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Preface

This book presents the concepts necessary for understanding the operation of a
computer. The book is written based on the following:

– the details of how a computer’s components function electronically are beyond
the scope of this book;

– the emphasis is on the concepts and the book focuses on the building blocks of
a machine’s architecture, on their functions, and on their interaction;

– the essential links between software and hardware resource are emphasized
wherever necessary.

For reasons of clarity, we have deliberately chosen examples that apply to
machines from all eras, without having to water down the contents of the book. This
choice helps us to show how techniques, concepts and performance have evolved
since the first computers.

This book is divided into five parts. The first four, which are of increasing
difficulty, form the core of the book: “Elements of a basic architecture”,
“Programming model and operation”, “Memory hierarchy” and “Parallelism and
performance enhancement”. The final part, which comprises appendices, provides
hints and solutions to the exercises in the book as well as programming models. The
reader may approach each part independently based on their prior knowledge and
goals.
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Presentation of the five parts:

1) Elements of a basic architecture:

– Chapter 1 takes a historical approach to present the main building blocks of a
processor.

– Chapter 2 lists in detail the basic modules and their features, and describes how
they are connected.

– Chapter 3 focuses on the representation of information: integers, floating-point
numbers, fixed-point numbers and characters.

2) Programming model and operation:

– Chapter 4 explains the relationship between the set of instructions and the
architecture.

– Chapter 5 provides a detailed example of the execution of an instruction to shed
some light on the internal mechanisms that govern the operation of a processor. Some
additional elements, such as coprocessors and vector extensions, are also introduced.

– Chapter 6 describes the rules – polling, direct memory accesses and interrupts –
involved in exchanges with peripherals.

3) Memory hierarchy:

– Chapter 7 gives some elements – hierarchy, segmentation and paging – on the
organization of memory.

– Chapter 8 presents cache memory organization and access methods.

– Chapter 9 describes virtual memory management concepts, rules and access
rights.

4) Parallelism and performance enhancement:

– Chapter 10 gives an introduction to parallelism by presenting pipeline
architectures: concepts, as well as software and hardware conflict resolution.

– Chapter 11 gives the DLX architecture as an example.

– Chapter 12 deals with cache management in a multiprocessor environment;
coherence and protocols (MSI, MEI, etc.).

– Chapter 13 presents the operation of a superscalar architecture conflict, the
scoreboarding and Tomasulo algorithms, and VLIW architectures.

5) Complementary material on the programming models used and the hints
and solutions to the exercises given in the different chapters can be found in the
appendices.



PART 1

Elements of a Basic Architecture



Chapter 1

Introduction

After providing some historical background, we will highlight the major
components of a computer machine [MOR 81, ROS 69, LAV 75]. This will lead us to
describe a category of calculators that we will refer to as classic architecture
machines, or classic architecture uniprocessors. We will examine the functions
performed by each of their modules, and then describe them in greater detail in the
following chapters.

1.1. Historical background

1.1.1. Automations and mechanical calculators

The first known mechanical calculators [SCI 96] were designed by Wilhelm
Schickard (1592–1635) (≈1623), Blaise Pascal (≈1642) and Gottfried Wilhelm
Leibniz (1646–1716) (≈1673): they operate in base 10 through a gear mechanism.

Figure 1.1. Blaise Pascal’s Pascaline
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It is up to the user to put together series of operations. The need for a sequence of
processes that is automated is what will eventually lead to the design of computers.

The sequencing of simple tasks had already been implemented in the design of
music boxes, barrel organs, self-playing pianos, in which cylinders with pins, cam
systems and perforated paper tapes determined the melody. The loom, designed by
Joseph-Marie Jacquard (1752–1834), is another example of an automaton. A series
of perforated cards indicates the sequence of elementary operations to perform: each
hole allows a needle to go through, and the tetrahedron that supports the cards rotates
at the same pace as the shuttle which carries the thread that is woven. Introduced in the
years 1804–1805, Jacquard’s invention was formally recognized by France as being of
a public benefit in 1806. In 1812, there were 11,000 such looms in France [ENC 08].
Some can still be found in operation in workshops around Lyon.

Figure 1.2. An example of Jacquard’s loom, courtesy of
“La Maison des Canuts”, Lyon, France

This system provides a first glance at what will later become devices based on
programmable automatons, or calculators, dedicated to controlling industrial
processes.
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Charles Babbage (1792–1871) was the first to undertake the design of a machine
combining an automaton and a mechanical calculator. Having already designed a
calculator, the Difference Engine, which can be seen at the Science Museum in
London, he presented a project for a more universal machine, at a seminar held in
Turin in 1841. His collaboration with Ada Lovelace (the daughter of Lord Byron)
allowed him to describe a more detailed and ambitious machine, which foreshadows
our modern computers. This machine, known as the analytical engine [MEN 42],
autonomously performs sequences of arithmetic operations. As with Jacquard’s
loom, it is controlled by perforated tape. The user describes on this “program-tape”
the sequence of operations that needs to be performed by the machine. The tape is
fed into the machine upon each new execution. This is because Babbage’s machine,
despite its ability to memorize intermediate results, had no means for memorizing
programs, which were always on some external support. This is known as an external
program machine. This machine introduces the concept of memory (referred to by
Babbage as the store) and of a processor (the mill). Another innovation, and contrary
to what was done before, is that the needles, which engaged based on the presence or
the absence of holes in the perforated tape, do not directly engage the output devices.
In a barrel organ, a note is associated with each hole in the tape; this is formally
described by saying that the output is logically equal to the input. In the analytical
engine, however, we can already say that a program and data are coded.

Program-tape Automaton

Store

Calculus

Mill (processor)

Figure 1.3. Babbage’s analytical engine

This machine is divided into three distinct components, with different functions:
the automaton–calculator part, the data and the program.

While each row of the perforated tape contains data that are “logical” in nature –
the presence or the absence of a hole – the same cannot be said for both the
automaton, which is purely mechanical, and the calculation unit, which operates on
base 10 representations.

1.1.1.1. Data storage

The idea that it was necessary to automatically process data took hold during the
1890 census in the United States, a census that covered 62 million people. It was the
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subject of a call for bids, with the contract going to Herman Hollerith (1860–1929).
Hollerith suggested using a system of perforated cards already used by certain railway
companies. The cards were 7.375 by 3.25 inches which, as the legend goes, correspond
to the size of the $1 bill at the time. The Tabulating Machine Company, started by
Herman Hollerith, would eventually become International Business Machines (IBM),
in 1924.

Figure 1.4. A perforated card: each character is coded according to the “Hollerith” code

In 1937, Howard Aiken, of Harvard University, gave IBM the suggestion of
building a giant calculator from the mechanical and electromechanical devices used
for punch card machines. Completed in 1943, the machine weighed 10,000 pounds,
was equipped with accumulators capable of memorizing 72 numbers, and could
multiply two 23-digit numbers in 6 s. It was controlled through instructions coded
onto perforated paper tape.

Figure 1.5. Perforated tape

Despite the knowledge acquired from Babbage, this machine lacked the ability to
process conditional instructions. It did, however, have two additional features
compared to Babbage’s analytical engine: a clock for controlling sequences of
operations and registers, a type of temporary memory used for recording data.

Another precursor was the Robinson, designed in England during World War II
and used for decoding encrypted messages created by the German forces on Enigma
machines.

1.1.2. From external program to stored program

In the 1940s, research into automated calculators was a booming field, spurred in
large part by A. Turing in England; H. Aiken, P. Eckert and J. Mauchly [MAU 79] in
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the United States; and based in part on the works of J.V.Atanasoff (1995†) (Automatic
Electronic Digital Computer (AEDQ) between 1937 and 1942).

The first machines that were built were electromechanical, and later relied on
vacuum tube technology. They were designed for specific processes and had to be
rewired every time a change was required in the sequence of operations. These were
still externally programmed machines. J. von Neumann [VON 45, GOL 63] built the
foundations for the architecture used by modern calculators, the von Neumann
architecture.

The first two principles that define this architecture are the following:

– The universal applicability of the machines.

– Just as intermediate results produced from the execution of operations are stored
into memory, the operations themselves will be stored in memory. This is called
stored-program computing.

The elementary operations will be specified by instructions, the instructions
are listed in programs and the programs are stored in memory. The machine
can now go through the steps in a program with no outside intervention, and
without having to reload the program every time it has to be executed.

The third principle that makes this calculator an “intelligent” machine, as
opposed to its ancestors, is the sequence break. The machine has decision capabilities
that are independent from any human intervention: as the program proceeds through
its different steps, the automaton decides the sequence of instructions to be executed,
based on the results of tests performed on the data being processed. Subsequent
machines rely on this basic organization.

Computer designers then focused their efforts in two directions:

– Technology: using components that are more compact, perform better, with more
complex functions, and consume lower energy.

– Architecture: parallelization of the processor’s activities and organization of the
memory according to a hierarchy. Machines designed with a Harvard architecture,
in which access to instructions and to data is performed independently, meet this
condition in part.

Figure 1.6 presents the major dates and concepts in the evolution that led to what
is now called a computer. Note that without the methodological foundation provided
by Boolean algebra, the first computer would probably not have emerged so quickly.
This is because the use of this algebra leads to a unification of the representations used
for designing the components and coding the instructions and data.
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Automaton Calculator

Pascal

1642

Jacquard

1725

Babbage

1843

Automaton

Calculator

Boole

1848Von Neumann

1945

External

program

Stored

program

Parallelism

AutomatonPrograms

and data
Calculator

Figure 1.6. From externally programmed to parallel computing

1.1.3. The different generations

Since the Electronic Discrete Variable Automatic Computer (EDVAC) in 1945,
under the direction of J. von Neumann [VON 45, GOL 63] (the first stored-program
calculator), hundreds of machines have been designed. To organize the history of
these machines, we can use the concept of generations of calculators, which is based
essentially on technological considerations. Another classification could just as well
be made based on software criteria, associated with the development of languages
and operating systems for calculators.

1.1.3.1. The first generation (≈1938–1953)

Machines of this era are closer to laboratory prototypes than computers as we
picture them today. These machines consist of relays, electronic tubes, resistors and
other discrete components. The ENIAC, for example, abbreviated form for Electronic
Numerical Integrator And Computer, was made up of 18,000 vacuum tubes, consumed
around 150 kW, and was equipped with 20 memory elements (Figure 1.71).

1 http://ftp.arl.army.mil/ftp/historic-computers
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Figure 1.7. A photograph of ENIAC

Because of the difficulties in the calculation part of the work, the processes were
executed in series by operators working on a single binary element.

Being very energy-intensive, bulky and unreliable, these machines had an
extremely crude programming language, known as machine language. Program
development represents a considerable amount of work. Only one copy of each of
these machines was made, and they were essentially used for research purposes. This
was the case with the ENIAC, for example, which was involved in the research
program for developing the Bomba [LAU 83], a machine used for decrypting
messages during World War II.

1.1.3.2. Second generation (≈1953–1963)

The second generation saw the advent of machines that were easier to operate
(the IBM-701, among others). Transistors (the first of which dates back to 1947)
started to replacing vacuum tubes. Memory used ferrite toroids, and operating
systems, the first tools designed to facilitate the use of computers, were created. Until
then, machines were not equipped with development environments or with a user
interface as we know them now. Pre-programmed input–output modules, known as
Input Output Control Systems (IOCS) are the only available tools to facilitate
programming. Each task (editing, processing, etc.) is executed automatically. In order
to save time between the end of a job and the beginning of another, the batch
processing system is introduced, which groups together jobs of the same type. At the
end of each task, the operating system takes control again, and launches the next job.
Complex programming languages were created, and become known as symbolic
coding systems. The first FORTRAN (FORmula TRANslator) compiler dates back to
1957 and is included with the IBM-704. The first specifications for COBOL
(COmmon Business Oriented Language) were laid out in 1959 under the name

www.allitebooks.com
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COBOL 60. Large size applications in the field of management are developed.
Magnetic tapes are used for archiving data.

1.1.3.3. Third generation (≈1964–1975)

The PLANAR process, developed at FAIRCHILD starting in 1959, makes it
possible to produce integrated circuits. This fabrication technique is a qualitative
breakthrough: reliability, energy consumption and size being dramatically improved.

Alongside the advances in hardware performance came the concept of
multiprogramming, the objective of which is to optimize the use of the machine.
Several programs are stored in the memory at the same time, making it possible to
quickly switch from one program to another. The concept of input–output device
independence emerges. The programmer no longer has to explicitly specify the unit
where the input–output operation is being executed. Operating systems are now
written in high-level languages.

Several computer operating modes are created in addition to batch processing:

– Time sharing, TS, lets the user work interactively with the machine. The
best known TS system, Compatible Time Sharing System (TSS), was developed at
Massachusetts Institute of Technology (MIT) and led to the Multics system, developed
collaboratively by MIT, Bell Labs and General Electric.

– Real time is used for industrial process control. Its defining feature is that the
system must meet deadlines set by outside stimuli.

– Transaction processing is mainly used in management computing. The user
communicates with the machine using a set of requests sent from a workstation.

The concept of virtual memory is developed. The joint use of drives and memory,
which is seamless for the user, creates the impression of having a memory capacity
far greater than what is physically available. The mid-1960s see the advent of the
IBM-360 calculator series, designed for general use, and equipped with an operating
system (OS/360) capable of managing several types of jobs (batch processing, time
sharing, multiprocessing, etc.).

This new era sets the stage for a spectacular increase in the complexity of
operating systems. Along with this series of calculators emerges the concept of
compatibility between machines. This means that users can acquire a more powerful
machine within the series offered by the manufacturer, and still hold on to their initial
software investment.

The first multiprocessor systems (computers equipped with several
“automaton–calculation” units) are born at the end of the 1960s. The development of
systems for machines to communicate with one another leads to computer networks.
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Figure 1.8. In the 1970s, memory still relied on magnetic cores. This photograph shows a
4× (32× 64) bit plane. Each toroid, ≈0.6 mm in diameter, has three wires going through its

center

Figure 1.9. The memory plane photographed here comprises twenty 512-bit planes. The
toroids have become difficult to discern with the naked eye

In the early 1970s, the manufacturing company IBM adopted a new policy
(unbundling) regarding the distribution of its products, where hardware and software
are separated. It then becomes possible to obtain IBM-compatible hardware and
software developed by companies in the service industry. This policy led to the rise
of a powerful software industry that was independent of machine manufacturers.

1.1.3.4. Fourth generation (≈1975–)

This fourth generation is tied to the systematic use of circuits with large, and later
very large, scale integration (LLSI and VLSI). This is not due to any particular
technological breakthrough, but rather due to the dramatic improvement in
fabrication processes and circuit design, which are now computer assisted.

The integration of the different processor modules culminated in the early 1970s,
with the development of the microprocessor. Intel® releases the I4004. The processor
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takes up only a few square millimeters of silicon surface. The circuit is called a chip.
The first microcomputer, built around the Intel® I8080 microprocessor, came into
existence in 1971.

Figure 1.10. A few reprogrammable memory circuits: from 8 kbits (≈1977) (right-hand chip)
to 1 Mbit (≈1997) (left-hand chip) with no significant change in silicon surface area

Figure 1.11. A few old microprocessors: (a) MotorolaTM 6800 (1974, ≈6,800 transitors),
IntelTM I8088 (1979, ≈29,000), ZilogTM Z80 (1976, ≈8,500), AMD Athlon 64X2 (1999, from

≈122 millions to ≈243 millions); (b) Intel i486 DX2 (1989, ≈1.2 million), Texas
InstrumentsTM TMX320C40 (1991, ≈650,000)

The increase in the scale of integration makes it possible for anybody to have
access to machines with capabilities equivalent to the massive machines from the early
1970s. At the same time, the field of software development is exploding.

Designers rely more and more on parallelism in their machine architecture in
order to improve performance without having to implement new technologies
(pipeline, vectorization, caches, etc.). New architectures are developed: language
machines, multiprocessor machines, and data flow machines.
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Operating systems feature network communication abilities, access to databases
and distributed computing. At the same time, and under pressure from microcomputer
users, the idea that systems should be user friendly begins to take hold. The ease of
use and a pleasant feel become decisive factors in the choice of software.

The concept of the virtual machine is widespread. The user no longer needs to
know the details of how a machine operates. They are addressing a virtual machine,
supported by an operating system hosting other operating systems.

The “digital” world keeps growing, taking over every sector, from the most
technical–instrumentation, process command, etc.–to the most mundane–electronic
payments, home automation, etc.

1.2. Introduction to internal operation

1.2.1. Communicating with the machine

The three internal functioning units – the automaton, the calculation unit and the
memory unit that contain the intermediate results and the program – appear as a
single module accessible to the user only through the means of communication called
peripheral units, or peripherals.

The data available as machine inputs (or outputs) are only rarely represented in
binary. It can exist in many different formats: as text, an image, speech, etc. Between
these sources of data and the three functional units, the following must be present:

– sensors providing an electrical image of the source;

– preprocessing hardware that, based on this image, provides a signal usable by
the computer by meeting the electrical specifications of the connection (e.g. a filter,
followed by a sampling of the source signal, itself followed by a link in series with the
computer);

– exchange units located between the hardware and the computer’s core.

Exchange units are a part of the computing machine. The user ignores their
existence.

We will adopt the convention of referring to the system consisting of the
processor (calculator and automaton) + memory + exchange units as the
Central Processing Unit (CPU).
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0...1..0 Printer,
screen,
disk,
headphone,
...

0...1..0

Pre-processing

Keyboard,
joystick,

microphone,
...

Calculator

Automaton

Processor

Central Processing Unit

Exchange

unit
Sensor,

signal

processing,

conversion

Exchange

unit Conversion

Memory

Figure 1.12. User–machine communication

It is important to note that the symbols “0” and “1” used in Figure 1.12 to
represent data are notations used by convention. This facilitates the representation of
logic values provided by the computing machine. They could have been defined as
“α” and “β”, “φ” and “E”, etc.

What emerges from this is a modular structure, the elements of which are the
processor (calculation and automaton part), the memory, the exchange units, and
connections, or buses, the purpose of which is to connect all of these modules
together.

1.2.2. Carrying out the instructions

The functional units in charge of carrying out a program are the automaton and the
calculator:

– the automaton, or control unit, is in command of all the operations;

– the module tasked with the calculation part will be referred as the processing
unit.

Together, these two modules make up the processor, the “intelligent” part of the
machine.

The basic operations performed by the computer are known as instructions. A set
of instructions used for achieving a task will be referred to as a program (Figure 1.13).

Every action carried out by the computing machine corresponds to the
execution of a program.
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Processor
Memory

0 1…0…0 0

Control

Unit

Processing

Unit

Data /

Instructions

Automaton Calculator 0 0…0…1 1

0 1…0…0 1

Data /

Programs

Figure 1.13. Processor and memory

Once it has been turned on, the computer executes a “fetch-execution” cycle, which
can only be interrupted by cutting its power supply.

The fetch operation consists of retrieving within the memory an instruction that
the control unit recognizes – decodes – and which will be executed by the processing
unit. The execution leads to (see Figure 1.14) (1) a local processing operation, (2)
something being read from or written into memory, or (3) something being read from
or written into an exchange unit. The control unit generates all of the signals involved
in going through the cycle.

Processor

Input-output

Bus

(1)

(2)

(3)

Instruction

read

Instruction

execution

Memory

Memory

accessIn
st
ru
ct
io
n

Internal

processing

Figure 1.14. Accessing an instruction

1.3. Future prospects

Silicon will remain the material of choice of integrated circuit founders for many
years to come. CMOS technology, the abbreviated form for complementary
metal-oxide semiconductor (and its derivatives), long ago replaced TTL
(transistor-transistor Logic) and ECL (emitter-coupled logic) technologies, even
inside mainframes, because of its low consumption and its performance capabilities.
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The power supply voltage keeps dropping – 3.3, 2.9, 1.8 V are now common – while
the scale of integration increases with improvements in etching techniques (half-pitch
below 30 nm) and the use of copper for metallization. There are many improvements
in fabrication processes. Computer-aided design (CAD), helps reduce development
time and increases circuit complexity. The integration of test methods as early as
during the design phase is an advantage for improving fabrication yields.

– It is the architecture that is expected to greatly enhance the machine
performance. Parallelism is the main way to achieve this. It can be implemented at
the level of the processor itself (operator parallelism and data parallelism) or on the
higher level of the machine, by installing several processors which may or may not
be able to cooperate. The improvement of the communication links becomes
significant to transmit data. Protocols and bus technology are rapidly evolving to
meet this objective.

– User-friendly interfaces are now commonplace. Multi-task operating systems
are used on personal machines. Operating systems now have the ability to use the
machine’s hardware resources.

– The cost of a machine also includes the cost of the software designed for
operating it. Despite the emergence of improved software technology
(object-oriented approach, etc.), applications are developed and maintained with
lifecycles far beyond the replacement cycle of hardware.

– As early on as the design phase, machines are equipped with the means of
communication which facilitate their integration into networks. Working on a
machine does not imply that the processing is performed locally. Similarly, the data
handled can originate from remote sites. While this concept of delocalization is not
new, the concept that access should be transparent is quite recent (distributed
computing).

Throughout this book, the word architecture will refer to the organization of the
modules which comprise the computing machine, to their interconnections, and
not to how they are actually created using logic components: gates, flip-flops,
registers or other, more complex elements.
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The Basic Modules

This chapter presents the main modules that constitute a computer: the memory,
the processor and the exchange units. We will review the operation of registers and
counters used in the execution of instructions. We will not discuss in detail the internal
workings of the different modules, and will instead focus on their functions.

2.1. Memory

Memory contains all of the data used by the processor. There are two types of data:
a series of instructions and data on which to execute these instructions.

The information stored in a memory has no inherent significance. It only
becomes meaningful once it is used. If it is handled by a program, it consists
of data, and if it is read by the control unit to be executed, it consists of
instructions.

For example, if we “double-click” on the icon of a word processor, then this
program, stored on a drive, is transferred to memory using a program called a loader,
which sees it as “data”, until it becomes a “program” to the user.

2.1.1. Definitions

Memory is a juxtaposition of cells called memory words, made up of m electronic
elements that can exist in two stable states (the flip-flop logic function) referred to as
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“0” and “1”. Each cell can therefore code 2m different elements of information. Each
of the m elements will be called a bit, abbreviated form for binary digit. If a memory
word contains m bits, these are usually numbered from 0 to m − 1, from the least
significant bit (LSB), to the most significant bit (MSB).

Each cell is uniquely identified by a number – its address. The information in the
memory is accessed by setting the n lines of the address buses. The binary
configuration of these n lines codes the address of the word, whose m bits of content
can then be read by the data bus. This is achieved using a n → 2n decoder located
between the address bus and the actual memory, so that the values of the addresses
scale from 0 to 2n − 1.

In Figure 2.1, the configuration {00 . . . 0010} leads to the selection of the memory
word with the address 2, the content of which becomes accessible to the data bus.

MemoryAddressLine

1
0

2
Address

bus

(n lines)

n
-b
it
d
ec
o
d
er

Selection

Data

bus

(m lines)

2n−1

(n−1)

(0)
1
0

0
0

0
0

Figure 2.1. Memory

The delay between the setting of the address and the time when the data becomes
available on the data bus is called the access time. The information stored in a cell is
called the content of the address:

– a memory cell is denoted by M , where M is the cell’s address;

– the content of the memory word with address M is denoted by [M ].

The name used for these memory words depends on their length. While a byte
always refers to an eight-bit cell, the same is not true for a word, which can consist of
16 bits, 32 bits, etc. A 32-bit word is sometimes called a quadlet, and a half-byte is a
nibble or nybble.

When each byte has an address, the memory is said to be byte addressable and each
of the bytes in a 32-bit memory word can be accessed individually. The addresses of
words are multiples of four.
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The unit of memory size is generally a byte, in which case it is expressed in
kilobytes (kB), megabytes (MB) or gigabytes (GB), with:

1 kilobyte = 210 bytes = 1,024 bytes,
1 megabyte = 220 bytes = 1,048,576 bytes,
1 gigabyte = 230 bytes = 1,073,741,824 bytes.

2.1.2. A few elements of technology

2.1.2.1. Concept

Memory design relies on any of the following three technologies:

– Each basic element consists of a flip-flop: this technique is implemented to
produce what is known as volatile and static memories: volatile because once the
power supply is shut down, the information is lost, and static because the information
is stable as long as the power supply is maintained.

– The basic element is comparable to a capacitor, which can be either charged or
not charged: this concept applies to volatile and dynamic memories (Figure 2.2). The
term dynamic means that the information is lost whenever the capacitor discharges.

Refresh

Read

Write
Memory cell

Control { ≥

Figure 2.2. Concept of the dynamic memory cell: the content of the cell must periodically be
refreshed, something which is also achieved when the element is read

This type of memory must periodically be refreshed, a task which can be
accomplished using a read or write cycle.

– Producing the cell requires a phenomenon similar to the “breakdown” of a diode:
this is how the so-called non-volatile memory is made. Once the content has been
programmed, it exists permanently regardless of whether the power is on or off.

Volatile memories are usually known as RAM (Random Access Memory) and
non-volatile memories as ROM (Read-Only Memory). Depending on the techniques,
other terms such as DRAM (Dynamic RAM), PROM (Programmable ROM),
F-PROM (Field-Programmable ROM), REPROM (REProgrammable ROM) and
EAROM (Electrically Alterable ROM), are sometimes used.
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2.1.2.2. Characteristics

The following are the main characteristics of memory:

– The access time, i.e. the time it takes from the moment an address is applied
to the moment when we can be certain that the retrieved data is valid. This time
is measured in nanoseconds (1 nanosecond = 10−9 s), generally in the range
of 1 to 100 ns. This parameter is not sufficient for measuring the machine’s
“memory performance”. With modern computers, a memory access can sometimes
be performed according to a complex protocol, and it is difficult to determine a value
that is independent of the machine’s architecture.

– The size, expressed in thousands, millions, or billions of bytes. Currently, the
most common sizes are above 4 GB for personal computers, tens of GB for servers,
and greater still for large machines (supercomputers).

– The technology which falls into two categories:

- rapid memories that rely on transistor-transistor logic (TTL) technology;

- Complementary MOS (CMOS) technologies, which have very low energy
consumption and allow for high-scale integration (personal computers on the market
today have memory components equipped with several billion bytes).

– The internal organization which allows more or less rapid access to information.
Examples of available memory include VRAM (Video RAM), EDO (Extended Data
Out), synchronous RAM, etc.

2.2. The processor

2.2.1. Functional units

The processor houses two functional units: the control unit and the processing unit
(see Figure 2.3).

Memory Processing

indication

Processing

unit

(Fetch)

Decoding / Sequencing

Instruction
Control

unit

Address {Instruction

Figure 2.3. Execution of an instruction
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2.2.1.1. The control unit

The control unit has three functions (see Figure 2.3):

– It fetches instruction stored in the memory: it sets the address of the instruction
on the address bus, then, after a delay long enough to ensure that the address is in
fact stable on the data bus (or the instruction bus, for machines equipped with distinct
buses), it loads the instruction it has just obtained into a register.

– It decodes the instruction.

– It indicates to the processing unit which arithmetic and logic processes need
to be performed, and generates all of the signals necessary to the execution of the
instruction. This is the execution step.

2.2.1.2. The processing unit

The processing unit ensures the execution of elementary operations “specified”
by the control unit (“processing indications”). The information handled and the
intermediate results are stored in memorization elements internal to the processor,
known as registers.

No operation is made directly with the memory cells: they are instead copied
into registers, which may or may not be accessible to the programmer, before
being processed.

The control unit, the processing unit and the registers are connected to each other,
which makes it possible to load or read in parallel all of their bits. These
communication lines are known as internal buses (Figure 2.4).
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Figure 2.4. Internal bus

2.2.2. Processor registers

2.2.2.1. Working register

Working registers are used to store results without accessing the memory. This
simplifies the handling of data (there is no need for managing addresses) and the time
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it takes to access the information is shorter. In most classic architecture processors,
the number of registers is in the order of 8 to 32.

2.2.2.2. Accumulator register

In many classic architecture machines, the set of instructions favors certain
registers known as accumulator registers or simply accumulators. In Intel® x86
series microprocessors, for example, all of the instructions for transfers between
memory and registers, or between registers, can affect the accumulator register,
denoted by AX. The same is not true for registers indexed SI or DI, which offer more
limited possibilities for handling information.

2.2.2.3. Stack pointer

Stack pointers are mainly used in the mechanism for calling functions or
subroutines. The stack is a part of the memory which is managed (Figure 2.5)
according to the content of the stack pointer register.

Addresses
Stack pointer SP

n

n+1

Memory

Figure 2.5. The stack

The stack pointer provides the address of a memory word called the top of the
stack. The top of the stack usually has the same address as the word in the stack with
the smallest address n.

The stack pointer and the stack are also handled by special instructions or during
autosaves of the processor state (calls and returns from subroutines, interrupts, etc.).

EXAMPLE 2.1. – Let us assume that in an initial situation (Figure 2.6), a stack pointer
contains the value 1,00016, which is the address of the memory word at the top of the
stack. The stacking is done on a single memory word. The stack pointer is decremented
and the information is stored at the top of the stack, in this case at the address 0FFF16

(Figure 2.6).

In certain machines, the stack is created using rapid memory distinct from the main
memory (the memory containing data and programs). This is known as a hardware
stack.
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Data written in the stack

1000

Stack pointer
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Memory
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Adresses
Memory

Stack pointer

1000 SPSP

Figure 2.6. Writing in the stack

2.2.2.4. Flag register

The flag register, or condition code register, plays a role that becomes clear when
performing a sum with a carry. When summing two integers coded in several
memory words, the operation must be performed over several summing instructions,
each instruction involving only a word. While there is no need to consider a carry for
the first sum, since it involves the least significant bits of the operands, the same
cannot be said of the following sums. The carry resulting from the execution of a sum
is stored in the flag register. Its role is to memorize the information related to the
execution of certain instructions, such as arithmetic instructions and logic
instructions.

REMARKS 2.1.–

– Flags are used by conditional branching instructions, among others.

– Not all instructions lead to flag modifications. In Intel® x86 series
microprocessors, assignment instructions (transfers from register to register, or
between memory and a register) do not affect flags.

– The minimum set of flags is as follows:

- the carry flag C or CY;

- the zero flag Z, which indicates that an arithmetic or logic operation has
produced a result equal to zero, or that a comparison instruction has produced an
equality;

- the parity flag P, which indicates the parity of the number of 1 bit in the result
of an operation;

- the sign flag, or negative flag S, which is nothing but a copy of the most
significant bit in the result of the instruction that has just been executed;

- the overflow flag V, an indicator which can be used after executing operations
on integers coded in two’s complement (see Remark 2.2).



24 Computer Architecture

REMARK 2.2.– If we perform sums on numbers using the two’s complement binary
representation, it is important to avoid any error due to a carry which would propagate
to the sign bit and change it to an erroneous value. Consider, for example, numbers
coded in four bits in two’s complement. Let C and S be the carry and sign flags,
respectively, and let c be the carry generated by the sum of the three least significant
bits (Figure 2.7).

c

SignCarry

SC

Figure 2.7. Sign and carry

Let us examine each possible case in turn, starting with the case of two positive
numbers A and B.

1) Let the values of the operands be 3 and 5:

A = 0 0 1 1→+3
B = 0 1 0 1→+5
A+B = 1 0 0 0→−8

The result obtained is wrong. Note that c takes on the value 1, while C and S
take on the values 0 and 1, respectively. In the case where we get the right result, for
example with A = 2 and B = 3, then c, C and S take on the value 0.

2) In the case of two negative numbers:

A = 1 0 1 0→−6
B = 1 0 1 1→−5
A+B = 1 0 1 0 1→+5

For these values of A and B that lead to an erroneous result, note that c, C and S
take on the values 0, 1, and 0, respectively. When we get the right result, the values of
c, C and S become 1, 1 and 1, respectively.

3) For numbers of opposite signs, we find that no error occurs:

A = 0 1 1 0→+6
B = 1 0 1 1→−5
A+B = 1 0 0 0 1→+1
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We can sum up the results of all possible cases by drawing up a Karnaugh map where
overflows are represented by the number 1. The flag indicating these cases is denoted
by OV:

00 01 11 10 CS
0 0 0 φ 1
1 φ 1 0 0
c OV

The overflow bit OV is then equal to C ⊗ c = C c +c C.

REMARK 2.3.– There is a flag, known as the half carry flag, which is usually not
directly useable by the programmer. It is used for the propagation of the carry when
working with BCD coded numbers (see Chapter 3). Consider the sum of the two
numbers 1810 and 3510 coded in BCD (each decimal figure is converted to four-digit
binary):

Base 10 BCD code
18 0001 1000

+35 0011 0101

= 53 0101 0011

Since the adder works in two’s complement, it produces the result 0100 1101.
The intermediate carry, or half carry, indicates that the result of summing the least
significant digits is >9. It is used internally when it is preferable to have a result
also coded in BCD using decimal adjust instructions. In the Intel® x86 processor, for
example, the sum of the two previous 8 bits, BCD coded integers can be performed as
follows (al and bh are 8-bit registers):

; al contains 18 (BCD) i.e. 0001 1000
; bh contains 35 (BCD) i.e. 0011 0101

add al,bh ; al + bh --> al : 18 + 35 --> 4D
daa ; decimal adjust of al: 4D --> 53

2.2.2.5. Address registers

Registers can sometimes be involved in memory addresses. The relevant registers
can be either working registers or specialized registers, with the set of instructions
defining the role of each resister. Some examples of these registers are:

– indirection registers, the content of which can be considered addresses;

– index registers, which act as an offset in the address calculation, specifically a
value added to the address;
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– base registers, which provide an address in the calculation of an address by
indexing (the address of the operand is obtained by summing the contents of the base
and index registers);

– segment registers (see Chapter 7), limit registers, etc.

2.2.3. The elements of the processing unit

The processing unit is the component tasked with executing arithmetic and logic
operations, under the command of the control unit. The core of the processing unit
is the arithmetic and logic unit (ALU). The ALU consists of a combinational logic
circuit which performs elementary operations on the content of the registers: sums,
subtractions, OR, AND, XOR, complement, etc.

2.2.3.1. Arithmetic operations

The sum/subtraction operators are achieved on a cellular level using “bit-by-bit”
adders. The problem with designing fast adders comes from the propagation speed
of the carry throughout all of the adder stages. A solution ([GOS 80]) consists of
“cutting up” the n–n adder into several p–p adder blocks, so that it becomes possible
to propagate the carry from a p–p block to another p–p block. The carry is calculated
on a global level for each p–p adder. This is known as a look ahead carry. Another
technique consists, for this same division into p–p adders, of propagating the carry
throughout the p-p floor only if it is necessary (carry–skip adders).

Multiplication can also be achieved in a combinational fashion. The only obstacle
is the surface occupied by such a multiplier, the complexity of which is of the order of
n2 1–1 adders.

2.2.3.2. The ALU and its flags

The processing unit is often defined as the set consisting of the ALU and a certain
number of registers that are inseparable from it (including flag registers and
accumulator registers).

The command lines define the operation that needs to be performed, including,
both as input and as output of the ALU, two lines for the carry:

– CYin, which originates from the output of the carry flip-flop;

– CYout as input for the same flip-flop.

Other lines, referred to as flags, provide the state of the result of the operation:
overflow, zero, etc.
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Figure 2.8. The arithmetic logic unit

REMARK 2.4.– Consider the case where a register is both the source and the
destination of a sum. After executing the sum, the result should be located in the
register. Consider the initial situation described in Figure 2.9.

Operand 2
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Figure 2.9. Operational diagram

Once the instruction is executed, the result is loaded in the register under the
command of the control unit. However, in order for the operation to work properly,
the information present at the register input cannot be modified when the register is
loaded. This is not the case in the operational diagram shown in Figure 2.9. A simple
method for avoiding this pitfall consists of inserting what is known as a buffer
register between the register and the ALU (Figure 2.10).

Register Buffer

ALU

Figure 2.10. The buffer register
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In the first step, the content of the register is transferred to the buffer, then, in the
second step, the result is written into the register. We will encounter this scheme again
in the example used for illustrating an instruction (Chapter 5). Later, we will consider
the buffer–register system as a single register.

Any complex operation is performed using a combination of elementary operations
available on the ALU and shift operations on registers. The multiplication operation,
for example, will rely on sums and shifts if the specialized circuit used for its operation
is not present in the ALU.

2.2.4. The elements of the control unit

The control unit sends control signals (also called microcommands) to ensure the
proper execution of the decoded instructions.

Processor
Control Unit

Instruction

RegistersMicrocommands

Decode and

microcommand

generation

Processing

Unit

Memory

Figure 2.11. Control unit

The control unit consists of four modules:

– The instruction register, denoted by IR, receives the code for the instruction that
the control unit has “fetched” from memory.

– The program counter (PC), or instruction pointer (IP), is a programmable
counter containing the address of the instruction that needs to be executed. By
“programmable”, we mean that it is possible to modify its content at any time
without following the counting sequence. This is the case, for example, any time the
sequentiality rule is violated (branches, subroutine calls, etc.). The instruction whose
address is provided by the content of the program counter is placed in the instruction
register, so that it can be decoded (Figure 2.12).

A 16-bit program counter enables access to 216 program words. Given the Boolean
nature of the information stored in memory (nothing looks more like an instruction
than data), the content of the memory word is only an instruction if the program
counter contains its address!
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Figure 2.12. Accessing an instruction

– The instruction decoder is a circuit for recognizing the instruction contained in
the instruction register. It indicates to the sequencer the sequence of basic instructions
(microcommand sequence) that need to be performed to execute the instruction.

– The sequencer is the device that produces the sequence of commands, known as
microcommands, used for loading, specifying the shift direction, or operations for the
ALU, necessary for the execution of the instruction.

The sequencer’s internal logic takes into account a certain number of events
originating from the “outside”, or generated by the exchange units or the memory:
interrupts, holds, etc. The sequence of microcommands is delivered at a rate defined
by the internal clock (Figure 2.13).
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Figure 2.13. Decoder/sequencer

The speed of this clock determines the speed of the processor, and more generally,
of the computer, if the elements surrounding the processor can keep up the pace. The
phrase “1.2 GHz microcomputer” indicates that the basic clock frequency is 1.2 GHz.
This specification is an indication of the performance of the processor, not of the
machine.

2.2.5. The address calculation unit

Calculating addresses requires an arithmetic unit. The calculation can be
performed by the ALU, as was the case in certain first generation microprocessors.
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This method has the advantage of reducing the number of components in the central
processing unit. On the other hand, the additional register operations and the resulting
exchanges end up being detrimental to the machine’s performance. The calculation of
addresses is more often performed by an arithmetic unit specific to the task.

2.3. Communication between modules

The processor is physically connected to the memory and the exchange units by
a set of lines. These connections form the so-called external bus, not to be confused
with the internal bus connecting the ALU, the registers, etc. In the case of typical
processors, the external bus consists of a data bus, an address bus, and a control bus.

The number of wires of the data bus gives us the number of bits that can be
transferred to the memory in one access cycle. The transfer speed is called the bus
bandwidth, usually given in bytes per second. This bandwidth depends to a large
extent on the electrical characteristics, on the method used for performing transfers
(synchronous and asynchronous modes), and on the bus exchange protocol.

PC-type microcomputers have a main bus (Peripherals Component Interconnect,
PCI) for exchanges with the memory and modern peripheral cards. They are also
equipped with dedicated buses, in particular the bus dedicated to transfers to the
video memory (Accelerated Graphics Port, AGP).

Memory

PCI bus

Exchange

unit

Exchange

unit

Exchange

unit

ISA bus

Local bus

Processor

Bus controllers

Figure 2.14. Local data bus and external data bus: the connection between the local bus and
the PCI bus depends on the generation of the machine, on the type of PCI bus used (PCI or

PCI Express), and on the presence of northbridge and southbridge bus controllers
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So far, we have only discussed the transfer of information from the data bus. No
such transfer can occur without first gaining access to this information. That is the role
of the address bus. The processor provides this bus with the addresses of the elements
it wants access to. The width, that is the number of lines, of the address bus determines
the addressable memory space.

Other lines are necessary for the whole system to work properly, for example a
read/write indicator, or lines indicating the state of the exchange units. The set of
lines conveying this information is referred to as the control bus, or command bus
(Figure 2.15).

The system comprising the data, address, and control buses constitutes what is
called the external bus

Addresses
Data

Control

Processor Exchange

unit
Memory

Figure 2.15. Address, data and control buses

In an effort to limit the number of communication lines (the sum of the bus widths,
the number of electrical supply lines, and the clock signals), the solution that was
chosen is to multiplex these bus lines, meaning that the same physical lines are used
as both address and data lines.

On this external bus, it is possible to connect several processors or exchange units
likely to take control of the buses – multiprocessor systems or direct memory access
devices (section 6.3.2). When an exchange unit controls the buses, the other units
have to be protected. This is done with the help of three-state drivers, which can exist
in three states: 0, 1 and high impedance. This last state is equivalent to a physical
disconnection of the line (Figure 2.16).

2.3.1. The PCI bus

The PCI bus is used in a very broad sense as an intermediate bus between the
processor bus – the local bus – and the input–output buses [ABB 04]. It has been
available in different versions – 32 or 64 bits, various information signaling voltages,
supported bandwidths, etc. – since 1992, the year of its inception by Intel®.



32 Computer Architecture

Bus

Memory

High

impedance

control

Figure 2.16. Three-state drivers

The PCI bus conveys data between the processor and the memory and any
input–output devices by taking into account the presence of caches and the fact that
they need to be updated (Chapter 8.) A bus is dedicated to the transfer of addresses
and data (AD bus), whereas a control bus (C/BE# bus) indicates the phase of the bus.
Figure 2.17 describes a read transfer between the processor and the memory. This
diagram is very simplified, since not all of the signals involved in the communication
protocol are shown.

IRDY

AD

CLK

(1) (2)

(a) (b)

(c)

(d)

(3) (4) (5)

C/BE

TRDY

Figure 2.17. Example of a read operation on a PCI bus: on the C/BE# bus, the memory read
command is generated (a) and the address is sent (1) over the AD bus. IRDY# indicates that

the processor (the initiator) is ready to receive the data sent by the memory (the target) in (2),
(4), and (5) under the command of the C/BE# bus (b). Cycle (3) is a wait state signaled by the
switch of TRDY# to 1 in (d). The switch of IRDY# to 1 in (c) indicates the end of the transfer

A parity check system on the set of lines AD and C/BE# is implemented. The PAR
line shows the parity “calculated” by the devices sending the information (address or
data) and the SERR# and PERR# lines indicate a parity error provided by the target
of the exchange and its source, respectively, if it happens to be necessary.



The Basic Modules 33

Each additional board is equipped with a software/hardware device (firmware),
accessible in a particular addressing space (the PCI configuration space), which
makes it possible to know if it is present when the machine starts, to know the type of
resources (interrupts, memory and input–outputs) and to obtain a description of the
memory space, or of the input–output space, which is available on the board.



Chapter 3

The Representation of Information

When representing data or communicating with the computer, the user relies on
symbols – numbers, letters and punctuation – which together form character strings.

For example, the lines:

1 i = 15 ; r = 1.5 ;
2 car1 = "15" ; car2 = "Hello" ;
3 DIR > Result.doc
4 cat Result.tex

are interpreted as the instructions for a program (lines 1 and 2) or as commands sent
to the operating system (lines 3 and 4). This external representation of data is not
directly understandable to the machine. It requires a translation (coding) into a format
that the computer can use. We will refer to the result of this operation as an internal
representation. It involves in every case the use of logic symbols denoted by 0 and
1 (section 3.2.2). For reasons of clarity, and/or ease of specification, logical data are
most often divided into sets of eight elements called bytes.

In this chapter, we will distinguish the following types: numbers, integer or real,
and characters.

Consider again the previous example: internal coding of the data “15” will be
different depending on whether the data are stored in the i variable or the car1
variable. One is numerical, the other a character string. The external representation
is the same for the two entities, despite the fact that they are fundamentally different
in nature. The human operator is able differentiate them and can adapt their process
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according to context or using their knowledge of the object. Machines, on the other
hand, require different internal representations for objects of different types. In this
chapter, we present the rules that make it possible to convert external format →
internal format, without making assumptions about the final implantation of the
result in the machine’s memory.

3.1. Review

3.1.1. Base 2

The representation of a number x in base b is defined as the vector {an, . . . , a0,
a−1, . . . , a−p} such that:

x =
n
i=−p aib

i [3.1]

where the ai are integers between 0 and (b−1). The index i and the number bi are the
position and the weight, respectively, of the symbol ai. The coefficients an and a−p

are the most significant and least significant digits, respectively. In the case of base 2
(binary coding), the coefficients ai may assume the values 0 or 1 and will be referred
to as bits, shorten form for binary digit.

EXAMPLE 3.1.–

– The binary number 1010 = 1× 23 + 0× 22 + 1× 21 + 0 = 1010.

– The change from base 10 to base 2 is done by a series of divisions by 2 for the
integer part and a series of multiplications by 2 for the fractional part. Consider the
number 20.375 in base 10.

We can switch to its base 2 representation by doing the following:

1) For the integer part, xINT, we perform the series of divisions:

20 2
0 10 2

0 5 2
1 2 2

0 1

The result is given by the last quotient and the previous remainders. We get
xINT = 101002.
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2) The fractional part xFRAC is obtained by a series of multiplications by 2.
Thus, for 0.375:

0.375× 2 = 0.75

0.75× 2 = 1.5

0.5× 2 = 1

The digits of the fractional part are given by the integer parts of results of the
multiplications by 2. Here, we get xFRAC = 0.0112. In the end, 20.37510 = xINT +
xFRAC = 10100.0112. Note that the base 2 representation is not necessarily finite,
even if the base 10 representation is. Thus, 0.210 will give us 0.001100110011 . . ..
The number of digits in the fractional part is infinite.

The error introduced by limiting the number of bits of the representation is
known as the truncation error. The error from rounding up or down in this
representation is the rounding error.

For example, 0.210 ≈ 0.0011001100 by truncation and 0.210 ≈ 0.0011001101 by
rounding.

3.1.2. Binary, octal and hexadecimal representations

In the binary case, which is of particular interest to us, the two logic states used
for the representation of data are symbolized by 0 and 1, whether the data are
numerical or not. For practical reasons, the external representation often uses base 8
(octal representation) or 16 (hexadecimal representation).

The octal system uses eight symbols: 0, 1, 2, 3, 4, 5, 6, 7. Changing from base 2 to
base 8 (= 23) is done instantly by dividing the binary digits into sets of three, “starting
from the decimal point”. For example:

1011101.011012 = 1 | 011 | 101.011 | 010 = 135.328

Base 16 uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Changing
from base 2 to base 16 (= 24) is done the same way, by dividing the binary digits into
sets of four, “starting from the decimal point”. For example:

1011101.011012 = 101 | 1101.0110 | 10 = 5D.6816

These bases not only give us a condensed representation of binary digits, but also
make it possible to instantly convert to base 2.
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3.2. Number representation conventions

Representations of numerical values require the use of rules that have been adopted
to facilitate hardware or software processing. We will not mention all of the existing
conventions, thus only the most common conventions are discussed here.

3.2.1. Integers

3.2.1.1. Classical representation: sign and absolute value

In this first convention, the representation uses a sign bit (0 → +, 1 → −) and
the absolute value of the number coded in base 2. Table 3.1 gives examples of 16-bit
representations with this convention.

Decimal Hexadecimal
value Sign/absolute value representation
+2 0/000 0000 0000 0010 0002
+0 0/000 0000 0000 0000 0000
−0 1/000 0000 0000 0000 8000
−3 1/000 0000 0000 0011 8003

Table 3.1. Sign and absolute value representation

In this representation, there is a +0 and a −0. Circuits designed to process
operations on numbers coded this way have a higher complexity than those used for
processing numbers in two’s complement.

3.2.1.2. One’s complement representation

Negative numbers x̃ with absolute value x are coded in n bits so that x + x̃ =
2n − 1 (“bit-by-bit” complement). Note that “0” can be represented by both 00 . . . 0
and 11 . . . 1.

3.2.1.3. Two’s complement representation

This representation does not have the above-mentioned drawbacks. The two’s
complement coding of a negative number is done by taking the complement of its
absolute value with respect to 2n, where n is the number of bits used for the coding.
The result of the binary sum of a number and its complement is n and a 1 carried
over. If we define Ã as the two’s complement of A:

A+ Ã = 2n

Table 3.2 shows the correspondence between a few base 10 numbers and their base
2 representation using 16 binary digits.
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Decimal Binary
value coding
2 0000 0000 0000 0010
1 0000 0000 0000 0001
0 0000 0000 0000 0000
−1 1111 1111 1111 1111
−2 1111 1111 1111 1110

Table 3.2. Two’s complement representation

Switching from a positive integer to the negative integer with the same absolute
value, and the other way around, is done by complementing the number
bit-by-bit, and then adding 1 to the result of the complementation.

This is because, by definition:

Ã = 2n −A = (2n − 1)−A+ 1

and ((2n − 1)−A) is obtained by a bit-by-bit complementation of A.

EXAMPLE 3.2. – To obtain the 16-bit two’s complement representation of the integer
−1010, we start with the binary representation of 1010, that is 0000 0000 0000 10102,
and complement it:

(216 − 1)− 10 = 0000 0000 0000 1010 = 1111 1111 1111 0101

we then add 1:

1111 1111 1111 01102, i.e. FFF616 or 177 7668

Common programming languages represent integers using 16, 32 or 64 bits in
two’s complement. It is easy to confirm that, in a 16-bit representation, any integer N
is such that:

−32 76810 ≤ N ≤ 32 76710

3.2.1.4. Binary-coded decimal

In some cases, rather than a binary representation, it is preferable to use coding
that makes it easier to change from the decimal coding to the machine representation.
A commonly used code is known as binary-coded decimal (BCD).
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Each digit of a number represented in base 10 is coded using four bits. This
representation, or other representations that share the same concept, is often used in
languages used for management, such as COBOL. Although its internal process
during operations is more complex than for numbers using the two’s complement
convention (due to the fact that hardware computational units usually operate on the
two’s complement representation), BCD coding presents a significant advantage in
management: the absence of a truncation error (see section 3.2.2) when changing
from base 10 to the internal representation.

The sign is coded separately, with the allocation of a half-byte assigned with a
value different from the codes used for digits.

There are several BCD codes: BCD-8421 or BCD, Excess-3 BCD (XS-3, 0 is
coded as 0011, 1 as 0100, etc.), and BCD-2421 (0–4 are coded the same way as in
BCD and 5–9 are coded from 1011–1111). The last two codes are symmetric and
the “bit-by-bit” complementation leads to the complement with respect to 9 of the
corresponding decimal representation. In the BCD “comp-3” representation (a packed
decimal representation by IBM), the + sign is coded as a C (1100) and − as a D
(1101). The code for the sign is set as the least significant 4-bit code.

EXAMPLE 3.3. – The integer −1289 is represented by:

−128910 = 0000

0

· · · 0000
0

0001

1

0010

2

1000

8

1001

9

1101

sign
comp-3 BCD

3.2.2. Real numbers

There are two methods for representing real numbers: the fixed-point and
floating-point representations.

3.2.2.1. “Fixed-point” representation

The fixed-point representation is often used in fields where the only machines
available deal with integers and where calculation speed is crucial (e.g. in signal
processing). Although tempting, the solution consisting of coding numbers in the
“scientific” or “floating” format results in a significant increase in processing time
and energy consumption.

The “fixed-point” representation arbitrarily places the decimal point between two
digits of the binary representation. A representation in which k bits are allocated to
the fractional part is known as a Qk representation. It is obviously necessary to first
analyze the dynamics of the values used to avoid any saturation that could be caused
by the processing.

www.allitebooks.com
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EXAMPLE 3.4. – The number 5.75 can be coded in N = 16 bits in Q8 in the following
way:

00000101 . 11000000

where the point is represented symbolically to indicate the coding.

The corresponding integer is the integer that would be obtained by rounding the
multiplication of the real number by 2k. With this convention (k = 8), the number
−5.75 would be coded as:

−5.75× 28 = −147210 = FA4016 = 1111 1010 . 0100 0000

From an operational perspective, the sum of two Qk numbers is Qk and their
product is Q2k. Note also that the significant figures are on the most significant bit
side of the result, and not on the least significant bit side! This explains the presence
in certain processors of multiplication-shift operators to have a Qk after multiplication.

EXAMPLE 3.5. – Consider numbers coded in 4 bits in Q3 fixed-point. We are going
to perform a “signed” multiplication. Retrieving the result requires a shift to the right
by three positions. There are three possible cases, which we will now examine.

1) First, let both numbers be positive:⎧⎨⎩0.5
×
0.5

→
⎧⎨⎩(0.5× 8 = 4 =)0 100
×
0 100

= 0001 0000
3−→ 0010 = 0.25

2) With the same coding rules, we now consider two numbers of opposite signs:⎧⎨⎩0.5
×
−0.5

→
⎧⎨⎩0 100
×
1 100

= 1111 0000
3→ 1110 = −0.25

3) With the same coding rules, for two negative numbers:⎧⎨⎩−0.5
×
−0.5

→
⎧⎨⎩1 100
×
1 100

= 0001 0000
3→ 0010 = 0.25

In practice, the main format used is Q15, which requires shifting the numbers being
processed so that their moduli are less than 0.5.
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In this type of coding, managing the position of the point is therefore left as a
task for the programmer, who must increase the number of bits of the representation
to maintain the same precision. To perform P additions, log2 P bits are added to the
representation. Multiplications present a more difficult challenge. The result of the
product of two numbers coded in N bits is represented by 2N bits. Performing a
series of truncations can lead to disastrous results.

3.2.2.2. Floating-point representation

This type of representation is used when a variable x is declared, among other
possibilities, in any of these formats:

float x ; in C or Java
single x ; in Basic
x : Float ; in Ada

in a few common high-level programming languages. The value stored in the cell with
the name x will then be coded according to the format:

< sign >< absolute value > × 2exponent

The principle of coding, in other words the evaluation of the three values “sign”,
“absolute value” and “exponent”, of a number x, is as follows:

1) We convert |x| to binary.

2) The field associated with the absolute value is determined by normalization.
This normalization consists of bringing the most significant 1 to the bit right before,
or right after the decimal point. For example, the number x = 11.37510 = 1011.0112
can be normalized in either of the two following ways:

- 1011.0112 → 0.10110112 (format 1)

- 1011.0112 → 1.0110112 (format 2)

3) The shift imposed by the normalization corresponds to multiplications or
divisions by two, and must therefore be compensated, which sets the value of the
exponent. In the present case:

- 1011.0112 = 0.10110112 × 24 → exponent = 4

- 1011.0112 = 1.0110112 × 23 → exponent = 3

The exponent must then be represented in binary.

This leads us to Remark 3.1.
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REMARK 3.1.–

– Since the first digit before or after the point is always 1, it is not necessary for it
to appear in the internal representation. This saves 1 bit in the representation, referred
to as the hidden bit.

– This prohibits any representation of a number equal to zero. We must therefore
find a code for the exponent that solves this problem. Consider the previous example
once again, but choosing the following, arbitrary, rules:

- We decide to choose the normalization (format 1) that gives us 0.10110112×
24. Since we do not keep the most significant 1, the remaining part is 011011. We will
refer to this value as the significand or mantissa.

- The exponent is coded in two’s complement, which in this case gives us 1002.

- We choose as a convention for sign: 0 for the + sign and 1 for the − sign.

- The number will be coded in 32 bits, with 1 bit for the sign, 23
bits for the significand and 8 bits for the exponent. The resulting code, in the
<sign/significand/exponent> format is then:

0 | 011 0110 0000 0000 0000 0000 | 0000 0100

With this convention, the exponent can assume values between −12810 and
+12710. The problem of coding “0” can be solved by assigning a value of +127 or
−128 to the exponent, the significand’s value being of no importance. For purposes
of symmetry, let us choose −128.

To know if a variable is equal to 0, all we now need to do is to check if the value of
the representation of its exponent is −128. However, the zero test of a number should
be independent of its representation. This is why we can decide to add the constant
128 to the value of the exponent in order to obtain its code. In doing so, it is possible
to verify whether any number is zero by testing the equality of the value <exponent>
with 0.

In Table 3.3, we provide a few internal representations of the exponent in the case
where the number of bits allocated to that exponent is eight:

REMARK 3.2.–

– The choice of the representation is the result of a compromise between the extent
of the representable or dynamic range (specified by the number of bits in the exponent)
and the precision needed (specified by the number of bits in the significand).

– The number of bits and the coding used for the significand and exponent fields
are set by convention.
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– The actual location of the different bit fields in memory depends on how they are
used and on the processor they are implanted in.

Binary coded Exponent Exponent
exponent in base 16 in base 10
1000 0010 82 2

1000 0001 81 1

1000 0000 80 0

0111 1111 7F −1

0111 1110 7E −2

0111 1101 7D −3

Table 3.3. Examples of exponent coding

3.2.3. An example of a floating-point representation, the IEEE-754 standard

This standard, recommended by the IEEE (Institute of Electrical and Electronics
Engineers), was an initiative from Intel® under the direction of William Kahan1.
IEEE-754 became an industrial standard in 1985 under the name binary floating-point
representation. This standard defines two types of floating-point representations,
known as single precision (short real) and double precision (long real).

– In the first case, the representation uses 32 bits. The significand is coded in 23
bits, m0 to m22, and the exponent in 8 bits, e0 to e7. The value of the number is coded
as:

value = (−1)sign × 2(EINT−127) × (1.significand)

where EINT is the value of the exponent’s internal representation.

Sign Exponent e7 · · · e0 Significand m22 · · ·m0

31 30 23 22 0

Table 3.4. Single precision floating-points

The standard also provides for the representation of non-numerical information.
Table 3.5 shows some elements of this standard. NaN (not-a-number) is used for
coding data that are not numerical in nature (e.g. when the division 0/0 occurs).

1 http://www.cs.berkeley.edu/∼wkahan/
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Exponent EINT Significand m Value v

EINT = 255 m = 0 v = NaN

EINT = 255 m = 0 v = (−1)sign ×∞
0 < EINT < 255 v = (−1)sign × 2(EINT−127) × (1.m)

EINT = 0 m = 0 v = (−1)sign × 2(EINT−126) × (0.m)

EINT = 0 m = 0 v = 0

Table 3.5. Elements of the IEEE-754 standard

The case of NaN is special. For example, when performing the multiplication
0 × ∞, certain processors code the result as NaN, while others simply trigger an
exception (see chapter 6 on inputs and outputs).

NaN can be coded in two formats (m = 0):

φ111 1111 11φφ φφφφ φφφφ φφφφ φφφφ φφφφ

φ111 1111 10φφ φφφφ φφφφ φφφφ φφφφ φφφφ

The first case is known as quiet NaN (qNaN), the second as signaling NaN (sNaN).
qNaNs are processed as “normal” significands in most cases, while sNaNs trigger an
exception as soon as they are used.

– The double precision representation uses 64 bits. The significand is coded in 52
bits, m0 to m51, and the exponent in 11 bits, e0 to e10. The value of the number coded
this way is:

value = (−1)sign × 2(EINT−1023) × (1.significand)

Sign Exponent e10 · · · e0 Significand m51 · · ·m0

63 62 52 51 0

Table 3.6. Double precision floating-points

EXAMPLE 3.6.– We wish to code 2.510 as a short real type floating-point in the
IEEE-754 standard. The different steps required are the following:

– convert 2.510 to binary → 10.12;

– normalize → 1.01× 21 (exponent 1, significand 01);

– calculate the representation of the exponent EINT:

EINT = exponent+ 127 → EINT = 128
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– convert it to binary → EINT = 10000000;

– represent the sign bit, in this case s = 0.

The machine representation of 2.510 is therefore:

0 | 100 0000 0 | 010 0000 0000 0000 0000 0000

that can be expressed in hexadecimal as: 40 20 00 0016.

In the C language, the floating-point representation can be extracted as follows:

#include <stdio.h>
int main (int argc, const char * argv[]) {

union { unsigned char repchar[4];
float repfloat;} number;

short k;
number.repfloat=2.5;
printf("Floating: %f\n",number.repfloat);
for (k=0;k<4;k++)

printf("%d %2d\n",k,number.repchar[k]);
return 0;

}

In the previous case, and for a “little-endian” representation, we get:

Floating: 2.500000
0 0
1 0
2 32
3 64

3.2.4. Dynamic range and precision

An important question in floating-point representation involves:

– the precision, specified by the endianness of the last bit used in the
representation;

– the dynamic range, defined as the interval between the smallest and the largest
positive numbers that can be represented.

Table 3.7 shows the different bounds of the IEEE standard. In the IEEE-754
standard, the largest number that can be represented in single precision is 1.11 · · · 12
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× 2127 (23 1’s after the decimal point). The maximum value for the internal
representation of the exponent is FE16, since FF16 is reserved for the case of infinite
values or “non-numerical values”. The precision is specified by the number of
significant figures.

Single precision Double precision

Largest positive 2127(2− 2−23) ≈ 21023(2− 2−52) ≈
number 3.402823461038 1.7976931348623157 10308

Smallest positive 2−126 ≈ 2−1022 ≈
number 1.1754943610−38 2.2250738585072014 10−308

Largest negative −2126 ≈ −21022 ≈
number −1.1754943610−38 2.2250738585072014 10−308

Smallest negative −2127(2− 2−23) ≈ −21023(2− 2−52) ≈
number 3.402823461038 −1.7976931348623157 10308

Table 3.7. A few minimum and maximum values

3.2.5. Implementation

The processing of numbers represented in floating-point is usually performed by
specialized computational units known as floating-point units. With processors lacking
such capabilities, it is necessary to write the arithmetical functions that perform at least
the four basic operations. Consider the case of a multiplication involving real numbers.
The sequence of operations is as follows:

– The exponents are added. A sum that exceeds 7F16 results in a floating-point
overflow. A sum below 8016 results in a floating-point underflow.

– The significands are multiplied.

– The result is normalized. This can cause an overflow or an underflow.

It is also necessary to make sure there are no special cases to consider. If the two
operands are −1.0× 2n and −1.0× 2m with m+ n = 7F16, the result will lead to an
overflow, since we get 0.5× 2m+n+1.

3.2.6. Extensions of the IEEE-754 standard

Because of rounding errors caused by the binary floating-point representation, a
standard known as IEEE-854-1987 (IEEE Standard for Radix-Independent
Floating-Point Arithmetic) was proposed, which generalized the previous standard.
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The numbers x are coded according to the format x = ±c × bexp. In fact, the
standard indicates that b = 2 or b = 10. This is why it is referred to, wrongly, as the
decimal floating-point (DFP) representation, for which b is restricted to 10.

The IEEE-754 standard was later amended to include IEEE-854-1987. It now
carries the name IEEE-754-2008 [IEEE 08]. This standard emphasizes not only
floating-point coding but also their “arithmetic behavior” during operations
(rounding effects, calculations involving ±∞, the handling of exceptions, etc.).

The DFP representation defines three formats – 32, 64 and 128 bits – and two
codes – DPD (densely packed decimal) and BID (binary integer decimal). The number
of significant numbers and the values of the exponent are shown in the following table.

32 bits 64 bits 128 bits
Significant figures 7 16 34

exponent e −95 ≤ e ≤ 96 −383 ≤ e ≤ 384 −6143 ≤ e ≤ 6144

The hardware implementation of floating-point numbers in RFD was never
completed. The lack of applications (essentially in management computing) and the
expected energy consumption are such that only a software implementation was
completed.

3.3. Character representation

3.3.1. 8-bit representation

Traditionally, characters (letters, numbers and punctuation symbols) were coded
in a byte. The most commonly used codes are ASCII (American Standard Code for
Information Interchange), proposed by Bob Bemer in 1961, which uses seven bits,
plus an eighth bit to check for parity (Table 3.8), and the EBCDIC (Extended Binary
Coded Decimal Interchange Code), which first appeared on IBM/360 machines in
1964, and was implanted on eight bits.

To find the hexadecimal ASCII code of a character, we have to read the most
significant digit in the top line, and the least significant digit in the left column. For
example, the character <G> corresponds to the code 4716. Table 3.9 shows the codes
for the set of North American characters.

Certain codes are reserved for specific uses: control of the display, managing data
flow for communication between machines, etc. In the ASCII code, the codes 0 to
1F16 are reserved for this purpose (Table 3.10).
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Least Most significant
significant↓ 0 1 2 3 4 5 6 7

0 NUL DLE 0 P ‘ p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 3 C S c s
4 EOT DC4 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB 7 G W g w
8 BS CAN ( 8 H X h x
9 HT EM ) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K k
C FF FS , < L l
D CR GS - = M m
E SO RS . > N n ~
F SI US / ? O _ o DEL

: character not defined by the standard (national choices)

Table 3.8. Table ASCII

Least Most significant
significant ↓ 0 1 2 3 4 5 6 7

0 NUL DLE 0 @ P ‘ p
... · · ·
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
... · · ·
7 BEL ETB ’ 7 G W g w
... · · ·
B VT ESC + ; K [ k {
C FF FS , < L \ l |
D CR GS - = M ] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o DEL

Table 3.9. Specificities of the ASCII code
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Code Symbol Significance
04 <EOT> End of transmission
07 <BEL> Audible bell
0C <FF> Form feed (causes the

the screen to go blank on a screen
terminal)

0E <SO> Produces a complement to the
existing set of characters

1B <ESC> Escape character

Table 3.10. A few of the control characters

Code 7, for example, denoted by BEL, corresponds to the terminal alarm. These
codes are usually directly accessible on the keyboard by simultaneously pressing
<CONTROL> and a letter. <CONTROL> and <A>, for example, yields code 1,
and <CONTROL> and <G> yields code 7, which corresponds to the “beep”, etc.

These codes are also usable from a program written in a high-level language by
simply “printing” them, just like alphanumerical characters. The control characters we
mentioned can only be interpreted by what is known as an ASCII type terminal.

EXAMPLE 3.7. – The character string Computer followed by a move to the next line
will be coded with the sequence of bytes:

43, 6F, 6D, 70, 75, 74, 65, 72 (hexadecimal)

Note that the move to the next line is coded using two characters: 0D which is
the Carriage Return, the return to the beginning of the line, and 0A which takes us to
the next line (Line Feed). Line changes in text files created by the editor in MS-DOS,
Microsoft Corp.’s “historical” operating system, are coded this way. This is because
certain terminals from the era of the birth of the “PC” were electromechanical, and
required these two commands to return the carriage to the beginning of the line and
trigger the rotation of the printer drum.

EXAMPLE 3.8. – Table 3.11 shows examples of internal representations, where the
integers and real numbers are coded in 32 bits, in two’s complement for the integers
and in the IEEE-754 format for the floating-point representations. The characters are
coded in the ASCII format.

3.3.2. Modern representations

8-bit character coding as it was originally practiced does not provide a way to
code all of the characters in all of the alphabets (e.g. ő and ǒ). A solution was to

www.allitebooks.com
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introduce “national code pages”. But again, this solution did not prove satisfactory.
The Unicode consortium2 developed a standard that covers every other existing ISO
(International Organization for Standardization) system. This standard offers more
than simple coding. It “names” the characters, and describes processing models that
can be applied to them and the semantic links between them.

Data being Number of Internal representation
coded occupied bits (hexadecimal)

Number 1 as an integer 32 0000 0001
Number −1 as an integer 32 FFFF FFFF

Floating-point 1 32 exp. 7F, significand 0, sign 0
Floating-point −1 32 exp. 7F, significand 0, sign 1

Character 1 8 31
Characters +1 16 (2 characters) 2B 31
Characters −1 16 (2 characters) 2D 31
Characters 1.0 24 (3 characters) 31 2E 30

Characters −1.0 32 (4 characters) 2D 31 2E 30

Table 3.11. Examples of internal representations

The three main “vector” fonts, which replaced the original bitmap fonts, are
PostScript, TrueType and OpenType. This last font, introduced in 1996, is a superset
of the previous two. The [GOO 10] documentation gives an interesting history
of the creation of these fonts and of the relevant technical characteristics.

OpenType accepts Unicode coding in more than four hexadecimal digits and
typographic rules – which are not alway implemented – for the use of glyphs
(substitutions, position, ligature rules, etc.). Many programs now accept this to
represent characters, or ideograms, from a great variety of languages.

EXAMPLE 3.9. – In traditional Chinese, the word “microprocessor” is written as
in the STSong font, which can be expressed phonetically as “chǔ lǐ qì”. The

three ideograms are coded as 590416, 740616 and 566816, respectively. As another
example, “luck” is written as:

in simplified Chinese with the STKaiti font.

2 http://unicode.org/
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3.4. Exercises

Exercise 3.1 (Integer representation) (Hints on page 327)

In a highlevel language, write a program that iteratively increments a variable
declared as an integer. Define a stop condition that will give you the highest possible
value with this code. Use the value of this number to infer how many bits are used for
coding it.

Exercise 3.2 (Single precision floating-point representation) (Hints on page 328)
Verify that the internal representation

0 0
1 0
2 72
3 64

corresponds to x = 3.125.

Exercise 3.3 (Fixed-point and floating-point representations) (Hints on page 328)
Consider the real number x = −3.82 represented as a single precision floating-point
number on a PC-type machine with an x86 series Intel® processor.

1) Write the internal representation of x in hexadecimal.

2) Write the Q12 fixed-point representation of x in 16 bits.

Exercise 3.4 (Short floating-point representation) (Hints on page 328)

The documentation for the Texas Instruments DSP TMS320C30® [TEX 89]
describes a short floating-point representation as follows:

In the short floating-point format, floating-point numbers are represented by a
two’s-complement 4-bit exponent field (e) and a two’s-complement 12-bit mantissa
field (man) with an implied most-significant non-sign bit.

15 12 11 10

fse

0

man

Figure 3.1. Short floating-point format

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most-significant non-sign bit is made explicit, it is located to the
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immediate left of the binary point. The floating-point two’s-complement number x in
the floating-point format is given by:

x = 01.f × 2e if s = 0
10.f × 2e if s = 1
0 if e = −8, s = 0, f = 0

The following reserved value must be used to represent zero in the short
floating-point format: “e = −8, s = 0, f = 0".

An exponent equal to −8 is actually reserved for special cases.

1) Write the representations for the maximum and minimum positive and negative
values.

2) Write the representation of x = 10−2.

3) Write the representation of x = −64.310.



PART 2

Programming Model and Operation



Chapter 4

Instructions

As we have seen in previous chapters, any activity of a machine corresponds to the
execution of a program. This program comprises of a series of instructions defining
the elementary operations that the machine has to execute. These operations require
gaining access to operands that may be found in memory, in working registers, in the
registers of exchange units, etc.

Memory

ProcessorExchange

Unit

Instruction

Instruction

Code

DataRegister

Inst. Reg.

Register

100111........101110

Figure 4.1. Accessing the instructions and the operands

The instruction code must identify three types of information: the operation
performed, the operands and the means of gaining access to these operands. In
practice, the user only rarely has the opportunity or the need to access the binary
instruction codes, which together form the machine language.

EXAMPLE 4.1. – On the Intel I8086® microprocessor, for example, the instruction
coded as 0100 00002, i.e. 4016, means “increment the ax register”, while 4316 means
“increment the bx register”.
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Rather than using this obscure representation, we rely on mnemonics that clarify
the role of each instruction. In the previous example, the instructions will be denoted
by inc ax and inc bx, respectively. Writing a program in mnemonics requires the
use of a “translator”, known as an assembler, with the corresponding language being
referred to as an assembly language.

When the user needs to work “close to the machine”, they require some basic
information, such as working registers, in order to gain access to data, all of the
available instructions and the size of the program counter. This information is
sometimes known as a programming model.

4.1. Programming model

In what follows, we describe the programming model for the Intel I8086®. Using
this dated processor makes it easier to understand the examples given at the end of this
chapter. The more recent processors from Intel Corp. are based on this processor, at
least with respect to the set of instructions.

4.1.1. The registers of the I8086

The Intel I8086® is equipped with the following registers:

– ax, bx, cx, dx, the-16 bit working registers; the most and least significant bits
for each of these registers can be accessed using the mnemonics ah, al, bh, bl, etc.;

– si (Source Index), di (Destination Index), the 16-bit index registers;

– bp (Base Pointer), the 16-bit stack address register;

– sp (Stack Pointer), the 16-bit stack pointer;

– ip (Instruction Pointer), the 16-bit program counter, which is used for addressing
64 kB of memory;

– the flag register (overflow, zero, carry, auxiliary carry, parity, sign) and other
control bits (direction, etc.);

– cs (code segment), ds (data segment), ss (stack segment), es (extra segment),
the 16-bit “segment” registers involved in the construction of addresses in memory.

We will describe these registers in detail in the examples provided in the following.

The flag register consists of six 1-bit indicators:

– Z is set to 1 when the destination operand has been set to zero or when the result
of a comparison operation is “equality”;
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– S, the sign bit, is a copy of the most significant bit of the result operand;

– O, the overflow bit (page 24), is modified by most arithmetic operations
(operations in two’s complement) and logic operations;

– C, the carry bit, is modified by most arithmetic and logic operations;

– P, the parity bit, provides information on the number of 1 bit in the result of
certain 8-bit arithmetic or logic operations;

– A, the auxiliary carry bit, is used by the processor for instructions that handle
BCD coded data (DAA and DAS instructions).

4.1.2. Address construction and addressing modes

4.1.2.1. Address construction

The segmentation system used by Intel® allows access to 1 MB (220 bytes) of
memory, although the registers are coded in 16 bits, which limits the address space to
64 kB. Access to the entire memory space is done using four registers: cs, ds, ss and
es. The instructions provide 16-bit addresses. A mechanism adds to these addresses
the content of the segment register offset by 4 bits to the left. The final address found
on the external bus is therefore 20 bits in length:

Final address = (24 × segment register) + offset [4.1]

where the offset is the relative address in the segment.

EXAMPLE 4.2. – If the program counter (the ip register) contains 1A0016, and if the
cs register contains 201016, the address generated on the external bus for accessing
this instruction will be (Figure 4.2):

(201016 × 1016) + 1A0016 = 2010016 + 1A0016 = 21B0016

Each instruction is associated by default with one or two segment registers. As a
result, a memory write operation by the mov instruction will only modify a word in
the data segment located by ds.

EXAMPLE 4.3. – The instruction mov [bx],al, which is used for copying the content
of the 8-bit al register into the memory word whose address is in bx, triggers the
address calculation (Figure 4.3):

(16× [ds]) + bx
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Register CS (16 bits)

2010 = 0010 0000 0001 0000 0 0 0 0

Instruction Pointer

IP (16 bits)
1A00 = 0001 1010 0000 0000

1A00

21B00 (20 bits)

Adder

Address Bus

20100

4 bits

Figure 4.2. Calculation of the instruction address

Register DS (16 bits)

0 0 0 0

Register

bx (16 bits)

Register

al (8 bits)

Add.

Physical address

4 bits

20

Memory

Figure 4.3. Calculation of the address and writing of the operand

4.1.2.2. Addressing modes

The different ways of accessing data in a Intel I8086® are limited by the
specialization of the registers. Unlike many other processors whose registers can
be used and handled in an ordinary fashion, Intel® defines the roles attributed to the
registers. The addressing modes are described in Appendix A.1. Most of the
instructions have two operands. The first operand constitutes the destination and
the second the target. add bx, ax, for example, corresponds to the operation bx =
bx + ax.

In the following examples, we will describe the operation and coding of a few
instructions.

EXAMPLE 4.4. (Immediate access) – Consider the instruction mov bx,1000H,
equivalent to bx = 0x1000; in Java. This instruction is coded as BB0010:

1011 w reg data (1/2)
Code 1011 1 011 0000 0000 0001 0000
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The w bit (=1) indicates that we are dealing with the transfer of a 16-bit word. The
bx register is numbered 011 and the value of the operand (1000) appears with the least
significant bit first. The data field can be one or two bytes in length (1/2 indication).

The code for the instruction mov bl,0FFH is:

1011 w reg data (1/2)
Code 1011 0 011 1111 1111

The w bit indicates the transfer of a byte. The bl register is numbered 011 and the
value of the operand (FF) appears in the second byte of the code. The offset field can
be one or two bytes in length (1/2 indication).

EXAMPLE 4.5. (Direct access) – Consider the instruction mov bx,[1000H], which
triggers the transfer of a 16-bit word, located at the address 1000H in a memory
segment, to bx. The code for this is 8B1E0010:

1000 10 d w mod reg r/m disp(0/2)
Code 1000 10 1 1 00 011 110 0000 0000 0001 0000

The d bit is set to 1, which indicates a transfer from memory to register. This
transfer involves a 16-bit word (w=1). mod=00 and r/m=110 correspond to direct
addressing (the address is provided “directly” in the instruction). The register number
is 011 (bx). The “offset” field can be zero or two bytes in length (0/2 indication).

EXAMPLE 4.6. (Indirect access) – In this type of access, the address is constructed
from the content of the registers. Consider the instruction mov al,[bx+si+10] for
reading a byte stored in memory. The corresponding code is 8A4010.

1000 10 d w mod reg r/m disp(0/2)
Code 1000 10 1 0 01 000 000 0001 0000

The d bit is set to 1, which indicates a transfer from memory to register. This
transfer involves a byte (w=0). mod=01 corresponds to an indirect access with an 8-bit
offset. reg=000 codes al and r/m=000 give the “mode” ds:[bx+si+disp]: the
address calculation uses the ds segment and the address is calculated through the sum
(bx+si+10).

The default segment, ds, can be changed: if we wish to access the code segment,
we simply need to provide mov al,cs:[bx+si+10]. This instruction actually
consists of two instructions:

cs: ; instruction which modifies the default segment
; only applies to the following instruction

mov al,[bx+si+10] ; transfer
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4.2. The set of instructions

In what follows, we will concern ourselves only with instructions for the
architecture we have chosen.

4.2.1. Movement instructions

Movement instructions include transfers between registers, from memory to
register and from memory to memory. We saw a few examples of these previously.
There are other instructions of this kind. The movsb (move string byte) instruction,
for example, is used for transferring cx bytes from memory to memory.

EXAMPLE 4.7. – The following excerpt from a program transfers 16 bytes from
memory to memory:

cld ; direction
lea si,sourcestring ; source string address --> si
lea di,targetstring ; target string address --> di
mov cx,10H ; number of transfers
rep movsb ; transfer of cx bytes

cld (clear direction flag) indicates that addresses are incremented. The transfer
is done from ds:si to es:di by incrementing si and di at each iteration. rep is a
repeat string instruction prefix. lea (load effective address) loads si or di with the
address of the source and target strings, respectively.

Intel® made the choice of not modifying flags during the movement instructions.
mov ax,0, for example, does not set the Z flag. This is not the case for all processor
designers. In the Motorola M68000® processor, for example, which dates back to the
same era as the Intel I8086®, the move instruction modifies the zero flag Z and the
sign flag N.

4.2.2. Arithmetic and logic instructions

4.2.2.1. Arithmetic instructions

Arithmetic instructions – adding, subtracting, multiplying and dividing – act on
integers.

EXAMPLE 4.8. – The following instructions execute the sum of two 32-bit integers.
The two 32-bit operands are denoted by oper1 and oper2:

www.allitebooks.com
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lea si,oper1 ; operand 1 address in si
lea di,oper2 ; operand 2 address in di
mov ax,[si] ; memory --> ax (least significant)
add ax,[di] ; add least significant words (16 bits)
mov [bx],ax ; storage in memory, ax --> memory
mov ax,[si+2] ; memory --> ax (most significant)
adc ax,[di+2] ; add most significant bits
mov [bx+2],ax ; storage in memory

Summing the 16 least significant bits produces a carry that is used by the addition
adc. Obviously, C must not have been modified in the meantime.

inc (increment), dec (decrement) and neg (sign change in two’s complement) are
some of the arithmetic instructions offered by every designer.

Multiplications and divisions can be signed (imul, idiv) or non-signed (mul,
div).

4.2.2.2. Logic instructions

Logic instructions are “bit-by-bit instructions”; four of them are: and, or, xor and
not.

EXAMPLE 4.9. – Manipulating of a byte:

mov al,[bx] ; memory --> al
and al,7FH ; most significant bit <-- 0
not al ; complementation

The value (byte) read in memory is loaded into al. The most significant bit is set to
zero by a “logic AND” with the constant 0111 1111. The result is then complemented
“bit-by-bit”.

REMARK 4.1.– The instructions mov ax,0 and xor ax,ax yield the same result.
However, the former is coded in three bytes (code B8 00 00), and the latter in two
bytes (code 31 C0). This means that the first instruction is “slower” than the second,
but does not modify the flags.

4.2.2.3. Comparisons

Comparisons are performed by subtracting the operands without propagating the
result, but with a flag update. We will later discuss the use of these instructions for
conditional branching.
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4.2.3. Shift instructions

There are eight shift instructions, including shifts and rotations, the shifting
direction and management of the “output” bit (Figure 4.4).

C

ROL (Rotate Left) ROR (Rotate Right)

SHL/SAL (Shift

Left/Shift Arithmetic

Left)

SHR (Shift Right)

SAR (Shift Arithmetic

Right)

ROL (Rotate Left

through Carry)

ROR (Rotate Right

through Carry)

1010110101011011

C 1010110101011011

C1010110101011011

C 0 01010110101011011 C1010110101011011

C1010110101011011

C1010110101011011

(a) (b)

(e) (f)

(g)

(c) (d)

Figure 4.4. The types of rotations are – (a), (b), (c), (d) – and shifts are – (e)– (f ), (g).
The carry bit is denoted by C. The logic and arithmetic shifts to the left are identical,

whereas there is a difference between the shifts to the right, due to the necessary “sign
propagation” in the arithmetic case

EXAMPLE 4.10. – The following sequence performs the multiplication by two of a
32-bit integer:

mov ax,[bx] ; least significant operand --> ax
shl ax,1 ; ax*2 --> ax and most significant bit --> CY
mov [si],ax ; result --> memory
mov ax,[bx+2] ; most significant operand --> ax
rcl ax,1 ; ax*2 --> ax and recovery of CY in

; least significant bit
mov [si+2],ax ; result --> memory

The operand is at the address given by bx. The shift is performed in two phases by
a shift and a rotation at the address given by the register si.

REMARK 4.2.– In the Intel I8086®, the number of shifts is necessarily equal to one
since it is given “by immediate value”. If we wish to specify another value, we use the
cl register. This limitation was eliminated in later processors.
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4.2.4. Branching

4.2.4.1. Unconditional branching

A branch is unconditional if the instruction provides the branching address:

– As an immediate and absolute value: With an Intel I8086®, for example,
when the processor starts, the pair <CS register:program counter> is initialized as
F000:FFF0. This address is the location for a branching instruction, such as jmp
F000:E05B (code EA5B0E00F0), which is used to “jump” to the address of the
beginning of the start-up process. The pair <CS:program counter> is directly loaded
with F000:E05B.

– As a relative value: Except for very specific cases such as the case we just
saw, the address is coded in the instruction as a shift relative to the program counter
that corresponds to the following instruction (branching to the following instruction is
done using a zero shift).

EXAMPLE 4.11.– The following sequence of instructions illustrates the operation of
a jmp instruction. The instruction codes are shown on the left:

EB 02 jmp nxt ; branch towards the mov instruction
; EB=jmp, shift=2

04 03 add al,3 ;
88 C4 nxt: mov ah,al ; result --> memory

The shift is calculated relative to the current value of the program counter. Since
the counter is already incremented during the actual execution of the jmp command,
PC points to add. We branch to the following instruction; in other words, to mov with
the address <address of add + shift (size of the add = 2)>.

– Through an indirection register: The instruction jmp [bx] triggers a branch to
the address (relative to the actual address) given by the content of bx.

EXAMPLE 4.12.– In the following sequence, the branch address (the offset of the nxt
tag) is loaded by lea into bx. The instruction jmp [bx] then executes the branch to
nxt. The addresses are shown in the first column, followed by the instruction codes.

0100 8D 1E FD 00 lea bx,nxt
0103 ff 27 jmp [bx]
0105 41 inc cx
...
0200 05 01 nxt: ...

4.2.4.2. Conditional branching

Conditional branches allow for the implementation of program structures, such
as {if ... then ... else ...}, {while ... end} or {do ... until}. The
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Intel I8086® offers a set of 16 branches using flags: je (jump if equal), jne (jump
if not equal), jae (jump if above or equal), jc (jump if carry=1), etc.

EXAMPLE 4.13. – The following sequence reads a 16-bit parameter in the stack. If
this parameter is zero, the CY flag is set to 1, otherwise it is set to 0:

8b 46 08 mov ax,[bp+8]
3d 00 00 cmp ax,0 ; compare ax with 0
eb 03 je nxt1 ; jump if equal
f9 stc ; set carry bit
eb 01 jmp nxt2 ;
f8 nxt1: clc ; clear carry bit

nxt2: ...

REMARK 4.3.– bp serves as a pointer in the stack segment. It is managed by the user.
The program fetches a piece of information in the stack at the address bp+8.

The comparison operation could have been done with or ax,ax (code 09C0). This
instruction modifies the Z flag, thus indicating whether the result, i.e. ax, is zero.

4.2.4.3. Calling functions

There are two instructions for calling functions call and int (interrupt), which
are associated with the instructions ret and iret (interrupt return). We will mention
int again in Chapter 6. In the Intel I8086®, calling a function relies on the stack
mechanism described on page 22. When a call adrtrt is executed:

– the processor saves the return address, in other words the address of the
instruction that follows the call adrtrt, in the stack;

– it loads the program counter, and sometimes CS depending on the type of call
(near or far call), with the processing address adrtrt;

– at the end of the process, a ret instruction, which is another branching
instruction, recovers from the stack the return address that was saved there to load
it into PC.

EXAMPLE 4.14. – The following function returns the number of 1 bit in a byte. The
input parameter is ah, the output parameter dl:

50 func: push ax ; save ax
51 push cx ; save cx
30 d2 xor dl,dl ; bit counter <-- 0
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b9 0800 mov cx,8 ; total number of iterations
f0 ec mylp: shr ah,1 ; shift right by 1 bit in CY
80 d2 00 adc dl,0 ; sum
e2 f9 loop mylp ; as long as cx>0 go to mylp
59 pop cx ; restore cx
58 pop ax ; restore ax
c3 ret ; recover return address

The main program is as follows:

mov ah,53 ; input parameter
call func

REMARK 4.4.– A push instruction stores its operand at the “top of the stack” and
decrements the stack pointer. pop performs the opposite operation: it recovers the
value at the top of the stack and stores it in the operand, then increments the stack
pointer. This mechanism is flexible and powerful: it avoids issues of managing
placement in memory for saving registers modified in the functions. Some processors
do not offer this easy option.

The loop mylp instruction is a conditional branch instruction described by:

dec cx
jnz mylp ; if cx not zero, goto mylp
...

4.2.5. Other instructions

Modern processors are equipped with a much more diverse set of instructions that
goes hand-in-hand with the increasing complexity of the hardware architecture:

– As we saw previously, the arithmetic instructions only deal with integers: section
5.4.1 will show how real numbers in floating point are handled by an arithmetic
coprocessor.

– Vector processing capabilities have been added to the existing architecture:
section 5.4.2 presents the MMX and SSE instructions used for such devices.

– Intel Westmere® processors [INT 10] were given additional instructions
designed for facilitating Advanced Encryption Standard (AES) encrypting and
decrypting.

– Instructions that can be used to synchronize tasks or accesses to critical resources
make it simpler to write multitask systems and applications. The Intel I80386®, for
example, includes the BTS (Bit Test and Set) instruction, referred to as atomic
because it executes several non-interruptible operations: a bit transfer from a memory
operand to the CY flag, then the setting of this same bit to 1.
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4.3. Programming examples

The following program, written in C, calls a function written in an assembly
language to perform the sum of two 16-bit integers. The target machine is an Intel®
Core2 DuoTM. This example illustrates the problems we face when passing
parameters between high-level language and assembly language.

/* expleparam.c */
#include <stdio.h>
int main() {

void mysum(short, short, short*);
static short a=4, b=7, c;
static short *ptrc=&c;
mysum(a,b,ptrc);
printf("%d\n",*ptrc);
return 1;

}

The function mysum(short, short, short*) has two arguments short (16
bit) and a 32-bit pointer. The compiler generates three 32-bit instructions to place
operands at the “top of the stack” (pushl instruction) in this order: pointer on the
result, the operand b, and then the operand a. After executing call (stacks the return
address in 32 bits), the stack looks as follows:

Address
in the stack Content of the stack

n ← return address in 32 bits
n+ 4 ← operand a in 32 bits
n+ 8 ← operand b in 32 bits
n+ 12 ← pointer toward result in 32 bits

The assembly language program that performs the sum is the following (here we
are using the AT&T® syntax, which is quite different from the Intel® syntax, though
the latter can still be used with the help of the directive .intel_syntax):

.text
.globl _mysum
_mysum:

pushl %ebp ; ebp --> stack
movl %esp, %ebp ; esp --> ebp
pushl %eax ; save eax
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pushl %edx ; save edx
movzwl 12(%ebp), %eax ; b --> eax
addw 8(%ebp), %ax ; a + ax --> ax
movl 16(%ebp), %edx ; result address
movw %ax, (%edx) ; write result
popl %edx ; restore
popl %eax ; restore
popl %ebp ; restore
ret

After the pushl %ebp, the stack contains:

Address
in the stack Content of the stack

m ← saved copy of ebp in 32 bits
m+ 4 = n ← return address in 32 bits

m+ 8 ← operand a in 32 bits
m+ 12 ← operand b in 32 bits
m+ 16 ← pointer toward result in 32 bits

– the instruction movzwl 12(%ebp),%eax loads the operand b into eax (32 bits)
by setting the 16 most significant bits to 0;

– the instruction addw 8(%ebp),%ax executes the sum;

– the instruction movl 16(%ebp),%edx loads edx with the pointer indicating the
result;

– the instruction movw %ax,(%edx) stores the result in the address [edx];

– after executing the instruction ret, the value of the stack pointer has to be reset
to the value it had before calling the function. This is because the parameters are
still on the stack and the stack pointer does not have the correct value. In C, esp is
incremented by adding the number of bytes taken up by the parameters, in this case 24.
This is one of the specificities of the language used. A basic compiler does nothing,
and it is the programmer’s responsibility to leave the stack the way they found it. This
is done with the instruction ret 24, which is the parametrized version of ret.

The executable is generated by the command:

gcc -Wall expleparam.c mysumO1.s -o myexec

where mysumO1.s is the assembly language program file.
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In the Intel® syntax, we would have:

.intel_syntax

.text
.globl _mysum
_mysum:

push ebp
mov ebp, esp
push eax
push edx
xor eax,eax
mov ax, [ebp+12]
add eax, [ebp+8]
mov edx, [ebp+16]
mov [edx], ax
pop edx
pop eax
pop ebp
ret

4.4. From assembly language to basic instructions

The development of a program requires the following steps (Figure 4.5):

– Writing the source files S1, S2, etc.

– Invoking translation programs – an assembler for the assembly language, a
compiler for high level languages, etc. – to go from the symbolic representation to
binary and to assign addresses to the variable names. The files created in this phase
are known as object files. Here they will be denoted by O1, O2, etc.

– Calling the linker, which takes as input the object files, completes them by
consulting “libraries” provided with the languages (B1, B2, etc.), and creates a binary
executable (or rather loadable) file denoted by Ex.

In order for a file to be executed, it has to be loaded into memory. This is achieved
by “typing” its name on the keyboard or “double-clicking” on its icon: the loader will
find it on the drive and load it into memory.

4.4.1. The assembler

Assembly language is a symbolic representation of the binary coding of the
machine instructions. This binary coding is the only form of information that the
processor can work with. The assembly is charged, not only with the translation in
binary code, but also with the assignment of an address to each symbol (variable
names and tags) used by the program.
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Figure 4.5. Application development

The assembly language also features directives and pseudo-instructions used for
reserving memory cells, initializing them or facilitating the task of writing programs.

Among other things, pseudo-instructions make it possible to manage the
allocation of memory for variables: size, alignment and type. The following example
presents some of the pseudo-instructions commonly used with the Intel I386®

processor assembly language.

Char_One:
.byte 0x31 ; a byte with character "1"
Int16:
.word 0x0400 ; 16 bits integer = 1024
Int32:
.long 2048 ; 32 bits integer = 2048
My_Struct:
.align 4 ; aligning on an address multiple of 4
.word 0 ; 16 bit word = 0
.word 0,0 ; 2 16 bit word initialized with 0
Text:
.align 4 ; aligning on an address multiple of 4
.byte 0x61, 0x68, 0x3f ; 3 bytes with the string "ah?"
.ascii "The animals" ; string
.byte 0 ; byte = 0

Directives are indications given to the assembler and the linker: they provide
information for building the object file. They do not give rise to a translation or to a
reservation of memory cells.
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;----------------------------------------------------
; The symbol "INIT" wil be replaced by 0xbf397df
;----------------------------------------------------
INIT = 0xbf397df
;----------------------------------------------------
; global makes the symbol "start" visible from other files
;----------------------------------------------------
.text
.globl start
start:
...
;----------------------------------------------------
; Calling an external procedure proc_ext. The latter is not
; defined in the current file. The link editor will look
; for it in the object files used to build the .exe file.
;----------------------------------------------------
.extern proc_ext
...
call proc_ext ; calling proc_ext
...

The programmer has other opportunities at their disposal for facilitating the
writing of the source file, for example macroinstructions and conditional assembly
instructions.

4.4.2. The assembly phases

As we have seen, the assembler has the following tasks: “translating from
symbolic representation to binary representation”, “allocating memory addresses to
the operands” and “memorizing all of the symbols used by the program”. This work
is done in two steps known as passes. The first pass is in charge of translating and
initiates the address calculations, which are completed in the second pass.

4.4.2.1. First pass

The objective in this phase, in addition to the translation, is to construct the symbol
table. This table assigns a value to each mnemonic (variable or tag) used by the
program. This value is not, immediately, the memory address where the variable or
tag will be inserted. The assignment process involves the following steps:

– The assembler initializes the counter to zero.

– This counter is incremented every time a line in the source file is read, and these
lines are analyzed one by one.

– For each symbol that is encountered, a new entry, a cross-reference, is added to
the symbol table. If the symbol is a tag, it is assigned the value of the counter.
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Allocating an address to a symbol is done as soon as possible. As long as a memory
address is not associated with a variable or a tag, it is represented by the number
of the input it was assigned to in the symbol table. At the end of the first pass, the
symbol table is completely updated; each mnemonic used by the programmer is now
associated with an address.

4.4.2.2. Second pass

During this phase, the assembler goes once again through the source file using
the symbol table created during the first pass. If the line contains an instruction, the
assembler reads in the symbol table the values associated with the variables, completes
the binary coding of this instruction and stores this code in the object file. If errors have
been detected, the building of a possible text file is continued, but the building of the
object file is abandoned and it is destroyed. References that have not been dealt with
are processed in this phase: the variables that were represented by their entry in the
symbol table are now represented by their addresses.

4.4.3. The linker

The linker combines the object files and the libraries to create an executable file.
This file can be complemented with additional information, for example information
necessary to the use of a debugger.

Object files are composed of several sections, for example:

– the program (text segment or code segment);

– the data initialized by the user (data segment).

In order to combine the address fields of the different object modules, the linker
builds a table containing the name, size and length of all the object modules, then
assigns a loading address to each object file.

It collects the symbol tables so it can build a unique object module equipped with
a single symbol table. The addresses of the variables are recalculated. Hidden
information (glue), often ignored by the programmer, are added for the start of the
program, for interfacing with the system (object file crt0.o in the UNIX system)
and for final modifications.

The linker consults libraries to process references that have not been addressed,
meaning those that do not appear in any of the object files cited by the user. The
objects found in the library are then added to the object file being built.

The resulting executable file can be quite large. In order to reduce its size, we can
replace the object code of a library function by a pointer. This pointer gives the address
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of an executable module which will be used during the execution of the program. This
module will not be integrated into the executable code, and will furthermore be shared
by all of the programs that rely on this function. This is known as dynamic linking and
shared libraries. At Microsoft®, the phrase dynamic linkable library (DLL) is used.
When the function is called, all or part of the library is loaded into memory.

4.4.4. When to program in assembly language

The architectures of modern processors are increasingly complex, making it very
difficult to program in assembly language. This is particularly true in the case of the
very large instruction word (VLIW) and explicitly parallel instruction computing
(EPIC) architectures, for which the developer must know in all its details the
architecture of the processor and the relevant constraints.

Assembly programming is only used as a last recourse when faced with strict
constraints involving the hardware (real-time, signal and communication processing,
embedded applications, etc.). In most cases, high-level language compilers produce
sufficiently high performance code.

We can mention situations where assembly language programming, or at least
knowledge of this language, is imperative:

– debugging programs when confronted with difficult issues: the use of pointers,
stack management, etc.;

– the use of registers or special instructions in the case of system programming:
changes of context, low-level input–output processing, writing the system boot or the
file crt0.s in UNIX, etc.;

– the need for performance when the assembly code generated during a
compilation does not turn out to be efficient enough.

Even when an assembly language is used as a last recourse, it is often used in
the form of in-line instructions, i.e. instructions inserted within a program written in
high-level language.
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The Processor

We saw in Chapter 2 that, upon examination, the functions performed by a
processor can be divided into three units (Figure 5.1):

– the control unit, which is responsible for:

- fetching instructions from memory,

- decoding these instructions,

- sequencing microcommands to ensure the operation of recognized
instructions.

– the processing unit, which produces the results of the elementary arithmetic and
logic operations;

– the registers, which are used for storing into memory the information handled
by the processing unit.

Decode

and

microcommand

generation

Processing

unit

Operands

ProcessorInstructions

Control

unit Registers

Figure 5.1. The components of a processor
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Micro-instructionMicrocommands

Figure 5.2. Microcommands and microinstructions

In the context of microcommands sent by the sequence, we will use the following
terms:

– microinstruction, a Boolean vector representing the logic state of these
microcommands originating from the control unit;

– micro-operation, the execution of the microinstruction (Figure 5.2).

After presenting an example of the execution of an instruction, this chapter will
describe in detail the components of the control unit, as well as the concepts involved
in its design.

5.1. The control bus

We have emphasized the repetitive nature of a processor’s tasks: read instruction,
decode, execute, read instruction, etc. This cycle can be altered by external signals.
These signals are transmitted over the lines of the control bus. We have already
mentioned the case of the wait line (Figure 5.3).

Instruction

execution

Instruction

read/decode

Test of
control
lines {

Figure 5.3. Test of the control lines

Other signals originating from the processor, indicating its internal state or
providing information to external devices (the example of acknowledgments is
shown in Figure 5.4), travel on this same bus.
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Figure 5.4. The control lines

The state of the control lines is usually memorized by flip-flops, which then reflect
the event that activated them.

5.1.1. Reset line

The reset line causes the processor to “reboot”. When this line changes state,
the various flip-flops and internal registers are initialized, then the booting address
is obtained:

– directly: the program counter is initialized with a given value (this is the case
for Intel I8080® microprocessors, where the program counter is reset to zero, and the
Intel I8086®, where the physical boot address is FFFF016);

– indirectly: the program counter is loaded with a value that the processor fetches
from memory at a fixed address (e.g. in FFFE16 and FFFF16 in the 8-bit Motorola
MC6800 microprocessor, Figure 5.5).

PC

10A0

FFFE

FFFF

0001 0000 1010 0000

16

16

0001 0000
1010 0000

Memory

Boot
program

Figure 5.5. Booting in the case of the Motorola M6800

5.1.2. Hold line

The hold line is used when a unit other than the processor (another processor or an
exchange unit) attempts to take control of the buses. If this attempt is successful, the
processor must abstain from accessing the buses. The protocol uses two lines of the
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control bus: the HOLD line and the HOLD Acknowledge line. In response to this hold
request, the processor sends an acknowledgment indicating that the data and address
buses are switched to the “high impedance” state. The processor is then said to be in
idle mode.

5.1.3. Wait control line

The wait control line turns out to be necessary, as we have already seen, when
the processor – or another input–output device – attempts to gain access to a memory
with a long access time. This WAIT control line or READY line allows the processor
to insert wait cycles or wait states during read or write operations, while waiting for
the required data to become available, or the input–output unit to be ready.

5.1.4. Interrupt lines

Interrupt lines are used for taking external events into account. A sequence of
instructions can be executed in response to this request. The processing of these events
known as interrupts will be discussed in Chapter 6 on input–outputs.

5.1.5. Conceptual diagram

An operation diagram inspired from the Motorola MC6800 microprocessor can be
represented as shown in Figure 5.6.
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Interruption

no

yes

yes

no

yes

no

Interruption

processing

Instruction

execution

Software

interrupt

Waiting for

end of Hold

Release

acknowledge

Acknowledge

Read / decode

instruction

Figure 5.6. Example of an operation diagram
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A complete phase of executing the instruction is referred to as an instruction cycle.
The length of this cycle depends on the machine’s architecture.

5.2. Execution of an instruction: an example

We are going to illustrate what we have just seen with an example based on the
internal operation of the Intel I8080® microprocessor (Figure 5.7) [INT 79]. The
instruction we chose is add M according to the notation defined by Intel®.

Figure 5.7. The Intel® I8085, a more modern version of the I8080®, had simpler electronics,
in particular a single 5 V power supply and an integrated clock generator, a few

additional interrupts and a multiplexed address-data bus

This instruction performs the sum of the contents of the A register (accumulator)
and the memory word with the address provided by the content of the HL register
(used as an address register). The result is stored in register A (Figure 5.8).

This instruction gives rise to two memory accesses: one to read the instruction and
the other to read the operand into memory.

This example was chosen because the operation of the Intel I8080®

microprocessor is very simple, and because a description of every step in every
instruction can be found in the documentation that was made available by Intel Corp.

add M is divided into three machine cycles: M1, M2 and M3; each cycle divided
into “states” T1, T2, etc, according to the following scheme:

M1
T1 T2 T3 T4 T5

Code PC OUT INST (A) →
add M 8616 Status PC++ → IR ACT ×

−→
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−→
M2 M3

T1 T2 T3 T1 T2 T3
HL OUT (ACT)+(TMP)

Status Data → TMP → A ×

Memory

ALU

Flags

Data [HL]

add

code

A

HL address register

8

8

16

Figure 5.8. Diagram showing the operation of the add M instruction

The simplified internal structure of the machine is shown in Figure 5.9.
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Figure 5.9. Simplified structure of the CPU

The figure shows the main registers: instruction register IR (8 bits), flags (8 bits),
program counter (16 bits), register HL (16 bits), register A (8 bits) and two buffer
registers referred to as ACT (8 bits) and TMP (8 bits). The address buffer AR (16
bits) temporarily memorizes the address that needs to be presented to the address bus.
Bi-directional drivers are used to supply power to the data bus. These are three state
drivers.
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5.2.1. Execution of the instruction

Intel® defined a sequencing in terms of machine cycles. This means that each
instruction is divided into main cycles (one to five). The sum instruction considered
here consists of three machine cycles. Each of these consists of two to five
elementary cycles (“states”) defined by the basic clock. The microcommand involved
in the execution of each elementary cycle is denoted by μi

jk, where j is the machine
cycle number, k is the elementary cycle number and i is the line number.

1) First machine cycle: This corresponds to fetching the instruction in memory
and consists of following four elementary cycles:

i) The content of the program counter PC is transferred to the address buffer AR.
At the same time, the data bus provides an indication about the current machine cycle,
in this case the instruction fetchs cycle. This phase, denoted by M1–T1 (Figure 5.10),
involves the following microcode:

- μ1
11 commands multiplexer Mux to divert the content of PC to AR;

- μ2
11 commands the loading of buffer AR;

- μ3
11 indicates that we are in cycle T1. This information appears on a line of

the control bus under the name SYNC and can be used by the external logic;

- μ4
11 commands the data bus drivers in the “send” direction, etc.

STATUSSYNC

M1-T1

μ11
3

11
1

11
2

11
4μ

μ

μ

Figure 5.10. Phase M1–T1

These are certainly not all of the microcommands, but this list gives a good picture
of the role signals play in ensuring the execution of an instruction.

ii) Phase M1–T2 consists of incrementing the content of the program counter.
This anticipation of the program counter increment saves time when dealing with
instructions that take up a single word and provides additional time for the memory
to set itself (see next phase). Among the microcommands, we will mention μ1

12 that
indicates the program counter “increment mode”, μ2

12 that activates the incrementation
and μ3

12 or RD that validates access to the memory (Figure 5.11).
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RD

M1-T2

μ12
3

12
2

μ

READY

12
1

μ

Figure 5.11. Phase M1–T2

During this phase, the READY line is tested. If it is set to 0, which means that
the memory is not ready to deliver the instruction code, the processor introduces
elementary wait cycles TW. This is the same phase where the hold lines are tested.

iii) In the wait phase M1–TW, the instruction expected on the data bus is not
considered stable. It can therefore not be entered into the instruction register
(Figure 5.12).

M1-TW

READY

IR

RD

Figure 5.12. Phase M1–TW

iv) Phase M1–T3 (Figure 5.13) is the actual fetching of the instruction, which is
loaded into the instruction register IR. Among the relevant microcommands, we can
mention:

- μ1
13 command for the data bus drivers;

- RD memory control signal;

- μ2
13 loads the instruction register IR.

The memory word address containing the instruction has been on the bus since
phase M1–T1.
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M1-T3

μ13
2

13
3

13
1

μ

μ

IR

RD

Figure 5.13. Phase M1–T3

v) Phase M1–T4 marks the beginning of the actual unfolding of the instruction.
It corresponds to the transfer of the content of register A to buffer ACT, a transfer
that, as we explained previously, plays a role in preventing operational mishaps (see
Figure 2.10). The microcommand μ1

14 triggers the loading of ACT (the summing code
is already placed on the arithmetic logic unit) (Figure 5.14).

M1-T4

μ 4
1

Figure 5.14. Phase M1–T4

2) Second machine cycle: This cycle is made up of three elementary cycles and
corresponds to the machine cycle for reading the operand in memory.

i) Phase M2–T1 (Figure 5.15) consists of indicating the cycle type, Memory Read,
and is identical in every way to phase M1–T1 (Instruction Fetch).

The address of the operand in memory, which is contained in HL, is stored in
buffer AR.

ii) During phase M2–T2 (Figure 5.16), the READY line is tested and wait cycles
are inserted if necessary.

iii) The wait phase M2-TW is identical in every way to Phase M1–TW.
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STATUSSYNC

M2-T1

Figure 5.15. Phase M2–T1

M2-T2(TW)

READYRD

Figure 5.16. Phase M2–T2

iv) Phase M2–T3 (Figure 5.17) consists of fetching the second operand with the
microcommands:

- μ1
23 command for the data bus driver;

- RD controls signal for the memory;

- μ2
23 for loading TMP.

M2-T3

TMP

RD

Figure 5.17. Phase M2–T3
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The address of the memory word containing the operand has been on the address
bus since phase M2–T1. Just as in the read operation, a read command is generated
for the memory and the data bus driver is set. The only difference is the loading of the
registers: TMP replaces IR.

3) Third machine cycle: This could be described as the instruction execution cycle.
It consists of the following two elementary cycles:

i) During the first-to-last phase, M3–T1 (Figure 5.18), nothing happens for the
current operation. It is introduced artificially in order for the following instruction to
begin its cycle.

STATUSSYNC

M1-T1M3-T1

Figure 5.18. Phase M3–T1 (M1–T1 of the next instruction in the program)

ii) The final phase, M3–T2 (Figure 5.19), consists of obtaining the result of the
summing operation from register A and setting the flags. Among the microcommands
used, we can mention:

- μ1
32 for the loading of register A;

- μ2
32 for the loading of the flag register.

The overlap between consecutive operations significantly improves performance.
For the summing instruction, we gain two elementary cycles out of the nine that are
required (once if we include the wait cycles).

5.2.2. Timing diagram

We continue with the commands involved in the execution of the instruction
studied in the previous section, and now represent them in a timing diagram depicted
in Figure 5.20 This timing diagram is based on the I8080 and I8085 processors from
Intel Corp.® processors. The RD line was actually introduced with the Intel I8085®.
In the Intel I8080®, a DBIN (Data Bus IN) line was used for validating read
transfers.
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M1-T2M3-T2

32
2

μ

READY

32
1

μ

RD

Figure 5.19. Phase M3–T2 (M1–T2 of the next instruction in the program)

M3M2M1

Addr.

T1 T2 TW T3 T4 T1 T2 T1 T2TW T3

M1

SYNC

Data Status Status Status

RD

READY

Read Read

Instruction Operand

Figure 5.20. Timing diagram

Time is represented on the x-axis and the logic state of a few of the commands
are represented on the y-axis. We want to take a closer look, in particular, at phases
M1–T1 through M1–T3, which correspond to the fetching of the instruction.

1) During the M1–T1 phase, the microcommands involved are the following:

- μ1
11 command for multiplexer Mux which is assumed to be equal to 1 in

M1–T1. or ,

- μ2
11 command to load buffer AR equal to Φ2.

These commands are also used in fetching the operand during the phase where AR is
loaded with the content of HL. We assume that μ1

11 = 0.

2) During phase M1–T2, the address of the instruction (shaded area) is not yet
valid on the address bus. To increment the program counter, the increment mode μ1

12
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is set to 1, then an impulse from the clock μ2
12 using Φ2 is generated;

3) And so on.

5.3. Sequencer composition

The sequencer (Figure 5.21) is an automaton that generates the microcommands.
This automaton, or sequential machine, has been taken as inputs:

– the instruction code or, if we make a distinction between decoder and sequencer,
the outputs of the decoder;

– information on the state of the processor (in particular, on the flags);

– the state of the control bus lines;

– the signals from the clock.

Microcommands
Automaton

Clock

Instruction

code

State

Figure 5.21. The sequencer

The design of this sequential machine can be achieved by:

– a traditional synthesis method based on hardwired automatons;

– a method based on the concept of microprogramming;

– a combination of these two methods.

5.3.1. Traditional synthesis methods

5.3.1.1. Main ideas

Traditional synthesis methods depend a great deal on the experience of the
designer. They consist of coding the different phases of the execution of the
instructions. To illustrate, we will consider again the instruction used as an example,
simplifying even more the operation of the processor. Let Cn be the variable that
uniquely identifies the instruction and φij the variable that canonically codes phase
Mi–Tj (Figure 5.22). It is of course out of the question to do a synthesis of all the
instructions independently from one another. The task would be too difficult.
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1

2

n

Access Execution

H

Figure 5.22. The φij variables

The equation for the command of multiplex “PC/HL”, for this instruction alone,
can be written as:

μ2
12 = Cn × φ11 = φ11

because μ2
12 is independent of Cn, since that phase executes itself regardless of the

instruction. Noticing this might lead to a simplification (the simplest expression does
not always correspond to the simplest design). The load command for register AR
could be:

loadAR = φ11 × Φ2 + Cn × φ21 × Φ2

The incrementation command for the program counter will be written as
incrPC = φ12 due to the independence of incrPC with respect to the instruction
code.

If we know how to write all of these commands as equations, our synthesis
problem boils down to generating the φij . We can then draw the state diagram of the
corresponding sequential machine (Figure 5.23).

The functions that set the conditions for transitions in this graph depend on the
instruction and the condition codes. Condition C1, for example, will only be true for
an “empty” instruction (instruction that does nothing or nop), whereas its complement
will be true for all of the other instructions. Such an instruction would generate a
sequence φ11–φ12–φ13. The sequence “state 1 – state 2 – state 3” is incompressible
and common to all of the instructions.

The synthesis process relies on models of variable complexity arrive at a coding of
the states, followed by the logic equations for the state variables and the outputs. The
diagram showing the operation of the resulting sequencer is shown in Figure 5.24.
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Figure 5.23. The state diagram of the φi,j generator
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Figure 5.24. Diagram showing the operation of the hardwired sequencer

Phase i

Phase i+1

Microinstruction

Microcommand 1 Microcommand 2 Microcommand n

0 1 0

1

1 0 1

1 0 0 1 0

Figure 5.25. Microcommands

The main difficulties of this approach arise when dealing with the design (each
modification requires doing the entire synthesis process over again), the optimization
of the result (minimizing the number of elements) as well as the testing of this result.
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5.3.2. Microprogramming

The second sequencer synthesis method consists of using a memory device – the
microprogram memory – to implement the sequencer. For each phase, we can identify
the microcommands involved in its design (Figure 5.25). These values are stored onto
memory, and the command can be executed simply by scanning this memory.

This memory consists of:

– a microcommand part: at a given time, the commands can be represented by a
Boolean vector called a microinstruction. Each binary element of a word in memory
indicates the state of one of the microcommands in the phase;

– an address: the sequencer is a sequential machine. Its states are defined by the
inputs of this microprogram memory [WIL 53]. The transitions are defined by the
addresses corresponding to the following state.

This technique was proposed by Wilkes in 1951 [WIL 51]. At a given time, we
have at our disposal (Figure 5.26):

– commands corresponding to the current phase;

– the address of the word containing the commands associated with the following
state.
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Figure 5.26. General structure of the microprogrammed sequencer

The microcounter is comparable to a program counter. It provides addresses in
the microprogram memory, ensuring the sequential operation of the phases of the
instruction. This microprogramming technique gives considerable flexibility in
defining the set of instructions. In particular, it gives the user the possibility to create
new ones if the set provided by the manufacturer is not sufficient. In that case, of
course, the memory comprises of a non-volatile part defining the standard set of
instructions, and a volatile part usable for microcoding new instructions.



The Processor 91

5.4. Extensions

5.4.1. Coprocessors

Coprocessors provide extensions to the capabilities of the processor and are
equipped, just as regular processors are, with a control unit and a processing unit. The
processor and coprocessor share the same local bus and have common instructions,
referred to as escape instructions, which extend the basic set of instructions.

EXAMPLE 5.1. – [I80387 coprocessor] Coprocessors from a series such as Intel®
I80387 (NPX, Numeric Processor Extension), Cyrix and Weitek generate a
significant gain in computational power. These coprocessors are equipped with a
particularly wide variety of instructions – arithmetic functions, transcendental
functions, trigonometric functions, etc. – and with eight additional 80-bit registers
directly accessible to the processor. Exchanges between processor and coprocessor
are completely invisible to the programmer.

Registers, which can be accessed through a stack mechanism, are referred to as ST
for the top of the stack, ST(1), . . ., ST(7) (Figure 5.27).

Control word

Status word

Tag Word

Instruction
Pointer

Operand
Pointer

1 15 64
Sign Exponent Mantissa

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

Flags

Figure 5.27. Architecture of the coprocessor

The instruction size is 2 bytes when the memory access is not required. Otherwise,
the size is 4 bytes for the Intel® 8087, the Intel® 80287 and the Intel® 80387 in 16-bit
mode, and six bytes for the Intel® 80387 in 32-bit mode. On the original Intel® 8087
processor, each instruction was preceded with an FWAIT instruction to ensure the
synchronization of the execution of processor and coprocessor instructions.

Each coprocessor instruction is preceded by an escape byte “ESC”. The processor
and the coprocessor decode the instruction. The processor calculates the address of the
operand and fetches it. The data are then “captured” by the coprocessor on the data
bus.
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Internally, the coprocessor works in an extended 80-bit floating-point
representation. Of these 80 bits, 64 are used for the significand, 15 for the exponent
and 1 is a sign bit. What makes this coding different is that the first bit of the
significand (the hidden bit in other floating-point representations) is apparent. The
formats that are handled, and that are therefore subject to conversion when they are
loaded into the coprocessor, are the following:

– 16, 32 or 64-bit integers coded in two’s complement;

– 18-digit packed BCD. Bit 79 is the sign bit, and bits 72 through 78 are not used;

– single precision 32-bit floating-point: significand (23), exponent (8) and sign;

– double precision 64-bit floating-point: significand (52), exponent (11) and sign.

The two bit flags associated with each internal register, and combined in a 16-bit
word, give the state of the content of each register: 00 for valid content, 01 for content
equal to 0, 10 for QNaN, SNaN (page 45), infinite, denormalized and 11 for empty.

The presence of these flags makes it possible to optimize the operation of the
coprocessor, in part by avoiding unnecessary calculations. The state word has the
following structure:

B C3 T2 T1 T0 C2 C1 C0 · · ·
· · · ES SF PE UE OE ZE DE IE

Bits T0, T1 and T2 give the number of the register at the top of the stack, and
bits C0 through C3 are the coprocessor’s condition codes. The exception flags (see
Chapter 6 on input–outputs) are: PE (precision), UE (underflow), OE (overflow), ZE
(division by zero), DE (denormalized operand) and IE (invalid operation).

Interrupts 7, 9, 13 and 16 correspond to the coprocessor exceptions on the Intel®
80386.

EXAMPLE 5.2. – [Calculating a sum using the coprocessor] We wish to calculate the
sum of two single precision floating-point numbers using the floating-point
coprocessor described in the previous section.
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The calling program, written in C:

#include <stdio.h>

int main () {
void mysum(float, float, float*);
float a=3.5, b=7;
float c;
mysum(a, b, &c);
printf("%5.2f\n",c);
return 1;

}

transmits to the stack address of the result (32 bits), then the value of operand b
(32 bits) and finally the value of operand a (32 bits).

The assembly language program is as follows:

.text
.globl _mysum
_mysum:

pushl %ebp
movl %esp, %ebp
pushl %ebx
flds 12(%ebp)
fadds 8(%ebp)
movl 16(%ebp), %ebx
fstps (%ebx)
popl %ebx
leave
ret

The flds instruction loads a single precision floating-point number onto the top
of the stack (register ST). fadds adds the top of the stack to the single precision
floating-point number with the address given in the stack in 8(%ebp), and the result
is stored in ST. fstps stores the top of the stack at the address provided (%ebx). The
result for the executable named addfloat is:

mycomputer:$ addfloat
10.50
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5.4.2. Vector extensions

Most programs apply identical processes to large quantities of data. The
parallelization of these processes considerably improves processing speeds.

Processor architects have focused on developing modules known as vector
extensions. Of these, we can mention Altivec by Motorola®, 3DNow! by AMD® and,
at Intel®, the MMX technology (Pentium® II), SSE extensions (Pentium® III), SSE2
extensions (Pentium® 4, Xeon®), SSE3 extensions (Pentium® 4 with
Hyper-Threading) and Supplemental Streaming SIMD Extensions 3 (Xeon® 5100
and Core® 2).

In the most recent extensions, the data in a 128-bit register can be interpreted as
128 bits, 16 bytes, eight 16-bit integers, four 32-bit integers or four IEEE-754 single
precision floating-point numbers.

5.4.2.1. The MMX extension

The first generation of extensions (the MMX extensions) from Intel® used the
registers of the floating-point coprocessor for the vector extension (Figure 5.28).

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

0636479

Figure 5.28. The MMX extension

“Quadruple word” registers (4 × 16 bits) are denoted by MM0, MM1, . . ., MM7.
When the operations deal, in parallel, with a set of bytes, words, or double words of a
64-bit register, we use the term packed data.

The set of instructions associated with the MMX consists of 57 instructions:
transfers, arithmetic and logic operations, comparisons, conversions, shifts and
setting to zero the MMX state register. Saturations are dealt with in “saturated
mode”, and sums are handled “bit-by-bit”, so 7F16 + 1 yields 7F16 and not 8016.

EXAMPLE 5.3. – [MMX instructions] The instruction set offers several different types
of sums, in particular:
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– sum involving packed bytes with handling of the saturation (the “fixed-point”
section on page 40): paddsb mm0,mm1 simultaneously adds 8 bytes contained in mm0
to those in mm1 and stores the eight results in mm0;

– sum involving packed words without handling of the saturation: paddw
mm0,mm1 simultaneously adds four words contained in mm0 to those in mm1 and stores
the eight results in mm0.

EXAMPLE 5.4. – [Multiplication–accumulation instructions] A multiplication–
addition operation involving words facilitates the processing of operations such as
the fixed-point convolution (section 5.4.3.1 on DSP). Its operation is summed up in
Figure 5.29.

MMx

MMx

MMy or memory

161616
1616

32 32 32 32

161616

Figure 5.29. The multiplication–addition operation

Four 16-bit values a1, . . . , a4 are stored in the MMx register, four 16-bit values b1,
. . . , b4 are stored in the MMy register. The pmadwd instruction yields 2

k=1 akbk in
the 32 most significant bits of MMx and 4

k=3 akbk in the 32 least significant bits.

With a sum and a shift, we can accelerate the sum of four products.

The management of registers is not the same for STn floating-point and MMn
registers. With the former, STn refers to the physical register with the number between
0 and 7 given by the top of stack (TOS) field of the state register. MM0 always refers
to the physical register 0. At each execution of an MMX instruction, the TOS field is
in fact reset to 0.

The emms (Empty MMX Technology State) instruction sets all the flags of the
floating-point unit to “empty”. When working with the MMX, every sequence must
end with this instruction, otherwise the data contained in the register could seem
valid to the floating-point coprocessor.

During a task switch, the CR0.TS bit of the control register CR0 is set to one.
The first attempt to execute an MMX or floating-point instruction triggers a seven
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exception (device not available). This allows the system to save a copy of the task and
restore it (FSAVE and FRSTOR instructions).

5.4.2.2. SSE extensions

The MMX extension has the drawback of only processing integer values
(fixed-point numbers). Furthermore, since it is impossible to simultaneoulsy use the
floating-point coprocessor and the vector extension, Intel® added a specific set of
128-bit registers (Figure 5.30), the SSE extension (Streaming SIMD Extension).

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

(64) (128)

Figure 5.30. The SSE extension

The data being processed can be stored in memory or in one of the eight 128-bit
registers of the extension, referred to as the XMM registers. At the same time, the SSE
extension introduces a certain number of MMX instructions.

Intel® introduced, with the Pentium®-4, the second generation SSE2 in which the
operand can be, as before, stored in memory or in XMM registers. It is possible to
work with double precision floating-point data, with 64-bit packed integers, and with
128-bit integers.

EXAMPLE 5.5. – [Dot product on an SSE3 extension] Consider two four-element
vectors v1 (vect1) and v2 (vect2). Their dot product is given by
S =

3
k=0 v1(k)v2(k).

#include <stdio.h>

int main () {
void dotprod(float*, float*, float*);
float vect1[]={1.0, 2.5, 3.0, 4.5};
float vect2[]={5.3, 2.5, 2.1, -1.5};
float result;
dotprod(vect1, vect2, &result);
printf("%f\n", result);
return 1;

}
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The registers xmm0 and xmm1 are used for storing the two vectors. The
multiplication mulps performs a dot product by calculating the four products
p(k) = v1(k)v2(k). The horizontal addition haddps on the same register xmm0 first
gives us [p(0) + p(1), p(2) + p(3), p(0) + p(1), p(2) + p(3)] then [S, S, S, S], in the
second call, where S is the result of p(0) + p(1) + p(2) + p(3).

The assembly language program is as follows:

.text
.globl _dotprod
_dotprod:

pushl %ebp
movl %esp, %ebp
pushl %ebx
movl 8(%ebp),%ebx
movaps (%ebx),%xmm0
movl 12(%ebp),%ebx
movaps (%ebx),%xmm1
mulps %xmm1,%xmm0
haddps %xmm0,%xmm0
haddps %xmm0,%xmm0

movl 16(%ebp), %ebx
movss %xmm0,(%ebx)
popl %ebx
leave
ret

We can test whether the extensions MMX, SSE, etc., are present using the cpuid
instruction [INT 09]. The following program calls cpuid from machine instructions
included in the program written in C. We are using here what is known as an extended
assembler (extended asm) specific to the gcc compiler:

#include <stdio.h>

int main() {
int b=0, a=0;
char myform[]="edx=%x and ecx=%x \n";
__asm__ ("mov $1, %%eax; " /* 1 into eax */

"cpuid; "
"mov %%edx, %0; "
"mov %%ecx, %1;"
: "=r"(b), "=r"(a) /* output */
: /* no input */
: "%eax", "%edx", "%edx" /* clobbered registers */
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);
printf(myform,b,a);

return 1;
}

The program returns, for the processor used in this example, the values 8e3bd
and bfebfbff in the 32-bit registers ecx and edx, respectively. The interpretation of
this result indicates that the processor is equipped with a floating-point unit, or FPU
(edx.0), supports MMX instructions (edx.23), as well as SSE (edx.25), SSE2
(edx.26), instructions for saving and rapid restore of the FPU task (edx.24), and
supports SSE3 instructions (ecx.0), SSSE3 (ecx.9) and SSE4.1 (ecx.19).

5.4.2.3. The Altivec extension

The Altivec® (the Motorola® name), or Velocity Engine® (Apple®), or VMX®

(IBM®), is an extension found in the Power 6®, XBox 360®, PowerPC® or, in a
similar format, in Sony’s PS3®. Its programming model is shown in Figure 5.31.

VR0

VR1

VR2

VR30

VR31

Figure 5.31. The Altivec® – three sources and one target

128-bit vectors can be manipulated as sixteen 8-bit integers, eight 16-bit integers
(signed or not), four 32-bit integers or four single precision floating-point numbers (no
double precision). The 162 instructions support three sources and one target (except
for transfers). The Altivec® specification does not indicate either the operating mode
(pipeline, parallel, etc.) or the number of processing units.

The Altivec® architecture supports “big-endian” and “little-endian” modes. In the
big-endian mode, the transfer from memory to register of a quadruple word writes the
word with the address EA in position 0 in the register (Figure 5.32).
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VRn

Word 0 Word 1 Word 2 Word 3

EA EA+1 EA+2 EA+3

0 127

Figure 5.32. Accessing a quadruple word

5.4.3. DSP and GPU

Standard processors are not the best suited for certain specific tasks such as signal
processing (filtering, equalization, etc.) or processing geometric objects to display
them on a screen (lighting, texture, etc.).

5.4.3.1. Processors specialized in signal processing

Digital signal processors (DSPs) have an architecture adapted to, among other
things, filtering, or convolution, operations. A convolution, requires the ability to
execute a multiplication and a sum in a single clock cycle. Another important task,
particularly in telecommunications, is equalization, which requires the
implementation of a “shortest path”-type algorithm, therefore the ability, in one
cycle, to perform a comparison and tag a node in a graph (Viterbi algorithm). For
these specific operations, DSP are at least as powerful as ordinary processors, despite
the relatively low clock rate imposed by low consumption constraints.

In simple terms, the filtering operations are equivalent to calculating, from the
sequences {xn} and {hn}, a third sequence of values {yn} as follows:

yn =
N−1
k=0 hkxn−k

We therefore need to perform a loop y := y+(hk ×xn−k). If we want to perform
each step of the loop in one cycle, we need a special instruction that simultaneously
performs a multiplication and a sum (MAC instruction), and most of all we need
an architecture that allows for three fetch operations in the same cycle: fetching the
instruction, and fetching the two operands hk and xn−k. This can only be done with
the help of a cache (Chapter 8) and two memory banks (instructions and data: Harvard
architecture).

DSPs are extremely widespread because they are built into all cell phones. Certain
architectures dedicated to stationary communication hardware (base stations) have
VLIW (Very Long Instruction Word) architectures (Chapter 13) and hold considerable
computational power.
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5.4.3.2. Processors specialized in image processing

Graphics processing units (GPUs) are programmable calculation units adapted to
process 3D images. They are characterized by architectures with very parallelized
operations. The “geometric” description of a 3D image is transmitted to the display
board and the GPU is tasked with calculating the 2D image, a series of pixels, which
is displayed on the screen.

The basic geometric element is the vertex. A vertex is defined by its homogeneous
coordinates x, y, z and w. The usual coordinates are then given by x/w, y/w and
z/w. In practice, the vertex is not exactly a point in the traditional geometric sense.
It has other attributes, such as diffuse and specular color, a vector orthogonal to the
surface where the vertex sits, texture coordinates, etc.

Vertices

Graphic

primitives

Tesselation
Vertex

pipeline

Pixel

pipeline

clipping

culling

texture

alpha and

position

processing

rendering and

alpha blending

Vertex processing

Figure 5.33. Architecture of a graphics processor. Tessellation consists of dividing each
triangle, or basic element, into sub-elements that can then be manipulated along the direction

orthogonal to the surface. This helps achieve a more realistic final image.

The processing (Figure 5.33) is divided into several steps (source: NVIDIA®

[LAI 11]):

1) vertex processing (from vertices to screen space);

2) clipping (deleting unseen pixels);

3) pixel generation (triangle setup and rasterization);

4) deleting hidden pixels (occlusion culling);

5) calculating values for all pixels (parameter interpolation);

6) processing of colors, transparency, etc, (pixel shader), textures (in the frame
buffer);

7) blending of the final image (pixel engine).
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5.5. Exercise

Exercise 5.1 (Instruction sequencing) (Hints on page 330) – In the Intel I8080®,
there are 10 possible types of machine cycles: Instruction Fetch, Memory Read,
Memory Write, Stack Read, Stack Write, Input Read, Output Write, Interrupt
Acknowledge, Halt Acknowledge and Interrupt Acknowledge while Halt. The
corresponding codes are sent on the data bus during phase T1 of each machine cycle.

Consider the instruction “Transfer immediate value to memory”, in which the
address is given by the content of the HL register. Its operation is described as
follows:

M1
T1 T2 T3 T4 T5

Code PC OUT INST
mvi M,data 36h Status PC++ →IR × ×

−→

−→
M2 M3

T1 T2 T3 T1 T2 T3
PC OUT PC++ HL OUT DATA

Status B2 → TMP Status TMP→ BUS

Graphically represent the execution of this instruction using diagrams like those in
Figure 5.34.

Figure 5.34. Execution of an instruction, exercise



Chapter 6

Inputs and Outputs

The use of personal computers has become commonplace, and we are now familiar
with its elements: keyboard, screen, printer, mouse, hard drive, etc. These devices, or
peripherals, are components that are directly tied to the processor. In this chapter, we
propose to examine how they communicate with each other.

The few peripherals we mentioned have very different properties, both in terms of
functions and electrically:

– The keyboard sends characters at a pace defined by the user, and each character
is coded and transmitted to the processor.

– The screen is used for displaying text and/or images in color. The transmission
of information between processor and monitor can be done in the form of a binary
pulse train, a composite signal or a video signal, depending on the characteristics of
the screen-graphics card combination.

– The printer is used for producing paper documents at speeds from a few tens of
characters per second (cps) to several tens or hundreds of pages per minute.

– The drive units contain information stored in the form of blocks that can be
transferred at speeds of several million bytes per second, etc.

The processor communicates with these peripherals via a bus that connects the
different modules of the central processing unit (Chapter 2).

The electrical characteristics of the bus prohibit them from being directly
connected to peripherals. These peripherals can instead be “attached” to the
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computer bus via devices called exchange units. The “exchange unit-peripheral”
connection will be referred to as a link (Figure 6.1).

LinkBus

CPU

Exchange

unit
Peripheral

unit
Processor

Figure 6.1. Exchange units

The simplest exchange units function merely as hardware adapters for electrical
signals, but they can also be tasked with managing the entire exchange of information
between the processor-memory unit and a peripheral (i.e. for example, the case, with
exchange units that manage disks). More specifically, they can be divided into two
categories:

1) hardware adapters:

- voltage levels;

- command mode (current or voltage);

- electrical power supply;

- waveshaping (levels, pulses);

2) functional adapters:

- data type (word, byte, block, etc.);

- transfer speed or bandwidth;

- protocol handling (combining and recognizing service information, handling
all of the exchange procedures).

We will first give two examples emphasizing the role of exchange units in adapting
the characteristics of the peripheral to those of the computer (section 1.2). We will
then present the basic components of exchange units. Finally, we will describe the
elements used for the connection and communication between the exchange units and
the processor-memory unit (the dynamic aspect of exchange units), in other words:

– exchange unit addressing;

– handling transfers between the processor or the memory and the exchange units,
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where we will see that:

– on the one hand, exchange units are often responsible for part of the input–output
tasks, so that the processor can devote itself to exchanges with the memory;

– on the other hand, they replace the processor in exchanges that it cannot handle,
either from lack of speed (in the case of transfers with a hard drive, for example) or to
free up its resources.

This description will emphasize one of the fundamental tools of computer
operation: interrupts.

6.1. Examples

The first function of exchange units is to interface with the peripherals. The role of
an interface is to adapt the electrical and logic characteristics of the signals sent and
received by peripherals to those of signals transported on buses. The first example is
an illustration of this function, while the second will show how the exchange unit can
also take on part of the processor’s tasks.

6.1.1. Example: controlling a thermocouple

The system in Figure 6.2 is composed of a processor and two peripheral units:

– an input unit consisting of a device for measuring temperature (a thermocouple
equipped with a threshold logic), which supplies a 5 V voltage if the temperature is
above a certain threshold, and 0 V if it is not;

– an output unit consisting of only a light-emitting diode that must light up when
the temperature goes above said threshold, all this under the control of the computer.

Bus

Processor

Peripheral

unit:

diode

Exchange

unit

Peripheral

unit:

thermocouple

Figure 6.2. Control device

To control this device, the processor is equipped with an 8-bit bidirectional data
bus and a 16-bit address bus. It also has an accumulator register denoted by A. Let us
assume that the only tasks the computer must perform are reading the thermocouple
and controlling the on and off switching of the diode according to the flow chart in
Figure 6.3.
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Reading

thermocouple state

Diode control

Figure 6.3. Flow chart of the control system

When the processor executes a program, the address, data and control buses go
through changes in their states over time. The execution of a read or write operation
(involving the memory or other devices) is done by presentation:

– on the data bus: of the value of the data we wish to transfer;

– on the address bus: of the address of the output or input unit.

Let us assume that the addresses of the input and output units are 140C16 and
140D16, respectively. The accumulator contains the data 3216. If the processor
executes an instruction to store the accumulator at the address 140C16, then the states
of the data and address buses, during a very short time, are as follows:

Data bus
Line number 7 6 5 4 3 2 1 0

Line state 0 0 1 1 0 0 1 0

Address
bus

Line number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Line state 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0

A timing diagram of a write instruction is given in Figure 6.4. It shows the
processor clock, the data bus, the address bus and the write line of the control bus.
This line is used to validate any write operation generated by the execution of a write
instruction (in memory or for any other output device).

The addresses are used for selecting the input–output unit. The only difference
between the two is the least significant bit (line A0):

– input: 140C (hexa) = 0001 0100 0000 1100
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Address bus

Clock

Data bus

Memory write

M

Valid address

Valid data

Figure 6.4. Timing diagram

– output: 140D (hexa) = 0001 0100 0000 1101

The 15 most significant bits are decoded (Figure 6.5).

Decoding

0001 0100 0000 110

A0

A1

A15

A0

S

Figure 6.5. Address decoding

We will assume that selections are done always by the “logic state” 0 (S) when the
input is in the adequate configuration. This gives us the Karnaugh maps for the input
and output selections Se and Ss, respectively:

S S
Se 0 1 Ss 0 1

A0 0 0 1 A0 0 1 1
1 1 1 1 0 1

Table 6.1. Karnaugh maps of the selections

hence Se = S + A0, Ss = S + A0 and the address decoding diagram is shown in
Figure 6.6.

The output selection takes place very quickly when the writing instruction is
executed.

However, the light-emitting diode must remain on, or off, depending on the state
of thermocouple. We will use an element of memory, in this case a D flip-flop, for
controlling this lamp. Since the information that has to be stored in memory is only
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a 1 or a 0, a single bus line will suffice. Let us choose line D0. Loading the flip-flop
uses the control lines for memory write and for output select. Note in Figure 6.7 that
the load control (the drop in M +DS) happens when the data on the data bus is valid
(Figure 6.8).

Α0

S'

DE

Input

selection

DS

Output

selection

Decoder
Α1

Α15

OR

OR

Figure 6.6. Selection diagram

Address bus

Clock

Data bus

Memory read M

M + DS

Valid address

Valid data

Figure 6.7. Diode control

DS

D
Diode

control

Load control

D0

D0

OR

M

Data

bus

Figure 6.8. Loading the control flip-flop

Adapting electrical signals involves both the input and the output. Since the input
unit delivers voltages of 0 or 5 V, there are no compatibility issues. We can indeed
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assume that the microprocessor uses these voltage levels or that there is a voltage
adapter designed for such levels. For the output device, the voltage can be adapted
by inserting a transistor set up as an open collector. This is necessary because if the
light-emitting diode were to get its power directly from the microprocessor, or from
any logic gate, for example diode that relies on TTL technology, the device could be
destroyed. The current required would be too high for its output circuits. It is therefore
necessary to introduce an element capable of providing the required amount of energy
to power this diode (Figure 6.9).

5V

0V

Transistor

Light-emitting

diode

270 Ω

10 kΩ

E

A

Figure 6.9. Transistor setup

We use a transistor – actually an integrated circuit containing a transistor – that
functions as a control switch from its input E (the base of the transistor). When the
input voltage is sufficient (in this case 5 V), the transistor switches to its active or
saturation mode (closed switch). The potential at point A is set to a value close to 0
V. The current through the diode becomes sufficient for it to light up. In the opposite
scenario, the transistor is said to be cutoff (open switch). The potential at point A is 5
V and no current is traveling through the diode, which remains off.

Therefore, if we wish to turn the diode on (respectively off), we need to load an
even value (respectively odd) into the accumulator and send it via the data bus lines.
Line D0 (least significant bit) will then take on the values 0 or 1.

To light the diode, two instructions are necessary:

– the first, which loads an odd value into the accumulator so that D0 is set to 1;

– the second, which transfers the content of the accumulator to the address 140D16.
The input unit is selected just like the output unit.

Let us consider the more general case of an input unit and an output unit that are
accessible, via a bidirectional data bus and an address bus, according to Figure 6.10.
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Output

EU

Input

EU

Address bus

Data bus

Figure 6.10. The bus, and the input and output units

Since each unit is accessible from the same data bus, the input unit runs the risk of
deteriorating when, for example, a write operation is performed to the output unit. This
is due to the fact that the information will be present on the outputs of the input unit.
The solution that was chosen is to use three-state drivers. When the input unit is not
selected (addressed), these outputs are set to high impedance. They are “disconnected”
from the bus.

In the present case, the circuit diagram (Figure 6.12) will use one of these
three-state drivers (Figure 6.11) as a switch.

High-impedance

control

(address selection)

Input

device
Data

bus

Figure 6.11. The three-state driver

Note that the same is true for memory “outputs” set to high impedance when they
are not addressed.

The thermocouple state is read by loading into the accumulator the content of the
address 140C16.

mbegin:
mov A,(140CH) ; reading of the thermocouple state. A:=(140CH)

; The bit is 0 if the temperature is less
; than the chosen threshold,
; and otherwise 1

mov (140DH),A ; diode control (140DH):=A
; (only the 0 bit is active)

jmp mbegin
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Figure 6.12. Circuit diagram

Note the poor use of the processor. A device that only detected changes in the state
of the thermocouple, and warned the processor of these changes, could certainly free
it up for other tasks. We will come back to this point in the section on interrupts.

6.1.2. Example: serial terminal connection

For a very long time, communicating with a computer was done using terminals
that operated in text mode. We will focus here on the connection of a
serial-asynchronous terminal to a computer (Figure 6.13). This peripheral is
equipped with a screen and a keyboard, which allow it to display characters sent by
the computer or, the other way around, to send the computer characters typed on the
keyboard.

Processor
Exchange

unit Peripheral

Serial

link Terminal

Bus

Figure 6.13. Diagram of the connection scheme

Suppose we wish to send the character “G” to the terminal, and that it functions
with ASCII. The coding for this character is then 4716.
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The character can be sent in two steps:

– the character is first “sent” (execution of a program) in parallel mode on the data
bus to the exchange unit;

– then transferred in serial mode from the exchange unit to the terminal. As a
convention, we send the least significant bit first (Figure 6.14). The period of the clock
signal is denoted by T .

T

1 1 0 01 0 1 00

Figure 6.14. Timing diagram of the transfer

The terminal will only recognize the character it receives if the following two
conditions are met:

– the first transmitted bit can be identified, to ensure what is known as character
synchronization;

– the signal received is sampled at the proper rate (bandwidth).

The transmission protocol works according to the following rules:

– At rest, meaning when no character is being sent, the line has to be set to a
potential such that its state can be distinguished from that of a line not connected to
any terminal (logic state 1).

– The first bit is always a 0, which precedes the byte being transmitted. This is
known as the start bit.

– We add, at the end of the character transmission, a certain number of 1 bits,
known as stop bit(s). The number of these stop bits is usually 1, 1.5 or 2 (1.5 means
that the line remains set to 1 for a time 1.5× T ). This ensures that a transition 1 → 0
will indeed occur when the next bit is sent.

If we use two stop bits, the timing diagram will look like the diagram in
Figure 6.15.

The exchange unit that handles the terminal is therefore in charge of the following
functions:

– serializing the data provided by the processor;
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– adding service information (in this case, start and stop bits);

– defining the transmission speed to adapt to the terminal being used.

1 1 01 0 1 00

S
t
a
r
t

S
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o
p

S
t
o
p

Transmitted information

Useful information

Figure 6.15. Transmission with two stop bits

The transmission rate is expressed in bits per second, although the term bauds is
also often used (wrongly, since it actually expresses the modulation rate used). The
receptor operates as follows: the controller samples a line at a frequency usually set to
16/T (this is one of the parameters that can be provided to the controller). As soon as
the controller detects a 0, it waits for a time T/2 and samples the line again to check
if the switch to 0 is not transient. If this 0 state is stable, it continues to sample the line
at a frequency 1/T and loads the bits it receives in an offset register (Figure 6.16).

Start

bit

VerificationDetection First bit acquisition

Sampling

times

Figure 6.16. Signal sampling by the controller

The general scheme of this exchange unit is shown in Figure 6.17.

When a character is typed on the keyboard, the transmission diagram in the
direction from terminal to processor is of course similar to the previous diagram
(Figure 6.18).

In practice, the two input and output functions are integrated into a single
electronic component referred to, depending on the manufacturer, as Universal
Asynchronous Receiver Transmitter (UART), Asynchronous Communications
Interface Adapter (ACIA), etc.
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Figure 6.17. Sending from the exchange unit
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Figure 6.18. Reception by the exchange unit

These integrated controllers offer many different features, including:

– choosing the number of useful bits (from five to 16);

– choosing the number of stop bits to transmit;

– checking the parity of the word being transmitted (meaning the parity of the
number of 1 bits in the character code, not the parity of the code itself), etc.

These parameters are defined during the execution of the controller’s initialization
program.

One possible diagram for such an exchange unit is shown in Figure 6.19.
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Figure 6.19. Serial exchange unit

6.2. Design and addressing of EU

6.2.1. Design of exchange units

In the case of serial reception discussed as an example, when the exchange unit
has finished “de-serializing” a word, it must be able to indicate to the processor that a
word is available (the processor can then fetch it). In the case of sending, the exchange
unit must also be able to inform the processor that it is ready to receive a word before
it can be sent.

In both cases, the exchange unit must also be able to indicate whether the exchange
took place properly. All of this information can be gathered in a register known as a
status register, where each bit carries a specific meaning, such as “transmitter ready”,
“receiver ready” and “parity error”.

The exchange unit needs to be equipped with one or several data registers used by
the processor to read or write the data being exchanged.

Because the exchange unit generally offers several services, each one in response
to a command, it will also be equipped with:

– a command register used by the processor to read or write the task at hand:
initializing the exchange unit, picking and starting a task, etc.;

– a parameter register used for providing the task characteristics: transmission
rate, memory transfer addresses, number of stop bits, track and sector number on a
disk, etc.
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All of these components can be represented according to Figure 6.20.

Command

State

Parameters

Data

Control Address

Data

Control

Figure 6.20. Design of the exchange unit

An exchange unit can be considered as a specialized processor with an
instruction register consisting of a single command register.

The difference lies in the fact that the exchange unit is not usually searching for
commands in memory in an autonomous fashion. It receives them under the control
of the processor. This is what is known as a slave unit.

The complexity of exchange units varies greatly. In our first example (hardware
adapting), we were dealing with a simple interface. Our second example is called a
serial controller. Input–output processors, on the other hand, are much more complex.
Examples of these include the Redundant Array of Inexpensive Disks (RAID) disk
units, which ensure the duplication, storage and journaling of data.

6.2.2. Exchange unit addressing

Like memory cells, the registers of exchange units are identified by their address.
These addresses can be thought of as part of the entire set of memory addresses, or as
a distinct set. These two cases are known as single address space and separate address
spaces, respectively.

6.2.2.1. Single address space

The registers of the exchange unit are handled like memory cells. The processor
sends commands, parameters or data to the exchange unit by writing in its registers
using write instructions in memory (store, move, etc.). Similarly, reading data or the
status register (load) is achieved using read operations in memory (Figure 6.21).

For example, storing the value seven in the data register (address 10) of an
exchange unit can be done as follows:
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...
mov #10,r0 ; r0 is initialized as 10
mov #7,@r0 ; the number 7 is written at the address 10
...

Input/output

space

Memory

space

Memory

space

Read

Write

Control bus

Address bus

Figure 6.21. Single address space and inputs–outputs

To avoid any access conflict issues, there can be of course no memory installed at
the address of the registers of the exchange units.

6.2.2.2. Separate address spaces

In the case of separate address spaces, the machine is given special instructions for
inputs and outputs. No change is made to the address and data buses. The distinction
lies in the command lines, which are different in the control bus (Figure 6.22).

Memory
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Read/Write
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Memory

space

Input/

output

space

Data
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Control
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Figure 6.22. Separate address spaces

EXAMPLE 6.1. – The first computers with Intel® processors put the two previous
concepts into practice:
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– exchange unit registers are in a separate memory space accessible via
input–output instructions (in, out, outsb, outsw, etc.). The physical size of this
space is theoretically 64 kB (in PC-type machines, only the 10 least significant bits of
the address were decoded);

– on the other hand, the area reserved for the video screen is located in the memory
space. In the case of the monochrome display adapter (MDA) display mode, this space
takes up 4 kB, starting from the physical address B000016 (for a total memory space of
1 MB). A character is displayed on the screen simply by writing in the memory space
attributed to it. The video controller can read the content of this area and generate the
signal, which will be used to display the corresponding screen image.

The following program writes an “A” on the screen in line 2, column 48:

...
mov bx,0b000H ; bx is initialized as b000 (hexa)
mov ds,bx ; register ds := bx
mov bx,100H
mov byte ptr[bx],41 ; A (code 41 hexa) is written at address

; bx+10H*ds = 0b0100H
; (see chapter on memory)

...

6.3. Exchange modes

Data transfers between an EU and a processor involve three techniques:

1) polling;
2) Direct Memory Access or DMA;
3) interrupts.

6.3.1. The polling exchange mode

This mode is characterized by permanent polling of the exchange units by the
processor. The processor reads the status registers, testing the bits involved in the
exchange. Once this is done, the data received are read or written (Figure 6.23).

This work mode, known as either polling or busy waiting, is particularly simple to
implement but has the drawback of taking up the entire activity of the processor for
the intput–output operation.
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Figure 6.23. The busy waiting process

Consider again the example of serial-asynchronous transmission described
previously. To send a character to the terminal, we need to at least test the status
register bit that indicates whether the controller is ready to send. This bit indicates
whether the shift register that must receive the character code is available or not. If
we assume that the bit in question is bit 5 of the status register, the test is done as
follows (if this bit is not equal to zero, the controller is not ready):

myloop:
mov A,(StatReg) ; status read (the status register

; has the address StatReg)
and A,20H ; bit 5 is singled out
jmp nz,myloop ; if bit 5 <> 0 we come back to test the status

6.3.2. Direct memory access

Direct memory access (DMA) consists of giving the exchange unit the possibility
of reading or writing directly into memory without going through the processor. This
method:

– saves the processor from handling this transfer task;

– may take over for the processor in cases where it is not fast enough to perform the
processor – exchange unit transfer between two exchange unit ↔ peripheral transfers,
etc.

6.3.2.1. Concept

The DMA controller is “inserted" between the processor and the peripheral
controller (Figure 6.24).
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Figure 6.24. DMA controller scheme

It is equipped with a word transmission counter, which is incremented or
decremented at each transfer, and with an address register and exchange control
registers that are initialized from the processor before starting the exchange.

As we have already mentioned, there can be conflict access involving the address,
data and control buses (Figure 6.25). When the DMA controller gains access to the
memory, the processor must abstain from doing the same.

Bus

MemoryProcessor
DMA
unit

Figure 6.25. Access conflict

6.3.2.2. Exchange protocol

When the peripheral unit controller has data at its disposal (Figure 6.26):

1) it transmits a DREQ, or DMA Request, to the DMA controller;

2) the DMA controller forwards this request to the processor (HRQ, or Hold
Request);

3) after acknowledging this request, the processor has its buffers set to their high
impedance state;

4) the DMA controller can take over control of the buses. It sends a DMA Grant
to the exchange unit, a grant that serves as a chip select signal.



Inputs and Outputs 121
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unit
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Figure 6.26. Direct memory access protocol

The controller is equipped with a READY input, used for inserting wait cycles if
the memory access times are too long, just as a processor does.

EXAMPLE 6.2. – [“Peripheral to machine” transfer cycle] The following example is
based on the operation of the I8237A DMA controller by Intel®. We will consider the
case of two transfer cycles between an exchange unit and the memory, describing in
detail the different phases involved.

1) Figure 6.27: initialization of the DMA controller (address and parameters of the
transfer, initialization of the word counter, etc.) and execution of the transfer command
on the exchange unit.

IIOOWW

IIOORR

MMEEMMRR

A0-A15

D0-D7

A0-A3

88223377

IOR

IOW

MEMR

MMEEMMWWMEMW

8237

UUEE

UE

Figure 6.27. DMA protocol: initializations

2) Figure 6.28: the exchange unit emits a DREQ access request.

3) Figure 6.29: the DMA controller forwards this request to the processor (HRQ).
This corresponds to a request to take over control of the buses.

4) Figure 6.30: once the processor has yielded control of the buses, it sends the
DMA controller an HLDA (Hold Acknowledge).

5) Figure 6.31: the AEN line is used for controlling access to the bus by other
exchange units that are part of the computer. This cycle is the first effective work
cycle in DMA.
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Figure 6.28. DMA protocol: DREQ
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Figure 6.29. DMA protocol: HRQ
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Figure 6.30. DMA protocol: hold acknowledge

6) Figure 6.32: the transfer of an element of data takes up three clock cycles
denoted by S2, S3 and S4. The DMA controller emits an address and the required
read/write signals (here we are reading from the peripheral control and writing into
memory).

7) Figure 6.33: transfer of a second element of data (cycles S2, S3 and S4) and
end of transfer (known as EOP, the acronym for End Of Operation).
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Figure 6.31. AEN signaling that control of the bus has been taken over
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Figure 6.32. First transfer, the processor no longer has access to the buses
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Figure 6.33. Second access

8) Figure 6.34: the EOP is processed by ending the emission of the HRQ.

9) Figure 6.35: control is returned to the processor.

The DMA control can follow several transfer modes: the three modes described
below are based on the operation of Intel’s I8237®.
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Figure 6.34. DMA protocol: HRQ is “dropped”
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Figure 6.35. DMA protocol: the processor takes back control

6.3.2.3. Halt burst mode

This operating mode consists of keeping the DMA controller active throughout
the entire transfer. DREQ is kept active so long as the acknowledgment from DACK
has not been received. The DMA controller only yields control when the word
transmission counter changes from 0 to FFFF16. This mode allows high transfer rates
at the cost of completely suspending processor activity. In practice, this is not quite
true. The processor no longer has access to the buses, but can continue working with
its cache memories (Chapter 8).

Certain controllers can automatically restart a transfer cycle without intervention
from the processor (auto-initialize mode).

6.3.2.4. Single transfer mode

During the DMA, control is given back to the processor after each transfer. Even if
the DREQ is kept active, HRQ switches off to give the processor at least one additional
cycle (this is the case for the I8237 by Intel® in single transfer mode).
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6.3.2.5. Demand transfer mode

In this DMA transfer mode, the transfer occurs either until the counter switches
from 0 to FFFF16, or until DREQ switches off (the peripheral controller has run out of
data to transmit, this is the case for the I8237 by Intel® in demand transfer mode). In
between transfers, the processor can take back control since the content of the address
registers and of the counters is automatically saved. This transfer mode is well suited
for slow transfers, or for when the bandwidth is highly unsteady.

EXAMPLE 6.3. – The PC–AT could use DMA for exchanges between peripherals. It
was equipped with two DMA controllers set up in a cascade configuration as shown
in Figure 6.36.

A1–A16 A0–A15
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Figure 6.36. DMA channels

Each controller handles four exchange channels: this means that it is equipped
with four “address register + counter” sets. In the PC–AT, the channels were numbered
from 0 to 7:

– channel 0 for the memory refresh;

– channel 1 useable for extension cards;

– channel 2 reserved for the floppy disk controller;

– channel 3 reserved for the hard drive;
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– channel 4 reserved for cascading the two controllers;

– channels 5–7 available.

The addresses generated by the controllers are 16 bits in length. This explains the
presence of two sets of four registers as extra capacity when addressing 20 lines (PC)
or 24 lines (AT): these are called page registers.

6.3.3. Interrupts

In the section on DMA, we mentioned that during a task in halt burst mode, the end
of the transfer is identified by the fact that the DMA controller yields to the processor.
In the two other modes on the other hand, the only way to know if the transfer has been
completed is to test the status register of the controller to find out if the transmitted
word counter has switched to zero.

Likewise, a machine dedicated to industrial process control (monitoring, control,
etc.) must be able to suspend a process to quickly assess external events, whether
planned or not. It is therefore necessary to have a way to signal that an input–output
activity is completed, that an unplanned event has occurred, etc., without having to
perform repetitive queries. The interrupt mechanism provides these abilities.

An interrupt is an external event which causes the current processor task to stop
so that another task can be executed. Physically, this event takes the form of a voltage
variation on an “input” line of the processor’s control unit (Figure 6.37).

Control

unit

Processor

Interrupt

Flip-flop

Figure 6.37. Interrupt command

For an interrupt to be acknowledged, the control unit must constantly test the status
of the interrupt line. A flip-flop memorizes the voltage changes on the line so that it
is possible to know if an interruption has occurred. This is achieved by doing the
following: the cycle for each instruction begins by testing the flip-flop. Depending on
the result, the processor executes the instruction or handles the interrupt (Figure 6.38).
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Figure 6.38. Checking of an interrupt during an instruction processing

6.4. Handling interrupts

6.4.1. Operating principle

Once the interrupt flip-flop has been set, the hardware can begin handling this
interrupt. This occurs in the following phases:

6.4.1.1. The first phase

The first phase of the process can be decomposed as follows:

– The current instruction ends.

– The return address (the address of the following instruction), along with the
content of the flag register, are saved in a stack (through a mechanism similar to the
one implemented when calling a subroutine). Depending on the processor, or on the
type of interrupt, the content of the registers, or of part of the registers, is saved in
the stack. If this is not the case, it will fall upon the processing program to save what
needs to be saved.

– The interrupt may be inhibited, in which case the process program will validate
them again if necessary. On multimode machines, the processor switches to system
mode (or supervisor mode).

– The processor may send an acknowledgment signal on a command line of the
control bus. This acknowledgment is used by the logic circuit of the exchange unit
that sent the interrupt.

6.4.1.2. Calculating the handling address

The machine begins handling the interrupt at an address, which can be determined
through several methods:

– Non-calculated direct mode: This is the most common mode used during a
hardware reinitialization. The program counter is loaded with a predetermined value.
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EXAMPLE 6.4.– When booting the Intel® I8086, the code segment register CS is
loaded with F000H and the program counter with FFF0H. This information can be
checked by visualizing the content of the BIOS memory. A jmp instruction is located
at that address.

– Non calculated-indirect mode: Each interrupt line is associated with one or
several memory cells containing the address of the appropriate handling subroutine.
This is how the Motorola® MC6800 operated.

– Calculated-direct mode: The content of the program counter is calculated based
on information provided by the exchange unit that interrupted the processor.

EXAMPLE 6.5.– In the Intel® I8080 microprocessor, the program counter was loaded
with the value n × 8, where n is a value given by the interrupt controller on the
data bus. The acknowledgment cycle is actually very similar to an instruction fetch
cycle. The interrupt controller waits for the acknowledgment signal provided by the
processor before taking control of the bus and using it to “display” an RST n (restart)
instruction, where n is the interrupt number. The processor executes this instruction,
which causes the program counter’s content to be saved in the stack, followed by a
branch at the address 8n.

– Calculated-indirect mode: The exchange unit sets the data bus to an
identification number read by the processor. This number, known as the interrupt
vector pointer, is actually an entry in an address table. These addresses belong to
the handling program, and can be modified at will. The table which holds them is
called the interrupt vector table, and we use the phrase vectored interrupts. Figure 6.39
illustrates the calculated-indirect mode.

Processor

Data bus

Controller

INTA
INT

Interrupts

t1 t2

t3

t4

Vector

table Number }

Figure 6.39. Interrupt vector

- at time t1, the exchange unit sends an interrupt;

- at t2 the processor replies with an acknowledgment;

- at t3, the exchange unit sets the data bus to an interrupt number N read by
the processor;
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- at time t4 the processor fetches, at the address that was calculated, the address
of the interrupt handling program.

Note that the interrupt controller must wait for the acknowledgment signal to be
received, since this is how it knows whether the bus is available when it presents the
interrupt number.

6.4.1.3. The third phase

The interrupt handling program ends with a special return from interrupt
instruction (REI, RTI, etc.) used for fetching the return address and, possibly, the
content of other registers. If the stack mechanism is used, this instruction is similar to
the return from subroutine (RET, RTS, etc.).

6.4.2. Examples

EXAMPLE 6.6. – A machine equipped with a stack mechanism has a 16-line address
bus, an 8-line data bus and a 16-bit stack register. The address of the interrupt handler
that is needed is located in FFF816 (most significant) and FFF916 (least significant).
Consider the following initial situation (Figure 6.40):

– the program counter contains 1C0016;

– and the stack pointer A01C16.

The stack pointer provides the address of the first available element in the stack.

2-byte

instruction1 0 0 0 0 0 0 1

0 1 1 0 1 0 1 1

1C00

1C01

1C02

A01C

FFF8

FFF9

Next instruction

Interrupt handler

address: 2700

Program counter

Stack pointer

1010 0000 0001 1100

0001 1100 0000 0000

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

Figure 6.40. Initial situation
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After the interrupt, the return address 1C0216 is stored in a stack (we assume that
this is the only information stored in the stack). The stack pointer is updated with the
value:

(A01C16 − 2) = A01A16

The program counter is loaded with the address stored in FFF816 and FFF916, i.e.
270016 (Figure 6.41).

Interrupt

handler address

A01A

0010 0111 0000 0000

Return

address

Program counter

Stack pointer

A01B

A01C

2700

1010 0000 0001 1010

0 0 0 0 0 0 1 0

0 0 0 1 1 1 0 0

FFF8

FFF9

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

Figure 6.41. After the interrupt

At the end of the process, the program counter is reinitialized with the address that
was saved in the stack. The stack pointer is updated (Figure 6.42).

0 0 0 0 0 0 1 0

0 0 0 1 1 1 0 0

A01A

Program counter

Stack pointerA01B

A01C

0001 1100 0000 0010

1010 0000 0001 1100

Figure 6.42. Handling the return from interrupt

EXAMPLE 6.7. – The Intel® I8086 microprocessor provides two acknowledgments
(INTA, short for INTerrupt Acknowledge) during the handling of the interrupt.

The first is used to “freeze” the status of the interrupt controller (Figure 6.43). The
second is used for transferring the interrupt number (1). This number is multiplied by
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four to produce an entry in the vector table (2). If the controller presents the number
12H, the processor will fetch from the address 4× 12H the 4-bit handling address (3).
The content of the two memory words with addresses 48H and 49H is then loaded
into the program counter, while the content at 4AH and 4BH is loaded into the code
segment register (see Chapter 7 on memory). Then, the handling begins (4).

Processor

12×4 12
Controller

Memory

Offset 48/49

RTI

Program

(3)

(4)

Segment 4A/4B

0000

CF00

CF00:0000

Instruction
pointer

CS
register

(1) Data

(2) Address

48

Figure 6.43. Interrupt vectors on the Intel® I8086: the offset at address 48/49 is equal to 0
and the segment at the addresses 4A/4B is equal to CF00

6.4.3. Software interrupts

Interrupt instructions or software interrupts rely on the same mechanisms as those
involved in hardware interrupt handling. On the Intel® I8086, the INT N instruction,
where N is an integer coded in eight bits, triggers an interruption that redirects to
the program with the address contained in the entry N (address 4N ) of the interrupt
vector table.

6.4.4. Masking and unmasking interrupts

Some interrupts can be of such importance (interrupts generated by alarm systems,
for example) that it is not possible to either:

– interrupt their handling: It is then essential to prevent other interrupts from being
handled. This is called masking these other interrupts.

– or prevent their handling: These are known as non-maskable interrupts.

Interrupt masking can be achieved by setting certain bits of the interrupt register
using special masking and unmasking instructions. Upon reception of a maskable
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interrupt, its masking can be performed automatically. Its unmasking is then
performed by the “return from interrupt” instruction.

EXAMPLE 6.8. – The external interrupt signal is masked by setting the bit associated
with this interrupt to one in the interrupt register (Figure 6.44).

1

int
INT

OR

Figure 6.44. Interrupt masking

6.4.5. Interrupt priorities or levels

In a machine working with interrupts, each exchange unit may send interrupts
to the processor. All of these interrupts can be combined using a simple logic gate
(Figure 6.45).

int
it1

ProcessorOR
it2

it
N

Figure 6.45. Combining interrupts

Interrupts that reach the processor have a first level of priority defined by the
hardware (vertical priority). But, for a given priority, the handler must:

– send queries to the exchange units to find out which ones have sent an interrupt;

– determine which one must be handled first.

We can use an interrupt controller to combine the interrupt lines (Figure 6.46)
and in some cases store into memory and handle priorities in between interrupts. The
controller provides the number of the interrupt that was chosen.

6.4.6. Similar mechanisms

Other events implement a mechanism similar to the one used for interrupts. These
are called exceptions. An exception is an event that occurs during the execution of an
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Figure 6.46. Interrupt controller

instruction (overflow, division by zero, etc.). Unlike the interrupt, the exception stops
this execution (synchronous event). The exception handling program decides how to
pursue the process. As interrupts can be masked, exceptions can be inhibited.

There are three categories of exceptions:

– Trap: exception that is handled after the execution of the problematic instruction.
Traps include the handling of arithmetic errors (overflow, underflow, etc.), instruction
code errors, software interrupts, etc. After the trap has been handled, the execution
may resume at the following instruction, as with an interruption.

– Fault: the exception detected and handled during the execution of the
problematic instruction. The instruction can be restarted after the fault has been
handled (page fault, illegal memory access, invalid operation code, wait instruction,
etc.);

– Abort: the exception that occurs during the execution of an instruction. It is
impossible to restart (hardware errors, attempts to access a protected area of memory,
etc.).

6.5. Exercises

Exercise 6.1 (Serial input) (Hints on page 331)

Consider a machine with the fetch timing diagram (based on the Intel® I8080)
shown in Figure 6.47.

We wish to build an interface that allows fetch operations on a serial line according
to the scheme in Figure 6.48.

Write a fetch function for characters coded in eight bits. You may use a language
syntax similar to the one used for the Intel® 8086. The address assigned to the input
line will be denoted by addrIN.
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Φ 1

Addr.
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Data
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Read
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Figure 6.47. Fetch timing diagram

Address bus

Control
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Data bus

Interface

Figure 6.48. Fetch scheme

Exercise 6.2 (Serial output) (Hints on page 332)

The same machine is used, with the write timing diagram shown in Figure 6.49.

Φ 1

Addr.

T1 T2 T3 T4 T1 T2 T1 T2T3

SYNC

Data
Status Status Status

WR

Read Write

Φ 2

Instruction

Figure 6.49. Write timing diagram
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Build an interface that allows write access and write a write function. The address
assigned to the output line will be denoted by addrOUT. Assume that the character are
eight bits in length and use a single stop bit.



PART 3

Memory Hierarchy



Chapter 7

Memory

This chapter deals with how hardware manages memory space, an issue with
considerable impact on machine performance. The information traveling between the
memory and the processor is indeed the main flow of information in a computer. It is
therefore no surprise that many efforts have been made to improve both
communication between these two components and memory “speed”. As a result, the
size, access time and organization of memory are key to machine characteristics.

7.1. The memory resource

The processor fetches from the memory the instructions and the data that it uses to
perform a given task. The location of each of these elementary pieces of information
is “mapped” using an address, which is “presented” to the processor on the address
bus. The transfer between the memory and the processor is then achieved via the data
bus (Figure 7.1).

Address bus

Data bus MemoryProcessor

Figure 7.1. Memory–processor interactions
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The main characteristics of memory are the following:

– The size of the addressable space, defined by the number of lines of the address
bus.

– The physical size, meaning the amount of memory actually installed. This
parameter strongly depends on hardware considerations, for example the number
of available slots and the technology used (kits of 4, 8, 16 GB, etc.), and on cost
considerations.

– The access time, defined as the interval between the moment memory is
“addressed” and the moment it delivers the information. This parameter depends on
the technology and the organization of memory.

– The latency, defined as the interval between the moment the processor performs
the addressing and the selection and the moment the information becomes available
(“stabilized”) on the lines of the data bus. This parameter depends on the access time,
the memory management devices, and the bus characteristics.

The memory cannot function unless it is combined with a device capable of
signaling whether an element of data is ready to be fetched. This device is in the form
of a command line (Figure 7.2), the status of which can trigger the insertion of wait
states in the execution of the instruction (see example in section 5.2.1).

Memory

Address

Data

Processor

Ready line

Memory

controller

Figure 7.2. Memory control

7.2. Characteristics

The entity using the memory resources (user program, operating system, etc.) must
be aware of its size, access times and protections that have been implemented:

– Access time is a factor bearing directly on the execution speed of programs.
It is, however, difficult to separate it from other parameters that determine machine
performance: processor speed, algorithm efficiency in managing memory, memory
size, etc.

– Memory management, which is handled by hardware or software, must offer
a level of security that guarantees the integrity of the information processed and



Memory 141

prohibits the involuntary destruction of programs. This management must ensure the
separation between the programs and/or the data of the users (Figure 7.3). If the
machine serves only one user, the memory space is distributed between the operating
system and user’s programs and data. It is therefore essential to ensure that any
programming errors on the part of the user do not lead to modifications of the area
assigned to the operating system or to the user’s program. If several users, or several
tasks, make use of the machine’s resources “simultaneously”, and if, as a consequence,
several programs reside in the memory at the same time, then they must be prevented
from writing in, or fetching from, an area of memory that is not assigned to it.

– It is preferable for the memory size to be large enough to store programs and
data without having to perform manipulations such as block exchanges between disk
and memory when the memory size is too small.

Operating

system

User Data /

program

Operating

system

User 1 Data /

program

User 2 Data /

program

Figure 7.3. Single- and multitasking

7.3. Memory hierarchy

The ideal machine should have limitless memory capacity and an access time
compatible with the processor speed. This solution is not economically feasible: the
cost per “installed bit” of electronic memories is far greater than it is for magnetic
technology memory (disks). Based on cost and performance criteria, a hierarchy can
be established, a concept present in any architecture.

Implementing a memory hierarchy consists of using memory modules with access
times that are “shorter” as they get “closer” to the processor. Programs and data can
end up being in part duplicated onto several memory modules with very different
physical characteristics. The access mode implemented for managing this hierarchy is
as follows (Figure 7.4):

– When the processor wants to access information, it fetches it from the physically
“closest” memory unit, in other words the fastest.
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– If it cannot find it there, it accesses the next level and copies it, along with its
neighbors, into the level with the shortest access time. This mechanism of copying in
blocks increases the chances of success (see the principle of locality in section 7.3.1)
in future attempts at the fastest level.

Level 3Level 2Level 1

Level 0

Processor

Mass

storage

unit

Figure 7.4. Hierarchy and access method

7.3.1. Principle of locality

Managing a memory hierarchy implies that accessing information observes the
principle of locality. Memory accesses have two properties pertaining to locality:

– temporal locality, which expresses the fact that an address that was just
referenced will likely be referenced again in the near future;

– spatial locality, which expresses the fact that if an address was just referenced,
its neighbors will also be referenced in the near future.

This leads us to define the concept of the working set in the time window F at time
t, denoted by W (t, F ), which is the set of addresses referenced between t and t+ F .

EXAMPLE 7.1. – Consider the code in C of the following adding loop:

for (counter = 0; counter <= 99 ; counter++) sum = sum + 1;

and the corresponding code in machine language:

loop:
incl %edx ; counter
incl %eax ; sum
cmpl $100,%edx
jne loop
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Let us assume that each instruction lasts T units of time. The principle of locality,
which is divided into temporal locality and spatial locality, in this case is observed:

– for instructions:

- with respect to time, we will execute the loop 100 times and the same
instruction will be referenced periodically;

- with respect to space, each time we access an instruction, we then reference
its neighbor;

– for data:

- with respect to time, the variables sum and counter are referenced every 4T ;

- with respect to space, these variables are memorized in registers.

7.3.2. Hierarchy organization and management

The levels of a memory hierarchy are ordered from the fastest and smallest (low
levels) to the slowest and largest (high levels). Figure 7.5 illustrates these different
levels and the corresponding mechanism. Note the cache memories and the virtual
memory management, which we will come back to in the later chapters.

In the case of caches, a block will be known as a line, and in the case of virtual
memory as a page. In practice, lines have a size of several tens of bytes, and pages of
several kilobytes.

Cache

memory

Local

memory

Storage

memory
Processor

increasing size and access time

Cache memory

pageslines

Virtual memory management

Figure 7.5. Memory hierarchy

There are two essential points to note on hierarchy management:

– the fast levels must manage the memory references by storing the most recently
used addresses (temporal locality);

– transfers are performed in blocks (spatial locality).
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7.3.3. Definitions and performance

Consider a two-level hierarchy, where M1 is the fast level and M2 is the slow level.
We define the properties size, access time and cost per bit for these two levels:

Size Access time Bit cost
M1 S1 T1 C1

M2 S2 (S1 < S2) T2 (T1 < T2) C2 (C1 > C2)

and the concept of hit or miss:

Hit When a memory reference is satisfied in M1

Miss When a memory reference is not satisfied in M1

Hit ratio (h) Number of hits/total number of references
Miss ratio (1− h) Number of misses/total number of references

The values T1 and T2 are defined by:

T1 Time needed to satisfy a hit
T2 Time needed to satisfy a miss

The performances of this hierarchy with two levels M1 and M2 can then be
evaluated with the help of:

– the mean memory access time:

Tm = h× T1 + (1− h)× T2 [7.1]

– the speedup S due to the presence of M1:

S =
T2

Tm
=

T2

h× T1 + (1− h)× T2
=

1

1− h× (1− T1

T2
)

[7.2]

As you can see, if T2/T1 = 10, a decrease in 1% in a hit ratio of about one results
in an increase of the mean access time by 10%.
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7.4. Memory size and protection

User expectations in terms of operating systems, the implementation of elaborate
user interfaces, the use of software with ever-expanding features, image and sound
processing, etc., require larger and larger amounts of memory space. Although there
is no theoretical limit to how much we can expand the size of the address bus, this
does lead to a certain number of hardware issues:

– Issues with designing the processor: the internal address bus gets “bigger” as the
directly accessible memory space grows in size. Today, machines have passed 32-bit
mark and reached 64 bits.

– Issues with compatibility: when a manufacturer decides to extend its range of
hardware “forward”, it strives to maintain some compatibility with existing hardware.
This forces them to come up with designs that provide for an increase in memory size
with no modifications to the set of instructions.

It is also essential to have mechanisms available for protecting the memory (areas
of memory assigned to a specific task or a given user, or that are read only, etc.)
whenever using a multitask operating system. These devices, which are managed by
software, are also partly under hardware control.

The solution consists of inserting a translation mechanism (Figure 7.6) between
the address read in the instruction or generated by the execution of an instruction,
known as a virtual or logical address, and the address that will actually be presented
to the address bus (real or physical address).

Memory
Virtual address

Physical
addressTranslationProcessor

Figure 7.6. Virtual and physical addresses

These translation mechanisms can be implanted at the processor level or inserted
between the processor and the memory in the form of a specialized controller. The
following sections present the designs for these translation mechanisms.

7.5. Segmentation

Memory cells can be differentiated based on how they are used, by associating
instructions and data with distinct areas of memory, called segments: code segments,
data segments, stack segments, etc.
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7.5.1. Using segment registers: an example

The solution chosen by Intel® for its I8086 series microprocessors is a simple
illustration of how to manage memory using segmentation. We saw in section 4.1.2
how the design is based on four segment registers.

Each segment has a maximum size of 64 kB (216 bytes). The total memory space
is 1 MB (220 bytes) and can be pictured as a partition of 65, 536 16-byte “paragraphs”,
or 65, 536 segments “covering” 65, 536 bytes. The four segments used at a given time
can overlap completely, partially, or not at all, depending on the value given to the
corresponding registers (Figure 7.7).

64 kilobytes

1 MB memory space

64 kilobytes

64 kilobytes

64 kilobytes

Program

Data

Stack

Extra

Figure 7.7. Segment overlap

Controlling access to different areas is ensured so long as the corresponding
segments do not overlap. This is ensured by loading the adequate values into the
segment registers. A memory write can only modify a word in the data segment
associated with this instruction, since the set of instructions defines the range of
application of each instruction, in particular the segments involved in the execution
of each of these instructions. As an example, a branch instruction involves the
content of the code segment register cs, and the actual physical branch address will
be obtained from:

(16× [cs]) + operand

On the other hand, a transfer instruction between memory and register
preferentially uses the data segment register ds or possibly the extra segment es,
depending on what the instruction specifies. The physical address is then:

(16× [ds]) + operand or (16× [es]) + operand

EXAMPLE 7.2. – The instruction mov [bx],al triggers:

– the fetching of the instruction from the address:

(16× [cs]) + program_counter
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– the transfer of the content of the 8-bit register al into the memory word whose
offset in the segment defined by ds is given by the content of the 16-bit register bx.
The physical address is therefore:

(16× [ds]) + bx

since this ds register contains the default segment number associated with this
instruction.

EXAMPLE 7.3. – The push ax instruction stores the 16-bit register ax at the top of
the stack. The segment involved is then ss, the stack segment. The physical address,
we get, is:

(16× [ss]) + stack pointer

A few things to note:

– The adder, which provides the physical address based on the content of the
segment register and the offset, causes a propagation delay between the moment the
logical address is provided and the moment the physical address becomes available on
the address bus. This delay must of course be accounted for by the processor designer.

– Although the addressable memory space, which changes from 64 kB to 1 MB,
has been significantly increased, the segment size remains 64 kB. This relatively small
value makes it difficult to deal with program or data structures larger than 64 kB.

7.5.2. Using segment descriptors

With the Intel® I80286 microprocessor, a much more sophisticated segmentation
mechanism was introduced, known as direct mapping. In particular, it features the
ability to assign access rights to the segments and to specify their size.

The address sent, which is described as virtual, is 30 bits in length. The 13 most
significant bits of the segment register constitute the selector, which serves as an
entry in a segment descriptor table of 213 = 8192 entries. Like the Intel® 8086, this
processor is equipped with four segment registers cs, ds, es and ss. The segment
descriptor consists of 4 bytes. The 24-bit base address stored in this descriptor is
added to the 16 least significant bits of the virtual address and provides the physical
address in memory of the 64 kB segment (Figure 7.8). Bit 2 of the same segment
register indicates in which table (global or local variables) the physical address of the
segment can be read. This means we have 1 GB of virtual memory at our disposal,
with a physical space of 16 MB:

2 (tables) × 213 (descriptors) × 216 (segment) = 230 (bytes)
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The descriptor contains the base address of the segment, its size, bits defining its
access rights and service bits (Figure 7.8).
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Figure 7.8. Addressing in the Intel® I80286

7.6. Paging

This solution consists of cutting up the central memory into blocks of equal size
called pages. Secondary storage is used to provide the physical address of each of
these pages in the central memory. By cutting up, we mean that we have an addressing
mechanism which defines an address by:

– a page number;

– a relative address or offset within the page (Figure 7.9).

Translation
Memory

A0 – A11

(offset)

A12 – A15

(Page number)

4 bits

(Page

table)

12 bits

19 bits

7 bits

Figure 7.9. Example of translating from a virtual address to a physical address

EXAMPLE 7.4. – Consider a processor with an address bus limited to 16 bits. The
system is set up to address 512 kilowords. The size of a page is assumed to be equal



Memory 149

to 4 kilowords. The 16 address bits consist of 12 page address bits – lines A0 through
A11 of the address bus – and four page number bits given by lines A12 through A15.

The total accessible memory comprises 128 pages of 4 kilowords. The paging
system allows us to access 16 of those 128 pages (example in Figure 7.10).

512 kB memory space

16 4-kB pages

Figure 7.10. Paged memory space

The translation mechanism has four input lines that allow it to access sixteen 7-bit
cells (or registers). These 7 bits, along with the 12 offset bits, make up the physical
address in memory. An operating diagram is shown in Figure 7.11.
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Figure 7.11. The page table
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The processor “sees” only 64 kilowords of the real physical memory, distributed
throughout the physical memory in 16 pages of 4 kilowords. Each entry in the page
table, denoted by PT, can be completed with access authorization bits for the
corresponding page. Here, we have added a write authorization bit that prevents,
when set to one, from writing in the targeted 4 kiloword page.

In a multitask context, a set of pages is allocated to each task by the operating
system. These pages can be distinct, to ensure their protection from one another, or
shared (in order to share data or code). For each task, a Page Table Directory (PTD)
of the pages that are assigned to that task is created in the memory (Figure 7.12).

Page

memory

4 bits

0

1

7

ModeL/E

Update

Page Table

Register

(PTR)

Physical address

OR

Decoder

12 bits

Figure 7.12. The page table register and the protection mechanism

Each time a task is executed, the operating system “puts it in charge”, the content
of the page table PT is updated by copying it into the content of the PTD. These
transfers, which generate a large number of memory accesses, can be avoided by
duplicating the PT table. In the following example, eight page tables are enough to
address the entire physical memory space. A 3-bit Page Table Register (PTR)
provides the number of one of the eight tables. This register is only accessible in
kernel mode (mode indicator bit set to one).

REMARKS.–

– Note that the translation mechanism leads to the systematic insertion of a
propagation delay, as was the case with segmentation.
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– The size of the directly accessible memory is still 64 kilowords, despite the size
of the physical memory being 512 kilowords.

– The kernel mode used here for preventing unauthorized access to the PTR and
the page tables is also called supervisor mode or privileged mode.

7.7. Memory interleaving and burst mode

Memory interleaving is a method for improving memory access time. The idea is
to organize the memory in p banks such that the consecutive address words are not
physically adjacent. We will describe two such organizations: C-access and S-access,
short for concurrent access and simultaneous access, respectively.

7.7.1. C-access

This technique assigns a data register to each bank. The m most significant bits of
the address allow us to simultaneously access p memory words. The n least
significant bits control a multiplexer for accessing one of the words stored in a
register (Figure 7.13).
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Figure 7.13. Register multiplexing (n = 2)

The bank addressing phases are performed in parallel. This organization is well
suited for accessing the elements of a table. The timing diagram for C-access is shown
in Figure 7.14.

7.7.2. S-access

This second method assigns an address register to each bank, so that the addresses
can be “pipelined”. The m least significant bits of the address are decoded to access
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each of the banks. This type of organization works well for prefetch operations in a
pipeline architecture (Figure 7.15).
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The timing diagram for S-access is shown in Figure 7.16.

Bank 0

Bank 1

Bank 2
Bank 3

D0

D1

D2

D3

Adressing

Access

to data

τ

Tm
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The time τa taken to access k consecutive elements of data (k < p) stored starting
in bank i is:

τa =
T + kτ if i+ k ≤ number p of banks
2T + (i+ k − p)τ otherwise

The two previous access modes can be combined thus (CS-access). The memory
banks are then arranged in a table.

7.7.3. Burst mode

Interleaving memory banks is a way to artificially reduce the memory access time.
Burst mode access relies on these access techniques. The address of the first element
of data is transmitted to the bus (Figure 7.17). The memory management logic is then
in charge of incrementing this address.

This mode is well suited for loading a cache (Chapter 8) or for supplying a
machine’s instruction buffer with a pipeline architecture (Chapter 10).

Clock

Addess

(CPU)

Burst mode

access request

Data

Figure 7.17. Burst mode

EXAMPLE 7.5. – Consider the timing diagram in Figure 7.18. When a memory bank
is active (addressed), the other is in the process of refreshing or accessing the next
element of data. In burst mode, only the first cycle requires a wait state. The memory
access time after that is equivalent to half the physical access time. In practice, the
penalty is only in the order of 3% compared to 0 wait state memory (figures provided
for the AMD 29000-5 [ADV 87]).

7.7.4. Prefetch buffers

The instructions are fetched from the memory, the instruction cache or the branch
cache (see section 10.3.3). To ensure that the execution flow is as fluid as possible,
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the instructions are “prefetched” to a buffer (Instruction Prefetch Buffer (IPB)) a few
cycles before the processor needs them (Figure 7.19).

When an instruction reaches the decoding phase, its locations is made available
for a new instruction.
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Figure 7.18. Burst mode and interleaving
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Figure 7.19. Example a four 32-bit instruction buffer

When a branch (branch, interrupt, trap, etc.) is performed, the buffer is reloaded,
usually in “burst mode”. This is achieved by having the memory management unit
maintain a fetch address register, which memorizes the “target physical” address. This
makes it possible to resume a preloading sequence that was interrupted. A counter is
used for managing the addresses in the flow of prefetched addresses (Figure 7.20).

7.8. Protections, example of the I386

In the Intel® 386 architecture, a memory access performed in “protected mode”
must go through the segment descriptor tables (Global Descriptor Table (GDT) and
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Local Descriptor Table (LDT)). The descriptors stored in these tables contain the base
address, size, type, access rights, etc., of code, data or stack segments, cs, ds, etc.
Local tables must have a descriptor in the global table.
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{Read address Counter00
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Figure 7.20. Prefetched address management
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Figure 7.21. Accessing segment descriptors

Accessing a byte requires going through a segment selector and an offset. The
selector (segment register) is used to access an 8-byte descriptor in the GDT, and thus
a base address (Figure 7.21) for the corresponding segment.

In addition to code, data and stack segments, we also have at our disposal
Task-State Segments (TSSs), which are used for manipulating the environment and
the state of the tasks and local segment tables.
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The operating system resources can be accessed through “gates” (call gate, trap
gate, interrupt gate and task gate) identified by descriptors. The hardware verifies
access rights when the system is solicited.

A table, the Interrupt Descriptor Table (IDT), similar to the global table, includes
descriptors for these gates. Access to this table is achieved via indexing based on the
interrupt number (hardware or software) or the exception number. The descriptor may
correspond to a “task”, “interrupt”, or “exception” gate.

Each selector includes a Requestor Privilege Level (RPL) field for verifying access
rights. In machines with an Intel® 386 architecture, there are four privilege levels,
from 0, the highest privilege, to 3, which is reserved for applications. Protection levels
are as follows:

– Data with a privilege level p cannot be handled by a program being executed at
a level (the phrase used is Current Privilege Level (CPL)) q ≤ p,

– A program being executed at a level q cannot be called by a task being executed
at a level r ≥ q.

When a level 3 program needs to access a level 1 function in the system (via a
“gate”), its level is upgraded to 1 until the function returns. This is known as a privilege
transfer.

Each segment descriptor has a Descriptor Privilege Level (DPL), which is
interpreted differently based on the segment type. There are two indicators, RPL and
DPL, so as to prevent a low priority program from using a higher priority function to
access data at a higher level (smaller number). The RPL supersedes the CPL in case
an access is attempted. Therefore, if RPL > CPL, the processor considers that the
task is performed at the RPL level.
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Caches

8.1. Cache memory

Introduced in the mid-1960s by M.V. Wilkes [WIL 65] under the name slave
memory, a cache memory, or simply a cache, is a memory that acts as a buffer
between the processor and the memory. Its access time is four to 20 times smaller
than it is for the main memory. One of the first implementations of this concept was
the IBM 360/85 in the 1960s. Its cache memory was 16 or 32 kB in size (sixteen or
thirty-two 1-kB blocks of 64-byte lines).

8.1.1. Operating principle and architectures

To illustrate the operation of such a device, consider a fetch instruction. When the
processor attempts to access this information, it begins by searching in the cache. If
the information is not there, the processor copies into the cache a portion of the
memory containing this information. This process is invisible to the user. The
information stored in the cache is usually not accessible through programming.

It is perfectly conceivable to repeat this mechanism by introducing several layers
of cache. Figure 8.1 shows the case of a machine with two levels of cache (today,
general-use machines have three levels of cache). The first level (primary cache or
level 1 cache) is integrated into the processor, the second is external (secondary or
level 2 cache). In this case, the search for information is started in the primary and
secondary caches, before moving on to the memory. In the following examples, and
to simplify our description, we will most often only consider a single level of cache.

The operating principle of cache memory rests on the principle of locality (section
7.3.1): when we fetch a piece of information (data or instruction) from memory, there
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is a high probability that the following piece of information is located close to the first
one. Therefore, if we load a portion of the memory into the cache, it is likely that the
processor will only need to access the cache, for a certain time, before accessing the
main memory. This time depends, of course, on the size of the cache, the program
structure and the data organization.

Main bus

Local bus

Memory

Processor

Primary

cache

Secondary

cache

Bus

controller

Figure 8.1. Example of a two-level cache architecture

8.1.2. Cache memory operation

8.1.2.1. Reading

In the case of reading an instruction or data:

– if the information is located in the cache, the processor can access it with an
access time equal to that of the cache;

– otherwise, the processor loads into the cache a set of adjacent words that the
desired information belongs to. This set is referred to as a line. Its size varies from
four to 128 bytes depending on the processor. Once the information is in the cache,
the processor can perform the fetch operation.

8.1.2.2. Writing

In the case of writing:

– If we are referring to information that is absent from the cache, we update the
main memory. The line can be loaded into the cache (write-allocate or fetch-on-write),
or not (no-write-allocate or write-around).

– If the desired information is in the cache, there are three methods:

- Write-through: this consists of writing the information into the memory
while it is being written into the cache, or immediately after. It is possible to modify
the system by inserting a first-in, first-out (FIFO) stack between the cache and the
memory, so that the following operation can be undertaken before the writing into
memory is performed.
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- Write-back or store-in or copy back: the writing is done in the cache by
setting an indicator bit called a dirty bit. The writing into memory is done when the
position in the cache occupied by the line containing this information has to be made
available. This method is, of course, much more powerful than the previous method.
Indeed, if we increase the content of a counter in a program loop, it is more efficient
to perform this operation only in the cache and not, at every iteration, in the cache and
in the memory. This method presents a major drawback; however, when the memory
is being accessed by several devices: this is the case with multiprocessor architectures
and direct memory access. The same element of information could then have different
values in one of the caches and in the memory (the data in memory could be “stale”).
If we want to maintain coherence between caches and memory, a protocol must be in
place to ensure it (see Chapter 12).

- Posted write: the write into memory is performed only when the cache
controller has access to the bus. This method imposes less of a penalty for memory
accesses than write-through and is safer than write-back.

REMARK 8.1.–

– Given the time necessary to update the cache from the memory, and vice versa,
this operation can only be carried out by a hardware device.

– Because the processor is equipped with its own cache access bus, the external
bus is often available during communication between the processor and the cache.
As a result, a better throughput is possible if several processors, coprocessors and
exchange units are connected to it. This is even more noticeable when the cache is
managed using the write-back method, which is generally the case in a multiprocessor
environment (Figure 8.2).

Common

memory
Processor

with cache

Processor

with cache

Processor

with cache

Main bus

Figure 8.2. Multiprocessor architecture and caches

– It is possible to inhibit the operation of the cache memory. This is essential in a
situation where the content of the memory has to be visualized to debug a program, or
when updating an area of memory shared by several processors.

– Operation of the cache can be frozen, which results in a situation equivalent to
having a large set of read-only registers. This feature can be used for processes that
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repeatedly use constant coefficients (fast Fourier transform, discrete cosine transform,
etc.).

8.1.3. Cache design

8.1.3.1. Fully associative caches

The concept behind these caches is as follows: the address sent by the processor is
divided into two fields - the tag on the most significant side and on the least significant
side, the address of the information in the line (Figure 8.3). As a reminder, the “line”
is the unit of transfer in exchanges between caches and the memory.

Tag Offset

Address (CPU)

Figure 8.3. Elements of the address

During a fetch operation, the tag is compared to the address stored in the
“content” (or directory) part of the associative memory. If there is a match, the
processor directly accesses the information located in the cache. This fully
associative design (Figure 8.4) is generally not implemented because of its cost: if
the tag field is n bits long, producing such a cache would require an “n-bit”
comparator for each of the lines in the cache (Figure 8.4).

EXAMPLE 8.1. –[The instruction cache of the TMS320C30]– The Texas
Instruments® TMS320C30 microprocessor was specially designed for signal
processing applications. It is equipped with a two-line, associative instruction cache,
which is read-only. Each line is made up of 32 words of 32 bits each, in other words
32 instructions, and each word comes with a presence bit P (Figure 8.5).

The instruction addresses are 24 bits in length. The address memory therefore
contains 19-bit words called segment start address registers. Cache management
recognizes two kinds of miss:

– the segment miss, which corresponds to the case of the miss mentioned
previously. All of the words are invalidated. In this particular case, the updates are
performed word-by-word and not line-by-line;

– the word miss, when the line address is present in the cache, but with the presence
bit set to 0. A single word is loaded into the cache, but the line is not invalidated.

8.1.3.2. Direct-mapped caches

Direct-mapped caches help achieve the goal of limiting the number of
comparators. The tag is divided (Figure 8.6) into an index part and an address-tag
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part or tag. The index provides an entry for the directory. The content of this address
is compared to the tag part of the address that was sent.
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Figure 8.4. Associative cache
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Figure 8.5. Associative cache of the Taxas Instruments® TMS320C30

This type of cache requires only one comparator. On the other hand, decoding the
index creates an additional propagation delay. We will illustrate this concept with the
example of the Motorola® 68020.

EXAMPLE 8.2. – [Cache in the 68020] The Motorola® M68020, a 32-bit
microprocessor with 32-bit address buses, was created in 1984 and was equipped
with a 256-byte instruction cache. A 6-bit index was used for addressing the memory,
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which contained 26 = 64 entries. The information memory was used for storing 64
32-bit words (Figure 8.7).
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Figure 8.7. Direct-mapped cache in the Motorola® M68020

If, during a read operation, the instruction is not found in the cache, a 4-byte line
is transferred from the memory to the cache. Note that in Figure 8.7, the comparison
involves 25 bits, not 24. This is because certain accesses that are authorized in
supervisor mode no longer are in user mode. The processor mode indicator (U/S bit
in Figure 8.7) is taken into account by the comparator when triggering a possible
exception consecutive to an unauthorized access.
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8.1.3.3. Set-associative caches

The design of this set-associative cache combines the two above-described
methods (Figure 8.8).
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Figure 8.8. Set-associative cache

This is equivalent to using several direct-mapped caches set up in parallel. It is
associative in the sense that the information selected in all of the lines are compared
simultaneously to the tag part of the address. The set of lines with the same index is
referred to as a row or a superline. The number of blocks is called the associativity.

Each row of a set-associative cache constitutes an associative cache.

EXAMPLE 8.3. – [The Intel® I80486 and CoreTM2 Duo] The internal cache in a
version of the Intel® I80486 microprocessor consists of four sets (associativity of
four) of 128 lines of 16 bytes (Figure 8.9). The Intel® E8500 has an up to 6-megabyte
L2 cache with an associativity of 24- and 64-byte lines.

8.1.3.4. Subset caches

This design is very similar to the previous design. The difference lies in the fact
that there is only one tag memory for a same set of lines.

The control logic uses both the tags and the valid bits associated with each line.
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REMARK 8.2.–

– In the previous figures, an additional bit is located in the content memory, the
valid bit or presence bit. Its role is as follows: a match between the address sent by
the processor and the address stored in the content memory must only be taken into
account if we are certain that the information sought is the right information. However,
this may not be true in one of the following cases:

- during a write operation performed for an input–output device in direct
memory access mode, where only the main memory is modified, there is a discrepancy
between the contents of the cache and the memory,



Caches 165

- when the machine initializes, the cache content is random and should not be
accessed,

- when designing programs and if the cache is “frozen”, all of the entries are
invalidated,

- when implementing write-back or posted write management policies, for
which we saw that the information and their copy could be different in the cache
and in the memory.

– Processors equipped with a Harvard-type internal architecture, now a classical
architecture, have either two caches, one receiving instructions and the other receiving
data, or a single instruction cache. Indeed, because the efficiency of a cache rests on
the principle of its locality, it is reasonable to conceive that the concept of neighbors
applies differently to instructions and data.

– The most common designs have caches that vary in size from 64 words
(specialized microprocessors with integrated cache) to several kilowords, and even
megawords on three levels. In the most recent microprocessors, the three levels of
cache are integrated in the device.

8.2. Replacement algorithms

There are three main policies regarding the management of replacements in cache
memory. We can:

– randomly pick the line to replace (random policy);

– pick the line that was loaded first (and is therefore the oldest) among all of the
lines (FIFO policy);

– overwrite the “oldest” line, in the sense of when it was last accessed
(least-recently used (LRU) policy). This is generally the policy used. We describe
it in detail below.

8.2.1. The LRU method

Managing line replacements in associative or set-associative caches (for which we
consider rows) requires the use of a stack, referred to as the LRU stack. It contains the
line numbers arranged in order of relative age, by which we mean the time since their
last use. The most recently used (MRU) line is located at the top of the stack, and the
LRU line at the bottom. When a line is fetched, its number is moved to the top of the
stack (Figure 8.11).



166 Computer Architecture

Distance

Relative age
Top of stack

1

L

LS

S

Np

Figure 8.11. The stack associated with the cache and its update mechanism
when the line L is accessed

This is known as the LRU method. The LRU stack constitutes a cache behavior
model that assumes nothing about the effective design of the cache management logic.
It can be summed up as follows:

– In case of a miss:

- the content of the line that was least recently referenced is replaced with the
content read in memory,

- the number of this line is placed at the top of the stack, and all the other
numbers are shifted.

– In case of a hit, the number for the line that was referenced is moved to the top
of the stack.

EXAMPLE 8.4. – Consider the case of an associative cache consisting of four lines, 1,
2, 3, 4, where a, b, c, etc. denote the tags of the referenced addresses.

In Figure 8.12, the age management stack is represented vertically and the four
lines of cache horizontally. We are interested in the behavior of this cache after it
has received the initial sequence a, b, c, d. We assume that the following references
make up the sequence b, a, e. The first reference b (tag b) triggers a hit. The number
corresponding to the line, that is two, is moved to the top of the stack (Figure 8.12).
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Figure 8.12. LRU replacement
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This method has a drawback, though. Consider the access sequence with the
following tags: a, b, c, d, e, a, b, c, f . Note that for the second sequence of references
a, b, c, a memory access is necessary for every reference (Figure 8.13).
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Figure 8.13. LRU replacement, poor use of the cache

An optimal replacement policy would require knowing the future. In the previous
case, for example, it should not be necessary to replace a, b and c, but the LRU policy
imposes a replacement for each new reference.

8.2.1.1. Introducing a shadow directory

A possible improvement1 consists of introducing another directory, known as the
shadow directory, which contains the tags that have been recently used but are no
longer in the directory (Figure 8.14).

Directory

Contents memory

Shadow

directoryLine

Figure 8.14. Shadow directory

When a new line is updated in the main cache (in case of a miss), the tag of the
replaced line is introduced into the shadow directory. Misses can be divided into two
categories:

– transient misses, in which the line is not in the cache and the tag is not in the
shadow directory;

1 Proposed by J. POMERENE, T.R. PUZAK, R. RECHTSCHAFFEN, and F. SPARACIO,
“Prefetching Mechanism for a High-Speed Buffer Store”, cited in [STO 90].
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– shadow misses, in which the line is not in the cache, but its tag is in the shadow
directory. We can assume that there is a risk of this occurring again sooner or later. We
therefore have an incentive to favor shadow references over those that lead to transient
misses.

A bit indicates the type of miss. Several management policies can be
implemented. If we consider once again the previous example and choose to
overwrite lines corresponding to transient misses, we get the sequence illustrated in
Figure 8.15.
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Figure 8.15. Using the shadow cache

8.2.1.2. Using a “victim cache”

When a line is going to be overwritten following a replacement, it is first copied
into a small-size associative cache (Figure 8.16). This cache is called the victim cache
[JOU 98].
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Figure 8.16. Victim cache

After a certain number of cycles, the victim cache (VC) contains mostly
references to information that should not have been excluded from the main cache
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(MC). These are called conflict misses [HIL 89], defined as misses that are avoidable
either by modifying the associativity (mapping misses) or by modifying the
replacement policy (replacement misses).

When the processor sends out an address, the corresponding tag is compared to
the tags stored in MC and VC. In case of a hit in VC, the lines are switched (the LRU
line in MC and the line found in VC).

8.2.1.3. Hardware design of the LRU replacement policy

There are essentially three implementation techniques:

– Using counters: each counter, referred to as an age counter, is associated with a
line of the cache (Figure 8.17).
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Figure 8.17. Age counters

If the cache consists of 2n lines, there are 2n of these counters, and they are
equipped with n binary elements. If a reference is satisfied in the cache (hit), the
associated counter, the content of which is assumed equal to p, is set to zero, while
all the other counters with content less than p get their content increased. Figure 8.18
shows how the counter management logic works.
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Figure 8.18. Updating age counters

The line with the counter containing the value 2n − 1 is the oldest line. In order to
find within a sufficiently short response time, we can perform an associative search. In
the case where the cache is not full, the new line is loaded and its counter initialized
at zero, while all other counters are incremented.
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– Using a hardware stack: this stack contains the line numbers arranged in order
from the most recent reference at the top of the stack (on the left in Figure 8.19),
to the oldest at the bottom of the stack (on the right in Figure 8.19). If there are 2n

lines, there must be 2n n-bit registers. The line number p is set at the top of the stack
and the appropriate shift is performed. This requires the presence of comparators for
generating the shift clocks. In this way, all the registers from 0 to p − 1 are shifted
in the stack. Since the oldest element ends up at the bottom of the stack, decoding it
leads to the immediate identification of the line that needs to be used.
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Figure 8.19. The hardware stack

In case of a miss, all the elements are shifted and the line number p is written at
the top of the stack. In case of a hit, there is a partial shift, as indicated in the figure,
and the line number p is written at the top of the stack.

– Using a state matrix associated with the cache: this matrix contains Boolean
elements denoted by 0 and 1. When a line p is referenced, line p of this matrix is set
to 1 and the column p to 0.

EXAMPLE 8.5.– [Using a state matrix] Consider a four-line cache initialized by a
sequence {a, b, c, d}, which fills up its lines in the order 0, 1, 2, and 3. After these four
accesses, the line k of the state matrix A contains k 1’s. Let us assume a new access
to the element b (hit). The matrix is modified as follows:

A =

Line
0 0 0 0 0 a

1 1 0 0 0 b

2 1 1 0 0 c

3 1 1 1 0 d

hit−→

Line
0 0 0 0 0 a

1 1 0 1 1 b

2 1 0 0 0 c

3 1 0 1 0 d
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Starting with the same initial state, let us now assume a miss (we access the
element e). Since the LRU line is the line 0, the state we obtain is:

Line
0 0 0 0 0 a

1 1 0 0 0 b

2 1 1 0 0 c

3 1 1 1 0 d

miss−→

Line
0 0 1 1 1 e

1 0 0 0 0 b

2 0 1 0 0 c

3 0 1 1 0 d

This way, the number of the most recent line is given by the matrix line that
contains the highest number of 1’s, while the oldest is given by the line containing
nothing but 0’s.

This method is better suited for small caches. Large caches are divided into subsets
that do not overlap, and the replacement policy is implemented on two levels: the first
level manages subsets and the second level manages the content of the selected subset.

8.2.2. The case of several levels of cache

When several levels of cache are used, it is possible to define behaviors for each
level.

8.2.2.1. Inclusive caches

An inclusive cache contains all of the information in lower level caches. The Intel®
i7 microprocessor, for example, has three levels of cache. The L3 cache contains a
copy of the data in the lower level caches L1 and L2. L3 is described as inclusive.
Note that updating a line only requires testing the L3 cache. On the other hand, if we
need to replace a line in L1 or L2, we must also replace it in L3.

An inclusive cache operates exactly as a simple memory hierarchy. In the case, for
example, of a cache with two levels L1 and L2, if there is a miss during a read in L1
or L2, then L2 is updated from the memory, and L1 from L2. If there is a miss in L1
and a hit in L2, then L1 alone is updated from L2. This mode of operation is helpful
in managing information coherence in the involved caches.

8.2.2.2. Exclusive caches

Another mode of operation consists of imposing as a rule that an element of
information can only be held by a single cache. These are exclusive caches. This
mode is used, for example, in the AMD AthlonTM Thunderbird microprocessor.

Figure 8.20 illustrates the architecture of a two-level exclusive cache system.
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Figure 8.20. Exclusive cache with two levels L1 and L2

A buffer known as a victim buffer (VB) makes it easier to handle exchanges
between L1 and L2 for the purpose of maintaining their exclusive nature. Let us
assume that the line size is the same for L1 and L2. Unlike the victim cache, the
victim buffer only holds to information for the smallest amount of time possible.
Transfers to L2 are performed as soon as possible.

In the two-level case, a hit in the L2 cache and a miss in L1 leads to an exchange of
lines between the two caches rather than a simple transfer from L2 to L1: the victim
line is transferred to L1 via VB, the addressed line is transferred from L2 to L1, then
the exchange is completed by an update a L2 from VB.

If there is a miss in the two caches L1 and L2, the corresponding line is brought
directly from the memory to L1 with a transfer, if necessary, from L1 to VB.

8.2.3. Performance and simulation

The elements that need to be taken into account when evaluating the performances
of a cache are the associativity, the line size, the number of bits of the index, the type
of write management, the specific characteristics (write protection when “caching”
non-volatile memory, coherence management, exclusivity, etc.) and the access time.

Consider a set-associative cache (Figure 8.21). The address can be divided as
follows:

[ Tag, Index, “number of words in the line” ]

Here, the number of blocks is denoted by B, the number of lines per block by L and
the number of words per line by M . The total number of words is B × L ×M . The
performance of the cache depends on these three parameters. The rule of thumb states
that doubling the cache size leads to a 30% drop in the number of misses.
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Figure 8.21. Set-associative cache

The choice of a cache structure must be done as follows: for a given cache size,
we first set the number of blocks B. We then change L and M and count the number
of misses.

The simulator input is typically a set of programs. Each time an instruction is
executed, the sequence of the different memory references that have occurred is
written into a file (in some cases, if the machine allows a step-by-step operation, the
operating system can perform this task).

The Intel® Corp. released some statistical data (Table 8.1) based on figures relative
to – old - mainframes. The size of these tags is not disclosed, but the results shown
provide interesting indications. These caches are direct-mapped (associativity of 1) or
set-associative.

Size (kB) Associativity Line (bytes) Hit rate (%)
1 1 4 41
8 1 4 73
16 1 4 81
32 1 4 86

2 4 87
1 8 91

64 1 4 88
2 4 89
1 8 92

128 1 4 89
2 4 89
1 8 93

Table 8.1. Some figures on caches (Source: Intel® Corp.)
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There are two problems with these simulations:

– We can never be sure that the workload imposed is representative of what is
actually occurring. Note that test programs can consist of millions of instructions.
Since the simulation is roughly 1,000 to 100,000 slower than the execution of the
program we are studying, this poses major feasibility issues.

– The second problem lies in the fact that the simulation must be long enough that
it is not affected by the transient part corresponding to the beginning of the program,
when the number of misses is particularly important.

REMARK 8.3.– A particular form of cache use is trace cache [ROT 96, PAT 99],
which stores sequences of instructions that have been executed. This type of cache,
which was first introduced in the VAX machines by Digital Equipment (fill unit)
[MEL 88] to lighten the load of the decode stage, was used by Intel® in its Pentium®

IV. The trace cache is built in parallel with the instruction cache, but provides the
result of the decoding of instructions, rather than the instructions themselves. A
similar mechanism is used in the Intel® i7 processor, which has a cache for storing
microinstructions (μop-cache).



Chapter 9

Virtual Memory

Virtual memory is a management technique that relies on the combined use of the
main memory and a mass storage unit. This unit, which usually consists of a magnetic
disk, is used as a complement to the main memory. Even though the main memory
can be quite large in practice (consumer microcomputers are theoretically capable of
addressing up to 4 GB with their 32-bit address buses, and the upgrade to 64 bits is
becoming widespread), economic considerations make it necessary to use a part of the
disk space to “simulate” the presence of electronic memory. Besides, this management
concept fits naturally into the hierarchy (section 7.3) of a memory management system
where mass storage, main memory, cache and registers form the building blocks of the
memorization system.

The first attempt to implement such a device was for the ATLAS computer
[KIL 62, SUM 62] at the University of Manchester in the early 1960s. This approach
was referred to as a one-level store. The memorization system comprised a 16
kilowords random access memory and a magnetic drum storage space with a capacity
of 96 kilowords. This approach was equivalent to offering the user a total memory of
96 kilowords divided into blocks or pages of 512 words. The ratio between the access
times for the drum and for the main memory was in the order of 500. A learning
program ensured a completely seamless user experience and guaranteed that the most
commonly used pages were kept in the physical memory to optimize their
accessibility.

All modern general use microprocessors offer this feature. The variety of solutions
is comparable to the variety of architectures they are implemented on.
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9.1. General concept

9.1.1. Operation

In a virtual memory management system, the user perceives the set consisting of
the main memory mass storage as a single, large size space (Figure 9.1).
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Figure 9.1. How memory is perceived

A mechanism for transferring blocks of information, known as pages, between
the mass storage unit and the physical memory, implemented by the operating system,
ensures that the user does not have to worry about the actual location of the
information they are handling. The data are stored in rows and the programs are
written as if the available main memory had a size equal to the set (or a subset) of the
storage units. The only inconvenience for the user is caused by the delay suffered by
some of the responses to requests, delays caused by the transfers between the mass
storage unit and the main memory.

9.1.2. Accessing information

Figure 9.2 summarizes the sequence of operations performed to carry out a fetch
operation in the context of virtual memory management. The steps are the following
ones:

– The processor sends out an address. The translation mechanism indicates the
presence or absence of the desired information in the main memory of the page.

– If the page is present, the information (a) is immediately accessed.

– Otherwise, the page containing this information must be transferred from the
mass storage unit to the main memory. If necessary, some space has to be cleared.
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However, this space may be taken up by a page that has been modified since its transfer
to the main memory:

- if that is the case, this page is copied into the mass memory unit (c1). Then,
the desired page is transferred to the main memory (c2) and access is achieved (c3);

- otherwise, the desired page is transferred into memory (b1) without saving
any information prior to access (b2).
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Figure 9.2. Virtual memory management

9.1.3. Address translation

Since the generated addresses are no longer physical addresses in the main
memory, they are referred to as virtual or logical addresses. The management system
ensures the translation of these virtual addresses into physical addresses, in other
words switching from the logical space experienced by the user to the physical space.
This translation relies on detecting the presence of the desired information in
memory. If this information is not found in the memory, we have a fault. The system
must search the mass storage unit for the page containing the information, as
described in the previous example.

The virtual and physical spaces are divided into blocks of the same size, known as
pages (virtual pages and page frames), which act much like lines do in a cache. The
address of the information then consists of a page number and of the offset of the word
in the page (Figure 9.3).
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Figure 9.3. Virtual and physical spaces

A virtual memory management system ensures the translation of a virtual page
number (VPN) into a physical page number (PPN). An VPN can only have
one corresponding PPN. On the other hand, a PPN can correspond to several
VPNs.

The translation device is purely hardware. In practice, translation tables are kept
in memory with a cache system such that access times are compatible with the desired
performance. The detection/translation device relies on a cache called the translation
lookaside buffer (TLB), the translation buffer (TB), or the address translation cache
(ATC).

Despite sharing the same major concepts, there are important differences to note
between translation cache and conventional memory cache:

– the information collected in the translation cache is not the information itself,
but the number of the physical page that contains it and that will be used by the cache
memory (see example, section 9.3);

– the page search within the storage unit is managed by the operating system, not
by the hardware.

9.2. Rules of the access method

9.2.1. Page fault

During the execution of a program, the processor generates virtual addresses
that are sent to the memory management module. The memory management module
(the translation cache and the page table) indicates whether the generated address
corresponds to an address in the main memory:
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– if that is the case, the translation from virtual address to physical address is
performed immediately, and the desired information is fetched;

– otherwise, the memory management module sends an abort signal to stop the
execution of the instruction. This is called a page fault.

A page fault is fundamentally different from an interrupt: the instruction is
supposed to revert to its initial state instead of stopping. The registers that were
altered by the execution must be restored so that, once the page fault is handled, it is
possible to restart the instruction from the beginning. The address saved in the stack
is not the address of the instruction, but of the instruction that triggered the fault.

The mechanism for obtaining the address of the page fault handling program is
similar to the one used for interrupts: after saving the address of the instruction
responsible for the fault, the processor retrieves the address of the handling program
in the interrupt vector table. This mechanism is inhibited when the aborted cycle
corresponds to a prefetch instruction (this is the case in pipeline architectures, see
Chapter 10), because it is not known whether the instruction in question will be
executed, and it is therefore useless to start the exception handling process. Only the
prefetch will be canceled.

9.2.2. Multi-level paging

The page table can take up considerable memory space. Consider a machine with
a 32-bit address space: if the page size is 1 kiloword, and if we have d = 10 offset
bits, the page number is coded in 22 bits. The page table must therefore have access to
222 words, or 4 megawords, to store the physical addresses of the pages. If each PPN
comes with service bits and takes up 32 bits, the size of the table will be 16 MB. This
explains why processor designers had to introduce an additional level of tables, where
the first level is stored in memory, and the second level table (or tables) can be partially
stored on a disk. The first level table is called the page directory, root table page, or
hyperpage table in operating system terminology. The virtual address is divided into
three fields (Figure 9.4).
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Figure 9.4. A virtual address in two-level paging
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The Nt most significant bits provide an entry in the page directory, which in turn
provides the base address of a page table. The address of the directory permanently
stored in memory is usually provided by the content of a register called the directory
register. The next Np bits, combined with the address provided by the content of the
directory, give an entry in the page table (Figure 9.5). For performance reasons, the
directory is kept in memory.
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Figure 9.5. Two-level paging

Virtual memory management thus applies to page tables as well as pages. Only the
first level table (the page directory) is kept in memory (Figure 9.6).

9.2.3. Service information, protection and access rights

Service bits are associated with each page. These bits are used for protecting data
and programs, and for the management of memory by the operating system:

– The modify bit M, or dirty bit, indicates if the page has been modified. It is used
by the operating system to know if the page needs to be copied into the mass storage
unit before being replaced. It is, of course, useless to save a portion of memory that
has not been modified.

– The valid bit V is used in the same way as in cache memory. It helps avoid
accessing pages that are referenced in a table but have not been transferred to memory
yet. This can occur:

- upon initialization of the machine, when the content of the memory is
uncertain;

- when a page in memory is copied onto a disk to save space. Its page number
is replaced by the number of the disk block it was loaded into. The corresponding V
bit is then set to the invalid position.
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– The reference bit R is used by the operating system to estimate how frequently
the page is used. Each access to the page sets this bit to 1. It is also periodically set to
0. The pages with their R bit set to 0 are referred to as LRU. This makes it possible
to implement an algorithm such as this one: if a page is rarely used, or has not been
used in a “long” time, it will be more likely than others to be replaced if the system
needs space in the main memory. Not all processors are equipped with this service bit.
Operating systems that require them must then simulate them using the M bit or the V
bit.

– each entry in the page table and in the TLB includes bits for managing page
access rights (for reading, writing, and executing), and, often, bits giving the number
of the process owning the page.
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Figure 9.6. Accessing information in a two-level paging system

9.2.4. Page size

Page size is a major factor for performance in a virtual memory management
system. It is chosen based on conflicting criteria:
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– The smaller the page size, the larger the description tables have to be, hence the
need to have a somewhat large page size.

– Because the size of programs or data structures is not always an exact multiple
of the page size, there will always be wasted space (a phenomenon known as internal
fragmentation). This makes a small page size advantageous.

– The smaller the page size, the shorter the transfer time between the mass storage
unit and the main memory. We should not, however, conclude that the page size must
be as small as possible, since the size of the transferred block is not proportional to
the transfer time: the time it takes for the read–write heads of the disk to position
themselves is often longer than the transfer itself. It can sometimes be quicker to
transfer one 2-kB block than two 1-kB block.

– The locality principle favors a small page size: this is because at a given time,
we do not need the entire program in the main memory.

– If the pages are too small, there will be many transfers from the mass storage
unit to the main memory, in other words considerable time lost due to the saving of
contexts and to the execution of the page replacement algorithm.

– Another factor in our choice is the relationship between the size of the physical
sector on the mass storage unit (the physical unit for the transfer) and the page size
(the logic unit for the transfer).

In practice, the page size is chosen an equal to one to eight times the size of the disk
sectors, or equal to the disk allocation unit (the granularity or cluster from the point
of view of the operating system). The page size in Windows or Mac OS X is usually
4 kB. It is related to the granularity parameter in the processor’s memory management
system.

9.3. Example of the execution of a program

For the purpose of making it easier to understand the mechanisms, we are dealing
with, we will discuss the example of a machine equipped with 256 words of physical
memory organized in 16 word pages, or 16 pages of 16 words and a mass storage unit
with 1,024 words, or 64 pages of 16 words (Figure 9.7), set aside for the user’s needs.

The virtual addresses sent by the processor are coded in 10 bits, making it possible
to address 1,024 words. The instructions are all coded in one word.

Consider a program that takes up 512 words of memory (32 pages in the mass
storage unit). The first instruction mov r1,r2 is an instruction to move from one
register to another. The next jump 16 is a branch to the word with the address 16
and, at address 16, we find another branch jump 64. To manage the translations, the
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operating systems store in memory a table with 64 entries corresponding to the 64
virtual pages. Each entry contains a PPN and a presence bit P indicating whether the
page is in memory (P = 1) or not (P = 0). The page table address is stored in the
8-bit PTR register (page table register).
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Figure 9.7. Example: the first two pages of the program are loaded into memory
(physical pages 0 and 1)

Initially, the first two pages of the program are loaded into pages 0–1 of the
physical memory. The other entries have their presence bit set to 0. The physical
pages numbered 12 through 15, which contain the page table we wish to permanently
store in memory, must not be used for other purposes. They are referenced in the
virtual space with a page number from 60 to 63. The corresponding R = 0 bit
indicates that these pages are read-only. We could add information (an operation
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mode bit for example) but, for reasons of simplicity, we will limit ourselves to just
the R bit.

9.3.1. Introducing the translation cache

Let us assume that the translation system is a fully associative cache with four
entries. Its state is shown in Figure 9.8.
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number

Valid
Bit

0
0

0

4-bit

physical page
number

0
1

0
0 { {

Figure 9.8. Initial state of the translation cache

The machine is equipped with a fully associative cache memory with 4-word
lines. Initially, all of its entries are marked as invalid. The organization of the
memory management is illustrated in Figure 9.9.

We will adopt the following notations:

– for each TLB entry, VT is the valid bit;

– for each cache entry, Vc is the valid bit;

– NL is the number of the logic page (virtual page);

– NP is the number of the physical page in the TLB;

– np is the number of the physical page in the cache;

– for each entry in the page table, P is the presence bit;

– NPT is the number of the physical page in the page table.

9.3.2. Execution

After loading (Table 9.1) two pages into memory, the page table is updated
accordingly and we assume that a previous access validated the first entry in the TLB.

1) When the memory is first accessed, the program counter is set to 0. The
translation module TLB that contains the corresponding page number (page 0) with a
valid bit VT equal to 1 returns a hit.
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Reading and execution of mov NPT P
0 1 0

VT NL NP Vc np lines 1 1 1
1 0 0 0 0 φ φ φ φ φ 0
0 φ φ 0 φ φ φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

TLB Cache memory Memory

Table 9.1. Initial conditions

Reading and execution of mov 0 1 0
Cache update 1 1 1

1 0 0 1 0 mov jump 16 xxx xxx φ 0
0 φ φ 0 φ φ φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.2. Cache memory update

The PPN that is delivered is 0. On the other hand, the cache memory will return a
miss because of the value of its valid bit VC . The words with addresses 0 through to 3
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are transferred to the cache and the line is set to valid. The instruction being read can
be transferred to the instruction registered to be handled (Table 9.2).

2) At the second access, the program counter takes on the value 1. The page
number is still 0. The translation system returns a hit and the physical page number is
0. Since the cache that contains the information we need, the instruction jump 16, the
instruction fetch is “instantaneous” (Table 9.3).

Reading of the branch instruction 0 1 0
TLB hit CM hit and reading of jump 16 1 1 1

1 0 0 1 0 mov jump 16 xxx xxx φ 0
0 φ φ 0 φ φ φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.3. Referenced information

3) The attempt to read the content of the address 16 (located on page 1) results in
a miss in the TLB. On the other hand, this page is, in fact, referenced in the page table
(Table 9.4). The processor fetches it without triggering a fault because the presence
bit is set to 1. The processor copies the page number NPT into the translation cache
(through an LRU algorithm).

Execution of the branch 0 1 0
TLB update CM miss and reading of jump 64 1 1 1
1 0 0 1 0 mov jump 16 xxx xxx φ 0
1 1 1 0 φ φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.4. Case of a TLB miss with correct page table

There is then a miss at the cache level, which is now updated too (Table 9.5).

0 1 0
TLB update CM update and reading of jump 64 1 1 1
1 0 0 1 0 mov jump 16 xxx xxx φ 0
1 1 1 1 1 jump 64 xxx xxx xxx φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.5. Handling the first two misses

4) During the execution of the jump 64 instruction, the page number that is sent
is equal to four. The TLB shows a miss and, since the presence bit in the page table is
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equal to one, there is a page fault. The corresponding address has to be saved so we
can come back to it after handling the page fault. This save is often done in a special
register and not in the stack. The operating system is then put in charge, and tasked
with fetching from the disk the virtual page 4. If we assume that the physical page that
is chosen is the third one, and that this page was not modified in the meantime, there
is no reason for saving it first (Table 9.6).

0 1 0
TLB update − − −
1 0 0 1 0 mov jump 16 xxx xxx 3 1 4
1 1 1 1 1 jump 64 xxx xxx xxx φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.6. Handling the exception

Since the address responsible for the fault was saved, the restart process updates
the TLB. This is the case because when the operating system yields control, the
execution of jump 64 causes a TLB miss which is then resolved the same way as
previously, since the presence bit is now set to one (Table 9.7).

0 1 0
TLB update − − −
1 4 3 1 0 mov jump 16 xxx xxx 3 1 4
0 φ φ 1 1 jump 64 xxx xxx xxx φ
0 φ φ 0 φ φ
0 φ φ 0 φ φ 63

Table 9.7. Updating the TLB

9.3.3. Remarks

1) In the case where we rely on a paged organization, only one block of a fixed
size – the page – is loaded into memory. Since the pages all have the same
size, the management of the memory space is considerably simpler compared with
segmentation. The replacement of pages does not imply any reorganization of the
memory.

The criteria that determine page replacement vary from system to system: least
commonly used pages, oldest in memory, etc. As a general rule, the operating system
tries to keep in memory the most used pages (the phrase working set is sometimes
used to refer to the set of pages of a process that have this property).
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Virtual memory management relies on this paging–transfer association.

2) Updating the translation cache poses a more difficult problem than in the case
of instruction/data caches. This is because in a multiprogramming context, two virtual
addresses can be identical in the address memory of the TLB [CLA 85, STO 90]. We
could add a task identifier (TID) to the TLB (see exercise 9.1).

- A first solution consists of invalidating the entire content of the TLB after a
page fault, or after the operating system resets the table page bit P to zero. This is the
case for example for the early versions of the Intel® 386 microprocessor [INT 85].

- A second solution consists of invalidating only part of the entries involved.
This second solution requires having access instructions to the lines of the TLB. This is
the case of the AMD29000 microprocessor [ADV 87]. After a TLB miss, an exception
called a TLB trap is generated. The memory management module then provides in the
recommendation register the TLB entry number corresponding to the LRU line. The
address responsible for the trap is also saved in a register so that the operating system
can update the TLB using the mttlv (Move to TLB) instruction and page table stored
in memory.

9.4. Example of two-level paging

To illustrate the mechanisms used in virtual memory management systems, we
will discuss an example of the practical implementation of the memory management
modules. This example is based on the National Semiconductor Corporation’s
NS32000®, in which the virtual memory and the physical memory have the same
size.

9.4.1. Management

9.4.1.1. Concepts

This first example focuses on the design of the memory management module in the
16- and 32-bit National Semiconductor [NAT 84] microprocessors, which date back
to the 1980s (Figure 9.10).

Page table directory

entry

Page table

entry

Offset

8 bits 7 bits 9 bits

24-bit virtual address

PDE PTE

Figure 9.10. Virtual address structure
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The processor sends a 24-bit address. The size of a page is 512 bytes (nine offset
bits) and the page number is 15 bits long. As we saw previously, if we opt for
one-level paging, the virtual page table will need to hold 215 entries. The solution
actually implemented is two-level paging: the page size is still 512 bytes and the
VPN is divided into two fields of eight and seven bits.

The field made up of the eight most significant bits, known as the page directory
entry (PDE), provides one of 256 entries in a table called the page directory (PD),
which holds the addresses of the page tables. The address of this table, which is
permanently stored in memory, is built based on the content of a register called the
page table base (PTB). The following 7-bit field, known as the page table entry
(PTE), combined with the 15 bits provided by the page table directory, is one of 128
entries in the page table. The nine least significant bits indicate the offset in the page
specified in the page table “up to” the desired bit. Each PTE provides a 15-bit PPN as
well as a series of service bits. Since the memory is organized in 32-bit words, then
without the page directory, the page table would permanently take up 215 words, or
128 kilobytes (Figure 9.11).
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Figure 9.11. Two-level paging
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9.4.2. Handling service bits

The entries of the page directory (word (1) in Figure 9.11) and of the page table
(word (2)) are written in the format shown in Figure 9.12.

23 8

R PL V

4

(1)

(2)

31

Page number (15 bits)

23 8

R PL V

431

MPage number (15 bits)

3

3

2-1

2-1

0

0

Figure 9.12. Entry format in the page directory and in the page table

V is the valid bit, M the dirty bit or modify bit, R the referenced bit, and PL the
2-bit privilege level.

The current privilege level is determined based on the read/write signals, the
operating mode (user/supervisor), and the access override bit. Depending on the
value of this bit, the (MMU) will or will not verify the access rights when the
processor is in user mode.

The M (modified), R (referenced) and V (valid) bits are used as shown in the
flowchart in Figure 9.13.

Access right verification is performed by comparing the current privilege level and
the PL field located in the page table. The PL field is equal to the most restrictive
privilege level of the PL fields read in the directory and in the page table.

The MMU is equipped with a 32-entry associative TB (Figure 9.14) and a register
used for memorizing the address where the exception occurred. Replacement is
performed through an LRU-type algorithm.

9.4.3. Steps in the access to information

We now examine three cases of access to an element of information. TR refers to
the directory and TPi to a page table:

– Scenario 1: the TLB provides the physical address during the Tmmu clock cycle.
This address is instantly available (Figures 9.15 and 9.16). This is the most favorable
case in terms of access time.

– Scenario 2: the TLB does not contain the page number. The page is referenced
as valid in the page table and the page table is referenced as valid in the directory
(Figures 9.17 and 9.18).
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Figure 9.14. The translation buffer

Figure 9.17(b) illustrates the access to the directory. The directory provides the
page table number nt, which is stored in the page frame number (PFN) register.
Access to the page table provides the PPN np, which is also stored in the PFN
register (Figure 9.18(a)). This register, combined with the offset, allows access to the
information in the page (Figure 9.18(b));
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Figure 9.15. Immediate access to the information: TLB hit (scenario 1)
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Figure 9.16. Immediate access to the information: the address is built using the content of the
TLB and the offset of the virtual address. The information is then accessed
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Figure 9.17. Accessing the directory (scenario 2): miss in the TLB a), access to the page table
number in the directory b)

– Scenario 3: the directory entry, provided by the PDE field (the eight most
significant bits), indicates a page table that is invalid because it is absent (Figure 9.19).
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Figure 9.18. Accessing the information a) and updating the TLB b)
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Figure 9.19. Invalid directory entry: PT1 must be loaded into PFN

Control is yielded to the operating system. It fetches from the mass storage unit the
corresponding page table. The directory entry given by the PDE is updated. Access is
performed once again. The PFN is fetched from the directory (Figure 9.20(a)). With
the PTE field, we access an entry in the page table (Figure 9.20(b)).
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Figure 9.20. Building the address in the page table: access in the directory a), access in the
page table b)
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This, however, produces an invalid address. As it did before, the operating system
fetches the required page from the mass storage unit and updates the PTE entry in the
page table (Figure 9.21).
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Figure 9.21. Reading the page table entry

The information access scenario is the same as in the previous scenarios. After the
handling process, the address is constructed using the content of the PTE entry in the
page table (transferred into PFN, Figure 9.18(a)) and the nine offset bits. The TLB is
updated (Figure 9.18(b)).

9.5. Paged segmentation

The example described here illustrates how the Intel® 80386 microprocessor
operates when it functions in what is known as protected mode.

As with the Intel® I8086, where the address was built using the content of a
segment of a register and an offset, the addresses here are provided in the form of a
segment selector (the segment register) and an offset. The first phase in building the
address therefore relies on segmentation.

The selector is a 16-bit register. Its 13 most significant bits indicate an offset in
memory for finding an 8-byte segment. We therefore have 8,192 8-byte descriptors.
Bit 2 of the selector indicates whether we are dealing with a table of local or global
descriptors, and the two least significant bits indicate the privilege level of the task
associated with this segment. Each segment descriptor includes a 32-bit base address,
the length of the segment in 20 bits (220 blocks of 4 kB at most), and service bits
(access rights and service information). The virtual memory addressable space
therefore consists of 2 × 8,192 times (two tables of 8 kilodescriptors) 4 GB, or 64
TB, whereas the physical space is limited to 4 GB.

The segment length is defined by the 20-bit limit field. This field indicates how
many clusters are occupied by the segment. A so-called granularity bit indicates the
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cluster size: 1 byte or 4 KB depending on the value of this bit. Thus, the maximum
segment size can be 1 MB or 4 GB.

The virtual memory management system ensures two-level paging of the
segments.

Two caches are added to improve the performance of the system. The first (the
descriptor cache) receives the 8 bytes of the descriptor associated with the selector.
This is actually not a cache but a series of registers, not accessible by programming,
which store a copy of the descriptor. The second (the TLB) is a cache with 32 entries.
It is an set-associative with an associativity of 4. With a page size of 4 kB, this results
in 128 kB of addressable space. According to Intel®, the reference hit rate is on the
order of 98% for common multi task systems.

The paging system can be invalidated to work only in segmented mode.

The service bits included in each entry of the directory or the page table
(Figure 9.22) are used as follows:

– The A (accessed) bit is set to one after a read or write access to the page
referenced in this entry.

– The D (dirty) bit is set to one when a write operation is performed in the page
indicated in this entry.

– The U/S (user/supervisor) and R/W (read/write) bits are used in the page
protection mechanism.

– The P (present) bit indicates that this entry can be used for translating address
and therefore be loaded into the TLB.

– Three bits are available to the operating system for implementing a page
replacement algorithm.

If an entry is not found in the TLB (miss), the presence bit, denoted by Pr, of
the directory indicates if the corresponding page table is present in memory or not. If
Pr = 1, the corresponding entry in the page table is read and the Ar bit is set to one.
If the Pt bit in the page table is equal to one, the processor updates the At and Dt and
accesses the data. The TLB is updated with the 20 bits of the linear address fetched
from the page table.

If Pr or Pt is equal to 0, then an exception 14 (page fault) is triggered. The address
(linear address) of the instruction responsible for the page fault is stored in the control
register CR2. A 16-bit word of error code (the R/W , U/S and P bits) is placed in the
stack where it is handled by the exception handling program. When the page table is
updated, the operating system invalidates the TLB entries. This is achieved by writing
in the CR3 register.
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Figure 9.22. Paged segmentation in the Intel® I80386

9.5.1. 36-bit extensions

Four GB of space quickly turned out to be insufficient for machines that had to
manage large databases. Intel® introduced the page size extension (PSE) with its
Pentium® II. The page size is 4 MB (22 offset bits) and only one level of paging is
set up by the page table directory, which produces 14-bit page numbers. This mode is
only used above 4 GB, while below that limit, 4-kB or 4-MB pages can be used.

Intel® introduced another 36-bit addressing mode, known as the physical address
extension (PAE), on the Pentium Pro® processors. From a physical perspective, this
transformation, which is intended to still allow working with 32 bits, consists of
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adding a level in the paging mechanism (Figure 9.23). In the paging levels, the
directory entries and the page tables take up 8 bytes instead of four.
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Figure 9.23. PAE addressing extension for a 4-kB page size

It is possible to define pages that are of 2 MB in size. In that case, as for the
PSE mode, paging is performed on a single level. The page number given in the page
directory is then 15 bits in length.

9.6. Exercise

Exercise 9.1 (Virtual memory in the AM 29000) (Hints on page 333)

The AM 29000 [ADV 87] is one of the first standard 32-bit microprocessors.
Dating back to the early 1980s, it is equipped with a 25-MHz clock, a pipeline with
four levels (fetch, decode, execute, write-back), an MMU, a branch predictor, etc. It
was widely used in various controllers, in particular video cards used in Apple
computers.
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Using the documentation excerpts given below, answer the following questions:

1) General questions:

i) Draw an annotated diagram laying out the mechanism for switching from a
virtual address to a physical address.

ii) Explain the role of the TLB.

iii) Why do we use the term trap rather than interrupt?

2) MMU parameters (we will assume here that the pages are 1 kB in size):

i) In section 9.7.2.1, what is the meaning of the phrase supervisor mode?
Which is the only mode that allows access to the TLB?

ii) In section 9.7.2.2.1, what is the purpose of the tag field? What is the purpose
of the valid bit?

iii) In section 9.7.2.2.2, what is the maximum number of addressable physical
pages?

iv) What category of caches does this TLB belong to?

v) What is the purpose of the U bit?

vi) Still assuming 1-kB pages, give the number of bits in the tag and index
fields. What is the purpose of the TID field?

3) Design diagram: draw a diagram of the TLB that clearly outlines the
comparators and the fields involved.

9.7. Documentation excerpts

It is an excerpt from a documentation from AMD. It is a detrimental change from
sans serif to serif and from two colums to one column.

9.7.1. Introduction to the MMU

9.7.1.1. Memory management

The AM 29000 incorporates an MMU which accepts a 32-bit virtual byte-address
and translates it to a 32-bit physical byte-address in a single cycle. The MMU is not
dedicated to any particular address-translation architecture.

l1: Address translation in the MMU is performed by a 64-entry TLB, an associative
table that contains the most recently used address translations for the processor. If the
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translation for a given address cannot be performed by the TLB, a TLB miss occurs,
and causes a trap that allows the required translation to be placed into the TLB.

Processor hardware maintains information for each TLB line indicating which
entry was least recently used. When a TLB miss occurs, this information is used to
indicate the TLB entry to be replaced. Software is responsible for searching system
page tables and modifying the indicated TLB entry as appropriate. This allows the
page tables to be defined according to the system environment.

TLB entries are modified directly by processor instructions. A TLB entry consists
of 64 bits, and appears as two-word-length TLB registers which may be inspected and
modified by instructions.

TLB entries are tagged with a task identifier (TID) field, which allows the
operating system to create a unique 32-bit virtual address space for each of 256
processes. In addition, TLB entries provide support for memory protection and
user-defined control information.

9.7.1.2. Memory management unit

l2: The MMU performs address translation and memory protection functions for
all branches, loads and stores. The MMU operates during the execute stage of the
pipeline, so the physical address that it generates is available at the beginning of the
write-back stage.

All addresses for external accesses are physical addresses. MMU operation is
pipelined with external accesses, so that an address translation can occur while a
previous access completes.

l3: Address translation is not performed for the addresses associated with
instruction prefetching. Instead, these addresses are generated by an instruction
prefetch pointer, which is incremented by the processor. Address translation is
performed only at the beginning of the prefetch sequence (as the result of a branch
instruction), and when the prefetch pointer crosses a potential virtual-page boundary.

9.7.2. Description of the TLB

9.7.2.1. TLB registers

The AM 29000 contains 128 TLB registers (Figure 9.24).

The TLB registers comprise the TLB entries, and are provided so that programs
may inspect and alter TLB entries. This allows the loading, invalidation, saving and
restoring of TLB entries.
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Figure 9.24. TLB registers

TLB registers have fields that are reserved for future processor implementations.
When a TLB register is read, a bit in a reserved field is read as a 0. An attempt to
write a reserved bit with a 1 has no effect; however, this should be avoided, because
of upward compatibility considerations.

The TLB registers are accessed only by explicit data movement by
Supervisor-mode programs. Instructions that move data to and from a TLB register
specify a general-purpose register containing a TLB register number. The TLB
register is given by the contents of bits 6 – 0 of the general-purpose register. TLB
register numbers may only be specified indirectly by general-purpose registers.

TLB entries are accessed by registers numbered 0 – 127. Since two words are
required to completely specify a TLB entry, two registers are required for each TLB
entry. The words corresponding to an entry are paired as two sequentially numbered
registers starting on an even-numbered register. The word with the even register
number is called Word 0 and the word with the odd register number is called Word 1.
The entries for TLB Set 0 are in registers numbered 0 – 63, and the entries for TLB
Set 1 are in registers numbered 64 – 127.

9.7.2.2. Entries

9.7.2.2.1. Word 0

Bit 31-15: Virtual Tag (VTAG) When the TLB is searched for an address
translation, the VTAG field of the TLB entry must match the most significant 17, 16,
15 or 14 bits the address being translated – for page sizes of 1, 2, 4 and 8 kB
respectively – for the search to be valid.
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Figure 9.25. Word 0

When software loads a TLB entry with the address translation, the most-significant
14 bits of the VTAG are set with the most-significant 14 bits of the virtual address
whose translation is being loaded into the TLB.

Bit 14: Valid entry (VE) if this bit is set, the associated TLB entry is valid; if it is
0, the entry is invalid.

Bit 13: Supervisor read (SR) if this bit is set to 1, Supervisor-mode load
operations to the virtual page are allowed; if it is set to 0, Supervisor-mode loads are
not allowed.

Bit 12: Supervisor write (SW) if this bit is set to 1, Supervisor-mode store
operations to the virtual page are allowed; if it is set to 0, Supervisor-mode stores are
not allowed.

Bit 11: Supervisor execute (SE) if this bit is set to 1, Supervisor-mode instruction
accesses to the virtual page are allowed; if it is 0, Supervisor-mode instruction
accesses are not allowed.

Bit 10: User read (SR) if this bit is set to 1, User-mode load operations to the
virtual page are allowed; if it is set to 0, User-mode loads are not allowed.

Bit 9: User write (SW) if this bit is set to 1, User-mode store operations to the
virtual page are allowed; if it is set to 0, User-mode stores are not allowed.

Bit 8: User execute (UE) if this bit is set to 1, User-mode instruction accesses to
the virtual page are allowed; if this bit is set to 0, User-mode instruction accesses are
not allowed.

Bit 7-0: Task identifier (TID) when the TLB is searched for an address translation,
the TID must match the process identifier (PID) in the MMU Configuration Register
for the translation to be valid. This field allows the TLB entry to be associated with a
particular process.

9.7.2.2.2. Word 1

Bit 31-10: real page number (RPN) The RPN field gives the most-significant 22,
21, 20 or 19 bits of the physical address of the page – for page sizes of 1, 2, 4 and 8
kB page, respectively – to form the physical address for the access.
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Figure 9.26. Word 1

When software loads a TLB entry with an address translation, the most-significant
19 bits of the RPN are set with the most-significant 19 bits of the physical address
associated with the translation. The remaining 3 bits of the RPN must be set either to
the corresponding bits of the physical address, or to zeros, depending on the page size.

Bit 7-6: User programmable (PGM). These bits are placed on the
MPGM0-MPGM1 outputs when the address is transmitted for an access. They have
no predefined effect on the access; any effect is defined by logic external to the
processor.

Bit 1: Usage (U). This bit indicates which entry in a given TLB line was recently
used to perform an address translation. If this bit is 0, then the entry in Set 0 in the line
is least recently used; if it is 1, then the entry in Set 1 is least recently used. This bit has
an equal value for both entries in a line. Whenever a TLB entry is used to translate an
address, the Usage bit of both entries in the line used for translation are set according
to the TLB set containing the translation. The bit is set whenever the translation is
valid, regardless of the outcome of memory protection checking.

Bit 0: Flag (F). The Flag bit has no effect on address translation, and is affected
only by the MTTLB instruction. This bit is provided for software management of TLB
entries.

9.7.3. TLB features

9.7.3.1. Memory management

The AM 29000 incorporates an MMU for performing virtual-to-physical address
translation and memory access protection. Address translation can be performed only
for instruction/data accesses. No address translation is performed for instruction ROM,
input/output, coprocessor or interrupt/trap vector access.

9.7.3.2. Translation look-aside buffer

The MMU stores the most recently performed address translation in a special
cache, the TLB. All virtual addresses generated by the processor are translated by the
TLB. Given a virtual address, the TLB determines the corresponding physical
address.



Virtual Memory 203

The TLB reflects information in the processor system page tables, except that it
specifies the translation for many fewer pages; this restriction allows the TLB to be
incorporated on the processor chip where the performance of address translation is
maximized.

Each TLB entry is 64 bits long, and contains mapping and protection information
for a single virtual page. TLB entries may be inspected and modified by processor
instructions executed in the Supervisor mode.

The TLB stores information about the ownership of the TLB entries with an 8-bit
Task Identifier (TID) field in each entry. This makes it possible for the TLB to be
shared by several independent processes without the need for invalidation of the entire
TLB as processes are activated. It also increases system performance by permitting
processes to warm-start (i.e. to start execution on the processor with a certain number
of TLB entries remaining in the TLB from a previous execution).

Each TLB entry contains two bits to assist management of the TLB entries. These
are the Usage and Flag bits. The Usage bit indicates which set of the entry within a
given line was least recently used to perform an address translation. Usage bits for two
entries in the same line are equivalent. The Flag bit has no effect on address translation,
and is not affected by the processor except by explicit writes to the TLB. This bit is
provided only for use by the software; for example, it may indicate that a TLB entry
may not be replaced.

9.7.3.3. Address translation

For the purpose of address translation, the virtual instruction/data space for a
process is partitioned into regions of fixed size, called pages, which are mapped by
the address-translation process into equivalently sized regions of physical memory,
called page frames. All accesses to instructions or data contained within a given page
use the same virtual-to-physical address translation.

Pages may be of size 1, 2, 4 or 8 kB, as specified by the MMU Configuration
Register. Virtual addresses are partitioned into three fields as shown in Figure 9.27.

9.7.3.3.1. Address translation controls

The processor attempts to perform address translation for the following external
accesses:

1) Instruction accesses, if the Physical Addressing/Instructions (PI) and ROM
Enable (RE) bits of the Current Processor Status is 0.

2) User-mode accesses to instruction/data memory if the Physical Addressing/Data
(PD) bit of the current Processor Status is 0.
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Figure 9.27. Virtual address.

3) Supervisor-mode accesses to instruction/data memory if the Physical Address
(PA) bit of the load or store instruction performing the access is 0, and the PD bit of
the current Processor Status is 0.

Address translation is also controlled by the MMU Configuration Register. This
register specifies the virtual page size, and contains an 8-bit PID field. The PID field
specifies the process number associated with the currently running program. This
value is compared with TID fields of the TLB entries during the address translation.
The TID field of a TLB entry must match the PID field for the translation to be valid.

9.7.3.3.2. Address translation process

Address translation is performed by the following fields in the TLB entry: the
VTAG, the TID, the VE bit and the RPN. To perform an address translation, the
processor accesses the TLB line whose number is given by certain bits in the virtual
address (see Figure 9.27).

The accessed line contains two TLB entries, which in turn contain two VTAG
fields. The VTAG fields are both compared to bits in the virtual address. This
comparison depends on the page size as follows (note that the VTAG bit numbers are
relative to the VTAG field, not the TLB entry):

Page Virtual VTAG
Size Add. Bits Bits

1 Kbyte 31-15 16-0
2 Kbyte 31-16 16-1
4 Kbyte 31-17 16-2
8 Kbyte 31-18 16-3

Note that certain bits of the VTAG field do not participate in the comparison for
page sizes larger than 1 kB. These bits of the VTAG field are required to be zero bits.
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Chapter 10

Pipeline Architectures

The concept of a machine with a pipeline architecture is quite old. The IBM
System/360 Model 91 had some of the characteristics of such an architecture as early
as 1966. At the time, it was in competition with the CDC 6600 for the title of the
world’s most powerful machine. The introduction of this architecture changed
performance by an order of magnitude. Many of the ideas implemented in the 360/91
were introduced starting in 1954 during the development of the IBM 7030 (Project
Stretch) [SIM 88]. The intention was for this machine to be 100 times more powerful
than its predecessor, the IBM 704, even though the technology would only provide a
10-fold enhancement. The answer to this challenge turned out to be the introduction
of parallelized instructions.

10.1. Motivations and ideas

The introduction of parallelism in machines happened at a time when machine
design was extremely complex. This led designers to initially focus on the instruction
set, rather than on the architecture around it. The advent of reduced instruction set
computer (RISC) architectures was a result of this approach.

10.1.1. RISC machines

From the 1950 to the 1980, the complexity of the instruction set never stopped
increasing, earning these machines the name complex instruction set computers
(CISC). In 1948, the Mark I had seven instructions. In 1978, the Vax, by Digital
Equipment Corp.®, the archetype for the CISC, had more than 300. The Intel® 8080
microprocessor and the Motorola® 6800, which date back to the mid-1970s, were
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equipped with 100 instructions, while the Motorola® 68020 offered roughly 200. As
for the Intel® I80286, it came with 150 instructions, not including the addressing
modes and the coprocessor instructions. If we assume that SSE extension instructions
and new specialized instructions should be included, the Intel® CoreTM i7 type
processor can be said to offer about 300 basic instructions, not including the
addressing modes.

As the instruction set grew in size, it also became more complex, as is clear from:

– the increase in the number of addressing modes: 9 for the Vax, 11 for the
Motorola® 68020, 12 on Intel® processors, etc.;

– the increase in the number of operands (three or more);

– a wide variety of instructions formats and sizes.

This evolution is easily justified. Consider:

– a significant part of development used to be done in machine language;

– processor designers thought they could simplify the design of compilers by
offering machine language that was close to high-level language;

– memories were expensive and small. This made the density of the code a
determining factor.

Furthermore, the need for a high level of compatibility from one model to the next
forced manufacturers to hold on to “fossil” instructions. As a result, the instruction set
quickly became quite portly.

A corollary to large instruction sets is increasing processor complexity, particularly
for decoding and executing instructions. This complexity reached a point where
designers started questioning the wisdom of the approach. They made the following
observations:

– Only a few of the available instructions are used: on the IBM®-370, compilers
used about 30% of the instruction set.

– High-level languages have rendered assembly language programming obsolete.
Assembly language poses significant issues of readability, maintenance and
portability.

– Compilers often generate a code that is better optimized when written by a
programmer, even by a programmer with experience.
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These observations led several teams to challenge the
approach used until then and to design a new generation
of processors known as RISC, as opposed to the previous
architectures.

CISC

RISC

Douglas Jensen from Carnegie Mellon [COL 85] proposed the following definition
for RISC architectures:

1) The instruction set consists of only a few instructions and addressing modes,
unlike complex instruction set computers.

2) The instruction format is fixed.

3) Instructions are executed in a single machine cycle.

4) The sequencer is hardware-implemented.

These conditions facilitate a pipeline operation. All of the processors made today
are built with such an architecture, although the instruction sets are no longer
“reduced”.

10.1.2. Principle of operation

Each instruction unfolds in several phases, with one phase per clock cycle. A phase
is handled by one of the pipeline stages. This is similar to how an automobile assembly
line operates: there is no waiting for the end of the instruction before the next one
begins (Figure 10.1).

In+1

Stage 1

In

Stage 2

In−1

Stage 3

In−2

Stage 4

In−3

Stage 5

Memory

Instructions

Figure 10.1. A five-stage pipeline architecture: instruction In is in phase 2, while instruction
In+1 is in phase 1, etc.

Loading instructions at each clock cycle requires the ability to simultaneously
access the instructions and the data (Figure 10.2).

This requirement imposes the need for a specific memory architecture, the Harvard
memory structure, at least for the cache memory.
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Figure 10.2. At time n, In+3 is in phase 1 (its own fetch operation), whereas instruction In is
in phase 4 (fetching an operand)

EXAMPLE 10.1. – [The Texas Instruments TMS320C30 microprocessor] The
TMS320C30 microprocessor by Texas Instruments, which became available in
the late 1980s, is a DSP (digital signal processor). It is built with a four-stage
pipeline architecture with phases denoted by: F (fetch), D (decode), R (read) and E
(execute).

The four phases (Figure 10.3) perform the following functions:

– F : instruction fetch and program counter update;

– D: decoding and computation of the operand addresses;

– R: reading of the operands into memory (if applicable);

– E: execution, two possibilities:

- execution of the operation and writing of the result into a register,

- writing of the result of an execution into memory.

I4

Stage F

I3

Stage D

I2

Stage R

I1

Stage E

Memory
hierarchy

In

Result
write

Operand read

Figure 10.3. The four-stage pipeline architecture of the Texas Instrument’s TMS320C30: the
registers are “in” stage D

Consider the sequence of four instructions I1, I2, I3 and and I4, the execution of
which is represented in Table 10.1.
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← Major cycle CM (τm) →
Cm

T 2T 3T 4T 5T

Instants n− 3 n− 2 n− 1 n n+ 1

I1 F D R E
I2 F D R E
I3 F D R . . .
I4 F D . . .

Table 10.1. Evolution of the pipeline state: at time n, I1, I2, I3 and I4
occupy all four stages

The major cycle CM corresponds to the time it required for executing an
instruction while the minor cycle Cm is the base clock cycle. When I1 produces a
result, the three instructions that follow are already being executed in the pipeline: I2
is in phase R, I3 in phase D, etc.

Phase 3T is a good illustration of the previous comment. It contains a memory
access for F from I3 and possibly another one for R from I1. The comment is valid for
all of the phases.

The pace at which the results are displayed is set by minor cycles, even though the
execution time of an instruction is always the duration of the major cycle. This leads
us to the following, important property:

A machine with an N -stage pipeline architecture has a throughput N times
greater than the equivalent “non-pipelined” machine.

As we will see, there are many obstacles to overcome so that we can achieve this
throughput.

10.1.3. Cost of the pipeline architecture

The increase in processor throughput has a cost:

– The control unit is more complex than in a non-pipelined processor with similar
specifications.

– To ensure parallel computing, buffer elements need to be inserted between the
stages to memorize the intermediate results and transfer useful information to the next
stages.

– This duplication increases the duration of the major cycle duration, and therefore
the latency between the reading of the instruction and its execution.
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10.2. Pipeline management problems

In section 5.2, we discussed the traditional and very simple architecture of Intel®
I8080. In this machine, as in many other machines at the time, the instructions varied
in length. This type of instruction set made it impossible to execute one instruction
per cycle.

Although it is simpler, the pipeline structure still causes a certain number of issues
in managing the flow instructions. These are called hazards or conflicts, and fall into
three categories:

– Structural hazards caused by conflicts in accessing a hardware resource
(memory, register, ALU, etc.): we will discuss below the example of the DLX
architecture in which two stages may happen to modify the content of the registers
in the same minor cycle.

– Data hazards, or dependency conflicts: because we are using a pipeline
architecture, several instructions going through the pipeline can manipulate the same
information. It must be ensured that they do so in the order indicated by the program.

– Control hazards, caused by the presence of branch instructions: the instructions
that follow have already been loaded into the pipeline when they need to be executed.
However, if we are dealing with a “simple” branch, the following instruction should
definitely not be executed.

10.2.1. Structural hazards

There are two situations that lead to structure conflicts:

– Accessing a read – write register: the solution lies in the ability to write and read
in a register during the same cycle: the first half-cycle is used for writing, the second
for reading.

– Double memory access: when the processors fetch an operand from memory,
and if this memory happens to be of the type that can be both program and data,
conflict is unavoidable, since there is also access to an instruction at every cycle. This
warrants the presence of at least one instruction cache.

EXAMPLE 10.2. – [Structural hazards in registers] Consider a four-stage pipeline
machine for which instructions are coded in 32 bits and operations performed in
32 bits. We have the instruction In:

add r1,r3,#10 ; r1 := r3 + 10

which is handled in four phases, as shown below:
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– The instruction In is copied into the instruction register, and the program counter
is incremented. We have the number (3) of the register involved in the calculation (r3),
as well as the immediate value (10) of the instruction in the code.

– In the second phase, r3 and the value 10 (“extended” to 32 bits) are copied
into buffer registers. We will assume that there are no data hazards, in other words
that the value of r3 is the same as what would have been provided by the sequence
of instructions executed on a non-pipelined machine. The content of the instruction
register (or of part of the instruction) is saved in a buffer, to keep a record of the
number of the target register r1. Simultaneously, the instruction In+1 is copied into
the instruction register.

– In phase 3, the result of the calculation, which is performed in 32 bits, is stored
in buffer T3. The number (1) of the target register r1 is propagated, so it can be used
in the following phase. The instruction In+2 is copied into the instruction register and
In+1 advances to the second step.

– Finally, the result is written in register r1, the number of which has been
propagated. Note that if In+2 requires access to r1, there is a conflict with the write
operation on the same register (see Figure 10.4).

(1)

Buffer

T3

Buffer

T2

Buffer

T1

(2) (3) (4)

Figure 10.4. The pipeline has four stages: the registers are represented twice, in stages (2)
and (4), even though they are really only present in stage (2): this expresses the possibility of

writing and reading in a register during the same cycle

From a temporal perspective, the instruction unfolds as illustrated in Figure 10.5.

Buffers can be understood as two registers side-by-side. One appears at the end of
a stage and the other at the beginning of the following stage. In stage k, the
“downstream register” Vk is loaded with the values fetched or calculated in the
corresponding phase. These pieces of information have not yet shown up as
the buffer outputs. In the next phase, what had been loaded into Vk is transmitted to
the outputs of these same buffers, the “upstream buffers” Mk+1, which serve as the
inputs for stage k + 1.

The final phase triggers a write operation in the register file. The register file is
shown twice, in stages 2 and 4, for reasons of coherence and phase representation.
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Figure 10.5. The role of buffers in execution: 10∗ indicates the extension of this constant to 32
bits in phase 2

Figure 10.6 gives some idea of how the instruction is carried out.

r1

Instruction register

(in buffer1)

Register bank

Buffer 2

Phase Phase Phase Phase

Buffer 3

(1)
1 2 3 4

(2)

(3)

(4)

addadd

Clock
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+
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M2

M3

M4

V1

V2
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Figure 10.6. Timing diagram: the dashed line indicates a structural hazard solved by
separating phase 2 into half-cycles: writing of the result in the first, and transfer to a buffer in

the second. This prevents the waste of a cycle in carrying out the instruction

The numbers in the figure have the following meaning:

1) The instruction is loaded into the instruction register of buffer T1 (V1).

2) The instruction is still in the same buffer T1 (M2). The only numbers available
are the numbers of registers r1 and r3 and the immediate value 10. The content of r3
((r3)), the number “1” and the value 10 (“extended” to 32 bits) are copied into buffer
T2 (V2).
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3) The result of the sum (r3)+10 is copied into buffer T3 (V3), along with the
number “1”.

4) The writing of the result occurs in phase 4: the result and the register number
are in T3 (M4).

In the following examples, we will not describe buffer operations in such detail.
We will instead simply represent their loading.

EXAMPLE 10.3. – [Structural hazard in memory] Consider the following portion of a
program. We assume that data and instructions are fetched from a single memory. The
processor (DLX), we chose as an example, consists of five stages: fetch (F), decode
(D), execute (E), memory (M), write-back (W).

lw r1,0(r2) ; r1:=(r2)
and r3,r3,r5 ; r3:=r3+r5
sub r7,r6,r4 ; r7:=r6-r4
or r8,r1,r5 ; r8:=r1 or r5

The sequencing is represented in Figure 10.7.

F D E M W

lw r1,0(r2)

F D E M W

F D E M W

F D E M W

or r8,r1,r5

and r3,r3,r5

sub r7,r6,r4

M

,r,r

Figure 10.7. Structural conflict in a memory access

Phase F of the instruction or r8,r1,r5 is in conflict with the read access to lw
(Figure 10.7). Obviously, this type of conflict can be solved by simply adding an
instruction cache separate from the data cache.
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10.2.2. Dependency conflicts

A dependency conflict occurs when several instructions being handled in the
pipeline manipulate the same registers. The results obtained must be identical to
those produced by a non-pipelined machine!

Dependencies are usually divided into three types, RAW, WAR and WAW, with
the following behavioral rules:

– RAW (Read After Write): an element of information should only be fetched after
it has been modified by a preceding instruction.

– WAR (Write After Read): a register should only be modified after it has been
read by a preceding instruction.

– WAW (Write After Write): updates must be performed in the right order. This
is typically the case for superscalar architectures. Indeed, if two instructions use two
different pipelines and modify the same register, there is a risk of an error if the second
write operation is performed before the first one.

EXAMPLE 10.4. – [RAW conflict] Consider the following program, in which the
register r1 initialized in the first instruction is used in the following three
instructions. We now assume that there are two distinct caches, one for “instructions”
and one for “data”.

As Figure 10.8 shows, the two instructions and and sub do not have the value
of r1 in the decoding step. The or instruction obtains the correct value nonetheless
because of the possibility to read and write during the same clock cycle.

add r1,r2,#2 ; r1:=r2+2
and r3,r3,r1 ; r3:=r3+r1
sub r7,r1,r4 ; r7:=r1-r4
or r8,r1,r5 ; r8:=r1 or r5

The sequence of instructions is illustrated in Figure 10.8.

WAR-type hazards cannot occur with this architecture. The writing of an
information by In+1 is performed in phase W, well after it has been fetched by In in
phase D. The same is true for WAW conflicts. We will later discuss the case of
superscalar architectures, which present this type of conflict.
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F D E M W

add r1,r2,#2

F D E M W

F D E M W
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or r8,r1,r5

and r3,r3,r1

sub r7,r1,r4

M

W

Figure 10.8. RAW dependency conflicts

10.2.3. Branches

Branches are divided into two categories:

– unconditional branches, which always modify the program counter, for example
in programs that call procedures or functions;

– conditional branches, for which the choice of the following instruction depends
on the result of the previous instructions, for example:

- if ... then ... else structures for which branches always go
“forward”;

- loops (for, do, while), which branch either “backward” or “forward” at the
last iteration.

The problem inherent to dealing with branches can be expressed as follows: how
do we handle a redirect to the target address when the instructions that follow the
branch are already in the pipeline? We can prevent the incorrect loading of these
instructions by waiting for the computation of the target address to be completed. This
is known as “introducing a branch penalty”.

10.2.3.1. Introduction of penalties

The following example uses the same five-stage architecture as above.

EXAMPLE 10.5. – [Example of an unconditional branch] Consider the instruction j
target. The address calculation is performed by adding the offset specified by
target and the address of the instruction that follows the branch. The target address



218 Computer Architecture

will therefore only be known in the execution phase. We assume here that decoding
the branch suspends the execution of the two following instructions. This is known as
a single branch. We assume that the program counter is updated in phase M of the
branch instruction.

F D E M W

I1: j target

F F D E M W

target:I2: add r4,r3,r2

Figure 10.9. Single branch: branch I1 is followed by I2, I3, etc.

The instruction is fetched from memory in phase W (diagram in Figure 10.9).

Three cycles are lost during the execution. We say that the penalty is equal to three;
given the high number of branches in programs, this is too high a cost.

10.3. Handling branches

The introduction of penalties is an obstacle to achieving maximum pipeline
performances. Many solutions involve the hardware and the software to solve this
problem. The simplest solution from an architecture standpoint is the use of delayed
branches, which we discuss in the following section.

10.3.1. Delayed branches and software handling

Many RISC machines from the mid-1980s (for example SPARC processors, short
for Scalable Processor ARChitecture) adopted the solution of delayed branches: one
or several of the instructions that follow the program are systematically executed. If Ib
is a delayed branch instruction with a delay of k, then the k instructions that follow Ib
are always executed. A simplistic use of this type of instruction consists of writing k
nop instructions after the branch. In the following examples, k = 1. The optimal use
of this type of branch is left to the compiler, or to the programmer. The solution is to
shift k program instructions behind the branch, without modifying the logic.

EXAMPLE 10.6. (Downstream shift – if) – In the case of a if ... then .. else
... structure, the instruction that precedes the branch is shifted so that it instead
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immediately follows it.

Before After
Ij ...
... ...
beqzd r2,target ; if beqzd r2,target
nop → Ij
... ; else ...
... ...

target: ... ; then target: ...

EXAMPLE 10.7. – [Downstream shift – do ... while] In the case of a do ...
while loop, an instruction from the loop replaces the nop.

Before After
loop: I1 loop: I1

... ...
add r1,r1,#4 ...
... → In
In beqzd r2, loop
beqzd r2, loop add r1,r1,#4
nop ...

EXAMPLE 10.8. – [Upstream shift] If the downstream shift is not feasible, one of the
instructions that follow can be shifted instead. Thus, in the case of if ... then
... else ...

Before After
add ... add ...
beqzd r1,target ; if beqzd r1,target
nop In
... ; else ...
bra endIF → bra endIF
nop nop

target: ... ; then target: ...
... ...

endIF: ... endIF: ...
... ...
In ...

EXAMPLE 10.9. – [Shift using a tagged instruction] It is also possible to duplicate
the target instruction (we could simply shift it, but nothing tells us it is not the target
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of another instruction):

Before After
target: sub r5,r6,r17 target: sub r5,r6,r17

I1 target2: I1
... ...
add r1,r2,r3 add r1,r2,r3
beqzd r1,target → beqzd r1,target2
nop sub r5,r6,r17
... ...

The additional execution of sub must not trigger a malfunction when the loop comes
to an end. When the branch is executed, there is an improvement. The order of
instructions is not changed here, which is not the case in example 10.7.

EXAMPLE 10.10. – [Using a delayed branch] The following is a program written in C
and the (simplified) assembly code generated by the compiler on a machine equipped
with a SPARC processor, a RISC processor with a pipeline that handles branches
according to the delayed branch principle, with a delay equal to one:

#include <stdlib.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

static int i, k;
i = atoi (argv[1]);
if ( i == 0 ) k = 3;

else k = 4;
printf ("k = %d\n", k);
return 0;

}

The parameters are provided to the procedures in registers Reg0, Reg1, etc. The
simplified assembly code is as follows:

.common i, 4

.common k, 4
Format:
.asciz "k = %d\n"
main:
call atoi
load i, Reg0 /* load the content of i into Reg0 */
cmp Reg0,0 /* compare Reg0 to 0 */
bne Label5 /* if Reg0 <> 0 goto Label5 */
store Reg0, i /* store Reg0 into i */
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b Label7 /* goto Label7 */
mov 3, Reg 1 /* set Reg1 to 3 */
Label5:
mov 4, Reg1 /* set Reg1 to 4*/
Label7:
store Reg1, k /* store Reg1 into k */
call printf
load Format, Reg0 /* store Format address into Reg0 */
ret

We can make the following observations:

– Regarding call: register Reg0 is loaded with an instruction located after the
function call in the code, but executed at the same as that call in the pipeline.

– Regarding bne: if Reg0 = 0, the instructions that follow bne are executed:
store, b and move 3,Reg1. Reg1 is therefore moved in 3 before being stored in
k. If Reg0 <> 0, we go to Label5, execute the instruction that follows bne, which
has no bearing on the result, and Reg1 is set to 4.

10.3.2. Branch predictions

10.3.2.1. Static predictions and the annul bit

The first prediction techniques were described as static. Some processors offered
instructions for finely tuning the branching behavior of machines. The use of the annul
bit is an implementation of this type of prediction. It consists of indicating which
structures must be executed depending on the branch result.

There are two different rules for improving how programs behave depending on
whether the branch goes forward or backward. A bit known as the annul bit is used
for choosing the branch operating mode. The following examples are again based on
the five-stage architecture from example 10.5, an architecture equipped with a system
(section 11.3.2) that limits the penalty to one.

– First mode: if we are moving toward the target instruction, the instruction In+1

that follows the branch is cancelled, and we move on to the target instruction. If the
branch is skipped, In+1 is executed. In the following example, beqzd is replaced
with beqz,a, which operates according to the specified mode.

Before After
loop1: beqzd target → loop1: beqz,a target

add... add...
... ...
bra loop1 bra loop1

target: ... target: ...
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Before the modification, the add instruction that follows the branch is performed
an extra time upon exiting the loop.

– Second mode: if the branch is skipped, the instruction In+1 that follows the
branch is canceled and we move on to In+2. If we are headed toward the target
instruction, In+1 is executed. Consider again example 10.9 with beqzd replaced by
beqz,a, which operates like we just described:

Before After
target: sub r5,r6,r17 target: sub r5,r6,r17

mul ... target2: mul ...
... ...
add r1,r2,r3 add r1,r2,r3
beqzd r1,target → beqz,a r1,target2
nop sub r5,r6,r17
... ...

The sub instruction is executed the same number of times as before the program
was modified, because it is not executed upon exiting the loop. The SPARC
architecture used this type of static prediction.

EXAMPLE 10.11. – [The PowerPCTM PPC601] The PowerPCTM PPC601 offers the
ability to choose the operation mode for conditional branches. The instruction code
contains a 5-bit field in which the last bit (the “y” bit) indicates the mode that is being
operated as explained above [IBM 93].

The optimal use of such branches by a compiler may require the prior execution of
the program to perform statistics on the branching results. This is not always possible.
It then becomes necessary to use any prior knowledge available about the operation
of the program. For example, a branch that moves to a target address with a value less
than the current address most often corresponds to the end of a loop. It is therefore
logical to predict that the branch will be taken, and in fact, benchmark test shows that
56% of branches are “taken” versus 44% which are not.

10.3.2.2. Runtime prediction

The ideal way to optimize a program’s performance is to know ahead of time the
sequence of instructions, and in particular, the results of the branches. One approach
consists of predicting the program’s behavior. This prediction can be done before the
execution. It is referred to as a static prediction, as we saw in the previous section. It
can also be undertaken during the execution program, an approach known as runtime
branch prediction.
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– One-bit prediction: a first solution consists of assuming that a branch will behave
as it did the last time it occurred. A bit called the prediction bit indicates the result of
this previous execution.

To implement this prediction, the branch instructions are stored in a direct access
cache called the branch history table (BHT). Each line is associated with a prediction
bit (Figure 10.10).
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Figure 10.10. One-bit predictor (branch history table)

In the instruction reading phase, the processor accesses the BHT. In case of a hit,
the prediction bit indicates the address of the following instruction. The validity of
this prediction will be confirmed or denied during branch handling.

EXAMPLE 10.12.– Consider the following program with the initial value r1 = 5 and
no dependency conflict between subi and bnez.

loop1: ...
subi r1,r1,#1
...
bnez r1,loop1

In the first iteration, there can be no prediction. The following three branches are
correctly predicted and the last one incorrectly predicted: we therefore have a 75%
successful prediction rate. Performance depends on the penalty cost that stems from
incorrect predictions.

– Two-bit branch prediction: to improve prediction, we can use predictors
equipped with a higher number of bits, for example two. J.E. Smith was the first to
propose this runtime prediction model [SMI 81]. The predictor operates as shown in
Figure 10.11. We will refer to this type of graph as a prediction graph.
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- b denotes a branch “not taken” (move to the next instruction), b a branch
“taken” (move to the target instruction);

- A1 and A2 indicate a prediction of b with one and two correct predictions,
respectively, and B1 and B2 indicate a prediction of b.

(b predicted)(b predicted)
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Figure 10.11. Example of a 2-bit predictor

In this case, two erroneous predictions in a row are needed for a decision change.
This mechanism can be interpreted as a “2-bit” counter. When the counter is equal to 0
or 1, we predict that the branch will not be taken and, if it is equal to 2 or 3, we predict
the opposite. Another solution is to introduce “hysteresis”, as shown in Figure 10.12.
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Figure 10.12. Example of a 2-bit predictor “with hysteresis”

States A2 and B2 are described as “strongly not taken” and “strongly taken”, and
states A1 and B1 as “weakly not taken” and “weakly taken”. Note that these two
algorithms show hysteresis, since the states predicted as “not taken” and “taken” do
not switch in the same way. As with 1-bit prediction, a BHT memorizes n branch
instruction addresses. For each entry, a state is updated after the branch is executed
according to the prediction (the previous state) and the decision made (the transition).

EXAMPLE 10.13.– Consider again the previous example with the loop nested in
another loop:

extloop: ...
...

intloop: ...
...
subi r1,r1,#1
bnez r1,intloop ; Ii
...
bnez r4,extloop ; Ie
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At least two iterations of the internal loop bring the state to B2. The move to the
external loop switches the state to B1. Returning to the internal loop (Ii instruction)
immediately provides a correct prediction (switch from B1 to B2). This mechanism
is well suited for nested loops. If we had only one prediction bit, executing the last
instruction Ii of the internal loop would switch this prediction bit, and returning to
this instruction would produce an erroneous prediction.

NOTE.– It is possible to use n prediction bits where n > 2. The resulting gains do
justify such a choice. The determining factor is the number of cache entries. In
practice, 4,096 entries seem to be a good compromise.

10.3.3. Branch target buffer

An additional improvement consists of storing along with the branch instruction
the target address of its last execution [LEE 84]. This is done using a branch target
buffer (BTB) (Figure 10.13) with N entries associated with the stage for the
instruction fetch.
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Figure 10.13. Branch target buffer

Each entry contains three fields: the address tag EB of a branch instruction IB , a
target address Ac and in some cases a prediction indicator p (see example 10.20 of a
branch target buffer without a predictor). The set of prediction bits is sometimes called
the pattern history table.

There are several options for managing the BTB, involving the three elements of
information EB , Ac and p:

– Initialization of the EB field (line loading):

- the branch instructions are systematically loaded into the BTB, whether the
branch is taken or not or,
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- a branch instruction is only stored in the BTB the first time the branch is
taken. If it is never taken, it will never be included in the BTB;

– Initialization of the “target” field:

- only the target address is kept in Ac or,

- the address resulting from the branch (target address or address of the
following instruction) is stored in Ac;

– Initialization of the prediction bits: “taken” or “not taken” depending on the line
loading option.

10.3.3.1. Return stack buffer

Return functions are a special type of branch. They consist of an unconditional
branch with an indirect addressing mode. However, the return address depends on the
location of the call instruction and there is no point in using the BTB.

EXAMPLE 10.14. – [Using the BTB for a ret instruction] Consider the following
sequence of instructions:

...
call func1 ; instruction I1
...
call func1 ; instruction I2
...

func1: ...
...
ret

After the first call, the tag for I1 is stored in the BTB along with the target address
func1. When ret is executed, the tag for this instruction is stored in the BTB along
with the return address (the address of I1 “+1”) and the branch is taken. The second
return produces a hit in the BTB, but the target address is incorrect. This situation is
quite common.

To avoid this mistake, we use a specific stack – the return stack buffer (RSB)
(example of the RSB in the Intel® Pentium® P6) – for memorizing the return
addresses using a “push/pop” mechanism (8 entries in the P6, 12 in the Pentium®

4, 16 in the return address stack of the AMD-K6, etc.). In the case of multithreaded
multiprocessors, an RSB is attached to each thread.
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10.3.4. Global prediction

Until now, branches were dealt with individually, particularly in regard to
prediction. We have not used the correlations that may exist between “neighboring”
branches. In fact, in a loop, the result of a test, and therefore the branching decision,
can depend on a previous test. This can generate a periodic sequence of decisions that
could be taken into account by the predictor [YEH 91].

To memorize the sequence of decisions, in other words their history, we use an
m-bit shift register (a history register, HR). Generally, m ranges from 2 to 4. If m = 2
and RH = 10, the last branch was not taken (bit set to 0) and the first-to-last was taken
(bit set to 1). This is known as the global history, since it involves several distinct
branches. Contrary to what we have seen so far, we keep here a record, for each of
the branches, of the global history, instead of predicting its behavior in an isolated
manner. The content of each HR, and therefore each “historical” configuration, can
be used to choose one of 2m predictors. Thus, each branch is managed by several
predictors indexed by the global history (HR) (see Figure 10.14).
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Figure 10.14. “Two-bit” prediction mechanism with an m = 2-bit history

The number M of branches that can be handled is independent of the prediction
mechanism. It is determined by the number of entries in the BTB.

EXAMPLE 10.15. – [Prediction with history] Consider the program:

a = 0;
do {

if (a != 0){ .... } % branch br1
a = (a+1)%3; % a=a+1 modulo 3
b = (a+1)%3; % b=a+1 modulo 3
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if (b != 0){ .... } % branch br2
...
} while (condition)

Executing the previous loop yields a periodic sequence of decisions “nt, t, t,
t, nt, t, t, t, t” (t for “taken” and nt for “not taken”):

1 2 3 4 5 6 7 8 9 10 11
br1 br2 br3 br1 br2 br3 br1 br2 br3 br1 br2
nt t t t nt t t t t nt t
12 13 14 15 16 17 18 19 20 21 22
br3 br1 br2 br3 br1 br2 br3 br1 br2 br3 br1
t t nt t t t t nt t t t
23 24 25 26 27 28 29 30 31 32 ...
br2 br3 br1 br2 br3 br1 br2 br3 br1 br2
nt t t t t nt t t t nt

In this case, the history register is 3 bits in length.

n RHn RHn+1 t t/nt R G0 G1 G2 G3 G4 G5 G6 G7

br1 000 00 00 00 00 00 00 00 00
0 br2 000 00 00 00 00 00 00 00 00

br3 000 00 00 00 00 00 00 00 00
1 br1 000 000 nt1 nt OK 00 00 00 00 00 00 00 00
2 br2 000 100 nt2 t – 01 00 00 00 00 00 00 00
3 br3 100 110 t3 t OK 00 00 00 00 01 00 00 00
4 br1 110 111 nt t – 00 00 00 00 00 00 01 00
5 br2 111 011 nt nt OK 01 00 00 00 00 00 00 00
6 br3 011 101 nt t – 00 00 00 01 01 00 00 00
7 br1 101 110 nt t – 00 00 00 00 00 01 01 00
8 br2 110 111 nt t – 01 00 00 00 00 00 01 00
9 br3 111 111 nt t – 00 00 00 01 01 00 00 01
10 br1 111 011 nt nt OK 00 00 00 00 00 01 01 00
11 br2 011 101 nt t – 01 00 00 01 00 00 01 00
12 br3 101 110 nt t – 00 00 00 01 01 01 00 01
13 br1 110 111 nt t – 00 00 00 00 00 01 10 00
14 br2 111 011 nt nt OK 01 00 00 01 00 00 01 00
15 br3 011 101 nt t – 00 00 00 10 01 01 00 01
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n RHn RHn+1 t t/nt R G0 G1 G2 G3 G4 G5 G6 G7

16 br1 101 110 nt t – 00 00 00 00 00 10 10 00
17 br2 110 111 nt t – 01 00 00 01 00 00 10 00
18 br3 111 111 nt t – 00 00 00 10 01 01 00 10
19 br1 111 011 nt nt OK 00 00 00 00 00 10 10 00
20 br2 011 101 nt t – 01 00 00 10 00 00 10 00
21 br3 101 110 nt t – 00 00 00 10 01 10 00 10
22 br1 110 111 t t OK 00 00 00 00 00 10 11 00
23 br2 111 011 nt nt OK 01 00 00 10 00 00 10 00
24 br3 011 101 t t OK 00 00 00 11 01 10 00 10
25 br1 101 110 t t OK 00 00 00 00 00 11 11 00
26 br2 110 111 t t OK 01 00 00 10 00 00 11 00
27 br3 111 111 t t OK 00 00 00 11 01 10 00 11
28 br1 111 011 nt nt OK 00 00 00 00 00 11 11 00
29 br2 011 101 t t OK 01 00 00 11 00 00 11 00
30 br3 101 110 t t OK 00 00 00 11 01 11 00 11
31 br1 110 111 t t OK 00 00 00 00 00 11 11 00
32 br2 111 011 nt nt OK 01 00 00 11 00 00 11 00
32 ...

NOTE.– References (1), (2) and (3) in the table indicate a “miss” in the BTB. In
the first two cases, we are dealing with “forward branches”. The prediction is nt
(prediction column P). In the third branch (a “backward” branch), the prediction is t.
The counter update is performed as indicated by the arrows. Thus, at time n = 2, the
content RHn (000) indicates the counter to use (G0). The branch, which is taken (t
in column t/nt), triggers the incrementation of the counter (switch from state A2 to
state A1 in Figure 10.11). The state RHn+1 switches to (100) (shift to the right by
inserting a “1” on the left of the branch that was “taken”).

After a few initialization cycles, all of the predictions become correct (OK in the
result column R). Obviously, if the number Kb of branches in the loop is too large, the
system no longer presents an advantage.

10.3.5. Examples

EXAMPLE 10.16. – [The TMS320C40] The annul bit technique is implemented in the
Texas Instrument’s TMS320C40 through the instructions bcondaf (annul false) and
bcondat (annul true).

For bcondaf, if the cond condition is met, the branch is taken and the three
instructions that follow are executed. Otherwise, the execution phases of these three
instructions are inhibited. bcondaf is well suited for loop exit tests.
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For bcondat, when the cond condition is met, the branch is taken and the execution
phases of the three instructions that follow are inhibited. Otherwise, we move on to
the next instruction. This instruction is well suited for tests at the start of a loop.

In both cases, the three instructions that follow must be free of branches (also,
interrupts are inhibited) or run the risk of leaving the pipeline in an unpredictable
state:

ldi *ar1,r0 ; r0 := (ar1)
bnegat lnext ; branch if negative
addi *++ar2,r3 ; (ar2 is incremented)
nop
nop

lnext:

If the result is negative (the branch is taken), register ar2 is still modified
(execution of the decoding phase) and the data are read. On the other hand, r3 is not
modified, since the execution phase is not undertaken.

EXAMPLE 10.17. – [The case of the Intel® Pentiums II and III] PII and PIII type
architectures are equipped with a BTB with 512 entries [INT 97].

If the address of a branch is located in the BTB, the address of the instruction to
execute is directly provided to the instruction fetch unit.

If there are no valid entries in the BTB, a static prediction is made based on the
direction of the branch (forward or backward). Once the branch is taken, the cache is
updated.

– The prediction graph (Figure 10.15) used in these architectures is slightly
different from the other graphs we have seen so far.
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Figure 10.15. Prediction graph for the PII and PIII

– In the case of the Intel® Pentium Pro®, the runtime prediction algorithm uses
the directions of the four previous branches; in Figure 10.16, the shift register
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h0, h1, h2, h3 contains this information. If HR contains 0101, then the last and
ante-penultimate branches were not taken (h0 and h2 bits set to 0). Each 4-tuple
(h0, h1, h2, h3) and each branch correspond to a 2-bit prediction graph.
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Figure 10.16. Use of the branch history in an Intel® Pentium Pro®: each configuration is

associated with a state (A1, A2, B1, B2) of the prediction graph

– Intel® Pentiums also include a cache for predicting return addresses.

– In the Intel® Pentium Pro®, penalties are evaluated on a three-level scale:

i) no penalty, branches “not taken”:

- branches correctly predicted as “not taken”,

- “forward” branches not referenced in the BTB and predicted by default as
“not taken”;

ii) minor penalty: branches correctly predicted as “taken” (loss of a fetch cycle);

iii) significant penalty: mispredictions: at least nine cycles are lost (in-order
issue pipeline), in addition to the time spent “removing” the mispredicted branch
instruction. In practice, the penalty is between 10 and 15 cycles (26 at the most).

In the case of static prediction, non-referenced branches are handled as follows:

– unconditional branches are predicted as “taken”;

– conditional backward branches are predicted as “taken”;

– conditional forward branches are predicted as “not taken”.
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EXAMPLE 10.18. – Consider the following program:

loop1: mov eax,operand
sub eax,ebx
add eax,edx
dec eax
jne loop1

When it is first encountered, jne is statically predicted as “taken” (backward address).

EXAMPLE 10.19. – Consider the following program:

mov eax,operand
and eax,&hffff
add eax,edx
shld eax,7
jc nexti
mov eax,0

nexti: call subprog

When it is first encountered, jc is statically predicted as “not taken” (fall through).
The call instruction is an unconditional branch statically predicted as “taken”.

EXAMPLE 10.20. – [The branch target cache in the AMD 29000] The branch target
cache (BTC) of the AMD 29000, is a set-associative cache with two 16-line blocks
(Figure 10.17). Its content is indexed using the branch target address, with the tag
portion of the address compared to the addresses stored in the cache. In case of a
hit, the branch is predicted as “taken” and the corresponding line of four instructions
contains the target instruction and the next three instructions.

The processor will therefore fetch its instructions from either the BTC or the IPB
(instruction prefetch buffer). The latter receives the instructions four cycles before
the beginning of their execution and is used for improving performance when
handling branches. When a branch to the address A is first executed, the target
instruction and the three instructions that follow are loaded into the BTC. When this
branch is executed once again, the processor fetches these four instructions (with
addresses A through A + 3) from the BTC and at the same time preloads the IPB
with the instructions with addresses A+ 4 through A+ 7.

All of the branch instructions in the AMD 29000 are delayed branches. The penalty
is equal to one. In the following table, the instruction following the branch is denoted
by Id and the target instruction located in the BTC, and with the actual address A, is
denoted by ItA.
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Address (CPU)

line 0

block 0 block 1

line 0

line 15

4

Figure 10.17. Branch target cache of the AMD 29000 (the two least significant bits must be
used before the comparison!)

branch F D 1 E 2 WB
Id F D E WB
ItA F D E WB
ItA+1 F D E WB
ItA+2 F D E WB
ItA+3 F D E WB
IA+4

3 F D E WB

The calculation of the branch target address is performed during the decoding
phase (box (1)). The MMU delivers the corresponding physical address in the
execution phase (box (2)). At the same time, the target instruction is fetched It(A).
Box (3) indicates the start of the memory access to load the IPB with IA+4 and the
three instructions that follow.

Each line in the cache includes a valid bit as well as two service bits, one defining
the handling context (supervisor/user mode) and the other identifying the space
where the instruction is read – ROM or data memory. The replacement management
algorithm is “random”, based on the content of the CPU clock.

10.4. Interrupts and exceptions

As we have already seen in Chapter 6 on inputs and outputs, events that modify the
execution of a program can be categorized as faults, traps, and interrupts. These events
are difficult to handle in a pipeline architecture because their occurrence affects several
instructions. Even worse, several events can affect several instructions simultaneously.
In the DLX architecture, for example, a page fault and a division by 0 can be triggered
in the same cycle.
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10.4.1. Interrupts

When we come across an interrupt, the instructions in the pipeline are executed.
Given the difficulties of dealing with delayed branches of k cycles, interrupts are
inhibited until the k instructions that follow the branch are executed.

In most cases, when an interrupt occurs, the instructions in the pipeline are
carried out. In certain processors, interrupts cause the instruction in the read cycle to
be “canceled” (not carried out). In other cases, the decision to cancel is made during
the decoding cycle.

A canceled instruction has to be read again after the interrupt program is executed.

10.4.2. Traps and faults

Traps and faults are the most difficult exceptions to deal with. Consider the case
of the DLX. “Internal” events that are problematic can be categorized as follows:

Stage Type of exception
F Page fault, access denied, alignment problem
D Illegal instruction code
E Arithmetic exception: division by 0, overflow, etc.
M Page fault, access denied, alignment problem

Not only can several exceptions occur in the same cycle, they can also occur in
a different order than the execution of instructions. Yet the handler may require that
they be taken into account in that order. This is known as a precise interrupt.

The mode of operation is as follows: a register (state vector) associated with each
instruction receives a code identifying the exception. As soon as an exception code
is detected, all write signals are inhibited. In the W phase, the exception register is
tested. If there are exceptions, they are handled in this phase. This ensures that the
handling is done in the proper order.



Chapter 11

Example of an Architecture

The processor we will use to illustrate the concepts we have introduced is built
with an architecture known as DLX (Deluxe). Similar to the architecture of the MIPS
processor, it was used by Hennessy and Patterson in their textbook
[HEN 96, HEN 11] to present an example of a pipeline architecture. It is a processor
with thirty-two 32-bit “integer” registers (the R0 register always contains 0) and
thirty-two 32-bit “floating-point” registers, denoted by Rk and Fk, respectively. It is
equipped with load and store instructions in the format lw Rk,address and sw
address,Rk. The floating-point unit can handle 32-bit (single precision) or 64-bit
(double precision) numbers.

The format of arithmetic instructions is such that op Rk,Rn,Rm performs the
operation Rk := Rn op Rm.

An unconditional branch is denoted by j address and the only conditional
branches are in the format beqz Rk,address and bnez Rk,address where the test
consists of determining whether the content of the Rk register is zero.

11.1. Presentation

11.1.1. Description of the pipeline

The DLX has a five-stage pipeline. Figure 11.1 shows its design. The five phases
of the DLX are as follows:

– Instruction Fetch: fetch the instruction from the program memory Mp;
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– Instruction Decode: decoding phase and transfer of the registers involved in the
instruction to the ALU buffer registers. The sign extension of the immediate operands
is performed in this phase;

– Instruction Execute: execution of the instruction in the arithmetic logic unit. For
arithmetic and logic operations, the ALU receives the operands. For memory access
instructions, or for calculated branches, the ALU is used for address calculations. With
conditional branches, a unit (denoted by CU, short for compare unit, in Figure 11.1)
performs the comparison operation;

– Memory Reference: read or write access to the data memory Md. For memory
write operations, the calculated address and the source data are used. For read
operations, only the calculated address is used. For branches, this phase corresponds
to loading the program counter;

– Write Back: the results obtained from executing the arithmetic and logic
instructions, and from memory read operations, are written into the registers.
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Figure 11.1. The DLX architecture: each stage is separated from its neighbors
by a “layer of registers”

If there are no particular problems (conflict resolution), the operation is
symbolized as follows:
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T 2T 3T 4T 5T 6T 7T

I1 F D E M W
I2 F D E M W
I3 F D E M W
. . . . . .

Table 11.1. Steps in the pipeline operation

The internal operation of the pipeline is described in Table 11.2 We use the notation
<phase>.<register> to refer to the different registers of Figure 11.1 or, if there are
no ambiguities, <register>. Thus, D.TA is simply referred to as TA. The registers that
receive the instruction code (or part of the instruction code) are F.IR, D.IR, E.IR and
M.IR.

Stage Instruction type
All instructions

F F.IR ← MEM(IR)
if (opcode(E.IR)=branch and UB) then E.AL else PC+4

D D.TA ← R(F.IR(6:10))
D.TB ← R(F.IR(11:15))
D.NPC ← F.NPC
D.IR ← F.IR
D.MI ← F.IR(16:31) with sign extension
ALU instruction Load /Store Branch

E E.IR ← D.IR E.IR ← D.IR E.AL ← D.NPC+MI
E.AL ← (TA op D.TB) E.AL ← TA+MI UB ← (D.TA op 0)

or (TA op MI) UB ← 0
UB ← 0 E.TB ← D.TB

M M.IR ← E.IR M.IR ← E.IR
M.AL ← E.AL TL ← MEM(E.AL)

or
MEM(E.AL) ← E.TB

W R(M.IR16:20) ← M.AL R(M.IR11:15) ← TL
or (only for load)
R(M.IR11:15) ← M.AL

Table 11.2. Operation without forwarding
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REMARK 11.1.– In the decoding phase:

– TA ← R(F.IR(6:10)) means that the TA (or D.TA) register of stage D is loaded
with the register whose number is given by bits six through 10 of the instruction
register (IR or F.IR);

– D.TB ← R(F.IR(11:15)) means that the TB (or D.TB) register of stage D is
loaded with the register whose number is given by bits 11 through 15 of the instruction
register (IR or F.IR);

– D.MI ← F.IR(16:31) “with sign extension” is used to recover an element of
“immediate data” and to extend it to 32 bits (the sign bit is copied into the 16 most
significant bits);

– D.NPC ← F.NPC corresponds to a copy of F.NPC (“New Program Counter”)
into D.NPC, etc.

In phase M, there are two cases:

– in the case of arithmetic or logic instructions, there is no memory access, only
transfers M.IR ← E.IR and M.AL ← E.AL;

– in the case of a load operation, TL ← MEM(E.AL), the content of the memory
word with the address E.AL is transferred into the M.TL register. In the case of a write
operation, MEM(E.AL) ← E.TB, the content of the E.TB register is transferred into
the memory word with the address E.AL. In both cases, the copying operation M.IR
← E.IR is performed.

Not all of the constraints on proper operation are shown in Table 11.2. In particular,
we will see in section 10.4.2 that phase W is conditioned on elements other than simple
transfers. We have already mentioned this type of problem in example 10.2.

11.1.2. The instruction set

The DLX instructions [SAI 96] involve up to three operands. Memory accesses are
only performed through load and store instructions.

There are three types of integer data: byte, half-word (16 bits), and word (32
bits). Access is performed with the most significant bit first (big-endian). The data are
always “aligned”: words are aligned with 4n addresses, half-words with 2n addresses.

The DLX addressing modes are as follows:

– immediate addressing involving constants: for example, add r3,r5,#6 triggers
the operation r3:=r5+6;
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– indirect addressing with offset: lw r3,6(r1) loads register r3 with the content
of the memory word with the address r1+6;

– implicit addressing: and r3,r5,r1 places the result from applying the logical
AND to the content of registers r5 and r1 in register r3;

– direct addressing: this last mode is obtained using an offset with register r0, for
example lw r2,3264(r0).

The main instructions are given in the Appendix, section A2.

11.1.3. Instruction format

DLX instructions are organized in four groups:

– Type I: Instructions involving immediate operands or offsets (branches). This
includes load and store instructions;

– Type R: Instructions that do not require an immediate value, an immediate
address or an offset. This includes all register to register operations, offsets, indirect
branches (jalr and jr);

– Type J: This group includes the two direct branching instructions j and jal.
Their operand is an address;

– Instructions that rely on the arithmetic coprocessor.

The instruction format is as follows:

– Immediate addressing (example: andi r4,r12,#0hff00 specifies a 16-bit
mask, but uses 32 bits (ffffff00) because of the sign extension:

0 5 6 10 11 15 16 31
Instruction Source Target Immediate

code register register Value

– Implicit addressing (example: sub r5,r6,r7 executes r5:=r6-r7):

0 5 6 10 11 15 16 20 21 25 26 31
Instruction Source 1 Source 2 Target Offset Function

code register register register code

If we refer to instruction coding in MIPS processors, the instructions in this
category (including jalr and jr) are coded as 000000. They are then identified by
the function code in the 6 bits 26 through 31.

– Unconditional branches (example: jal function):
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0 5 6 31
Instruction Offset (26)

code

– Conditional branches (example: bnez r3,label):

0 5 6 10 11 15 16 31
Instruction Register Offset (16)

code

The format for conditional branching is beqz rk,address or bnez
rk,address. The test is performed in the content of a register (rk = 0 or
= 0), the value of which is initialized by the instructions slt (set if lower
than), slti, sgt, sgti, etc.

11.2. Executing an instruction

11.2.1. Reading and decoding an instruction

Each instruction starts with phases F and D (Figure 11.2). During phase F, the
instruction is read in memory and the program counter is updated, either to the current
value + 4, or based on the result of an address calculation performed because of a
branch.
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Figure 11.2. a) Reading and b) decoding phases of the instruction with the address n. We
have assumed that the following instruction is at the address n+ 4.
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REMARK 11.2.–

– Phase F includes two half-phases denoted by dashed lines in Figure 11.2 (a): the
first corresponds to the reading of the instruction from Mp to F.IR, the second to the
incrementation of the PC (PC and NPC receive n + 4). PC behaves like the registers
in Example 10.2.

– During the decoding phase, the transfer of the operands from the registers to
buffers TA and D.TB is performed. If there is an immediate value (operand or offset),
it is extended to 32 bits (dashed line in Figure 11.2, (b)). During phase D, the following
instruction is read at n+ 4 and PC is incremented (PC and NPC receive n+ 8).

11.2.2. Memory read

Consider the instruction lw r1,10(r3) that reads in memory a 32-bit word at the
address 10+[r3] and stores it in register r1 (Figure 11.3).

– In phase D (Figure 11.3 (a)), r3 is transferred to TA and the offset 10, extended
to 32 bits, is stored in MI.

– In phase E (Figure 11.3 (b)), the address is calculated by adding the offset and
r3 (loaded in E.TA during phase D). The instruction code (or at least the number of
the target register) is copied into E.IR.

– During phase M (Figure 11.3(c)), the operand whose address is in E.AL is loaded
into buffer M.TL. The instruction is copied into M.IR.

– During phase W (Figure 11.3(d)), the operand is copied into the target register
r1, whose number is provided by M.IR.

Phase W is problematic. r1 is modified while another instruction is being decoded
(structural conflict). A solution is to perform write operations in registers in the first
half-cycle and read operations in the second (see Figure 10.6).

11.2.3. Memory write operations

Consider the instruction sw 10(r3),r1 that stores r1 at the address 10+[r3]
(Figures 11.4 and 11.5).

– In the decoding phase, r3 is transferred to TA and r1 to TB. The rest is similar
to decoding for the memory read operation.

– The address calculation is performed in the execution phase.

– The memory write operation (Figure 11.5) of the element of data is performed
in phase M. Phase W does not lead to any action being taken.
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Figure 11.3. Execution of a memory read operation

11.2.4. Register to register operations

Consider the instruction add r1,r2,r3 that adds the contents of r2 and r3 and
stores the result in r1 (Figures 11.6 and 11.7).

– In phase D, r2 is transferred to TA and r3 to TB. The rest is similar to decoding
in the memory read operation.

– The sum is performed in the execution phase.
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Figure 11.4. Execution of a memory write operation: phases D and E
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Figure 11.5. Execution of a memory write operation: phase M

– Phase M gives rise to a simple transfer.

– The rewrite in r1 is performed in phase W.

11.2.5. Conditional branching

Consider the instruction beqz r3,tag. If the content of r3 is equal to 0, the
branching is performed at the address tag, otherwise we proceed to the instruction
in PC+4. tag is an offset d coded in 16 bits and the calculated address is PC+4+d.
We assume that the branch is normal, which in this case means that pipeline operation
is suspended until the result of the test is known (Figures 11.8 and 11.9).

– The branch decoding puts on hold the updates of PC and F.NPC. The instruction
read operation that follows the branch is performed but its handling is suspended. The
pipeline stalls, i.e. switches to a “wait state” (first penalty).
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– The calculation of the following address is performed in phase E, at the same
time as the test of r3 (register E.TA). The following instruction is always put on hold
(second penalty).

– In phase M the loading of PC depends on UB, which was previously set by a
set type instruction and is used by the branch.

The update of PC is not performed early enough to allow for the following
instruction to be read in the same phase. This read operation can only be done in
the next phase (third penalty).
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Figures 11.9 (b) and (c), respectively, show the situations “branch taken” and
“branch not taken”.
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REMARK 11.3.– The instruction set includes two function calls: jal tag (Jump and
Link) and jalr rk (Jump and Link Register). The return address PC+4 is stored in
register r31. The return can be performed by jr r31 (Jump Register), which loads
the program counter with the content of r31. The link (J) in Figure 11.1 is used to
recover the return address in r31. The task of handling a stack mechanism is left to
the program.

11.2.6. Instruction with immediate addressing

The instruction add r1,r3,#3 adds the constant 3 to the content of register r3
and writes the result in register r1.

– The 32-bit extension to the immediate operand #3 is added to the content of the
buffer register TA, and stored in E.AL in the execution phase.

– The two cycles M and W complete the transfer to the target register r1.

11.3. Conflict resolution in the DLX

Consider these two instructions:

add r1,r2,#2 ; r1:=r2+2
and r3,r3,r1 ; r3:=r3+r1

They are in conflict over register r1. A solution is to delay the second instruction
by three cycles (Figure 11.10).

D E M W

F D E M W

F

add r1,r2,#2

and r3,r3,r1

Figure 11.10. Delay introduced in the sequence

The conflict is resolved with a significant penalty. The forwarding technique makes
it possible, through a hardware modification, to overcome this difficulty.
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Figure 11.11. The DLX architecture with forwarding

11.3.1. Forwarding techniques

The basic DLX architecture can be modified to reduce the effect of hazards that
lead to one or two suspended cycles (Figure 11.11).

This solution rests on the availability of results before they are written in phase
W. The result of a calculation in E.AL, or an element of data read from memory and
available in M.AL or M.TL, is transferred to the ALU as input. This modification is
referred to as forwarding or bypassing.

Consider example 10.4. again

add r1,r2,#2 ; r1:=r2+2
and r3,r3,r1 ; r3:=r3+r1
sub r7,r1,r4 ; r7:=r1-r4
or r8,r1,r5 ; r8:=r1 or r5

Figure 11.12 illustrates the program operation.

– Figure 11.12(a) shows the add instruction in its execution phase;

– Figure 11.12(b) illustrates the role of forwarding: the result of the sum, in E.AL,
is not in r1 yet, but is available for the and;

– Figure 11.12(c) shows the second instance of forwarding, which is used to
execute the sub instruction. The result in M.AL is piped into the ALU;

– the last instruction is executed normally, using the content of register r1
(Figure 11.12(d)).

Forwarding is not a solution to all dependency conflicts. When accessing the
memory, there is no way around adding wait states to solve the problem. Consider the
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following example:

1 2 3 4 5 6 7
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Figure 11.12. Example of a program with forwarding

One cycle can be gained with forwarding, but penalties cannot be completely
avoided. The data read from memory are only available in M.TL in the second
half-cycle of phase M. It can therefore only be used by phase E in the following
cycle.
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11.3.2. Handling branches

To decrease the number of penalties caused by branching, two calculations must
be forwarded, a calculation involving the transfer, and the other the condition bit UB.
This requires including an extra adder and transferring the handling of conditions to
the decoding phase (Figure 11.13).
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Figure 11.13. The DLX architecture with forwarding

Consider the instruction beqz r1,tag. If r1 is equal to 0, the branch is taken to
the instruction with the address PC+4+tag. If there is no dependency conflict over
r1, and if the branch is taken, we get the following sequence:

I1 beqz r1,tag F D E M W
I2 lw r3,(r4) F .
I3 tag: add F D E M W
I4 sub F D E M W

Figure 11.14 describes the different steps of the program.

Figure 11.14 shows phase F (I1) as two half-phases (Figures 11.14(a) and
11.14(b)), followed by the two half-phases of F(I2) (Figure 11.14(c) and (d)) and
phase F(I3) (Figure (e)):

– Figure 11.14(a): the instruction is read at the address n (beqz);

– Figure 11.14(b): the program counter is updated (n → n+ 4);

– Figure 11.14(c): the instruction is read at the address n+ 4 (lw);
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– Figure 11.14(d): the program counter is updated (n+ 4→ n+ 4 + d);

– Figure 11.14(e): phase F of the target instruction.
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Figure 11.14. The case of a taken branch: the penalty is equal to one

The resulting penalty is equal to one. The only way to cancel this penalty is to
handle it via software (see section 10.3.1 and example 11.2.).

EXAMPLE 11.1. – [Function calls and penalties] Consider the following program:

lw r2,0(r1) ; r2 is used as an index
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sll r2,#2 ; r2 := r2 * 4
add r3,r3,r2 ; calculation of the address r3+r2
jal r3 ; jump and link

This program calls a function whose address is in r3. How many penalties are
incurred from the execution of this program, if we assume that there is no
dependency on the previous instructions?

SOLUTION.–the target instruction of jal is denoted by Ic:

– The instruction I2 is in conflict with I1 over r2. Forwarding is no help in this
case (memory access).

– Because of the forwarding mechanism, the sum has access to the offset result
with no penalty.

– The jal instruction cannot be handled because r3 is not available. The
forwarding mechanism cannot completely eliminate the penalty.

I1 lw r2,0(r1) F D E M W
I2 sll r2,#2 F D D E M W
I3 add r3,r3,r2 F . D E M W
I4 jal r3 F D D D E M W
I5 F .
Ic . . F

The program generates a total of four penalties. In this case, the only way to solve
this problem would be to move instructions that precede or follow these four
instructions (section 10.3.1).

EXAMPLE 11.2. – Let us examine the following program:

loop1: lw r1,0(r2) ; memory read ==> r1
add r1,r1,r5 ; data processing
sw r1,0(r2) ; writing r1 into memory
addi r2,r2,#4 ; next address
subi r4,r4,#1 ; counter r4:=r4-1
bneqz r4,loop1
I1

We assume that forwarding is applied to the data and the branching. The execution
of the first iteration can be summarized as follows (the first instruction after the loop
is denoted by I1):
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– a wait cycle is introduced by the processor after detecting the conflict between
the lw and the add that follows;

– two cycles are lost because of the bneqz while waiting for r4 to be updated,
then two more cycles to perform the address calculation (penalty from the conditional
branch).

loop1: lw r1,0(r2) F D E M W
add r1,r1,r5 F D D E M W
sw r1,0(r2) F . D E M W
addi r2,r2,#4 F D E M W
subi r4,r4,#1 F D E M W
bneqz r4,loop1 F D D D E
I1 F . . F

There is a penalty of four for each iteration, with each loop consisting of 10 cycles.
The penalty generated by the lw can be eliminated by placing it before an
“independent instruction”. By placing the subi after the lw, we also gain two branch
penalties, ending up with a penalty of one instead of four:

loop1: lw r1,0(r2) F D E M W
subi r4,r4,#1 F D E M W
add r1,r1,r5 F D E M W
sw r1,0(r2) F D E M W
addi r2,r2,#4 F D E M W
bneqz r4,loop1 F D E
I1 F F

The execution of a loop then takes seven cycles.

11.4. Exercises

Exercise 11.1 (Rescheduling) (hints on page 335). Consider the program:

a := b + c;
d := a - f;
e := g + h;

executed on a DLX without any optimization, and with every variable coded as 32-bit
integers.
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We will not worry for now about optimizing the code. We assume that a compiler
generates the sequence:

;===== a=b+c
lw r1,b[r0]
lw r2,c[r0]
add r3,r1,r2
sw a[r0],r3
;===== d=a-f
lw r4,f[r0]
lw r3,a[r0]
sub r5, r3,r4
sw d[r0],r5
;===== e=g+h
lw r6,g[r0]
lw r7,h[r0]
add r8,r7,r6
sw e[r0],r8

1) Estimate the penalties.

2) Go over the program scheduling and try to minimize the penalties incurred from
dependencies.

Exercise 11.2 (Branches) (hints on page 335). Consider the DLX architecture, and
assume that no waiting period is necessary to access data. The initial value of r3 is
assumed equal to r2+40010.

loop: lw r1,0(r2)
addi r1,r1,#1
sw 0(r2),r1
addi r2,r2,#4
sub r4,r3,r2
bnez r4,loop

1) Consider the DLX in Figure 11.1 (forwarding, which will be discussed later, is
not implemented). We assume that the branch “empties” – loss of two cycles, which
causes a delay of three cycles, since a Fetch operation is again executed – the pipeline
and that a read operation and a write operation are performed on the register bank in
the same clock cycle.

Evaluate the number of cycles necessary to execute this loop.
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loop: lw r1,0(r2)
addi r1,r1,#1
sw 0(r2),r1
addi r2,r2,#4
sub r4,r3,r2
bnez r4,loop

2) Now consider the DLX architecture with forwarding (Figure 11.11). We do not
wait for the Write phase before using the results available in E.AL, M.AL or M.TL.

We assume that we are using a “normal” branch (three penalty cycles).

Evaluate the number of cycles it takes to execute this loop (bear in mind that
forwarding does not solve every conflict!).

loop: lw r1,0(r2)
addi r1,r1,#1
sw 0(r2),r1
addi r2,r2,#4
sub r4,r3,r2
bnez r4,loop

3) We now assume that, in addition to the previous forwarding, we implement
branch forwarding (penalty = 1) represented in Figure 11.13.

The branch used at the end of the loop is delayed. Evaluate the number of cycles
needed to execute this loop.

Simply modify the program to optimize its execution time (by moving around one
or several instructions).

loop: lw r1,0(r2)
addi r1,r1,#1
sw 0(r2),r1
addi r2,r2,#4
sub r4,r3,r2
bnezd r4,loop

Exercise 11.3 (Forwarding) (hints on page 337). Consider an 8-level DLX
architecture where phases F, X, and M are now executed over two cycles,
respectively, F1/F2, X1/X2, and M1/M2.
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F1 First Fetch Instruction cycle.
F2 Second Fetch Instruction cycle.
D Decoding, registers are loaded, calculation of the branch address begins.
X1 Execution starts, the condition is tested, and the calculation of the

address branch ends.
X2 Execution ends, the effective address or the result of the calculation in

the ALU is available.
M1 Memory access cycle starts, and Write Back of the calculation result is

performed.
M2 End of the memory access cycle.
W Write Back for a memory read instruction.

Draw the execution diagrams for the following sequences of instructions. Then,
minimize the penalties by suggesting data and branch forwarding.

1) Example 1:

add r1,r2,r3
sub r4,r5,r6
bnez r1,suite

2) Example 2:

lw r1,0(r2)
sub r4,r5,r6

...

...
bnez r1,suite

3) Example 3:

add r1,r2,r3
sw 0(r4),r1

Exercise 11.4 (Cache operation) (hints on page 337) Processors dedicated to digital
signal processing (DSPs, short for digital signal processor) are widely used in the
field of telecommunications. Every cell phone is equipped with these components, in
particular for handling communication channel equalization and voice
coding/decoding. One such processor is the ADSP-2106x Sharc, which features a
32-bit floating-point unit (IEEE-754). It is built with a Harvard internal architecture
and three buses: for addresses (24 bits), for data (40 and 48 bits for data memory and
program memory, respectively) and for inputs and outputs. Instructions are handled
in three “pipelined” cycles corresponding to the following phases: Fetch (F), the
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instruction is read in the instruction cache or in program memory, Decode (D), the
instruction is decoded, and Execute (X), the instruction is executed. Memory access
is performed in this last phase. 48 bits are used for coding instructions, 32 for data
memory, and 24 for the address buses.

The Sharc processor’s performances were given 40 MIPS and 80 to 120 MFLOPS
for a 40 MHz clock (these figures correspond to the earliest versions of this processor).

The cache memory of the Sharc processor is described in the documentation of its
manufacturer, Analog Devices, as follows:

The ADSP-2106x’s on-chip instruction cache is a two-way, set-associative
cache with entries for 32 instructions. Operation of the cache is transparent to
the programmer. The ADSP-2106x caches only instructions that conflict with
program memory data accesses (over the PM Data Bus, with the address
generated by DAG2 on the PM Address Bus). This feature makes the cache
considerably more efficient than a cache that loads every instruction, since
typically only a few instructions must access data from a block of program
memory.

Because of the three-stage instruction pipeline, if the instruction at address n
requires a program memory data access, there is a conflict with the instruction
fetch at address n + 2, assuming sequential execution. It is this fetched
instruction (n + 2) that is stored in the instruction cache, not the instruction
requiring the program memory data access.

If the instruction needed is in the cache, a “cache hit” occurs − the cache
provides the instruction while the program memory data access is performed.
If the instruction needed is not in the cache, a “cache miss” occurs, and the
instruction fetch (from memory) takes place in the cycle following the program
memory data access, incurring one cycle of overhead. This instruction is
loaded into the cache, if the cache is enabled and not frozen, so that it is
available the next time the same instruction (requiring program memory data)
is executed.

1) Draw a diagram representing the execution of three instructions in the pipeline,
and outline the problem caused by accessing the program memory.

2) Based on the documentation, describe the characteristic features of this cache
memory.

3) What does the phrase “if the cache is enabled and not frozen” mean (see
Chapter 8)?

4) The diagram representing the cache in the ADSP 2106x is given in the
documentation as Figure 11.15.
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Figure 11.15. Cache architecture in the ADSP 2106x

- Draw a diagram similar to the diagrams in Chapter 8, emphasizing the
comparators.

- What is the purpose of the valid bits?

- What is the purpose of the LRU bits?

5) Consider the program (given in the documentation for the 2106x) consisting of
a loop inside which a subroutine subrt is called.

0x0100 bclcpt=1024, do endlp until lce ; start loop
0x0101 r0=dm(i0,m0), pm(i8,m8)=f3 ; dm --> r0
0x0101 ; and f3 --> pm
0x0102 r1=r0-r15;
0x0103 if eq call (subrt) ; subroutine call
0x0104 f2=float r1 ;
0x0105 f3=f2*f2 ;
0x0106 endlp: f3=f3+f4 ;==== end of loop
0x0107 pm(i8,m8)=f3 ;
...
...
0x0200 subrt: r1=r13;
0x0201 r14=pm(i9,m9) ; pm --> r14
...
0x0211 pm(i9,m9)=r12 ; r12 --> pm
...
0x021F rts
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Instructions that require access to the program memory are those that include the
symbol pm.

Explain why this program is particularly poorly suited to this cache structure by
specifying, for each access instruction to pm, the index used.

Exercise 11.5 (Branch forwarding) (hints on page 339). Consider the max function
defined by:

if(r1 > r2)thenr3 = r1elser3 = r2endif

in a DLX with branch anticipation (penalty equal to 1). The unoptimized program is
the following:

sgt r4,r1,r2 ; set r4 if r1 > r2
beqz r4,label1
nop
add r3,r2,r0
j label2
nop

label1: add r3,r1,r0
label2: ...

Write an optimized version of this code.

Exercise 11.6 (Loop with annul bit) (hints on page 339). Consider the loop:

; for (i=0;i<nmax;i++){I1; ...; Ip;}
lw r5,nmax(r0)
add r4,r0,r0
j label2
nop

label1: J1
...
Jn
add r4,r4,#1

label2: slt r6,r4,r5
beqz r6,label1
nop
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The sequence J1, . . . , Jn results from the assembly of I1, . . . , Ip. We assume that
the j and beqz instructions are delayed branches. The content of r0 is 0. Optimize
this program fragment using the instructions j,a and beqz,na (notations from section
10.3.2.1).

Exercise 11.7 (Executing a subroutine call instruction) (hints on page 340). The
instruction jalr rk stores the address of the next instruction in register r31 (return
address) and branches to the address contained in rk. Using the architecture shown in
Figure 11.1, describe the execution of the instruction jalr r1.



Chapter 12

Caches in a Multiprocessor Environment

In a multiprocessor architecture, managing information can lead to problems of
coherence: the various copies of the same information can have different values.
How these problems are handled depends on the architectures where they occur. We
will make a distinction between two cases, strongly coupled multiprocessors and
weakly coupled multiprocessors. In the former, the processors and their caches are
connected to a shared memory bank via a bus, an architecture now typical of most
microprocessors on the market (Figure 12.1).

Processors

Caches

Memory

Bus

Figure 12.1. Strongly coupled multiprocessors

In these systems, synchronous devices can ensure coherence. On the other hand,
when exchanges between systems cannot be synchronized, it is as if information is
traveling on an interconnection network (Figure 12.2).

Note that coherence is not unique to multiprocessors. On a single processor system,
input–output operations can also lead to coherence issues: accessing a memory word
during an input–output operation, for example, can modify the value of a variable that
is also referenced in the memory cache.
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Interconnection

Memory

Figure 12.2. Weakly coupled processors

In broad terms, coherence protocols must guarantee that:

– the execution of a program by any processor is “observed” in the same
order by the other processors;

– operations “executed” by a series of instructions produce results in the
order defined by this series of instructions;

– the values read are the “last values written” (the “most recent”) or
indicated as such (this concept of the last written value will be specified later).

12.1. Cache coherence

The coherence of information between caches and memory is a fundamental
element in the operation of strongly coupled multiprocessor systems, since it ensures
that a processor has access to the “last value” that was written, relative to the order in
which the information needs to be written.

12.1.1. Examples

EXAMPLE 12.1. – Consider two processors PA and PB equipped with the caches CA

and CB , respectively. These caches share the same memory space M , and their lines
can contain two words (Figure 12.3(a)). We will assume that the caches operate in the
write-through mode.

The execution sequence is as follows:

– PA accesses the memory word with the address A, the tag X , containing the
value 10. A line is loaded into CA (Figure 12.3(b)).
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– PB accesses the same memory word. CB is updated with this value
Figure 12.3(c).

– PA writes the value 0 in A (Figure 12.3(d)) in the write-through mode (we would
face the same problem in write-back). There is a loss of coherence. Any access to A
by PB will trigger a hit on a value that is wrong, since it is not the result of the “latest”
update.

PB CB

PA CA
M
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PB

CB

A

PB

PA

A

PB

PA

A

10
7
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10

10 0

X

10X 10X

0X

10X

write-through

PA

(a) (b)

(c) (d)

7

77

7 7

7

7 7

Figure 12.3. Loss of coherence

Note that the same problem is true when performing a write operation at the
address A+ 1, since the information is located on the same line with the tag X .

EXAMPLE 12.2. – Consider again the previous case of two processors PA and PB ,
but in the write-back mode (Figure 12.4).

– CA and CB have both been loaded (Figure 12.4 (a)) with the content of the
memory word with the address A1 (tag X , content 10).

– PA modifies this information by setting it to 0 (Figure 12.4(b)).

– We assume that PA needs line L with tag X (the line chosen by an LRU
algorithm) to load into it the information at the address A2 and with tag Y . Since
the information contained in line L has been modified, this line must be copied into
memory (Figure 12.4(c)). The memory word with the address A1 now contains the
value 0.

– The line containing the information at the address A2 is loaded into line L
(Figure 12.4(d)). As in example 12.2, coherence is not maintained. The values in A1

and CB are different. CB should also be updated.
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Figure 12.4. Loss of coherence during an LRU replacement

12.1.2. The elements to consider

The mechanisms implemented to ensure the coherence of information must take
into account a certain number of “local” or “distant” elements or events. By local
“relative to a processor”, we mean an element or event that depends on that processor:

– the “normal” operating mode, in other words handling misses and the algorithm
implemented for replacing lines, generally LRU;

– memory accesses that do not involve the cache, for example inputs and outputs;

– instructions that directly manipulate the content of the caches.

“Distant” elements or events are related to the operation of other processors and
affect the local processor. In example 12.1, the modification by PA of the shared line
is, to PB , a distant event.

12.1.3. Definition of coherence

We indicated that accessing an element of information should return its most
“recent” value, in other words the value after the last update. In the example
illustrated by Figure 12.3(d), processor PB has access to an “old” version of the
information. To avoid this problem, it would have had to know that this data had been
modified elsewhere.
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The concept of old information used here should be
defined more precisely, since it refers to an order.
This can be the order of the instructions in a program,
the order in which instructions “end” (the results are
ready to be stored in memory and are “sent”), or the
order of the actual writing (termination) of the results.
The propagation times are never the same. We will
discuss these points in greater detail in section on
12.5.

12.1.4. Methods

There are a variety of methods used to ensure coherence. The two parameters to
consider are ease of implementation and performance expectations. Among others, we
can mention the following methods:

– If information is modified in one of the caches, the decision can be
taken to modify it in all of the caches that hold it. This method is known as
broadcasting/hardware transparency.

– It is also possible to prevent shared information from being copied into the
caches. This is referred to as non-cacheable memory systems (this applies in particular
to all of the input–output device addresses).

– In order to account for the difficulties related to propagation time, it may be
useful to make a copy of a line as soon as it is modified (dirty or modified) and to
mark as invalid any possible copies.

These methods are rather inefficient in terms of cache use. In practice, it is
preferable to preserve information as long as possible and to limit exchanges. There
are two main categories of methods used for maintaining coherence, depending
on whether the information necessary to this coherence is distributed (local) or
centralized (global):

– In the first case – local information – we will refer to the concepts of
broadcasting and snooping. A snooping tool is used to inform a cache of problematic
accesses. Protocols that rely on such a device, known as a snooper or a bus watcher,
are referred to as snooping protocols. The advantage of implementing this scheme is
that it requires modifying only the cache controller, not the processor or the memory.

We can define two strategies:

- The first consists of invalidating shared information when it is modified by
another processor. The writer acquires an exclusive copy of the information. This is
known as a write-invalidate algorithm.
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- The second consists, for the processor that modifies data, of notifying the
other processors that it is performing a write operation. The other processors update
their cache to maintain coherence. This is known as a write-update algorithm;

– In the second case – global information – we use a directory (directory-based
coherence), or table, where each entry corresponds to a line in memory, and contains
information indicating the presence of this information in one of the caches.

The main pros and cons of the two methods are the following:

– The scalability of snooping – essentially changes in the number of caches –
is poor, and a large portion of the bandwidth is used on the shared bus. However,
the protocol is reactive. These methods are more often used with strongly coupled
microprocessors.

– Directories scale better, bandwidth use is limited, but the latency is high. These
methods are more often used with weakly coupled multiprocessors.

12.1.4.1. Broadcasting and snooping, an example

Consider the system in example 12.1, assuming that write operations are
performed using the write-back method (Figure 12.5).

PB

CB

X10

(a)

(c)(b)

Signaling

Snooping/

Acknowledge Access

PB

CB

X12

PB

CB

X

X 12

12

Figure 12.5. Snooping and updating before access agreement

– PA needs to read X in memory (Figure 12.5(a)). Its read request is indicated on
the control bus. The read operation can only be performed with agreement from the
other cache controllers.
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– If they have X , the other controllers detect this read attempt (by snooping). The
processor PB which modified the data, copies this information X into memory (Figure
12.5(b)) and acknowledges the signal.

– After the acknowledgment, PA can perform the memory access (Figure 12.5(c)).

12.2. Examples of snooping protocols

In order to ensure information coherence, caches need to exchange information.
The fastest way consists of using a certain number of communication lines. The
minimum requirement is a valid line (line V, validity: V = 1), a line indicating a
modification (line M, modification: M = 1) and a line indicating that information
has been shared (line S, sharing: S = 1). This set of three lines on the bus is enough
to distinguish eight states for the cache lines, with only five possible states (Table
12.1).

V M S State Comment
0 φ φ I The line was never loaded.
1 0 0 E Only one cache has this line.

There is coherence with memory.
1 0 1 S At least one other cache has this line.

Coherence with memory is not certain.
1 1 0 M The line has been modified and is the only one

in this state. Coherence depends on the update
policy (write-back or write-through).

1 1 1 O The line has been modified and is also
in other caches with the same content.

Table 12.1. Cache states

In the following sections, we will present the MSI, MEI, MESI and MOESI
protocols, which use these states. We will assume that the caches operate in the
write-back mode and that a miss in a write operation triggers a cache update. The
rules governing coherence with memory will be specified for each of these protocols.

In what follows, P0 will refer to the local processor, C0 to its cache, while Pi will
refer to distant processors and Ci to their caches.

12.2.1. The MSI protocol

The MSI (modified, shared, invalid) protocol applies to caches that operate in
write-back, in which each line is in one of three states: modified (M), shared (S)
or invalid (I), the significance of which is as follows:
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– I: invalid line. The information stored here is not reliable. Any access results in
a miss.

– M: if a line of the cache is in the M state, it means that it is the only valid copy.
The processor is referred to as the owner. The copy in memory may or may not be
valid. The line must be copied into memory before being replaced.

– S: the line is in the cache and has never been modified. Other caches may host a
copy of this line. Coherence is ensured with memory.

12.2.1.1. Interactions with the LRU protocol

Line replacements triggered by the execution of the LRU protocol interfere with
the coherence protocol, since LRU modifies the state of the lines when they are
replaced. The operation of the LRU protocol can be represented by the diagram in
Figure 12.6. A transition corresponds to a read miss (RM) or a write miss (WM).
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Figure 12.6. Part of the protocol implemented because of LRU

The overall protocol operation must account for signals originating from the
snooping module. The notations are as follows:

– RML (Read Miss LRU) and WML (Write Miss LRU);
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– SW (Snoop Write) detection of a write operation performed on another
processor;

– SR (Snoop Read) detection of a read operation performed on another processor;

– ACK (acknowledgment): the symbol load
ACK indicates that a line in the cache

is imported from memory upon acknowledgment from another processor;

– store: storage in memory;

– load: a line in memory is loaded into the cache. The notation “+W” indicates
that this line has been modified.

Consider for example a read operation that results in a miss (event RML) on a
line in the S state. The line needs to be replaced. This event can lead to two cases
(transitions (5) and (6)):

– Case (5): no other processor Pi has the new line, or has it in state S (we have
coherence). The line simply needs to be loaded from memory ( load ).

– Case (6): another processor Pi has the new line in the M state. Pi must copy it
into memory (store) before it can switch to the S state (SR detection, transition (12)).
Once the update has been performed, Pi sends an acknowledgment and P0 can load
the new line from memory ( load ACK).

If the line that needs to be replaced is in the M state, the mechanism is the same,
but P0 must first save the line in memory ( store ).

REMARKS 12.1.– When Pi updates the memory, it can also simultaneously “send”
the line to P0, since the line travels on the shared bus, and is therefore accessible to
C0. This saves time in the execution of the protocol.

12.2.1.2. The coherence protocol

The protocol is described in Figure 12.7. Thin-line arrows ( ) correspond to
transitions between states, while the others (jagged arrows ) correspond to signals
used for communication between C0 and Ci. Events taken into account are referred
to as RH (Read Hit), RMI (Read Miss on Invalidation), WH (Write Hit), and WMI

(Write Miss on Invalidation).

Transitions correspond to the following actions:

– Transitions (1) and (2): these transitions correspond to successful read and write
operations. The line stays in the M state and nothing is broadcast.

– Transition (3): write operation on a line in the S state. The line in question
switches to M and the corresponding lines in the other caches (and therefore in the S
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state) are invalidated (response to the event , SW is taken into account, transition
(14)).

– Transition (4): read operation on a line in the S state. Nothing is broadcast and
the line stays in the S state.

– Transitions (5) and (6): the line is in the I state. It is therefore going to be
overwritten with new information. If this line exists nowhere else (or in the I state), or
if it is in the S state in Pi (denoted by S+I in the diagram), the cache is simply going
to be loaded with a line read from memory. If it is in the M state in a Pi, then that
processor must update the memory (store, transition (11)) before P0 loads the line in
the cache to modify it. The state switches to I in Pi in any case.

As previously indicated, the information provided by Ci to update the memory can
be simultaneously loaded into C0.

– Transitions (7) and (8): the situation is the same as in transitions (5) and (6). The
only difference is that no write operation is performed in the line after loading.

M S
WH

RH

RH

RMIWMI

ACK
load ACK load

load

(1)

(2)

(8) S+I

(5) M

(4)
(3)

(7) M

(6) S+I

(P0)

M
SR

SR

SR

I

SW SW

SW

Signal
store

(Pi)

store

WH

I

load

+W

+W

(12)

(11)

(13)

(16)

(14)

(15)

S

Figure 12.7. Description of the MSI protocol

12.2.2. The MEI protocol

In the MSI protocol, when a processor modifies a line that is absent from all the
other caches, this line is loaded into memory and set to the S state. It then switches to
the M state and an SW signal, which is not necessary in this case, is sent. It should be
noted that this situation where a non-shared line is modified, along with the
broadcasting of unnecessary SW signals, is very common.

The MEI protocol replaces the S state with an E state, indicating that this line is
read by P0 alone (exclusivity principle). As a result, access to a line in this state by
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P0 does not lead to either a transaction or a waiting period on the bus. All of the other
copies (lines with the same tag) are in the I state.

Figure 12.8 sums up the operation of the protocol. It includes the case of a memory
access that does not involve caches (input–output, DMA). However, it does not show
events related to the LRU protocol.
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Figure 12.8. Description of the MEI protocol: thin-line arrows correspond to transitions
between states, the others (jagged arrows) to acknowledgement inputs

The states of the MEI protocol are as follows:

– I, invalid line: the information stored in this line is not reliable. Any access
results in a miss.

– M, the processor is the owner of the line. It is the only one that has a valid copy
of this line. The copy in memory may or may not be valid. The line is copied into
memory in case of a replacement.

– E, the line involved, is found only in this cache. The corresponding information
is coherent with the memorization system.

The cache in the MPC603e processor by Motorola® operates according to the MEI
protocol, which is a subset of the modified exclusive shared invalid (MESI) protocol
(section 12.2.3). This makes it possible to run PowerPCs, which implement it, with
processors supporting the MESI protocol.

12.2.3. The MESI protocol

The MESI protocol is also known as the Illinois protocol. It is implemented in
particular in Intel®’s Pentium 4 IA32 series processors, in the PPC601 by Motorola®

and in the AMD486. Each line of the cache is in one of the four following states:
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– Modified (M): the line is valid and the associated information can only be found
in this cache. The data have not been updated in the memory.

– Exclusive (E): the line can only be found in this cache. The corresponding
information is coherent in the memorization system.

– Shared (S): the line is valid and the corresponding information can be found in at
least one other cache. A “shared” line is always coherent in the memorization system.

– Invalid (I): the information contained in this line is not reliable.

Figure 12.9 summarizes the operation of the MESI protocol. It shows a transition
corresponding to the execution of a cache management instruction.
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Figure 12.9. Description of the MESI protocol

– Transitions (1) or (2): the current state is I. There is an RM. The switch to S or
E depends on the broadcasts originating from the Ci. If the corresponding line is in
the M, E or S state, then the state switches to S in P0. If there is no response, the state
switches to E.

– The other behaviors can be inferred directly from the MSI and MEI protocols.
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REMARKS 12.2.–

– In principle, the M state is reflected by a line in the control bus. In PowerPCs™,
this line is referred to as GBL and indicates (P0 output line) to the other processors Pi

(input lines of the Pi) whether the coherence needs to be checked. If there is a switch
from E to M, it is not necessary to broadcast it, which saves time when checking the
coherence. In the case of MSI, this would not be possible. The switch from S to M is
always broadcast.

– The M and E states are always precise, meaning that they must always reflect
the true state of the line. The S state can be imprecise: if another processor switches
the corresponding line to the I state, the local line does not switch to E even if it is in
the situation specific to that state (it would be difficult to implement).

– The Firefly protocol, implemented on the Firefly processor by DEC, works
with the MESI protocol, but in the Write-Update mode. When a line is loaded, its
modification by a processor triggers the Write-Through and the update of all the other
copies [THA 87]. All of the lines in the S state stay in the S state. Another variation,
the MESIF protocol (MESI forward), is used in Intel’s Nehalem architecture (level
3 cache). If a line is requested, the cache that has it in the E mode delivers it and
switches to the S state, while the requester switches to the F. It is the latter that will
deliver the line the next time it is needed, meaning that the “provider” changes after
each request.

EXAMPLE 12.3. (The PowerPC 601) – The PowerPC 601 is equipped with a
“data-instruction” cache, which is set-associative with eight 32-kB blocks, and can
operate in the write-through or write-back mode. Each line of a block contains
sixteen 32-bit words organized in two 8-word sectors. Cache updates are done one
half-line at a time. If, during an update, another half-line is invalid, its automatic
update is performed with a low priority. This possibility can be inhibited by software.

In a multiprocessor environment, the cache update protocol is the MESI protocol.
In the cache, each half-line (sector) is assigned two bits that code the state.

12.2.4. The MOESI protocol

The case where we accept that shared information may not satisfy coherence with
the memory is called the MOESI protocol (Exclusive-Modified, Shared-Modified
(Owned), Exclusive-Clean, Shared-Clean, Invalid) [BAU 04]. There can therefore be
information that is modified and shared. This is done by introducing a cache to cache
communication mechanism, which is used to avoid systematic memory updates
whenever there is an attempt to access a modified line. The MOESI protocol is
implemented in particular in the P6 by Intel, the successor to the first Pentium
architecture, and in the AMD64 architecture. It is also used, with Write-Update,
under the name Dragon protocol in the XeroxTM Dragon multiprocessor.
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Figure 12.10. Description of the MOESI protocol

The states are as follows (Figure 12.10):

– M: the current cache is the only cache with a valid copy of the line, and it has
modified it. There is no coherence with memory.

– O: the line is valid in the current cache and in at least one other cache. There is
no coherence between cache and memory. The cache that has the line owns it: it owns
the latest modified version and has propagated its content.

– E: the line is valid in the current cache, and only in this cache. Let us assume
that P0 requests a line held by Pi in the E state. Pi provides this line without a memory
write and switches it to O. P0 retrieves the line and switches it to S. There is no
coherence between caches and memory.

– S: the line is valid in the current cache and in at least one other cache. There is not
necessarily coherence with memory, unlike the other protocols discussed previously.
Let us assume that P0 is in the I state and requests a line in the M state in Ci. Pi

provides it without a memory write and switches it to O. P0 retrieves the line and
switches it to S. There is coherence between caches, but not between caches and
memory.

– I: the line is not valid.
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REMARKS 12.3.–

– If a line in Pi in the O, E or M state is invalidated, its content is propagated and
its state in P0 switches to M. There is no copying into memory.

– The only case of copying into memory is due to the LRU: if a line is O or M, an
LRU replacement leads to the line being copied into memory even if, in the case of O,
this is not necessary.

– The same case, for a line in the S or E state, is sometimes called a silent evict,
because there is no copying into memory.

– O, E and M all three convey a state of ownership: the cache that contains a line
in this state has the responsibility to propagate its content if necessary.

– If a line k is in the O state, the lines in other caches with the same tag will be in
the S state. If k is overwritten because of LRU, the memory becomes the owner and
any new access to this line will be done through memory, and not through caches.

– When a processor modifies a line k in the S state and switches it to M, an
alternative solution would be to switch to O after propagating the modification.

12.3. Improvements

A variety of methods have been proposed for improving the protocols described
above:

– Decreasing bus traffic: broadcasting to a limited number of caches, performing
only partial invalidations (word invalidation protocol [MIL 96]), etc.

– Using hybrid protocols (updates and invalidation): the (RST) protocol is an
example of such a method. It is based on the Dragon and Firefly protocols [PRE 91]
(see exercise 12.5).

– Observing read and write operations during the execution: if there are few writes
between the reads, an update protocol is advisable. If it is rare to read the same data,
or if there are many writes between reads, an update protocol should not be used.
The read write broadcast (RWB) protocol is one of the first examples of this method
[RUD 84].

12.4. Directory-based coherence protocols

Directory-based coherence protocols [TAN 76] manage caches using one or
several controllers that send the commands to transfer from cache to memory, or from
cache to cache, by limiting traffic to only what is strictly necessary (Figure 12.11).
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Figure 12.11. Example of a directory structure: valid bit V, presence bit P, modify bit D,
memory/directory M/D. A reference is present in caches P1 and P3. The line was modified

(D = 1) in cache C1

Controllers maintain all of the information necessary to satisfy the coherence
protocol: the references to the lines used are recorded into a table in memory, or in a
memory annex, called a directory.

Each entry in the directory includes a modify bit D indicating whether the
corresponding line has been modified, and a presence bit associated with each cache.

The original protocol proposed in [CEN 78] only allowed for one modified copy to
be present in the system (invalidation protocol). Several structures have been proposed
to limit the directory size without excessive increases in the volume of exchanges or
latency. Another problem to consider is the number of processors (scalability).

EXAMPLE 12.4. – We focus on P1, P2 and P3, which share the same memory space.
The variable x is located in the memory attached to P2. Lines can exist in the M, S
or I state. The following diagrams illustrate the execution of the sequence R1(x) (x is
read by P1), W1(x) (x is modified by P1), R3(x) and W3(x):

– Initial situation: the indication “0 1 0” associated with line indicates that it is
only present in the memory M2 attached to P2 (Figure 12.12).

– x is read by P1: the read is broadcast to P2, owner of line . The controller for
P2 sets to 1 the presence bit associated with P1 in input ; P2 transmits to P1, which
changes it to the S state in C1 (Figure 12.13).

– x is written by P1: the write is broadcast to P2, there is no invalidation to send to
other processors since P1 and P2 are the only processors that have . In the directory
for P2, bit D switches to 1 and the presence bit switches to 0 for P1 (Figure 12.14).
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Figure 12.14. x is modified by P1

– x is read by P3: the read is broadcast to P2, P2 provides P3 with the identity of
the owner (P1). P3 requests from P1, which returns the line to P2 (in memory) and
P1. switches to the S state in P1 and P3. There is coherence between memory and
caches (Figure 12.15).

– x is written by P3: the write is broadcast to P2, P2 sends an invalidation signal
to P1. P2 sets D to 1, along with the presence bit associated with P3. switches to M
in C3 (Figure 12.16).
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12.5. Consistency

12.5.1. Consistency and coherence

Consistency defines rules of behavior that processors must follow when accessing
the memory. We have to distinguish the access request – read or write – of an
instruction from its actual completion.

The consistency model is critical: it imposes constraints on the technological and
operational choices, for parameters such as the cache coherence protocol, the size of
memory controller buffers, etc.

The following are a few consistency models:

– atomic consistency;

– sequential consistency;

– causal consistency;

– weak consistency.
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12.5.2. Notations

The following notations specify the nature of the operations in memory and their
order:

– nature of the operations:

- Rp(m)v: the content of the memory word m is read by the processor P , and
the value v is obtained;

- Wp(m)v: the value v is written in the memory word m by P ;

– order of operations:

- an operation OP1 precedes an operation OP2 in the program order: OP1 ≺
OP2;

- an operation OP1 precedes an operation OP2 in the order of visibility (of the
results): OP1 ⇒ OP2;

– an operation OP1 precedes an operation OP2 (denoted by OP1 ≺ OP2) if one
of the following conditions is met:

- type (a) precedence: OP1 and OP2 are on the same processor and OP1 is
executed before OP2;

- type (b) precedence: OP2 is a read operation performed by another processor
at the address where OP1 performed a write operation (and there was no write
operation on x between OP1 and OP2);

- OP1 ≺ OP2 if there is an OP3 such that OP1 ≺ OP3 and OP3 ≺ OP2;

– OP1 and OP2 are parallel (or concurrent) if there is no precedence relationship
between them.

When we define the order of events, we are assuming that we know their beginning
and end. However, while we know when a memory access request is sent, it is more
difficult to define when it ends. The concept of the termination of an operation will
specify what constitutes the end of an event:

– the operation consisting of writing the value i in cell x by processor PB , that is
WB(x)i, is said to have terminated for processor PA if RA(x)i, or if PA reads the
value deposited by a write operation following WB(x)i;

– the operation consisting of reading the value i in cell x by processor PB , that is
RB(x)i, is said to be terminated if that value can no longer be altered by any write
operation on x.
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A memory access is said to be terminated if it is terminated for all of the
processors.

12.5.3. Atomic consistency

This is the most restrictive model. The behavior it imposes (with respect to memory
access) is similar to what occurs in a single-processor architecture:

– write instructions are described as atomic: the requested update operation is
immediately performed;

– reading cell x returns the value that was stored in this cell by the last write
request (the most recent, which implies the presence of a global synchronization).

An architecture in which several processors without a cache (or equipped with a
write-through cache) are connected by a bus to a single memory meets all the criteria
outlined above.

EXAMPLE 12.5. – The following two scenarios (we assume that x is initialized as
zero) are correct:

PA WA(x)1

PB RB(x)1 RB(x)1

PA WA(x)1

PB RB(x)0 RB(x)1

EXAMPLE 12.6. – The following scenario (we assume that x is initialized as zero) is
incorrect:

PA WA(x)1

PB RB(x)0 RB(x)1

This last scenario is incorrect because the updates performed by a processor must
be immediately propagated and be visible to the others.

This is also called atomic consistency: the modification made by a write operation
is immediately seen by all the processors and a read request returns the last value that
was written.
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12.5.4. Sequential consistency

Sequential consistency imposes fewer constraints on multiprocessor architectures.
Leslie Lamport [LAM 79] defined it as follows: “a multiprocessor is sequentially
consistent if the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program”.

If Pi executes I1, I2, I3 and Pj executes J1, J2, J3, the sequences {I1, J1, I2,
I3, J2, J3} and {I1, I2, J1, J2, I3, J3}, for example, are correct. But if a processor
observes the first sequence, all of the other processors must observe it as well.

REMARKS 12.4.–

– At the end of the execution, there will be several possible values for the shared
variables.

– The execution of instructions meets the criteria for sequential consistency if:
OP1 ≺ OP2 implies OP1 ⇒ OP2.

EXAMPLE 12.7. – The following scenario, which is incorrect in atomic consistency,
is correct in sequential consistency. The variable x is initialized as zero.

t 0 1 2 3 4
PA WA(x)1

PB RB(x)0 RB(x)1

If the write instruction is not atomic, it may be that the write operation performed
by PA is not immediately visible to PB , which is illustrated by the example.

EXAMPLE 12.8. – Another scenario that is correct in sequential consistency:

t 0 1 2 3 4 5
PA WA(x)2

PB WB(x)1

PC RC(x)2 RC(x)1

PD RD(x)2 RD(x)1

Processors C and D both see the content of x change from 2 to 1, even though the
write instructions are not in that order.

The sequential consistency model is comparable to the transmission conditions on
a network with the following assumptions: messages sent from two sites to the same
third site are not necessarily received in the order they were sent, and two messages
sent by the same site never become “out of sequence”.
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12.5.5. Causal consistency

One more constraint is relaxed: only instructions that are causally dependent, by
which we mean instructions that share a precedence relationship, must be seen in the
same order by all of the processors.

In all of the examples that follow, x and y are initialized as zero.

EXAMPLE 12.9. – The following scenario does not observe the rule for sequential
consistency, but is correct in causal consistency. This is because the events WA(i)1
and WB(i)2 are not causally dependent (they are parallel).

t 0 1 2 3 4 5
PA WA(x)1

PB WB(x)2

PC RC(x)2 RC(x)1

PD RD(x)1 RD(x)2

C and D do not see the updates of x in the same order.

EXAMPLE 12.10. – The following scenario is also correct in causal consistency:

t 0 1 2 3
PA WA(x)1 WA(x)3

PB RB(x)1 WB(x)2

PC

PD

t 4 5 6 7 8 9
PA

PB

PC RC(x)1 RC(x)3 RC(x)2

PD RD(x)1 RD(x)2 RD(x)3

There is a type (b) relationship between WA(x)1 and RB(x)1, then a type (a)
relationship between RB(x)1 and WB(x)2. The different processors Pi must
therefore read Ri(x)1 first, then Ri(x)2, which is, in fact, the case. There is also a
type (a) precedence between WA(x)1 and WA(x)3. The values 1 and 3 are
performed in the right order by C and D.
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EXAMPLE 12.11. – The following scenario observes the rule for causal consistency,
but not for sequential consistency:

t 0 1 2 3 4 5 6 7
PA WA(x)0 WA(x)1 RA(y)0 RA(y)2

PB WB(y)0 WB(y)2 RB(x)0 RB(x)1

Sequential consistency forces memory accesses to be performed in the same order
as in a single-processor machine. In this case, since PB reads x = 0 then x = 1, this
means that WB(y)2 has been executed. PA cannot read y = 0 then y = 2 and instead
must execute RA(y)2, RA(y)2.

12.5.6. Weak consistency

Handling the propagation of modifications is left to the programmer, who must
rely on instructions [DUB 98] specific to controlling this propagation.

The constraints imposed by weak consistency are the following:

– sequential consistency is only ensured for accesses to synchronization variables;

– no access to a synchronization variable can be done by a processor before all of
the previous memory accesses, for all of the processors, are terminated;

– operations on a synchronization variable must be terminated by a processor
before it can access memory again.

We use S to denote access to a synchronization variable.

EXAMPLE 12.12. – Consider the following sequence:

PA WA(x)a S
PB S RB(x)a

The read operation must return the value found in the last write request, which
is a. This is because PA has to wait for all of the accesses to shared variables to be
terminated before accessing S. PB does the same.

In the case where:

PA WA(x)a S
PB RB(x)? S

the value read in x is not necessarily a, and may instead be a previous value.
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12.6. Exercises

Exercise 12.1 (MSI protocol) (hints on page 341)

Consider the system from example 12.2, where write operations are performed
in the write-back mode. At first, all of the lines are marked “invalid”. The value 10
is stored in memory at the address X . The two processors execute two sequences of
instructions described in the following table.

n PA PB Comment

1 mov r1,[X] . . . PA: r1:=[X]
2 . . . mov r4,[X] PB : r4:=[X]
3 mov [X],#0 . . . PA: [X]:=0
4 . . . mov r5,[X] PB : r5:=[X]
5 . . . mov [X],#20 PB : [X]:=20

Describe, using a diagram similar to the diagram in Figure 12.17, the sequence of
operations that ensure cache coherence according to the MSI protocol. Comment on
each phase.

PB

CB

PA

CA
M

X10

Figure 12.17. Strongly coupled architecture used in the exercises

Exercise 12.2 (MSI protocol, update sequences) (hints on page 342) Consider three
machines equipped with direct-access caches consisting of sixteen 8-word lines.

These machines execute “read-write” sequences in the order described in the table
below. n is the time when instructions are executed. X contains A0C016. At first, the
line is in state I.
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n P1 P2 P3

1 ld r1,[X] . . . . . .
2 add r1,1 . . . . . .
3 st r1,[X] . . . . . .
4 . . . ld r2,[X+2] . . .
5 . . . and r2,0FH . . .
6 . . . st r2,[X+2] . . .
7 . . . . . . ld r3,[X+6]
8 . . . . . . sub r3,r1,r5
9 . . . . . . st r3,[X+6]

Describe the changes in state of the line involved in the three caches.

Exercise 12.3 (MESI protocol) (hints on page 342)

Consider the system shown in Figure 12.17 in the write-back mode. At first, all of
the lines are “invalid”. The value 10 is stored at the address X in memory.

n PA PB Comment

1 mov r1,[X] PA: r1:=[X]
2 mov r4,[X] PB : r4:=[X]
3 mov [X],#0 PA: [X]:=0
4 mov r5,[X] PB : r5:=[X]
5 mov [X],#20 PB : [X]:=20

The cache coherence protocol is MESI. Give the series of states of the two lines
that correspond to X in caches CA and CB and the memory content.

Exercise 12.4 (Berkeley protocol) (hints on page 343)

The Berkeley protocol [KAT 85, ARC 86], the successor to the Synapse protocol
[FRA 84], relies on the concept of “ownership”, as seen in the case of the MOESI
protocol. This protocol has the following states:

– Modified or dirty (M): the associated line is valid, and is only found in this cache;
the cache is its owner. The data have not been updated in memory.

– Potentially shared or shared-dirty (P): the line has been modified and may be
shared. The cache is its owner.
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– Shared or Valid (S): the line is valid, has not been modified and may be shared.

– Invalid (I): the information in the line is not reliable.

REMARKS 12.5.–

– It is always the owner – the memory or the cache – that “sends” the line. If no
cache has this line in the M or P state, a memory access is necessary.

– When a Read Miss LRU occurs, if the line o that is chosen is in state M or P, it
is copied into memory. If another cache has the new line n in the M or P state, that
cache provides it, otherwise the memory does. The line n switches to S.

– In the case of a Write Miss LRU, as with a Read Miss LRU, the line is provided
by the owner. The line that the owner has is then invalidated, along with any copies
that might exist.

Draw the graphs illustrating the Berkeley protocol, and comment on the transitions
between states. You may consult the references cited above, in particular [ARC 86].

Exercise 12.5 (Firefly protocol) (hints on page 343)

The Firefly protocol was designed by DECTM for its multiprocessor workstation
Firefly [THA 88]. It constitutes a subset of the MESI protocol in which there is no
invalidation. The three states we previously referred to as M, E and S are in this case
known as “Dirty” (D), “Valid-Exclusive” (V) and “Shared” (S), respectively. The S
and V states are such that coherence is preserved.

The caches of the processors Pi share a physical line called the SharedLine. It
changes state during snooping to indicate that Pi has the line referenced in P0. Cache
to cache communication is assumed to be possible.

Draw the state diagram for this protocol. Note that a Write Miss can be handled
like a Read Miss followed by a Write Hit.



Chapter 13

Superscalar Architectures

In Chapter 10, we saw how to parallelize the execution of instructions using a
pipeline architecture. This parallelism leads to hazards. Handling these hazards
requires not only the use of optimized compilers, but also the ability to detect them,
as well as the implementation of hardware solutions to minimize their effects.

An additional level of parallelization can improve performance further, however it
increases the degree of complexity, imposes new constraints and requires new
solutions. We present two solutions to this problem: superscalar architectures and
multiple instruction architectures.

13.1. Superscalar architecture principles

A superscalar architecture is built with several pipeline-type units, which are fed
with instructions as their inputs. Figure 13.1 illustrates how this is organized. It shows
the execution pipelines of a PowerPCTM 603. This simplified representation is useful
to get a good idea of how the architecture for this type of processor operates.

The choice of a “superscalar” architecture is dictated by two observations. The
first is that instructions vary in their duration, sometimes dramatically (on an Intel®
Pentium-4, a floating-point addition or multiplication can take one to three clock
cycles, whereas a division takes 39 cycles). The second is that these instructions can
often be executed in parallel.

As a consequence, the order in which results are produced with this type of
architecture is not necessarily the same as the order of the instructions in the
program. It is however an absolute requirement that the order of these write
operations be respected in a given memory word or register.



288 Computer Architecture

Dispatch

Fetch

WB (Write Back)

Execute Execute Execute

Execute

Execute

Decode

L
o
ad

S
to
re

In
te
g
er
U
n
it

A
d
d
/

co
m
p
ar
e

F
lo
at
in
g

P
o
in
t

U
n
it

Execute

Execute

Figure 13.1. An example of a superscalar architecture, the PPC-603TM

The use of several pipelines with different or duplicate features increases the
degree of parallelism and improves performance, but it inevitably comes at a cost, in
the form of higher design complexity. An immediate consequence involves the
“Decoding” stage. This stage is fed only after proceeding to a partial decoding phase
(“dispatch” in Figure 13.1). The decoding is then completed in each pipeline.

13.1.1. Hazards

There are two types of resource that lead to hazards: registers and memory. In
superscalar architectures, access to a given piece of information by two instructions is
a potential source of error. Figure 13.2 lists all possible cases. If instruction Ii precedes
instruction Ij (Ii ≺ Ij), there can be, for example, a RAW-type hazard if Ii uses the
register Ri

d as its destination, and instruction Ij uses the same register as its source
(Rj

s = Ri
d). In the figure M i

s and M i
d refer to addresses in memory corresponding to

a source and a destination, respectively.
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Figure 13.2. List of hazards that can occur in a superscalar architecture. Instruction Ii
precedes Ij . The bold line indicates the possibility of a RAW hazard if Rj

s = Ri
d
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A distinction is made between hazards that involve registers and those that involve
the memory. Read and write operations are denoted by (R,W ) for registers and by
(Rm,Wm) for memory words. This is because memory reads and writes occur in the
last execution cycle of the corresponding pipeline, and not in the W cycle.

The following two examples illustrate the case of WAR and WAW cycles.

EXAMPLE 13.1. (A WAR hazard) – Consider the architecture in Figure 13.3.
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FP DIV

E

D
D

D
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Figure 13.3. An example of a superscalar machine

and this excerpt from a program:

I1: divf f5,f4,f1 ; f5 := f4 / f1
I2: mulf f1,f4,f5 ; f1 := f4 * f5
I3: addf f4,f2,f2 ; f4 := f2 + f2

The RAW hazard between mulf and divf is resolved by introducing penalty
cycles, as was the case with a single pipeline.

But there is also an unresolved WAR-type hazard, since addf modifies the content
f4n of f4, which is also used by mulf, at time n. But this last instruction must wait
for f5 to be calculated by divf. As a result, addf will be executed before mulf and
will modify f4 at time n+ 5. mulf will therefore be using f4n+5 instead of f4n.
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EXAMPLE 13.2. (A WAW hazard) – Consider the following excerpt from a program
on the same processor as in example 13.1:

I1: divf f1,f2,f3 ; f1 := f2 / f3
I2: stf f1,0(r2) ; store f1 --> mem(0(r2))
I3: addf f1,f6,f7 ; f1 := f6 + f7
I4: stf f1,0(r2) ; store f1 --> mem(0(r2))

The execution diagram, where RAW hazards are resolved, is as follows:

The sum is completed before the division. The results are not produced in the right
order. The second stf writes the values of f1 into memory, at time n+ 7, before the
first stf, which performs its write operation at time n+ 9. This violates the principle
according to which write operations in a given memory word must be performed in
the order of the program.

13.2. Seeking solutions

Dependency hazards can be handled in several different ways. As with single
pipeline architectures, the task can either be left to the code generator or the
hardware. It is the latter case we are interested in.

13.2.1. Principles

Consider again example 13.1.:

I1: divf f5,f4,f1 ; f5 := f4 / f1
I2: mulf f1,f4,f5 ; f1 := f4 * f5
I3: addf f4,f2,f2 ; f4 := f2 + f2



Superscalar Architectures 291

I1 I2

WAR (f1)

WAR (f4)

WAR (f4)

RAW (f5)
I3

Figure 13.4. Expressing relations of precedence between instructions

The dependency graph (Figure 13.4) is a representation of the constraints we are
faced with.

However, the mechanisms involved can only be understood if they are expressed
with a little more finesse. For example, knowing that the write operation takes place at
the end of the instruction, we can point out that I3 could start before I2 is completed,
an observation that is not represented in Figure 13.4.

To improve our model, dependencies must be represented with a higher level
of detail. The phases of instruction Ii are denoted by Fi, Di, Ek

i and Wi, while
precedence in time is denoted by ≺ (precedes) or (precedes or in parallel). An
XXX conflict on a register fk will be denoted by XXX(fk). To solve the conflicts in
example 13.1, we can express the conditions of precedence as follows:

– D1 ≺ W2: WAR(f1) conflict between divf and mulf;

– W1 D2: RAW(f5) conflict between divf and mulf;

– D1 ≺ W3: WAR(f4) conflict between divf and addf;

– D2 ≺ W3: WAR(f4) conflict between mulf and addf.

D2(f5)
D2(f4)

W1(f5)D1(f1)
D1(f4)

W3(f4)

W2(f1)

WAR (f4)
WAR (f4)

WAR (f1)

RAW (f5)

D2(f5)
D2(f4)

W1(f5)
D1(f1)
D1(f4)

W3(f4)

W2(f1)

D3

(a) (b)

Figure 13.5. Expressing relations of precedence between phases

Figure 13.5(a) is a representation of these dependencies. In Figure 13.5(b):

– “double” arrows indicate hardware precedence in the execution of an instruction;
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– dashed arrows correspond to hazards resolved by satisfying other constraints.
Resolving the RAW(f5) hazard implies staying within the constraints set by WAR(f1).

Two methods are applied to the previous examples. The first consists of
introducing wait states to comply with the constraints of precedence. The second,
which is more effective, relies on the use of register renaming (section 13.3.5).

13.2.1.1. Introducing wait states

To resolve the WAR hazard between I2 and I3, instruction I3 can proceed, but
must wait for D2 to be completed before executing W3:

The resolution of a WAW hazard would be expressed as En
1 ≺ En

2 , where En
1 and

En
2 are the last execution cycles of I1 and I2, respectively.

13.2.1.2. Register renaming

While it is not possible to eliminate the wait cycles due to RAWs, we can limit the
effects from WARs and WAWs. This is done by performing the write operations in
copies of the registers, known as avatars, rather than in the registers themselves. The
avatar for fi is denoted by fi .

With this new technique, the execution diagram becomes:

Note that the write operation is performed in f4 and not in f4, that the WARs have
disappeared, and that the addf instruction can be completed earlier.

Note also that once the addition is decoded, it can be executed independently of
the two other instructions.
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D2(f5)

W1(f ’)
D1(f1)
D1(f4)

W3(f ’)

W2(f ’)

D3

5

1

4

Figure 13.6. Expressing precedence with avatars

13.2.2. Example

Consider again the program excerpt from example 13.2:

I1: divf f1,f2,f3 ; f1 := f2 / f3
I2: stf f1,0(r2) ; store f1 --> mem(0(r2))
I3: addf f1,f6,f7 ; f1 := f6 + f7
I4: stf f1,0(r2) ; store f1 --> mem(0(r2))

13.2.2.1. Introducing wait states

The potential hazards are the following:

– W1 D2: RAW(f1) hazard between divf and the first stf;

– W1 D4: RAW(f1) hazard between divf and the second stf;

– D2 ≺ W3: WAR(f1) hazard between addf and the first stf;

– W3 D4: RAW(f1) hazard between addf and the second stf;

– W1 ≺ W3: WAW(f1) hazard between divf and addf;

– E2
2 E2

4 : hazard between the two stf writing at the same address 0(r2).

Compliance with the constraints is represented in Figure 13.7.

We get the following execution diagram. The E cycle with a double frame around
it in the diagram corresponds to what we called Wm. Phase W3 of addf is delayed so
that it takes place after D2.

13.2.2.2. Register renaming

Note that there are two register copies, the avatars f1 and f1 . This allows divf
and addf to be executed in parallel. The addition is completed before the division.
Note that the constraint due to concurrent memory accesses imposes a large penalty.
The execution diagram is:
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D2(f1)

D4(f1)

W1(f1)D1

W3(f1)

WM2(0(r2))

D3

WM4(0(r2))

WAR (f1)

RAW(f1)RAW(f1)

WAW(f1)

RAW(f1)

WAW(0(r2))

Figure 13.7. Expressing relations of precedence between phases

If the second stf writes in 0(r3) instead of in 0(r2), we get the following
diagram:

The pair of instructions addf-stf is then completed before divf-stf.
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13.3. Handling the flow of instructions

In the following sections we present two techniques for resolving dependency
hazards: scoreboarding and the Tomasulo algorithm, also known as register
renaming.

13.3.1. Principle of scoreboarding

This approach, introduced with the CDC 6600 [THO 70, THO 63], consists of
writing all of the dependencies into a table – a scoreboard. They are then resolved by
introducing stall cycles, as is done with a single pipeline. We assume that there is no
forwarding mechanism in place. The data are always transmitted to the pipelines from
the registers. Decoding is divided into two phases (Figure 13.8): DI (Decode-Issue)
and DR (Decode-Read).

Decode R

Decode I

F
et
ch

W
BExecute

Figure 13.8. Two decoding phases

Let R be the instruction that reads the information (register or memory word)
involved in a conflict, and W is the instruction that modifies it:

– During the DI phase, each instruction is read in the order of the program. A
search for WAW hazards is performed. If such a hazard is detected, the instruction
does not move on to DR. This ensures that the write operations take the dependencies
into account.

– During the DR phase of the R instruction, we check that the source operands
are not present in the destination field of one of the W instructions currently being
executed. If a source operand is found, there is a RAW type hazard. The R instruction
is held in DR until the updates have been completed.
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– We still have to check that the W instruction cannot be involved in a WAR-type
hazard. If the destination field is the same as the source field of R instruction, W
proceeds, then stalls, before entering its WB phase, which lasts until the read operations
have been performed on the registers involved (DR phase of R).

To summarize, if I1 and I2 are in conflict, with I1 ≺ I2:

– During DI: in case of WAW, then I2 stays in DI waiting for the W of I1.
The fetch operation is put on hold until the WAW has been resolved.

– During DR: in case of RAW, then I2 stays in DR waiting for the W of I1.

– In the last phase En of E: in case of WAR, then I2 stays in En
2 as long as

I1 has not completed DR.

Note that a WmAWm hazard meets the first condition above since the En
1 phase

(memory write operation) always precedes phase W.

13.3.2. Scoreboarding implementation

Hazards are handled using a scoreboard (Figure 13.9).

0
0
0
0

Op fsafd fsb Ba BbB

Pipeline 1
Pipeline 2
Pipeline 2
Pipeline 3

0...

rf0 rf1 rf2 rf3 rf4 rf5 ...

SRF

Figure 13.9. The scoreboard used for handling the flow of instructions

The scoreboard contains:

– a status register SRF, each entry of which corresponds to a register and indicates
(in Boolean form) if that register is the destination of a current instruction (RAW and
WAW detection);

– a table with one or several entries per execution pipeline, with the following
elements:
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- B indicates if the entry is busy (Boolean),

- Op refers to the code for the operation using the unit,

- fd indicates the destination register,

- fsa and fsb are the source registers in the same order as in the instruction Op
fd,fsa and fsb,

- Ba and Bb indicate the availability (Boolean) of fsa and fsb, respectively. A
“1” indicates that the resource is available: the last update is completed.

13.3.3. Detailed example

EXAMPLE 13.3. – Consider a processor equipped with four execution pipelines
(Figure 13.10). The integer unit (IU) executes integer calculations and memory
accesses. ADF, MF and DIVF execute floating-point additions/subtractions,
multiplications and divisions, respectively. The scoreboard has only one entry per
pipeline.

0
0
0
0

DIV
MF
ADF
IU

IU

WB

DI

WAR/RAW

detection

and handling

WAW

detection

DR

DIV

MFADF

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB {

Figure 13.10. Processor with four execution pipelines

The following instructions are executed. The comments indicate the different types
of hazards that can occur.

I1: ld F0,16(R1)
I2: ld F1,64(R1)
I3: divf F3,F1,F2 ; RAW(F1) with I2
I4: addf F2,F0,F1 ; WAR(F2) with I3, RAW(F0) with I1,

; RAW(F1) with I2
I5: mulf F5,F3,F0 ; RAW(F0) with I1, RAW(F3) with I3
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I6: st F5,0(R1) ; RAW(F5) with I5
I7: subf F5,F4,F1 ; WAW(F5) with I5, RAW(F1) with I2

The following figures lay out the details of the program execution cycles.

0
0
0
1

DIV
MF
ADF
IU

ld F0,16(R1)

1

F0 R1

DI

1ld

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

IU

WB

DR

DIV

MFADF

Figure 13.11. Cycle 1: ld F0: the IU entry is updated. R1 is tagged “available” (Bb field)
and rf0 “busy”. ld F0 can proceed to the DR phase

0
0
0
1

DIV
MF
ADF
IU

1

F0 R1

DI

1ld

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

ld F1,64(R1)

IU

WB

DIV

MFADF

ld F0,16(R1)

Figure 13.12. Cycle 2: ld F1 does not proceed to the DI phase because the resource (IU
entry) managing the IU pipeline is “busy”. One possible improvement would be to add an

entry in the reservation table

0
0
0
1

DIV
MF
ADF
IU

1

F0 R1

DI

1ld

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

ld F1,64(R1)
divf F3,F1,F2

IU

WB

DIV

MFADF

ld F0,16(R1)

Figure 13.13. Cycle 3: ld F0 proceeds to the execution phase (address calculation)
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0
0
0
1

DIV
MF
ADF
IU

1

F0 R1

DI

1ld

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB
ld F1,64(R1)
divf F3,F1,F2
addf F2,F0,F1

IU

WB

DIVMFADF

ld F0,16(R1)

Figure 13.14. Cycle 4: ld F0 proceeds to the memory access phase

0
0
0
0

DIV
MF
ADF
IU

DI

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB
ld F1,64(R1)
divf F3,F1,F2
addf F2,F0,F1
mulf F5,F3,F0

IU

WB

DIVMFADF

ld F0,16(R1)

Figure 13.15. Cycle 5: ld F0 proceeds to the F0 write phase. Once this phase has been
executed, register F0 is available and the IU entry is free. rf0 is tagged “free”

0
0
0
1

DIV
MF
ADF
IU

1

F1 R1

DI

1ld

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB
divf F3,F1,F2
addf F2,F0,F1
mulf F5,F3,F0
st F5,0(R1)

IU

WB

DIVMFADF

ld F1,64(R1)

Figure 13.16. Cycle 6: the IU entry is updated. rf1 is tagged “busy”. ld F1
proceeds to the DR phase

Remarks on Figure 13.17 for cycle 7 are as follows:

– The DIV entry is initialized as divf. Ba indicates that F1 is not available for the
division (RAW hazard with ld). rf3 is tagged “busy”.

– The ADF entry is initialized as addf. rf2 is tagged “busy”. There is a second
RAW hazard with the ld F1.
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– The MF entry is initialized as mulf. rf5 is tagged “busy”.

– Note that in this phase, divf F3,F1,F2 reads the value of F2. If there was no
dependency involving F1, addf F2 could be executed in parallel with divf. In that
case, the WAR hazard should be resolved by putting addf on hold in the WB phase.

0
0
1

DIV
MF
ADF
IU

1 1 1

F1
F2
F5 F3 F0

R1

DI

1 0
ld
addf
mulf

1 F3 F2F1

F0 F1

10
10

divf

1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

st F5,0(R1)

subf F5,F4,F1

IU

WB

DIV

MFADF

ld F1,64(R1)

divf F3mulf F5addf F2

Figure 13.17. Cycle 7: ld F1 is in the address calculation phase

1
1
1

DIV
MF
ADF
IU

1 1 1

F1
F2
F5 F3 F0

R1

DI

1 0
ld
addf
mulf

1 F3 F2F1

F0 F1

10
10

divf

1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

st F5,0(R1)

subf F5,F4,F1

IU

WB

DIV

MFADF

ld F1,64(R1)

divf F3mulf F5addf F2

Figure 13.18. Cycle 8: the memory access is performed

1
1
0

DIV
MF
ADF
IU

1 1

F2
F5 F3 F0

DI

1 1addf
mulf

1 F3 F2F1

F0 F1

11
10

divf

1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

st F5,0(R1)

subf F5,F4,F1

IU

WB

DIV

MFADF

ld F1,64(R1)

divf F3mulf F5addf F2

Figure 13.19. Cycle 9: ld F1 writes into register F1. The IU entry becomes free again and
F1 is tagged “available” for addf and divf (in Bb and Ba, respectively)

If the machine were capable of modifying the entries of the scoreboard and of
modifying F3 in the first half-cycle of this phase, then mulf could proceed to the
execution phase. In this example, we wait for the next cycle.
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1
1
1

DIV
MF
ADF
IU

1 1

F2
F5 F3 F0

DI

1 1

1

addf
st

mulf

1 F3 F2F1

F0
F5

F1
R1

11
10

divf

1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

subf F5,F4,F1

IU

WB

DIV

MFADF

divf F3

mulf F5

addf F2

st F5,0(R1)

Figure 13.20. Cycle 10: mulf is put on hold to wait for F3, just as st F5 is on hold for F5
(RAW). Since F1 has been updated, addf and divf proceed to the execution phase. subf

remains in the DI phase, waiting for the ADF entry to become free

1
0
1

DIV
MF
ADF
IU

1

F5 F3 F0

DI

1st

mulf

1 F3 F2F1

F5 R1

11
10

divf

1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

subf F5,F4,F1

IU

WB

DIV

MFADF divf F3

mulf F5

addf F2

st F5,0(R1)

Figure 13.21. Cycle 12: in cycle 11, the addf and divf instructions have proceeded down
the pipeline. Then F2 is updated and the ADF entry becomes free

1
0
1

DIV

MF
ADF
IU

1

F5 F3 F0

DI

1st

mulf

0

F5 R1

11

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

subf F5,F4,F1

IU

WB

DIV

MFADF

divf F3

mulf F5st F5,0(R1)

Figure 13.22. Cycle 16: in cycle 13, even though ADF has become free, subf cannot proceed
to the DR phase because it creates a WAW hazard over F5 with mulf. In cycle 16 divf
reaches the WB phase. The DIV entry becomes free, along with rf5. Ba of mulf (which

corresponds to F3) is tagged “available”

In cycles 22 and 23, st and subf end, respectively. The entries become free.
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0
1
1

DIV

MF
ADF
IU

DI

1

11

1

st

subf

0

F5

F5 F4 F1

R1

rf0 rf1 rf2 rf3 rf4 rf5 ...

Op fsafd fsb Ba BbB

IU

WB

DIV

MFADF

st F5,0(R1)

subf F5

Figure 13.23. Cycle 20: in cycle 19, mulf ended by making the entries MF and rf5 free. In the
next cycle, st proceeds to the address calculation phase and subf proceeds to DR

13.3.4. Comments on precedence constraints

Let us consider the same architecture, with the sequence of instructions:

I1: ld F4,0(R1) ;
I2: divf F2,F4,F5 ; RAW(F4) with I1
I3: addf F5,F3,F7 ; WAR(F5) with I2

The precedence constraints are expressed as W1 D2 ≺ W3. If the initial
conditions are those in Figure 13.24, than the ld and addf instructions will reach the
WB stage at the same time.

DI

IU

WB

DIV

MFADF

ld F4,0(R1) addf F5 divf F2

Figure 13.24. Initial conditions

There are two possible scenarios (Figure 13.25):

– To stay within the constraints set by precedence, ld proceeds to the WB phase
and addf is put on hold. ld updates F4, divf can proceed, and addf becomes free.

– If the precedence constraints are not met, addf enters the WB phase but must
wait for divf to read F5. However, divf is itself waiting for ld to be completed,
which is not possible because it cannot proceed to WB. The system is deadlocked.
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DI(a) (b)

IU

WB

DIV

MFADF

ld F4,0(R1)

addf F5

divf F2

DI

IU

WB

DIV

MFADF

ld F4,0(R1)

addf F5

divf F2

Figure 13.25. Order of operations (a) when constraints are met and (b) in case of deadlock

If the WB of addf takes place before the WB of ld, then the latter must wait for
W3 to occur, producing a loop in the dependency graph (dashed line in Figure 13.26),
in other words deadlock.

D2(f4)D2(f5)W1(f4)

W3(f5)

ld divf

addf

Figure 13.26. Expressing precedences

13.3.5. Principle of the Tomasulo algorithm

The Tomasulo algorithm achieves dynamic control over the flow of executions of
instructions. It was originally used on the IBM 360/91 in 1967 [AND 67]. A
verification of the behavior of one of its realizations can be found in [MCM 98].

Hazard handling relies on a set of tables called the reservation station (RS) (Figure
13.27).

Instruction

queue

F0, F1... registers

SRF

{

WB

RS

(reservation station)

Pk {
Op V1 V2 Pr1 Pr2B

k3

k2

k1

srF0 srF1 srF2 srF3 srF4 srF5 ... Execution pipelines

Issue

Pk

Figure 13.27. Organization used for the implementation of the Tomasulo algorithm
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RS serves as a stage for handling the issuing of instructions into the different
pipelines.

Each pipeline PA, PB , etc. is assigned several entries {ai, i = 1, ..., NA}, {bj , j =
1, ..., NB}, etc., in this table (Figure 13.28). These entries are used in the following
way: if the instruction Im handled by PA depends on In handled by PB for one of
its operands k, this dependency is indicated by placing the name of the entry (bj)
associated with In in the field Prk for the entry ai associated with Im (Figure 13.28).

When In is completed, the value vn of the operand k calculated by In is stored in
the field Vk, k = 1 or 2, of the entry ai (Figure 13.28).

Op ...

...

...

...

PrkVk

aiPA

PB

Im

Inbj

ai

bj

bj

Op

...

...

...

PrkVk

Im

In

vn{

{
Figure 13.28. Reservation and assignment of the value to the operand

13.3.5.1. Operation

The handling of the flow of instructions is performed as follows:

1) Instruction access phase: the instructions are read in the same order as in the
program and are stored in an instruction queue.

2) Hazard handling phase (issue): each instruction is assigned an entry ai if one
of them is available:

i) If the instruction modifies a register Fr, this ai is noted in the r entry of a
table called the Status Register File (SRF).

ii) For instructions other than load, information on the availability of the
operands is stored in the ai (Figure 13.28):

- If a source operand is available, its value is copied in a field Vk of ai: this is
known as creating an avatar of the register in question (register renaming).

- If this operand is not available, we write in a field rk of ai the entry bj
associated with the instruction that is supposed to produce the value of the operand.
This bj can be found in the r entry of the SRF.



Superscalar Architectures 305

iii) For memory read and write instructions, the value of the address in memory
is written into an “Add” field of this entry. For write instructions, we write in a field
Pr the entry associated with the instruction that is supposed to produce the value of
the operand (Figure 13.29).

@2ajstore

waiting store

executable store

Op Pr1V1Add V2

V1 V2

ai Im{ ap

Pr2

@2ajstore

Op Pr1 Pr2
ai Im{

ai

V V

Figure 13.29. Reservation and assignment of the value of the operand in the case of a write
instruction. @2 is an address. When Im has calculated V , it transmits it to the entry aj

- The instruction proceeds to the execution phase when the values of the
resources are available (avatars or memory addresses).

- When the register update is completed, the calculated value is inserted in the
corresponding fields Vk and the r entry in the SRF becomes free.

To summarize:

– WAR hazard: resolved by creating an avatar that memorizes the value
that must be used by the read instruction.

– WAW hazard: resolved using the SRF, which guarantees the order in
which the write instructions are performed.

– RAW hazard: instructions on hold in the buffer (detection using the SRF).

EXAMPLE 13.4. – [Examples of hazards] Consider the following program with the
architecture shown in Figure 13.30:

I1: divf f2,f2,f1
I2: stf f2,r0(r3) ; RAW with I1
I3: mulf f2,f5,f6 ; WAR with I2, WAW with I1

As a reminder, here is how the instructions are handled in the case of
scoreboarding:

divf f2,f2,f1 F I R E E E E E E W
stf f2,r0(r3) F I R . . . . . R E W
mulf f2,f5,f6 F I . . . . I R E E W
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Figure 13.30. Example of a superscalar architecture

If we apply the Tomasulo algorithm, we get:

divf f2,f2,f1 F I E E E E E E W
stf f2,r0(r3) F I . . . . . I E W
mulf f2,f5,f6 F I . . . . I E E W

We have gained a cycle, which can make a significant difference in the case of a
loop.

13.3.6. Detailed example

EXAMPLE 13.5. – [Implementation of the Tomasulo algorithm] Consider the
architecture described by Figure 13.31.

We have represented the common data bus (CDB) that transports all of the data
and information related to pipeline handling.

This machine consists of three dedicated pipelines: LS, AS and MD. The first is
associated with read and write operations, the second with floating-point additions and
subtractions, and the third with floating-point multiplications and divisions. We do not
show the pipeline used for handling integers.

The stage inside the dashed line is called the reservation station (RS) and consists
of many different elements:

– Two sets of registers: the first, associated with the AS pipeline
(addition–subtraction), is equipped with three entries as1, as2, as3; the second,
associated with the MD pipeline (multiplication–division), is equipped with two
entries md1 and md2. These entries are made up of several fields:
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Figure 13.31. Example of a superscalar architecture that implements the Tomasulo algorithm.
The dashed line shows the extent of the reservation station

- B: a busy indicator. When B = 1, the entry is busy with an instruction
currently being executed.

- Op: the code for the instruction currently on hold for the execution phase.

- V1 and V2 are avatars of the source operand registers; they receive the value
of the operand when it becomes available. V1 and V2 correspond to the two source
operands src1 and src2, of the instruction op dest,src1 and src2.

- Pr1 and Pr2 contain the names of the entries (as1, md2, etc.) of the reservation
station associated with the pipeline that is supposed to produce the values of the
registers src1 and/or src2.

entry: B Op V1 V2 Pr1 Pr2

– A set LS of registers associated with the load/store pipeline, consisting of two
subsets: the first consists of ld1, ld2 and ld3, and the second of st1, st2, etc. The
B (Busy) field has the same purpose as for the fields as1, etc.

– A set SRF of registers, srFk, which receives the name of the entry associated
with the last instruction that will modify the register Fk.

The following sequence of instructions is executed. Shown in the comments are
the different types of potential hazards.
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I1: ld F0,16(R1)
I2: ld F1,64(R1)
I3: divf F3,F1,F2 ; RAW with I2
I4: subf F4,F0,F1 ; RAW with I1 and I2
I5: mulf F5,F3,F0 ; RAW with I1 and I3
I6: addf F0,F4,F1 ; RAW with I2 and I4, WAR with I5 and I4,

; WAW with I1

The dependency tree can be represented in Figure 13.32.

Figure 13.32. Dependency tree

13.3.6.1. Scenario

– load F0 and load F1: the entry ld1 is assigned to the load F0. It is used for
writing the operand 16(R1). srF0 receives ld1 to indicate that this is the load that
produces the value of F0. The same is done for ld2 (Figures 13.33 and 13.34).

0
0
0
0

0

Op V1

ld1
ld2
ld3

V2 Pr1 Pr2B

B

0
1 16(R1)

0

md1
as3
as2
as1

md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

WB

ld1

Instruction

queue

ld F0,16(R1)

Figure 13.33. Cycle 1: load F0,16(R1) in phase R

– divf: the entry md1 is assigned to the divf instruction (Figure 13.35).

The divf will have to wait for load F1, the status of which is given by the entry
ld2, to finish executing. ld2 is therefore moved to the Pr1 field. The value of F2 is
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Figure 13.34. Cycle 2: load 64(R1) in phase R

1
0
0
0

0
divf

Op V1

ld1
ld2

ld2imF2

ld3

V2 Pr1 Pr2B

1
1 16(R1)

64(R1)
0

md1
as3
as2
as1

md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

ld F1,64(R1)

ld F0,16(R1)

ld1 ld2 md1

divf F3,F1,F2

Figure 13.35. Cycle 3: divf in phase R. ld F0 is in the memory access phase

copied in the V2 field (imF2 is an avatar of F2). srF3 receives md1 to indicate that
we must wait for the execution of divf to be completed before getting the last value
of F3.

1
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0
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0
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Op V1

ld1
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ld2ld1 md1 as1
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16(R1)
subf F4,F0,F1

Figure 13.36. Cycle 4: subf F4,F0,F1 in phase R
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– subf F4,F0,F1: the entry as1 is assigned to the subf instruction, which will
have to wait for the execution of load F0 and load F1 to be completed (Figure
13.36). The Pr2 therefore receives ld2. srF4 is set with as1.

– mulf F5,F3,F0: the md2 entry is assigned to mulf (Figure 13.37). The latter
will have to wait for F3. The Pr1 therefore receives md1. srF5 receives md2.

1
0
0
1

1
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mulf imF0 md1

subf

Op V1

ld1
ld2

imF2

imF0

ld3

V2 Pr1 Pr2B

1
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0

md1
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md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

md1 md2as1

ld F1,64(R1)

ld2ld1

ld2

ld2

64(R1)

mulf F5,F3,F0

Figure 13.37. Cycle 5: mulf F5,F3,F0 in phase R

The load F0 is completed. The V1 is now loaded with the expected value (avatar
imF0).

– addf F0,F4,F1: the as2 entry is assigned to the addf instruction, which has
to wait for the execution of subf F4 to be completed (Figure 13.38). The Pr1 field
receives as1, V2 receives the value imF1 (load F1 is completed) and srF0 receives
as2, meaning that we must wait for the execution of the addition to be completed.
Since the ld2 entry is now free, the ld2 descriptors become imF1 in V type fields.
subf and divf enter the execution phase. The imF0 field of the subf contains as
expected the former value of F0 (resolution of the WAR hazard using the avatars).
There is no risk of the addf modifying it.

1
0
1
1

1
divf
mulf imF0 md1

subf
addf as1

Op V1

ld1
ld2

imF1

imF1

imF2

imF0 imF1
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0
0

0

md1
as3
as2
as1

md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

divf F3,F1,F2subf F4,F0,F1

md1 as1 md2ld2as2

addf F0,F4,F1

Figure 13.38. Cycle 6: addf F0,F4,F1 in phase R
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The mulf instruction cannot proceed because divf is not completed.

– subf F4,F0,F1 reaches phase WB (Figure 13.39).

1
0
1

1
divf
mulf imF0 md1

addf

Op V1

ld1
ld2

imF1

imF1

imF2

ld3

V2 Pr1 Pr2B

0
0

0

md1
as3
as2
as1

md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

divf F3,F1,F2

as2 as1

as1

md1 md2ld2

subf F4,F0,F1

1 subf imF0 imF1

Figure 13.39. Cycles 7 and 8: execution of subfand divf

– F4 is updated in the V1 of as2 (Figure 13.40). addf can proceed to the execution
phase.

1
0
1
0

1
divf
mulf imF0 md1

addf

Op V1

ld1
ld2

imF1

imF1imF4

imF2

ld3

V2 Pr1 Pr2B

0
0

0

md1
as3
as2
as1

md2

srF0 srF1 srF2 srF3 srF4 srF5 ...

addf F0,F4,F1

divf F3,F1,F2

as2 as1md1 md2ld2

Figure 13.40. Cycle 9: F4 is updated, along with the associated fields

– divf and addf proceed (Figure 13.41) down their respective pipelines.

– F0 is now available (Figure 13.42).

– mulf can resume because F3 is available. There is no problem with F0 (WAR
hazard) since mulf uses the avatar, and not the last value written by addf (Figure
13.43).

The corresponding execution diagram is as follows:

The arrows indicate hazard resolution.
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Figure 13.41. Cycles 10 and 11: addf in phase WB
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Figure 13.42. Cycle 12: divf is in WB
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Figure 13.43. Cycle 13: mulf resumes
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13.3.7. Loop execution and WAW hazards

Consider the architecture in Figure 13.44.
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Figure 13.44. Example of a superscalar architecture

The “integer unit” pipeline is in charge of branches and of handling processes on
the integer registers rk, as we saw with the DLX.

The reservation station is equipped with three entries associated with each of the
pipelines mulf/divf, addf/subf and ld/st. These entries are supposed to be free
when the execution of the loop begins.

I1: loop1: ld f4,0(r2)
I2: divf f1,f4,f2
I3: stf f1,64(r2)
I4: sub r2,r2,#4
I5: bnz r2,loop1

We assume that there is a miss on the first access to the data in memory. The delay
incurred by this miss is seven cycles long. For each following ld, access takes one
cycle.

The prediction scheme ensures that the branch is resolved without any penalty.

Let opk be the op instruction in the k-th iteration of the loop:

– t = 1: ld1 begins SR and sets srF4.
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{
– t = 2: divf1 begins SR. Since srF4 was set by ld1, divf1 waits for the avatar

of its first source operand f4 to be updated by ld1.

– t = 2 to t = 9: ld1 is on hold until the cache is updated.

– t = 3: stf1 proceeds to SR. Since it is involved in a RAW hazard over f1 with
divf1, it waits for f1 to become available.

– t = 4 and t = 5: sub1 and bnz1 proceed to the decoding phase D. The address
of the target instruction is less than the address of the branch instruction, the address
of the target instruction is loaded into the program counter. We return to the beginning
of the loop.

– t = 6: ld2 is in ST and performs its own update of srF4 by overwriting what is
stored there (resolution of the WAW of ld2 with ld1).

– t = 7: divf2 proceeds to SR. Since srF4 was set by ld2, divf2 waits for the
avatar of the first source operand f4 to be updated by ld2. Note here the role of the
avatars: each pair ldk/divfk works with its own copy of f4 (resolution of the WAW
hazard). ld2 is still in SR, waiting for the update of r2 by sub1.

– t = 8: ld1 and ld2 are currently being executed, creating two free spots that
allow stf2 to proceed to SR. stf2 is blocked because of the RAW hazard with divf2.
Note that ld2 cannot progress as long as ld1 has not completed its memory read access
(phase E2).

– t = 9: end of the memory read access for ld1.

– t = 10: WB of ld1 (update of f4 and of the avatar in the entry assigned to
divf1). ld2 performs the memory read access.

– t = 11: ld3 proceeds to SR (see ld1 and ld2). It completes this phase when r2
becomes available. Note that the ld/st pipeline is accessible for execution.
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– t = 12: divf2 proceeds to the execution phase. divf3 enters the SR phase and
stalls for the same reasons as before.

REMARKS.–

– In the use of a scoreboard, the SRF register is used for detecting RAW and WAW
hazards that leave instructions stalled. In the case of the Tomasulo algorithm, SRF is
used for resolving hazards.

– The srFk entry is overwritten in the R phase of the instruction that will modify
Fk: it is used to indicate the unit that is supposed to produce the value. Thus, an
instruction involved in a RAW hazard with the write instruction no longer depends on
a register or an instruction, but is simply waiting for a value fetched from the CDB.

– RAW hazards are resolved using avatars (see the example of the loop). On the
other hand, WmAWm hazards (i.e. between store instructions that modify the same
memory word) always result in stalled instructions.

– The beginning of the R phase occurs in the same order as the elements in the
instruction buffer. This guarantees proper handling of the dependencies. Consider the
following example:

divf f2,f3,f1
addf f2,f5,f6
stf f2,r0(48)

The stf will find in srF2 a reference to a unit that processes additions. Although
divf will probably be completed after the addf, the stf will in fact read the value that
was produced by addf, since it will find in srF2 the reference of the last instruction
that modified f2.

– If we continue to go through the iterations of the loop used as an example, we
start to notice a periodicity of operation that differs from the periodicity of the program
(see example 13.1).

– The use of avatars makes it possible to simultaneously execute the same
instruction in different iterations: for example, the pairs ld1/divf1 and ld2/divf2
are executed in parallel on different copies of f4.

13.4. VLIW architectures

13.4.1. Limits of superscalar architectures

These systems we have described for improving performances rely on alterations
made to classic architectures:



316 Computer Architecture

– pipeline architectures provided an initial improvement;

– superscalar architectures built with several pipelines brought on an additional
increase in the level of performance.

These improvements are constrained by:

– data hazards;

– problems related to sequence breaks.

The use of a scoreboard or of the Tomasulo algorithm is a solution for handling
data hazards, whereas prediction techniques are applied to reduce the number of
penalties in the case of branches. It is possible to improve performances further by
rearranging the order (O3E, out-of-order execution) of the instructions in the prefetch
buffer. The solutions implemented to achieve this rescheduling rely on very complex
hardware and, as a result, have limits to what can be achieved in terms of
performance. Another issue is that this hardware can only “see” instructions that are
currently being processed or that are present in the buffer. This is known as the
“instruction window”. This restricted visibility severely limits our ability to optimize
the program.

An alternative to improving superscalar architectures consists of:

– building a simpler and better performing hardware architecture (with no
rescheduling);

– delegating to the compiler the responsibility of providing a sequence of
instructions that is optimized for this architecture. The “instruction window” is then
limited only by software.

Very long instruction word (VLIW) architectures were introduced to satisfy these
two conditions.

These are the same arguments that were raised in favor of RISC architectures,
when computer designers were faced with the overwhelming complexity of CISC
architectures.

13.4.2. VLIW architectures

The Multiflow Trace-7 (1984) [JOS 83] and the Cydrome Cydra-5 (1984)
[DEH 93] are the first two implementations of the VLIW model. The best known
realizations today are the Itanium by Intel® and the TMS320C6xTM by Texas
Instruments. These architectures are characterized by the fact that several instructions
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are read in memory during each clock cycle (seven for the Multiflow, six for the
Itanium and eight for the TMS). It is the responsibility of the compiler to provide the
instructions that ensure the proper execution of the program.

The Itanium is equipped with nine processing units, including two floating-point
vector units, two integer units, two “load/store” units and three branch units. The
pipelines all have a length of 10 (Figure 13.45).

The TMS320C60 is equipped with eight processing units (Figure 13.46).

Bundles of eight instructions, known as fetch packets, or instruction windows, are
read in memory simultaneously. The instruction window can be divided into several
execute packets. Each of these contains instructions that can be executed in parallel.
The value 1 or 0 of the least significant bit (p bit), also called the parallel bit, of the
instruction code, indicates if the following instruction (the one “to the right”) is part
of the packet, or if the packet is closed (see Figure 13.47).

The fetch packet in Figure 13.47 contains four execute packets. The first one
consists of the single instruction I0. The second contains I0, I1, I2, I3, etc. The
configuration corresponds to an execution of the instructions according to the
sequence:

Cycle Instructions
n I0
n+1 I1 I2 I3 I4
n+2 I5
n+2 I6 I7

13.4.3. Predication

Predication is a method used with VLIW architectures to handle branching
instructions. The idea is to let two branches of a branching instruction be executed,
and to complete the branch that is the actual target. In each branch, the instructions
are assigned a Boolean variable, known as the predicate. The execution of these
instructions is made conditional on the value of the predicate.

13.4.3.1. TMS320C6000 architecture

In the TMS320C6000 architecture [TEX 10], the instructions guarded by a
predicate are referred to as conditional operations. A 4-bit field is used on the most
significant side of the instruction code: 3 bits (creg) indicate the register used for the
condition (B0, B1, B2, A1 or A2) and 1 bit (z) indicates whether we are testing for
an equality with 0 (z = 1) or a non-equality with 0 (z = 0).
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Figure 13.45. Structure of the Itanium®

Example:

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The two addition instructions are mutually exclusive. They can be executed in
parallel, since they are independent from a resource perspective, but only one of them,
depending on the value of B0, will complete its execution.

13.4.3.2. Itanium® architecture

In the Itanium, 6 bits of the instruction code (which is 41 bits in length) indicate
the number of a predicate bit prk, k = 0, ..., 63, associated with that instruction.
Bundles of three instructions are delivered to the processor simultaneously according
to the format:

Instruction Instruction Instruction Template
(41 bits) (41 bits) (41 bits) (5 bits)
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Figure 13.47. Fetch packet and execute packets in the TMS320C60

The five template bits indicate which instructions can be executed in parallel. The
instruction format is as follows:

Operation code Predicate reg. Reg. 1 Reg. 2 Reg. 3
(13 bits) (6 bits) (7 bits) (7 bits) (7 bits)

Predicates are initialized for each instruction (there are only a few instructions that
cannot be guarded). If the predicate is equal to 1, the instruction is simply executed as
usual. Otherwise, the instruction does not modify the machine in any way.

For conditional branches, all of the instructions in one branch are assigned a
predicate bit pri equal to 1, while all of the instructions in the other branch are
assigned a prj equal to 1. The result of the comparison will set these bits to 0 or 1.
The comparison instructions have the following syntax:
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(p) cmp.rel pri,prj = src1,src2;;

where pri and prj are the predicate bits and src1 and src2 are the operands of the
comparison rel, for example, or eq, ne, etc.

The indication (p) in front of the comparison indicates that the comparison itself
is also conditional on a predicate bit.

The instruction can be translated as:

if ( p ) {
if ( src1 rel src2 ) {

pri = 1; prj = 0;
}

else {
pri = 0; prj = 1;

}
}

Execution is abandoned for instructions that have this bit equal to 0. Example:

if (r1)
r2 = r3 + r4;

else
r5 = r6 - r7;

gives us:

cmp.ne p1,p2 = r1,0;;
(p1) add r2 = r3,r4
(p2) sub r5 = r6,r7

The lack of a predicate p in front of cmp.ne indicates that the instruction is not
“guarded”, and therefore always executed.
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13.5. Exercises

Exercise 13.1 (Periodicity of operation) (hints on page 344)
Going back to the architecture of Figure 13.44 and the corresponding example (page
313), execute two additional iterations and find the value of the period of operation.

Exercise 13.2 (Examples of hazards) (hints on page 345)
REMINDER: Each processing unit is assigned a set of registers known as a reservation
station (RS). This station provides a decision mechanism for issuing the instructions
into different pipelines.

Each RS is equipped with several entries, which are used as follows: if instruction
Im (stored in rsi) depends on In (stored in rsj) for one of its operands k, this
dependency is indicated by writing in the field Prk of the entry rsi associated with Im
the name of the entry (rsj) associated with In (Figure 13.28). When In is completed,
the value vn of operand k is stored in field Vk of entry rsi.

Reservation stations are handled as follows:

– Instructions are read in the same order as in the program.

– The flow of instructions is controlled by storing them in a queue.

– An entry rsi is assigned, if possible (if there are enough entries), in RS, and for
each instruction, as indicated above.

– For instructions other than load, the information on the availability of the
operands is stored in rsi (Figure 13.28):

- If an operand is available, its value is copied in a field Vk of rsi: an avatar of
this register is created (register renaming).

- If an operand is not available (Im ≺ In), the entry rsj associated with the
instruction Im, which is supposed to deliver the value of the operand, is written into a
field Prk of rsi (assigned to In).

– For memory accesses, the address of this entry is memorized (Figure 13.29).

The rsk associated with the instructions that have these registers as targets are
stored in a specific RS called a Status Register File (SRF). rsk is then copied in the
rsj of the instructions that require this register.

Consider this example:

I1: divf f2,f2,f1 ; f2 := f2/f1
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I2: stf f2,r0(r3) ; f2 --> mem(r0(r3))
I3: mulf f2,f5,f6 ; f2 := f5*f6
I4: stf f2,r0(r4) ; f2 --> mem(r0(r4))

with the architecture from Figure 13.48.
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Figure 13.48. Example of a superscalar architecture

Applying the Tomasulo algorithm leads to the following execution diagram:

divf f2,f2,f1 F I E E E E E E W
stf f2,r0(r3) F I . . . . . I E W
mulf f2,f5,f6 F I E E W
stf f2,r0(r4) F I . I E . W

1) Indicate the types of hazards encountered.

2) Comment on the execution diagram.

3) Write the execution diagram for the sequence:

I1: divf f2,f2,f1 ; f2 := f2/f1
I2: stf f2,r0(r3) ; f2 --> mem(r0(r3))
I3: mulf f2,f5,f6 ; f2 := f5*f6
I4: stf f2,r0(r3) ; warning 0(r3) instead of 0(r4)

Exercise 13.3 (Execution of a loop) (hints on page 345)

Consider the architecture in Figure 13.49.

The following program loop is executed:
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Figure 13.49. Case study: the gray portion corresponds to the “issue” stage

I1: loop1: ld f4,0(r2)
I2: divf f1,f4,f2
I3: stf f1,64(r2)
I4: sub r2,r2,#4
I5: bnz r2,loop1

1) We assume that the first access to the memory data results in a miss, and that the
delay incurred is eight cycles long (the beginning of the execution phase is indicated
by 9 in the table shown). We also assume that the other ld instructions take only one
cycle.

2) The instruction buffer is equipped with three entries.

3) To simplify this example, we will not represent the series of steps involved in
executing the instructions sub r2,r2,#4 and bnz r2,bcle in every loop: we saw
that there is no WAR hazard and we will assume that the branch is resolved without
any delay (accurate prediction).

The instructions proceed as follows ( means that there are neither precedence
nor prediction problem with the instruction):
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01 02 03 04 05 06 07 08 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ld1 f4,0(r2) I E E E E E E E E W
divf1 f1,f4,f2 I . . . . . . . I E E E E W
stf1 f1,64(r2) I . . . . . . . . . . . I E W
sub1
bnz1
ld2 f4,0(r2) I . . I E W
divf2 f1,f4,f2 I . . . I E E E E W
stf2 f1,64(r2) I . . . . . . . I E W
sub2
bnz2
ld3 f4,0(r2) I E W
divf3 f1,f4,f2 I E E E E W
stf3 f1,64(r2) I . . . . . . . I E W
sub3
bnz3
ld4 f4,0(r2) I I E W
divf4 f1,f4,f2 I I I E E E E W

(I: Issue, E: Execute, W: Write Back, the index indicates the iteration number.)

Comment on this diagram for each time t = 1, 2, . . . , 24, with explicit descriptions
of any hazards that occur.
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Hints and Solutions

A1.1. The representation of information

Exercise 3.1. (Integer representation) (page 52)

The program:

#include <stdio.h>
int main (){

unsigned char val2 = 0, val1;
while(1){

val1 = val2;
val2++;
if (val1 > val2){

printf("val1 (max. val.) = %d, val2 = %d\n",val1,val2);
break;
}

}
return 0;

}

produces

val1 (max. val.) = 255, val2 = 0

The number is coded in 8 bits and represents values between 0 and 255. With an
integer declared as short, we would have:
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val1 (max. val.) = 32767, val2 = -32768, which corresponds to two’s
complement, 16-bit coding.

Exercise 3.2. (Single precision floating-point representation) (page 52)

The representation {00 00 72 64}10 = {0000 0000 | 0000 0000 | 0100
1000 | 01000000}2. The sign bit (double underlined) is equal to 0 (“+”), the
exponent (underlined) to {1000 0000}2 (i.e. 12810), hence the actual exponent
= 128− 127 = 1. The significand is {1001 0...}2, i.e. 1.10010...2 = 1.562510,
hence the result 21 × 1.5625 = 3.125.

Exercise 3.3. (Fixed-point and floating-point representations) (page 52)
1) - Sign: 1;

- Integer part: 11;

- Fractional part: 1 || 101 0001 1110 1011 1000 0 || 110 1... (the
|| indicates the period).

11.1101 0001 1110 1011 1000 0110 =
1.11101 0001 1110 1011 1000 0110 2**1

which gives us, after rounding:

1 110 0000 (1...) --> E0 --> E1
0 111 1010 --> 7A
0 | 111 0100 --> 74
1 | 100 0000 --> C0

2) We multiply by 212 = 4,096, i.e. x × 4,096 = −15,647 (after rounding). We
convert 15,647 to base 2: 0011 1101 0001 11112. We then change the sign. We get,
noting the position of the decimal point:

1100 . 0010 1110 00012 = C.2E116.

Exercise 3.4. (Short floating-point representation) (page 52)

“Implied most-significant non-sign bit” (IMSNB) should be understood as the first
bit (least significant) providing an indication of the sign. Example: 3210 is written
. . . 001000002. The 0 bit that precedes the 1 provides an indication of the sign (0 →
+) and is the IMSNB. Another example: −1610 = . . . 1110111112 and the 1 that
precedes the 0 provides the sign (1 → −) and is the IMSNB.

1) Dynamic (note that the number of significant digits is on the order of 4):

i) The largest positive number is represented by x = 01.11 . . . 1× 27:

0111 0 1111 1111 111
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the sign and significand of which are read as: 0 | 1.1111 1111 11.

The largest positive number is given by: x = (2−2−11)×27 = 2.5594×102.

ii) The smallest positive number is represented by x = 01.00 . . . 00×2−7 since
the exponent −8 is reserved:

1000 0 1000 0000 000

the sign and the significand of which are read as:

0 | 1.0000 0000 00, i.e. 1× 2−7.

The smallest positive number is given by:

x = 1× 2−7 = 7.8125× 10−3.

iii) Smallest negative number: we are faced with the problem of representing
negative fractional numbers in two’s complement. We begin with the significand.
Consider the representation 10.f2 with f = 00 . . . 0. We know this is a negative
number. The positive value corresponding to this number is what needs to be added
to it to get 0 in the format xx.x... x, i.e. 10.00 . . . 02 = 210. Therefore, x =
10.00 . . . 02 = −210.

Switching representations between a positive number x and a negative number
x̃ can be done by noting that x+ x̃ = 22 = 4. This amounts to taking the complement
of the representation and adding 0.00000000001.

|x| Representation Representation −|x|
φ φ 1 0.0000 0000 000 −2
2− 2−11 0 1.1111 1111 11 1 0.0000 0000 001 −2 + 2−11

...
...

...
...

1 + 2−11 0 1.0000 0000 001 1 0.1111 1111 111 −1− 2−11

1 0 1.0000 0000 000 φ φ

The representation of the smallest negative number is given by:

1000 1 1000 0000 000

i.e. x = −2× 27 = −2.5600× 102.

iv) Largest negative number: based on the above table, we get
x = (−1− 211)× 2−7 ≈ −7.8163× 10−3.

1001 1 0 1111 1111 11
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2) Positive number:
10−2

10 : 0.01× 2 = 0.02
0.02× 2 = 0.04
0.04× 2 = 0.08
0.08× 2 = 1.16
0.16× 2 = 0.32
0.32× 2 = 0.64
0.64× 2 = 1.28
0.28× 2 = 0.56
0.56× 2 = 1.12
0.12× 2 = 0.24
0.24× 2 = 0.48
0.48× 2 = 0.96
0.96× 2 = 1.92
0.92× 2 = 1.84

i.e. 0.0001 0010 1000 11 = 01.0010100011× 2−4.

1100 0 1 0010 1000 11

3) Negative number: we start with the fractional part:

0.310 : 0.3× 2 = 0.6
0.6× 2 = 1.2
0.2× 2 = 0.4
0.4× 2 = 0.8
0.8× 2 = 1.6
0.6× 2 = 1.2

i.e. 64.3 = 100 0000.01001 1001 1001 ... = 01.0000000100 × 26 or =
01.0000000101 × 26 after rounding. The representation −64.3 can be obtained
directly:

0110 1 0 1111 1110 11

A1.2. The processor

Exercise 5.1. (Instruction sequencing) (page 101)

Access to the second instruction byte (immediate value access) is done in M2.
The content of the program counter is used before it is incremented. In cycle M3, the
memory write operation uses the pair “HL” as the address.
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Figure A1.1. Execution of an instruction

A1.3. Inputs and outputs

Exercise 6.1. (Serial input) (page 133)

Based on the explanations of Figure 6.16, the read function is written as:

; Read function, byte in ah
loop1: mov al,[addrIN] ; wait

and al,1 ; test setting to zero
jnz loop1
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dataInstruction
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Figure A1.2. Timing diagram for the read operation

call waitTs2 ; wait T/2 for check
mov al,[addrIN]
and al,1 ;
jnz loop1
mov cx,8

acql: call waitT ; wait T for next
mov al,[addrIN]
rcr al,1 ; store in ah
rcr ah,1
loop acql
ret

The setting of the line to zero is tested, and after T/2, a check is performed. If it
is still 0, the 8 bits of the character are acquired every T . A complete function would
take into account all of the possible parameters, parity, number of data bits, number of
stop bits, etc.

Exercise 6.2. (Serial output) (page 134)

; Write function of the content of ah
wfunc: xor al,al ; al:=0

mov [addrOUT],al ; stop bit
mov cx,8

wrlp: call waitT ; wait
rcr ah,1
rcl al,1 ; bit --> D0
mov [addrOUT],al ; write in flip-flop D
loop wrlp
ret
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Figure A1.3. Timing diagram for the write operation

Figure A1.4(a) and (b) show one possible design for the input and output modules,
respectively.

Decoder

≥1 line

OUT

A0-A15

(a) (b)

D0

line

IN
≥1

Decoder

Figure A1.4. Design diagram

A1.4. Virtual memory

Exercise 9.1. (Virtual memory of the Am29000) (page 197)

1) General questions:

i) Operational diagram for converting “from virtual address to physical
address”: see Figure 9.2.

ii) When the pages are present in memory and referenced in the TLB, accessing
physical addresses becomes much faster.

iii) See Chapter 6.
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2) MMU parameters:

i) The supervisor mode is a “privileged” mode of operation, in which the
processor has access to the entire instruction set, in particular the instructions for
accessing the TLB. For security reasons, not every user is authorized to access the
TLB.

ii) The tag field receives the VPN that will be compared to the tag field of the
virtual address sent by the processor. The Valid bit is used to ensure a minimum level
of coherence between the TLB and the content of the memory, as in a standard cache.

iii) For 1 kB pages, the maximum number of addressable pages is 2n−10 =
222 = 4 Mpages. The physical number of the page is 22 bits in length.

iv) This TLB is a set-associative cache with two blocks. Each line is 64 bits in
length.

v) See section III-2 in the documentation: the U is used for handling the age on
each line with an LRU algorithm. Depending on its value, the update will be applied
to block 0 (TLB Set 0) or block 1 (TLB Set 1).

Word 10
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31

30

Word 0 Word 1

Line

Select (5)

Virtual Tag (n)

Real address (32 bits)

0
1

31

30

Word 0

V
E

V
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(Page Size)

Offset

(n+5)(n+5)

(6)

(6)

(n) (n)

Read/Write

A
N
D A
N
D

A
N
D A
N
D

Read/Write
OR

Figure A1.5. Operation diagram of the TLB in the AMD29000

vi) The index field still contains 5 bits. The virtual tag number is 14, 15, 16 or
17 bits in length, while the physical page number is 19, 20, 21 or 22 bits.
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The TID field indicates the number of the process that owns the page. With the
PID of the process currently being executed, it can be used to manage protected page
access.

3) Design diagram (Figure A1.5).

A1.5. Pipeline architectures

Exercise 11.1. (Rescheduling) (page 252)

1) Without rescheduling, there are 12 instructions, and therefore 16 cycles, at best.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lw r1,b[r0] F D E M W
lw r2,c[r0] F D E M W

add r3,r1,r2 F D . D E M W
sw a[r0],r3 F . . D D D E M W
lw r4,f[r0] F . . D E M W
lw r3,a[r0] F D E M W

sub r5,r3,r4 F D . D E M W

18 19 20 21 22 23 24 25 26 27 28
sub r5,r3,r4 D . D E M W
sw d[r0],r5 F . . D . D E M W
lw r6,g[r0] F . . D E M W
lw r7,h[r0] F D E M W

add r8,r7,r6 F D . D E M W
sw e[r0],r8 F . . D . D E M W

We have a total of 28 cycles, hence a penalty of 12 cycles (12 instructions, therefore
16 cycles at best: (12 “F”) + “DEMW”).

2) With rescheduling (Figure A1.6):

We have a total of 17 cycles, hence a penalty of one cycle compared to the
unoptimized program.

Exercise 11.2. (Branches) (page 253)

1) Without forwarding (Figure A1.7):

Number of loops: 400/4 = 100. 17 cycles per loop ⇒ 1,700 cycles in all.
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Figure A1.6. Instruction rescheduling

Figure A1.7. Loop without forwarding: φ indicates the delays incurred because of the branch
execution. Until the target address has been calculated and loaded into the program counter,
there are two hold cycles. The total number of cycles is 17. On the last line, F denotes the

fetching of the lw instruction

2) With basic forwarding (Figure A1.8), we have a total of 100 × 10 = 1,000
cycles:

Figure A1.8. Basic forwarding: the arrows indicate dependencies resolved using forwarding
and the delay incurred because of the branch. There are 10 cycles per iteration
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3) With branch forwarding, the instruction following the branch is systematically
executed. To illustrate, we move the sw instruction to immediately after the bnezd.

1 2 3 4 5 6 7 8
loop1: lw r1,0(r2) F D E M W

addi r1,r1,#1 F D . E M W
addi r2,r2,#4 F . D E M W
sub r4,r3,r2 F D E M W
bnezd r4,loop1 F D E M W
sw 0(r2),r1 F D E M W

We get 100× 7 = 700 cycles.

Instead of keeping the lw r1 in the loop, we could insert it once before the loop
and once after the bnezd. We must, of course, make sure that these alterations do not
modify the general behavior of the program.

Exercise 11.3. (Forwarding) (page 254)

− Forwarding from EX2 to EX13:

add r1,r2,r3 F1 F2 D EX1 EX2 M1 M2 WB
sub r4,r5,r6 F1 F2 D EX1 EX2 M1 M2 WB

bnez r1,nexti F1 F2 D EX1 EX2 M1 M2 WB

− Forwarding from M2 to EX15:

lw r1,0(r2) F1 F2 D EX1 EX2 M1 M2 WB
sub r4,r5,r6 F1 F2 D EX1 EX2 M1 M2 WB

...

...
bnez r1,nexti F1 F2 D EX1 EX2 M1 M2 WB

− Forwarding from M1(WB) to M1:

add r1,r2,r3 F1 F2 D EX1 EX2 M1(WB) M2 WB
sw 0(r4),r1 F1 F2 D EX1 EX2 M1 M2 WB

Exercise 11.4. (Cache operation) (page 255)

The cache is a two-way set associative with one instruction per line. The four least
significant bits select a fully associative, two-line cache, and the age is given by the
LRU bit.
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Figure A1.9. Pipeline and cache

1) Pipeline operation diagram (Figure A1.9): if I1 accesses pm during the
execution phase (Figure A1.9), it will be in conflict with the I3 instruction, which
is in phase F.

2) Only certain instructions are placed in the cache: those located at the address
n + 2 in the event of a conflict with the current instruction with the address n, as
indicated in Figure A1.9.

3) Cache is enabled indicates that the cache is operational for reading and writing.
In the frozen mode, only read operations occur in the cache, and all updates are
forbidden.

4) Cache structure:

- diagram of the cache (Figure A1.10);

- Valid Bit: coherence management;

- LRU bit: age management.

5) Consider the program in a loop situation. The first program memory access
(instruction at 101) causes the instruction in 103 (in this case the conditional branch)
to be stored in the cache with an index equal to 3.

When we enter the subroutine, the first access to 201 likewise causes the
instruction in 203 to be stored in the cache with an index equal to 3. The instruction
in 211 triggers the same event with the same index. The branch instruction is then
overwritten by the instruction in 213. After the execution of the subroutine, moving
on to instruction 101 leads to another miss, etc.

In all, we have a total of two misses for each execution of the loop. The cache
operation is inefficient for this particular sequence (which has, however, a low
probability of occurring).
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Figure A1.10. The cache in the ADSP 2106x

Exercise 11.5. (Branch forwarding) (page 258)

sgt r4,r1,r2
beqz r4,label1 sgt r4,r1,r2
nop beqz r4,label1
add r4,r2,r0 → add r3,r1,r0
j label2 add r4,r2,r0
nop label1:

label1: add r3,r1,r0
label2:

Exercise 11.6. (Loop with annul bit) (page 258)

lw r5,nmax(r0)
add r4,r0,r0
j label2 lw r5,nmax(r0)
nop j,a label2

label1: J1 label1: J2
... → ...
Jn Jn
add r4,r4,#1 add r4,r4,#1

label2: slt r6,r4,r5 label2: slt r6,r4,r5
beqz r6,label1 beqz,na r6,label1
nop J1

We gain one instruction per iteration.
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Exercise 11.7. (Executing a subroutine call instruction) (page 259)

As in the case of branches, we lose three cycles (Figure A1.11).
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A1.6. Caches in a multiprocessor environment

Exercise 12.1. (MSI protocol) (page 284)

Running the program leads to the exchanges shown in Figure A1.12.
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Figure A1.12. Description of the MSI protocol operation

REMARK A1.1.–

1) Initial situation.

2) Variable X is read by PA: cache CA is updated with the value 10. The line
switches to the S state in CA.

3) Variable X is read by PB : cache CB is updated with the value 10. The line
switches to the S state in CB .

4) PA writes 0 in its cache. The line switches to the M state. The lines in the other
caches switch to I.

5) PB wants to read X . PA responds to the SR signal by writing the value it is
storing in memory and switches to the S state. Cache CB is updated and the line
switches to S.

6) PB writes 20 in its cache. The line switches to the M state. CA invalidates the
line.
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Exercise 12.2. (MSI protocol, update sequences) (page 284)

The value of the index is 8 for each access ([X], [X+2], [X+6]). The line is
therefore “shared”. Figure A1.13 describes the execution of the protocol.
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1 S
Memory
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C2

4 I

7' S

4" S

9' I

6 S

6" M
C3

7 I

7" S

9 S

9" M

{
{{

Figure A1.13. Description of the protocol operation

In step 4, the read request from P2 triggers a memory update by P1, with a switch
to the S state for the corresponding line (4 ). The memory transfer to C2 is then
performed, with a switch to the S state (4 ).

Exercise 12.3. (MESI protocol) (page 285)

n CA CB Memory

1 RA(X)10 Miss 10-E 10
2 RB(X)10 Miss 10-S 10-S 10
3 WA(X)0 Invalidation in CB 0-M I 10
4 RB(X)0 Coherence 0-S 0-S 0
5 WB(X)20 Invalidation in CA I 20-M 0
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Exercise 12.4. (Berkeley protocol) (page 285)
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Figure A1.14. Berkeley protocol: the processors P0 and Pi

REMARK A1.2.–

– Read Hit (RH): there is no communication on the bus. Accesses are performed
without delays.

– Write Hit (WH): if the line is in the M state, access is performed with no
exchange on the bus. If the line is in the P or S state, any possible copies are invalidated
and the line switches to the M state.

– Read Miss (RM) and Write Miss (WM): see explanations on the Read Miss LRU
and the Write Miss LRU.

Exercise 12.5. (Firefly protocol) (page 286)

A description of the protocol is shown in Figure A1.15.

– For an RH, there is no change of state.

– For an RM, the Pi detect and signal possession of the information if applicable
(by setting the SharedLine). In that case, either they all have the same data, since
coherence is maintained in the E and S states, or the line is in the M state and it is first
stored into memory. In any case, if the line is held somewhere else, it can be directly
loaded from cache to cache instead of being read in memory.

If no other cache contains the data, a read operation is performed in memory and
the state switches to E.

– For a WH, if the line is in the M state, the only write operation is in the cache
(write-back, w-b). If the line is in the E state, it is updated and switches to the M
state. If the line is in the S state, write operations are performed in the cache and the
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Figure A1.15. Firefly protocol; broadcasting is ensured by the state of the SharedLine. rm, rc
and sl stand for read memory, read cache and SharedLine, respectively

memory (write-through, w-t). The other caches that have the line are set to SharedLine
and update the line (read).

– A WM is handled like an RM followed by a WH. If the data are present in Pi, it
is updated there and the state switches to S. Otherwise, the line in P0 changes to M.

A line in the cache in the E or S state can be replaced at any time, since coherence
is ensured.

A1.7. Superscalar architectures

Exercise 13.1. (Periodicity of operation) (page 321) The period of operation is equal
to 2. Iterations 2 and 4, on the one hand, and 3 and 5, on the other, lead to identical
sequences of steps.

{

{

{
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Exercise 13.2. (Examples of hazards) (page 321)

1) Types of conflicts: I1 ≺ I2, I2 ≺ I3, I1 ≺ I3, I3 ≺ I4.

I1: divf f2,f2,f1
I2: stf f2,r0(r3) ; RAW with I1
I3: mulf f2,f5,f6 ; WAR with I2, WAW with I1
I4: stf f2,r0(r4) ; RAW with I3

2) Comment. – Since f2 is renamed as f2’ and f2", where f2’ and f2" are the
avatars of f2, we can write:

divf f2’,f2,f1 F I E E E E E E W
stf f2’,r0(r3) F I . . . . . I E W
mulf f2",f5,f6 F I E E W
stf f2",r0(r4) F I . I E . W

Phase E of the mulf can be initiated before the end of the stf, since mulf can
use f5 and f6. The WAR with stf is resolved (avatar) and there is no hold in W. The
resolution of the WAW between I1 and I3 satisfies the WAR.

3) Execution diagram:

divf f2’,f2,f1 F I E E E E E E W
stf f2’,r0(r3) F I . . . . . I E W
mulf f2",f5,f6 F I E E W
stf f2",r0(r3) F I . I E . . . W

The only difference with the previous sequence stems from the writing at the same
address, which can only be done in the order of the program!

Exercise 13.3. (Execution of a loop) (page 322)

Comments of Figure A1.16:

– Arrows 2, 4 and 7: RAW conflict, the divf waits for the ld to perform its WB.

– Arrow 1: there is only one stage and one pipeline for the ld and the st. ld2
waits for ld1 to free up the execution stage.

– Arrows 3 and 5: resource problem. There are only two entries d1 and d2 in the
reservation station. We have to wait for one of the two to become free again.

– Arrow 6: the execution stage of st2 is busy. ld3 is delayed.
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Figure A1.16. Execution of a loop



Appendix B

Programming Models

A2.1. Instruction coding in the I8086

Abbreviation Abbreviation
reg register cond condition code
reg8 8-bit register sreg segment register
reg16 register 16 bits imm immediate value
mem memory address

Abbreviation
d Direction (0 = memory to register, 1 = register to memory)
w Indicator word (1)/byte (0)
s Sign (indicator set to 1 for extension from 8 to 16 bits)

mod Mode indicator:
− 00 if r/m = 110: direct addressing, otherwise disp = 0 and
there is an indirection.
The operand addressing mode must be based, indexed or
based-indexed.
− 01 indirect access with disp in 8 bits
− 10 indirect access with disp in 16 bits
− 11 two register instruction (reg for the target and
r/m for the source)
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Abbrev. Abbrev. Abbrev.
reg Registers reg Registers sreg Segments

− 000 AX AL − 100 SP AH − 00 ES
− 001 CX CL − 101 BP CH − 01 CS
− 010 DX DL − 110 SI DH − 10 SS
− 011 BX BL − 111 DI BH − 11 DS

Abbreviation
r/m Register/memory (access mode). If the mod field is set

to 11, r/m specifies the source register and reg the target.
Otherwise, the addressing mode is coded by r/m as follows:
− 000 DS:[BX+SI+disp]
− 001 DS:[BX+DI+disp]
− 010 SS:[BP+SI+disp]
− 011 SS:[BP+DI+disp]
− 100 DS:[SI+disp]
− 101 DS:[DI+disp]
− 110 DS:[BP+disp]
− 111 DS:[BX+disp]

disp Operand offset
data Constants

EXAMPLE A2.1. (Instruction coding) –

Instructions Coding
mov al,[bx] 8A07
add ax,bx 01D8
mov es:[bx+di+a],ax 26

89410A

Hexa code d w mod reg r/m disp
8A07 100010 1 0 00 000 111
01D8 000000 0 1 11 011 000
26 001001 1 0
89410A 100010 0 1 01 000 001 0000 1010

26 applies to the following instruction mov using es instead of ds.
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A2.2. Instruction set of the DLX architecture

A2.2.1. Operations on floating-point numbers

addf, addd Single and double precision add and subtract
subf, subd
multf, multd Same as above for multiply and divide
divf, divd
cvtf2d, cvtf2i Convert floating-point to double precision or integer
cvtd2f, cvtd2i Convert double precision to floating-point or integer
cvti2f, cvti2d Convert integer to floating-point or double precision

EXAMPLE A2.2. (Operations on floating-point numbers)

movi2fp f1,r2 ; Convert f1:=float(r2)
movi2fp f2,r3 ; Convert f2:=float(r3)
divf f3,f1,f2 ; Floating-point division f3:=f1/f2
movfp2i r1,f3 ; Convert r1:=long(f3)

A2.2.2. Move operations

lb, lbu, sb Load byte, load byte unsigned, store byte
lh, lhu, sh Same as above, but for 16-bit words
lw, sw Load/store 32-bit words
lf, sf, ld, sd Load/store single and double precision floating-point

numbers
movi2s, movs2i Transfer between general registers and control registers
movf, movd Transfer between floating-point registers, in single or

double precision (register pair)
movfp2i, movi2fp Transfer between floating-point registers and integer

registers (32 bits)
lhi Load the 16 most significant bits of a register
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A2.2.3. Arithmetic and logic operations

add, addi, addu,
addui

Add implicit, immediate, signed and unsigned

sub, subi, subu,
subui

Same as above, but for subtract

mult, multu, div,
divu

Multiply and divide signed and unsigned

and, andi Implicit and immediate AND
or, ori Implicit and immediate OR
xop, xopi Implicit and immediate exclusive OR
sll, srl, slli,
srli

Shift left/right logical, implicit and immediate

sra, srai Shift right arithmetic, implicit and immediate
s__, s__i Sets to 1 or 0 based on lt, gt, le, ge, eq or ne condition

EXAMPLE A2.3. –

lhi r1,#-3 ; r1 loaded with FFFD0000(16)
srai r1,#1 ; r1 = FFFE8000(16)
lh r2,(r4) ; Memory read r2:=MEM(r4)
add r2,r2,#1 ; r2:=r2+1
sw (r4),r2 ; Rewrite into memory

A2.2.4. Branches

beqz, bnez Conditional branch
bfpt, bfpf Test in the status register of the floating-point processor
j, jr Direct or indirect unconditional branch
jal, jalr Jump and link: direct or indirect unconditional branch

with link
trap Transfer to the operating system (vectored address)
rfe Return from exception

EXAMPLE A2.4. (Conditional branches)

slti r1,r2,#3 ; If r2 < 3 then r1:=1 else r1:=0
beqz r1,next ; If r1=0 then go to next

Direct addressing is written in the format j tag, beqz rk,tag, etc. The
assembler calculates a shift (16 or 26 bits) relative to the following instruction and
uses it in the instruction code. In the case of indirect addressing, the content of the
register is used as the target address.

Branches with links cause the return address (PC+4) to be stored in register r31.
The return from the subroutine call is then performed using jr r31.
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rounding, 37
row (cache), 163
RSB, 226
RST (protocol), 275
RWB (protocol), 275

S

S-Access, 151
scalable processor architecture, 218
Schickard W., 4
scoreboarding, 295, 296



Index 363

segment, 145
segment (virtual memory), 177
segment descriptor table, 147
selector, 194
sequence break, 7
sequencer, 29, 87
serial controller, 116
serial-asynchronous, 111
set-associative (cache), 163
shadow directory, 167
shared libraries, 74
sign

floating-point, 42
signal

acknowledgement, 127
signalling NaN, 45
significand, 43
silent evict, 275
simultaneous access, 152
single precision, 44
size

of the addressable space, 140
physical memory, 140

slave
memory, 157

slave unit, 116
sNaN, 45
snooper, 265
snooping

cache coherence, 265
protocols, 265

software interrupt, 133
source, 70
SPARC, 218
speedup, 144
SSE, 96
stack, 22

pointer, 22
top of the, 22

stage
pipeline, 209

stale (data), 159
stall, 243
state

imprecise, 273
precise, 273
wait, 78, 243

store (analytical engine), 5
store-in (cache), 159
Streaming SIMD Extension (SSE), 96
structural hazards, 212
superline (cache), 163
superscalar, 287
SW (Simple word), 94
symbol table, 72

T

table
page, 150
page table directory, 150
scoreboard, 296

tag (cache), 161
TB, 177
termination (writing), 265
three-state driver, 110
time

access, 140
latency, 140

time sharing, 10
TLB, 177, 195
Tomasulo, 295
transaction processing, 10
transistor

active, 109
saturation, 109

translation, 177
buffer, 177
lookaside buffer, 177, 195

trap, 133, 233
TrueType, 51
truncation, 37
TTL, 16
Turing A., 7
two’s complement, 38

U

UART, 113
unit

arithmetic and logic, 26
central processing, 13
control, 14, 75
exchange, 14, 104
micro-operation, 76
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microinstruction, 76
peripheral, 13
processing, 14, 75

V

valid (data), 108
valid bit, 164
value

floating-point, 42
VB (victim buffer), 172
vector extensions, 94
vertex, 100
victim

buffer, 172
cache, 168

virtual (addressing), 177
virtual page, 177
Von Neumann J., 7

W

wait

cycles, 78
states, 78, 140

word, 18
word invalidation protocol (WIP), 275
working set, 142, 187
write after read conflict (WAR), 216
write after write conflict (WAW), 216
write-allocate (cache), 158
write-around (cache), 158
write-back (cache), 159
write-invalidate, 265
write-through (cache), 158
write-update, 266

X

XMM, 96

Z

zero
minus, 38
plus, 38
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