjoint from the pro‐
gramming languages in which it gets used: Java, C++, Ruby, PHP, etc. For that matter,
the term “relational” no longer even appears in the SQL-92 specifications.

Codd’s intent, effectively, was to avoid introducing unnecessary complexities that would
hamper software systems. He articulated a process for structuring data as relations of
tuples, as opposed to using structured data that is managed in tables. He also intended
queries to be expressed within what we would now call a DSL. Those are subtle points
that have enormous implications, which we’ll explore in Chapter 7.
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Cascalog is a DSL in Clojure that implements first-order predicate logic for large-scale
queries based on Cascading. This work originated at a company called BackType, which
was subsequently acquired by Twitter.

Clojure is a dialect of Lisp intended for functional programming and parallel processing.
The name “Cascalog” is a portmanteau of CASCading and datALOG. Through the
Leiningen build system, you can also run Cascalog in an interpretive prompt called a
REPL. This represents a powerful combination, because a developer could test snippets
with sample data in a Read-Evaluate-Print Loop (REPL), then compile to a JAR file for
production use on a Hadoop cluster.

Getting Started with Cascalog
The best resources for getting started with Cascalog are the project wiki and API doc‐
umentation on GitHub.

In addition to Git and Java, which were set up in Chapter 1, you will need to have a tool
called Leiningen installed for the examples in this chapter. Make sure that you have Java
1.6, and then read the steps given on the wiki page.

Our example shows using ~/bin as a target directory for the installation of lein, but
you could use any available location on your system:

$ export LEIN_HOME=~/bin

$ mkdir -p $LEIN_HOME

$ cd $LEIN_HOME

$ wget https://raw.github.com/technomancy/leiningen/preview/bin/lein

$ chmod 755 lein

$ export PATH=$LEIN_HOME:$PATH

$ export JAVA_OPTS=-Xmx768m

That downloads the lein script, makes it executable, and adds it to your PATH environ‐
ment variable. The script will update itself later.

This provides a build system for Clojure, along with an interactive prompt for evaluating

ad hoc queries. Test your installation of lein with the following:

$ lein

Leiningen is a tool for working with Clojure projects.

There will probably be much more usage text printed out.

Now connect somewhere you have space for downloads, and then use Git to clone the

latest update from the master branch of the Cascalog project on GitHub:

$ git clone git://github.com/nathanmarz/cascalog.git

Connect into that newly cloned directory and run the following steps with lein to get
Cascalog set up:
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$ cd cascalog

$ lein repl

That should initiate quite a large number of downloads from the Clojars and Conjars
Maven repos. Afterward, you should see an interactive prompt called a REPL:

user=>

Nathan Marz, the author of Cascalog, wrote an excellent tutorial to introduce the lan‐
guage. Let’s run through some of those code snippets.

First, load an in-memory data set called playground, which is great to use for simple
experimentation:

user=> (use 'cascalog.playground) (bootstrap)

nil

nil

user=>

Great, that is now loaded into memory. Next, let’s run a query:

user=> (?<- (stdout) [?person] (age ?person 25))

david

emily

Note that many console log lines from Cascading and Apache Hadoop have been re‐

dacted—look for the output tuples after a RESULTS line in the console log. The query

results david and emily are the persons in the playground data set under age 25. Next
let’s try a range query:

user=> (?<- (stdout) [?person] (age ?person ?age) (< ?age 30))

alice

david

emily

gary

kumar

Translated, we have the following:

• The ?<- operator that defines and runs a query

• The query that writes to a sink tap (stdout)

• A list of all matching persons ([?person])

• A generator from the age tap identifier [(age ?person ?age)]

• A predicate that constrains the result set by ?age less than 30

Note that the generator (age ?person ?age) causes the age of each person to be bound

to the ?age variable. In Cascalog you specify only what you require, not how it must be
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achieved. Also, the ordering of predicates is irrelevant. Even though no join operation

was specified, this code required an implied join of the person and age data:

(def person

  [

   ;; [person]

   ["alice"]

   ["bob"]

   ["chris"]

   ["david"]

   ["emily"]

   ["george"]

   ["gary"]

   ["harold"]

   ["kumar"]

   ["luanne"]

   ])

(def age

  [

   ;; [person age]

   ["alice" 28]

   ["bob" 33]

   ["chris" 40]

   ["david" 25]

   ["emily" 25]

   ["george" 31]

   ["gary" 28]

   ["kumar" 27]

   ["luanne" 36]

   ])

Nathan Marz has an excellent tutorial about different kinds of joins and filters in Cas‐
calog.

Next let’s modify the query to show the age for each person. We simply add the ?age
variable to the output tuple scheme:

user=> (?<- (stdout) [?person ?age] (age ?person ?age) (< ?age 30))

alice  28

david  25

emily  25

gary   28

kumar  27

A gist on GitHub shows building and running this app. If your results look similar, you
should be good to go.

Otherwise, if you have any troubles, contact the Cascalog developer community—which
in general is a subset of the Cascading developer community. You can also reach the
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cascalog-user email forum or tweet to #Cascalog on Twitter. Very helpful developers
are available to assist.

Example 1 in Cascalog: Simplest Possible App
The tutorial examples show Cascalog code snippets run in the interactive REPL. Next

let’s use lein to build a “fat jar” that can also run on an Apache Hadoop cluster.

Paul Lam of uSwitch has translated each of the “Impatient” series of Cascading apps
into Cascalog, some of which are more expressive than the originals.

Connect somewhere you have space for downloads, and then use Git to clone the Cas‐
calog version of “Impatient” on GitHub:

$ git clone git://github.com/Quantisan/Impatient.git

Connect into the part8 subdirectory. Then we’ll review an app in Cascalog for a dis‐
tributed file copy, similar to “Example 1: Simplest Possible App in Cascading” on page
3:

cd Impatient/part1

Source is located in the src/impatient/core.clj file:

(ns impatient.core

  (:use [cascalog.api]

        [cascalog.more-taps :only (hfs-delimited)])

  (:gen-class))

(defn -main [in out & args]

  (?<- (hfs-delimited out)

       [?doc ?line]

       ((hfs-delimited in :skip-header? true) ?doc ?line)))

The first four lines, which begin with a macro ns, define a namespace. Java and Scala
use packages and imports for similar reasons, but in general Clojure namespaces are
more advanced. For example, they provide better features for avoiding naming colli‐
sions. Namespaces are also first-class constructs in Clojure, so they can be composed
dynamically. In this example, the namespace imports the Cascalog API, plus additional

definitions for Cascading taps—such as TextDelimited for TSV format.

The next four lines, which begin with a macro defn, define a function, which is analo‐

gous to the Main method in “Example 1: Simplest Possible App in Cascading”. It has

arguments for the in source tap identifier and the out sink tap identifier, plus an args
argument list for arity overloading. A query writes output in TSV format for each tuple

of ?doc and ?line fields from the input tuple stream. Note the property :skip-

header? set to true, which causes the source tap to skip headers in the input TSV data.
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Next we compile and build to create a “fat jar.” This packages up all the project files and
dependencies into a single JAR file. Dependencies are defined in the project.clj build
script:

(defproject impatient "0.1.0-SNAPSHOT"

  :description "Cascalog for the Impatient - Part 1"

  :url "https://github.com/Quantisan/Impatient/tree/cascalog/part1"

  :license {:name "Eclipse Public License"

            :url "http://www.eclipse.org/legal/epl-v10.html"}

  :uberjar-name "impatient.jar"

  :aot [impatient.core]

  :main impatient.core

  :dependencies [[org.clojure/clojure "1.4.0"]

                 [cascalog "1.10.0"]

                 [cascalog-more-taps "0.3.0"]]

  :profiles {:provided {:dependencies \

  [[org.apache.hadoop/hadoop-core "0.20.2-dev"]]}})

Note that this build script is written in Clojure. For detailed descriptions of all the
configuration options available in a project.clj script, see the annotated sample.

Given the range and complexities of JVM-based build systems—Maven, Ivy, Gradle,
Ant, SBT, etc.—navigating through a build script is perhaps the single biggest hurdle
encountered when programmers start to learn about these frameworks. Clojure and
Leiningen make this essential concern quite simple. No surprises. The build is written
in the language.

To build with lein:

$ lein clean

$ lein uberjar

Created /Users/ceteri/opt/Impatient/part1/target/impatient.jar

The resulting JAR should now be located at target/impatient.jar with everything needed
for Hadoop standalone mode. To run it:

$ rm -rf output

$ hadoop jar ./target/impatient.jar data/rain.txt output/rain

Take a look at the output in the output/rain/part-00000 partition file. It should be the
same as for “Example 1: Simplest Possible App in Cascading”. Again, a gist on Git‐
Hub shows a log of this.
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Example 4 in Cascalog: Replicated Joins
Next, let’s review the Cascalog code for an app similar to the Cascading version in
“Example 4: Replicated Joins” on page 22. Starting from the “Impatient” source code
directory that you cloned in Git, connect into the part4 subdirectory. Look at the code
in src/impatient/core.clj:

(ns impatient.core

  (:use [cascalog.api]

        [cascalog.more-taps :only (hfs-delimited)])

  (:require [clojure.string :as s]

            [cascalog.ops :as c])

  (:gen-class))

(defmapcatop split [line]

  "reads in a line of string and splits it by regex"

  (s/split line #"[\[\]\\\(\),.)\s]+"))

(defn -main [in out stop & args]

  (let [rain (hfs-delimited in :skip-header? true)

        stop (hfs-delimited stop :skip-header? true)]

    (?<- (hfs-delimited out)

         [?word ?count]

         (rain _ ?line)

         (split ?line :> ?word-dirty)

         ((c/comp s/trim s/lower-case) ?word-dirty :> ?word)

         (stop ?word :> false)

         (c/count ?count))))

Again, this begins with a namespace, which serves as the target of a compilation. This

namespace also imports the Clojure string library (denoted by an s/ prefix) plus the

Cascalog aggregator operations (denoted by a c/ prefix).

Next there is a defmapcatop macro that defines a split operation to split text lines into
a token output stream—effectively a generator. This is based on a regex function in the
Clojure string library.

Next there is the main definition, similar to “Example 1: Simplest Possible App in Cas‐

cading”, which now includes a stop source tap identifier to read the stop words list:

• Define and run a query.

• Write output tuples to the out sink tap, in TSV format.

• Output tuple scheme has ?word and ?count fields.

• Generator from the rain source tap identifier, in TSV format.

• Input tuple scheme uses only the ?line field; the _ ignores the first field.
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• Each line is split into tokens, represented by the ?word-dirty variable.

• A composition c/comp performs a string trim and converts the token represented

by ?word to lowercase.

• The stop data filters out matched tokens, implying a left join.

• An aggregator c/count counts each token, represented by ?count.

It’s interesting that the Cascalog code for the Replicated Joins example is actually longer
than its Scalding equivalent. Even so, in Scalding much more of the “how”—the im‐
perative programming aspects—must be articulated. For example, the join, aggregation,
and filters in the Scalding version are more explicit. Also, to be fair, writing those Scald‐
ing examples took some effort to find approaches that conformed to Scala requirements
for the pipes.

Figure 5-1 shows the conceptual flow diagram for “Example 4: Replicated Joins”. Note
that here in the Cascalog version, there is no “pipeline” per se. The workflow is exactly

the definition of the main function. Whereas the Scalding code provides an almost pure
expression of the Cascading flow, the Cascalog version expresses the desired end goal

of the workflow with less imperative “controls” defined. For example, the GroupBy is not
needed. Again, in Cascalog you specify what is required, not how it must be achieved.

To build:

$ lein clean

$ lein uberjar

Created /Users/ceteri/opt/Impatient/part4/target/impatient.jar

To run:

$ rm -rf output

$ hadoop jar ./target/impatient.jar data/rain.txt output/wc data/en.stop

To verify:

$ cat output/wc/part-00000

The results should be the same as in the Cascading version (“Example 4: Replicated
Joins”).
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Figure 5-1. Conceptual flow diagram for “Example 4: Replicated Joins”
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Example 6 in Cascalog: TF-IDF with Testing
The TF-IDF with Testing example in Cascalog by Paul Lam is brilliant. It uses approx‐
imately 70 lines of Cascalog code, versus approximately 180 lines of Cascading (Java).
Plus, the Cascalog version is much simpler to follow.

Starting from the “Impatient” source code directory that you cloned in Git, connect into
the part6 subdirectory. Look at the code in src/impatient/core.clj, starting with the
namespace and definitions we used earlier in “Example 4 in Cascalog: Replicated Joins”:

(ns impatient.core

  (:use [cascalog.api]

        [cascalog.checkpoint]

        [cascalog.more-taps :only (hfs-delimited)])

  (:require [clojure.string :as s]

            [cascalog [ops :as c] [vars :as v]])

  (:gen-class))

(defmapcatop split [line]

  "reads in a line of string and splits it by regex"

  (s/split line #"[\[\]\\\(\),.)\s]+"))

(defn scrub-text [s]

  "trim open whitespaces and lower case"

  ((comp s/trim s/lower-case) s))

Great, those are essentially the same as in the earlier example. The next two definitions
create the stream assertion used to drop badly formed input tuples:

(defn assert-tuple [pred msg x]

  "helper function to add assertion to tuple stream"

  (when (nil? (assert (pred x) msg))

    true))

(def assert-doc-id ^{:doc "assert doc-id is correct format"}

  (partial assert-tuple #(re-seq #"doc\d+" %) "unexpected doc-id"))

The remainder of the app is divided into three subqueries: ETL, Word Count, and TF-
IDF. First comes the ETL subquery, which loads input, tokenizes lines of text, filters stop
words, applies the stream assertion, and binds a failure trap:

(defn etl-docs-gen [rain stop]

  (<- [?doc-id ?word]

      (rain ?doc-id ?line)

      (split ?line :> ?word-dirty)

      (scrub-text ?word-dirty :> ?word)

      (stop ?word :> false)

      (assert-doc-id ?doc-id)

      (:trap (hfs-textline "output/trap" :sinkmode :update))))

Next we have the Word Count functionality from before, now as a simplified subquery
because it follows immediately after the point where the text lines get tokenized:
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(defn word-count [src]

  "simple word count across all documents"

  (<- [?word ?count]

      (src _ ?word)

      (c/count ?count)))

Next we have functions for the three branches, “D,” “DF,” and “TF.” Note that in Cascalog
a branch is defined as a function—to some extent, this reinforces the concept of clo‐
sures in functional programming, at least much better than could be performed in Java.

A similar construct was also leveraged in the failure trap used in the stream assertion,

for the etl-docs-gen subquery. In Cascading, branch names get propagated through
a pipe assembly, then used in a flow definition to bind failure traps. The specification
of a failure trap gets dispersed through different portions of a Cascading app. In contrast,
Cascalog has branches and traps specified concisely within a function definition, as first-
class language constructs.

(defn D [src]

  (let [src (select-fields src ["?doc-id"])]

    (<- [?n-docs]

        (src ?doc-id)

        (c/distinct-count ?doc-id :> ?n-docs))))

(defn DF [src]

  (<- [?df-word ?df-count]

      (src ?doc-id ?df-word)

      (c/distinct-count ?doc-id ?df-word :> ?df-count)))

(defn TF [src]

  (<- [?doc-id ?tf-word ?tf-count]

      (src ?doc-id ?tf-word)

      (c/count ?tf-count)))

Note the use of another Cascalog aggregator, the c/distinct-count function. This is

equivalent to the Unique filter in Cascading.

Next we construct two definitions to calculate TF-IDF. The first is the actual formula,

which shows how to use math functions. It also uses a Clojure threading operator ->>
for caching the query results in memory.

The second definition is the function for the “TF-IDF” branch, which implies the joins
needed for the “D,” “DF,” and “TF” branches.

(defn tf-idf-formula [tf-count df-count n-docs]

  (->> (+ 1.0 df-count)

    (div n-docs)

    (Math/log)

    (* tf-count)))

(defn TF-IDF [src]

  (let [n-doc (first (flatten (??- (D src))))]
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    (<- [?doc-id ?tf-idf ?tf-word]

        ((TF src) ?doc-id ?tf-word ?tf-count)

        ((DF src) ?tf-word ?df-count)

        (tf-idf-formula ?tf-count ?df-count n-doc :> ?tf-idf))))

Last, we have the main function, which handles the command-line arguments for the

tap identifiers. Notice that it uses a workflow macro, which is an important construct
in Cascalog. The workflow macro, authored by Sam Ritchie at Twitter, is described in
detail at his GitHub site.

“Example 6 in Cascalog: TF-IDF with Testing” calculates TF-IDF metrics by abstracting
the problem into subqueries. Each step within the workflow is named, and as a collection
these steps represent the required subqueries for the app:

etl-step

The ETF subquery

tf-step

The TF-IDF subquery

wrd-step

The Word Count subquery

The main function is a collection of these three subqueries:

(defn -main [in out stop tfidf & args]

  (workflow

    ["tmp/checkpoint"]

    etl-step ([:tmp-dirs etl-stage]

              (let [rain (hfs-delimited in :skip-header? true)

                    stop (hfs-delimited stop :skip-header? true)]

                (?- (hfs-delimited etl-stage)

                    (etl-docs-gen rain stop))))

    tf-step  ([:deps etl-step]

              (let [src (name-vars (hfs-delimited etl-stage :skip-header? true)

                                   ["?doc-id" "?word"])]

                (?- (hfs-delimited tfidf)

                    (TF-IDF src))))

    wrd-step ([:deps etl-step]

              (?- (hfs-delimited out)

                  (word-count (hfs-delimited etl-stage))))))

The workflow is a first-class construct in Cascalog, unlike in Cascading or Scalding,
where workflows get inferred from the pipe assemblies. The steps each list their de‐
pendencies, and the steps may run in parallel if they are independent. To be clear, rec‐
ognize that this term “step” is quite different from an Apache Hadoop job step.

Instead the Cascalog step is used for checkpoints, which are built directly into work‐

flows. Notice the definition ["tmp/checkpoint"] just before the first step. That specifies
a location for checkpointed data. If any steps cause the app to fail, then when you re‐
submit the app, the workflow macro will skip all the steps preceding the point of failure.
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To build:

$ lein clean

$ lein uberjar

Created /Users/ceteri/opt/Impatient/part6/target/impatient.jar

To run:

$ rm -rf output

$ hadoop jar target/impatient.jar data/rain.txt output/wc \

   data/en.stop output/tfidf

To verify the output:

$ cat output/trap/part-m-00001-00001

zoink

$ head output/tfidf/part-00000

doc02  0.22314355131420976     area

doc01  0.44628710262841953     area

doc03  0.22314355131420976     area

doc05  0.9162907318741551      australia

doc05  0.9162907318741551      broken

doc04  0.9162907318741551      california's

doc04  0.9162907318741551      cause

doc02  0.9162907318741551      cloudcover

doc04  0.9162907318741551      death

doc04  0.9162907318741551      deserts

“Example 6 in Cascalog: TF-IDF with Testing” also includes unit tests, with source code
in the test/impatient/core_test.clj file:

(ns impatient.core-test

  (:use impatient.core

        clojure.test

        cascalog.api

        [midje sweet cascalog]))

(deftest scrub-text-test

  (fact

    (scrub-text "FoO BAR  ") => "foo bar"))

(deftest etl-docs-gen-test

  (let [rain [["doc1" "a b c"]]

        stop [["b"]]]

    (fact

      (etl-docs-gen rain stop) => (produces [["doc1" "a"]

                                             ["doc1" "c"]]))))

Note the reference to midje in the namespace. These tests are based on a test framework
called Midje-Cascalog, described by Ritchie on his GitHub project and in substantially
more detail in his article about best practices for Cascalog testing.

Midje enables you to test Cascalog queries as functions, whether they are isolated or

within part of a workflow. Each test definition shown in the preceding code uses fact
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1. http://sritchie.github.io/2011/09/30/testing-cascalog-with-midje/

2. http://sritchie.github.io/2011/09/29/getting-creative-with-mapreduce/

to make a statement about a query and its expected results. These tests duplicate the
unit tests that were used in “Example 6: TF-IDF with Testing” on page 41. Midje also
has features for stubs and mocks. Ritchie explains how Midje in Cascalog represents a
game-changer for testing MapReduce apps:

Without proper tests, Hadoop developers can’t help but be scared of making changes to
production code. When creativity might bring down a workflow, it’s easiest to get it
working once and leave it alone.1

This approach is not just better than the state of the art of MapReduce testing, as defined
by Cloudera; it completely obliterates the old way of thinking, and makes it possible to
build very complex workflows with a minimum of uncertainty.2

— Sam Ritchie

Incorporating TDD, assertions, traps, and checkpoints into the Cascalog workflow
macro was sheer brilliance, for Enterprise data workflows done right. Moreover, fact-
based tests separate a Cascalog app’s logic from concerns about how its data is stored—
reducing the complexity of required testing.

To run the tests for “Example 6 in Cascalog: TF-IDF with Testing”:

$ lein test

Retrieving org/clojure/clojure/maven-metadata.xml (2k)

    from http://repo1.maven.org/maven2/

Retrieving org/clojure/clojure/maven-metadata.xml (1k)

    from https://clojars.org/repo/

Retrieving org/clojure/clojure/maven-metadata.xml (2k)

    from http://repo1.maven.org/maven2/

Retrieving org/clojure/clojure/maven-metadata.xml

    from http://oss.sonatype.org/content/repositories/snapshots/

Retrieving org/clojure/clojure/maven-metadata.xml

    from http://oss.sonatype.org/content/repositories/releases/

lein test impatient.core-test

Ran 2 tests containing 2 assertions.

0 failures, 0 errors.

Again, a gist on GitHub shows a log of this run.

Cascalog Technology and Uses
A common critique from programmers who aren’t familiar with Clojure is that they
would need to learn Lisp. Actually, the real learning curve for Cascalog is more often
the need to learn Prolog. Datalog is formally a subset of Prolog—in terms of its syntax.
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Unlike Prolog, however, Datalog represents a truly declarative logic programming lan‐
guage: it expresses the logic for a unit of work without needing to specify its control
flow. This is great for query languages, and Datalog did influence “recursive queries” in
Oracle, “Magic Sets” in DB2, etc. Declarative logic programming is also the basis for
specifying “what” is needed instead of “how” it must be achieved. Within the context
of a functional programming paradigm—and especially within the context of Cascading
workflows and parallel processing—many decisions about “how” can be deferred to the
flow planner to leverage the underlying topology.

Cascalog leverages Datalog and Cascading within Clojure to provide several key
benefits:

• Code is very compact, generally smaller than with other Hadoop abstraction layers.

• An interactive REPL makes development and testing convenient and efficient.

• Generating queries dynamically is easy and idiomatic—unlike in SQL.

• Interspersing queries within the rest of the application logic is trivial—unlike in
Java + SQL.

• Custom operations get defined just like any other function—unlike the UDFs used
in Hive, Pig, etc.

An interesting aspect of having the REPL is that Cascalog provides many of the benefits
of Apache Hive—convenient for ad hoc queries, roll-ups, etc. However, the queries are
more expressive than SQL and, in general, an order of magnitude less code is required
for comparable Cascalog apps. Meanwhile, Cascalog apps provide deterministic work‐
flows within a functional programming paradigm. Apache Hive does not.

There are a number of published articles and case studies about large-scale commercial
deployments of Cascalog. Nathan Marz authored the language while working at Back‐
Type, which was subsequently acquired by Twitter. The publisher analytics team at
Twitter uses Cascalog apps at very large scale for ETL, ad hoc queries, predictive mod‐
eling, etc.

Other interesting deployments include:

The Climate Corporation
Insuring farmers against crop losses due to global warming

Nokia
Location services, mobile maps, etc.

uSwitch
Price comparison and switching

Factual
Geolocation data sets
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Harvard School of Public Health
Next-generation gene sequencing

Yieldbot
Real-time customer intent for advertising

Linkfluence
Preparing social graph data sets prior to analysis in Gephi or Neo4j

Lumosity
Data analytics for R&D in cognitive enhancement

Books about Cascalog and Clojure
For more information about Cascalog and Clojure programming in general, check out
these books:

• Big Data by Nathan Marz and James Warren (Manning)

• Clojure Programming by Chas Emerick, Brian Carper, and Christophe Grand
(O’Reilly)

• Practical Clojure by Luke VanderHart and Stuart Sierra (Apress)

While preparing code samples for this book, the build systems used for Cascading,

Scalding, and Cascalog showed some contrasts. Scalding scripts used sbt, Gradle, and
Maven. Simple tasks were simple to perform, but more complicated work required
troubleshooting, digging through manuals, workarounds, etc. In contrast, developing

the Cascalog examples with lein was amazingly straightforward. On the one hand,
preferences for programming languages vary widely between individuals and organi‐
zations, and many people find that the Lisp syntax in Clojure is difficult to understand.
On the other hand, you’ll need to search far and wide to find many complaints about
Leiningen.
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CHAPTER 6

Beyond MapReduce

Applications and Organizations
Overall, the notion of an Enterprise data workflow spans well beyond Hadoop, inte‐
grating many different kinds of frameworks and processes. Consider the architecture
in Figure 6-1 as a strawman that shows where a typical Enterprise data workflow runs.

In the center there is a workflow consuming from some unstructured data—most likely
some kind of machine data, such as log files—plus some other, more structured data
from another framework, such as customer profiles. That workflow runs on an Apache
Hadoop cluster, and possibly on other topologies, such as in-memory data grids
(IMDGs).

Some of the results go directly to a frontend use case, such as getting pushed into
Memcached, which is backing a customer API. Line of business use cases are what drive
most of the need for Big Data apps.

Some of the results also go to the back office. Enterprise organizations almost always
have made substantial investments in data infrastructure for the back office, in the pro‐
cess used to integrate systems and coordinate different departments, and in the people
trained in that process. Workflow results such as data cubes get pushed from the Hadoop
cluster out to an analytics framework. In turn, those data cubes get consumed for re‐
porting needs, data science work, customer support, etc.

81



Figure 6-1. Strawman workflow architecture

We can also view this strawman workflow from a functional perspective at Enterprise
scale, shown in Figure 6-2.
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Figure 6-2. Strawman—units of work

Different departments are typically responsible for specific units of work. Multiple data
sources get loaded and merged through the ETL process. Many organizations perform
that ETL within a data warehouse, such as Teradata, where the unit of work is defined
in ANSI SQL queries. Most use cases require additional data preparation, applying
business logic that is specific to an organization—for example, cleaning the data and
producing sample training sets. Apache Pig is a popular tool for that kind of data prep‐
aration on a Hadoop cluster. Those data sets may get used to create and score predictive
models: classifiers, recommenders, forecasts, etc. Many organizations perform their
modeling within an analytics framework, such as SAS. Application developers translate
specifications from the analysts’ models into another programming language, such as
Java, to run at scale. Then the data products from those apps must be integrated into
end use cases.

At this point, the business process for our strawman app has probably crossed through
four or five departments: Ops, Analytics, plus a few different applications teams. And
while some organizations have adopted more of Data Science practice—introducing
multidisciplinary teams that can handle all of those functions—in reality, most Enter‐
prise firms will have these responsibilities split across different departments, probably
with each team leveraging different frameworks. That creates an issue of operational
complexity, because the business process for the workflow is defined and executed in
pieces. Ops ultimately has responsibility for keeping the entire workflow running
smoothly, even though it crosses several boundaries; part of it gets defined in ANSI SQL,
part in Pig, part in SAS, part in Java, etc.

This kind of problem is why Enterprise organizations leverage Cascading. The entire
business process can be defined in one app—one JAR file—that integrates each of the
respective units of work, as shown in Figure 6-3. Rather than translating requirements
from each department into Java, Clojure, Scala, etc., most of the work can be integrated
directly.
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Figure 6-3. Strawman—functional integration

To support this, Cascading includes two components, Lingual for ANSI SQL and Pattern
for PMML, which are effectively DSLs. These allow for all of the following:

• ETL, which has been run in ANSI SQL, can be used directly in Lingual flows.

• Data preparation can be handled in Cascading, Cascalog, Scalding, etc.

• Predictive models can be exported as PMML and used directly in Pattern flows, for
scoring at scale.

• Cascading taps integrate other frameworks for the data sources and sinks.

• All of this goes into one app, one JAR, which Ops can schedule and instrument with
much less complexity.

• Some optimizations may become possible for the flow planners and compiler as a
result of this integration.

In other words, the different departments have a way to collaborate on a combined app
that ties together and optimizes business processes across the organization.

Lingual, a DSL for ANSI SQL
Lingual is an extension to Cascading that executes ANSI SQL queries as Cascading apps.
This open source project is a collaboration between Cascading and Optiq—an ANSI-
compliant SQL parser/optimizer written by Julian Hyde, the author of Mondrian. Julian
wrote a good description of the project.

It is important to note that Lingual itself is not a database. Rather, it leverages the power
of SQL to describe the business logic for data workflows—as a kind of functional
programming. In that sense Lingual implements a domain-specific language (DSL)
where Cascading workflows get defined in SQL. Optiq provides compatibility with a
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wide range of commercial implementations for ANSI SQL: tested with more than 6,000
complex SQL statements from production queries in DB2, Oracle, Teradata, SQL Server,
etc.

Consider that ANSI SQL provides the lingua franca for describing data in Enterprise.
People working in data management often think of database, relational, and SQL as all
referring to the same thing. In reality, most of the databases in use today are non-
relational; e.g., banking makes enormous use of hierarchical databases. Moreover, SQL
is not quite the same as the relational model. Edgar Codd, the author of the relational
model, spent much of the latter part of his career arguing that point. However, SQL is
a language—a declarative language, mostly based on a functional programming para‐
digm—and it describes workflows that are directed acyclic graphs (DAGs). In that sense,
SQL corresponds quite closely to the internals of Cascading.

Another subtle point is that Lingual is not intended for low-latency, ad hoc queries. In
that sense it is the opposite of “SQL on Hadoop” platforms such as Apache Hive—where
people issue queries and expect rapid responses. Instead, Lingual provides for high-
throughput work. Studies based on many years of Enterprise SQL use case analysis have
shown a long tail of machine-to-machine batch processing. In other words, a mission-
critical business process gets defined in SQL, with queries written by a machine.

ETL is a typical use case for this in Enterprise. On the one hand, large-scale joins, fil‐
tering, and aggregation are typically required. On the other hand, the source data is
probably not indexed and almost certainly not normalized. The requirements for ETL
are nearly the opposite of what a relational database provides. Many of the Enterprise
deployments of Cascading apps are ETL—addressing complex data quality problems
that are readily handled by the “plumbing” of traps, flows, branches, merges, etc.

Using the SQL Command Shell
In addition to the Lingual library and a JAR file used to build Cascading apps, other
components include the following:

• SQL command shell

• Catalog manager

• JDBC driver

To install the SQL command shell, run the following script:

$ curl \

 http://files.concurrentinc.com/lingual/1.0/lingual-client/ \

 install-lingual-client.sh | bash

That will create a ~/.lingual-client/ directory, which needs to be added to your PATH
environment variable.
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$ export PATH=~/.lingual-client/bin/:$PATH

When using Lingual with Apache Hadoop, the SQL command shell expects certain
environment variables to be set. That way the correct Hadoop version and configuration

will be included in the CLASSPATH:

HADOOP_HOME
Path to local Hadoop installation

HADOOP_CONF_DIR
Defaults to $HADOOP_HOME/conf

HADOOP_USER_NAME
The username to use when submitting Hadoop jobs

Assuming that you have HADOOP_HOME already set, then:

$ export HADOOP_CONF_DIR=$HADOOP_HOME/conf

$ export HADOOP_USER_NAME=<username>

If you’re working with a remote Elastic MapReduce cluster on Amazon AWS, see the

Bash EMR utilities. Specifically, use the emrconf command to fetch remote configura‐
tion files.

If you encounter errors executing SQL queries on a remote cluster (Amazon AWS,
Windows Azure HDInsight, etc.) try the following workaround:

$ export HADOOP_USER_NAME=hadoop

That should resolve security issues that may be causing failures on the remote cluster.

Now let’s try using the Lingual SQL command shell. The following example is based on
data from the MySQL Sample Employee Database:

$ mkdir -p ~/src/lingual

$ cd ~/src/lingual

$ curl http://data.cascading.org/employees.tgz | tar xvz

That creates an employees subdirectory for the table data, which is essentially several
large CSV files. Next, load the schema for these tables into Lingual using SQL data
definitions:

$ curl http://data.cascading.org/create-employees.sh > create-employees.sh

$ chmod +x ./create-employees.sh

$ ./create-employees.sh local

Now try the SQL command line, querying to show a relational catalog for these tables:

$ lingual shell

0: jdbc:lingual:local> !tables

That lists metadata about the available tables: EMPLOYEE, TITLES, SALARIES. Next, let’s
try a simple query:
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0: jdbc:lingual:local> SELECT * FROM EMPLOYEES.EMPLOYEES WHERE FIRST_NAME = 'Gina';

The result set should show records for a whole bunch of people named Gina.

An interesting use case for the Lingual SQL command shell is in organizations that use
Hadoop for large-scale data products, which are not using SQL already. For example,
consider the case where an Engineering team is building machine learning apps in
Cascalog…then Customer Support comes along with an interrupt task to pull the data
for a particular customer ID. Rather than derail Engineering with Support interrupts,
it makes sense to expose a view of the data through standard tools with ANSI SQL and
JDBC connections—these will already be familiar to the people working in Support,
Finance, Ops, etc.

Using the JDBC Driver
Connect to a directory on your computer where you have a few gigabytes of available
disk space, and then clone the source code repo from GitHub:

$ git clone git://github.com/Cascading/lingual.git

Once that completes, connect into the lingual directory, then into the lingual-local
subdirectory. Next build the Lingual JDBC connector to run locally:

$ gradle clean fatjar

Then connect into the ../lingual-examples subdirectory and take a look at the src/main/
java/cascading/lingual/examples/foodmart/JdbcExample.java app. Java source used to
execute SQL queries through a Lingual JDBC connection is much the same as with any
other JDBC driver:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class JdbcExample

  {

  public static void main( String[] args ) throws Exception

    {

    new JdbcExample().run();

    }

  public void run() throws ClassNotFoundException, SQLException

    {

    Class.forName( "cascading.lingual.jdbc.Driver" );

    Connection connection = DriverManager.getConnection(

       "jdbc:lingual:local;schemas=src/main/resources/data/example" );

    Statement statement = connection.createStatement();

    ResultSet resultSet = statement.executeQuery(
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        "select *\n"

          + "from \"example\".\"sales_fact_1997\" as s\n"

          + "join \"example\".\"employee\" as e\n"

          + "on e.\"EMPID\" = s.\"CUST_ID\"" );

    while( resultSet.next() )

      {

      int n = resultSet.getMetaData().getColumnCount();

      StringBuilder builder = new StringBuilder();

      for( int i = 1; i <= n; i++ )

        {

        builder.append(( i > 1 ? "; " : "" )

            + resultSet.getMetaData().getColumnLabel( i )

            + "="

            + resultSet.getObject( i ) );

        }

     System.out.println( builder );

      }

    resultSet.close();

    statement.close();

    connection.close();

    }

  }

In this example, the table schema gets derived directly from the headers of the CSV files.
In other words, point a JDBC connection at a directory of flat files and query them as
tables—as if they had already been loaded into a SQL database—without needing the
database.

To build and run the JDBC example:

$ gradle clean jar

$ hadoop jar build/libs/lingual-examples–1.0.0-wip-dev.jar

This sample app uses Lingual to open a JDBC connection and run the following SQL
query:

SELECT *

  FROM "example"."sales_fact_1997" AS s

  JOIN "example"."employee" AS e

    ON e."EMPID" = s."CUST_ID"

;

Keep in mind that the quote marks are important, and table names are case-sensitive
on some operating systems (this is due to Java).

The query runs on example data in the src/main/resources/data/example/ subdirectory
in the CSV files there. Query results should look like this:
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CUST_ID=100; PROD_ID=10; EMPID=100; NAME=Bill

CUST_ID=150; PROD_ID=20; EMPID=150; NAME=Sebastian

It’s interesting to consider how the code would look in an equivalent Cascading app:

Tap empTap =

 new FileTap(new TextDelimited(true, ",", "\""), "src/test/data/employee.txt");

Tap salesTap =

 new FileTap(new TextDelimited(true, ",", "\""), "src/test/data/salesfact.txt");

Tap resultsTap =

 new FileTap(new TextDelimited(true, ",", "\""), "build/test/output/results.txt",

 SinkMode.REPLACE);

Pipe empPipe = new Pipe("emp");

Pipe salesPipe = new Pipe("sales");

Pipe join =

 new CoGroup(empPipe, new Fields("empid"), salesPipe, new Fields("cust_id"));

FlowDef flowDef = flowDef()

  .setName("flow")

  .addSource(empPipe, empTap)

  .addSource(salesPipe, salesTap)

  .addTailSink(join, resultsTap);

Flow flow = new LocalFlowConnector().connect(flowDef);

flow.start();

TupleEntryIterator iterator = resultTap.openForRead();

Arguably, that code is more compact than the JDBC use case. Even so, Lingual allows
for Cascading apps that read SQL queries as flat files, as command-line options—which
can leverage a great number of existing ANSI SQL queries.

Integrating with Desktop Tools
By virtue of having a JDBC connector into Cascading workflows on Apache Hadoop
clusters, we can leverage many existing SQL tools. For example, Toad is a popular tool
for interacting with SQL frameworks. RStudio (shown in Figure 6-4) is a popular IDE
for statistical computing in R, which can import data through JDBC.
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Figure 6-4. RStudio

The following example is based on the RJDBC package for R, assuming that the MySQL
Sample Employee Database has been downloaded as described previously. This illus‐
trates a common use case for embedded SQL queries leveraging unstructured data, i.e.,
the long tail of machine-to-machine communications:

# JDBC support in R is provided by the RJDBC package http://www.rforge.net/RJDBC/

# install the RJDBC package; only needed once--uncomment next line the first time

#install.packages("RJDBC", dep=TRUE)

# load the library

library(RJDBC)

# set up the driver

drv <- JDBC("cascading.lingual.jdbc.Driver",

  "~/src/concur/lingual/lingual-local/build/libs/

  lingual-local-1.0.0-wip-dev-jdbc.jar")

# set up a database connection to a local repository

connection <- dbConnect(drv,

  "jdbc:lingual:local;catalog=~/src/concur/lingual/lingual-examples/

  tables;schema=EMPLOYEES")

# query the repository

df <- dbGetQuery(connection,

  "SELECT * FROM EMPLOYEES.EMPLOYEES WHERE FIRST_NAME = 'Gina'")
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head(df)

# use R functions to summarize and visualize part of the data

df$hire_age <- as.integer(as.Date(df$HIRE_DATE) - as.Date(df$BIRTH_DATE)) / 365.25

summary(df$hire_age)

# uncomment next line the first time

#install.packages("ggplot2")

library(ggplot2)

m <- ggplot(df, aes(x=hire_age))

m <- m + ggtitle("Age at hire, people named Gina")

m + geom_histogram(binwidth=1, aes(y=..density.., fill=..count..)) + geom_density()

That R script first sets up a JDBC connection in Lingual. Then it runs the same query
we used in the SQL command shell to list records for employees named Gina. Next, the
script calculates age (in years) at time of hire for employees in the SQL result set. Then
it calculates summary statistics and visualizes the age distribution, shown in Figure 6-5:

> summary(df$hire_age)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

  20.86   27.89   31.70   31.61   35.01   43.92

Figure 6-5. R data visualization

This shows how a very large data set could be queried to produce a sample, then analyzed
—all based on R, JDBC, and SQL. Under the hood, Cascading and Apache Hadoop are
doing the heavy lifting to run those queries at scale. Meanwhile, the users, analysts, and
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data scientists work with familiar tools and languages. That’s a subtle yet powerful ca‐
pability of Lingual.

Books Related to Lingual
For more information about ANSI SQL issues related to Lingual, check out these books:

• Data Quality: The Accuracy Dimension by Jack Olson (Morgan Kaufmann)

• Mondrian in Action: Open source business analytics by William Back, Nicholas
Goodman, and Julian Hyde (Manning)

Pattern, a DSL for Predictive Model Markup Language
Pattern is an extension to Cascading that translates Predictive Model Markup Language
(PMML) into Cascading apps. This open source project is a collaboration between de‐
velopers at Cascading and other firms, to get coverage for several popular machine
learning algorithms.

PMML is an established XML standard, since 1997, developed by a consortium called
Data Modeling Group. Many vendors for analytics frameworks support exporting
models as PMML: SAS, IBM SPSS, Microstrategy, Oracle, etc. Also, many popular open
source tools support PMML export: R, Weka, KNIME, RapidMiner, etc.

PMML is the leading standard for statistical and data mining models and supported by
over 20 vendors and organizations. With PMML, it is easy to develop a model on one
system using one application and deploy the model on another system using another
application.

— Data Modeling Group

The XML captures the parameters of a model, plus metadata for defining it as a work‐
flow. That’s the point of Pattern: develop models on popular analytics frameworks, then
deploy them within Cascading workflows. Benefits include greatly reduced develop‐
ment costs and fewer licensing issues at scale; leveraging the economics of Apache Ha‐
doop clusters, plus the core competencies of analytics staff, plus existing IP in predictive
models.

Organizations also like to use PMML for this work because several different models can
be trained, and then the resulting PMML gets tagged and archived in version control.
Experiments can be evaluated with A/B testing, multi-armed bandit, etc.; however, the
source code does not have to change as the models evolve.

92 | Chapter 6: Beyond MapReduce

http://www.amazon.com/dp/1558608915
http://www.amazon.com/dp/161729098X
http://bit.ly/17TPl0z
http://bit.ly/17TPl0z
http://www.dmg.org/
http://bit.ly/1aCWKS0
http://bit.ly/16OOObE


Initially, the focus of the Pattern project was entirely on model scoring:

1. Create a predictive model in an analytics framework.

2. Export the model as PMML.

3. Use Pattern to translate the PMML description into a parallelized algorithm, as a
Cascading subassembly.

4. Run the model in parallel at scale on a Hadoop cluster.

More recently the project has begun work on model creation, where models get trained
at scale using Hadoop clusters and saved as PMML. Training at scale can leverage other
libraries based on Cascading, such as the Matrix API for Scalding. Then the model can
be run at scale using the model scoring features.

Of course there are many commercial analytics frameworks used for predictive mod‐
eling. Popular tools include SAS, SAP’s Hana, Oracle’s Exalytics, Microstrategy, Micro‐
soft SQL Server, Teradata, plus a variety of offerings from IBM such as SPSS. What these
products all share is that they are expensive to license for large-scale apps.

There are Java translators for SAS such as Carolina. Enterprise organizations typically
look to migrate analytics workloads off of licensed frameworks and onto Hadoop clus‐
ters because of the potential for enormous cost savings. However, that migration implies
the cost of rewriting and validating models in Java, Hive, Pig, etc.

In terms of Hadoop specifically, there are very good machine learning libraries available
—such as Apache Mahout or the Mallet toolkit from UMass. However, these are tightly
coupled to Apache Hadoop. They are not designed to integrate with other data frame‐
works and topologies, let alone leverage the Cascading flow planner.

Pattern implements large-scale, distributed algorithms in the context of Cascading as a
pattern language:

• In contrast with R, it emphasizes test-driven development (TDD) at scale, with
more standardized failure modes.

• In contrast with SAS, it is open sourced under an Apache ASL 2.0 license, and its
algorithms run efficiently in parallel on large-scale clusters.

• In contrast with Mahout, it implements predictive models that can leverage re‐
sources beyond Hadoop while complying with best practices for Enterprise IT.

Getting Started with Pattern
Connect to a directory on your computer where you have a few gigabytes of available
disk space, and then clone the source code repo from GitHub:

$ git clone git://github.com/Cascading/pattern.git

Pattern, a DSL for Predictive Model Markup Language | 93

http://bit.ly/10zKtbs
http://bit.ly/1aCWPoV
http://www.dullesopen.com/
http://mahout.apache.org/
http://mallet.cs.umass.edu/


Once that completes, connect into the pattern/pattern-examples directory.

To verify that these steps completed correctly, let’s build Pattern and run its unit tests:

$ gradle --info --stacktrace clean test

The last few lines of the console log for these unit tests should look like this:

Running test: test testMain(pattern.model.KMeansTest)

Running test: test testMain(pattern.model.RandomForestTest)

Gradle Worker 1 finished executing tests.

Process 'Gradle Worker 1' finished with exit value 0 (state: SUCCEEDED)

BUILD SUCCESSFUL

Total time: 13.472 secs

Next, we use Gradle to build the Cascading app based on Pattern that will run our PMML
model. That should produce the build/libs/pattern-examples-*.jar JAR file. The version
number within that changes.

$ gradle clean jar

A log of running this is captured in a GitHub gist, and your results should be similar.

Predefined App for PMML
Pattern comes with a predefined app, which you can use to run PMML models at scale
without having to write any code. A conceptual flow diagram for this app is shown in
Figure 6-6, based on the Java source in the src/main/java/pattern/pmml/Main.java file.
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Figure 6-6. Conceptual flow diagram for predefined PMML use
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Let’s create a model in R, then export it as PMML, and run that model on Hadoop. The
following example uses a well-known public domain data set called Iris, which is based
on a 1936 botanical study of three species of Iris flower. Look in data/iris.rf.tsv for an
example of this data:

sepal_length sepal_width petal_length petal_width species predict

5.1 3.5 1.4 0.2 setosa  setosa

4.9 3.0 1.4 0.2 setosa  setosa

5.6 2.5 3.9 1.1 versicolor  versicolor

5.9 3.2 4.8 1.8 versicolor  virginica

6.3 3.3 6.0 2.5 virginica   virginica

4.9 2.5 4.5 1.7 virginica   versicolor

Next, we’ll create a predictive model using a machine learning algorithm called Random
Forest (RF). Random Forest is an ensemble learning method based on using a statistical
technique called “bagging” with decision trees. The general idea is that one decision tree
is probably never enough to capture the possible variations in a large data set. Instead,
we create a collection of decision trees to help explain the various edge cases while
avoiding overfitting.

In this example, the RF model uses flower measurements such as petal length to predict
the iris species. The Iris data set is particularly interesting in statistics because it is prov‐
ably impossible to predict all the edge cases correctly using simple linear regression
methods. That presents an excellent use case for RF. The algorithm gets used widely for
this reason in domains that have lots of important edge cases: for example, in finance
for anti-fraud detection, and in astrophysics for detecting cosmological anomalies.

Take a look at the source code in examples/r/pmml_models.R, in particular the section
that handles RF modeling. Here is an R script for just that model, based on the Random
Forest implementation in R:

install.packages("pmml")

install.packages("randomForest")

library(pmml)

library(randomForest)

require(graphics)

## split data into test and train sets

data(iris)

iris_full <- iris

colnames(iris_full) <-

 c("sepal_length", "sepal_width", "petal_length", "petal_width", "species")

idx <- sample(150, 100)

iris_train <- iris_full[idx,]

iris_test <- iris_full[-idx,]

## train a Random Forest model

f <- as.formula("as.factor(species) ~ .")

fit <- randomForest(f, data=iris_train, proximity=TRUE, ntree=50)
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## report the measures of model fitness

print(fit$importance)

print(fit)

print(table(iris_test$species, predict(fit, iris_test, type="class")))

## visualize results

plot(fit, log="y", main="Random Forest")

varImpPlot(fit)

MDSplot(fit, iris_full$species)

## export PMML + test data

out <- iris_full

out$predict <- predict(fit, out, type="class")

dat_folder <- './data'

tsv <- paste(dat_folder, "iris.rf.tsv", sep="/")

write.table(out, file=tsv, quote=FALSE, sep="\t", row.names=FALSE)

saveXML(pmml(fit), file=paste(dat_folder, "iris.rf.xml", sep="/"))

The R script loads the required packages, along with the Iris data set. It splits the data

set into two parts: iris_train and iris_test. Then it trains a Random Forest model

using the iris_train part, using the petal and sepal measures to predict species.

The results of this model creation get evaluated and visualized in a few different ways.
First we have a few printed reports about the fitness of the model. One well-known
aspect of the Iris data set is that the “setosa” species is relatively easy to predict, whereas
the other two species have overlap, which confuses predictive models. We see that in
the results, but overall there is an estimated 5% error rate:

        OOB estimate of  error rate: 5%

Confusion matrix:

           setosa versicolor virginica class.error

setosa         32          0         0  0.00000000

versicolor      0         26         2  0.07142857

virginica       0          3        37  0.07500000

The chart in Figure 6-7 shows error rate versus the number of trees. One of the param‐
eters for training an RF model is to select the number of trees in the forest. As that
parameter approaches 50 trees, decrease in error levels out.
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Figure 6-7. RF model—error versus trees

The chart in Figure 6-8 shows the mean decrease in the Gini ratio for each independent

variable used in the model. In this case, petal_width is the best predictor.

Figure 6-8. RF model—mean decrease Gini

The chart in Figure 6-9 shows a multidimensional scaling (MDS) plot for the proximity
matrix.
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Figure 6-9. RF model—MDS proximity matrix

The plot shows the principal components of the distance matrix—points that are close
together represent data points that are similar to each other. This is one way of showing
outliers that haven’t been handled well by the model. Again, we know that the “setosa”
species clusters tightly, whereas “versicolor” and “virginica” tend to overlap.

The remainder of the R script writes the data with a column added to represent the
expected results from the model for us to use in regression testing. Then it writes the
PMML file to capture the model. Take a look at the resulting XML definitions in the
data/iris.rf.xml file:

 <MiningModel

   modelName="randomForest_Model"

   functionName="classification"

   >

  <MiningSchema>

   <MiningField name="species" usageType="predicted"/>

   <MiningField name="sepal_length" usageType="active"/>

   <MiningField name="sepal_width" usageType="active"/>

   <MiningField name="petal_length" usageType="active"/>

   <MiningField name="petal_width" usageType="active"/>

  </MiningSchema>

...

Now that we have a PMML model, let’s use Pattern to run it. We’ll run a regression test
to confirm that the results predicted on Hadoop match those predicted in R as a baseline.
Then we’ll calculate a confusion matrix to evaluate the error rates in the model. Again,
a log of a successful run is given in a GitHub gist to compare:

$ rm -rf out

$ hadoop jar build/libs/pattern-examples-*.jar \
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 data/iris.rf.tsv out/classify out/trap \

 --pmml data/iris.rf.xml \

 --assert \

 --measure out/measure

First, we clear the out directory used for output files, because Hadoop will check for it

and fail the app rather than overwrite data. We specify the input data source data/

iris.rf.tsv, output data sink out/classify/*, and also out/trap as a trap sink. The

latter is used for catching bad input data. The --pmml data/iris.rf.xml command-
line argument specifies our PMML model.

Note that we add --assert and --measure as optional command-line arguments. For

each tuple in the data, a stream assertion tests whether the predicted field matches the

score field generated by the model in R. Tuples that fail that assertion get trapped into

out/trap/part* for inspection later. Also, a confusion matrix gets written to out/meas

ure/part* output, based on species as the predicted field. We measure the perfor‐
mance of the predictive model, counting how many false positives or false negatives
result.

The output shows that model had a 100% success rate for the regression test. If there
had been any difference between the Pattern results and the R results, Cascading stream
assertions would have rejected those output tuples and shown exceptions in the console
log:

$ head out/classify/part-00000

sepal_length  sepal_width   petal_length    petal_width species predict score

5.1 3.5 1.4 0.2 setosa  setosa  setosa

4.9 3   1.4 0.2 setosa  setosa  setosa

4.7 3.2 1.3 0.2 setosa  setosa  setosa

4.6 3.1 1.5 0.2 setosa  setosa  setosa

5   3.6 1.4 0.2 setosa  setosa  setosa

5.4 3.9 1.7 0.4 setosa  setosa  setosa

4.6 3.4 1.4 0.3 setosa  setosa  setosa

5   3.4 1.5 0.2 setosa  setosa  setosa

4.4 2.9 1.4 0.2 setosa  setosa  setosa

$

$ head out/measure/part-00000

species    score      count

setosa     setosa     50

versicolor versicolor 48

versicolor virginica  2

virginica  versicolor 1

virginica  virginica  49

As expected, there is approximately 5% error overall. The setosa species gets predicted
correctly, whereas the other two species have some overlap.
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Integrating Pattern into Cascading Apps
Let’s take a look at how to incorporate Pattern into a Cascading app. This requires only
two additional lines of source code. The following shows a minimal Cascading app that

uses Pattern, starting with the set up for a Main.java class:

public class Main {

  public static void main( String[] args ) {

    String pmmlPath = args[ 0 ];

    String inputPath = args[ 1 ];

    String classifyPath = args[ 2 ];

    String trapPath = args[ 3 ];

    Properties properties = new Properties();

    AppProps.setApplicationJarClass( properties, Main.class );

    HadoopFlowConnector flowConnector =

     new HadoopFlowConnector( properties );

Next, we define three Cascading taps for input, output, and trap:

Tap inputTap =

  new Hfs( new TextDelimited( true, "\t" ), inputPath );

Tap classifyTap =

  new Hfs( new TextDelimited( true, "\t" ), classifyPath );

Tap trapTap =

  new Hfs( new TextDelimited( true, "\t" ), trapPath );

Then we use the PMMLPlanner in Pattern to parse the predictive model and build a

SubAssembly. The PMML file is referenced as a command-line argument called

pmmlPath in the following code:

PMMLPlanner pmmlPlanner = new PMMLPlanner()

  .setPMMLInput( new File( pmmlPath ) )

  .retainOnlyActiveIncomingFields()

  .setDefaultPredictedField( new Fields( "predict", Double.class ) );

flowDef.addAssemblyPlanner( pmmlPlanner );

Those are the only lines required for Pattern, other than its package import. In Cascalog
or Scalding, this would require even less code.

Finally, we call the flow planner to create a physical plan and then submit the job to
Hadoop:

Flow classifyFlow = flowConnector.connect( flowDef );

classifyFlow.writeDOT( "dot/classify.dot" );

classifyFlow.complete();
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Customer Experiments
There has been much interest in leveraging Pattern, Cascading, and Apache Hadoop to
run customer experiments at scale. The idea is to generate multiple variants of a pre‐
dictive model, each exported as PMML. Then run these models on a Hadoop cluster
with large-scale customer data. Finally, use analysis of the confusion matrix results to
measure the relative lift among models.

To show an example, first we need some data to use for an experiment. The code on
GitHub includes a Python script to generate sample data sets. Take a look at the exam‐
ples/py/gen_orders.py file. That script can be used to create a relatively large data set
(e.g., terabyte scale) for training and evaluating the PMML models on a Hadoop cluster:

#!/usr/bin/env python

# encoding: utf-8

import random

import sys

import uuid

CUSTOMER_SEGMENTS = (

    [0.2, ["0", random.gauss, 0.25, 0.75, "%0.2f"]],

    [0.8, ["0", random.gauss, 1.5, 0.25, "%0.2f"]],

    [0.9, ["1", random.gauss, 0.6, 0.2, "%0.2f"]],

    [1.0, ["1", random.gauss, 0.75, 0.2, "%0.2f"]]

)

def gen_row (segments, num_col):

    coin_flip = random.random()

    for prob, rand_var in segments:

        if coin_flip <= prob:

            (label, dist, mean, sigma, f) = rand_var

            order_id = str(uuid.uuid1()).split("-")[0]

            d = dist(mean, sigma)

            m = map(lambda x: f % d, range(0, num_col))

            return [label] + m + [order_id]

if __name__ == '__main__':

    num_row = int(sys.argv[1])

    num_col = int(sys.argv[2])

    m = map(lambda x: "v" + str(x), range(0, num_col))

    print "\t".join(["label"] + m + ["order_id"])

    for i in range(0, num_row):

        print "\t".join(gen_row(CUSTOMER_SEGMENTS, num_col))
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We run this script with command-line arguments to specify the number of rows and
columns. For example, the following creates 1,000 rows with 50 independent variables
each:

./examples/py/gen_orders.py 50 1000

A small example is given in the data/sample.tsv file:

label   var0    var1    var2    order_id        predict

1       0       1       0       6f8e1014        1

0       0       0       1       6f8ea22e        0

1       0       1       0       6f8ea435        1

...

Next, we use this data to create a model based on Random Forest—like in the earlier

example. The label dependent variable gets predicted based on var0, var1, and var2
as independent variables:

## train a Random Forest model

## example: http://mkseo.pe.kr/stats/?p=220

f <- as.formula("as.factor(label) ~ var0 + var1 + var2")

fit <- randomForest(f, data=data, proximity=TRUE, ntree=25)

print(fit)

saveXML(pmml(fit), file="sample.rf.xml")

Output from R shows an estimated 14% error rate for this model:

        OOB estimate of  error rate: 14%

Confusion matrix:

   0   1 class.error

0 69  16   0.1882353

1 12 103   0.1043478

Next, we use the same data to train a model based on a different algorithm, Logistic
Regression. To help illustrate experiment results later, one of the independent variables

var1 is omitted from the model:

## train a Logistic Regression model (special case of GLM)

## example: http://www.stat.cmu.edu/~cshalizi/490/clustering/clustering01.r

f <- as.formula("as.factor(label) ~ var0 + var2")

fit <- glm(f, family=binomial, data=data)

print(summary(fit))

saveXML(pmml(fit), file="sample.lr.xml")

Now we can use the predefined app in Pattern to run both models and collect their
confusion matrix results:

$ rm -rf out

$ hadoop jar build/libs/pattern-examples-*.jar \

 data/sample.tsv out/classify.rf out/trap \

 --pmml sample.rf.xml --measure out/measure

$ mv out/classify.rf .
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$ rm -rf out

$ hadoop jar build/libs/pattern-examples-*.jar \

 data/sample.tsv out/classify.lr out/trap \

 --pmml sample.lr.xml --measure out/measure

$ mv out/classify.lr .

It would be reasonably simple to build a Cascading app to do the comparisons between
models, i.e., a framework for customer experiments. That would be especially useful if
there were a large number of models to compare. In this case, we can compare results
using a spreadsheet as shown in Figure 6-10.

Figure 6-10. Customer experiment

The model based on Logistic Regression has a lower rate (5% versus 11%) for false
negatives (FN). However, that model has a much higher rate (52% versus 14%) for false
positives (FP).

Let’s put this into terms that decision makers use in business to determine which model
is better. For example, in the case of an anti-fraud classifier used in ecommerce, we can
assign a cost function to select a winner of the experiment. On one hand, a higher rate
of false negatives implies that more fraudulent orders fail to get flagged for review.
Ultimately that results in a higher rate of chargeback fines from the bank, and punitive
actions by the credit card processor if that rate goes too high for too long. So the FN
rate is proportional to chargeback risk in ecommerce. On the other hand, a higher rate
of false positives implies that more legitimate orders get flagged for review. Ultimately
that results in more complaints from actual customers, and higher costs for customer
support. So the FP rate is proportional to support costs in ecommerce.

Evaluating this experiment, the Logistic Regression model—which had a variable omit‐
ted to exaggerate the comparison—resulted in approximately half the FN rate, compared
with the Random Forest model. However, it also resulted in quadrupled costs for cus‐
tomer support. A decision maker can use those cost trade-offs to select the appropriate
model for the business needs.
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One important issue to keep in mind about analytics frameworks is that it tends to be
expensive or impossible to run models at scale. Running multiple models, such as for
extensive customer experiments, compounds that problem. By using Pattern, Cascad‐
ing, and Apache Hadoop, organizations can now scale their experiments, adding more
science to the practice of data-driven business.

Technology Roadmap for Pattern
As of version 4.01, PMML supports quite a number of different families of predictive
models:

Association Rules

AssociationModel element

Cluster Models

ClusteringModel element

Decision Trees

TreeModel element

Naïve Bayes Classifiers

NaiveBayesModel element

Neural Networks

NeuralNetwork element

Regression

RegressionModel and GeneralRegressionModel elements

Rule Sets

RuleSetModel element

Sequences

SequenceModel element

Support Vector Machines

SupportVectorMachineModel element

Text Analytics

TextModel element

Time Series

TimeSeriesModel element

The structure of a PMML document is quite interesting in the context of Cascading.
The input variables are defined in a metadata section. It’s possible to define some forms
of preprocessing and post-processing. Models can be combined into ensembles, such as
how Random Forest is an ensemble of decision trees. That has become a powerful
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strategy in commercial applications of machine learning. Moreover, PMML combines
these definitions into an expression of business process for a complex data workflow.
Overall, that maps to Cascading quite closely—input and output variables in PMML
correspond to tuple flows, with the Cascading flow planners providing parallelization
for predictive model algorithms on Hadoop clusters.

Currently there are several companies collaborating on the Pattern project. Besides the
Random Forest and Logistic Regression algorithms, other PMML implementations in‐
clude the following:

• Linear Regression

• K-Means Clustering

• Hierarchical Clustering

• Support Vector Machines

Linear regression is probably the most common form of predictive model, such as in
Microsoft Excel spreadsheets. K-means is widely used for customer segmentation,
document search, and other kinds of predictive models.

Other good PMML resources include the following:

• Data Mining Group—XML standards and supported vendors

• Zementis PMML validator

• PMML group on LinkedIn

• “Representing predictive solutions in PMML” by Alex Guazzelli

Books Related to Pattern
For more information about PMML and predictive models in general, check out these
books:

• PMML in Action by Alex Guazzelli, Wen-Ching Lin, and Tridivesh Jena (Create‐
Space) 

• Mining of Massive Datasets by Anand Rajaraman and Jeffrey Ullman (Cambridge
University Press)

106 | Chapter 6: Beyond MapReduce

http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Support_vector_machine
http://www.dmg.org/
http://www.zementis.com/pmml_tools.htm
http://linkd.in/1b7Xrl0
http://ibm.co/12H1Z9V
http://www.amazon.com/dp/1470003244
http://www.amazon.com/dp/1107015359


CHAPTER 7

The Workflow Abstraction

Key Insights
Thus far, we have looked at several examples of how to use Cascading. Now let’s step
back a bit and take a look at some of the theory at its foundation.

The author of Cascading, Chris Wensel, was working at a large firm known well for
many data products. Wensel was evaluating the Nutch project, which included Lucene
and subsequently Hadoop—he was evaluating how to leverage these open source tech‐
nologies for Big Data within an Enterprise environment. His takeaway was that it would
be difficult to find enough Java developers who could write complex Enterprise apps
directly in MapReduce.

An obvious response would have been to build some kind of abstraction layer atop
Hadoop. Many different variations of this have been developed over the years, and that
approach dates back to the many “fourth-generation languages” (4GL) starting in the
1970s. However, another takeaway Wensel had from the early days of Apache Hadoop
use was that abstraction layers built by and for the early adopters typically would not
pass the “bench test” for Enterprise. The operational complexity of large-scale apps and
the need to leverage many existing software engineering practices would be difficult if
not impossible to manage through a 4GL-styled abstraction layer.

A key insight into this problem was that MapReduce is based on the functional pro‐
gramming paradigm. In the original MapReduce paper by Jeffrey Dean and Sanjay
Ghemawat at Google, the authors made clear that a functional programming model
allowed for the following:
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• Apps to be automatically parallelized on large clusters of commodity hardware

• Programmers who didn’t have experience with parallel/distributed processing to
leverage large clusters

• Data frameworks “to use re-execution as the primary mechanism for fault
tolerance"

The general pattern of parallelism achieved through a MapReduce framework traces
back to what the AI community was doing in LISP in the 1970s and 1980s at MIT,
Stanford, CMU, etc. Also, most of the nontrivial Hadoop apps are data pipelines—which
are functional in essence.

The innovation of Cascading, in late 2007, was to introduce a Java API for functional
programming with large-scale data workflows. As we’ve seen thus far, this approach
allowed for a plumbing metaphor based on functional programming, which was very
close to the use cases for Hadoop but abstracted a much higher level than writing Map‐
Reduce code directly. At the same time, this approach leveraged the JVM and Java-based
tools without any need to create or support new languages. Programmers who had Java
expertise could leverage the economics of Hadoop clusters yet still use their familiar
tools.

In doing this, Cascading resolved many issues related to Hadoop use in Enterprise en‐
vironments. Notably, it did the following:

• Eased the “staffing bottleneck,” because Java developers could work with familiar
tools and processes

• Improved means for system integration, because Hadoop is rarely ever used in
isolation, and the abstraction integrated other frameworks

• Reduced the operational complexity of large-scale apps by keeping apps defined as
single JAR files

• Allowed for TDD and other software engineering practices at scale

A subtle point about the design of Cascading is that it created a foundation for building
other abstraction layers in JVM-based functional programming languages. Codd had
suggested the use of DSLs for manipulating the relational model as early as 1969. The
proof is in the pudding, because Twitter, Etsy, eBay, The Climate Corporation,
uSwitch, Nokia, LinkedIn, etc., have invested considerable engineering resources into
developing and extending open source projects—Cascalog, Scalding, PyCascading,
Cascading.JRuby, etc.—all based on functional programming. In turn they have built
out their revenue apps, along with many other firms, based on those projects.
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There are a few important theoretical aspects embodied by these data workflow ab‐
stractions based on Cascading. Those elements of theory can best be explained as layers
in the process of structuring data:

• Pattern language

• Literate programming

• Separation of concerns

• Functional relational paradigm

Pattern Language
Formally speaking, Cascading represents a pattern language. The notion of a pattern
language is that the syntax of the language constrains what can be expressed to help
ensure best practices. Stated in another way, a pattern language conveys expertise. For
example, consider how a child builds a tower out of Lego blocks. The blocks snap to‐
gether in predictable ways, allowing for complex structures that are reasonably sturdy.
When the blocks are not snapped together properly, those structures tend to fall over.
Lego blocks therefore provide a way of conveying expertise about building toy struc‐
tures.

Use of pattern language came from architecture, based on work by Christopher
Alexander on the “Oregon Experiment.” Kent Beck and Ward Cunningham
subsequently used it to describe software design patterns, popularized by the “Gang of
Four”—Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—for object-
oriented programming. Abstract Factory, Model-View-Controller (MVC), and Facade
are examples of well-known software design patterns.

Cascading uses pattern language to ensure best practices specifically for robust, parallel
data workflows at scale. We see the pattern syntax enforced in several ways. For example,
flows must have at least one source and at least one tail sink defined. For another ex‐

ample, aggregator functions such as Count must be used in an Every; in other words,
that work gets performed in a reduce task.

Another benefit of pattern language in Cascading is that it promotes code reuse. Rather,
it reduces the need for writing custom operations because much of the needed business
process can be defined by combing existing components. In a larger context, this is
related to the use of patterns in enterprise application integration (EAI).
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Books about Pattern Language
For more information about pattern language:

• A Pattern Language by Christopher Alexander, Sara Ishikawa, and Murray Silver‐
stein (Oxford University Press)

• Pattern-Oriented Software Architecture Volume 1: A System of Patterns by Frank
Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal
(Wiley)

• Patterns of Enterprise Application Architecture by Martin Fowler (Addison-Wesley)

Literate Programming
The philosophy of literate programming was originated by Donald Knuth. A reasonable
summary would be to say that instead of writing documentation about programs, write
documents that embed programs. We see this practice quite directly in terms of the flow
diagrams used in Cascading. A flow diagram is also a common expression of the business
process in a Cascading app, even though different portions of that process may have
been specified in Java, Clojure, Scala, Python, Ruby, ANSI SQL, PMML, etc. A flow
diagram is the literal representation for the query that will run in parallel on a cluster.

Instead of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer to do.

— Literate Programming
 Donald Knuth (1992)

When a Cascading app runs, it creates a flow diagram that can optionally be written to
a DOT file. Flow diagrams provide intuitive, visual representations for apps, which are
great for cross-team collaboration. Several good examples exist, but one is the phe‐
nomenon of different developers troubleshooting a Cascading app together over the

cascading-users email forum. Expert developers generally ask a novice to provide a
flow diagram first, often before asking to see source code. For instance, a flow diagram
for “Example 2: The Ubiquitous Word Count” is provided in Figure 7-1.

Another good example is found in Scalding apps, which have a nearly 1:1 correspond‐
ence between function calls and the elements in their flow diagrams. This demonstrates
excellent efficiency for language elision and literate representation. The benefit, in en‐
gineering terms, is that this property helps make the complex logic embodied in a
Scalding app relatively simple to understand.
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Figure 7-1. Annotated flow diagram for “Example 2: The Ubiquitous Word Count”

Separation of Concerns
Based on the philosophy of literate programming, Cascading workflows emphasize the
statement of business processes. This recalls a sense of business process management
(BPM) for Enterprise apps. In other words, think of BPM/BPEL for Big Data as a means
for workflow orchestration—in this case Cascading provides a kind of middleware. It
creates a separation of concerns between the business process required for an app and
its implementation details, such as Hadoop jobs, data serialization protocols, etc.

By virtue of the pattern language, the flow planners in Cascading have guarantees that
they will be able to translate business processes into efficient, parallel code at scale. That
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is a kind of “one-two punch” in Cascading, leveraging computer science theory in dif‐
ferent layers.

Books about Separation of Concerns
For more information about literate programming and separation of concerns:

• Literate Programming by Donald Knuth (Stanford)

• Elements Of Functional Programming by Chris Reade (Addison-Wesley)

Functional Relational Programming
Cascalog developers describe the separation of concerns between business process and
implementation (parallelization, etc.) as a principle: “specify what you require, not how
it must be achieved.” That’s an important principle because in practice, quite arguably,
developing Enterprise data workflows is an inherently complex matter. The frameworks
for distributed systems such as Hadoop, HBase, Cassandra, Memcached, etc. introduce
lots of complexity into the engineering process. Typical kinds of problems being solved,
often leveraging machine learning algorithms to find a proverbial needle in a haystack
within large data sets, also introduce significant complexity into apps.

The author of Cascalog, Nathan Marz, noted a general problem about Big Data frame‐
works: that the tools being used to solve a given problem can sometimes introduce more
complexity than the problem itself. We call this phenomenon accidental complexity,
and it represents an important anti-pattern in computer science.

A lot of people talk about how wonderfully expressive Clojure is. However, expressiveness
is not the goal of Clojure. Clojure aims to minimize accidental complexity, and its ex‐
pressiveness is a means to that end.

— Nathan Marz
 Twitter (2011)

There are limits to how much complexity people can understand at any given point,
limits to how well we can understand the systems on which we rely. Some approaches
to software design amplify that problem. For example, reading 50,000 lines of COBOL
is not particularly simple. SQL and Java are notorious for encouraging the development
of large, complicated apps. So it makes sense to prevent artifacts in our programming
languages from making Enterprise data workflows even more complex.

Referring back to the original 1969 paper about the relational model, Edgar Codd
focused on the process of structuring data as a mechanism for maintaining data integrity
and consistency of state, while providing a separation of concerns regarding data storage
and representation underneath. This description is quite apt for the workflow abstrac‐
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tion in Cascading. Codd’s first public paper about the relational model is archived in
the ACM Digital Library.

More recently, in the highly influential 2006 paper “Out of the Tar Pit,” Ben Moseley
and Peter Marks proposed functional relational programming (FRP) as a combination
of three major programming paradigms: functional, relational, and logical. FRP is pro‐
posed as an alternative to object-oriented programming (OOP), with the intent to min‐
imize the accidental complexity introduced into apps. For more information about FRP,
see the following:

• FRP paper

• FRP presentation

• FRP email list

When it comes to accidental and essential complexity we firmly believe that the former
exists and that the goal of software engineering must be both to eliminate as much of it
as possible, and to assist with the latter.

— Moseley and Marks
 “Out of the Tar Pit” (2006)

Moseley and Marks attempted to categorize the different kinds of complexity encoun‐
tered in software engineering, and analyzed the dimensions of state, code volume, and
explicit (imperative) concern with the flow of control through a system. They noted that
“complexity breeds complexity” in the absence of language-enforced guarantees—in
other words, it creates positive feedback loops in software practice. They pointed out
that complexity that derives from state is one of the biggest hurdles for making code
testable. Their paper also considered the origins of the relational model, going back to
Codd:

In FRP all essential state takes the form of relations, and the essential logic is expressed
using relational algebra extended with (pure) user-defined functions.

— Moseley and Marks
 “Out of the Tar Pit” (2006)

In other words, if we can cut out the unnecessary state represented in an app and focus
on the essential state (relations) we can eliminate much of the accidental complexity.
Cascading embodies much of that philosophy, putting FRP into the practice of building
Enterprise data workflows. Cascading and FRP have several important aspects of com‐
puter science theory in common:

• A workflow is represented as a static DAG.

• Only the root nodes of the DAG are mutable, i.e., the source taps.

• All the nodes in the DAG are relations, e.g., pipes and operations.
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• The practice of programming this DAG separates logical aspects from control
aspects.

Moseley and Marks also point toward a management approach indicated by FRP. For
example, an organization could focus one team on minimizing the accidental aspects
of a system. Other teams could then focus on the essential aspects, providing the infra‐
structure and the requirements for interfacing with other systems. Roughly speaking,
that corresponds respectively to the roles of developer, data scientist, ops, etc.; however,
the objectives of those teams become clarified through FRP. It also fits well with what
is shown in Figure 6-3 for cross-team functional integration based on Cascading.

Enterprise vs. Start-Ups
In summary, there are several theoretical aspects of the workflow abstraction. These get
leveraged in Cascading and the DSLs to help minimize the complexity of the engineering
process, and the complexity of understanding systems.

Generally speaking, in terms of Enterprise data workflows, there are two avenues to the
party—scale versus complexity—a contrast that is seen quite starkly in use case analysis
of Cascading deployments.

On one hand, there are Enterprise firms where people must contend with complexity
at scale all day, every day. Incumbents in the Enterprise space make very large invest‐
ments in their back office infrastructure and practices—generally using Java, ANSI SQL,
SAS, etc., and have a large staff trained in those systems and processes. While the in‐
cumbents typically face considerable challenges in trying to be innovative, they are faced
with multiple priorities for migrating workflows onto Apache Hadoop. One priority is
based on economics: scaling out a machine learning app on a Hadoop cluster implies
much less in licensing costs than running the app in SAS. Another priority is risk man‐
agement: being able to scale efficiently and rapidly, when the business requires it. Mean‐
while, a big part of the challenge is to leverage existing staff and integrate infrastructure
without disrupting established processes. The workflow abstraction in Cascading ad‐
dresses those issues directly.

On the other hand, start-ups crave complexity and must scale to become viable. Start-
ups are generally good at innovation and light on existing process. They tend to leverage
sophisticated engineering practices—e.g., Cascalog and Scalding—so that they can have
a relatively lean staff while positioning to compete against the Enterprise incumbents
and disrupt their market share. Cascading provides the foundation for DSLs in func‐
tional programming languages that help power those ventures.

There is a transition curve plotted along the dimensions of scale, complexity, and in‐
novation. One perspective of this is shown in Figure 7-2.

114 | Chapter 7: The Workflow Abstraction



1. http://www.cs.utexas.edu/~EWD/transcriptions/EWD12xx/EWD1243a.html

Figure 7-2. Scale versus complexity

Both the Enterprise incumbents and the start-ups are connected on that curve for any
given Big Data project. Ultimately, when they succeed, they tend to meet in the middle.
Dijkstra foresaw this relationship quite clearly:

Computing’s core challenge is how not to make a mess of it. If people object that any
science has to meet that challenge, we should give a double rebuttal. Firstly, machines are
so fast and storage capacities are so huge that we face orders of magnitude more room
for confusion, the propagation and diffusion of which are easily inadvertently mecha‐
nized. Secondly, because we are dealing with artefacts, all unmastered complexity is of
our own making; there is no one else to blame and so we had better learn how not to
introduce the complexity in the first place.1

— Edsger Dijkstra
 The next fifty years
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CHAPTER 8

Case Study: City of Palo Alto Open Data

Why Open Data?
When people first start to work with Cascading, one frequent question is “Where can
I get large data sets to use for examples?” For great sources of data sets, look toward
Open Data. Many governments at the city, state, and federal levels have initiatives to
make much of their data openly available. Open Data gives a community greater visi‐
bility into how its government functions. The general idea is that people within the
community—entrepreneurs, students, social groups, etc.—will find novel ways to lev‐
erage that data. In turn, the results of those efforts benefit the public good.

Here are some good examples of Open Data and other publically available repositories:

• http://explore.data.gov/

• http://open-data.europa.eu/open-data/

• http://commoncrawl.org/

• http://marinexplore.org/

• http://data.worldbank.org/

• http://geocommons.com/

• http://archive.ics.uci.edu/ml/

City of Palo Alto
The sample app discussed in this chapter was originally developed for a graduate engi‐
neering seminar at Carnegie Mellon University. The intent was to create an example
Cascading app based on the Open Data initiative by the City of Palo Alto. Many thanks
for help with this project go to Dr. Stuart Evans, CMU Distinguished Service Professor;
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Jonathan Reichental, CIO for the City of Palo Alto; and Diego May, CEO of Junar, the
company that provided the data infrastructure for this initiative and many others.

Thinking about Palo Alto and its Open Data initiative, a few ideas come to mind. The
city is generally quite a pleasant place: the weather is temperate, there are lots of parks
with enormous trees, most of downtown is quite walkable, and it’s not particularly
crowded. On a summer day in Palo Alto, one of the last things anybody really wants is
to be stuck in an office on a long phone call. Instead people walk outside and take their
calls, probably heading toward a favorite espresso bar or a popular frozen yogurt shop.
On a hot summer day in Palo Alto, knowing a nice route to walk in the shade would be
great. There must be a smartphone app for that—but as of late 2012, there wasn’t!

In this chapter, we’ll build an example Cascading workflow for that smartphone app as
a case study. A sample app is shown in both Java and Clojure to power a mobile data
API.

Imagine a mobile app that leverages the city’s municipal data to personalize recom‐
mendations: “Find a shady spot on a summer day in which to walk near downtown Palo
Alto. While on a long conference call. Sippin’ a latte or enjoying some fro-yo.” This app
shows the process of structuring data as a workflow, progressing from raw sources to
refine that process until we obtain the data products for that recommender. The results
are personalized based on the neighborhoods where a person tends to walk.

To download source code, first connect to a directory on your computer where you have
a few gigabytes of available disk space, and then use Git to clone the source code repo:

$ git clone git://github.com/Cascading/CoPA.git

Once that download completes, connect into that newly cloned directory. Source code
is shown in both Cascading (Java) and Cascalog (Clojure). We’ll work through the Cas‐
calog example, and its source is located in the src/main/clj/copa/core.clj file.

Moving from Raw Sources to Data Products
The City of Palo Alto has its Open Data portal available online. It publishes a wide range
of different data sets: budget history, census data, geographic information systems (GIS)
as shown in Figure 8-1, building permits, utility consumption rates, street sweeping
schedules, creek levels, etc.
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Figure 8-1. GIS data about trees in Palo Alto

For this app, we use parts of the GIS export—in particular the location data about trees
and roads. Most governments track components of their infrastructure using a GIS
system. ArcGIS is a popular software platform for that kind of work. Palo Alto exports
its GIS data, which you can download from the portal on Junar. A copy is also given in
the data/copa.csv file.

Take a look at one of the tree records in the GIS export:

$ cat data/copa.csv | grep "HAWTHORNE AV 22"

"Tree: 412 site 1 at 115 HAWTHORNE AV, on HAWTHORNE AV 22 from pl",

"   Private:   -1    Tree ID:   412    Street_Name:   HAWTHORNE AV

 Situs Number:   115    Tree Site:   1    Species:   Liquidambar styraciflua

 Source:   davey tree    Protected:       Designated:       Heritage:

 Appraised Value:       Hardscape:   None    Identifier:   474

 Active Numeric:   1    Location Feature ID:   18583

 Provisional:       Install Date:      ",

"37.446001565119,-122.167713417554,0.0 ",

"Point"

Clearly that is an example of unstructured data. Our next step is to structure those kinds
of records into tuple streams that we can use in our workflow.

Looking at the source code located in the src/main/clj/copa/core.clj file, the first several
lines define a Clojure namespace for importing required libraries:
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(ns copa.core

  (:use [cascalog.api]

        [cascalog.more-taps :only (hfs-delimited)]

        [date-clj])

  (:require [clojure.string :as s]

            [cascalog [ops :as c]]

            [clojure-csv.core :as csv]

            [geohash.core :as geo])

  (:gen-class))

Next, there are two functions that begin to parse and structure the raw data from the
GIS export:

(def parse-csv

  "parse complex CSV format in the unclean GIS export"

  (comp first csv/parse-csv))

(defn load-gis

  "Parse GIS csv data"

  [in trap]

  (<- [?blurb ?misc ?geo ?kind]

      ((hfs-textline in) ?line)

      (parse-csv ?line :> ?blurb ?misc ?geo ?kind)

      (:trap (hfs-textline trap))))

The GIS data is exported in comma-separated values (CSV) format. There are missing
values and other errors in the export, so we need to handle the parsing specially. The

load-gis function reads each line using the hfs-textline tap, then parses those into

tuples using the csv/parse-csv Clojure library. A trap collects any data lines that are
not formatted properly. In this case the trapped data does not contain much information,
so we simply ignore it.

One side note about process: in data science work, we typically encounter an 80/20 rule
such that 80% of the time and costs go toward cleaning up the data, while 20% of the
time and costs get spent on the science used to obtain actionable insights. The better
tools and frameworks help to balance and reduce those costs. It’s true in this app that
most of the code is needed for data preparation, while the recommender portion is only
a few lines. Even so, Cascalog helps make that data preparation process relatively simple.
Here we invoke the principle of “Specify what you require, not how to achieve it.” In

just a few lines of Clojure, we state the requirement to derive four fields (blurb, misc,

geo, kind) from the GIS export, and trap (discard) records that fail to follow that pattern.

Next we need to focus on structuring the tree data. Looking in the example record shown

previously, the tree has several properties listed. There is a unique identifier (412), a

street address (115 Hawthorne Av), a species name (Liquidambar styraciflua), etc.,
plus its geo coordinates. Our goal is to find a quiet shady spot in which to walk and take
a cell phone call. We definitely know about the location of each tree, but what can we
determine about shade? Given the tree species, we could look up average height and use
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that as an estimator for shade. So the next step is to use a regular expression to parse

the tree properties, such as address and species, from the misc field:

(defn re-seq-chunks [pattern s]

  (rest (first (re-seq pattern s))))

(def parse-tree

  "parses the special fields in the tree format"

  (partial re-seq-chunks

    #"^\s+Private\:\s+(\S+)\s+Tree ID\:\s+(\d+)\s+.*Situs

    Number\:\s+(\d+)\s+Tree Site\:\s+(\d+)\s+Species\:\s+(\S.*\S)\s+Source.*"

   ))

Great, now we begin to have some structured data about trees:

Identifier:   474

Tree ID:      412

Tree:         412 site 1 at 115 HAWTHORNE AV

Tree Site:    1

Street_Name:  HAWTHORNE AV

Situs Number: 115

Private:      -1

Species:      Liquidambar styraciflua

Source:       davey tree

Hardscape:    None

We can use the species name to join with a table of tree species metadata and look up
average height, along with inferring other valuable data. Take a look in the data/
meta_tree.tsv file to see the metadata about trees, which was derived from Wikipe‐
dia.org, Calflora.org, USDA.gov, etc. The species liquidambar styraciflua, commonly
known as an American sweetgum, grows to a height that ranges between 20 and 35
meters.

The next section of code completes our definition of a data product about trees. The

geo-tree function parses the geo coordinates: latitude, longitude, and altitude. The

trees-fields function defines the fields used to describe trees throughout the app;

other fields get discarded. The get-trees function is the subquery used to filter, merge,
and refine the estimators about trees.

(def geo-tree

  "parses geolocation for tree format"

  (partial re-seq-chunks #"^(\S+),(\S+),(\S+)\s*$"))

(def trees-fields ["?blurb" "?tree_id" "?situs" "?tree_site"

                   "?species" "?wikipedia" "?calflora" "?avg_height"

                   "?tree_lat" "?tree_lng" "?tree_alt" "?geohash"])

(defn get-trees [src tree-meta trap]

  "subquery to parse/filter the tree data"

  (<- trees-fields

      (src ?blurb ?misc ?geo ?kind)
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      (re-matches #"^\s+Private.*Tree ID.*" ?misc)

      (parse-tree ?misc :> ?priv ?tree_id ?situs

       ?tree_site ?raw_species)

      ((c/comp s/trim s/lower-case) ?raw_species :> ?species)

      (tree-meta ?species ?wikipedia ?calflora

       ?min_height ?max_height)

      (avg ?min_height ?max_height :> ?avg_height)

      (geo-tree ?geo :> ?tree_lat ?tree_lng ?tree_alt)

      ((c/each read-string) ?tree_lat ?tree_lng :> ?lat ?lng)

      (geo/encode ?lat ?lng geo-precision :> ?geohash)

      (:trap (hfs-textline trap))))

Note the call (re-matches #"^\s+Private.*Tree ID.*" ?misc) early in the subquery.
This regular expression filters records about trees out of the GIS tuple stream. This
creates a branch in the Cascading flow diagram.

After calling parse-tree to get the tree properties from the raw data, next we use ((c/

comp s/trim s/lower-case) ?raw_species :> ?species) to normalize the species
name. In other words, force it to lowercase and strip any trailing spaces, so that it can

be used in a join. The call to tree-meta performs that join. Next, the call to avg estimates
the height for each tree. This is a rough approximation, but good enough to produce a
reasonable “shade” metric.

The last few lines clean up the geolocation coordinates. First these coordinates are

parsed, then converted from strings to decimal numbers. Then the geo/encode uses the
coordinates to create a “geohash” index. A geohash is a string that gives an approximate

location. In this case, the six-digit geohash 9q9jh0 identifies a five-block square in which
tree 412 is located. That’s a good enough approximation to join with other data about
that location, later in the workflow.

Finally, the fields defined in trees-fields for tree 412 get structured this way:

?blurb      Tree: 412 site 1 at 115 HAWTHORNE AV, on HAWTHORNE AV 22 from pl

?tree_id    412

?situs      115

?tree_site  1

?species    liquidambar styraciflua

?wikipedia  http://en.wikipedia.org/wiki/Liquidambar_styraciflua

?calflora   http://calflora.org/cgi-bin/species_query.cgi?where-calrecnum=8598

?avg_height 27.5

?tree_lat   37.446001565119

?tree_lng   -122.167713417554

?tree_alt   0.0

?geohash    9q9jh0

At this point we have a data product for trees. Figure 8-2 shows a conceptual flow
diagram for the part of the workflow that structured this data.
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Figure 8-2. Conceptual flow diagram for tree data
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Next we repeat many of the same steps for the road data. The GIS export is more complex
for roads than for trees because the roads are described per block, with each block
divided into segments. Effectively, there is a new segment recorded for every turn in the
road. Road data also includes metrics about traffic rates, pavement age and type, etc.
Our goal is to find a quiet shady spot in which to walk and take a cell phone call. So we
can leverage the road data per segment in a couple of ways. Let’s create one estimator
to describe how quiet each segment is based on comparing the traffic types and rates.
Then we’ll create another estimator to describe the shade based on comparing how the
pavement reflects sunlight.

(def roads-fields ["?road_name" "?bike_lane" "?bus_route" "?truck_route"

                   "?albedo" "?road_lat" "?road_lng" "?road_alt" "?geohash"

                   "?traffic_count" "?traffic_index" "?traffic_class"

                   "?paving_length" "?paving_width" "?paving_area"

                   "?surface_type"])

(defn get-roads [src road-meta trap]

  "subquery to parse/filter the road data"

  (<- roads-fields

      (src ?road_name ?misc ?geo ?kind)

      (re-matches #"^\s+Sequence.*Traffic Count.*" ?misc)

      (parse-road ?misc :>

                  ?traffic_count ?traffic_index ?traffic_class

                  ?paving_length ?paving_width ?paving_area ?surface_type

                  ?overlay_year_str ?bike_lane ?bus_route ?truck_route)

      (road-meta ?surface_type ?albedo_new ?albedo_worn)

      ((c/each read-string) ?overlay_year_str :> ?overlay_year)

      (estimate-albedo ?overlay_year ?albedo_new ?albedo_worn :> ?albedo)

      (bigram ?geo :> ?pt0 ?pt1)

      (midpoint ?pt0 ?pt1 :> ?lat ?lng ?alt)

      ;; why filter for min? because there are geo duplicates..

      ((c/each c/min) ?lat ?lng ?alt :> ?road_lat ?road_lng ?road_alt)

      (geo/encode ?road_lat ?road_lng geo-precision :> ?geohash)

      (:trap (hfs-textline trap))))

Similar to the business process for trees, the get-roads function is the subquery used

to filter, merge, and refine the estimators about roads. The roads-fields function de‐
fines the fields used to describe roads throughout the app; other fields get discarded.

The regular expression (re-matches #"^\s+Sequence.*Traffic Count.*" ?misc)
filters records about roads out of the GIS tuple stream, creating a branch.
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We use some metadata about roads, in this case just to infer metrics about the pavement
reflecting sunlight. As pavement ages, its albedo properties change. So we parse the

surface_type and overlay_year, then call road-meta to join with metadata. Then we
can estimate albedo to describe how much a road segment reflects sunlight.

Note that there are some duplicates in the geo coordinates for road segments. We use

(c/each c/min) to take the minimum value for each segment, reducing the segment

list to unique values. Then we use geo/encode to create a six-digit geohash for each
segment.

Great—now we have another data product, for roads. Figure 8-3 shows a conceptual
flow diagram for the part of the workflow that structured and enriched this data.

The following tuple shows the road segment located nearest to tree 412—note that the
geohash matches, because they are within the same bounding box:

?blurb         Hawthorne Avenue from Alma Street to High Street

?traffic_count 3110

?traffic_class local residential

?surface_type  asphalt concrete

?albedo        0.12

?min_lat       37.446140860599854

?min_lng       -122.1674652295435

?min_alt       0.0

?geohash       9q9jh0
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Figure 8-3. Conceptual flow diagram for road data
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Calibrating Metrics for the Recommender
A good next step is to use an analytics tool such as R to analyze and visualize the data
about trees and roads. We do that step to perform calibration and testing of the data
products so far. Take a look at the src/scripts/copa.R file, which is an R script to analyze
tree and road data.

For example, Figure 8-4 shows a chart for the distribution of tree species in Palo Alto.
American sweetgum (Liquidambar styraciflua) is the most common tree.

Figure 8-4. Summary analysis for tree data

Also, there’s a density plot/bar chart of estimated tree heights, most of which are in the
10- to 30-meter range. Palo Alto is known for many tall eucalyptus and sequoia trees
(the city name translates to “Tall Stick”), and these show up on the right side of the
density plot—great for lots of shade. Overall, the distribution of trees shows a wide range
of estimated heights, which helps confirm that our approximation is reasonable to use.

library(ggplot2)

dat_folder <- "~/src/concur/CoPA/out"

d <- read.table(file=paste(dat_folder, "tree/part-00000", sep="/"),

                sep="\t", quote="", na.strings="NULL", header=FALSE,

                encoding="UTF8")
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colnames(d) <- c("blurb", "tree_id", "situs", "tree_site", "species",

                 "wikipedia", "calflora", "avg_height", "tree_lat",

                 "tree_lng", "tree_alt", "geohash")

# plot density for estimated tree heights

m <- ggplot(d, aes(x=avg_height))

m <- m + ggtitle("Estimated Tree Height (meters)")

m + geom_histogram(aes(y = ..density.., fill = ..count..)) + geom_density()

# which are the most popular trees?

t <- sort(table(d$species), decreasing=TRUE)

trees <- head(as.data.frame.table(t), n=20)

colnames(trees) <- c("species", "count")

trees

Looking at Figure 8-5 for analysis of the road data, most of the road segments are clas‐

sified as local residential. There are also arteries and collectors (busy roads) plus
truck routes that are likely to be more noisy.

Figure 8-5. Summary analysis for road data

We also see a distribution with a relatively long tail for traffic counts. Using traffic classes
and traffic counts as estimators seems reasonable.

d <- read.table(file=paste(dat_folder, "road/part-00000", sep="/"),

                sep="\t", quote="", na.strings="NULL", header=FALSE,

                encoding="UTF8")

colnames(d) <- c("road_name", "bike_lane", "bus_route", "truck_route",

                 "albedo", "road_lat", "road_lng", "road_alt", "geohash",
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                 "traffic_count", "traffic_index", "traffic_class",

                 "paving_length", "paving_width", "paving_area",

                 "surface_type")

t <- sort(table(d$surface_type), decreasing=TRUE)

roads <- head(as.data.frame.table(t), n=20)

colnames(roads) <- c("surface_type", "count")

roads

summary(d$traffic_class)

t <- sort(table(d$traffic_class), decreasing=TRUE)

roads <- head(as.data.frame.table(t), n=20)

colnames(roads) <- c("traffic_class", "count")

roads

summary(d$traffic_count)

plot(ecdf(d$traffic_count))

m <- ggplot(d, aes(x=traffic_count))

m <- m + ggtitle("Traffic Count Density")

m + geom_histogram(aes(y = ..density.., fill = ..count..)) + geom_density()

Spatial Indexing
Because we are working with GIS data, the attributes that tie together tree data, road
data, and GPS track are obviously the geo coordinates: latitude, longitude, and altitude.
Much of Palo Alto is relatively flat and not far above sea level because it is close to San
Francisco Bay. To make this code a bit simpler, we can ignore altitude. However, we’ll
need to do large-scale joins and queries based on latitude and longitude. Those are
problematic at scale: they are represented as decimal values, and range queries will be
required, both of which make parallelization difficult at scale. So we’ve used a geohash
as an approximate location, as a kind of bounding box: it combines the decimal values
for latitude and longitude into a string. That makes joins and queries much simpler and
makes the app more reasonable to parallelize. Effectively we cut the entire map of Palo
Alto into bounding boxes and then compute for each bounding box in parallel.

There can be problems with this approach. For instance, what if the center of a road
segment is right in between two geohash squares? We might end up with joins that
reference only half the trees near that road segment. There are a number of more in‐
teresting algorithms to use for spatial indexing. R-trees is one common approach. The
general idea would be to join a given road segment with trees in its bounding box plus
the neighboring bounding boxes. Then we apply a better algorithm within those col‐
lections of data. The problem is still reasonably constrained and can be parallelized.

In this sample app, we simply consider each geohash value as a kind of “bucket.” Imagine
that all the data points that fall into the same bucket get evaluated together. Figure 8-6
shows how each block of a road is divided into road segments.
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Figure 8-6. Road segments

Our app analyzes each road segment as a data tuple, calculating a center point for each.
We use a geohash value to construct a bounding box around that center point, then join
the data to collect metrics for all the trees nearby, as Figure 8-7 shows.

Figure 8-7. Trees near road segments

The join occurs in the get-shade function where both the roads and trees tuples ref‐

erence the ?geohash field:

(defn tree-distance [tree_lat tree_lng road_lat road_lng]

  "calculates distance from a tree to the midpoint of a road segment"

  (let [y (- tree_lat road_lat)

        x (- tree_lng road_lng)]

    (Math/sqrt (+ (Math/pow y 2.0) (Math/pow x 2.0)))))

(defn get-shade [trees roads]

  "subquery to join the tree and road estimates, to maximize for shade"

  (<- [?road_name ?geohash ?road_lat ?road_lng ?road_alt
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       ?road_metric ?tree_metric]

      ((select-fields roads ["?road_name" "?albedo" "?road_lat" "?road_lng"

        "?road_alt" "?geohash" "?traffic_count" "?traffic_class"])

       ?road_name ?albedo ?road_lat ?road_lng ?road_alt ?geohash

       ?traffic_count ?traffic_class)

      (road-metric ?traffic_class ?traffic_count ?albedo :> ?road_metric)

      ((select-fields trees ["?avg_height" "?tree_lat" "?tree_lng"

                             "?tree_alt" "?geohash"])

       ?height ?tree_lat ?tree_lng ?tree_alt ?geohash)

      (> ?height 2.0) ;; limit to trees which are higher than people

      (tree-distance ?tree_lat ?tree_lng ?road_lat ?road_lng :> ?distance)

      (<= ?distance 25.0) ;; one block radius (not in meters)

      (/ ?height ?distance :> ?tree_moment)

      (c/sum ?tree_moment :> ?sum_tree_moment)

      (/ ?sum_tree_moment 200000.0 :> ?tree_metric)))

This approach is inclusive, so we get more data than we need. Let’s filter out the trees

that won’t contribute much shade. The call to (> ?height 2.0) limits the trees to those

that are taller than people, i.e., those that provide shade. The tree-distance function
calculates a distance-to-midpoint from each tree to the road segment’s center point.

Note that this is not in meters. The call to (<= ?distance 25.0) limits the trees to those
within a one-block radius. The distance-to-midpoint calculation is used to filter trees
that are too small or too far away to provide shade.

The next step is a trick borrowed from physics. We calculate a sum of moments based
on tree height and distance-to-midpoint, then use that as an estimator for shade. The
dimensions of this calculation are not particularly important, so long as we get a dis‐
tribution of estimator values to use for ranking. The R script in src/scripts/metrics.R
shows some analysis and visualization of this sum of moments. Based on the median of

its distribution, we use 200000.0 to scale the estimator—to make its values simpler to
understand and compare with other metrics.

The road-metric function calculates metrics for comparing road segments. We have
three properties known about each road segment that can be used to create estimators:

(defn road-metric [traffic_class traffic_count albedo]

  "calculates a metric for comparing road segments"

  [[(condp = traffic_class

      "local residential"       1.0

      "local business district" 0.5

      0.0)

    (-> traffic_count (/ 200.0) (Math/log) (/ 5.0))

    (- 1.0 albedo)]])
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First, the traffic class has two values, local residential and local business dis

trict, which represent reasonably quiet places to walk—while the other possible values

are relatively busy and noisy. So we map from the traffic_class labels to numeric
values. Second, the traffic counts get scaled, based on their distribution—similarly to
make their values simpler to understand and compare with other metrics. Third, the

albedo value needs a sign change but otherwise works directly as an estimator.

In practice, we might train a predictive model—such as a decision tree—to compare
these estimators. That could help incorporate customer feedback, QA for the data, etc.
Having three estimators to compare road segments—to rank the final results—works
well enough for this example. The following tuple shows the resulting metrics for the
road segment located nearest to tree 412:

?road_name   Hawthorne Avenue from Alma Street to High Street

?geohash     9q9jh0

?road_lat    37.446140860599854

?road_lng    -122.1674652295435

?road_alt    0.0

?road_metric [1.0 0.5488121277250486 0.88]

?tree_metric 4.36321007861036

Figure 8-8 shows the conceptual flow diagram for merging the tree and road metrics to
calculate estimators for each road segment.
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Figure 8-8. Conceptual flow diagram for shade metrics
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Personalization
The steps in our app so far have structured the Open Data (GIS export), merged it with
curated metadata, then calculated metrics to use for ranking recommendations. That
unit of work created data products about quiet shady spots in Palo Alto in which to walk
and take a cell phone call. Given different data sources, the same approach could be
used for GIS export from other cities. Of course the distribution of geohash values would
change, but the business logic would remain the same. In other words, the same work‐
flow could scale to include many different cities in parallel—potentially, even worldwide.

Our next step is to incorporate the machine data component, namely the log files col‐
lected from GPS tracks on smartphones. This data serves to personalize the app, se‐
lecting recommendations for the road segments nearest to where the app’s users tend
to walk. For this example, we had people walking around Palo Alto with their iPhones
recording GPS tracks. Then those files were downloaded and formatted as logs. The

data/gps.csv file shows a sample. Each tuple has a timestamp (date), a unique identifier

for the user (uuid), geo coordinates, plus measurements for movement at that point.

The function get-gps is a Cascalog subquery that parses those logs:

(defn get-gps [gps_logs trap]

  "subquery to aggregate and rank GPS tracks per user"

  (<- [?uuid ?geohash ?gps_count ?recent_visit]

      (gps_logs ?date ?uuid ?gps_lat ?gps_lng ?alt

       ?speed ?heading ?elapsed ?distance)

      (read-string ?gps_lat :> ?lat)

      (read-string ?gps_lng :> ?lng)

      (geohash ?lat ?lng :> ?geohash)

      (c/count :> ?gps_count)

      (date-num ?date :> ?visit)

      (c/max ?visit :> ?recent_visit)

 ))

The function calculates a geohash, then aggregates some of the other values to create

estimators. For instance, the call to (c/count :> ?gps_count) counts the number of
visits, per user, to the same location. That provides an estimator for the “popularity” of

each location. The call to (c/max ?visit :> ?recent_visit) aggregates the time‐
stamps, finding the most recent visit per user, per location. That provides an estimator

for the “recency” of each location. Given the identifiers uuid and geohash, plus the two

metrics gps_count and recent_visit, we can join the GPS data with the data product
for road segments to apply a form of behavioral targeting.

Figure 8-9 shows the conceptual flow diagram for preparing the GPS tracks data.
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Figure 8-9. Conceptual flow diagram for GPS tracks

The following data shows some of the results near our geohash 9q9jh0 example. Note

how the 9q9 prefix identifies neighboring geohash values:

?uuid                               ?geohash ?gps_count ?recent_visit

342ac6fd3f5f44c6b97724d618d587cf    9q9htz   4          1972376690969

32cc09e69bc042f1ad22fc16ee275e21    9q9hv3   3          1972376670935

342ac6fd3f5f44c6b97724d618d587cf    9q9hv3   3          1972376691356

342ac6fd3f5f44c6b97724d618d587cf    9q9hv6   1          1972376691180

342ac6fd3f5f44c6b97724d618d587cf    9q9hv8   18         1972376691028

342ac6fd3f5f44c6b97724d618d587cf    9q9hv9   7          1972376691101

342ac6fd3f5f44c6b97724d618d587cf    9q9hvb   22         1972376691010

342ac6fd3f5f44c6b97724d618d587cf    9q9hwn   13         1972376690782

342ac6fd3f5f44c6b97724d618d587cf    9q9hwp   58         1972376690965

482dc171ef0342b79134d77de0f31c4f    9q9jh0   15         1972376952532

b1b4d653f5d9468a8dd18a77edcc5143    9q9jh0   18         1972376945348

Great, now we have a data product about areas in Palo Alto that are known to be walk‐
able. Over time, a production app might use this evidence to optimize the workflow.

Recommendations
The last part of this app is the actual recommender. As mentioned earlier, most of the
code in the workflow is used for data preparation—recall the 80/20 rule about that.
When it comes to the actual recommender, that’s just a few lines of code:

(defn get-reco [tracks shades]

  "subquery to recommend road segments based on GPS tracks"

  (<- [?uuid ?road ?geohash ?lat ?lng ?alt ?gps_count

       ?recent_visit ?road_metric ?tree_metric]

      (tracks :>> gps-fields)

      (shades ?road ?geohash ?lat ?lng ?alt ?road_metric ?tree_metric)))

Mostly this involves a join on geohash fields, then collecting road segment metrics for

each user—based on the uuid field. Due to the sparseness of geo coordinates in practice,
that join is likely to be efficient. For example, if the mobile app using this data gains
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millions of users, then the road segment data could be placed in the righthand side
(RHS) of the join. Each geohash is a five-block radius, which implies hundreds of road

segments or less. That allows for a HashJoin as a replicated join that runs more efficiently
in parallel at scale.

At this point, we have recommendations to feed into a data API for a mobile app. In

other words, per uuid value we have a set of recommended road segments. Each road
segment has metrics for aggregate tree shade, road reflection, traffic class, traffic rate—
in addition to the personalization metrics of recency and popularity for walking near
that location.

Recommenders generally combine multiple signals, such as the six metrics we have for
each road segment. Then they rank the metrics to personalize results. Some people
might prefer recency of visit, others might prefer as little traffic as possible. By providing
a tuple of those metrics to the end use case, the mobile app could allow people to adjust
their own preferences. In the case of our earlier example, the recommender results
nearest to tree 412 are as shown in Table 8-1.

Table 8-1. Example results from recommender

Label Value  

tree 413 site 2

addr 115 Hawthorne Ave

species Liquidambar styraciflua

geohash 9q9jh0

lat/lng 37.446, -122.168

est. height 23

shade metric 4.363

traffic local residential, light traffic

visit recency 1972376952532

That spot happens to be a short walk away from my train stop. Two huge American
sweetgum trees provide ample amounts of shade on a quiet block of Hawthorne Avenue,
which is a great place to walk and take a phone call on a hot summer day in Palo Alto.
(It’s also not far from a really great fro-yo shop.)

Build and Run
The build script in project.clj looks much like the build in Chapter 5:

(defproject cascading-copa "0.1.0-SNAPSHOT"

  :description "City of Palo Alto Open Data recommender in Cascalog"

  :url "https://github.com/Cascading/CoPA"

  :license {:name "Apache License, Version 2.0"

            :url "http://www.apache.org/licenses/LICENSE-2.0"
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            :distribution :repo}

  :uberjar-name "copa.jar"

  :aot [copa.core]

  :main copa.core

  :min-lein-version "2.0.0"

  :source-paths ["src/main/clj"]

  :dependencies [[org.clojure/clojure "1.4.0"]

                 [cascalog "1.10.1-SNAPSHOT"]

                 [cascalog-more-taps "0.3.1-SNAPSHOT"]

                 [clojure-csv/clojure-csv "2.0.0-alpha2"]

                 [org.clojars.sunng/geohash "1.0.1"]

                 [date-clj "1.0.1"]]

  :exclusions [org.clojure/clojure]

  :profiles {:dev {:dependencies [[midje-cascalog "0.4.0"]]}

             :provided {:dependencies

               [[org.apache.hadoop/hadoop-core "0.20.2-dev"]]

             }})

To build this sample app from a command line, run Leiningen:

$ lein clean

$ lein uberjar

That builds a “fat jar” that includes all the libraries for the Cascalog app. Next, we clear
any previous output directory (required by Hadoop), then run the app in standalone
mode:

$ rm -rf out/

$ hadoop jar ./target/copa.jar \

   data/copa.csv data/meta_tree.tsv data/meta_road.tsv data/gps.csv \

   out/trap out/park out/tree out/road out/shade out/gps out/reco

The recommender results will be in partition files in the out/reco/ directory. A gist on
GitHub shows building and running this app. If your results look similar, you should
be good to go.

Alternatively, if you want to run this app on the Amazon AWS cloud, the steps are the
same as for “Example 3 in Scalding: Word Count with Customized Operations” on page
54. First you’ll need to sign up for the EMR and S3 services, and also have your cre‐
dentials set up in the local configuration—for example, in your ~/.aws_cred/ directory.
Edit the emr.sh Bash script to use one of your S3 buckets, and then run that script from
your command line.

Key Points of the Recommender Workflow
This workflow illustrates some of the key points of building Enterprise data workflows:

1. Typically a workflow starts with some kind of ETL, loading unstructured data—
which we see for the GIS export and GPS log files.
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2. Then we have several steps of data preparation—in other words, creating a data
product about shady quiet road segments.

3. From that point, we used R to analyze and visualize the intermediate data—essen‐
tially testing and calibrating before setting parameters for the recommender.

4. Next, we leveraged algorithms—geospatial indexing approximated by a geohash,
behavioral targeting, plus a replicated join—so that the workflow could run effi‐
ciently in parallel at scale.

Another important point is to consider what kinds of data sources were used and what
value each contributed. This app shows how to combine three major categories of data:

Open Data
Unstructured data about municipal infrastructure (trees and roads) exported from
the city’s GIS systems—which provides the value back to the community

Machine Data
Unstructured data about where people like to walk, e.g., log files of GPS tracks
downloaded from smartphones—which provides the Big Data aspect and drives
personalization, giving value to individuals

Curated Metadata
Structured data (tabular) that allows us to leverage other sources, e.g., make infer‐
ences about tree species and road conditions

Open Data practices are relatively recent and evolving rapidly. Ultimately these will
include the process of curation, incorporating metadata and ontologies, to help make
community uses simpler and more immediate.

Of course, there are plenty of criticisms about this app and ways in which it might be
improved. We made assumptions about badly formatted data, simply throwing it away.
Some of the tree species names have spelling errors or misclassifications that could be
cleaned up and provided back to the City of Palo Alto to improve its GIS. Certainly
there are more sophisticated ways to handle the geospatial work. Arguably, this app was
intended as a base to build upon for student projects. The workflow can be extended to
include more data sources and produce different kinds of recommendations.

As an example of extending the app, the data products could be even more valuable if
there were estimators for ambient noise levels based on time and location. So how could
we get that? This app infers noise from data about road segments: traffic classes, traffic
rates. We could take it a step further and adjust the traffic rates using statistical models
based on time of day, and perhaps infer from bus lines, train schedules, etc. We might
be able to pull in data from other APIs, such as Google Maps. Thinking a bit more
broadly, we might be able to purchase aggregate data from other sources, such as busi‐
ness security networks, where cameras have audio feeds. Or perhaps we could sample
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audio levels from mobile devices, in exchange for some kind of credits. Large telecoms
use techniques like that to build their location services.

Some of the extensions that have been suggested so far include the following:

City of Palo Alto
Help assess the impact of new zoning and building permits; e.g., are there poisonous
trees near a proposed day care center?

Calflora
Report concentrations of invasive trees or endangered species, or perhaps optimize
where to release beneficial insects.

Real estate
Optimize sales leads by comparing estimated allergy zones with buyers’ preferences.

Start-ups
Some invasive tree species have valuable by-products like medicine, whereas others
can be converted to biodiesel for targeted harvest services.

Quite a large number of data APIs are available that could be leveraged to extend this
app:

• Factual for place data—along with CityGrid, Foursquare, Yelp, Localeze, YP, etc.

• Trulia for neighborhood data, housing prices, etc.

• Google for maps, photos, geocoding, etc.

• Wunderground for local weather data

• WalkScore for neighborhood data and walkability metrics

• GeoWordNet for semantic knowledge base about localized terms

• Various photo sharing APIs and Facebook Graph API in general

• Beer…need we say more?

The leverage for Open Data is about evolving feedback loops. This area represents a
greenfield for new approaches, new data sources, and new use cases. Overall, the app
shown here provides an interesting example to use for think-out-of-the-box exercises.
Fork it on GitHub and show us a new twist.
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APPENDIX A

Troubleshooting Workflows

The following tips are intended to help troubleshoot common issues when people are
first working with Cascading. These points are mostly about running the examples in
the book, but they apply to Enterprise use cases in general.

Build and Runtime Problems
One of the most frequent and useful tips given to people who are new to Cascading—
and to Apache Hadoop in general—is that if your build isn’t working as expected, you
may need to delete the local Maven repo.

On a Linux or Mac OS X laptop, that purge is handled by:

$ rm -rf ~/.m2

The build systems mentioned in this book—Gradle, Leiningen, SBT—all depend on
Maven under the hood. Unfortunately, sometimes Maven gets stuck. Purge its local
repository, and then run your build again.

Another common issue with builds is that the Hadoop distribution—or other included
JARs—has a dependency conflict with the Cascading artifacts in the Maven repo that

you’re using. For example, most of the builds shown in this book require cascading-

core and cascading-hadoop for compile-time dependencies. The builds that include

unit tests will also depend on cascading-test, junit, etc. Depending on your deploy‐
ment environment, some artifacts may need to be excluded, e.g., logging.

Other typical problems encountered include the following:

• Using Java 7—should use Java 6 instead

• Using a Hadoop version higher than 1.x—see the Cascading compatibility matrix

• Installing Hadoop but not in “standalone” mode
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• Running Hadoop atop Cygwin on Windows—which generally does not work

• Installing Hadoop using Homebrew on Mac OS X—install from the Apache Ha‐
doop download or one of the other major distributions instead

Anti-Patterns
Some patterns of coding are counterproductive and generally indicate that the design
of an app should be reworked. We call these anti-patterns, and some are specific to
Cascading.

If you find that you are writing substantial amounts of custom operations to make a
Cascading app perform the business process you need, that’s a warning sign. We find
that most Cascading apps require few custom operations, unless a developer is trying
to end-around the pattern language.

Another anti-pattern concerns traps. These are intended for exceptional data—rare,
unintended edge cases in the tuple stream. If you find that traps are being used in an
app to define the business process, that’s a warning sign. Filters and branches are sup‐
posed to be used to direct the tuple flows—for those tuples that are not exceptions. Apps
will not perform well when traps get used in place of filters.

Factory methods represent another kind of anti-pattern. Instead use SubAssembly sub‐
classes. The object constructors in Cascading are “factories,” so there’s not much sense
in adding unneeded code that in turn makes the app harder to understand. That would
be an example of introducing accidental complexity.

Workflow Bottlenecks
Performing aggregations at scale on Apache Hadoop is a hard problem. Joins in par‐
ticular can be difficult, and Cascading provides alternatives to improve performance.

In Chapter 3 we used HashJoin for a replicated join—in the case where one side is

smaller than the other. Otherwise, the join must be based on a CoGroup and the developer
may need to adjust the threshold for spilling to disk.

There also are many third-party extensions to Cascading, some of which can improve

the performance of large joins. For example, BloomJoin is a drop-in replacement for

CoGroup, based on using a bloom filter built from the righthand side (RHS) keys. This
can improve performance significantly when the RHS is relatively small but the RHS
tuples won’t fit in memory.

Another typical performance problem with Hadoop jobs concerns aggregations in
general--key/value skew. Consider the social graph for a social network such as Twitter:
most people may have up to a few hundred followers, but then a few outliers such as
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Lady Gaga may have millions. This can cause a highly skewed distribution of values per
key during the reduce tasks. The effect is that many tasks will start during a reduce
phase, and most finish relatively quickly. A few “straggler” tasks—e.g., Lady Gaga’s set
of followers—continue processing, perhaps for many hours. Overall the cluster utiliza‐
tion metrics drop because only a few tasks are running; however, the app itself cannot
progress until all of its reduce tasks complete. A potential workaround is to filter the
outlier keys that have huge sets of values and process them in a different branch of the
app.

Other Resources
This book is intended to be an introduction to Cascading and related open source
projects. There are several resources online for learning about Cascading in much more
detail:

• User Guide

• JavaDoc API Guide

• SDK and Sample Apps

• Extensions

• Conjars Maven repo

Also, there are a wealth of Cascading users and active discussions on the cascading-

user email forum. If you have a problem with a Cascading app—or Cascalog, Scalding,
PyCascading, Cascading.JRuby, etc.—then generate your flow diagram as a DOT file
and post a note to the email list.
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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