
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Bootstrap	for	Rails

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Bootstrap	for	Rails

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introducing	Web	Application	Development	in	Rails

Why	Bootstrap	with	Rails?

Setting	up	a	Todo	application	in	Rails

Analyzing	folder	structure	of	a	Rails	application

Creating	views

Styling	views	using	CSS

Redesigning	the	Todo	application

Challenges	in	styling	a	Rails	application	traditionally

Summary

2.	Introducing	Bootstrap	3

www.allitebooks.com

http://www.allitebooks.org

What	is	Bootstrap?

Installing	Bootstrap	in	a	Rails	project

Placing	Bootstrap	files	in	a	Rails	project

Bootstrap	–	the	Sass	way

Bootstrap	through	CDN

Summary

3.	Powering	a	Rails	App	with	Bootstrap’s	Grid	System

What	is	Bootstrap’s	grid	system?

Nesting	columns

Implementing	Bootstrap’s	grid	system	in	a	Rails	application

Summary

4.	Using	Bootstrap’s	Typography,	Buttons,	and	Images	in	a	Rails	Application

Setting	up

Styling	typography

Aligning	text

Text	transformation

Blockquotes

Styling	listing	elements

Creating	and	styling	buttons

Which	elements	are	eligible	to	use	Bootstrap’s	button	classes?

Styling	images	in	Bootstrap

Summary

5.	Reinventing	Tables	and	Forms	in	Bootstrap

Creating	Bootstrap	tables

Creating	Bootstrap	forms

Validation	classes	in	Bootstrap	forms

Adding	Bootstrap	tables	to	our	Rails	application

Adding	Bootstrap	forms	to	our	Rails	application

Summary

6.	Creating	Navigation	Bars

Getting	started	with	a	navigation	bar

www.allitebooks.com

http://www.allitebooks.org

Navigation	bar	helper	classes

Adding	a	navigation	bar	to	the	Rails	application

Summary

7.	Various	Other	Bootstrap	Components

Bootstrap	Breadcrumbs

The	pagination	component

Bootstrap	labels	and	badges

Bootstrap	jumbotrons

Alerts

Creating	a	progress	bar

Panels

Summary

8.	Working	with	Bootstrap	Modals

Getting	started	with	modals

Changing	Bootstrap’s	modal	size

Additional	Bootstrap	modal	features

Fetching	remote	content	from	a	Bootstrap	modal

Using	Bootstrap’s	modal	in	a	Rails	application

Summary

9.	Creating	Image	Slideshows	with	Bootstrap	Carousel

Getting	started	with	Bootstrap	Carousel

Adding	captions	to	the	slides

Customizing	Carousel

Summary

10.	Creating	a	Shopping	Cart	Using	Bootstrap	Modals

Adding	a	shopping	cart	symbol

Creating	a	shopping	cart	using	modals

Summary

A.	Adding	Custom	Styles	to	a	Rails	Application

Adding	Bootstrap-sass	to	a	Rails	application

Customizing	Bootstrap	through	variables

www.allitebooks.com

http://www.allitebooks.org

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Bootstrap	for	Rails

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Bootstrap	for	Rails
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1190215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-726-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Syed	Fazle	Rahman

Reviewers

Fabrice	Estiévenart

Samuel	Goebert

Moncef	Maiza

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Ritika	Singh

Technical	Editor

Naveenkumar	Jain

Copy	Editor

Neha	Vyas

Project	Coordinator

Aboli	Ambardekar

Proofreaders

Simran	Bhogal

Linda	Morris

Indexer

Rekha	Nair

Production	Coordinator

Komal	Ramchandani

Cover	Work

Komal	Ramchandani

About	the	Author
Syed	Fazle	Rahman	is	an	experienced	frontend	developer.	He	has	published	many
frontend	articles	for	SitePoint.com	and	HTMLxprs.com.	His	articles	on	Bootstrap
framework	are	amongst	the	most	popular	ones	in	the	web.	He	is	enthusiastic	about	start-
ups	and	likes	technical	writing/editing.

He	is	the	cofounder	of	devmag.io—a	network	for	developers	and	technologists.	devmag.io
helps	technology	enthusiasts	connect	and	discover	various	programming	and	technology
content.

About	the	Reviewers
Fabrice	Estiévenart	(@fab_estievenart)	is	a	web	and	mobile	developer	with	a	focus	on
web	frameworks	(such	as	Yii,	Django,	AngularJS,	NodeJS,	and	so	on),	big	data
technologies	(such	as	Hadoop,	MongoDB,	Solr,	and	so	on),	and	game	libraries	(such	as
LibGDX).	He	has	initiated	and	contributed	to	many	open	source	projects,	such	as	Nutch
(the	highly	extensible	and	scalable	WebCrawler),	GnuCash,	Yii,	and	RetroWeb	(a	visual
web	wrapping	application).

As	a	passionate	video	and	board	gamer,	he	has	created	LudoPassion	(@ludopassion),
where	he	offers	to	organize	custom	team	building	activities	around	serious	games.	In	this
context,	he	regularly	publishes	videos	wherein	he	presents	a	few	board	games	and
explains	their	rules.

Finally,	he	is	a	solo	guitarist/mandolinist	(@fabrisss),	trying	to	find	some	spare	time	to
record	his	first	full-length	album	with	folk	and	bluegrass	inspiration.

Samuel	Goebert	is	a	computer	science	PhD	student	at	the	Plymouth	University,	UK.
Goebert	has	over	12	years	of	experience	in	software	development	and	associated
technologies.	To	know	more	about	him,	refer	to
https://www.linkedin.com/in/samuelgoebert.

https://www.linkedin.com/in/samuelgoebert

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Howdy!	So,	you	want	to	learn	Bootstrap	and	its	awesomeness	and	implement	it	in	a	Rails
project?	I	think	you	made	the	right	choice	by	selecting	this	book.

Web	designing	is	not	everyone’s	cup	of	tea.	I	have	seen	many	experienced	web	developers
who	are	extremely	poor	at	web	designing.	They	have	the	ability	to	make	the	most
powerful	applications,	but	lack	the	skills	to	create	a	decent	looking	website.

On	the	other	hand,	there’s	a	sudden	rise	in	the	popularity	of	CSS	and	JavaScript	frontend
frameworks.	These	frameworks	let	the	users	create	popular	CSS	and	JavaScript
components,	such	as	drop-down	menus,	responsive	menus,	a	proper	grid	system	to
structure	websites,	and	so	on	easily	without	having	any	knowledge	about	CSS	and
JavaScript	coding.	Bootstrap,	being	one	of	the	pioneers	in	the	book,	provides	many
prestyled	CSS	components	that	come	ready	to	be	used.	You	simply	need	to	know	the
appropriate	HTML	files	to	use	these	frontend	frameworks.

This	book	will	help	you	understand	what	Bootstrap	is,	and	how	it	can	be	used	in	a	Rails
environment.	It	will	guide	you	through	various	CSS	and	JavaScript	components	of
Bootstrap	via	many	practical	examples.	If	you	are	a	Sass	developer,	this	book	will	help
you	identify	various	Sass	variables	to	customize	Bootstrap.

I	hope	you	have	fun	reading	this	book!

What	this	book	covers
Chapter	1,	Introducing	Web	Application	Development	in	Rails,	focuses	on	how	to	beautify
Rails	applications	through	the	help	of	Bootstrap.	This	explanation	is	followed	by	the
summary	of	this	chapter.

Chapter	2,	Introducing	Bootstrap	3,	will	show	you	how	to	download	and	use	Bootstrap	in
Rails	projects.

Chapter	3,	Powering	a	Rails	App	with	Bootstrap’s	Grid	System,	will	take	you	through
Bootstrap’s	grid	system	and	then	proceed	to	show	you	how	to	use	it	in	our	first	example
application.

Chapter	4,	Using	Bootstrap’s	Typography,	Buttons	and	Images	in	a	Rails	Application,
focuses	more	on	how	to	style	a	website’s	content	such	as	text,	links,	and	images.

Chapter	5,	Reinventing	Tables	and	Forms	in	Bootstrap,	will	take	a	look	at	the	various
features	of	Bootstrap	tables	and	forms.	In	this	chapter,	we	will	first	create	dummy
products	and	then	integrate	them	in	our	real	application.

Chapter	6,	Creating	Navigation	Bars,	will	teach	you	how	to	create	a	Bootstrap	navigation
bar,	and	how	we	can	modify	it	to	fit	our	needs.

Chapter	7,	Various	Other	Bootstrap	Components,	will	explore	some	more	Bootstrap
components,	which	come	ready	to	use.

Chapter	8,	Working	with	Bootstrap	Modals,	will	teach	you	how	to	create	a	Bootstrap
modal	and	its	various	types	and	functionalities.	We	will	also	integrate	a	modal	component
in	our	Rails	application.

Chapter	9,	Creating	Image	Slideshows	with	Bootstrap	Carousel,	will	get	you	started	with
the	Bootstrap	Carousel,	how	to	add	captions	to	the	slides,	and	how	to	customize	the
Carousel.

Chapter	10,	Creating	a	Shopping	Cart	Using	Bootstrap	Modals,	is	all	about	implementing
what	we	have	learned	so	far	in	Bootstrap.	This	chapter	will	definitely	clear	some	of	the
core	concepts	of	Bootstrap	such	as	how	to	use	Bootstrap	modal,	typography,	buttons,	and
responsive	tables.

Appendix,	Adding	Custom	Styles	to	a	Rails	Application,	talks	about	how	to	add	a	custom
style	to	a	Rails	application,	which	is	powered	by	a	Bootstrap	framework.

What	you	need	for	this	book
You	need	the	following	to	work	with	the	examples	in	this	book:

Bootstrap	version	3.3.1
Rails	version	4.2

Who	this	book	is	for
This	book	is	for	web	developers	who	have	a	basic	understanding	of	Ruby	on	Rails.	You
should	definitely	have	prior	knowledge	of	HTML	and	how	it	works.	However,	it	is	not
necessary	that	you	have	prior	knowledge	of	CSS	and	JavaScript	for	this	book.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Let’s
create	a	folder	named	Bootstrap_Rails_Project.”

A	block	of	code	is	set	as	follows:

a{

display:	block;

text-decoration:	none;

width:	100px;

margin:	10px	auto;

padding:	5px;

text-align:	center;

background:	#ccc;

color:	#444;

font-size:	20px;

box-shadow:	4px	4px	0px	#888;

font-weight:	bold;

}

Any	command-line	input	or	output	is	written	as	follows:

rails	new	TODO

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Click	on	the	New	Todo
now.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Chapter	1.	Introducing	Web	Application
Development	in	Rails
Presenting	your	application	in	the	best	possible	way	has	been	the	most	important	factor	for
every	web	developer	for	ages.	In	this	mobile-first	generation,	we	are	forced	to	go	with	the
wind	and	make	our	application	compatible	with	Mobiles,	Tables,	PCs,	and	every	possible
display	on	Earth.

Bootstrap	is	the	one	stop	solution	for	all	woes	that	developers	have	been	facing.	It	creates
beautiful	responsive	designs	without	any	extra	efforts	and	without	any	advanced	CSS
knowledge.	It	is	a	true	boon	for	every	developer.

In	this	chapter,	and	throughout	the	book,	we	will	be	focusing	on	how	to	beautify	our	Rails
applications	through	the	help	of	Bootstrap.	In	this	chapter,	we	will	create	a	basic	Todo
application	with	Rails.	We	will	explore	the	folder	structure	of	a	Rails	application	and
analyze	which	folders	are	important	for	templating	a	Rails	Application.	This	will	be
helpful	if	you	want	to	quickly	revisit	Rails	concepts.

We	will	also	see	how	to	create	views,	link	them,	and	also	style	them.	The	styling	in	this
chapter	will	be	done	traditionally	through	the	application’s	default	CSS	files.	Finally,	we
will	discuss	how	we	can	speed	up	the	designing	process	using	Bootstrap.

In	short,	we	will	cover	the	following	topics:

Why	Bootstrap	with	Rails?
Setting	up	a	Todo	Application	in	Rails
Analyzing	folder	structure	of	a	Rails	application
Creating	views
Styling	views	using	CSS
Challenges	in	traditionally	styling	a	Rails	Application

Why	Bootstrap	with	Rails?
Rails	is	one	the	most	popular	Ruby	frameworks	which	is	currently	at	its	peak,	both	in
terms	of	demand	and	technology	trend.	With	more	than	3,100	members	contributing	to	its
development,	and	tens	of	thousands	of	applications	already	built	using	it,	Rails	has	created
a	standard	for	every	other	framework	in	the	Web	today.

Rails	was	initially	developed	by	David	Heinemeier	Hansson	in	2003	to	ease	his	own
development	process	in	Ruby.	Later,	he	became	generous	enough	to	release	Rails	to	the
open	source	community.	Today,	it	is	popularly	known	as	Ruby	on	Rails.

Rails	shortens	the	development	life	cycle	by	moving	the	focus	from	reinventing	the	wheel
to	innovating	new	features.	It	is	based	on	the	convention	of	the	configurations	principle,
which	means	that	if	you	follow	the	Rails	conventions,	you	would	end	up	writing	much
less	code	than	you	would	otherwise	write.

Bootstrap,	on	the	other	hand,	is	one	of	the	most	popular	frontend	development
frameworks.	It	was	initially	developed	at	Twitter	for	some	of	its	internal	projects.	It	makes
the	life	of	a	novice	web	developer	easier	by	providing	most	of	the	reusable	components
that	are	already	built	and	are	ready	to	use.	Bootstrap	can	be	easily	integrated	with	a	Rails
development	environment	through	various	methods.	We	can	directly	use	the	.css	files
provided	by	the	framework,	or	can	extend	it	through	its	Sass	version	and	let	Rails	compile
it.

Note
Sass	is	a	CSS	preprocessor	that	brings	logic	and	functionality	into	CSS.	It	includes
features	like	variables,	functions,	mixins,	and	others.	Using	the	Sass	version	of	Bootstrap
is	a	recommended	method	in	Rails.	It	gives	various	options	to	customize	Bootstrap’s
default	styles	easily.

Bootstrap	also	provides	various	JavaScript	components	that	can	be	used	by	those	who
don’t	have	any	real	JavaScript	knowledge.	These	components	are	required	in	almost	every
modern	website	being	built	today.

Bootstrap	with	Rails	is	a	deadly	combination.	You	can	build	applications	faster	and	invest
more	time	to	think	about	functionality,	rather	than	rewrite	codes.

Setting	up	a	Todo	application	in	Rails
Since	this	book	is	targeted	for	Rails	developers,	I	assume	that	you	already	have	basic
knowledge	of	Rails	development.	You	should	also	have	Rails	and	Ruby	installed	in	your
machine	to	start	with.

Note
While	writing	this	book,	Ruby	2.1.1	and	Rails	4.1.4	was	used.

Let’s	first	understand	what	this	Todo	application	will	do.	Our	application	will	allow	us	to
create,	update,	and	delete	items	from	the	Todo	list.	We	will	first	analyze	the	folders	that
are	created	while	scaffolding	this	application	and	which	of	them	are	necessary	for
templating	the	application.

So,	let’s	dip	our	feet	into	the	water:

1.	 First,	we	need	to	select	our	workspace,	which	can	be	any	folder	inside	your	system.
Let’s	create	a	folder	named	Bootstrap_Rails_Project.	Now,	open	the	terminal	and
navigate	to	this	folder.

1.	 It’s	time	to	create	our	Todo	application.	Write	the	following	command	to	create	a
Rails	application	named	TODO:

rails	new	TODO

2.	 This	command	will	execute	a	series	of	various	other	commands	that	are	necessary	to
create	a	Rails	application.	So,	just	wait	for	sometime	before	it	stops	executing	all	the
codes.	If	you	are	using	a	newer	version	of	Rails,	then	this	command	will	also	execute
bundle	install	command	at	the	end.	Bundle	install	command	is	used	to	install	other
dependencies.

The	output	for	the	preceding	command	is	as	follows:

Now,	you	should	have	a	new	folder	inside	Bootstrap_Rails_Project	named	TODO,	which
was	created	by	the	preceding	code.	Here	is	the	output:

Analyzing	folder	structure	of	a	Rails
application
Let’s	navigate	to	the	TODO	folder	to	check	how	our	application’s	folder	structure	looks	like:

Let	me	explain	to	you	some	of	the	important	folders	here:

The	first	one	is	the	app	folder,	which	we	will	be	focusing	on	the	most	throughout	this
book.	All	our	application’s	content	will	be	present	inside	this	folder.
The	assets	folder	inside	the	app	folder	is	the	location	to	store	all	the	static	files	like
JavaScript,	CSS,	and	Images.	You	can	take	a	sneak	peek	inside	them	to	look	at	the
various	files.
The	controllers	folder	handles	various	requests	and	responses	of	the	browser.
The	helpers	folder	contains	various	helper	methods	both	for	the	views	and
controllers.
The	next	folder	mailers,	contains	all	the	necessary	files	to	send	an	e-mail.
The	models	folder	contains	files	that	interact	with	the	database.
Finally,	we	have	the	views	folder,	which	contains	all	the	.erb	files	that	will	be
complied	to	HTML	files.

So,	let’s	start	the	Rails	server	and	check	out	our	application	on	the	browser:

1.	 Navigate	to	the	TODO	folder	in	the	terminal	and	then	type	the	following	command	to
start	a	server:

rails	server

You	can	also	use	the	following	command:

rails	s

2.	 You	will	see	that	the	server	is	deployed	under	the	port	3000.	So,	type	the	following
URL	to	view	the	application:

http://localhost:3000.

You	can	also	use	the	following	URL:	http://0.0.0.0:3000.

3.	 If	your	application	is	properly	set	up,	you	should	see	the	default	page	of	Rails	in	the
browser:

Creating	views
We	will	be	using	Rails’	scaffold	method	to	create	models,	views,	and	other	necessary	files
that	Rails	needs	to	make	our	application	live.	Here’s	the	set	of	tasks	that	our	application
should	perform:

It	should	list	out	the	pending	items
Every	task	should	be	clickable,	and	the	details	related	to	that	item	should	be	seen	in	a
new	view
We	can	edit	that	item’s	description	and	some	other	details
We	can	delete	that	item

The	task	looks	pretty	lengthy,	but	any	Rails	developer	would	know	how	easy	it	is	to	do.
We	don’t	actually	have	to	do	anything	to	achieve	it.	We	just	have	to	pass	a	single	scaffold
command,	and	the	rest	will	be	taken	care	of.

Close	the	Rails	server	using	Ctrl	+	C	keys	and	then	proceed	as	follows:

1.	 First,	navigate	to	the	project	folder	in	the	terminal.	Then,	pass	the	following
command:

rails	g	scaffold	todo	title:string	description:text	completed:boolean

This	will	create	a	new	model	called	todo	that	has	various	fields	like	title,	description,
and	completed.	Each	field	has	a	type	associated	with	it.

2.	 Since	we	have	created	a	new	model,	it	has	to	be	reflected	in	the	database.	So,	let’s
migrate	it:

rake	db:create	db:migrate

The	preceding	code	will	create	a	new	table	inside	a	new	database	with	the	associated
fields.

3.	 Let’s	analyze	what	we	have	done.	The	scaffold	command	has	created	many	HTML
pages	or	views	that	are	needed	for	managing	the	todo	model.	So,	let’s	check	out	our
application.	We	need	to	start	our	server	again:

rails	s

4.	 Go	to	the	localhost	page	http://localhost:3000	at	port	number	3000.
5.	 You	should	still	see	the	Rails’	default	page.	Now,	type	the	URL:

http://localhost:3000/todos.
6.	 You	should	now	see	the	application,	as	shown	in	the	following	screenshot:

www.allitebooks.com

http://www.allitebooks.org

7.	 Click	on	New	Todo,	you	will	be	taken	to	a	form	which	allows	you	to	fill	out	various
fields	that	we	had	earlier	created.	Let’s	create	our	first	todo	and	click	on	submit.	It
will	be	shown	on	the	listing	page:

It	was	easy,	wasn’t	it?	We	haven’t	done	anything	yet.	That’s	the	power	of	Rails,	which
people	are	crazy	about.

Styling	views	using	CSS
Obviously,	the	application	doesn’t	look	insanely	great.	The	table	that	has	been	presented	is
extremely	confusing	and	needs	some	CSS	styling.	So,	let’s	proceed	to	style	our	Rails
application.

We	will	use	the	application’s	default	CSS	file	to	add	and	modify	the	styles:

1.	 Open	Bootstrap_Rails_Project.
2.	 Open	the	TODO	folder;	go	to	the	app	folder.	Navigate	to	the	assets	folder.	There	you

will	find	a	folder	named	stylesheets.	This	folder	contains	all	the	CSS	files	of	the
application.

Currently,	you	will	find	three	different	files:	application.css,	scaffold.css.scss,	and
todos.css.scss.	The	first	file	is	an	application	level	CSS	file.	Anything	you	write	inside
it	will	be	applied	to	the	whole	application.	The	next	two	files	are	Sass	files.	Rails	uses
SASS	to	apply	styles	to	the	application.	These	SASS	files	are	compiled	in	the	CSS	files
and	included	in	the	application	on	the	go.

We	will	be	using	a	normal	CSS	file	without	any	SASS	to	apply	styles	to	our	Todo
application.	Let’s	first	proceed	and	analyze	the	HTML	source	code	of	our	application.	The
screenshot	is	as	follows:

You	can	see	that	all	the	CSS	files	are	loaded	alphabetically	here.	This	can	be	a	serious
problem	where	overriding	CSS	is	concerned.	We	want	our	CSS	file	to	be	at	the	end.	This
will	allow	us	to	override	the	application	level	styles	at	some	places	in	future.

So,	let’s	rearrange	the	CSS	files	here.To	do	so,	follow	the	given	steps:

1.	 Open	the	application.css	file	using	a	text	editor.	There	you	can	see	some	code
lines	with	require_	as	their	prefix.	We	need	to	tweak	them	a	bit	in	order	to	get	the
desired	result,	as	shown	here:

2.	 Let’s	create	a	new	CSS	file	named	styles.css	in	the	same	stylesheets	folder.	Now
come	back	to	the	application.css	file.

3.	 Remove	the	following	line	from	the	file:

*=	require_tree

The	preceding	line	was	telling	Rails	to	include	all	the	CSS	files	in	alphabetical	order.

4.	 Now,	add	the	following	line:

*=	require	'styles'

The	preceding	line	will	include	styles.css	in	the	application.	Ensure	that
application.css	looks	as	shown	in	the	following	screenshot:

The	require_self	command	includes	the	application.css	file	in	the	application.	If	we
inspect	the	HTML	source	file	now,	we	should	see	that	there	are	only	two	CSS	files
included:	application.css	and	styles.css.	Hence,	we	are	now	safe	to	write	CSS	styles
for	the	application.

Redesigning	the	Todo	application
In	this	section,	We	will	write	all	the	CSS	files	to	redesign	without	the	use	of	any
framework.	This	will	help	us	to	better	understand	the	amount	of	CSS	code	we	have	to
write	at	the	end	for	styling	simple	links	and	other	HTML	elements.

We	are	going	to	redesign	our	existing	Todo	application	to	something	that	looks	like	the
following	screenshot:

The	preceding	screenshot	displays	the	redesigned	version	of	the	home	page.	As	you	can
see,	the	list	of	TODO	activities	are	now	displayed	properly	in	the	middle	of	the	screen
inside	a	table-like	structure.	Even	the	action	links	(Show,	Edit,	and	Destroy)	have	been
redesigned	to	look	like	3D	buttons.	Let’s	look	at	the	redesigned	version:

The	preceding	screenshot	displays	the	redesigned	version	of	the	New	Todo	page.	The	form
has	been	redesigned	and	a	background	color	has	been	applied	to	it,	as	follows:

The	preceding	screenshot	shows	the	redesigned	version	of	the	Edit	TODO	screen,	which	is
the	same	as	the	New	Todo	screen.	The	only	difference	here	is	the	auto	fill	feature	that	fills
the	fields	as	per	the	data	available	in	the	database.	The	input	fields	are	more	spacious	with

a	bigger	font	size	for	properly	displaying	the	text	contained	in	them.	Let’s	see	the
screenshot	of	the	View	Todo	page:

The	preceding	screenshot	displays	the	redesigned	version	of	the	View	Todo	page.	We	have
kept	this	page	simple	and	clear	for	better	readability.	In	all	the	pages,	we	have	centered	the
content	of	the	website.

Oh!	That’s	lots	of	designing!	Don’t	worry.	We	will	get	through	it	easily.

It	is	generally	considered	as	a	good	practice	to	organize	the	designing	process	before
jumping	into	it.	In	our	Todo	application,	we	have	three	different	views:

Home	page	to	list	out	all	Todos:	This	is	at	http://localhost:3000/todos
New	Todo	forms	and	Edit	Todo	forms:	They	both	are	the	same	view,	which	is
reachable	through	two	different	types	of	URLs
Show	View	Todo:	It	displays	particular	TODO	details

Let’s	begin	by	styling	the	Homepage:

1.	 Open	styles.css,	which	we	have	recently	created.	All	the	styles	that	we	are	going	to
write	should	be	written	in	this	file.

2.	 We	will	first	clear	the	browser	default	margin	and	padding	using	the	universal
selector	in	CSS	(*).	So,	our	CSS	for	this	will	be:

*{

margin:	0;

padding:	0

}

3.	 Let’s	style	the	title	of	the	page	first.	If	you	check	out	the	HTML	source	code	of	the
page,	you	will	see	that	it	is	an	H1	element.	So,	our	CSS	for	this	will	be:

h1{

padding:	20px;

text-align:	center;

color:	#5093C2;

}

The	preceding	code	makes	the	title	appear	in	the	center	of	the	page.	It	also	adds	a
light	blue	color	to	it.	We	have	also	created	some	space	around	it	using	the	padding
property	of	CSS.	Refresh	your	page	to	verify	it.

4.	 It’s	time	to	decorate	the	table	element.	Our	CSS	for	it	will	be:

table{

		width:	800px;

		margin:	auto;

text-align:	center;

}

The	preceding	code	makes	the	table	position	to	the	center	of	the	browser.	First,	we
applied	a	width	of	800px	to	it	and	then	we	applied	an	auto	positioned	margin	to	it.
Since	the	browser	now	knows	the	width	of	the	table	element,	it	will	automatically
divide	the	extra	space	on	each	side	of	it.	This	will	make	our	table	centered	to	the
browser	screen.	The	last	property,	text-align	is	used	to	align	the	text	present	inside
the	table.

5.	 Let’s	apply	some	more	styles	to	the	elements	present	inside	the	table:

td,	th{

		padding:	10px;

		border:	1px	solid	#888888;

}

In	the	preceding	CSS	code,	we	have	applied	styles	to	the	td	and	th	elements	of	the
table	element.	We	created	some	space	around	the	text	using	padding.	We	also	applied
a	border	to	each	cell.	It	is	a	solid	border	of	1px	width	and	color	#888888.

6.	 It’s	time	to	design	the	application’s	links.	We	will	try	to	make	them	appear	like	a
button	so	that	it	appears	more	clickable.	Our	CSS	for	it	will	be:

a{

display:	block;

text-decoration:	none;

width:	100px;

margin:	10px	auto;

padding:	5px;

text-align:	center;

background:	#ccc;

color:	#444;

font-size:	20px;

box-shadow:	4px	4px	0px	#888;

font-weight:	bold;

}

Links	<a>	are	inline	HTML	elements.	Hence	in	the	first	line,	we	have	made	it	look	like	a
block-level	element	using	the	display	property.	Now,	we	can	apply	width	and	margin	to
it.	Just	like	we	did	to	our	table	element;	we	will	also	apply	a	particular	width	and	make	all
the	links	appear	centered	to	their	parent	elements.	We	have	also	applied	a	padding	of	5px
to	create	space	around	the	link	text.

To	color	the	links,	we	applied	background	to	it,	and	to	make	the	text	appear	more	distinct
in	this	background,	we	applied	a	color	property	to	it.	We	have	also	played	with	the	shadow
of	the	button	to	make	it	appear	more	3D.

Make	sure	to	refresh	the	browser	screen	to	see	the	changes	we	are	continuously	applying.
Hope	you	are	enjoying	the	process	of	designing	the	application.

We	have	finally	designed	the	home	screen.	The	form	is	still	not	styled!	Let’s	do	it	now:

1.	 Click	on	the	New	Todo	file	and	let’s	style	it:

form{

		width:	300px;

		margin:	auto;

		background:	#ccc;

		padding:	20px;

		border:	1px	solid	#444;

}

We	applied	proper	width	to	the	form	and	made	it	appear	at	the	center	of	the	screen.
We	have	also	given	a	decent	background	color	to	it.	Padding	and	border	is	also
applied	to	make	it	look	more	spacious	and	flat.

2.	 Next,	we	have	to	design	the	labels	and	input	fields.	If	you	check	out	the	HTML
source	of	this	page,	you	will	see	that	every	label,	and	its	associated	input	field,	is
wrapped	inside	a	div	which	has	a	field	class.	Remember	that	these	classes	and	the
HTML	structures	are	not	written	by	us.	These	have	been	autogenerated	by	Rails.	We
are	just	working	with	the	CSS	file.

3.	 Now,	we	will	use	the	field	class	to	apply	style	to	the	elements	present	inside	the	New
Todo	view.	Here	we	will	design	the	label,	input	field,	and	textarea	element:

.field{

		padding:	10px	0;

}

.field	label{

	 font-weight:	bold;

}

.field	input,	.field	textarea{

		padding:	8px;

		border:	1px	solid	#ccc;

		border-radius:	5px;

		font-size:	18px;

		width:	280px;

}

We	applied	a	decent	space	inside	the	field	with	div	element.	Here,	we	have	give
two	different	values	to	the	padding	property.	The	first	value	is	for	creating	spaces	to
the	top	and	bottom,	whereas	the	next	value	will	be	used	for	the	left	and	right	side.

4.	 Next,	we	applied	style	to	the	label	element	of	the	field	element.	We	have	made	it
appear	bold	using	the	font-weight	property.	Lastly,	we	gave	both	the	input	fields

www.allitebooks.com

http://www.allitebooks.org

and	textarea	the	same	set	of	CSS	styles.	We	made	them	look	spacious	using
padding.	A	border	property	is	applied	to	get	rid	of	the	browser	default	border	around
the	input	and	textarea	elements.	We	also	applied	border-radius	to	make	the	corners	a
little	rounded.	Finally,	we	fixed	the	width	of	both	the	textarea	and	input	elements	so
that	they	appear	properly	aligned.

5.	 It’s	time	to	design	the	last	element	in	this	HTML	page,	the	Create	Todo	button:

.actions	input{

		padding:	8px;

		border:	1px	solid	#CCC;

		border-radius:	5px;

		font-size:	18px;

		width:	280px;

		background:	#83B5D8;

		color:	#444;

}

Most	of	the	CSS	styles	that	we	applied	here	are	similar	to	what	we	have	applied	to
the	input	and	textarea	element.	Here,	we	have	added	two	extra	properties,
background	and	color	to	make	it	look	different	and	stand	out	properly	in	the	form.

6.	 We	have	successfully	designed	the	New	Todo	and	Edit	Todo	pages.	We	are	now	only
left	with	the	Show	Todo	page.	So,	without	any	further	delay,	let’s	first	check	out	the
page.	Click	on	the	Show	link.

Most	of	the	content	is	already	styled	by	us.	We	are	only	left	with	designing	the	text
on	this	page,	the	code	is	as	follows:

p{

		width:	350px;

		font-size:	20px;

		margin:	auto;

		padding:	10px	0;

		color:	#444;

}

p#notice{

		color:	#76a3da;

}

We	applied	a	fixed	width	to	the	p	element	and	made	it	appear	to	the	center	of	the
screen	using	the	margin	property.	We	also	applied	a	decent	font	size	to	them.	Now,
let’s	separate	them	from	each	other	using	the	margin	and	padding	properties.

This	page	is	also	shown	after	the	New	Todo	or	Edit	Todo	pages	with	a	notice	at	the	top.
This	element	has	an	id	element,	which	is	used	to	show	the	status,	whether	a	new	todo	was
successfully	created	or	an	existing	todo	was	successfully	updated.	Using	CSS,	we	have
applied	style	to	it.	Make	sure	that	you	are	not	giving	any	space	between	p	and	#notice	in
the	preceding	CSS	code.	We	are	targeting	the	p	tag,	which	has	an	id,	#notice,	so	spaces
shouldn’t	be	present	between	the	selectors.

Congrats!	We	have	successfully	completed	designing	the	whole	application.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Challenges	in	styling	a	Rails	application
traditionally
The	application	which	we	have	created	was	so	basic	that	we	did	not	write	a	single	line	of
code	for	its	logic	part.	We	didn’t	even	touch	the	HTML	layout	of	the	application.	You
have	seen	how	complex	the	CSS	styling	can	be	at	some	places,	such	as	designing	a	link.
The	CSS	which	we	have	written	here	is	very	poorly	organized.	We	have	a	target	element
level	selector	at	many	places	to	apply	styles	to	them.	This	is	considered	as	a	very	poor
way	of	designing.

Our	CSS	code	was	not	segregated	into	various,	smaller	parts.	All	the	styles	were	written
directly	in	one	file,	styles.css.	In	the	coming	chapters,	we	will	see	how	we	can	use
SASS	to	apply	styles	to	our	Rails	applications.	Using	SASS,	we	can	bring	logic	to	the
CSS	codes.

We	will	also	overcome	the	difficulties	of	styling	each	and	every	element	in	our	Rails
application	using	Bootstrap.	You	will	realize	how	easy	it	can	become	for	a	Non-CSS
developer	to	design	a	high-end	application	using	Bootstrap.	You	won’t	write	a	single	piece
of	CSS	code	when	using	Bootstrap.	Its	developers	have	written	a	bunch	of	CSS	codes	for
you.

Summary
The	main	intention	of	this	chapter,	was	to	brief	you	on	how	to	develop	and	design	a	simple
Rails	application	without	the	help	of	any	CSS	frontend	frameworks.	We	manually	styled
the	application	by	creating	an	external	CSS	file	styles.css	and	importing	it	into	the
application	using	another	CSS	file	application.css.	We	also	discussed	the	complexities
that	a	novice	web	designer	might	face	on	directly	styling	the	application.

In	the	next	chapter,	we	will	get	our	hands	dirty	with	Bootstrap.	We	will	learn	what	it	is,
and	how	it	can	help	to	design	a	Rails	application	quickly.	We	will	also	learn	how	to
integrate	Bootstrap	with	the	Rails	application.

Chapter	2.	Introducing	Bootstrap	3
In	the	last	chapter,	we	learned	how	to	create	a	simple	Rails	project,	and	how	to	change	its
default	CSS	styles.	The	styling	process	becomes	more	difficult	if	the	developer	is	a
newbie	and	has	minimal	knowledge	of	CSS.	Bootstrap	helps	to	solve	this	issue.	It	gives
you	access	to	some	of	the	popular,	ready-to-use	reusable	components	such	as	stylish
navigation	bars,	image	containers,	popovers,	and	so	on.	All	you	have	to	do	is	copy	and
customize	the	markup	of	the	component	you	want	to	use.

In	this	chapter,	you	will	understand	what	Bootstrap	is,	and	how	it	is	important	for	a	Rails
developer.	We	will	see	how	to	download	and	use	Bootstrap	in	our	Rails	projects.	We	will
again	create	the	same	Todo	application	in	this	chapter	and	apply	Bootstrap	styles	to	it.

In	this	chapter,	we	will	cover:

What	is	Bootstrap?
Installing	Bootstrap	in	a	Rails	project

What	is	Bootstrap?
Bootstrap	is	a	complete	frontend	framework	that	helps	in	developing	web	applications
without	having	to	worry	about	its	frontend.	If	you	are	a	developer	and	your	main	focus	is
to	showcase	the	power	of	your	application	without	putting	any	efforts	on	CSS	designing,
then	Bootstrap	is	for	you.	It	allows	developers	to	select	from	a	range	of	popular	reusable
HTML	components	that	are	previously	developed	and	styled	by	Bootstrap.

Let’s	imagine	a	situation.	Thomas	is	a	Rails	developer.	He	creates	a	powerful	e-commerce
shopping	system	using	Rails.	The	system	has	many	features	which	are	normally	expected
from	a	shopping	website.	Thomas	puts	his	extra	effort	on	securing	the	application,	and	he
made	the	system	ready	to	use.	Then	comes	the	time	when	Thomas	has	to	finally	represent
this	application	to	venture	capitalists	to	get	some	funding	in	order	to	start	his	project.	But
wait,	Thomas	did	nothing	to	make	his	application	presentable.	His	application	contains
only	basic	HTML	markup	with	almost	negligible	CSS	styling	in	it.	Will	his	application
make	an	impact?

The	answer	is,	definitely	not.	Though	Thomas	was	able	to	create	a	robust	Rails
application,	it	lacked	presentation	ability.	His	lack	of	proper	CSS	knowledge	was	the	main
reason	that	debarred	him	from	creating	a	powerful	impact	for	his	project.

It	is	always	important	to	balance	both	the	frontend	and	backend	capability	for	every
developer.	If	you	can’t	represent	your	application	in	a	presentable	manner,	then	it	is
definitely	of	no	use.	There	might	be	some	developers	who	will	go	forward	after	learning	a
lesson	from	a	similar	event,	as	described	in	the	preceding	example.	They	will	try	hard	and
learn	web	designing	using	CSS	irrespective	of	whether	they	have	interest	in	that	area.	By
doing	this,	they	are	forgetting	that	designing	is	a	completely	different	field	from	what	they

were	previously	doing.	It	is	the	work	of	UX/UI	developers.

Bootstrap	developers	have	written	many	CSS	definitions	that	can	be	directly	plugged	into
our	projects	to	represent	it.	It	is	also	an	open	source	project	which	is	licensed	under	MIT.
This	gives	you	freedom	to	use	it	on	any	type	of	projects	without	worrying	about	the
licensing	issues.	Why	should	we	reinvent	the	wheel,	when	someone	has	already	done	the
job	for	us?	Developers	who	are	focused	on	rapid	application	development	should	consider
using	Bootstrap	in	their	every	project.

Bootstrap	is	not	limited	to	just	providing	better	CSS	components	to	the	developers.	It	is	a
mobile	first	framework.	This	means	that	anything	you	write	in	your	application	using
Bootstrap	will	be	compatible	even	on	smaller	mobile	devices.	Bootstrap-powered
applications	can	scale	beautifully	from	extremely	small	devices	like	iPhones	to	larger
displays	like	Retina	displays.	It	helps	you	to	write	a	single	codebase	and	use	it
everywhere.	With	the	advancement	of	technology,	even	native	iOS	and	Android
applications	can	be	written	using	HTML,	CSS,	and	JavaScript	today.	They	are	called
Hybrid	applications	that	are	ported	into	the	native	platforms	using	tools	like	PhoneGap.
Imagine	that	your	Rails	application	is	being	used	in	all	types	of	devices	like	mobiles,
smart	TVs,	tablets,	and	even	desktop	screens.	Awesome!	Isn’t	it?

www.allitebooks.com

http://www.allitebooks.org

Installing	Bootstrap	in	a	Rails	project
Bootstrap	is	simply	a	package	of	CSS,	JavaScript,	and	font	files.	You	must	be	confused
why	we	used	the	term	installing	with	Bootstrap	here.	Well,	there	are	two	different	ways	of
using	Bootstrap	in	Rails.	The	first	one	is	to	directly	copy	the	Bootstrap	files	at	proper
places	in	the	Rails	project.	The	second	one	is	the	Bootstrap	Sass	way.	It	is	because	of	the
second	way	that	we	used	the	term	installing.	It	also	comes	as	a	gemset	that	can	be	bundle
installed	in	any	Rails	project.	We	will	explore	both	the	ways	in	detail	in	this	section.

There’s	also	a	third	way,	using	Bootstrap	files	from	CDN,	which	is	the	simplest	of	all.	We
will	explore	this	at	the	end.

Placing	Bootstrap	files	in	a	Rails	project
This	is	the	first	method	of	using	Bootstrap	in	Rails.	Many	Rails	developers	get	this
method	wrong.	Placing	the	Bootstrap	files	properly	is	very	important	to	activate
Bootstrap.	Follow	these	steps	to	place	Bootstrap	files:

1.	 Let’s	create	a	new	Rails	project.	This	time	we	will	name	it	as	the
Rails_Bootstrap_Project	command,	as	follows:

rails	new	Rails_Bootstrap_Project

As	usual,	the	preceding	code	will	run	various	other	commands	and	will	take	some
time	to	complete.	We	will	not	discuss	about	various	folders	that	are	created	inside
this	Rails	project,	as	this	was	already	covered	in	the	previous	chapter.

2.	 Let’s	create	a	new	model	in	Rails	called	todos	using	the	scaffolding	command,	as
follows:

rails	g	scaffold	todos	title:string	description:text	completed:boolean

3.	 Let’s	also	make	this	change	in	the	database	by	using	the	migrate	command,	as
follows:

rake	db:migrate

4.	 You	should	get	a	successful	migration	message.	It’s	time	to	start	the	server	and	check
out	the	Todo	application.

rails	s

You	can	now	visit	http://localhost:3000/todos	and	click	on	New	Todo.	The
application	should	work,	and	you	will	get	a	screenshot,	as	follows:

Once	the	installation	is	complete,	we	will	get	a	folder	called	Rails_Bootstrap_Project
with	lots	of	files	inside	it.	If	you	are	a	Rails	developer,	you	will	definitely	be	tempted	to
jump	directly	into	it.	Let’s	keep	this	project	as	it	is	for	the	time	being	and	proceed	to
download	Bootstrap	from	its	official	website.	The	steps	are:

1.	 Go	to	http://getbootstrap.com	and	click	on	the	Download	Bootstrap	button.	It	will
take	you	to	another	page	with	three	different	options	available.

2.	 Select	the	first	button	which	simply	says	Download	Bootstrap.	A	zipped	package
will	start	downloading.

3.	 After	the	downloading	is	over,	extract	all	the	files.	You	can	see	three	different	folders
present	inside	the	default	Bootstrap	package,	css,	js,	and	fonts.	We	need	to	get	all
these	files	properly	in	our	Rails	project	in	order	to	make	Bootstrap	work.

Every	Bootstrap	package	comes	with	a	standard	set	of	files.	The	css	folder	contains	four
different	CSS	files.	The	first	two	CSS	files	are:	bootstrap.css	and	bootstrap.min.css.
Both	of	these	files	are	exactly	the	same,	except	the	way	they	are	created.	Here,
bootstrap.css	is	a	document	version	whereas	bootstrap.min.css	is	a	minified	version.
You	will	not	find	any	comments	or	proper	indentation	in	the	minified	version.	A	minified
version	is	good	for	using	in	projects	that	are	ready	for	production,	as	it	is	smaller	in	size.

The	next	two	files,	bootstrap.theme.css	and	bootstrap.theme.min.css,	are	theme	files
from	Bootstrap.	Bootstrap	has	created	its	own	theme	file	to	override	its	own	default	style
on	various	components.	They	are	completely	optional.	Personally,	I	have	never	used	them.
These	two	theme	files	are	also	exactly	the	same.	The	first	one	is	a	documented	version
while	the	second	is	a	minified	version.

Moving	on	to	the	js	folder	of	the	Bootstrap	package,	we	will	find	two	different	JavaScript
files:	bootstrap.js	and	bootstrap.min.js.	Again,	these	two	files	are	exactly	similar	in
nature.	The	former	is	a	documented	version	while	the	latter	is	a	minified	version.	This	is
the	main	Bootstrap	JavaScript	file.	There	are	many	components	like	navigation	bar	which
depend	on	this	file	to	function	properly.	Bootstrap’s	JavaScript	components	depend	on
jQuery.	We	do	not	get	jQuery,	out	of	the	box,	in	the	Bootstrap’s	package.	But,	it	is
necessary	to	include	in	our	application.	Generally,	all	the	Rails	projects	include	jQuery	in
them.	Hence,	we	don’t	have	to	include	it	separately.

Bootstrap	comes	with	a	set	of	icons	that	can	be	used	in	our	Rails	application.	These	icons
are	called	Glyphicons.	Unlike	other	icons	which	are	images,	these	icons	are	fonts.	All	the
icons	are	present	in	various	font	files	inside	the	fonts	folder	of	the	Bootstrap	package.

Now	that	we	have	taken	a	walkthrough	of	all	the	files	in	the	Bootstrap	package,	let’s	start
importing	them	in	our	Rails	application	using	the	following	steps:

1.	 Let’s	move	the	CSS	file	first.	Copy	bootstrap.min.css	from	the	CSS	folder	and
place	it	in	the	stylesheets	folder	of	the	Rails	application	by	navigating	to
vendor/assets/stylesheets:

http://getbootstrap.com

2.	 Next,	copy	bootstrap.min.js	from	the	js	folder	and	paste	it	in	the	javascripts
folder	of	the	Rails	application	by	navigating	to	vendor/assets/javascripts:

3.	 Copy	the	complete	fonts	folder	and	place	it	in	the	assets	file	under	vendor	folder:

We	have	all	the	Bootstrap	files	in	the	vendors/assets	folder	now.	It’s	time	to	link
them	from	the	default	Rails	CSS	and	JavaScript	files.

4.	 Open	the	file	application.css	in	the	stylesheets	folder	by	navigating	to
app/assets/stylesheets:

5.	 Put	the	following	line	into	the	application	of	.css	file:

*=	require	bootstrap.min

This	will	include	bootstrap.min.css	from	the	vendor/assets/stylesheets
directory.	Bootstrap	has	written	some	CSS	properties	inside	bootstrap.min.css,
which	provides	the	path	to	the	font	files.	This	path	won’t	work	here.	We	need	to
override	it	inside	the	application.css	file.

6.	 Paste	the	following	lines	into	application.css:

@font-face	{

		font-family:	'Glyphicons	Halflings';

		src:	url('../assets/glyphicons-halflings-regular.eot');

		src:	url('../assets/glyphicons-halflings-regular.eot?#iefix')	

format('embedded-opentype'),

		url('../assets/glyphicons-halflings-regular.woff')	format('woff'),

		url('../assets/glyphicons-halflings-regular.ttf')	format('truetype'),

		url('../assets/glyphicons-halflings-

regular.svg#glyphicons_halflingsregular')	format('svg');

}

7.	 We	are	done	with	linking	the	Bootstrap’s	CSS	files.	Next,	we	need	to	link	the
Bootstrap’s	JavaScript	file.

Open	the	application.js	file	from	app/assets/javascripts	directory:

8.	 Put	the	following	line	into	the	application	of	the.js	file:

//=	require	bootstrap.min

This	will	link	the	bootstrap.min.js	file	from	the	javascripts	folder	by	navigating
to	vendor/assets/javascripts.

9.	 Now	it’s	done!	Yes,	we	have	successfully	implemented	Bootstrap	in	our	Rails
application.	Restart	the	server	and	open	the	Todo	application	that	we	have	created.
You	will	see	some	minor	changes	to	the	application’s	appearances:

The	new	screenshot	has	a	bolder	and	clean	font.	Bootstrap	uses	browser	reset	which	clears
all	the	default	browser	styles.	Hence,	there’s	no	gap	between	the	elements	and	the	browser
window.	This	helps	to	properly	define	the	CSS	and	also	assures	that	your	design	looks	the
same	in	all	kinds	of	browsers.

This	was	all	about	injecting	Bootstrap’s	static	files	directly	into	a	Rails	project.	Let’s	take
a	look	at	some	other	methods.

Bootstrap	–	the	Sass	way
Bootstrap	also	supports	Sass.	It	comes	as	a	gemfile	that	can	be	directly	installed	in	the
Rails	application.	We	will	first	install	Bootstrap	as	a	gem	and	then	try	to	understand	why	it
is	better	this	way:

1.	 Let’s	create	another	project	called	Rails_Bootstrap_Sass_Project:

rails	new	Rails_Bootstrap_Sass_Project

2.	 After	the	installation	is	complete,	open	Gemfile	which	is	present	inside	the	home
directory	of	the	application	folder.

3.	 You	can	see	lots	of	gem	dependencies	mentioned	in	this	file.	We	need	to	add	another
gem	dependency	which	is	bootstrap-sass.	Add	the	following	line	in	this	file	too:

gem	'bootstrap-sass',	'~>	3.1.1'

The	above	command	will	install	Bootstrap	3.1.1,	which	is	the	latest	version	at	the
time	of	writing	this	book.	You	can	also	specify	other	versions,	as	per	availability.

4.	 It’s	time	to	bundle	install	this	project	again.	Go	to	the	terminal	and	navigate	to	the
Rails_Bootstrap_Sass_Project	folder	in	it.	Then,	type	the	following	command:

bundle	install

5.	 This	will	fetch	the	gem	bootstrap-sass,	and	include	it	in	the	project.	Let’s	create	a
model	called	todos	using	the	scaffolding	command,	as	shown:

rails	g	scaffold	todos	title:string	description:text	completed:boolean

6.	 Also	complete	the	database	migration	using	the	rake	command,	as	shown:

rake	db:migrate

7.	 Once	the	migration	is	done,	we	will	link	the	Bootstrap’s	css	and	js	file	from	Rails’
default	css	and	javascript	files.

Open	the	todos.css.scss	file	which	is	present	inside	the	stylesheets	folder	by
navigating	to	the	app/assets/stylesheets	folder.	Place	the	following	line	in	it:

@import	"bootstrap";

8.	 Next,	open	the	application.js	file	in	the	javascripts	folder	by	navigating	to
app/assets/javascripts.	Insert	the	following	line	in	it:

//=	require	bootstrap

We	are	done!	Simple,	wasn’t	it?

If	you	run	this	project,	you	can	see	Bootstrap’s	fonts	and	resets	have	been	applied	to	the
default	application.

Bootstrap	through	CDN
Content	delivery	network	(CDN)	is	a	way	of	hosting	popular	libraries	in	the	cloud	and
allows	developers	to	directly	access	these	files	whenever	needed.	There	are	some	of	the
popular	CDN	service	providers	like	Google	Hosted	Libraries
(https://developers.google.com/speed/libraries/devguide),	cdnjs	(http://cdnjs.com/),
CloudFlare	(http://www.cloudflare.com/),	and	others.

Bootstrap	also	comes	with	a	CDN	support.	They	have	hosted	both	the	CSS	and	JavaScript
file	in	their	own	cloud	servers.	Let’s	try	to	use	CDN	in	a	Rails	project	this	time,	using	the
following	steps:

1.	 Create	a	new	Rails	project	called	Rails_Bootstrap_CDN_project:

rails	new	Rails_Bootstrap_CDN_project

2.	 Once	the	project	is	created,	make	a	new	model	called	todos	using	scaffolding:

rails	g	scaffold	todos	title:string	description:text	completed:boolean

3.	 Do	the	database	migration	using	the	following	command:

rails	db:migrate

4.	 Once	all	the	above	steps	are	successfully	completed,	go	to	the	newly	created	folder
Rails_Bootstrap_CDN_project.	Go	to	app/assets/stylesheets	and	open	the
application.css	file.

5.	 We	need	to	import	Bootstrap’s	CSS	file	from	its	CDN	in	this	file.	Hence,	paste	the
following	lines	in	it:

@import	

"//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.css"

6.	 Next,	we	have	to	include	Bootstrap’s	JavaScript	file	from	its	CDN	into	our	main
view.	Go	to	app/views/layouts	and	open	the	application.html.erb	file.	Paste	the
following	line	either	just	above	the	</head>	tag	or	inside	the	body	just	above	the
</body>	tag.

	<script	

src="//netdna.bootstrapcdn.com/bootstrap/3.1.1/js/bootstrap.min.js">

</script>

It’s	done!	You	have	successfully	imported	all	the	Bootstrap	files	into	your	Rails	package.
Go	ahead,	run	the	server	and	check	out	the	app.	It	should	have	Bootstrap’s	styles	applied
to	it.

https://developers.google.com/speed/libraries/devguide
http://cdnjs.com/
http://www.cloudflare.com/

Summary
Out	of	all	the	methods	of	importing/installing	Bootstrap	in	a	Rails	project,	I	would
definitely	suggest	you	to	go	with	the	Sass	way.	Developers	familiar	with	Sass	should
definitely	go	for	it.

Sass	allows	developers	to	completely	customize	Bootstrap’s	default	styles	and	behavior.
As	we	will	progress	with	this	book,	we	will	see	how	to	customize	Bootstrap	through	Sass.
Sass	brings	modularity	to	the	CSS	world.	It	brings	the	programming	capability	in	it.	You
can	use	variables,	functions,	inheritance,	and	so	on	using	Sass.

CDN	is	another	better	alternative	but	is	very	risky.	CDN	is	generally	blocked	in	many
secure	networks.	In	such	cases,	your	application	will	load	without	any	Bootstrap	files.
CDN	also	reduces	the	performance	of	the	web	app	by	sending	an	extra	request	to	a
different	network.	Hope	you	have	got	a	fair	idea	of	what	Bootstrap	is	through	this	chapter.
It	is	an	extremely	useful	framework	that	enforces	rapid	development	by	the	use	of	its
HTML	and	CSS	components.	In	the	coming	chapters,	we	will	see	how	to	use	some	of	the
popular	Bootstrap	components	in	the	Rails	applications.	We	will	see	how	easy	it	is	to
create	a	highly	responsive	Rails	application	using	Bootstrap.

Chapter	3.	Powering	a	Rails	App	with
Bootstrap’s	Grid	System
We	now	have	a	good	knowledge	of	what	Bootstrap	is,	and	how	we	can	get	it	installed	in
our	projects.	With	this	chapter,	we	will	understand	the	what	can	be	done	part	of	Bootstrap.

Grid	system	is	an	integral	part	of	the	Bootstrap	framework.	You	won’t	be	able	to	make	a
responsive	website/application	without	properly	understanding	Bootstrap’s	grid	system.
By	responsive,	I	mean	an	application	that	works	and	looks	perfect	in	devices	of	all	sizes.

This	is	the	generation	of	Hybrid	applications!	Developers	want	to	write	the	code	once	and
make	it	accessible	from	all	the	devices.	To	do	this,	they	have	to	first	make	their	web
application	responsive.	Bootstrap	helps	in	creating	a	responsive	website	using	one	of	its
most	popular	features	called	grid	system.

In	this	chapter,	we	will	first	understand	Bootstrap’s	grid	system	and	then	proceed	to	use	it
in	our	first	application	called	Online	Packt	Shopping.	We	will	try	to	use	this	same	app	in
the	rest	of	book.

In	this	chapter,	we	will	cover:

What	is	Bootstrap’s	grid	system?
Implementing	Bootstrap’s	Grid	System	in	Rails	application

What	is	Bootstrap’s	grid	system?
When	we	first	think	about	grids,	we	imagine	the	intersection	of	vertical	and	horizontal
lines	that	create	grids.	That’s	what’s	happening	here	too.	Bootstrap’s	grid	system	contains
rows	equivalent	to	horizontal	lines,	and	columns	equivalent	to	vertical	lines.	When	these
rows	and	columns	meet,	they	create	grids,	which	can	be	used	to	fill	some	content	in	our
webpage.	Simple,	isn’t	it?

One	of	the	biggest	advantages	of	using	Bootstrap’s	grid	system	is	that	it	is	responsive.
Unlike	HTML	tables,	Bootstrap’s	grid	system	is	flexible	and	adjusts	itself	properly	in	the
smaller	screens	as	well.	The	size	of	the	grids	in	Bootstrap	isn’t	fixed.	They	change	as	per
the	size	of	the	device’s	screen.	Hence,	the	content	is	rearranged,	as	per	the	space	available.

Most	developers	fail	to	understand	the	grid	system	properly	and	hence	they	fail	to	achieve
a	responsive	web	design.	In	this	section,	we	will	first	create	a	static	non-Rails	webpage
showcasing	how	to	create	Bootstrap’s	Grid	System,	and	then	we	will	use	it	in	our	Rails
application.

Let’s	create	a	folder	called	Responsive_website_static	anywhere	in	the	system.	Then,
create	an	HTML	file	called	index.html.	We	will	use	Bootstrap’s	CDN	link	to	import
Bootstrap’s	CSS	and	JavaScript	codes	inside	the	webpage.	Now,	open	the	index.html	file
and	then	paste	the	following	basic	HTML	layout	into	it:

<!DOCTYPE	html>

<html	lang="en">

		<head>f

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<title>Responsive_website_static</title>

				<!--	Bootstrap	-->

				<link	rel="stylesheet"	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstra.	

min.css">

		</head>

		<body>

				<h1>Hello,	world!</h1>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

				</script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	files	

as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

				</script>

		</body>

</html>

The	above	markup	is	as	per	Bootstrap’s	recommended	markup.	You	can	see	that	it	has	got
some	additional	meta	tags	also.	These	meta	tags	are	used	to	render	the	webpage	properly
in	all	kinds	of	devices.	The	UTF-8	charset	is	used	to	tell	the	browser	that	your	webpage

contains	some	unicode	characters.

The	next	meta	tag	with	the	http-equiv="X-UA-Compatible"	and	content="IE=edge"
attributes	is	used	for	Internet	Explorer.	Sometimes,	Internet	Explorer	switches	to	the
compatible	mode	instead	of	using	its	best	mode	available.	Hence,	this	tag	tells	Internet
Explorer	to	use	its	best	mode	when	rendering	your	website.

The	next	meta	tag	is	a	viewport	tag.	It	tells	the	browser	to	scale	and	fit	the	webpage	to	the
whole	screen	in	mobile	devices.

Instead	of	downloading	the	Bootstrap	files	from	its	browser,	we	have	used	the	CDN	links
to	link	to	the	Bootstrap’s	CSS	and	JavaScript	files.	Since	Bootstrap	also	depends	on
jQuery,	we	have	also	used	the	CDN	link	of	the	jQuery	file.

Finally,	we	have	an	<h1>	tag	to	display	the	message	Hello	World	on	the	webpage.	So,
let’s	open	it	in	the	browser	and	check	whether	all	the	files	have	been	properly	loaded.	The
webpage	should	now	look	like	the	following	screenshot:

If	you	are	using	Google	Chrome,	you	can	easily	check	whether	all	the	CDN	files	are
loaded	properly.	Right-click	anywhere	on	the	webpage,	and	select	the	inspect	element.
Many	web	developer	tool	tabs	will	appear	below	the	screen.	Select	the	Network	tab	and
reload	the	page.	In	the	Status	Text	column,	you	will	see	many	response	codes	against
each	resource	name.	If	none	of	the	response	codes	fail,	then	all	the	files	are	loaded
properly.

Before	we	start	filling	any	content	inside	the	webpage,	we	need	to	create	a	container.	This
will	be	used	to	wrap	all	the	webpage	content	and	center	it	to	the	browser	screen.	There	are
two	different	container	classes	in	Bootstrap:	"container"	and	"container-fluid"	The
first	class,	"container",	has	a	fixed	width	and	centers	itself	to	the	browser	window.	The
second	class,	"container-fluid",	is	a	full	width	container.	It	spans	from	the	left	edge	to
the	right	edge	of	the	browser	window.	So,	let’s	define	a	container	inside	index.html	and
move	the	Hello	World	message	inside	it:

<div	class="container">

		<h1>Hello	World</h1>	

</div>

The	following	screenshot	shows	the	output:

You	can	see	how	it	has	moved	the	message	towards	the	center.	It	will	be	more	clearly
visible	if	we	apply	a	background	to	the	container.	So,	let’s	write	an	inline	CSS	to	the
container	markup:

<div	class="container"	style="background:	cyan">

		<h1>Hello	World</h1>	

</div>

Here’s	the	output	of	the	preceding	code:

You	should	always	define	a	container	before	using	Bootstrap’s	Grid	System.	We	can	now
proceed	to	define	rows.	To	define	a	row,	we	have	to	use	a	class	called	row.	So,	let’s
proceed	and	create	a	row	inside	the	container:

<div	class="container">

		<div	class="row">

		</div>

</div>

Creating	a	row	is	a	way	of	telling	Bootstrap	that	you	want	to	use	its	grid	system.	It’s	time
to	layout	vertical	columns	inside	the	above	row.	A	single	column	in	Bootstrap	will	occupy
all	the	space	inside	the	row.	Creating	two	columns	will	divide	the	row’s	space	into	two
equal	halves.	Hence,	the	more	columns	you	create,	the	row’s	space	will	be	divided
equally.	Bootstrap’s	grid	system	scales	up	to	12	columns.	If	you	create	more	than	12
columns,	the	remaining	columns	will	be	moved	automatically	to	a	new	row.	So,	let’s	first
create	a	single	column:

<div	class="container"	style="background:	cyan">

		<div	class="row">

				<div	class="col-xs-12"	style="background:	green">

						<h1>Hello	World</h1>

				</div>

		</div>

</div>

Let’s	take	a	look	at	the	output:

A	column	in	the	Bootstrap	grid	system	is	declared	using	the	amount	of	columns	it	will
span	across.	If	you	want	to	create	a	single	column,	you	need	it	to	span	across	12	Bootstrap
columns.	Hence,	we	get	the	class	"col-xs-12".	If	you	want	to	create	two	columns,	you
have	to	use	the	class	"col-xs-6".	This	will	make	each	column	span	across	six	Bootstrap
columns.	So,	let’s	proceed	and	create	two	columns	in	the	preceding	markup:

<div	class="container"	style="background:	cyan">

				<div	class="row">

						<div	class="col-xs-6"	style="background:	green">

								<h1>Hello</h1>

						</div>

				<div	class="col-xs-6"	style="background:	red">

						<h1>World</h1>

				</div>

		</div>

</div>

Let’s	take	a	look	at	the	output:

Bootstrap	has	defined	classes	for	devices	of	different	sizes.	In	the	preceding	examples,	we
have	been	using	the	classes	such	as	"col-xs-*".	Here	the	letters	xs	stand	for	extra-small
devices	and	the	devices	above	that	range.	Hence	a	class,	“col-xs-"	will	create	a	column
of	size	12	Bootstrap	columns	in	all	types	of	devices	starting	from	extra-small	devices.
There	are	four	different	types	of	Bootstrap	classes	for	four	different	sizes	of	devices:

Extra-Small	Devices	".col-xs-*":	These	devices	have	a	screen	size	less	than	768
px
Small	Devices	".col-sm-*":	These	devices	have	a	screen	size	less	than	992	px	and
larger	than	or	equal	to	786	px
Medium	Devices	".col-md-*":	These	devices	have	a	screen	size	less	than	1200	px
and	larger	than	and	equal	to	992	px
Large	Devices	".col-lg-*":	These	devices	have	a	screen	size	larger	than	1200	px

For	instance,	if	you	are	defining	columns,	keeping	in	mind	medium	devices	greater	than	or
equal	to	992	px,	then	these	columns	will	look	the	same	even	in	larger	devices	greater	than
or	equal	to	992	px	1200	px.	They	will	be	stacked	on	top	of	each	other	in	small	devices
smaller	than	992	px	and	extra-small	devices	768	px.	Hence,	if	you	define	columns	for
extra-small	devices,	then	they	will	look	the	same	in	all	kinds	of	devices.

Using	Bootstrap,	you	can	also	dynamically	change	the	number	of	columns	in	different
devices.	For	example,	using	the	classes	"col-xs-4"	and	"col-sm-6"	together	will	make	a
column	span	across	four	Bootstrap	columns	in	extra-small	devices,	and	six	Bootstrap
columns	in	small	devices.	The	steps	are	as	follows:

<div	class="container"	style="background:	cyan">

		<div	class="row">

				<div	class="col-xs-12	col-sm-6"	style="background:	green">

						<h1>Hello</h1>

				</div>

				<div	class="col-xs-12	col-sm-6"	style="background:	red">

						<h1>World</h1>

				</div>

		</div>

</div>

Let’s	take	a	look	at	the	output:

The	preceding	screenshot	shows	the	webpage	in	extra-small	devices.	The	browser	renders
one	column	per	row	because	of	the	class	"col-xs-12".

Hopefully,	now	you	have	got	an	idea	of	how	Bootstrap’s	columns	are	named.	So,	let’s
proceed	to	another	important	concept	in	Bootstrap’s	grid	system,	nesting	columns.

Nesting	columns
In	Bootstrap,	it	is	possible	to	define	columns	within	columns.	To	do	so,	you	need	to
declare	a	new	row	within	a	column	markup	and	then	proceed	to	create	columns	within	it.
Let’s	modify	the	previous	code	to	test	nested	columns:

<div	class="container"	style="background:	cyan">

		<div	class="row">

				<div	class="col-xs-12	col-sm-6"	style="background:	green">

						<h1>Hello</h1>

						<div	class="row">

								<div	class="col-xs-6"	style="background:	orange">

										<h2>PACKT</h2>

								</div>

								<div	class="col-xs-6"	style="background:	grey">

										<h2>PUBLISHING</h2>

								</div>

						</div>

				</div>

				<div	class="col-xs-12	col-sm-6"	style="background:	red">

						<h1>World</h1>

				</div>

		</div>

</div>

Let’s	take	a	look	at	the	output:

In	the	preceding	screenshot,	you	can	clearly	see	that	we	have	created	two	different
columns	within	the	first	column.	Since	the	second	column	doesn’t	have	any	nested
columns	in	it,	the	background	color	(cyan)	of	the	main	container	is	now	visible	to	us.	This
way	you	can	create	as	many	nesting	columns	as	you	want.

Implementing	Bootstrap’s	grid	system	in	a
Rails	application
It’s	time	to	finally	use	the	Grid	system	in	our	Rails	application.	As	stated	earlier,	we	will
create	an	application	called	Online	Packt	Shopping.	We	will	use	grid	system	in	this
chapter	and	create	a	CRUD	app	for	products.	We	will	continue	developing	this	app
throughout	this	book	as	we	learn	Bootstrap’s	different	features.

So,	let’s	proceed	and	create	a	Rails	application	called	Online	Packt	Shopping.

rails	new	OnlinePacktShopping

Once	the	application	is	created,	you	should	navigate	inside	the	newly	created	folder	and
start	the	Rails	server	to	test	if	the	application	is	properly	installed.	So,	let’s	do	it	using	the
following	command:

cd	/OnlinePacktShopping

rails	server

Access	the	webpage	at	http://localhost:3000.	It	should	show	the	default	Rails	app
Welcome	Board.

Our	product	will	have	the	following	four	attributes:

Name
Featured	Image
Description
Price

So,	let’s	scaffold	accordingly

Now,	we	will	scaffold	and	generate	a	product	model	with	the	following	command:

rails	generate	scaffold	Product	name:string	featImage:string	

description:text	price:decimal

This	command	will	create	a	model	named	NewProduct	and	its	associated	attributes.	You
need	to	migrate	the	newly	created	model	to	the	database.	You	can	do	so	using	the	rake
command,	which	is	as	follows:

rake	db:migrate

Once	this	is	done	successfully,	run	the	server	and	open:
http://localhost:3000/products.	You	should	see	an	empty	products	listing	page:

We	have	to	first	include	Bootstrap	in	this	application.	For	that,	we	will	use	the	CDN
method,	as	described	in	Chapter	2:	Introducing	Bootstrap	3	in	the	section	Installing
Bootstrap	in	a	Rails	project.

Once	you	have	included	Bootstrap	in	your	application,	you	can	reload	the	preceding
webpage	and	see	the	CSS	reset	the	Bootstrap	applies	on	the	HTML	elements.	You	can	also
see	that	the	font	has	changed	from	Times	New	Roman	to	Open	Sans.	So,	let’s	take	a	look	at
the	output:

We	will	follow	all	the	steps,	as	discussed	in	the	previous	section.	First,	we	need	to	define	a
container	for	our	application.	Open	application.html.erb,	which	is	present	in
app/views/layouts.

We	need	to	wrap	<%=	yield	%>	inside	the	Bootstrap	container	markup:

<div	class="container">

		<%=	yield	%>

</div>

Let’s	take	a	look	at	the	output:

Next,	we	need	to	change	the	way	the	content	appears	on	this	page.	We	don’t	need	a	table
to	list	our	products.	We	will	use	Bootstrap’s	grid	system	to	display	the	products	beautifully
in	a	responsive	grid	layout.

Open	index.html.erb	which	is	present	inside	the	products	folder	by	navigating	to
app/views/products.	If	you	are	familiar	with	Rails	development,	you	must	know	that
there’s	a	separate	folder	present	inside	the	views	folder	for	each	model.	The
index.html.erb	file	inside	each	model	folder	is	used	for	displaying	various	models.	Go
ahead	and	delete	everything	which	is	present	inside	this	file.

First,	we	need	a	page	header	that	tells	the	users	what	the	page	is	displaying.	So,	let’s	create
a	page	header	using	Bootstrap’s	".page-header"	class.	Insert	the	following	code	in
index.html.erb:

<div	class="page-header">

		<h3>All	Products</h3>

</div>

Next,	we	need	to	create	a	row	for	displaying	the	products.	Hence,	update	the	markup	and
add	the	following:

<div	class="row">

</div>

Now,	we	will	create	columns	inside	this	row.	For	our	application,	we	want	the	following
features	in	our	layout:

Columns	in	extra-small	mobile	devices
Columns	in	small	mobile	devices
Columns	in	medium	devices
Columns	in	large	devices

Hence,	the	combination	which	we	will	use	to	define	our	column	is	"col-xs-12	col-sm-6
col-md-4	col-lg-3".	Let’s	proceed	and	update	the	preceding	row	markup	with	a	single
column:

<div	class="row">

		<div	class="col-xs-12	col-sm-6	col-md-4	col-lg-3">

		</div>

</div>

We	will	now	loop	this	column	markup	for	each	product.	Hence,	we	need	to	update	our
markup	as	following:

<div	class="row">

		<%	@products.each	do	|product|	%>

		<div	class="col-xs-12	col-sm-6	col-md-4	col-lg-3">

		</div>

		<%	end	%>

</div>

Now,	we	need	to	fill	this	column	with	the	product	details:

<div	class="row">

		<%	@products.each	do	|product|	%>

		<div	class="col-xs-12	col-sm-6	col-md-4	col-lg-3	text-center">

				<h2><%=	product.name	%></h2>

				<img	class="img-responsive"	src=<%=asset_path	product.featImage	%>/>

				<p><%=	product.description	%></p>

				<h4>$<%=	product.price	%></h4>

				<%=	link_to	'Show',	product,	:class=>"btn	btn-primary"	%>

		</div>

		<%	end	%>

</div>

In	the	preceding	code,	I	am	looping	through	the	product	object	to	repeatedly	print	the
same	markup,	but	with	a	different	data.	For	each	product,	I	am	printing	its	name	using	the
<h2>	tag,	an	image	using,		tag,	product	description	in	a	<p>	tag,	product	price	in	the
<h4>	tag,	and	finally	the	link	to	the	product	page	using	link_to.

You	can	see,	that	while	printing	the	data	in	HTML	tags,	I	have	also	added	some	additional
classes.	These	classes	carry	some	CSS	styles	associated	with	them	that	are	written	by
Bootstrap.	For	example,	adding	a	class	"img-responsive"	to	an		tag	will	make	the
image	fit	to	the	size	of	the	grid,	irrespective	of	the	size	of	the	image.	I	have	also	used	the
combination	of	classes	btn	and	btn-success	which	are	used	for	the	<a>	and	<button>
tags.	These	classes	give	links	a	fancy	button	look.	We	will	learn	more	about	these	classes
in	subsequent	chapters.

Let’s	proceed	and	check	out	how	this	page	will	look	once	we	have	filled	data	in	our
database	using	the	New	Product	page:

The	preceding	screenshot	is	the	desktop	view.

The	preceding	screenshot	is	a	medium-sized	device	view.	This	will	be	the	view	in	most	of
the	tablets	in	the	market,	the	output	for	this	is:

You	can	mark	that	the	number	of	columns	is	reducing,	as	per	our	design	requirement.	The
preceding	image	shows	the	layout	in	smaller	devices.	The	following	screenshot	shows	the
view	for	extra-small	devices:

You	can	see	that	the	layout	has	changed	to	single-column	design	in	extra-small	devices.

There’s	still	a	thing	missing	in	this	page,	a	link	to	add	a	new	product.	Let’s	place	a	nice
fancy	New	Product	page	right-aligned	with	the	page	header.	An	update	page	header
markup	is	as	follows:

<div	class="page-header">

		<%=	link_to	'New	Product',	new_product_path,	:class=>"btn	btn-success	

pull-right"	%>

		<h3>All	Products</h3>

</div>

The	webpage	should	now	look	like:

You	must	be	wondering	how	I	pulled	the	New	Product	button	to	the	right	side	of	the	page.
If	you	see	the	markup	properly,	I	have	used	an	additional	Bootstrap	class	named	pull-
right.	These	classes	are	called	helper	classes	in	Bootstrap.	There	are	many	helper	classes
in	Bootstrap,	we	will	learn	more	about	them	as	we	proceed	with	the	book.

Summary
In	this	chapter,	we	understood	Bootstrap’s	Grid	System	and	created	two	different	types	of
projects:	a	static	demo	webpage	and	an	online	shopping	Rails	app.	We	saw	how	to	use	the
Grid	system,	and	make	our	homepage	responsive	to	various	sizes	of	devices.	There	are
still	many	pages	left	unstyled	in	the	current	app:	add	product	page,	edit	product	page,
and	single	product	page.	We	will	use	Bootstrap	to	style	them	in	subsequent	chapters.

In	the	next	chapter,	we	will	understand	various	typography	support	from	Bootstrap,	play
with	beautiful	Bootstrap	buttons,	and	do	more	with	images	using	Bootstrap.

Chapter	4.	Using	Bootstrap’s	Typography,
Buttons,	and	Images	in	a	Rails
Application
Styling	a	website’s	text,	images,	and	links	is	a	very	important	part	of	any	web	design.	In
the	preceding	chapter,	we	saw	how	to	define	a	proper	layout	of	a	website	using
Bootstrap’s	grid	system.	In	this	chapter,	we	are	going	to	focus	more	on	styling	the
website’s	content	like	text,	links,	and	images.

Bootstrap	comes	with	many	default	styles	for	various	HTML	elements.	For	example,	it
comes	with	default	styles	for	anchor	tags,	heading	tags,	ordered	and	unordered	lists,	and
many	more.	These	styles	are	applied	using	particular	classes	defined	by	Bootstrap.

Bootstrap	focuses	on	rapid	web	development.	So,	when	developers	with	little	knowledge
of	web	designing	start	using	Bootstrap,	it	doesn’t	let	them	down.	These	smaller	default
styles	of	Bootstrap	will	help	you	get	rid	of	browser	default	styles	of	many	HTML
elements.

In	this	chapter,	we	will	cover	the	following	topics:

Styling	typography
Creating	Bootstrap	buttons
Styling	images	in	Bootstrap

Setting	up
In	this	chapter,	we	are	going	to	use	the	same	static	website	setup,
Responsive_website_static,	that	was	created	in	Chapter	3,	Powering	a	Rails	App	with
Bootstrap’s	Grid	System.	Copy	the	folder	Responsive_website_static	and	rename	it	as
Bootstrap_default_styles.	Open	the	index.html	file	and	remove	everything	from	the
<body>	tag,	except	Bootstrap’s	JavaScript.	Change	the	title	of	the	page	to	Bootstrap
default	styles.	Your	index.html	file	should	now	have	the	following	content:

<!DOCTYPE	html>

		<html	lang="en">

				<head>

						<meta	charset="utf-8">

						<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

						<meta	name="viewport"	content="width=device-width,	initial-scale=1">

						<title>Bootstrap	default	styles</title>

						<!--	Bootstrap	-->

						<link	rel="stylesheet"	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"

>

				</head>

		<body>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	files	

as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</script>

		</body>

</html>

As	you	learned	in	Chapter	3,	Powering	a	Rails	App	with	Bootstrap’s	Grid	System,	you
should	place	a	div	container	inside	the	body	tag	to	wrap	all	of	the	website’s	content	and
place	them	properly	at	the	center	of	the	screen.	So,	let’s	create	a	container	using	the
following	markup:

<div	class="container">

</div>

Styling	typography
When	we	talk	about	typography,	we	mean	heading	tags,	paragraph	tags,	inline	text
elements,	proper	alignment,	text	transformations,	and	any	text	on	your	webpage.

Bootstrap	comes	with	default	styles	for	all	the	heading	tags	starting	from	<h1>	to	<h6>.	If
you	want	to	create	a	heading	tag	in	your	HTML	page,	you	can	directly	put	the	heading	tag
without	any	classes.	Let’s	have	a	look	at	an	example.	Insert	the	following	HTML	elements
inside	the	static	website	that	was	created	previously:

<div	class="container">

		<h1>Let's	save	the	Earth.</h1>

		<h2>Let's	save	the	Earth.</h2>

		<h3>Let's	save	the	Earth.</h3>

		<h4>Let's	save	the	Earth.</h4>

		<h5>Let's	save	the	Earth.</h5>

		<h6>Let's	save	the	Earth.</h6>

</div>

The	output	of	the	preceding	code	will	look	like	this	in	the	browser:

There	might	be	scenarios	when	you	don’t	use	a	heading	tag,	but	are	able	to	achieve	the
same	default	style	with	some	other	HTML	elements.	Bootstrap	will	help	you	to	do	this.
You	can	use	the	class	".h1"	through	".h6"	to	get	the	desired	typography	style.	Let’s
remove	all	the	heading	tags	in	the	preceding	example	and	use	paragraph	tags	instead.	This
time,	we	will	use	Bootstrap’s	heading	classes	to	get	the	same	style:

<div	class="container">

		<p	class="h1">Let's	save	the	Earth.</p>

		<p	class="h2">Let's	save	the	Earth.</p>

		<p	class="h3">Let's	save	the	Earth.</p>

		<p	class="h4">Let's	save	the	Earth.</p>

		<p	class="h5">Let's	save	the	Earth.</p>

		<p	class="h6">Let's	save	the	Earth.</p>

</div>

The	preceding	markup	will	look	like	this	in	the	browser:

It’s	time	to	add	a	subtitle	to	the	heading	tag.	Subtitles	are	very	useful	when	you	want	to
display	a	short	tag	line	for	your	website.	In	Bootstrap,	we	will	use	the	HTML	tag	"
<small>”	to	add	a	subtitle	within	any	heading	tag	of	your	choice.	A	small	tag	is	an	inline
tag	used	for	the	same	pupose	in	raw	HTML	as	well.	Take	the	following	code	as	an
example:

<div	class="container">

<h1>Save	Earth	<small>A	PACKT	Publishing	Initiative.</small></h1>

</div>

The	output	will	look	as	follows:

You	can	see	how	the	small	tag	appears	relatively	smaller,	as	compared	to	the	heading	tag
content,	even	though	they	are	present	in	the	same	tag.

Let’s	talk	about	styling	the	paragraph	tags.	Bootstrap	applies	a	default	size	of	14px	to	all
the	paragraph	tags.	You	don’t	have	to	use	any	class	for	applying	Bootstrap’s	style	to	a
paragraph	tag.	Let’s	check	out	an	example.	I	have	inserted	two	dummy	paragraphs	in	the
preceding	markup.	Let’s	apply	the	code:

<p>

		Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	In	fringilla	

dictum	libero,	vel	placerat	lorem	elementum	tristique.

</p>

<p>

		Pellentesque	laoreet	ipsum	libero,	eu	commodo	ligula	semperin.	Fusce	

vitae	feugiat	lorem.	Morbi	tempor,	nunc	in	auctor	blandit,	nibh	purus	

scelerisque	sem,…..

</p>

The	output	will	look	like	this	in	the	browser:

You	can	even	tweak	a	paragraph	tag	to	stand	out	among	the	rest	of	the	paragraph	tags	in
the	webpage	using	the	.lead	class.	Let’s	add	this	class	to	the	first	paragraph	in	the
preceding	markup	and	checkout	the	difference	that	it	creates:

<p	class="lead">

		Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	In	fringilla	

dictum	libero,	vel	placerat	lorem	elementum	tristique.

</p>

The	output	will	look	as	follows:

Bootstrap	even	allows	you	to	highlight	text	in	a	paragraph	using	the	<mark>	tag.	I	have
added	the	<mark>	tag	in	the	paragraph,	which	gets	highlighted	in	the	preceding	markup,
and	got	the	following	result:

Some	other	typography	features	are	as	follows:

You	can	strikethrough	any	text	by	wrapping	HTML		or	<s>	tags	around	the
text.
Underline	text	by	wrapping	it	with	HTML	<ins>	and	<u>	tags
You	can	also	use	the	HTML	<small>	tags	inside	the	paragraph	tags	to	display	smaller
text	relative	to	other	text	around	the	paragraph.
You	can	apply	the	bold	feature	to	text	using	HTML		and		tags
Italicize	text	using	HTML		and	<i>	tags

Aligning	text
Bootstrap	provides	helper	classes	for	alignment	of	textual	content.	These	classes	are:

text-left

text-right

text-center

text-justify

text-nowrap

Let’s	apply	text-right	to	the	preceding	paragraph	text	and	checkout	how	it	realigns	the
text:

<p	class="lead	text-right">

		Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	In	fringilla	

dictum	libero,	vel	placerat	lorem	elementum	tristique.

</p>

The	output	will	look	as	follows:

You	can	see	that	the	text	is	now	aligned	to	the	right	with	respect	to	the	position	of	the
container.

The	text-nowrap	class	removes	the	automatic	line	break	and	lets	the	paragraph	appear	in
a	single	line,	as	shown	in	following	screenshot:

Try	playing	with	other	alignment	classes	and	check	out	the	changes	in	the	browser.

Text	transformation
Transforming	a	text	to	uppercase,	lowercase,	or	capitalizing	it	are	sometimes	very
necessary	actions	in	some	web	applications.	Bootstrap	has	got	classes	to	perform	these
transformations:

text-lowercase

text-uppercase

text-capitalize

Text	transformation	through	CSS	or	using	Bootstrap’s	classes	is	definitely	not
recommended	while	designing	websites.	Crawlers	and	search	engines	parse	the	text	while
it	is	actually	written	in	a	webpage.	CSS	simply	helps	in	changing	the	way	it	is	displayed	in
the	browser.

Blockquotes
Blockquotes	are	very	important	Bootstrap	components.	They	are	used	to	quote	some
important	information	or	popular	sayings.	Let’s	check	out	how	to	create	a	blockquote	in
Bootstrap.

Place	the	following	markup	inside	the	container	of	our	static	website.

<blockquote>

		<p>Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	Integer	

posuere	erat	a	ante.</p>

</blockquote>

It	will	produce	the	following	output	in	the	browser:

You	can	see	that	a	vertical	bar	is	placed	to	the	left	of	blockquote.	Blockquote	comes	with
many	customization	options	in	Bootstrap.	For	example,	placing	a	<footer>	element	inside
the	blockquote	code	will	be	as	follows:

<blockquote>

		<p>Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	Integer	

posuere	erat	a	ante.</p>

		<footer>by	Syed	Fazle	Rahman</footer>

</blockquote>

The	output	for	the	preceding	code	will	look	as	follows:

You	can	also	change	the	alignment	of	blockquote	by	applying	the	class	blockquote-
reverse.	It	will	make	the	blockquote	look	as	shown	in	the	following	screenshot:

Styling	listing	elements
List	elements,	the		ordered	element,	and	the		unordered	element,	play	a	very
important	role	in	the	web.	They	are	used	to	create	a	list	of	items	such	as	creating	menus,
listing	features,	and	so	on.	Bootstrap	comes	with	some	default	styles	for	these	elements.	It
resets	the	browser’s	default	style	and	adds	a	minimal	style	to	them.	Let’s	style	the	listing
elements:

Call	Mommy

Go	out	for	dinner	tonight

Call	Girlfriend(s)	;-)

Attend	tomorrow's	lecture

The	output	will	look	as	follows:

Now,	let	us	look	at	ordered	lists:

		Call	Mommy

		Go	out	for	dinner	tonight

		Call	Girlfriend(s)	;-)

		Attend	tomorrow's	lecture

The	output	for	the	preceding	code	will	look	as	follows:

Let’s	add	some	helper	classes	by	Bootstrap	to	modify	the	look	of,	lists.	Adding	the	class
list-inline	to	any	of	the	preceding	lists	will	make	the	list	items	appear	inline,	that	is,
side	by	side,	as	shown	in	the	following	screenshot:

Adding	the	class	list-unstyled	to	any	of	the	list	elements	will	remove	the	bullets	or
numbers	from	the	list	items.	These	are	shown	in	the	following	screenshot:

Let’s	experiment	a	bit	and	nest	the	unordered	list	to	check	out	whether	Bootstrap	still
supports	us:

		Call	Mommy

		Go	out	for	dinner	tonight

		

				Call	Girlfriend(s)	;-)

				

				Julie

				Marry

				Monalisa

				Others	:-D

				

		

		Attend	tomorrow's	lecture

The	output	for	the	preceding	code	will	look	as	follows:

Oh	yes!	Bootstrap	does	support	the	nested	list.	Try	experimenting	with	another	list	and	a
combination	of	helper	classes.	To	change	the	style	of	bullets,	you	need	to	write	your	own
style.	Take	the	following	code	as	an	example:

ul{

list-style-type:	circle;

}

Creating	and	styling	buttons
In	the	preceding	chapter,	we	saw	a	gist	of	how	buttons	are	created	in	Bootstrap.	Any
anchor	tag	<a>	or	<button>	tag	can	be	made	to	look	like	a	fancy	button	using	Bootstrap.
To	create	a	button,	you	need	to	use	the	class	.btn	in	combination	with	many	other	helper
button	classes.	There	are	two	different	types	of	button	classes	in	Bootstrap:	for	different
sizes	and	for	different	colors.

The	button	classes	for	different	colors	are	as	follows:

btn-primary:	This	button	class	is	used	for	creating	a	dark-blue	button
btn-info:	This	is	used	for	creating	a	light-blue	button
btn-success:	This	button	class	is	used	for	creating	a	green-colored	button
btn-warning:	This	class	is	used	for	creating	a	pale	yellow-colored	button
btn-danger:	This	is	used	for	creating	a	red-colored	button
btn-default:	This	class	is	used	for	creating	a	white-colored	button
btn-link:	This	class	is	used	to	make	buttons	look	like	a	link	while	preserving	the
behavior	of	a	button

Let’s	see	the	buttons	in	action.	Here’s	the	markup	for	creating	a	single	button:

		PACKT	Pub

The	following	screenshot	shows	all	the	buttons	in	action:

Bootstrap	also	has	classes	for	creating	buttons	of	various	sizes.	These	classes	have	to	be
combined,	along	with	the	combination	of	btn	and	color	classes.	Classes	for	various	sizes
are:

btn-lg:	This	class	is	used	to	create	a	large	button
btn-sm:	This	class	is	used	to	create	a	small	button
btn-xs:	This	class	is	used	to	create	an	extremely	small	button
No	class:	This	class	is	used	for	a	default	size	button

The	following	example	shows	a	demo	of	using	these	classes:

		PACKT	Pub

Here’s	a	screenshot	displaying	all	button	sizes:

Bootstrap	buttons	also	come	with	various	states	like	active,	disabled,	and	so	on.	The
attributes	of	the	Bootstrap	button	are	as	follows:

The	active	state:	When	you	click	on	a	Bootstrap	button,	this	state	is	automatically
added	to	a	button.	If	you	want	a	button	to	always	look	like	an	active	button,	then	add
the	class	active	to	it:

		PACKT	Pub	–	Active

The	active	state	of	the	button	can	been	seen	in	this	screenshot:

As	seen	in	the	preceding	zoomed	image,	an	active	button	gets	an	inset	shadow	effect.

The	disabled	state:	To	make	a	button	disabled,	just	add	a	disabled	attribute	to	it:

<a	href="http://www.packtpub.com/"	class="btn	btn-info	btn-lg"	

disabled>

		PACKT	Pub	–	Disabled

A	disabled	button	is	not	clickable.

In	case	of	a	<button>	tag,	you	need	to	provide	a	disabled	value	to	the	disabled	attribute:

<button	type="button"	class="btn	btn-lg	btn-primary"	disabled="disabled">

		PACKT	Pub	–	Disabled

</button>

Which	elements	are	eligible	to	use	Bootstrap’s
button	classes?
This	is	one	of	the	most	important	things	to	remember.	You	cannot	apply	button	classes	to
any	HTML	element.	There	are	only	four	different	types	of	elements	that	can	be	used	as
Bootstrap’s	button:

The	HTML	anchor	tag:	<a>
The	HTML	button	tag:	<button>
The	HTML	input	tag	with	button	type:	<input	type="button"	/>
The	HTML	input	tag	with	submit	type:	<input	type="submit"	/>

Styling	images	in	Bootstrap
Images	are	essential	to	any	web	application.	It	is	very	important	to	display	them	properly.
Bootstrap	comes	with	many	different	classes	that	will	help	you	to	display	images
appropriately	in	your	web	app.

When	we	talk	about	responsive	images,	we	mean	an	image	that	fits	to	the	size	of	its
container	irrespective	of	its	own	size.	Creating	a	responsive	image	in	Bootstrap	is	just	a
matter	of	a	single	class.	This	feature	is	especially	useful	when	you	are	creating	a	portal	for
users,	and	you	aren’t	aware	of	the	size	of	image	they	are	going	to	upload.	Hence,	adding
Bootstrap’s	responsive	class	to	it	will	be	very	helpful	in	such	scenarios.	You	should	also
remember	that	Bootstrap	won’t	change	the	size	of	the	actual	image.	It	will	just	resize	it
using	CSS	properties.

The	class	used	for	creating	a	responsive	image	is	img-responsive.	Let’s	create	a	grid
using	Bootstrap’s	grid	system	and	then	add	a	responsive	image	to	checkout	how	it	fits	to
the	size	of	the	grid.	The	steps	to	add	a	responsive	image	are:

<div	class="container">

		<div	class="row">

				<div	class="col-xs-4"	style="background:	grey">

						

				</div>

		</div>

</div>

The	output	of	the	preceding	code	will	look	as	follows:

I	have	used	the	background	color	to	display	the	range	of	the	grid.	You	can	see	that	the
image	fits	to	the	grid.

Bootstrap	also	offers	some	helper	classes	for	decorating	the	image	on	the	go.	The	helper
classes	of	Bootstrap	are:

img-rounded:	This	creates	a	square	image	but	with	slightly	rounded	corners.
img-circle:	This	produces	a	circular	image.
img-thumbnail:	This	gives	the	image	a	clickable	effect.	This	also	adds	a	hover	effect
on	the	image.

The	following	screenshot	shows	all	the	preceding	classes,	respectively:

In	our	Online	Packt	Shopping	application,	we	have	used	the	responsive	image	class	to
display	the	product	listing	on	the	homepage.

Summary
Hope	you	enjoyed	using	various	styling	classes	of	Bootstrap.	You	can	head	over	to
Bootstrap’s	online	documentation	(http://getbootstrap.com/css/)	to	know	about	more	CSS
classes.	We	will	be	using	these	Bootstrap	classes	very	frequently	in	the	upcoming
chapters,	where	we	will	focus	on	completing	our	shopping	application.

http://getbootstrap.com/css/

Chapter	5.	Reinventing	Tables	and	Forms
in	Bootstrap
Tables	and	forms	are	good	old	fashioned	features	of	HTML.	They	have	been	playing	a
pivotal	role	on	the	Internet	since	its	inception.	With	Bootstrap	and	Rails,	we	are	going	to
reinvent	a	whole	new	way	of	creating	forms	and	tables	in	our	web	applications.

In	this	chapter,	we	will	take	a	look	at	various	features	of	Bootstrap	tables	and	forms.	We
will	use	Bootstrap’s	validation	classes	while	validating	forms	in	a	Rails	app.	Finally,	we
will	use	Bootstrap’s	tables	to	fill	the	stored	data.

We	will	continue	to	develop	the	same	demo	application	that	was	half	designed	in	the	last
chapter.	We	will	now	see	how	to	modify	the	single-product	page	by	using	Bootstrap’s
tables.	There	are	some	more	pages	which	were	left	unstyled	in	the	last	chapter:	the	New
Product	Form	page	and	Edit	Product	Form	page.	We	will	use	Bootstrap	forms	to	modify
these	pages	as	well.

However,	before	jumping	into	the	application,	we	need	to	understand	how	Bootstrap’s
tables	and	forms	are	created.	Hence,	we	will	start	by	creating	dummy	products,	as	always,
and	then	integrate	them	in	our	real	application.

Creating	Bootstrap	tables
Bootstrap	tables	are	normal	HTML	tables,	along	with	some	special	classes	provided	by
Bootstrap.	These	classes	come	with	various	different	CSS	styles	to	be	applied	to	the
HTML	tables.	Hence,	Bootstrap	gives	you	multiple	classes	to	create	different	types	of
tables,	as	per	your	requirements.

So,	let’s	create	a	basic	HTML	table	first.	For	this,	create	a	dummy	project	called
Bootstrap	Tables	and	create	an	index.html	file.	Copy	the	following	Bootstrap
recommended	HTML	markup	into	this	file:

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<title>Bootstrap	Tables</title>

				<!--	Bootstrap	-->

				<link	rel="stylesheet"	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"

>

		</head>

		<body>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	files	

as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</script>

		</body>

</html>

This	file	has	all	the	necessary	Bootstrap	files	included	from	the	CDN.	Let’s	proceed	with
Bootstrap	container	and	insert	code	into	the	file:

<div	class="container">

</div>

Let’s	create	an	HTML	table	inside	this	container:

<div	class="container">

		<table>

				<tr>

						<th>Item	Name</th>

						<th>Price	($)</th>

				</tr>

				<tr>

						<td>Item	1</td>

						<td>$114</td>

				</tr>

				<tr>

						<td>Item	2</td>

						<td>$234</td>

				</tr>

		</table>

</div>

If	you	preview	the	preceding	markup	in	the	browser,	you	will	see	a	not-so-awesome	table
with	two	columns,	here’s	the	screenshot:

It’s	time	to	check	out	the	magic	of	Bootstrap.	Just	add	the	table	class	to	the	preceding
table	in	the	screenshot,	and	you	will	find	a	properly	aligned	and	decent	table:

<div	class="container">

		<table	class="table">

		</table>

</div>

After	inserting	the	preceding	code,	you’ll	get	something	like	the	following	screenshot:

That’s	great,	isn’t	it?

Let’s	explore	more.	Now,	add	a	.table-striped	class	to	the	preceding	table	in	the
screenshot.	Also,	keep	the.table	class	in	the	table	markup.	Here,	.table-striped	is	a
helper	class	to	add	an	additional	alternate	striped	style	to	the	table:

<div	class="container">

		<table	class="table	table-striped">

		</table>

</div>

You	should	get	something	like	the	following	screenshot:

There’s	more.	To	get	a	bordered	table,	this	time	add	the	.table-bordered	class	to	the
table	class:

<div	class="container">

		<table	class="table	table-bordered">

		</table>

</div>

The	output	will	be	as	follows:

Some	other	helper	classes	include:

.table-hover:	Adding	this	class	to	the	table	highlights	a	row	when	the	mouse	is
hovered	over	it.
.table-condensed:	Add	this	class	when	you	want	to	reduce	the	amount	of	spacing	in
each	cell.

You	should	not	restrict	yourself	to	combining	the	preceding	classes	together	in	a	single
table.	I	leave	this	up	to	you	to	experiment.

There	are	five	different	contextual	classes	in	Bootstrap.	These	classes	are	added	to	a
particular	row	to	highlight	them	with	a	particular	color.	The	five	contextual	classes	in
Bootstrap	are:

active:	This	is	added	for	a	light	grey	background	color
success:	This	is	added	for	a	light	green	background	color
danger:	This	is	added	for	a	reddish	brown	background	color
info:	This	is	added	for	a	light	blue	background	color
warning:	This	is	added	for	a	light	yellow	background	color

The	following	screenshot	shows	all	the	preceding	contextual	classes	in	action:

The	preceding	contextual	class	can	also	be	applied	to	a	particular	cell.	For	example:

<tr>

		<td	class="warning">Warning	text	here</td>

</tr>

This	will	only	highlight	that	cell,	instead	of	the	whole	row.

Let’s	talk	about	the	responsiveness	of	the	Bootstrap	table.	By	default,	Bootstrap	tables	are
responsive	in	nature.	They	change	their	overall	width	and	also	the	width	of	the	columns,
as	per	the	size	of	the	browser	window.	There	might	be	times	when	you	have	hundreds	of
columns	in	your	table,	and	you	need	to	view	it	in	a	mobile	screen.	Imagine	100	columns
dividing	the	table	width	into	100	equal	parts.	Too	untidy,	isn’t	it?

Well,	here’s	Bootstrap	to	the	rescue!	Bootstrap	gives	you	a	class	called.table-
responsive,	which	adds	a	horizontal	scroll	bar	to	the	table	when	the	space	isn’t	sufficient.
This	also	makes	the	table	responsive	to	the	touch-based	scrolls	in	mobile	screens.

Please	note	that	you	shouldn’t	use	these	tables	to	structure	the	web	pages.	A	table-based
layout	is	outdated	and	is	generally	considered	bad	from	an	SEO	point	of	view.	You	should
only	use	tables	to	display	tabular	data.

Creating	Bootstrap	forms
Creating	forms	in	Bootstrap	is	as	easy	as	creating	tables,	which	we	have	just	seen	in	the
previous	section.	All	you	need	is	some	HTML	markup	and	proper	Bootstrap	classes	for
forms.	In	this	section,	we	will	again	create	a	dummy	project	called	Bootstrap	Forms	and
add	an	index.html	file.	Also,	fill	this	file	with	the	basic	Bootstrap	recommended	HTML,
as	shown	in	the	previous	section.	Do	not	forget	to	add	the	Bootstrap	container	in	it.

Let’s	add	a	simple	<form>	tag	to	the	preceding	container:

<div	class="container">

		<form>												

		</form>

</div>

You	don’t	have	to	attach	any	class	to	the	form	tag.	The	classes	here	are	added	to	the	form
elements.

Let’s	add	our	first	form	element	to	our	form.	We	will	place	a	text	field	and	an	associated
label	element.	Bootstrap	allows	you	to	create	a	form	group	which	consists	of	a	label	and	a
text	field.	This	helps	Bootstrap	to	properly	style	the	form	elements.	A	form	group	is
created	using	a	div	element	with	a	.form-group	class.	Let’s	add	a	form	group	to	the
preceding	form:

<div	class="container">

		<form>

				<div	class="form-group">

						<label	for="emailField">Email	address</label>

						<input	type="text"	class="form-control"	id="emailField"	

placeholder="Enter	email">

				</div>

		</form>

</div>

We	have	also	added	a	.form-control	class	to	the	text	field	to	apply	Bootstrap’s	style	for
text-based	fields.	You	can	also	add	this	class	to	other	text-based	fields	such	as
<textarea>,	<datetime>,	<email>,	and	so	on.

The	preceding	form	should	now	look	as	shown	in	the	following	screenshot:

In	a	similar	way,	we	will	fill	the	preceding	form	with	a	password	field:

<div	class="form-group">

		<label	for="passwordField">Password</label>

		<input	type="password"	class="form-control"	id="passwordField"	

placeholder="Enter	email">

</div>

This	gives	us	the	form	represented	in	the	following	screenshot:

It’s	time	to	add	a	checkbox	and	a	radio	button	to	the	form.	Bootstrap	provides	a	different
set	of	classes	for	checkbox	and	radio	buttons,	.form-control	isn’t	compatible	with	them.
This	time,	we	will	create	wrappers	with	checkbox	and	radio	classes.	For	example:

<div	class="checkbox">

		<label>

				<input	type="checkbox">	Remember	me

		</label>

</div>

This	will	create	a	properly	aligned	checkbox	to	your	form.	Just	replace	checkbox	with
.radio	and	create	a	radio	button	inside	it:

<div	class="radio">

		<label>

				<input	type="radio">	Male

		</label>

</div>

<div	class="radio">

		<label>

				<input	type="radio">	Female

		</label>

</div>

For	now,	we	will	go	with	the	checkbox	element	in	our	form,	as	shown	here:

Finally,	let’s	add	a	submit	button	to	the	form.	The	markup	for	a	submit	button	is	as
follows:

<button	type="submit"	class="btn	btn-success">Sign	in</button>

This	is	a	basic	Bootstrap	button	with	btn	and	.btn-success	classes.	The	first	class	gives	it
the	shape	of	a	button,	while	the	second	class	applies	a	color	to	it.

Our	final	Bootstrap	form	will	now	look	like	the	following	screenshot:

You	can	also	create	different	types	of	forms	in	Bootstrap.	For	example,	if	you	want	to
place	a	login	form	inside	the	top-thin	navigation	bar	of	your	website	then	the	preceding
form	is	definitely	not	suited	for	it.

Bootstrap	lets	you	place	all	the	form	elements	in	line	or	side	by	side,	so	that	it	can	be	fitted
properly	in	such	situations.	To	create	an	inline	form,	you	just	need	a	single	class,	as
always,	.form-inline.	You	need	to	add	this	class	to	the	preceding	<form>	tag.

<form	class="form-inline">

		...

</form>

You	should	get	the	following	output:

I	know	you	are	surprised	here!	Bootstrap	added	a	single	line	of	CSS	code	to	.form-group
when	the	.form-inline	class	was	added.	Here’s	the	code	snapshot	from	Bootstrap’s	CSS:

.form-inline	.form-group{

		display:	inline-block;

}

There	is	another	very	useful	HTML	form	element	called	<select>	used	to	create	a	drop-
down	menu.	You	can	add	the	.form-control	class	to	remove	the	default	browser	style
from	it	and	apply	Bootstrap’s	style.	For	example:

<select	class="form-control">

		<option>1</option>

		<option>2</option>

		<option>3</option>

		<option>4</option>

		<option>5</option>

</select>

To	disable	a	field	in	a	Bootstrap	form,	just	add	HTML5’s	disabled	attribute	to	any	text
field.	Bootstrap	will	apply	a	deactivated	style	to	it.	This	is	applicable	to	text-based	fields,
checkboxes,	radio	buttons,	form	buttons,	and	the	<select>	element.

You	can	also	control	the	sizes	of	each	text-based	field	and	select	elements	in	Bootstrap
using	the	following	sizing	classes:

.input-lg:	Adding	.input-lg	to	a	text	field	will	make	it	look	bigger	than	the	default
style
.input-sm:	Adding	.input-sm	to	a	text	field	will	make	it	look	smaller	than	the
default	style

Sometimes,	you	might	need	to	add	a	help	text	below	each	form	field.	To	do	this,	you	need
to	add	a	span	element	with	the	.help-block	class	inside	the	.form-group	element.	For
example:

<div	class="form-group">

		<label	class="control-label"	for="emailField">Email	Address</label>

				<input	type="text"	class="form-control"	id="emailField">

				Enter	a	valid	email	address.

		

</div>

Validation	classes	in	Bootstrap	forms
Bootstrap	works	well	with	HTML5’s	default	form	validation.	Adding	an	attribute	called
required	to	any	form	element	will	prevent	the	form	from	being	submitted.	Bootstrap’s
JavaScript	doesn’t	have	any	predefined	validation	functionality.	It	provides	you	with	CSS
classes	that	can	be	applied	to	the	form	elements	on	runtime.	These	classes	are	important	to
highlight	which	form	element	needs	attention	by	the	user.

Let’s	have	a	look	at	some	of	the	form	validation	classes	by	Bootstrap:

.has-error:	This	class	is	used	to	highlight	a	red	color

.has-warning:	This	class	is	used	to	highlight	a	dull	yellow	color

.has-success:	This	class	is	used	to	highlight	a	green	color

These	classes	are	applied	to	the	.form-group	element.	For	example,	adding	the	.has-
error	class	to	any	.form-group	element	will	highlight	both	label	and	form	elements	with
a	red	color:

<div	class="form-group	has-error">

		<label	for="emailField">Email	address</label>

		<input	type="text"	class="form-control"	id="emailField"	

placeholder="Enter	email">

</div>

You	should	get	something	like	the	following:

Please	note	that	Bootstrap	will	not	add	the	validation	classes	automatically.	You	have	to
programmatically	add	them	to	highlight	the	errors.

You	can	also	display	fancy	validation	icons	beside	each	form	element.	For	this,	you	need
to	add	a.has-feedback	class	to	the	.form-group	element.	You	also	have	to	add	a	span
element	with	a	Glyphicon	icon	in	it.	For	example:

<div	class="form-group	has-success	has-feedback">

		<label	class="control-label"	for="textField">Input	with	success</label>

		<input	type="text"	class="form-control"	id="textField">

		

</div>

The	preceding	code	will	give	you	the	following	output:

Adding	Bootstrap	tables	to	our	Rails	application
In	our	application,	OnlinePacktShopping,	we	have	a	product	details	page.	We	will	be
adding	Bootstrap’s	table	to	this	page	and	do	the	redesigning.

Start	the	server	and	check	out	the	product	page,	it	should	look	like	this:

We	are	going	to	redesign	the	page	using	Bootstrap,	it	should	look	like	this:

The	product	page	is	displayed	using	the	show.html.erb	view	present	in	the	products
folder.	To	reach	this	folder,	navigate	to	app/views/products/.	Open	this	page	and	delete
the	entire	markup	from	it.

First,	we	need	to	carry	the	page	header	style	from	the	home	page	to	this	screen.	So,	put	the
following	markup	in	the	file:

<div	class="page-header">

		<h3></h3>

</div>

In	the	home	page,	we	used	to	display	All	products	using	the	<h3>	tag.	This	time	we	will
fill	it	with	the	name	of	the	product.	The	product	name	is	carried	to	this	view	by	the
@product	model	using	the	name	property.	Hence,	@product.name	should	give	us	the	name
of	the	product:

<div	class="page-header">

		<h3><%=	@product.name	%></h3>

</div>

Next,	we	want	to	place	two	default	action	buttons,	Edit	and	Back,	on	this	page	header.	We
have	to	place	both	these	buttons	side	by	side.	Hence,	we	will	use	Bootstrap’s	list-inline
component	here:

<div	class="page-header">

		<ul	class="list-inline">

				<%=	link_to	'Edit',	edit_product_path(@product),	:class=>"btn	btn-

warning"	%>

				<%=	link_to	'Back',	products_path,	:class=>"btn	btn-default"	%>

		

		<h3><%=	@product.name	%></h3>

</div>

As	you	can	see	in	the	preceding	screenshot,	I	have	used	link_to	tag	to	create	links
dynamically.	The	path	is	produced	using	the	edit_product_path()	and	products_path
methods.	I	am	also	adding	classes	.btn,	.btn-warning	and	.btn-default	to	the	buttons.
This	will	produce	a	screen	that	looks	like	the	following:

I	have	used	.btn-warning	just	to	achieve	the	orange-colored	button.	It	is	not	related	to

any	warning	sign	here.

Let’s	pull	those	buttons	to	the	right	side	using	Bootstrap’s	helper	class	.pull-right	added
to	the		tag:

Now,	we	have	our	buttons	placed	properly.	Let’s	create	a	Bootstrap	table	to	display
product	data	in	it:

<table	class="table	table-bordered">

</table>

I	am	using	a	bordered	table	here.	Let’s	proceed	to	create	rows	and	columns:

<table	class="table	table-bordered">

		<tr>

				<td>Name</td>

				<td><%=	@product.name	%></td>

		</tr>

		<tr>

				<td>Image</td>

				<td><img	class="img-responsive"	src=<%=asset_path	@product.featImage	

%>/></td>

		</tr>

		<tr>

				<td>Description</td>

				<td><%=	@product.description	%></td>

		</tr>

		<tr	class="success">

				<td>Price</td>

				<td><%=	@product.price	%></td>

		</tr>

</table>

As	you	can	see	in	the	preceding	code,	I	have	displayed	all	the	data	present	inside
@product	model	in	each	row.	I	have	also	highlighted	the	last	row	using	the.success	class.
The	preceding	markup	will	give	us	a	page	that	looks	like	the	following:

That	was	easy!	Wasn’t	it?

We	still	have	to	show	the	notice	object	when	it	is	passed	from	the	Edit	page	and	Create
page	to	product	page.	Since	this	message	is	not	always	visible,	we	will	use	a	conditional
if	statement	to	display	it	in	this	product	page.

Go	ahead	and	add	the	following	markup	above	the	table:

<%	if	notice	%>

		<div	class="alert	alert-info">

				<p	id="notice"><%=	notice	%></p>

		</div>

<%	end	%>

I	am	using	Bootstrap’s	alert	feature	here	using	the	alert	and	.alert-info	class.	The	first
class	is	used	to	space	and	properly	align	the	text	and	the	second	class	is	used	for	giving	a
proper	background	color.	We	will	discuss	more	on	alerts	in	the	upcoming	sections.	The
preceding	markup	will	look	like	the	following:

Finally,	we	are	done	with	the	product	display	page.	We	will	now	proceed	to	design	the	Add
product	and	Edit	product	views.

Adding	Bootstrap	forms	to	our	Rails	application
There	are	two	template	files	that	we	have	to	edit	here:	new.html.erb	and	edit.html.erb.
Open	and	view	them.	You	will	find	that	both	of	these	files	have	the	exact	same	structure.
There’s	only	one	additional	Show	product	button	in	the	edit.html.erb	template.	Hence,
we	will	design	only	one	form,	new.html.erb,	and	then	reuse	it	in	the	second	template.

First,	delete	everything	that’s	inside	new.html.erb.	As	we	did	in	all	the	pages,	we	will
create	a	page-header	in	this	page	too.	To	do	this,	add	the	following	markup:

<div	class="page-header">

		<h3>Add	new	product</h3>

</div>

Let’s	proceed	to	add	a	cancel	button	to	the	home	page	in	the	preceding	page-header:

<div	class="page-header">

		<%=	link_to	'Cancel',	products_path,	:class=>"btn	btn-default	pull-right"	

%>

		<h3>Add	new	product</h3>

</div>

Since	we	are	having	only	button,	we	don’t	have	to	use	Bootstrap’s	list-inline	feature
here,	as	shown	in	the	following	screenshot:

It’s	time	to	create	a	form	for	creating	new	products.	We	will	use	Bootstrap’s	grid	system	to
create	an	8-Bootstrap-columns	container	form.	The	markup	for	this	is	as	follows:

<div	class="row">

		<div	class="col-xs-8	col-xs-offset-2">

		</div>

</div>

We	have	used	an	offset	class	to	center	align	the	whole	container.	Next,	we	will	add	the	tag
to	render	the	form	inside	the	preceding	container:

<div	class="row">

		<div	class="col-xs-8	col-xs-offset-2">

				<%=	render	'form'	%>

		</div>

</div>

The	preceding	code	will	fetch	the	old	unstyled	form	from	the	_form.html.erb	template.
So,	let’s	style	the	form	present	in	this	template.	Here’s	the	modified	markup:

<%=	form_for(@product)	do	|f|	%>

		<%	if	@product.errors.any?	%>

		<div	id="error_explanation">

				<h2><%=	pluralize(@product.errors.count,	"error")	%>	prohibited	this	

product	from	being	saved:</h2>

				

		<%	@product.errors.full_messages.each	do	|message|	%>

		<%=	message	%>

		<%	end	%>

		

		</div>

		<%	end	%>

		<div	class="form-group">

				<%=	f.label	:name,	:for=>"nameField"	%>

				<%=	f.text_field	:name,	:class=>"form-control",	:id=>"nameField"	%>

				</div>

		<div	class="form-group">

				<%=	f.label	:featImage,	:for=>"imgField"	%>

				<%=	f.text_field	:featImage,	:class=>"form-control",	:id=>"imgField"	%>

		</div>

		<div	class="form-group">

				<%=	f.label	:description,:for=>"descField"	%>

				<%=	f.text_area	:description,	:class=>"form-control",	:id=>"descField"	

%>

		</div>

		<div	class="form-group">

				<%=	f.label	:price,	:for=>"priceField"	%>

				<%=	f.text_field	:price,	:class=>"form-control",	:id=>"priceField"	%>

		</div>

		<ul	class="list-inline">

				<%=	f.submit	'Create',	:class=>"btn	btn-success"	%>

				<%=	button_tag	"Reset",	type:	:reset,	:class=>"btn	btn-default"	%>

		

<%	end	%>

If	you	look	carefully,	you’ll	see	that,	I	have	wrapped	all	the	labels	and	their	respective
form	elements	inside	a	.form-group	element.	For	each	label,	I	have	added	a	for	attribute
with	the	value	as	the	ID	of	its	corresponding	form	element.	For	each	text	field,	I	have
added	a	class	as	.form-control	and	an	ID	attribute	with	a	unique	ID	value.

At	the	end,	I	have	used	Bootstrap’s	list-inline	feature	to	align	two	action	buttons:
Submit	and	Reset.	I	have	added	class	btn-success	to	the	submit	button	and	btn-default
to	the	reset	button.

It’s	time	to	checkout	the	whole	Add	product	page	in	the	browser.	If	you	have
implemented	everything	correctly,	you	should	get	a	screen	that	looks	like	the	following:

We	will	now	move	on	to	edit	the	edit.html.erb	template	file.	We	just	need	to	make	some
modifications	to	the	new.html.erb	file’s	markup	to	make	it	ready	for	edit.html.erb.
Copy	all	the	contents	of	the	new.html.erb	file	and	paste	it	in	the	edit.html.erb	file.
Change	the	text	in	the	page-header	to	Edit	Product.	We	need	to	add	an	additional	button
to	this	section,	the	Show	Product	Button.	Hence,	the	final	markup	for	the	page-header	in
this	file	is	as	follows:

<div	class="page-header">

		<ul	class="list-inline	pull-right">

				<%=	link_to	'Show	Product',	@product,	:class=>"btn	btn-success"	%>

				<%=	link_to	'Cancel',	products_path,	:class=>"btn	btn-default"	%>

		

		<h3>Add	new	product</h3>

</div>

Summary
In	this	chapter,	we	saw	how	to	create	dummy	Bootstrap	forms	and	tables.	We	saw	many
different	types	of	variations	in	them	which	could	be	done	by	simply	changing	or	replacing
Bootstrap	classes.	We	then	moved	on	to	learn	various	Bootstrap	validation	classes	for
forms.

We	saw	how	to	use	helper	classes	to	make	both	forms	and	tables	even	more	exciting.
Finally,	we	moved	on	to	integrate	both	Bootstrap	forms	and	tables	in	our	application,
OnlinePacktShopping.	We	also	completed	the	whole	design	of	our	basic	application	using
Bootstrap’s	features.	In	the	upcoming	chapter,	we	will	learn	about	Bootstrap	navigation
bars.

Chapter	6.	Creating	Navigation	Bars
Creating	a	navigation	bar	has	been	one	of	the	most	difficult	tasks	for	a	novice	web
designer	or	a	web	developer,	with	no	experience	in	web	designing.	One	has	to	take	care	of
properly	aligning	links,	overflows,	styling	links,	making	the	whole	bar	responsive,	and	so
on.

Bootstrap	gives	you	plenty	of	choice	to	create	and	design	a	navigation	bar	without	diving
deep	into	its	CSS.	Just	like	creating	any	other	components	in	Bootstrap,	creating	a
navigation	bar	also	requires	us	to	follow	a	proper	markup	structure.	In	this	article,	we	will
learn	how	to	create	a	Bootstrap	navigation	bar,	and	how	we	can	modify	it	to	fit	our	needs.
We	will	also	check	out	various	other	ways	of	representing	a	navigation	bar	in	a	website.
We	will	also	integrate	a	fixed	navigation	bar	in	our	current	application,
OnlinePacktShopping.

Getting	started	with	a	navigation	bar
As	always,	we	will	start	by	creating	a	dummy	project	to	learn	and	create	a	static
navigation	bar.	Create	a	folder	called	BootstrapNavigation	and	create	an	index.html	file
in	it.	We	will	use	the	same	Bootstrap	recommended	HTML	markup	for	the	navigation	bar,
the	code	is	as	follows:

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<title>Bootstrap	Navigation	Bar</title>

				<!--	Bootstrap	-->

				<link	rel="stylesheet"	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"

>

		</head>

		<body>

				<h1>Hello	World</h1>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	files	

as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</script>

		</body>

</html>

As	per	the	preceding	code,	a	some	point,	you	should	have	a	Hello	World	message	on	your
browser	window.	Let’s	proceed	and	remove	this	message.	To	create	a	navigation	bar,	we
need	to	create	a	div	class	with	the	navbar	attribute:

<div	class="navbar">

</div>

Then,	we	need	to	select	a	color	for	the	navigation	bar	we	want	to	use.	Bootstrap	gives	you
two	different	color	variants:	default	gray	and	inverted	black.	They	can	be	applied	by	using
the	.navbar-default	and	.navbar-inverted	classes,	respectively.	We	will	proceed	with
.navbar-default	in	our	application:

<div	class="navbar	navbar-default">

</div>

Next,	we	have	added	a	container	to	wrap	all	the	elements	of	the	navigation	bar	and	set	the
proper	overflow.	We	will	use	.container-fluid	to	create	a	full-width	container	instead	of
a	fixed	one.	This	will	allow	us	to	use	all	the	available	space	inside	the	.navbar	element.
The	code	is	as	follows:

<div	class="navbar	navbar-default">

		<div	class="container-fluid">

		</div>

</div>

You	can	use	the	.container	class	for	a	fixed	width	container	inside	the	navigation	bar.
The	navbar	is	divided	into	two	important	sections:

.navbar-header:	This	is	used	for	inserting	a	website’s	branding

.navbar-collapse:	This	is	used	to	collect	all	the	links	and	other	useful	stuff	that	go
inside	a	navigation	bar

So,	let’s	proceed	and	create	each	one	of	them	step	by	step.	Insert	.navbar-header	in	our
markup:

<div	class="navbar	navbar-default">

		<div	class="container-fluid">

				<div	class="navbar-header">

				</div>

		</div>

</div>

We	will	now	place	the	website’s	name/branding	using	the	anchor	tag.	Remember	to	add
a.navbar-brand	class	to	apply	an	appropriate	style	to	index.html.	Let’s	try	adding	more
elements	into	it:

<div	class="navbar	navbar-default">

		<div	class="container-fluid">

				<div	class="navbar-header">

						OnlinePacktShopping

				</div>

		</div>

</div>

If	you	check	out	the	index.html	file	now,	you	should	see	something	like	this:

Next,	we	will	see	one	of	the	most	important	elements	of	the	navigation	bar,	the	collapsed
icon.	This	icon	is	visible	when	the	website	is	opened	in	small	browsers,	such	as	cell
phones.	This	icon	will	then	be	responsible	for	opening	the	collapsed	menu	when	tapped
on.	Let’s	try	adding	.navbar-collapse	element:

<div	class="navbar-header">

		<button	type="button"	class="navbar-toggle	collapsed"	data-

toggle="collapse"	data-target="#collapsibleMenu">

		

		

		

		</button>

		OnlinePacktShopping

</div>

As	you	can	see	in	the	preceding	code,	this	button	should	be	placed	inside	the	.navbar-
header	class.	It	should	have	a	.navbar-toggle	collapsed	class.	The	first	class	here,	is
used	to	apply	proper	styling	and	pull	it	to	the	right	side	of	the	navigation	bar.	The	second
class	is	used	to	keep	a	track	of	the	state	of	the	button	from	collapsed	to	noncollapsed.	You
should	also	add	two	custom-data	attributes	to	this	element:	data-toggle	and	data-
target.	The	first	one	is	used	to	initiate	the	collapse	functionality	in	Bootstrap’s	JavaScript
and	the	second	attribute	is	used	to	identify	the	target	menu	to	add	the	collapse
functionality.	The	data-target	attribute	should	contain	the	ID	of	the	menu,	which	will	be
collapsing	on	smaller	browsers.	We	will	create	this	menu	soon.

Inside	this	button,	there	should	be	three	different	HTML	span	elements.	These	elements
have	an	icon-bar	class,	which	is	responsible	for	drawing	small,	horizontal	lines.	So,	when
all	three	of	them	are	placed	together,	we	get	a	stacked-like	icon.	If	you	resize	the	browser
window	to	a	smaller	size,	you	will	find	this	button	placed	to	the	right	of	the	navigation	bar.
Let’s	see	the	output:

We	are	done	with	navbar-header	here.	Let’s	proceed	to	the	.navbar-collapse	element.
This	element	will	wrap	all	the	navigation	bar	links,	search	fields,	dropdowns,	and	so	on.
Make	sure	that	you	add	this	element	as	a	sibling	to	.navbar-header	and	not	inside
.navbar-	header.	Let’s	add	the	collapse	element	into	it:.

<div	class="collapse	navbar-collapse"	id="collapibleMenu">

</div>

This	element	should	contain	the	same	ID	as	used	in	the	data-target	attribute	of	the
.navbar-toggle	button.	When	you	click	on	the	toggle	button,	this	whole	portion	will	be
toggled.	Next,	we	will	add	some	links	to	our	navigation	bar.	We	will	use	an	unordered	list
with	nav	and	.navbar-nav	classes	added	to	it.	Both	these	classes	are	for	styling	purposes.

<ul	class="nav	navbar-nav">

Insert	links	using	the		tag	and	the	<a>	tag,	as	follows:

<ul	class="nav	navbar-nav">

		Home

		About	us

		Contact	us

		Support

This	should	give	you	a	beautiful	navigation	bar	with	some	links	in	it,	as	shown	in	the
following	screenshot:

If	you	try	to	make	the	browser	window	smaller	and	click	on	the	toggle	button,	you	should
see	a	responsive	menu	in	action,	as	shown	in	the	following	screenshot:

Adding	the	.navbar-left	and	.navbar-right	classes	to	the	.navbar-nav	list	will	align
the	links	to	the	left	and	right	side	of	the	navigation	bar,	respectively,	as	shown	in	the
following	screenshot:

As	learned	in	the	previous	chapter,	you	can	also	create	a	Bootstrap	form	and	place	it	in	the
navigation	bar.	You	don’t	have	to	add	form-inline	to	place	form	elements	horizontally
here.	Bootstrap	gives	you	a	special	form	class	for	the	navigation	bar,	.navbar-form.
Adding	this	class	properly	styles	the	form,	as	per	the	navigation	bar	alignment.

<form	class="navbar-form	navbar-left">

		<div	class="form-group">

		<input	type="text"	class="form-control"	placeholder="Search">

		</div>

		<button	type="submit"	class="btn	btn-default">Submit</button>

</form>

Make	sure	that	you	add	the	form	inside.navbar-collapse	since	it	is	the	wrapper	of	all	the
navigation	bar	elements.	This	should	give	you	a	navigation	bar,	as	shown	in	the	following
screenshot:

The	final	markup	for	the	navigation	bar,	till	now,	is	as	follows:

<div	class="navbar	navbar-default">

		<div	class="container-fluid">

				<div	class="navbar-header">

						<button	type="button"	class="navbar-toggle	collapsed"	data-

toggle="collapse"	data-target="#collapibleMenu">

								

								

								

						</button>

						OnlinePacktShopping

				</div>

				<div	class="collapse	navbar-collapse"	id="collapibleMenu">

						<ul	class="nav	navbar-nav	navbar-right">

						Home

						About	us

						Contact	us

						Support

					

						<form	class="navbar-form	navbar-left"	role="search">

								<div	class="form-group">

								<input	type="text"	class="form-control"	placeholder="Search">

								</div>

						<button	type="submit"	class="btn	btn-default">Submit</button>

						</form>

				</div>

		</div>

</div>

Navigation	bar	helper	classes
There	are	many	helper	classes	available	for	navigation	bar	elements.	Some	of	them	are	as
follows:

.navbar-btn:	When	you	want	to	place	a	Bootstrap	button	in	a	navigation	bar,	use
this	class	to	properly	align	it
.navbar-text:	If	you	want	to	display	some	plain	text,	use	this	class	to	make	it
properly	visible
.navbar-link:	If	you	want	to	add	a	link,	but	not	inside	the	.nav	element,	then	use
this	class
.navbar-fixed-top:	If	you	add	this	class	to	the	parent	of	the	navigation	bar	navbar,
it	will	stick	to	the	top	of	the	browser	window	while	scrolling
.navbar-fixed-bottom:	This	class	fixes	the	navigation	bar	to	the	bottom	of	the
window	screen	and	it	remains	there	while	scrolling
.active:	Adding	this	class	to	any	of	the		elements	will	highlight	the	link,	as
compared	to	other	links

Adding	a	navigation	bar	to	the	Rails
application
We	will	add	the	preceding	navigation	bar	to	our	application.	We	will	place	our	shop’s
branding	in	it	and	also	place	some	links	to	our	company	pages.	We	will	also	use	a	black
color	navigation	bar	here	and	make	it	stick	to	the	top	of	the	browser	window.

Go	to	App	|	Views	|	Layout	and	open	the	application.html.erb	file.	We	will	place	the
navigation	bar	here,	since	this	will	be	globally	visible	throughout	the	website.	Place	the
following	markup	above	the	.container	element	in	this	file:

		<div	class="navbar	navbar-inverted	navbar-fixed-top">

				<div	class="container-fluid">

						<div	class="navbar-header">

								<button	type="button"	class="navbar-toggle	collapsed"	data-

toggle="collapse"	data-target="#collapibleMenu">

										

										

										

								</button>

								OnlinePacktShopping

						</div>

						<div	class="collapse	navbar-collapse"	id="collapibleMenu">

						<ul	class="nav	navbar-nav	navbar-right">

						Home

						About	us

						Contact	us

						Support

						

						<form	class="navbar-form	navbar-left"	role="search">

						<div	class="form-group">

						<input	type="text"	class="form-control"	placeholder="Search">

						</div>

						<button	type="submit"	class="btn	btn-default">Submit</button>

						</form>

				</div>

		</div>

</div>

The	website	should	now	look	as	shown	in	the	following	screenshot:

As	you	can	see,	there	is	some	overlap	here.	This	is	happening	because	of	the	navbar-
fixed-top	class.	Since	the	navigation	bar	is	now	floating	on	top	of	the	window,	the	rest	of
the	body	has	started	to	appear	from	the	top	of	the	window	as	well.	We	need	to	write	our
own	small	piece	of	CSS	code	to	fix	this	situation.

We	need	to	add	an	additional	custom	class	to	the	.container	element	in	the
application.html.erb	page.	Let’s	give	it	a	.bodyContent	class:

<div	class="container	bodyContent">

		<%=	yield	%>

</div>

Now,	open	the	application.css	file	by	navigating	to	the	App	|	Assets	|	Stylesheets
folder.	Add	the	following	CSS	code	to	it:

.bodyContent	{

		margin-top:	50px;

}

We	are	adding	a	margin	of	50px	to	the	.bodyContent	element	to	push	it	down	as	the
navigation	bar	overlaps	it.	You	have	a	page	that	now	appears	properly,	as	shown	in	the
following	screenshot:

Summary
In	this	chapter,	we	saw	how	to	create	a	simple	navigation	bar,	and	how	to	make	it
responsive.	We	also	saw	how	to	change	the	look	of	the	navigation	bar	by	using	the
.navbar-inverse	class.	Finally,	we	went	ahead	and	integrated	this	navigation	bar	into	our
application.	I	hope	you	had	fun	creating	a	responsive	Bootstrap	navigation	bar.

In	the	next	chapter,	we	are	going	to	learn	about	some	more	Bootstrap	components	such	as
breadcrumbs,	badges	and	labels,	alerts,	and	so	on.	We	will	also	use	many	of	them	in	our
current	application.

Chapter	7.	Various	Other	Bootstrap
Components
Until	now,	we	have	used	some	of	the	most	popular	Bootstrap	components	such	as	forms,
buttons,	navigation	bar,	and	so	on.	In	this	chapter,	we	will	explore	some	more	Bootstrap
components,	which	come	ready	to	use	out	of	the	box.	We	might	not	be	able	to	use	all	these
components	in	our	existing	application,	but	we	will	make	sure	that	we	don’t	miss	any
important	ones.

Bootstrap	Breadcrumbs
If	you	are	a	webmaster,	then	you	must	know	that	Google	considers	breadcrumbs	for	the
proper	SEO	of	a	website.	Breadcrumbs	are	also	important	for	displaying	the	current	page’s
position,	as	compared	to	the	whole	website.	Let’s	consider	that	you	are	viewing	a	product
page	on	a	website.	Then,	the	position	of	a	product	might	be	Home	|	Apparels	|	Jeans	|
Bare	jeans.	This	is	an	example	of	a	breadcrumb.	Google	and	other	search	engines	use
breadcrumbs	to	properly	understand	a	website’s	hierarchy	and	the	organization	of	its	sub
pages.

You	can	easily	create	stylish	breadcrumbs	for	your	website	with	Bootstrap.	Bootstrap	uses
traditional	HTML	ordered	list	elements	to	create	a	breadcrumb.	Here’s	an	example	of
elements:

<ol	class="breadcrumb">

Home

Apparels

Jeans

<li	class="active">Bare	Jeans

The	preceding	code	creates	an	elements	as	shown	in	the	following	screenshot:

You	can	also	use	HTML’s	unordered	list	element	in	the	same	style,	as	in	the	preceding
code.	It	will	give	the	same	result.

The	pagination	component
You	might	have	seen	paginations	at	the	bottom	of	any	blog	type	website.	It	will	either
show	previous	and	next,	or	page	numbers.	Pagination	helps	visitors	to	easily	navigate
and	skip	some	content	of	your	website.	It	also	comes	in	handy	while	creating	a	comments
section	with	lots	of	comments	to	display.

Bootstrap	paginations	are	also	created	using	HTML’s	unordered	list	element	You	have	to
use	the	.pagination	class	this	time:

<ul	class="pagination">

		«

		1

		2

		3

		4

		5

		6

		7

		»

In	the	preceding	code,	«	and	»	are	used	to	display	double	angle	symbols.
This	produces	the	following	in	the	browser:

This	component	also	comes	with	many	helper	classes	such	as:

.disabled:	This	is	to	make	an	item	in	the	pagination	list	non	clickable

.active:	This	is	to	display	the	current	position	of	the	page

.pagination-lg	:	This	is	used	for	larger	pagination	buttons

.pagination-sm:	This	is	used	for	smaller	pagination	buttons

Bootstrap	labels	and	badges
Labels	and	badges	are	very	basic	components	in	Bootstrap.	You	can	use	them	with	any
text-like	components	to	display	a	highlighted	text.	Here’s	an	example	of	labels	and
badges:

<h3>Packt	Publishing	New	Books!

</h3>

Labels	are	created	using	inline	elements	such	as	,	it	has	got	a	class	.label	and
many	color	classes	such	as	.label-default	for	a	dark	gray	color.

Different	colors	available	for	labels	are:

.label-primary:	This	is	for	a	dark	blue	color

.label-info:	This	is	for	a	light	blue	color

.label-success:	This	is	for	a	green	color

.label-warning:	This	is	for	a	yellow	color

.label-danger:	This	is	for	a	red	color

Badges,	on	the	other	hand,	are	labels	with	a	self	collapsing	nature.	This	means	that	when
there’s	no	content	inside	a	badge,	it	will	not	appear	in	the	HTML	page.	This	gives	you	an
option	to	create	a	notification	icon	using	badges.	They	are	mostly	used	for	displaying
numbers.	Badges	also	do	not	have	color	variants	unlike	labels.	Here’s	an	example	of	a
badge:

Bootstrap	jumbotrons
Jumbotron	is	another	useful	component	in	Bootstrap.	It’s	used	to	display	large	catchy
headlines	in	a	webpage.	It’s	especially	used	while	creating	landing	pages.	Here’s	an
example	of	a	jumbotron	class:

<div	class="jumbotron">

		<h1>What	an	amazing	life	it	is!</h1>

		Read	more

</div>

A	jumbotron	class	comes	with	a	different	set	of	styles	for	heading	tags	and	buttons.	You
will	see	the	difference	in	font	sizes	of	the	text	inside	and	outside	the	jumbotron
component.	The	preceding	code	produces	the	following	in	a	browser:

Alerts
Alerts	are	extremely	important	to	communicate	messages	with	your	website	users.	They
stand	out,	bright	and	distinguished	from	the	rest	of	the	page	elements.	You	should	not
mistake	these	alerts	with	the	alert	windows	in	browsers.	These	alerts	are	HTML	elements
designed	to	behave	like	an	alert.

A	simple	alert	markup	is	shown	in	the	following	code:

<div	class="alert	alert-success">Message	sent!</div>

This	produces	the	following	result	in	a	browser:

Alerts	come	with	four	different	color	variants:

.alert-success:	This	varient	is	used	for	a	green	color

.alert-info:	This	is	used	for	a	light	blue	color

.alert-warning:	This	for	a	dull	orange	color

.alert-danger:	This	is	used	for	a	red	color

The	preceding	alert	is	not	dismissible.	To	display	a	cross	button	at	the	right	edge	of	the
alert	and	to	add	the	dismiss	option,	you	need	to	follow	the	given	markup:

<div	class="alert	alert-success	alert-dismissible">

		<button	type="button"	class="close"	data-dismiss="alert"	>

					×		

		</button>

		Message	sent!

</div>

First,	you	have	to	add	a	.alert-dismissible	class	to	the	alert	element.	Next,	you	have	to
add	a	button	element	with	the	.close	class.	The	button	should	also	have	a	custom	data
attribute	named	dismiss	with	the	alert	value	in	it.	This	will	let	Bootstrap’s	JavaScript
understand	which	component	to	hide	when	the	button	element	is	clicked	on.	To	display	a
cross	character	inside	the	alert,	you	should	add	the	×	HTML	code.

To	remove	an	element	from	the	DOM	automatically	after	sometime,	you	can	take	the	help
of	the	following	jQuery	snippet:

setTimeout(function(){

		$('#alert-message').alert('close');

},	3000);

In	the	preceding	code,	we	used	the	ID	of	the	alert	message,	which	is	#alert-message	in
our	case	and	removed	it	from	the	DOM	using	Bootstrap’s	method	called	alert().	You
need	to	pass	the	string	close	to	the	alert()	method	to	remove	the	alert	message.

While	displaying	hyperlinks	inside	alerts,	you	should	give	a	.alert-link	class	to	the
anchor	element.	This	will	apply	a	proper	CSS	style	to	it.

Creating	a	progress	bar
Progress	bars	are	essential	to	show	the	progress	of	an	action	to	the	users.	You	can	create
attractive	progress	bars	easily	using	Bootstrap’s	markup.

Here’s	the	markup	for	a	basic	progress	bar:

<div	class="progress">

		<div	class="progress-bar"	style="width:	60%;"></div>

</div>

The	progress	bar	should	be	wrapped	inside	a	div	element	with	the	.progress	class.	This
div	element	behaves	as	a	container	for	the	progress	bar.	The	actual	progress	is	shown
using	a	child	div	element	with	the	.progress-bar	class.	You	can	write	a	JavaScript	code
to	change	the	CSS	width	of	this	element	to	see	the	transition	of	the	progress	bar.

The	preceding	progress	bar	looks	like	the	following	in	a	browser:

To	add	a	label	to	the	progress	bar,	you	can	add	text	inside	the	.progress-bar	element.
Take	the	text	in	the	following	code	as	an	example:

<div	class="progress">

		<div	class="progress-bar"	style="width:	60%;">60%</div>

</div>

This	produces	the	percentage	of	the	action’s	progress,	as	shown	in	the	following
screenshot:

You	can	change	the	color	of	the	.progress-bar	element	by	adding	the	following	classes:

.progress-bar-success:	This	is	for	a	green	color

.progress-bar-info:	This	is	for	a	light	blue	color

.progress-bar-danger:	This	is	for	a	red	color

.progress-bar-warning:	This	is	for	a	yellow	color

Now	comes	the	interesting	part!	You	can	add	stripes	to	the	progress	bar	by	adding	an
additional	class,	.progress-bar-striped	to	the	.progress-bar	element.

<div	class="progress">

		<div	class="progress-bar	progress-bar-striped"	style="width:	60%;">60%

</div>

</div>

This	produces	the	following	result	in	the	browser:

Wait!	There’s	more.	Add	the	.active	class,	along	with	.progress-bar-striped	and	see
an	interesting	animation	happening.

Panels
Bootstrap	panels	are	box-like	components	that	are	used	to	place	HTML	components.	You
might	want	to	display	a	box	with	rounded	corners	and	a	light-colored	border	around	it.
This	is	the	component	you	should	use	in	such	cases.

Here’s	an	example	panel:

<div	class="panel	panel-default">

		<div	class="panel-body">

				I	am	inside	a	box!

		</div>

</div>

This	produces	the	following	result	in	the	browser:

The	panel	component	becomes	more	interesting	when	you	add	a	header	and	a	footer	to	it.
Yes,	you	read	it	right.	Panels	come	with	custom-designed	headers	and	footers	to	create
widget-like	elements.	If	you	see	it	carefully,	you	will	find	that	the	text	goes	inside	a
.panel-body	element.	We	will	now	add	headers	and	footers	to	the	following	panel:

<div	class="panel	panel-default">

		<div	class="panel-heading">

				Widget	1

		</div>

		<div	class="panel-body">

				I	am	inside	a	box!

		</div>

		<div	class="panel-footer">

				by	Syed	Fazle	Rahman

		</div>

</div>

This	produces	the	following	result	in	the	browser:

Panels	also	come	in	different	colors:

.panel-success:	This	is	used	for	a	green	color

.panel-primary:	This	is	used	for	a	dark	blue	color

.panel-info:	This	is	used	for	a	light	blue	color

.panel-warning:	This	is	used	for	a	yellow	color

.panel-danger	:	This	is	used	for	a	red	color

The	following	screenshot	displays	a	green	color	panel:

Summary
Through	this	chapter,	we	learned	how	to	use	some	of	the	interesting	and	useful
components	of	Bootstrap.	These	components	are	generally	used	to	give	a	better	user
experience	to	the	users	of	the	application.	We	saw	how	to	use	breadcrumbs,	paginations,
labels	and	badges,	and	jumbotrons.	We	understood	what	alerts	are	and	when	to	use	them.
We	then	proceeded	to	create	a	beautiful	progress	bar	and	widget	using	panels.

We	will	integrate	these	components	in	our	existing	application	whenever	needed	in	the
next	chapter.

Chapter	8.	Working	with	Bootstrap
Modals
Every	developer	has	used	an	alert/prompt	window	when	dealing	with	web	development.
They	are	generally	used	to	display	important	messages,	accept	information	from	the	user,
display	warning	messages,	and	for	many	different	purposes.	The	problem	with	these
traditional	dialog	windows	is	that	they	have	become	outdated,	and	our	visitors	probably
hate	them.	It’s	no	longer	recommended	to	use	dialog	windows	from	a	better	user
experience	perspective.

To	solve	this	problem,	web	developers	discovered	another	better	way	to	replace	pop-up
windows.	They	used	a	hidden	HTML	element	inside	the	same	web	page.	Whenever
needed,	this	hidden	element	was	displayed	with	the	help	of	some	JavaScript	code	and	CSS
styling.	Bootstrap’s	modal	does	exactly	the	same.	It	is	a	flexible	dialog	prompt	with
minimum	required	functionality.	It	has	got	its	own	Bootstrap	styling	and	animation.

In	this	chapter,	we	will	learn	how	to	create	a	Bootstrap	modal	and	its	various	types	and
functionalities.	We	will	also	integrate	a	modal	component	in	our	Rails	application.

Getting	started	with	modals
First,	we	will	create	a	static	application	to	create	and	test	various	types	of	Bootstrap
modals.	Once	we	are	done	with	the	basics	of	modals,	we	will	proceed	to	integrate	it	in	our
existing	Online	Shopping	Rails	application.

Create	a	new	folder	called	Bootstrap	Modals	in	your	system.	Now,	create	a	new	file
called	index.html	and	paste	the	following	starter	template	in	it:

<!DOCTYPE	html>

		<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<title>Bootstrap	Modals</title>

				<!--	Bootstrap	-->

				<link	

rel="stylesheet"href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bo

otstrap.min.css">

		</head>

		<body>

				<h1>Hello	World</h1>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">

</script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	files	

as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</script>

		</body>

</html>

Let’s	delete	the	Hello	World	tag	from	the	preceding	template	and	insert	the	markup
needed	for	a	modal.	To	create	a	modal,	we	need	to	define	a	<div>	element	with	a	.modal
class:

<div	class="modal">

</div>

Optionally,	you	can	also	add	the	.fade	class	to	apply	the	.fade-in	animation	to	the
modal:

<div	class="modal	fade">

</div>

The	.modal	class	creates	a	wrapper	for	the	modal	component.	It	hides	the	HTML	web
page’s	scrolling	attribute	by	setting	the	CSS	overflow	property	to	hidden.	It	also	creates
an	HTML	area	with	fixed	positioning	on	top	of	all	the	HTML	elements	present	on	the
same	page.

Next,	we	will	add	a	markup	for	placing	contents	inside	the	modal.	The	procedure	goes	as

follows:

<div	class="modal	fade">

		<div	class="modal-dialog">

				<div	class="modal-content">

				</div>

		</div>

</div>

The	classes	.modal-dialog	and	.modal-content	are,	together,	responsible	for	properly
centering	a	white-colored	content	area	in	a	modal	component.

Let’s	proceed	to	create	the	modal’s	body	area	for	placing	the	HTML	contents	inside	a
modal:

<div	class="modal	fade">

		<div	class="modal-dialog">

				<div	class="modal-content">

						<div	class="modal-body">

								<p>The	content	goes	here.</p>

						</div>

				</div>

		</div>

</div>

You	can	place	any	HTML	element,	as	per	your	requirement,	inside	this	.modal-body	div.
You	can	use	it	to	display	a	long	Terms	&	Conditions	text,	a	login	form,	a	warning	text,
and	so	on.

We	are	ready	with	our	first	basic	modal.	If	you	load	this	HTML	page	inside	the	browser,
you	will	find	a	blank	page.	It’s	because	we	have	created	a	modal,	but	didn’t	create	any
element	which	will	trigger	this	modal.	Modals	are	hidden	components	in	Bootstrap.

Let’s	create	a	Bootstrap	button	to	trigger	the	preceding	modal	when	clicked	on:

<button	class="btn	btn-primary"	data-toggle="modal"	data-

target="#myFirstModal">

		Show	Modal

</button>

This	button	should	have	two	very	important	custom	attributes	to	trigger	a	modal:	data-
toggle	and	data-target.	The	first	attribute	tells	Bootstrap’s	JavaScript	which	component
it’s	concerned	with,	while	the	second	attribute	specifies	which	particular	modal	to	open.
The	second	attribute	holds	the	ID	of	the	modal	you	want	to	open.	Let’s	also	apply	this	ID
to	our	preceding	modal.	Hence,	the	final	markup	for	our	modal	should	look	like	the
following:

<div	class="modal	fade"	id="myFirstModal">

		<div	class="modal-dialog">

				<div	class="modal-content">

						<div	class="modal-body">

								<p>The	content	goes	here.</p>

						</div>

				</div>

		</div>

</div>

You	should	get	a	modal	that	looks	like	the	one	shown	in	the	following	screenshot:

A	modal	component	also	has	a	header	and	footer	area,	apart	from	the	.modal-body	area.
They	are	created	using	the	.modal-header	and	.modal-footer	classes.	We	can	apply	a
header	and	footer	by	adding	code,	as	follows:

<div	class="modal	fade"	id="myFirstModal">

		<div	class="modal-dialog">

				<div	class="modal-content">

						<div	class="modal-header">

								<h4	class="modal-title">This	is	a	modal</h4>

						</div>

						<div	class="modal-body">

								<p>The	content	goes	here.</p>

						</div>

						<div	class="modal-footer">

								<p>This	is	the	footer.</p>

						</div>

				</div>

		</div>

</div>

It	is	recommended	that	you	use	an	<h4>	tag	with	a	.modal-title	class	inside	.modal-
header.	All	the	default	elements	inside	the	modal’s	footer	will	appear	right,	aligned,	as	per
Bootstrap’s	CSS.	You	can	modify	it	by	overriding	its	CSS	property:

	.modal-footer{

text-align:	left;

}

The	preceding	modal	a	with	a	header	and	footer	should	look	like	this:

Changing	Bootstrap’s	modal	size
Bootstrap’s	modals	also	come	in	various	sizes:	large,	normal,	and	small.	You	need	to	use
the	following	classes	to	change	the	size	of	the	modal:

.modal-lg:	This	is	for	larger	modals
No	class:	This	is	for	normal	sized	modals
.modal-sm:	This	is	for	smaller	modals

You	have	to	add	the	preceding	classes	to	the	.modal-dialog	element	in	the	modal’s
markup.	Take	the	following	code	as	an	example:

<div	class="modal	fade"	id="myFirstModal">

		<div	class="modal-dialog	modal-lg">

				<div	class="modal-content">

						<div	class="modal-header">

								<h4	class="modal-title">This	is	a	modal</h4>

						</div>

						<div	class="modal-body">

								<p>The	content	goes	here.</p>

						</div>

						<div	class="modal-footer">

								<p>This	is	the	footer.</p>

						</div>

				</div>

		</div>

</div>

The	preceding	markup	will	create	a	larger	modal,	as	shown	in	the	following	screenshot:

Additional	Bootstrap	modal	features
Bootstrap	provides	many	features	for	the	modal	component.	These	features	are	generally
provided	as	JSON	properties,	while	triggering	the	modal	component.	Alternatively,	you	can
use	these	features	by	using	custom	data-*	attributes	in	the	.modal	element.	Bootstrap’s
additional	features	are:

data-backdrop:	This	attribute	accepts	static	or	true	values.	When	set	to	static,	it
disables	the	closing	of	the	modal	when	clicked	outside	the	modal	body.
data-keyboard:	This	accepts	Boolean	values	and	is	set	to	true	by	default.	When
true,	features	of	data-keyboard	closes	the	modal	when	the	Esc	key	is	pressed.
data-show:	This	accepts	Boolean	values	and	is	set	to	false	by	default.	When	true,
data-shows	the	modal	when	it	was	initialized.

Fetching	remote	content	from	a	Bootstrap
modal
Here,	data-remote	is	a	special	data	attribute	in	Bootstrap’s	modal	component.	It	is	used	to
load	a	remote	web	page	inside	a	modal,	when	data	is	triggered.	This	feature	is	only
available	from	Bootstrap	v	3.0	to	v	3.2.0;	I	believe	it	is	really	very	useful!

Let’s	check	out	an	example	of	how	to	use	it.

Let’s	create	a	new	HTML	page	named	page2.html	inside	the	same	Bootstrap	Model
project	folder.	Place	the	following	basic	HTML	inside	it:

<!DOCTYPE	html>

<html>

		<head>

				<title>Page	2</title>

		</head>

		<body>

				<div	class="container">

						<h1>Hello	World	from	Page	2</h1>

				</div>

		</body>

</html>

This	page	should	look	like	the	following	in	a	browser:

We	will	now	load	this	page	inside	our	previous	modal,	whenever	it	is	triggered.	Modify
the	previously	created	modal	markup,	as	follows:

<div	class="modal	fade"	id="myFirstModal"	data-remote="page2.html">

		<div	class="modal-dialog">

				<div	class="modal-content">

						<div	class="modal-header">

								<h4	class="modal-title">This	is	a	modal</h4>

						</div>

						<div	class="modal-body">

								<p>The	content	goes	here.</p>

						</div>

						<div	class="modal-footer">

								<p>This	is	the	footer.</p>

						</div>

				</div>

		</div>

</div>

Note	that	this	time	we	have	added	an	additional	attribute	data-remote,	and	the	path	to
page2.html	as	the	value.	Let’s	refresh	the	browser	and	trigger	the	modal.	This	time,	you
should	see	page2.html	loaded	inside	the	modal	instead	of	the	default	content.	The
screenshot	is	as	follows:

Note
You	should	be	very	careful	while	using	cross-domain	links	as	remote	content.	Many
browsers	might	not	allow	that.

Using	Bootstrap’s	modal	in	a	Rails
application
In	our	Demo	Shopping	Application,	created	in	previous	chapters,	we	had	all	the	products
listed	in	a	single	page.	We	will	add	an	additional	button,	named	Buy,	beside	the	Show
button	in	each	product.	When	a	user	clicks	on	the	Buy	button,	the	browser	will	display	a
modal	confirming	his/her	action	to	add	the	particular	product	to	the	cart.	The	modal	will
have	an	Add	to	cart	button,	which	will	simulate	the	behavior	of	the	product	that	is	being
added	to	the	cart	and	then	will	close	the	modal.	We	won’t	be	creating	a	real	shopping	cart
in	this	book.	It’s	up	to	you	to	decide	which	method	you	would	like	to	use	to	create	a
shopping	cart.

Open	the	application.html.erb	file	present	in	the	layouts	folder	by	navigating	to	app	|
views	|	layouts.	We	will	create	a	global	modal	in	this	file.	This	modal	will	get	triggered
whenever	the	Buy	button	is	clicked.	The	markup	for	this	modal	is	as	follows:

<div	class="modal	fade"	id="buyModal">

		<div	class="modal-dialog">

				<div	class="modal-content">

						<div	class="modal-body">

								<p>Are	you	sure	you	want	to	buy	this?</p>

								<button	class="btn	btn-success">

										<i	class="glyphicon	glyphicon-plus"></i>	Add	to	cart

								</button>

						</div>

				</div>

		</div>

</div>

Make	sure	that	you	place	this	modal	markup	outside	the	entire	markup	that	was	previously
created.	Bootstrap	recommends	you	to	always	place	a	modal’s	markup	in	the	topmost
level.

Now,	we	are	done	with	placing	a	dummy	modal.	Let’s	proceed	to	create	a	Buy	button.

Open	the	index.html.erb	file	present	inside	the	products	folder	by	navigating	to	app	|
views	|	products.	Search	for	the	previously	created	Show	button,	which	had	the	following
code:

<%=	link_to	'Show',	product,	:class=>"btn	btn-primary"	%>

We	will	place	another	button	with	no	href	attribute	and	add	custom	data	attributes	to
trigger	the	modal:

<%=	link_to	'Buy',	'#',	:class=>"btn	btn-success"	%>

This	will	create	a	new	Buy	button	beside	each	Show	button.

Let’s	add	custom	data	attributes	to	trigger	the	modal	component.	Modify	the	Buy	button,
as	follows:

<%=	link_to	'Buy',	'#',	:class=>"btn	btn-success",	:data=>	{	:toggle	

=>'modal',	:target=>'#buyModal'	}	%>

Here,	the	data-target	attribute	will	hold	the	#buyModal	value,	which	is	also	the	ID	of	our
modal.

Now,	if	you	click	on	the	Buy	button,	it	will	display	the	modal,	as	shown	in	the	following
screenshot:

Let’s	add	a	functionality	which	will	dismiss	the	modal	when	we	click	on	the	Add	to	cart
button.	For	this,	we	need	to	again	edit	the	application.html.erb	file.	We	have	to	add	an
extra	data	attribute	data-dismiss	with	the	value	as	modal	to	the	Add	to	cart	button.	Let’s
add	the	data	attribute:

<button	class="btn	btn-success"	data-dismiss="modal"><i	class="glyphicon	

glyphicon-plus"></i>	Add	to	cart</button>

Adding	the	preceding	data	attribute	will	let	Bootstrap’s	JavaScript	know	which	component
to	close.

Summary
I	hope	you	enjoyed	learning	how	to	create	a	flexible	Bootstrap	modal	component.
Through	this	chapter,	we	learnt	how	to	create	a	basic	modal	in	a	static	project.	We	then
moved	on	to	add	extra	functionalities	to	it.	We	also	saw	how	to	create	modals	of	different
sizes	by	using	additional	classes	such	as	.modal-lg	and	.modal-sm.	Finally,	we	integrated
a	modal	component	to	our	shopping	application.	We	learnt	how	to	simulate	the	Add	to
cart	functionality	through	the	dummy	confirm	modal.	The	field	is	now	open	for	you	to
experiment	more	with	modals.

In	the	next	chapter,	we	are	going	to	understand	one	of	the	most	interesting	Bootstrap
components,	Carousels.	We	will	see	how	we	can	use	the	carousel	component	and	create
beautiful	image	slideshows.

Chapter	9.	Creating	Image	Slideshows
with	Bootstrap	Carousel
The	term	Carousel	is	inspired	from	the	real-world	carousel,	which	is	found	in	many
recreational	parks.	It	rotates	the	circular	structure	on	which	people	stand/sit,	repeatedly,	A
web-based	carousel	behaves	similarly.	It	is	a	slideshow	of	images	and	their	respective
textual	data.

Carousels	are	one	of	the	most	important	web	components.	They	are	extremely	useful	for
shopping	websites	to	display	many	products	fashionably.	Many	blogging	websites	also
take	advantage	of	this	component.

If	you	are	a	novice	web	designer,	then	creating	a	carousel	for	your	own	website	can	be	a
little	complicated.	Bootstrap	3,	on	the	other	hand,	provides	a	great	JavaScript	plugin	called
carousel,	which	is	ready	to	use.

You	have	to	write	many	lines	of	JavaScript	and	CSS	code	to	create	a	beautiful	image
slideshow	using	Bootstrap.	Just	like	the	previous	components	of	Bootstrap,	you	have	to
put	the	right	markup	in	place.

We	will	cover	the	following	topics	in	this	chapter:

Getting	started	with	Bootstrap	Carousel
Adding	captions	to	the	slides
Customizing	the	carousel

Getting	started	with	Bootstrap	Carousel
Let’s	get	started	with	Bootstrap	Carousel	component	and	create	a	basic	image	slideshow.
As	always,	we	will	be	creating	a	static	HTML	page	for	this,	to	learn	how	it	is	used.	The
steps	are	as	follows:

1.	 Create	a	new	folder	called	Bootstrap	Carousel	anywhere	you	like	in	your	system.
We	will	use	the	same	static	markup	for	the	index.html	file:

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-

scale=1">

				<title>Bootstrap	Carousel</title>

				<!--	Bootstrap	-->

				<link	rel="stylesheet"	

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.

css">

		</head>

		<body>

				<h1>Hello	World</h1>

				<!--	jQuery	(necessary	for	Bootstrap's	JavaScript	plugins)	-->

				<script	

src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"

></script>

				<!--	Include	all	compiled	plugins	(below),	or	include	individual	

files	as	needed	-->

				<script	

src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js

"></script>

		</body>

</html>

2.	 Let’s	remove	the	Hello	World	markup	from	the	preceding	file	and	start	building	our
first	carousel	component.

3.	 Bootstrap	Carousel	is	divided	into	three	major	parts:	indicator,	inner	wrapper,	and
controls.	Each	one	of	them	has	their	own	importance.	To	create	a	Bootstrap	Carousel,
we	need	to	create	a	div	element	with	the	class	.carousel:

<div	class="carousel">

</div>

4.	 Bootstrap	allows	you	to	create	a	slideshow,	with	and	without	sliding	animation.	If
you	want	the	slide	items	to	have	a	nice	sliding	effect,	add	a	class	.slide	with	the
.carousel	class:

<div	class="carousel	slide">

</div>

5.	 There’s	an	optional	data-ride	attribute	that	you	can	add	to	the	preceding	div

element.	It	is	used	to	mark	a	carousel	as	animating,	starting	at	page	load.	Let’s	set	this
attribute	as	well:

<div	class="carousel	slide"	data-ride="carousel">

</div>

6.	 We	will	also	add	an	ID	attribute	to	this	div	element.	This	attribute	will	be	used
various	times	while	defining	the	child	elements	of	the	carousel:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

</div>

7.	 We	will	now	proceed	to	create	Inner-Wrapper	of	the	carousel	component.	This
wrapper	will	hold	all	the	sliding	items	of	the	carousel:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<div	class="carousel-inner">

		</div>

</div>

8.	 We	will	start	inserting	the	sliding	elements	into	this	Inner-Wrapper.	Each	sliding
item	should	have	a	.item	class	attached	to	it:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<div	class="carousel-inner">

				<div	class="item">

				</div>

		</div>

</div>

9.	 There’s	no	limit	to	the	number	of	items	you	can	add	to	a	carousel	component.	Let’s
proceed	and	fill	this	item	with	an	image	to	represent	the	item:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<div	class="carousel-inner">

				<div	class="item">

						

				</div>

				<div	class="item">

						

				</div>

				<div	class="item">

						

				</div>

				<div	class="item">

						

				</div>

		</div>

</div>

10.	 Now,	we	have	four	sliding	items,	each	filled	with	a	unique	image.	It’s	time	to	tell
Bootstrap	which	item	should	be	represented	as	the	first	item	of	the	slideshow.

11.	 This	can	be	done	by	adding	a	class	.active	to	any	one	.item	element.	In	our	case,
we	will	add	the	.active	class	to	the	first	.item	element:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<div	class="carousel-inner">

				<div	class="item	active">

						

				</div>

				<div	class="item">

						

				</div>

		</div>

</div>

12.	 We	are	now	done	with	a	basic	carousel	that	has	four	sliding	items	in	it.	Let’s	view	it
in	the	browser:

13.	 We	have	two	important	elements	missing	from	this	slideshow:	indicators	and
controls.	Indicators	are	very	useful	to	directly	jump	on	a	particular	slide.	Controls	let
us	navigate	through	the	slides	one	by	one	in	either	direction.

Let’s	proceed	and	add	them	too.	Indicators	are	created	using	an	ordered	list	with	the
.carousel-indicators	class:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<!--	Indicators	→

		<ol	class="carousel-indicators">

		

		<div	class="carousel-inner">

		</div>

</div>

Each		item	in	the	indicator	is	a	handle	for	a	particular	slide	in	the	carousel.	They
should	have	two	different	data	attributes:	data-target	and	data-slide-to.	The
data-target	attribute	is	used	to	indicate	which	carousel	we	are	talking	about	in	a
web	page.	It	should	hold	the	ID	of	the	carousel	element	that	is,	#my-first-carousel.
data-slide-to	is	used	to	indicate	the	slide	number	on	which	the	content/image	is
presented.	For	example,	if	you	have	four	slides,	the	slide	numbers	are	from	0	to	3:

<div	class="carousel	slide"	data-ride="carousel"	id="my-first-

carousel">

		<!--	Indicators	→

		<ol	class="carousel-indicators">

				<li	data-target="#my-first-carousel"	data-slide-to="0"	

class="active">

				<li	data-target="#my-first-carousel"	data-slide-to="1">

				<li	data-target="#my-first-carousel"	data-slide-to="2">

				<li	data-target="#my-first-carousel"	data-slide-to="3">

		

		<div	class="carousel-inner">

		</div>

</div>

14.	 If	you	check	the	page	in	the	browser,	you	can	see	that	the	indicators	appear	at	the
bottom	of	the	carousel:

Let’s	add	controls	to	the	carousel.	Controls	are	a	pair	of	HTML	anchor	elements
<a>	with	a	set	of	attributes,	as	shown:

<a	class="left	carousel-control"	href="#my-first-carousel"	data-

slide="prev">

		

<a	class="right	carousel-control"	href="#my-first-carousel"			data-

slide="next">

		

Each	anchor	element	has	a	class	.carousel-control.	Additionally,	you	have	to	add
directional	classes	.left	and	.right	to	each	one	of	.carousel-control	element,
respectively.	These	directional	classes	help	them	to	take	their	respective	position	in
the	carousel.	The	href	property	of	each	anchor	element	must	point	to	the	parent
carousel	element	using	ID.	We	also	have	a	data-slide	attribute	which	tells	Bootstrap

which	slide	to	navigate	to	from	the	current	slide.

15.	 Finally,	the	markup	of	a	complete	carousel	is	as	shown	in	the	following	code:

<div	id="my-first-carousel"	class="carousel	slide"	data-

ride="carousel">

<!--	Indicators	-->

		<ol	class="carousel-indicators">

				<li	data-target="#my-first-carousel"	data-slide-to="0"	

class="active">

				<li	data-target="#my-first-carousel"	data-slide-to="1">

				<li	data-target="#my-first-carousel"	data-slide-to="2">

				<li	data-target="#my-first-carousel"	data-slide-to="3">

		

		<!--	Wrapper	for	slides	-->

		<div	class="carousel-inner">

				<div	class="item	active">

						

				</div>

				<div	class="item">

						

				</div>

				<div	class="item">

						

				</div>

				<div	class="item">

						

				</div>

		</div>

		<!--	Controls	-->

		<a	class="left	carousel-control"	href="#my-first-carousel"	data-

slide="prev">

				

		

		<a	class="right	carousel-control"	href="#my-first-carousel"	data-

slide="next">

		

		

</div>

You	can	also	see	the	controls	appearing	on	the	carousel	in	the	following	screenshot.
To	control	the	slideshow	using	a	keyboard,	you	need	to	add	the	data-keyboard
attribute	with	the	value	as	true	to	the	.carousel	element:

Adding	captions	to	the	slides
Captions	can	be	easily	added	to	each	slide	item	by	inserting	a	div	element	with	the
.carousel-caption	class.	This	element	will	hold	two	different	elements:	a	heading	and
paragraph	element.	You	have	the	liberty	to	use	either	one	of	them	or	both.	Take	the
following	code	as	an	example:

<div	class="item">

		

				<div	class="carousel-caption">

				<h3>This	is	the	first	slideshow</h3>

				<p>Lorem	ipsum	donor.</p>

		</div>

</div>

Customizing	Carousel
You	can	also	add	various,	different	data-*	attributes	to.carousel	to	change	its	default
behavior.	Bootstrap	provides	three	different	attributes:

data-interval:	This	attribute	is	used	to	change	the	duration	time	for	each	slide.	It	accepts
integer	values	in	milliseconds.	For	example,	data-interval="5000".

data-pause:	This	attribute	takes	only	one	value,	hover.	When	this	attribute	is	set,	the
slideshow	pauses	when	the	mouse	is	hovered	over	it.

data-wrap:	This	attribute	accepts	Boolean	values.	When	set	as	true,	the	slideshow	will
begin	again	from	the	first	slide	automatically.

Summary
In	this	chapter,	we	saw	how	to	create	a	basic	carousel.	We	added	various	elements	such	as
indicators,	controls,	and	captions	to	it.	We	also	saw	various	customization	options
available	in	Bootstrap.

In	the	next	chapter,	we	will	implement	all	that	we	have	learned	in	Bootstrap.

Chapter	10.	Creating	a	Shopping	Cart
Using	Bootstrap	Modals
This	chapter	is	all	about	implementing	what	we	have	learned	so	far	in	Bootstrap.	We
won’t	be	learning	anything	new	here,	but	this	chapter	will	definitely	clear	some	of	the	core
concepts	such	as	using	Bootstrap	modal,	typography,	buttons,	and	responsive	tables.

In	this	chapter,	we	will	create	a	JavaScript	modal	that	will	serve	as	a	shopping	cart	in	our
Shopping	application.	This	cart	will	have	all	the	features	needed	for	any	shopping	website.
For	demo	purposes,	we	will	be	displaying	only	static	data	in	our	shopping	cart.

In	a	nutshell,	we	will	cover	the	following	topics:

Adding	a	shopping	cart	symbol
Creating	a	shopping	cart	using	modals

Adding	a	shopping	cart	symbol
Before	proceeding	to	create	a	shopping	cart	in	our	application,	we	need	a	handle	which
when	clicked	on,	will	display	the	shopping	cart.	For	our	application,	I	will	add	a
Glyphicon	font	icon	to	display	an	icon	in	the	current	navigation	bar	of	our	application.	So,
let’s	proceed	and	make	this	tweak.

Navigate	to	app	|	views	|	layouts	and	edit	the	application.html.erb	file.	Just	in	front
case	of	the		element	of	Home	,	add	another		element	with	the	Glyphicon	icon	of
the	shopping	cart,	as	follows:

Tip
Remember,	Glyphicons	are	font	images	provided	by	Bootstrap,	by	default,	in	its
repository.

Open	the	browser	and	check	for	the	shopping	cart	symbol	in	the	navigation	bar.	It	should
look	like	the	one	shown	in	the	following	screenshot:

We	will	add	a	number	beside	the	shopping	cart	icon	to	indicate	the	number	of	products
added	to	the	shopping	cart.	We	will	use	Bootstrap’s	badges	for	this.	Adding	a	
element	with	the	class	.badge	will	create	a	beautiful	number	indicator:

	

4

You	should	have	a	number	indicator	in	the	navigation	bar,	as	shown	in	the	following
screenshot:

Let’s	also	add	the	custom	data	attributes	needed	to	trigger	a	modal	in	this	shopping	cart
link.	As	stated	in	the	earlier	chapter,	we	need	two	custom	attributes	to	create	a	modal
handle:	data-target	and	data-toggle.	So,	let’s	add	these	attributes	to	our	shopping	cart
link:

<span	

class="glyphicon	glyphicon-shopping-cart">	<span	

class="badge">4

Here,	the	value	provided	to	data-target	is	#shoppingCart.	Hence,	we	will	use

shoppingCart	as	the	ID	of	the	modal	that	we	will	create	in	the	next	section.

Now,	we	are	ready	with	a	shopping	cart	icon	that	will	trigger	our	shopping	cart	modal
when	clicked.	This	icon	also	represents	the	number	of	items	present	inside	the	shopping
cart.	Impressive!	Isn’t	it?

Creating	a	shopping	cart	using	modals
As	stated	earlier	in	this	book,	to	create	a	Bootstrap	modal,	we	need	a	<div>	element	with
the	.modal	class.	We	will	also	add	the	.fade	class	to	apply	the	fading	transition.	It	is	the
only	transition	animation	provided	by	Bootstrap.

1.	 At	end	of	the	application.html.erb	file,	add	the	markup	for	the	modal,	as	follows:

<div	class="modal	fade">

</div>

2.	 One	of	the	most	important	things	to	note	here,	is	that	we	have	two	modals	in	this
page.	To	uniquely	identify	each	one	of	them,	we	should	give	different	IDs	to	them.	In
this	case,	we	already	have	an	ID	with	us,	which	is	shoppingCart.	So,	let’s	add	it	to
our	markup:

<div	class="modal	fade"	id="shoppingCart">

</div>

3.	 Next,	we	need	to	place	a	markup	for	a	modal	dialog	and	modal	content:

<div	class="modal	fade"	id="shoppingCart">

		<div	class="modal-dialog	modal-lg">

				<div	class="modal-content">

				</div>

		</div>

</div>

Compared	to	the	modal	created	in	the	earlier	chapter,	we	are	using	a	larger	modal
here,	with	the	help	of	the	.modal-lg	class.

4.	 Now,	we	will	add	a	header	to	our	modal.	This	header	will	contain	the	title	Your	Cart
with	another	text	that	will	indicate	the	number	of	items	present	in	the	shopping	cart:

<div	class="modal-header">

<p	class="pull-right	text-primary">4	items</p>

<h4	class="modal-title	text-primary"><span	class="glyphicon	glyphicon-

shopping-cart">	Your	Cart	</h4>

</div>

5.	 Place	the	preceding	content	inside	the	.modal-content	element.	The	<p>	element	is
floated	towards	the	right	using	the	class	.pull-right	and	colored	dark	blue	using	the
.text-primary	utility	class.	It	is	used	to	represent	the	number	of	items	present	inside
the	shopping	cart.	The	title	Your	Cart	is	written	using	the	<h4>	element	with	the
.modal-title	and	.text-primary	class	(to	add	a	blue	color	to	the	text).	We	also
have	an	icon	of	a	shopping	cart	present	inside	the	title,	created	using	the	Glyphicon
icon.	If	you	trigger	this	modal	by	clicking	on	the	shopping	cart	icon	you	will	see
something	like	the	following:

Let’s	proceed	to	create	the	body	part	of	the	modal.	Perform	the	following	steps	to	create
the	body	of	the	modal:

1.	 Add	.modal-header;.	to	the	following	markup,	as	the	sibling	of	the

<div	class="modal-body">

</div>

2.	 We	will	insert	a	Bootstrap	table	that	will	hold	the	actual	item	details:

<div	class="modal-body">:

		<table	class="table	table-bordered">

		</table>

</div>

3.	 Let’s	create	multiple	columns	inside	this	table:

<div	class="modal-body">

		<table	class="table	table-bordered">

				<tr>

						<th>Sl	no</th>

						<th>Item	Name</th>

						<th>Unit	Price	(USD)</th>

						<th>Quantity</th>

						<th>Price</th>

						<th></th>

				</tr>

		</table>

</div>

We	have	columns	for	Serial	no,	Item	Name,	Unit	Price,	Quantity	Ordered,	and
Price	of	the	item.	We	also	have	an	extra	column	without	a	heading	that	will	contain
a	link	to	remove	a	particular	item	row	from	the	table.

4.	 Let’s	fill	up	the	first	row:

<div	class="modal-body">

		<table	class="table	table-bordered">

				<tr>

						<th>Sl	no</th>

						<th>Item	Name</th>

						<th>Unit	Price	(USD)</th>

						<th>Quantity</th>

						<th>Price</th>

						<th></th>

				</tr>

				<tr>

						<td>1</td>

						<td>Apple	iPhone	6</td>

						<td>$399</td>

						<td>

						<input	type="text"	class="form-control"	value="1"	

placeholder="Enter	Quantity"	style="width:	50px;"	/>

						</td>

						<td>$399</td>

						<td>remove</td>

				</tr>

		</table>

</div>

5.	 For	the	quantity	field,	I	have	used	an	input	field	with	the	.form-control	class	to	give
a	Bootstrap	look	and	feel	to	it.	I	have	also	applied	a	CSS	width	of	50px	to	it.	In	the
last	column,	I	have	added	a	text	link	called	remove	with	the	.btn,	.btn-danger,	and
.btn-sm	class.	The.btn-danger	class	makes	the	button	red,	while	the	.btn-sm	class
is	used	to	reduce	the	size	of	the	normal	Bootstrap	button.	Try	filling	up	some	more
items	in	the	table.	Finally,	you	will	get	a	modal	that	looks	like	the	one	shown	in	the
following	screenshot:

6.	 We	are	now	left	with	the	last	row	that	will	display	the	total	sum	of	the	items.	Let’s
proceed	and	add	that	too:

<tr	class="active	lead">

		<td	colspan="4">Total</td>

				<td>$1,096</td>

				<td>clear	all

		</td>

</tr>

Instead	of	adding	all	the	columns,	I	have	merged	the	first	four	columns	by	using	the
colspan	attribute	here.	In	the	last	column,	I	have	changed	the	text	of	the	button	to
clear	all.	One	of	the	most	important	changes	here	are	the	classes	.active	and	.lead
added	to	the	row.	The	.active	class	highlights	the	row	using	a	grey-colored
background,	whereas	the	.lead	class	increases	the	font	size	of	the	text.	The	modal
should	now	look	like	the	following:

7.	 We	will	now	add	two	different	buttons	at	the	end	of	the	modal:	Continue	Shopping
and	Checkout:

Checkout	<span	

class="glyphicon	glyphicon-chevron-right">

		

Continue	

Shopping

The	first	button	is	pulled	towards	the	right	using	the	.pull-right	utility	class.	The
Continue	Shopping	button	uses	the	data-dismiss	attribute	to	close	the	modal	and
to	let	the	user	continue	using	the	website.

8.	 Finally,	our	Shopping	cart	design	is	complete.	It	should	now	look	like	the	one	shown
in	the	following	screenshot:

Summary
I	hope	you	enjoyed	reading	this	chapter.	Through	this	chapter,	we	tried	to	design	a	dummy
shopping	cart	using	Bootstrap	and	its	components.	We	saw	how	to	use	Bootstrap	tables
inside	Bootstrap	modals,	and	how	to	make	use	of	Bootstrap’s	utility	classes.	We	have	also
seen	how	to	use	free	font	icons,	Glyphicons,	to	create	shopping	cart	icons	inside	a
navigation	bar.

In	the	next	chapter,	we	are	going	to	learn	one	of	the	most	important	topics,	Customizing
Bootstrap.	Be	prepared	and	join	me	soon.

Appendix	A.	Adding	Custom	Styles	to	a
Rails	Application
Finally,	we	have	reached	the	last	chapter	of	this	book,	where	we	will	talk	about	how	to	add
a	custom	styles	to	a	Rails	application,	which	is	powered	by	Bootstrap	framework.
Throughout	the	book,	we	have	gone	through	various	Bootstrap	CSS	and	JavaScript
components	that	come	ready	to	use	out	of	the	box.

In	this	chapter,	we	will	see	how	to	extend	Bootstrap	framework	and	add	our	own	style	to
it.	There	are	still	many	important	components	that	are	missing	from	the	Bootstrap
framework.	We	will	check	out	some	of	the	popular	Bootstrap	plugins	that	are	available	for
free.

The	topics	that	we	will	cover	are:

Adding	Bootstrap-sass	to	a	Rails	Application
Customizing	Bootstrap	through	variables

Adding	Bootstrap-sass	to	a	Rails
application
In	the	Installing	Bootstrap	in	the	Rails	project,	section	in	chapter	2,	Introducing	Bootstrap
3	we	saw	how	to	include	Bootstrap	into	our	Rails	application	through	three	different	ways:

The	CDN	method
Bootstrap-sass	gem
By	downloading	Bootstrap	files

To	quicken	things	up,	we	had	opted	for	the	CDN	method.	Well,	in	this	chapter,	we	are
going	to	use	Bootstrap	through	Bootstrap-sass	gem.	This	will	enable	us	to	completely
customize	the	Bootstrap’s	default	styles.	So,	let’s	proceed	and	install	Bootstrap-sass	gem
in	our	application:

1.	 Go	to	the	application	folder	and	edit	the	file	Gemfile	using	a	text	editor.	Add	the
following	two	lines	of	code	at	the	end	of	this	file:

gem	'bootstrap-sass',	'~>	3.3.1'

gem	'autoprefixer-rails'

2.	 The	above	two	lines	will	install	bootstrap-sass	and	autoprefixer-rails	gems	into
your	application.	The	autoprefixer-rails	is	needed	to	automatically	append
browser	vendor	prefixes	in	the	CSS	stylesheets.

3.	 Let’s	bundle	the	application,	so	that	the	above	gems	are	actually	downloaded	and
installed	in	our	application.

bundle	install

4.	 Once	the	execution	of	the	above	command	is	complete,	navigate	to	the	app	|	assets	|
stylesheets	folder.	Rename	the	application.css	file	to	the
application.css.scss	file.	Next,	remove	the	imported	CDN	link	from	the	file,
which	was	included	by	us	earlier.

5.	 Now,	we	need	to	include	Bootstrap	files	that	are	downloaded	through	gem	inside	the
application.css.scss	file.	To	do	that,	include	the	following	2	lines:

@import	"bootstrap-sprockets";

@import	"bootstrap";

The	bootstrap-sprockets	value	is	needed	to	correctly	link	the	font	files	with	the
Bootstrap’s	CSS	files.

It’s	time	to	link	the	Bootstrap’s	JavaScript	files	using	the	recently	gem:

1.	 First,	we	need	to	remove	the	hardcoded	Bootstrap’s	JavaScript	CDN	link	from	the
application.html.erb	file,	present	in	the	layouts	folder	by	navigating	to	app	|
views	|	layouts	folder.	Remove	the	following	line	from	this	file:

<script	

src="//netdna.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">

</script>

2.	 Next,	go	to	the	JavaScript	folder	by	navigating	to	app	|	assets	|	javascript	folder
and	edit	the	application.js	file.	Add	the	following	line	immediately	after	the
jQuery	line:

//=	require	bootstrap-sprockets

3.	 Finally,	we	are	done.	If	you	reopen	your	application	in	the	browser,	you	can	see	that
everything	is	working,	just	like	before.

Customizing	Bootstrap	through	variables
Most	of	the	visible	Bootstrap	styles	can	be	overridden	simply	by	using	pre-defined
Bootstrap	variables.	Before	proceeding,	you	should	understand	that	Bootstrap	was	initially
compatible	with	LESS	only.	They	have	later	ported	it	to	the	Sass	version.

Note
LESS	and	Sass	are	CSS	preprocessors	that	help	us	to	organize	and	write	scalable	CSS
styles.	Both	of	them	are	very	similar	to	each	other	in	syntax	and	differ	only	by	the
additional	features	that	one	has	and	the	other	doesn’t.

Hence,	all	the	variables	present	in	the	LESS	version	remain	the	same	in	the	Sass	version,
as	well.	Bootstrap	hasn’t	provided	a	dedicated	page	for	the	list	of	variables	present	in	Sass,
however,	you	can	find	the	list	of	variables	in	the	LESS	version	on	their	official	website
(http://getbootstrap.com/customize/#less-variables).	Let’s	proceed	and	change	some	of	the
default	Bootstrap	styles.

In	our	application,	we	have	used	.btn-success	at	various	places.	So,	let’s	change	some	of
the	CSS	styles	in	it.	Re-open	the	application.css.scss	file,	and	add	the	following	lines
before	the	Bootstrap’s	import	line:

$btn-success-color:	#333;

$btn-success-bg:	#AEDBAE;

$btn-success-border:	darken($btn-success-bg,	5%);

We	can	change	the	style	of	the	.btn-success	class	completely	through	the	$btn-
success-color,	$btn-success-bg,	and	$btn-success-border	Bootstrap	Sass	variables.
In	the	above	code,	I	have	changed	the	text	color	of	the	button	to	#333.	I	have	also
lightened	the	background	color	to	a	new	HEX	color,	and	finally	changed	the	border	color
using	the	darken	color	function	in	Sass.

You	can	go	through	the	whole	list	of	available	variables	and	make	the	customizations
accordingly.	You	can	also	include	the	available	Bootstrap	theme	by	adding	the	following
line	in	the	application.css.scss	file:

@import	"bootstrap/theme";

The	bootstrap/theme	is	the	official	Bootstrap’s	default	style	customized	from	Bootstrap’s
theme.	It	comes	with	some	cool	styles	and	you	should	try	using	it.

http://getbootstrap.com/customize/#less-variables

Summary
Bootstrap	customization	can	help	you	create	a	visually	different	looking	website.	If	you
are	a	designer	in	the	Rails	application	development	team,	this	is	the	field	you	must	master.
In	this	chapter,	we	saw	how	to	include	Bootstrap-sass	gem	in	a	Rails	application.	We	also
understood	what	it	takes	to	override	the	default	Bootstrap	styles	through	pre-defined
variables.	I	hope	you	found	this	useful.

In	the	end,	if	you	still	have	questions	related	to	using	Bootstrap	in	Rails	applications	shoot
me	a	tweet	@fazlerocks,	I	will	be	happy	to	help	you!

Index
A

alerts
about	/	Alerts
color	variants	/	Alerts

B
.btn-danger	class	/	Creating	a	shopping	cart	using	modals
.btn-sm	class	/	Creating	a	shopping	cart	using	modals
badges,	Bootstrap

about	/	Bootstrap	labels	and	badges
blockquotes

about	/	Blockquotes
Bootstrap

using,	with	Rails	/	Why	Bootstrap	with	Rails?
about	/	Why	Bootstrap	with	Rails?,	What	is	Bootstrap?
installing,	in	Rails	project	/	Installing	Bootstrap	in	a	Rails	project
files,	placing	in	Rails	project	/	Placing	Bootstrap	files	in	a	Rails	project
URL	/	Placing	Bootstrap	files	in	a	Rails	project
Sass	way	/	Bootstrap	–	the	Sass	way
through	CDN	/	Bootstrap	through	CDN
grid	system	/	What	is	Bootstrap’s	grid	system?
images,	styling	/	Styling	images	in	Bootstrap
helper	classes	/	Styling	images	in	Bootstrap
labels	/	Bootstrap	labels	and	badges
badges	/	Bootstrap	labels	and	badges
jumbotrons	/	Bootstrap	jumbotrons
modals	/	Getting	started	with	modals
data-interval	attribute	/	Customizing	Carousel
data-pause	attribute	/	Customizing	Carousel
data-wrap	attribute	/	Customizing	Carousel

Bootstrap-sass
adding,	to	Rails	application	/	Adding	Bootstrap-sass	to	a	Rails	application

Bootstrap	button,	attributes
active	state	/	Creating	and	styling	buttons
disabled	state	/	Creating	and	styling	buttons

Bootstrap	Carousel
about	/	Getting	started	with	Bootstrap	Carousel

Bootstrap	components
breadcrumbs	/	Bootstrap	Breadcrumbs
pagination	component	/	The	pagination	component
labels	/	Bootstrap	labels	and	badges
badges	/	Bootstrap	labels	and	badges
jumbotrons	/	Bootstrap	jumbotrons
alerts	/	Alerts
panels	/	Panels

Bootstrap	forms
creating	/	Creating	Bootstrap	forms
validation	classes	/	Validation	classes	in	Bootstrap	forms

adding,	to	Rails	application	/	Adding	Bootstrap	forms	to	our	Rails	application
Bootstrap	modals

about	/	Getting	started	with	modals
creating	/	Getting	started	with	modals
size,	changing	/	Changing	Bootstrap’s	modal	size
.modal-lg	class	/	Changing	Bootstrap’s	modal	size
No	class	/	Changing	Bootstrap’s	modal	size
.modal-sm	/	Changing	Bootstrap’s	modal	size
features	/	Additional	Bootstrap	modal	features
remote	content,	fetching	from	/	Fetching	remote	content	from	a	Bootstrap	modal
using,	in	Rails	application	/	Using	Bootstrap’s	modal	in	a	Rails	application
used,	for	creating	shopping	cart	/	Creating	a	shopping	cart	using	modals

Bootstrap	table
creating	/	Creating	Bootstrap	tables
helper	classes	/	Creating	Bootstrap	tables
contextual	classes	/	Creating	Bootstrap	tables
adding,	to	Rails	application	/	Adding	Bootstrap	tables	to	our	Rails	application

breadcrumbs
about	/	Bootstrap	Breadcrumbs

bundle	install	command	/	Setting	up	a	Todo	application	in	Rails
buttons

styling	/	Creating	and	styling	buttons
creating	/	Creating	and	styling	buttons
classes,	for	different	colors	/	Creating	and	styling	buttons
btn-primary	class	/	Creating	and	styling	buttons
btn-info	class	/	Creating	and	styling	buttons
btn-success	class	/	Creating	and	styling	buttons
btn-warning	class	/	Creating	and	styling	buttons
btn-danger	class	/	Creating	and	styling	buttons
btn-default	class	/	Creating	and	styling	buttons
btn-link	class	/	Creating	and	styling	buttons
btn-lg	class	/	Creating	and	styling	buttons
btn-sm	class	/	Creating	and	styling	buttons
btn-xs	class	/	Creating	and	styling	buttons
No	class	class	/	Creating	and	styling	buttons

C
captions

adding,	to	slides	/	Adding	captions	to	the	slides
carousel

customizing	/	Customizing	Carousel
CDN

about	/	Bootstrap	through	CDN
cdnjs

URL	/	Bootstrap	through	CDN
CDN	method	/	Adding	Bootstrap-sass	to	a	Rails	application
CloudFlare

URL	/	Bootstrap	through	CDN
contextual	classes,	Bootstrap	table

active	/	Creating	Bootstrap	tables
success	/	Creating	Bootstrap	tables
danger	/	Creating	Bootstrap	tables
info	/	Creating	Bootstrap	tables
warning	/	Creating	Bootstrap	tables

CSS
used,	for	styling	CSS	/	Styling	views	using	CSS

D
data-target	attribute	/	Getting	started	with	modals
data-toggle	attribute	/	Getting	started	with	modals

E
elements

using,	as	Bootstrap’s	button	/	Which	elements	are	eligible	to	use	Bootstrap’s
button	classes?

F
features,	Bootstrap	modals

data-backdrop	/	Additional	Bootstrap	modal	features
data-keyboard	/	Additional	Bootstrap	modal	features
data-show	/	Additional	Bootstrap	modal	features

folder	structure,	Rails	application
analyzing	/	Analyzing	folder	structure	of	a	Rails	application
app	folder	/	Analyzing	folder	structure	of	a	Rails	application
assets	folder	/	Analyzing	folder	structure	of	a	Rails	application
controllers	folder	/	Analyzing	folder	structure	of	a	Rails	application
helpers	folder	/	Analyzing	folder	structure	of	a	Rails	application
mailers	folder	/	Analyzing	folder	structure	of	a	Rails	application
models	folder	/	Analyzing	folder	structure	of	a	Rails	application
views	folder	/	Analyzing	folder	structure	of	a	Rails	application

font-weight	property	/	Redesigning	the	Todo	application

G
Google	Hosted	Libraries

URL	/	Bootstrap	through	CDN
grid	system,	Bootstrap

about	/	What	is	Bootstrap’s	grid	system?
implementing,	in	Rails	application	/	Implementing	Bootstrap’s	grid	system	in	a
Rails	application

H
helper	classes,	Bootstrap

img-rounded	/	Styling	images	in	Bootstrap
img-circle	/	Styling	images	in	Bootstrap
img-thumbnail	/	Styling	images	in	Bootstrap

helper	classes,	Bootstrap	table
.table-hover	/	Creating	Bootstrap	tables
.table-condensed	/	Creating	Bootstrap	tables

helper	classes,	navigation	bar
.navbar-btn	/	Navigation	bar	helper	classes
.navbar-text	/	Navigation	bar	helper	classes
.navbar-link	/	Navigation	bar	helper	classes
.navbar-fixed-top	/	Navigation	bar	helper	classes
.navbar-fixed-bottom	/	Navigation	bar	helper	classes
.active	/	Navigation	bar	helper	classes

helper	classes,	pagination	component
.disabled	/	The	pagination	component
.pagination-lg	/	The	pagination	component
.pagination-sm	/	The	pagination	component

Hybrid	applications	/	What	is	Bootstrap?

I
images,	Bootstrap

styling	/	Styling	images	in	Bootstrap

J
jumbotrons

about	/	Bootstrap	jumbotrons

L
.lead	class	/	Styling	typography
labels,	Bootstrap

about	/	Bootstrap	labels	and	badges
colors	/	Bootstrap	labels	and	badges

Less	variables
URL	/	Customizing	Bootstrap	through	variables

listing	elements
styling	/	Styling	listing	elements

M
.modal-content	class	/	Getting	started	with	modals
.modal-dialog	class	/	Getting	started	with	modals
mobile	first	framework	/	What	is	Bootstrap?

N
navigation	bar

about	/	Getting	started	with	a	navigation	bar
.navbar-header	section	/	Getting	started	with	a	navigation	bar
.navbar-collapse	section	/	Getting	started	with	a	navigation	bar
helper	classes	/	Navigation	bar	helper	classes
adding,	to	Rails	application	/	Adding	a	navigation	bar	to	the	Rails	application

nesting	columns
creating	/	Nesting	columns

P
pagination	component

about	/	The	pagination	component
helper	classes	/	The	pagination	component

panels
about	/	Panels
example	/	Panels
colors	/	Panels

progress	bar
creating	/	Creating	a	progress	bar
color,	changing	/	Creating	a	progress	bar

R
Rails

about	/	Why	Bootstrap	with	Rails?
Todo	application,	setting	up	/	Setting	up	a	Todo	application	in	Rails

Rails	application
folder	structure,	analyzing	/	Analyzing	folder	structure	of	a	Rails	application
traditional	styling,	challenges	/	Challenges	in	styling	a	Rails	application
traditionally
Bootstrap’s	grid	system,	implementing	/	Implementing	Bootstrap’s	grid	system
in	a	Rails	application
Bootstrap	table,	adding	to	/	Adding	Bootstrap	tables	to	our	Rails	application
Bootstrap	forms,	adding	to	/	Adding	Bootstrap	forms	to	our	Rails	application
navigation	bar,	adding	to	/	Adding	a	navigation	bar	to	the	Rails	application
Bootstrap	modals,	using	/	Using	Bootstrap’s	modal	in	a	Rails	application
Bootstrap-sass,	adding	/	Adding	Bootstrap-sass	to	a	Rails	application

Rails	project
Bootstrap,	installing	/	Installing	Bootstrap	in	a	Rails	project
Bootstrap	files,	placing	/	Placing	Bootstrap	files	in	a	Rails	project

remote	content
fetching,	from	Bootstrap	modals	/	Fetching	remote	content	from	a	Bootstrap
modal

Ruby	on	Rails	/	Why	Bootstrap	with	Rails?

S
Sass

about	/	Why	Bootstrap	with	Rails?
shopping	cart

symbol,	adding	/	Adding	a	shopping	cart	symbol
creating,	with	Bootstrap	modals	/	Creating	a	shopping	cart	using	modals,
Summary

sizing	classes,	Bootstrap
.input-lg	/	Creating	Bootstrap	forms
.input-sm	/	Creating	Bootstrap	forms

slides
captions,	adding	/	Adding	captions	to	the	slides

static	website	setup
using	/	Setting	up

T
text

aligning	/	Aligning	text
transforming	/	Text	transformation

text-nowrap	class	/	Aligning	text
Todo	application

setting	up,	in	Rails	/	Setting	up	a	Todo	application	in	Rails
redesigning	/	Redesigning	the	Todo	application
Homepage,	styling	/	Redesigning	the	Todo	application

typography
styling	/	Styling	typography
features	/	Styling	typography
text,	aligning	/	Aligning	text
text,	transforming	/	Text	transformation
blockquotes	/	Blockquotes
listing	elements,	styling	/	Styling	listing	elements

V
validation	classes,	Bootstrap	forms

about	/	Validation	classes	in	Bootstrap	forms
.has-error	/	Validation	classes	in	Bootstrap	forms
.has-warning	/	Validation	classes	in	Bootstrap	forms
.has-success	/	Validation	classes	in	Bootstrap	forms
Bootstrap	table,	adding	to	Rails	application	/	Adding	Bootstrap	tables	to	our
Rails	application
Bootstrap	forms,	adding	to	Rails	application	/	Adding	Bootstrap	forms	to	our
Rails	application

variables
Bootstrap,	customizing	through	/	Customizing	Bootstrap	through	variables

views
creating	/	Creating	views
application	task	/	Creating	views
styling,	with	CSS	/	Styling	views	using	CSS
Todo	application,	redesigning	/	Redesigning	the	Todo	application

	Bootstrap for Rails
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introducing Web Application Development in Rails
	Why Bootstrap with Rails?
	Setting up a Todo application in Rails
	Analyzing folder structure of a Rails application
	Creating views
	Styling views using CSS
	Redesigning the Todo application
	Challenges in styling a Rails application traditionally
	Summary
	2. Introducing Bootstrap 3
	What is Bootstrap?
	Installing Bootstrap in a Rails project
	Placing Bootstrap files in a Rails project
	Bootstrap – the Sass way
	Bootstrap through CDN
	Summary
	3. Powering a Rails App with Bootstrap's Grid System
	What is Bootstrap's grid system?
	Nesting columns
	Implementing Bootstrap's grid system in a Rails application
	Summary
	4. Using Bootstrap's Typography, Buttons, and Images in a Rails Application
	Setting up
	Styling typography
	Aligning text
	Text transformation
	Blockquotes
	Styling listing elements
	Creating and styling buttons
	Which elements are eligible to use Bootstrap's button classes?
	Styling images in Bootstrap
	Summary
	5. Reinventing Tables and Forms in Bootstrap
	Creating Bootstrap tables
	Creating Bootstrap forms
	Validation classes in Bootstrap forms
	Adding Bootstrap tables to our Rails application
	Adding Bootstrap forms to our Rails application
	Summary
	6. Creating Navigation Bars
	Getting started with a navigation bar
	Navigation bar helper classes
	Adding a navigation bar to the Rails application
	Summary
	7. Various Other Bootstrap Components
	Bootstrap Breadcrumbs
	The pagination component
	Bootstrap labels and badges
	Bootstrap jumbotrons
	Alerts
	Creating a progress bar
	Panels
	Summary
	8. Working with Bootstrap Modals
	Getting started with modals
	Changing Bootstrap's modal size
	Additional Bootstrap modal features
	Fetching remote content from a Bootstrap modal
	Using Bootstrap's modal in a Rails application
	Summary
	9. Creating Image Slideshows with Bootstrap Carousel
	Getting started with Bootstrap Carousel
	Adding captions to the slides
	Customizing Carousel
	Summary
	10. Creating a Shopping Cart Using Bootstrap Modals
	Adding a shopping cart symbol
	Creating a shopping cart using modals
	Summary
	A. Adding Custom Styles to a Rails Application
	Adding Bootstrap-sass to a Rails application
	Customizing Bootstrap through variables
	Summary
	Index

