
www.allitebooks.com

http://www.allitebooks.org

Appcelerator Titanium
Business Application
Development
Cookbook

Over 40 hands-on recipes to quickly and efficiently
create business grade Titanium Enterprise apps

Benjamin Bahrenburg

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Appcelerator Titanium Business Application
Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-534-3

www.packtpub.com

Cover Image by Will Kewley (william.kewley@kbbs.ie)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Benjamin Bahrenburg

Reviewers

David Bankier

Imraan Jhetam

Acquisition Editor

Joanne Fitzpatrick

Lead Technical Editor

Ritika Dewani

Technical Editors

Prasad Dalvi

Pushpak Poddar

Project Coordinator

Hardik Patel

Proofreader

Katherine Tarr

Indexer

Hemangini Bari

Graphics

Abhinash Sahu

Production Coordinators

Melwyn Dsa

Zahid Shaikh

Cover Work

Melwyn Dsa

Zahid Shaikh

www.allitebooks.com

http://www.allitebooks.org

About the Author

Benjamin Bahrenburg is a developer, blogger, speaker, and consultant. Ben specializes
in building enterprise solutions using mobile technologies, geolocation services, and
domain-specific languages. Over the last decade, he has provided mobility solutions for
numerous Fortune 100 organizations.

Ben is passionate about cross-platform development, particularly the use of Titanium mobile
for mobile app development. He was an early adopter of the Titanium mobile SDK and has
built apps since the earliest previews of Appcelerator's mobile platform. Ben is an active
member of the mobile development community and holds a Titanium certification in addition
to being part of the Appcelerator Titan evangelist group. A strong advocate and contributor to
the Titanium module ecosystem, Ben has published numerous open source modules used in
thousands of published apps.

An active blogger at bencoding.com, he frequently posts tutorials on mobile development
and enterprise coding topics.

I would like to thank my family, friends, and co-workers for their enthusiasm
and encouragement. Without their support, this book would not have been
possible. I would also like to thank the Titanium community for providing a
thriving environment to learn, create, and develop within.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

David Bankier leads YY Digital, a company that builds integrated mobile, tablet, and
server-side applications for enterprise. Previously, David worked in the telecommunications
industry with a strong focus on VoIP technologies. He has used Titanium for mobile development
since 2010 and uses a mix of Node, Scala, and Java on the backend. David is also the creator of
TiShadow, the popular open source project for rapid Titanium development. As a Titan, David's
blog http://www.yydigital.com/blog dives deep into Titanium.

Imraan Jhetam is a medical doctor and entrepreneur living in England with equal loves for
both medical law and technology. He earned his Medical Degree from the University of Natal
in 1983, his MBA from the University of Witwatersrand and a Masters of Law Degree from
Cardiff University.

Imraan has been fascinated by computers since his youth and taught himself the basics of
programming during his university years. He has been writing programs since the mid 1970's
in various languages and for different platforms and has fond memories of his first Apple IIe
with its then impressive 64 KB RAM.

When he is not busy seeing patients or writing medico-legal reports, he spends his time
developing applications and developed Snappa, a social-sharing game that is the better way
to draw something for friends. This was written using the incredible Titanium Studio tools and
Appcelerator Cloud Services and is now in the Apple and Android App Stores. He was also
third prize winner at the first Codestrong Hackathon with two e-payment apps PayBill and
PayPad, that also included social media, geolocation, photos, and bar-codes, and which
were developed in a restricted and short time using Appcelerator Titanium Studio.

You can contact Imraan via www.snappa.mobi or via Twitter @The__i.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Patterns and Platform Tools 7

Introduction 7
Defining an app namespace 10
CommonJS in practice 10
Using platform indicators 19
Global logging using Ti.App.Listener 27

Chapter 2: Cross-platform UI 33
Introduction 33
Cross-platform HUD progress indicator 34
In-app notifications 38
Screen Break Menu 44
Metro Style Tab Control 49
Slideout Menu 53

Chapter 3: Using Databases and Managing Files 63
Introduction 63
Accessing your database's Ti.Filesystem 64
DbTableChecker SQLite table existence checking 69
Recursively handling files using Dossier 74
Tuning your SQLite database for maximum performance 77
Data access using DbLazyProvider 83
NoSQL using MongloDb 87

Chapter 4: Interacting with Web Services 93
Introduction 93
Consuming RSS feeds 94
Creating a business location map using Yahoo Local 101
Using Google Analytics in your app 106

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Making SOAP service calls using SUDS.js 111
Using the LinkedIn Contacts API 117

Chapter 5: Charting and Documents 127
Introduction 127
Opening PDF documents 128
Using an iPad for document signatures 134
Creating PDF documents from images or screenshots 140
Generating PDF documents using jsPDF 144
Creating a scheduling chart using RGraph 148
Displaying information with Google gauges 154

Chapter 6: Using Location Services 159
Introduction 159
Native geolocation using basicGeo 160
Using the Ti.GeoProviders framework for geolocation 168
Multitenant geolocation 176
Calculating distance between addresses 181
Background geolocation management 188

Chapter 7: Threads, Queues, and Message Passing 197
Introduction 197
Queuing multiple downloads 198
Launching one app from another 206
Cross-platform URL schemes 214
Opening your Android app with BOOT_COMPLETED 224
iOS Multithreading using Web Workers 233

Chapter 8: Basic Security Approaches 239
Introduction 239
Implementing iOS data protection in Titanium 240
AES encryption using JavaScript 246
Basic authentication using Ti.Network.HTTPClient 252
Implementing a cross-platform passcode screen 257
Working with protected ZIP files on iOS 262

Chapter 9: App Security Using Encryption and Other Techniques 269
Introduction 269
Using secure properties 270
Object and string encryption 277
Working with encrypted files 281
Handling protected PDFs on iOS 286
Android lock screen monitor 292

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Appendix: Titanium Resources 297
Getting started with Titanium 297
Getting started with Android 298
Getting started with iOS 298
Titanium testing resources 298
Modules and open source 299
Titanium community links 300

Index 303

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Preface
The demand for mobile apps by business enterprises has never been greater. While meeting
this demand is becoming increasingly business critical, the complexities of development are
amplified by the explosion in devices and platforms. Mobile JavaScript frameworks have been
available since the start of the smartphone revolution and is the perfect platform to meet
these challenges. Recognizing the cross-platform nature of these frameworks, enterprises
have begun to rely on them for building cost-effective yet compelling cross-platform solutions.

With an innovative architecture, Appcelerator's Titanium Mobile stands out for its rapid
development speed, large number of APIs, and focus on providing a native experience.
With a thriving community and a growing number of enterprise partners, Titanium has
quickly become one of the largest cross-platform mobile frameworks.

Appcelerator Titanium Business Application Development Cookbook shows how you can
create native mobile apps using your existing JavaScript skills. Through a series of examples
and supporting code, all aspects needed for Enterprise Titanium development are covered.
You will learn to use a single JavaScript codebase to develop cross-platform enterprise mobile
apps for iOS and Android.

Beginning with a discussion on design patterns, the practical recipes in this cookbook
progress through different topics required for Enterprise mobile development. Each recipe
within this cookbook is a self-contained lesson. Feel free to pick and choose which recipes
are of interest and use them as a reference on your Titanium projects. Recipes in this book
demonstrate how to work with data on the device, create charts and graphs, and interact
with various web services. Later recipes discuss application security and native module
development, which provide additional resources to accelerate your next Titanium mobile
development project.

Preface

2

What this book covers
Chapter 1, Patterns and Platform Tools, covers MVC constructs, CommonJS, lazy loading,
and other mobile development patterns to help improve code maintenance and reduce your
memory footprint.

Chapter 2, Cross-platform UI, demonstrates how to provide a native experience across iOS
and Android from a common codebase while creating a branded experience.

Chapter 3, Using Databases and Managing Files, covers approaches on using NoSQL, SQLite,
and the filesystem to manage device data.

Chapter 4, Interacting with Web Services, demonstrates how to interact with a variety
of different web technologies including RSS, REST, YQL, and SOAP.

Chapter 5, Charting and Documents, covers approaches on how to visualize data through
the use of charts, document displays, magazine, and gallery layouts.

Chapter 6, Using Location Services, discusses how to effectively use geolocation in a globally
reliable manner using both on-demand and background techniques.

Chapter 7, Threads, Queues, and Message Passing, covers how to leverage queues,
intents, and threading to separate application responsibility and providing message
passing functionality.

Chapter 8, Basic Security Approaches, provides recipes on best practices for login
management, storing credentials, and use of third party JavaScript encryption libraries.

Chapter 9, App Security Using Encryption and Other Techniques, covers the secure handling
of application assets, configurations, and data required in Enterprise app development.

Appendix, Titanium Resources, provides additional links and details on how to get started.

What you need for this book
 f Windows, Mac OS X

 f Android SDK 2.3 or higher

 f iOS SDK 5.1 or higher

 f Titanium SDK 3 or higher

Who this book is for
This book is for readers with some knowledge of JavaScript who are looking to rapidly build
mobile enterprise apps. Experienced mobile developers looking to expand their skills and
develop cross-platform solutions will find these practical recipes a helpful resource in getting
started on their next Titanium project.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This namespace contains common APIs such as Ti.UI.View and Ti.UI.TableView."

A block of code is set as follows:

//Create our application namespace
var my = {
 ui:{
 mod : require('dateWin')
 },
 tools:{},
 controllers:{}
};

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

//Add a global event to listen for log messages
Ti.App.addEventListener('app:log',function(e){
 //Provide Log Message to CommonJS Logging Component
 my.logger.add(e);
});

//Open our sample window
my.ui.mainWindow.open();

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " This recipe walks through
using the screen break interaction pattern to create additional space for an Add Notes field."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preface

6

Patterns and Platform
Tools

In this chapter we will cover:

 f Defining an app namespace

 f CommonJS in practice

 f Using platform indicators

 f Global logging using Ti.App.Listener

Introduction
For many, building a Titanium app will be their first experience with a large, complete
JavaScript project. Whether you are designing a small expense tracking system or a complete
CRM tool, implementing proper design patterns in Titanium will improve the performance and
maintainability of your app.

The cross-platform nature and underlying architecture of Titanium influences how many
common design patterns can be implemented. In this chapter, we will demonstrate how
to apply patterns to increase speed of development while implementing best practices for
multiple device support.

Introducing Titanium
Appcelerator Titanium Mobile is a platform for building cross-platform native mobile
applications using modern web technologies, such as JavaScript, CSS, and HTML. Titanium
Mobile is an open source project developed by Appcelerator Inc and licensed under the
OSI-approved Apache Public License (Version 2).

1

Patterns and Platform Tools

8

The Titanium Mobile project is one of the most active on Github with a large number
of commits each day. The Github repository is the focal point for many in the community
including module developers, app developers needing night builds, and individual contributors
to the Titanium project.

The Titanium ecosystem is one of the largest in the industry with a community of more
than 450,000 worldwide developers running apps on 10 percent of the world's devices.
Appcelerator boasts one of the largest mobile marketplaces providing third-party components
for Titanium Mobile platform.

Architecture of Titanium
Titanium is a module-based mobile development platform consisting of JavaScript and native
platform code (Java, Objective-C, and C++). The architectural goal of Titanium is to provide
a cross-platform JavaScript runtime and API for mobile development; this differs from other
frameworks' approaches of building "native-wrapped" web applications.

Titanium uses a JavaScript interpreter to create a bridge between your app's JavaScript code
and the underlying native platform. This approach allows Titanium to expose a large number
of APIs, and native UI widgets without sacrificing performance. Titanium's UI controls are truly
native and not visually emulated through CSS. Thus, when you create a Ti.UI.Switch, it is
actually using the native UISwitch control on iOS.

Each Titanium application is organized into layered architecture consisting of the following
major components:

 f Your JavaScript code: At compile time, this will be encoded and inserted into Java
or Objective-C files

 f Titanium's JavaScript interpreter: On Android V8 or JavaScriptCore for iOS

 f The Titanium API: This is specific for a targeted platform created in Java, Objective-C,
or C++

 f Native Custom Modules: A large variety of open source and commercial modules
are available

Your JavaScript

JavaScript Interpreter

Titanium APIs

(5,000+)
Custom Modules

1

2

3
4

Chapter 1

9

At runtime, the Titanium SDK embedded within your app creates a native code JavaScript
execution context. This execution content is then used to evaluate your app's JavaScript
code. As your JavaScript is executed, it will create proxy objects to access native APIs such
as buttons and views. These proxies are special objects that exist both in the JavaScript and
native contexts acting as a bridge between the two environments.

For example, if we have a Ti.UI.View object and we update the backgroundColor to
blue, the property is changed in JavaScript and then the proxy then updates the correct
property in the underlying native layer as shown in the following diagram:

JavaScript

Interpreter

Titanium View

Proxy

Native UIView

myView.backgroundColor=’blue’;

Building a Cross-platform
Titanium provides a high-level cross-platform API, however it is not a write once, run anywhere
framework. When building cross-platform apps, it is recommended to adopt a "write once,
adapt everywhere" philosophy. With Titanium you can add platform-specific code to handle
each platform's different UI requirements, while keeping your business logic 100 percent
cross-platform compatible.

Building best of breed cross-platform applications, Titanium provides tools to:

 f Identify the platform and model at runtime

 f Ability to handle platform-specific resources at build time

 f Apply platform and device-specific styling

In addition to platform tooling, the Titanium API is designed to assist with cross-platform
development. Each major component such as Maps, Contacts, and FileSystem are
separated into its own component namespaces under the top-level namespace called Ti
or Titanium. These component namespaces then have their own child namespaces to
segment platform-specific behavior.

An example of this segmentation is the Ti.UI namespace, which contains all UI components.
This namespace contains common APIs such as Ti.UI.View and Ti.UI.TableView.
Additionally, the Ti.UI namespace has platform-specific child namespaces such as Ti.UI.
iPad containing controls such as Ti.UI.iPad.Popover. The same design applies to
non-visual APIs such as Ti.Android, a namespace which contains Android-specific behavior.

www.allitebooks.com

http://www.allitebooks.org

Patterns and Platform Tools

10

Defining an app namespace
Using namespaces is important in Titanium app development, as it helps organize your code
while not polluting the global namespace. The practice of creating variables and methods
without being associated with a namespace or other scoping condition is called polluting the
global namespace. Since these functions and objects are scoped globally, they will not be
eligible for collection until the global namespace loses scope during application shutdown.
This can often result in memory leaks or other unwanted side effects.

How to do it...
The following example shows how to create a namespace for our app in our app.js called
my with three subnamespaces called ui, tools, and controllers.

var my = {ui:{},tools:{},controllers:{}}

As we build our recipes, we will continue to add functionality to the preceding namespaces.

CommonJS in practice
Organizing your application code using CommonJS modules is a best practice in Titanium
development. CommonJS is a popular specification for creating reusable JavaScript modules
and has been adopted by several major platforms and frameworks such as Node.js and
MongoDb.

CommonJS modules help solve JavaScript scope problems, placing each module within its
own namespace and execution context. Variables and functions are locally scoped to the
module, unless explicitly exported for use by other modules.

In addition to assisting with JavaScript scope concerns, CommonJS provides a pattern to
expose a public stable interface to program against. The information-hiding design pattern
allows module developers to update the internals of the module without breaking the public
contract or interface. The ability to maintain a stable public interface in JavaScript is the key
part of writing maintainable code that will be shared across apps and teams.

Titanium has implemented CommonJS in a similar fashion to Node.js in that you use the
require method to return a JavaScript object, with properties, functions, and other data
assigned to it, which form the public interface to the module.

The following screenshots illustrate the example app used to demonstrate the CommonJS
high-level concepts that will be used throughout the book.

Chapter 1

11

Getting ready
Adding the CommonJS modules used in this recipe is straightforward and consists of copying
the datahelper.js and dateWin.js files into the root of our Titanium project as shown in
the following screenshot:

Patterns and Platform Tools

12

How to do it...
The following recipe illustrates how to use CommonJS to create both UI and Tools modules.
In the following example, a simple app is created, which allows the user to increase or
decrease the date by a day.

Creating the project's app.js
In our app.js we create our application namespace. These namespace variables will be used
to reference our CommonJS modules later in the example.

//Create our application namespace
var my = {
 ui:{
 mod : require('dateWin')
 },
 tools:{},
 controllers:{}
};

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Ti.UI.Window is then created using the my.ui.mod already added to our app namespace.
The open method is then called on our win object to open our example app's main window.

my.ui.win = my.ui.mod.createWindow();

my.ui.win.open();

Building the datehelpers module
In the Resources folder of our project, we have a CommonJS module datehelpers.js.
This module has the following code:

1. The helpers method is created within the datahelpers module. This function
is private by default until it is exposed using the exports object.
var helpers = function(){
 var createAt = new Date();

Chapter 1

13

2. The createdOn method is added to the helpers function. This function returns
the createAt variable. This function is used to provide a timestamp value to
demonstrate how the module can be initialized several times. Each time a new
session is created for the module, the createAt variable will display the newly
initialized timestamp.
 this.createdOn = function(){
 return createAt;
 };

3. The addDays method is added to the helpers function. This method increases the
provided date value by the number of days provided in the n argument.
 this.addDays = function(value,n){
 var tempValue = new Date(value.getTime());
 tempValue.setDate(tempValue.getDate()+n);
 return tempValue;
 }
};

The module.exports is the object returned as the result of a require call. By assigning
the helpers function to module.exports, we are able to make the private helpers
function publically accessible.

module.exports = helpers;

The dateWin module
Also included in the Resources folder of our project is a CommonJS module dateWin.js.
The following code section discusses the contents of this module.

1. Use the require keyword to import the datehelpers CommonJS module. This is
imported in the mod module level variable for later usage.
var mod = require('datehelpers');

2. The createWindow function returns Ti.UI.Window allowing the user to work with
the recipe.
exports.fetchWindow=function(){

3. Next a new instance of the dateHelper module is created.
 var dateHelper = new mod();

4. The next step in building the createWindow function is to set the
currentDateTime module property to a default of the current date/time.
 var currentDateTime = new Date();

Patterns and Platform Tools

14

5. The Ti.UI.Window object, which will be returned by the createWindow function,
is then created. This will be used to attach all of our UI elements.
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
 });

6. The dateDisplayLabel is used to show the result of the datehelper module
as the user increases or decreases the date value.
 var dateDisplayLabel = Ti.UI.createLabel({
 text:String.formatDate
 (exports.currentDateTime,"medium"),
 top:120, height:50, width:Ti.UI.FILL,
 textAlign:'center', color:'#000', font:{fontSize:42}
 });
 win.add(dateDisplayLabel);

7. The addButton is used later in this recipe to call the datehelper module and add
days to the current module value.
 var addButton = Ti.UI.createButton({
 title:"Add Day", top:220, left:5, width:150, height:50
 });
 win.add(addButton);

8. The subtractButton is used later in this recipe to call the datehelper module
and reduce the date of the current module value.
 var subtractButton = Ti.UI.createButton({
 title:"Subtract Day", top:220, right:5,
 width:150, height:50
 });
 win.add(subtractButton);

9. The following code in the addButton and subtractButton click handlers shows
how the AddDays method is called to increment the currentDateTime property of
the module.
 addButton.addEventListener('click',function(e){

10. The following line demonstrates how to increase the currentDateTime value by a
single day:
 exports.currentDateTime =
 dateHelper.addDays(currentDateTime,1);

Chapter 1

15

11. Update the dateDisplayLabel with the new module value.
 dateDisplayLabel.text = String.formatDate(
 exports.currentDateTime,"medium");
 });
 subtractButton.addEventListener('click',function(e){

12. The following code snippet demonstrates how to reduce the currentDateTime
by a day:
 exports.currentDateTime =
 _dateHelper.addDays(currentDateTime,-1);

13. Update the dateDisplayLabel with the new module value.
 dateDisplayLabel.text = String.formatDate(
 currentDateTime,"medium");
 });
 return win;
};

How it works...
Creating a module is easy. You simply add a JavaScript file to your project and write your
application code. By default, any variables, objects, or functions are private unless you have
added them to the module or exports objects. The module and exports objects are
special JavaScript objects created by Titanium and returned by the require method.

Require
To use a CommonJS module you must use the globally available require function. This
function has a single parameter through which you provide the path to your JavaScript module.
The following line demonstrates how to load a CommonJS module called datehelpers.js
located in the root of your Titanium project.

var myModule = require('datehelpers');

When providing the require function with an absolute path,
Titanium will start from the Resources folder of your project.

Titanium has optimized the module loading process so that when a module is first loaded
using the require method, it is then cached to avoid the need to re-evaluate the module's
JavaScript. This approach significantly improves the load performance for modules which
share common dependencies. It is helpful to keep in mind the JavaScript is not re-evaluated
if you have the need to manage/alter the module on load.

Patterns and Platform Tools

16

Properties
Adding a property to your CommonJS module is easy. You simply attach a variable
to the exports object.

The following snippet demonstrates how to create a basic CommonJS property
with a default value.

exports.myProperty = "I am a property";

More complex object properties can also be created, for example, as follows:

exports.myObjectProperty = {
 foo:1,
 bar:'hello'
};

You can also use a private variable to set the initial property's value. This often makes
for more readable and streamlined code.

Create a local variable reflecting your business need.

var _myObjectProperty = {
 foo:1,
 bar:'hello'
};

You can then assign the local variable to a property attached to the exports object,
for example, as follows:

exports.myObjectProperty = _myObjectProperty

Remember these are just properties on the exports JavaScript object
and can be changed by any caller.

Functions
Creating public functions is easy in CommonJS, you simply add a function to the exports
object. Create an Adddays method as part of the exports object. This function accepts a
date in the value parameter and an integer as the n value.

exports.AddDays = function(value,n){

Create a new variable to avoid the provided value from mutating.

 var workingValue = new Date(value.getTime());

Chapter 1

17

Increase the date by using the n value provided. This could be either a positive or negative
value. Negative values will decrease the date value provided.

 workingValue.setDate(workingValue.getDate()+n);

Return the new adjusted value.

 return workingValue;
};

You can also assign an exports method to a privately scoped function. This can be helpful
in managing large or complex functions.

Create a locally scoped function named addDays.

function addDays(value,n){
 var workingValue = new Date(value.getTime());
 workingValue.setDate(workingValue.getDate()+n);
 return workingValue;
};

The addDays function is then assigned to exports.AddDays exposing it to callers outside
of the module.

exports.AddDays = addDays;

Remember these are just methods on the exports JavaScript object
and can be changed by any caller.

Instance object using module.exports
Titanium provides the ability to create a module instance object using module.exports. This
allows you to create a new instance of the function or object attached to module.exports.
This is helpful in describing one particular object and the instance methods represent actions
that this particular object can take.

This pattern encourages developers to think more modularly and to follow the single
responsibility principle as only one object or function can be assigned to the module.exports.

The following code snippets demonstrate how to create and call a module using this pattern:

1. Using Titanium Studio, create the employee (employee.js) module file.

2. Next create the employee function.
var employee = function(name,employeeId,title){
 this.name = name;
 this.employeeId = employeeId;
 this.title = title;

Patterns and Platform Tools

18

 this.isVIP = function(level){
 return (title.toUpperCase()==='CEO');
 }
};

3. Then assign the employee function to module.exports. This will make the
employee function publicly available to call using require.
module.exports = employee;

4. Using require, a reference to the module is created and assigned to the
employee variable.
var employee = require('employee');

5. Next the bob and chris objects are created using new instances of the employee
object created earlier.
var bob = new employee('Bob Smith',1234,'manager');
var chris = new employee('Chris Jones',001,'CEO');

6. Finally, the properties and functions on the bob and chris objects are called to
demonstrate each object's instance information.
Ti.API.info('Is ' + bob.name + ' a VIP? ' + bob.isVIP());
Ti.API.info('Is ' + chris.name + ' a VIP? ' + chris.isVIP());

CommonJS global scope anti-pattern
The CommonJS implementation across Android and iOS is largely the same with one major
scoping exception. If you are using a version of the Titanium framework below version 3.1,
Android scopes all variable access to the module itself, while iOS allows the module to
access objects outside of the module already loaded in the execution context. This should be
considered an anti-pattern as it breaks many of the encapsulation principles the CommonJS
specification was designed to prevent.

In Titanium Version 3.1, the decision has been made to deprecate global scope access in both
iOS and Android in favor of the new Alloy.Globals object. You can read more about the
Alloy.Globals object at http://docs.appcelerator.com/titanium/latest/#!/
api/Alloy.

The following recipe demonstrates this common anti-pattern and highlights the CommonJS
implementation differences in this area between iOS and Android.

//Create our application namespace
var my = {
 tools: require('scope_test'),
 session:{
 foo: "Session value in context"
 }
};

Chapter 1

19

The testScope method is called on the tools module. This demonstrates how CommonJS
module scope anti-pattern works.

my.tools.testScope();

The tools module containing the testScope method is part of this recipe's code and can
be found in the scope.js file root of our project. This module contains the following code:

exports.testScope = function(){
 Ti.API.log
 ("Test Module Scope - Foo = " + my.session.foo);
 return my.session.foo;
};

The scope-access anti-pattern is shown when calling the my.tools.testScope() method.
In iOS, my.tools.testScope() returns "Session Value in context", because it has
access to my.session.foo from the current execution context. In Android, prior to Titanium
SDK Version 3.1, undefined object used to be returned as the module did not have access
to the my.session.foo object. In the Titanium SDK Version 3.1 and greater, Android now
returns "Session Value in context" as it has access to the my.session.foo object.

Access to global scope has been deprecated on both platforms starting with Titanium
SDK Version 3.1 and will be removed in a future version of the SDK. If you have previously
implemented this anti-pattern, corrective action is recommended as the deprecation of this
feature will cause breaking changes within your app.

See also
 f To learn more about the CommonJS specification, please visit the wiki on CommonJS.

org at http://wiki.commonjs.org/wiki/CommonJS

 f For more details and examples on Titanium's implementation of the CommonJS
specification, please review their guides at http://docs.appcelerator.com/
titanium/latest/#!/guide/CommonJS_Modules_in_Titanium

Using platform indicators
Handling different devices, platforms, and models is often the biggest challenge with
cross-platform development. Titanium provides the Ti.Platform namespace to help
you make decisions in your code on how to handle runtime execution.

www.allitebooks.com

http://www.allitebooks.org

Patterns and Platform Tools

20

In the following recipes, we will walk through how to create a PlatformHelpers CommonJS
module containing convenience methods to solve many of your platform-related queries.
The following screenshots demonstrate this recipe while running on both the iPhone and
Android platforms.

Getting ready
The Ti.Platform namespace is helpful for providing platform and device-specific details,
but often you need a high level of detail such as when you have a tablet running your app
and if so if it is an iPad Mini.

Adding recipe components to your project
Adding the PlatformHelpers module to your project is easy. Simply copy the
platform_helpers.js file into your project as shown in the following screenshot:

Chapter 1

21

How to do it...
The following app.js demonstrates the PlatformHelpers module described earlier in this
chapter. This sample app presents a window with your device details. Give it a try on all of your
Android and iOS devices.

1. To create our same app, first we declare our app namespace and import our
PlatformHelper module.
//Create our application namespace
var my = {
 platformHelpers : require('platform_helpers')
};

(function(){

2. Next we create the window in which we will present the device information.
var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
});

Patterns and Platform Tools

22

3. Next we create an empty array to store our device details.
var deviceData = [];

An entry is added to deviceData if your device is running on a simulator.

The isSimulator property is used to show the simulator message, only if the recipe
is currently running on a platform simulator or emulator.

if(my.platformHelpers.isSimulator){
 deviceData.push({
 title:'Running on Simulator', child:false
 });
}

4. Next the platform, operating system's name, and manufacturer are added
to deviceData.
deviceData.push({
 title:'Platform: ' +
 (my.platformHelpers.isAndroid ? 'Android' : 'iOS'),
 child:false
});

deviceData.push({
 title:'osname: ' + my.platformHelpers.osname,
 child:false
});

deviceData.push({
 title:'manufacturer: ' +
 my.platformHelpers.manufacturer, child:false
});

5. The following statement adds a flag to deviceData indicating if the current device
is a tablet form factor:
deviceData.push({
 title:(my.platformHelpers.isTablet ?
 'Is a Tablet' : 'Is not a Tablet'), child:false
});

6. Next we add the device model and specify if it supports background tasks in the
deviceData array.
deviceData.push({
 title:'Model: ' + my.platformHelpers.deviceModel,
 child:false
});

Chapter 1

23

deviceData.push({
 title:'Backgrounding Support: ' +
 my.platformHelpers.supportsBackground,
 child:false
});

7. Screen dimensions are the most commonly used properties. The following snippet
adds the height and width of the screen to the deviceData array:
deviceData.push({
 title:'Height: ' + my.platformHelpers.deviceHeight +
 ' Width: ' + my.platformHelpers.deviceWidth,
 child:false
});

8. If your app is currently running on an iOS device, the following snippet adds the
device type and specifies if it is retina enabled, to the deviceData array.
if(my.platformHelpers.isIOS){
 deviceData.push({
 title:'iOS Device Type: ' +
 (my.platformHelpers.iPad ?
 (my.platformHelpers.iPadMiniNonRetina ?
 'iPad Mini' : 'Is an iPad') : 'iPhone'),
 child:false
 });

 deviceData.push({
 title:'Is Retina : ' + my.platformHelpers.isRetina,
 child:false
 });
}

9. The PlatformHelper module provides a great deal of data. To best display this,
we will be using a Ti.UI.TableView with the deviceData array that we have built
in an earlier code snippet.
var tableView = Ti.UI.createTableView({top:0,
data:deviceData});

 win.add(tableView);
 win.open();
})();

Patterns and Platform Tools

24

How it works...
The device platform lookups will frequently be accessed across your app. To avoid performance
issues by repeatedly crossing the JavaScript Bridge, we import the values we will use and assign
them to properties in our CommonJS PlatformHelpers module.

exports.osname = Ti.Platform.osname;
exports.manufacturer = Ti.Platform.manufacturer;
exports.deviceModel = Ti.Platform.model;
exports.deviceHeight = Ti.Platform.displayCaps.platformHeight;
exports.deviceWidth = Ti.Platform.displayCaps.platformWidth;
exports.densitylevel = Ti.Platform.displayCaps.density;
exports.deviceDPI = Ti.Platform.displayCaps.dpi;

It is often helpful to have a Boolean indicator for the platform with which you are working. The
following snippet shows how to create isAndroid and isIOS properties to accomplish this:

exports.isAndroid = exports.osname === 'android';
exports.isIOS = (exports.osname === 'ipad' ||
exports.osname === 'iphone');

Simulator check
Depending on your platform, several features may not work in that platform's simulator or
emulator. By using the isSimulator property, detect which environment you are in and
branch your code accordingly.

exports.isSimulator = (function(){
 return (Ti.Platform.model.toUpperCase() === 'GOOGLE_SDK' ||
 Ti.Platform.model.toUpperCase() === 'SIMULATOR' ||
 Ti.Platform.model.toUpperCase() === 'X86_64')
})();

Background capabilities
Mobile apps are often required to perform tasks in the background. This recipe demonstrates
how to perform a version-based capability check to determine if the device your application is
running on supports backgrounding/multitasking.

exports.supportsBackground = (function(){

Now perform the following steps:

1. First check if the user is running on Android. If so, return true as most Android ROMs
support background processing by default.
 if(exports.osname === 'android'){
 return true;
 }

Chapter 1

25

2. Next confirm the recipe is running on an iOS device.
 if(exports.osname === 'iphone'){

3. The version is checked to ensure that the device is running iOS 4 or greater.
This confirms the operating system supports background processing.
 var osVersion = Ti.Platform.version.split(".");
 //If no iOS 4, then false
 if(parseInt(osVersion[0],10) < 4){
 return false;
 }

4. Finally the recipe confirms the device version is greater than the iPhone 3GS.
This confirms the hardware supports background processing.
 var model = exports.deviceModel.toLoweCase()
 .replace("iphone","").trim();
 var phoneVersion = Ti.Platform.version.split(".");
 if(parseInt(phoneVersion[0],10) < 3){
 return false;
 }
 }
 //Assume modern device return true
 return true;

})();

Depending on the platform, this feature may be turned off by the user.
A secondary capacity check is also recommended.

Detecting tablets
Universal app development is a common requirement on both Android and iOS. The following
helper provides a Boolean indicator if your app is running on a tablet form factor:

//Determine if running on a tablet
exports.isTablet = (function() {

Check if the device is either an iPad or an Android device with at least one dimension of 700
pixels or greater.

 var tabletCheck = exports.osname === 'ipad' ||
 (exports.osname === 'android' &&
 (!(Math.min(
 exports.deviceHeight,
 exports.deviceWidth

Patterns and Platform Tools

26

) < 700)));
 return tabletCheck;
})();

For Android, this checks if there is a height or width greater than 700
pixels. You may wish to change this based on your targeted devices. For
example, if you are targeting some of the larger screen Android phones,
you would need to update the default 700 pixels/points to reflect them
having a large screen yet still being considered a phone form factor.

A 4-inch iPhone
With the introduction of the iPhone 5, we need to be aware of two different iPhone screen
sizes. The following snippet shows how to create a property indicating if your app is running
on an iPhone with this new screen size.

exports.newIPhoneSize = (function(){

First verify the recipe is running on an iPhone device.

 if(exports.osname !== 'iphone'){
 return false;
 }

Next check the size to see if there is any dimension greater than 480 points.

 return (Math.max(
 exports.deviceHeight,
 exports.deviceWidth
) > 480);
});

Please note, the preceding newIPhoneSize method will only return true,
if the app has been completed to support a 4-inch display. Otherwise, it will
return false as your app is running in the letterbox mode.

iPad
Titanium allows you to create universal apps on iOS. Using the following property, you can
branch your code to show different functionalities to your iPad users:

exports.iPad = exports.osname === 'ipad';

Chapter 1

27

iPad Mini
The iPad Mini was designed with the same resolution as the first and second generation
iPads. Although designed to run iPad apps without modification, the smaller screen size often
requires UI adjustments for smaller touch targets. The following code demonstrates how to
determine if your app is running on an iPad Mini:

exports.iPadMiniNonRetina= (function() {

Now perform the following steps:

1. First check if the recipe is running on a nonretina iPad.
 if((exports.osname !== 'ipad')||
 (exports.osname === 'ipad' &&
 exports.densitylevel==='high')){
 return false;
 }

2. Next verify if the nonretina iPad is not an iPad 1 or iPad 2. If not either of these
modules, assume the recipe is running on an iPad Mini.
 var modelToCompare = exports.deviceModel.toLowerCase();
 return !(
 (modelToCompare==="ipad1,1")||
 (modelToCompare==="ipad2,1")||
 (modelToCompare==="ipad2,2")||
 (modelToCompare==="ipad2,3")||
 (modelToCompare==="ipad2,4")
);
})();

Apple currently does not provide a platform indicator for the iPad Mini.
This check uses model numbers and might not be future proof.

Global logging using Ti.App.Listener
There is built-in ability of Titanium to fire and listen to application wide events. This powerful
feature can be a perfect fit for creating loosely-coupled components. This pattern can provide
a decoupled logging approach, which is helpful for specific situations such as analytics,
logging, and process monitoring modules.

Patterns and Platform Tools

28

This recipe details how Ti.App.Listener can be used to create a decoupled re-useable
application component. The following screenshot demonstrates this recipe running on both
the iPhone and Android platforms:

Getting ready
Adding the CommonJS modules used in this recipe is straightforward and consists of copying
the logger.js and mainWin.js files into the root of our Titanium project as shown in the
following screenshot:

Chapter 1

29

How to do it...
Application-level events allow you to implement a publish/subscribe pattern globally in your
app, even across execution contexts. By simply adding a listener such as the following, you
can receive messages fired from anywhere in your app:

Ti.App.addEventListener('app:myEvent', myFunctionToHandleThisEvent);

Firing a custom event in Titanium is easy. You simply use the Ti.App.fireEvent and
provide the event name and an optional parameter payload. This example shows how to call
the app:myEvent listener we defined earlier.

Ti.App.fireEvent('app:myEvent',"My parameter objects");

It is recommended that you name your events using a descriptive
convention. For example, app:myEvent describes that this is an
application event and is defined in my app.js file.

Designing global logging using events
The following recipes show how to use application-level custom events to implement logging
across the different contexts of our app.

Defining our app.js
In the app.js, we define our application namespace and import the logger and UI
CommonJS modules.

//Create our application namespace
var my = {
 ui:{
 mainWindow : require('mainWin').createWindow()
 },
 logger : require('logger')
};

Next in our app.js, the setup method is called on the logger module. This ensures our
database logging tables are created.

//Run setup to create our logging db
my.logger.setup();

The application-level listener is then defined in our app.js. This listener will wait for the
app:log event to be fired and then call the logger's add method with the payload provided.

//Add a global event to listen for log messages
Ti.App.addEventListener('app:log',function(e){
 //Provide Log Message to CommonJS Logging Component

www.allitebooks.com

http://www.allitebooks.org

Patterns and Platform Tools

30

 my.logger.add(e);
});

//Open our sample window
my.ui.mainWindow.open();

The logging module
The following code snippet demonstrates how to create the basic CommonJS module,
logger.js, used in our global listener recipe. This module has two methods; setup,
which creates our database objects, and add, which the listener calls to log our messages.

Create a constant with the logging database name.

var LOG_DB_NAME = "my_log_db";

Create the setup module-level method. This is used to create the LOG_HISTORY table,
which will later be used to record all log statements.

exports.setup=function(){
 var createSQL = 'CREATE TABLE IF NOT EXISTS LOG_HISTORY ';
 createSQL +='(LOG_NAME TEXT, LOG_MESSAGE TEXT, ';
 createSQL += 'LOG_DATE DATE)';
 //Install the db if needed
 var db = Ti.Database.open(LOG_DB_NAME);
 //Create our logging table if needed
 db.execute(createSQL);
 //Close the db
 db.close();
};

Create the add module-level method. This method is used to record the information to be
added to the log table.

exports.add=function(logInfo){
 var insertSQL ="INSERT INTO LOG_HISTORY ";
 insertSQL +=" (LOG_NAME,LOG_MESSAGE,LOG_DATE)";
 insertSQL +=" "VALUES(?,?,?)";
 var db = Ti.Database.open(LOG_DB_NAME);
 //Create our logging table if needed
 db.execute(insertSQL,logInfo.name,logInfo.message,
 new Date());
 //Close the db
 db.close();
};

Chapter 1

31

Bringing it all together
The following sections show the contents of our mainWin.js module. This module returns
a window with a single button that when pressed fires our logging event.

Window and module variable setup
The fetchWindow function returns a simple window demonstrating how to fire an
application-level event. To demonstrate, a new message is sent each time, and we add
a module level variable named _press_Count, which increments with each click.

Create the module-level variable _press_Count to record the number of times
addLogButton has been pressed.

var _press_Count = 0;

The fetchWindow method returns a Ti.UI.Window containing the UI elements
for this recipe.

exports.fetchWindow=function(){

A Ti.UI.Window is created for all of our UI elements to be attached.

 var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
 });

The addLogButton Ti.UI.Button is created. This button will be used to trigger
the Ti.App.fireEvent used to demonstrate global listeners in this recipe.

 var addLogButton = Ti.UI.createButton({
 title:"Fire Log Event", top:180,
 left:5,right:5, height:50
 });

Firing the application-level event
On clicking on the addLogButton button, the _press_Count variable is increased by
one and a logging object is created. The following code demonstrates how the Ti.App.
fireEvent method is called for the app:log event and a JavaScript object containing
our logging details is provided. The listener we defined in our app.js will then receive this
message and log our results.

 addLogButton.addEventListener('click',function(e){

The first action taken after the user taps the addLogButton is to increase the _pressCount
by one.

 _press_Count ++;

Patterns and Platform Tools

32

Next the logObject containing information to be submitted for logging is created.

 var logObject = {
 name:'test log',
 message:'example message ' +
 _press_Count
 };

Finally, the Ti.App.fireEvent is called for the app:log event. The logObject is also
provided as a parameter when calling this application global event.

 Ti.App.fireEvent('app:log',logObject);
 });
 win.add(addLogButton);

 //Return window
 return win;
};

App logging is just one of the many examples of how you can use
application-level events to decouple your app's components. This
pattern will be used several times over the course of this book when
decoupled component interaction is required.

There's more...
Since application-level listeners are globally scoped, you need to take caution where and
when they are defined. A general rule of thumb is to define application-level listeners in
an area of your app that is always available and never reloaded, such as your app.js,
CommonJS file which is only loaded once, or another bootstrapping method.

If you must define them within a window or other module that is loaded repeatedly, make sure
you remove the listener when the object is no longer needed. To remove the event listener,
you need to call the Ti.App.removeEventListener method with the same arguments
used on creation. The following snippet shows how to remove the app:myEvent listener
created earlier:

Ti.App.removeEventListener('app:myEvent',
myFunctionToHandleThisEvent);

If you do not remove a listener, all associated JavaScript objects
will not be eligible for garbage collection, often resulting in a
memory leak.

Cross-platform UI

In this chapter, we will cover:

 f Cross-platform HUD progress indicator

 f In-app notifications

 f Screen Break Menu

 f Metro Style Tab Control

 f Slideout Menu

Introduction
Titanium is not a write-once-and-run-anywhere application framework, but more of a
write-once-and-modify-for-each-platform one. Nowhere is this more important than in the user
interface of your app. Great user experiences involve making the user feel familiar and at the
same time accentuate the device the app is running upon. Titanium does this by embracing
both common and platform-specific UI widgets.

The recipes in this chapter will demonstrate how to create helpful UI widgets to create a
unique cross-platform experience for your Enterprise users. Each recipe is designed to be
easily branded and used within your existing Titanium Enterprise apps.

2

Cross-platform UI

34

Cross-platform HUD progress indicator
The Heads Up Display (HUD) interaction pattern, named after the UIKit UIProgressHUD
component, is an effective way to provide progress information to your users. This is especially
true for Enterprise mobile apps, as they typically are deeply integrated with backend systems. So
the app does not appear sluggish or unresponsive while making these calls. It is recommended
to use the Waiting or Progress indicators to provide feedback to the users. This recipe
demonstrates how to use an HUD module to present a Waiting indicator to inform your user
about the progress of long-running actions in your app.

Getting ready
This chainable CommonJS HUD module, hud.js, provides a native iOS and Android progress
indicator experience. This is a simple recipe demonstrating how to use the HUD module. You
can use this example to easily incorporate the module into your Titanium project.

Adding the HUD module to your project
Adding the HUD module to your project is easy. Simply copy the hud.js file into the
Resources folder of your project, as shown in the following screenshot:

Chapter 2

35

Once you've added the hud.js file to your project, you need to use require to import
the module into your code:

//Create our application namespace
var my = {
 hud : require('hud'),
 isAndroid : Ti.Platform.osname === 'android'
};

Creating a sample window
To demonstrate the HUD module, we create a basic window with a single button.
To do this, first we create a Ti.UI.Window and attach a button:

var win = Ti.UI.createWindow({
 backgroundColor:'yellow'
});

var hudButton = Ti.UI.createButton({
 title:'Show HUD', height:50, right:5, left:5, bottom: 40
});
win.add(hudButton);

Cross-platform UI

36

Adding HUD listeners
Next in our example, we add a series of listeners. The following code block demonstrates how
to add a listener, to be fired when the HUD window is closed:

my.hud.addEventListener('close',function(e){
 Ti.API.info('HUD Window Closed');
});

1. You can also listen to an open event, which will fire when the HUD window is opened:
my.hud.addEventListener('open',function(e){
 Ti.API.info('HUD Window Open');
});

2. The dblclick event is fired when the user double taps on the HUD window:
my.hud.addEventListener(dblclick,function(e){
 Ti.API.info('HUD Window double clicked');
});

3. The hudTextChanged event is fired whenever updateMessage is called to update
the HUD window message:
my.hud.addEventListener('hudTextChanged',function(e){
 Ti.API.info('Text Changed from ' + e.oldValue +
 ' to ' + e.newValue);
});

4. If you are using the Close Timer functionality, it is helpful to know if your window is
being closed by the timer or by some other method. To help determine this, you can
subscribe to the timerClose event, as shown in the following snippet:
my.hud.addEventListener('timerClose',function(e){
 Ti.API.info('HUD Window Closed by Timer');
});

Creating a HUD indicator
We can now use the button created earlier, to demonstrate how to show the HUD window.
To the click handler of the button we've added logic to load the HUD module with the
message text, Please Wait.... Then we call the show method, which displays the HUD
window to the user.

hudButton.addEventListener('click',function(e){
 win.navBarHidden=true;
 my.hud.load('Please Wait...').show();
});

Chapter 2

37

On Android, you might wish to hide the navigation bar so that the HUD
window can take up the entire screen. If you don't hide the navigation bar,
the HUD module will set the window title to the same text as provided for
the HUD display message.

Updating the HUD message
By calling the updateMessage function, you can update the HUD window text at any time.
The following line demonstrates how to update the text from Please Wait... to Still
waiting....

my.hud.updateMessage('Still waiting...');

Closing the HUD window
There are two ways to close the HUD module window. The first and most common way is to call
the hide function, as shown here:

my.hud.hide();

The second way to close the HUD window is to use the addCloseTimer function on the HUD
module before the show function is called, as highlighted in the following snippet. In this
example, the HUD window will close after 5,000 milliseconds.

my.hud.load('Please Wait...').addCloseTimer(5000).show();

The addCloseTimer function is helpful in dealing with timeout
situations. For example, when making network calls you might wish to
abandon the process after five seconds so as not to keep the user waiting
too long.

How it works…
The HUD module provides a series of functions to create, update, and maintain the HUD
progress window. The following list provides a description of each method along with their
associated functionalities:

 f The load function: This is called to build the Ti.UI.Window, Ti.UI.
ActivityIndicator, and Ti.UI.Label, that will later be used to display your
progress indicator. Please note you will need to first call the load function, followed
by the show function, to display the HUD window.

 f The show function: This displays the HUD window. Please note you first need to
call the load method before calling show. If this is done out of sequence, the HUD
window will not appear.

Cross-platform UI

38

 f The updateMessage function: To update the HUD label, you call this function,
providing a string with the updated text to be displayed.

 f The hide function: Calling this will close the HUD window and remove all of the HUD
objects created.

 f The addCloseTimer function: You use this function to set a timer that will close the
HUD window after the provided duration (in milliseconds).

 f The removeCloseTimer function: You use this function to close the timer that you
set using addCloseTimer.

 f The addEventListener function: The HUD module supports several events as
detailed in the next section. You can subscribe to these events using this function.

 f The removeEventListener function: Any events you have subscribed to, can be
removed by calling this function. To remove an event, you need to provide the same
name and callback arguments as you used while calling addEventListener.

All functions in the HUD module are chainable, similar to
jQuery functions.

In-app notifications
There is often a requirement to alert your users that something has happened. Titanium
allows you to use the alert function, just as you would do on the web. But, often this modal
alert can be limiting and outside of your design requirements.

This recipe walks through how to use the NotifyUI module to create cross-platform, branded
notification windows.

Getting ready
NotifyUI is a CommonJS module consisting of a single JavaScript file, notify.js, and a few
image assets used for styling. You can control the styling of the module through configuration or
by updating core image files, making it easy to fit your existing branding requirements.

This recipe is a simple demonstration on how to use the NotifyUI module. You can use this
example to quickly incorporate the module into your Titanium project.

Chapter 2

39

The following screenshots show this recipe in action:

Adding the NotifyUI module to your project
Adding the NotifyUI module to your project is easy. Simply copy the NotifyUI folder into
the Resources folder of your Titanium project, as highlighted in the following screenshot.
This will install the CommonJS module and all supporting images.

www.allitebooks.com

http://www.allitebooks.org

Cross-platform UI

40

The NotifyUI folder must be copied to the Resources folder of
your Titanium project in order for this recipe to work as designed.

How to do it…
Once you've added the NotifyUI folder to your project, you need to use require to import
the module into your code:

//Create our application namespace
var my = {
 notify = require('./NotifyUI/notify'),
 isAndroid : Ti.Platform.osname === 'android'
};

Creating a sample window
To demonstrate the NotifyUI module, we create a basic window with two buttons:

var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
});

var showNotifyButton = Ti.UI.createButton({
 title:'Show Notification', top: 100,
 height:50, right:5, left:5
});
win.add(showNotifyButton);

var closeNotifyButton = Ti.UI.createButton({
 title:'Close Notification', top: 200,
 height:50, right:5, left:5
});
win.add(closeNotifyButton);

Adding NotifyUI listeners
Next in our example, we add a series of listeners. The following code block demonstrates
how to add a listener, to be fired when the NotifyUI notification window is closed:

my.notify.addEventListener('close',function(e){
 Ti.API.info(Notify Window Closed');
});

Chapter 2

41

1. You can also listen to open event, which will fire when the notification window
is opened.
my.notify.addEventListener('open',function(e){
 Ti.API.info('Notify Window Open');
});

2. The dblclick event is fired when the user double taps on the notification window.
my.notify.addEventListener('dblclick',function(e){
 Ti.API.info('Notify Window double clicked');
});

3. The textChanged event is fired from the NotifyUI module whenever
updateMessage is called to update the notification window message.
my.notify.addEventListener('textChanged',function(e){
 Ti.API.info('Text Changed from ' + e.oldValue +
 ' to ' + e.newValue);
});

If you are using the Close Timer functionality, it is helpful to know if your window is being
closed by the timer or by some other method. To help determine this, you can subscribe
to the timerClose event, as shown in the following snippet:

my.notify.addEventListener('timerClose',function(e){
 Ti.API.info('Notify Window Closed by Timer');
});

Showing a message window
We can now use the button created earlier, to demonstrate how to show the notification
window. To the click handler of the button we've added logic to load the module with the
message text, Hello World, and the style, complete. Then we call the show method,
which displays the notification window to the user.

showNotifyButton.addEventListener('click',function(e){
 win.navBarHidden = true;
 my.notify.load({
 style:'complete',
 message:'Hello World'
 }).show();
});

Cross-platform UI

42

Updating a message
By calling the updateMessage function, you can update the notification text any time. The
following demonstrates how to update the text from Hello World to I'm a new message:

my.notify.updateMessage("I'm a new message");

Closing a message window
There are three ways to close the notification window. The first and most common way is to
call the hide function, as shown in the following snippet:

my.notify.hide();

The second way to close the notification window is to use the addCloseTimer function
before the show function is called, as shown in the following code block. In this example,
the window will automatically close after 5,000 milliseconds (5 seconds).

my.notify.load({
 style:'complete',
 message:'Hello World'
}).addCloseTimer(5000).show();

The third and the final way to close the notification window is to have the user double tap
on the message. This gesture will trigger the module to internally handle the close actions.

How it works…
The NotifyUI module provides a series of functions to create, update, and maintain the
notification window. The following list provides a description of each method, along with their
associated functionalities:

 f The load function: This is called to build the Ti.UI.Window, Ti.UI.Label, and
associated notification style, that will later be used to display your notification. Please
note you will need to first call the load function, followed by the show function, to
display the notification window.

 f The show function: This displays the notification window. Please note you first need
to call the load method before calling show. If this is done out of sequence, the
notification window will not appear. These sequenced operations provide the flexibility
to separate the load and show operations. This can be important if you have several
notification events in succession.

 f The updateMessage function: To update the notification label, you call this function,
providing it a string with the updated text to be displayed.

 f The hide function: Calling this will close the notification window and remove all the
NotifyUI objects created.

Chapter 2

43

 f The addCloseTimer function: You use this function to set a timer that will close the
notification window after the provided duration (in milliseconds).

 f The removeCloseTimer function: Using this you can close the timer that you set
using addCloseTimer.

 f The addEventListener function: The NotifyUI module supports several events
as detailed in the next section. You can subscribe to these events using this function.

 f The removeEventListener function: Any events you have subscribed to can be
removed by calling this function. To remove an event, you need to provide the same
arguments as you used while calling addEventListener.

A majority of the NotifyUI functions are chainable, providing
a useable pattern similar to the one provided by jQuery.

Built-in message styles
The NotifyUI module comes with the following built-in styles:

 f Complete: This displays a window with a blue background and the default text,
Completed

my.notify.load({style:'complete'}).show();

 f Error: This displays a window with a red background and the default text, Error
my.notify.load({style:'error'}).show();

 f Warning: This displays a window with an orange background and the default
text, Warning
my.notify.load({style:'warning'}).show();

Cross-platform UI

44

 f Success: This displays a window with a green background and the default
text, Success
my.notify.load({style:'success'}).show();

All default message texts and text colors can be updated by
providing the message and messageColor object properties to
the load function call.

Screen Break Menu
Enterprise apps often contain a number of features. Providing a compelling way to display
these features and submenus can be challenging. One unique navigation option is to
implement a Screen Break Menu, similar to how iOS folders work. This navigation technique
allows you to present additional information only when requested by the user.

In this recipe, we will demonstrate how you can implement a cross-platform version of the
Screen Break animation and link this effect to a menu view.

Getting ready
This recipe walks through using the screen break interaction pattern to create additional
space for an Add Notes field. You can easily tweak this recipe for more complex menu needs,
such as implementing advanced options or an interactive help menu.

Menu when closed
When the menu is closed, all space is usable for other controls. The following image shows
the Screen Break Menu in its closed state.

Chapter 2

45

The menu, when opened
When the menu is opened, the screen is split and the bottom section of the Ti.UI.Window
is animated, exposing a menu area. The following example shows the Screen Break Menu,
when opened, and displaying a Ti.UI.TextArea for taking notes:

Cross-platform UI

46

Adding the Screen Break Menu to your project
The Screen Break Menu is a CommonJS module consisting of a single JavaScript file. To install
it, simply copy the breakmenu.js file into your project, as shown in the following screenshot:

How to do it…
Once you've added the breakmenu.js file to your project, you need to use require
to import the module into your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 breakingMenu : require('breakmenu')
};

Creating the sample window
To demonstrate the Screen Break Menu, we create a basic window with a single button.
When this button is clicked, the Screen Break Menu is activated.

var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
});

//Create button
var button = Ti.UI.createButton({
 title:'Add Notes', left:20, right:20, height:50, top:150
});
win.add(button);

Chapter 2

47

Adding Screen Break Menu listeners
Next in our example, we add a series of listeners. The following code block demonstrates how
to add a listener, to be fired when the Screen Break Menu starts, to show the menu.

my.breakingMenu.addEventListener('breaking',function(e){
 Ti.API.info("Screen is breaking");
});

1. The broken event is fired when the menu is fully displayed.
my.breakingMenu.addEventListener('broken',function(e){
 Ti.API.info("Screen is broken, menu is visible");
});

2. The closing event is fired when the menu starts to close. This will take a second
to fully close.
my.breakingMenu.addEventListener('closing',function(e){
 Ti.API.info('Menu starting to close');
});

3. Only when the menu is fully hidden, the closed event is fired.
my.breakingMenu.addEventListener('closed',function(e){
 Ti.API.info('Menu is closed');
});

Creating a notes menu object
Displaying a Ti.UI.View is at the core of the Screen Break Menu. In this example,
we create a notes menu object containing Ti.UI.View and Ti.UI.TextArea controls.
These controls are used to present the user with an area for entering notes, when the Screen
Break Menu is visible.

var notesMenu = {
 value : '', //Our value for the notes screen
 view : function(){
 //Create a view container
 var vwMenu = Ti.UI.createView({
 backgroundColor:'yellow',top:150,
 height:200, width: Ti.UI.FILL
 });
 //Create a textArea for the user to type
 var txtField = Ti.UI.createTextArea({
 width: Ti.UI.FILL,height:Ti.UI.FILL,
 hintText:"Add a note", value : notesMenu.value,
 backgroundColor:'transparent',
 font:{fontSize:14,fontWeight:'bold'}
 });

Cross-platform UI

48

 vwMenu.add(txtField);
 //When text is added, update the menu value
 txtField.addEventListener('change',function(e){
 notesMenu.value = txtField.value;
 });
 //Return the view so we can later bind for display
 return vwMenu;
 }
};

Showing the menu
When the sample's button is pressed, the breakScreen function is called to show the
Screen Break Menu.

The breakScreen function takes the following parameters:

 f The first parameter is the Ti.UI.Window that you wish to split in order to reveal
the menu.

 f The second parameter is the Ti.UI.View that you wish to use as your menu.
Please note this can only be a Ti.UI.View object type.

 f The final parameter is the settings object. This object contains the
following properties:

 � breakStartPoint: The position measured from the top of the screen
indicating where the break should start.

 � bottomViewHeight: This property decides the height of the bottom-half
section. This value determines the size of the bottom half of the screen that
is animated down the screen.

 � slideFinishPoint: The position from the top of the screen indicating
where the bottom view should slide to.

You will need to adjust these settings properties to
meet your screen layout requirements.

The following code block implements all the three properties:

button.addEventListener('click',function(e){
 //Options object
 var settings = {};
 //Point of the screen where the screen will separate
 settings.breakStartPoint = 150;
 //Size of the bottom half of screen, ie the sliding part
 settings.bottomViewHeight = 218,

Chapter 2

49

 //The bottom point you want the screen to slide to.
 //Measured from top of screen
 settings.slideFinishPoint = 340;
 //Call function to split the screen & show our menu
 my.breakingMenu.breakScreen(win,notesMenu.view(),settings);
});

Metro Style Tab Control
A tabbed interface is an effective way to organize your Enterprise Titanium app. With
their rising prevalence in smart phones and well designed, compelling UI/UX consumer
applications, the expectation level for UI-rich Enterprise application is increasing among
Enterprise users. Your average Enterprise user is now starting to expect a richer experience
than provided in a traditional tabbed interface.

This recipe demonstrates how to create a unique cross-platform experience using the
Metro Style Tab Control for your Enterprise app. This control allows you to use the tabbed
interaction pattern in a compelling new way while still meeting your branding or organizational
styling requirements.

Getting ready
This recipe walks through the process of creating a Metro Style Tab Control to organize your
app's navigation. The Tab Control is designed to be easily configured to meet your corporate
branding and display requirements.

The next example shows a simple 3-tab navigator at the top of our cross-platform app.
The following sections will walk you through the process of creating this sample, and
demonstrate how to configure the control to meet your specific needs.

www.allitebooks.com

http://www.allitebooks.org

Cross-platform UI

50

Adding the Tab Control to your project
Metro Tab Control is a CommonJS module, consisting of a single JavaScript file. To install,
simply copy the tabcontrol.js file into your project, as shown in the following screenshot:

How to do it…
Once you've added the tabcontrol.js file to your project, you need to use require
to import the module into your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 tabControl : require('tabcontrol')
};

Creating a sample window
To demonstrate the Metro Style Tab Control, create a Ti.UI.Window to attach this custom
control with three tabs.

var win = Ti.UI.createWindow({
 backgroundColor:'#fff',title:"Tab Control Example",
 fullscreen:false, navBarHidden:true
});

Chapter 2

51

Creating the settings object
When creating the Tab Control, you need a tabSettings object and an array of tabs. The
tabSettings object contains all the properties needed to create the Tab Control. The tabs
are then added to the control. When creating the tabSettings object, you can use any valid
Ti.UI.ScrollView properties as the Tab Control provides a wrapper around the Titanium
native Ti.UI.ScrollView.

The tabSettings object also has a Tab Control-specific object called selectedCue. The
selectedCue object contains the selectedBackgroundColor and backgroundColor
properties. The selectedBackgroundColor property is the color used to provide a visual
cue when the tab is selected. The backgroundColor property is the default background
color used for the visual cue area.

var tabSettings = {
 top:0, //Position the control a top of win
 selectedCue : {
 selectedBackgroundColor:'red',
 backgroundColor:'transparent',
 }
};

Defining tabs
You define all of the tabs in the Tab Control at the time of creation. For this example, we will
first create an empty array, and then push each Tab Definition into the array.

var tabs = [];//Create tab collection

A Tab Definition has two main parts, the Tab and the Label sections. In the Tab section,
you can use any parameter that is valid, when creating a Ti.UI.View object. Any additional
parameters will be considered custom properties of the Tab object and will be available once
the Tab Control has been added to the Ti.UI.Window.

In the Label section, you can use any parameter that is valid, when creating a Ti.UI.Label
object. The Label section also has a tab-specific property called selectedFont.
The selectedFont object has the same properties as the Ti.UI.Label font object, but
is only applied when the tab has been selected. The next sample is used to demonstrate an
increase in the font size and weight.

Make sure you include a width property in your tab definition or
TabStrip will not layout correctly.

var tab0 = {
 Tab : {
 left:1, width:75, height:50
 },

Cross-platform UI

52

 Label :{
 text:'tab0',
 selectedFont:{
 fontSize:22, fontWeight:'bold'
 },
 font:{
 fontSize:14
 }
 }
};
tabs.push(tab0); //Add tab to collection

To complete this recipe, add tab1 and tab2 using the same pattern as demonstrated earlier.

Adding Tab Control to the window
The next step in the recipe is to call the createTabStrip method, providing our settings
object, and array of tabs. This method returns an instance of the custom tab control that is
then added to the example's Ti.UI.Window, as shown in the following snippet:

//Create our tab control
var tabControl = my.tabControl.createTabStrip(tabSettings,tabs);
//Add our tab control to the window
win.add(tabControl);

Adding tab listeners
The Metro Tab Control is derived from the Ti.UI.ScrollView. It, therefore, inherits its base
listeners such as pinch, scroll, and click. Additional events are also available for you to
subscribe to.

1. When a user taps on a tab, the tabClick event is fired, providing the index of the
tab tapped.
tabControl.addEventListener('tabClick',function(e){
 Ti.API.info("Tab at Index: " + e.index + " was clicked");
});

2. When a tab is selected, the indexChanged event is fired, providing the current and
prior index values.
tabControl.addEventListener('indexChanged',function(e){
 Ti.API.info("Tab Index changed from " + e.oldIndex +
 " to " + e.index);
});

Chapter 2

53

Slideout Menu
Using a Slideout menu for navigation has become a popular way to display navigation options.
This navigation pattern was made popular by Facebook and Path apps. The strength of this
navigation pattern is that it can effectively present a large number of menu options. Most
Enterprise apps can benefit from this kind of navigation as it increases feature discoverability.

Getting ready
In this recipe, we will demonstrate how to create a sample app using the Slideout menu to
access four application views, and a logout button. The Slideout Menu module provides
a chainable CommonJS module to easily manage your menu and visual assets that can be
easily branded.

The following screenshots show the Slideout menu when open in our sample cross-platform
app. The following steps will walk you through creating this sample, and demonstrate how to
configure the control to meet your needs.

Installing the Ti.Draggable module
When running on Android, the Slideout menu uses a popular native module called
Ti.Draggable. This module enables the user to easily slide back the menu cover.

Cross-platform UI

54

To install this module, you can easily copy the modules directory from the recipe's source,
or download the Ti.Draggable project from https://github.com/pec1985/
TiDraggable. Once you have the unzipped module, you will want to copy the contents
into your project's modules folder, as highlighted in the following screenshot:

After you have copied the files into the modules directory, you will need to add the module to
your project. This is easily done in Titanium Studio by clicking on the tiapp.xml file. Once the
project configuration screen has loaded, click on the green plus button (shown circled in the
following screenshot).

https://github.com/pec1985/TiDraggable

Chapter 2

55

You will then be presented with a list of all the modules you have installed. Select the
ti.draggable [android] module, as shown circled in the following screenshot. After selecting
this module, click on OK to add the reference module to your project.

Once you have added the module, make sure you save your project before running it.
After saving, you will need to clean your project. You do this by selecting Clean… under
the Project toolbar option in Titanium Studio, as demonstrated in the following screenshot:

Cross-platform UI

56

Adding the Slideout Menu module to your project
Adding the Slideout Menu module to your project is easy. Simply copy the SlideOutMenu
folder into the Resources folder of your Titanium project, as shown in the following
screenshot. This will install the CommonJS module and all supporting images.

The SlideOutMenu folder must be located in the root folder of your
Titanium project in order for this recipe to work as designed.

How to do it…
Once you've added the SlideOutMenu folder to your project, you need to use require
to import the module into your code.

//Create our application namespace
var my = {
 views:{},
 menu : require('./SlideOutMenu/MASlidingMenu')
};

Chapter 2

57

Defining our content views
For this sample, we have created a CommonJS module that works as a view factory.
In your app, these views would be the content you wish to have displayed on the screen.

my.sampleView = require('sample_views');

The following snippet builds a views object that contains our placeholder views created
by the sample view factory.

my.views = {
 home : my.sampleView.placeholderView({
 title:'Home',backgroundColor:'blue'}),
 inbox : my.sampleView.placeholderView({
 title:'Home',backgroundColor:'green'}),
 sales : my.sampleView.placeholderView({
 title:'Home',backgroundColor:'yellow'}),
 customers : my.sampleView.placeholderView({
 title:'Home',backgroundColor:'blue'}),
 about : my.sampleView.placeholderView({
 title:'About',backgroundColor:'purple'})
};

Building our menu items
The next step in our recipe is to define our menu items. When open, the menu will display
an array of menu items, as shown by menuData in the following snippet.

Each menu item can contain the following properties:

 f Title: This property is used to display the menu text of the item.

 f Detail Cue: The property hasDetail determines if the more arrow visual cue should
be displayed. This property is optional, and by default false.

 f View Pointer: The optional property view is used to hold a reference to the view that
should be displayed when the menu item is pressed.
var menuData = [
 { title:'Home', hasDetail:true, view: my.views.home },
 { title:'Inbox', hasDetail:true, view: my.views.inbox },
 { title:'Sales', hasDetail:true, view: my.views.sales },
 { title:'Customers', hasDetail:true,
view: my.views.customers },
 { title:'About', hasDetail:true, view: my.views.about },
 { title:'Logout' }
];

Cross-platform UI

58

Opening the app window
To open the sample window, you first need to call the addMenuItems function and provide
the menuData array that we created earlier. This will create the menu objects within the
module. Next, you need to pipe the result of the addMenuItems function into the open
method. This will open your main application window and display the first view in your menu.

my.menu.addMenuItems(menuData).open();

Adding menu listeners
The Slideout menu provides listeners for buttonclick, switch, open, close,
and sliding. The following details each of these events as used in the sample.

1. When a menu item is tapped, the buttonclick event is fired, providing the menu
item index.
my.menu.addEventListener('buttonclick', function(e) {
 if (e.index === 2) {
 alert('You clicked on Logout');
 }
});

2. When a display view is switched for another view, the switch event is fired. This
event can be used to help load display-view content.
my.menu.addEventListener('switch', function(e) {
 Ti.API.info('menuRow = ' + JSON.stringify(e.menuRow));
 Ti.API.info('index = ' + e.index);
 Ti.API.info('view = ' + JSON.stringify(e.view));
});

3. As the user slides the display view to expose the menu, the sliding event is fired.
This provides the view distance.
my.menu.addEventListener('sliding', function(e) {
 Ti.API.info('distance = ' + e.distance);
});

4. When the menu is fully displayed, the open event is fired. This event is helpful for
tracking visual state.
my.menu.addEventListener('menuOpened', function(e) {
 Ti.API.info('Menu is open');
});

5. When the menu is fully closed, the menuClosed event is fired. This event is helpful
for tracking visual state.
my.menu.addEventListener('menuClosed ', function(e) {
 Ti.API.info('Menu is closed');
});

Chapter 2

59

Adding custom application listeners
Our example app also uses the following custom application level events. These events are
fired by our sample views to close and toggle the menu.

Ti.App.addEventListener('app:toggle_menu',function(e){
 Ti.API.info('App Listener called to toggle menu');
 my.menu.toggle();
});
Ti.App.addEventListener('app:close_menu',function(e){
 Ti.API.info('App Listener called to close menu');
 my.menu.hide();
});

How it works…
The Slideout Menu module provides several functions to help you build your app's
navigation system.

Creating the menu
The next snippet demonstrates how to use the addMenuItems helper function to create
a menu using a list of menu items. See this recipe's How to do it… section for an example.

my.menu.addMenuItems(menuData);

Opening the menu container
The following line demonstrates how to open the menu container and display the first menu
item. See this recipe's How to do it… section for an example.

my.menu.open();

The addMenuItems function needs to be called before
the menu container can be opened.

Showing the menu
The following line demonstrates how to fully display the menu:

my.menu.expose();

www.allitebooks.com

http://www.allitebooks.org

Cross-platform UI

60

Toggling the menu
When designing your navigator, you will want to implement a button to allow your users to
open and close the menu. The toggle method, shown in the following snippet, performs this
operation for you:

my.menu.toggle();

Closing the menu
The following line demonstrates how you can hide the menu:

my.menu.hide();

Determining menu state
You can use the following line to determine if the menu is now fully in view:

Ti.API.info("Menu is open " + my.menu.isOpen());

Accessing the current view
You will often need to access the currently displayed view to perform input validation or other
operations. The following line demonstrates how you can easily access the current view:

var current = my.menu.currentView();

Closing the menu container
The following line demonstrates how to close the menu container and all associated
display views:

my.menu.dispose();

Using the sample's Global Events
Each of our sample views can fire two helpful custom-application-level events. The first
of these events is app:toggle_menu, which is called when you tap on the menu icon.
This will either show or hide the menu, depending on its current status.

toMenu.addEventListener('click', function(){
 Ti.App.fireEvent('app:toggle_menu');
});

Often, a user wants to start working with the screen before the menu has fully closed. To
facilitate this, each display view will call the app:close_menu event on a double tap. This will
automatically close the view and allow the user to continue working with the current screen.

view.addEventListener('dblclick',function(e){
 Ti.App.fireEvent('app:close_menu');
});

Chapter 2

61

See also
 f This recipe is inspired by and contains forks of several great open source projects.

The MASlidingMenu.js CommonJS module used in this recipe is the fork of the
MASlidingMenu project.

 � MASlidingMenu: Available at https://github.com/appersonlabs/
MASlidingMenu. Author: Matt Apperson.

 � TiDraggable: Available at https://github.com/pec1985/
TiDraggable. Author: Pedro Enrique.

 � CoverSliderExample: Available at https://github.com/atsusy/
CoverSliderExample. Author: Atsushi Kataoka.

Using Databases and
Managing Files

In this chapter, we will cover:

 f Accessing your database's Ti.Filesystem

 f DbTableChecker SQLite table existence checking

 f Recursively handling files using Dossier

 f Tuning your SQLite database for maximum performance

 f Data access using DbLazyProvider

 f NoSQL using MongloDb

Introduction
Titanium has several components designed to assist in handling your data needs. Additionally,
the Titanium open source community has provided a wealth of alternative data-handling options.

The recipes in this chapter demonstrate a variety of helpful approaches to work with data while
on the device. With topics ranging from file-system management to SQLite tuning, there will be
an approach to assist your Enterprise data needs, no matter what your preferred approach is.

3

Using Databases and Managing Files

64

Accessing your database's Ti.Filesystem
Titanium includes a powerful database API that provides easy access to the underlying
platform's SQLite implementation. Having access to Ti.Filesystem for your app's SQLite
database allows you the flexibility to handle updates, migrations, and installations
more effectively.

The DbFileExt module provides easy access to your SQLite Ti.Filesystem object.
The module also includes other convenient methods to help work with database files.

Getting ready
Adding the DbFileExt module to your project is easy. Simply copy the dbfileext.js file
into your project, as shown in the following screenshot:

How to do it…
Once you've added the dbfileext.js file to your project, you need to use require
to import the module into your code:

//Create our application namespace
var my = {
 isAndroid : Ti.Platform.osname === 'android',
 dbfileext : require('dbfileext')
};

Chapter 3

65

Finding our database Ti.Filesystem.File
The dbFile function provides easy access to the Ti.Filesystem.File object for your
database. Simply provide the database name you wish to access, and the associated
Ti.Filesystem.File object will be returned:

Var myDbFile = my.dbfileext.dbFile('testdb');

If an invalid database name is provided to the dbFile function, a
new Ti.Filesystem.File object will be returned. This allows you
to add a database or file later. It is recommended to use the exists
method when any operations are performed.

Determining the database directory
Determining your application's database folder can be challenging, as it differs according to
the platform. Leveraging the dbDirectory function assists with this challenge, providing you
specify the appropriate directory path based on the device your app is running on:

my.dbfileext.dbDirectory();

File exist check
You will often need to check if a database has been installed, before opening. The DbFileExt
module makes this straightforward with the dbExists function. Simply paste in the database
name and a Boolean is returned, identifying if the database has been installed:

my.dbfileext.dbExists('testdb');

RemoteBackup – iOS-specific attribute
With iOS 5, Apple included the ability to back up files to the iCloud service. You can enable or
disable this feature on your SQLite database file through the use of the dbRemoteBackup
function. When you provide the database name and a Boolean, you are indicating if you would
like to have remote backup enabled:

my.dbfileext.dbRemoteBackup('testdb',true);

If this function is called on the Android platform, no action will be
performed, as this relates to iOS-specific functionality.

Using Databases and Managing Files

66

Renaming a database file
The DbFileExt module allows you to rename your database files. This can be helpful when
versioning or keeping backups of your database. To rename a database, provide the current
database name and the new name as parameters to the dbRename method, as the following
statement shows:

my.dbfileext.dbRename('current name','new name');

Listing all databases
When dealing with large apps, or apps that require database versioning, you will often need a
list of all the databases installed within your app's sandbox. The dbList function provides the
name and native path for each SQLite database within your app's database folder. You can
then use this array to remove any unneeded database files:

var installedDatabase = my.dbfileext.dbList();

Removing a database file
The dbRemove function provides an easy and safe way to remove any unwanted database
files. Provide the database name you wish to delete and the DbFileExt module will remove
the file from your device:

my.dbfileext.dbRemove('newtest');

How it works…
The next series of tests demonstrate how the DbFileExt module works within a windowless
sample app.js.

Setting up our test
First, we use the Ti.Database.open function to create a sample database. The following
highlighted code demonstrates how to create a database named testdb:

//Create our application namespace
var my = {
 isAndroid : Ti.Platform.osname === 'android',
 dbfileext : require('dbfileext')
};

var testDb = Ti.Database.open('testdb');

Next, we build a Ti.Filesystem object with a known reference to our testdb database.
This will later be used to verify if the DbFileExt module is returning the correct values.

var testFileReference = (function(){
 if(my.isAndroid){

Chapter 3

67

 return Ti.Filesystem.getFile(
 }else{
 return testDb.file;
 }
})();

The iOS Ti.Database object has a file property that can be used
in your tests. On Android, you need to create the file object using
the proper directory and file names.

Finding our database Ti.Filesystem
Next, we compare the Ti.Filesystem.File object returned by the DbFileExt module
to see if it matches our test file. These should always match no matter what the platform.

Ti.API.info("Does the module return the same as our test?");
Ti.API.info((testFileReference.nativePath ===
 my.dbfileext.dbFile('testdb').nativePath) ?
"Test Pass" : "Test Failed");

Determining database directory
The directory where your SQLite file is installed differs by platform. For example, it is in
the data directory on Android and the Private Documents folder on iOS. The next
example demonstrates how to write the path to your devices database directory to Titanium
Studio's console:

Ti.API.info("Your database directory is " +
 my.dbfileext.dbDirectory());

File exist check
The most common use of the DbFileExt module is to check if a database has already been
installed. The next test compares the dbExists result in DbFileExt with those generated
by our test Ti.Filesystem.File object:

Ti.API.info("Does the exists test work?");
Ti.API.info((testFileReference.exists() ===
 my.dbfileext.dbExists('testdb'))
 ? "Both Exist" : "Test Failed");

Using Databases and Managing Files

68

Renaming a database file
You will encounter the need to rename databases for a variety of reasons, the most common
being archiving or versioning. The following highlighted code demonstrates how to rename the
testdb database to oldtest. The dbExists method is then called on both the new and old
names to demonstrate that the rename function has worked properly.

my.dbfileext.dbRename('testdb','oldtestdb');
Ti.API.info("Does the test db exist? " +
 my.dbfileext.dbExists('testdb'));
Ti.API.info("How about the oldtest one? Does that exist? " +
 my.dbfileext.dbExists('oldtest'));

Listing all databases
It is often helpful to have a list of all the databases that are available within your app.
This can be particularly helpful with large apps or apps containing third-party components.

To demonstrate this functionality, first we create several databases in our sample app:

Ti.Database.open('test1');
Ti.Database.open('test2');
Ti.Database.open('test3');

The dbList function of the DbFileExt module is used to return all the databases installed
into our app:

var installedDb = my.dbfileext.dbList();

The following snippet writes the list of databases provided by the installedDb variable
to Titanium Studio's console. This will list all of the databases used in this sample, along
with any that might also be installed within your Titanium project.

installedDb.forEach(function(db) {
 Ti.API.info("Db Name = " + db.dbName);
 Ti.API.info("nativePath = " + db.nativePath);
});

Removing a database file
The final test in this recipe demonstrates how to use the dbRemove function to delete an
installed database. The following highlighted snippet shows how to delete the oldtest
database that we used earlier in the sample:

my.dbfileext.dbRemove('oldtest');
Ti.API.info("db still exists? " +
 my.dbfileext.dbExists('oldtest'));

Chapter 3

69

DbTableChecker SQLite table existence
checking

SQLite and the Ti.Database API provide many powerful features. This recipe demonstrates
how to use the existing Ti.Database API and SQL statements to check if a table has already
been created.

The ability to check if database objects exist is critical for Enterprise apps, for versioning and
data migration purposes A typical usage of this process would be to check if a table already
exists during schema migration. For example, a specific data migration might be performed if
the client table in your app already exists while creating the table for the first time.

Getting ready
This recipe relies on the Titanium framework's Ti.Database API, requiring no dependencies.
In the next section, we create a simple app.js file, demonstrating how to perform the
table-exists check.

How to do it…
The following steps demonstrate how to check if a table exists within an SQLite database.

Creating our module
In Titanium Studio, create a module called dbtablechecker.js. This module should have
the following code snippet:

exports.tableExists = function (dbName, tableName){
 var conn = Ti.Database.open(dbName);
 var selectSQL ='SELECT name FROM sqlite_master '
 selectSQL +=' WHERE type="table" AND name=?';

 var getReader = conn.execute(selectSQL,tableName);
 var doesExist = (getReader.getRowCount() > 0);

 //Clean-up
 getReader.close();
 conn.close();
 getReader = null;
 conn = null;

 return doesExist;
};

Using Databases and Managing Files

70

Namespace and app setup
Next, in our application's app.js file, we create our application namespace and use the
require method to import the CommonJS module into our application:

//Create our application namespace
var my = {
 dbTableChecker : require('dbtablechecker')
};

Creating our window
To help demonstrate this recipe, a window with three buttons is created. These buttons will
allow you to create, test whether the table exists, and remove the myTable sample table.

var win = Ti.UI.createWindow({
 backgroundColor:'#fff',layout:'vertical'
});

Testing if a table exists
The first button in the recipe demonstrates how to call the tableExists function created
earlier in the CommonJS module of dbTableChecker:

var tableExistsBtn = Ti.UI.createButton({
 title:'Does Table Exist?', height:50, right:5,
 left:5, top: 20
});
win.add(tableExistsBtn);

When the button is pressed, the tableExists function is called within our CommonJS module
to determine if the specified table exists. The next highlighted code snippet demonstrates
checking if a table named myTable exists within the myDatabase SQLite database.

tableExistsBtn.addEventListener('click',function(e){
 //Check if our table exists in our database
 var doesExist = my.dbTableChecker.
 tableExists('myDatabase','myTable');
 //Alert the user if the table exists or not
 alert('Table "myTable" ' + (doesExist ? ' exists' :
 "does not exist"));
});

Chapter 3

71

Creating a table
The next button in this recipe is used to create a sample table, which is to be used in our
tests. When exploring this recipe, this button will allow you to drop and re-create a sample
table several times.

var makeTestBtn = Ti.UI.createButton({
 title:'Create Test Table', height:50, right:5, left:5, top: 20
});
win.add(makeTestBtn);

The following highlighted code demonstrates calling the my.testers.makeTable function
to create a table named myTable in the myDatabase database:

makeTestBtn.addEventListener('click',function(e){
 //Create a sample table
 my.testers.makeTable('myDatabase','myTable');

 //Alert the user a test table has been created
 alert('Table "myTable" was created.');
});

See this recipe's How it works… section for more
information on my.testers.

Removing a table
The last button in this recipe is used to drop the sample table. When exploring this recipe,
this button will allow you to drop and re-create a sample table several times:

var removeTestBtn = Ti.UI.createButton({
 title:'Remove Test Table', height:50, right:5, left:5, top: 20
});
win.add(removeTestBtn);

The highlighted line in the following code snippet demonstrates how to call the my.testers.
removeTable function to drop a table named myTable in our database:

removeTestBtn.addEventListener('click',function(e){
 //Create a sample table
 my.testers.removeTable('myDatabase','myTable');
 //Alert the user a test table has been removed
 alert('Table "myTable" was removed');
});

Using Databases and Managing Files

72

See this recipe's How it works… section for more information on
my.testers.

How it works…
This recipe uses the SQLite data dictionary and several helper methods to support testing.
The functionality of these methods and how they are composed, is discussed here.

Testing helpers
This recipe uses two helper functions, makeTable and dropTable, to manage our
sample table. These methods allow for the tableExists method to be tested repeatedly
without conflict.

my.testers = {

1. The makeTable function uses dbName to open a database connection. Once the
database has been opened, a table is created (if it doesn't exist) using the provided
tableName parameter:
 makeTable : function(dbName,tableName){
 var conn = Ti.Database.open(dbName);
 var createSql = 'CREATE TABLE IF NOT EXISTS '
 createSql += tableName ;
 createSql += '(id INTEGER PRIMARY KEY AUTOINCREMENT,';
 createSql += ' my_column TEXT)';

 conn.execute(createSql);

 //Clean-up
 conn.close();
 conn = null;
 },

2. The removeTable function uses dbName to open a database connection. Once the
database has been opened, the table name provided in the tableName parameter
is dropped, if the table exists:
 removeTable : function(dbName,tableName){
 var conn = Ti.Database.open(dbName);
 var dropSql = 'DROP TABLE IF EXISTS ' + tableName;

 conn.execute(dropSql);

Chapter 3

73

 Conn.close();
 conn = null;
 }
};

The tableExists method
The dbTableCheck module has a single method named tableExists which returns
a Boolean result if the provided table name exists within the database. This check is
performed by querying the data dictionary of the SQLite database.

exports.tableExists = function (dbName, tableName){
 var conn = Ti.Database.open(dbName);

1. The following SQL statements will query the SQLite data dictionary table, sqlite_
master, for a list of tables with a specified table name. The ? character is a
parameter that is replaced by the execute method.
 var selectSQL ='SELECT name FROM sqlite_master;
 selectSQL +=' WHERE type="table" AND name=?';

2. The data dictionary query is then executed using the tableName variable as its
parameter. A Ti.Database.DbResultSet is returned and allocated to the
getReader variable:
 var getReader = conn.execute(selectSQL,tableName);

3. Next, the getRowCount method is used to determine if any rows are returned.
This is converted into a Boolean statement that will later be returned by this method:
 var doesExist = (getReader.getRowCount() > 0);

4. The DbResultSet and database is then closed to reduce the number
of active objects:
 getReader.close();
 conn.close();
 getReader = null;
 conn = null;

5. The Boolean result determined earlier is returned by the following method:
 return doesExist;
};

Using Databases and Managing Files

74

Recursively handling files using Dossier
When creating your Titanium Enterprise app, you will often find the need to copy the
contents of a directory to another place. Two of the most common examples of this
would be: implementing a caching approach and performing lazy, loaded installations.
For example, Dossier can be used to create an initial content cache, by copying files
from your app's Resources directory into a working directory under Ti.Filesystem.
applicationDataDirectory. This would allow for the user to see the initial content while
data is being refreshed in the background.

The Dossier CommonJS module provides a cross-platform API for handling these types of
folder operations. The next section demonstrates how to install and use the Dossier module
within your Titanium Enterprise app.

Getting ready
The Dossier CommonJS module is installed by including the dossier.js file into
your project.

Adding the Dossier module into your project
Adding the dossier module to your project is easy. Simply copy the dossier.js file and the
SampleData folder into the Resources folder of your Titanium project, as highlighted in the
following screenshot. This will install all the files needed for this recipe.

Chapter 3

75

How to do it…
Once you've added the dossier.js file to your project, you need to use require in order to
import the module into your code:

//Create our application namespace
var my = {
 dossier : require('dossier');
};

Creating sample directories
To demonstrate the copy and move features of Dossier, a Ti.Filesystem object is created
for both our source and destination directories. In the next snippet, the sourceDir variable
contains a directory reference to the SampleData folder we copied as part of the recipe
setup, and targetDir references a new folder named NewSampleData, to be created in
your device's data directory.

var sourceDir =
 Ti.Filesystem.getFile(Ti.Filesystem.resourcesDirectory,
 'SampleData');

var targetDir = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory
 + '/NewSampleData');

Recursive listing of directory contents
When dealing with dynamic or downloadable content, you will often need to list all of the
content of a specific directory. The listContents method allows you to recursively query
the content of a directory, listing all files and subdirectories within.

The following code snippet demonstrates how to query our recipe's sourceDir for a list of all
files and folders:

var listTargetContents =
 my.dossier.listContents(sourceDir.nativePath);

Using Databases and Managing Files

76

The listContents method returns a file explorer dictionary object, listing all of the files
and subdirectories in a hierarchal format, as highlighted in the following screenshot:

Recursively copying directory contents
Many Enterprise apps are content driven. To improve your first-time installation experience,
you might wish to bundle introductory content within your app and copy this bundled content
into local cache on startup.

Using dossier module's copy method, you can copy the entire content of one folder to
another. The following code demonstrates how to copy all the content of our source directory
to our new target directory:

my.dossier.copy(sourceDir.nativePath,targetDir.nativePath);

During the copy process, any existing content in the
target folder will be removed.

Chapter 3

77

Recursively moving directory contents
The move method creates a new copy of all the content of your source directory to your
target folder. Once the copying process has been successfully completed, the source
directory is removed.

my.dossier.move(sourceDir.nativePath,targetDir.nativePath);

During the move process, any existing content in the target folder will be
removed and replaced with the content of our source folder. Additionally,
after all the files have been moved, the source content will be removed if
possible. In cases where the source directory is read-only, the contents
will be retained.

See also
 f The Dossier module used in this recipe is an open source project available on

Github. If you are interested in learning more or contributing, please visit the project
at https://github.com/benbahrenburg/Dossier.

Tuning your SQLite database for maximum
performance

Data access is a common bottleneck in Titanium Enterprise development. Through proper use
of SQLite transactions, you can experience up to a 10x improvement in bulk insert operations.

SQLite transactions provide reliable units of work that allow for data recovery and keep
the database consistent. By default, each time an insert, update, or delete operation is
performed on an SQLite database, an implicit transaction is created before and after your
statement is executed. This helps keep your database in a consistent state. For batch operations
however, this introduces an additional level of overhead and can drastically reduce your
app's performance.

This recipe demonstrates how to use SQLite transactions to improve app performance
when conducting batch SQL actions and working with large datasets.

Using Databases and Managing Files

78

Getting ready
This recipe will run a performance comparison using 100,000 rows. Included in this recipe
is the following basic UI that allows you to benchmark your different devices.

Adding the TimeLogger module
This recipe uses TimeLogger to record the duration of each performance test. To add the
TimeLogger module to your project, copy the timelogger.js file into your project, as
shown in the following screenshot:

Chapter 3

79

How to do it…
The first step in this recipe is to create the application namespace and import the timer
module, as the following snippet demonstrates:

//Create our application namespace
var my = {
 timer : require('timelogger')
};

Creating our testing Interface
The next step is to create a Ti.UI.Window for our recipe. This will be used to provide
a launching point for our performance tests.

var win = Ti.UI.createWindow({
 backgroundColor:'#fff',layout:'vertical'
});

1. Now, a label is created to track the results of our No Transactions
performance test:
var noTransactionLabel = Ti.UI.createLabel({
 text: "No Transactions: NA",
 height:20, right:5, left:5, top: 40,
 textAlign:'left',
 color:'#000', font:{fontWeight:'bold',fontSize:14}
});
win.add(noTransactionLabel);

2. Then, a label is created to track the results of our With Transactions
performance test:
var withTransactionLabel = Ti.UI.createLabel({
 text: "With Transactions: NA",
 height:20, right:5, left:5,
 top: 10, textAlign:'left',
 color:'#000', font:{fontWeight:'bold',fontSize:14}
});
win.add(withTransactionLabel);

3. The final UI element we create is a button that, when pressed, will launch our tests:
var runTestButton = Ti.UI.createButton({
 title:'Start Performance Test',
 height:50, right:5, left:5, top: 40
});
win.add(runTestButton);

Using Databases and Managing Files

80

Benchmarking
When the runTestButton button is pressed, a benchmark 100,000 record insert is
performed, both with and without the use of transactional scoping. The screen is then
updated with the elapsed milliseconds for each test.

1. The following code demonstrates how each test is run when the button's click event is
triggered:
runTestButton.addEventListener('click',function(e){

2. First, a test is run without explicitly creating a transaction. This test returns
the number of milliseconds elapsed while running, and stores the result in the
noTransactions variable, as the following snippet demonstrates:
var noTransactions = performanceTest.run(false);
noTransactionLabel.text = "No Transactions: " +
 noTransactions + ' ms';

3. Next, the same test is run using BEGIN and COMMIT statements to create an explicit
transaction. This test returns the milliseconds elapsed during the test, and stores the
result in the withTransactions variable, as shown in the following snippet:
var withTransactions = performanceTest.run(true);
withTransactionLabel.text = "With Transactions: " +
 withTransactions + ' ms';
});

How it works…
This recipe uses the helper objects discussed in this section, to perform the
benchmarking operations.

Database setup
dbTestHelpers is the first helper object used during benchmarking. This object contains
all the code needed to set up, create, and manage the database used in our tests:

var dbTestHelpers = {

1. The maxIterations property controls the number of iterations in our test:
 maxIterations : 100001,

2. The createOrResetDb method is used to return a known and consistent database
to test against:
 createOrResetDb : function(){
 return Ti.Database.open("perf_test");
 },

Chapter 3

81

3. The resetTestTable method is then called to drop and re-create our test
table. This allows us to run our tests several times, while maintaining a consistent
sample size:
 resetTestTable : function(db){
 var dropSql = 'DROP TABLE IF EXISTS TEST_INSERT';
 var createSql = 'CREATE TABLE IF NOT EXISTS ';
 createSql += 'TEST_INSERT ';
 createSql += '(TEST_ID INTEGER, TEST_NAME TEXT, ';
 createSql += 'TEST_DATE DATE)';
 db.execute(dropSql);
 db.execute(createSql);
 },

4. The createSQLStatement method returns the SQL that will be used to perform our
insert operations:
 createSQLStatement : function(){
 var sql = 'INSERT INTO TEST_INSERT ';
 sql += '(TEST_ID, TEST_NAME, TEST_DATE) ';
 sql += 'VALUES(?,?,?)';
 return sql;
 },

5. The createDummyObject function creates a unique object, to be inserted into
each row:
 createDummyObject : function(iterator){
 var dummy = {
 id:iterator, name : 'test record ' + iterator,
 date : new Date()
 };

 return dummy;
 }
};

Performing the tests
The performanceTest object runs and times the recipe database's inserts. The run method
starts our benchmark and provides an indicator if the test is to use transactions or not:

var performanceTest = {
 run : function(useTransaction){

Using Databases and Managing Files

82

1. The first step in our test is to create a database connection and to reset our table.
This is done by calling the dbTestHelper method, discussed earlier:
 var db = dbTestHelpers.createOrResetDb();
 dbTestHelpers.resetTestTable(db);

2. After our database has been set up, the next step is to create our insert statement
and timer objects, as demonstrated here:
 var dummyObject = null;
 var insertSQL = dbTestHelpers.createSQLStatement();
 var insertTimer = new my.timer("Insert Timer");

3. If the useTransaction flag has been set, we then explicitly begin a transaction:
 if(useTransaction){
 db.execute('BEGIN;');
 }

4. In the next step of this recipe, a loop is created, to insert records into the test table,
a specific number of times. By default, this test will insert 100,000 records, and time
the total duration.
 for (var iLoop = 0;
 iLoop < dbTestHelpers.maxIterations; iLoop++){
 dummyObject = dbTestHelpers.createDummyObject(iLoop);
 db.execute(insertSQL,dummyObject.id,
 dummyObject.name,dummyObject.date);
 }
 }

5. If the useTransaction flag has been set, we then explicitly "commit" the
transaction:
 if(useTransaction){
 db.execute('COMMIT;');
 }

6. The final step of this method is to retrieve our execution duration from our timer
object. This value (in milliseconds) is then returned for later comparison operations:
 var totalInsertTime = insertTimer.getResults().msElapsed;
 db.close();
 //Return total ms elapsed
 return totalInsertTime;

 }
};

Chapter 3

83

See also
 f To learn more about SQLite transactions and how they are implemented, please read

the official documentation at http://www.sqlite.org/lang_transaction.
html

Data access using DbLazyProvider
Data access is a common challenge when building any Enterprise app. The DbLazyProvider
module provides a lightweight wrapper around the Ti.Database API. This module provides
helpers for commonly required operations such as managing transactions and lazy-loading
connections.

Lazy loading is a common efficiency pattern that defers the initialization of an object until
needed. By lazy-loading app-database connections, any memory usage or IO operation
associated with creating a database connection is deferred until needed.

The following section demonstrates how to use the DbLazyProvider module to implement
a lazy-loading pattern in your app, while maintaining control over your database transactions.

Getting ready
Adding the DbLazyProvider module to your project is easy. Simply copy the
dblazyprovider.js file into your project, as shown in the following screenshot:

http://www.sqlite.org/lang_transaction.html
http://www.sqlite.org/lang_transaction.html

Using Databases and Managing Files

84

How to do it…
The first step in this recipe is to create the application namespace and import the
DbLazyProvider module, as demonstrated here:

//Create our application namespace
var my = {
 dbProvider : require('dblazyprovider')
};

Next, a sample table named MY_TEST is created. If the table already exists, any existing
records will be purged so we can start a new test.

var dbSetup = new my.dbProvider("myDb");
var createSql = 'CREATE TABLE IF NOT EXISTS ';
createSql += 'MY_TEST (TEST_ID INTEGER, ';
createSql += 'TEST_NAME TEXT)';
dbSetup.connect().execute(createSql);
dbSetup.connect().execute('DELETE FROM MY_TEST');
dbSetup.close();

Creating our testing Interface
Now, we create a Ti.UI.Window for our recipe. This will be used to provide a launching point
for our tests.

var win = Ti.UI.createWindow({
 backgroundColor:'#fff',layout:'vertical'
});

Lazy-loading using transactions
The insertDemoBtn button is used to trigger our recipe, showing how to use transactions
with DbLazyProvider:

var insertDemoBtn = Ti.UI.createButton({
 title:'Run Inserts', height:50, right:5, left:5, top: 20;
});
win.add(insertDemoBtn);

1. Clicking on the insertDemoBtn button will insert 1,000 rows into our table:
insertDemoBtn.addEventListener('click',function(e){
 var maxIteration = 1000;
 var sql = 'INSERT INTO MY_TEST ';
 sql+='(TEST_ID, TEST_NAME) VALUES(?,?)';
 var db = new my.dbProvider("myDb");
 for (var iLoop = 0; iLoop < maxIteration; iLoop++){

Chapter 3

85

2. The following code shows using the connect method with a transaction parameter
of true to obtain the Ti.Database object that is used to execute the SQL
statement. This will automatically create a transaction on the first insert for you.
 db.connect(true).execute(sql,iLoop,'test ' + iLoop);

3. When the close method is called, any transactions that were created will be
committed, and the database connection will be closed:
 db.close();
 alert('Test done ' + maxIteration + ' rows inserted');
 });

Creating a select statement using lazy-loading
Not all SQL statements benefit from transactions. The following snippet demonstrates how
to perform a select statement without using transactions:

 var selectDemoBtn = Ti.UI.createButton({
 title:'Run Select', height:50, right:5, left:5,
 top: 20
 });
 win.add(selectDemoBtn);

1. Click on the selectDemoBtn button to create a new DbLazyProvider object,
and run a select statement:
 selectDemoBtn.addEventListener('click',function(e){
 var db = new my.dbProvider("myDb");
 var selectSQL = 'SELECT * FROM MY_TEST ';

2. The highlighted code shows how to use the connect method without providing any
parameters. This will, by default, avoid using transactions.
 var getReader = db.connect().execute(selectSQL);
 var rowCount = getReader.getRowCount();

3. On using the close method, the database connection will be closed and all objects
will be set to null:
 db.close();
 alert('Rows available ' + rowCount);
 });

How it works…
The DbLazyProvider module is a lightweight, yet powerful, wrapper over Ti.Database.

Using Databases and Managing Files

86

Creating a new DbLazyProvider object
To create a new DbLazyProvider object, simply use the require method to import the
module and create a new object using the reference in the following highlighted snippet.
This will create a new object wrapper for the database name provided.

//Create our application namespace
var my = {
 dbProvider : require('dblazyprovider')
};
//Create a new dbLazy object
var db = new my.dbProvider("myDb");

Getting a connection object
The most frequently used method of DbLazyProvder is connect. This method will create
a new Ti.Database connection if needed, and then return the database object:

db.connect().execute('Your SQL goes here');

If you wish to have your SQL statement start a transaction, you simply pass in a Boolean
parameter of true when calling the connect method, as shown here:

db.connect(true).execute('Your SQL goes here');

The transaction created will be used until either the close or commit method is called on
your DbLazyProvider object.

Beginning a transaction
By default, transactions are handled automatically for you, using the connect and
close methods. You can also explicitly create a transaction at any time using the
beginTransaction method, as shown here:

db.beginTransaction();

Ending a transaction
By default, transactions are handled automatically for you, using the connect and close
methods. You can also explicitly commit or finish a transaction at any time using the commit
method, as shown here:

db.commit();

Opening a database connection
The module, by default, will wait until a database connection is needed, before opening the
Ti.Database object. If a connection is needed in advance, you can call the open method at
any time:

db.open();

Chapter 3

87

You can also pass in a new database name to switch
your database reference.

Closing a database connection
Using the close method on your DbLazyProvider objects is important, as it both commits
any pending transactions and closes your database connection. The close method should be
called after each transaction grouping or when the database connection is no longer needed.

db.close();

NoSQL using MongloDb
NoSQL databases are often a perfect fit for managing your application's data, as it allows you
to work with objects instead of tables. In addition to the benefit of working with objects, using
NoSQL on mobile reduces complexity by removing the need for schema management, data
migration, and other common maintenance issues associated with maintaining a relational
data model.

MongloDb is a pure JavaScript implementation of the popular MongoDb NoSQL solution.
The MongloDb module allows you to query and persist objects using the familiar MongoDb
syntax in your Titanium app. This recipe demonstrates how to leverage the MongloDb module
within your new or existing Titanium project.

Getting ready
Installing MongloDb for Titanium is a straightforward process. You can either copy the Monglo
folder from the recipe's source code, or create the bundle yourself.

Creating the bundle is a three-step process:

1. Using Titanium Studio, create a folder called Monglo in the Resources folder
of your project.

2. Download the latest monglodb.js file from monglodb.com into the Monglo
folder created in the previous step.

3. Download into the Monglo folder the latest index.js file from the Titanium
Store project available on monglodb.com.

Using Databases and Managing Files

88

Whether you copied the bundle from the recipe source or created your own, the Monglo folder
in your Titanium project should resemble the highlighted part of the following screenshot:

How to do it…
Once you have installed MongloDb, you will need to use require to import the module into
your code:

//Create our application namespace
var my = {
 monglo : require('./Monglo/monglodb').Monglo
};

Initializing your database
After the module has been imported, a new instance of the database needs to be initialized.
The following code demonstrates how to create a new instance of Monglo with the name
myDb:

my.db = my.monglo('myDb');

Chapter 3

89

Adding the Titanium storage provider
MongloDb has the ability to support a wide range of storage providers. This recipe implements
the Titanium Store provider to persist data. Associating a storage provider with MongloDb is a
two-step process. First, we require the Titanium storage provider, as shown here:

var tistore = require('./Monglo/index');

After the storage provider has been created, the provider is passed into the use method,
as demonstrated in the following statement. Once the use method is called, MongloDb will
perform all persistence operations using the Titanium Storage provider.

my.db.use('store', tistore);

Initializing our collection
Once the storage provider has been associated, durable collections can be created using the
collection method. The following line demonstrates how to create a document collection
named foo:

my.db.someCollection = my.db.collection('foo');

When initializing a named collection, any documents previously persisted by this collection will
automatically be reloaded. In the previous example, any documents previously saved in the
foo document collection will be reloaded when the collection is initialized.

Using events
MongloDb provides events for monitoring a majority of the actions performed. The following
snippet demonstrates how to add an event for each supported listener:

my.db.someCollection.on('insert', function(){
 Ti.API.info("Document Inserted") ;
});
my.db.someCollection.on('update', function(){
 Ti.API.info("Document Updated");
});
my.db.someCollection.on('remove', function(){
 Ti.API.info("Document Removed");
});
my.db.someCollection.on('find', function(){
 Ti.API.info("Find Used");
});
my.db.someCollection.on('createCollection', function(){
 Ti.API.info("Collection Created");
});
my.db.someCollection.on('removeCollection', function(){
 Ti.API.info("Collection Removed");
});

Using Databases and Managing Files

90

Inserting documents
The next step is to insert three new documents. The next snippet demonstrates how to insert
a new document into someCollection. The insert method has two parameters. The first
parameter is a document object to be stored. The second parameter is a callback that lists the
errors and provides document information. This is shown in the following highlighted snippet:

my.db.someCollection.insert({text: "record 1",
 batchId:'sample_test'}, function (error, doc)

The error and doc objects are returned as part of the callback function. The error
object contains any issues encountered during the insert action, and the doc object contains
a copy of the Monglo document created.

 Ti.API.info('Error: ' + JSON.stringify(error));
 Ti.API.info('doc: ' + JSON.stringify(doc));
});
//Create second record
my.db.someCollection.insert({text: "record 2",
 batchId:'sample_test'}, function (error, doc){ });
//Create third record
my.db.someCollection.insert({text: "record 3",
 batchId:'sample_test'}, function (error, doc){ });

Using find to query
With three records now created, we can use the find function to search for all the documents
that have the batch ID sample_test.

my.db.someCollection.find({batchId:'sample_test'},
function (error, cursor){

The find method returns both an error and cursor object. The cursor's forEach iterator
provides a convenient way to inspect each document that is returned. The following snippet
demonstrates how to print each document within the cursor to the Titanium Studio console
as a JSON string:

 cursor.forEach(function(doc){
 Ti.API.info('doc: ' + JSON.stringify(doc));
 });
});

Updating documents
Similar to a traditional database, MongloDb provides the ability to change a document using
the update method. The update method has three parameters. The first parameter is
used to find the object you wish to update. The next example shows updating any object with
the text property equal to record 1. The second parameter is the update statement. The
example updates each matching object's text property to updated record 1. The final
parameter is a callback which returns an error and doc object.

Chapter 3

91

my.db.someCollection.update({text: "record 1"},
 {$set: {text: 'updated record 1'}},
 function (error, doc){
 Ti.API.info('Error: ' + JSON.stringify(error));
 Ti.API.info('doc: ' + JSON.stringify(doc));
});

This demonstrated how to update the text property on the first document inserted
in this recipe.

Using findOne to query for a single document
The findOne method provides the means to query your collection for a specific document.
The following snippet demonstrates how to query someCollection for the document we
just updated. The resulting single-matching document is then printed to the Titanium Studio
console as a JSON string.

my.db.someCollection.findOne({text: 'updated record 1'},
 function (error, doc){
 Ti.API.info('Error: ' + JSON.stringify(error));
 Ti.API.info('doc: ' + JSON.stringify(doc));
});

Removing documents
The final section of this recipe demonstrates how to remove documents from a collection.
The following snippet demonstrates how to remove all documents that have the batch ID
sample_test.

my.db.someCollection.remove({batchId:'sample_test'},
 function (error) {
 Ti.API.info('Error: ' + JSON.stringify(error));
});

The previous code snippet removes all records created in this recipe, allowing
you to run the sample several times without creating unwanted records.

See also
All the NoSQL examples shown in this recipe use the MongloDb open source project.
 Please see the following to learn more about this project:

 f Project site: http://monglodb.com/
 f Github project: https://github.com/Monglo/MongloDB
 f Titanium Store: https://github.com/Monglo/MongloDB-Titanium-Store
 f Google Groups: https://groups.google.com/forum/#!forum/monglodb

https://github.com/Monglo/MongloDB

Interacting with Web
Services

In this chapter, we will cover:

 f Consuming RSS feeds

 f Creating a business location map using Yahoo Local

 f Using Google Analytics in your app

 f Making SOAP service calls using SUDS.js

 f Using the LinkedIn Contacts API

Introduction
Mobile devices have been one of the driving forces behind the growth in variety and
number of web service offerings in both Enterprise and Consumer spaces. As the ultimate
disconnected client, mobile apps have revived the interest in Service-Oriented Architecture
(SOA) as organizations look to extend their existing systems and functionalities to their mobile
customers. As a result, you will rarely find an Enterprise app that does not use internal or
third-party remote services.

This chapter demonstrates how to use SOAP and REST calls to interface with popular
third-party platforms while building your Enterprise apps.

4

Interacting with Web Services

94

Consuming RSS feeds
The use of RSS and ATOM feeds is common among Enterprise apps that update content
periodically. You can use the techniques demonstrated in this recipe to publish content
from your organization or a third party. Many companies use this approach to provide their
employees with current news and updates regarding their organization or industry.

In this recipe, an RSS feed from fastcompany.com is consumed and displayed in a Ti.UI.
TableView for the user to review and launch their browser to read the details.

Getting ready
This recipe uses the rss2Objects CommonJS module. This module and other code assets
can be downloaded from the source code provided by the book. Installing this module into
your project is straightforward. Simply copy the rss2objects.js file into your project, as
shown in the following screenshot:

Chapter 4

95

How to do it…
Once you've added the rss2objects.js file to your project, you need to create your
application namespaces in the app.js file and use require to import the module into
your code, as demonstrated in the following code block:

//Create our application namespace
var my = {
 reader : require('rss2objects'),
 isAndroid : (Ti.Platform.osname === 'android'),
 rssTestUrl : "http://www.fastcompany.com/rss.xml"
};

Creating a UI for the sample app
The demonstration app for this recipe provides two Ti.UI.Button controls to illustrate
different techniques for fetching RSS results, and a Ti.UI.TableView to display the articles.

1. First we create our Ti.UI.Window to attach all UI elements onto:
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
 });

2. Next, a button is created to demonstrate how to use YQL to load an RSS feed:
 var yqlButton = Ti.UI.createButton({
 title:"Load Using YQL",left:0 , width: 140,
 height:40, top:90
 });
 win.add(yqlButton);

Interacting with Web Services

96

3. A button is then added to demonstrate how to load an RSS feed using XML Parsing:
 var xmlButton = Ti.UI.createButton({
 title:"Load Using XML",right:0 , width: 140,
 height:40, top:90
 });
 win.add(xmlButton);

4. Finally, a Ti.TableView is added to display the RSS articles:
 var tableView = Ti.UI.createTableView({
 top:120, bottom: 0, width:Ti.UI.FILL
 });
 win.add(tableView);

Reading an RSS feed with YQL
Using Yahoo's YQL platform is a convenient way to read an RSS feed. YQL has two additional
benefits over conventional XML parsing. The first benefit is YQL normalizes the feed output for
you. The second benefit is Yahoo will convert the RSS stream to JSON. The downside to YQL is
it will reduce download speeds due to the need to proxy the feed through Yahoo's servers.

This snippet demonstrates how to call the yqlQuery method of the rss2Objects module.
The yqlQuery method takes two arguments: the first is the URL of the RSS feed you wish to
read, and the second is a callback used to provide the feed item results.

 yqlButton.addEventListener('click',function(e){
 my.reader.yqlQuery(my.rssTestUrl,rssResults);
 });

Reading an RSS feed with XML parsing
The rss2Objects module also provides the ability to directly parse the RSS feed with XML.
This option provides the best download performance for larger feeds.

To use the XML feed directly, simply call the query method on the rss2Objects module.
The query method takes three arguments:

 f The URL for the RSS feed you wish to read.

 f An optional dot query syntax that allows you to provide the path of the nodes you
want returned. In the next example, channel.item is provided. This tells the query
method to only return nodes from the channel item element list. If you want all
objects returned, simply pass a null value as an argument.

 f The third argument is the callback method where the module will send the results
once processing has been completed.
xmlButton.addEventListener('click',function(e){
 var queryPath = "channel.item";
 my.reader.query(my.rssTestUrl,queryPath,rssResults);
});

Chapter 4

97

Displaying the articles
Both YQL and XML parsing demonstrations use the callback method shown next. This function
takes the object dictionary provided by the rss2objects module and creates TableView
rows for display:

 function rssResults(e){

1. The parameter e in this function provides the result returned from the rss2Objects
module. The first step is to check if the feed was returned successfully. This is done
by checking the e.success property, as the following code block shows:
 if(!e.success){
 alert("Sorry we encountered an error");
 tableView.setData([]);
 return;
 };
 var items = e.rssDetails.items;
 var itemCount = items.length;
 var rows = [];

2. Next, all of the RSS items are looped through and a Ti.UI.TableViewRow
definition is built for each item:
 for (var iLoop=0;iLoop<itemCount ;iLoop++){
 rows.push({
 title: items[iLoop].title,
 article : items[iLoop],
 height: 60,
 hasChild:true,
 color:'#000'
 });
 }

3. Finally, the article rows built in the previous step are added to the Ti.TableView
for display:
 tableView.setData(rows);
 };

How it works…
The rss2objects module provides a straightforward API for reading RSS feeds.
The two primary methods provided by the rss2object.js module are detailed
in the following sections.

Interacting with Web Services

98

Using the yqlQuery function
The yqlQuery method uses Titanium's built-in YQL provider to parse the provided RSS feed
URL into a dictionary of objects:

exports.yqlQuery = function(url,callback){

1. The onComplete method is used as a callback to the Ti.Yahoo.yql function.
This method will process the YQL results into a standard format for consumption.
 function onComplete(e){

2. The argument e is a dictionary (with the results of the RSS feed query) provided
by YQL.
 var results = {
 success:false,
 rssDetails : {
 url: url, full : null, items:null
 }
 };

3. The e.success property is checked to determine if the YQL statement generated an
error. On Android, you must check the e.data property for null instead of using the
e.success property.
 //Determine if we have an error
 results.success = !((_isAndroid && e.data ==
 null)||(!_isAndroid && (e.data == null ||
 e.success==false)));

4. If successful, the e.data.items is added to the results.rssDetails.items
array that will later be the callback method:
 if(results.success){
 results.rssDetails.items = [];
 var itemCount = e.data.item.length;
 for (var iLoop=0;iLoop<itemCount ;iLoop++){
 results.rssDetails.items.push({
 //Add each field in our items
 });
 }
 }

5. The results of our YQL-parsed RSS feed are provided to the initially used callback
method, when calling the yqlQuery module method:
 callback(results);
 };

Chapter 4

99

6. The following snippet demonstrates a YQL select query that will return a title, link,
description, and other listed columns from the RSS feed (of the URL argument
provided):
 var yQuery = 'SELECT title, link, description,';
 yQuery += ' pubDate,guid,author,comments,';
 yQuery += ' enclosure,source FROM rss WHERE url =';
 yQuery += '"' + url + '"';

7. The next code block demonstrates using the Ti.Yahoo.yql method to run the
query and send the results to the provided onComplete callback function:
 Ti.Yahoo.yql(yQuery, onComplete);
};

Using the query function
The query method uses Titanium's HTTPClient and XML modules to read the provided RSS
URL and to confirm the provided XML into a dictionary of objects:

exports.query = function(url,pathQuery,callback){
 var workers = {
 results : {
 success:false,
 rssDetails : {
 url:url,full : null,items:null
 }
 },

1. The whenComplete function is invoked when the query method has completed
processing or resulted in an error. The whenComplete method is used to wrap the
callback argument and provide the query results.
 whenComplete : function(){
 callback(workers.results);
 }
 };

2. Action taken by this part of the recipe is to create an HTTP client:
 var xhr = Ti.Network.createHTTPClient();

3. An onload callback is created to retrieve the HTTP response provided by the
RSS feed:
 xhr.onload = function(e) {

Interacting with Web Services

100

4. When the request is returned, the responseXML property is used to gather the XML
results from the RSS feed:
 var xml = this.responseXML;

5. The XML results are then converted to objects using our helper method:
 var objResults = helpers.parseToObjects (xml);

6. If the converted XML object is null, use the callback method to notify the user that
the module failed to read the provided RSS feed:
 if(objResults ==null){
 workers.whenComplete();
 return;
 }

7. If the XML was successfully able to be converted into objects, populate the
query results with the full XML results and create a flag indicating the query
was successfully executed.
 workers.results.rssDetails.full = objResults;
 workers.results.success = true;
 workers.results.rssDetails.items = objResults.item;

8. If a pathQuery string was provided, run the query and update the results object
with the output from the queryByPath method.
 if(pathQuery!=null){
 workers.results.rssDetails.items =
 helpers.queryByPath(wobjResults,pathQuery);
 }
 };

9. Provide an onerror callback to handle an error generated during the
HTTPClient request.
 xhr.onerror = function(e) {
 Ti.API.info(JSON.stringify(e));
 workers.whenComplete();
 };

10. Open the HTTP client and send a GET request to the RSS URL provided.
 xhr.open('GET', url);
 xhr.send();
};

Chapter 4

101

The order in which the functions are called is important. The open
method must be called before calling the send method, as shown
in the previous code section.

See also
 f To learn more about YQL, visit the Yahoo developer site at http://developer.

yahoo.com/yql

 f For YQL usage guidelines and rate information, visit http://developer.yahoo.
com/yql/guide/usage_info_limits.html

Creating a business location map using
Yahoo Local

Providing a store, client, or other location-listing feature is a common requirement for many
Enterprise apps. In this recipe, we will show how to use the Yahoo Local Search API and
Ti.Map.View to provide a store locator. For demonstration purposes, the recipe uses the
Yahoo API to provide location search results for the popular American coffee chain, Starbucks.
The search results for each location are then displayed on a Ti.Map.View, as shown in the
following screenshots:

Interacting with Web Services

102

Getting ready
This recipe uses the Yahoo Search CommonJS module. This module and other code assets
can be downloaded from the source code provided by the book. Installing this module into
your project is straightforward. Simply add the yahoo_search.js file into your project, as
shown in the following screenshot:

How to do it…
Once you've added the yahoo_search.js file to your project, you need to create your
application namespaces in the app.js file and use require to import the module into
your code, as shown in the following code block:

//Create our application namespace
var my = {
 search : require('yahoo_search'),
 isAndroid : (Ti.Platform.osname === 'android')
};

Adding your API key
The next step in our recipe is to add your Yahoo developer API key. The following snippet
shows how to register your API key with the module:

my.search.addAPIKey('YOUR_KEY_GOES_HERE');

Chapter 4

103

Creating a UI for the sample app
This recipe uses a simple UI containing Ti.UI.TextField, Ti.Map.View, and a Ti.UI.
Button to search. Here we demonstrate the creation of these UI elements.

1. First, we create a Ti.UI.Window to attach our visual elements.
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
 });

2. Next, we attach a text field to allow the user to enter a business for which to search.
 var txtSubject = Ti.UI.createTextField({
 left:0, width:150, height:40,top:30,
 hintText:'Enter Business Name',
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
 });
 win.add(txtSubject);

3. Next, a button is added to allow the user to search for the business name entered
in the text field.
 var searchButton = Ti.UI.createButton({
 title:'Search', right:0, width:150, height:40,top:30
 });
 win.add(searchButton);

4. Finally, a map view is attached to display our search results.
 var mapView = Ti.Map.createView({
 mapType: Ti.Map.STANDARD_TYPE, width:Ti.UI.FILL,
 userLocation:true, top:75,bottom:0
 });
 win.add(mapView);

Updating the map
The updateMap function is the callback method to the search module. updateMap provides
the search results and then it transforms them to display to the user.

 function updateMap(e){

1. The search results are provided as the e parameter to the method. The first step
in the process is to check if the search was successful, by checking the e.success
property.
 if(!e.success){
 alert("Sorry we encountered an error");
 return;
 }

Interacting with Web Services

104

2. After verifying that the search was successful, a loop is used to create map
annotations for each e.item provided in the results.
 var points = [], itemCount = e.items.length,
 rightBtn = Ti.UI.iPhone.SystemButton.DISCLOSURE;
 for (var iLoop=0;iLoop<itemCount;iLoop++){
 points.push(Ti.Map.createAnnotation({
 latitude : e.items[iLoop].Latitude,
 longitude : e.items[iLoop].Longitude,
 title : e.items[iLoop].Address,
 subtitle : e.items[iLoop].Phone,
 pincolor : Ti.Map.ANNOTATION_GREEN,
 ClickUrl : items[iLoop].ClickUrl,
 animate:true, rightButton: rightBtn
 }));
 }

 var currentRegion = { latitude:e.latitude,
 longitude:e.longitude, latitudeDelta:0.04,
 longitudeDelta:0.04};

3. The new region object is created using the search coordinates and applied to set the
viewing point of the map. This allows the user to see all of the pins added.
 mapView.setLocation(currentRegion);
 mapView.regionFit = true;

4. Finally, the points array containing all of our annotations is added to the mapView.
 mapView.annotations = points;
 };

Searching
When the searchButton button is pressed, the following snippet is used to perform
a location search using the device's coordinates.

 searchButton.addEventListener('click',function(e){

1. First, any existing map pins are removed
 mapView.removeAllAnnotations();

2. If the text field's keyboard is open, the blur method is called to close it.
 txtSubject.blur();

3. To avoid an empty search, the text field is checked to make sure it contains a value.
 if((txtSubject.value+'').length ===0){
 alert('Enter a business to search');

Chapter 4

105

 return;
 }

4. The module's currentLocationQuery method is then called, providing the
business name entered in the text field and the updateMap function to be used
as a callback.
 my.search.currentLocationQuery(
 txtSubject.value,updateMap);
 });

How it works…
The Yahoo Search CommonJS module (yahoo_search.js) provides the following public
functions, detailed in the following sections.

Using addAPIKey to your Yahoo service key
The Yahoo Local Search API requires a developer key. Before using any of the query methods,
you must first use addAPIKey to associate your developer key with the module.

my.search.addAPIKey('YOUR_KEY_GOES_HERE');

You can obtain a Yahoo API key by visiting developer.yahoo.com
and creating a project within their developer portal.

Using the geoQuery method
The geoQuery function performs a Yahoo Local search using the latitude, longitude, and
topic provided. The next example demonstrates how to search for Starbucks locations near
Times Square in New York City. When the search has been completed, the results are provided
to the callback function.

my.search.geoQuery(40.75773, -73.985708,'starbucks',callback);

Using the currentLocationQuery method
The currentLocationQuery method uses your device's location services to determine
your current latitude and longitude. It then provides the geoQuery function with the required
search details. The next code line demonstrates how to search for Starbucks outlets near
your current position. Once the search has been completed, the results are provided to the
callback function.

my.search.currentLocationQuery('starbucks',callback);

Interacting with Web Services

106

Using Google Analytics in your app
Google Analytics is a popular service used to measure and record website traffic and
activities. Most likely, your organization uses Google Analytics, or a similar service, to gather
analytics about visitors to your site. Using a Titanium module, you can use the same Google
Analytics platform within your app. This approach allows you to view both your mobile and web
traffic in one easy-to-use dashboard.

In this recipe, we will demonstrate how to submit both "page view" and "action" events to your
Google Analytics dashboard.

Getting ready
This recipe uses the Ti.Google.Analytics CommonJS module. This module and other
code assets can be downloaded from the source code provided by the book, or individually
through the links provided in the See also section at the end of this recipe. Installing this
module into your project is straightforward. Simply copy the Ti.Google.Analytics.js file
into your project, as shown in the following screenshot:

Chapter 4

107

How to do it…
Once you've added the Ti.Google.Analytics.js file to your project, you need to create
your application namespaces in the app.js file and use require to import the module into
your code, as shown in the following code block:

//Create our application namespace
var my = {
 gAnalyticsModule : require('Ti.Google.Analytics'),
 isAndroid : (Ti.Platform.osname === 'android'),
 session:{}
};

Creating an instance of the module
The next step in the recipe requires you to have a Google Analytics key. To obtain a key, please
register your app at www.google.com/analytics. Once you have a key, you will need to
create a new instance of the Analytics module and provide your analytics key, as shown here:

my.session.ga = new my.gaModule('YOUR_KEY_HERE');

http://www.google.com/analytics

Interacting with Web Services

108

Helper functions
Helper functions help to provide more meaningful information about the user's device.
These functions are used throughout the recipe whenever a PageView action is fired.

1. The following snippet demonstrates how the isTablet property is attached to the
application namespace on starting an app. This property is used by other functions to
indicate if the app is running on a phone or tablet.
my.isTablet = (function() {
 var tabletCheck = Ti.Platform.osname === 'ipad' ||
 (Ti.Platform.osname === 'android' &&
 (!(Math.min(
 Ti.Platform.displayCaps.platformHeight,
 Ti.Platform.displayCaps.platformWidth
) < 700)));

 return tabletCheck;
})();

2. The basePage property works in a way similar to website routing, and sets the first
part of the URL (that is sent to Google) as a device indicator. In Google Analytics, this
will allow you to better segment usage patterns by device.
my.basePage = (function(){
 if(my.isAndroid){
 return ((my.isTablet)?
 'AndroidTablet' : 'AndroidPhone');
 }else{
 //Return iPhone or iPad
 return Ti.Platform.model;
 }
})();

Start recording events
The next step is to call the start method. This will enable the module to start collecting
analytics requests. The start method takes an integer value with the number of seconds on
how often you wish the module to send queued analytics to Google. This is handled internally
by the module using an interval timer.

my.session.ga.start(10);

Chapter 4

109

Creating our sample UI
This section of the recipe outlines the sample UI used to trigger and submit Google
Analytics requests.

1. First, a Ti.UI.Window is created to anchor all UI controls.
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff', layout:'vertical'
 });

2. After creating our window, two Ti.UI.Button controls are added. These buttons
will be used later in the recipe to demonstrate how to create a trackEvent or
Pageview event.

 var button1 = Ti.UI.createButton({
 title: 'Log Action', top:40, height:45,
 width:Ti.UI.FILL
 });
 win.add(button1);

 var button2 = Ti.UI.createButton({
 title: 'Open New Page', top:40, height:45,
 width:Ti.UI.FILL
 });
 win.add(button2);

Recording an action
The trackEvent function allows you to publish granular event tracking to Google Analytics.
This method requires the following parameters that will be used to publish actions to your
Google Analytics dashboard:

 f Category: Typically, the object that was interacted with (for example, a button)

 f Action: The type of interaction (for example, a click)

 f Label: Useful for categorizing events (for example, nav buttons)

 f Value: Values must be non-negative. Useful to pass counts (for example, four times)

The next snippet demonstrates how to call the trackEvent method when button1
is pressed. On firing of the button's click event, the trackEvent method is called with
a category of button, an action of click, a label of recipe_button, and a value of
trigger_event.

 button1.addEventListener('click',function(e){
 my.session.ga.trackEvent('button','click', 'win_button',
 'trigger_event');
 });

Interacting with Web Services

110

The Pageview function on opening a window
The trackPageview function is used to mimic the page traffic or views displayed in your
Google Analytics dashboard. Using the basePage properties created earlier, you can create
device-specific window tracking by using the convention shown in the following code block:

 win.addEventListener('open',function(e){
 my.session.ga.trackPageview(my.basePage + "/Main");
 });
 win.open();

The Pageview function on a child window
The following section of the recipe demonstrates how to use the trackPageview and
trackEvent methods to record when and how a child window or view is opened. When the
user presses button2 and the click event is fired, the Google Analytics module is used to log
each step of the navigation process.

 button2.addEventListener('click',function(e){

1. Use the trackEvent method to record that the button to open a child window has
been pressed:
 my.session.ga.trackEvent('button','click',
 'win_button', 'open_win2');

You need to provide the following parameters to the trackEvent method:

 � Category: A category value of button is provided in this sample

 � Action: An action value of click is provided in this sample

 � Label: A label value of win_button is provided in this sample

 � Value: A value of open_win2 is provided in this sample

2. Create a new window to demonstrate the trackPageview functionality
on a child window.
 var win2 = Ti.UI.createWindow({
 backgroundColor:'yellow', layout:'vertical'
 });

3. On loading of the win2 window, the trackPageview method is called, recording
that the individual has viewed the page. The my.basePage is used to create a route
showing which type of device accessed the /win2 window.
 win2.addEventListener('open',function(e){
 my.session.ga.trackPageview(my.basePage + "/win2");
 });
 win2.open({modal:true});
 });

Chapter 4

111

See also
 f This recipe uses a modified version of Roger Chapman's Titanium Mobile Google

Analytics module. To learn more about this module, please visit http:// github.
com/rogchap/Titanium-Google-Analytics.

 f For more information on detecting different device characteristics, see the Using
platform indicators recipe in Chapter 1, Patterns and Platform Tools.

Making SOAP service calls using SUDS.js
In many Enterprise market segments, SOAP services remain the dominant web service
protocol. Since SOAP is generally implemented over HTTP, most network clients including
Titanium's Ti.Network can interact effectively with this protocol.

Even with Titanium's Ti.Network module working with SOAP, envelopes and XML results
can be challenging, and often requires creating a SOAP envelope and a huge amount of XML
manipulation. This recipe demonstrates how a few open-source modules can increase your
productivity when interacting with SOAP services and their XML results.

To help illustrate how to interact with SOAP services, the recipe uses the www.webserviceX.
NET weather SOAP service to return weather results for a city entered in the City: field, as
shown in the following screenshots:

Interacting with Web Services

112

Getting ready
This recipe uses the SUDS and XMLTools CommonJS modules. These modules and other
code assets can be downloaded from the source code provided by the book, or individually
through the links provided in the See also section at the end of this recipe. Installing these
modules is straightforward and simply requires copying the suds2.js and XMLTools.js
files into your Titanium project, as highlighted in the following screenshot:

How to do it…
Once you've added the suds2.js and XMLTools.js modules to your project, you need
to create your application namespaces in the app.js file and use require to import the
module into your code, as shown in the following snippet:

//Create our application namespace
var my = {
 suds : require('suds2'),
 xmlTools : require("XMLTools"),
 isAndroid : (Ti.Platform.osname === 'android')
};

SOAP helper methods
In addition to the two CommonJS modules imported earlier, this recipe uses the soapHelper
object to handle formatting and configuration activities.

var soapHelper = {

Chapter 4

113

1. The configuration object contains all the configuration details that suds.js needs
to return an XML result:
 config : {
 endpoint:"http://www.webservicex.com/globalweather.asmx";
 targetNamespace: 'http://www.webserviceX.NET/',
 includeNS : false,
 addTargetSchema : true
 },

2. The resultParser object is used to format the returned XML result into
JavaScript objects:
 resultParser : {

3. The removeHeader object is used to remove the XML header node. Android requires
the header to be removed before the parseString function will correctly create an
XML document object.
 removeHeader : function(text){
 return text.replace(
 '<?xml version="1.0" encoding="utf-16"?>','');
 },

4. The xmlToObject function converts a Ti.XML.Document object into
JavaScript objects.
 xmlToObject : function(doc){

5. The first step is to get a Ti.XML.Nodelist for the tag GetWeatherResponse.
var results = doc.documentElement.getElementsByTagName(
 'GetWeatherResponse');

6. Android and iOS handle the conversion process differently. Use the my.isAndroid
property to branch the conversion logic.
if(my.isAndroid){

7. The weather service result contains a nested XML document. The following
example demonstrates how to read the embedded XML document from the
GetWeatherResponse node into a new Ti.XML.Document. The removeHeader
function is used to fix the textContent value, to be compliant with Android's XML
Document format.
var docCurrent =Ti.XML.parseString(
 soapHelper.resultParser.removeHeader(
 results.item(0).textContent));

Interacting with Web Services

114

8. Next, the Ti.XML.Document object is provided to the XMLTools module's
constructor and then converted into JavaScript objects using the toObject
method, as demonstrated in the following snippet:
 return new my.xmlTools(docCurrent).toObject();
 }else{

9. On iOS, we use the getChildNodes function to obtain the weather child node:
 var weather =results.item(0).getChildNodes()
 .item(0).getChildNodes();

10. The XML string from the weather node is then loaded into the XMLTools module's
constructor, and then converted into JavaScript objects using the toObject method,
as demonstrated in the following code block:
 var docCurrentFromString = Ti.XML.parseString(
 soapHelper.resultParser.removeHeader
 (weather.item(0).textContent));
 return new
 my.xmlTools(docCurrentFromString).toObject();
 }
 }
 }
};

Creating the UI
This section of the recipe outlines the sample UI used to call and display results from the
weather SOAP service.

1. A new Ti.UI.Window is created for all UI elements to be attached.
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff', layout:'vertical'
 });

2. The text field txtCity is to allow the user to enter the city whose weather they wish
to be displayed.
 var txtCity = Ti.UI.createTextField({
 value:'New York', hintText:'Enter city',
 top:10, height:40, left:10,
 right:10,textAlign:'left',
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
 });
 win.add(txtCity);

Chapter 4

115

3. The text field txtCountry is to allow the user to input the name of the country to
which the city belongs.
 var txtCountry = Ti.UI.createTextField({
 value:'United States', hintText:'Enter country',
 top:10, height:40, left:10, right:10,
 textAlign:'left', borderStyle:
 Ti.UI.INPUT_BORDERSTYLE_ROUNDED
 });
 win.add(txtCountry);

4. The goButton is a Ti.UI.Button used to call the weather SOAP service.
 var goButton = Ti.UI.createButton({
 title:'Find Weather', left:10, top:10
 });
 win.add(goButton);

5. The tableView is a Ti.UI.TableView used to display the results of the
SOAP service.
 var tableView = Ti.UI.createTableView({
 visible : false, top:10, height:100, width:Ti.UI.FILL
 });
 win.add(tableView);

The uiHelpers object
The uiHelpers object is used to update the UI objects with different states of the app
as well as load the tableView with the SOAP service result.

var uiHelpers = {

The updateUI is used to format the object results from the SOAP service for display.

 updateUI : function(weather){
 var data = [];
 tableView.visible = true;
 data.push({title: "Sky Conditions: " +
 weather.SkyConditions, color:'#000'});
 data.push({title: "Temperature: " +
 weather.Temperature, color:'#000'});
 data.push({title: "Time: " + weather.Time});
 tableView.setData(data);
 };

Interacting with Web Services

116

The resetUI method is used to hide the tableView from the user when SUDS is calling the
web service. This method is also used to hide the tableView when the a SUDS call results in
an error.

 resetUI :function(){
 tableView.visible = false;
 };
};

Calling the SOAP service
The click event on the goButton is used to perform the weather SOAP service call.

goButton.addEventListener('click',function(e){

1. The resetUI method is first called to hide the tableView while the service
is being called.
 uiHelpers.resetUI()

2. A new instance of sudsClient is created with the configuration information defined
earlier in the soapHelper.config object.
 var sudsClient = new my.suds(soapHelper.config);

3. The invoke method is then called on sudsClient. The first argument provided is
the SOAP method that suds should call.
 sudsClient.invoke('GetWeather',

4. The second argument provided to sudsClient is the name of the city and country
that the user has requested, to retrieve weather information.
 {
 CityName: txtCity.value,
 CountryName: txtCountry.value
 },

5. The final argument of the invoke method is the callback method SUDS. This
callback method will be provided will to provide a Ti.XML.Document with the
service's results. The following example demonstrates using an inline function
as a callback method:
 function(xml) {

6. The inline callback method will receive a Ti.XML.Document once the service has
completed. Once received, the result is parsed into JavaScript objects using the
resultParser object, as detailed earlier in the recipe.
 var weather = soapHelper.resultParser.xml2Object(xml);

Chapter 4

117

7. The Status property is changed on the parsed object to determine if the weather
objects have successfully been created.
 if(weather.Status==='Success'){

8. If the service results have successfully been converted into objects, they are provided
to the updateUI method, to be displayed to the user.
 uiHelpers.updateUI(weather);
 }else{

9. If an error occurred in calling the service or processing the results, we alert the user
and then hide the tableView display object.
 alert("Sorry a problem happened");
 uiHelpers.resetUI();
 }
 });
});

See also
 f Please review the following links to learn more about the open source projects used

in this recipe:

 � SUDS.js: For additional information on SUDS.js, please visit http://
github.com/kwhinnery/Suds.

 � SUDS2.js: For more information about the version of SUDS.js used in this
recipe, please visit http://github.com/benbahrenburg/Suds2.

 � XMLTools: This recipe uses the XMLTools module created by David Bankier.
For more information about this module, please visit http://github.
com/dbankier/XMLTools-For-Appcelerator-Titanium.

Using the LinkedIn Contacts API
LinkedIn is a popular social-networking site for professionals. The LinkedIn API provides a
rich set of integration services for use within your app. For Enterprise-focused apps, LinkedIn
features such as Messaging and Contacts can be critical. Common examples of this would be
providing a sales agent with access to their contacts within your app.

http://github.com/kwhinnery/Suds

Interacting with Web Services

118

This recipe demonstrates how to integrate the LinkedIn Contacts API into your Titanium app,
in a searchable fashion.

Getting ready
This recipe uses several modules, including the innovative LinkedIn module, linkedin_
module-min.js. This module and other code assets can be downloaded from the source
code provided by the book, or individually through the links provided in the See also section
at the end of this recipe. Setting up the dependencies for this recipe is straightforward. First,
copy the lib folder to the Resources folder of your Titanium project, and then, the copy
formatters.js and linkedin_module-min.js files into the Resources folder, as
shown highlighted in the following screenshot:

Chapter 4

119

How to do it…
After you have set up the recipe's dependencies, the next step is to create your application
namespaces in the app.js file and use require to import the module into your code,
as shown in the following snippet:

//Create our application namespace
var my = {
 isAndroid : (Ti.Platform.osname === 'android'),
 linkedMod: require('linkedin_module-min'),
 formatters : require('formatters')
};

Adding your API key and secret key
The first step in using the LinkedIn module is to create a LinkedIn application at https://
www.linkedin.com/secure/developer. Once you have registered your application,
LinkedIn will provide you with the API and authentication keys needed to interact with their
APIs. All of the APIs used in this recipe need OAuth 1.0a authentication to connect. The
LinkedIn module will handle this for you by using the init method to register your secret and
API keys, as shown in the following example:

my.linkedMod.init('YOUR_SECRET_KEY', 'YOUR_API_KEY');

You must use the init method to set your secret and API keys,
before using any of the module's functionality.

https://www.linkedin.com/secure/developer

Interacting with Web Services

120

Adding permissions
By default, if no permissions are specified, your app will only have rights to read basic "digital
business card" information about the current user. Since this recipe needs access to the
user's contacts, we must call the addPermission method to request for the r_network
privilege, as shown in the following snippet:

my.linkedMod.addPermission('r_network');

To add multiple permissions, simply call the addPermission method several times.
The following snippet shows how to add the full profile access right to the app:

my.linkedMod.addPermission('r_fullprofile');

For a full list of all the permissions, please visit https://
developer.linkedin.com/documents/authentication.

Creating the UI
This section of the recipe outlines how to create the UI that is used to display and search
LinkedIn contacts.

1. First, a Ti.UI.Window is created. This will be used to attach all of our visual elements
and will also trigger a call to the LinkedIn API when the open event is fired.
 var win = Ti.UI.createWindow({
 backgroundColor:'#fff'
 });

2. A Ti.UI.SearchBar is then created. The search-bar control provides a search box
that filters the contents of Ti.UI.TableView. In this recipe, we use the search-bar
control to filter the user's LinkedIn contacts by last name.
 var search = Ti.UI.createSearchBar({
 barColor:'#385292', showCancel:true, hintText:'Search'
 });

3. The final UI component added to Ti.UI.Window is Ti.UI.TableView that will be
used to display the user's LinkedIn contacts.
 var tableView = Ti.UI.createTableView({
 height:Ti.UI.FILL, width:Ti.UI.FILL,
 search:search, filterAttribute:'lastName'
 });
 win.add(tableView);

Chapter 4

121

Loading your LinkedIn contacts
The next snippet demonstrates how the LinkedIn module can be used to load a list of your
contacts as the Ti.UI.Window window is loaded.

 win.addEventListener('open',function(e){

1. Use the uiHelper.createWaitMsg method to display a loading message to the
user.
 uiHelpers.createWaitMsg('Loading please wait...');

2. Use the module's getConnections method to query the user's contacts from the
LinkedIn API. In the next example, an inline function is used as a callback returning
the user's contacts as the _e variable.
 my.linkedMod.getConnections(function(_e) {

3. The uiHelpers.displayContacts method is used to format and apply returned
contacts for display.
 uiHelpers.displayContacts(_e);
 });
 });

 win.open();

Using the uiHelpers object to format results
The uiHelpers object is used to format the results of the LinkedIn Contacts API for display.

var uiHelpers = {

1. The createWaitMsg function is used to display a waiting message in the
tableView while the LinkedIn API is being called.
 createWaitMsg : function(msg){
 tableView.setData([{title:msg}]);
 },

2. The displayContacts method is the primary method used to convert and display
the API results.
 displayContacts : function(apiResults){

3. Update the tableView to alert the user that we are now loading their contacts.
 uiHelpers.createWaitMsg('Loading contacts
 please wait...');

Interacting with Web Services

122

4. The convertToObject method is called to convert the LinkedIn XML results into
more manageable JavaScript objects.
 var resultAsObjects = my.resultParser
 .convertToObjects(apiResults);

5. If the conversion result is null, display an error message to the user.
 if(resultAsObjects == null){
 alert('Sorry we ran into an error');
 return;
 }

6. Using the formatter.createContactTableRows function, format the JavaScript
objects into the Ti.UI.TableViewRow layout shown earlier in this recipe's
screenshots. The tableView is then updated with the formatted rows.
 tableView.setData(
 my.formatters.createContactTableRows(
 resultAsObjects)
);
 }
};

Parsing the LinkedIn API results
The resultParser object is used to parse the XML provided by the LinkedIn API, into more
manageable JavaScript objects.

my.resultParser = {

1. The getText function is used to return a specific key from a provided Ti.XML.
Element. If no key is found, a null value is returned.
 getText : function(item, key) {
 var searchItem =
 item.getElementsByTagName(key).item(0);
 return ((searchItem == null)? null :
 searchItem.textContent);
 },

2. The getQueryParams function is used to return an object with all query string
parameters for a provided URL.
 getQueryParams : function(url){
 var params = {};
 url = url.substring(url.indexOf('?')+1).split('&');
 var pair, d = decodeURIComponent;
 for (var i = url.length - 1; i >= 0; i--) {
 pair = url[i].split('=');
 params[d(pair[0])] = d(pair[1]);

Chapter 4

123

 }
 return params;
 },

3. The formatUrl function returns a URL to the contact's profile. If no URL can be
determined, a link to linkedin.com is provided.
 formatUrl : function(findKey){
 return ((findKey.hasOwnProperty("key")) ?
 ("http://www.linkedin.com/profile/view?id=" +
 findKey.key) : "http://www.linkedin.com");
 },

4. The getProfileUrl function is used to return a URL to the contact's profile. Since
the LinkedIn API does not provide this information, a URL is generated by parsing the
site-standard-profile-request node for key details. The construction of this
URL is demonstrated in the following snippet:
 getProfileUrl : function(item) {
 var searchItem = item.
 getElementsByTagName("site-standard-profile-
 request").item(0);
 if(searchItem == null){
 return null;
 }
 if(searchItem.hasChildNodes()){
 var findKey = my.resultParser.getQueryParams(
 searchItem.getElementsByTagName('url')
 .item(0).textContent);
 return my.resultParser.formatUrl(findKey);
 }else{
 return null;
 }
 },

5. The isPublic function is used to determine if a contact's information is public.
If the profile is not public, we will not add it to the displayed contact list.
 isPublic : function(item){
 return !((my.resultParser.getProfileUrl(item)==null));
 },

6. The convertToObjects is the primary method responsible for converting the
LinkedIn contacts' XML into JavaScript objects.
 convertToObjects : function(xmlString){
 var contacts = [];

Interacting with Web Services

124

7. First, the string of XML provided by the API is loaded into a Ti.XML.Document.
 var doc = Ti.XML.parseString(xmlString);

8. Retrieve all of the XML nodes under the person tag.
 var items = doc.documentElement.
 getElementsByTagName("person");

9. Start looping through each of the nodes under the person tag.
 for (var i = 0; i < items.length; i++) {

10. Check that the profile is public.
 if(my.resultParser.isPublic(items.item(i))){

11. If the profile is public, create a JavaScript object with properties from the
Ti.XML.Node.
 contacts.push({
 id : my.resultParser.getText
 (items.item(i), 'id'), headLine :
 my.resultParser.getText(items.item(i),
 'headline'),
 firstName : my.resultParser.
 getText(items.item(i), 'first-name'),
 lastName : my.resultParser
 .getText(items.item(i), 'last-name'),
 pictureUrl : my.resultParser
 .getText(items.item(i), 'picture-url'),
 profileUrl : my.resultParser
 .getProfileUrl(items.item(i))
 });
 }
 }

12. For individuals with a large number of contacts, this conversion process can be
memory intensive. To help reduce the size of variables in memory, we set all
temporary objects to null before returning the converted results.
 doc = null, xmlString = null;
 return contacts;
 }
};

Chapter 4

125

See also
 f This recipe uses the clearlyinnovative.linkedIn module created by Aaron

Saunders, of clearlyinnovative.com. For additional documentation, samples,
and guidance with the module, please visit http://www.clearlyinnovative.
com/blog/post/12521419647/titanium-appcelerator-quickie-
linkedin-api-integration. To download the source of the module, please
visit the project on Github, at http://github.com/aaronksaunders/
clearlyinnovative.linkedIn.

http://www.clearlyinnovative.com/blog/post/12521419647/titanium-appcelerator-quickie-linkedin-api-integration
http://www.clearlyinnovative.com/blog/post/12521419647/titanium-appcelerator-quickie-linkedin-api-integration
http://www.clearlyinnovative.com/blog/post/12521419647/titanium-appcelerator-quickie-linkedin-api-integration

Charting and
Documents

In this chapter, we will cover:

 f Opening PDF documents

 f Using an iPad for document signatures

 f Creating PDF documents from images or screenshots

 f Generating PDF documents using jsPDF

 f Creating a scheduling chart using RGraph

 f Displaying information with Google gauges

Introduction
Through the convenience of a mobile device, your customers and employees have the ability to
access data, documents, and related information, wherever and whenever needed. This chapter
provides recipes to assist with the development of at-a-glance and portable information.

Depending on your industry, an innovative mobile-document strategy can provide a key
competitive advantage. Forms, contracts, recipes, and invoices are all examples of areas a
mobile document strategy can reduce costs while better engaging your users. In this chapter,
we will cover several strategies to deal with documents in a cross-platform fashion.

5

Charting and Documents

128

The creation of dashboards using charts and graphs to paint a compelling picture is a
common management-team request, and is a powerful way to harness mobile technology
to provide business value. An example of this value proposition is mobility, enabling your
marketing, sales, or operations teams with current market data in an at-a-glance format,
allowing the management team to make faster decisions. In this chapter, we demonstrate
how to use Titanium to create powerful, interactive charting experiences.

Opening PDF documents
The ability to open, view, and exchange PDF documents is a common requirement in
Enterprise app development. This recipe discusses how to use the openPDF CommonJS
module to view PDF documents in a cross-platform manner.

The following screenshots illustrate this recipe running on both an iPhone and an
Android device:

Getting ready
The recipe uses both a CommonJS and an Android native module. These can be downloaded
from the source code provided by the book, or individually through the links provided in the
See also section at the end of this recipe. Installing these in your project is straightforward.
Simply copy the openPDF.js file and the bencoding.android.tools folder into your
Titanium project, as shown highlighted in the following screenshot:

Chapter 5

129

After copying the module folder, you will need to click on your tiapp.xml file in Titanium
Studio and add a reference to the bencoding.android.tools module, as shown in the
following screenshot:

Charting and Documents

130

How to do it…
Once you have added openPDF.js and the native android module to your project, you need
to create your application namespaces and use require to import the module into your
code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 pdfOpener : require('openPDF'),
 isAndroid : (Ti.Platform.osname === 'android')
};

Creating a link to the PDF file
The next step in this recipe is to create a variable with the path to our PDF file. For example
purposes, we are using a PDF file called w4.pdf located in our project's resources
directory. The following snippet demonstrates how to create this path variable:

my.pdfFile = Ti.Filesystem.resourcesDirectory + 'w4.pdf';

Creating our example UI
This recipe provides a basic UI to help illustrate how to use the openPDF module.
This straightforward screen contains a button that opens a dialog providing different
options the user can select to open a PDF file. If this recipe is running on an iOS device,
the user will have a second button demonstrating how to open the PDF file inside the app.

1. We first create a Ti.UI.Window window to attach all UI elements onto:
var win = Ti.UI.createWindow({
 exitOnClose: true, title:"Open PDF Example",
 backgroundColor:'#fff'
});

2. Next, we add a label instructing the user which button to press:
var infoLabel = Ti.UI.createLabel({
 text:'Press the button to open a PDF file',
 top:10, left:10,
 right:10, height:40, textAlign:'center'
});
win.add(infoLabel);

Chapter 5

131

3. Next, the button that will launch our first example is added to the Ti.UI.Window
window:
var goButton = Ti.UI.createButton({
 title: 'open pdf', height: '60dp',
 width: '150dp', top: '140dp'
});
win.add(goButton);

Opening a PDF file on the click of a button
The first example of how to use the openPDF module is shown in the following goButton
click-event snippet:

goButton.addEventListener('click', function(e) {

1. First, the isSupported method is called to determine if the device supports
PDF files. This method will return a true if supported, or a false if no support
is available.
 if(my.pdfOpener.isSupported()){

2. Next, the file path to our PDF is provided to the open method. This will then present
the user with an options dialog on how they wish to view the file:
 my.pdfOpener.open(my.pdfFile);
 }else{

3. If the isSupported method results a false, you can then call the
isSupportedDetail method for more information on why. As the following snippet
shows, you can use the reason property returned by the isSupportedDetail
method to alert your user to the specific issue. You can also use the code property to
create your own customized messages.
 alert(my.pdfOpener.isSupportedDetail().reason);
 }
});

Charting and Documents

132

Opening a PDF file within your iOS app
The iOS platform has built-in support for working with PDF files. The openPDF module
leverages this platform to provide the ability to create a PDF dialog viewer within your app,
as shown in the following screenshot:

Chapter 5

133

1. In this section, a check is performed to ensure that the recipe is running on an iOS
device. If so, the button goButton2 is added to our Ti.UI.Window window:
if(!my.isAndroid){
 var goButton2 = Ti.UI.createButton({
 title: 'open pdf menu', height: 60,
 width: 150d, bottom: 140
 });
 win.add(goButton2);

2. The goButton2 click event demonstrates how to open a PDF file in a dialog window:
 goButton2.addEventListener('click', function(e) {

3. Next, the isSupported method is called to verify whether the device can read
a PDF file:
 if(!my.pdfOpener.isSupported()){

4. If the device does not support the displaying of PDF files, the isSupportDetail
method is called to return the reason why PDF files cannot be displayed:
 alert(my.pdfOpener.isSupportedDetail().reason);
 return;
 }

5. Finally, the openDialog method is called to display the PDF file. The openDialog
method requires two arguments. The first is a path to the PDF file that is to be
displayed. The second is a configuration object containing a UI object that specifies
the view relative to where the viewer should be displayed. In the following example,
we provide the infoLabel label created earlier as our view object:
 my.pdfOpener.openDialog(my.pdfFile,
 {view:infoLabel, animated:true}
);
 });
}

Additional elements can be added to the configuration object, such as the
animated property to determine if an animation should be applied while
opening and closing a PDF file.

Charting and Documents

134

To close the PDF dialog programmatically, use the closeDialog method, as shown in the
following snippet:

my.pdfOpener.closeDialog();

File clean-up on closing a window
The openPDF module creates cache objects and temporary files to assist in the display process.
It is important to call the dispose method when PDF operations are no longer needed:

win.addEventListener('close', function(e) {
 my.pdfOpener.dispose();
});

If you are using the openDialog option on iOS, calling
dispose will close the PDF dialog as well.

See also
To learn more about the libraries and frameworks used in this recipe, please visit the
following links:

 f iOS DocumentViewer: The openPDF module uses the Ti.UI.iOS.DocumentViewer
object to work with PDF files on the iOS platform. For additional details, please review
Titanium's online documentation at http://docs.appcelerator.com.

 f Working with Android Intents: The openPDF module uses the Ti.Android.
intent object to launch a PDF viewer on the user's device. For additional
information about working with Ti.Android.intent, visit this Appcelerator blog
entry at http://developer.appcelerator.com/blog/2011/09/sharing-
project-assets-with-android-intents.html.

 f Android Intent Supported: The openPDF library uses the bencoding.android.
tools module's project to check if there is an available intent to open a PDF
document on user's device. To learn more about this project, please visit https://
github.com/benbahrenburg/benCoding.Android.Tools.

Using an iPad for document signatures
Tablets and other touch devices provide a naturally immersive environment for working with
documents. Through the use of several open source modules and our example PDF, this
recipe illustrates how to create a document-signing app for your organization.

http://docs.appcelerator.com
http://developer.appcelerator.com/blog/2011/09/sharing-project-assets-with-android-intents.html
http://developer.appcelerator.com/blog/2011/09/sharing-project-assets-with-android-intents.html
http://developer.appcelerator.com/blog/2011/09/sharing-project-assets-with-android-intents.html
https://github.com/benbahrenburg/benCoding.Android.Tools
https://github.com/benbahrenburg/benCoding.Android.Tools

Chapter 5

135

The following screenshot demonstrates this recipe running on an iPad:

This recipe is designed to run only on an iPad.

Charting and Documents

136

Getting ready
This recipe uses both CommonJS and native modules. These modules can be downloaded
from the source code provided by the book, or individually through the links provided in
the See also section at the end of this recipe. The installation process is straightforward
and requires only copying a few folders and files. Simply copy the library.js file and the
modules folder into your Titanium Project, as highlighted in the following screenshot:

After copying the modules folder, you will need to click on your tiapp.xml file in Titanium
Studio and add a reference to ti.paint module, as shown in the following screenshot:

Chapter 5

137

How to do it…
Once you have added library.js and the native modules to your project, you need to
create your application namespaces and use require to import the module into your app.
js file, as the following snippet demonstrates:

//Create our application namespace
var my = {
 paint : require('ti.paint'),
 library : require('library')
};

Creating a window for the recipe
The following snippet demonstrates how to create a Ti.UI.Window window to hold all the
controls used in this recipe:

 var win = Ti.UI.createWindow({
 title:"iPad Signature Recipe", backgroundColor:'#fff'
 });

Adding a document view
The first UI element added to Ti.UI.Window is used to display the recipe's document.
On iOS, the Ti.UI.WebView object has built-in support for displaying PDF files. This sample
demonstrates how to load a single PDF document from the Resources folder of your
Titanium project.

 var docView = Ti.UI.createWebView({
 top:60, bottom:250, left:10, right:20, url:'w4.pdf'
 });
 win.add(docView);

Adding a signature view
The next UI element added to the Ti.UI.Window window is PaintView. This UIView is
provided by the Ti.Paint module added during the setup process. This view allows the user
to draw on the screen using touch. The following snippet demonstrates how to set up this view
to allow the user to draw using a black hue with a stroke size of 10 points:

 var vwSign = my.paint.createPaintView({
 bottom:60, left:10, right:10, height:140,
 strokeColor:'#000', strokeAlpha:255, strokeWidth:10,
 eraseMode:false, borderColor:'#999'
 });
 win.add(vwSign);

Charting and Documents

138

Adding buttons
The next step is to create buttons to save or clear a signature. The bClear button is added to
the lower-left section of the screen. This button will provide the ability for the user to clear the
signature area. This button can also be used to remove a saved signature.

 var bClear = Ti.UI.createButton({
 title:'Remove Signature', left:10, bottom:10, width:150,
 height:45
 });
 win.add(bClear);

When the click event is fired on the bClear button, the signature is cleared and any saved
signature files are removed:

 bClear.addEventListener('click',function(e){

1. Call the clear method on vwSign. This will remove all the contents of PaintView.
 vwSign.clear();

2. Next, the deleteSignature method is called on the library CommonJS module.
This removes the stored signature image.
 my.library.deleteSignature();

3. Then, vwSign is touch-enabled, and the user is alerted that their signature has been
removed. After this is completed, the user will be able to create a new document
signature.
 vwSign.touchEnabled = true;
 alert("Signature has been reset.");
 });

4. Next, the bSave button is added to the lower-right side of the iPad screen.
This button allows the user to save a copy of their signature for later use.
 var bSave = Ti.UI.createButton({
 title:'Save Signature', right:10, bottom:10,
 width:150, height:45
 });
 win.add(bSave);

5. When the click event on the bSave button is fired, an image of the user's signature
is saved to a library folder on the device.
 bSave.addEventListener('click',function(e){

Chapter 5

139

Perform the following steps to complete the saving process:

1. Convert the contents of the signature view into an image blob. This blob is then
provided to the library CommonJS module's saveSignature method to be persisted
to the device's documents folder.
 my.library.saveSignature(vwSign.toImage());

2. Once the signature image has been saved to disk, the signature surface is made
read-only so no additional updates can be performed:
 vwSign.touchEnabled = false;
 alert("You have successfully signed this document.");
 });

Reloading a saved signature
The last section of this recipe describes how, on opening a window, to check if the document
has been signed and loads the stored signature for display.

 win.addEventListener('open',function(e){

First the isSigned method is called on the library module. This method will check if the
signature file is present within the device's library folder.

 if(my.library.isSigned()){

The signatureUrl method is used to provide the signature's image path to the view
for display:

 vwSign.image = my.library.signatureUrl();

Since the document has already been signed, the signature view is then disabled so no
additional updates can be made without clearing the existing signature first.

 vwSign.touchEnabled = false;
 }
 });

 win.open({modal:true});

See also
 f This recipe uses the Ti.Paint open source module. The Ti.Paint module was

used in this recipe to provide the user with the ability to sign a document. To learn
more about this project, please visit https://github.com/appcelerator/
titanium_modules/tree/master/paint/mobile/ios.

https://github.com/appcelerator/titanium_modules/tree/master/paint/mobile/ios
https://github.com/appcelerator/titanium_modules/tree/master/paint/mobile/ios

Charting and Documents

140

Creating PDF documents from images or
screenshots

Mobile devices are wonderful consumers of PDF documents. But, what about creating them?
Many scenarios, such as issuing recipes or invoices, require a PDF file to be created by the
device. One easy approach for doing this is to convert an image into a PDF file. This approach
works well with Titanium's robust image creation and maintenance functionality.

This recipe demonstrates how to convert a Ti.UI.View into a PDF document. Also
demonstrated is how to use Titanium's Ti.Media.takeScreenshot API to convert a
fullscreen image of your app into a PDF file. This could be helpful for consumers looking to
"print" their screen.

Getting ready
This recipe leverages the bencoding.pdf native module. This module and supporting
source code can be downloaded from the source code provided by the book, or individually
through the links provided in the See also section at the end of this recipe. The installation
process for this recipe is straightforward and only requires copying the two bencoding.pdf
folders into their appropriate modules folder, as highlighted in the screenshot at the end of
this section. If your Titanium project does not currently have a modules folder, you can simply
copy the complete modules folder from this recipe into your project. In addition to the two
native modules, you will need to copy the sampleUI.js file, shown the following screenshot:

Chapter 5

141

After copying the modules folder, you will need to click on your tiapp.xml file in Titanium
Studio, and add a reference to the bencoding.pdf modules, as shown in the following
screenshot. Please note only one module entry will appear for bencoding.pdf, but both
iOS and Android will be added to your tiapp.xml file, once selected.

Charting and Documents

142

How to do it…
Once you have added the sampleUI.js file and native modules to your project, you need
to create your application namespaces in the app.js file and use require to import the
module into your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 PDF : require('bencoding.pdf'),
 sampleUI : require('sampleUI'),
 isAndroid : Ti.Platform.osname === 'android'
};

Creating a UI for the recipe
Now, we create a Ti.UI.Window window to host the recipe's UI elements:

var win = Ti.UI.createWindow({
 title:'PDF Screenshot', backgroundColor:'#fff'
});

Once Ti.UI.Window has been created, the contents of the sample invoice is provided by
our sampleUI module. The sampleUI module uses several Ti.UI.View and Ti.UI.
Label controls to generate a sample invoice layout.

var vwContent = my.sampleUI.fetchInvoiceUI();
win.add(vwContent);

Creating a PDF from a view
Next, the makeImageButton button is added to the recipe's Ti.UI.Window. This button
will later be used to create a PDF sample invoice.

var makeImageButton = Ti.UI.createButton({
 title:'Invoice PDF', bottom:5, left:10,
 width:135, height:50
});
win.add(makeImageButton);

When the click event on the makeImageButton button is fired, a PDF is generated with the
contents from the Ti.UI.View containing our sample invoice.

makeImageButton.addEventListener('click',function(e){

Chapter 5

143

1. The first step in generating a PDF is to create an image from the Ti.UI.View
containing the invoice layout. The following snippet demonstrates how to do this
on both iOS and Android:
 var image = ((my.isAndroid)?
 vwContent.toImage().media : vwContent.toImage());

2. The image blob for the invoice Ti.UI.View is then provided to the
convertImageToPDF method in the PDF Converters module. This method
converts the provided image into a PDF Ti.File blob. In addition to the image on
iOS, you can provide a resolution to be used in the conversion process. The following
sample uses a resolution of 100:
 var pdfBlob = my.PDF.createConverters()
 .convertImageToPDF(image,100);

3. The invoice PDF Ti.File blob can then be saved using the standard
Ti.FileSystem method, as the following snippet shows:
 var pdfFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory, 'invoice.pdf'
);
 pdfFile.write(pdfBlob);
});

Creating a PDF document from a screenshot
A similar technique can be used to create a PDF document containing a screenshot
of the app. The first step in doing this is to add a button named ssButton to the recipe's
Ti.UI.Window:

var ssButton = Ti.UI.createButton({
 title:'Screen to PDF', bottom:5,
 right:10, width:135, height:50
});
win.add(ssButton);

When we click on the ssButton button, a screenshot will be taken and converted into
a PDF file:

ssButton.addEventListener('click',function(e){

The first step in this process is to use the Ti.Media.takeScreenshot API to take
a screenshot of the app:

 Ti.Media.takeScreenshot(function(event){

Charting and Documents

144

The screenshot API returns an image blob of the device's screen:

 var image = event.media;

The screenshot image blob is then provided to the convertImageToPDF method in the PDF
Converters module. This method converts the provided image into a PDF Ti.File blob.
In addition to the image on iOS, you can provide a resolution to be used in the conversion
process. This sample uses a resolution of 96 points:

 var pdfBlob = my.PDF.createConverters()
 .convertImageToPDF(image,96);

The screenshot PDF Ti.File blob can then be saved using the standard
Ti.FileSystem methods:

 var pdfFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory, 'screenshot.pdf'
);
 pdfFile.write(pdfBlob);
 });
});

See also
 f To learn more about the modules used in this recipe, please visit https://github.

com/benbahrenburg/benCoding.PDF.

Generating PDF documents using jsPDF
Creating formatted PDF documents on a mobile device can be difficult. Adding cross-platform
to the equation only compounds this challenge. The jsPDF JavaScript library and the associated
jsPDF Titanium module provide a robust and pure JavaScript cross-platform approach.

This recipe demonstrates how to create formatted PDF documents, similar to the following
screenshot, using a powerful JavaScript API:

Chapter 5

145

Getting ready
This recipe uses the jsPDF module for Titanium to create PDF files. This module and
supporting source code can be downloaded from the source code provided by the book,
or individually through the links provided in the See also section at the end of this recipe.
The installation process for this recipe is straightforward and only requires copying the
jsPDFMod folder into the Resources folder of your Titanium project, as shown in the
following screenshot:

How to do it…
Once you have added the jsPDFMod folder to your project, you will need to create your
application namespaces in the app.js file, and use require to import the module into
your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 jsPDF : require('./jsPDFMod/TiJSPDF'),
 isAndroid : Ti.Platform.osname === 'android'
};

Charting and Documents

146

Creating a UI for the recipe
This recipe contains a basic UI that allows the user to generate a recipe PDF and open an
e-mail dialog.

1. Create a Ti.UI.Window window to hold all UI controls:
 var win = Ti.UI.createWindow({
 backgroundColor: '#eee', title: 'jsPDF
 Sample',layout:'vertical'
 });

2. Next, the goButton button is added to the recipe's Ti.UI.Window:
 var goButton = Ti.UI.createButton({
 height: '50dp', title: 'Email a receipt',
 left:'20dp', right:'20dp', top:'40dp'
 });
 win.add(goButton);

3. The goButton button's click event launches the PDF creation process by calling the
generatePDFExample method:
 goButton.addEventListener('click', function (e) {
 generatePDFExample();
 });

Creating a PDF document using jsPDF
The following snippet describes how to use generatePDFExample to create a PDF
document using the jsPDF module:

 function generatePDFExample(){

The next line demonstrates how to create a new instance of the jsPDF module. This creates
a new virtual PDF document.

 var doc = new my.jsPDF();

Chapter 5

147

The following snippet demonstrates how to add document properties to the PDF
document object:

 doc.setProperties({
 title: 'Title', subject: 'This is the subject',
 author: 'add author', keywords: 'one, two,
 three', creator: 'your organization'
 });

The following snippet demonstrates how to embed an image into a PDF document.
It is important that the images contain a full native path as shown here, otherwise the
document will generate errors on saving:

 var imgSample1 = Ti.Filesystem.resourcesDirectory +
 'sample_logo.jpg';
 doc.addImage(imgSample1, 'JPEG', 10, 20, 35, 17);

We then create a header using Helvetica bold and a font size of 32:

 doc.setFont("helvetica");
 doc.setFontType("bold");
 doc.setFontSize(32);
 doc.text(20, 50, 'Your Receipt);

The following code snippet creates the itemized recipe section with normal font and a size
of 18:

 doc.setFontType("normal");
 doc.setFontSize(18);
 doc.text(20, 70, '1. Cargo Container $2399.99');
 doc.text(20, 80, '2. Storage (5 days) $1299.99');
 doc.text(20, 90, '3. Loading Fee $699.99');
 doc.text(20, 100, '4. Transport Insurance $399.99');

A Ti.File object is created to the location where we wish to save recipe.pdf:

 var myFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,'recipe.pdf');

The Ti.File object is then passed into the jsPDF module's save method. The save
method will generate a PDF file with the attributes created earlier:

 doc.save(myFile);

Charting and Documents

148

The Ti.File reference for the saved PDF file is then provided to Ti.UI.EmailDialog as
an attachment and opened, so the user can compose an e-mail:

 var emailDialog = Ti.UI.createEmailDialog();
 emailDialog.addAttachment(myFile);
 emailDialog.open();
 };

See also
 f To learn more about the jsPDF project created by James Hall, please visit the Github

repository at https://github.com/MrRio/jsPDF.

 f This recipe uses the a Titanium module for jsPDF. Please refer to the following links
for additional documentation, samples, and guidance with the module:

Author: Malcolm Hollingsworth

Repository: https://github.com/Core-13

Sponsoring organization: Core13; website: core13.co.uk

Creating a scheduling chart using RGraph
A picture can be worth a thousand words, and in today's fast-paced business environments,
using graphics to display information can be a competitive advantage. This recipe demonstrates
how you can use the popular RGraph JavaScript library to create a chart reflecting project
scheduling. The following screenshots illustrate what this recipe will look like when completed:

Chapter 5

149

Getting ready
This recipe uses RGraph and several non-native components to display the chart.
These components can be downloaded from the source code provided by the book,
or individually through the links provided in the See also section at the end of this recipe.

Charting and Documents

150

The first step in setting up this recipe is to copy the web folder (highlighted in the following
screenshot) into the Resources folder of your project folder. After copying the web folder,
you will need to then copy the teamBuilder.js, chartLauncher.js, sampleUI.js, and
scheduleBuilder.js files into the Resources folder of your Titanium project, as shown in
the following screenshot:

How to do it…
After adding the web folder and CommonJS modules, as discussed earlier, you will need
to create your application namespaces in the app.js file and use require to import the
module into your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 schedule : require('scheduleBuilder'),
 team : require('teamBuilder'),
 chartDisplay : require('chartLauncher'),
 sampleUI : require('sampleUI')
};

Chapter 5

151

Creating a UI for the recipe
The next step in this recipe is to create the main Ti.UI.Window window. This Ti.UI.
Window will be used to launch the recipe's functionality.

var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'RGraph Sample'
});

After the Ti.UI.Window window is created, the fetchDemoView method is called on our
sampleUI module. This displays the recipe's instructions to the user:

win.add(my.sampleUI.fetchDemoView());

Creating schedules and assigning tasks
This section of the recipe demonstrates how to create schedules, and assign tasks to
individuals on your project.

1. The first step is to create a schedule for a team member. This is done by creating
a new schedule object and providing the individual's name. The following line
demonstrates how to create a schedule for Richard:
var richard = new my.schedule('Richard');

2. Next, the createTask method is used to create a task for the individual.
richard.addTask({
 taskName:'Website',startDay:15,
 duration:28,percentageComplete:67,
 comment:'Work on website'
});
richard.addTask({
 taskName:'Fix Web Servers',startDay:40,
 duration:15,percentageComplete:50,
 comment:'Work with vendor'
});

The createTask method has the following parameters:

 � Task name: A string containing the name of the task
 � Start on day: This is the position (day) the task is to start
 � Duration: The number of days the task will take
 � Percentage complete: The percentage completion of the task
 � Comment: The comment for the task

3. Finally, the team member's schedule is added to the team:
my.team.add(richard);

Charting and Documents

152

The next snippet demonstrates how to perform the steps discussed earlier, for another
team member:

var rachel = new my.schedule('Rachel');
rachel.addTask({
 taskName:'Mock-up',startDay:0,
 duration:28, percentageComplete:50,
 comment:'Create initial product mock-ups'
});
rachel.addTask({
 taskName:'Mobile Images',startDay:40,
 duration:25, percentageComplete:74,
 comment:'Create mobile assets'
});
my.team.add(rachel);

You can add additional individuals by following the
pattern detailed here.

Launching the example
Perform the following steps to launch the example we created in the previous section:

1. The first step is to add the goButton button to the Ti.UI.Window window to allow
the user to launch the chart sample:
var goButton = Ti.UI.createButton({
 title:'View schedule', bottom:'40dp',left:'25dp',
 right:'25dp', width:Ti.UI.FILL, height:'60dp'
});
win.add(goButton);

2. The click event of the goButton button launches the chart example by using the
openDialog method on the chartLauncher module. The openDialog method
uses the my.team object created previously to generate a Gantt chart containing a
team schedule.
 goButton.addEventListener('click',function(e){

Calling the openDialog method is demonstrated in the following snippet:

 my.chartDisplay.openDialog(my.team);
 });

Chapter 5

153

How it works…
The chartLauncher module (chartLauncher.js) is used to display the team's scheduled
tasks. The following line demonstrates how this module uses RGraph to create a Gantt chart
with the results. First, the openDialog method is added to the exports object:

exports.openDialog = function(team){

The next step in this part of the recipe is to create a window to display to the user:

 var win = Ti.UI.createWindow({
 backgroundColor: '#fff',
 title: 'Sample Chart',barColor:'#000'
 });

After Ti.UI.Window is created, a Ti.UI.WebView object is attached. The RGraph chart
information is contained in the index.html file that Ti.UI.WebView displays:

 var webView = Ti.UI.createWebView({
 height:Ti.UI.FILL, width:Ti.UI.FILL, url:'web/index.html'
 });
 win.add(webView)

On the Ti.UI.Window open event, the team's schedule information is passed into the
index.html file containing the RGraph methods:

 win.addEventListener('open',function(e){

The createSchedules and createComments methods are called on the team object.
These format the schedule and comment information so that RGraph can display the details.

 var schedules = JSON.stringify(team.createSchedule());
 var comments = JSON.stringify(team.createComments());

A load event listener is added to Ti.UI.WebView after the Ti.UI.Window window is
opened. This allows for the contents of Ti.UI.WebView to be fully loaded before the
information is injected.

 webView.addEventListener('load',function(x){

The evalJS method is used to pass the formatted team information to the addGraph
method currently being displayed in Ti.UI.WebView. You can view the contents of the
addGraph method by opening the index.html file supported with this recipe.

 webView.evalJS('addGraph(' + schedules + ',' +
 comments + ')');
 });
 win.open({modal:true});
 };

Charting and Documents

154

See also
 f This recipe uses the powerful RGraph HTML5/JavaScript canvas library to create the

Gantt chart displayed. I encourage you to visit their website, https://rgraph.net,
to learn more about RGraph and the different charting options provided.

Displaying information with Google gauges
Gauges are a powerful way to display velocity, status, or simple measurements. This recipe
demonstrates how to use the Google gauge chart control to display progress towards meeting
monthly sales targets. The following screenshots show this completed recipe running on both
iOS and Android:

When running this recipe on Android, please note
Android 4.0 or higher is required.

https://rgraph.net

Chapter 5

155

Getting ready
This recipe uses Google Charts to display the gauge. When adding this recipe to your app,
you will need to design for a network dependency as Google Charts requires a connection
to render chart information. These components can be downloaded from the source code
provided by the book, or individually through the links provided in the See also section at the
end of this recipe. The first step in setting up this recipe is to copy the web folder highlighted
in the following screenshot into the Resources folder of your project folder. After copying
the web folder, you will need to copy the persist.js file into the Resources folder of your
Titanium project as shown in the following screenshot:

How to do it…
After adding the web folder and persist.js CommonJS module as discussed in he previous
section, you will need to create your application namespaces and use require to import the
module into your code, as the following snippet demonstrates:

//Create our application namespace
var my = {
 persist : require('persist'),
 session:{},
 isAndroid : Ti.Platform.osname === 'android'
};

Charting and Documents

156

Loading saved sales information
After our namespace has been created, the first step is to load our saved sales information.
If no prior sales data has been saved, a default of 10 is provided.

my.session.sales = my.persist.load();

Creating a UI for the recipe
Now we create the UI to display our sales data.

1. First, a Ti.UI.Window window is created to host all of our UI elements:
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Sales Gauge',
 barColor:'#000', layout:'vertical',fullscreen:false
});

2. Next, a Ti.UI.WebView is created to display the Google gauge. This Ti.UI.
WebView is used to display a local html page that hosts the Google Chart control.
The following snippet demonstrates how to load a local html page (index.html)
from the project's web folder:
var webView = Ti.UI.createWebView({
 top:10, height:200, width:200, url:'web/index.html'
});
win.add(webView)

3. Finally, a Ti.UI.Slider is added to the recipe's Ti.UI.Window. The user can
use this slider to adjust their monthly sales.
var slider = Ti.UI.createSlider({
 min:0, max:100, value:my.session.sales, left:10,
 right:10, height:'30dp', top:10
});
win.add(slider);

Adjusting sales
As the user adjusts the Ti.UI.Slider, the following methods are used to update the Google
gauge with the new sales numbers. The updateSales method updates the contents of
Ti.UI.WebView with the new sales number:

function updateSales(sales){

The passed-in sales value is placed into the session's my.session.sales property
for later use:

 my.session.sales = sales;

Chapter 5

157

The evalJS method is called on Ti.UI.WebView to provide the new sales information to the
updateGauge method contained within the example index.html file. This method is used
to update the Google gauge. For more details, please see the contents of this recipe's index.
html file.

 webView.evalJS('updateGauge(' + my.session.sales + ')');

After updating Ti.UI.WebView, the new sales value is saved into Ti.App.Properties for
later use:

 my.persist.save(my.session.sales);
};

The change event on the recipe's Ti.UI.Slider method adjusts the Google gauge
as the user moves the slider:

 slider.addEventListener('change',function(e){

Each time the change event is fired, the new Ti.UI.Slider value is provided to
the updateSales method, to be reflected by the Google gauge hosted in the recipe's
Ti.Ui.WebView.

 updateSales(Math.round(e.value));
});

Reloading saved sales
Each time Ti.Ui.Window is loaded, the following code is use to display the saved sales
values and initialize the Google gauge. The next snippet demonstrates how the recipe reloads
the sales information on opening Ti.UI.Window:

win.addEventListener('open',function(e){

First, a network connection is performed. Since the recipe uses Google Charts, a network
connection is required to display this information:

 if(!Ti.Network.online){
 alert('Network connection required.');
 return;
 }

Finally, a load event listener is added to Ti.UI.WebView. Once loaded, the updateSales
function is called to initialize any previously saved sales information:

 webView.addEventListener('load',function(x){
 assist.updateSales(my.session.sales);
 });

Charting and Documents

158

See also
 f This recipe uses Google Charts to provide the gauges displayed. To learn

more about Google's charting tools, please visit their developer site, https://
google-developers.appspot.com/chart/.

6
Using Location

Services

In this chapter we will cover:

 f Native geolocation using basicGeo

 f Using the Ti.GeoProviders framework for geolocation

 f Multitenant geolocation

 f Calculating distance between addresses

 f Background geolocation management

Introduction
Until the proliferation of mobiles, it was often challenging to tell the location of your users,
making it difficult to provide location-based services. Now, almost every app developer has
access to real-time geolocation information directly from the user's device.

With the globally mobile nature of today's employees, providing location-aware apps to
your enterprise is just as important, if not more so as in the consumer market. Geolocation
is playing a large role in enterprise organizations across a variety of domains including,
fleet management, shipment tracking, sales routing, or simply providing real-time relevant
information on resources available to mobile employees.

Through a series of location service examples, this chapter outlines a variety of different
approaches you can leverage in your Enterprise Titanium app.

Using Location Services

160

Native geolocation using basicGeo
Android and iOS both provide powerful geolocation platform APIs to find the geographical
latitude and longitude of a given address. You can use the basicGeo module to access
these platform APIs in your Titanium module.

This recipe discusses how to leverage this module in your Titanium app to perform forward
and reverse geolocation operations. The following screenshots illustrate this recipe running
on both an iPhone and an Android device:

Getting ready
This recipe uses the benCode.basicGeo native module. This module can be downloaded
from the source code provided by the book, or individually through the links provided in the
See also section at the end of this recipe. Installing these in your project is straightforward.
Simply copy the modules folder into your project as highlighted in the following screenshot:

Chapter 6

161

After copying the modules folder, you will need to click on your tiapp.xml file
in Titanium Studio and add a reference to the bencoding.basicgeo module
as shown in the following screenshot:

Using Location Services

162

How to do it...
Once you have added the bencoding.basicgeo module to your project, you next need
to create your application namespaces in the app.js file and use require to import
the module into your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 basicGeo : require('bencoding.basicgeo'),
 isAndroid : Ti.Platform.osname === 'android'
};

Adding availability helpers
With an ever-increasing number of devices each having different capabilities, it is
a common requirement to provide progressive enhancements based on the ability of
sensors. The availability feature in the basicGeo module provides a series of properties
that can be used to determine the capabilities of the devices. The following snippet shows
how to create the Availability proxy, for later use in this recipe:

my.available = my.basicGeo.createAvailability();

Adding the location services purpose
To use location services on iOS, Apple requires a purpose or reason for the app to access
the GPS. On first request, this message will be used in the message presented to the user
for approval to use their device's location services. The following snippet demonstrates how
to add this purpose to the basicGeo module.

my.basicGeo.purpose = 'Demo of basicGeo';

Building the recipe UI
This following code snippet describes how to create the UI shown in this recipe's
earlier screenshots:

1. The first step is to create the Ti.UI.Window to which all visual elements will be
attached.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'benCoding Geo Recipe',
 barColor:'#000',fullscreen:false
});

2. Next a Ti.UI.TextField is added to the recipe's Ti.UI.Window. The contents of
this Ti.UI.TextField will be used during the forward geolocation lookup detailed
later in this recipe.
var txtAddress = Ti.UI.createTextField({

Chapter 6

163

 hintText:'enter address', height:40,
 left:5, right:60, top:55
});
win.add(txtAddress);

3. The next step in this recipe is to add a Ti.Map.View to the recipe's Ti.UI.Window.
This UI component will be used to display the address entered in the txtAddress
Ti.UI.TextField.
var mapView = Ti.Map.createView({
 top:160, bottom:0, left:5, right:5,
 userLocation:false
});
win.add(mapView);

Working with place objects
When performing geolocation lookups, the basicGeo module returns a collection of places
that match the address provided. The placeHelpers object provides convenient functions
for working with the results returned from the basicGeo module.

var placeHelpers = {

1. The address function provides a formatted address from a basicGeo place object.
This is used by the "find current location" feature in this recipe.
 address :function(place){
 if(my.isAndroid){

2. The Android reverse geolocation API provides an address field already formatted.
 return place.address;
 }else{

3. In iOS, the address information is provided as an array of lines. The following method
converts these address lines into a formatted string:
 var lines = place.addressDictionary
 .FormattedAddressLines;
 var iLength = lines.length, address = '';
 for (iLoop=0;iLoop < iLength;iLoop++){
 if(address.length>0){
 address += ' ' + lines[iLoop];
 }else{
 address = lines[iLoop];
 }
 }
 return address;
 }
 },

Using Location Services

164

4. The addToMap methods add the place information provided by the basicGeo
reverse geolocation to the Ti.Map.View created earlier in this recipe.
 addToMap: function(place){
 var lat = place.latitude,
 lng = place.longitude,
 title = placeHelpers.address(place);
 var pin = Ti.Map.createAnnotation({
 latitude:lat,longitude:lng,
 title:title
 });
 mapView.addAnnotation(pin);

5. A region is created using the latitude and longitude information from the basicGeo
module. The setLocation method is then called to zoom the Ti.Map.View to the
pin's coordinates.
 var region = {latitude:lat,
 longitude:lng,animate:true,
 latitudeDelta:0.04, longitudeDelta:0.04};
 mapView.setLocation(region);
 }
};

Finding current location
Perform the following steps to find the current location:

1. The findButton demonstrates how to perform a reverse geolocation lookup using
the device's current coordinates. These coordinates are then used to find the current
address of the user.
var findButton = Ti.UI.createButton({
 right:5, top:55, height:40, width:50, title:'Find'
});
win.add(findButton);

2. On the click event of the findButton, the getCurrentPlace method is called on
the basicGeo module's currentGeoLocation proxy.
findButton.addEventListener('click',function(e){

3. The resultsCallback method is created to handle the results returned by the
getCurrentPlace method. The result from the getCurrentPlace method is
provided to the e argument.
 function resultsCallback(e){

Chapter 6

165

4. The e.success property provides a flag to determine if the geolocation operation
has encountered an error.
 if(!e.success){
 alert('Sorry we encountered an error.');
 return;
 }

5. The e.placeCount property provides the number of place objects returned.
Generally, this is a number between 0 and 12 depending on the accuracy. If no
places are returned, alert the user that the address was not found.
 if(e.placeCount === 0){
 alert('Unable to find your address.');
 return;
 }

6. The first place in the places collection is provided to the placeHelpers.address
method. This method provides a formatted address string that is then presented
to the user in the Ti.UI.TextField txtAddress.
 txtAddress.value =
 placeHelpers.address(e.places[0]);
 };

7. A new instance of the CurrentGeoLocation proxy is created. This proxy contains
methods to perform geolocation operations using the device's current coordinates.
 var currentGeo = my.basicGeo.createCurrentGeolocation();

8. If the recipe is running on an Android device, the setCache method can be called.
This enables the basicGeo module to use the last best location cached by the
device. This provides faster lookup speeds, but can result in less accurate location
information.
 if(my.isAndroid){
 currentGeo.setCache(true);
 }

9. The final step in returning the device's current address is to call the
getCurrentPlace method. This method performs a reverse geolocation lookup
using the device's coordinates and provides a collection of places to the provide
callback method. The following snippet demonstrates how to call this method using
the resultsCallback as the callback argument.
 currentGeo.getCurrentPlace(resultsCallback);
});

Using Location Services

166

Forward location lookup
1. The searchTextAddressButton Ti.UI.Button performs a forward geolocation

lookup using the native device API.
var addressOnMapButton = Ti.UI.createButton({
 right:5, left:5, height:40,
 title:'Show address on Map',top:110
});
win.add(searchTextAddressButton);

2. The searchTextAddressButton Ti.UI.Button on click event performs a
forward geolocation lookup using the address entered in the txtAddress Ti.UI.
TextField.
searchTextAddressButton.addEventListener('click',function(e){

3. The first step in the forward geolocation lookup is to verify that the user entered
an address in the txtAddress Ti.UI.TextField.
 if(txtAddress.value.length==0){
 alert('Please enter an address to display');
 }

4. The forwardGeoCallback method is created to handle the results returned by
the forwardGeocoder method. The result from the forwardGeocoder method is
provided to the e argument.
 function forwardGeoCallback(e){
 if(!e.success){
 alert('Sorry we encountered an error.');
 return;
 }
 if(e.placeCount === 0){
 alert('Unable to find address entered.');
 return;
 }

5. The addToMap method is creating a call using the first place in the places collection.
This method will create a pin on the Ti.Map.View with the place object details.
 placeHelpers.addToMap(e.places[0]);
 };

6. The next step in performing a forward geolocation lookup, is to call the
forwardGeocoder method and provide a callback method as shown
in the following line:
 var geoCoder = my.basicGeo.createGeocoder();

Chapter 6

167

7. In the sample, the txtAddress.value and forwardGeoCallback are provided
to the forwardGeocoder method. The results of the forward geolocation lookup
will be provided to the forwardGeoCallback function as discussed earlier in
this recipe.
 geoCoder.forwardGeocoder(txtAddress.value,
 forwardGeoCallback);
});

Device capability check
Follow these steps to perform a device capability check:

1. This recipe requires that the device supports reverse and forward geolocation
operations. On load of the main recipe's Ti.UI.Window, the Availability object
created earlier in this recipe is used to alert the user if his/her device can support
running this recipe.
win.addEventListener('open',function(e){

2. The reverseGeoSupported property is checked to determine if the device running
the recipe can support running the recipe.
 if(!my.available.reverseGeoSupported){

3. If the device does not support reverse geolocation, the user is alerted of the
possible issues.

 if(my.isAndroid){
 alert("Configuration isn't supported.");
 }else{
 alert('iOS 5 or greater is required');
 }
 }
});
win.open({modal:true});

This recipe requires Android 4.0 or greater when running
in the emulator due to an Android emulator defect.

Using Location Services

168

See also
 f This recipe uses the basicGeo module to perform native geolocation. For licensing,

source code, and to learn more about this project, please visit https://github.
com/benbahrenburg/benCoding.BasicGeo.

Using the Ti.GeoProviders framework for
geolocation

The Ti.GeoProviders framework provides a multiprovider approach to reverse geolocation.
With a variety of providers, the Ti.GeoProviders framework provides a common API for
handling GeoNames.org, Google, and basicGeo geolocation operations.

The following recipe demonstrates how to use the Ti.GeoProviders framework and its
associated providers. The following screenshots illustrate this recipe running on both
an iPhone and an Android device:

Chapter 6

169

Getting ready
This recipe uses both CommonJS and native modules. These can be downloaded from
the source code provided by the book, or individually through the links provided in the See
also section at the end of this recipe. Simply copy the Ti.GeoProviders folder into the
Resources folder of your project and then copy the modules folder into your project as
shown in the following screenshot. Finally, copy the provider_picker.js file into the
Resources folder of your Titanium project as also highlighted in the following screenshot:

Using Location Services

170

After copying the file and folder mentioned here, you will need to click on your tiapp.xml file
in Titanium Studio and add a reference to the bencoding.basicgeo module as shown
in the following screenshot:

How to do it...
Once you have added native and CommonJS modules to your project, you need to create your
application namespaces in the app.js file and use require to import the module into your
code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 picker : require('provider_picker'),
 currentProvider:null,
 providers:[
 require('./GeoProviders/geonames_geoprovider'),
 require('./GeoProviders/bencoding_geoprovider'),
 require('./GeoProviders/google_geoprovider')
]
};

Chapter 6

171

Adding your API key
Many of the Geo Providers require an API key. The Ti.GeoProvider includes the addKey
method to allow you to associate your API key before making a service call. The following
snippet demonstrates how to add the API key demo to your service calls.

my.currentProvider.addKey('demo');

Adding your purpose
To use location services in iOS requires a purpose or reason for the app to access the
GPS. On the first request, this message will be presented to the user. The following code
demonstrates how to add this purpose to the Ti.GeoProviders using the
addPurpose method:

my.currentProvider.addPurpose('Demo of Geo Provider');

Android does not require the purpose be provided; in this case
the purpose defined is not used when accessing the GPS.

Building the recipe UI
The following code snippet describes how to create the UI shown in this recipe's
earlier screenshots:

1. The first step is to create the Ti.UI.Window to which all visual elements
will be attached.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Ti.GeoProviders',
 barColor:'#000',fullscreen:false
});

2. Next a Ti.Map.View is added to the Ti.UI.Window. This is used to plot
the location information provided by the GeoProvider.
var mapView = Ti.Map.createView({
 top:140, bottom:0, width:Ti.UI.FILL,
 userLocation:false
});
win.add(mapView);

Using Location Services

172

3. A picker control is then added to the Ti.UI.Window. This control contains a list of
providers and a callback method to switch between them. When the user updates the
selected picker, the lookup.updateProvider method is called to switch the active
Ti.GeoProvider. See the Lookup functions section in this recipe for more details.
var picker = my.picker.createPicker({
 top:30, height:40},lookup.updateProvider
});
win.add(picker);

4. The findButton button is the final UI component added to the recipe's Ti.UI.
Window. This Ti.UI.Button is used to run the recipe's reverse geolocation lookup.
var findButton = Ti.UI.createButton({
 title:'Find Current Location',
 left:10, right:10,top:30,height:40
});
win.add(findButton);

Running the reverse geolocation
For running the reverse geolocation, perform the following steps:

1. When the user presses the findButton, the click event is fired and the following
snippet is run:
findButton.addEventListener('click',function(e){

2. The first step in this section of the recipe is to check that a network connection is
available. A network connection is needed to contact the Ti.GeoProvider web
service to perform the reverse geolocation lookup.
 if(!Ti.Network.online){

3. If no network connection is available, the user is alerted to this requirement
and the lookup process is stopped.
 alert("You must be online to run this recipe");
 return;
 }

4. The final step in this section of the recipe is to call the getCurrentAddress method
of Ti.GeoProviders. The method will use the Ti.Geolocation API to obtain
the device's coordinates, and then use the specific logic of Ti.GeoProviders to
return an address object to the onSuccess callback method provided. If an error
occurs during the geolocation process the onError callback method will be called
and provide the error details. The following snippet demonstrates how to call the
getCurrentAddress method:

Chapter 6

173

 my.currentProvider.getCurrentAddress(
 lookup.onSuccess,lookup.onError);
});

Lookup functions
Now perform the following steps:

1. The lookup object is used in this recipe to display the results returned
by the GeoProvider.
var lookup = {

2. Using the picker control discussed earlier, the user can change the recipe's
Ti.GeoProvider. When the provider is changed, the updateProvider method
is called with the new provider details to be loaded.
 updateProvider : function(providerKey){

3. Based on the providerKey given, the updateProvider method will switch the
my.currentProvider object reference. Provider-specific details such as API key
details will also be handled as part of this method. The geo names provider snippet
demonstrates how provider switching is performed in this recipe.
 my.currentProvider = my.providers[providerKey];

 if(my.currentProvider.providerName == 'geonames'){
 my.currentProvider.provider.addKey('demo');
 }

4. Cross-provider methods such as addPurpose are performed at the end of the
updateProvider method as they are leveraged by all Ti.GeoProviders.
 my.currentProvider.addPurpose('Geo Demo');
 },

5. The addToMap method is used to create a map pin using the latitude, longitude,
and address information provided by the GeoNames Ti.GeoProvider.
 addToMap: function(lat,lng,title){
 var pin = Ti.Map.createAnnotation({
 latitude:lat,longitude:lng,
 title:title
 });
 mapView.addAnnotation(pin);

Using Location Services

174

6. A region is created using the latitude and longitude information from
the Ti.GeoProvider. The setLocation method is then called to zoom
the Ti.Map.View to the pin's coordinates.
 var region = {latitude:lat,
 longitude:lng,animate:true,
 latitudeDelta:0.04,
 longitudeDelta:0.04};
 mapView.setLocation(region);
 },

7. The onSuccess method is used to handle the successful return from
the Ti.GeoProviders. This method is used to orchestrate all user interactions
after the successful return from the Ti.GeoProviders.
 onSuccess : function(e){
 if(!e.found){
 alert("Unable to find your location");
 return;
 }

8. The generateAddress method is used to create a value for the title
variable. The title variable is then used in the creation of the map pin.
As Ti.GeoProviders can contain different formats, the generateAddress
function is used to create a formatted address to be used for display purposes.
 var title = my.currentProvider.generateAddress(e);
 lookup.addToMap(e.latitude,e.longitude,title);
 },

Chapter 6

175

9. The onError method is used by the Ti.GeoProviders to return error information
if an issue occurred during the reverse geolocation process. All error details are
accessible in the e argument.
 onError: function(e){
 alert("Error Details:" JSON.stringify(e));
 }
};

See also
To learn more about the basicGeo Titanium module used in this recipe, you can review
the following links:

 f Ti.GeoProvider Framework: For licensing, source code, and to learn more about this
project please visit https://github.com/benbahrenburg/Ti.GeoProviders.

 f basicGeo Module: For licensing, source code, and to learn more about this project
please visit https://github.com/benbahrenburg/benCoding.BasicGeo.

 f GeoNames GeoProvider: The GeoNames provider uses the GeoNames.org web
service. For licensing, usage, rates, and documentation please visit http://www.
geonames.org/.

 f Google GeoProvider: The Google provider uses the Google Geocoding API. For
licensing, usage, rates, and documentation please visit https://developers.
google.com/maps/documentation/geocoding/.

Using Location Services

176

Multitenant geolocation
As discussed earlier in this chapter, the Ti.GeoProviders framework provides
a multiprovider approach to reverse geolocation. The multitenant component includes
the ability for the Ti.GeoProviders framework to fail over, if a provider is unable to find
a suitable location. This multitenant approach helps to ensure your geolocation functionality
works for your globally mobile employees.

The following recipe demonstrates how to use the multitenant Ti.GeoProviders framework
to perform reverse location lookups using a failover approach. The following screenshots
illustrate this recipe running on both an iPhone and an Android device:

Getting ready
This recipe uses both CommonJS and native modules. These can be downloaded from
the source code provided by the book, or individually through the links provided in the
See also section at the end of this recipe. Simply copy the GeoProviders folder into the
Resources folder of your project and then copy the modules folder into your project as
highlighted in the following screenshot:

Chapter 6

177

After copying the mentioned folders, you will need to click on your tiapp.xml file
in Titanium Studio and add a reference to the bencoding.basicgeo module as
shown in the following screenshot:

Using Location Services

178

How to do it...
Once you have added native and CommonJS modules to your project, you next need to create
your application namespaces in the app.js file and use require to import the module into
your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 multiProvider :
 require('./GeoProviders/reverse_multi_geoprovider')
};

Adding providers
The following code snippet demonstrates how to add different GeoProviders to the
multiProvider module by calling the addProvider method. It is advised to add the
GeoProviders that you feel will best meet your requirements first since the multiProvider
will execute them in the order they are added.

my.multiProvider.addProvider({
 key : 'demo',
 providerString:'GeoProviders/geonames_geoprovider'
});

my.multiProvider.addProvider({
 providerString:'GeoProviders/bencoding_geoprovider'
});
my.multiProvider.addProvider({
 providerString:'GeoProviders/google_geoprovider'
});

Adding your purpose
Using location services on iOS requires a purpose or reason for the app to access the
GPS. On the first request, this message will be presented to the user. The following
code demonstrates how to add this purpose to the multitenant provider using the
addPurpose method:

my.multiProvider.addPurpose('Demo of Geo Provider');

Android does not require the purpose be provided; in this case
the purpose defined is not used when accessing the GPS.

Chapter 6

179

Building the recipe UI
The following code snippet describes how to create the UI shown in this recipe's earlier
screenshots. The first step is to create the Ti.UI.Window to which all visual elements
will be attached.

var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Multi-Tenant Geo',
 barColor:'#000',fullscreen:false
});

Next, a Ti.Map.View is added to the Ti.UI.Window; this will be used to display a map pin
with the device's current location and address details.

var mapView = Ti.Map.createView({
 top:120, bottom:0,width:Ti.UI.FILL,
 userLocation:false
});
win.add(mapView);

Lookup helper methods
Now perform the following steps:

1. The lookup object is designed to help format the results of the multitenant reverse
geolocation component and present the address information in a graphical way to
the recipe user.
var lookup = {

2. The addToMap method creates a map pin and adds the information to Ti.Map.
View.
 addToMap: function(lat,lng,title){
 var pin = Ti.Map.createAnnotation({
 latitude:lat,longitude:lng,
 title:title
 });
 mapView.addAnnotation(pin);

3. A region is created using the map pin coordinates and the setLocation function
of Ti.Map.View is then called. This will zoom the map to the coordinates of
the recently added pin.
 var region = {latitude:lat,longitude:lng,
 latitudeDelta:0.04,
 longitudeDelta:0.04};
 mapView.setLocation(region);
 },

Using Location Services

180

4. The onSuccess method is provided as the success callback when the
getCurrentAddress method is called. The result of the getCurrentAddress
method is provided to the e parameter.
 onSuccess : function(e){
 if(!e.found){
 alert("Unable to find your location");
 return;
 }

5. The getProvider method is called to create a reference to the provider used to
return the location results. This allows for the provider-specific generateAddress
method to be used.
 var provider = my.multiProvider.getProvider(
 e.provider.name);
 var title = provider.generateAddress(e);
 lookup.addToMap(e.latitude,e.longitude,title);
 },

6. The onError method is provided as the error callback when
the getCurrentAddress method is called. Error details are provided
to the e parameter.
 onError: function(e){
 alert("Error finding your location");
 }
};

Performing a multitenant reverse geolocation lookup
Now perform the following steps:

1. The final section of this recipe is to perform the multitenant lookup using
the getCurrentAddress method of the multiProvider module.
var findButton = Ti.UI.createButton({
 title:'Find Current Location',
 left:10, right:10,top:70,height:40
});
win.add(findButton);

2. The multiProvider lookup is performed on the click event of findButton.
findButton.addEventListener('click',function(e){

3. As a network connection is required for the reverse geolocation, the first step
in the reverse geolocation process is to validate the network connection.
 if(!Ti.Network.online){

Chapter 6

181

 alert("You must be online to run this recipe");
 return;
 }

4. Next, the getCurrentAddress method is called, and a success and error callback
method is provided. The following code snippet demonstrates calling this method
with the lookup.onSuccess and lookup.OnError callback methods discussed
earlier in this recipe.
 my.multiProvider.getCurrentAddress(
 lookup.onSuccess,lookup.onError);
});

Calculating distance between addresses
The use of geolocation services in enterprise apps is common. One of the most common
geolocation requirements is to calculate the distance between two points. This is helpful
in planning routes, determining mileage, forecasting delivery schedules, and more.

The following recipe demonstrates how to calculate the distance between two addresses.
This distance measurement is done using a direct distance, not a routing calculation such
as those used for walking or driving. The following screenshots illustrate this recipe running
on both an iPhone and an Android device.

Using Location Services

182

Getting ready
This recipe uses both CommonJS and native modules. These can be downloaded from
the source code provided by the book, or individually through the links provided in the
See also section at the end of this recipe. Simply copy the forwardGeo.js file into the
Resources folder of your project and then copy the modules folder into your project as
shown in the following screenshot:

After copying the file and folder mentioned here, you will need to click on your tiapp.xml file
in Titanium Studio and add a reference to the bencoding.basicgeo module as shown
in the following screenshot:

Chapter 6

183

How to do it...
Once you have added native and CommonJS modules to your project, you next need to create
your application namespaces in the app.js file and use require to import the module into
your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 forward : require('forwardGeo')
};

Using Location Services

184

Adding address information
The following startAddress and endAddress objects are added to the app namespace.
These objects will be used to create the address information and coordinate state for
this recipe.

my.startAddress = {
 needRefresh:true,lat:40.748433, lng:-73.985656,
 address:'350 5th Ave New York, NY 10118'
};

my.endAddress = {
 needRefresh:false, lat:40.75773, lng:-73.985708,
 address:'1560 Broadway, New York, NY 10036'
};

Building the recipe UI
The following code snippet describes how to create the UI shown in this recipe's earlier
screenshots:

1. The first step is to create the Ti.UI.Window to which all visual elements
will be attached.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Geo Distance Recipe',
 barColor:'#000',fullscreen:false
});

2. Next the txtStartAddress Ti.UI.TextField is created to allow the user to
enter a starting address.
var txtStartAddress = Ti.UI.createTextField({
 hintText:'enter starting address',
 value: my.startAddress.address,
 height:40, left:5, right:5, top:55,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtStartAddress);

3. Next the txtEndAddress Ti.UI.TextField is created to allow the user to enter
a destination address.
var txtEndAddress = Ti.UI.createTextField({
 hintText:'enter destination address',
 value: my.endAddress.address,
 height:40, left:5, right:5, top:125,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtEndAddress);

Chapter 6

185

4. The findButton Ti.UI.Button is then added to the Ti.UI.Window later in this
recipe. This button will be used to perform the distance calculation.
var findButton = Ti.UI.createButton({
 title:'Calculate Distance between', height:40,
 left:5, right:5, top:180
});
win.add(findButton);

Distance and address methods
This recipe uses the geo object to perform distance and address lookup operations.

var geo ={

1. The distanceInUnits uses the Haversine formula and computes the direct
distance in kilometers or meters between two sets of coordinates.
distanceInUnits: function(lat1, lng1, lat2, lng2){
 var rOfEarth = 6371;
 var dLat = (lat2-lat1)*Math.PI/180;
 var dLon = (lng2-lng1)*Math.PI/180;
 var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.cos(lat1*Math.PI/180) *
 Math.cos(lat2*Math.PI/180) *
 Math.sin(dLon/2) * Math.sin(dLon/2);
 var c = 2 * Math.asin(Math.sqrt(a));
 var distance = rOfEarth * c;

2. If the distance is less than 1 kilometer, the unit returned is converted to meters.
 return {
 distance: ((distance < 1) ?
 (distance * 1000) : distance),
 unit: ((distance < 1) ? 'm' : 'km')
 };
},

3. The findLocations method is used to obtain the coordinates for
the addresses provided.
findLocations : function(callback){

4. The onFinish function is the callback method provided to the forwardGeo
function. The e parameter provides the starting and ending address coordinates.
 function onFinish(e){
 if(!e.success){
 alert(e.message);
 return;
 }

Using Location Services

186

The forwardGeo e.start and e.end results are assigned to the
my.startAddress and my.endAddress properties. The callback method
is then executed, so the distance calculation can be performed.

 my.startAddress = e.start;
 my.endAddress = e.end;
 callback();
 };

5. The forwardGeo method is called to obtain the coordinates for the
my.startAddress and my.endAddress objects. As discussed earlier,
the geolocation results are provided to the onFinish callback method as
the following code snippet demonstrates:
 my.forward.forwardGeo(my.startAddress,
 my.endAddress,onFinish);
 }
};

Finding the distance between the two addresses
When the user presses the findButton and the click event is fired, the recipe will perform
a distance calculation between the two addresses entered.

findButton.addEventListener('click',function(e){

1. The first step in this process is to determine if forward geolocation is supported.
The coordinates for each address is required for the distance calculation. A forward
geolocation lookup is performed to obtain this information.
 if(!my.forward.isSupported()){
 alert('Forward Geocoding is not supported');
 return;
 }

Chapter 6

187

2. The findDistance method is used to make the distance calculation method call
and format the provided results.
 function findDistance(){

3. The first step in this section of the recipe is to call the distanceInUnits method
using the latitude and longitude information for each address.
 var result = geo.distanceInUnits(
 my.startAddress.lat,my.startAddress.lng,
 my.endAddress.lat,my.endAddress.lng);

4. Next the distance calculation results need to be formatted. If the results are
in kilometres, the distance variable is rounded to the first three decimal places.
If it is in meters, the full value will be displayed.
 if(result.unit=='km'){
 result.distance =
 result.distance.toFixed(3);
 }
 distanceLabel.text = result.distance + " " +
 result.unit + " between addresses";
 };

5. If either of the address information objects needs to be refreshed, the geo.
findLocation method is called. The findDistance method is provided as the
callback method to the findLocations function so that the distance calculation
can be performed after the coordinates are obtained.
 if(my.startAddress.needRefresh ||
 my.endAddress.needRefresh){
 geo.findLocations(findDistance);
 }else{

6. If the address information objects do not need to be refreshed, the findDistance
method is called directly to perform the distance calculation.
 findDistance();
 }
});

Using Location Services

188

Background geolocation management
Background geolocation is an important feature of many enterprise applications. The ability to
monitor the device's whereabouts while in the background is a powerful feature that can be
used for a wide range of activities from personal security to mileage tracking.

The following recipe demonstrates how to use the Ti.Geo.Background framework to
enable background geolocation monitoring. The following screenshots illustrate this recipe
running on both an iPhone and an Android device.

Getting ready
This recipe uses a series of CommonJS modules. These modules can be downloaded from the
source code provided by the book, or individually through the links provided in the See also
section at the end of this recipe. Simply copy the bGeo folder into the Resources folder of
your project as shown in the following screenshot:

Chapter 6

189

Updating your tiapp.xml file
This recipe requires a few updates to your project's tiapp.xml file. The first update is
to provide background geolocation support for iOS devices. The following highlighted
UIBackgroundModes section illustrates the entry required by this recipe:

<ios>
 <min-ios-ver>5.0</min-ios-ver>
 <plist>
 <dict>
 <key>UIBackgroundModes</key>
 <array>
 <string>location</string>
 </array>
 <key>NSLocationUsageDescription</key>
 <string>Demo Geo App</string>
 </dict>
 </plist>
</ios>

Using Location Services

190

This recipe uses an Android service as a keep alive. The following highlighted section
is required for the recipe to create an internal service:

<android xmlns:android=
"http://schemas.android.com/apk/res/android">
 <services>
 <service url="bGeo/Ti.Geo.Timer.js" type="interval"/>
 </services>
</android>

How to do it...
The Ti.Geo.Background CommonJS module utilizes both location manager distance
filtering and a keep-alive geo timer. This ensures that a location is recorded both when
the device travels a specific distance, or a specified period of time elapses. The Ti.Geo.
Background module manages all geolocation operations and maintains a distance filter
so that coordinates are recorded when the device moves pass a specific threshold distance.

The Ti.Geo.Timer performs two activities. First provides a keep-alive loop required
to keep an iOS application active, and second, on a scheduled interval the service records
the device's current coordinates. This ensures that coordinates are recorded even if
the individual hasn't moved.

The following diagram illustrates the interaction between the different
Ti.Geo.Background components:

Namespace and app setup
Once you have added native and CommonJS modules to your project, you need to create your
application namespaces in the app.js file and use require to import the modules into your
code as the following code snippet demonstrates:

var my = {
 bGeo : require('bGeo/Ti.Geo.Background'),
 isAndroid : Ti.Platform.osname === 'android',
 session:{started:false}
};

Chapter 6

191

Background location options
The Ti.Geo.Background module provides a series of optional configuration parameters
that allow you to tailor the module to your needs. The first configuration parameter is
purpose. This is used by iOS when presenting the location services access prompt to
your users.

my.bGeo.purpose = "Demo Background Recipe";

1. The distanceFilter is a value in meters on how often you wish to have the
location manager fire an alert that the location has changed. The following sample
is set to 100 and will fire a location-changed event every time the user travels more
than 100 meters.
my.bGeo.distanceFilter = 100;

2. The trackSignificantLocationChange setting indicates that the significant
location-change tracking should be used on iOS. This method of geolocation reduces
battery impact by only firing events when a network change such as a cell tower
switch is performed.
my.bGeo.trackSignificantLocationChange = true;

3. The minAge configuration is a threshold of the minimum frequency, in minutes;
you wish to receive location updates. In the following example, you will not receive
updates any more frequently than every 3 minutes, no matter the distance the
individual is moving.
my.bGeo.minAge = 3;

4. The maxAge configuration is a threshold of the maximum amount of time in minutes
you wish to go without receiving an update. This is also the threshold used by the
Ti.Geo.Timer to perform a coordinate lookup.
my.bGeo.maxAge = 30;

Building the recipe's UI
The following code snippet describes how to create the UI shown in this recipe's
earlier screenshots:

1. The first step is to create the Ti.UI.Window upon which all visual elements will be
attached.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Background Geo Recipe',
 barColor:'#000',fullscreen:false
});

Using Location Services

192

2. The next step is to add a Ti.Map.View to the recipe's Ti.UI.Window. This will be
used to display the coordinates collected while Ti.Geo.Background is running.
var mapView = Ti.Map.createView({
 top:80, bottom:0, left:5, right:5, userLocation:false
});
win.add(mapView);

3. The startStopButton is then added to the Ti.UI.Window. This button will be
used to start and stop the Ti.Geo.Background process.
var startStopButton = Ti.UI.createButton({
 title:((my.bGeo.active()) ? 'stop' :'start'),
 top:30, height:40,left:5, width:75
});
win.add(startStopButton);

4. The clearButton is then added to the Ti.UI.Window. This button will be used to
remove all coordinate information recorded by the Ti.Geo.Background process.
var clearButton = Ti.UI.createButton({
 title:'Clear', top:30, height:40,left:85, width:75
});
win.add(clearButton);

5. The refreshButton is then added to the Ti.UI.Window. This button will be
used to refresh the Ti.Map.View with the coordinates recorded by the Ti.Geo.
Background process.
var refreshButton = Ti.UI.createButton({
 title:'Refresh', top:30, height:40,left:165, width:75
});

win.add(refreshButton);

The recipe's assistant methods
This recipe implements an assistant object, which contains helper functions to work
with and display coordinates collected by the Ti.Geo.Background module.

var assistant = {

1. The addToMap is the first method in the assistant object. This method adds a map
pin for each of the coordinate points collected by the Ti.Geo.Background module.
 addToMap : function(e){
 var pin = Ti.Map.createAnnotation({
 latitude:e.latitude,
 longitude:e.longitude
 });

Chapter 6

193

 mapView.addAnnotation(pin);
 var region = {latitude:e.latitude,
 longitude:e.longitude,
 latitudeDelta:0.04, longitudeDelta:0.04};
 mapView.setLocation(region);
 },

2. The next method in the assistant object is the locationChangeCallback
method. This method is provided as the callback method for the Ti.Geo.
Background module's change event. The change coordinates are provided to the
method's e parameter. The locationChangeCallback method then calls the
addToMap method to display the newly gathered coordinate information.
 locationChangeCallback : function(e){
 assistant.addToMap(e);
 },

3. The final method in the assistant object is the locationErrorCallback
method. This method is provided as the callback method for the Ti.Geo.
Background module's error event. Error information is provided to the
method's e parameter.

 locationErrorCallBack : function(e){
 alert('Error due to ' + e.message);
 }
};

Geolocation events
The Ti.Geo.Background module has several events. The events used in this recipe are
detailed in this section. The change event is the primary method used in this recipe. This
event is fired whenever a location change is generated. The following example demonstrates
how to subscribe to this change event providing the callback method assistant.
locationChangeCallback:

my.bGeo.addEventListener('change',
assistant.locationChangeCallback);

The error event is also used in this recipe to provide an alert to the user when an error has
occurred in the module. The following example demonstrates how to subscribe to the error
event providing the callback method assistant.locationErrorCallback:

my.bGeo.addEventListener('error',
assistant.locationErrorCallBack);

Using Location Services

194

Background button events
This recipe uses a series of buttons to demonstrate how to call the Ti.Geo.Background
module's methods. The startStopButton click event demonstrates how to start and stop
the Ti.Geo.Background process.

startStopButton.addEventListener('click',function(e){

1. If the module is already active, the recipe will toggle the status to off and stop
the module for recording coordinates.
 if(my.bGeo.active(){
 my.bGeo.stop();
 }else{

2. If the module is off, the recipe will toggle the status to on and start the module for
recording coordinates.
 my.bGeo.start();
 }

3. The startStopButton title is updated to refresh the current status of the module.
 startStopButton.title=((my.bGeo.active()) ?
 'stop' :'start');
});

4. The click event of refreshButton is used to reload the recorded coordinates
to display in the Ti.Map.View.
refreshButton.addEventListener('click',function(e){

5. First all map annotations are removed.
 mapView.removeAllAnnotations();

6. The readCache method is then called to return an array containing all of
the recorded coordinates.
 var results = my.bGeo.readCache();

7. The snippet then loops through the coordinate array using the assistant.
addToMap method to create map pins on the recipe's Ti.Map.View.
 for (iLoop=0;iLoop < results.length;iLoop++){
 assistant.addToMap(results[iLoop]);
 }
});

Chapter 6

195

8. The click event of clearButton is used to remove all recorded coordinate
information and clear the Ti.Map.View of all annotations as the following code
snippet demonstrates:
clearButton.addEventListener('click',function(e){
 my.bGeo.clearCache();
 mapView.removeAllAnnotations();
});

iOS app-level events
The iOS platform does not allow for background services to run while the app is
in the foreground. The following block of code demonstrates how to handle this iOS
specific scenario:

1. First check to ensure the recipe is running on an iOS device.
if(!my.isAndroid){

2. Next an application-level listener is created on the resumed event. This will be fired
when the app is placed in the foreground.
 Ti.App.addEventListener('resumed',function(e){

3. When the app is moved into the foreground, the recipe checks if the Ti.Geo.
Background module is active. If active, the module's paused method must be
called to disable the Ti.App.iOS.BackgroundService, while leaving the location
manager active.
 if(my.bGeo.active()){
 my.bGeo.paused();
 }
 });

4. The next step in managing background services on iOS is to add an application-level
event listener to the paused event. The paused event will be fired when the app is
placed in the background.
 Ti.App.addEventListener('paused',function(e){

5. The next snippet demonstrates how to restart the background service,
if the Ti.Geo.Background module is active.
 if(my.bGeo.active()){
 my.bGeo.restart();
 }
 });

Using Location Services

196

The restart method must be called when the app is paused, if
you wish to continue collecting coordinates in the background.

6. The following code snippet demonstrates how to stop the Ti.Geo.Background
module when the application is closed. This also provides a clean shutdown to
the background processes and avoids iOS terminating them after approximately
10 minutes.
 Ti.App.addEventListener('close',function(e){
 my.bGeo.stop();
 });
}

See also
 f The Ti.Geo.Background module was used in this recipe to provide cross-platform

background location services. For licensing, source code, and to learn more about
this project please visit https://github.com/benbahrenburg/Ti.Geo.
Background.

7
Threads, Queues,

and Message Passing

In this chapter we will cover:

 f Queuing multiple downloads

 f Launching one app from another

 f Cross-platform URL schemes

 f Opening your Android app on BOOT_COMPLETED

 f iOS multithreading using Web Workers

Introduction
Size, complexity, and volume are common issues encountered in developing and maintaining
enterprise apps. Titanium provides support for several common patterns used to separate
operational responsibility patterns.

This chapter discusses how to use message passing, queuing, and multithreaded capabilities
in Titanium. These step-by-step recipes can then be used to incorporate these design
principles into your existing Titanium enterprise application.

Threads, Queues, and Message Passing

198

Queuing multiple downloads
It is commonplace for enterprise apps to require the need to download documents and
content from your organization's file servers. Use of queuing is helpful in this scenario to
ensure order and delivery while avoiding pitfalls often associated with spawning multiple
asynchronous requests. This recipe uses the Ti.Queue CommonJS module to create
a persistent, named queue to perform file downloads.

To demonstrate how to implement a persistent queue, this recipe will download to your device
5 MB sample files from Github. The following screenshots illustrate what this recipe looks like
while running on both the iPhone and Android devices.

Getting ready
This recipe uses the Ti.Queue CommonJS module. This module and other code assets
can be downloaded from the source provided by the book, or individually through the links
provided in the See also section at the end of this recipe. Installing these in your project is
straightforward. Simply copy the Ti.Queue.js file into your project as shown in the
following screenshot:

Chapter 7

199

Network connection
This recipe requires a network connection to download files from Github. Please make sure
the device or simulator has proper network connectivity.

How to do it...
Once you have added the Ti.Queue module to your project, you need to create your
application namespace in the app.js file and use require to import the module into
your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 qMod : require('Ti.Queue'),
 jobInfo:{total:0,completed:0}
};

Creating the recipe's UI
The following steps outline how to create the UI used in this recipe:

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Download Queue',
 barColor:'#000',layout:'vertical',fullscreen:false
});

Threads, Queues, and Message Passing

200

2. Next, a Ti.UI.ProgressBar is added to the Ti.UI.Window. This will be used
to display the status of the queue.
var progress = Ti.UI.createProgressBar({
 top:30, height:50,min:0,max:3, value:0, left:10,
 right:10, message:'Tap button to start download'
});
win.add(progress);

3. The show method is called immediately on our Ti.UI.ProgressBar so that it will
be displayed on the Ti.UI.Window correctly.
progress.show();

4. Next, a Ti.UI.Button is added to the Ti.UI.Window. This control will be used to
trigger the queue download logic.
var downloadButton = Ti.UI.createButton({
 title:'Run Download Queue', top:40,
 left:10, right:10, height:50,
});
win.add(downloadButton);

Creating a queue
The next step in the recipe is to create a named queue as demonstrated in the following code
snippet. By default, any named queue is persistent and will store all jobs between sessions.

//Create a new version of the queue
var queue = new my.qMod("demo");

If a name is not provided when creating a new queue,
the queue will not save jobs between app restarts.

Adding jobs to the queue
After the queue has been created, the next step is to create a series of jobs for the queue to
manage. The following code block creates three download jobs for the queue to manage.

1. The first job is created to download a ZIP file from Github. A timestamp is used to
provide a unique name.
var sample1Name = new Date().getTime();
queue.enqueue({
 title:'Sample ' + sample1Name,
 url:"https://github.com/benbahrenburg/
 Ti.Queue/blob/master/5MB.zip",
 downloadPath:Ti.Filesystem.applicationDataDirectory +

Chapter 7

201

 sample1Name + '.zip',
 attempts:0
});

2. Again, a second job is created to download a ZIP file from Github. A timestamp is
used to provide a unique name.
var sample2Name = new Date().getTime();
queue.enqueue({
 title:'Sample ' + sample2Name,
 url:"https://github.com/benbahrenburg/
 Ti.Queue/blob/master/5MB.zip",
 downloadPath:Ti.Filesystem.applicationDataDirectory +
 sample2Name + '.zip',
 attempts:0
});

3. Again, a third job is created to download a ZIP file from Github. A timestamp is used
to provide a unique name.
var sample3Name = new Date().getTime();
queue.enqueue({
 title:'Sample ' + sample3Name,
 url:"https://github.com/benbahrenburg/
 Ti.Queue/blob/master/5MB.zip",
 downloadPath:Ti.Filesystem.applicationDataDirectory +
 sample3Name + '.zip',
 attempts:0
});

Recipe's assistant functions
The assist object is used to manage the download process. The following is a discussion
on how the assist object works and can be leveraged within your app:

var assist = {

1. The progressSetup method is used to restart the progress bar when a new
download system has been initialized.
 progressSetup : function(min,max){
 progress.min = min;
 progress.max = max;
 progress.value = 0;
 progress.message = 'Starting download';
 downloadButton.title = "Downloading... please wait";
 },

Threads, Queues, and Message Passing

202

2. The updateProcess method is used to update the progress bar information and
alert the user to the status of the overall download job.
 updateProgress : function(value,text){
 progress.value = value;
 progress.message = text;
 },

3. The whenFinished method is called after all Ti.Queue jobs have finished or
generated errors. This method is used to update UI to alert the user about the
queued job which has been processed.
 whenFinish : function(){
 downloadButton.text = "Tap button to start download";
 alert('Finished Download');
 downloadButton.enabled = true;
 },

4. The next method is used to process the next job in the Ti.Queue.
 next : function(){

5. This step in the next method is to check if there are any jobs available. This is
done by calling the getLength method on the queue to retrieve the number of jobs
currently stored in the queue.
 if(queue.getLength() == 0){

6. If there are no jobs remaining in the queue, the whenFinish method is called and
the download process is exited.
 assist.updateProgress(my.jobInfo.total,
 'Download Completed');
 assist.whenFinish();
 return;
 }

7. If a job is available in the queue, the next step is to update the progressValue to
show the current processing status as shown in the following code snippet.
 var progressValue =
 (my.jobInfo.total - queue.getLength());

8. The next step is to call the peek method on the queue. This allows us to fetch the
next item in the queue without popping it from the queue itself. This is used to write
the information to the Titanium Studio console for debugging purposes.

Chapter 7

203

 var pkItem = queue.peek();
 Ti.API.info('Peek value: ' + JSON.stringify(pkItem));

9. The next step is to call the dequeue method on the queue. This function pops
the next item from the queue and returns the item. In the following code snippet,
the dequeue method is called to provide the next queue job to the item variable.
 var item = queue.dequeue();

10. The updateProgress method is then called to alert the user to the
download progress.
 assist.updateProgress(progressValue,'Downloading ' +
 item.title);

11. Next the download method is called to start the download process. To create
a recursive function, the next method is provided as a callback argument to
the download method.
 assist.download(item,assist.next);

 },

12. The download method contains all logic needed to download the queued job
from Github.
 download :function(item,callback){

13. The first step in downloading the file from Github is to create Ti.Network.
HTTPClient.
 var done = false;
 var xhr = Ti.Network.createHTTPClient();
 xhr.setTimeout(10000);

14. The onload callback is fired when the Ti.Network.HTTPClient receives
a successful response.
 xhr.onload = function(e){
 if (this.readyState == 4 && !done) {
 done=true;

15. If the response does not provide a 200 status code, an error is generated.
 if(this.status!==200){
 throw('Invalid http reply status code:' +
 this.status);
 return;
 }

Threads, Queues, and Message Passing

204

16. If the proper status code is returned, a Ti.Filesytem object is then created
and the responseData is saved to the provided output path.
 var saveToFile =
 Ti.Filesystem.getFile(item.downloadPath);
 if(saveToFile.exists()){
 saveToFile.deleteFile();
 }
 saveToFile.write(this.responseData);
 saveToFile = null;

17. After the responseData has been persisted to the filesystem, the callback method
is triggered. This allows for the recipe to recursively loop through the queue.
 callback();
 }
 };

18. The onerror callback is triggered when the Ti.Network.HTTPClient receives
an error.
 xhr.onerror = function(e){

19. When an error is received, the provided job is requeued for another attempt,
by calling the requeue method on the assist object.
 assist.requeue(item,callback)
 };

20. The download progress is started by calling the open and send methods on the
Ti.Network.HTTPClient using the queue item's url details as demonstrated
in the following code snippet:
 xhr.open('GET', item.url);
 xhr.send();
 },

21. The requeue method is used to add an item back into the queue. The recipe is
designed to provide three attempts at downloading before the job is considered a
permanent error.
 requeue :function(item,callback){
 Ti.API.info('requeue is called on download fail.');
 Ti.API.info('Allowed to retry 3 times');

22. The item's attempt property is checked to determine if the job has been attempted
more than three times.
 if(item.attempts > 3){

Chapter 7

205

23. If the job has been attempted more than three times, the item is not readded
to the queue.
 Ti.API.info('Max removed from queue.')
 }else{

24. If the job has errored, less than three times, the attempts property is incremented
and the item is added to the queue again.
 item.attempts++;
 queue.enqueue(item);
 }

25. Finally the callback method is fired, moving the download process to the next step
in its lifecycle.
 callback();
 }
};

Start downloading
When the downloadButton is pressed the recipe begins to process the queued jobs.

downloadButton.addEventListener('click',function(e){

1. The first step in the download process is to check if the recipe has a network
connection. If the network is not available, the recipe will alert the user to exit
the process.
 if(!Ti.Network.online){
 alert('This recipe requires a network');
 return;
 }

2. The next step in the download process is to disable the downloadButton.
This avoids the user from processing the button again, once the job has started.
 downloadButton.enabled = false;

3. The my.jobInfo object is then updated with the current count and status
information. This will be used to track the overall download status.
 my.jobInfo.total = queue.getLength();
 my.jobInfo.completed = 0;

4. Next the processSetup method is called to initialize the Ti.UI.ProgressBar
with the correct min and max values.
 assist.progressSetup(my.jobInfo.completed,
 my.jobInfo.total);

Threads, Queues, and Message Passing

206

5. Finally, the next method is called on the assist object. This begins the download
process and creates a recursive loop that will run until the queue is empty.
 assist.next();

});

See also
 f To learn more about the Ti.Queue module used in this recipe, please visit

https://github.com/benbahrenburg/Ti.Queue.

Launching one app from another
A majority of mobile enterprise apps are designed around a specific task such as time
reporting. Through the use of URL schemes or Android intent filters you can open and
communicate between different apps on the user's device. For example, you can provide
an option for your organization's time-reporting app to open the expense app when
an employee is traveling and needs to record additional information.

This recipe demonstrates how to launch different apps using the native platform's
integration pattern. The following screenshot illustrates this recipe running on both
an iOS and Android device:

.

Chapter 7

207

This recipe must be run on a device to fully experience all features.
A device is required as the simulator or emulator do not allow apps
from the different app stores to be run.

Getting ready
This recipe uses the schemeList CommonJS module. This module and other code assets
can be downloaded from the source provided by the book. Installing these in your project
is straightforward. Simply copy the schemeList.js file into your project as shown in the
following screenshot:

Network connection
This recipe requires that the following apps are installed on your device:

 f LinkedIn

 f Evernote

 f Google Maps (on iOS and Android)

 f The URL Scheme example recipe discussed later in this chapter

How to do it...
After adding the schemaList module, you will need to create your application namespace
in the app.js file and use require to import the module into your code as the following
code snippet demonstrates:

//Create our application namespace
var my = {

Threads, Queues, and Message Passing

208

 schemes : require('schemeList'),
 isAndroid : Ti.Platform.osname === 'android'
};

iOS updating tiapp.xml
Adding the ability to allow other iOS apps to launch your apps is straightforward.
The following code snippet demonstrates how to add a custom scheme named,
bencoding-linkLauncher to this recipe. This allows any iOS app to launch this
sample in a similar fashion as discussed later in this recipe.

<ios>
 <plist>
 <dict>

The CFBundleURLlTypes node is an array of dictionaries describing the URL schemes
supported by the bundle. Under this node, you will list all of the URL and scheme names
your app will respond to.

 <key>CFBundleURLTypes </key>
 <array>
 <dict>

The CFBundleURLName is the key that contains the abstract name for this URL type. This is
the main way to refer to a particular type. To ensure uniqueness, it is recommended that you
use a Java-package style identifier.

 <key>CFBundleURLName </key>
 <string>bencoding-linkLauncher</string>

The CFBundleURLSchemes is the key that contains an array of strings, each of which
identifies a URL scheme handled by this type.

 <key>CFBundleURLSchemes</key>
 <array>
 <string>bencoding-linkLauncher</string>
 </array>
 </dict>
 </array>
 </dict>
 /plist>
</ios>

Creating an app launch list
The schemeList CommonJS module, added to the my.scheme property provides a list of
iOS and Android scheme examples. The following sections describe how schemes are created
on both platforms.

Chapter 7

209

iOS scheme list
On iOS, a URL scheme works just like a URL on the web. The only difference is the app's
registered URL scheme is used as the protocol. The following steps provide detailed examples
of the specific URL formats available.

1. The getiOSList provides an array of objects designed to be bound to a Ti.UI.
TableView and later used to launch other apps.
exports.getiOSList = function(){
 var apps =[];

2. The most basic type of URL scheme is simply the CFBundleURLName of the app.
This is shown in the following examples for Evernote and LinkedIn.
 apps.push({
 title:'Evernote',
 url:'evernote://',
 errorMessage:'Check Evernote is installed'
 });

 apps.push({
 title:'LinkedIn',
 url:'linkedin://',
 errorMessage:'Check Linkedin is installed'
 });

3. More complex URL schemes can be used, such as the following example showing
a URL scheme including the about route.
 apps.push({
 title:'Recipe Example 1',
 url:'bencoding-linkrecipe://about',
 errorMessage:'Check Link Receiver Recipe is installed'
 });

4. URL schemes can also include query parameters similar to a web page,
as demonstrated in the following code snippet:
 apps.push({
 title:'Recipe Example 2',
 url:
 'bencodinglinkrecipe: //'+
 'login?user=chris&token=12345',
 errorMessage:'Check Link Receiver Recipe is installed'
 });

 return apps;
};

Threads, Queues, and Message Passing

210

Android scheme list
Android has the ability to launch applications in a variety of ways. This recipe focuses on how
to use a URL scheme similar to iOS and intents for app integration.

The getAndroidList provides an array of objects designed to be bound to a Ti.UI.
TableView and later used to launch other apps.

exports.getAndroidList = function(){
 var apps =[];

1. Similar to iOS apps, you can use a route base URL to launch a third-party app.
The following code snippet shows how to construct a URL with an about route.
 apps.push({
 title:'Recipe Example 1',
 type:'url',
 color:'#000',
 url:'bencoding-linkrecipe://com.bencoding/about',
 errorMessage:'Check Link Receiver Recipe is installed'
 });

2. Just as with web pages, you can build more complex URLs with query string
parameters. The following snippet demonstrates how to call a login screen while
passing query string information.
 apps.push({
 title:'Recipe Example 2',
 type:'url',
 color:'#000',
 url:
 'bencoding-linkrecipe://'+
 'login?user=chris&token=12345',
 errorMessage:'Check Link Receiver Recipe is installed'
 });

3. A more preferred way to launch apps on Android is to use intents. The following
example shows how to create an intent to launch the LinkedIn app.
 var linkedInIntent = Ti.Android.createIntent({
 action: Ti.Android.ACTION_SEND,
 packageName :'com.linkedin.android',
 className:
 'com.linkedin.android.home.UpdateStatusActivity'
 });

Chapter 7

211

4. Once the LinkedIn intent has been created, it is added to the app's array with a type
of intent. This will later be used to launch the LinkedIn app.
 apps.push({
 title:'LinkedIn',
 type:'intent',
 color:'#000',
 intentObject :linkedInIntent
 });

The LinkedIn app must be installed on the user's device in order
to have the intent launch the app. If the app is not installed,
an exception will be generated.

5. A more preferred way to launch apps on Android is to use intents. The following
example shows how to create an intent to launch the Evernote app.
 var everNoteIntent = Ti.Android.createIntent({
 action: "com.evernote.action.CREATE_NEW_NOTE"
 });

The Evernote app must be installed on the user's device in order
to have the intent launch the app. If the app is not installed,
an exception will be generated.

6. Once the Evernote intent has been created, it is added to the app's array with a type
of intent. This will later be used to launch the Evernote app.
 apps.push({
 title:'Evernote',
 type:'intent',
 color:'#000',
 intentObject :everNoteIntent
 });

 return apps;
};

Threads, Queues, and Message Passing

212

The recipe's UI
This section of the recipe is the UI used to launch the third-party apps.

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'App Launcher',
 barColor:'#000',layout:'vertical',fullscreen:false
});

2. Next the schemeList CommonJS module is called to return a list of the applications
to launch.
var schemeData = ((my.isAndroid) ?
my.schemes.getAndroidList() : my.schemes.getiOSList())

3. The schemaData object is then formatted and bound to a Ti.UI.TableView
for display.
var tableView = Ti.UI.createTableView({
 data : my.schemes.format(schemeData),
 top:10, bottom:0, width:Ti.UI.FILL
});
win.add(tableView);

The final section of this recipe demonstrates how to launch third-party apps using the list
displayed in the Ti.UI.TableView.

1. A click event is added to the Ti.UI.TableView. This event will be fired when the
user taps on a row in the Ti.UI.TableView.
tableView.addEventListener('click',function(e){

2. Once the event is fired, the first step is to check the platform on which the recipe
is running.
 if(my.isAndroid){

 try{

3. If running under Android, a check must be performed to determine if the launch type
is an intent or URL.
 if(e.rowData.type == "intent"){

Chapter 7

213

4. If the launch type is an intent, Ti.Android.currentActivity.startActivity
is called using the provided intent as shown in the following snippet. This will launch
the third-party app if it is installed on the user's device.
 Ti.Android.currentActivity.startActivity(
 e.rowData.intentObject);
 }else{

5. If the launch type is a URL, the Ti.Platform.openURL method is used to open
the app using the provided url property as shown in the following snippet. This will
launch the third-party app if it is installed on the user's device.
 Ti.Platform.openURL(e.rowData.url);
 }
 }catch(err){
 alert(e.rowData.errorMessage);
 }

 }else{

If the app is not installed, an exception will be generated.

6. The iOS platform launches third-party apps using a URL scheme similar to how web
pages are loaded using the Ti.Platform.openURL method. The following snippet
demonstrates how to launch a third-party app using the url property provided by the
schemeList CommonJS module:
 if(Ti.Platform.canOpenURL(e.rowData.url)){
 Ti.Platform.openURL(e.rowData.url);
 }else{
 alert(e.rowData.errorMessage);
 }
 }
});
win.open({modal:true});

See also
 f To learn more about using Android intents in Titanium, visit Forging Titanium Episode

9 at http://developer.appcelerator.com/blog/2011/10/forging-
titanium-episode-9-android-intent-cookbook.html.

Threads, Queues, and Message Passing

214

Cross-platform URL schemes
URL schemes on iOS and intent filters on Android provide an open integration point for you
to expose functionality in your apps to others. This is particularly helpful if you are building
a suite of enterprise apps such as a separate mileage and expense app and want to allow for
integration points between them.

This recipe demonstrates how to create a cross-platform URL scheme within your Titanium
Enterprise app. We will illustrate how to use this open integration point to access functionality
within your Titanium app.

Getting ready
This recipe uses the demoUI and Ti.SchemeTools CommonJS libraries to help manage
and demonstrate how to create cross-platform URL schemes. This module and other code
assets can be downloaded from the source provided by the book. To install these modules,
simply copy them to the Resources folder of your Titanium project as demonstrated in the
following screenshot:

AppLauncher requirement
Another requirement of this recipe is the AppLauncher app, which was created in the
Launching one app from another recipe discussed earlier in this chapter. This app will
be used to launch the different URL examples contained within this recipe.

Chapter 7

215

How to do it...
After adding the demoUI and Ti.SchemeTools modules, you will need to create your
application namespaces and use require to import the module into your app.js as the
following code snippet demonstrates:

//Create our application namespace
var my = {
 isAndroid : Ti.Platform.osname === 'android',
 scheme : require('Ti.SchemeTools'),
 ui : require('demoUI')
};

iOS updating tiapp.xml
To add the ability for other apps to launch this recipe, you must make a few updates to the
tiapp.xml file. The following steps discuss how to create the bencoding-linkrecipe
custom URL scheme:

1. First, open your project's tiapp.xml file and make the following changes to the
ios node:
<ios>
 <plist>
 <dict>

2. Next, add the CFBundleURLTypes node. This is an array of dictionaries describing
the URL schemes supported by the bundle. Under this node, you will list all of the URL
and scheme names your app will respond to.
 <key>CFBundleURLTypes</key>
 <array>
 <dict>

3. Then add the CFBundleURLName key. This key contains the abstract name for this
URL type. This is the main way to refer to a particular app. To ensure uniqueness,
it is recommended that you use a Java-package style identifier.
 <key>CFBundleURLName </key>
 <string>bencoding-linkrecipe</string>

Threads, Queues, and Message Passing

216

4. Finally, add the CFBundleURLSchemes keys. These keys contain an array of strings,
each of which identifies a URL scheme handled by this type. The following snippet
shows URLs for the login, about, and root activities of the app:
 <key>CFBundleURLSchemes</key>
 <array>
 <string>bencoding-linkrecipe</string>
 <string>bencoding-linkrecipe://about</string>
 <string>bencoding-linkrecipe://login</string>
 </array>
 </dict>
 </array>
 </dict>
 </plist>
</ios>

Android updating tiapp.xml
To create a custom URL scheme on Android, you will need to edit the tiapp.xml file
to add an intent filter to listen for the specific android:scheme and android:host
to be initialized.

1. First open the tiapp.xml file and edit the android configuration node.
<android xmlns:android="http://schemas.android.com/apk/res/
android">

2. Next, add the manifest node.
 <manifest>

3. Add the application node. This node will later be used to generate your
project's AndroidManifest.xml file, so make sure the attributes correctly
match your project.
 <application
 android:debuggable="false" android:icon=
 "@drawable/appicon" android:label=
 "XUrlScheme" android:name="XurlschemeApplication">

4. Next add the application's root activity.
 <activity
 android:configChanges="keyboardHidden|orientation"
 android:label="XUrlScheme"
 android:name=".XurlschemeActivity"
 android:theme="@style/Theme.Titanium">

5. Then add the app's main intent filter. This will be used to launch your app.
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN"/>
 <category android:name=

Chapter 7

217

 "android.intent.category.LAUNCHER"/>
 </intent-filter>

6. Next add a second intent filter with your custom URL information.
 <intent-filter>

7. Then add the data node with your android:scheme and android:host
information. These values act as the protocol used when Ti.Platform.openURL is
used to launch the URL scheme. The following highlighted code allows you to launch
the app using a URL such as bencoding-linkrecipe://com.bencoding.
 <data android:scheme="bencoding-linkrecipe"
 android:host="com.bencoding"/>

8. Next a category must be added to the intent filter so that the app will be exposed
correctly to third-party launchers and will open the app when the URL scheme is
called. The following highlighted snippet shows the category information needed to
correctly implement the custom URL scheme.

 <category android:name=
 "android.intent.category.DEFAULT" />
 <category android:name=
 "android.intent.category.BROWSABLE" />
 <action android:name=
 "android.intent.action.VIEW" />

 </intent-filter>

 </activity>
 </application>
 </manifest>
</android>

Creating the recipe UI
This recipe has a simple UI designed to demonstrate how different URL scheme features can
be implemented.

1. First, a Ti.UI.Window is created; this window is the root Ti.UI.Window of the
app.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Url Receiver',
 barColor:'#000',layout:'vertical',fullscreen:false
});

Threads, Queues, and Message Passing

218

2. Next if the recipe is running on an iOS device, a Ti.UI.Button is added to allow the
URL Receiver app to launch the App Launcher app created in the Launching one app
from another recipe discussed earlier in this chapter.
if(!my.isAndroid){
 var launcherButton = Ti.UI.createButton({
 title:'Press to open AppLauncher Sample',
 top:30, left:10, right:10, height:45
 });
 win.add(launcherButton);

3. When the launcherButton is tapped, the app will try to open the App Launcher if
the app is available on the device. The highlighted code demonstrates how to use the
Ti.Platform.openURL method to launch the app.
 launcherButton.addEventListener('click',function(e){
 if(Ti.Platform.canOpenURL(
 "bencoding-linkLauncher://")
){
 Ti.Platform.openURL(
 "bencoding-linkLauncher://");
 }else{
 alert("Please install the AppLauncher Recipe");
 }
 });
}

Launching helper functions
This recipe uses the assist object to help launch a different URL.

var assist = {

1. The openWindow method opens a specific window based on the URL and parameter
values provided.
 openWindow : function(url,params){
 if(url == 'about'){
 my.ui.openAboutWindow();
 }
 if (url =='login'){
 my.ui.openLoginWindow(params);
 }
 },

Chapter 7

219

2. The openPageFromUrl method is called when an app is opened or resumed to
determine if the app has been opened from a third-party app and if so, what routing
information has been provided.
 openPageFromUrl : function(){

3. The first step is to determine if the app has been opened from a third-party app.
This is done by checking the hasLaunchUrl method.
 if(!my.scheme.hasLaunchUrl()){

4. If the app has not been launched from another app, the main page of the recipe will
be displayed and any session variables will be reset.
 my.scheme.session.reset();
 return;
 }

5. If the app was launched by another app, we first need to check if the launching URL
has changed. This avoids reloading the app if the same window has been requested.
This can be done by calling the hasChanged method as highlighted in the following
code snippet:
 if(!my.scheme.session.hasChanged()){
 return;
 }

6. Next the URL to be launched is obtained by calling the getLaunchUrl method as
the following code snippet shows. This URL is then loaded into a session variable
for later use.
 my.scheme.session.launchUrl =
 my.scheme.getLaunchUrl();

7. Then the requested page is obtained using the getCurrentPage function. This will
be used in determining which page to load using the openWindow method.
 var requestedPage = my.scheme.getCurrentPage();

8. Next, any launch parameters are obtained. The following code block demonstrates
how to check if launch parameters have been provided and parses them into a
formatted object.
 my.scheme.session.launchParams = null;
 if(my.scheme.hasParams()){
 my.scheme.session.launchParams =
 my.scheme.getParams();
 }

Threads, Queues, and Message Passing

220

9. Finally, the openWindow method is called using the requestedPage and
launchParams created in the preceding steps. The openWindow method will then
open the requested window in the app.
 assist.openWindow(requestedPage,
 my.scheme.session.launchParams);
 }
};

When launched from another app
In order to have the recipe launch the requested window, listeners must be added to the
resumed and open events. The following steps detail how to add the proper event listeners
to your app:

1. If the recipe is running on iOS, the resumed event listener is added. Please note this
must be added to your app.js when implementing in your own app.
if(!my.isAndroid){

 Ti.App.addEventListener('resumed', function(e) {

2. The assist.openPageFromUrl method will be called each time the app is
resumed. If no URL information is provided, the main window will be displayed.
 assist.openPageFromUrl();
 });

}

3. A listener is added to the open event on the main window. This event will be fired
when the app is first launched.
win.addEventListener('open',function(e){

4. On the first launch, the assist.openPageFromUrl method is called to determine
if the app has been opened by a third-party app.
 assist.openPageFromUrl();

5. If the recipe is running on Android, a listener is added to the resume event on the
main window. This allows the recipe to detect if a third-party app tries to open the
recipe while the app is running in the background.
 if(my.isAndroid){
 win.activity.addEventListener('resume', function(){
 assist.openPageFromUrl();
 });
 }

});

win.open();

Chapter 7

221

How it works...
Cross-platform custom URL schemes are a great low-cost way to provide integration points
with third parties. The following section details the end-to-end process for using the Launching
one app from another recipe to access different app routes without this recipe's sample app.

Launching the About window
This section provides a step-by-step description on how you can launch the About window
in the URL Receiver recipe when launched from the App Launcher recipe.

1. Open the App Launcher application and tap on the Recipe Example 1 row in the
table view as shown with the red boxes in the following screenshot.

2. The App Launcher app runs the following code block.

 � On iOS:
Ti.Platform.openURL('bencoding-linkrecipe://about');

 � On Android:
Ti.Platform.openURL('bencoding-linkrecipe://com.bencoding/
about');

3. The URL Receiver recipe will then be launched on your device.

Threads, Queues, and Message Passing

222

4. The resumed or open event handlers will then parse the provided URL information.
When the getCurrentPage method is called, the requestedPage value will be set
to a string with the value of about.
var requestedPage = my.scheme.getCurrentPage();

5. Next, my.scheme.hasParams method is called to determine if any parameters have
been passed as part of the provided URL. In this case, no additional parameters have
been provided, so the session parameter object remains null.

6. The openWindow method is then called and the following About window is
then opened:

Launching the Login window
This section provides a step-by-step description of launching the Login window in the URL
Receiver recipe when launched from the App Launcher recipe. As part of the launch process,
the user and token parameters are provided by the App Launcher recipe then used to
complete the form within the URL Receiver recipe app.

1. Open the App Launcher application and tap on the Recipe Example 2 row in the
table view as shown with the red boxes in the following screenshot:

Chapter 7

223

2. The App Launcher application runs the following code block.

 � On iOS:
Ti.Platform.openURL('bencoding-linkrecipe://
login?user=chris&token=12345');

 � On Android:
Ti.Platform.openURL(
'bencoding-linkrecipe://com.bencoding/'+
login?user=chris&token=12345');

3. The URL Receiver recipe will then be launched on your device.

4. The resumed or open event handlers will then parse the provided URL information.
When the getCurrentPage method is called, the requestedPage value will be set
to a string with the value of login.
var requestedPage = my.scheme.getCurrentPage();

5. Next, my.scheme.hasParams method is called to determine if any parameters have
been passed as part of the provide URL.

6. The following parameter object is created using the query string parameters included
with the calling URL.
{ user:"chris",
 token:12345 }

Threads, Queues, and Message Passing

224

7. The openWindow method is then called providing the requestedPage and
parameter objects. This will then open the Login page with the parameter
used to complete the form as shown in the following screenshot:

Opening your Android app with BOOT_
COMPLETED

Many enterprise apps have the requirement of always running in the background. The most
common categories of these apps would be for route management, item tracking, or customer
scheduling apps. In your Android Titanium app, you can use an intent filter for the BOOT_
COMPLETED action to notify your app that the device has been restarted. The event lifecycle
for the BOOT_COMPLETED action is shown in the following diagram:

Chapter 7

225

Getting ready
This recipe uses the bencoding.android.tools native module to help with the
subscription of the BOOT_COMPLETED broadcast. This module and other code assets can be
downloaded from the source provided by the book, or individually through the links provided in
the See also section at the end of this recipe. To install this module, simply copy the modules
folder shown in the following screenshot into your project.

Also included with the sample recipe is a series of example tiapp.xml and app.js files
demonstrating different options in handling the receipt of the BOOT_COMPLETED broadcast.
You will need to copy the files highlighted in the following screenshot into your project as they
will be used to demonstrate the different available options.

Threads, Queues, and Message Passing

226

After copying the mentioned files, you will need to click on your tiapp.xml file in Titanium
Studio and add a reference to the bencoding.android.tools module as shown in the
following screenshot:

How to do it...
This recipe demonstrates how to implement the following scenarios:

 f Auto restarting your app upon receiving the BOOT_COMPLETED broadcast

 f Sending a notification to the user receiving the BOOT_COMPLETED broadcast

 f Using Titanium properties to configure how your app handles the
BOOT_COMPLETED broadcast

Required tiapp.xml updates
When a Titanium Android app is launched, the Titanium framework first must be initialized
before your app can run. When the app is launched by another service such as the BOOT_
COMPLETED broadcast, you will receive a message that the app needs to restart. To avoid this
issue, you must add the following properties into your tiapp.xml file:

<property name="ti.android.bug2373.finishfalseroot" type="bool">true</
property>
<property name="ti.android.bug2373.disableDetection"
type="bool">true</property>
<property name="ti.android.bug2373.restartDelay" type="int">500</
property>
<property name="ti.android.bug2373.finishDelay" type="int">0</
property>
<property name="ti.android.bug2373.skipAlert" type="bool">true</
property>
<property name="ti.android.bug2373.message">Initializing</property>

Chapter 7

227

<property name="ti.android.bug2373.title">Restart Required</property>
<property name="ti.android.bug2373.buttonText">Continue</property>

Scenario A – auto restart
The first BOOT_COMPLETED option provided by the Android.Tools.Receiver module
is the ability to restart your app. The typical use case would be to restart your Titanium app
when the user restarts his/her device.

To deploy this scenario to your device using the recipe source, rename the
1.auto_start_tiapp.xml file to tiapp.xml and the 1.app.js to
app.js. This will switch the recipe app to use the following scenario details.

Auto restart step 1: adding the receiver to tiapp.xml
The first step in enabling this scenario is to add the receiver entry into the Android
configuration node in our project's tiapp.xml file located in the root of your Titanium Project.

<receiver android:exported="true" android:name="bencoding.android.
receivers.BootReceiver">

1. First an intent filter must be added to our receiver, this will subscribe our app to the
BOOT_COMPLETED broadcast.
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>

2. Next a metadata node is added with the name bootType. This node is used
by the Android.Tools module to determine what boot action should be taken.
The following snippet demonstrates how to configure the module to restart the app.
 <meta-data android:name=
 "bootType" android:value="restart"/>

3. Then a metadata node is added with the name sendToBack. This node is used
by the Android.Tools module to determine if the app should be restarted
in the background if set to true, or restarted in the foreground if set to false.
 <meta-data android:name=
 "sendToBack" android:value="true"/>
</receiver>

Threads, Queues, and Message Passing

228

4. Finally the RECEIVE_BOOT_COMPLETED permission is added.
<uses-permission android:name="android.permission.RECEIVE_BOOT_
COMPLETED"/>

Auto restart step 2: testing
The following steps outline how to best test this recipe scenario:

1. Clean your Titanium solution and push to device.

2. Make sure the app is not running on your device. You can stop the app using
the Force stop option under Settings.

3. Restart your device.

4. After the device has been restarted, confirm the date and time displayed
on the recipe's main screen.

Scenario B – notification on restart
The second BOOT_COMPLETED option provided by the Android.Tools.Receiver module
is the ability to create a notification message when a user restarts his/her device. This can be
used to provide a reminder or instructions to the user.

To deploy this scenario to your device using the recipe source, rename
the 2.auto_start_tiapp.xml file to tiapp.xml and the
2.app.js file to app.js. This will switch the recipe app to use the
following scenario details.

Notification on restart step 1: adding receiver to tiapp.xml
The first step in enabling this scenario is to add the receiver entry into the Android
configuration node in our project's tiapp.xml file.

<receiver android:exported="true" android:name="bencoding.android.
receivers.BootReceiver">

1. First, an intent filter must be added to our receiver, this will subscribe our app to the
BOOT_COMPLETED broadcast.
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>

Chapter 7

229

2. Next, a metadata node is added with the name bootType. This node is used
by the Android.Tools module to determine what boot action should be taken.
The following snippet demonstrates how to configure the module to send
a notification message on device restart.
 <meta-data android:name=
 "bootType" android:value="notify"/>

3. Then a metadata node is added with the name title. This node contains the
notification title that will be used.
 <meta-data android:name="title"
 android:value="Title Sample from tiapp.xml"/>

4. Then a metadata node is added with the name message. This node contains the
notification message that will be used.
 <meta-data android:name="message"
 android:value="Message Sample from
 tiapp.xml"/></receiver>

5. Finally the RECEIVE_BOOT_COMPLETED permission is added.
<uses-permission android:name="android.permission.RECEIVE_BOOT_
COMPLETED"/>

Notification on restart step 2: testing
The following steps outline the best method to test this recipe scenario:

1. Clean your Titanium solution and push to device.

2. Make sure the app is not running on your device. You can stop the app using the
Force stop option under Settings.

3. Restart your device.

4. Within a few seconds of device reboot, you will see a new message in your
 notification tray.

Scenario C – property controlled
The final BOOT_COMPLETED option provided by the Android.Tools.Receiver module
is the ability to restart your app. The typical use case would be to restart your Titanium app
when the user restarts his/her device.

To deploy this scenario to your device using the recipe source,
rename the 3.auto_start_tiapp.xml file to tiapp.xml and
the 3.app.js file to app.js. This will switch the recipe app to use
the following scenario details.

Threads, Queues, and Message Passing

230

Property controlled step 1: adding receiver to tiapp.xml
The first step in enabling this scenario is to add the receiver entry into the Android
configuration node in our project's tiapp.xml file.

<receiver android:exported="true" android:name="bencoding.android.
receivers.BootReceiver">

1. An intent filter must be added to our receiver, this will subscribe our app to the BOOT_
COMPLETED broadcast.
 <intent-filter>
 <action android:name=
 "android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>

2. Next, a metadata node is added with the name bootType. This node is used by
the Android.Tools module to determine what boot action should be taken. The
following code snippet demonstrates how to configure the module to use Titanium
properties to determine what action should be taken.
 <meta-data android:name="bootType"
 android:value=" propertyBased"/>

3. Metadata nodes are then added to configure the BOOT_COMPLETED receiver. Each
node is used to map a Titanium property to a receiver configuration element. For
example, the bootType_property_to_reference holds the name of the property
to be used to determine the bootType.
<meta-data android:name="enabled_property_to_reference"
android:value="my_enabled"/>
<meta-data android:name="bootType_property_to_reference"
android:value="my_bootType"/>
<meta-data android:name="sendToBack_property_to_reference"
android:value="my_sendtoback"/>
<meta-data android:name="icon_property_to_reference"
android:value="my_notify_icon"/>
<meta-data android:name="title_property_to_reference"
ndroid:value="my_notify_title"/>
<meta-data android:name="message_property_to_reference"
android:value="my_notify_message"/></receiver>

4. Finally, the RECEIVE_BOOT_COMPLETED permission is added.
<uses-permission android:name="android.permission.RECEIVE_BOOT_
COMPLETED"/>

Chapter 7

231

Property controlled step 2: create recipe app.js
The Android.Tools module allows for the BOOT_COMPLETED receiver to be configured
through Titanium properties. The following code snippet (app.js) demonstrates how to
create two different configurations by simply updating the correct Titanium properties.

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'BOOT_COMPLETED Example',
 layout:'vertical',fullscreen:false, exitOnClose:true
});

2. Next, a Ti.UI.Button is created to demonstrate how to create a foreground restart.
var button1 = Ti.UI.createButton({
 title:'Foreground Restart',
 top:25, height:45, left:5, right:5
});
win.add(button1);

3. On the click event of our first button, the properties used to configure our BOOT_
COMPLETED receiver are updated.
button1.addEventListener('click',function(e){

4. The first action performed in the click event is to set the BOOT_COMPLETED
receiver as enabled.
 Ti.App.Properties.setBool('my_enabled',true);

5. Next, the bootType is set to restart. This will restart our Titanium app on device
reboot.
 Ti.App.Properties.setString("my_bootType", "restart");

6. Then the sendToBack property is set to false. This will restart our Titanium app in
the foreground when the user restarts his/her device.
 Ti.App.Properties.setBool("my_sendtoback",false);
});

7. Next, a second button is created to demonstrate how to configure the notification.
var button2 = Ti.UI.createButton({
 title:'Restart Notification',
 top:25, height:45, left:5, right:5
});
win.add(button2);

Threads, Queues, and Message Passing

232

8. Next a second button is created to demonstrate how to configure notification to be
generated when the device is restarted.
button2.addEventListener('click',function(e){

9. An action performed in the click event is to set the BOOT_COMPLETED receiver
to enabled.
 Ti.App.Properties.setBool('my_enabled',true);

10. Next the bootType is set to notify. This will send a message after receiving the
BOOT_COMPLETED broadcast.
 Ti.App.Properties.setString("my_bootType", "notify");

11. Next, the notification icon resource identifier is created. This resource identifier will
be used to create an icon when the notification is created. If no resource identifier is
provided, a star icon will be used by default.
 .App.Properties.setInt("my_notify_icon", 17301618);

12. Finally the properties linked to the notification title and message are set with new
string values. These properties will be used in generating the notification when the
device has been restarted.
 Ti.App.Properties.setString(
 "my_notify_title", "Title from property");
 Ti.App.Properties.setString(
 "my_notify_message","Message from property");
});

Property controlled step 3: testing
The following steps outline how to best test this recipe scenario:

1. Clean your Titanium solution and push to device.

2. Open the app, and press the first button (button1). This will update the properties
to perform a foreground restart.

3. Next stop the app; you can stop the app using the Force stop option
under Settings.

4. Restart your device.

5. After the device is started, the recipe app will be launched in the foreground.

6. Press the second button (button2). This will update the properties to send
a notification on restart.

7. Restart your device.

8. Within a few seconds of device reboot, you will see a new message in your
notification tray.

Chapter 7

233

See also
The Android.Tools module was used in this recipe to provide the BOOT_COMPLETED
functionality. For additional information about this module, please visit the project on Github
at https://github.com/benbahrenburg/benCoding.Android.Tools.

For full documentation on the BootReceiver, visit https://github.com/benbahrenburg/
benCoding.Android.Tools/tree/master/documentation/bootreceiver.md.

iOS Multithreading using Web Workers
Enterprise apps often require a large amount of processing to be performed. To provide the
best user experience while fully leveraging the limited device resources, you must perform
compute operations on a background thread.

In this recipe, we will discuss how to use the Ti.WebWorkerWrapper module to perform
background compute operations. To simulate a compute job, a fibonacci sequence is
calculated for random numbers and processed in parallel. The following screenshot shows the
recipe running these Web Worker jobs on an iPhone.

Threads, Queues, and Message Passing

234

This recipe is an iOS-only recipe as it requires Web Workers,
which are not yet available for Titanium Android.

Getting ready
This recipe uses the Ti.WebWorkerWrapper CommonJS module and fibonacci.js Web
Worker. These modules and other code assets can be downloaded from the source provided
by the book, or individually through the links provided in the See also section at the end of
this recipe. To install the Ti.WebWorkerWrapper module and Web Worker into your project,
simply copy the Ti.WebWorkerWrapper.js and fibonacci.js files into the Resources
folder of your Titanium project as highlighted in the following screenshot:

How to do it...
Once you have added the Ti.WebWorkerWrapper module and fibonacci.js file to your
project, you next need to create your application namespace and use require to import the
module into your app.js file as the following code snippet demonstrates:

//Create our application namespace
var my = {
 workerMod : require('Ti.WebWorkerWrapper'),
 isAndroid : Ti.Platform.osname === 'android'
};

Chapter 7

235

Creating the recipe UI
This recipe provides a basic UI to launch and track the execution of the Web Workers
execution of the fibonacci sequence. The following steps detail how to create the main
components illustrated in the earlier screenshot:

1. First a Ti.UI.Window is created. This window will be used to attach and display
all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'web Workers',
 barColor:'#000',layout:'vertical',fullscreen:false
});

2. Next a series of Ti.UI.Label controls are added to the Ti.UI.Window.
These controls will be used to display the progress and results of the
Web Workers.
var worker1 = Ti.UI.createLabel({
 top:20, height:25, left:5, right:5,color:'#000',
 textAlign:'left',text:'Not yet processed - Press Button',
 font:{fontSize:14, fontWeight:'bold'}
});
win.add(worker1);

Three additional Web Worker labels are added using the same
template as the worker1 label shown in the preceding code snippet.

3. Finally a Ti.UI.Button is added to the Ti.UI.Window. This button is used to
launch the four Web Worker processes used in this recipe.
var runButton = Ti.UI.createButton({
 title:'Run Web Worker Test', top:40,
 left:10, right:10, height:50,
});
win.add(runButton);

Testing functions
This recipe uses a tests object to assist with timing and displaying the results of the
Web Worker fibonacci sequence processing. The following section discusses functionality
contained within the tests JavaScript object.

var tests = {

Threads, Queues, and Message Passing

236

1. The updateLabel method is used to apply a formatting template to each label
with the results of the fibonacci sequence callback results.
 updateLabel : function(label,e){
 label.text = "Seed:" + e.seed + " result:" +
 e.result + " elapsed:" + e.elapsed + "ms";
 },

2. The worker1 through worker4 methods are the callback methods provided to each
Web Worker as it processes the fibonacci sequence. These callbacks receive the
results from the calculation process.
 worker1 : function(e){
 tests.updateLabel(worker1,e);
 },
 worker2 : function(e){
 tests.updateLabel(worker2,e);
 },
 worker3 : function(e){
 tests.updateLabel(worker3,e);
 },
 worker4 : function(e){
 tests.updateLabel(worker4,e);
 },

3. The random method is used to generate a random number within a given range.
This method is used to generate the random number sent to the fibonacci sequence.
 random : function(from,to){
 return Math.floor(Math.random()*(to-from+1)+from);
 }
};

Multithreading using Web Workers
The multithreading example is run when the user taps on the runButton button.
The following section demonstrates how four Web Workers are created in the background.
Once each Web Worker has finished processing, the results are provided to the test's callback
method discussed earlier in this recipe.

runButton.addEventListener('click',function(e){

1. First a new worker object is created by initializing a new instance of the
Ti.WebWorkerWrapper module.
 var worker1 = new my.workerMod();

Chapter 7

237

2. Next, the start method is called on the worker object. The start method requires
the following arguments:

 � The path of the JavaScript file the Web Worker should execute

 � A random number passed as a Web Worker postMessage for the fibonacci
sequence to use

 � The callback method to be used when the Web Worker has
completed processing

 worker1.start('fibonacci.js',tests.random(1,50),
 tests.worker1);

3. Three additional Web Workers are created using the same pattern demonstrated
in the creation of worker1.
 var worker2 = new my.workerMod();
 worker2.start('fibonacci.js',tests.random(1,50),
 tests.worker2);

 var worker3 = new my.workerMod();
 worker3.start('fibonacci.js',tests.random(1,50),
 tests.worker3);

 var worker4 = new my.workerMod();
 worker4.start('fibonacci.js',tests.random(1,50),
 tests.worker4);

});

See also
 f The Ti.WebWorkerWrapper CommonJS module is used in this recipe to provide

multithreading support for the fibonacci.js computation. For additional details,
please visit the module on Github at https://github.com/benbahrenburg/
Ti.WebWorkerWrapper.

8
Basic Security

Approaches

In this chapter we will cover:

 f Implementing iOS data protection in Titanium

 f AES encryption using JavaScript

 f Basic authentication using Ti.Network.HTTPClient

 f Implementing a cross-platform passcode screen

 f Working with protected ZIP files on iOS

Introduction
Security, privacy, and safeguards for intellectual property are at the front of the minds of
those of us building Titanium Enterprise apps. Titanium allows you to combine the underlying
platform tools and third-party JavaScript libraries to help meet your security requirements.

This chapter provides a series of approaches on how to leverage JavaScript, Titanium
modules, and the underlying platform to enable you to create a layered security approach
to assist you in meeting your organization's overall secure development goals. Each recipe is
designed to provide building blocks to help you implement your industry's existing security and
privacy standards.

Basic Security Approaches

240

Implementing iOS data protection in
Titanium

Starting with iOS 4, Apple introduced the ability for apps to use the data protection
feature to add an additional level of security for data stored on disk. Data protection uses
the built-in hardware encryption to encrypt files stored on the device. This feature is available
when the user's device is locked and protected with a passcode lock. During this time, all files
are protected and inaccessible until the user explicitly unlocks the device.

When the device is locked, no app can access protected files.
This even applies to the app that created the file.

Getting ready
This recipe uses the securely native module for enhanced security functionality. This
module and other code assets can be downloaded from the source provided by the book.
Installing these in your project is straightforward. Simply copy the modules folder into your
project as shown in the following screenshot:

Chapter 8

241

After copying the mentioned folder, you will need to click on your tiapp.xml file in
Titanium Studio and add a reference to the bencoding.securely module as shown
in the following screenshot:

Enabling data protection
This recipe requires your iOS device to have data protection enabled. You will need a device as
the simulator does not support data protection. The following steps cover how to enable this
feature on your device:

1. Go to Settings | General | Passcode.

2. Follow the prompts to set up a passcode.

3. After adding a passcode, scroll to the bottom of the screen and verify that the text
Data protection is enabled is visible as shown in the following screenshot:

Basic Security Approaches

242

iOS device browser
A third-party iOS device browser is needed to verify that data protection for the example recipe
app has successfully been enabled. This recipe discusses how to verify data protection using
the popular iExplorer app. An evaluation version of the iExplorer app can be used to follow
along with this recipe. For more information and to download iExplorer, please visit
http://www.macroplant.com/iexplorer.

How to do it...
To enable iOS data protection, the DataProtectionClass and com.apple.developer.
default-data-protection keys need to be added to your tiapp.xml as demonstrated
in the following code snippet:

1. First, add the ios configuration node if your project does not already contain
this element.
<ios>
 <plist>
 <dict>

2. Then at the top of the dict node, add the following highlighted keys.
 <key>DataProtectionClass</key>
 <string>NSFileProtectionComplete</string>
 <key>com.apple.developer.
 default-data-protection</key>
 <string>NSFileProtectionComplete</string>
 </dict>
 </plist>
</ios>

3. After saving the updates to your tiapp.xml, you must clean your Titanium project
in order to have the updates take effect. This can be done in Titanium Studio by
selecting Project | Clean.

Creating the namespace and imports
Once you have added the securely module and added the tiapp.xml updates to your
project, you need to create your application namespace in the app.js file and use require
to import the module into your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely')
};

Chapter 8

243

Creating the recipe UI
The following steps outline how to create the UI used in this recipe:

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff',
 title: 'Data Protection Example',
 barColor:'#000',layout:'vertical'
});

2. Next, a Ti.UI.Button is added to the Ti.UI.Window. This will be used to trigger
our example.
var button1 = Ti.UI.createButton({
 title:'Create Test File',
 top:25, height:45, left:5, right:5
});
win.add(button1);

Creating a file to verify data protection
To verify if data protection is enabled in the app, the recipe creates a time-stamped file in the
Ti.Filesystem.applicationDataDirectory directory. Using an iOS device browser, we
can verify if the test file is protected when the device is locked. The following steps describe
how the recipe creates this test file:

1. The click event for button1 creates a time-stamped file that allows us to verify if
data protection has been correctly enabled for the app.
button1.addEventListener('click',function(e){

2. Next the isProtectedDataAvailable method is called on securely. This
provides a Boolean result indicating that data protection allows the app to read from
or write to the filesystem.
 if(!my.secure.isProtectedDataAvailable()){
 alert('Protected data is not yet available.');
 return;
 }

3. To ensure there is a unique identifier in the file, a token is created using the current
date and time. This token is then added to the following message template:
 var timeToken = String.formatDate(new Date(),"medium") +
 String.formatTime(new Date());
 var msg = "When device is locked you will not be able";
 msg += " to read this file. Your time token is ";
 msg += timeToken;

Basic Security Approaches

244

4. The message created in step 3 is then written to the test.txt file located in the
Ti.Filesystem.applicationDataDirectory directory. If the file already exists,
it is removed so that the latest message will be available for testing.
 var testfile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory, 'test.txt');
 if(testfile.exists()){
 testfile.deleteFile();
 }
 testfile.write(msg);
 testfile = null;

5. Once the test.txt file is written to the device, a message is displayed to the user
notifying them to lock their device and use an iOS device browser to confirm data
protection is enabled.
 var alertMsg = "Please lock your device.";
 alertMsg+= "Then open an iOS Device Browser.";
 alertMsg+= "The time token you are looking for is ";
 alertMsg+= timeToken;
 alert(alertMsg);

How it works...
After the DataProtectionClass and com.apple.developer.default-data-
protection keys have been added to your tiapp.xml, the iOS device handles protecting
your files when the device is locked. The following steps discuss how to test that this recipe
has correctly implemented data protection:

1. The first step in the validation process is to build and deploy the recipe app to your
iOS device.

2. Once the app has been loaded onto your device, open the app and press the Create
Test File button.

Chapter 8

245

3. Once you have received an alert message indicating the test file has been created,
press the home button and lock your device.

4. Plug your device into a computer with iExplorer installed.

5. Open iExplorer and navigate so that you can view the apps on your device.

6. Select the DataProtection app as marked with the red box in the following
screenshot. Then right-click on the test.txt file located in the Documents folder
and select Quick Look as marked with the green box in the following screenshot:

Basic Security Approaches

246

7. After Quick Look is selected, iExplorer will try to open the test.txt file. Since it is
protected, it cannot be opened and Quick Look will show the progress indicator until
a timeout has been reached.

8. You can then unlock your device and repeat the preceding steps to open the file in
Quick Look.

AES encryption using JavaScript
The Advanced Encryption Standard (AES) is a specification for the encryption of electronic
data established by the U.S. NIST in 2001. This encryption algorithm is used for securing
sensitive, but unclassified material by U.S. Government agencies. AES has been widely
adopted by enterprise and has become a de facto encryption standard for many commercially
sensitive transactions.

This recipe discusses how AES can be implemented in JavaScript and incorporated into your
Titanium Enterprise app.

Chapter 8

247

Getting ready
This recipe uses the Ti.SlowAES CommonJS module as a wrapper around the SlowAES
open source project. This module and other code assets can be downloaded from the source
provided by the book, or individually through the links provided in the See also section at the
end of this recipe. Installing these in your project is straightforward. Simply copy the SlowAES
folder into the Resources folder of your project as shown in the following screenshot:

How to do it...
Once you have added the SlowAES folder to your project, next you need to create your
application namespace in the app.js file and use require to import the module into
your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 mod : require('SlowAES/Ti.SlowAES')
};

Basic Security Approaches

248

Creating the recipe UI
This recipe demonstrates the usage of the Ti.SlowAES CommonJS module through
a sample app using two Ti.UI.TextField controls for input.

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'AES Crypto Example',
 barColor:'#000',layout:'vertical',fullscreen:false
});

Chapter 8

249

2. Next, a Ti.UI.TextField control is added to the Ti.UI.Window to gather the
secret from the user.
var txtSecret = Ti.UI.createTextField({
 value:'DoNotTell',hintText:'Enter Secret',
 height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtSecret);

3. Another Ti.UI.TextField is added to the Ti.UI.Window to gather the string to
encrypt from the user.
var txtToEncrypt = Ti.UI.createTextField({
 value:'some information we want to encrypt',
 hintText:'Enter information to encrypt',
 height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtToEncrypt);

4. Next a Ti.UI.Label is added to the Ti.UI.Window. This Ti.UI.Label will be
used to display the encrypted value to the user.
var encryptedLabel = Ti.UI.createLabel({
 top:10, height:65, left:5, right:5,color:'#000',
 textAlign:'left',font:{fontSize:14}
});
win.add(encryptedLabel);

5. Finally a Ti.UI.Button is added to the Ti.UI.Window. This Ti.UI.Button will
be used later in the recipe to perform the encryption test.
var btnEncrypt = Ti.UI.createButton({
 title:'Run Encryption Test', top:25,
 height:45, left:5, right:5
});
win.add(btnEncrypt);

Basic Security Approaches

250

Encrypting and decrypting values
This section demonstrates how to use the Ti.SlowAES module to use the secret entered in
the txtSecret, Ti.UI.TextField to encrypt the contents of the txtToEncrypt, Ti.UI.
TextField. Once completed, the encrypted value is then decrypted and compared against
the original input. The results are displayed to the user in an alert message as shown in the
following screenshots:

The encryption test is performed when the click event for the btnEncrypt control is fired as
shown in the following code snippet:

btnEncrypt.addEventListener('click',function(x){

1. The first step in the encryption process is to create a new instance of the SlowAES
module as shown in this code snippet.
 var crypto = new my.mod();

2. Next using the encrypt function, the secret provided in the txtSecret control is
used to encrypt the value in the txtToEncrypt control. The encrypted results are
then returned to the encryptedValue as demonstrated in the following statement:
 var encryptedValue =
 crypto.encrypt(txtToEncrypt.value,txtSecret.value);

Chapter 8

251

3. The encryptedLabel.text property is then updated to display the encrypted
value to the user.
 encryptedLabel.text = 'Encrypted:' + encryptedValue;

4. Next, the decrypt method is used to demonstrate how to decrypt the string value
encrypted earlier. This method requires the encrypted string value and the secret as
shown in the following snippet:
 var decryptedValue =
 crypto.decrypt(encryptedValue,txtSecret.value);

5. Finally, the original input value is compared against the decrypted value to ensure our
encryption test was successful. The results of this test are then displayed to the user
through a message alert and the Titanium Studio console.
 alert((txtToEncrypt.value ===decryptedValue) ?
 'Encryption Test successfully ran check console for details.':
 'Test failed, please check console for details.');

});

See also
You can also refer to the following resources:

 f It is important to understand some of the weaknesses of JavaScript Cryptography.
When deciding on an encryption approach, I would recommend reading the
Matasano Security article on this subject available at http://www.matasano.
com/articles/javascript-cryptography.

 f This recipe uses the SlowAES project to implement the AES algorithm. To read the
license and to learn more about the SlowAES project, please visit http://code.
google.com/p/slowaes.

 f To download the Ti.SlowAES CommonJS module and learn more about how
to implement its functionality visit https://github.com/benbahrenburg/
Ti.SlowAES.

Basic Security Approaches

252

Basic authentication using Ti.Network.
HTTPClient

Most enterprise sites or services provide access to content through basic access
authentication. Basic authentication is a method for a HTTP user agent to provide a username
and password when making a request. It is important to remember that basic authentication
base64 encodes your credentials, not encrypts them. For this reason, it is advised that HTTPS
is used when creating network connections.

Titanium provides full support for basic authentication using the SDK's Ti.Network
functionality. This recipe describes how to use the Ti.Network.HTTPClient proxy to
connect to a website using basic authentication headers.

Getting ready
This recipe uses the Ti.BA CommonJS module as an assist to Titanium's native Ti.Network.
HTTPClient. This module and other code assets can be downloaded from the source provided
by the book. Installing this module in your project is straightforward. Simply copy the Ti.BA.js
file into Resources folder of your project as shown in the following screenshot:

How to do it...
Once you have added the Ti.BA.js file to your project, you need to create your application
namespace in the app.js file and use require to import the module into your code as the
following code snippet demonstrates:

Chapter 8

253

//Create our application namespace
var my = {
 mod : require('Ti.BA')
};

Creating the recipe UI
This recipe uses a simple UI to illustrate how to establish a basic authenticated network
connection. The code snippets in this section walkthrough how to construct the basic
authentication testing app shown in the following screenshots:

Now perform the following steps:

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'AES Crypto Example',
 barColor:'#000',layout:'vertical',fullscreen:false
});

Basic Security Approaches

254

2. Next the txtUsername Ti.UI.TextField is added to the Ti.UI.Window. The
default value is set to test since it is the default for the browserspy.dk test site
used to create our mock test connection.
var txtUsername = Ti.UI.createTextField({
 value:'test',hintText:'Enter username',
 height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtUsername);

3. The txtPassword Ti.UI.TextField is then added to the Ti.UI.Window. The
default value is set to test since it is the default for the browserspy.dk test site
used to create our mock test connection.
var txtPassword = Ti.UI.createTextField({
 value:'test',hintText:'Enter password',
 passwordMask:true,height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtPassword);

4. Next the txtUrl Ti.UI.TextField is added to the Ti.UI.Window. The default
value is set to "http://browserspy.dk/password-ok". The value for txtUrl
can be updated to any service requiring basic authentication. For demonstration
purposes, the recipe uses the browserspy.dk test site.
var txtUrl = Ti.UI.createTextField({
 value:'http://browserspy.dk/password-ok.php',
 hintText:'Enter Url',
 height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtUrl);

5. Finally the btnConnect Ti.UI.Button is added to the Ti.UI.Window. Later
in this recipe, the btnConnect control will be used to initialize the authenticated
network connection.
var btnConnect = Ti.UI.createButton({
 title:'Connect', top:25, height:45, left:5, right:5
});
win.add(btnConnect);

Chapter 8

255

Creating a service connection
With the sample UI now in place, the next step in the recipe is to perform a secure network
connection using basic authentication. The following snippets are used to create a network
connection and display the results shown in the following screenshots:

A basic authenticated test network connection is performed when the click event for the
btnConnect control is fired as shown in the following code snippet:

btnConnect.addEventListener('click',function(x){

1. First, the Ti.Network.online property is checked to ensure the device has
a network connection. If no network connection is available, the user is alerted
and the function is exit.
 if(!Ti.Network.online){
 alert('Network connection is required');
 return;
 }

Basic Security Approaches

256

2. Next the onDone function is created. This function is used as a callback for the
results of the authentication network connection.
 function onDone(d){

3. When in the onDone function, the first action performed is to check the results
provided in the d.success property. If this property is true, the network connection
was successfully completed. Otherwise, the d.error message is printed to the
console and the user is notified.
 if(d.success){
 Ti.API.info('Results = ' +
 JSON.stringify(d.results));
 alert('Authenticated successfully');
 }else{
 Ti.API.info('error = ' + JSON.stringify(d.error));
 alert('Authenticated Failed');
 }
 };

4. The credentials object is then created. This contains the username and password
to be used when creating our authenticated connection. Please note these values
should be in plain text as demonstrated in taking the values directly from the Ti.UI.
TextField controls on the screen.
 var credentials = {
 username:txtUsername.value,
 password:txtPassword.value
 };

5. The Ti.BA module allows you to configure all of the Ti.Network.HTTPClient
options along with controlling and specifying the service's output format. The
following snippet demonstrates how to configure the request to set the timeout to 9
seconds, and specify the responseText be the returned response.
 var options = {format:'text', timeout:9000};

6. Finally a new instance of the Ti.BA module is created and the following are provided:

 � Method: The GET or POST action is performed. In the case of this sample,
the POST method is provided.

 � URL: The URL the module uses to connect.

 � Credentials: The credentials object contains the username and
password that will be used to create the basic authenticated connection.

 � Callback: This parameter requires a callback method to be provided. In this
sample, the onDone method is provided to the module and will return the
connection response.

Chapter 8

257

 � Options: These are the configuration options for the Ti.Network.
HTTPClient and result type to be returned. If none is provided, the
module's default values are returned.
 var basicAuth = new
 my.mod('POST',txtUrl.value,credentials, onDone,options);
});

Implementing a cross-platform passcode
screen

Password and passcode screens are common verification instruments for enterprise
apps. These screens provide interaction patterns that help solve both authentication
and confirmation scenarios.

This recipe demonstrates how to implement a cross-platform passcode screen similar
to those seen on iOS and in the Android networking screens.

Getting ready
This recipe uses the Ti.Passcode CommonJS module to implement a cross-platform passcode
screen. This module and other code assets can be downloaded from the source provided by the
book, or individually through the links provided in the See also section at the end of this recipe.
Installing this module in your project is straightforward. Simply copy the Ti.Passcode.js file
into the Resources folder of your project as shown in the following screenshot:

Basic Security Approaches

258

How to do it...
Once you have added the Ti.Passcode.js file to your project, you need to create your
application namespaces in the app.js file and use require to import the module into your
code as the following code demonstrates:

//Create our application namespace
var my = {
 mod : require('Ti.Passcode')
};

Creating the recipe UI
This recipe uses Ti.UI.Windows to present information to the user. The code used to create
the first Ti.UI.Window is discussed in this section. This section details how to launch the
Ti.Passcode module and provides a code to have it verified.

Now perform the following steps:

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Passcode Example',
 layout:'vertical',fullscreen:false, exitOnClose:true
});

2. Next the txtPasscode Ti.UI.TextField is added to the Ti.UI.Window.
This control is used to collect the passcode that the Ti.Passcode module will
verify against.
var txtPasscode = Ti.UI.createTextField({
 value:'1234',hintText:'Enter Passcode',
 height:45, left:5, right:5,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED

Chapter 8

259

});
win.add(txtPasscode);

3. Finally the bntRunPasscode Ti.UI.Button is added to the Ti.UI.Window. This
button will be used later in the recipe to launch the passcode screen.
var btnRunPasscode = Ti.UI.createButton({
 title:'Open Passcode Screen', top:25, height:45,
 left:5, right:5
});
win.add(btnRunPasscode);

Launching the passcode screen
The second Ti.UI.Window in this recipe is created by the Ti.Passcode module. This
Ti.UI.Window is responsible for the presentation and verification of the application
passcode. This section describes how to configure, create, and confirm your app passcode
using this module's display element shown in the following screenshot:

The passcode verification screen is launched when the user taps the btnRunPasscode
Ti.UI.Button and triggers the click event to be fired. The following code snippet
discusses the actions performed after the click event is fired:

btnRunPasscode.addEventListener('click',function(x){

Basic Security Approaches

260

1. The first code block in the click event of the btnRunPasscode button is to create
our configuration and other variables. The options object contains all of the settings
needed to configure the Ti.Passcode window.
 var codeWindow = null,
 options = {

2. The window configuration element allows for all of the standard Ti.UI.
Window properties to be used. The following snippet shows how to set the
backgroudnColor and navBarHidden properties on the passcode window.
 window:{
 backgroundColor:'#ccc',
 navBarHidden:true
 },

3. The view configuration element allows for the configuration of a majority of
the components displayed in the Ti.Passcode window. The following snippet
demonstrates how to set the passcode title property and code for displaying the
error message:
 view:{
 title:'Enter application passcode',
 errorColor:'yellow'
 }
 };

Please review the Ti.Passcode module for a complete list
of the configuration properties available.

4. Next the onCompleted callback function is defined. This function will be used as the
callback method provided to the Ti.Passcode module. The passcode verification
results will be provided as a dictionary to the d input parameters.
 function onCompleted(d){

5. The d argument is an object with the verification results. The d.success property
provides an indicator if the entered passcode matches the passcode provided on
launch. The following code snippet alerts the user if they have entered the correct
passcode or if they need to try the process again.
 if(d.success){
 alert('Passcode entered is correct');
 codeWindow.close();
 }else{
 Alert('Invalid passcode, please try again');
 }
 };

Chapter 8

261

6. The next step in this section of the recipe is to create a new instance of the passcode
module. The following snippet demonstrates how to do this:
 var passcode = new my.mod();

7. The createWindow method is then called on the new passcode instance. This
method provides the passcode to verify from the txtPasscode control, and also
provides the callback and options objects created earlier. This method then returns
a Ti.UI.Window. Once the passcode has been entered, the callback method
onCompleted will send the verification results.
 var codeWindow =
 passcode.createWindow(txtPasscode.value,
 onCompleted,options);

8. The Ti.UI.Window returned by the createWindow method is then opened with
a modal flag. The passcode Ti.UI.Window will remain open until closed by the
onCompleted callback method as discussed earlier.
 codeWindow.open({modal:true});
});

The following screenshots illustrate how this section of the code looks on the device after the
user has successfully entered his/her passcode.

See also
 f This recipe uses the Ti.Passcode CommonJS module. To read the documentation

and to learn more about this project, please visit https://github.com/
benbahrenburg/Ti.Passcode.

Basic Security Approaches

262

Working with protected ZIP files on iOS
Protected zip files are a common way to exchange, store, and transmit enterprise data. ZIP
files are often used to bundle several files together for transmission or storage. As an extra
layer of security, all such files should always be protected with a strong password.

The following recipe discusses how to create and unzip protected compressed files on iOS.

Getting ready
This recipe uses the bencoding.zip native module to work with protected zip files. This
module and other code assets can be downloaded from the source provided by the book,
or individually through the links provided in the See also section at the end of this recipe.
Installing this module in your project is straightforward. Simply copy the modules folder into
the root of your project, and then copy the data folder into the Resources directory of your
project as shown in the following screenshot:

After copying the mentioned folders, you will need to click on your tiapp.xml file
in Titanium Studio and add a reference to the bencoding.zip module as shown
in the following screenshot:

Chapter 8

263

How to do it...
Once you have added the modules and data folders to your project, you need to create your
application namespaces in the app.js file and use require to import the module into your
code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 zip : require('bencoding.zip')
};

Creating the recipe UI
This recipe uses a simple UI to illustrate how to create (zip) and unzip protected ZIP files.
The code discussed in this section walks through how to construct the recipe's UI shown
in the following screenshot:

Basic Security Approaches

264

The following steps outline how to create the recipe's UI:

1. First, a Ti.UI.Window is created to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Protected Zip Example',
 barColor:'#000',layout:'vertical'
});

2. Next add the txtPassword Ti.UI.TextField control. This control will be used to
provide the password to create protected ZIP files or to unzip them. The default is set
to foo123. This is also the password for the included sample file.
var txtPassword = Ti.UI.createTextField({
 value:'foo123',hintText:'Enter Password',
 height:45, left:5, right:5, passwordMask:true,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});
win.add(txtPassword);

3. Then the btnZip Ti.UI.Button is added to the Ti.UI.Window. This button will
be used to demonstrate how to create a protected ZIP file later in the discussion of
this recipe.
var btnZip = Ti.UI.createButton({
 title:'Zip with Password',
 top:25, height:45, left:5, right:5
});
win.add(btnZip);

4. Next the btnUnzip Ti.UI.Button is added to the Ti.UI.Window. This button
will be used to demonstrate how to unzip a protected ZIP file later in the discussion of
this recipe.
var btnUnzip = Ti.UI.createButton({
 title:'Unzip with Password', top:25, height:45,
 left:5, right:5
});
win.add(btnUnzip);

Creating a password-protected ZIP file
This section of this recipe demonstrates how to create a protected ZIP file. The following
screenshot shows this recipe in action, creating a protected ZIP file and alerting the user of
the output file path:

Chapter 8

265

The created ZIP file is executed when the user clicks on the btnZip Ti.UI.Button and
triggers the click event to be fired. The following code snippet discusses the actions
performed after the click event is fired:

btnZip.addEventListener('click',function(x){

1. The first step in the zip process is to create the onZipCompleted callback
method. When the zip process is completed, the module will send the results
to this callback method:
 function onZipCompleted(d){

2. The d method parameter provides the results from the module. The first step in
processing the module results is to check the d.success property to see if the zip
process was successful. If so, the user is alerted of the path of the completed ZIP file.
Otherwise, the user is alerted to the error generated in creating the file.
 if(d.success){
 alert('Protected zip created at: ' + d.zip);
 }else{
 alert('failed due to: ' + d.message);
 }
 };

Basic Security Approaches

266

3. Next the writeToZip and inputDirectory variables are created. The
writeToZip variable contains the path to the taxforms.ZIP output file in the
app's Documents directory. The inputDirectory creates a reference to the
Resources/data created during the Getting ready section of this recipe.
 var writeToZip = Ti.Filesystem.applicationDataDirectory +
 '/taxforms.zip';
 var inputDirectory = Ti.Filesystem.resourcesDirectory +
 'data/';

4. Finally the zip method is called and this method provides the parameters built
earlier in the click event handler. Once completed, the zip method provides results
to the provided onZipCompleted callback method.
 my.zip.zip({
 zip: writeToZip,
 password:txtPassword.value,
 files: [inputDirectory + 'w2.pdf',
 inputDirectory + 'w4.pdf'],
 completed:onZipCompleted
 });
});

The files parameter provides an array of files using the
inputDirectory variable. In this example, the files included are the
w2.pdf and w4.pdf files included in the Resources/data folder
created during the Getting ready section of this recipe.

Unzipping a protected ZIP file
This section of the current recipe demonstrates how to unzip a protected ZIP file. The following
screenshot shows this recipe in action, unzipping the contents of a protected file into the
app's Documents directory:

Chapter 8

267

The unzip example is executed when the user taps on the btnUnzip Ti.UI.Button
and triggers the click event to be fired. The following code snippet discusses the actions
performed after the click event is fired.

btnUnzip.addEventListener('click',function(x){

1. The first step in the unzip process is to create the onUnzipCompleted callback
method. When the unzip process is completed, the module will send the results to
this callback method.
 function onUnzipCompleted(e){

2. The d method parameter provides the results from the module. The first step in
processing the module results is to check the d.success property to see if the unzip
process was successful. If so, the user is alerted of the directory path of the unzipped
file. Otherwise, the user is alerted to the error generating the file.
 if(e.success){
 alert('Unzipped to ' + e.outputDirectory);
 }else{
 alert('failed due to: ' + e.message);
 }
 };

Basic Security Approaches

268

3. The outputDirectory and zipFileName variables are created next. The
outputDirectory variable contains the path to the output directory in the app's
Documents directory. The zipFileName creates a reference to the Resources/
data/taxform.zip file created during the Getting ready section of this recipe.
 var outputDirectory =
 Ti.Filesystem.applicationDataDirectory;
 var zipFileName = Ti.Filesystem.resourcesDirectory +
 'data/taxforms.zip';

4. Finally, the unzip method is called and this method provides the parameters built
earlier in the click event handler. Once completed, the unzip method provides
results to the provided onUnzipCompleted callback method.
 my.zip.unzip({
 outputDirectory:outputDirectory,
 zip:zipFileName,
 overwrite:true,
 completed:onUnzipCompleted
 });
});

All files contained within the zipFileName ZIP file will be unzipped to
the root of the directory provided in the outputDirectory parameter.

See also
 f This recipe uses the benCoding.Zip native module. To read the documentation

and to learn more about this project, please visit https://github.com/
benbahrenburg/Zipper.

App Security Using
Encryption and Other

Techniques

In this chapter we will cover:

 f Using secure properties

 f Object and string encryption

 f Working with encrypted files

 f Handling protected PDFs on iOS

 f Android lock screen monitor

Introduction
It is common for Enterprise applications to contain private or confidential information. For
this reason, encryption, file locking, and secure app lifecycle management are fundamental
requirements when developing Enterprise Titanium apps. The core Titanium SDK provides
limited functionality in this area such as one-way hashing and basic app events, but to fully
meet security requirements, third-party modules such as Securely are needed.

In this chapter, we will discuss how to use the Securely framework to handle common
secure programming tasks such as file and string encryption. Securely provides access to
each platform's security APIs in a cross-platform and Titanium-friendly way. Through a series
of recipes, we will demonstrate how to leverage the Securely framework within our existing
Titanium Enterprise app.

9

App Security Using Encryption and Other Techniques

270

Using secure properties
The Titanium SDK provides a Ti.App.Properties object, which provides a convenient way
to persist user and application information. The Securely framework provides a familiar API
designed to mirror Ti.App.Properties, which allows you to persist this information in a
secure fashion. This recipe describes how to use the Securely.Properties object to store,
read, and remove data in/from an encrypted and secure manner.

Getting ready
This recipe uses the Securely native module. This module and other code assets can be
downloaded from the source provided by the book, or individually through the links provided in
the See also section at the end of this recipe. Installing these in your project is straightforward.
Simply, copy the modules folder into your project as shown in the following screenshot:

Adding the module reference
After copying the mentioned folder, you will need to click on your tiapp.xml file in
Titanium Studio and add a reference to the bencoding.securely module as
shown in the following screenshot:

Chapter 9

271

How to do it...
This recipe is designed to run within the context of a Ti.UI.Window or other component
within a single Titanium context. The code samples in this section demonstrate how to use the
Secure properties of Securely using the same tests that Appcelerator uses for the Titanium
SDK's Ti.App.Properties class. For more information, please refere to the app.js
included with the recipe's source.

Creating the namespace
Once you have added the Securely module to your project, you need to create your
application namespace in the app.js file and use require to import the module into
your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely'),
 isAndroid : Ti.Platform.osname === 'android',
 testObjects:{
 testList : [
 {name:'Name 1', address:'1 Main St'},
 {name:'Name 2', address:'2 Main St'}
]
 }
};

App Security Using Encryption and Other Techniques

272

Creating the secure properties object
After the app namespace has been created, the next step is to create a new properties object.
This object contains the following property values that must be set at creation time:

 f secret: This is a required parameter. secret is the password used to encrypt and
decrypt all property values. The same secret used to encrypt must be used during
the decryption process or a null value will be returned.

 f identifier: This parameter is optional. If no value is provided, the bundle name
on iOS or the PackageName on Android is used. identifier allows you to segment
each property with an identifier, if needed.

 f accessGroup: This parameter is an optional value used on the iOS platform. Access
groups can be used to share keychain items among two or more applications. If no
access group is provided, the keychain values will only be accessible within the app
saving the values.

 f encryptFieldNames: This parameter is an optional value only used on the Android
platform. When set to true, Securely will create an MD5 hash using the provided
secret for all property names.
var properties = my.secure.createProperties({
 secret:"sshh_dont_tell",
 identifier:"myPropertyIdentifier",
 accessGroup:"myAccessGroup",
 encryptFieldNames:false
});

Result comparison helper
The displayResults function shown in the following code snippet is used to compare
the test result with the expected value. Based on the comparison, the proper message is
generated for presenting to the user.

function displayResults(result, expected) {
 if (result instanceof Array) {
 return displayResults(JSON.stringify(result),
 JSON.stringify(expected));
 }else{
 if (result === expected) {
 return "Success ("+result+"=="+expected+")";
 } else {
 return "Fail: " + result + "!=" + expected;
 }
 }
};

Chapter 9

273

Reading secure properties without defaults
Each supported property type has a get method. For example, to read a Boolean property,
the getBool method is called and a name is provided. This API works similar to the Ti.App.
Properties object within the Titanium SDK, with added support for reading and decrypting
secure properties. If no stored value is available, a null or default value type is provided. The
following snippet demonstrates how to read saved secure property values:

Ti.API.info('Bool: ' + displayResults(properties.getBool('whatever'),
(my.isAndroid ? false : null)));

Ti.API.info('Double: ' +
displayResults(properties.getDouble('whatever'),
(my.isAndroid ? 0: null)));

Ti.API.info('int: ' + displayResults(properties.getInt('whatever'),
(my.isAndroid ? 0 : null)));

Ti.API.info('String: ' +
displayResults(properties.getString('whatever'),null));

Ti.API.debug('StringList: ' +
displayResults(properties.getList('whatever'),null));

On iOS, null values are returned for any property without a saved value.
Due to Android's type system, Boolean values will return false if no
value is stored and numeric values will return zero. All other Android
values will return null similar to iOS.

Reading secure properties with defaults
Also similar to Ti.App.Properties, Securely provides the ability to read and decrypt
a secure property and provide a default value if there is no stored value for the requested
secure property.

Ti.API.info('Bool: ' +
displayResults(properties.getBool('whatever',true),true));

Ti.API.info('Double: ' +
displayResults(properties.getDouble('whatever',2.5),2.5));

Ti.API.info('int: ' +
displayResults(properties.getInt('whatever',1),1));

App Security Using Encryption and Other Techniques

274

Ti.API.info('String: ' +
displayResults(properties.getString('whatever',"Fred"),"Fred"));

Ti.API.debug('StringList: ' +
displayResults(properties.getList('whatever'),testList));

The default value is not encrypted or persisted during
the read process.

Setting secure property values
Each supported property type has a set method used to encrypt and persist values. For
example, to save and encrypt a Boolean property and the setBool method, and provide a
property name and Boolean value. This API works similar to the Ti.App.Properties object
within the Titanium SDK. Securely supports both encrypting and writing the value to the
secure properties directly. The following code snippet demonstrates how to save the following
values to secure and encrypted storage:

properties.setString('MyString','I am a String Value ');
properties.setInt('MyInt',10);
properties.setBool('MyBool',true);
properties.setDouble('MyDouble',10.6);
properties.setList('MyList',my.testObjects.testList);

To demonstrate the properties were saved correctly, the get method is called for each file
and the results are printed to the console within Titanium Studio.

Ti.API.info('MyString: '+ properties.getString('MyString'));
Ti.API.info('MyInt: '+ properties.getString('MyInt'));
Ti.API.info('MyBool: '+ properties.getString('MyBool'));
Ti.API.info('MyDouble: '+ properties.getString('MyDouble'));
var list = properties.getList('MyList');
Ti.API.info('List: ' + JSON.stringify(list));

Listing secure property field names
The property names can be returned as an array by calling the listProperties method
on the Securely property object. The following code snippet demonstrates how to use this
method to print a JSON representation of the names array to the console within Titanium Studio.

if(!properties.hasFieldsEncrypted()){
 var allProperties = properties.listProperties();
 Ti.API.info(JSON.stringify(allProperties));
}

Chapter 9

275

If field name encryption is enabled, the listProperties method
will return null. As the field names are encrypted with a one-way
hash, the original names are no longer available.

Removing secure properties
You can remove properties using two methods on the Securely properties object.
The removeProperty and removeAllProperties are designed to be familiar and
mirror the methods with the same name on the Titanium SDK's Ti.App.Properties object.

The removeProperty method will remove the provided secure property name, if it exists.

properties.removeProperty('MyInt');

The removeAllProperties method will remove all properties within the identifier provided
when creating the properties object.

properties.removeAllProperties();

In our recipe, the remove property functions are called at the end of
the test so that the results can be recreated reliably each time.

Check if a secure property exists
The Securely property object provides the hasProperty method to provide the ability to
check if a secure property exists. If the property exists, a Boolean true value is returned,
otherwise a result of false is provided. This API is designed to be familiar as it mirrors the
Ti.App.Properties.hasProperty function within the core Titanium SDK.

Ti.API.info("Does MyInt property exist? " +
properties.hasProperty('MyInt'));

How it works...
The underlying infrastructure for secure properties is implemented differently depending on
the platform running your application. Although Securely provides a cross-platform API,
it is important to understand how each platform has been implemented and its associated
security considerations.

App Security Using Encryption and Other Techniques

276

Secure properties on iOS
The Securely framework saves all property values as serialized strings within the iOS
Keychain. This provides secure storage and since it is part of iOS does not require any
dependencies. Since Securely uses the iOS keychain service, it is recommended that your
organization review Apple's Keychain documents before storing sensitive data within the
securely-managed container.

It is important to remember since the iOS Keychain service is used, your
Secure Property values will still be available within the iOS Keychain
after your app has been uninstalled. The removeAllProperties
method must be called if you wish to remove all keychain items before
removal of the app.

Secure properties on Android
The Securely framework saves all property values as serialized and AES-encrypted strings
into Android's SharedPreferences. Although Android introduced native keychain support
in API level 14, the Securely module was designed to accommodate a larger number of
devices and targets API level 8 and higher. It is recommended that your Enterprise reviews the
secure properties' implementation within Securely to ensure it is in compliance with your
corporate or industry standards and requirements.

Secure property considerations
By default on Android, the property names are not encrypted. This can be enabled by setting
the encryptFieldNames on creation of the properties object. Due to the need to encrypt
all property names, this property can only be set on creation of a new properties object.
When field name encryption is enabled, Securely will create a SHA-1 hash for each field
name using the secret property value provided. Enabling this feature creates performance
considerations. Regression and performance testing is recommended before implementing
your existing Titanium app.

See also
 f To learn more about the iOS Keychain, please review Apple's documentation available

at https://developer.apple.com/library/mac/#documentation/
security/Conceptual/keychainServConcepts/01introduction/
introduction.html.

 f To learn more about Android's SharedPreferences, please review the documentation
available at http://developer.android.com/reference/android/
content/SharedPreferences.html.

Chapter 9

277

Object and string encryption
During the Enterprise Titanium development cycle, there is often the requirement to
encrypt in-process or persisted JavaScript objects or variables. The Securely framework
provides a StringCrypto proxy with convenience methods for key generation of AES and
DES bi-directional encryption.

This recipe describes how to use the Securely.StringCrypto object to encrypt and
decrypt JavaScript objects in a secure manner.

AES and DES implementations of Securely are designed to be specific
to the device platform. If there is a need to exchange AES or DES encrypted
data, access device, platform or to a third-party service, testing is
recommended to verify the implementations match.

Getting ready
This recipe uses the Securely native module. This module and other code assets can
be downloaded from the source provided by the book. Installing these in your project is
straightforward. Simply copy the modules folder into the root of your Titanium Project.
Please review the Getting ready section of the Using secure properties recipe for
instructions on module setup before continuing.

How to do it...
This example is designed to run within the context of a Ti.UI.Window or other component
within a single Titanium context. This section demonstrates how to use the StringCrypto
method of Securely to encrypt JavaScript objects. For more information, please reference
the app.js included with the recipe's source.

Creating the namespace
Once you have added the Securely module to your project, you need to create your
application namespace in the app.js file and use require to import the module
into your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely'),
 isAndroid : Ti.Platform.osname === 'android'
};

App Security Using Encryption and Other Techniques

278

Generating keys
Key generation is an important part of cryptography and to assist with this process,
Securely has two built-in convenience methods.

Generating a derived key
The first key generation convenience method is called generateDerivedKey. This method
includes the string input provided by the user into the salt algorithm used to determine the
key. This approach is helpful if the seed value needs to be known or derived by another
accessing system. The following steps demonstrate two common approaches for generating
the seed value to be provided to the generateDerivedKey method:

 f A common approach is to create a new GUID as the seed from which the key is
generated. The following code snippet demonstrates this approach using the
Ti.Platform.createUUID method to generate a GUID:
var usingGUID =
my.secure.generateDerivedKey(Ti.Platform.createUUID());

The generateDrivedKey method will use the parameter
provided to create a new key each time it is called.

 f Another, less random method of key generation is to provide the Titanium app GUID
as the seed value. The following code snippet demonstrates how to use the Ti.App.
guid to create a derived key using the GUID from your project's tiapp.xml file.
var usingAppID = my.secure.generateDerivedKey(Ti.App.guid);

Generating a random key
The second key generation convenience method is called generateRandomKey.
As its name indicates, a random alphanumeric string is generated and used as the
seed value. The following code snippet demonstrates how to create a key value using
the generateRandomKey method.

var randomKey = my.secure.generateRandomKey();

Creating the stringCrypto object
The next step in the cryptographic process for strings and objects is to create a new instance
of the stringCrypto proxy. The following code snippet shows how to create a new proxy
object named stringCrypto.

var stringCrypto = my.secure.createStringCrypto();

Chapter 9

279

Using DES encryption
Securely supports the older Data Encryption Standard (DES) encryption algorithm. Support
for this algorithm is primarily provided for intercommunication with legacy systems. Wherever
possible, the stronger AES encryption should be used instead.

Encrypting using DES
The DESEncrypt method requires a key and a string to encrypt. This method will then return
a DES encrypted string. If an error is generated during the encryption process a null value is
returned. The following demonstrates how to encrypt both a JavaScript string and object using
this method.

var desEncryptedString = stringCrypto.DESEncrypt
(usingGUID,
plainTextString);
var desEncryptedObject = stringCrypto.DESEncrypt
(usingGUID,
JSON.stringify(plainObject));

Any non-JavaScript string elements must first be converted into a JavaScript string before
being provided to the DESEncrypt function.

Decrypting using DES
The DESDecrypt method is used to decrypt a string encrypted with the DES algorithm. This
method requires the key and a string with the encrypted value. The DESDecrypt method will
then return a string with the decrypted value. The following snippet demonstrates how to use
the DESDecrypt method to decrypt both a string and object.

var desDecryptedString = stringCrypto.DESDecrypt
(usingGUID,
desEncryptedString);

The following code snippet demonstrates how to use JSON.parse to re-build the JavaScript
object from the decrypted JSON string.

var desDecryptedObject = JSON.parse
(stringCrypto.DESDecrypt(usingGUID,
desEncryptedObject));

App Security Using Encryption and Other Techniques

280

Encrypting using AES
The AESEncrypt method requires a key and a string to encrypt. This method will then return
an AES-encrypted string. If an error is generated during the encryption process, a null value
is returned. The following code snippet demonstrates how to encrypt both a JavaScript string
and object using this method.

var aesEncryptedString = stringCrypto.AESEncrypt
(usingGUID,
plainTextString);
var aesEncryptedObject = stringCrypto.AESEncrypt
(usingGUID,
JSON.stringify(plainObject));

Any non-JavaScript string elements must first be converted into a
JavaScript string before being provided to the AESEncrypt function.

Decrypting using AES
The AESDecrypt method is used to decrypt a string encrypted with the AES algorithm. This
method requires the key and a string with the encrypted value. The AESDecrypt method will
then return a string with the decrypted value. The following code snippet demonstrates how to
use the AESDecrypt method to decrypt both a string and an object.

var aesDecryptedString = stringCrypto.AESDecrypt
(usingGUID,
aesEncryptedString);

The following code snippet demonstrates how to use JSON.parse to rebuild the JavaScript
object from the decrypted JSON string.

var aesDecryptedObject = JSON.parse
(stringCrypto.AESDecrypt(usingGUID,
aesEncryptedObject));

Titanium object encryption
Titanium SDK objects such as Ti.UI.View are not real JavaScript objects, and therefore,
cannot be serialized and encrypted effectively. To encrypt Titanium objects, you must first
copy all of the Titanium object's properties into a pure JavaScript object and then convert the
JavaScript object to a JSON string as shown earlier. During the decryption process, the reverse
approach can be taken to recreate the Titanium object.

Chapter 9

281

See also
 f This recipe uses the Securely module, for installation details please review the

Getting ready section of the Using secure properties recipe

 f To learn more about DES encryption, please review processing standards publication
published by the National Institute of Standards and Technology (NIST) available at
http://www.itl.nist.gov/fipspubs/fip46-2.htm

 f To learn more about AES encryption, please review processing standards publication
published by the NIST available at http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

 f To learn more about Cryptographic Services used in the iOS implementation, please
review Apples documentation available at https://developer.apple.com/
library/mac/#documentation/security/Conceptual/cryptoservices/
Introduction/Introduction.html#//apple_ref/doc/uid/TP40011172-
CH1-SW1

 f To learn more about Cryptographic Ciphers used in the Android implementation,
please review the Android documentation available at http://developer.
android.com/reference/javax/crypto/Cipher.html

Working with encrypted files
File encryption is a fundamental building block for enterprise mobile development. Due to the
sensitivity of data collected by most enterprise apps, it is recommended that all persisted files
are encrypted.

This recipe demonstrates how to use the Securely framework to both encrypt and decrypt
files. Through the use of the File Crypto sample, we will provide step-by-step instructions on
how to work with local encrypted files from within your Titanium app.

Getting ready
This recipe uses the Securely native module. This module and other code assets can be
downloaded from the source provided by the book. Simply copy the modules folder into
the root of your Titanium project. Please review the Getting ready section of Using secure
properties recipe for instructions on module setup before continuing.

After installing the Securely module, you need to copy the PlainText.txt file into the
Resources folder of your project. This file will be used by the recipe to create the initial
encrypted file.

App Security Using Encryption and Other Techniques

282

How to do it...
Once you have added the module folder and PlaintText.txt sample file into your project,
you need to create your application namespace in the app.js file and use require to
import the module into your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely'),
 isAndroid : Ti.Platform.osname === 'android'
};

Creating the UI
This recipe walks through how to use the Securely module along with Titanium's
Ti.Filesystem namespace to encrypt and decrypt files. The test harness pictured
in the following screenshot is used to demonstrate how to perform these crypto actions:

Now perform the following steps:

1. The first step in creating the test harness is to create a Ti.UI.Window, which
is used to attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'File Crypto Example',
 barColor:'#000',layout:'vertical',fullscreen:false
});

Chapter 9

283

2. The next step in creating our test harness UI is to add a Ti.UI.TextField
named txtPassword. This control is used to obtain the password used during
the encryption and decryption operations.
var txtPassword = Ti.UI.createTextField({
 value:'foo123',hintText:'Enter Password',
 height:45, left:5, right:5, passwordMask:true
});
win.add(txtPassword);

3. The next step in creating our test harness UI is to add a Ti.UI.Button named
btnEncrypt. This control will be used to launch the file encryption process.
var btnEncrypt = Ti.UI.createButton({
 title:'Encrypt', top:25, height:45, left:5, right:5
});
win.add(btnEncrypt);

4. The final step in creating our test harness UI is to add a Ti.UI.Button named
btnDecrypt. This control will be used to launch the file decryption process. Please
note the encryption process launched when the btnEncrypt button is tapped must
be run first.
var btnDecrypt = Ti.UI.createButton({
 title:'Decrypt', top:25, height:45, left:5, right:5
});
win.add(btnDecrypt);

Encrypting a file
The file encryption process is demonstrated using the click event of the btnEncrypt
Ti.UI.Button. This section describes how to use the AESEncrypt method of Securely
for file encryption using the AES encryption algorithm.

btnEncrypt.addEventListener('click',function(x){

1. The first step in the file encryption process is to create a callback method to receive
the results from the AESEncrypt method. The following onEncryptCompleted
method demonstrates how to check for the different results provided during the
callback process.
 function onEncryptCompleted(e){
 if(e.success){
 var test = Ti.Filesystem.getFile(e.to);
 Ti.API.info("Test file contents:\n" +
 (test.read()).text);
 }else{
 alert('failed due to: ' + e.message);
 }
 };

App Security Using Encryption and Other Techniques

284

2. Next a new instance of the FileCrypto object of the Securely framework
must be created.
 var fileCrypto = my.secure.createFileCrypto();

3. Then Ti.FileSystem.File objects are created for the input and output files.
 var plainTextFile = Ti.Filesystem.getFile(
 Ti.Filesystem.resourcesDirectory,
 'PlainText.txt'),
 futureEncrypted = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'encryptedFile.txt');

4. Finally the AESEncrypt method is called with the following parameters:

 � password: The password parameter is the key used in the file encryption
process. The same password must be provided later if you wish to decrypt
the file.

 � from: The from parameter provides a nativePath reference to the file
that will be encrypted. Please note the file itself is not encrypted, but simply
used as the source to generate an encrypted file at the path provided in the
to parameter.

 � to: The to parameter provides the nativePath reference to where the
encrypted file should be generated. The application must be able to write to
this file path or an IO exception will be generated.

 � completed: The completed parameter provides a reference to the
callback method to be used upon completion of the execution of the
AESEncrypt method.

 fileCrypto.AESEncrypt({
 password:txtPassword.value,
 from:plainTextFile.nativePath,
 to:futureEncrypted.nativePath,
 completed:onEncryptCompleted
 });
});

Decrypting a file
The file decryption process is demonstrated using the click event of the btnDecrypt
Ti.UI.Button. The following section describes how to use AESDecrypt method of
Securely for file decryption using the AES encryption algorithm. Please note that the
same password used to encrypt the file must be provided in the decryption process.

btnDecrypt.addEventListener('click',function(x){

Chapter 9

285

1. The first step in the file decryption process is to create a callback method to receive
the results from the AESDecrypt method. The following onDecryptCompleted
method demonstrates how to check for the different results provided during the
callback process:
 function onDecryptCompleted(e){
 if(e.success){
 var test = Ti.Filesystem.getFile(e.to);
 Ti.API.info("Test file contents:\n" +
 (test.read()).text);
 }else{
 alert('failed due to: ' + e.message);
 }
 };

2. Next the Ti.FileSystem.File objects are created for the input and output files.
 var encryptedFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'encryptedFile.txt'),
 futureDecrypted = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'decryptedFile.txt');

3. Then a new instance of the FileCrypto object of Securely must be created.
 var fileCrypto = my.secure.createFileCrypto();

4. Finally the AESDecrypt method is called with the following parameters:

 � password: The password parameter is the key used in the file decryption
process. This password must match the key provided during the file
encryption process. If the passwords differ, an error will be provided to the
callback method.

 � from: The from parameter provides a nativePath reference to the file
that will be decrypted. Please note the file itself is not decrypted, but simply
used as the source to generate a decrypted file at the path provided in the
to parameter.

 � to: The to parameter provides the nativePath reference to where the
decrypted file should be generated. The application must be able to write
to this file path or an IO exception will be generated.

 � completed: The completed parameter provides a reference to the
callback method to be used upon completion of the execution of the
AESDecrypt method.

 fileCrypto.AESDecrypt({
 password:txtPassword.value,
 from:encryptedFile.nativePath,

App Security Using Encryption and Other Techniques

286

 to:futureDecrypted.nativePath,
 completed:onDecryptCompleted
 });
});

See also
 f This recipe uses the Securely module, for installation details please review the

Getting ready section of the Using secure properties recipe

 f Securely uses the RNCryptor library on iOS for file encryption. For documentation,
licensing, and source, please visit https://github.com/rnapier/RNCryptor

Handling protected PDFs on iOS
Working with and exchanging PDF files is common practice within a majority of organizations.
Apple has provided APIs within iOS native access to lock and unlock PDF documents making
implementing secure practices for this file format much easier. The Securely module
exposes these native iOS APIs for your Titanium app to leverage.

This recipe demonstrates how to use the Securely framework to lock and unlock PDF files.
Through the use of the PDF Locker sample, we will provide step-by-step instructions on how to
protect and work with PDFs on the local device from within your Titanium app.

Getting ready
This recipe uses the Securely native module. This module and other code assets can
be downloaded from the source provided by the book. Installing these in your project is
straightforward. Simply copy the modules folder into your project as shown in the following
screenshot. Next copy the w4.pdf file into the Resources folder of your project. This file will
be used by the recipe to create the initial encrypted file:

Chapter 9

287

After copying the modules folder, you will need to update the tiapp.xml references
as demonstrated in the Getting ready section of the Using secure properties recipe.

How to do it...
Once you have added the module folder and w4.pdf sample file into your project, you need
to create your application namespace in the app.js file and use require to import the
module into your code as the following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely')
};

App Security Using Encryption and Other Techniques

288

Creating the recipe's UI
This recipe walks through how to use the Securely module along with Titanium's
Ti.FileSystem namespace to lock or unlock PDF files. The test harness pictured in the
following screenshot is used to demonstrate how to perform these secure PDF actions:

Now perform the following steps:

1. The first step in creating this test harness is a Ti.UI.Window, which is created to
attach all UI elements.
var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'PDF Protection Example',
 barColor:'#000',layout:'vertical'
});

2. The next step in creating our test harness UI is to add a Ti.UI.TextField
named txtPassword. This control is used to obtain the password used during
the encryption and decryption operations.
var txtPassword = Ti.UI.createTextField({
 value:'foo123',hintText:'Enter Password',
 height:45, left:5, right:5, passwordMask:true
});
win.add(txtPassword);

3. The next step in creating our test harness UI is to add a Ti.UI.Button named
btnLock. This control will be used to launch the PDF lock/protection process.
var btnLock = Ti.UI.createButton({
 title:'Lock PDF', top:25, height:45, left:5, right:5
});
win.add(btnLock);

Chapter 9

289

4. The next step in creating our test harness UI is to add a Ti.UI.Button named
btnUnlock. This control will be used to launch the PDF unlock or password
removal process.
var btnUnlock = Ti.UI.createButton({
 title:'Unlock PDF', top:25, height:45, left:5, right:5
});
win.add(btnUnlock);

Protecting a PDF file
The PDF protecting or locking process is demonstrated using the click event of the
btnLock Ti.UI.Button. The following section describes how to use the protect
method of Securely for PDF locking:

btnLock.addEventListener('click',function(x){

1. The first step in the file decryption process is to create a callback method to
receive the results from the AESDecrypt method. The following onProtected
method demonstrates how to check for the different results provided during the
callback process.
 function onProtected(e){
 if(e.success){
 alert('Protected PDF file created at: ' + e.to);
 }else{
 alert('failed due to: ' + e.message);
 }
 };

2. Next Ti.FileSystem.File objects are created for the input and output files.
 var inputFile = Ti.Filesystem.getFile(
 Ti.Filesystem.resourcesDirectory,
 'w4.pdf'),
 outputFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'locked.pdf');

3. Then a new instance of the PDF object of Securely must be created.
 var pdf = my.secure.createPDF();

4. Finally the protect method is called with the following parameters:

 � userPassword: The userPassword parameter is the user-level password
for the PDF. This field is required.

 � ownerPassword: The ownerPassword parameter is the owner-level
password for the PDF. Although this is optional, this value must be set in
order to password-protect the document.

App Security Using Encryption and Other Techniques

290

 � from: The from parameter provides a nativePath reference to the PDF
file to be protected. Please note that the file itself is not locked, but simply
used as the source to generate a protected PDF file at the path provided in
the to parameter.

 � to: The to parameter provides the nativePath reference to where the
protected PDF file should be generated. The application must be able to
write to this file path or an IO exception will be generated.

 � allowCopy: The allowCopy is a Boolean parameter indicating whether
the document allows copying when unlocked with the user password. This
parameter defaults to true and is optional.

 � completed: The completed parameter provides a reference to the
callback method to be used upon completion of the execution of the
protect method.

 pdf.protect({
 userPassword:txtPassword.value,
 ownerPassword:txtPassword.value,
 from:inputFile.nativePath,
 to:outputFile.nativePath,
 allowCopy:false,
 completed:onProtected
 });
});

Unlocking a PDF file
The process of unlocking or removing PDF protection from an existing PDF file is demonstrated
using the click event of the btnUnlock Ti.UI.Button. The following steps describes
how to use the punprotect method of Securely for PDF unlocking:

btnUnlock.addEventListener('click',function(x){

1. The first step in unlocking a protected PDF file is to create a callback method
to receive the results from the unprotect method. The following onUnlock
method demonstrates how to check for the different results provided during the
callback process.
 function onUnlock(e){
 if(e.success){
 alert('Unlocked PDF file created at: ' + e.to);
 }else{
 alert('failed due to: ' + e.message);
 }
 };

Chapter 9

291

2. Next the Ti.FileSystem.File objects are created for the input and output files.
 var protectedFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'locked.pdf'),
 unlockedFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'unlocked.pdf');

3. Then, a new instance of the PDF object of Securely must be created.
 var pdf = my.secure.createPDF();

4. Finally the unprotect method is called with the following parameters:

 � password: The password parameter is the key used to unlock the protected
PDF file. This password must match the owner password used in locking
the document.

 � from: The from parameter provides a nativePath reference to the protected
PDF file. Please note the PDF file itself is not unlocked, but simply used as
the source to generate a new unlocked PDF file at the path provided in the to
parameter.

 � to: The to parameter provides the nativePath reference to where the
unlocked PDF file should be generated. The application must be able to
write to this file path or an IO exception will be generated.

 � completed: The completed parameter provides a reference to the
callback method to be used upon completion of the execution of the
unprotect method.

 pdf.unprotect({
 password:txtPassword.value,
 from:protectedFile.nativePath,
 to:unlockedFile.nativePath,
 completed:onUnlock
 });
});

See also
 f This recipe uses the Securely module. For installation details, please review the

Getting ready section of the Using secure properties recipe.

App Security Using Encryption and Other Techniques

292

Android lock screen monitor
Due to the inherent nature of Titanium Android architecture, it can be challenging to
determine when the app has been placed into the background or the lock screen has been
activated. These actions are important life cycle events to track for password and application
access. For example, you might wish to display a login screen within your app if the user has
locked their device since last entering your app.

The following recipe demonstrates how to use the Securely framework to check if the user
has a lock screen pattern enabled and fire an event when the screen is locked or unlocked.

Getting ready
This recipe uses the Securely native module. This module and other code assets can
be downloaded from the source provided by the book. Installing these in your project is
straightforward. Simply copy the modules folder into your project as shown in the
following screenshot:

After copying the modules folder, you will need to update the tiapp.xml references
as demonstrated in the Getting ready section of the Using secure properties recipe.

Chapter 9

293

How to do it...
Once you have added the module folder into your project, you need to create your application
namespace in the app.js file and use require to import the module into your code as the
following code snippet demonstrates:

//Create our application namespace
var my = {
 secure : require('bencoding.securely')
};

Creating the recipe's UI
This recipe uses a single Ti.UI.Window object to host and demonstrate the different
available lock screen methods and events. The following code snippet shows how this
object is created.

var win = Ti.UI.createWindow({
 backgroundColor: '#fff', title: 'Lock Screen Monitor',
 fullscreen:false, exitOnClose:true
});

Verifying if the lock pattern is enabled
This recipe is dependent on the user enabling a passcode or lock pattern. If this feature is not
enabled, the recipe will still function by simply providing when the screen has been disabled
from a power consumption standpoint.

The following steps discuss how to verify if the user has enabled the lock screen functionality:

1. The first step is to create a new Securely.Platform proxy as shown in the
following code snippet:
 var platform = my.secure.createPlatform();

2. The Securely.Platform proxy provides many security-related methods. When the
lockPatternEnabled method is called, a Boolean is provided indicating if the user
has enabled this feature on their device.

 if(!platform.lockPatternEnabled()){
 alert('lock screen is not enabled on this device');
 }

Depending on your organization's passcode policy, you may wish to
disable the app if a lock screen has not been implemented.

App Security Using Encryption and Other Techniques

294

Creating a Lock Helper
The Securely.LockScreenHelper proxy object provides the initialization methods needed
to start monitoring lock screen activity. The following code snippet demonstrates how to use
this proxy to start the monitoring process:

1. The first step in the lock screen monitoring process is to create a new Securely.
LockScreenHelper proxy as shown in the following code snippet:
var lockHelper = my.secure.createLockScreenHelper();

2. Next the startMonitorForScreenOff method is called. This registers a broadcast
receiver to listen for the ACTION_SCREEN_OFF broadcast.
lockHelper.startMonitorForScreenOff();

3. Then the startMonitorForScreenOn method is called. This registers a broadcast
receiver to listen for the ACTION_SCREEN_ON broadcast.
lockHelper.startMonitorForScreenOn();

Screen lock events
Both the startMonitorScreenOff and startMonitorScreenOn methods described
earlier will emit global events when their subscribed broadcast is received. The following
snippet demonstrates how to create application listeners to subscribe to these events:

Ti.App.addEventListener('BCX:SCREEN_OFF',function(e){
 Ti.API.info('Last locked at ' +
 String.DateFormat(new Date(e.actionTime)));
});

Ti.App.addEventListener('BCX:SCREEN_ON',function(e){
 Ti.API.info('Last unlocked at ' +
 String.DateFormat(new Date(e.actionTime)));
});

Each event is provided information to assist in managing your app state. Using the prior
example snippet, the e argument is provided two properties by Securely.

 f actionName: This is the full Android intent action name.

 f actionTime: This provides date/time in seconds format on when the last event
was called. This can be converted into a JavaScript date using new Date(e.
actionTime).

Chapter 9

295

Using window focus for monitoring
This recipe uses the focus event on the example Ti.UI.Window to demonstrate how
to check if the device has been locked since the last time the Ti.UI.Window had focus.
One use of this pattern would be to check if an internal passcode screen should be presented
or to check if a session needs to be re-established.

win.addEventListener('focus',function(e){

1. The wasLocked method is called to determine if the device has been locked.
 if(lockHelper.wasLocked()){

2. The isShowingLockScreen method can also be used to determine if the device
is currently presenting the lock screen to the user.
 if(!lockHelper.isShowingLockScreen()){

3. The resetMonitorForScreenOff method can also be used to reset the value
returned by wasLocked. This is helpful in tracking if the device has been locked
between app sessions.
 lockHelper.resetMonitorForScreenOff();

 }
 }
});

Stop monitoring
It is important to stop monitoring and remove the global listeners when the app no longer
needs this functionality. The following code snippet demonstrates how this is performed using
the close event of the Ti.UI.Window.

win.addEventListener('close',function(e){
 lockHelper.stopMonitoring();
 Ti.App.removeEventListener('BCX:SCREEN_ON',screenON);
 Ti.App.removeEventListener('BCX:SCREEN_OFF',screenOFF);
});

Monitoring can be stopped individually by using
stopMonitorForScreenOff or stopMonitorForScreenOn.
To stop all monitoring, the stopMonitoring convenience method
can be used to remove both receivers.

App Security Using Encryption and Other Techniques

296

See also
 f To learn more about the android.intent.action.SCREEN_ON and android.

intent.action.SCREEN_OFF intents used, please visit the official Android
documentation available at http://developer.android.com/reference/
android/content/Intent.html.

 f This recipe uses the Securely module. For installation details, please review the
Getting ready section of the Using secure properties recipe.

Titanium Resources

In this appendix we will cover:

 f Getting started with Titanium

 f Getting started with Android

 f Getting started with iOS

 f Titanium testing resources

 f Modules and open source

 f Titanium community links

Getting started with Titanium
To create your own Titanium apps or to run any of the example projects provided in this book,
first you will need to download the Titanium SDK. This free of charge development platform is
available at http://www.appcelerator.com.

Appcelerator provides a free IDE to aid in the development of Titanium apps. To learn more
about Titanium Studio and to download the application, please visit http://developer.
appcelerator.com.

All example projects provided with this book are designed to be
imported into a Titanium Studio project.

Titanium Resources

298

Getting started with Android
In order to build Android apps using Titanium, you first need to install the Android
SDK. To download the Android SDK and review the installation documentation,
visit http://developer.android.com/sdk/index.html.

After installing the Android SDK, you must set up the Android references in Titanium Studio
and configure default emulators. For a step-by-step guide on how to set up Android in Titanium
Studio visit http://developer.android.com/sdk/index.html.

For information regarding minimum supported SDK versions and overall compatibility, please
visit http://docs.appcelerator.com/titanium/latest/#!/guide/Titanium_
Compatibility_Matrix.

Getting started with iOS
Titanium utilizes the native platform development tool chain. For this reason, an Apple
computer is required to build Titanium iOS apps.

There are currently two ways to download Xcode and the required SDK for development.

 f Open the Mac App Store on your Apple computer and search for Xcode. This will allow
you to freely download the Apple IDE and SDKs.

 f The Apple development tools are also available through the developer portal at
https://developer.apple.com.

To publish apps to the Apple App Store, you must be part of the Apple iOS Developer program.
To learn more about app distribution, please visit https://developer.apple.com/
programs/ios/distribute.html.

Titanium testing resources
Titanium's testing story is quickly evolving. The following tools are open source companions to
Appcelerator's testing platform.

TiShadow
The TiShadow project is a staple for Titanium and used by developers to solve a wide range
of problems. This mature and widely adopted project shines as a testing tool providing built-in
support for BDD style testing using Jasmine. More than just a testing tool, TiShadow provides
assistance with a wide range of activities from cross-platform preview to advanced
developers tools.

Learn more about TiShadow at https://github.com/dbankier/TiShadow.

Appendix

299

Titanium-Jasmine
The Titanium-Jasmine project provides support for the Jasmine testing framework within your
Titanium app. This well-documented project provides all of the documentation needed to get
started, including sample apps and instructions.

Learn more about Titanium-Jasmine at https://github.com/guilhermechapiewski/
titanium-jasmine.

TiJasmine
The TiJasmine project is a new open source project by one of the core Titanium SDK
committers that provides Jasmine testing support to Titanium. Designed with Titanium's
CommonJS implementation in mind, this project allows you to quickly incorporate tests into
your existing Titanium app.

Learn more about TiJasmine at https://github.com/billdawson/tijasmine.

Modules and open source
Appcelerator has built a strong open source community around the Titanium mobile platform.
A majority of the Titanium mobile ecosystem is open source, including the Titanium SDK
itself. This open source community provides a wonderful resource to learn and enhance your
Titanium development processes. The following sections discuss a few key Titanium open
source projects.

Appcelerator on Github
Appcelerator's Github repository contains all open source solutions including Titanium mobile
provided by Appcelerator. These repositories provide an up-to-the-minute status on a majority
of Appcelerator's products, including new features and updates.

View all of Appcelerator's open source solutions at https://github.com/appcelerator.

Titanium mobile on Github
The Titanium mobile SDK is open source under the Apache 2 license and available on Github.
Titanium is built using the same module API as third-party modules leverage. Because of
this, viewing the Titanium SDK code provides insight into the practices for developing such
modules. Having the code available provides a powerful learning opportunity for Titanium
developers as they are able to see how their JavaScript interacts with the underlying platform.

View the source for the Titanium mobile SDK at https://github.com/appcelerator/
titanium_mobile.

Titanium Resources

300

Titanium modules on Github
A key feature of Titanium mobile is the ability to support third-party modules. All of the
modules used in this book are open source and available on Github. In addition to those
modules offered by third parties, Appcelerator provides a large set of community modules
available at https://github.com/appcelerator/titanium_modules.

Titanium community links
Titanium has a large thriving community of developers. The following sections discuss a few
popular sites maintained by Appcelerator and the Titanium community.

Documentation
Appcelerator provides complete documentation for the Titanium mobile SDK and related
components at http://docs.appcelerator.com/titanium/latest.

All 5,000+ SDK APIs are documented with samples at http://docs.appcelerator.com/
titanium/latest/#!/api.

Appcelerator has created Getting Started guides for a majority of the platform features at
http://docs.appcelerator.com/titanium/latest/#!/guide.

Support
The Titanium Q&A forum at http://developer.appcelerator.com/questions/
newest is the primary portal for support product. This forum provides an extensive list of
support topics and is frequented by Titanium Titans and Appcelerator employees.

The popular programming Q&A site stackoverflow also has a Titanium mobile section available
at http://stackoverflow.com/questions/tagged/titanium. This can be an
excellent resource if your question involves native platform components.

Appcelerator also provides a paid support option. Learn more at http://support.
appcelerator.com.

Appendix

301

Other helpful resources
The Appcelerator developer blog at http://developer.appcelerator.com/blog
provides an excellent source of news, guidance, and code examples.

The Titanium meet-up community is also growing, a list of meet-ups near you is available at
http://appcelerator.meetup.com.

The official Appcelerator twitter account, https://twitter.com/appcelerator, is an
excellent source of news including new Titanium apps launching in the different app stores.

If you are looking for help with a Titanium project, the Devlink program available at
http://developer.appcelerator.com/devlink, provides a listing of experienced
Titanium developers and agencies.

Index
A
addAPIKey

using 105
addCloseTimer function, HUD module 38
addCloseTimer function, NotifyUI module 43
addDays method 13
addEventListener function, HUD module 38
addEventListener function, NotifyUI module

43
addProvider method 178
addPurpose method 171
addToMap method 164, 173
Advanced Encryption Standard (AES) 246
AESDecrypt method 280
AES encryption

implementing, JavaScript used 247-251
AES encryption recipe

about 246
UI, creating 248, 249
values, decrypting 250, 251
values, encrypting 250, 251

AESEncrypt method 280
Android 298
Android app

auto restart scenario 227, 228
notification on restart scenario 228, 229
opening, with BOOT_COMPLETED 224-226
property controlled scenario 229-232
required tiapp.xml updates 226

Android app recipe 224-226
Android Intent Supported 134
Android lock screen monitor recipe

about 292
Lock Helper, creating 294
lock pattern, verifying 293

monitoring, stopping 295
screen lock events 294
UI, creating 293
window focus, used for monitoring 295

Android SDK 298
Android.Tools module 233
Android.Tools.Receiver module 227
Apache Public License (Version 2) 7
Appcelerator

on Github 299
URL 297

Appcelerator developer blog
URL 301

Appcelerator Titanium Mobile 7
Appcelerator twitter account

URL 301
App launcher recipe

about 206
requisites 207
scheme launch list, creating 208
tiapp.xml, updating with iOS 208
UI, creating 212, 213

Apple 240
Apple App Store 298
Apple development tools

URL 298
application-level event

firing 31
app performance

improving, with SQLite transactions 78
architecture, Titanium app

JavaScript code 8
JavaScript interpreter 8
Native Custom Modules 8
Titanium API 8

304

assistant functions, download queue sample
recipe

callback method 205
dequeue method 203
download method 203
getLength method 202
next method 202
peek method 202
progressSetup method 201
requeue method 204
updateProcess method 202
updateProgress method 203
whenFinished method 202
whenFinish method 202

B
background capabilities, PlatformHelpers

module
4-inch iPhone 26
about 24
iPad 26
iPad Mini 27
tablets, detecting 25

Background Geo recipe
about 188
assistant methods 192
background button events 194
background location options 191
geolocation events 193
iOS app-level events 195
namespaces, creating 190
tiapp.xml file, updating 189, 190
UI, building 191

basic authentication recipe
about 252
service connection, creating 255, 256
Ti.Network.HTTPClient module used 252-257
UI, creating 253, 254

basicGeo module 162
URL 175

beginTransaction method 86
bencoding.android.tools module 225
bencoding.basicgeo module 170

benCoding Geo recipe
about 160-162
availability helpers, adding 162
current location, finding 164, 165
device capability check, performing 167
forward location lookup 166
location services purpose, adding 162
place objects, working with 163, 164
UI, building 162, 163

bencoding.securely module 241
bencoding.zip module 262
BOOT_COMPLETED action

about 224
Android app, opening with 224-226
event lifecycle 224

BootReceiver
URL, for documentation 233

BreakingMenu recipe
about 44
closed state, Screen Break Menu 44
menu, displaying 48
notes menu object, creating 47
open state, Screen Break Menu 45
sample window, creating 46
Screen Break Menu, adding 46
Screen Break Menu listeners, adding 47

breakScreen function
about 48
parameters 48

built-in message styles, NotifyUI module
about 43
completed 43
error 43
success 44
warning 43

business location map
creating, Yahoo Local used 101, 102

C
chartLauncher module

working 153
CommonJS modules

adding 10, 11
app.js, creating 12
datehelpers module, building 12
dateWin module 13, 14

305

functions 16
global scope anti-pattern 18, 19
instance object, creating with module.exports

17
properties 16
require method 15
using 12
working 15

convertToObjects 123
CoverSliderExample

URL 61
createdOn method 13
createDummyObject function 81
createOrResetDb method 80
createSQLStatement method 81
createTabStrip method 52
createWindow function 13
CRM tool 7
cross-platform API

building 9
cross-platform HUD progress indicator

about 34
creating 36
HUD listeners, adding 36
HUD message, updating 37
HUD module, adding 34, 35
HUD window, closing 37
sample window, creating 35
using 34
working 37

cross-platform passcode screen recipe
about 257
implementing 257-261
passcode screen, launching 259-261
UI, creating 258

cross-platform URL schemes recipe
about 214
About window, launching 221, 222
helper functions, launching 218, 219
Login window, launching 222-224
proper event listeners, adding in app 220,

221
requisites 214
tiapp.xml, updating with Android 216, 217

tiapp.xml, updating with iOS 215
UI, creating 217, 218

CSS 7
currentLocationQuery method

using 105

D
Data Encryption Standard (DES) 279
dateHelper module 13
datehelpers CommonJS module 13
dbDirectory function 65
dbExists function 65
DbFileExt module

about 64
adding, to project 64
database directory, determining 67
database file, removing 68
database file, renaming 68
databases, listing 68
database Ti.Filesystem, adding 67
dbList function 68
file exist check 67
test, setting up 66
working 66

dbFile function 65
DbLazyProvider module

about 83
connection object, getting 86
database connection, closing 87
database connection, opening 86
DbLazyProvider object, creating 86
transaction, beginning 86
transaction, ending 86

dbRemoteBackup function 65
DbTableChecker SQLite table existence

checking
about 69
helpers, testing 72
module, checking 69
namespace, creating 70
table, creating 71
table, removing 71
table, testing 70
window, creating 70

306

dbTableCheck module
about 70
tableExists method 73

dbTestHelper method 82
Dbtuning recipe

about 77
benchmarking 80
database setup 80, 81
testing Interface, creating 79
tests, performing 81, 82
TimeLogger module, adding 78, 79

demoUI library 214
DESDecrypt method 279
DES encryption

using 279
DESEncrypt method 279
Devlink program

URL 301
dispose method 134
distanceInUnits method 187
document-signing app

buttons, adding 138, 139
creating 134-137
document view, adding 137
running, on iPad 134-137
saved signature, reloading 139
signature view, adding 137
window, creating 137

Dossier
about 74
adding, to project 74
copying directory contents, recursively 76
directory contents, listing recursively 75
moving directory contents, recursively 77
sample directories, creating 75
URL 77

download queue sample recipe
about 198
assistant functions 201-205
download, starting 205
jobs, adding to queue 200
network connection 199
queue, creating 200
UI, creating 199, 200

dropTable function 72

F
fetchWindow function 31
file encryption recipe

about 281
file, decrypting 284, 285
file, encrypting 283, 284
UI, creating 282, 283

findDistance method 187
findLocations function 185, 187
formatUrl function 123
forwardGeoCallback function 167
forwardGeocoder method 166
forwardGeo method 186

G
gauges

about 154
saved sales information, loading 156
used, for displaying information 154, 155

generateAddress method 174, 180
generateDerivedKey method 278
Geo Distance recipe

about 181-183
address information, adding 184
distance and address lookup operations,

performing 185
distance, finding between addresses 186,

187
UI, building 184

geo.findLocation method 187
geolocation 159
GeoNames GeoProvider

URL 175
geoQuery method

using 105
getChildNodes function 114
getCurrentAddress method 172, 180
getCurrentPlace method 164
getProfileUrl function 123
getProvider method 180
getQueryParams function 122
getText function 122
Github

Appcelerator 299
Titanium mobile 299

307

Titanium modules 300
Github project

URL 91
Github repository 8
global logging, with Ti.App.Listener

app.js, defining 29
designing, with events 29
logging module 30
performing 27-29

global scope anti-pattern, CommonJS
modules 18, 19

Google Analytics
about 106
using, in app 106

Google Analytics dashboard
actions, publishing 109

Google Analytics Sample
action, recording 109
events, recording 108
Helper functions 108
instance, creating 107
Pageview function, on child window 110
Pageview function, on opening window 110
sample UI, creating 109
working 107

Google GeoProvider
URL 175

Google Groups
URL 91

H
hasProperty method 275
Heads Up Display. See HUD
helper functions, cross-platform URL schemes

recipe
getCurrentPage function 219
getLaunchUrl method 219
hasChanged method 219
hasLaunchUrl method 219
openPageFromUrl method 219
openWindow method 218, 219

helpers function 13
hide function, HUD module 38
hide function, NotifyUI module 42
HTML 7
HUD 34

HUD message
updating 37

HUD module
about 34
addCloseTimer function 38
addEventListener function 38
adding, to project 34
hide function 38
load function 37
removeCloseTimer function 38
removeEventListener function 38
show function 37
updateMessage function 38
using 34
working 37

HUD module window
closing 37

I
iExplorer

URL 242
in-app notifications

about 38
built-in message styles 43
message, updating 42
message window, closing 42
message window, displaying 41
NotifyUI listeners, adding 40, 41
NotifyUI module, adding 39
sample window, creating 40
working 42

indexChanged event 52
information

displaying, gauges used 154
invoke method 116
iOS

about 298
protected PDFs, handling on 286-291

iOS data protection
implementing, in Titanium 240-242

iOS data protection recipe
about 240
data protection, enabling 241
file, creating for data protection verification

243, 244

308

imports, creating 242
namespace, creating 242
requisites 242
UI, creating 243
working 244-246

iOS DocumentViewer 134
iOS Multithreading recipe

about 233, 236
requisites 234
testing functions 235
UI, creating 235

iPad
document-signing app, running 134-137

isPublic function 123
isSimulator property 22

J
JavaScript 7

used, for implementing AES encryption
247-251

jsPDF
used, for generating PDF documents 144-147

L
lazy-loading pattern

about 83
for, select statement 85
implementing 83, 84
testing Interface, creating 84
transactions, using 84, 85

LinkedIn API results
parsing 122-124

LinkedIn Contacts API 117, 118
LinkedInSearch

about 118, 119
API key, adding 119
contacts, loading 121
LinkedIn API results, parsing 122-124
permissions, adding 120
results, formatting with uiHelpers object 121
secret key, adding 119
UI, creating 120

listContents method 75
load function, HUD module 37

load function, NotifyUI module 42
locationChangeCallback method 193
locationErrorCallback method 193
location services

Background Geo Recipe 188
benCoding Geo recipe 160
Geo Distance recipe 181
Multi-Tenant Geo 176
Ti.GeoProviders recipe 168

lookup.updateProvider method 172

M
Mac App Store 298
mainWin.js module 31
makeTable function 72
MASlidingMenu

URL 61
maxIterations property 80
Metro Style Tab Control

about 49
adding, to project 50
adding, to window 52
sample window, creating 50
settings object, creating 51
tab listeners, adding 52
tabs, defining 51, 52
used, for creating cross-platform experience

49
MongloDb module

about 87
bundle, creating 87
collection, initializing 89
database, initializing 88
documents, inserting 90
documents, removing 91
documents, updating 90
events, using 89
find function, using 90
findOne method, using 91
installing 87
Titanium storage provider, adding 89

MongoDb 10
move method 77
Multi-Tenant Geo recipe

about 176, 178
lookup helper methods 179, 180

309

multitenant reverse geolocation lookup, per-
forming 180

providers, adding 178
purpose, adding 178
UI, building 179

multitenant reverse geolocation lookup
performing 180

N
National Institute of Standards

and Technology (NIST) 281
Node.js 10
NoSQL database 87
NotifyUI module

about 38
addCloseTimer function 43
addEventListener function 43
adding, to project 39
built-in message styles 43
hide function 42
load function 42
removeCloseTimer function 43
removeEventListener function 43
show function 42
updateMessage function 42
using 38

O
object and string encryption recipe

about 277
decryption, with AES 280
decryption, with DES 279
derived key, generating 278
DES encryption, using 279
encryption, with AES 280
encryption, with DES 279
keys, generating 278
namespace, creating 277
random key, generating 278
stringCrypto object, creating 278

onComplete method 98
onError callback method 172
onError method 175
onFinish function 185
onSuccess callback method 172

onSuccess method 174
openDialog method 133
openPDF CommonJS module 128
openPDF module 134

P
parameters, breakScreen function

bottomViewHeight 48
breakStartPoint 48
slideFinishPoint 48

password-protected ZIP file
creating 264

PDF documents
closing 134
creating, from images/screenshots 140, 142
creating, from screenshot 143, 144
creating, from view 142
creating, jsPDF used 146, 147
example UI, creating 130
generating, jsPDF used 144, 145
link, creating 130
opening 128, 130
opening, within iOS app 132, 133
opening, with one click 131

PDF file
protecting 289
unlocking 290

performanceTest object 81
placeHelpers.address method 165
PlatformHelpers CommonJS module

adding, to project 20-23
background capabilities 24
creating 20
simulator check 24
working 24

platform indicators 19
polluting global namespace condition 10
protected PDFs

handling, on iOS 286-291
protected zip files recipe

about 262
password-protected ZIP file, creating 264-266
protected ZIP file, unzipping 266-268
UI, creating 263, 264

310

Q
queryByPath method 100
query function

using 99, 100

R
readCache method 194
removeAllProperties method 276
removeCloseTimer function, HUD module 38
removeCloseTimer function, NotifyUI module

43
removeEventListener function, HUD module

38
removeEventListener function, NotifyUI mod-

ule 43
removeTable function 72
resetTestTable method 81
resetUI method 116
resultsCallback method 164
RGraph

UI, creating 151
used, for creating scheduling chart 148, 150

rss2Objects CommonJS module
about 94

RSS feeds
articles, displaying 97
consuming 94
query function, using 99, 100
reading, with XML parsing 96
reading, YQL used 96
yqlQuery function, using 98

RSS reading sample
about 94
UI, creating 95

runTestButton button 80

S
sale gauge

sales, adjusting 156, 157
saved sales, reloading 157
UI, creating 156

scheduling chart
creating, RGraph used 148, 150
example, launching 152, 153

schedules, creating 151
tasks, assigning 151

scheme launch list, App launcher recipe
Android scheme list 210, 211
creating 208
iOS scheme list 209

schemeList.js file 207
schemeList module 207
Screen Break Menu module

about 44, 45
adding, to project 46

ScreenToPDF recipe
creating 140
UI, creating 142

SDK APIs
URL 300

Securely module 286
Securely.Properties object 270
Securely.StringCrypto object Securely.

StringCrypto object 277
secure properties

considerations 276
field names, listing 274
on Android 276
on iOS 276
reading, with defaults 273
reading, without defaults 273
removing 275
using 270
values, setting 274

secure properties object
creating 272

secure properties recipe
about 270
module reference, adding 270
namespace, creating 271
result comparison helper 272
secure properties object, creating 272
secure properties, on Android 276
secure properties, on iOS 276
secure properties, reading with defaults 273
secure properties, reading without defaults

273
secure properties, removing 275
secure property field names, listing 274
secure property values, setting 274

311

selectedFont object 51
Service-Oriented Architecture. See SOA
setLocation method 164, 174
show function, HUD module 37
show function, NotifyUI module 42
Slideout menu

about 53
adding, to project 56
app window, opening 58
closing 60
content views, defining 57
current view, accessing 60
custom application listeners, adding 59
displaying 59
global events, using 60
menu, adding 59
menu container, closing 60
menu container, opening 59
menu items, building 57
menu listeners, adding 58
menu state, determining 60
Ti.Draggable module, installing 53-55
toggling 60
used, for creating sample app 53

SOA 93
SOAP service calls

making, SUDS.js used 111, 112
SOAP Service Sample

about 111
SOAP helper methods 112
SOAP service, calling 116, 117
UI, creating 114, 115
uiHelpers object 115, 116

SQLite transactions
about 77
managing 77

stringCrypto object
creating 278

subtractButton 14
SUDS2.js

about 117
URL 117

SUDS.js
about 117
URL 117

SUDS module 112

T
tabClick event 52
Tab Definition 51
tableExists function 70, 73
tableName parameter 72
tabSettings object 51
Ti.Android.intent

URL 134
Ti.App.Properties objectt 270
Ti.App.removeEventListener method 32
tiapp.xml file, Background Geo recipe

updating 189
Ti.BA.js file 252
TiDraggable

URL 61
Ti.Filesystem

database, accessing 64
database directory, determining 65
database file, removing 66
database file, renaming 66
database, finding 65
databases, listing 66
file exist check 65

Ti.Geo.Background CommonJS module 190
Ti.Geo.Background module 193
Ti.GeoProvider Framework

about 168
URL 175

Ti.GeoProviders recipe
about 168, 169, 170
API key , adding 171
lookup functions 173, 175
purpose, adding 171
reverse geolocation, running 172
UI, building 171

Ti.Google.Analytics CommonJS module 106
TiJasmine

about 299
URL 299

TimeLogger module 78, 79
time reporting 206
Ti.Network.HTTPClient module

about 252
used, for basic authentication 252-257

Ti.Passcode.js file 257

312

Ti.Passcode module 257
Ti.Queue.js file 198
Ti.Queue module

about 198
URL 206

Ti.SchemeTools module 214
TiShadow

URL 298
Ti.SlowAES module

about 247
URL 251

Titanium
about 297
iOS data protection, implementing 240- 242
PDF documents, opening 128

Titanium Android apps
creating 298

Titanium app
app namespace, defining 10
architecture 8, 9
building 7
CommonJS 10
cross-platform API, building 9
global logging, Ti.App.Listener used 27, 28
platform indicators, using 19

Titanium apps
creating 297

Titanium community links
helpful resources 301
Q&A forum 300
Titanium mobile SDK 300

Titanium ecosystem 8
Titanium iOS apps

creating 298
Titanium-Jasmine

about 299
URL 299

Titanium meet-up community
URL 301

Titanium mobile
on Github 299

Titanium Mobile project 8

Titanium mobile SDK
URL 300

Titanium modules
on Github 300

Titanium Q&A forum
URL 300

Titanium SDK 297
Titanium Store

URL 91
Titanium testing resources

about 298
TiJasmine 299
TiShadow 298
Titanium-Jasmine 299

Ti.UI.Window 12
Ti.WebWorkerWrapper module

about 233, 237
URL 237

toObject method 114
trackEvent function 109

U
uiHelpers object 115
updateMap function 103
updateMessage function 37
updateMessage function, HUD module 38
updateMessage function, NotifyUI module 42
updateProvider method 173
updateUI method 117

W
whenComplete function 99
withTransactions variable 80

X
Xcode 298
xmlToObject function 113
XMLTools

about 112,117
URL 117

313

Y
Yahoo Business Search

addAPIKey, using 105
API key, adding 102
creating 101
currentLocationQuery method, using 105
geoQuery method, using 105
location search, performing 104
map, updating 103
UI, creating 103

Yahoo Local Search API
using 101, 102

Yahoo Search CommonJS module 102
YQL

about 96
benefits 96
URL 101

yqlQuerty method
about 98
using 98

YQL usage guidelines
URL 101

314

Thank you for buying
Appcelerator Titanium Business
Application Development
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Appcelerator Titanium:
Patterns and Best Practices
ISBN: 978-1-84969-348-6 Paperback: 320
pages

Take your Titanium development experience to the next
level, and build your Titanium knowledge on CommonJS
structuring, MVC model implementation, memory
management and much more

1. Full step-by-step approach to help structure your
apps in an MVC style that will make them more
maintainable, easier to code and more stable

2. Learn best practices and optimizations both
related directly to JavaScript and Titanium itself

3. Learn solutions to create cross-compatible layouts
that work across both Android and the iPhone

Appcelerator Titanium
Application Development by
Example Beginner's Guide
ISBN: 978-1-84969-500-8 Paperback: 334 pages

Over 30 interesting recipes to help you create
cross-platform apps with Titanium, and explore
the new features in Titanium 3

1. Covers iOS, Android, and Windows8

2. Includes Alloy, the latest in Titanium design

3. Includes examples of Cloud Services, augmented
reality, and tablet design

Please check www.PacktPub.com for information on our titles

Augmented Reality using
Appcelerator Titanium
Starter
ISBN: 978-1-84969-390-5 Paperback: 52 pages

Learn to create Augmented Reality applications in no
time using the Appcelerator Titanium Framework

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Create an open source Augmented Reality
Titanium application

3. Build an effective display of multiple points
of interest

4. Learn to calculate distances between points
of interest

Microsoft SharePoint 2010
Enterprise Applications on
Windows Phone 7
ISBN: 978-1-84968-258-9 Paperback: 252 pages

Create enterprise-ready websites and applications that
access Microsoft SharePoint on Windows Phone 7

1. Provides step-by-step instructions for integrating
Windows Phone 7-capable web pages into
SharePoint websites

2. Provides an overview of creating Windows Phone
7 applications that integrate with SharePoint
services

3. Examines Windows Phone 7's enterprise
capabilities

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Patterns and Platform Tools
	Introduction
	Defining an app namespace
	CommonJS in practice
	Using platform indicators
	Global logging using Ti.App.Listener

	Chapter 2: Cross-platform UI
	Introduction
	Cross-platform HUD progress indicator
	In-app notifications
	Screen Break Menu
	Metro Style Tab Control
	Slideout Menu

	Chapter 3: Using Databases and Managing Files
	Introduction
	Accessing your database's Ti.Filesystem
	DbTableChecker SQLite table existence checking
	Recursively handling files using Dossier
	Tuning your SQLite database for maximum performance
	Data access using DbLazyProvider
	NoSQL using MongloDb

	Chapter 4: Interacting with Web Services
	Introduction
	Consuming RSS feeds
	Creating a business location map using Yahoo Local
	Using Google Analytics in your app
	Making SOAP service calls using SUDS.js
	Using the LinkedIn Contacts API

	Chapter 5: Charting and Documents
	Introduction
	Opening PDF documents
	Using an iPad for document signatures
	Creating PDF documents from images or screenshots
	Generating PDF documents using jsPDF
	Creating a scheduling chart using RGraph
	Displaying information with Google gauges

	Chapter 6: Using Location Services
	Introduction
	Native geolocation using basicGeo
	Using the Ti.GeoProviders framework for geolocation
	Multitenant geolocation
	Calculating distance between addresses
	Background geolocation management

	Chapter 7: Threads, Queues, and Message Passing
	Introduction
	Queuing multiple downloads
	Launching one app from another
	Cross-platform URL schemes
	Opening your Android app with BOOT_COMPLETED
	iOS Multithreading using Web Workers

	Chapter 8: Basic Security Approaches
	Introduction
	Implementing iOS data protection in Titanium
	AES encryption using JavaScript
	Basic authentication using Ti.Network.HTTPClient
	Implementing a cross-platform passcode screen
	Working with protected ZIP files on iOS

	Chapter 9: App Security Using Encryption and Other Techniques
	Introduction
	Using secure properties
	Object and string encryption
	Working with encrypted files
	Handling protected PDFs on iOS
	Android lock screen monitor

	Appendix: Titanium Resources
	Getting started with Titanium
	Getting started with Android
	Getting started with iOS
	Titanium testing resources
	Modules and open source
	Titanium community links

	Index

