O'REILLY"

Designing for
Performance

WEIGHING AESTHETICS AND SPEED

Lara Callender Hogan

vww . allitebooks.cond

http://www.allitebooks.org

O'REILLY"

Designing for Performance

As a web designer, you encounter tough choices when
it comes to weighing aesthetics and performance.
Good content, layout, images, and interactivity are
essential for engaging your audience, and each of these
elements has an enormous impact on page load time
and the end-user experience. In this practical book, Lara
Hogan helps you approach projects with page speed in
mind, showing you how to test and benchmark which
design choices are most critical.

To get started, all you need are basic HTML and CSS
skills and Photoshop experience.

Topics include:

m The impact of page load time on your site,
brand, and users

m Page speed basics: how browsers retrieve
and render content

m Best practices for optimizing and loading
images

m How to clean up HTML and CSS, and
optimize web fonts

m Mobile-first design with performance goals
by breakpoint

m Using tools to measure performance as
your site evolves

m Methods for shaping an organization’s
performance culture

“If you've ever wondered

how aesthetic choices
impact performance or
how cellular networks
degrade your site’s
user experience—read
this book. Designing
for Performance gives
you the tools to make
and measure high
impact performance
Improvements on
your site, including
actionable strategies
to increase awareness
of performance across
your company. Great
performance is good

design.”

—Jason Huff
Product Design Manager, Etsy

Lara Callender Hoganis the
Senior Engineering Manager of
Performance at Etsy. She champi-
ons performance as a part of the
overall user experience, striking a
balance between aesthetics and
speed, and building performance
into company culture.

USER EXPERIENCE/USER INTERFACE DESIGN

US $29.99 CAN $31.99
ISBN: 978-1-491-90251-6

WATMERIAMET o
i =

7814911902516

Twitter: @oreillymedia
facebook.com/oreilly

vww allitebooks.conl

http://www.allitebooks.org

Praise for Designing for Performance

“Designing for Performance is the book to hand to anyone—
designer or developer—who wants to start making faster sites. Lara
carefully and clearly explains not just how you can create better
performing sites, but how you can champion performance within
your organization ensuring it remains a priority long after launch.”
TIM KADLEC—INDEPENDENT DEVELOPER AND CONSULTANT

“A web experience’s performance evokes emotion from users just as
much—if not more—than its aesthetics. Lara’s book is so essential
because she helps us understand that performance isn’t just a
technical best practice; it’s an essential design consideration. By
providing a slew of helpful tips and best practices, Lara provides
a map for anyone looking to establish a culture of performance in
their work.”

BRAD FROST—WEB DESIGNER

“Speed is an integral part of design. A beautiful website or app
that takes forever to load will be viewed by no one. This book gives
designers the knowledge they need to build fast web experiences.”
JASON GRIGSBY—CO-FOUNDER, CLOUD FOUR

“Design is the foundation of your performance strategy: it defines

the user experience and expectations, shapes development, and
directly impacts operations. This book should be required reading for
designers and developers alike.”

ILYA GRIGORIK—WEB PERFORMANCE ENGINEER, GOOGLE

vww allitebooks.conl

http://www.allitebooks.org

“If you've ever wondered how aesthetic choices impact performance
or how cellular networks degrade your site’s user experience, read
this book. Designing for Performance gives you the tools to make
and measure high impact performance improvements on your site,
including actionable strategies to increase awareness of performance
across your company. Great performance is good design.”

JASON HUFF—PRODUCT DESIGN MANAGER, ETSY

vww allitebooks.conl

http://www.allitebooks.org

Designing for Performance

Weighing Aesthetics and Speed

Lara Callender Hogan

(O)S{]|MAAN Bcijing - (ambridge - Farnham - Koln - Sebastopol - Tokyo

[vww allitebooks.cond

http://www.allitebooks.org

Designing for Performance
by Lara Callender Hogan
Copyright © 2015 Lara Callender Hogan. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (https://
www.safaribooksonline.com/). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Angela Rufino Cover Designer: Ellie Volckhausen

Production Editor: Kara Ebrahim Interior Designers: Ron Bilodeau and
Copyeditor: Rachel Monaghan Monica Kamsvaag

Proofreader: Charles Roumeliotis lllustrator: Rebecca Demarest
Indexer: Ginny Munroe Compositor: Kara Ebrahim

December 2014: First Edition.

Revision History for the First Edition:
2014-11-20 First release

See http://www.oreilly.com/catalog/errata.csp?isbn=0636920033578
for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Designing for Performance, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source licenses
or the intellectual property rights of others, it is your responsibility to

ensure that your use thereof complies with such licenses and/or rights.

ISBN: 978-1-4919-0251-6
(T1]

[vww allitebooks.cond

https://www.safaribooksonline.com/
https://www.safaribooksonline.com/
mailto:corporate%40oreilly.com?subject=
http://www.oreilly.com/catalog/errata.csp%3Fisbn%3D0636920033578
http://www.allitebooks.org

This book is dedicated to my mother and father

And if that one dream should fall and break into a thousand pieces,
never be afraid to pick up one of the pieces and begin again.
Each piece can be a new dream to believe in and to reach for. This is
life’s way of touching you and giving you strength.

—FLAVIA WEEDN

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Chapter 1

Chapter 2

| Contents |

Foreword by Steve Souders xi
Foreword by Randy J. Hunt............................ xiii
Preface ... XV
Performance Is User Experience 1
Impacton Your Brand ... 2
Returning Users.............. 2
Search Engine Rankings 2
Impact on Mobile USers............coovuuiiiinnnnn. 3
Mobile Networks. it 4
Mobile Usage Patterns................oooo... 6
Mobile Hardware 7
Designers’ Impact on Performance 8
The Basics of Page Speed.............................. 13
How Browsers Render Content........................ 13
Requests o il 14
Connectionso, 16
Page Weight ... 17
Perceived Performanceooooii... 19
Critical Rendering Path 19
Jank. ..o 22
Other Impacts on Page Speed 24
Geography.cooiiiiiiiii i, 24
Network. 24
Browser....... i i 25

vii

[vww allitebooks.cond

http://www.allitebooks.org

Chapter 3

Chapter 4

Optimizing Images............................. ... 27
Choosing an Image Format 28
TPEG oot 29
GIF . 32
PNG. .. 35
Additional Compression 39
Replacing Image Requests 41
Sprites. 42
CSS3 i 49
Data URIs and Base64-Encoding Images....... 54
SVG . 55
Image Planning and Iterating 59
Schedule Routine Checks 59
Create Style Guides 60
Mentor Other Image Creators 60
Optimizing Markup and Styles........................ 63
Cleaning Your HTML ..., 63
DiIvitis . oo vt 64
Semantics........... ... o il 65
Accessibility o 68
Frameworks and Grids. 68
Cleaning Your CSS ... 70
Unused Styles. ...t 71
Combine and Condense Styles 72
Clean Stylesheet Images 77
Remove Specificity.............. 78
Optimizing Web Fontsooooiiiiiia... 79
Creating Repurposable Markup 82
Style Guidesoovvii i 84
Additional Markup Considerations.................... 87
CSS and JavaScript Loading. 87
Minification and gzip................., 89
Caching Assets.coiiininennenn. 91

viii CONTENTS

[vww allitebooks.cond

http://www.allitebooks.org

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Responsive Web Designo.... 93
Deliberately Loading Content.......................... 94
Images........... il 94
Fonts........... o il 101
Approaches ... 102
Project Documentation 102
Mobile First. 103
Measure Everything....................... 104
Measuring and Iterating on Performance 109
Browser TOOlS.ovuuiiiiiiiiie, 110
YSIOW. oot 110
Chrome DevIoolsiiion... 112
Synthetic Testing ..., 113
Real User Monitoringcooiiiiii... 118
Changesover Time..............coooviiiiiiiiinn. .. 120
Weighing Aesthetics and Performance............... 125
Finding the Balance ..., 125
Make Performance Part of Your Workflow 128
Approach New Designs with a
Performance Budget......................... 129
Experiment on Designs with
PerformanceinMind................................. 131
Changing Culture at Your Organization.............. 135
Performance Cops and Janitors....................... 135
Upward Managementccovvvvnnnnn... 138
Impact on Business Metrics 138
Experiencing Site Speed 140
Working with Other Designers and Developers...... 143
Educatingo 143
Empowering 144
Index.. ... 151

CONTENTS | ix

| Foreword by Steve Souders |

The next major milestone in the adoption of performance best prac-
tices is evangelism within the design community.

When 1 started collecting performance best practices, I focused on
optimizations that did not impact the amount of content on the page.
I wanted to avoid the “performance versus design” debate. (I knew the
designers would win!) Within this constraint, there are still many opti-
mizations that significantly improve performance: gzip, CDNs, cach-
ing headers, lossless image optimization, domain sharding, and more.

That was 2004. Today, many of those obvious optimizations are in place.
And yet the size and complexity of websites grows at a rate that makes
it a challenge to deliver a fast, pleasant user experience. Making today’s
websites fast requires considering the performance impact of richer,
more dynamic, and more portable web content. Luckily, developers and
designers share a drive to deliver the best user experience possible.
This is the fertile ground that awaits you in Lara’s book, Designing for
Performance.

There’s no question that a website’s aesthetics are critical to delivering
a compelling user experience. Now, after 10 years of gathering best
practices, highlighting success stories, and evangelizing the need for
speed, web performance is also recognized as being critical. It’s time
to discuss design and performance together—not as a debate, but as a
collaboration that results in a beautiful user experience.

I use the word beautiful intentionally. The design of a website, its aes-
thetics, is often described with words like beautiful, refreshing, compel-
ling, and exciting. Those descriptors are equally applicable to the expe-
rience of a fast website. After experiencing the sluggishness and frustra-
tion of a slower alternative, users find that an optimized website is also
a beautiful experience.

xi

Thanks to Designing for Performance, designers and developers have
a framework for their collaboration. Lara outlines the questions that
need to be answered, and the means for answering them. She provides
numerous examples of the trade-off discussions that lay ahead and how
successful teams have resolved them. Most important is that Lara com-
pels us to start these discussions early in the design and development
process, while code and mockups are still evolving and there’s time to
recognize and resolve performance challenges to deliver the beautiful
experience that users deserve.

—Steve Souders, Fastly Chief Performance Officer
Author of High Performance Websites and Even Faster Web Sites

xii FOREWORD BY STEVE SOUDERS

| Foreword by Randy J. Hunt |

Designers often lament when design is treated like “icing on a cake,”
a decorative layer to make something beautiful and desirable. Icing is
applied at the end. Icing appears nonessential.

Inside is much more important, we think. The heart of the cake is where
the flavor resides. The cake is named for what’s under the icing (car-
rot), not the icing itself (cream cheese). Oh, the content! Soft, rich, fla-
vorful content. We fall out of love with the icing. We, the designers, are
focused on “more important things.”

Time passes, and we come around. We argue with our younger selves.
There is value in the icing. Oh, that icing! It tells people what to think
and how to feel about the cake, even before they try it. It is the primary
interface to the cake.

More time passes, and again we come around. The icing and the cake
are meant to live in harmony. They complement each other. The icing
holds the layers together. The layers give the icing a foundation, a pur-
pose, and volume. We start worrying as much about the icing as the
cake inside. Form and content, wed together in a satisfying whole.

And often, we stop there. Ta-da! We’ve done it—we’ve become an expe-
rienced, nuanced designer.

And yet we can’t make a delicious cake. We haven’t paid attention to the
most important and most often overlooked details, the invisible ones.
Are the ingredients of high quality? Are the ratios and timings right
for the altitude, pan, and application? What ingredients do we combine
when? What can we do to make the cake maintain its integrity while
traveling?

Designed experiences are full of these seemingly invisible details.
They're details we blissfully ignore, but we do so at the risk of not ever
baking an excellent cake. They're the details that allow us to manipulate

xiii

the context for the design itself. Sometimes they’re deep in the technol-
ogy (like the nuances of image compression), and sometimes they’re
outside the design (how a browser renders a web page).

The novice designer sees the surface. The experienced designer
looks below the surface, at the content, the purpose. The enlightened
designer understands the surface and the content, and pursues manip-
ulation of the context.

Designing for Performance will help you understand and control the
previously invisible attributes that make your design work well. It'll
be delicious. Don't eat too fast, but please proceed with making your
designs much, much faster.

—Randy J. Hunt, Creative Director, Etsy
Author of Product Design for the Web

Xiv FOREWORD BY RANDY J. HUNT

| Preface |

If you are making decisions about the look and feel of a website, you
are making decisions that directly impact the performance of that site,
even if your job title doesn’t include the word designer. Performance is
a responsibility that can and should be shared across disciplines, as
everyone at an organization impacts it. Whether it’s convincing upper
management that performance should be a priority, considering your
options when weighing aesthetics and page speed in your day-to-day
work, or educating and empowering other designers and developers
within your organization, you have a large suite of tools and technology
available to help you champion site speed.

Designers are in a unique position to impact overall page load time and
perceived performance. The decisions that are made during the design
process have an enormous impact on the end result of a site. I believe
it’s important for designers to understand the basics of page speed and
the choices they have at their disposal to optimize their markup and
images. I also believe it’s imperative that designers weigh the balance
between aesthetics and performance to improve the end user experi-
ence, and that everyone making changes to a site has the ability to mea-
sure the business metric impact of those changes.

After giving talks, workshops, and keynotes on frontend performance
for years, I realized in talking with audience members that culture
change is central to the performance topic. No one likes being a per-
formance “cop” or “janitor”; these roles are unsuccessful in effecting
long-lasting performance improvements on a site, since there are so
many other people responsible for that site’s user experience. While
most of this book focuses on the technology and techniques behind
making performance improvements, the final chapter is dedicated to

XV

performance as a cultural problem that cannot simply be solved with
technology. Culture change is perhaps the hardest part of improving a
site’s performance.

Because I work at Etsy as an engineering manager, this book will include
anumber of references to Etsy and its engineering team’s experiments.
I currently manage the performance engineering team, and previously
managed the mobile web engineering team. Throughout my career
(and at Etsy) I've worked closely with many phenomenal designers, and
I'm really excited to develop this resource specifically for them.

How This Book Is Organized

Within this book, we’ll cover various online tools and software that can
aid you as you make performance improvements. In chapters where
image generation is covered, we’ll use Photoshop within our examples
rather than other kinds of image editing software.

In Chapter 1, we will cover the impact that page load time has on your
site, your brand, and your audience’s overall experience. Page load time
is one of many factors that make up the user experience, and stud-
ies have shown that poor performance will negatively impact a site’s
engagement metrics. As more people are using mobile devices to
access the Internet, a focus on performance will increase in priority,
as mobile networks and hardware have a negative impact on page load
time. Designers are in a unique position to improve page load time, and
therefore, the overall user experience as well.

Chapter 2 covers the basics of page load time. It’s important to have a
foundation of knowledge regarding how browsers retrieve and render
content for sites, as these are the main levers you can use to improve
your site’s performance. We'll also cover perceived performance, and
how it differs from total page load time; the way users experience your
site and perceive how quickly they can accomplish the one thing they
want to do is an equally important metric to measure.

We'll walk through each of the main image formats used on the Web
today within Chapter 3. We’ll cover best practices for use and optimiza-
tion for each file type. Included in this chapter are techniques to opti-
mize the way images are loaded into web pages, such as spriting or
replacing them with CSS or SVG. Lastly, we’ll cover what you can do

Xvi PREFACE

to increase the longevity of your optimized image solutions, includ-
ing implementing style guides or automated workflows for image
compression.

In Chapter 4, we will cover how to optimize the markup and styles
implemented on your site. A thorough cleanup effort is incredibly
important for both your HTML and CSS, followed by optimization of
any web fonts used on your site. Focusing on creating clean, repur-
posable markup and documenting any design patterns will save both
development time and page load time in the future as the site is edited
or improved. We'll also cover the importance of load order, compres-
sion, and caching of your site’s text assets.

Responsive web design is known for being “bad for performance,” but
it doesn’t have to be! In Chapter 5, we’ll walk through how import-
ant it is to be deliberate with the content, including images and fonts,
you choose to load for your visitors across screen sizes. This chapter
also covers how to approach responsive web design: create performance
goals by breakpoint, use a mobile-first approach with your design, and
measure your responsive design’s performance at various screen sizes.

To understand the state of your site’s user experience today as well as
how it changes over time, it’s imperative that you benchmark major
performance metrics routinely. Chapter 6 will detail various browser
plug-ins, synthetic testing, and real user monitoring tools and how they
can help you measure your site’s performance. Using these tools con-
tinuously as your site evolves to measure changes in performance and
document why these changes occurred can help you and others learn
about what impacts your site’s performance.

In Chapter 7, we'll outline the various challenges you'll encounter when
weighing aesthetics and performance. There are operational costs to
consider, user behaviors to measure, and plenty of open-ended ques-
tions to ask when it comes to making these hard decisions. However,
equipped with performance knowledge, a solid workflow, and experi-
ments, you can make design and development decisions that result in
an excellent overall user experience.

The largest hurdle to creating and maintaining stellar site performance
is the culture of your organization. No matter the size or type of orga-
nization, it can be a challenge to educate, incentivize, and empower

PREFACE xvii

designers, developers, and management. We'll cover how you can
shape the performance culture of your organization and create perfor-
mance champions in Chapter 8.

®

Safari® Books Online

Safari Books Online (http://safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.
Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certifi-
cation training.

Safari Books Online offers a range of product mixes and pricing
programs for organizations, government agencies, and individuals.
Subscribers have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O'Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens
more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

xviii PREFACE

vww allitebooks.conl

http://safaribooksonline.com
http://safaribooksonline.com
http://www.allitebooks.org

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at:

http://bit.ly/design-performance
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news,
see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com foreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I want to thank everyone at Etsy for their support of this book, partic-
ularly my mobile web teammates (Jeremy, Amy, Chris, and Mike) and
my performance teammates (Allison, Jonathan, Natalya, Dan, Seth,
Daniel, and John). I also want to thank Courtney Nash; without her
consideration and encouragement, this book wouldn’t have seen the
light of day.

Major thanks to the O’Reilly team: Mary Treseler, Angela Rufino, and
Allyson MacDonald on the editing side, and Betsy Waliszewski, Sonia
Zapien, Sophia DeMartini, and Audra Montenegro on the conference
side. You all have made this process a blast.

The following reviewers were invaluable during the entire writing pro-
cess: Jason Huff, Jonathan Klein, Brad Frost, Jason Grigsby, Christian
Crumlish, Ilya Grigorik, Barbara Bermes, Guy Podjarny, Kim Bost,
and Andy Davies. Thanks to Mat Marquis for his notes, patience, and
knowledge of responsive images.

Thanks to Masha for her honesty, encouragement, and counsel. A spe-
cial thanks goes out to my parents, who let me go and get a philosophy
degree, which gave me the tools I needed to write a book. Their sup-
port throughout my career has been invaluable, and I feel incredibly
proud to be their kid. Lastly, thanks to the 7th Avenue Donut Shop &
Luncheonette, which made it possible for me to celebrate writing prog-
ress with their donuts.

PREFACE Xix

http://bit.ly/design-performance
mailto:bookquestions%40oreilly.com?subject=
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

[1]
Performance Is User Experience

Think about how you search for things on the Web. How quick are you
to close a tab and go to the next search engine result if a site takes too
long to load? If you're searching for local weather or news, how likely
is it that you'll return to a site that waits forever to show relevant infor-
mation on your screen? As you run errands and check your phone,
how likely are you to have the patience to endure long load times as you
try to check your email, compare prices, or search for directions? The
less time you have, the higher your expectations are for a site to load
quickly.

Page speed is increasingly important for websites. If you're looking for
a page load time benchmark for your site, this is it: users expect pages
to load in two seconds, and after three seconds, up to 40% of users
will abandon your site (http://bit.ly/1ttKspl). Moreover, 85% of mobile
users expect sites to load at least as fast or faster than sites on their
desktop (http://bit.ly/1ttKCO3). As you design and build a website, or as
you examine your existing site, how are you stacking up against these
expectations?

Web performance is user experience. As you design and develop a new
site, you'll consider many components of its user experience: layout,
hierarchy, intuitiveness, ease of use, and more. Your site’s experience
determines how much your audience trusts your brand, returns to your
site, and shares it with others. Page load time and how fast your site feels
is a large part of this user experience and should be weighed equally
with the aesthetics of your site.

Let’s walk through some studies and data on how performance impacts
end user experience.

http://bit.ly/1ttKspI
http://bit.ly/1ttKCO3

Impact on Your Brand

The overall user experience affects your audience’s impression of your
brand. Akamai has reported that 75% of online shoppers who experi-
ence an issue such as a site freezing, crashing, taking too long to load,
or having a convoluted checkout process will not buy from that site
(http://bit.ly/1ttKKNf). Gomez studied online shopper behavior (http://
bit.ly/1ttKspl) and found that 88% of online consumers are less likely
to return to a site after a bad experience. The same study found that “at
peak traffic times, more than 75% of online consumers left for a com-
petitor’s site rather than suffer delays.” Are you losing users to your
competitors’ sites as you compete in page load time and other aspects
of your site’s user experience? Are you sure that your site is faster than
your competitors’?

RETURNING USERS

Web performance impacts more than just ecommerce sites; improve-
ments from page speed optimization apply to any kind of site. Users
will return to faster sites, as evidenced in a study by Google (http://bit.
ly/1ttKPR8) that noted a decrease in searches by users who experienced
a site slowdown. Users who experienced a 400-millisecond delay per-
formed 0.44% fewer searches during the first three weeks and 0.76%
fewer searches during the second three weeks of the experiment.

Further, even when users who experienced the slowdown were removed
from the experiment and saw the fast experience again, they took a
while to return to their previous search usage level. The impact of page
load time lasts even beyond the initial poor experience; users instinc
tively remember how it felt to browse that site and make choices about
how often to return or use it afterward based on their experience.

SEARCH ENGINE RANKINGS

Additionally, page load time is factored into search engine results,
bumping faster sites higher in the results list than slower sites. Google
includes site speed in its search result ranking algorithm (http://bit.
ly/1ttKRsm). Though Google makes it clear that it weighs content rel-
evancy more heavily when ranking search results, page load time still
contributes to the overall user experience of your site. Google wants to
return results that are, overall, the best experience for its users.

2 DESIGNING FOR PERFORMANCE

http://bit.ly/1ttKKNf
http://bit.ly/1ttKspI
http://bit.ly/1ttKspI
http://bit.ly/1ttKPR8
http://bit.ly/1ttKPR8
http://bit.ly/1ttKRsm
http://bit.ly/1ttKRsm

Ignoring the page speed of your site is more than just a missed oppor-
tunity; it could be detrimental to users remembering your brand.
Microsoft conducted a study (http://bit.ly/1ttKUEA) to see how users
recall sites found in search results. A half hour after participants in the
study entered a self-generated query into a search box, they received an
emailed survey that asked them to recall the result list without refer-
ring back to it. The results of this survey showed that one of the two
main factors affecting how likely a result was to be remembered was
where in the result list it was ranked. Improving your page load time can
improve your search engine result ranking, which is excellent for your

brand.

Brand and digital product designer Naomi Atkinson brilliantly
describes how design agencies can leverage performance in their pitch
to a client, saying, “a large percentage of agencies are missing out on
a key selling point. Pitching how quick they plan on making their cli-
ent’s website or service (and how), alongside their marketing and visual
ideas, would make a world of difference. To their own success, and their
clients.” Performance is part of the overall user experience, and can
have a huge impact on a company’s brand.

Impact on Mobile Users

As more users move to mobile devices and more tasks move online,
your site’s overall user experience increases in importance. When we
look at data from StatCounter Global Stats (http://gs.statcounter.com/),
we can see that mobile is steadily increasing as a total percentage of
Internet traffic (Figure 1-1).

Some companies are already seeing this substantial increase in traf-
fic from mobile devices; according to Mary Meeker’s Internet Trends
report (http://slidesha.re/1ttKWvZ), 45% of transactions on Groupon
came from mobile devices as of early 2013, which was up from less
than 15% two years earlier. At Etsy, where I run the performance engi-
neering team, 50% of user traffic comes from mobile devices as of early
2014.

1. PERFORMANCE IS USER EXPERIENCE 3

http://bit.ly/1ttKUEA
http://gs.statcounter.com/
http://slidesha.re/1ttKWvZ

Mobile % of Total Global Internet Traffic
(with trendline projection)

=1
[=]

@
=]
e

’
e
50
= ’
g ’,
e ’
= 40 ”
g P
E ’
£ ’
E0
=
S
2
10
)
12/08 12/09 12/10 12/11 12/12 12/13 12/14 12/15

Figure 1-1. In this data from StatCounter Global Stats, we can see that the
total percentage of Internet traffic coming from mobile devices is steadily
increasing. As we extend a trendline forward, we can see that mobile usage
growth probably won’t be slowing anytime soon.

The percentage of mobile traffic is growing for nearly every site, and
this will highlight page load time issues across the Internet, particu-
larly for handset users. One study (http://slidesha.re/eW8wQ9) showed
that handsets are the primary Internet access method for a vast num-
ber of global Internet users. Roughly 50% of Internet users in Africa
and Asia are mobile-only, in contrast to 25% in the United States. This
study classified “mobile-only” users as those who never or infrequently
use the desktop Internet (the study included tablets in the “desktop”
category). The bottom line: lots of people are primarily using handsets
to access the Internet, and these devices present their own unique set
of challenges.

MOBILE NETWORKS

The first reason why handsets take longer to load web pages is how
mobile data is transmitted. Before a mobile device can transmit
or receive data, it has to establish a radio channel with the network
(see Figure 1-2). This can take several seconds over a 3G connection.
After the device talks to a radio tower to negotiate when it can trans-
mit data, the network carrier must transmit data from the tower to its
internal network and then to the public Internet. The combination of
these steps can easily add tens to thousands of milliseconds of extra
latency. Further, if there is no data transmitted or received on the radio

4 ‘ DESIGNING FOR PERFORMANCE

channel, a timeout causes the channel to become idle. This requires a
new channel to be established and the entire process to restart, poten-
tially wreaking havoc on web page load times.

User’s Phone Cell Tower Your Web Host

Must first make Once connection is
a connection to established, the
a cell tower user’s browser

can connect to your server
Figure 1-2. Before a mobile device can retrieve the assets needed to load a site,
the device must establish a radio channel with the network. This process can
take several seconds, and can wreak havoc on your page load times.

As Ilya Grigorik writes (http://bit.ly/1ttL5]e), “when it comes to your
web browsing experience, it turns out that latency, not bandwidth, is
likely the constraining factor today.” The more latency a user experi-
ences, the longer it takes to make a round trip from the user’s device to
get data, and the longer it will take for a page to completely load. We’'ll
walk through more about the basics of page speed in Chapter 2.

What Are Latency and Bandwidth?

Latency is the amount of time it takes for a packet of data to get from one
point to another. For example, there is latency between the time it takes
a host server to receive and process a request, and latency between the
server sending an asset back and a browser receiving it. Latency is bound
by fundamental physical properties (such as the speed of light). This delay
is often measured in milliseconds (one millisecond is a thousandth of a
second).

Bandwidth is the maximum throughput of a communication path, such as
how much data can be transferred at once over fiber-optic cables or your
mobile carrier. As an analogy, a taxi and a bus on a shared route have the
same latency, but the bus has higher bandwidth.

While it’s true that networks are slowly getting faster over time, your
users on mobile devices may currently have a painful experience try-
ing to get your site to load. On a typical United States desktop using
WiFi, a request’s average round trip takes just 50 milliseconds (http://

1. PERFORMANCE IS USER EXPERIENCE | 5

http://bit.ly/1ttL5je
http://slidesha.re/1ttLhPw

slidesha.re/1ttLhPw). This is the time it takes for a browser to send a
request and the server to send a response over the network. However,
on a mobile network, round-trip time can be more than 300 millisec-
onds. To get a feel for what this means: it’s about as slow as old dial-up
connections.

Add the round-trip time for each request it takes to load your site to the
amount of time it takes to initially establish a radio channel with the
network (potentially 1,000 to 2,000 milliseconds), and you can see how
mobile network performance directly impacts your site’s user experi-
ence. Further, it’s hard to predict when wireless networks may be unre-
liable due to factors like a user being at a crowded event or in an area
with poor reception.

This means you really need to prioritize performance as you optimize
your site’s design for mobile devices, as page load time has a significant
impact on mobile users’ experience and how they choose to use your
site. This is evidenced by a number of companies’ studies. My team at
Etsy found an increased bounce rate of 12% on mobile devices when
we added 160 KB of hidden images to a page. DoubleClick, a Google
ad product, removed one client-side redirect (http://bit.ly/1ttLjqx) and
saw a 12% increase in click-through rate on mobile devices. One of the
great parts about focusing on performance benefits for mobile users is
that these optimizations will also benefit your users who visit your site
on any kind of device.

MOBILE USAGE PATTERNS

Your site’s user experience will be impacted by page load time, regard-
less of the type of device used to access it. However, a negative user
experience due to slow load times will be exacerbated if your user is on
a mobile device, thanks to poorer network speeds as well as the differ-
ent behaviors that mobile users exhibit.

A study by Google (http://bit.ly/1ttLsdz) found that people use smart-
phones in the following contexts:

« On-the-go as well as at home
. To communicate and connect
« In short bursts of time

- When they need information quickly and immediately

6 DESIGNING FOR PERFORMANCE

http://slidesha.re/1ttLhPw
http://bit.ly/1ttLjqx
http://bit.ly/1ttLsdz

Tablets are similarly used for entertainment and browsing. Desktops,
on the other hand, are used for more serious or research-intensive
tasks. According to the study, smartphones are the most common start-
ing place for the following online activities:

- Searching for specific information
+ Browsing

« Shopping

« Social networking

As you design a site, consider how easily users will be able to com-
plete tasks like these given the amount of time they plan to spend on
their device in this sitting, and how significantly their mobile network
may affect their ability to do so. Also remember that mobile-only users
have no choice but to use their phone for all types of tasks, and that all
users dislike having their time wasted, regardless of the device they are
using. Your design should be intuitive and easy to use, and it should
also become interactive as quickly as possible, no matter the platform.

MOBILE HARDWARE

Additionally, even when using WiFi on a handset, the user will likely
have a slower experience due to antenna length and output power. WiFi
can make use of more than one antenna at a time to send and receive
signals; however, most smartphones aren’t configured to take advan-
tage of the multipath technology. Further, the WiFi antennas in laptops
and desktops are significantly longer than those in handsets.

Handsets also attempt to be efficient with battery power (which is a big
part of the smartphone user experience), and one way for them to con-
serve energy is by limiting the output of their radio. Desktops don’t run
on battery power, so they are able to use WiFi without making the same
modifications to WiFi strength. Lastly, most smartphones currently in
circulation support older and slower WiFi standards, rather than the
most recent standard, 802.11ac, which only newer handsets support.

Many of the optimizations that improve page load time also improve
device energy consumption, further improving the user experience.
Things like WiFi signal strength, JavaScript rendering, and rendering
of images all impact battery drain on mobile devices. In one study
(http://bit.Iy/1ttLtOC), researchers found that if Amazon converted all
of its image files to JPEGs at 92% quality compression, it would save

1. PERFORMANCE IS USER EXPERIENCE | 7

http://bit.ly/1ttLtOC

20% of the energy needed to load its home page on an Android phone,
and Facebook would save 30% doing the same. This change would
positively impact the user experience by reducing energy consumption
with no noticeable image quality loss. Another study (http://bit.
ly/1ttLxOt) found that up to 35% of page load time in the critical path
is spent on computation like HTML parsing and JavaScript execution
on mobile devices.

The bottom line is that your efforts to optimize your site have an effect
on the entire experience for your users, including battery life.

Designers’ Impact on Performance

The length of the delay between when users enter a URL, click a but-
ton, or select from a drop-down list and when the web page responds
will affect their perception of the site. A delay of less than 100 millisec-
onds feels instant to a user, but a delay between 100 and 300 millisec-
onds is perceptible. A delay between 300 and 1,000 milliseconds makes
the user feel like a machine is working, but if the delay is above 1,000
milliseconds, your user will likely start to mentally context-switch.

These numbers matter because collectively we are designing sites with
increasingly rich content: lots of dynamic elements, larger JavaScript
files, beautiful animations, complex graphics, and more. You may
focus on optimizing design and layout, but those can come at the
expense of page speed. Some responsively designed sites are irrespon-
sible with the amount of markup and images used to reformat a site for
smaller screen sizes; they can unknowingly force their users to down-
load unnecessary resources.

Designers who implement responsive web design are already mak-
ing decisions about how content is displayed across screen sizes; these
kinds of decisions significantly impact page load time, and responsive
web design is a huge opportunity to insert performance considerations
into the design workflow.

Think about your most recent design. How many different font weights
were used? How many images did you use? How large were the image
files, and what file formats did you use? How did your design affect the
plan for markup and CSS structure?

The decisions made by designers are what typically drive the rest of how
a website is built. The initial design phase includes decisions about:

8 ‘ DESIGNING FOR PERFORMANCE

[vww allitebooks.cond

http://bit.ly/1ttLxOt
http://bit.ly/1ttLxOt
http://www.allitebooks.org

« Colors and gradients, which impact image format choices, trans-
parency needs, how many sprites can be created, and how much
CSS3is used

o Layout, which impacts the HTML hierarchy, class and ID names,
the repurposability of design patterns, and the organization of CSS

« Typography, which impacts the weight and number of included
font files

- Design patterns, which impact what can be repurposed and cached
across the site, how and when assets are loaded, and ease of edit-
ability by future designers or developers

These kinds of decisions are often determined in the beginning of the
product workflow, which is why they have a large impact on the final
page load time. To illustrate this, let’s say we have an example logo that
we are planning to overlay on a div with a light blue background, as
shown in Figure 1-3.

® O O =llogo.psd @ 100% (Color Fill 1, RGB/8) *
B T EC TN XTI EETE YO XM CE T EC TN EE

Designing for
Performance

o

DDI—-l
A

(] Doc: 170.9K/227.9K »

Figure 1-3. This example logo has a transparent background, and will be
overlaid on a div with a light blue background.

The transparency and overlay requirements impact the file type and file
size of this image. A designer who is considering page load time during
the design stage can ask questions like, “What if I export it as a JPEG
or PNG-8 with no transparency? What if I use a light blue matte on a
PNG-8 file? How might that impact performance?” We can test export-
ing JPEG and PNG-8 versions and see the resulting file size for each in
Figures 1-4 through 1-7.

1. PERFORMANCE IS USER EXPERIENCE 9

Designing for
Performance

Figure 1-4. Original PNG-24 with transparency: 7.6 KB.

Designing for
Performance

Figure 1-5. PNG-8 with solid background: 5.0 KB.

Designing for
Performance

Figure 1-6. PNG-8 with matte: 2.7 KB.

Designing for
Performance

Figure 1-7. JPEG at 75% quality with solid background: 20.2 KB.

In these tests we can see that the different file formats result in dif-
ferent sizes due to their solid backgrounds or transparency. We will
cover more about image optimizations and weighing your options in
Chapter 3.

10 DESIGNING FOR PERFORMANCE

We have a huge opportunity to play around with potential performance
wins and measure the impact of different design choices. In Chapter 3,
we will cover how you can choose and compress a variety of image for-
mats, and in Chapter 6 we’ll walk through how to measure and iterate
on designs with page load time in mind.

The performance of both new designs and redesigns are impacted
by these kinds of decisions. Every existing site can be cleaned up and
tested with performance in mind. On one site, I was able to cut page
load time in half by cleaning CSS and optimizing images, normal-
izing site colors, and carefully reorganizing assets in an existing site
template. Rather than redesigning the site, I simply focused on killing
bloated HTML and CSS, which resulted in smaller HTML, CSS, and
stylesheet image file sizes.

You can read more about how to clean HTML and CSS with an eye on
performance in Chapter 4.

Even if your job title doesn’t include the word designer, if you are mak-
ing decisions about the look and feel of a website, you are making deci-
sions that directly impact the performance of that site. Performance
is a shared responsibility, and everyone on your team impacts it.
Considering performance when making design decisions will have an
enormous impact on your users. Weighing aesthetics and performance
should be paramount in your design workflow, which we will cover
in Chapter 7. This is also a huge opportunity for various disciplines
within an organization to collaborate; designers and developers can
work together to create a phenomenal user experience.

In the next chapter, we will walk through the basics of page load time,
including how browsers fetch and render content. Understanding how
your users’ browsers communicate with your hosted files, how the file
size of your site’s files affect page load time, and how users perceive the
performance of your site will significantly help you as you design a site
and strive to find a balance between aesthetics and performance.

1. PERFORMANCE IS USER EXPERIENCE 11

[2]
The Basics of Page Speed

As you design a site, it’s important to know the basics of page speed so
you can better understand what to optimize. Browsers fetch and display
content in a fairly dependable manner; understanding how web pages
are rendered will help you reliably predict how your design choices will
impact your site’s page speed. We’ll aim to optimize for:

« The number of resources (like images, fonts, HTML, and CSS)
loaded on a page

« The file size of these resources
« The perceived performance of your site by your users

In addition to what users see as their browser renders content, there
are further improvements that you can make on the backend, includ-
ing optimizing any work that the server needs to do to get the first
byte back to the client. There’s more that goes into page load time than
just what happens on the frontend of your site, such as making calls
to a database or compiling templates into HTML. However, as Steve
Souders says, “80 to 90% of the end user response time is spent on
the frontend.” As this is where the vast majority of the user experience
lives, we’ll be focusing on the frontend aspects of page load time.

How Browsers Render Content

Between the moment your users enter your site’s URL into their
browser and the moment the page starts to reveal your site design, their
browser and your web host negotiate all the data that they need to com-
municate to each other.

First, the browser sends out a request to get some content. The first
time the browser makes a request to a new domain, it needs to find the
server where this content lives. This is called a DNS lookup. The DNS
lookup figures out where on the Internet your web host lives so that the

13

request for content can make it all the way to your server. A browser will
remember this location for a set period of time (determined by the DNS
settings for your server) so that it doesn’t need to spend valuable time
doing this lookup for every request.

Once your server makes a connection to the user’s browser and receives
its first request, it'll decode the request and locate the content that the
browser is looking for as it tries to render the page. Your server will
then send back this content, whether it be an image, CSS, HTML, or
another kind of asset, and the browser will begin downloading it and
rendering the page for the user. Figure 2-1 illustrates this cycle.

User’s Browser Your Web Host
1.Sends a request for content. |
4. Renders > 2. Decodes the request.
the content. N Locates the content.
3. Sends the content back. §

Figure 2-1. A page load time cycle between your user’s browser and the
content on your server.

The first byte of content that the browser receives is measured and
called time to first byte (TTFB). It’s a good indicator of how quickly the
backend of your site is able to process and send back content. On the
frontend, once your browser begins to receive that content back from
your server, it can still take some time to download and render the con-
tent on the page. Some file types are quick for browsers to process and
render; other kinds of requests (like blocking JavaScript) may need to
be fully processed before a user’s browser can continue to render addi-
tional content.

These content requests can vary in size and order. Browsers are smart
and try to parallelize requests for content to the server in order to reduce
the time it takes to render your web page. However, there are a lot of
things we can do to optimize this process of requesting and retrieving
your site’s content so that your site becomes interactive as quickly as
possible for your users.

REQUESTS

Optimizing the size and number of requests that it takes to create
your web page will make a tremendous impact on your site’s page load
time. To illustrate how requests affect total page speed, let’s look at an

14 DESIGNING FOR PERFORMANCE

example waterfall chart using WebPagetest (http://www.WebPagetest.
org/). (We will walk through how to use WebPagetest in Chapter 6.) A
waterfall chart such as Figure 2-2 shows you how much time it takes
to request the contents of a page, such as CSS, images, or HIML, and
how much time it takes to download this content before displaying it
in a browser.

I ONS Lookup | [Initial Connection | [l SSL Negotiation | [l Time to First Byte | [l Content Download

0.2 0.4 0B 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Z.4 2B 2.8 3.0 3.2 3.4

[L]
477 ms
W >
[
I 5o+ s
B 505 ns
i 215 ns
I =22 ns
L 1 s
187 ms
L 312 s
651 ms
498 mz
537 m=

TET mz
] I EEED
409 ms

[

I 252 ns

Bl 260 ms

B 314 ms

I S 515 v

] 265 ms

556 ms

361 ms
475 mz
I 205 s

L 178 ne
iEE 33

LT s
43 mz
156 ms
334 ms

Figure 2-2. Each horizontal line in the waterfall chart represents a separate
asset request.

Each horizontal line in the waterfall chart represents a separate asset
request, such as the HTML, a stylesheet, a script, or an image. Our first
request, usually for the HTML of a page, will include a DNS lookup, as
the browser needs to figure out where on the Web this content lives.
Each subsequent request will then have an initial connection time
to the server where the file is hosted, then some time before the first
byte back is received by the user’s browser, and then additional time to
download and display the content.

2. THE BASICS OF PAGE SPEED 15

http://www.WebPagetest.org/
http://www.WebPagetest.org/

Naturally, the larger the piece of requested content is, the longer it will
take to download, be processed by the browser, and be displayed on a
page. Also, the more independent pieces of content are needed to ren-
der the page, the more time it will take for the page to fully load. This is
why we will aim to optimize both the size and number of image, CSS,
and JavaScript files that are required for your site to load.

For example, when we work with images, we can organize separate
image requests into a single sprite (i.e., collection of images) to cut
down on the number of requests that the browser needs to make (we’ll
cover this technique in “Sprites”). We can also run every image through
compression tools that reduce the images’ file size without compromis-
ing their quality (read more in “Additional Compression”). We’ll also
focus on reducing the total number of CSS and JavaScript files, and
loading them in the best order possible for perceived performance, as
described in “CSS and JavaScript Loading.” Optimizing the size and
number of requests that your browser needs to load your page will help
you optimize your site’s speed.

CONNECTIONS

The number of requests that it takes to load your page is different than
the number of connections your browser makes to retrieve this content.
In WebPagetest, the Connection view (Figure 2-3) shows each connec-
tion to a server and the requests that are retrieved over it.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ECHTML

CEmmmHTML HIML
= (55 Font —
= (SS Font
S Font || Image
S Font L] Image
S Font I
=S Image
-;lmg |mag_g

Figure 2-3. The Connection view in WebPagetest shows each connection to a
server and the requests that are retrieved.

For each connection, you may see a DNS lookup for the domain (dark
green), an initial connection to the server (orange), and possibly an SSL
negotiation before the browser begins to retrieve the content (hot pink)
for assets served over HTTPS. But browsers are smart and try to opti-
mize downloads of content once they have that connection open to your
server.

16 DESIGNING FOR PERFORMANCE

What Is an SSL Negotiation?

An SSL negotiation happens when a browser makes a secure request for
content, also known as an encrypted HTTPS connection. The user’s browser
and server negotiate encrypted keys and certificates to establish a secure
connection between each other. Because this SSL negotiation requires
exchanges between the browser and your server, it adds page load time.

You'll notice that in each row, there are multiple kinds of files being
downloaded. This is known as a persistent connection, as the browser
is able to keep a connection open and reuse it for another request. Your
browser fetches some JavaScript, then uses this open connection to
also grab a font file, and then an image, before needing to establish
another new connection to get more content.

You'll also notice that the browser (Chrome, in this case) has estab-
lished multiple open connections at the same time, parallelizing the
amount of content it can fetch. The number of simultaneous persistent
connections each browser can make varies. Modern browsers allow up
to six simultaneous open connections (Chrome, Firefox, Opera 12) or
eight (Internet Explorer 10).

It’s important to see how many connections it takes to load your page.
If you see lots of connections, then your content may be spread out
over too many domains, which prevents your browser from optimizing
open connections. Calling lots of third-party scripts is one way this can
happen.

Use waterfall charts to assess how well your page is loading in combi-
nation with measuring your total page weight and the perceived per-
formance of your page. Read more about WebPagetest’s waterfalls and
how to find buggy content loading in Chapter 6.

Page Weight

The file size of HTML, images, and other content needed to load your
page will have an effect on the total page load time. One way to mea-
sure the file size of each kind of content is to use the browser plug-in
YSlow. We’ll walk through how to use it in “YSlow.”

2. THE BASICS OF PAGE SPEED 17

After you run YSlow on your page, switch to the Components tab
(Figure 2-4) to see a list of the content types for this page and how large
they are.

SIZE GZIP
t TYPE (KB) (KB)

[=] doc (1) 3.4K

doc 34K 1.5K
= st 40.1K

js 40.1K 15.8K
[=] ess (1) 4.8K

(<11 4.8K 1.5K
cssimage (1) 11.5K
image (6) 722.6K
favicon (1) 2.0K

Figure 2-4. In the Components tab within YSlow, you can see a list of the
content types used on a web page and how large they are.

In this example, we can see that having gzip turned on decreases the
size of our HTML (“doc” in this table), JavaScript, and CSS files. If
you're curious about how gzip works, we’ll cover that in “Minification
and gzip.” We can also see that though there are only six images needed
to load the page, they total 722.6 KB! Those are some very large images.
The “cssimage” row separates any images called and applied via CSS
from the images embedded directly in the site’s HTML.

Take a look at your own page weight, and compare it to the “average
bytes per page” graphs at http://httparchive.org/interesting.php. Are
you using a lot of CSS or JavaScript? What’s the breakdown of content
types on your page—do your images vastly outweigh the other content
types as in the preceding example, or is there another outlier?

What Is the HTTP Archive?

The HTTP Archive is a permanent repository of web performance informa-
tion such as size of pages, failed requests, and technologies utilized. It gath-
ers WebPagetest information for URLs included in the Alexa Top 250,000
sites.

18 DESIGNING FOR PERFORMANCE

vww allitebooks.conl

http://httparchive.org/interesting.php
http://www.allitebooks.org

There are no hard-and-fast rules about page weight; however, it’s
important to keep track of your page weight over time to make sure
that there are no large and surprising changes as your site evolves and
more content is added or the design iterates. We'll talk through lots
more about measuring and iterating on your site’s page weight and load
time in “Changes over Time.”

Look at the total page weight and the breakdown of different kinds of
content in combination with the number of requests it takes to load
your page and the perceived performance of your page. The amount
of content needed to render your page will directly impact how long it
takes to load for your users—the smaller, the better.

Perceived Performance

The perception of how fast your website loads is more important than
how long it actually takes to load. Users’ perception of speed will be
based on how quickly they start to see content render on the page, how
quickly it becomes interactive, and how smoothly the site scrolls.

CRITICAL RENDERING PATH

When your user initially loads a page, it will be blank. Blank space is a
poor user experience; it makes the user feel like nothing is happening.
To fix this user experience issue, you'll need to optimize your critical
rendering path.

To understand how the critical rendering path works, you need to
understand how browsers craft the visual rendering of web pages by
reading the HTML, CSS, and JavaScript for a page. Browsers start by
creating the Document Object Model, or DOM. A browser will receive
the HTML back from a web server and begin parsing it: raw bytes
become characters, strings of characters become tokens like <body>,
tokens become objects that have properties and rules, and finally these
objects are linked together into a data structure. This last step is the
creation of the DOM tree, which a user’s browser relies on for all fur-
ther processing of the page.

As the browser reads through the HTML, it'll bump into a stylesheet.
The browser will pause everything and go request this file from your
server. When it receives the file back, the browser will repeat a similar

2. THE BASICS OF PAGE SPEED 19

process: raw bytes become characters, strings of characters become
tokens, tokens become objects, objects are linked in a tree structure,
and we’ll finally have a CSS Object Model, or CSSOM.

Next, the user’s browser will combine the DOM and the CSSOM to
create a render tree, which it’ll use to compute the size and position
of every visible element. The render tree contains only what is neces-
sary to render the page (so anything with display: none will not be
included in the render tree). Lastly, the browser will display the final
render tree on the screen.

This entire process captures the critical rendering path that browsers
work through to display content to a user. One way to see how long it
takes for a user to begin to see your site load is the “Start Render” met-
ric in WebPagetest, which tells you how many seconds it took for the
browser to begin rendering content.

With WebPagetest, we can look at the filmstrip view of a page (Figure
2-5) and see what is visible over time as it loads.

Figure 2-5. With WebPagetest’s filmstrip view, you can see what is visible on
the user’s screen as a page loads over time.

As we look at the Yahoo! home page in 0.5-second intervals, we can see
that the page is blank until roughly 2 seconds into loading time. The
sooner you can begin to get visible content on the page, the quicker the
page will feel to your user.

[NOTE]

WebPagetest results will vary by location, browser, connection speed, and
other factors. While it’s easy to look at the loading of the Yahoo! home page
over 0.5-second intervals, you'll likely want to look at 0.1-second intervals
of your own site’s load time, which you can choose from WebPagetest’s
filmstrip view.

20 DESIGNING FOR PERFORMANCE

There are a few ways to optimize your critical rendering path. Since,
by default, CSS is treated as a render-blocking resource, use media
types and media queries to indicate which parts of your CSS can be
non-render-blocking:

<link href="main.css" rel="stylesheet">

<link href="print.css" rel="stylesheet" media="print"> @

<link href="big-screens.css" rel="stylesheet"

media="(min-width: 61.5em)"> @

1. This stylesheet will apply only when the page is being printed. It
will not block rendering when the page is first loaded.

2. This stylesheet will apply only when the browser’s width is equal to
or greater than 61.5 em. It will not block rendering when the width
of the browser is less than 61.5 em, but it will block rendering if the
browser meets this min-width condition.

Another way to optimize your critical rendering path is to ensure that
you are loading JavaScript in the most efficient way possible. JavaScript
blocks DOM construction unless it is declared as asynchronous; read
more about how to make your JavaScript play nicely with the rest of
page load in “CSS and JavaScript Loading.”

Want more insight into the perceived performance impact of the critical
path on your site? WebPagetest will also give you a metric called “Speed
Index” (http://bit.Iy/1ttMTJ5) for your page. According to WebPagetest’s
documentation, Speed Index is the average time at which visible parts
of the page are displayed. It’s expressed in milliseconds and is depen-
dent on the size of the chosen viewport.

The Speed Index metric is an excellent one to watch as you try to mea-
sure the perceived performance of your page, as it will tell you how
quickly the “above the fold” content is populated for your users. It’s
good to focus on how quickly your users begin to see and be able to
interact with content rather than focus how long it takes for the browser
to completely finish loading your page’s content (which includes any
asynchronous content that is fetched and executed after the docu-
ment is visually complete). You can read more about WebPagetest’s
measuring of Speed Index and how long it takes to fully load a page
in Chapter 6.

2. THE BASICS OF PAGE SPEED 21

Time to interactivity is a term for the time between when users navi-
gate to a page and when they can complete an action like clicking a link,
performing a search, or playing a video. There are a number of ways
you can improve the speed at which content begins to load and become
interactive for your users by optimizing the critical rendering path:

« Asynchronously load content
« Prioritize requests for “above the fold” content

- Follow best practices for loading CSS and JavaScript (more in “CSS
and JavaScript Loading”)

« Cache assets for returning users (more in “Caching Assets”)

« Ensure that any primary actions for the page are available to the
user as quickly as possible

By optimizing the critical rendering path in concert with the other
aspects of total page load time, you can ensure that your user has a pos-
itive impression of how quickly your site loads.

JANK

Have you ever noticed stuttering or skipping as you're scrolling down
a web page? This is referred to as jank, and it occurs when browser
rendering slows down below 60 frames per second. Jank will create a
poor user experience and will negatively affect your users’ perception
of your site performance.

This stuttering is due to the browser’s attempt to paint a change on
the page. Changing visual properties of an element (such as its back-
ground, color, border radius, or shadow) will trigger a new paint in the
browser. Your user can also trigger paints by performing an action that
changes the visibility of an element of your page, like showing or hid-
ing content or clicking through a carousel. A browser will “repaint”
parts of your user’s screen as things change.

Sometimes, these repaints drastically affect your browser rendering,
slowing it down below the 60-frames-per-second threshold. For exam-
ple, some animations (such as position, scale, rotation, and opacity) can
be handled by modern browsers within 60 frames per second; other
animations may create jank for your user. Repaints are expensive oper-
ations for browsers, and will make your page feel sluggish.

22 DESIGNING FOR PERFORMANCE

If you notice that your site is showing symptoms of jank, there are
some browser tools available to help you debug the root cause. There is
a Timeline view in Chrome DevIools (Figure 2-6) that shows you the
frame rate as you interact with a page.

Q Elements Newwork Sources | Timeline| Profiles Resources Audits Console 92 41 -3
® O V% ¥ ™ Capture stacks

=5 Events o

]
x

30fps
I Hllil Frames
60fos

|~ Memory o | LA EEFEE R .
RECORDS DETAILS: 1.29'5 - 1305 (1 frames)

8 Recalculate Style]

aLayout n

= Paint (300 x 59)]

= Composite Layers i 1365

8 Composite Layers 1

» 1 Event (mouseout) »
» & Event (mouseover) » 4,043 ms Scripting
8 Recalculate Style] 3,722 ms Rendering
» & Event (mouseout) > [3.504 ms Painting
» 1 Event (mouseover) 4 63.273ms Other
8 Recalculate Style B][1.28sldle
» & Event (mouseout) > I Minimum Time: 16.146 ms (62 FPS)
» o Event (mouseover) " 1| Average Time: 16.146 ms (62 FPS)
® Recalculate Style Maximum Time: 16.146 ms (62 FPS)
Standard Deviation: 0

Figure 2-6. Chrome DevTools’ Timeline view shows you the frame rate over
time as you interact with a web page.

Once you click “record” and begin interacting with your page, Chrome
DevTools will record the frames per second as well as what the browser
was doing, such as recalculating styles, firing events, or painting. Once
you find an area where the frame rate decreased below the 60-frames-
per-second threshold, you can begin targeting that area to reduce
repaint issues. Start by hiding elements on this area of the page to see
which elements may be triggering the jank, and then play with hiding
colors, shadows, and animations to see what may be the root cause of
the sluggishness. Read more about how to use Chrome DevTools in
“Chrome DevTools.”

When it comes to users’ perception of your site’s performance, make
sure that you and others are routinely testing pages from various loca-
tions and devices. Are you able to accomplish a page’s primary task
quickly, or are you finding that your site feels slow? Are you noticing
sluggishness in a certain browser or mobile device? Conducting some
user testing can also help you figure out which parts of your page should
load the quickest, and which need further optimization to improve the
perceived performance and critical rendering path.

If you find that users perceive your site as slow to load because they’re
spending a long time staring at a blank page, or becoming impa-
tient while waiting for an area to become clickable, you can focus on

2. THE BASICS OF PAGE SPEED 23

optimizing the load order and size of page requests. If the page becomes
interactive more quickly and starts to show content faster above the
fold, the perceived performance of your site improves, creating a better
user experience.

Other Impacts on Page Speed

In addition to performance factors that are in your control, there are a
number of environmental factors that also impact your site’s page load
time, including a user’s geographic location, network, and browser.

GEOGRAPHY

A user’s geographic location may greatly impact the amount of time it
takes to load your site. If you run multiple tests on various geographic
locations using a testing tool like WebPagetest, you'll notice a spectrum
of load times. This is due to the fact that browsers are requesting and
receiving data via physical connections, and there is a limit to the speed
at which content can travel over long distances; it will take longer for
your user’s browser to contact your server if it’s farther away. If a user
is in Australia and your content lives on a server in the United States, it
will take much longer for that user to access your content than it would
for someone living in the United States.

This is why content delivery networks (CDNs) are used by sites that
have a global user base. CDNs set up servers with copies of data around
the world so that users can contact the server that is closest to them,
saving time. For the Australian user base in this example, you can con-
sider serving your content from a CDN with a location in the Asia/
Pacific region so that users can access your content from a server closer
to where they live.

NETWORK

Depending upon where your users live, there may also be limitations
to their bandwidth, or a cap on how much bandwidth they can con-
sume in a given time period. The Internet infrastructure where they
live might not be as stable or fast as the infrastructure that you use to
test your site’s speed. Remember that as you are testing your own site,
it may not be a representative user experience for your actual user base,
as you may have a significantly better Internet infrastructure, a faster
connection speed, and a more powerful device.

24 DESIGNING FOR PERFORMANCE

Similarly, a user’s network can have an enormous impact on how long
it takes to make each request for content. On a slow network, it will take
a much longer time for your user’s browser to find and then make the
initial connection to your server, and then even more time to download
your content. This will multiply as the number of requests your user’s
browser must make to render your page increases. Mobile networks are
a good example of the impact of network latency; read more about these
challenges in “Mobile Networks.”

BROWSER

Your user’s browser may also impact the perceived performance of your
site, as each browser handles requests and rendering of content slightly
differently. Browsers that do not support progressive JPEGs (which
we will cover in “JPEG”) will wait until a progressive JPEG file is fully
downloaded before showing it on the page, which feels much slower
to users than showing a baseline JPEG. Browsers that support fewer
parallel connections will request and render content more slowly than
newer browsers that support significantly more connections at a time.

All of these environmental factors are out of your control. However,
being deliberate about optimizing your site for the quickest load time
possible and routinely testing your site’s performance from various
locations and devices will help you create the best user experience pos-
sible for your audience.

In the next chapter, we’ll cover the biggest chunk of most sites’ page
weight: images. It’s important to keep image formatting and compres-
sion in mind, especially now that you understand how page weight and
requests affect your site’s total page load time. The more you can opti-
mize every image’s size and how it’s rendered by your user’s browser,
the better your site’s user experience will be.

2. THE BASICS OF PAGE SPEED 25

[3]
Optimizing Images

Images make up the majority of most sites’ total page weight. The
number of image bytes has grown by more than 30% on the average
web page in the last year (http://bit.ly/1ttROtq), with very little growth
in requests. Thanks to their relatively large file size and the number
of images included on the average site (see Figure 3-1), optimizing
images is arguably the easiest big win when it comes to improving your
site’s page load time.

Average Bytes per Page by Content Type

Scripts - 276 kB

o Stylesheets - 45 kB
— Flash - 87 kB

— Other - 147 kB

I |711L - 57 kB

Images - 1030 kB

W total 1701 kB
Figure 3-1. The HTTPArchive.org (http://httparchive.org/interesting.php)
survey of page weight shows that images make up the majority of most sites’
total page weight.

You can make substantial improvements to both your main content
images as well as the images that make up your site design by:

- Finding the right balance of file size and quality for each image

- Looking for ways to reduce the total number of image requests on
your site

- Optimizing your site’s image creation workflows for performance
improvements

27

http://bit.ly/1ttROtq
http://httparchive.org/interesting.php

Let’s start by looking at the various image file types available, and then

we’ll examine the options you have for optimizing your site’s images
for page speed.

Choosing an Image Format

You have a range of file types to choose from when creating images for
your site. When generating an image, ask yourself:

How compressed can this image be without a noticeable quality
reduction?

How many colors are needed?

Can I simplify this image in any way?

Do I need any transparency?

Do I need any animation?

At what maximum height and width will this image be displayed?

How will this image be repurposed across the site?

The most common image file formats on the Web are JPEG, GIF, and

PNG. Table 3-1 outlines each popular image file format, how it’s best

used, and some optimization tips for it.

TABLE 3-1. Image format overview

FORMAT BEST FOR OPTIMIZATION OPTIONS

JPEG Photos, images with Decrease quality, export as pro-
many colors gressive, reduce noise

GIF Animations Decrease dithering, decrease num-

ber of colors, increase horizontal
patterns, reduce vertical noise

PNG-8 Images with few colors | Decrease dithering, decrease num-

ber of colors, increase horizontal
and vertical patterns

PNG-24 Partial transparency Reduce noise, reduce number of

colors

Let’s walk through the pros and cons of each of these file formats as

well as how to export and optimize each kind of image.

28

DESIGNING FOR PERFORMANCE

vww allitebooks.conl

http://www.allitebooks.org

JPEG

JPEGs are the ideal file format for photographs or other images with a
large spectrum of colors. JPEGs are designed to compress files in ways
that our eyes won't notice at a high enough quality. At low quality, we’ll
notice artifacting, banding, and graininess in JPEG images, as JPEG
is a lossy file format. Lossy file types discard pieces of information as
they are saved; JPEGs choose which pieces of information to discard
by using an algorithm based loosely on how humans see and perceive
information.

What Is “Artifacting”?

An artifact is a loss of clarity within an area of an image. Artifacting may
cause an image to look fuzzy, pixelated, or blurry.

JPEGs are very smart at discarding information over smooth gradients
and areas of low contrast. Images with sharp contrasts between adja-
cent pixels are usually better suited for a different file format (such
as PNG), since in a JPEG format you will likely see artifacting. But
because JPEGs are excellent at creating relatively smaller files with a lot
of information in them, it’s no surprise that the majority of the images
on the Web are JPEGs. The smart compression in JPEGs will generally
result in a smaller file size for complex images, which is one of our
goals as we work to improve how long it takes to load a web page.

With any image file you generate, test out a few different qualities and
file types in the Save for Web workflow within Photoshop. You're aim-
ing for a happy medium of acceptable quality and small file size. It’s
important to play with the file size and see what level of compression
is noticeable. Look for artifacts, messy contrast between elements, and
blurry details and text.

In Figure 3-2, we can see a zoomed-in portion of a photograph that
has been exported at various qualities using Photoshop’s Save for Web
tool. As you compare the images exported at quality 25, 50, 75, and 100,
notice that the lower qualities have more artifacting around the edges
of high contrast.

3. OPTIMIZING IMAGES 29

Quality: 25 Quality: 50

R

A0

(s
Quality: 75 Quality: 100

s v

AL

-
Figure 3-2. In this comparison of Photoshop’s Save for Web export quality,
the lower-quality JPEG images have more artifacting around edges of high
contrast, such as the green background surrounding the top white leaves.

Why Use “Save for Web””?

In Photoshop, you have two main ways to generate an image: the Save for
Web tool, and Save As. Unlike Save As, Save for Web will provide additional
optimizations for generated image files, and will also allow you to tweak the
quality of the image and preview the result before saving. Save for Web will
help you find a balance between aesthetics and file size for your images.

The more distinct colors in an image, the larger a JPEG’s file size will
be, as it is harder for the JPEG’s algorithm to find easy areas in which
to compress and blend colors. Noise and grain in a JPEG can greatly
increase its file size, as you can see in Figure 3-3. When creating new
images (particularly if you are creating repeating patterns), be judi-
cious with the number of colors you are introducing.

Noise Amount: 5% Noise Amount: 5% Noise Amount: 10% Noise Amount: 10%
JPEG quality: 50% JPEG quality: 75% JPEG quality: 50% JPEG quality: 75%
File size: 1.56 KB File size: 4.83 KB File size: 2.98 KB File size: 9.02 KB

Figure 3-3. Comparison of JPEG image noise, quality, and resulting file size.

30 DESIGNING FOR PERFORMANCE

In Figure 3-3, you can see a comparison of JPEGs that have been
exported via Photoshop’s Save for Web tool and then passed through
ImageOptim, an additional image compression tool. Read more about
compression tools in “Additional Compression.” The original JPEG was
a blue square with a Noise filter added within Photoshop. The left two
images have an added noise amount of 5%, and the right two images
have added noise at 10%.

Comparing the images, you can see that the exported JPEGs with less
noise are also smaller in file size; the images with 10% noise are nearly
double the file size of the images with 5% noise. Again, JPEG quality
also has an effect on total file size. As you optimize for page load time,
keep both noise and JPEG quality in mind, and see where you can find
savings in your images.

Your choice of JPEG type can also affect the perceived performance
of how fast your site loads (read more in “Perceived Performance”).
Baseline JPEGs (those typically found on the Web) are a full-resolution,
top-to-bottom scan of an image. Progressive JPEGs are made up of a
series of scans of increasing quality.

Because baseline JPEGs are a top-to-bottom scan, they appear this
way in the browser, with pieces of them being slowly revealed in rows.
Progressive JPEGs, on the other hand, appear all at once at low quality;
then this low-quality version of the image is replaced with versions of
progressively higher quality. Progressive JPEGs appear to load faster
than baseline JPEGs because they fill in the space necessary all at once
with a low-quality version instead of loading the image in chunks.

Progressive JPEGs are displayed in all browsers. However, not all brows-
ers render progressive JPEGs as quickly as we’d hope. In browsers that
don’t support progressive rendering, progressive JPEGs will display
more slowly, as they appear after the file has completed download-
ing rather than progressively. In these cases, they will visually appear
more slowly than baseline JPEGs, which arrive in stages. You can read
more about progressive JPEG browser support in the PerfPlanet article
“Progressive JPEGs: a new best practice” (http://bit.ly/1ttThzL).

One additional consideration when you are choosing a JPEG type is
CPU usage. Each progressive scan requires about the same CPU power
as one entire baseline JPEG would need to render on a page. On mobile
devices, this can be a concern. Currently Mobile Safari does not render

3. OPTIMIZING IMAGES 31

http://bit.ly/1ttThzL

progressive JPEGs in a progressive manner, which is understandable
considering the tax on the CPU. However, other mobile browsers, such
as Chrome on Android, do render them progressively. Overall, progres-
sive JPEGs are still an excellent improvement for the overall user expe-
rience, and the small CPU downside will likely be improved by browser
vendors in the future.

If you're interested in testing existing images by converting base-
line JPEGs to progressive JPEGs, there are tools like Smushlt (http://
www.smushit.com/) that can help. To create a progressive JPEG from
scratch using the Save for Web dialog in Photoshop, simply check the
Progressive checkbox in the top-right area of the Save for Web window,
near the Quality picker (see Figure 3-4).

Preset: | [Unnamed] = ~=
JPEG

High s Quality: | 75

@Progressive Blur: O
Optimized Matte:

Embed Color Profile

Figure 3-4. Create a progressive JPEG by checking the Progressive checkbox
in Photoshop’s Save for Web window.

Lastly, be sure to run any exported JPEG through a compression tool
after your initial export from Photoshop. You can gain additional file
size savings at little or no quality loss. See “Additional Compression”
for suggested compression tools and workflows.

GIF

GIFs are one of the oldest graphic file formats on the Web. The GIF
file type was originally created in 1987 to store multiple bitmap images
into a single file. It’s since seen a resurgence in popularity, thanks to
its ability to include animation. GIFs support transparency as well as
animation, but include only up to 256 colors within a frame. If a GIF
includes an animation, each frame can support a separate palette of up
to 256 colors. Unlike JPEGs, GIFs are a lossless file format.

32 DESIGNING FOR PERFORMANCE

http://www.smushit.com/
http://www.smushit.com/

There are two rare circumstances when you may want to choose a GIF
for your image file format:

« When the file size of the generated GIF is smaller than the file size
of the same image generated as a PNG-8

« When an animation cannot be replaced with CSS3

When you create a GIF, you have a few options to play with as you try to
find the balance between aesthetics and file size. First, you can choose
a dither amount as well as the number of colors included in the palette
within the Save for Web tool, as you can see in Figure 3-5.

preset: | [Unnamed] 3 =

(e 3

|W| Colors: ﬁl

| Diffusion +| Dither: Wil

| Transparency Matte: K3
Mo Transparency Di... = Amount:

] Interlaced Web Snap: | 0% |

Lossy: | O |

[21 Convert to sRGB

Preview: | Monitor Color 3

data: | Copyright and Contact Info s

Color Table =

Figure 3-5. Creating a GIF in Photoshop.

Dithering helps create visually smoother transitions between colors.
It examines adjacent pixels of different colors and chooses a new color
somewhere in between to give the appearance of a smoother blend. For
example, in this image with a maximum of 40 colors, you can see the
smoothness with dithering set to 0 (Figure 3-6) versus the appearance
with the dithering set to 100 (Figure 3-7).

3. OPTIMIZING IMAGES 33

Figure 3-6. GIF with dithering set to 0: 4.8 KB.

Figure 3-7. GIF with dithering set to 100: 9.7 KB.

The file size of the GIF is affected by the amount of dithering. In
Figures 3-6 and 3-7, when dithering is set to 0, the exported GIF is 4.8
KB. When dithering is set to 100, the exported GIF is 9.7 KB. Note that
though both had a maximum of 40 colors included in the Save for Web
palette, you may have up to 256 colors within your palette.

Interestingly, if we change the direction of this colorful gradient in the
GIF and export it with dithering set to 100, we see a large change in file
size in Figure 3-8.

34 DESIGNING FOR PERFORMANCE

Figure 3-8. GIF with vertical patterns: 21 KB.

Why does the file size more than double in this case? GIFs follow a
compression algorithm that removes horizontal redundancy. So by
introducing extra vertical details or noise, we've increased the file size
of the GIF. When you create a GIF, consider how successful it may be
at optimizing your image and creating the smallest file size possible
while still being aesthetically pleasing. Reduce vertical noise, as it will
have a substantial impact on your GIF’s file size.

For most images that contain few colors and sharp edges, PNG-8 will
be your file format of choice. PNGs use a different kind of compression
method than GIFs; they look for repeated horizontal patterns in the
image like GIFs do, but in addition, they also look for vertical patterns.
It’s highly likely that a PNG-8 version of your image will be smaller
in file size than a GIF, so be sure to test PNG-8 as you find a balance
between file size and aesthetics.

Lastly, if you have a simple animation in a GIF, such as a spinner or
loading indicator, consider replacing it with a CSS3 animation. CSS3
animations tend to be lighter weight and better for performance than
GIFs, so it’s worth testing to see if you can replace GIFs on your site.

PNG

PNG is a lossless image format designed to improve upon the GIF file
format. Photoshop allows you to export PNG-8 and PNG-24 images;
each format has pros and cons you need to consider when optimizing
for performance.

3. OPTIMIZING IMAGES 35

When you need transparency in your image, PNG will be your best
choice. GIFs also support transparency, but they tend to be much
heavier than PNGs. PNGs recognize horizontal patterns and compress
them like GIFs do, but they also can find vertical patterns, which means
you can benefit from additional compression in PNGs.

When you have a small number of colors in your image, PNG-8 is likely
going to be your best choice for file format. PNG-8 files contain a max-
imum of 256 colors within the image, and generally result in a smaller
file size.

In Figure 3-9, you can see that the image contains 247 total colors. In
this particular example, all 247 colors in our palette are various shades
of gray. PNG-8 images can contain a maximum of 256 colors, like GIFs.
Just as with a GIF, we can also select our dither amount (read more in
“GIF”), which will affect the total file size.

008 Save for Web (100%)

7| [Foriginal | optimized |2-un l4-ua TN eresens =

[a] Selective 4] colors:[256 =

Diffusion s Dither: 100% s

] o Transparency vawe:)

Amount: :
(] Interlaced Web Snap:

 convert to sRGB
Metadata: | Copyright and Contact Info 3+

Color Table

[&] %

i S o
PNG-B Tooxdither || M55]px - quaiy:
20.59K Selective palette Animation
5 sec @ 56.6 Kbps ~= 247 colors

Looping Options: | Forever
Qw100 [+][R G- B Alphat - Hex: Index: Al lof1 [« >
0o e (o) [o

Figure 3-9. PNG-8 Export view in Photoshop.

We are also working with transparency in Figure 3-9. The text has a drop
shadow, and the PNG-8 Export view has a white matte selected. The
matte tells Photoshop what the background color of the image should
be; this color should match the background of the element where you’ll
be placing the exported PNG. Photoshop is choosing which pixels need

36 DESIGNING FOR PERFORMANCE

to be transparent and how the original translucent drop shadow blends
with our chosen matte in order to color the other pixels surrounding
the text.

In Figure 3-10, we set the PNG to contain a maximum of 256 colors, but
again we don’t need all 256. In this case, the PNG will export with just 4:
white, blue, green, and red. Even though we’ve selected Transparency,
the image actually doesn’t need it, as it has a white background exported
as part of the image. Photoshop works to help you create an optimized
file size of your image, but you'll still need to run it through additional
compression tools (read more in “Additional Compression”).

7 Optimized Preser: | (Unnamed) ¢
Selective + Colors: 256 +
Diffusion + Dither: 100% +

 Transparency Mate:| ¢
No Transparency Di... +| Amount: =

(] Interlaced Web Snap:

@ Convert to SRGB
Preview:
Metadata: | Copyright and Contact Info :

Color Table

+ [@e[a] [F]a]

Image Size
Wi o b 30
iz Jox 1% iy

Animation

1 sec @ 56.6 Kbps

4 colors

Looping Options: | Once :]

Dl eos [2][R G- - [Alpha:— rex: Index: —)| Lofl [« >]m]

EE [Cancel | [Done |

Figure 3-10. PNG-8 Export view with few colors.

PNG-24 files, on the other hand, do not have the same restriction in
color palette. While you can use PNGs for photos, they will often be 5
to 10 times larger in file size than JPEGs because they are lossless. Just
as with any other kind of image file, reducing noise and the number of
colors will be beneficial to the overall file size of your PNGs. Let’s com-
pare the two images in Figure 3-11: one with 5 different colored stripes,
and one with 10.

3. OPTIMIZING IMAGES 37

Stripe colors: 5 Stripe colors: 10
File size: 2.96 KB File size: 3.14 KB

Figure 3-11. Comparing the file size difference between PNGs with 5 or 10
colors.

These images were exported as PNG-24 images via the Save for Web
tool in Photoshop. By increasing the number of colors in the image, we
increased the file size by 6%. If you can find ways to decrease the num-
ber of colors in your image, perhaps by normalizing the colors used in
your site (as we’ll cover in “Creating Repurposable Markup”), you can
save file size, which will have a positive effect on performance.

In Figure 3-12, we're exporting the same file as in the initial PNG-8
example with transparency (Figure 3-9), but you'll notice that the trans-
parency in the PNG-24 file is handled very differently.

006 Save for Web (100%)

m Original | Optimized |2-Up |4-Up Preset: | PNG-24 =
[PNG-24)
Transparency Matte
O mertaced
 Convert to sRGB
Monitor Color &
s * Preview: | |
De Sl nln ‘fbr Metadata: | Copyright and Contact Info)
Color Table -=
a al
Image Size
- -
PNG-24 H: Quality: | Bicubic ol
22K
5sec@56.6 Kbps ~=
Forever
W 100% ¢ R-- G-- B Alpha: == Hex: == Index: -- lof1
[Preview... | | @ [7) [sae.. | [cancel | [Done

Figure 3-12. Transparent PNG-24 Export view.

38 DESIGNING FOR PERFORMANCE

vww allitebooks.conl

http://www.allitebooks.org

In the PNG-8 file, Photoshop was working with a matte color to blend
the drop shadow; there was no partial transparency, only fully transpar-
ent pixels beyond the drop shadow. In the PNG-24 file, we see partial
transparency. This naturally results in a larger file size; the file size will
also increase substantially in more complex images. If you don’t need
the transparency but have lots of colors in your image, choose JPEG
instead.

There are some other tools that can give you partial transparency in
PNG-8s, such as Fireworks (an image editing tool like Photoshop) and
pngquant (a lossy compression tool for PNG images). However, if you
need partial transparency when exporting an image from Photoshop,
you’ll want to use PNG-24. As always, run every image exported from
Photoshop through an additional compression tool (read more in
“Additional Compression”).

It’s important to note that older browsers, such as Internet Explorer
6, have limited support for PNGs. If you have enough traffic from
older browsers that you need to optimize for them, be sure to test any
exported PNGs to make sure they render as expected.

What About Newer Image Formats?

Newer image formats like WebP (https://developers.google.com/speed/
webp/), JPEG XR (http://en.wikipedia.org/wiki/JPEG_XR), and JPEG 2000
(http://en.wikipedia.org/wiki/JPEG_2000) are further optimized for per-
formance. As they gain traction with browsers and image creation software,
we may have more opportunities to use these newer formats and further
optimize our sites’ images for page speed and perceived performance.

ADDITIONAL COMPRESSION

Before you export an image, make sure that you are exporting it only
at the maximum pixel width and height that you need for the image.
Serving an image that is larger than necessary and scaling it down
within an image tag will negatively impact your page load time, as you
are forcing the user to download more bytes than needed. Read more
about how to handle serving the correct image size in “Deliberately
Loading Content.”

3. OPTIMIZING IMAGES 39

https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/
http://en.wikipedia.org/wiki/JPEG_XR
http://en.wikipedia.org/wiki/JPEG_2000

After you've exported the image, run it through a tool like ImageOptim
(http://www.imageoptim.com/) or Smush.it (http://www.smushit.com/),
which find the best compression technique for a variety of file types.

ImageOptim is software available for download for Macs. Drag and
drop an image into ImageOptim, and watch it find the best lossless
compression for your image and remove unnecessary color profiles and
comments (see Figure 3-13). This software currently includes a num-
ber of existing compression tools, such as PNGOUT, Zopfli, Pngcrush,
AdvPNG, extended OptiPNG, JpegOptim, jpegrescan, jpegtran, and
Gifsicle. ImageOptim’s optimization works on JPEGs, PNGs, and even
animated GIFs by choosing the best compression methods for your
image. Because ImageOptim uses lossless compression methods, the
end result is a smaller file size without sacrificing quality, which is
exactly what we aim for when optimizing for web performance.

806 ImageOptim

File Size Savings
O Seacarinng 1,445 72.1%
|T] Drag and drop image files onto the area above lm|

Figure 3-13. ImageOptim is software that uses lossless compression methods
to find savings in your image files.

Smush.it is also a lossless compression tool. It lives on the Web rather
than on your desktop. Just like ImageOptim, it can process JPEGs,
PNGs, and GIFs. The compression tools included in Smush.it are
ImageMagick, pngcrush, jpegtran, and Gifsicle. Once you upload your
image or choose its URL, Smush.it will choose the best compression
method for it and then display a table with links to downloadable, com-
pressed versions of your images (see Figure 3-14).

40 DESIGNING FOR PERFORMANCE

http://www.imageoptim.com/
http://www.smushit.com/

Smushed 54.50 or 2.75 KB from the size of your image(s).
How did we do it? See the table below for more details.

Download Smushed Images

Smushed Images

Image « Result Source size Result size Savings % Savings
b5922B96%2Fhexagon.png | b5922896%2Fsmush%2Fhexagon.png = 5.05 KB 2.30 KB 275KB 54.50%

Figure 3-14. Smush.it is an online tool that uses lossless compression methods
to find savings in your image files.

These tools can save you a ton of additional file size by finding ways
to reduce the image size without reducing the quality of the image. In
terms of weighing aesthetics and performance, running every image
through one of these tools before uploading to the Web is a huge win.

If possible, automate the image optimization of any images uploaded
to your website. You may have multiple content authors whose work-
flow shouldn’t be interrupted by the need to optimize individual
images. Integrate tools like ImageOptim-CLI (https://github.com/
JamieMason/ImageOptim-CLI) or WordPress plug-ins like EWWW
Image Optimizer (http://bit.ly/1ttTF1t) into your site’s build process to
ensure that any new images created and uploaded will still get the addi-
tional compression they need.

Replacing Image Requests

In addition to decreasing your images’ file sizes, it’s also important to
decrease the number of image requests on the page to improve page
load time (read more about the basics of page load time in Chapter 2).
Being deliberate about how you are requesting and loading images on
your site will help you optimize both the total page load time and how
quickly your users can begin to see and interact with your site. There
are two main ways to eliminate image requests:

- Combine images into sprites

+ Replace image files with CSS3, data URISs, or SVG versions

3. OPTIMIZING IMAGES 41

https://github.com/JamieMason/ImageOptim-CLI
https://github.com/JamieMason/ImageOptim-CLI
http://bit.ly/1ttTF1t

SPRITES

A common saying in the world of web performance is “the fastest
request is a request not made.” One way to reduce the number of image
requests on your page is to combine images into sprites. Your page
weight will increase slightly because you’ll have one large image file
and additional CSS to position and show the graphics within the image,
but it’s likely that combining images into a sprite will be a win for your
site’s page speed.

The best candidates for sprited images are small, repeated images
incorporated into your site design. This may include icons, the site
logo, and other CSS background images that are used around your site.
Figure 3-15 is an example of a sprite.

Designing for *
Performance =

Figure 3-15. This example sprite.png file contains a logo and heart, star, and
other icons that we can use throughout a site’s design.

You can see that this sprite includes a main logo as well as various
versions of stars and other icons. Let’s implement parts of this sprite
using CSS and HTML. Figure 3-16 shows what we want the output to
look like.

Designing for
Performance

We have a favorite!

We have a winner!!

Figure 3-16. This screenshot shows how we want our sprite to be used on the
page.

Without a sprite, we have individual images applied to each element.
Here is our starter markup:

<h1>Designing for Performance</h1>
<p class="fave">We have a favorite!</p>
<p class="fave winner">We have a winner!!</p>

42 DESIGNING FOR PERFORMANCE

In this HTML, we are going to apply the logo to the h1 element, one of
the stars to the first paragraph with the class fave, and a different class
to the paragraph with the additional class of winner. Here is our starter
CSS with each individual image applied:

h1, .fave:before {
background: transparent no-repeat; @

}

h1 {
background-image: url(hil.png);
text-indent: -9999px; @
height: 75px;
width: 210px;

}

fave {
line-height: 30px;
font-size: 18px;

}

.fave:before { ©
background-image: url(star.png);
display: block;
width: 18px;
height: 17px;
content: ¢’;
float: left;
margin: 5px 3px 0 0;

}

.winner:before {
background-image: url(star-red.png);

}

1. We are applying a transparent background-color to these ele-
ments, and we're telling it to not repeat the background-image
across the entire width and height of the elements.

2. We use text-indent to move the text within the h1 off the visi-
ble area of the page and to allow the background-image to show
through. There are a number of ways to move text off the visible
section of the page but still make it available to screen readers; you
can also try the following method for hiding visible text:
element {

text-indent: 100%;
white-space: nowrap;
overflow: hidden;

}

3. OPTIMIZING IMAGES 43

This text-indent: 100% method may also significantly increase
performance on the iPad 1 in cases where you are applying many
animations to this element.

3. To get the star to show up to the left of the paragraph text, I'm apply-
ing the image to the :before pseudoelement for the paragraph.
The :before selector creates a new, inline element so you can
insert content before the content of the selected element. :after
is also a psuedoelement you can use. These pseudoelements are
supported in modern browsers, with partial support in Internet
Explorer 8 and no support in earlier versions of Internet Explorer.

Let’s change this over to use a sprite instead of individual images. We’ll
use the preceding example sprite (Figure 3-15) and apply it to the h1
and .fave:before elements:

h1, .fave:before {
background: url(sprite.png) transparent no-repeat;

}

Figure 3-17 shows what our new paragraph styling looks like with the
sprite applied to the :before element.

Designing for
Performance

T We have a favorite!
T We have a winner!!

Figure 3-17. This screenshot shows our paragraphs with the sprite applied to
the before element, but without proper placement.

Now we need to determine the new background-position of our sprite
so that the stars appear. The h1 received the default background-po-
sition of 0 0, or the top left of the sprite. background-position can
accept different kinds of value pairs that correspond to the x-axis and
y-axis, respectively:

« 50% 25%
. 50px 200px
. left top

44 DESIGNING FOR PERFORMANCE

In our case, we know where in the sprite our star images are, so we can
use pixels to move the background-image over until each star shows.
For the first star, we need to move the sprite 216px to the left and 15px
up to show the sprite in our :before pseudoelement. We'll apply the
following CSS to .fave:before in addition to its existing styles:

.fave:before {

background-position: -216px -15px;

Our second star will automatically receive all of the styles we applied
to the first, as both paragraphs share the class fave. We just need to
choose a new background-position to show the red star icon:

.winner:before {
background-position: -234px -15px;

Here’s our final CSS with the sprite applied instead of individual
images:

h1, .fave:before {
background: url(sprite.png) transparent no-repeat;

}

h1 {
text-indent: -9999px;
height: 75px;
width: 210px;

}

fave {
line-height: 30px;
font-size: 18px;

}

.fave:before {
display: block;
width: 18px;
height: 17px;
content: '';
float: left;
margin: 5px 3px O O;
background-position: -216px -15px;

}

.winner:before {
background-position: -234px -15px;

3. OPTIMIZING IMAGES 45

Sprites can save a ton of page load time thanks to the decreased num-
ber of image requests. You'll notice that total page weight may increase
with sprites due to the larger sprite image file size as well as additional
CSS to use the sprite. However, using the sprite has a much better
chance of a faster page load time than using individual images, as the
browser has to fetch only one image rather than make lots of additional
HTTP requests.

I created two pages on my site to test this example: one before we com-
bined these images into a sprite, and one after. I ran them through
WebPagetest to get a feel for the performance that a user may experi-
ence in each version (see Figure 3-18). Note that for any example like
this, total load time and overall speed will vary between each test, but
this gives us a rough estimate of the potential performance impact of
sprites.

Ml DNS Lookup Initial Gonnaction | Start Render | msFirstPaint DOM Content Loaded Onload | Document Complete

Before the sprite

0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1. laraswanson.com
2. laraswanson .com

3. laraswanson.com [
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

After the sprite

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9

1. laraswanson.com
2. laraswanson .com

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

html image

Figure 3-18. Connection view for our page before and after the sprite.

Figure 3-18 shows the connection view for our page before and after the
sprite. Before the sprite, Chrome made three connections to retrieve
the contents of the page. In the first connection, after the DNS lookup
and initial connection, the browser grabbed the HTML for the page
and then retrieved the first image. In the third connection, there is an
initial connection time and then more image downloading. The last
image to be downloaded (notice it begins in the second connection
around document complete) is a favicon for the site.

46 DESIGNING FOR PERFORMANCE

After the sprite, Chrome made two connections to retrieve the contents
of the page. In this connection, after the DNS lookup and initial con-
nection, the browser retrieved the HTML and then the single sprite.
Again, after document complete, the browser gets the favicon for the
site. As you can see, document complete happens faster with the sprite
than without it. Another way to visualize how much faster the sprited
version feels is to look at the Speed Index metric (Figure 3-19).

Visual Progress (%)

100

M Beiore sprite
Il After sprite

75

50

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (seconds)

Figure 3-19. WebPagetest’s Speed Index metric helps illustrate when a page
becomes visually complete. WebPagetest calculates Speed Index by figuring
out how “complete” the page is at various points in time during the page load,
shown over time in this visual progress graph.

As mentioned in “Critical Rendering Path,” Speed Index is the average
time at which visible parts of the page are displayed. It’s an excellent
metric to watch as you try to measure the perceived performance of
your page, as it will tell you how quickly the “above the fold” content
is populated for your users. In this example, our graph of visual prog-
ress (from which Speed Index is calculated) shows how much faster the
page appears visually complete over time with the sprite.

3. OPTIMIZING IMAGES 47

What About HTTP/2?

HTTP/2 is a major revision of the Web’s protocol that is currently being
defined. Its focus is to help improve performance, and one of the major
chief goals of HTTP/2 is to allow the use of a single connection from a
browser to a server, helping to optimize how browsers request assets. With
HTTP/2, web servers hosting your site’s files could hint or even push con-
tent back to your user’s browser instead of waiting for it to request individ-
ual page assets. This means that the need for spriting could be eliminated
in the future!

There are some potential performance downsides to using sprites,
however. If you need to change one image within the sprite, you'll have
to break the cache of the entire file. Also, by using the sprite you are
forcing your users to download potentially unnecessary bytes; if the
other icons in the sprite are never seen during a user’s visit to your site,
the user will have downloaded and decoded the larger file size for no
reason. Consider these drawbacks when creating your sprite and mea-
suring its performance impact.

In one experiment my team ran, we had a small section of a page that
featured 26 thumbnail images rotating in and out of 10 slots. We com-
bined all 26 images into a sprite, which:

« Increased the total page size by 60 KB due to the added CSS,
JavaScript, and new image file needed to re-create this effect

- Decreased the number of requests by 21%
« Decreased the total page load time by 35%

These results demonstrate that it’s worth experimenting with page
load time optimizations. We weren't originally sure whether this tech-
nique would be an overall page speed win, but we knew it was worth an
experiment so we could learn from it. Read more about measuring and
iterating on performance wins in Chapter 6.

48 DESIGNING FOR PERFORMANCE

vww allitebooks.conl

http://www.allitebooks.org

CSS3

Another way to decrease image requests is to replace them with CSS.
You can create shapes, gradients, and animations using CSS. For exam-
ple, CSS3 gradients:

« Can handle transparency

- Can be overlaid on a background color
- Eliminate an image request

- Are super easy to change

CSS can be a great, performant replacement for images. Don’t worry
about the extra page weight from the vendor prefixes in CSS3 syntax;
if you aren’t already, you should be using gzip on your site (read more
about how to implement and optimize for gzip in “Minification and
gzip”), which will take care of optimizing this code. Even though you
will be loading more CSS, it'll likely be a better-performing option than
an image request.

One great place where CSS can replace images is a basic repeating gra-
dient. Why use an image when you could use a simple, repurposable
CSS3 gradient that eliminates an image request?

For example, you can create a single gradient that fades from white to
transparent, and use this gradient on any element that you'd like to
show with a bevel. Let’s try this on three buttons:

Click Me

Buy This
More Info

In our CSS, we will have already applied font and spacing styles to these
buttons. To add the basic bevel gradient:
a{
background-image:
linear-gradient(to bottom, #FFF, transparent);

background-color: #DDD;
border: 1px #DDD solid;

}

[NOTE]

In this example, I’'m including only the W3C gradient syntax. You'll need to
add syntaxes for other browsers, such as Firefox and Internet Explorer.

3. OPTIMIZING IMAGES 49

Based on this CSS, all of our links will have a gray background color,
and overlaid on this background color will be our CSS3 gradient,
applied as a background image. Each link also has a solid gray 1px bor-
der. To make the Buy This button green, and the More Info button blue,
we simply change the background color and border color of each:

.buy {
background-color: #C2E1A9;

border-color: #DSE5CE;

}

.info {
background-color: #AFCCD3;
border-color: #DAE9EC;

}

The resulting buttons (Figure 3-20) will each have their own back-
ground color with a white-to-transparent gradient overlaid on top.

Click Me BuyThis More Info

Figure 3-20. Buttons with CSS3 gradient backgrounds.

Using a gradient like this eliminates the need for an image request,
which is excellent news for your page load time. You can do some pretty
amazing things with CSS3 gradients because of the control they offer
over where colors begin and end. Here is an example hexagon built for
WebKit browsers using CSS3 gradients. We need only one element, so
in this case I chose to use a div:

<div class="hexagon"></div>
Here is the corresponding CSS to turn this div into a colorful hexagon
in WebKit browsers:

.hexagon {
width: 333px; height: 388px;
background-image:
-webkit-linear-gradient(120deg, #fff 83px, transparent o,
transparent 419px, #fff 0),
-webkit-linear-gradient(-120deg, #fff 83px, transparent 0,
transparent 419px, #fff 0),
-webkit-linear-gradient(160deg, transparent 345px,
#1e934f 0),
-webkit-linear-gradient(140deg, transparent 376px,
#1e934f 0),
-webkit-linear-gradient(120deg, transparent 254px,
#085b25 0),

50 DESIGNING FOR PERFORMANCE

-webkit-linear-gradient(150deg, #053b17 183px,
transparent 0),
-webkit-linear-gradient(80odeg, transparent 96px,
#085b25 0);
background-color: #053b17;

}

Figure 3-21 shows how the hexagon renders in Chrome.

Figure 3-21. Hexagon made using only CSS3 gradients, inspired by
Geometry Daily #286 (http://bit.ly/1ttUnvu).

To get started writing CSS3 gradients, check out tools like ColorZilla’s
Gradient Editor (http://www.colorzilla.com/gradient-editor/). You can
play with different colors, the direction of the gradients, and which
browsers you'd like to support. Let’s try a cross-browser gradient that
goes from top to bottom, starting at a light green and switching at the
halfway point to a dark green. In this case, we're intentionally creating
a hard stop between the two greens, rather than a smooth transition
between the two.

Let’s start with our fallback color, which would be applied to the back-
ground or background-color property of our element:

/* 01d browsers should get a fallback color */
background: #7AC142;

I recommend setting a background-color for each element that has
a gradient applied, so in the case where a CSS3 gradient isn’t sup-
ported, you still may have a readable contrast between the text and the
background of the element. Be sure to test gradients across browsers
to make sure they are working as expected, and that any text is still
readable.

3. OPTIMIZING IMAGES 51

http://bit.ly/1ttUnvu
http://www.colorzilla.com/gradient-editor/

To support more browsers, you'd apply the following CSS to the back-
ground or background-image property of the element:

/* FF3.6+ */
-moz-linear-gradient(top, #e4f3d9 50%, #7ac142 0);

/* Chrome, Safari4+ */

-webkit-gradient(linear, left top, left bottom,
color-stop(0%,#e4f3d9), color-stop(50%,#e4f3d9),
color-stop(51%,#7ac142));

/* Chrome10+, Safari5.i+ */
-webkit-linear-gradient(top, #e4f3d9 50%, #7ac142 0);

/* Opera 11.10+ */
-o0-linear-gradient(top, #e4f3d9 50%, #7ac142 0);

/* IE10+ */

-ms-linear-gradient(top, #e4f3d9 50%, #7ac142 0);

/* W3C */

linear-gradient(to bottom, #e4f3d9 50%, #7ac142 0);
In the preceding syntax, the light green will start at the top of the ele-
ment and continue to stay light green until 50% down the height of the
element. To create the hard stop between the two greens, we can set 0
as our second color stop for many of the browsers’ syntax. This indi-
cates to the browser that the new color should start right away, after
our 50% light green color stop. In the older Chrome and Safari syntax,
however, we need to set multiple color stops and percentages to make
sure it does what we want!

The resulting gradient will look like Figure 3-22.

Figure 3-22. CSS3 gradient with a hard stop.

52 DESIGNING FOR PERFORMANCE

background Versus background-image

What’s the difference between applying a gradient to a background instead
of a background-image? Browsers are smart enough to know that when
you declare a gradient for background, it should be applied as a back-
ground-image. The gradient will play nicely and not be overridden by any
background-color declarations for the element. Your background-image will
overlay the background-color declared. However, if you apply just a back-
ground declaration later in your CSS to an element with a background-image
gradient, the new background declaration will override your gradient.

To support CSS3 gradients in older versions of Internet Explorer, you
need to apply a filter property to the element. However, we can create
only a smooth gradient using the filter property; we will be missing
out on the hard color stop between our two greens:

/* 1E6-9 */

filter: progid:DXImageTransform.Microsoft.gradient(

startColorstr="#e4f3d9',endColorstr="#7ac142"',
GradientType=0);

You should analyze the visitor traffic for your site to determine which
browser versions you need to support with vendor prefixes.

The preceding CSS also includes the W3C standard for gradients: 1in-
ear-gradient. Hopefully in the future, as more browser vendors come
to agreement on CSS3 gradient syntax, we can clean up existing vendor
prefixes from our CSS.

In addition to using CSS3 to create gradients, you can use CSS as a
powerful image replacement tool in other areas: loading indicators,
tool tips, and a variety of other simple graphics. There are plenty of
examples on the Internet for CSS-only spinners (http://dabblet.com/
gist/7615212), various shapes made with CSS (https://css-tricks.com/
examples/ShapesOfCSS/), and repeating patterns using just CSS
(http://lea.verou.me/css3patterns/).

3. OPTIMIZING IMAGES 53

http://dabblet.com/gist/7615212
http://dabblet.com/gist/7615212
https://css-tricks.com/examples/ShapesOfCSS/
https://css-tricks.com/examples/ShapesOfCSS/
http://lea.verou.me/css3patterns/

That being said, be careful how your CSS affects repaint times, as there
can be a cost to using a lot of CSS3. A repaint is an expensive operation
performance-wise and can make your page look sluggish. If you find
that your user interface does become sluggish, especially upon scroll-
ing, you may have a CSS3 or JavaScript repaint issue and will want to
diagnose what’s causing it using tools from JankFree.org (http://jank-
free.org/). Read more about this topic in “Perceived Performance.”

DATA URIS AND BASE64-ENCODING IMAGES

Replacing very small, simple images with data URIs is also a way to
decrease the number of requests a web page has to make. To do this,
change an image to a URI by converting it to text using a method called
Base64 encoding. For example, let’s say we have a PNG-8 image of a
small triangle (Figure 3-23) that we want to reuse in various places
across a site.

A
Figure 3-23. Small triangle in PNG-8 format.

We can convert the image to its text equivalent (a data URI) using an
online Base64 encoder. We upload our image and the encoder returns
a data URI for us to use in our CSS. The result of Base64-encoding this
triangle and applying it to the background-image of an element using
CSS would look like this:
background-image: url(
EUgAAMOAAAQCAAAAAAKF L GEAAAAVUL EQVRAANMA,/B8GGOY fwsm6UQimx3

Y4c6PKTxjzUn4FnPmB7QaM+X+CDZz5P2E+nH1S6C2M+b86AC78b3MYz1yg8
hPG/3/fAmSegQC22wzhx1BQAQBLjnsWe1X9QWAAAABIRUSErkIggg==) ;

Using Base64 to encode images saves an HTTP request by embedding
the code for the image, which is generally a good rule of thumb for per-
formance. It allows the image to be processed and display the image
immediately rather than wait for the HTTP request for the image.

However, inlining images also removes your ability to cache the file,
and it also makes your CSS larger (sometimes substantially, depend-
ing upon the length of the data URI). Be sure to measure the perfor-
mance consequences of changing any images to data URIs before per-
manently implementing them on your site to make sure they’re actu-
ally a performance win for you.

54 DESIGNING FOR PERFORMANCE

http://jankfree.org/
http://jankfree.org/

SVG

Some icons and images are great candidates for replacement with scal-
able vector graphics (SVG). If you have a single-color or gradient image,
transparency, or very little detail in your graphic, consider exporting it
as an SVG. SVG uses XML to define basic properties of the image using
paths, shapes, fonts, and colors.

The major advantage of using SVG images is that both nonretina
and retina devices will display them beautifully. Rather than creating
high-resolution duplicates of your images to serve up to high-resolution
displays, you can replace them with SVGs. SVGs will appear at the right
size and definition because they are vectors that scale smartly, unlike
raster images. Also, by replacing an image file with inline SVG, you are
eliminating an HTTP request to go and fetch the file from the server.

SVGs are not supported on Internet Explorer 8 or lower, nor are they
supported on devices running Android 2.x. However, SVG feature
detection is reliable, so you can use tools to fall back from SVG images
to PNG versions. For example, Grunticon (https://github.com/fila-
mentgroup/grunticon) allows you to upload a set of SVG files and gen-
erates CSS for applying icons as SVG background images along with
fallback PNG images and CSS.

To create an SVG image using Adobe Illustrator, choose File > Save As
and under Format, choose SVG. This will create a new SVG file that
you can edit using a text editor. You'll be given a number of export
options (Figure 3-24).

Choose the following settings to create the simplest (and smallest) SVG
file without compromising quality:

« SVG Profiles: SVG 1.1. This is a well-supported version of SVG.
« Font Type: SVG.
- Subsetting: None (Use System Fonts).

« Images: Embed. This will embed any bitmaps into the SVG rather
than externally linking to them.

« Preserve Illustrator Editing Capabilities: Deselect. We don’t need this
functionality when using an SVG on our site.

3. OPTIMIZING IMAGES 55

https://github.com/filamentgroup/grunticon
https://github.com/filamentgroup/grunticon

SVG Options

SVG Profiles: | SVG 1.1 = (oK |

— Fonts | C | |

Type: | SVG s — =
Subsetting: | None (Use System Fonts) |

| More Options |

— Images
Location: (s)Embed (_)Link

|_| Preserve lllustrator Editing Capabilities

— Description
l? Hold the cursor over a setting for additional information.

| Show SVG Code... |

| Web Preview... |

| Device Central... |

Figure 3-24. SVG export options.

For this example, I've created a star SVG (Figure 3-25) using Adobe
Hlustrator.

Figure 3-25. Star in SVG format.

Open your SVG file in a text editor. In your saved SVG, all you'll need
are a few XML tags, such as:

<svg>
<path/>
</svg>

However, upon opening this star file in plain text, I can see that Adobe
Hlustrator passed through quite a bit of unnecessary code into our SVG:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generator: Adobe Illustrator 15.0.2, SVG Export Plug-In .
SVG Version: 6.00 Build 0) -->

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.o0rg/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:x1ink="http://www.w3.0rg/1999/x1ink" x="0px" y="0px"

56 DESIGNING FOR PERFORMANCE

width="20px" height="20px" viewBox="0 0 20 20"
enable-background="new 0 0 20 20" xml:space="preserve">

<polygon fill="#FFFFFF" stroke="#000000" stroke-miterlimit="10"
points="10,2.003 11.985,8.112 18.407,8.112 13.212,11.887
15.196,17.996 10,14.221 4.803,17.996 6.789,11.887 1.592,
8.112 8.015,8.112 "/>

</svg>

Feel free to remove the following components from your exported
SVG. They don't affect the output of your SVG file in a browser, and
we should optimize for the smallest file size possible for performance:

« The <IDOCTYPE>... line
. The <!-- Generator: Adobe Illustrator..comment
o The <?xml... statement

You can also automate the cleanup of SVG files with tools like Scour
(http://codedread.com/scour/) and SVGO (https://github.com/svg/
svgo). Be sure to run this kind of cleanup only on your exported SVG,
not on the original file.

There are a few ways to implement your SVG image on your site. You
can apply the SVG to the source attribute of an image tag:

Our wonderful SVG will crisply expand to the width you set for it.
Rather than including an SVG in your main HTML document, you
can also apply it as a background to an element using CSS:

.star {
background: url(star.svg);
display: block;
width: 83px;
height: 83px;
background-size: 83px 83px;
}

Or you could inline the SVG into your HTML:
<body>
<svg version="1.1" xmlns="http://www.w3.0rg/2000/svg"
xmlns:x1ink="http://wmw.w3.0rg/1999/x1ink" x="0px" y="0px"

width="20px" height="20px" viewBox="0 0 20 20"
enable-background="new 0 0 20 20" xml:space="preserve">

3. OPTIMIZING IMAGES 57

http://codedread.com/scour/
https://github.com/svg/svgo
https://github.com/svg/svgo

<polygon fill="#FFFFFF" stroke="#000000" stroke-miterlimit="10"
points="10,2.003 11.985,8.112 18.407,8.112 13.212,11.887
15.196,17.996 10,14.221 4.803,17.996 6.789,11.887 1.592,
8.112 8.015,8.112 "/>

</svg>
</body>

Some sites use SVG images, but rather than apply them using CSS or
an image tag, they combine the SVG images into an icon font. Tools
like IcoMoon (http://icomoon.io/) can help you build a custom font
made up of your own SVG images. However, icon fonts are not sup-
ported across all browsers, and it can be much more difficult to create
fallbacks for your images where icon fonts aren’t supported. Further,
individually applied icons can be additionally complicated by the line-
height and font-size styles applied to your elements, and they can be
a challenge for accessibility (http://bit.ly/1ttViQw).

Using a font does make it easier to change the color of an icon, as you
can just apply the color CSS declaration to the character. However,
individual SVG images tend to be easier to work with, and you can
control the color of inline SVGs with CSS as well using the fill CSS
property.

Though SVG isn’t supported in older browsers, the forward-friendli-
ness of supporting retina devices and easy workflows for supporting
older browsers—such as Grumpicon (http://www.grumpicon.com/) or
Modernizr (http://modernizr.com/)—make SVG an excellent image
replacement choice for improving the performance of your site. For
additional optimization of SVG files, run them through a compression
tool like SVG Optimiser (http://bit.ly/1ttVIb0), which simplifies deci-
mals and removes unnecessary characters.

Replacing images with inline SVG has the same set of downsides as
replacing images with data URIs: it can add more file size to your
HTML and eliminates the opportunity to cache the file. Measure the
performance impact of replacing any images with SVG on your site
before committing to the SVG versions.

58 DESIGNING FOR PERFORMANCE

http://icomoon.io/
http://bit.ly/1ttVjQw
http://www.grumpicon.com/
http://modernizr.com/
http://bit.ly/1ttVlb0

Image Planning and Iterating

Image efficiency on your site comes down to careful planning at the
design stage. If you know up front how and where you’re going to be
using images across your site, you can plan for things like transpar-
ency, size, gradients, and how you can reduce the total number of
image requests.

As a site evolves, or as the number of designers contributing to image
creation and updating increases, your images directory may grow out
of control. There are a few things you can try to keep the file size and
number of images on your site optimized and maintained, including
scheduling routine checks on image directories and the makeup of
your page weight, creating a style guide, and mentoring other image
creators on the importance of optimized images.

SCHEDULE ROUTINE CHECKS

Schedule a routine check for your site to see what images can be reused,
combined, or re-exported in a different format. When you look in the
main directory (or directories) for the images that make up your site
design, ask yourself:

- Have any of these sprites been updated recently? Are there any out-
dated icons within the sprite that I can remove, or have new graph-
ics been added that need to be optimized?

« With new browser technology, or as our audience begins to use
more modern browsers, which of these images can be replaced
with modern techniques like CSS3 or SVG, or new technology like
picturefill?

« Are all of the new images created since I last checked in the ideal
format? Are they as simple as possible, and have they been run
through an additional compression tool?

« Are all of the images scaled to the correct height and width?
Am I displaying any images at a smaller scale than they’ve been
exported, which means I should re-export at the right size to elim-
inate unnecessary overhead?

Similarly, routinely check the page weight of your site. Note the
makeup of your total page weight, including what percentage of the
total page weight is due to images. If the page weight has increased by

3. OPTIMIZING IMAGES 59

a significant amount, figure out why, and see where you can make file
size improvements. Read more about how to measure and iterate on
page weight and other performance metrics in Chapter 6.

CREATE STYLE GUIDES

Consider creating a style guide as a reference point for how images are
used across your site, especially when it comes to icon meaning and
sprite usage. It could include:

- An easy way to find which classes to apply to your HITML to show
different icons

« Definitions of icon usage and meaning so that designers and devel-
opers are able to create a consistent user experience across pages,
with the added gain of reusing existing images that are cached

- Examples of CSS gradients and other techniques used to improve
the performance of your site so that others may repurpose it instead
of adding their own, which can cause bloated CSS files

« A definitive guide to which browsers you need to support so that
other designers and developers know which syntaxes they must
include in their CSS as well as what to test

A style guide has many other benefits for page load time beyond image
documentation. In “Style Guides,” we will walk through why they’re so
useful and what else you can include in them.

MENTOR OTHER IMAGE CREATORS

You are likely not the only person creating and updating the images on
your site. There may be other designers and developers who need to
understand these techniques, and there may also be other content cre-
ators who are not as well versed in image creation methods.

Make sure that there are well-defined workflows for how new images
appear on the site. If a designer or developer is responsible for adding
images, make sure that part of his or her workflow includes finding
a balance of aesthetics and performance by testing qualities and run-
ning images through additional optimization. As much as possible,
automate image optimization so that image creators don't feel like they
have a new, burdensome workflow.

60 DESIGNING FOR PERFORMANCE

It’s important to share this knowledge with others who contribute to
the site so that you are not a sole “performance cop” or “performance
janitor.” Helping others understand their impact on page load time will
be as beneficial to your image directory as it will be to your stress level.
Read more about empowering and incentivizing others to champion
performance in Chapter 8.

Again, optimizing images is likely the biggest win for performance on
your site. As you take a look at the images on your site, ask yourself:

- Can I save on file size by choosing a different image format?

« Have all of my images been run through an additional compres-
sion tool?

- Would I be better served with a CSS3 gradient, data URI, SVG file,
or sprite?

« Is there any unnecessary noise or grain in my image, or is there
another way I can reduce the total number of colors in my image?

- How can I make sure that new images added to my site are
optimized?

Continue to focus on the balance of aesthetics and performance as you
create your images (read more about finding this balance in Chapter 7).
Sometimes you'll need to export a slightly larger image because it looks
significantly better. Other times, you'll be able to gain huge page speed
savings by repurposing colors and icons rather than creating new, only
slightly different versions. The important part is to be deliberate with
your image creation and make choices about performance as you go.

In the next chapter, we’ll cover optimizing HTML and CSS. Just as with
images, focusing on your markup’s size and how it renders in your
browser is imperative as you optimize page load time. We can clean our
HTML and CSS, find ways to document and repurpose design patterns
to keep things clean, and optimize the loading of these assets. Often,
cleaning HTML and CSS leads to cleaner stylesheet images, too. As a
designer, you are in a unique position to create high-performing, easily
editable, and repurposable markup for your site.

3. OPTIMIZING IMAGES 61

[4]

Optimizing Markup and Styles

While images make up the majority of most sites’ page weight, the
HTML and CSS that call and implement these images also impact total
page load time. The way that you structure and name your markup
can help you keep your site maintainable and high performing; inten-
tional organization of your CSS and design patterns will allow you to
focus on repurposability and the meaning behind your site’s look and
feel. Keeping both your HTML and CSS clean and meaningful will
result in a faster-loading site and a better overall user experience. In
this chapter, we will cover best practices for loading HTML, CSS, fonts,
and JavaScript on your site.

Cleaning Your HTML

Clean HTML is the foundation for a high-performing site. Though
older sites tend to suffer from multiple designers or developers edit-
ing and adding to markup, even newer sites can benefit from a clean
sweep—Ilooking for embedded or inline styles, unused or unnecessary
elements, and poorly named classes and IDs.

In Chapter 1, I mentioned that I was able to cut page load time in half
for one site by simply cleaning up its markup and styles. I focused on
killing bloated HTML and CSS, which resulted in smaller HTML, CSS,
and stylesheet image file sizes.

When looking at your site’s HTML, watch for:
- Embedded or inline styles that should be moved to a stylesheet

- Elements that have no need for special styling (unnecessary HTML
elements, also known as “divitis” and covered in the next section)

« Old, commented-out code that can be removed

63

If a site has been edited by multiple developers or designers, there may
be markup that seems unused or unnecessary. As sites age, outdated
techniques, like using tables for layout, tend to live on without being
cleaned or updated to newer best practices. Be ruthless when eliminat-
ing any superfluous or outdated HTML. There’s rarely a good “just in
case” reason for keeping unnecessary or convoluted markup; it’s often
better to kill it and know that, if you really need to, you can reference it
in the future using version control.

DIVITIS

“Divitis” happens when you have lots of elements in your HTML that
serve little purpose other than to help you style content. Often divitis
happens when lots of div elements take the place of more meaningful,
semantic HTML elements, but the mess can happen with any kind of
HTML element:
<div>
<div>
<header>
<div id="header">
<h1>Site Name</h1>
</div>
</header>
</div>
</div>

It’s unclear why we have so many elements in the preceding example;
maybe there’s something fancy that happens with styling within the
span; maybe those other divs are meaningful to the structure of the
page. But this is definitely a sign that something is wrong and should
be inspected with your markup. Usually divitis is an indicator that the
code author was overwhelmed with the cascading nature of styles and
wanted to try to override the look and feel of an element, and did so by
adding extra parent elements to target with CSS.

Divitis should be eradicated in your markup. It adds bloat to both your
HTML and your CSS, and by removing unnecessary elements you’ll
create a much more meaningful and straightforward hierarchy for your
site. If possible, use HTML5 elements (such as header and article)
to create a semantic hierarchy. It will be easier to see how you should
write your CSS, and will illuminate opportunities for repurposable
design patterns.

64 DESIGNING FOR PERFORMANCE

To eliminate divitis, take a look at the styles applied to the elements in
the bloated area. See if it’s possible to combine style declarations and
apply them to the correct, semantic HTML elements to result in a bet-
ter HTML hierarchy, such as:

<header>

<h1>Site Name</h1>
</header>

Or simply:
<h1>Site Name</h1>

Sometimes, you'll need to retain some elements for layout and semantic
structure, such as the header element in this example. But more often
than not, inspecting and reducing the number of elements on your
page will surprise you; thanks to the power of HTML5 and CSS, you'll
be able to accomplish a lot with a solid, lightweight HTML hierarchy.

SEMANTICS

Semantic element names are those that represent the kind of content
within the element. Good semantic element choices include represen-
tative HTMLS5 elements like header or nav, or class and ID names like
login or breadcrumbs. Avoid nonsemantic names, like left or blue,
which describe the look and feel of content to the user rather than the
content’s meaning.

Renaming elements to be more semantic will help you create better
HTML structure for your page, and will also allow you to create design
patterns for reuse across the site. For example, here’s a nonsemantic
HTML structure with a little bit of divitis thrown in:

<div class="right">
<div id="form">
<form>
<p class="heading">Login</p>
<p>
<label for="username">Username:</label>
<input type="text" id="username" />
</p>
<p>
<label for="password">Password:</label>
<input type="text" id="password" />
</p>
<input type="submit" value="Submit" />
</form>
</div>
</div>

4. OPTIMIZING MARKUP AND STYLES 65

Our styles for this sidebar and login form:

form {
background: #ccc;

}

.right {
float: right;
width: 200px;

}

#form form {
border: 1px #ccc solid;
background: yellow;
padding: 10px;

.heading {
font-weight: bold;
font-size: 20px;

}

In this example, there’s nothing particularly meaningful about the way
that these elements are currently named; it'd be very easy to override
the styles for .right elsewhere in a stylesheet and not realize that it
affects other elements that are using this class name.

Also, it’s not clear which of these styles are design patterns that could
be repurposed throughout the site. In this CSS, we set a background
for #form, and then override this background color later in our CSS for
this particular login form. It’s likely that we want this particular login
form to stand out. Renaming and restructuring it to be more seman-
tic will result in a much more understandable CSS file and potential
design pattern:

<div class="sidebar">
<form id="login">
<h2>Login</h2>

<1i>
<label for="username">Username:</label>
<input type="text" id="username" />
</1i>
<1i>
<label for="password">Password:</label>
<input type="text" id="password" />
</1i>
<input type="submit" value="Submit" /></1i>

66 ‘ DESIGNING FOR PERFORMANCE

</form>
</div>

We replaced the existing nonsemantic structure with a significantly
more semantic structure and naming convention. We now have a side-
bar, a clear and unique name for our form, and an unordered list to
group the form elements together. While it results in slightly more
CSS, this is actually a good thing for the overall cleanliness of our code:

form {
background: #ccc;

}

form ul {
list-style-type: none;
padding: 0;

}

h2 {
font-weight: bold;
font-size: 20px;

}

.sidebar {
float: right;
width: 200px;

}

#login {
border: 1px #ccc solid;
background: yellow;
padding: 10px;
}
As you can see, it’s going to be easy to keep all unordered lists within
standard forms on our site styled the same way. Similarly, a header (in
this case an h2) within our login form should have the same styling as
other sibling headers within our page. Our .sidebar styles are much
less likely to be overridden by future edits to our stylesheet, and #login
can retain its very unique styling. Though this adds a few more lines of
CSS to our example, it will also likely result in a cleanup of the rest of
our CSS file, as we could eliminate other styles that override the styling
of forms and paragraphs made to look like headers.

Semantic naming allows you to maintain your HTML and CSS as it
ages, as it is easier to read, test, and edit over time. Cleaner HTML and
CSS typically create smaller files, which improve page load time, and

4. OPTIMIZING MARKUP AND STYLES 67

also reduce the risk of page weight bloat as a site ages. Because they
are more meaningful, semantic structures allow for more repurpos-
ability of designs and styles, which in turn creates a better end user
experience.

ACCESSIBILITY

In addition to the editability and performance of semantic markup,
clean HTML benefits users with accessibility needs. Semantic HTML
makes the hierarchy of content meaningful for browsers, search
engines, and screen readers. With new HTMLS tags like post and
aside, and through the implementation of existing semantic struc-
tures like headings, paragraphs, and lists, content on the Web can
become more accessible to everyone. Search engine bots and screen
readers for the visually impaired are primarily looking at the HTML
content of your page, rather than how it displays in a browser with CSS
styles applied and JavaScript animations and interactivity running. The
cleaner and more semantic your HTML is, the better the experience is
for these users.

The Web Content Accessibility Guidelines (WCAG) provide more infor-
mation on how to make your website accessible to people with disabil-
ities. If you are using a clean and semantic HITML hierarchy, you are
well on your way to making your site accessible. The World Wide Web
Consortium (W3C) provides a full WCAG 2.0 (http://www.w3.org/
WAI/WCAG20/quickret)) checklist to help you understand and meet
all of the current WCAG requirements.

FRAMEWORKS AND GRIDS

There are plenty of helpful frameworks and grids on the Web that aid
designers and developers who are looking to start a website but don’t
want to start from scratch. Bootstrap, HTML5 Boilerplate, and 960
Grid are examples of foundation CSS, HTML, and JavaScript that can
help you kick-start a site design.

However, grids and frameworks come at a cost. Because they are
designed to cover a large number of generic use cases, they will include
plenty of things that you don’t need on your site. This extraneous con-
tent can be a hindrance to your page load time rather than an aid to your
development time; if you're not careful about how much is included as
you start implementing a grid or framework, you could have a lot of
unnecessary assets, markup, or styles loaded on your site.

68 ‘ DESIGNING FOR PERFORMANCE

http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/WAI/WCAG20/quickref/

Here are some styles included in the HTMLS Boilerplate framework.
They'd be helpful styles for sites that include dfn, hr, or mark ele-
ments, but these lines could be eliminated on sites that don’t use these
elements:

Jxx

* Address styling not present in Safari 5 and Chrome.

*/

dfn {
font-style: italic;
}

Vi
* Address differences between Firefox and other browsers.
* Known issue: no IE 6/7 normalization.

*/

hr {
-moz-box-sizing: content-box;
box-sizing: content-box;
height: o;

}

Jxx
* Address styling not present in IE 6/7/8/9.
*/

mark {
background: #ffo;
color: #000;

}

If you really want to use a framework, be sure to clean out all of the extra-
neous material before your end user tries to load your site. Remember
that grids and frameworks are likely not providing the semantic struc-
ture that we're aiming for, as they are generic and one-size-fits-all.
Some, like HTMLS5 Boilerplate, give you custom build options that you
should take advantage of, as shown in Figure 4-1.

As much as possible, clean up the naming and element structure of
your pages after implementing an out-of-the-box framework or grid.
There’s no excuse for forcing your end users to load unnecessary styles,
markup, or JavaScript.

4. OPTIMIZING MARKUP AND STYLES 69

1- Pre-configuration

Docs Demo
2 - Fine tuning

HTML/CSS Template HTMLS Polyfills jQuery
) No template () Modemizr # Minified
(=) Mobile-first Responsive () Just HTMLSshiv ("] Development
() Twitter Bootstrap ¥ Respond - Alternatives

H3BP Optional

™ IE Classes ™ Favicon) Humans.txt
™ Old browser warning ™ Apple Touch Icons 7] 404 Page
™ Google Analytics] plugins.js () Adobe Cross Domain
[.htaccess ("] Robots.txt

Download it! What's inside?

Figure 4-1. Some frameworks give you custom build options before you
implement them on your site, like in this HTML5 Boilerplate customization
tool from Initializr (http://www.initializr.com/). Take advantage of these
optimizations to reduce markup, styles, and script overhead.

Cleaning Your CSS

A thoughtful HTML hierarchy and deliberate choices about your site’s
layout and design will set you up for clean, easily editable, and perfor-
mant CSS. As you examine your site’s existing CSS to look for ways
to clean it up, think about how it reflects your HTML hierarchy and
design choices. Maybe you'll see:

« Element names that don’t have semantic meaning
« limportant declarations

- Browser-specific hacks

« Lots of selector specificity

Look for unused elements, styles that could be combined or rewrit-
ten for efficiency, and outdated ways of handling browser inconsisten-
cies. As sites age, we need to routinely examine our CSS and consider

70 ‘ DESIGNING FOR PERFORMANCE

http://www.initializr.com/

implementing new technology and techniques to improve page load
time. The more deliberate we can be with our site hierarchy and the
purpose behind our design choices, the cleaner our CSS will be. Code
maintainability and site performance go hand in hand.

UNUSED STYLES

If you have an existing site, the first CSS cleanup task to tackle is remov-
ing unused styles. As sites age, unused styles will crop up unnoticed,
adding bloat to your stylesheets. Unused styles may be left over from
deleted elements or entire pages on your site, elements that have been
renamed or redesigned, or overrides from third-party widgets that you
no longer use. There is no reason to keep unused selectors or styles in
your stylesheets and force your end user to download them; your ver-
sion control will come in handy should you ever need to look back in
history to view old CSS.

There are a number of tools currently available to you for finding poten-
tial CSS to eliminate. Dust-Me Selectors (http://www.brothercake.
com/dustmeselectors/) is a browser plug-in for Firefox and Opera that
can scan your website’s HTML to find unused selectors. In Chrome
DevTools, there is an Audits tab (Figure 4-2) that will allow you to run a
Web Page Performance audit and see a list of unused CSS rules.

Q, Elements Network Sources Timeline Profiles Resources | Audits| Console

=) ¥ Web Page Performance
I+ Audits
N’ @ » Optimize the order of styles and scripts (1)
RESULTS ¥ Remove unused CSS rules (21)
21 rules {40%) of CSS not used by the current page.
= v light.css: 40% is not used by the current page.
#ux h2, .slides h2
#ux h3:before
-launched h3:before
-slides h3
.slides h3:before
-slides
-resources div
.designingforperf .resources div:nth-child(2)
.resources ul
.resources 1i
#faces ul, #donuts ul
#faces 1i, #donuts 11i
#faces img
#donuts 11
#donuts 1i
#ux hZ, .slides h2
#faces 1i
#donuts
.resources div
#donuts 1i
#donuts img

Figure 4-2. Chrome DevTools allows you to run a Web Page Performance audit
on any page. Included in the audit results is a list of unused CSS rules that you
may be able to clean up.

4. OPTIMIZING MARKUP AND STYLES 71

http://www.brothercake.com/dustmeselectors/
http://www.brothercake.com/dustmeselectors/

Be wary of the outputs of these tools; Dust-Me Selectors may not have
crawled every page of your site, and Chrome DevTools is looking only at
the CSS selectors on the current page (not any additional pages where
the same stylesheet is called). These tools are excellent for helping you
get an initial list of selectors to examine in your stylesheets and then
begin to test removing them.

COMBINE AND CONDENSE STYLES

Duplicate styles for unique elements across your site are a great indi-
cator of consistent styling and thoughtful design. Look through your
stylesheets for opportunities to combine or condense these styles, as
they will help with both the performance and maintainability of your
code. Here we have two elements that share similar styles:

.recipe {
background: #f5f5f5;
border-top: 1px #ccc solid;
padding: 10px;
margin: 10px 0 0;
font-size: 14px;

}

.comment {
background: #f5f5f5;
border-top: 1px #ccc solid;
padding: 10px;
margin: 9px O O;
font-size: 13px;

}

The only differences between the way these two elements are styled are
that .comment has a different font-size declaration and margin decla-
ration. We can combine these styles into one main declaration block
and then style .comment’s differences separately:

.recipe, .comment {
background: #f5f5f5;
border-top: 1px #ccc solid;
padding: 10px;
margin: 10px O O;
font-size: 14px;

}

.comment {
margin: 9px O O;
font-size: 13px;

}

72 ‘ DESIGNING FOR PERFORMANCE

Or, ask yourself: is there a reason why .comment has a slightly differ-
ent font size and margin below it? What if you combined the styles in
.recipe and .comment to create a true pattern? The complexity would
be reduced and ease of maintenance would increase, and better yet, our
CSS file will be shorter!
.recipe, .comment {
background: #f5f5f5;
border-top: 1px #iccc solid;
padding: 10px;
margin: 10px O O;
font-size: 13px;
}
If you find that this pattern will be repeated often, you could also gen-
eralize the class name so it can be used throughout the site, rather than
continuing to add class names to this comma-separated list.

Slight differences between elements that share a lot of styles could be
due to many things: pixel-perfect web versions of PSD mockups, acci-
dental updates to one place where a style existed but not another, and
more. Throughout your stylesheets you may see many different pix-
el-specific heights, widths, margins, and padding defined. Are they
intentionally slightly different from one another, or could they be
normalized?

Look for these kinds of opportunities to normalize and create patterns.
Presumably these elements share the same look and feel intentionally;
as one element’s design changes in the future, you'll probably want the
other one to change in the same way. Combining them to define their
shared styles will help save you development time in the future, and the
shorter CSS file will help you with page load time now.

Additionally, you could begin to define rules for spacing and font sizes
that are easy to follow. One great way to make these decisions easier is to
look at your base font-size and use it to inform the rest of your design
decisions. If your main content is a 14 px font with a 1ine-height of 1.4
em, you could do a little math to create:

- Header font sizes in multiples of 14 px
- Margins and padding in multiples of 1.4 em

« A custom grid based on 14 px or 1.4 em increments

4. OPTIMIZING MARKUP AND STYLES 73

CSS also allows you to leverage the power of shorthand style declara-
tions. Shorthand declarations, such as background, include many indi-

vidual style values in one line. The background declaration, for exam-

ple, includes:

background-clip
background-color
background-image
background-origin
background-position
background-repeat
background-size

background-attachment

You may set one, some, or all of these values when using background.

Leveraging shorthand declarations like this allows you to further com-

bine and condense styles in your CSS. For example, let’s say we have
three similarly styled elements with slightly different borders and

padding:

74

.recipe {
background: #f5f5f5;
margin: 10px 0 0;
border: 1px #ccc solid;
padding: 10px 0;

.comment {
background: #f5f5f5;
margin: 10px 0 0;
border: 1px #fff solid;
padding: 10px 0 0;

aside {
background: #f5f5f5;
margin: 10px 0 0;
border: 2px #ccc solid;
padding: 10px 0;

DESIGNING FOR PERFORMANCE

We can set the shorthand property for the styles that are common
between the elements, and later style the small differences using indi-
vidual (longhand) properties:

.recipe, .comment, aside {
background: #f5f5f5;
margin: 10px O O;
border: 1px #ccc solid;
padding: 10px 0;

.comment {
border-color: #fff;
padding-bottom: 0;

aside {
border-width: 2px;

}

This allows us to write easily readable CSS. If we had redefined the
shorthand border declaration again for .comment, it would have been
harder to figure out which part of the border was different from our
original style declaration. By using the longhand property, we can easily
spot what part of the style we are changing. Shorthand properties can
reduce the amount of lines in our CSS, which is good for performance.

Sometimes, renaming elements can help you combine and condense
styles. Take a look at these similarly styled elements:

h3 {
color: #000;
font-weight: bold;
font-size: 1.4em;
margin-bottom: 0.7em;

}

#subtitle {
color: red;
font-weight: bold;
font-size: 1.4em;
margin-bottom: 0.7em;

}

.note {
color: #333;
font-weight: bold;
font-size: 1.4em;
margin-bottom: 0.7em;

}

4. OPTIMIZING MARKUP AND STYLES 75

<h1>My page title</h1>

<article>
<h2>My article title</h2>
<div id="subtitle">My article’s subtitle</div>
<p>...</p>

</article>

<aside>
<div class="note">I have a side note</div>

<p>...</p>
</aside>

<footer>
<h3>My footer also has a title</h3>
</footer>

In a case like this, it may be possible to rename elements to create a
more semantic hierarchy as well as cleaner CSS. Use your best judg-
ment. In this case, we’ll decide that in fact #subtitle, .note, and h3
are all semantically third-level headers in our page and rename them
in our HTML:

<h1>My page title</h1>

<article>
<h2>My article title</h2>
<h3>My article’s subtitle</h3>
<p>...</p>

</article>

<aside>
<h3>I have a side note</h3>
<p>...</p>

</aside>

<footer>
<h3>My footer also has a title</h3>
</footer>

By renaming them in our HTML, we've automatically combined the
original styles in our CSS, as they now all fall under the h3 style block.
We can add specificity to change the colors of the article and aside
headers below this block:
h3 {
color: #000;

font-weight: bold;
font-size: 1.4em;

76 DESIGNING FOR PERFORMANCE

margin-bottom: 0.7em;

}

article h3 {
color: red;

}

aside h3 {
color: #333;

}

Lastly, if you use a CSS preprocessor like LESS or SASS, you may still
end up with a bloated CSS file with lots of opportunity for repurposing
or condensing styles. Good planning and purposeful, reusable design
patterns will help you develop CSS using a preprocessor, just like when
you're writing regular CSS. Focus on keeping any mixins (reusable
style blocks that are defined once) as efficient as possible, and be sure to
watch the output of your stylesheets over time. Bloated files can sneak
up on you, and it’s good to routinely and continually check on your CSS
efficiency.

CLEAN STYLESHEET IMAGES

Once you've combined and condensed styles, take a look at any images
called from your stylesheet. Remember, images make up the major-
ity of most sites’ page weight, so reducing the size and number of
stylesheet image requests will be a huge boost to your site’s page load
time.

First, look for opportunities to create sprites. If you have many icons
or other small images used throughout the site, a sprite can be a huge
help in optimizing requests. Read “Sprites” for more information on
how sprites boost performance, and how to implement them.

Second, as sites age, so do their sprites. You may notice that existing
sprites include outdated or no-longer-used images. Examine your exist-
ing sprites: are there any sections that can be removed? Can you clean
up the CSS that uses these sections? Can you clean up and then re-ex-
port the sprite image in a more appropriate file type or with higher
compression? The cleaner your sprites are, the better your page load
time will be.

Next, look for opportunities to replace your stylesheet images with
CSS3 gradients, data URIs, or SVG. You can read more about creating
gradients in “CSS3,” and more about how to create high-performing

4. OPTIMIZING MARKUP AND STYLES ‘ 77

SVG replacements in “SVG.” CSS3 gradients are an excellent replace-
ment for any repeating background images that are currently imple-
mented with CSS; they are also very easily editable and repurposable
throughout stylesheets. Replacing images with CSS3 may very quickly
speed up your site. Similarly, replacing stylesheet images with SVG can
improve your page load time, as an SVG file can replace both retina and
nonretina images in your stylesheet.

Ensure that any new icons or other images added to your stylesheet
have meaning or purpose in your site design. Document these in a
style guide so that other developers or designers can see what icons
have already been added to the site and how they are currently used.
Often, stylesheet image creep occurs because it’s unclear what images
are already available for use across a site. I've seen many sites develop
multiple ways to indicate warnings or alerts with various icons and
highlighting, rather than stick with a single styling convention. As you
examine your stylesheet to find opportunities for design patterns, con-
sider the number of stylesheet images called and whether they can be
condensed.

REMOVE SPECIFICITY

When it comes to CSS, specificity is the term for how you write out
selectors to help a browser determine which CSS rules are applied.
There are different kinds of selectors, and each carries its own weight;
specificity is calculated by a formula (http://bit.ly/1ttWQGk) based on
these selectors. If two selectors apply to the same element, the one with
higher specificity wins.

You’ll often see overly specific selectors in a CSS file. This usually occurs
when a designer or developer was trying to add weight to override pre-
viously defined styles that apply to a certain selector. For example:

divitheader #main ul 1i a.toggle { ... }
Why did this stylesheet author choose to add all of these selectors in a
row? Why wasn’t it possible to simply style:

.toggle { ... }

It’s possible that the author really needed all of that specificity in order
to set a style correctly. However, this much specificity is also an indi-
cator that something in the stylesheet or HTML hierarchy could be
much more efficient. Inefficient selectors tend to happen because of

78 DESIGNING FOR PERFORMANCE

http://bit.ly/1ttWQGk

CSS overriding previous overly specific CSS, and this is a good thing
to watch for so you can find areas to clean up and make more efficient.
This happens frequently in larger organizations where there are many
people touching the same piece of code.

Inefficient selectors used to be considered inherently bad for perfor-
mance, but that’s less of a concern these days with high-performing
modern browsers. However, it’s still smart to clean up selectors, as they
can help you maintain your frontend architecture.

The more efficient your CSS is, the better performing it will be.
Reducing specificity means that it will be easier to override styles with
the naturally cascading power of CSS, rather than slip in additional
weight or limportant rules. Inefficient selectors and !important rules
tend to add bloat to CSS files. Always start with the smallest, lightest
selector possible and add specificity from there.

Optimizing Web Fonts

Web fonts add more requests and page weight to your site. Fonts are the
classic example of weighing aesthetics and page speed; it’s important
to focus on making fonts as efficient as possible, loading them delib-
erately, and measuring their impact on both performance and engage-
ment metrics to make sure they’re worth including.

Loading a web font looks like this:

@font-face {
font-family: 'FontName';
/* IE9 Compatability Mode */
src: url('fontname.eot');
/* TE6-IE8 */
src: url('fontname.eot?#iefix') format('embedded-opentype'),
/* Modern Browsers */
url('fontname.woff') format('woff'),
/* Safari, Android, i0S */
url('fontname.ttf') format('truetype');
}

Support for the Web Open Font Format, or WOFF (http://caniuse.
com/#feat=wofl), is increasing, so depending upon your user base and
which browsers your site supports, you may be able to move to a shorter
@font-face declaration, which would support Chrome 6+, Firefox 3.6+,
IE 9+, and Safari 5.1+

4. OPTIMIZING MARKUP AND STYLES 79

http://caniuse.com
http://caniuse.com

@font-face {
font-family: 'FontName';
src: url('fontname.woff') format('woff');

}

You'll then apply this font to a selector using font-family, and include
fallback fonts just in case your new font hasn’t loaded for your user:
body {
font-family: 'FontName', Fallback, sans-serif;

}

Why Include a Fallback Font?

There will be a small subset of visitors to your site whose browsers don’t
support web fonts, or who have disabled web font loading. There’s also a
chance that your font has broken or the browser can’t find it. If the user’s
browser can’t find the first font in a font-family list, it will try the second
font, and so forth. Your fallback font list should contain one font that is sim-
ilar to your primary font, at least one font that is available across platforms
(like Georgia or Arial), and a generic font such as sans-serif or serif.

Web font files come in a range of sizes, from just a few kilobytes to
upward of 200 kilobytes. Inspect your web font files to see how large
they are and look for the following opportunities to cut their weight:

- Do you need only a few characters rather than the entire alphabet
and all punctuation, such as when you're applying a font just to a
logo?

« Does the font support multiple languages? Is it possible to reduce
language support to just one subset (such as a Latin subset)?

« Can you eliminate any unnecessary individual characters?

Character subsetting is a powerful tool for reducing your web font file
size. If you're using a font from a hosted font service such as Google,
you may be able to choose to load only a certain character subset. In
this example, we would load Google’s Philosopher font with a Cyrillic
subset:

<link href="http://fonts.googleapis.com/css?family=Philosopher
&subset=cyrillic" rel="stylesheet" />

80 DESIGNING FOR PERFORMANCE

If you want to load only certain characters from a Google hosted font,
you can specify those as well. For example, we can load the Philosopher
font with only the characters H, o, w, d, and y:

<link href="http://fonts.googleapis.com/css?family=Philosopher
&text=Howdy" rel="stylesheet" />

Externally hosted fonts like those from Google have a better chance of
already being cached for your visitors, but if they’re not cached for a
particular visitor, then they’ll require an extra lookup and request from
the external domain to be fetched. Self-hosted fonts save that extra
DNS lookup but will not be already cached the first time a visitor comes
to your site.

One additional benefit of hosting the font yourself is customization
of the font file. If you are hosting your own web font, you can run it
through a tool like Font Squirrel’s Webfont Generator (http://www.
fontsquirrel.com/tools/webfont-generator) and choose a custom char-
acter subset to optimize the font file, as shown in Figure 4-3.

Subsetting: (_)Basic Subsetting (@) Custom Subsetting. _JNo Subsetting

Character Encoding: Mac Roman

Character Type: Lowercase Currency Lower Accents
Uppercase Typographics Upper Accents
Humbers Math Symbols Diacriticals
Punctuation Alt Punctuation

Language: Albanian Faroese Maltese
Bosnian French Norwegian
Catalan German Polish
Croatian Greek Portuguese
Cyrillic Hebrew Romanian
Czech Hungarian Serbian
Danish Ieelandic Slovak
Dutch talian Slovenian
English Latvian Spanish
Esperanta Lithuanian Swedish
Estonian Malagasy Turkish

Unicode Tables: @Basic Latin Punctuation Latin Extended-&

Latin-15up Latin Extended-A Latin Extended +
Currency Symbols

Single Characters:

Unicode Ranges:

Subset Preview: mEFREEEENEEEEEEEDEEEREERE
9 ; ==2>7@ABCDETFGHI JKLMNOPRQ
RSTUVWXY Z [\]1*_ abcdef ghi.|j
klmnopaqgrstuwvwxyz {]|]}~-"* ""H"

Figure 4-3. Font Squirrel’s Webfont Generator allows you to choose a custom
subset of characters in your font files. In this case, we’ve chosen the Basic
Latin Unicode table and added four single characters to our subset.

4. OPTIMIZING MARKUP AND STYLES 81

http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator

You may also want to use multiple font weights for your web font. Be
deliberate about how many font weights you load; as you apply more
font files, the page will get heavier and will require more requests,
which has a hugely negative impact on performance. Use as few alter-
native weights as possible, and be sure to weigh the balance between
aesthetics and performance with fonts (read more about this choice and
how to measure it in Chapter 7).

An additional optimization you can make to your web font loading
technique is to load fonts only on large screens. This will eliminate the
requests and extra page weight on smaller devices like smartphones,
which tend to take larger performance hits (read more about why in
“Mobile Networks”). Use a media query to apply the web font:
@media (min-width: 1000px) {
body {
font-family: 'FontName', Fallback, sans-serif;

}
}

The most important action you can take when applying web fonts is to
be deliberate about their uses. Document when and how to use a partic-
ular font weight so that others working on your site can repurpose this
markup and understand when it is appropriate to apply a font weight.
Make it clear that a particular display weight should be used only for
a certain kind of header, or that you reserve a text weight for special
design patterns. This will help educate other designers and developers
working on your site, and hopefully will help keep your site as fast as
possible. Read more about the performance benefits of creating style
guides in “Style Guides.”

Creating Repurposable Markup

Creating design patterns using repurposable markup is the key to
maintaining performance as your site’s design evolves. As you make
decisions about the meaning of your site’s hierarchy, layout, and feel,
you have the opportunity to be deliberate about loading assets and cre-
ating opportunities for markup reuse across the site. Design patterns
save both development time and page load time. Markup reuse will:

« Provide an opportunity for asset caching

- Prevent designers or developers from reinventing the wheel

82 DESIGNING FOR PERFORMANCE

- Eliminate unnecessary asset requests as new content is added
- Help you isolate styles and assets that are no longer necessary

By normalizing the colors used across the site, documenting reus-
able patterns like spinners and sprites, and defining when and how to
implement assets like fonts, you can equip your team to make smart
decisions about page load time as your site evolves.

Let’s take normalizing colors as an example. Examine your site’s CSS
file and find all of the color values used. How many different shades
of gray are implemented? When you show warning indicators in your
user interface, do they use a consistent set of colors, or are there mul-
tiple shades of red or yellow? How about your main site colors: do you
have a single hexadecimal value that is repeated throughout the site, or
are there variations of lightness and saturation around a theme?

The more variation you have in colors throughout your design, the less
meaningful those colors will be and the messier your stylesheet can
become. Collect them all in one place and see which can be condensed.
As you narrow down your color choices, start to determine why these
colors may be used. For example, a List Apart’s pattern library includes
a description of when to use certain colors (Figure 4-4).

A Pattern Apart

A List Apart's pattern library
Swatches
m Lk #2455 econts #553625
Fill: #fOfOf0

Figure 4-4. A List Apart’s pattern library (http://patterns.alistapart.com/)
includes a description of when to use certain colors.

4. OPTIMIZING MARKUP AND STYLES 83

http://patterns.alistapart.com/

When I worked on a site with lots of golden yellows and deep grays, I
cleaned up the stylesheet to make the site’s colors more consistent. I
documented which hexadecimal code to use when a designer wanted
to use a bold yellow, a light yellow, a red warning message, a green
“changed” message, and so on. I also went through and cleaned up
all gray usage, determining which values should be used and when
(such as #aaa for disabled text and borders, #eee for backgrounds, etc.).
After documenting the colors and their meaning, I went through and
replaced existing colors with the new, normalized values. This allowed
me to combine and condense many styles, since there were now repur-
posable patterns. These efforts decreased the main stylesheet file by
6%, saving not just future development and maintenance efforts, but
also page load time.

STYLE GUIDES

Creating repurposable design patterns is excellent, and the key to their
continued reuse is documentation. Style guides can be great resources
for many audiences: editors, developers, designers, and anyone else
who may look for guidance on your site’s design and development best
practices.

Style guides showcase the best way to implement code and request
assets, allowing you to make sure other people who work on your site
also are helping to make it as high performing as possible. Putting
your site logo assets in one place and optimizing the files to be as small
as possible and in the best format for the job will help ensure that
future logo implementations also follow best practices. Documenting
your site’s standardized and optimized loading indicator will make it
easy for a future designer to implement this pattern and not reinvent
the wheel with a new, slow, heavy spinner. Putting effort into your style
guide now will help ensure that your site remains as fast as possible in
the future.

Consider including the following information in your style guide:
- Hexadecimal color values and when they should be used
- Button classes and how they should be used

- Sprites and what classes correspond to which icons within them

84 DESIGNING FOR PERFORMANCE

- Typography, including how headers should be styled and how to
import and apply any web fonts

As you document best practices, include notes on how to implement
these styles. Add example HTML or CSS markup, how to include the
right JavaScript file, or any other notes on efficient implementation. For
example, Yelp’s style guide (http://www.yelp.com/styleguide) includes
a section on buttons that showcases the right way to style primary, sec-
ondary, and tertiary buttons, as well as a section on deprecated button
styles that should no longer be used (Figure 4-5).

Buttons

Basic buttons
.ytype buttons should be used on all pages with updated typography.

large small
secondary Button Button
tertiary Button Button

$h.ybutton_attributes($element, $type, $size, $content, $classname='ytype')

Show pattem

Figure 4-5. Yelp’s style guide includes a section on buttons that showcases the
right way to style primary, secondary, and tertiary buttons, as well as a section
on deprecated button styles that should no longer be used.

Make any markup easy to copy and paste so that the barrier to excellent
implementation is low for future designers and developers. For exam-
ple, the Starbucks style guide (http://www.starbucks.com/static/refer-
ence/styleguide/) includes a how-to on implementing the company’s
icon font, with example HTML and CSS as well as embedded examples
of each icon (Figure 4-6). It should be as easy and intuitive as possible
to repurpose the patterns and reuse the assets in your style guide.

4. OPTIMIZING MARKUP AND STYLES 85

http://www.yelp.com/styleguide
http://www.starbucks.com/static/reference/styleguide/
http://www.starbucks.com/static/reference/styleguide/

Video Player Icons o

<div class="btn play">

<gpan clags="hidden wisually">Play

</div>

[data-icon] :before {
font—family: "icon-font';
content: attr(data-icon);
speak: none; /*might be respected by some screenreaders, but not to be relied u

color: #2aBal5;

o)
%
(=)

Figure 4-6. The Starbucks style guide (http.//www.starbucks.com/static/
reference/styleguide/) includes a how-to on implementing the company’s icon
font, with example HTML and CSS as well as embedded examples of each icon.

A combination of easy-to-understand use cases, markup that can be
copied and pasted easily, and beautiful examples will make it easy for
other people working on your site to implement these patterns. Be thor-
ough in your documentation while keeping it intuitive. For example,
when documenting web font usage, outline the potential font weights
you could include, how to implement each efficiently, and rules about
when they should be used, like we did in Etsy’s style guide (Figure 4-7).

Repurposable patterns save page load time as well as design and devel-
opment time. As your site’s design changes in the future, it will be even
easier to update all the instances of a particular pattern, because they
will share the same assets and styles. The more patterns are repur-
posed, the higher the chances are that the styles and other assets will
already be cached, the shorter your stylesheets will be, and the faster
the site will load.

86 DESIGNING FOR PERFORMANCE

http://www.starbucks.com/static/reference/styleguide/
http://www.starbucks.com/static/reference/styleguide/

Typography

There are two main types of Guardian fonts available for use: those for display, and those for text. The Guardian display and text weights can be applied to
any element type (h1, p, etc.). Please be judicious when including font files; some browsers download all @font-face files referenced in a CSS file,
regardless of whether or not the font is actually applied to an element on the page. Only @import the font weight/style necessary to your design.

Guardian

Appearance Marku
Weight PP P
Display weights should be used for title and promo copy at sizes no less than 18px.
eimport "/fonts/guardian—-egyptt-light.css";
Display . . .your—element {
Lorem ipsum sit amet
Light P! font-family: “"Guardian-EgypTT", Georgia, serif;
font-weight: 300;
}
@import “/fonts/guardian-egyptt-regular.css";
Display Lorem ipsum sitamet .your-element {

Regular font-family: "Guardian-EgypTT", Georgia, serif;

font-weight: 400;
3

Figure 4-7. Etsy’s style guide includes example @font-face weights,
instructions for when to use various fonts, and copy-and-pasteable code for
CSS implementation.

Additional Markup Considerations

After you've cleaned up your markup and styles, there are additional
optimizations you can make to your assets’ load order, minification,
and caching to improve page load time. Deliberately loading assets
and understanding how they are delivered to your user will help you
improve your site’s overall user experience.

CSS AND JAVASCRIPT LOADING

There are two main rules when it comes to loading CSS and JavaScript:
« Load CSS from the <head>.
« Load JavaScript at the bottom of the page.

Now that you've read about the critical rendering path in “Critical
Rendering Path,” you know that CSS blocks rendering. If stylesheets
are included near the bottom of the page, they will prohibit the page
from displaying its content as soon as possible. Browsers want to avoid
having to redraw elements of the page if their styles are changing; put-
ting your stylesheets in the <head> allows content to be displayed pro-
gressively to the user because the browser isn’t still looking for more
style information.

4. OPTIMIZING MARKUP AND STYLES 87

Reducing your stylesheets to as few files as possible will help reduce
the total number of requests your site makes, and will result in a much
faster page load time. This also means you should avoid using @import,
which can significantly increase page load time. Smaller CSS is always
better; I recommend aiming for 30 KB or less of CSS and a single
stylesheet wherever possible. For larger sites, it can be better to have
one sitewide stylesheet and then page-specific stylesheets as needed.
This way, the sitewide stylesheet is cached and the user will need to
download only a little bit of additional CSS for each page with addi-
tional styles.

JavaScript files should be loaded at the end of the page and loaded asyn-
chronously whenever possible. This will allow other page content to be
displayed to the user more quickly, as JavaScript blocks DOM construc-
tion unless it is explicitly declared as asynchronous.

When a browser’s HTML parser finds a script tag, it knows that the
tasks in this script might alter the page’s render tree, so the browser
pauses its DOM construction to let the script finish what it wants to do.
Once it’s done, the browser will resume DOM construction from where
the HTML parser left off. Moving script calls to the end of the page
and making them asynchronous helps with perceived performance
by optimizing your critical rendering path and eliminating those ren-
der-blocking issues.

If you make a call to a JavaScript file rather than inlining the script
within your HTML, your user’s browser needs to go request that file
from your server (or a third party’s server, if it’s a resource you're call-
ing from another site). This could add tens to thousands of millisec-
onds of wait time before the HTML parser can continue rendering the
DOM. However, you can indicate to the browser that this script doesn’t
need to be executed right away, and therefore shouldn’t block content
rendering, by adding the async tag to your script:

<script src="main.js" async></script>

This allows the browser to continue to construct the DOM and will exe-
cute the script once it’s downloaded and ready.

When it comes to asynchronous scripts, there are some “gotchas” to
look out for. As you implement asynchronous scripts that load new
content, be sure to watch out for how this affects the user experience.

88 DESIGNING FOR PERFORMANCE

Anything that loads late and affects page layout can cause content to
shift, surprising the user; build in placeholders to make sure the page
looks and feels stable as it loads.

Note that the asynchronous attribute load order is not guaranteed,
which can cause dependency problems. Depending upon the content,
you may also consider building in a loading indicator while content is
being called asynchronously so that your users understand there are
pieces of information missing. Also note that asynchronously loaded
content may not play nicely with bookmarks, back buttons, and search
engines; keep this in mind as you optimize the critical rendering path
and the user experience.

Third-party content like ads, social sharing buttons, and other wid-
gets can be a performance hit on any site. You should already be load-
ing these asynchronously, and ensure that these externally hosted
resources are not a single point of failure for your site. Third-party
scripts can add a lot of overhead in terms of page weight, but they’re
also a performance problem because they require an additional DNS
lookup and connection since they live off your site. You also won’t have
control over caching for third-party resources.

Try to eliminate as many third-party scripts as possible. The fewer
requests you have, the better your page performance can be. Attempt
to combine and condense scripts; you can often do so by replicating,
optimizing, and then hosting a third party’s script on your own site.
Try to replace social sharing scripts with simple links. Routinely assess
the value of having a third-party resource called on your page: does the
performance hit outweigh the benefit of whatever that resource pro-
vides to your users?

In terms of script performance, watch your waterfall charts to make
sure that your JavaScript files are loading after your other content and
not blocking other downloads or rendering important pieces of the
page. Scripts that load ads, social sharing, and other auxiliary content
should definitely not block the loading or rendering of other content on
the page.

MINIFICATION AND GZIP

See all the whitespace, unnecessary semicolons, and leading zeros in
your stylesheets? How about all of those unneeded spaces, newlines,
and tabs in your JavaScript files? It’s time to minify these assets by

4. OPTIMIZING MARKUP AND STYLES ‘ 89

removing unnecessary characters from the code before they are seen by
your end user. Minification results in smaller file sizes, which is great
for improving the performance of your site.

You can use command-line tools for minifying your code, or online
tools like CSSMinifier.com (http://cssminifier.com/) and JSCompress
.com (http://jscompress.com/). As shown in Figure 4-8, I pasted my
site’s CSS file into the tool on CSSMinifier.com and it output minified,
optimized, and shorter CSS for me to implement on my site. The out-
put was 15% smaller than the original file.

Input CSS Minified Output
html,body,div,span,h1,h2,h3,p,a,em,img,strong,article,section,heac a,article,body,dd, div,dl,dt,em,footer,h1,h2,h3,header,html,img,p,
section,span, strong{margin:0;padding:0;berder:0;outiine:0;font-
@font-face { size:100%;vertical-align:baseline;background:0 O}@font-
font-family: ‘FranklinGothicFSBook'; face{font-
sre: url(/fonts/frankiin_gothic_book-webfont-webfont.eot’); family:FranklinGothicFSBook;src:url(/fonts/franklin_gothic_book-
src: url('/fonts/franklin_gothic_book-webfont-webfont.eot ?#iefix’) 1
url(*/fonts/franklin_gothic_book-webfont-webfont.woff’) forma Wi t?7#igfix) format('embedded-
UFI('/fonts/franklin_gothic_book-webfont-webfont.ttf') format('t opentype'),url(/fonts/franklin_gothic_book-webfont-
font-weight: normal; webfont.woff) format("'woff),url(/fonts/franklin_gothic_book-

font-style: normal; font.itf) format('truetype’);font-weight:400;font-
1 style:normal}@font-face{font-family:Bree;src:url(/fonts/breeserif-
@font-face { regular-webfont.eof);sre:url(/fonts/breeserif-reqular-

font-family: "Bree’;

src: url('/fonts/breeserif-regular-webfont.eot);

ares il raniilarmaninnt A ot anmb

m Download as File RAW Clear Select All

Figure 4-8. In this example, | pasted my site’s CSS file into the tool on
CSSMinifier.com and it output minified, optimized, and shorter CSS for me to
implement on my site.

You'll notice that when you inspect a site’s minified CSS it can be hard
to find where in the file a particular style is set, as the minified ver-
sion has everything on one line. Be sure to save a copy of your origi-
nal, unminified assets, as they’ll be significantly easier for you to read
and edit in the future than the minified versions. On your site, use the
minified versions only, so that your users will download the smallest
files possible.

An additional way to compress these text files is to run them through
gzip. gzip is a software application used to compress files based on an
algorithm. gzip’s algorithm finds similar strings within a text file and
replaces those strings to make the overall file size smaller. Browsers
understand how to decode these replaced strings and will display the
content correctly to the user.

90 DESIGNING FOR PERFORMANCE

http://cssminifier.com/
http://jscompress.com/

To implement gzip compression, you need to enable it on your web
server. How to do this depends on your server type:

« Apache: Use mod_deflate (http://bit.ly/1ttYOBG).
- NGINX: Use ngx_http_gzip_module (http://bit.ly/1x6VsYF).
« IIS: Configure HTTP compression (http://bit.ly/1ttX Yts).

gzip is great for all kinds of text files like stylesheets, HTML, JavaScript,
and fonts. The only exception to this is WOFF font files, which come
with built-in compression.

CACHING ASSETS

Caching is critical for your site’s performance; assets that are cached
do not need to be requested again from your server, saving a request.
Caching works by sharing information with a user’s browser so it can
determine whether to display the previously downloaded (cached) file
from disk, or request the asset again from the server.

This information is communicated in an HTTP header, which is the
core part of any request sent back and forth between a browser and
your server. HTTP headers include lots of additional information like
a browser’s user agent, cookie information, the type of encoding used,
the language the content is in, and more. There are two kinds of cach-
ing parameters that can be included in a response header:

« Those that set the time period during which a browser can use its
cached asset without checking to see if there’s a new one available
from your server (Expires and Cache-Control: max-age)

« Those that tell the browser information about the asset’s version so
it can compare its cached version to the one that lives on the server
(Last-Modified and ETag)

You should set one of Expires or Cache-Control: max-age (not both),
and one of Last-Modified or ETag (not both), for all cacheable assets.
Expires is more widely supported than Cache-Control: max-age. Last-
Modified is always a date, and Etag is any value that uniquely identifies
the version of the asset, such as a file version number.

4. OPTIMIZING MARKUP AND STYLES 91

http://bit.ly/1ttY0BG
http://bit.ly/1x6VsYF
http://bit.ly/1ttXYts

All static assets (CSS files, JavaScript files, images, PDFs, fonts, etc.)
should be cached.

« When using Expires, set the expiration up to one year in the
future. Don’t set it to more than one year in the future, as that
would violate the RFC guidelines.

« Set Last-Modified to the date on which the asset was last changed.

If you happen to know when a file is going to change and you'd like
to set a shorter expiration, you can do so, though a minimum of one
month is still best practice. Alternatively, you could change the URL
reference to the asset, which will break the cache and force the user’s
browser to fetch a new version.

For a guide on enabling caching with an Apache server, read the Apache
Caching Guide (http://httpd.apache.org/docs/2.2/caching.html). For
a NGINX server, read NGINX Content Caching (http://nginx.com/
resources/admin-guide/cachingy).

Between load order, minification, and caching, you have a lot of levers
to play with as you optimize your site’s assets for an excellent and fast
user experience. Each of these techniques becomes even more import-
ant as you implement it for mobile users who are on poorer network
connections, especially if you are choosing to display different content
for different types of devices or screen sizes. In the next chapter, we’ll
cover how to deliberately load content for smaller screens and how to
create a high-performing and positive user experience for your mobile
users.

92 DESIGNING FOR PERFORMANCE

http://httpd.apache.org/docs/2.2/caching.html
http://nginx.com/resources/admin-guide/caching/
http://nginx.com/resources/admin-guide/caching/

[5]
Responsive Web Design

Mobile is no longer “the future.” As mentioned in Chapter 1, handsets
are the primary Internet access method (http://slidesha.re/eW8wQ9)
for a vast number of global Internet users. People are primarily using
handsets to access the Internet, and these devices present their own
unique set of challenges. Between the tremendous amount of latency
on mobile networks (see “Mobile Networks”) and hardware challenges
like WiFi signal strength and battery power (see “Mobile Hardware”),
it’s more important than ever that we design and develop sites that are
as high performing and efficient as possible. We need to aim for no
unnecessary overhead for our users and optimize for perceived perfor-
mance on all screen sizes.

The challenge with responsive web design sites is that it can be very
easy to accidentally deliver unnecessary content like too-large images
or unused CSS and JavaScript. Because the process of creating a
responsively designed site can often include adding markup and func-
tionality to optimize your layout and content for smaller screens, it’s
no surprise that many sites deliver the same page weight or additional
page weight to mobile devices without the designers and developers
even realizing it.

Many creators of responsive sites are already going above and beyond
in their decision-making process: reflowing content, choosing to hide
or show various elements, making smart decisions about hierarachy,
and more. We need to build an additional step into this responsive
web design workflow: ensuring that we are delivering only the neces-
sary content in terms of page weight and requests, not just information
architecture.

Guy Podjarny found (http://bit.ly/1tBv6cT) that the majority of respon-
sively designed sites are currently delivering roughly the same page
weight to small and large screens. But it doesn’t have to be this way:

93

http://slidesha.re/eW8wQ9
http://bit.ly/1tBv6cT

responsive web design is not inherently bad for performance, and we
can be smart about what we deliver to our users. By being intentional in
your approach to designing a responsive site and deliberate with what
kinds of assets you require your users to download, you can build an
excellent user experience that performs well regardless of screen size.

Deliberately Loading Content

Because we so often create a responsive site by adding things like more
media queries for various screen sizes, it’s easy to forget that we may
also be adding a ton of extra overhead for our users. This is especially
true when a design starts with a desktop version and is then edited to
scale down for smaller screens: what happens to those assets that have
been optimized for the desktop view? Too often these are left as is;
images are always served at the same size (just scaled down visually,
through CSS), or fonts continue to be delivered and implemented as
they are on desktop. We need to be deliberate with how we load content
and ensure we are delivering only the bytes that our user absolutely
needs.

IMAGES

Images should be served at the size at which they are displayed on the
page to eliminate any unnecessary overhead for your users. In Figure
5-1, we can see a screenshot of Google’s home page with Chrome
DevTools open. The size at which the Google logo is displayed is smaller
than the actual height and width of the logo file.

This means that users are downloading unnecessary bytes, since their
browsers downloaded an image that’s unnecessarily large for how it’s
displayed. As you inspect an image in Chrome DevIools, you'll be able
to see the height and width of the image as it is displayed on the page

as well as the image’s “natural” size, which can often be different than
the display size (Figure 5-2).

In Figure 5-2, we can see that Google may be sending a retina-sized
version of the image to users. Since retina displays cram twice as
many pixels into their screens, a designer or developer can send an
image twice as large as necessary and scale it down for display in the
browser. This technique makes images look crisp on retina displays.
Unfortunately, it also means users who aren’t using retina displays will
download unnecessary image file bytes.

94 DESIGNING FOR PERFORMANCE

Google

=

Prnﬁles | Resources | Auaits Cunsdle PagéSpeEa

Googl

legellw.png

Dimensions 538 x 190
File size 13.7KB
MIME type image/png
URL https:f fwww.google.comfimages/srpr/logollw.png

Figure 5-1. In this example, we can see that the size at which the Google logo is
displayed is smaller than the actual size of the logo file.

V2 269 x 207 pixels (Natural: 538 x 190 pixels)

W fOIVE

Figure 5-2. Chrome DevTools will tell you how large an image is naturally as
well as its actual displayed dimensions on the page.

Inspect the images on your site and see if there are opportunities for
serving appropriately sized files. You have a few different ways to tell
the browser which image to serve: RESS solutions, CSS media queries,
and the new picture specification.

RESS, which stands for responsive web design with server-side com-
ponents, is one option for creating and serving correctly sized images.
You can improve performance by choosing which assets to serve to your
user on the server side, rather than optimizing them on the client side.
Your server can make smart decisions by looking at a user agent string,
from which it can guess things like your user’s screen size, device capa-
bilities like touch, and more. Tools like Adaptive Images (http://adap-
tive-images.com/) detect your user’s screen size and will automatically
create, cache, and deliver correctly sized images based on your defined

5. RESPONSIVE WEB DESIGN | 95

http://adaptive-images.com/
http://adaptive-images.com/

breakpoints (see Figure 5-3). In his book High Performance Responsive
Design (O’Reilly), Tom Barker outlines a number of RESS techniques
and how to implement them.

Example in action

Figure 5-3. In this example from the Adaptive Images site (http://adaptive-
images.com/), you can see different pixel widths and heights were generated
from a single image with the Adaptive Images tool, as well as the different file
sizes of the resulting images.

However, there are a number of downsides to RESS solutions. RESS
won't respond to client-size changes (e.g., if a user rotates the device
from portrait to landscape). Let’s say you're using RESS to send a per-
fectly resized image to your user’s browser. If that user rotates her
device and your responsive layout changes, your server won’t know to
send a new image to fit the new layout. This is why techniques like
media queries and the new picture specification tend to be better solu-
tions for responsive images.

There has been a lot of research done to determine which methods are
best for displaying a correctly sized image using CSS in a responsive
design, thanks in particular to Tim Kadlec (http://bit.ly/1jgN9gF) and
Cloud Four (http://bit.ly/1tu0f7X). However, browsers can do unex-
pected things as they determine which image(s) to download for your
page with CSS, which is why it’s important to test your site’s perfor-
mance and ensure that you are asking your users’ browsers to down-
load only the necessary resources.

96 DESIGNING FOR PERFORMANCE

http://adaptive-images.com/
http://adaptive-images.com/
http://bit.ly/1jqN9gF
http://bit.ly/1tu0f7X

For example, simply setting display: none to an element will not pre-
vent a browser from downloading the image:
<div id="hide">

</div>

/* Seriously, don't do this.
Browsers will still download the image. */

@media (max-width: 600px) {
#hide {
display: none;

}

The same goes for applying display: none to an element with a back-
ground-image; the image will still be downloaded:

<div id="hide"></div>

/* Again, don't do this.
Browsers will still download the image. */

#hide {
background: url(image.jpg);
}
@media (max-width: 600px) {
tthide {

display: none;

}

Instead, if you want to hide an image from displaying with CSS in a
responsive design, you can try hiding the parent element of the element
with a background-image:

<div id="parent">

<div></div>
</div>

/* Hide the parent element;
Browsers will not download the image. */

#parent div {

background: url(image.jpg);
}

5. RESPONSIVE WEB DESIGN 97

@media (max-width: 600px) {
#parent {
display: none;

}

Alternatively, you could apply different media queries to tell the browser
which background-image is appropriate to download at which screen
size. A browser will download an image when it matches a media query:

<div id="match"></div>

@media (min-width: 601px) {
#match {
background: url(big.jpg);
}
}

@media (max-width: 600px) {
#match {
background: url(small.jpg);

}
}

Note that if media queries overlap, older browsers will download both
images.

But what about serving up retina images with CSS? We can ensure
that only the retina version is downloaded for most browsers by using a
media query to serve the retina version:

<div id="match"></div>

#match {
background: url(regular.png);

}

@media (-webkit-min-device-pixel-ratio: 1.5),
(min--moz-device-pixel-ratio: 1.5),
(-o-min-device-pixel-ratio: 3/2),
(min-device-pixel-ratio: 1.5) {

#match {
background: url(retina.png);

}

98 DESIGNING FOR PERFORMANCE

Devices running Android 2.x that have a device pixel ratio equal to or
above 1.5 will unfortunately download both versions of the image (reg-
ular.png as well as retina.png), but as Kadlec notes in his article (http://
bit.ly/1jgN9gF), it’s unlikely that you will encounter a retina device run-
ning Android 2.x.

Your best bet for displaying a correctly sized picture in modern brows-
ers is to take advantage of the picture element in HTML. picture is
currently supported in Chrome 38, Firefox 33, and Opera 25, and is a
part of the new picture specification (http://bit.Iy/1tu0v6R). This new
specification allows you to tell the browser which image file to down-
load and when, and it includes a fallback for browsers that don’t sup-
port the picture element.

Here’s a simple example of the picture element that uses a media
query to determine which image file to download. The first source to
match, top to bottom, is the resource that gets picked for the browser
to download:
<picture>
<source media="(min-width: 800px)" srcset="big.png">
<source media="(min-width: 400px)" srcset="small.png">

</picture>

Check out how amazing this is. Not only are we able to match media
attributes to tell the browser which image file to download, but we also
have a low-resolution image that will be downloaded by browsers that
don’t support the picture element. Picturefill (http://scottjehl.github.
io/picturefill/) is a polyfill that enables support for the picture element
in browsers that don’t currently support it, so you can start using pic-
ture today! A good rule of thumb here is that all the images defined
in the same picture element should be able to be described with the
same alt attribute.

You can use the picture element to serve retina images when applica-
ble, too!

<picture>
<source media="(min-width: 800px)"
srcset="big.png 1x, big-hd.png 2x">
<source media="(min-width: 600px)"
srcset="medium.png 1x, medium-hd.png 2x">
<img src="small.png" srcset="small-hd.png 2x"
alt="Description">
</picture>

5. RESPONSIVE WEB DESIGN 99

http://bit.ly/1jqN9gF
http://bit.ly/1jqN9gF
http://bit.ly/1tu0v6R
http://scottjehl.github.io/picturefill/
http://scottjehl.github.io/picturefill/

In this example, srcset tells the browser which image to choose at
different pixel densities. Again, we'’re saving overhead for our users by
being precise and telling the browser exactly which single image file is
the right one to retrieve and display.

One additional superpower of the picture element is the type attribute:

<picture>
<source type="image/svg+xml" srcset="pic.svg">

</picture>
We can tell our user’s browser to ignore an image source unless it rec-
ognizes the contents of the type attribute. In this example, browsers
that recognize SVG will download the SVG file, and the rest will down-
load the fallback PNG. Again, we're able to tell the browser exactly
which single image file is the right one to download and display, saving
our user from unnecessary page weight overhead.

But what about fluid designs? Or what if you just have a handful of dif-
ferent image sizes, and want your user’s browser to choose the most
appropriate resource without listing specific viewport sizes or screen
resolutions? The picture specification can help with these, too, using
the sizes attribute. sizes follows this syntax:
sizes="[media query] [length],
[media query] [length],

etc...
[default length]"

Each media query in the sizes attribute will relate to a length that the
image will be displayed on the page, relative to the viewport size. So if
you have a length of 33.3vw, the browser understands that the image
will be displayed at 33% of the viewport width. If you have a length
of 100vw, the browser understands that the image will be displayed
at 100% of the viewport width. This math helps the browser choose
which image will be most appropriate to retrieve and show to your user.

sizes is smart because it will look through each media query to see
which applies before figuring out the correct image to download. In
this example, we can tell the browser that at larger screens, the image
will be shown at 33% of the viewport, but the default width of the image
is 100% of the viewport:

sizes="(min-width: 1000px) 33.3w,
100vw"

100 DESIGNING FOR PERFORMANCE

The browser looks in the srcset list of images to see their dimensions.
We can tell the browser the width of each image in our list with the syn-
tax image.jpg 360w, where image.jpg is the path to the image file and
360w indicates that this image is 360 px wide:
<img srcset="small.jpg 400w,
medium.jpg 800w,
big.jpg 1600w"
sizes="(min-width: 1000px) 33.3w,
100ww"

src="small.jpg"
alt="Description">

With this list of images in srcset and list of display widths in sizes,
browsers can pick the best image to fetch and display to your user
based on media query and viewport size. This comes in handy when
you use a content management system, too; allow your CMS to gener-
ate the sources and markup for your image. This way, a CMS user has
to upload only one version and not worry about how it will be displayed
at different screen sizes. Note that, as demonstrated in this example,
you can use the new picture specification without using the picture
element!

You can use all of the pieces of this new specification in concert to give
your user’s browser a ton of power in choosing which image should be
downloaded and displayed. You'll be able to choose to serve differently
cropped images at different screen sizes, as well as retina-optimized
images for high-pixel-density devices, and you can give the browser the
power to choose the right image for the job based on media query. All
of this is excellent for performance.

FONTS

Font files can add a huge amount of overhead to your site because they
require additional requests and increase page weight. As discussed in
“Optimizing Web Fonts,” there are several ways of optimizing your
font files to ensure they are as high performing as possible. One addi-
tional consideration you can make in your responsive design is to load
your custom font file only on larger screens. This is something we do
at Etsy, as we would rather save our users from downloading the extra
font file overhead if they’re on a mobile device.

To do this, set your normal fallback fonts on your content. Then use a
media query to only apply your web font to content at a large breakpoint:

5. RESPONSIVE WEB DESIGN 101

@font-face {
font-family: 'FontName';
src: url('fontname.woff') format('woff');

}

body {
font-family: Georgia, serif;

}

@media (min-width: 1000px) {
body {
font-family: 'FontName', Georgia, serif;
}
}

This will download and apply the font file only if the user’s device
matches the media query. All browsers (except Internet Explorer 8 and
lower) are smart about downloading a font file only if it applies. Internet
Explorer 8 and lower will download all @font-face files referenced in a
page’s CSS file, even if they aren’t used on the page.

Approaches

While you’ll make many decisions about how to create your site’s
responsive web design during the actual design and development pro-
cess, it’s important to take a beat before you begin any work to consider
your overall approach and how it will impact performance. Building
performance into project documentation, taking the time to look at
your site from a mobile-first perspective, and figuring out how you’re
going to measure the performance of your site across media queries
will help you to create a speedy, responsively designed site.

PROJECT DOCUMENTATION

If possible, incorporate performance into your project documentation
for any project (not just responsive web designs!). For a responsive site,
you’ll want to benchmark and continue to measure the same standard
performance metrics like total page weight, total page load time, and
perceived performance using the Speed Index. But you’ll also want to
be able to set goals for devices and media queries, not just an average
overall page using your design.

Aswe’lldiscuss in “Approach New Designs with a Performance Budget,”
there are ways to make compromises on site speed as you develop. By
setting a performance budget, you'll be able to make concessions as you

102 ‘ DESIGNING FOR PERFORMANCE

balance aesthetics and performance. For any responsive web design,
you’ll be making these same concessions; maybe you’ll want to serve a
large image at a particular media query that puts you over your budget,
so you'll decide to not deliver extra font weights to make up the time.
Table 5-1 outlines an example performance budget for a responsive web
design.

TABLE 5-1. Example responsive web design budget

MEASURE GOAL NOTES

Total page load time 2 seconds | For all breakpoints
Total page weight 500 KB min-width: 900 px
Total page weight 300 KB max-width: 640 px
Speed Index 1,000 For all breakpoints

Set some expectations within your project documentation about how
you expect to avoid unnecessary page weight or requests to any device.
In addition, make it clear that you will be measuring these things for
each media query or screen size and what your goals are, as in Table
5-1. These kinds of budgets can get a bit fuzzy. For example, what hap-
pens if you rotate a device and it switches between budgets? It’s essen-
tial to have a baseline indicating the importance of performance to set
expectations for those who are working on the project. Remember that
this will benefit not just your mobile users, but your desktop users as
well.

MOBILE FIRST
A mobile-first approach to designing any site will help you in so many
areas. It will prompt you to:
o Ask critical questions up front (“What is the core purpose of this
page?”).
. Identify the most important functionality and content for your

users.

. Establish design patterns and how they will change across screen
sizes.

« Think about your site from an accessibility perspective (“How
accessible will this be for people on slower connections or less
capable devices?”).

5. RESPONSIVE WEB DESIGN 103

By starting with a mobile-first approach, you can attempt to avoid the
square peg/round hole mentality that many designers and develop-
ers fall into when they try to reshape a desktop experience for mobile
devices. You can progressively enhance your site by adding function-
ality, incorporating more powerful animations and styles, and taking
advantage of newer devices’ capabilities, all while keeping track of per-
formance implications as you add on.

The mobile experience shouldn’t be bare-bones. It should be a delib-
erate experience; designers and developers should use the benefits of,
and be cognizant of the limitations for, each platform their site will
be rendered on. Mobile isn’t just an add-on to desktop, and desktop
isn’t just an add-on to mobile. Content parity doesn’t mean that each
platform’s experience should be identical. We should be designing and
developing with our users’ needs in mind.

A mobile-first approach forces you to ask these important questions
about core user needs early and will help you with the performance of
your site. An experience with intention about your users will help you
focus on what kinds of assets are being delivered to them. An approach
in which you make hard decisions about functionality and content hier-
archy at small screen sizes will help you keep your total page weight
and number of requests down. A site that starts with the most import-
ant content and assets, rather than tacking on media queries to handle
smaller screen sizes, will be a huge help in keeping your performance
under control.

For your responsive site, consider your smallest screen sizes first.
Reorder your CSS to deliver small screen styles first, and use progres-
sive enhancement to add content and capabilities as screen sizes get
larger. Deliver correctly sized assets, ensure there’s no scrolling jank,
and make the page’s core functionality interactive as quickly as pos-
sible. From there, you can make decisions about how to share larger
assets on larger screens, reflow content in your hierarchy, and continue
to be deliberate about performance in your overall user experience.

104 DESIGNING FOR PERFORMANCE

MEASURE EVERYTHING

In Chapter 6, we’ll cover how to continue to measure your performance
as you iterate and test your designs. You'll use all of these tactics on a
responsively designed site, just as you would any other site. But there
are some additional considerations for measuring a responsive web
design.

Primarily, you need to ensure that only the appropriate content is being
loaded at each breakpoint. Don't join the other 72% of websites (http://
bit.ly/1tBv6cT) that are serving up the same size responsive design site
across screen sizes.

If you're able to, implement automated tests that measure the total page
weight for each of your chosen breakpoints. Tom Barker included an
excellent chapter on continuous web performance testing in his book
High Performance Responsive Design, which outlines how to implement
Phantom JS tests that measure each breakpoint’s performance, includ-
ing YSlow score and total page weight.

You can also test this manually. Emulate a device using Chrome
DevTools and use the Resources panel to see which image size is being
downloaded for that device. Here is an example set of media queries in
which I choose to serve a different image based on breakpoint:
@media (min-width: 601px) {
section {
background: url(big.png);

}
}

@media (max-width: 600px) {
section {
background: url(small.png);

}
}

I want to make sure not only that the correct image is downloaded for
a particular device size, but that both images aren’t downloaded. I used
Chrome DevTools with caching disabled to emulate a Google Nexus 10
that would match the larger media query (Figure 5-4), and a Google
Nexus 4 that would match the smaller media query (Figure 5-5).

5. RESPONSIVE WEB DESIGN 105

http://bit.ly/1tBv6cT
http://bit.ly/1tBv6cT

big big big big big bi;

Q, Elements | Network | Sources Timeline Profiles Resources » * |EI‘ x
® ©® ¥ = (Preserve log M Disable cache

Name M... |5t... T... Initiator Size Ti... | Timeline

| responsivete... | GET | 200 te... Other 7768| 5.. -

|| big.png GET 200 i.. respo.. 6.5KB 7.

2 requests | 7.3 KB transferred | 28 ms (load: 68 ms, DOMContentLoaded: 28 ms)
Console Search | Emulation | Rendering

I Device Google Nexus 10 s
Screen ¥
Emulate Reset
User Agent v
Sensors Viewport: 1280 x 800, devicePixelRatio = 2

User agent: Mozilla/5.0 (Linux; Android 4.3; Nexus 10 Build/)J5515Q) A...

Figure 5-4. In this example, | emulated a Google Nexus 10 to see which image
would be downloaded. In the Network panel, we can see that big.png was
called.

Each emulated device correctly downloaded only the image that was
needed. We can also see the total page size transferred: 7.3 KB for the
larger device, and 2.9 KB for the smaller device. Continue to check on
the resources and total page weight being delivered to each breakpoint
determined in your project plans to ensure that you're meeting your
goals.

For measuring total page load time and Speed Index at each break-
point, check out WebPagetest’s drop-downs for browser (Figure 5-6)
and connection speed (Figure 5-7).

The Dulles, Virginia, WebPagetest location includes a number of
mobile browsers in the Browser drop-down. This testing location
includes physical devices, like the iPhone 4 and the Nexus 5, on which
you can test.

106 DESIGNING FOR PERFORMANCE

small

Q, Elements | Network | Sources Timeline Profiles Resources » # |EI‘ *
® ® Y = (Preserve log @ Disable cache

Name M... |St... |T... |Initiator | Size Ti... | Timeline

|| responsivete... | GET 200 te... Other 7768 | 4. =

ij small.png GET (200 |i... |respo.. 2.2KB| 5... -

2 requests | 2.9 KB transferred | 27 ms (load: 34 ms, DOMContentLoaded: 23 ms)

Console Search | Emulation | Rendering

I Device Google Nexus 4 -
Screen ¥
Emulate Reset
User Agent v

Sensors Viewport: 384 x 640, devicePixelRatio = 2

User agent: Mozilla/5.0 (Linux; Android 4.2.1; en-us; Nexus 4 Build/JO...

Figure 5-5. After switching the emulator to the Google Nexus 4 and refreshing
the page, we can see that small.png was called instead of big.png.

IE & .

Test Location IES
IE 10

IE11

Browser ¥ Chrome

Canary

Firefox

Firefox Nightly
Safari (Windows)
Test Settings 2" iPhone 4105 5.1
Motorola G - Chrome
Motorola G - Chrome Beta E.
MNexus 5 - Chrome E
MNexus 5 - Chrome Beta

Number of Tests to Run Motorola E - Chrome

Advanced Settings ¥

Connection

Uptod Motorola E - Chrome Beta
Nexus 7 - Chrome
Repeat View Mexus 7 - Chrome Beta 1on

Mexus 7 Landscape - Chrome

Capture Video Mexus 7 Landscape - Chrome Beta

Figure 5-6. You can choose from an assortment of mobile browsers in your
WebPagetest run.

5. RESPONSIVE WEB DESIGN 107

Advanced Settings ¥

Test Settings | Advanced | Chrome | Auth | Script | Block | SPOF | Custom

Connection 4 Cable (5/1 Mbps 28ms RTT}
DSL (1.5 Mbps/384 Kbps 50ms RTT)
FIOS (20/5 Mbps 4ms RTT)

Number of Tests to Run
Upto 9 56K Dial-Up (49730 Kbps 120ms RTT)
Mobile 3G (1.6 Mbps/768 Kbps 300ms RTT)
Mobile 3C - Fast (1.6 Mbps /768 Kbps 150ms RTT)
SEEERRID Native Connection (Neo Traffic Shaping)
Custom
Capture Video ™

Figure 5-7. You can choose from an assortment of emulated connection
speeds in your WebPagetest run.

The different connections listed in the Connections drop-down are cre-
ated using traffic shaping. This means Chrome DevIools will emulate
what a user may experience on this type of connection, but the results
will be more consistent across tests because the test is actually happen-
ing on WiFi.

Compare the results for each breakpoint to make sure that your total
page load time and Speed Index meets or beats the goal outlined in
your project documentation.

All of the other techniques in this book will also help you optimize your
responsive web design for performance. As you design your responsive
site, be deliberate about which assets are downloaded by your users.
Develop a performance budget at each breakpoint and use a mobile-
first approach when designing and developing the site. Be sure to also
check out Tom Barker’s book, High Performance Responsive Design, for
more in-depth details on optimizing both the backend and frontend of
your responsively designed website for performance.

As always, measuring performance as you work and as your site ages
will help you keep page load time under control. In the next chapter,
we’ll dive into tools and routines for checking in on the performance
of your site to help you get a holistic view of your user experience over
time.

108 DESIGNING FOR PERFORMANCE

[6]

Measuring and lterating
on Performance

Benchmarks are not just critical to understanding the state of your user
experience today, but they will also help you pinpoint what contributes
to performance changes over time. Routine checks on various page
speed metrics like total page load time, total page weight, and Speed
Index for perceived performance for your major pages will enable you
to see if things get slower on your site (and hopefully, why). Table 6-1
outlines the major tools you can use for benchmarking your site’s per-
formance, many of which we’ll cover in this chapter.

TABLE 6-1. Benchmarking overview

TOOL TYPE BENCHMARK TIMING

YSlow Browser plug-in | Overall grade, As you develop,
recommendations then once every

quarter

Chrome DevTools Browser plug-in | Recommendations, | As you develop,
waterfall chart, then once every
frames per second quarter

WebPagetest Sythentic Overall grade, rec- Every time you

testing ommendations, make a large

waterfall chart, change or
Speed Index experiment

Catchpoint, Gomez, Sythentic test- Trends in your site’s | Monthly

wpt-script, etc. ing (trending) performance over
time

Google Analytics, Real user Median load time Weekly

mPulse, Glimpse, etc. | monitoring for various audience

demographics

109

As sites age and change, there are plenty of opportunities for both
improvements and degradations in performance; it’s imperative to
keep an eye on these metrics using browser plug-ins, synthetic tests,
and real user monitoring.

Browser Tools

To begin to see how well your site performs with basic page load time
measurements (Chapter 2), test your pages with browser plug-ins as
you develop. Tools like YSlow and Chrome DevTools will help you
see how your site stacks up against the key principles of performance
optimization.

YSLOW

As mentioned in “Page Weight,” YSlow (https://developer.yahoo.com/
yslowy/) is an excellent way for you to check on your resources’ total file
sizes. YSlow is a browser plug-in available for Firefox, Opera, Chrome,
and Safari; via the command line; and as a bookmarklet. In addition to
inspecting the file size of different resources on your page, you can use
YSlow to get basic recommendations to improve your page load time
(Figure 6-1).

ALL(23) FILTER BY: CONTENT (6) | COOKIE (2) | €SS (6) | IMAGES (2) | JAVASCRIPT (4) | SERVER (6) | Tweet| [Share

I A Make fewer HTTP requests

C Use a Content Delivery Network (CDN)

Avoid empty src or href

Add Expires headers

Grade D on Add Expires headers

Put CSS at top There are 3 static components without a far-future expiration date.

A
D
A Compress components with gzip
A
A

Put JavaScript at bottom s (2014/7/14) hup://www.qoogle-analytics.com/ga.js
(2014/7/13) hup:/ /1 om /favicon.ico
A Avoid CSS expressions ° /
+ (2014/7/13) htep:/ /| om/css/light.css
nja Make JavaScript and C5S external
A Reduce DNS lookups
A Minify JavaScript and €SS Web pages are becoming increasingly complex with more scripts,
style sheets, images, and Flash on them. A first-time visit to a page
Avoid URL redirects may require several HTTP requests to load all the components. By

using Expires headers these components become cacheable, which
avoids unnecessary HTTP requests on subsequent page views.
Expires headers are most often associated with images, but they
«can and should be used on all page components including scripts,
style sheets, and Flash.

Remove duplicate JavaScript and CSS

Make AJAX cacheable

»Read More
Use GET for AJAX requests

A
A
A Configure entity tags (ETags)
A
A
A

Reduce the number of DOM elements Copyright © 2014 Yahoo! Inc. All rights reserved

Figure 6-1. YSlow can give you web performance suggestions about your page
for things like load order, compression, and caching.

110 DESIGNING FOR PERFORMANCE

https://developer.yahoo.com/yslow/
https://developer.yahoo.com/yslow/

Take a look at YSlow’s recommendations for your page. In this case, I've
selected its recommendation to add Expires headers to see which files
this applies to. I can use this recommendation to spot which resources
I need to add caching rules for very easily; in this case, I can ignore the
part about caching the Google Analytics script, as it’s served by a third
party (Google) and the caching rules are out of my hands.

[NOTE]

When reviewing any tool’s automated recommendations, remember that
you know your site better than anyone. You may see some recommenda-
tions that don’t quite work with your setup; maybe you know that the way
you have optimized your site creates the best user experience for your
users, maybe the suggestions apply to third-party scripts that you have no
control over, or maybe you know that a certain suggestion wouldn’t work
for your team’s development workflow. Definitely read through all the rec-
ommendations and see if they will work for you, but don’t worry if the sug-
gestions don’t 100% apply. Web performance is rarely one-size-fits-all.

YSlow will give you an overall performance score, which you can aim to
improve over time (Figure 6-2). Keep track of your score and regularly
check in with it as you iterate on your site’s design, content, backend,
and so on, and make sure you're staying up-to-date with performance
improvements. You can compare this score and set of recommenda-
tions to PageSpeed Insights (https://developers.google.com/speed/pag-
espeed/insights/), Google’s online web performance analysis tool, as
well.

Home | Grade | Components | Statistics Rulesets | YSlow(V2) + | | Edit | (7) Help 1

Grade Q Overall performance score 95 Ruleset applied: YSlow(v2) URL: http://laraswanson.com/

Figure 6-2. YSlow will grade your page’s web performance, which you should
regularly check as your site ages and recommendations change.

Check in with YSlow as you develop a new page, as you make changes to

your existing site, or every three months if things are stable. Compare
the before and after of your performance grades and recommendations.

6. MEASURING AND ITERATING ON PERFORMANCE 111

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

CHROME DEVTOOLS

For further optimization, open Chrome DevIools and run a Web Page
Performance Audit. DevIools will analyze your page and give you basic
web performance improvement tips (Figure 6-3). There are some over-
laps between all of the browser plug-ins mentioned here; you'll need
to take a look at the recommendations in Chrome DevTools just like
in the other plug-ins to be sure the recommendations make sense for
your site.

@, Elements Network Sources Timeline Profiles Resources | Audits| Console

- ¥ Network Utilization
(- ~)) Audits -
e’ @ > Leverage browser caching (26)

RESULTS » Leverage proxy caching (7)

<]> http://laraswanson.com/ ¥ Minimize cookie size
¥ Web Page Performance

http:/laraswanson.com/ @ > Optimize the order of styles and scripts (1)
» Remove unused CSS rules (3952)
» Use normal CSS property names instead of vendor-prefixed ones (24)

Figure 6-3. Chrome DevTools can run an audit on your page and give you basic
web performance tips to speed things up.

After checking out the basic recommendations that DevIools offers,
inspect the Network tab (Figure 6-4). This tab shows you a timeline of
resource requests on the page that occur while DevTools is open, help-
ing you gather waterfall information as you work on your site.

Q_ Elements | Nework | Sources Timeline Profiles Resources Audits Console

® O Vv = Preserve log
Name Status size Time
Path Method | Tese Type Initiator Content | Latency | mene 2000 300
| laraswanson.com 304 2288 418ms _
4 e 4 -
| TR B @ tosk 4t6ms SETRIT:
light.css 304 laraswanson.com/:8 2288 143ms | Blocking |1.110ms
s GET textjcss : .
=) fess Not Modifiec Parser 5.0KB 142ms | DNS Lookup [I241089ins
&) cr-booksng e 304 agerpng ESwAnSON.com/ 2308 208ms | Conmecting HZ0HIBS]ns
(5 /images Not Modifiec | ™29%/PNS | o 6.4kB| 207ms | Sending 0.272ms|
Waiting 170.600 ms.
gajs oo B e, Un8e027 1628 20ims | g3 ST
= www.google-analytics.com Not Modifiec Script 383KE 199ms
] vGS3]80ALIWIIEl=0 301 4378 301ms
i cET textyheml Other

wyoutube.com/ embed Moved Perm 0B 181ms

Figure 6-4. The Chrome DevTools Network tab shows you a timeline of
resource requests while DevTools is open, helping you gather waterfall infor-
mation as you work.

The Network tab is really handy to help you see how the critical path
is affected, what resources are taking too long to load, and what kind
of latency each request experiences. You can also see cookie informa-
tion, sort by the duration it takes for resources to load or their latency,

112 DESIGNING FOR PERFORMANCE

and filter by type of request. Poke around the Network tab to make sure
that you have a healthy critical rendering path and that there aren’t any
requests that are taking a tremendously long time to fully load.

We can also use Chrome DevIools to help identify jank. Turn on the
FPS (frames per second) meter in DevIools using the Rendering tools
window (Figure 6-5) to see which areas of a page trigger a drop in
frames per second as you scroll through your site, which is an indicator
of poor perceived performance.

Figure 6-5. Chrome DevTools can help you detect which areas of your page
trigger jank with the FPS meter.

At Etsy, we found that one of our pages triggered jank when a user
scrolled down the page. The team used this FPS meter to help isolate
the problem area (in our case, excessive box-shadow on some elements
was triggering the jank) so we could make a fix and eliminate the jank
on scroll. The team found that fixing the issue had a statistically signif-
icant positive impact on engagement metrics. You should run your site
through Chrome DevIool’s audit recommendations, Network tab, and
Rendering tools as you develop a new design or feature, and then once
every quarter thereafter.

Now that you've run your site through various browser plug-ins, com-
pleted implementation of their suggestions, and spot-checked the site’s
timeline and frames per second, it’s time to get an even more realistic
set of performance benchmarks using more browsers and locations.

Synthetic Testing

After you've run your site through browser plug-ins, it’s helpful to get
a sense of how your site performs outside the comfort of your own
browser and geographic location. Synthetic performance tools help you
get a better sense of how your pages load by using a third party’s test-
ing location and device; you can see how your site performs on various
platforms across the world.

6. MEASURING AND ITERATING ON PERFORMANCE 113

Use synthetic tests to get baseline performance metrics for your pages
as you iterate and optimize your site’s design. Synthetic testing won't
necessarily represent what your users are actually experiencing when
they visit your site (real user monitoring is best for this), but it’ll give
you a better idea than simply testing in your own browser.

WebPagetest (http://www.webpagetest.org/) is a very popular, well-doc-
umented, robust synthetic testing solution for performance. You can
gain plenty of insight into how your site performs by running tests
using WebPagetest (Figure 6-6).

¢ WEBPAGETEST

HOME TEST HISTORY FORUMS DOCUMENTATION ABOUT

Test a website's performance

Enter a Website URL

Test Location Dulles, VA USA (IE 8-11,Chrome Firefox Android,iOs) +)| select from Map

START TEST

Browser

Advanced Settings >
1 un, Cable connecion, rsulls are publc

Run a free website speed test from multiple locations around the globe using real browsers (IE and Chrome) and at real consumer
connection speeds. You can run simple tests or perform advanced testing including multi-step transactions, video capture, content
blocking and much more. Your results will provide rich diagnosiic information including resource loading waterfall charts, Page
Speed checks and for

Iyou have any performance/opiimization questions you should visit the Forums where industry experts regularly discuss Web
Performance Optimization.

Figure 6-6. WebPagetest provides free speed tests from a variety of browsers
and locations around the world.

Running a test on WebPagetest with the default settings will send your
page through one first view and one repeat view so you can compare
differences in page load time when assets have been cached. The test
defaults to a cable connection. You can also choose additional runs
under the Advanced Settings (Figure 6-7). I recommend choosing five
runs; WebPagetest will select the median first view and median repeat
view for result analysis.

114 DESIGNING FOR PERFORMANCE

http://www.webpagetest.org/

Advanced Settings ¥

Test Settings | Advanced

Connection | Cable (5/1 Mbps 28ms RTT)

Number of Tests to Run 5
Upta @

Repeat View (=)First View and Repeat View () First View Only

Capture Video o
Keep Test Private O

Label

Figure 6-7. WebPagetest’s Advanced Settings allow you to choose additional
runs, a different kind of connection, and plenty of additional test nuances like
the ability to disable JavaScript or have a particular host fail.

WebPagetest will save these results for up to one year, so you can com-
pare your tests to previous results as you begin to improve your site’s
page load time. If you create an account with WebPagetest, you’ll be
able to see your tests separate from everyone else’s. Also, you can host
a private instance (http://bit.ly/1sHfmre) of WebPagetest yourself! The
added benefits of a private instance include the ability to test a develop-
ment (nonlive) site, which can be great for incorporating performance
into your design and development workflow. You can also automate
tests (https://github.com/etsy/wpt-script) using a private instance to
save yourself some time.

WebPagetest provides page performance recommendations, similar to
PageSpeed and YSlow. Choose the Performance Review link at the top
of your test to see the details of the test results (Figure 6-8) and your
potential page load time savings.

6. MEASURING AND ITERATING ON PERFORMANCE 115

http://bit.ly/1sHfmre
https://github.com/etsy/wpt-script

¢ WEBPAGETEST

HOME TEST RESULT TEST HISTORY FORUMS DOCUMENTATION

Web Page Performance Test for

laraswanson.com/

From: Dulles, VA - Chrome - Cable
TH3i2014 7:43:31 PM

e Keap-aive Comprass
abled Transfer

Summary Detalls Performance Review Gontent Breakdown

Full Optimization Checklist

Keep-Alive GZip Compress Ing Frogressive Cache Static CON Detected
bt s /71 arasuanson con/ 1007 10602 9% 53% 582 728
11 laraswanson.com - / v & [x]

25 Larssuanison.com - Light .css J V] S o
3: larasuansan.con - er_book.png v v v @
41 larasuanson.com - larad.jpg v v v (%]
9 wiw.google-analutics.com - ga.js N N & N
6: larasuanson.com. . .regular-uebfont .uofF| N N [} ()
7: wiw.youbube .com - VGS3j60LTw v v

81 larasuanson .com. . webFont-uekFont .uofF| N N [%] [}
S W.youtube .com ~ OBRLEJHGOPT v J

107 uww . youtube.con - REpVZS0Z)1c v N

1z player vineo.con - 95955576 v

12 i, google-analytics .con - __utn.gif v

131 uww . google-analytics.con - __utn.gif v

14: s.yting.con - u...-uebp-vF1_1uTCJ c3 v N v v
152 5.t 1NE.00M — .. Pl ayer-uF Lxpadni s v v v v
161 s.yting.com - h...-en US-uFIMLarss. s v J v v
47: 4 .uineocdh.com - player.css v J v v
18: #.vineocdn.com - plaver .js v v v v
191 #.vineocdn.com - proxy.htnl v v v

Figure 6-8. WebPagetest provides grades for various performance metrics as
well as recommendations on how to improve your page’s load time.

In addition to monitoring WebPagetest’s Performance Review and your
scores for things like First Byte Time and Compress Images, inspect
your waterfalls. When looking at a waterfall, identify requests that are
taking a significantly long time to load, like in Figure 6-9. These could
be flukes, which is why it’s good to run multiple tests at once and look
at the median result. But they could also indicate issues with file size
or content blocking.

Figure 6-9. When looking at the waterfall for your page within WebPagetest,
spot requests that are taking a significantly long time to load.

See what you can do to create nice, short waterfalls on your page. Also
look at WebPagetest’s Speed Index score. As mentioned in “Critical
Rendering Path,” Speed Index is the average time at which visible parts
of the page are displayed. It will help you benchmark the perceived per-
formance of your page, since it will tell you how quickly the “above the
fold” content is populated for your users.

116 DESIGNING FOR PERFORMANCE

WebPagetest creates a chart that displays visual progress over time
when you compare two WebPagetest runs. In Figure 6-10, we can see
that the Bing test result was more visually complete faster than Google
early on, but the rest of the Google page in this test appeared more
quickly thereafter.

Visual Progress (%)

100

[l Google
M Bing

75

50

25

Time (seconds)

Figure 6-10. WebPagetest’s Speed Index score indicates the average time at
which visible parts of a page are displayed. You can see a chart representing
visual progress over time when you run a comparison between two
WebPagetest runs.

In Figure 6-10, the Google Speed Index score was 1228 and Bing’s was
1393. The smaller the Speed Index score, the better. Be sure to bench-
mark your own page’s Speed Index score and measure it over time as
the site changes, as this is an excellent indicator of the perceived per-
formance of your page.

Be sure to also benchmark your time to first byte, how long it takes
for your page to become visually complete, and the time it takes to
fully load the page using WebPagetest. Compare WebPagetests results
from different browsers and locations to see how each of these metrics
changes. Look for outliers in long load times or cases where the critical
path may be blocked (read more in “Critical Rendering Path”).

6. MEASURING AND ITERATING ON PERFORMANCE 117

As you iterate on a design or make performance improvements on your
site, use WebPagetest to measure the before and after results. Be sure
to use WebPagetests’s filmstrip view and videos for comparisons of
how your page loads as you change it over time; also use WebPagetest
every time you make a large change to your site or run an experiment.

Synthetic tests like WebPagetest are excellent benchmarking tools as
you improve the performance of your site, and for monitoring changes
to your site over time and how they impact page load time and per-
ceived performance. Once you get comfortable with benchmarking and
iterating on these performance basics, it’s time to implement real user
monitoring to see what your users are truly experiencing daily on your
site.

Real User Monitoring

Real user monitoring (RUM) captures web traffic to your site so you
can analyze how long your pages actually take to load for your visitors.
Unlike synthetic tests, which give you single data points from auto-
mated services, real user monitoring tools can give you information
about the actual problems your users may experience with your site.

There are plenty of real user monitoring tools out there, ranging in
pricing, features, and coverage for your site. Google Analytics (http://
www.google.com/analytics/), mPulse (http://www.soasta.com/prod-
ucts/mpulse/), and Glimpse (http://bit.ly/1sHftD3) are all examples of
real user monitoring tools you can compare to see what might work for
you and your site.

After choosing a real user monitoring tool, identify your site’s major
pages to see how they perform for your users over time. The home page,
top landing pages, any kind of checkout flow, and other high-traffic,
important areas of your site should be included in your main reports.
As you look at your users’ load time for these pages, segment the data
in a few different ways to get a more holistic picture of your end user
experience:

- Geographic location (near/far from a datacenter, areas where your
main audience lives)

« Network type (cellular, WiFi, etc.)

- Median as well as 95th percentile total page load time

118 DESIGNING FOR PERFORMANCE

http://www.google.com/analytics/
http://www.google.com/analytics/
http://www.soasta.com/products/mpulse/
http://www.soasta.com/products/mpulse/
http://bit.ly/1sHftD3

Why 95th Percentile?

The 95th percentile metric is another way to illustrate the performance pain
points on your site. The median will give you a general understanding of
how long a page might take to load for your user, but the 95th percentile
metric is important to ensure that the vast majority of your users have an
excellent user experience. The 95th percentile is the slowest 5% of your
page views, but 5% is still a notable part of your user base. For RUM, 95th
percentile tends to be a measure of how slow your users’ network connec-
tions are, and slower connections are always going to send the higher per-
centile through the roof. Note that Google Analytics provides averages for
page load time, not percentiles.

Once you have this data, begin to analyze the differences between audi-
ence groups, like in Figure 6-11. How different is the median page load
time from the 95th percentile? How does the site perform for people in
other countries? How about your users on mobile devices? Are there
major differences in load time between your top five pages?

Isolate the reasons why these discrepancies exist and figure out what
you can do to fix these performance issues. Use the results of real user
monitoring tools to gain a better understanding of what your site’s user
experience truly is for your entire audience, and to help you prioritize
performance improvements and fixes.

| Avg. Page Load Time (sec) * |
(compared to site average)

Country / Territory

1. E= United States
Tablet and Desktop Traffic -35.1?%1
Mobile Traffic -24.24%'
2. | E& United Kingdom
Tablet and Desktop Traffic PMAD%
Mobile Traffic = oo_on%q
Figure 6-11. Segment your RUM data to find opportunities for performance
improvements and get a better understanding of what your users are actually
experiencing when they visit your site. In this screenshot from Google
Analytics, we can see the differences in load time for traffic on different
devices and in different countries.

6. MEASURING AND ITERATING ON PERFORMANCE 119

After benchmarking your site’s performance using synthetic testing
and real user monitoring, make as many performance improvements
as you can until your site’s user experience is stable. It can be a chal-
lenge to keep site performance stable over time, however, so in the next
section we’ll walk through how to continue to measure your site’s per-
formance after these initial wins to ensure that it stays speedy.

Changes over Time

Sites age. Content gets added. Designs are iterated upon. It’s impera-
tive that you routinely run checks on your site’s performance to look for
any major changes in page weight, total load time, and perceived per-
formance, and for any surprises that could be coming from other areas
of your organization.

You're likely not the only person who is working on your site. There
could be other designers, developers, and content creators who are
contributing new changes that affect things like load order, file sizes,
scroll jank, and more. By benchmarking your site’s performance and
checking in on it with some routine, you'll be able to pinpoint any sur-
prises in performance that arise. Did the home page suddenly double
in load time thanks to a new image carousel? Was a marketing script
just added to every page on the site? Did a blog post author accidentally
upload images that are five times larger than they need to be? Be sure
to routinely audit your major pages and find those performance sur-
prises. In Figure 6-12, we can compare average page load time for my
site’s users over time.

It’s also possible that there are no significant changes over time, but
rather gradual degradations in performance. These are harder to spot
and fix. On larger, more complex sites, you may start to see time to
first byte increase, or page load times for the 95th percentile get slower
and slower. By routinely benchmarking performance you can compare
quarter to quarter, in addition to week to week, which should also help
you alert others to less obvious changes in performance over time.
The more aware you and the team are about performance, the more
equipped you'll be to troubleshoot and balance out normal site aging
implications.

120 DESIGNING FOR PERFORMANCE

Overview

Avg. Page Lead Time (sec) = VS. Select a meiric Hourly Day Week Month

Jun 12, 2014 - Jul 12, 2014: ® Avg. Page Load Time (sec)
May 12, 2014 - Jun 11, 2014: ® Avg. Page Load Time (sec)
20

Jun 15 Jun 22 Jun 28
31 of pageviews sent page load sample

Avg. Domain Lookup Time | Avg. Server Connection Time | Avg. Server Response Time
Avg. Page Load Time (sec) | Avg. Redirection Time (sec) | (sec) (sec) (sec)

-57.52% 141.24% -33.59% -33.25% -38.07%
2.07vs 4.88 0.18 vs 0.07 0.07 vs 0.11 0.07 vs 0.10 0.47 vs 0.76

Avg. Page Download Time
(sec)

-53.55%
0.03vs 0.07

Figure 6-12. Google Analytics makes it easy to compare the average page load
time for your site’s users over time.

Routinely check on your images, as we walked through in “Image
Planning and Iterating.” Schedule routine checks on the cleanliness
of your sprites, image formats, and compression. Make sure that any
new images uploaded to your site are automatically compressed and
that you're serving them at the right size. At the same time, check
on the page weight for your site’s top five pages. If any of them have
increased by a significant amount, isolate the reason and either fix the
regression or find other places to improve performance on the page. If
you have a performance budget, you can often work within this bud-
get and find other ways to fix increases in page load time (read more in
“Approach New Designs with a Performance Budget”). But all of this
work depends on you regularly checking in on the performance health
of your site and documenting it over time in an easily comparable way.

Some companies use an internal wiki page to manually track perfor-
mance changes over time. Other companies create dashboards and
alerts using data from third parties like performance monitoring tools
or WebPagetest’s self-hosted option. It’s helpful to document both per-
formance metrics as well as any reasons why performance changed;
you can see which kinds of site changes have huge impacts on perfor-
mance over time (redesigns, new ad or marketing scripts) and which
are minor (such as small changes in content or images).

6. MEASURING AND ITERATING ON PERFORMANCE 121

Etsy’s Q12014 Site Performance Report

There was a small increase in both median and 95th percentile load
times over the last three months across the board, with a larger jump
on the home page. We are currently running a few experiments on the
home page, one of which is significantly slower than other variants,
which is bringing up the 95th percentile. While we understand that
this may skew test results, we want to get preliminary results from
the experiment before we spend engineering effort on optimizing this
variant.

This kind of log will help you educate those around you to understand
how their work affects the overall end user experience. It’ll also help
you go to bat when you need to defend your decision to weigh aesthetics
versus performance, as we'll discuss in Chapter 7. By benchmarking
each week’s performance data and why it’s changed, you'll empower
everyone within your organization to make smart decisions in their
daily design or development workflow.

One additional item to watch over time is your competitors’ page load
time. If you're able, run tests and benchmark how their sites perform
over time. This can give you data about how much of a priority perfor-
mance is for them, and also help you understand what aspects of the
user experience they are working on over time. Spot a major perfor-
mance change and investigate it: did they add new marketing tracking,
incorporate a better hero image, or implement web fonts that indicate
new branding? This kind of data can help you defend the importance
of your own site’s performance over time to the Very Important People
within your organization.

Keeping an eye on performance can be a meticulous task, so you
should try to automate this data gathering and create alerts when major
changes happen. Build dashboards with the data that you have and
share them within your organization. If you have performance budgets
or service-level agreements for a performance metric, be sure to indi-
cate these on your graphs so you can see how much room you have or
how much work there is to do. Dashboards for performance over time
will be incredibly helpful for watching those slow performance degra-
dations that are harder to spot.

122 DESIGNING FOR PERFORMANCE

Automatically alerting on performance regressions and wins will also
save you a ton of time. If one of your main pages increases in week-over-
week total page load time, you should be notified in a convenient way.
Trigger emails or an alert that gives you the context of what the old per-
formance benchmark was versus now, and make it easy to figure out
exactly when those numbers changed. If possible, alert those individ-
uals responsible for an area of the site if its performance changes. You
can do this for wins, too; celebrate with an alert when there’s a huge
improvement in performance and thank those responsible.

Over time, you will affect the page load time of your site by making
both aesthetic and performance improvements. Be sure to measure
all of these changes and how they impact your business metrics with
A/B tests. You could be making an intentional performance improve-
ment, or you may have a design change that will negatively impact per-
formance; A/B tests are great for tracking all of this! Benchmarking
performance as it changes over time, especially when you can directly
attribute it to work being done on your site, will empower you and oth-
ers to make smart decisions about aesthetics and performance. In the
next chapter, we will examine how experiments are great for optimiz-
ing your overall user experience, and look at some challenges you'll
face when balancing design and performance.

6. MEASURING AND ITERATING ON PERFORMANCE 123

[7]

Weighing Aesthetics
and Performance

Your site’s overall user experience is made up of so many different
pieces: look and feel, accessibility, information architecture, usability,
and more. Performance is just one piece of the overall user experience.
We can use performance to boost other areas of the site. If you cut
down on page weight, you'll make it more accessible to users on lim-
ited bandwidth. If you improve perceived performance, the site will feel
better.

However, speeding up your site can have costs. You'll lose development
time that you could be spending working on other areas of the user
experience. You may find yourself making sacrifices in other areas of
the experience (like the look and feel) in order to improve performance.
In this chapter, we wrestle with when to make tough calls about doing
performance work, what it can cost you, and when it’s worth it.

Finding the Balance

You now know how browsers request, retrieve, and display content to
your users. You understand how different image formats work and
what they’re best used for. You've thought about the semantics and
repurposability of design patterns in your HTML and CSS, and you
understand the importance of tweaking load order for the critical path.
You get performance. Now it’s time to leverage your new skill set.

Performance is closely linked to aesthetics. Frontend architect and con-
sultant Harry Roberts notes, “it’s not about how nice something looks,
it’s about how nicely it works, how it feels. There’s no point designing a
nice, shiny, beautiful UT if it’s going to take 20 seconds to end up on a
user’s device. They’ll have left before they even got to see it.”

125

If it were as easy as always following the same patterns and guide-
lines, maybe more people would be doing performance work today. But
unfortunately, it takes tough decision making to do performance well.
Thankfully, having all this knowledge about how the Web works will
help you make the right choices for you and your site. By understand-
ing the way that JPEGs find areas of a picture to compress, you can
make a call about the export quality of that image and whether you
should even use the JPEG format. By understanding character subset-
ting and how the number of requests on a page affects performance,
you can make decisions about how many font weights you should call
on a page.

Sometimes you’ll make choices that favor performance; other times,
you’ll make choices that favor aesthetics. The key is using all the infor-
mation available to you to make the right decision for you and your site.

At the outset of a project, you may find yourself weighing tough choices
like those in Table 7-1.

TABLE 7-1. Example aesthetic and performance considerations

QUESTION AESTHETIC PERFORMANCE

CONSIDERATION CONSIDERATION

Can | put a large hero image
at the top of every page?

Eye-catching,
represents the brand
well

This could be a really large
file, and we want to minimize
page weight.

Should | @font-face three
display weights and a text
weight?

Lots of flexibility in
typography

We want to minimize requests
and page weight.

Will | put a carousel on the
home page?

Showcases a lot of
different content

We want to minimize requests
and page weight (especially
for content that the user may
not even see).

How will | demonstrate how
our product works?

Could use video or
animated GIF

Videos and GIFs can be pretty
heavy.

The answers may differ every time, due to new context like the code-
base you're working with, deadlines, the team members with whom
you're working and their skill sets, the look and feel, and more. Table
7-2 shows example decisions made after weighing these considerations.

126 DESIGNING FOR PERFORMANCE

TABLE 7-2. Example site decisions

QUESTION DECISION

Can | put a large hero image at the | Yes. We’ll make sure that few colors
top of every page? are used in the hero, and it’s com-
pressed correctly.

Should | @font-face three display We’ll use two display weights and a

weights and a text weight? system font for the body content.

Will | put a carousel on the home No, the incremental benefit to our UX

page? is not worth the extra requests and
page weight.

How will | demonstrate how our We'll self-host a video that asynchro-

product works? nously loads.

While doing work for their client Fasetto, Roberts and brand designer
Naomi Atkinson made tough calls about when to sacrifice aesthetics
and performance. In one case, they wanted to showcase how simple
Fasetto was to use, and decided to go with animated GIFs. But, know-
ing that GIFs (especially animated ones!) can be very heavy, why did
they choose to go this route?

- Atkinson was already skilled at making animated GIFs. Roberts
and Atkinson recognized that they needed to account for familiar-
ity with tools and development cost as well as balancing aesthetics
and performance when making this decision.

- Replacing GIFs with CSS animations would have inflated the size
of the CSS, which they were aiming to deliver in a single request.
Roberts was focused on the critical path of the site, and wanted to
allow the GIFs to render progressively during the page load rather
than as part of the critical path.

- Atkinson was able to limit the color palettes of the GIFs to leverage
this file format’s compression algorithms. She focused on striking
a balance between appearance and file size.

The resulting animated GIFs landed at just under 35 KB, with one out-
lier at 90 KB. Atkinson and Roberts relied on their performance knowl-
edge to make smart design decisions and deliver the best possible user
experience for their client.

7. WEIGHING AESTHETICS AND PERFORMANCE 127

When you encounter these choices, weigh:
« The performance difference
o How many requests would it add or remove?
o How much page weight would it add or remove?
o How would perceived performance be impacted?
« The aesthetics difference
o How would this affect the brand?
o How would this impact existing design patterns?
o How would this change affect the overall user experience?
« The operational cost

o How maintainable is this solution? Will this make the site’s
codebase cleaner?

o Is this team able to contribute to this solution?
o How much time will this take to build?

o Is there a benefit to the team in learning this technique? Can
it be leveraged on other projects?

It can be very challenging to find a happy medium when you’re weigh-
ing this many varied and sometimes oppositional aspects. However,
you're now equipped with an understanding of performance, and you
can use this knowledge to make good decisions for your end users.
There are some additional techniques you can use to make these
choices easier: incorporate performance into your daily workflow to
diminish its development cost, approach all new designs with a perfor-
mance budget, and continually experiment with designs to learn about
how your decisions are paying off.

Make Performance Part of Your Workflow

One way to minimize the operational cost of performance work is
to incorporate it into your daily workflow by implementing tools and
developing a routine of benchmarking performance.

128 DESIGNING FOR PERFORMANCE

There are a variety of tools mentioned throughout this book that you
can incorporate into your daily development workflow:

- Automate image compression as new images are added to your site.

- Use an image resizing service and caching by breakpoint so you
don’t need to manually create a new image for every screen size.

« Document copy-and-pasteable design patterns in a style guide for
easy reuse.

« Check your page weight and critical path using browser plug-ins.

By making performance work part of your daily routine and automat-
ing as much as possible, you'll be able to minimize the operational
costs of this work over time. Your familiarity with tools will increase,
the habits you create will allow you to optimize even faster, and you'll
have more time to work on new things and teach others how to do per-
formance right.

Your long-term routine should include performance as well.
Continually benchmark improvements and any resulting performance
gains as part of your project cycle so you can defend the cost of perfor-
mance work in the future. Find opportunities to repurpose existing
design patterns and document them. As your users grow up, so does
modern browser technology; routinely check in on your browser-spe-
cific stylesheets, hacks, and other outdated techniques to see what you
can clean up. All of this work will minimize the operational costs of
performance work over time and allow you to find more ways to balance
aesthetics and performance.

Approach New Designs with a
Performance Budget

One key to making decisions when weighing aesthetics and page speed
is understanding what wiggle room you have. By creating a perfor-
mance budget early on, you can make performance sacrifices in one
area of a page and make up for them in another. In Table 7-3 I've illus-
trated a few measurable performance goals for a site.

7. WEIGHING AESTHETICS AND PERFORMANCE 129

TABLE 7-3. Example performance budget

MEASURE MAXIMUM TOOL NOTES

Total page load time 2 seconds | WebPagetest, median from All pages
five runs on 3G

Total page load time 2 seconds | Real user monitoring tool, All pages
median across geographies

Total page weight 800 KB WebPagetest All pages

Speed Index 1,000 WebPagetest using Dulles All pages
location in Chrome on 3G except home

page

Speed Index 600 WebPagetest using Dulles Home page

location in Chrome on 3G

You can favor aesthetics in one area and favor performance in another
by defining your budget up front. That way, it’s not always about mak-
ing choices that favor page speed; you have an opportunity to favor
more complex graphics, for example, if you can find page speed wins
elsewhere that keep you within your budget. You can call a few more
font weights because you found equivalent savings by removing some
image requests. You can negotiate killing a marketing tracking script
in order to add a better hero image. By routinely measuring how your
site performs against your goals, you can continue to find that balance.

To decide on what your performance goals will be, you can conduct
a competitive analysis. See how your competitors are performing and
make sure your budget is well below their results. You can also use
industry standards for your budget: aim for two seconds or less total
page time, as you know that’s how fast users expect sites to load.

Iterate upon your budget as you start getting better at performance
and as industry standards change. Continue to push yourself and your
team to make the site even faster. If you have a responsively designed
site, determine a budget for your breakpoints as well, like we did in
Table 5-1.

Your outlined performance goals should always be measureable. Be
sure to detail the specific number to beat, the tool you’ll use to measure
it, as well as any details of what or whom you'’re measuring. Read more
about how to measure performance in Chapter 6, and make it easy for
anyone on your team to learn about this budget and measure his or her
work against it.

130 ‘ DESIGNING FOR PERFORMANCE

Experiment on Designs with Performance in Mind

The most important superpower you have when doing performance
work is the ability to measure its effects. You can measure everything:
how much time did it take you to make this improvement? How did it
impact bounce rate? Was it worth the aesthetic sacrifice? Better yet, can
you compare two options side-by-side and measure what’s better for
your users (A/B testing)?

Learn how your decisions are paying off by measuring them. If there’s
one thing I've learned from years of doing A/B testing, it’s that I will
always be surprised. As developers and designers who have gotten
to know our user base, we often jump to conclusions and assume we
know what’s best for the user experience, rather than measuring how
our users are really responding to our choices. If you haven’t been run-
ning experiments, it’s time to start.

In an A/B test, you can run two different versions of a page on your site
at the same time to different segments of your users. The number of
users who see the test will determine how long your site needs to run.
By running the two versions concurrently and measuring how your
users behave after seeing the test, you can learn how your decisions
about aesthetics and performance impact the overall user experience.
Read more about how to set up and run experiments in this primer on
A/B testing (http://alistapart.com/article/a-primer-on-a-b-testingy).

I've been surprised by the results of performance experiments. For
example, there have been times when users react more positively to
the addition of font weights, even though it slowed down the page.
However, many performance experiments have confirmed for me the
power of page speed as part of the overall user experience, like when
we added 160 KB of hidden images to a page and saw a 12% increase
in bounce rate from our users on mobile devices. If you have a tough
decision to make about a design, run an experiment to see how your
users really react.

Too often, the “aesthetics versus performance” mentality results in a
“designers versus developers” culture. But developers don’t have to be
in a silo making performance improvements, and designers don’t have
to be on an island making aesthetic improvements. The team can and
should work together with a common goal: a great user experience.
Harry Roberts, who has teamed up with many designers and clients
to make beautiful websites that are optimized for performance, says,

7. WEIGHING AESTHETICS AND PERFORMANCE ‘ 131

http://alistapart.com/article/a-primer-on-a-b-testing/

“Now instead of a design team who wants beautiful, an engineering
team who wants fast, and a product owner who just wants delivery,
you have a whole team who all want to make beautiful, fast products,
quickly.”

It’s always going to take a human brain to make these kinds of deci-
sions. Rather than a “versus” mentality, opt for a “What’s best for our
users?” mentality. Sometimes you may find yourself ignoring the out-
come of an experiment because it’s not best for your users. For exam-
ple, what if a performance gain results in poorer security for your
users? How often do you see a site being a little sleazy in its user expe-
rience (like making it all too easy to accidentally spam all your contacts)
just to make more revenue? When an outcome of an experiment is bet-
ter for your business metrics, gut-check it to make sure it’s still great
for your users.

At the end of the day, a great user experience is what we’re aiming for.
In his blog post “Page Weight Matters” (http://blog.chriszacharias.com/
page-weight-matters) Chris Zacharias outlines an experiment that he
ran as a developer at YouTube. The video watch page had climbed to 1.2
MB of page weight with dozens of requests, and Zacharias decided to
prototype a version of the page with limited functionality that loaded
significantly faster. He launched this prototype, dubbed “Feather,” as
an opt-in experience to a fraction of YouTube’s traffic.

The results, as Zacharias says, were “baffling.” The measured load
times had increased for these users, even though the page was sig-
nificantly smaller. The reason? Zacharias wrote, “entire populations of
people simply could not use YouTube because it took too long to see
anything. Under Feather, despite it taking over two minutes to get to
the first frame of video, watching a video actually became a real possi-
bility. Over the week, word of Feather had spread in these areas and
our numbers were completely skewed as a result. Large numbers of
people who were previously unable to use YouTube before were sud-
denly able to.”

132 DESIGNING FOR PERFORMANCE

http://blog.chriszacharias.com/page-weight-matters
http://blog.chriszacharias.com/page-weight-matters

This is why we do performance work, and why we measure it. Finding
that balance between aesthetics and performance requires considering
the entire user experience and testing to make sure what your gut says
is right. However, it can be tough to get an entire organization on board
with this work. It can be difficult to convince upper management that
the cost of the time spent on this work can benefit the business as well
as your end users. It can also be difficult to get the rest of a design and
development team on board with doing this kind of work. In the next
chapter, we’ll walk through what you can do to change the culture of
your organization to focus on performance.

7. WEIGHING AESTHETICS AND PERFORMANCE 133

[8]

Changing Culture at
Your Organization

The largest hurdle to creating and maintaining stellar site performance
is the culture of your organization. No matter the size or type of team,
it can be a challenge to educate, incentivize, and empower those around
you. Performance more often comes down to a cultural challenge,
rather than simply a technical one.

It is rare to have a culture of performance in which everyone at an orga-
nization values the impact that performance has on the user experi-
ence. Often, there are performance cops or janitors at a company who
take it upon themselves to improve site speed. Sometimes, compa-
nies will dedicate infrastructure team resources toward performance
improvements. There should absolutely be performance champions at
your organization (in fact, you're probably one of them!). However, lim-
iting the responsibility of performance to a small group of people will
make it nearly impossible to keep the site’s speed under control, partic-
ularly as the site ages, changes, and is worked on by new people.

It’s important to recognize when a problem needs technical solutions,
when it needs cultural solutions, and when it needs both. Many of the
chapters in this book cover technical solutions for performance, but the
cultural solutions covered here will help you leverage these technical
solutions’ impact and make sure it lasts.

Performance Cops and Janitors

Performance improvements often begin as one person’s voice within a
company culture. You start to notice how other sites are making opti-
mizations and improving their user experience through tweaks to per-
ceived performance or total page load time. Then you start measuring
how your competitors’ sites fare in WebPagetest and comparing your

135

site’s performance to theirs. After beginning to learn about many of the
easy performance wins that you could implement on your site, you start
crafting improvements with little effort and tons of gains.

These are the individuals who often start out as performance cops or
janitors. Cleaning up after other designers and developers becomes
a routine chore for these individuals; sometimes they’ve taken this
responsibility on themselves, or sometimes they were assigned these
responsibilities. Either way, this road leads to burnout.

As time marches on, so many things will continue to create perfor-
mance challenges for even the most stable site:

« New performance techniques emerge, like the recent implementa-
tion of picture.

« The site’s hardware, brand, and code age.
« New designers and/or developers are hired.

- Existing designers and/or developers with great performance hab-
its leave.

- Browsers continue to evolve.

- Web standards evolve, such as HTTP/2, which eradicates some
existing performance constraints.

Having a dedicated team of people responsible for keeping track of
these kinds of evolutions is important. A performance champion, or
a team of performance champions, is an excellent tool for a company
to lean on as the Web changes. But the responsibility for maintaining
a high-performing site should not solely rest on the shoulders of these
individuals. Everyone who works on the site should buy in to the impor-
tance of performance and understand what they can do to improve it.

If other designers and developers who shape the site aren’t educated on
performance, how can they make the best decisions about user expe-
rience? How can they weigh the balance between aesthetics and page
speed? If they aren’t empowered to make improvements, any perfor-
mance champions will simply be playing cleanup after other people’s
work. Spending your time cleaning up other people’s work (especially
when it’s preventable) is a one-way ticket to burnout.

A dedicated performance team can focus on:

136 DESIGNING FOR PERFORMANCE

« Giving lectures, lunch-and-learns, and workshops to educate oth-
ers about performance

- Celebrating the good work of designers and developers on other
teams who improve site speed

- Building tools to surface performance data in others’ daily work-
flows to help them understand how they are directly impacting
performance in their current work

« Defining baseline requirements for performance, such as a perfor-
mance budget for each new project or a maximum page load time
across the site

« Learning about emerging technology and new methods of improv-
ing performance

- Communicating publicly about changes in site performance and
recent experiments and learnings, as shown in Figure 8-1

Q1 2014 Site Performance Report

perfc

May flowers are blooming, and we're bringing you the Q1 2014 Site Performance
Report. There are two significant changes in this report: the synthetic numbers are
from Catchp nstead of WebPagetest, and we're going to start labeling our
reports by quarter instead of by month going forward.

The backend numbers for this report follow the trend from December 2013 -
performance is slightly up across the board. The front-end numbers are slightly up
as well, primarily due to experiments and redesigns. Let's dive into the datal

Server Side Performance

Here are the median and 95th percentile load times for signed in users on our core
pages on Wednesday, April 23rd:

Old Median
211872013

Listing

Profile

Search

Figure 8-1. Etsy’s performance report details load time for top pages and what
changes contributed to the load time each quarter.

8. CHANGING CULTURE AT YOUR ORGANIZATION 137

Having an individual or team care deeply about performance is import-
ant for all of the aforementioned purposes. These champions can stay
on top of how performance is being handled sitewide; they can keep an
eye on problem areas, look for areas to improve, and raise suggestions
to the other people contributing to the site’s design and development.
But the work to be done to actually improve and maintain performance
needs to be owned and shared across your organization, rather than lie
with an individual or single team.

Upward Management

Page speed is a relatively intangible problem. Though it’s easy to get
numbers around it, performance is mostly about perception and feel-
ing. Total load time and frames per second don't easily communicate
to people why they should care about making improvements; problems
that are less tangible like this often need a champion within an orga-
nization who comes from a place of power. Very Important People who
care about performance will help you dramatically shape your organi-
zation’s culture.

To emphasize the importance of performance upward, focus on show-
casing it both within business metrics and with end user experience.
The first angle involves numbers: impact on conversion rate, total rev-
enue, returning visitors. The second angle focuses on helping these
VIPs feel how slow your site is and empathize with your end users.

IMPACT ON BUSINESS METRICS

There are plenty of studies across the Internet that demonstrate the
business metric impact of performance, some of which we discussed
in Chapter 1:

- Akamai has reported that 75% of online shoppers who experience
an issue such as a site freezing, crashing, taking too long to load,
or having a convoluted checkout process will not buy from that site
(http://bit.ly/1ttKKNf).

- Gomez studied online shopper behavior (http://bit.ly/1ttKspl) and
found that 88% of online consumers are less likely to return to a
site after a bad experience. The same study found that “at peak
traffic times, more than 75% of online consumers left for a com-
petitor’s site rather than suffer delays.”

138 DESIGNING FOR PERFORMANCE

http://bit.ly/1ttKKNf
http://bit.ly/1ttKspI

« Users will return to faster sites, as evidenced in a study by Google
(http://bit.ly/1ttKPR8) that noted a decrease in searches for users
who experienced a site slowdown.

« DoubleClick, a Google ad product, removed one client-side redirect
(http://bit.ly/1ttLjqx) and saw a 12% increase in click-through rate
on mobile devices.

Identify what kinds of numbers your upper management cares about.
Is it revenue? Membership? Social media engagement? Once you fig-
ure out which metrics matter to them, find and share performance
research with them that relates to those particular metrics. Correlate
engagement metrics (such as bounce rate, click-through rate, and
returning visitors) with revenue and other bottom-line metrics that res-
onate with this audience. Each organization and its VIPs have defined
business drivers to which you can draw parallels from these studies.

If possible, run experiments on your own site to correlate performance
improvements to the metrics these folks care about and share them
alongside the other public research. While big sites like Amazon and
Google can run slow-down experiments to measure the impact that a
slower site has on its users, your organization probably won't like the
idea of you intentionally slowing down the site just to see what hap-
pens. Focus on finding high-impact quick performance wins, like com-
pressing images or implementing better caching.

Make one significant improvement and measure its engagement met-
ric impact. If possible, run an A/B test to compare your audience’s
behavior in the control to your new, improved variant. If you're able to
move the needle on revenue-related metrics like conversion rate, ter-
rific; if not, focus on other engagement metrics like bounces and pages
per visit. Tie any statistically significant improvements in your new
high-performing version to the metrics that upper management cares
about. A lower exit rate, for example, could mean more users choosing
you over a competitor or returning to search engine results.

If you're unable to run an A/B test, measure engagement metrics
before you make the improvement and again afterward. It won't be sci-
entific, but it’ll be the best case you can make to upper management.
Read more about measuring the impact of performance improvements
in Chapter 6. Share the work you did and the resulting business metric
changes with those VIPs to help them understand the impact that per-
formance work can have.

8. CHANGING CULTURE AT YOUR ORGANIZATION 139

http://bit.ly/1ttKPR8
http://bit.ly/1ttLjqx

As you make any performance changes, also measure how long it takes
you to do so. Design and development hours are a cost for the business,
and you'll need to address this as you work on turning VIPs into cham-
pions of your cause. Find the quickest and most impactful wins pos-
sible to start to emphasize that improving the user experience doesn’t
have to be a large cost to the business. Translating a specific number
of resource and development hours into a revenue win for the business
will be your biggest asset in the conversation, and will help you con-
tinue to get support as larger and more time-intensive performance
work is needed.

Conversations with upper management should include a blend of pub-
lic research from around the Internet, research that you've done on
your own site, as well as the cost of this kind of work to the business.
A holistic approach to these conversations should be grounded in an
understanding of which engagement metrics and business factors res-
onate the most with your internal audience.

EXPERIENCING SITE SPEED

Helping upper management understand what your users are experi-
encing on your site is key. We can talk numbers all day, but getting
to the root of how your performance affects your users will require
you to focus on your site’s user experience. Remember that most peo-
ple within your organization are probably accessing your site on newer
hardware with fast connections and are probably relatively close to your
datacenter. How do people around the globe experience your site? How
do people experience your site when they’re not on a desktop computer?

Run multiple WebPagetests using different locations and devices and
compare the results. You can compile all of the results into a single
filmstrip view to compare them using this URL structure: webpagetest.
org/video/compare.php?tests=<Test 1 ID>,<Test 2 ID>...

For example, in Figure 8-2 I ran three separate tests for the Huffington
Post’s site: one using the Virginia test location using Chrome on a desk-
top, one using Internet Explorer 8 from the Singapore location, and
one using Chrome on an Android phone from the Virginia location.
While the overall numbers varied widely for each test and could make
a compelling argument for mobile and global performance improve-
ment needs, the filmstrip view really helps you feel the difference in
user experience.

140 DESIGNING FOR PERFORMANCE

1: Dulles, VA on

"WE ARE ON THE VERGE OF
THE SIXTH EXTINCTION'

D

'WE ARE ON THE VERGE OF I 'WE ARE ON THE VERGE OF | "WE ARE ON THE VERGE OF s
THE SIXTH EXTINCTION' THE SIXTH EXTINCTION' THE SIXTH EXTINCTION' "WE ARE ON THE VERGE OF

bl twde i amd D) ebaamid) THE SIXTH EXTNCTION

3:Dulles, VA on
Motorola G
using Chrome
(Edi)

Figure 8-2. WebPagetest provides a filmstrip view as well as video for you to
compare tests at the same time. This helps give you a better understanding
and feel for the performance of these sites.

Another angle to consider during these conversations is pride. While
revenue impact is a great metric you can use to convince upper man-
agement that performance should be an important consideration for
any designer and developer at your organization, it’s not the only tool
in your tool belt. Your site likely has competitors. How do their page
load times compare?

WebPagetest also allows you to compare multiple URLs before you
begin a test for a visual comparison of performance (see Figure 8-3).
All of these tests in the Visual Comparison tool will use the Dulles,
Virginia, testing location.

¢ WEBPAGETEST

HOME TEST HISTORY FORUMS DOCUMENTATION ABOUT

Test a website's performance
==
Enter multiple urls to compare them against each other visually.

vove: IE]
—

another page to the comparison.

START TEST

Compare against industry pages »

For each URL, 3 first-view tests will be run from ‘Dulles, VA' and the median run will be used for comparison. The tests
will also be publically available. If you would like to test with different setings, submityour tests individually from the
main test page

Figure 8-3. You can enter multiple URLs into WebPagetest to compare their
performance.

8. CHANGING CULTURE AT YOUR ORGANIZATION 141

Once the tests complete, WebPagetest can show you a filmstrip view of
how each page loads over time, as shown in Figure 8-4. You can even
export a video of the page loads in tandem; this really helps people feel
the difference of how the sites are loading. You're able to avoid numbers
altogether, instead focusing on gaining an understanding of how your

users are experiencing your site and your competitor’s site in the same
time frame.

0.58 0.6s
1: Google
(Edity
0% 26%

b

Figure 8-4. Use WebPagetest’s filmstrip view and video comparison to gain a
better understanding and compare the performance feel of different sites.

Page speed and user experience are not secrets. Any of your competi-
tors can test your site, or run it through performance tools and see how
you're stacking up. Remind the Very Important People in your organi-
zation that you are being analyzed not just by your users, but by your
competitors, too. Be sure that you are outperforming your competitors’
sites.

One last way to utilize the filmstrip and video views is to compare the
before and after of a performance improvement you make to your site.
While measuring the impact that the improvement had on engagement
metrics is powerful, it can be equally helpful to document the visual of
how differently the site loads, particularly if your improvement helps
perceived performance rather than total page load time.

Use these tools during your conversations with upper management to
help make the case that everyone at your organization has an impact
on the end user experience and should focus on performance as part of
their daily work. A site that feels fast requires everyone who affects the
user experience to keep performance top-of-mind during their daily
workflows.

142 DESIGNING FOR PERFORMANCE

Working with Other Designers and Developers

Education and empowerment are key to incentivizing the other design-
ers and developers with whom you work to care about performance.
The responsibility is on you to continually equip them with the tools
that they need as well as the reasons to care about how they impact user
experience when they affect your site’s performance. While it’s true
that hammering home the negative consequences of poor performance
will help make it clear how important it is, championing and celebrat-
ing performance wins is often way more successful in the long run.
Help those around you care about delivering an awesome user experi-
ence and know how valuable their work is as it impacts performance.

EDUCATING

There are many ways that focusing on performance helps designers
and developers. Considering things like semantics and repurposabil-
ity of what’s being built up front saves a ton of design and develop-
ment time later. The ease of editability increases, and future headaches
are prevented when code is cleaner and design patterns can be easily
updated across the site at once or repurposed.

Beyond these wins, you'll need to educate others at your organization
about how they impact performance in their daily lives. Brown-bag
lunch sessions, lectures, and workshops are all excellent ways to com-
municate to and train people about how they can be better designers
and developers by focusing on performance. Consider leading an effort
to teach people about topics such as:

« How mobile performance works
« How people can impact performance during the design stage
- How to improve perceived performance

Share slide decks and presentation videos from others about how to
design excellent, high-performing user experiences. Education is an
ongoing effort; you'll have new hires who are unfamiliar with these
techniques, and folks who forget about best practices when they get
swamped with other work. Routinely give lunch-and-learns or other
informal education about how everyone can have a positive impact on
performance.

8. CHANGING CULTURE AT YOUR ORGANIZATION 143

Develop baselines for your organization as to what’s acceptable for page
load time. How slow is too slow? Communicate the acceptable page
load time threshold to everyone: “We’re aiming for one-second total
page load time for each page.” Alternatively, assess what the best-per-
forming pages on your site are and how fast they load, and use that as
a benchmark across the site. Be sure to measure the worst-performing
pages that get a lot of traffic on your site and suggest that the entire
team focus on getting those as fast as possible. People should be given
easy-to-follow guidelines and benchmarks so that it’s clear where the
wins are and what to aim for.

If you're able to run automated tests to gather performance information
for your most important pages, do so. Make sure the team has visibil-
ity into when a page’s performance gets worse so that you can figure
out what changes contributed to the decline and fix them. Set up alerts
on worsening performance and share them with other designers and
developers so that everyone can learn as the site evolves.

For each new project, develop a performance budget and make sure
all designers and developers understand what it means. Educate them
about these numbers and how they can weigh aesthetics and speed.
Read more about performance budgets in “Approach New Designs
with a Performance Budget.” Providing baseline guidance and
easy-to-understand (and easy-to-measure) metrics for the entire team
will empower them to contribute to a stellar user experience.

EMPOWERING

To empower people to make good choices during their daily workflows,
figure out how to surface performance data on their current work. At
Etsy, we have a toolbar that appears when an Etsy employee is logged in
to the site, as shown in Figure 8-5. Designers and developers use this
toolbar to understand information about the page they're looking at as
they work on the page; it includes visit traffic data, a list of any exper-
iments that are currently being run on the page, and tools to view the
mobile version of the page. It also includes performance timing data
and an alert whenever the performance times violate our performance
service-level agreements.

144 DESIGNING FOR PERFORMANCE

s + 7T74ms +‘910m5 = 3756ms

Art Home &Living Jewelry Women Men Kids Vintage Weddings CraftSupplies

Etsy = v m

Figure 8-5. At Etsy, we show a toolbar to employees working on site pages.

It surfaces performance timing data and makes it clear when a page has
performance problems so that the designer or developer working on the page
is alerted to the issue.

Showing performance data in this way is helpful to designers and
developers, as it is a constant reminder that performance is part of the
user experience. Rather than waiting to see how fast a site is after it’s
been built, consider ways to routinely empower designers and develop-
ers with this knowledge as they’re working.

Another way to routinely share this information is to send automated
emails if any performance regressions occur across the site. Equipping
people with this knowledge as it happens is an important step toward
empowering people to immediately fix it. Make this kind of perfor-
mance metric knowledge a part of daily life and workflows so that it
feels natural, like it’s just part of doing a good job at work.

Once people have the tools and education needed to understand the
performance of your site and how they can impact it, they’ll begin to
feel empowered to improve it. But remember, this is a cultural prob-
lem, not a technical one; though there are a lot of technical solutions
that can help people improve site speed, you'll need to do extra work to
solve the social aspects of performance culture.

One way to change the culture at your organization is to begin to pub-
licize your performance efforts. When I worked at Dyn, I published a
summary of how I completed a huge template cleanup and included
the performance improvements that resulted. It not only helped edu-
cate the readers of Dyn’s blog, but it also made the performance win
highly visible to all Dyn employees.

When frontend architect and consultant Harry Roberts completed a
chunk of performance work for a client, he shared the numbers with
them. “They got very, very excited about the numbers, and even began
running their own tests on it. Giving them something like this to get
into really brought them on board so, from then on in, they cared as
much about keeping the numbers down as I did,” said Roberts.

8. CHANGING CULTURE AT YOUR ORGANIZATION 145

Publishing your work and celebrating it is a huge incentive to many
designers and developers; showcasing improvements, as I did in Figure
8-6, is a great way to kick-start culture change and encourage others to
contribute to performance wins.

“2 . Search Dyn J
‘ Dyn Products Solutions Resources About Partners Contact Us
sicnin @ EN

How We Got DynDNS.com To Load Faster And How You Can
Learn From It

Dyn » Blog Home » Web Design & Development Tips » How We Got DynDNS.com To Load Faster And How You Can Learn From It

Client & Partner Profiles We're focused on engineering excellence here at Dyn and are routinely brainstorming ways to continue to improve user
experience. As attendees of the Velocity Conference and notorious nitpickers of page load time, we were proud of how fast

Client Services DynDNS.com loaded. ..but knew we could do even better.

Company News &
Updates Why care about load times? Page speed has an impact on sales and conversions and is a big part of the user experience. |

. . y .
Company Voices dug through our front-end files, cleaning and optimizing our site until we'd sliced our page |oad time in halft

Culture Here are some tips on how to make some major improvements to your site’s speed:

DNS Traffic
Management

N Do the first big pass at cleaning CSS files
Dyn Research

DynEdu What it did for us:

Email Message

Mamsgement « Homepage stylesheet: 41.94% file size improvement

« IE-specific stylesheets: 92.11% file size improvement
Events

 Main stylesheet: 11% file size improvement
Performance Assurance

« Other high-traffic pages: 12.9% file size improvement
Product & Integration

Figure 8-6. After | finished a template cleanup effort across DynDNS.com, |

published a summary of how | did it and the performance improvements we
Saw.

At Etsy, the performance team attempted a different public tactic to
effect culture change. In 2011, the team published its first performance
report that included an outline of load times for the top pages on the
site, which you can see in Figure 8-7. It included some relatively embar-
rassing metrics, but the performance team realized that it was import-
ant to acknowledge the opportunities for performance improvement.
They recognized that site speed is not a secret—it can be measured by
anyone—and these numbers were important for everyone at Etsy to
recognize because they reflected the site’s actual user experience.

After publishing the first report, the team responsible for working on
the home page realized how embarrassing their numbers were. They
worked on improving load time by making some hard decisions about
features and how they were designed, weighing the balance between
aesthetics and speed. They were able to reduce the home page’s load
time significantly by the time the next performance report was released,
as shown in Figure 8-8.

146 DESIGNING FOR PERFORMANCE

Etsy News Blog

Tech Update: Faster and Faster =3

= Madariandse Blog
BB Deutschar g

8 sever anavock

Stay In Touch

0000000

Of all the awesome new features we delight in relling 0wt to sur
members, ane of the mast satisfying features ta deliver is speed.
In the past year we've made targeted improvements to copvos,
search, and relisting performance, and we've greatly impeoved
page delivery 1 ide the U.5. We gain
more than fuzzics with these | Studies haw
show that slow pages Jead 1o Jess engaged visitors — they dick
fewes links, read fewer pages, and make fewer purchases. And just
asyou your kced latte 1o go, site i

a8 o of our By - Seth

thraugh mabile devices and netwarks.

Weh dy taken our i to the nesxt level, We kave been
chiich: d i and we will be kicking

off mare projects 1a i be board. Continuirg in our spirit of

Figure 8-7. Etsy published its first performance report in 2011, intentionally
including some embarrassingly long page load times.

Page generation time in milliseconds (smaller is better)

- a0
Listing g -

Nov 359

Profile —

750

Search
970

1610

B Average 95th Percentile

Figure 8-8. In its second performance report, Etsy showcased huge
improvements in home page load time.

8. CHANGING CULTURE AT YOUR ORGANIZATION 147

Publicly acknowledging how your site is performing will make peo-
ple feel accountable, and will also make them want to help. Designers
and developers generally want to help contribute to a common, positive
cause, and making this cause public will help kick-start this feeling.

Another way to help kick-start the culture shift is to make it very easy
for the team to feel productive when making performance improve-
ments. Find all of the low-hanging fruit across the site—that is, work
that could be easily picked up by another designer or developer—and
start documenting it. File tickets or start a list that people can quickly
reference. Here are some examples of easy performance wins you can
share:

- Clean up and normalize existing button styles across the site, and
document where all the different buttons live so people can pick
them off one by one.

- Isolate suspect chunks of CSS that are likely no longer needed in
your stylesheet and ask someone to verify that they’re no longer
needed, then have folks clean them out.

« Find large images used on the site and list them so that someone
can re-export them, compress them, or find other ways to optimize
their file size.

For each ticket or item on your list, include enough detail about the
fix needed so that someone picking it up can immediately work on the
solution. Keep each piece of work bite-sized, no more than a few hours
each. If a fix takes more than a few hours, ask the designer or developer
to simply document the progress so that another person can pick it up
again in the future. It should be intuitive and easy for other designers
and developers to begin contributing to making your site faster.

As others begin contributing to the overall performance of your site,
the most important thing you can do is celebrate their work. For every
bite-sized performance improvement, thank the contributor and publi-
cize their work internally, like in Figure 8-9.

148 DESIGNING FOR PERFORMANCE

Chris Fairbanks, Performance Hero

Chis optmized the mabie purchases page for great justice

Figure 8-9. The performance team at Etsy maintains a dashboard celebrating
people on other teams who contribute to performance improvements. We
include their photo, a graph showing the performance improvement, and a
brief description of their solution.

At Etsy, we maintain an internal dashboard where we can celebrate
“performance heroes™ people on other teams who contribute fixes
and improvements to our site’s page load time and perceived perfor-
mance. We routinely update it to showcase the creative efforts of the
people with whom we work, highlighting any relevant graphs that illus-
trate the performance improvement and a description of the solution
they implemented. We'll also send out an email to the other designers
and developers at Etsy to indicate we’ve updated the dashboard so that
everyone can chime in and high-five the person who improved the site.

Performance is truly everyone’s responsibility. Anyone who affects the
user experience of a site has a relationship to how it performs. While
it’s possible for you to single-handedly build and maintain an incredi-
bly fast experience, you'd be constantly fighting an uphill battle when
other contributors touch the site and make changes, or as the Web con-
tinues to evolve. Educate and empower everyone around you to under-
stand how they can improve performance, and how their choices affect
the end user experience. Performance truly is about making a cul-
tural shift, not just a technological one; build performance champions
within your organization so that you can create the best user experi-
ence possible for your site.

8. CHANGING CULTURE AT YOUR ORGANIZATION 149

Web performance work is as fulfilling as it is challenging. You have
the power to go and create an excellent experience for your users. Find
those performance wins, whether they’re implementing new caching
rules, optimizing images, or creating repurposable design patterns.
Empower those with whom you work to be performance champions.
Strive for the best possible user experience, striking a balance between
aesthetics and speed. With a focus on performance, everyone wins.

150 DESIGNING FOR PERFORMANCE

| Index |

Symbols

95th percentile metric, 119
960 Grid, 68

A

A/B testing, 131
accessibility, cleaning HTML, 68
Adaptive Images tool, 95
Adobe Illustrator, creating SVG
images, 55
Advanced Settings
(WebPagetest), 114
AdvPNG compression tool, 40
aesthetics
approaching new design with
performance budget,
129-130
balancing with
performance, 125-128
experimenting on designs with
performance in mind,
131-133
performance as part of
workflow, 128-129
animation, GIFs, 32-35
Apache Caching Guide, 92
applying media queries, 98
approaches, responsive web
design, 102-108
measure everything, 105-108
mobile-first, 103-104
project documentation, 102-103
artifacting, 29
assets, caching, 91-92
asynchronously loaded content, 89
Atkinson, Naomi, 3
automatic alerts, performance
regressions, 123

bandwidth, 5
Barker, Tom, 96
Base64-encoding images, decreasing
image requests, 54
baseline JPEGs, 31
battery drain, mobile devices, 7
benchmark
overview, 109
page load time, 1
bevel gradient, 49
Bootstrap, 68
brand impact, performance and user
experience, 2-3
returning users, 2
search engine rankings, 2-3
browsers
impact on page speed, 25
rendering content, 13-17
connections, 16-17
requests, 14-16
browser tools, measuring
performance, 110-113
Chrome DevTools, 112-113
YSlow, 110-111
budget (performance), new
designs, 129-130
business metrics, impact of
upward management
on organizational
culture, 138-140
button classes, style guides, 84

o

Cache-Control: max-age, caching
assets, 91

caching assets, 91-92

CDNs (content delivery
networks), 24

151

celebrating performance
improvements, 146
changes over time, monitoring
performance, 120-123
changing organizational culture
performance cops and
janitors, 135-138
upward management, 138-142
experiencing site speed,
140-142
impact on business
metrics, 138-140
working with designers and
developers, 143-150
education, 143-144
empowering, 144-150
Chrome DevTools
measuring performance, 112-113
Timeline view, 23
Web Page Performance audit, 71
cleaning
CSS, 70-79
combining and condensing
styles, 72-77
specificity removal, 78-79
stylesheet images, 77-78
unused styles, 71-72
HTML, 63-70
accessibility, 68
divitis, 64-65
frameworks and grids, 68-70
semantic elements, 65-68
Cloud Four, 96
colors (initial design phase), 9
ColorZilla, Gradient Editor, 51
combining styles, CSS cleanup,
72-77
competitive analysis, performance
goals, 130
Components tab (YSlow), 18
compression, images, 39—41
compression tools, 40
ImageOptim, 31
pngquant, 39
condensing styles, CSS cleanup,
72-77
connections, impact on page load
time, 16-17
Connection view (WebPagetest), 16
content, deliberate loading, 94-101
fonts, 101-102
images, 94-101

152 INDEX

content delivery networks
(CDNs), 24
content rendering, browsers, 13-17
connections, 16-17
requests, 14-16
cops (performance), 135-138
CPU usage, JPEGs, 31-32
critical rendering path,
optimization, 19-22
CSs
cleanup, 70-79
combining and condensing
styles, 72-77
specificity removal, 78-79
stylesheet images, 77-78
unused styles, 71-72
loading, 87-89
CSS3
animations, 35
decreasing image requests, 49-54
gradients, 49-52
CSSMinifier.com, 90
CSS Object Model (CSSOM), 20
CSSOM (CSS Object Model), 20
CSS preprocessors, 77
culture (organizational), changing
performance cops and
janitors, 135-138
upward management, 138-142
experiencing site speed, 140—
142
impact on business
metrics, 138-140
working with designers and
developers, 143-150
education, 143-144
empowering, 144-150
custom build options,
frameworks, 70

D

data URIs, decreasing image
requests, 54
decreasing image requests
Base64-encoding images, 54
CSS3, 49-54
data URIs, 54
sprites, 42-48
SVG, 55-58

deliberately loading content,
responsive web design,
94-103
fonts, 101-102
images, 94-101
designers
changing organizational
culture, 143-150
education, 143-144
empowering, 144-150
impact on performance, 8-11
planning and iterating images
mentoring image creators,
60-61
scheduled routine checks,
59-60
style guides, 60
design experiments, measuring
performance, 131-133
design patterns (initial design
phase), 9
developers, changing organizational
culture, 143-150
education, 143-144
empowering, 144-150
dithering GIFs, 33
divitis, cleaning HTML, 6465
DNS lookup, 13-14
Document Object Model (DOM), 19
DOM (Document Object Model), 19
Dust-Me Selectors, 71

E

educating staff, impact on
performance, 143-144

empowering people, changing
organizational
culture, 144-150

encrypted HTTPS connections, 17

ETag, caching assets, 91

Etsy, style guide, 86-87

EWWW Image Optimizer, 41

experimenting on designs,
measuring
performance, 131-133

Expires, caching assets, 91

export options, SVG, 56

extended OptiPNG compression
tool, 40

externally hosted fonts, 81

F

fallback fonts, 80
filmstrip view (WebPagetest), 20,
118, 141
filter property, 53
fonts
optimization, 79-82
responsive web design, 101-102
Font Squirrel, WebFont
Generator, 81
font weights, 82
format selection, images, 28-41
additional compression, 39-41
GIFs, 32-35
JPEGs, 29-32
PNG, 35-39
EPS (frames per second) meter, 113
frames per second (FPS) meter, 113
frameworks, cleaning HTML, 68-70

G

geographic location, impact on page
speed, 24

GIFs, 32-35

Gifsicle compression tool, 40

Glimpse, 118

goals (performance), competitive
analysis, 130

Google Analytics, 118

Google Speed Index score, 117

Gradient Editor (ColorZilla), 51

grain, JPEG files, 30

grids, cleaning HTML, 68-70

Grigorik, Ilya, 5

growth in mobile traffic, 4

Grumpicon, 58

Grunticon, 55

gzip compression, 89-91

H

hardware (mobile), impact of
performance on user
experience, 7-8
hexadecimal color values, style
guides, 84
horizontal redundancy, 35
HTMLS Boilerplate, 68
HTML, cleaning, 63-70
accessibility, 68
divitis, 64-65

INDEX 153

frameworks and grids, 68-70
semantic elements, 65—68
HTTP/2, 48
HTTP Archive, 18

ImageOptim-CLI, 41
ImageOptim compression tool, 31,
40
image optimization, 27
design planning and
iterating, 59-61
mentoring image creators,
60-61
scheduled routine checks,
59-60
style guides, 60
format selection, 2841
additional compression, 3941
GIFs, 32-35
JPEGs, 29-32
PNG, 35-39
replacing image requests, 41-58
Base64-encoding images, 54
CSS3, 49-54
data URIs, 54
sprites, 42-48
SVG, 55-58
images, responsive web design,
94-101
impact of upward management,
changing organizational
culture, 138-140
initial design phase, 9
interactivity, time to, 22
Internet Trends report (Meeker), 3
iterating images, 59-61
mentoring image creators, 60-61
scheduled routine checks, 59-60
style guides, 60
iterating performance
benchmarking overview, 109
browser tools, 110-113
Chrome DevTools, 112-113
YSlow, 110-111
changes over time, 120-123
real user monitoring, 118-120
synthetic testing, 113-118

154 INDEX

J

janitors (performance), 135-138
jank, impact on page speed, 22-24
JavaScript loading, 87-89
JPEG 2000 image format, 39
JpegOptim compression tool, 40
jpegrescan compression tool, 40
JPEGs, 29-32

baseline, 31

progressive, 25, 31
jpegtran compression tool, 40
JPEG XR image format, 39
JSCompress.com, 90

K
Kadlec, Tim, 96

L

Last-Modified, caching assets, 91
latency, 5
layout (initial design phase), 9
linear-gradient standard, 53
A List Apart pattern library, 83
loading
content
fonts, 101-102
images, 94-101
CSS and JavaScript, 87-89
sites to mobile devices, 5
lossless file formats
GIFs, 32-35
PNG files, 35-39

M

markup, optimization, 63
caching assets, 91-92
cleaning CSS, 70-79

combining and condensing
styles, 72-77
specificity removal, 78-79
stylesheet images, 77-78
unused styles, 71-72
cleaning HTML, 63-70
accessibility, 68
divitis, 64-65
frameworks and grids, 68-70
semantic elements, 65-68
CSS and JavaScript loading,
87-89

minification and gzip
compression, 89-91
repurposable markup, 82-87
web fonts, 79-82
measure everything approach,
105-108
measuring performance
benchmarking overview, 109
browser tools, 110-113
Chrome DevTools, 112-113
YSlow, 110-111
changes over time, 120-123
real user monitoring, 118-120
synthetic testing, 113-118
media queries, applying, 98
Meeker, Mary, 3
minification of assets, 89-91
mixins, 77
mobile-first approach, 103-104
mobile hardware, impact on
performance, 7-8
mobile networks, impact on
performance, 4-6
mobile usage patterns, impact on
performance, 6-7
mobile users, impact of performance
on user experience, 3-8
mobile hardware, 7-8
mobile networks, 4-6
mobile usage patterns, 6-7
Modernizr, 58
mPulse, 118

N

network, influence on page
speed, 24-25
Network tab (Chrome DevTools), 112
NGINX Content Caching, 92
noise, JPEG files, 30

o
operational cost considerations, 128
optimization
critical rendering path, 19-22
images, 27

design planning and
iterating, 59-61

format selection, 28-41

replacing image requests,
41-58

markup and styles, 63
caching assets, 91-92
cleaning CSS, 70-79
cleaning HTML, 63-70
CSS and JavaScript
loading, 87-89
minification and gzip
compression, 89-91
repurposable markup, 82-87
web fonts, 79-82
organizational culture, changing
performance cops and
janitors, 135-138
upward management, 138-142
experiencing site speed,
140-142
impact on business
metrics, 138-140
working with designers and
developers, 143-150
education, 143-144
empowering, 144-150
overlay requirements, impact on file

type/size, 9

P

page load time. See page speed
page speed, 13
browser influence, 25
how browsers render content,
13-17
impact of geographic location, 24
impact of performance on user
experience, 1
brand impact, 2-3
designers’ influence, 8-11
mobile users, 3-8
network influence, 24-25
page weight, 17-19
perceived performance, 19-24
critical rendering path, 19-22
jank, 22-24
PageSpeed Insights, 111
page weight, 17-19
Page Weight Matters (quotes), 132
perceived performance, page
speed, 19-24
critical rendering path, 19-22
jank, 22-24

INDEX 155

performance
cops and janitors, 135-138
goals, competitive analysis, 130
measuring
benchmarking overview, 109
browser tools, 110-113
changes over time, 120-123
real user monitoring, 118-120
synthetic testing, 113-118
page speed, 13
browser influence, 25
how browsers render
content, 13-17
impact of geographic
location, 24
network influence, 24-25
page weight, 17-19
perceived performance, 19-24
site performance reports, 137
user experience and, 1
brand impact, 2-3
designer impact, 8-11
mobile users, 3-8
weighing aesthetics
approaching new design with
performance budget,
129-130
balance, 125-128
experiment on designs with
performance in mind,
131-133
performance as part of
workflow, 128-129
performance budgets
considerations for new
designs, 129-130
responsive web design, 103
Performance Review link
(WebPagetest), 115
persistent connections, 17
Phantom JS tests, 105
Photoshop
creating GIFs, 33
Save for Web workflow, 29-30
picture element, 99-100
Picturefill, 99
planning images, 59-61
mentoring image creators, 60-61
scheduled routine checks, 59-60
style guides, 60
PNG-8 files, 35
PNG-24 files, 37

156 | INDEX

Pngcrush compression tool, 40
PNG images, 35-39
PNGOUT compression tool, 40
pngquant, 39
Podjarny, Guy, 93
preprocessors, CSS, 77
progressive JPEGs, 25, 31
project documentation
approach, 102-103
public acknowledgement of
performance, incentive for
improvements, 148
publishing performance
improvements, 146

R

real user monitoring (RUM),
118-120
removal of unused styles, CSS
cleanup, 71-72
renaming elements, combining and
condensing styles for CSS
cleanup, 75
rendering content, browsers, 13-17
connections, 16-17
requests, 14-16
render tree, 20
replacing image requests, 41-58
Base64-encoding images, 54
CSS3, 49-54
data URIs, 54
sprites, 42-48
SVG, 55-58
repurposable markup, 82-87
requests
decreasing image requests, 41-58
Base64-encoding images, 54
CSS3, 49-54
data URIs, 54
sprites, 42-48
SVG, 55-58
requests, impact on page load
time, 14-16
responsive web design, 93-108
approaches, 102-108
measure everything, 105-108
mobile first, 103-104
project documentation,
102-103
deliberately loading content,
94-103

fonts, 101-102
images, 94-101
performance budget, 103
responsive web design with
server-side components
(RESS), 95
RESS (responsive web design
with server-side
components), 95
retina images, CSS, 98
returning users, impact of
performance on user
experience, 2
Roberts, Harry, 125
routine checks, image planning and
iterating, 59-60
RUM (real user monitoring),
118-120

S

Save for Web workflow
(Photoshop), 29-30

scale vector graphics (SVG),
decreaing image
requests, 55-58

scheduled routine checks, image
planning and iterating,
59-60

Scour, automating cleanup of SVG
files, 57

search engine rankings, impact
of performance on user
experience, 2-3

selectors (CSS files), specificity, 78

self-hosted fonts, 81

semantic elements, cleaning
HTML, 65-68

shorthand declarations, CSS
cleanup, 74

site freezing/delays, impact on user
experience, 2

site performance reports, 137

site speed, upward management
understanding, 140-142

sizes attribute, 100

Smushlt compression tool, 32, 40

specificity removal, CSS
cleanup, 78-79

Speed Index metric
(WebPagetest), 21, 47, 116

speed tests, WebPagetest, 114

sprites
decreasing image requests, 42-48
defined, 16
inclusion in style guides, 84
SSL negotiations, 17
Starbucks, style guide, 85-86
StatCounter Global Stats, 3
style guides
planning and iterating images, 60
repurposable markup, 84-87
stylesheet images, CSS cleanup,
77-78
styles, optimization, 63
caching assets, 91-92
cleaning CSS, 70-79
combining and condensing
styles, 72-77
specificity removal, 78-79
stylesheet images, 77-78
unused styles, 71-72
cleaning HTML, 63-70
accessibility, 68
divitis, 64-65
frameworks and grids, 68-70
semantic elements, 65-68
CSS and JavaScript loading,
87-89
minification and gzip
compression, 89-91
repurposable markup, 82-87
web fonts, 79-82
SVGO, automating cleanup of SVG
files, 57
SVG Optimiser, 58
SVG (scale vector graphics),
decreaing image
requests, 55-58
synthetic testing, 113-118

T

third-party content, 89
Timeline view (Chrome
DevTools), 23
time to first byte (TTFB), 14
time to interactivity, 22
tools, measuring performance,
110-113
Chrome DevTools, 112-113
YSlow, 110-111
transparency, PNG files, 36

INDEX 157

transparency requirements, impact
on file type/size, 9

TTFB (time to first byte), 14

typography (initial design phase), 9

typography, style guides, 85

U

unused styles, CSS cleanup, 71-72
upward management, changing
organizational
culture, 138-142
experiencing site speed, 140-142
impact on business metrics,
138-140
usage patterns, impact of
performance on user
experience, 6-7
user experience
impact of performance, 1
brand impact, 2-3
designer impact, 8-11
mobile users, 3-8

Vv

Visual Comparison tool
(WebPageTest), 141

W

W3C (World Wide Web Consortium),
WCAG 2.0 checklist, 68
waterfall charts, asset requests, 15
waterfalls (WebPagetest), 116
WCAG 2.0 checklist (W3C), 68
WCAG (Web Content Accessibility
Guidelines), 68
Web Content Accessibility Guidelines
(WCAG), 68
WebFont Generator (Font
Squirrel), 81

158 INDEX

web fonts, optimization, 79-82
Web Open Font Format (WOFFE), 79
Web Page Performance Audit
(Chrome DevTools), 71,
112
WebPagetest, 15, 114-117
Connection view, 16
filmstrip view, 20, 118, 141
mobile browsers, 106
Performance Review link, 115
Speed Index metric, 21, 47, 116
speed tests, 114
Visual Comparison tool, 141
waterfalls, 116
WebP image format, 39
weighing aesthetics
approaching new design with
performance budget,
129-130
balance, 125-128
experiment on designs with
performance in mind,
131-133
performance as part of
workflow, 128-129
WOFF (Web Open Font Format), 79
WordPress plug-ins, 41
workflow, making performance part
of, 128-129
World Wide Web Consortium (W3C),
WCAG 2.0 checklist, 68

Y
Yelp, style guide, 85
YSlow, 17
measuring performance 110-111

y4

Zacharias, Chris, 132
Zopfli compression tool, 40

About the Author

Lara Callender Hogan is the Senior Engineering Manager of the
Performance team at Etsy. Lara previously managed Etsy’s Mobile Web
Engineering team. Before joining Etsy, Lara was a User Experience
Manager and self-taught frontend developer at a number of startups.
She’s been certified as an EMT, owned her own photography busi-
ness, and co-founded an LGBT wedding website. She also believes it’s
important to celebrate career achievements with donuts.

Colophon

The animal on the cover of Designing for Performance is a tufted
coquette (Lophornis ornatus), a tiny hummingbird that breeds in east-
ern Venezuela, Trinidad, Guiana, and northern Brazil.

Also known as the splendid coquette, this hummingbird is so tiny that
it can easily be confused with a large bee as it moves from flower to
flower. Its red beak has a black tip and is short and straight. The female
doesn’t have very flashy plumage, but the male has striking black-
spotted and orange-colored feathers that project from the sides of his
neck and an orange head crest.

Hummingbirds in general are quite solitary, so the tufted coquette is
mostly found alone or in small groups, as it searches for nectar and
small insects to feed on.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Scala Regular;
the heading font is Gotham Narrow Medium; and the code font is
TheSansMonoCd Regular.

http://animals.oreilly.com

	Contents
	Foreword by Steve Souders
	Foreword by Randy J. Hunt
	Preface
	Chapter 1: Performance Is User Experience
	Impact on Your Brand
	Returning Users
	Search Engine Rankings

	Impact on Mobile Users
	Mobile Networks
	Mobile Usage Patterns
	Mobile Hardware

	Designers’ Impact on Performance

	Chapter 2: The Basics of Page Speed
	How Browsers Render Content
	Requests
	Connections

	Page Weight
	Perceived Performance
	Critical Rendering Path
	Jank

	Other Impacts on Page Speed
	Geography
	Network
	Browser

	Chapter 3: Optimizing Images
	Choosing an Image Format
	JPEG
	GIF
	PNG
	Additional Compression

	Replacing Image Requests
	Sprites
	CSS3
	Data URIs and Base64-Encoding Images
	SVG

	Image Planning and Iterating
	Schedule Routine Checks
	Create Style Guides
	Mentor Other Image Creators

	Chapter 4: Optimizing Markup and Styles
	Cleaning Your HTML
	Divitis
	Semantics
	Accessibility
	Frameworks and Grids

	Cleaning Your CSS
	Unused Styles
	Combine and Condense Styles
	Clean Stylesheet Images
	Remove Specificity

	Optimizing Web Fonts
	Creating Repurposable Markup
	Style Guides

	Additional Markup Considerations
	CSS and JavaScript Loading
	Minification and gzip
	Caching Assets

	Chapter 5: Responsive Web Design
	Deliberately Loading Content
	Images
	Fonts

	Approaches
	Project Documentation
	Mobile First
	Measure Everything

	Chapter 6: Measuring and Iterating on Performance
	Browser Tools
	YSlow
	Chrome DevTools

	Synthetic Testing
	Real User Monitoring
	Changes over Time

	Chapter 7: Weighing Aesthetics and Performance
	Finding the Balance
	Make Performance Part of Your Workflow
	Approach New Designs with a Performance Budget
	Experiment on Designs with Performance in Mind

	Chapter 8: Changing Culture at Your Organization
	Performance Cops and Janitors
	Upward Management
	Impact on Business Metrics
	Experiencing Site Speed

	Working with Other Designers and Developers
	Educating
	Empowering

	Index

